
Kernel Methods
Software, Algorithms

and Applications

Dissertation

Zur Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

an der Technischen Universität Wien

eingereicht bei:

1. Beurteiler:

Univ.-Prof. Dr. Kurt Hornik
Institut für Statistik und Mathematik

Wirtschaftsuniversität Wien

2. Beurteiler:

Univ.-Prof. Dr. Friedrich Leisch
Institut für Statistik

Ludwig-Maximilians-Universität München

von

Alexandros Karatzoglou

Wien, im Februar 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

ii

Kurzfassung

Die vorliegende Arbeit untersucht einen teilbereich des maschinellen Ler-
nens, die Kernmethoden. Nach einer kurzen Präsentation der mathematis-
chen Grundlagen in Kapitel 1 wird in Kapitel 2 das R Erweiterungspaket
kernlab vorgestellt. Basierend auf dem S4-Klassen Konzept stellt es einen
objektorientierten flexiblen Baukasten für Kernmethoden zur Verfügung, und
noch dazu Implementierungen von bekannten Kernmethoden wie z.b. Sup-
port Vector Machines SVM, Spectral Clustering, und Kernel PCA. Im Kapi-
tel 3 wird die SVM in kernlab mit drei anderen SVM-Implementierungen in
R in Bezug auf Features und Effizienz verglichen.

Kapitel 4 beschreibt einen neuen Kern-basierten Algorithmus für on-line
Training von SVMs in der die Schrittgröße des stochastischen Abstiegs dy-
namisch adaptiert wird. Eine Anwendung der Methode auf einem Standart-
Datensatz des maschinellen Lernens zur Handschrifterkennung bestätigt die
Leistungsteigung gegenüber ähnlichen Methoden, die die Schrittgröße nicht
dynamisch anpassen. Kapitel 5 stellt Kern-basierte Clusterverfahren für
die Gruppierung von Textdokumenten vor. Spectral Clustering und eine
Kern-Version des bekannten k-means Verfahrens in zusammenhang mit den
für Clusterung von Text speziell entwickelten Kern werden vorgestellt und
miteinander verglichen.

iii

Foreword

This thesis was written during the years I was part of the Institute of
Statistics of the Vienna University of Technology in the Center for Compu-
tational Intelligence (CI).

In this small note I would like to thank those who one way or another
have contributed to this thesis. I would first like to express my gratitude to
my supervisor Kurt Hornik for his support, guidance and for giving me the
freedom to choose my research subject. I am also grateful to Alex Smola for
the chance he gave me to visit the Machine Learning Group at the Australian
National University and NICTA and for introducing me into the research field
of Kernel Methods.

Special thanks go to my second supervisor Friedrich Leisch for his helpful
comments on the thesis and to my colleagues at the Institute of Statistics
David Meyer, Achim Zeileis and Bettina Grüen. I would also like to thank
Evgenia Dimitriadou for being a good colleague and friend all of these years
and for her help and mental support especially at the first difficult years in
Vienna.

I was privileged to make good friends in Canberra Australia during my
visits at the ML group at the ANU. Cheng Soon Ong, Vishy Viswanathan,
Greg Rawlings, Ah Young Park and Nic Schraudolph have always been the
best of companies and made my stay in Australia very enjoyable.

This thesis was financially supported by the Austrian Science Foundation
(FWF) under grand SFB010 “Adaptive Information Systems and Modeling
in Economics and Management Science”, by the“Statistical Computing in R”
grand of the Vienna University of Economics and Business Administration,
and by grands of the National ICT Australia (NICTA) the Academic Society
of Austria and the Austrian Research Association (ÖFG).

Last but not least, my gratitude to my parents and my brother for always
being there for me, this is for you.

iv

Abstract

This monograph intends to contribute to the area of kernel-based Machine
Learning.

After a basic introduction to kernel-based Machine Learning we continue
by introducing a software package for kernel-based learning in R. The package
provides a range of kernel methods including various formulations of Support
Vector Machines, Gaussian processes for classification and regression, a Spec-
tral Clustering implementation, the Relevance Vector Machine for regression,
and kernel PCA. The package includes infrastructure for developing kernel
methods and to this purpose it also contains implementations of the many
popular kernels and functions for fast calculation of kernel expressions along
with a quadratic problem solver and a incomplete Cholesky decomposition
method.

The second chapter of the thesis presents and compares the Support Vec-
tor Machines implementations contained in various R packages.

Chapter three introduces a novel kernel based on-line learning algorithm.
The algorithm is derived by utilizing stochastic-meta-decent in order to cal-
culate the learning rate of a simple kernel based stochastic gradient decent
decent. We evaluate the algorithm on a character recognition data set.

The fourth chapter presents an application of kernel method on text clus-
tering. We use the kernel k-means and a spectral clustering method along
with a string kernel to cluster a set of text documents. The results are then
compared to a standard text clustering method.

Contents

1 Introduction 1
1.1 Machine Learning . 1
1.2 Kernel Methods . 2

1.2.1 Kernels . 3
1.2.2 Kernel Classes . 4

1.3 Kernel algorithms and Software 7
1.4 Thesis Outline . 8

2 kernlab – An S4 package for kernel methods in R 9
2.1 Introduction . 9

2.1.1 Software Review . 9
2.1.2 R Software . 10

2.2 kernlab . 10
2.2.1 S4 objects . 11
2.2.2 Namespace . 12
2.2.3 Data . 12
2.2.4 Kernels . 13
2.2.5 Kernel Utility Methods 15

2.3 Kernel Methods . 17
2.3.1 Support Vector Machine 17
2.3.2 Relevance Vector Machine 19
2.3.3 Gaussian Processes . 21
2.3.4 Ranking . 22
2.3.5 Online Learning with Kernels 23
2.3.6 Spectral Clustering . 25
2.3.7 Kernel Principal Components Analysis 26
2.3.8 Kernel Feature Analysis 28
2.3.9 Kernel Canonical Correlation Analysis 28
2.3.10 Interior Point Code Quadratic Optimizer 31
2.3.11 Incomplete Cholesky Decomposition 32

2.4 Conclusions . 32

v

vi CONTENTS

3 Support Vector Machines in R 33
3.1 Introduction . 33
3.2 Support Vector Machines . 34

3.2.1 Classification . 34
3.2.2 Novelty detection . 37
3.2.3 Regression . 38
3.2.4 R software overview 38

3.3 Data . 39
3.4 ksvm in kernlab . 40
3.5 svm in e1071 . 44
3.6 svmlight in klaR . 51
3.7 svmpath . 53
3.8 Benchmarking . 54
3.9 Conclusions . 56

4 Step Size-Adapted Online Support Vector Learning 59
4.1 Introduction . 59
4.2 Stochastic Meta-Descent . 60
4.3 Online Kernel Methods . 60

4.3.1 Optimization Problem 61
4.3.2 Loss Functions . 62
4.3.3 Coefficient Updates . 62
4.3.4 Handling Offsets . 63

4.4 Online SVMD . 64
4.4.1 Scalar Representation 64
4.4.2 Expansion in Hilbert Space 64
4.4.3 Linear-Time Incremental Updates 65

4.5 Experiments . 65
4.6 Conclusions . 68

5 Text clustering with string kernels in R 73
5.1 Introduction . 73
5.2 Software . 74

5.2.1 The textmin R Package 74
5.2.2 kernlab . 74

5.3 Methods . 75
5.3.1 Kernel k-means . 75
5.3.2 Spectral Clustering . 76
5.3.3 String kernels . 76

5.4 Experiments . 77
5.4.1 Data . 77

CONTENTS vii

5.4.2 Experimental Setup . 77
5.4.3 Performance measure 78
5.4.4 Results . 78
5.4.5 Timing . 79

5.5 Conclusions . 79

A SVM formulations 85
A.0.1 nu-SVM formulation for classification 85
A.0.2 spoc-svm for classification 85
A.0.3 Bound constraint C-SVM for classification 86
A.0.4 SVM for regression . 86
A.0.5 SVM novelty detection 87

B kernlab Reference Manual 89
as.kernelMatrix . 89
couple . 90
csi-class . 91
csi . 93
dots . 96
gausspr-class . 99
gausspr . 101
inchol-class . 104
inchol . 106
income . 108
inlearn . 110
ipop-class . 112
ipop . 114
kcca-class . 116
kcca . 117
kernel-class . 119
kernelMatrix . 121
kfa-class . 123
kfa . 124
kha-class . 127
kha . 128
kkmeans . 131
kpca-class . 135
kpca . 136
ksvm-class . 139
ksvm . 142
lssvm-class . 149

viii CONTENTS

lssvm . 151
musk . 155
onlearn-class . 156
onlearn . 158
plot . 160
prc-class . 161
predict.ksvm . 162
promotergene . 164
ranking-class . 165
ranking . 166
rvm-class . 169
rvm . 172
sigest . 175
spam . 177
specc-class . 179
specc . 180
spirals . 183
ticdata . 183
vm-class . 187

Bibliography 198

Chapter 1

Introduction

1.1 Machine Learning

Machine Learning (Mitchell, 1997) is a discipline closely related to statisti-
cal model fitting and is also by and large considered part of the Artificial
Intelligence (AI) field (Russell and Norvig, 2002). The main goal in Machine
Learning is to extract information from data by creating very flexible models
characterized by large number of parameters and automatizing the processes
of model fitting as much as possible. The terminology used stems from AI
thus terms like “fitting” are replaced by terms like “learning”. The field has
seen a recent explosive increase in interest since the exponential increase in
available computing power has opened many possibilities in the area of both
machine learning and statistical modeling. The advent of new application
areas like bioinformatics (Baldi and Brunak, 1998) and the increasing avail-
ability of large datasets both in size of observations and in dimensionality
have inspired new techniques and algorithms, and given rise to successful
commercial applications of machine learning, Google being the most obvious
example.

Machine Learning has many diverse applications, from controlling robots
to analyzing medical records but it is mostly the extraction of meaningful
structure out of huge amounts of data also know as “data mining” (Witten
and Frank, 2005) that drives a big part of the progress in the field. Some ma-
chine learning techniques look for a structural description of what is learned,
descriptions that can become fairly complex and are typically expressed as
sets of rules, as is the case in decision trees (Quinlan, 1993) or association
rules (Agrawal and Srikant, 1994). Because these models can be understood
by people these descriptions provide a very useful insight into the structure of
the data. Other methods like neural networks (Ripley, 1996) or Support Vec-

1

2 Chapter 1. Introduction

tor Machines (SVM) (Vapnik, 1995) do not provide a structural description
of the data which can be easily understood, but tend to provide very good
performance on new data examples and can be used directly on structured
data like text. Although the ability to produce a human readable model of
the data is certainly an advantage for any Machine Learning method, there
are applications as in bioinformatics where this is not required and other
characteristics (as outright performance) of a learning machine are more im-
portant.

Early Machine Learning approaches where based on linear methods like
the perceptron algorithm, while non-linear methods where considered com-
plex and where not theoretically well-founded. Kernel methods (Schölkopf
and Smola, 2002), (Shawe-Taylor and Christianini, 2004) combine the theo-
retical well-founded approach previously limited to linear systems with the
flexibility and real world application performance typical of nonlinear meth-
ods, hence forming a remarkably powerful and robust class of Machine Learn-
ing techniques.

1.2 Kernel Methods

In the last ten years machine learning methods based on positive definite ker-
nels have become quite popular. Kernel-based learning methods, use an im-
plicit mapping of the input data into a high dimensional feature space defined
by a kernel function, i.e., a function returning the inner product 〈Φ(x), Φ(x′)〉
between the images of two data points x, x′ in the feature space. The learning
then takes place in the feature space, provided the learning algorithm can be
expressed so that the data points only appear inside dot products with other
points. This is often referred to as the “kernel trick” (Schölkopf and Smola,
2002). More precisely, if a projection Φ : X → H is used, the inner product
〈Φ(x), Φ(x′)〉 can be represented by a kernel function k

k(x, x′) = 〈Φ(x), Φ(x′)〉, (1.1)

which is computationally simpler than explicitly projecting x and x′ into the
feature space H.

A simple classification algorithm on the data (x1, y1), . . . , (xn, yn) ∈ X×Y
where Y = ±1 would be to calculate the mean of the data points belonging
to class Y = 1, c+ = 1

n+

∑
i:yi=+1 Φ(xi) and the mean of the points belonging

to class Y = −1, c− = 1
n−

∑
i:yi=−1 Φ(xi) where n+ and n− the number of

data points in the positive and the negative class. A new point x is then
assigned to the closest class through

y = sgn(〈Φ(x), c+〉 − 〈Φ(x), c−〉+ b) (1.2)

1.2. Kernel Methods 3

whith b = 1
2
(‖c−‖2 − ‖c+‖2), and substituting c± gives

y = sgn

(
1

n+

∑
i:yi=+1

〈Φ(x), Φ(xi)〉 −
1

n−

∑
i:yi=−1

〈Φ(x), Φ(xi)〉+ b

)
(1.3)

substituting 〈Φ(x), Φ(xi)〉 with k(x, xi) this becomes

y = sgn

(
1

n+

∑
i:yi=+1

k(x, xi)−
1

n−

∑
i:yi=−1

k(x, xi) + b

)
(1.4)

where b = 1
2
(1

n2
−
(
∑

(i,j):yi=yj=−1 k(xi, xj)− 1
n2

+

∑
(i,j):yi=yj=+1 k(xi, xj))).

A special case of this simple classifier, assuming that the class means
have the same distance to the origin (b = 0) and that k(., x) is a density
for all x′ ∈ X and the two classes are equally likely and generated from two
probability distributions that are correctly estimated by the Parzen window
estimates

p+ :=
1

n+

∑
i:yi=+1

k(x, xi), p− :=
1

n−

∑
i:yi=−1

k(x, xi) (1.5)

is the Bayes decision rule.
This simple classifier is quite similar to the famous Support Vector Ma-

chine, in both cases the data are separated by a hyperplane in the high
dimensional feature space. The classifier is linear in the feature space and is
represented by a kernel expansion in the input domain.

One interesting property of kernel-based systems is that, once a valid
kernel function has been selected, one can practically work in spaces of any
dimension without paying any computational cost, since feature mapping is
never effectively performed. In fact, one does not even need to know which
features are being used.

Another advantage is the that one can design and use a kernel for a
particular problem that could be applied directly to the data without the need
for a feature extraction process. This is particularly important in problems
where a lot of structure of the data is lost by the feature extraction process
(e.g., text processing). The inherent modularity of kernel-based learning
methods allows one to use any valid kernel on a kernel-based algorithm.

1.2.1 Kernels

As we already mentioned a kernel is a function k which satisfies that for all
x, x′ ∈ X

k(x, x′) = 〈Φ(x), Φ(x′)〉 (1.6)

4 Chapter 1. Introduction

where Φ is a mapping from X to an inner product feature space H, Φ : X →
H. Given a kernel k and inputs x1, . . . , xn ∈ X the n× n matrix

K := (k(xi, xj))ij (1.7)

is called the kernel matrix (or Gram matrix) of k with respect to x1, . . . , xn.
A real n× n matrix Kij satisfying∑

i,j

cicjKij ≥ 0 (1.8)

for all ci ∈ R is called positive definite. A function k : X × X → R which
for all n ∈ N, xi ∈ X gives rise to a positive definite kernel matrix is called a
positive definite kernel. Positive definite kernels are usually simply referred
as kernels. Since∑

i,j

cicj〈Φ(xi)Φ(xj)〉 =

〈∑
i

ciΦ(xi),
∑

j

cjΦ(xj)

〉
≥ 0 (1.9)

kernels are positive definite for any choice of Φ. Kernels can thus be regarded
as generalized inner products. Whilst they are not generally bilinear, they
share important properties with dot products, such as the Caych-Schwartz
inequality.

1.2.2 Kernel Classes

Due to the growing interest in kernel methods a large number of kernels have
been conceived, we will only present some of the most commonly used and
interesting families of kernel functions :

RBF kernels The most commonly used kernel class is the radial basis func-
tion (RBF) kernels which are kernels that can be written in the form :

k(x, x′) = f(d(x, x′)) (1.10)

where d(x, x′) is a metric on X and f is a function in R. Usually
the metric arises from the inner product d(x, x′) = ‖x − x′‖ and in
this case RBF kernels are also translation invariant i.e. k(x, x′) =
k(x+x0, x

′+x0) for all x0 ∈ R. The popular Gaussian kernel k(x, x′) =
exp(−σ‖x−x′‖2) sugested by (Boser et al., 1992), (Guyon et al., 1993),
(Vapnik, 1998) is an RBF kernel. The Gaussian kernels is one of the
most commonly used kernels in kernel-based learning, other examples
of RBF kernels include the Laplace kernel, k(x,x′) = exp(−σ‖x− x′‖)

1.2. Kernel Methods 5

and the Bessel function of first order kernel k(x,x′) =
Besseln(ν+1)(σ‖x−x′‖)

(‖x−x′‖)−n(ν+1) .

Most RBF kernels are general purpose kernels and provide good per-
formance on many learning problems.

Polynomial kernels Kernels of the type k(x, x′) = 〈x, x′〉p are positive def-
inite for p ∈ N. The corresponding feature map can be calculated
analyticaly

〈x, x′〉 = 〈
d∑

j=1

[x]j[x
′]j〉p =

∑
j∈[d]p

[x]j1, . . . , [x]jp · [x′]j1, . . . , [x′]jp = 〈Cp(x), Cp(x
′)〉 (1.11)

where Cp maps x ∈ Rd to the vector Cp(x) whose entries are the p-
th degree ordered products of the entries of x. The polynomial kernel
of degree p computes a inner product in the space of all monomials of
degree p of the input coordinates. A variation of this polynomial kernel
is the inhomogeneous polynomial function k(x, x′) = (〈x, x′〉+c)p where
c ≥ 0.

Convolution kernels Kernels for structured data (Haussler, 1999), (Watkins,
2000) like strings and trees have gathered allot of attention recently.
A data type is said to be structured if there is a natural way to de-
compose it into smaller parts, for example a string can be decomposed
into substrings and a tree can be decomposed into subtrees. The idea
behind convolution kernels is to compute the product of sub-kernels
comparing the smaller parts before summing over the set of allowed
decompositions. Mathematically the set of allowed decompositions can
be represented as a relation R(x1, . . . , x2) where x1, . . . , xp constitute
the composite object x. A kernel between composite objects can be
defined by building on similarity measures that asses their respective
parts, in other words kernels kp defined on Xp×Xp. The R convolution
of k1, k2, . . . kp is defined as :

[k1 ? · · · ? kp] =
∑

x̄∈R(x),x̄′∈R(x′)

P∏
p=1

kp(x̄p, x̄
′
p) (1.12)

where the sum runs over all possible ways R(x) and R(x′) in which we
can decompose x and x′ into x̄1, . . . , x̄P or x̄′1, . . . , x̄′P .

Specific examples of convolution kernels are ANOVA kernels (Vapnik,
1998). To construct an ANOVA kernel we consider X = SN for some

6 Chapter 1. Introduction

set S and kernels k(i) on S × S where i = 1, . . . , N . For P = 1, . . . , N
the ANOVA kernel of order P is defined as

kp(x, x′) =
∑

1≤i1<···<iP≤N

P∏
p=1

k(ip)(xip , x
′
ip) (1.13)

ANOVA kernels are performing well in multi-dimensional regression
problems (Stitson et al., 1997).

String kernels One of the most popular application of the SVM is text cat-
egorization. In many of these applications a so called “bag of words”
or “document term matrix” representation is used (Joachims, 1998).
In this representations a sparse vector where each component corre-
sponds to the number of time a word occurs in the text is constructed
for each document. Using a linear or RBF kernel and an efficient
sparse representation, an inner product between the vectors can be
computed very quickly. The main drawback of this technique is that
it does not take into account the word ordering in the document. A
more sophisticated way of dealing with string data was proposed in
(Watkins, 2000) and (Haussler, 1999). The idea is based on the con-
volution kernels and is basicly comparing two string by how many
substrings they have in common. Some string kernels like the sub-
sequence kernel (Lodhi et al., 2002) don’t even require the substring to
be contiguous, and impose a penalty on the distance of the first and
the last element of the considered substrings. In (Vishwanathan and
Smola, 2002) a fast, linear time implementation of string kernels of the
type k(x, x′) =

∑
cs

nums(x)nums(x
′)cs where nums(x) is the number

of times string s occurs in x is proposed. This is done by utilizing
suffix-trees representations of the string vectors x. For inexact match-
ing substrings a similar kernel has been proposed in (Leslie et al., 2002)
where nums(x) is replaced by a mismatch function nums(x, ε) where ε
controls the number of mismatches.

Other types of kernels include kernels on trees, since they can be decom-
posed into subtrees it is fairly simple to design a kernel on them. In Collins
and Duffy (2001) a fast decomposition method is proposed mapping a tree
into its its subtrees. The kernel is then defined as a weighted sum of all
terms between both trees. Kernels on graphs can be defined either between
two graphs Thomas Gärtner and Wrobel (2003) or between the vertices of
a single graph. Also interesting is the Fisher kernel (Jaakkola and Haussler,
1999) which introduces a metric by constructing a probabilistic model of the
data.

1.3. Kernel algorithms and Software 7

1.3 Kernel algorithms and Software

The Support Vector Machine is one of the early success stories of statistical
learning theory and arguably the most well known kernel method. The early
emergence of the Support vector machine and the following interest in its
characteristics and performance contributed to it’s success by generating a
flow of publications and software implementations not seen since then on any
other kernel method. The result of this early interest in the SVM was that a
large number of optimized algorithms where conceived (e.g. chunking (Osuna
et al., 1997), SMO (Platt, 1998), simpleSVM (Vishwanathan et al., 2003)) for
the solution of the SVM optimization problem with very good performance
in terms of speed scalability and space complexity. As a result although the
original SVM implementation required the solution of a large quadratic prob-
lem, it is now used on large datasets without requiring a large computation
facility (computer cluster etc.) and several SVM implementations exist on
almost all major programming languages many of them providing excellent
speed and performance.

A rather large number of new kernel methods exists today some of them
with many advantages over the original SVM like direct computation of class-
probabilities (Kernel Fisher Discriminant Analysis) (Mika et al., 1999), better
sparcenes (e.g. Relevance Vector Machine) (Tipping, 2001) or performance
etc. but most of this methods still lack a fast iterative algorithm or a proper
software implementation and thus receive little attention. It thus seems that
the extensive research the SVM went through was only a product of its early
appearance during the emergence of the field of statistical learning research.

One could claim that most new kernel methods do not benefit form this
maturity processes the SVM wend through. This also apparent by the slow
pace of software implementations for this methods. This is somehow natural,
since nowadays many more kernel based algorithms are available and many
older linear methods have been kernelized creating a considerable amount
of available kernel methods for classification regression dimensionality reduc-
tion, ranking and clustering. Some of these methods get a fair share of atten-
tion but the research interest in machine learning seems also to be slightly
shifting from generating yet another kernel algorithm to taking advantage of
the characteristics of kernel methods and dealing with problems directly on
structured data (e.g. text documents, HTML data, DNA sequences)

One of the aims of this thesis is to contribute to the maturing processes
of some kernel methods through the introduction of a framework for easy
and flexible kernel methods development and through the implementation of
some of the never kernel methods using this framework.

8 Chapter 1. Introduction

1.4 Thesis Outline

This monograph aims to contributing to the field of kernel based machine
learning research. It consists of four chapters:

Chapter 1 is dedicated to the description of the kernlab R package, (Karat-
zoglou et al., 2005a) which aims to provide a framework for develop-
ing kernel-based machine learning methods, provides some basic tools
and also includes some implementations of algorithms for classification,
clustering, ranking, and dimensionality reduction.

Chapter 2 provides a qualitative study of the SVM software included in
various R packages. The aim is to give a clear picture of the relative
advantages of the various SVM implementations. This chapter mainly
covers Karatzoglou et al. (2006)

Chapter 3 introduces a novel on-line learning algorithm which utilizes stochas-
tic meta decent in order to estimate an optimal learning rate at each
iteration. This allows the algorithm to outperform standard on-line al-
gorithms particularly on non-stationary streams of data. This chapter
mainly covers (Karatzoglou et al., 2005b)

Chapter 4 describes an application of kernel methods on text mining. Spec-
tral clustering and kernel k-means is used to cluster a set of text docu-
ment. The performance of this methods compared to more traditional
approaches is encouraging. This chapter covers results presented at the
GFKL 2006 conference.

The appendix contains a detailed description of some SVM formulations
and the kernlab user manual.

Chapter 2

kernlab – An S4 package for
kernel methods in R

2.1 Introduction

In this chapter we present a software package for kernel-based learning. kern-
lab is an extensible package for kernel-based machine learning methods in R
(R Development Core Team, 2005). It takes advantage of R’s new S4 ob-
ject model and provides a framework for creating and using kernel-based
algorithms. The package contains dot product primitives (kernels), imple-
mentations of support vector machines and the relevance vector machine,
Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, kernel
feature analysis, on-line kernel methods and a spectral clustering algorithm.
Moreover it provides a general purpose quadratic programming solver, and
an incomplete Cholesky decomposition method. With this package we hope
to facilitate the use and development of kernel-based methods in R.

2.1.1 Software Review

Support vector machines are currently used in a wide range of fields, from
bioinformatics to astrophysics. Thus, the existence of many SVM software
packages comes as little surprise. Most existing software is written in C or
C++, such as the award winning libsvm (Chang and Lin, 2001), which pro-
vides a robust and fast SVM implementation and produces state of the art
results on most classification and regression problems (Meyer et al., 2003),
SVMlight (Joachims, 1999), SVMTorch, Royal Holloway Support Vector

Machines, (Gammerman et al., 2001), mySVM (Rüping, 2004), and M-SVM

(Guermeur, 2004). Many packages provide interfaces to MATLAB (Math-

9

10 Chapter 2. kernlab – An S4 package for kernel methods in R

Works, 2005) (such as libsvm), and there are some native MATLAB toolboxes
as well such as the SVM and Kernel Methods Matlab Toolbox (Canu et al.,
2003) or the MATLAB Support Vector Machine Toolbox (Gunn, 1998) and
the SVM toolbox for Matlab (Schwaighofer, 2005) Putting SVM specific
software aside and considering the abundance of other kernel-based algo-
rithms published nowadays, there is little software available implementing a
wider range of kernel methods with some exceptions like the Spider(Weston
et al., 2005) software which provides a MATLAB interface to various C/C++
SVM libraries and MATLAB implementations of various kernel-based algo-
rithms, Torch (Collobert et al., 2002) which also includes more traditional
machine learning algorithms, and the occasional MATLAB or C program found
on a personal web page where an author includes code from a published pa-
per.

2.1.2 R Software

The e1071 R package offers an interface to the award winning libsvm (Chang
and Lin, 2001), a very efficient SVM implementation. libsvm provides a ro-
bust and fast SVM implementation and produces state of the art results
on most classification and regression problems (Meyer et al., 2003). The R
interface provided in e1071 adds all standard R functionality like object ori-
entation and formula interfaces to libsvm. Another SVM related R package
which was made recently available is klaR (Roever et al., 2005) which in-
cludes an interface to SVMlight, a popular SVM implementation along with
other classification tools like Regularized Discriminant Analysis.

However, most of the libsvm and klaR SVM code is in C++. Therefore,
if one would like to extend or enhance the code with e.g. new kernels or
different optimizers, one would have to modify the core C++ code.

2.2 kernlab

kernlab aims to provide the R user with basic kernel functionality (e.g., like
computing a kernel matrix using a particular kernel), along with some utility
functions commonly used in kernel-based methods like a quadratic program-
ming solver, and modern kernel-based algorithms based on the functionality
that the package provides. Taking advantage of the inherent modularity of
kernel-based methods, kernlab aims to allow the user to switch between ker-
nels on an existing algorithm and even create and use own kernel functions
for the kernel methods provided in the package.

2.2. kernlab 11

2.2.1 S4 objects

kernlab uses R’s new object model described in “Programming with Data”
(Chambers, 1998) which is known as the S4 class system and is implemented
in the methods package.

In contrast with the older S3 model for objects in R, classes, slots, and
methods relationships must be declared explicitly when using the S4 system.
The number and types of slots in an instance of a class have to be established
at the time the class is defined. The objects from the class are validated
against this definition and have to comply to it at any time. S4 also requires
formal declarations of methods, unlike the informal system of using function
names to identify a certain method in S3.

An S4 method is declared by a call to setMethod along with the name and
a “signature” of the arguments. The signature is used to identify the classes
of one or more arguments of the method. Generic functions can be declared
using the setGeneric function. Although such formal declarations require
package authors to be more disciplined then when using the informal S3
classes, they provide assurance that each object in a class has the required
slots and that the names and classes of data in the slots are consistent.

An example of a class used in kernlab is shown below. Typically, in a return
object we want to include information on the result of the method along
with additional information and parameters. Usually kernlab’s classes in-
clude slots for the kernel function used and the results and additional useful
information.

setClass("specc",
representation("vector", # cluster indexes vector

centers="matrix", # the cluster centers
size="vector", # size of each cluster
kernelf="function", # kernel function used
withinss = "vector"), # within cluster sum

prototype = structure(.Data = vector(), # of squares
centers = matrix(),
size = matrix(),
kernelf = ls,
withinss = vector()))

Accessor and assignment function are defined and used to access the content
of each slot which can be also accessed with the @ operator.

12 Chapter 2. kernlab – An S4 package for kernel methods in R

2.2.2 Namespace

Namespaces were introduced in R 1.7 and provide a means for packages to
control the way global variables and methods are being made available. Due
to the number of assignment and accessor function involved, a namespace is
used to control the methods which are being made visible outside the pack-
age. Since S4 methods are being used, the kernlab namespace also imports
methods and variables form the methods package.

2.2.3 Data

The kernlab package also includes data sets which will be used to illustrate
the methods included in the package. The spam data set (Hastie et al., 2001)
set collected at Hewlett-Packard Labs classifies 4601 e-mails as spam or non-
spam. The 57 variables of each data vector indicate the frequency of certain
words and characters in the e-mail. The data set contains 2788 and 1813
e-mails classified as non-spam and spam, respectively.

Another data set included in kernlab the income data set (Hastie et al.,
2001) is taken by a marketing survey in the San Francisco Bay concerning the
income of shopping mall customers. It consists of 14 demographic attributes
(nominal and ordinal variables) including the income and 8993 observations.

The ticdata data set (Putten et al., 2000) was used in the 2000 Coil Chal-
lenge and contains information on customers of an insurance company. The
data consists of 86 variables and includes product usage data and socio-
demographic data derived from zip area codes. The data was collected to
answer the following question: Can you predict who would be interested in
buying a caravan insurance policy and give an explanation why?

The promotergene data set is a data set of E. Coli promoter gene sequences
(DNA) with 106 observations and 58 variables available at the UCI Machine
Learning repository. Promoters have a region where a protein (RNA poly-
merase) must make contact and the helical DNA sequence must have a valid
conformation so that the two pieces of the contact region spatially align. The
data contains DNA sequences of promoters and non-promoters.

The spirals data set was created by the mlbench.spirals function in the
mlbench package (Leisch and Dimitriadou, 2001). This two-dimensional data
set with 300 data points consists of two spirals where Gaussian noise is added
to each data point.

2.2. kernlab 13

2.2.4 Kernels

A kernel function k calculates the inner product of two vectors x, x′ in a
given feature mapping Φ : X → H. The notion of a kernel is obviously
central in the making of any kernel-based algorithm and consequently also
in any software package containing kernel-based methods.

Kernels in kernlab are S4 objects of class kernel extending the function class
with one additional slot containing a list with the kernel hyper-parameters.
Package kernlab includes 7 different kernel classes which all contain the class
kernel and are used to implement the existing kernels. These classes are used
in the function dispatch mechanism of the kernel utility functions described
below. Existing kernel functions are initialized by “creator” functions. All
kernel functions take two feature vectors as parameters and return the scalar
dot product of the vectors. An example of the functionality of a kernel in
kernlab:

> rbf <- rbfdot(sigma = 0.05)

> rbf

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.05

> x <- rnorm(10)

> y <- rnorm(10)

> rbf(x, y)

[,1]

[1,] 0.3129730

The package includes implementations of the following kernels:

• the linear“vanilladot”kernel implements the simplest of all kernel func-
tions

k(x, x′) = 〈x, x′〉 (2.1)

which is useful specially when dealing with large sparse data vectors x
as is usually the case in text categorization.

• the Gaussian radial basis function “rbfdot”

k(x, x′) = exp(−σ‖x− x′‖2) (2.2)

which is a general purpose kernel and is typically used when no further
prior knowledge is available about the data.

14 Chapter 2. kernlab – An S4 package for kernel methods in R

• the polynomial kernel “polydot”

k(x, x′) = (scale · 〈x, x′〉+ offset)
degree

. (2.3)

which is used in classification of images.

• the hyperbolic tangent kernel “tanhdot”

k(x, x′) = tanh (scale · 〈x, x′〉+ offset) (2.4)

which is mainly used as a proxy for neural networks.

• the Bessel function of the first kind kernel “besseldot”

k(x, x′) =
Besseln(ν+1)(σ‖x− x′‖)

(‖x− x′‖)−n(ν+1)
. (2.5)

is a general purpose kernel and is typically used when no further prior
knowledge is available and mainly popular in the Gaussian Process
community.

• the Laplace radial basis kernel “laplacedot”

k(x, x′) = exp(−σ‖x− x′‖) (2.6)

which is a general purpose kernel and is typically used when no further
prior knowledge is available.

• the ANOVA radial basis kernel “anovadot”

k(x, x′) =

(
n∑

k=1

exp(−σ(xk − yk)2)

)d

(2.7)

which performs well in multidimensional regression problems.

• the linear splines kernel in one dimension “splinedot”

k(x, x′) = 1+xx′ min(x, x′)− x + x′

2
(min(x, x′)2 +

(min(x, x′)3)

3
(2.8)

and for the multidimensional case k(x,x′) =
∏n

k=1 k(xk, x′k). which
also performs well in multidimensional regression problems.

2.2. kernlab 15

2.2.5 Kernel Utility Methods

The package also includes methods for computing commonly used kernel
expressions (e.g., the Gram matrix). These methods are written in such a way
that they take functions (i.e., kernels) and matrices (i.e., vectors of patterns)
as arguments. These can be either the kernel functions already included
in kernlab or any other function implementing a valid dot product (taking
two vector arguments and returning a scalar). In case one of the already
implemented kernels is used, the function calls a vectorized implementation
of the corresponding function. Moreover, in the case of symmetric matrices
(e.g., the dot product matrix of a Support Vector Machine) they only require
one argument rather than having to pass the same matrix twice (for rows
and columns).

The computations for the kernels already available in the package are vector-
ized whenever possible which guarantees good performance and acceptable
memory requirements. Users can define their own kernel by creating a func-
tion which takes two vectors as arguments (the data points) and returns a
scalar (the dot product). This function can then be based as an argument to
the kernel utility methods. For a user defined kernel the dispatch mechanism
calls a generic method implementation which calculates the expression by
passing the kernel function through a pair of for loops. The kernel methods
included are:

kernelMatrix This is the most commonly used function. It computes k(x, x′),
i.e., it computes the matrix K where Kij = k(xi, xj) and x is a row
vector. In particular,

K <- kernelMatrix(kernel, x)

computes the matrix Kij = k(xi, xj) where the xi are the columns of
X and

K <- kernelMatrix(kernel, x1, x2)

computes the matrix Kij = k(x1i, x2j).

kernelFast This method is different to kernelMatrix for rbfdot, besseldot,
and the laplacedot kernel, which are all RBF kernels. It is identical to
kernelMatrix, except that it also requires the squared norm of the first
argument as additional input. It is mainly used in kernel algorithms,
where columns of the kernel matrix are computed per invocation. In

16 Chapter 2. kernlab – An S4 package for kernel methods in R

these cases, evaluating the norm of each column-entry as it is done on a
kernelMatrix invocation on an RBF kernel, over and over again would
cause significant computational overhead. Its invocation is via

K = kernelFast(kernel, x1, x2, a)

Here a is a vector containing the squared norms of x1.

kernelMult is a convenient way of computing kernel expansions. It returns
the vector f = (f(x1), . . . , f(xm)) where

f(xi) =
m∑

j=1

k(xi, xj)αj, hence f = Kα. (2.9)

The need for such a function arises from the fact that K may sometimes
be larger than the memory available. Therefore, it is convenient to
compute K only in stripes and discard the latter after the corresponding
part of Kα has been computed. The parameter blocksize determines
the number of rows in the stripes. In particular,

f <- kernelMult(kernel, x, alpha)

computes fi =
∑m

j=1 k(xi, xj)αj and

f <- kernelMult(kernel, x1, x2, alpha)

computes fi =
∑m

j=1 k(x1i, x2j)αj.

kernelPol is a method very similar to kernelMatrix with the only differ-
ence that rather than computing Kij = k(xi, xj) it computes Kij =
yiyjk(xi, xj). This means that

K <- kernelPol(kernel, x, y)

computes the matrix Kij = yiyjk(xi, xj) where the xi are the columns
of x and yi are elements of the vector y. Moreover,

K <- kernelPol(kernel, x1, x2, y1, y2)

computes the matrix Kij = y1iy2jk(x1i, x2j). Both x1 and x2 may be
matrices and y1 and y2 vectors.

2.3. Kernel Methods 17

An example using these functions :

> poly <- polydot(degree = 2)

> x <- matrix(rnorm(60), 6, 10)

> y <- matrix(rnorm(40), 4, 10)

> kx <- kernelMatrix(poly, x)

> kxy <- kernelMatrix(poly, x, y)

2.3 Kernel Methods

Providing a solid base for creating kernel-based methods is part of what we
are trying to achieve with this package, the other being to provide a wider
range of kernel-based methods in R. In the rest of the chapter we present
the kernel-based methods available in kernlab. All the methods in kernlab
can be used with any of the kernels included in the package as well as with
any valid user-defined kernel. User defined kernel functions can be passed to
existing kernel-methods in the kernel argument.

2.3.1 Support Vector Machine

Since the Support Vector Machine implementation in kernlab is covered ex-
tensivly in chapter 3 we will only include a sort description in this section.

Support vector machines (Vapnik, 1998) have gained prominence in the field
of machine learning and pattern classification and regression. kernlab’s im-
plementation of support vector machines, ksvm, is based on the optimizers
found in bsvm (Hsu and Lin, 2002c) and libsvm (Chang and Lin, 2001) which
includes an very efficient version of the Sequential Minimization Optimization
(SMO).

The SVM implementation in ksvm includes SVM various formulation for
classification including the C-SVM classification algorithm along with the
ν-SVM classification formulation which is equivalent to the former but has a
more natural (ν) model parameter taking values in [0, 1] and is proportional
to the fraction of support vectors found in the data set and the training error.

For classification problems which include more then two classes (multi-class) a
one-against-one or pairwise classification method (Knerr et al., 1990; Kreßel,
1999) is used. Furthermore the ksvm implementation provides the ability to
produce class probabilities as output instead of class labels.

Another approach for multi-class classification supported by the ksvm func-
tion is the one proposed in (Crammer and Singer, 2000). One-class classifica-
tion or novelty detection (Schölkopf et al., 1999; Tax and Duin, 1999), where

18 Chapter 2. kernlab – An S4 package for kernel methods in R

essentially an SVM detects outliers in a data set, is another algorithm sup-
ported by ksvm. Furthermore, ε-SVM (Vapnik, 1995) and ν-SVM (Schölkopf
et al., 2000) regression are also available.

The problem of model selection is partially addressed by an empirical obser-
vation for the popular Gaussian RBF kernel (Caputo et al., 2002), where the
optimal values of the hyper-parameter of sigma are shown to lie in between
the 0.1 and 0.9 quantile of the ‖x− x′‖ statistics. The sigest function uses
a sample of the training set to estimate the quantiles and returns a vector
containing the values of the quantiles. Pretty much any value within this
interval leads to good performance.

An example for the ksvm function is shown below.

> data(promotergene)

> tindex <- sample(1:dim(promotergene)[1],

+ 5)

> genetrain <- promotergene[-tindex,]

> genetest <- promotergene[tindex,]

> gene <- ksvm(Class ~ ., data = genetrain,

+ kernel = "rbfdot", kpar = "automatic",

+ C = 60, cross = 3, prob.model = TRUE)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> gene

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 60

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0158476658476658

Number of Support Vectors : 89

Training error : 0

Cross validation error : 0.108437

Probability model included.

> predict(gene, genetest)

2.3. Kernel Methods 19

[1] + + + + +

Levels: + -

> predict(gene, genetest, type = "probabilities")

+ -

[1,] 0.9955643 0.004435729

[2,] 0.9082671 0.091732929

[3,] 0.7248942 0.275105826

[4,] 0.5031184 0.496881647

[5,] 0.5157837 0.484216310

2.3.2 Relevance Vector Machine

The relevance vector machine (Tipping, 2001) is a probabilistic sparse kernel
model identical in functional form to the SVM making predictions based on
a function of the form

y(x) =
N∑

n=1

αnK(x,xn) + a0 (2.10)

where αn are the model “weights” and K(· , ·) is a kernel function. It adopts
a Bayesian approach to learning, by introducing a prior over the weights α

p(α, β) =
m∏

i=1

N(βi | 0, a−1
i)Gamma(βi | ββ, αβ) (2.11)

governed by a set of hyper-parameters β, one associated with each weight,
whose most probable values are iteratively estimated for the data. Sparsity is
achieved because in practice the posterior distribution in many of the weights
is sharply peaked around zero. Furthermore, unlike the SVM classifier, the
non-zero weights in the RVM are not associated with examples close to the
decision boundary, but rather appear to represent “prototypical” examples.
These examples are termed relevance vectors.

kernlab currently has an implementation of the RVM based on a type II max-
imum likelihood method for which can be used for regression. The functions
returns an S4 object containing the model parameters along with indexes for
the relevance vectors and the kernel function and hyper-parameters used.

> rvmm <- rvm(x, y)

> rvmm

20 Chapter 2. kernlab – An S4 package for kernel methods in R

> x <- rbind(matrix(rnorm(120), , 2), matrix(rnorm(120,

+ mean = 3), , 2))

> y <- matrix(c(rep(1, 60), rep(-1, 60)))

> svp <- ksvm(x, y, type = "C-svc")

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> plot(svp)

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2

−1

0

1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

SVM classification plot

X2

X
1

Figure 2.1: A contour plot of the SVM decision values for a toy binary
classification problem using the plot function

2.3. Kernel Methods 21

●

● ●

●
●

●
● ●

●

●

●

●

●
●

● ● ●

●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●

●

● ●

●

●

●

●

−20 −10 0 10 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.2: Relevance vector regression on data points created by the sinc(x)
function, relevance vectors are shown circled.

Relevance Vector Machine object of class "rvm"

Problem type: regression

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.1

Number of Relevance Vectors : 14

Variance : 0.000581305

Training error : 0.000487676

Cross validation error : -1

> ytest <- predict(rvmm, x)

2.3.3 Gaussian Processes

Gaussian Processes (Williams and Rasmussen, 1995) are based on the “prior”
assumption that adjacent observations should convey information about each
other. In particular, it is assumed that the observed variables are normal, and
that the coupling between them takes place by means of the covariance matrix
of a normal distribution. Using the kernel matrix as the covariance matrix
is a convenient way of extending Bayesian modeling of linear estimators to
nonlinear situations. Furthermore it represents the counterpart of the“kernel
trick” in methods minimizing the regularized risk.

22 Chapter 2. kernlab – An S4 package for kernel methods in R

For regression estimation we assume that rather then observing t(xi) we
observe yi = t(xi) + ξi where ξi is assumed to be independed Gaussian dis-
tributed noise with zero mean. The posterior distribution is given by

p(y | t) =

[∏
i

p(yi − t(xi))

]
1√

(2π)m det(K)
exp

(
1

2
tT K−1t

)
(2.12)

and after substituting t = Kα and taking logarithms

ln p(α | y) = − 1

2σ2
‖y −Kα‖2 − 1

2
αT Kα + c (2.13)

and maximizing ln p(α | y) for α to obtain the maximum a posteriori approx-
imation yields

α = (K + σ21)−1y (2.14)

Knowing α allows for prediction of y at a new location x through y =
K(x, xi)α. In similar fashion Gaussian Processes can be used for classifi-
cation.

gausspr is the function in kernlab implementing Gaussian processes for clas-
sification and regression.

2.3.4 Ranking

The success of Google has vividly demonstrated the value of a good rank-
ing algorithm in real world problems. kernlab includes a ranking algorithm
based on work published in (Zhou et al., 2003). This algorithm exploits the
geometric structure of the data in contrast to the more naive approach which
uses the Euclidean distances or inner products of the data. Since real world
data are usually highly structured, this algorithm should perform better than
a simpler approach based on a Euclidean distance measure.

First, a weighted network is defined on the data and an authoritative score is
assigned to every point. The query points act as source nodes that continually
pump their scores to the remaining points via the weighted network, and the
remaining points further spread the score to their neighbors. The spreading
process is repeated until convergence and the point are ranked according to
the scores they received.

Suppose we are given a set of data points X = x1, . . . , xs, xs+1, . . . , xm in
Rn where the first s points are the query points and the rest are the points
to be ranked. The algorithm works by connecting the two nearest points
iteratively until a connected graph G = (X, E) is obtained where E is the
set of edges. The affinity matrix K defined e.g. by Kij = exp(−σ‖xi − xj‖2)

2.3. Kernel Methods 23

if there is an edge e(i, j) ∈ E and 0 for the rest and diagonal elements. The
matrix is normalized as L = D−1/2KD−1/2 where Dii =

∑m
j=1 Kij, and

f(t + 1) = αLf(t) + (1− α)y (2.15)

is iterated until convergence, where α is a parameter in [0, 1). The points are
then ranked according to their final scores fi(tf).

kernlab includes an S4 method implementing the ranking algorithm. The
algorithm can be used both with an edge-graph where the structure of the
data is taken into account, and without which is equivalent to ranking the
data by their distance in the projected space.

2.3.5 Online Learning with Kernels

The onlearn function in kernlab implements the online kernel algorithms
for classification, novelty detection and regression descibed in (Kivinen et al.,
2004a). In batch learning, it is typically assumed that all the examples are
immediately available and are drawn independently from some distribution
P . One natural measure of quality for some f in that case is the expected
risk

R[f, P] := E(x,y) P [l(f(x), y)] (2.16)

Since usually P is unknown a standard approach is to instead minimize the
empirical risk

Remp[f, P] :=
1

m

m∑
t=1

l(f(xt), yt) (2.17)

Minimizing Remp[f] may lead to overfitting (complex functions that fit well
on the training data but do not generalize to unseen data). One way to avoid
this is to penalize complex functions by instead minimizing the regularized
risk.

Rreg[f, S] := Rreg,λ[f, S] := Remp[f] =
λ

2
‖f‖2H (2.18)

where λ > 0 and ‖f‖H = 〈f, f〉
1
2
H does indeed measure the complexity of

f in a sensible way. The constant λ needs to be chosen appropriately for
each problem. Since in online learning one is interested in dealing with one
example at the time the definition of an instantaneous regularized risk on a
single example is needed

Rinst[f, x, y] := Rinst,λ[f, x, y] := Rreg,λ[f, ((x, y))] (2.19)

24 Chapter 2. kernlab – An S4 package for kernel methods in R

> data(spirals)

> ran <- spirals[rowSums(abs(spirals) <

+ 0.55) == 2,]

> ranked <- ranking(ran, 54, kernel = "rbfdot",

+ kpar = list(sigma = 100), edgegraph = TRUE)

> ranked[54, 2] <- max(ranked[-54, 2])

> c <- 1:86

> op <- par(mfrow = c(1, 2), pty = "s")

> plot(ran)

> plot(ran, cex = c[ranked[, 3]]/40)

●

●

● ●

●
●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

ran[,1]

ra
n[

,2
]

●

●

● ●
●

●

●

●
●

●
●

●

●
●●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

ran[,1]

ra
n[

,2
]

Figure 2.3: The points on the left are ranked according to their similarity to
the upper most left point. Points with a higher rank appear bigger. Instead
of ranking the points on simple Euclidean distance the structure of the data
is recognized and all points on the upper structure are given a higher rank
although further away in distance then points in the lower structure.

2.3. Kernel Methods 25

The implemented algorithms are classical stochastic gradient descent algo-
rithms performing gradient descent on the instantaneous risk. The general
form of the update rule is :

ft+1 = ft − η∂fRinst,λ[f, xt, yt]|f=ft (2.20)

where fi ∈ H and ∂f< is short hand for ∂ ∂f (the gradient with respect
to f) and ηt > 0 is the learning rate. Due to the learning taking place
in a reproducing kernel Hilbert space H the kernel k used has the property
〈f, k(x, ·)〉H = f(x) and therefore

∂f l(f(xt)), yt) = l′(f(xt), yt)k(xt, ·) (2.21)

where l′(z, y) := ∂zl(z, y). Since ∂f‖f‖2H = 2f the update becomes

ft+1 := (1− ηλ)ft − ηtλ
′(ft(xt), yt)k(xt, ·) (2.22)

The onlearn function implements the online learning algorithm for regres-
sion, classification and novelty detection. The online nature of the algorithm
requires a different approach to the use of the function. An object is used to
store the state of the algorithm at each iteration t this object is passed to the
function as an argument and is returned at each iteration t + 1 containing
the model parameter state at this step. An empty object of class onlearn is
initialized using the inlearn function.

> x <- rbind(matrix(rnorm(90), , 2), matrix(rnorm(90) +

+ 3, , 2))

> y <- matrix(c(rep(1, 45), rep(-1, 45)),

+ , 1)

> on <- inlearn(2, kernel = "rbfdot", kpar = list(sigma = 0.2),

+ type = "classification")

> ind <- sample(1:90, 90)

> for (i in ind) on <- onlearn(on, x[i,

+], y[i], nu = 0.03, lambda = 0.01)

> sign(predict(on, x[c(1:10, 81:90),]))

[1] 1 1 1 1 1 1 1 1 1 1 -1 1 -1 -1 -1

[16] -1 -1 -1 -1 -1

2.3.6 Spectral Clustering

Spectral clustering (Ng et al., 2001b) is a recently emerged promising alter-
native to common clustering algorithms. In this method one uses the top

26 Chapter 2. kernlab – An S4 package for kernel methods in R

eigenvectors of a matrix created by some similarity measure to cluster the
data. Similarly to the ranking algorithm, an affinity matrix is created out
from the data as

Kij = exp(−σ‖xi − xj‖2) (2.23)

and normalized as L = D−1/2KD−1/2 where Dii =
∑m

j=1 Kij. Then the top
k eigenvectors (where k is the number of clusters to be found) of the affinity
matrix are used to form an n× k matrix Y where each column is normalized
again to unit length. Treating each row of this matrix as a data point, kmeans
is finally used to cluster the points.

kernlab includes an S4 method called specc implementing this algorithm
which can be used through an formula interface or a matrix interface. The
S4 object returned by the method extends the class “vector” and contains
the assigned cluster for each point along with information on the centers size
and within-cluster sum of squares for each cluster. In case a Gaussian RBF
kernel is being used a model selection process can be used to determine the
optimal value of the σ hyper-parameter. For a good value of σ the values
of Y tend to cluster tightly and it turns out that the within cluster sum of
squares is a good indicator for the “quality” of the sigma parameter found.
We then iterate through the sigma values to find an optimal value for σ.

2.3.7 Kernel Principal Components Analysis

Principal Component Analysis (PCA) is a powerful technique for extracting
structure from possibly high-dimensional datasets. PCA is an orthogonal
transformation of the coordinate system in which we describe the data. The
new coordinates by which we represent the data are called principal compo-
nents. Kernel PCA (Schölkopf et al., 1998) performs a nonlinear transfor-
mation of the coordinate system by finding principal components which are
nonlinearly related to the input variables. Given a set of centered observa-
tions xk, k = 1, . . . ,M , xk ∈ RN , PCA diagonalizes the covariance matrix
C = 1

M

∑M
j=1 xjx

T
j by solving the eigenvalue problem λv = Cv. The same

computation can be done in a dot product space F which is related to the
input space by a possibly nonlinear map Φ : RN → F , x 7→ X. Assuming
that we deal with centered data and use the covariance matrix in F ,

Ĉ =
1

C

N∑
j=1

Φ(xj)Φ(xj)
T (2.24)

the kernel principal components are then computed by taking the eigenvec-
tors of the centered kernel matrix Kij = 〈Φ(xj), Φ(xj)〉.

2.3. Kernel Methods 27

> data(spirals)

> sc <- specc(spirals, centers = 2)

> plot(spirals, col = sc)

●

●

●
●

●

●
●●

●

●●

●

●

●●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
● ● ●

●

● ●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

spirals[,1]

sp
ira

ls
[,2

]

Figure 2.4: Clustering the two spirals data set with specc

28 Chapter 2. kernlab – An S4 package for kernel methods in R

kpca, the the function implementing KPCA in kernlab, can be used both with
a formula and a matrix interface, and returns an S4 object of class kpca con-
taining the principal components the corresponding eigenvalues along with
the projection of the training data on the new coordinate system. Further-
more, the predict function can be used to embed new data points into the
new coordinate system.

2.3.8 Kernel Feature Analysis

Whilst KPCA leads to very good results there are nevertheless some issues
to be addressed. First the computational complexity of the standard version
of KPCA, the algorithm scales O(m3) and secondly the resulting feature
extractors are given as a dense expansion in terms of the of the training
patterns. Sparse solutions are often achieven in supervised learning settings
by using an l1 penalty on the expansion coefficients. An algorithm can be
derived using the same approach in feature extraction requiring only n basis
functions to compute the first n feature. Kernel feature analysis (Smola
et al., 2000) is computationaly simple and scales approximately one order of
magnitute better on large data sets then standard KPCA. Choosing Ω[f] =∑m

i=1 |αi| this yields

FLP = {w|w =
m∑

i=1

αiΦ(xi)with
m∑

i=1

|αi| ≤ 1} (2.25)

This setting leads to the first “principal vector” in the l1 context

ν1 = argmaxν∈FLP

1

m

m∑
i=1

〈ν,Φ(xi)−
1

m

m∑
j=1

Φ(xi)〉2 (2.26)

Subsequent “principal vectors” can be defined by enforcing optimality with
respect to the remaining orthogonal subspaces. Due to the l1 constrain the
solution has the favorable property of beeing sparse in terms of the coefficients
αi.

The function kfa in kernlab implements Kernel Feature Analysis by using
a projection pursuit technique on a sample of the data. Results are then
returned in an S4 object.

2.3.9 Kernel Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is concerned with describing the linear
relations between variables. If we have two data sets x1 and x2, then the

2.3. Kernel Methods 29

> data(spam)

> train <- sample(1:dim(spam)[1], 400)

> kpc <- kpca(~., data = spam[train, -58],

+ kernel = "rbfdot", kpar = list(sigma = 0.001),

+ features = 2)

> kpcv <- pcv(kpc)

> plot(rotated(kpc), col = as.integer(spam[train,

+ 58]), xlab = "1st Principal Component",

+ ylab = "2nd Principal Component")

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

−15 −10 −5 0 5 10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Figure 2.5: Projection of the spam data on two kernel principal components
using an RBF kernel

30 Chapter 2. kernlab – An S4 package for kernel methods in R

> data(promotergene)

> f <- kfa(~., data = promotergene, features = 2,

+ kernel = "rbfdot", kpar = list(sigma = 0.013))

> plot(predict(f, promotergene), col = as.numeric(promotergene[,

+ 1]), xlab = "1st Feature", ylab = "2nd Feature")

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

● ●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
1

0.
2

0.
3

1st Feature

2n
d

F
ea

tu
re

Figure 2.6: Projection of the spam data on two features using an RBF kernel

2.3. Kernel Methods 31

classical CCA attempts to find linear combination of the variables which
give the maximum correlation between the combinations. I.e., if

y1 = w1x1 =
∑

j

w1x1j

y2 = w2x2 =
∑

j

w2x2j

one wishes to find those values of w1 and w2 which maximize the correlation
between y1 and y2. Similar to the KPCA algorithm, CCA can be extended
and used in a dot product space F which is related to the input space by a
possibly nonlinear map Φ : RN → F , x 7→ X as

y1 = w1Φ(x1) =
∑

j

w1Φ(x1j)

y2 = w2Φ(x2) =
∑

j

w2Φ(x2j)

Following (Kuss and Graepel, 2003), the kernlab implementation of a KCCA
projects the data vectors on a new coordinate system using KPCA and uses
linear CCA to retrieve the correlation coefficients. The kcca method in
kernlab returns an S4 object containing the correlation coefficients for each
data set and the corresponding correlation along with the kernel used.

2.3.10 Interior Point Code Quadratic Optimizer

In many kernel based algorithms, learning implies the minimization of some
risk function. Typically we have to deal with quadratic or general convex
problems for Support Vector Machines of the type

minimize f(x)
subject to ci(x) ≤ 0 for all i ∈ [n].

(2.27)

f and ci are convex functions and n ∈ N. kernlab provides the S4 method
ipop implementing an optimizer of the interior point family (Vanderbei,
1999) which solves the quadratic programming problem

minimize c>x + 1
2
x>Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u

(2.28)

This optimizer can be used in regression, classification, and novelty detection
in SVMs.

32 Chapter 2. kernlab – An S4 package for kernel methods in R

2.3.11 Incomplete Cholesky Decomposition

When dealing with kernel based algorithms, calculating a full kernel matrix
should be avoided since it is already a O(N2) operation. Fortunately, the fact
that kernel matrices are positive semidefinite is a strong constraint and good
approximations can be found with small computational cost. The Cholesky
decomposition factorizes a positive semidefinite N × N matrix K as K =
ZZT , where Z is an upper triangular N×N matrix. Exploiting the fact that
kernel matrices are usually of low rank, an incomplete Cholesky decomposition
(Wright, 1999) finds a matrix Z̃ of size N ×M where M � N such that the
norm of K− Z̃Z̃T is smaller than a given tolerance θ. The main difference of
incomplete Cholesky decomposition to the standard Cholesky decomposition
is that pivots which are below a certain threshold are simply skipped. If L is
the number of skipped pivots, we obtain a Z̃ with only M = N −L columns.
The algorithm works by picking a column from K to be added by maximizing
a lower bound on the reduction of the error of the approximation. kernlab has
an implementation of an incomplete Cholesky factorization called inc.chol

which computes the decomposed matrix Z̃ from the original data for any
given kernel without the need to compute a full kernel matrix beforehand.
This has the advantage that no full kernel matrix has to be stored in memory.

2.4 Conclusions

In this chapter we described kernlab, a flexible and extensible kernel methods
package for R with existing modern kernel algorithms along with tools for
constructing new kernel based algorithms. It provides a unified framework
for using and creating kernel-based algorithms in R while using all of R’s
modern facilities, like S4 classes and namespaces. Our aim for the future is
to extend the package and add more kernel-based methods as well as kernel
relevant tools. Sources and binaries for the latest version of kernlab are
available at CRAN1 under the GNU Public License.

1http://cran.r-project.org

http://cran.r-project.org

Chapter 3

Support Vector Machines in R

Being among the most popular and efficient classification and regression
methods currently available, implementations of support vector machines ex-
ist in almost every popular programming language. Currently four R packages
contain SVM related software. The purpose of this chapter is to present and
compare these implementations.

3.1 Introduction

Support Vector learning is based on simple ideas which originated in sta-
tistical learning theory (Vapnik, 1998). The simplicity comes from the fact
that Support Vector Machines (SVMs) apply a simple linear method to the
data but in a high-dimensional feature space non-linearly related to the input
space. Moreover, even though we can think of SVMs as a linear algorithm
in a high-dimensional space, in practice, it does not involve any computa-
tions in that high-dimensional space. This simplicity combined with state
of the art performance on many learning problems (classification, regression,
and novelty detection) has contributed to the popularity of the SVM. In the
rest of the chapter we provide a short introduction into Support Vector Ma-
chines, an overview of the SVM related software available in R and other
programming languages, and section on the data sets we will be using. We
then describe the four available SVM implementations in R and present the
results of a timing benchmark.

33

34 Chapter 3. Support Vector Machines in R

3.2 Support Vector Machines

SVMs use an implicit mapping Φ of the input data into a high-dimensional
feature space defined by a kernel function, i.e., a function returning the inner
product 〈Φ(x), Φ(x′)〉 between the images of two data points x, x′ in the
feature space. The learning then takes place in the feature space, and the
data points only appear inside dot products with other points. This is often
referred to as the “kernel trick” (Schölkopf and Smola, 2002). More precisely,
if a projection Φ : X → H is used, the dot product 〈Φ(x), Φ(x′)〉 can be
represented by a kernel function k

k(x, x′) = 〈Φ(x), Φ(x′)〉, (3.1)

which is computationally simpler than explicitly projecting x and x′ into the
feature space H.

Training a SVM for classification regression or novelty detection involves
solving a quadratic problem. Using a standard quadratic problem solver
for training an SVM would involve solving a big QP problem even for a
moderate sized data set and computing an m×m matrix in memory where
m the number of training points and would thous limit the size of problems
an SVM could be applied to. To handle this issue, methods like SMO (Platt,
1998), chunking (Osuna et al., 1997), and simple SVM (Vishwanathan et al.,
2003) where concieved. These algorithms iteratevely compute the solution of
the SVM problem and scale O(Nk) where k is between 1 and 2.5 and have a
linear space complexity.

3.2.1 Classification

In classification, support vector machines separate the different classes of
data by a hyper-plane

〈w, Φ(x)〉+ b = 0 (3.2)

corresponding to the decision function

f(x) = sign(〈w, Φ(x)〉+ b) (3.3)

It can be shown that the optimal, in terms of classification performance,
hyper-plane (Vapnik, 1998) is the one with the maximal margin of separation
between the two classes. It can be constructed by solving a constrained
quadratic optimization problem whose solution w has an expansion w =∑

i αiΦ(xi) in terms of a subset of training patterns that lie on the margin.
These training patterns, called support vectors, carry all relevant information

3.2. Support Vector Machines 35

about the classification problem. Omitting the details of the calculation,
there is just one crucial property of the algorithm that we need to emphasize:
both the quadratic programming problem and the final decision function
depend only on dot products between patterns. This allows the use of the
“kernel trick” and the generalization of this linear algorithm to the nonlinear
case.

In the case of the L2-norm soft margin classification the primal optimization
problem takes the form:

minimize t(w, ξ) =
1

2
‖w‖2 +

C

m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (3.4)

ξi ≥ 0 (i = 1, . . . ,m)

where m is the number of training patterns, and yi = ±1. As in most kernel
methods, the SVM solution w can be shown to have an expansion

w =
m∑

i=1

αiyiΦ(xi) (3.5)

where non-zero coefficients (support vectors) occur when a point (xi, yi) meets
the constraint. The coefficients αi are found by solving the following (dual)
quadratic programming problem:

maximize W (α) =
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤
C

m
(i = 1, . . . ,m) (3.6)

m∑
i=1

αiyi = 0.

This is a typical quadratic problem of the form:

minimize c>x + 1
2
x>Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u

(3.7)

where H ∈ Rm×m with entries Hij = yiyjk(xi, xj), c = (1, . . . , 1) ∈ Rm,
u = (C, . . . , C) ∈ Rm, l = (0, . . . , 0) ∈ Rm, A = (y1, . . . , ym) ∈ Rm, b = 0,

36 Chapter 3. Support Vector Machines in R

r = 0. The problem can easily be solved in a standard QP solver such as
quadprog() in package quadprog (Weingessel, 2004) or ipop() in package
kernlab (Karatzoglou et al., 2005a), both available in R (R Development
Core Team, 2005). Techniques taking advantage of the special structure of
the SVM QP problem like SMO and chunking (Osuna et al., 1997) though
offer much better performance in terms of speed, scalability and memory
usage.

The cost parameter C of the SVM formulation in Equation 3.7 controls the
penalty paid by the SVM for missclassifying a training point and thus the
complexity of the prediction function. A high cost value C will force the
SVM to create a complex enough prediction function to missclassify as few
training points as possible, while a lower cost parameter will lead to a simpler
prediction function. Therefore, this type of SVM is usually called C-SVM.

Another formulation of the classification with a more intuitive hyperparam-
eter than C is the ν-SVM (Schölkopf et al., 2000). The ν parameter has
the interesting property of being an upper bound on the training error and
a lower bound on the fraction of support vectors found in the data set, thus
controlling the complexity of the classification function build by the SVM
(see Appendix for details).

For multi-class classification, mostly voting schemes such as one-against-one
and one-against-all are used. In the one-against-all method k binary SVM
classifiers are trained, where k is the number of classes, each trained to sepa-
rate one class from the rest. The classifiers are then combined by comparing
their decision values on a test data instance and labeling it according to the
classifier with the highest decision value.

In the one-against-one classification method (also called pairwise classifica-
tion; see Knerr et al., 1990; Kreßel, 1999),

(
k
2

)
classifiers are constructed

where each one is trained on data from two classes. Prediction is done by
voting where each classifier gives a prediction and the class which is most
frequently predicted wins (“Max Wins”). This method has been shown to
produce robust results when used with SVMs (Hsu and Lin, 2002a). Al-
though this suggests a higher number of support vector machines to train
the overall CPU time used is less compared to the one-against-all method
since the problems are smaller and the SVM optimization problem scales
super-linearly.

Furthermore, SVMs can also produce class probabilities as output instead of
class labels. This is can done by an improved implementation (Lin et al.,
2001) of Platt’s a posteriori probabilities (Platt, 2000) where a sigmoid func-

3.2. Support Vector Machines 37

tion

P (y = 1 | f) =
1

1 + eAf+B
(3.8)

is fitted to the decision values f of the binary SVM classifiers, A and B
being estimated by minimizing the negative log-likelihood function. This
is equivalent to fitting a logistic regression model to the estimated decision
values. To extend the class probabilities to the multi-class case, all binary
classifiers class probability output can be combined as proposed in Wu et al.
(2003).

In addition to these heuristics for extending a binary SVM to the multi-class
problem, there have been reformulations of the support vector quadratic
problem that deal with more than two classes. One of the many approaches
for native support vector multi-class classification is the one proposed in
Crammer and Singer (2000), which we will refer to as ‘spoc-svc’. This al-
gorithm works by solving a single optimization problem including the data
from all classes. The primal formulation is:

minimize t({wn}, ξ) =
1

2

k∑
n=1

‖wn‖2 +
C

m

m∑
i=1

ξi

subject to 〈Φ(xi),wyi
〉 − 〈Φ(xi),wn〉 ≥ bn

i − ξi (i = 1, . . . ,m)

where bn
i = 1− δyi,n (3.9)

where the decision function is

argmaxn=1,...,k〈Φ(xi),wn〉 (3.10)

Details on performance and benchmarks on various approaches for multi-class
classification can be found in Hsu and Lin (2002b).

3.2.2 Novelty detection

SVMs have also been extended to deal with the problem of novelty detec-
tion (or one-class classification; see Schölkopf et al., 1999; Tax and Duin,
1999), where essentially an SVM detects outliers in a data set. SVM nov-
elty detection works by creating a spherical decision boundary around a set
of data points by a set of support vectors describing the sphere’s boundary.
The primal optimization problem for support vector novelty detection is the
following:

38 Chapter 3. Support Vector Machines in R

minimize t(w, ξ, ρ) =
1

2
‖w‖2 − ρ +

1

mν

m∑
i=1

ξi

subject to 〈Φ(xi),w〉+ b ≥ ρ− ξi (i = 1, . . . ,m) (3.11)

ξi ≥ 0 (i = 1, . . . ,m).

The ν parameter is used to control the volume of the sphere and consequently
the number of outliers found. The value of ν sets an upper bound on the
fraction of outliers found in the data.

3.2.3 Regression

By using a different loss function called the ε-insensitive loss function ‖y −
f(x)‖ε = max{0, ‖y − f(x)‖ − ε}, SVMs can also perform regression. This
loss function ignores errors that are smaller than a certain threshold ε > 0
thus creating a tube around the true output. The primal becomes:

minimize t(w, ξ) =
1

2
‖w‖2 +

C

m

m∑
i=1

(ξi + ξ∗i)

subject to (〈Φ(xi),w〉+ b)− yi ≤ ε− ξi

yi − (〈Φ(xi),w〉+ b) ≤ ε− ξ∗i (3.12)

ξ∗i ≥ 0 (i = 1, . . . ,m)

We can estimate the accuracy of SVM regression by computing the scale
parameter of a Laplacian distribution on the residuals ζ = y − f(x), where
f(x) is the estimated decision function (Lin and Weng, 2004).

The dual problems of the various classification, regression and novelty detec-
tion SVM formulations can be found in the Appendix.

3.2.4 R software overview

The first implementation of SVM in R (R Development Core Team, 2005)
was introduced in the e1071 (Dimitriadou et al., 2005) package. The svm()

function in e1071 provides a rigid interface to libsvm along with visualization
and parameter tuning methods.

Package kernlab features a variety of kernel-based methods and includes a
SVM method based on the optimizers used in libsvm and bsvm (Hsu and Lin,
2002c). It aims to provide a flexible and extensible SVM implementation.

3.3. Data 39

Package klaR (Roever et al., 2005) includes an interface to SVMlight, a
popular SVM implementation that additionally offers classification tools such
as Regularized Discriminant Analysis.

Finally, package svmpath (Hastie, 2004) provides an algorithm that fits the
entire path of the SVM solution (i.e., for any value of the cost parameter).

In the remainder of the chapterwe will extensively review and compare these
four SVM implementations.

3.3 Data

Throughout this chapter, we will use the following data sets accessible through
R, most of them originating from the UCI machine learning database (Blake
and Merz, 1998):

iris This famous (Fisher’s or Anderson’s) iris data set gives the measure-
ments in centimeters of the variables sepal length and width and petal
length and width, respectively, for 50 flowers from each of 3 species of
iris. The species are Iris setosa, versicolor, and virginica. The data set
is provided by base R.

spam A data set collected at Hewlett-Packard Labs which classifies 4601
e-mails as spam or non-spam. In addition to this class label there are
57 variables indicating the frequency of certain words and characters
in the e-mail. The data set is provided by the kernlab package.

musk This dataset in package kernlab describes a set of 476 molecules of
which 207 are judged by human experts to be musks and the remaining
269 molecules are judged to be non-musks. The data has 167 variables
which describe the geometry of the molecules.

promotergene Promoters have a region where a protein (RNA polymerase)
must make contact and the helical DNA sequence must have a valid
conformation so that the two pieces of the contact region spatially align.
The dataset in package kernlab contains DNA sequences of promoters
and non-promoters in a data frame with 106 observations and 58 vari-
ables. The DNA bases are coded as follows: ‘a’ adenine, ‘c’ cytosine,
‘g’ guanine, and ‘t’ thymine.

Vowel Speaker independent recognition of the eleven steady state vowels of
British English using a specified training set of LPC derived log area
ratios. The vowels are indexed by integers 0 to 10. This dataset in

40 Chapter 3. Support Vector Machines in R

package mlbench (Leisch and Dimitriadou, 2001) has 990 observations
on 10 independent variables.

DNA in package mlbench consists of 3,186 data points (splice junctions).
The data points are described by 180 indicator binary variables and
the problem is to recognize the 3 classes (‘ei’, ‘ie’, neither), i.e., the
boundaries between exons (the parts of the DNA sequence retained
after splicing) and introns (the parts of the DNA sequence that are
spliced out).

BreastCancer in package mlbench is a data frame with 699 observations
on 11 variables, one being a character variable, 9 being ordered or
nominal, and 1 target class. The objective is to identify each of a
number of benign or malignant classes.

BostonHousing Housing data in package mlbench for 506 census tracts
of Boston from the 1970 census. There are 506 observations on 14
variables.

B3 German Bussiness Cycles from 1955 to 1994 in package klaR. A data
frame with 157 observations on the following 14 variables.

#Attributes
Dataset #Examples

b c m tot.
Class Distribution (%)

iris 150 5 5 33.3/33.3/33.3
spam 4601 57 57 39.40/60.59
musk 476 166 166 42.99 / 57.00
promotergene 106 57 57 50.00 / 50.00
Vowel 990 1 9 10 10.0/10.0/...
DNA 3186 180 180 24.07/24.07/51.91
BreastCancer 699 9 9 34.48 / 65.52
BostonHousing 506 1 12 14
B3 506 13 13 37.57/15.28/29.93/17.19

Table 3.1: The data sets used throughout the chapter. Legend: b=binary,
c=categorical, m=metric.

3.4 ksvm in kernlab

Package kernlab (Karatzoglou et al., 2004) aims to provide the R user with
basic kernel functionality (e.g., like computing a kernel matrix using a partic-

3.4. ksvm in kernlab 41

ular kernel), along with some utility functions commonly used in kernel-based
methods like a quadratic programming solver, and modern kernel-based al-
gorithms based on the functionality that the package provides. It also takes
advantage of the inherent modularity of kernel-based methods, aiming to al-
low the user to switch between kernels on an existing algorithm and even
create and use own kernel functions for the various kernel methods provided
in the package.

kernlab uses R’s new object model described in “Programming with Data”
(Chambers, 1998) which is known as the S4 class system and is implemented
in package methods. In contrast to the older S3 model for objects in R,
classes, slots, and methods relationships must be declared explicitly when
using the S4 system. The number and types of slots in an instance of a class
have to be established at the time the class is defined. The objects from the
class are validated against this definition and have to comply to it at any time.
S4 also requires formal declarations of methods, unlike the informal system of
using function names to identify a certain method in S3. Package kernlab is
available from CRAN (http://cran.r-project.org) under the GPL license.

The ksvm() function, kernlab’s implementation of SVMs, provides a stan-
dard formula interface along with a matrix interface. ksvm() is mostly pro-
grammed in R but uses, through the .Call interface, the optimizers found in
bsvm and libsvm (Chang and Lin, 2001) which provide a very efficient C++
version of the Sequential Minimization Optimization (SMO). The SMO algo-
rithm solves the SVM quadratic problem (QP) without using any numerical
QP optimization steps. Instead, it chooses to solve the smallest possible
optimization problem involving two elements of αi because the must obey
one linear equality constraint. At every step, SMO chooses two αi to jointly
optimize and finds the optimal values for these αi analytically, thus avoiding
numerical QP optimization, and updates the SVM to reflect the new optimal
values.

The SVM implementations available in ksvm() include the C-SVM classifica-
tion algorithm along with the ν-SVM classification. Also included is a bound
constraint version of C classification (C-BSVM) which solves a slightly dif-
ferent QP problem (Mangasarian and Musicant, 1999, including the offset
β in the objective function) using a modified version of the TRON (Lin and
More, 1999) optimization software. For regression, ksvm() includes the ε-
SVM regression algorithm along with the ν-SVM regression formulation. In
addition, a bound constraint version (ε-BSVM) is provided, and novelty de-
tection (one-class classification) is supported.

For classification problems which include more then two classes (multi-class
case) two options are available: a one-against-one (pairwise) classification

http://cran.r-project.org

42 Chapter 3. Support Vector Machines in R

method or the native multi-class formulation of the SVM (spoc-svc) described
in Section 2. The optimization problem of the native multi-class SVM im-
plementation is solved by a decomposition method proposed in Hsu and Lin
(2002c) where optimal working sets are found (that is, sets of αi values which
have a high probability of being non-zero). The QP sub-problems are then
solved by a modified version of the TRON optimization software.

The ksvm() implementation can also compute class-probability output by
using Platt’s probability methods (Equation 3.8) along with the multi-class
extension of the method in Wu et al. (2003). The prediction method can also
return the raw decision values of the support vector model:

> library("kernlab")

> data("iris")

> irismodel <- ksvm(Species ~ ., data = iris,

+ type = "C-bsvc", kernel = "rbfdot",

+ kpar = list(sigma = 0.1), C = 10,

+ prob.model = TRUE)

> irismodel

Support Vector Machine object of class "ksvm"

SV type: C-bsvc (classification)

parameter : cost C = 10

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.1

Number of Support Vectors : 32

Training error : 0.02

Probability model included.

> predict(irismodel, iris[c(3, 10, 56, 68,

+ 107, 120), -5], type = "probabilities")

setosa versicolor virginica

[1,] 0.986432820 0.007359407 0.006207773

[2,] 0.983323813 0.010118992 0.006557195

[3,] 0.004852528 0.967555126 0.027592346

[4,] 0.009546823 0.988496724 0.001956452

[5,] 0.012767340 0.069496029 0.917736631

[6,] 0.011548176 0.150035384 0.838416441

3.4. ksvm in kernlab 43

> predict(irismodel, iris[c(3, 10, 56, 68,

+ 107, 120), -5], type = "decision")

[,1] [,2] [,3]

[1,] -1.460398 -1.1910251 -3.8868836

[2,] -1.357355 -1.1749491 -4.2107843

[3,] 1.647272 0.7655001 -1.3205306

[4,] 1.412721 0.4736201 -2.7521640

[5,] 1.844763 1.0000000 1.0000019

[6,] 1.848985 1.0069010 0.6742889

ksvm allows for the use of any valid user defined kernel function by just
defining a function which takes two vector arguments and returns its Hilbert
Space dot product in scalar form.

> k <- function(x, y) {

+ (sum(x * y) + 1) * exp(0.001 * sum((x -

+ y)^2))

+ }

> class(k) <- "kernel"

> data("promotergene")

> gene <- ksvm(Class ~ ., data = promotergene,

+ kernel = k, C = 10, cross = 5)

> gene

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 10

Number of Support Vectors : 66

Training error : 0

Cross validation error : 0.141558

The implementation also includes the following computationally efficiently
implemented kernels: Gaussian RBF, polynomial, linear, sigmoid, Laplace,
Bessel RBF, spline, and ANOVA RBF.

N -fold cross-validation of an SVM model is also supported by ksvm, and the
training error is reported by default.

44 Chapter 3. Support Vector Machines in R

The problem of model selection is partially addressed by an empirical obser-
vation for the popular Gaussian RBF kernel (Caputo et al., 2002), where the
optimal values of the width hyper-parameter σ are shown to lie in between
the 0.1 and 0.9 quantile of the ‖x − x′‖2 statistics. The sigest() function
uses a sample of the training set to estimate the quantiles and returns a vec-
tor containing the values of the quantiles. Pretty much any value within this
interval leads to good performance.

The object returned by the ksvm() function is an S4 object of class ksvm with
slots containing the coefficients of the model (support vectors), the param-
eters used (C, ν, etc.), test and cross-validation error, the kernel function,
information on the problem type, the data scaling parameters, etc. There
are accessor functions for the information contained in the slots of the ksvm
object.

The decision values of binary classification problems can also be visualized via
a contour plot with the plot() method for the ksvm objects. This function
is mainly for simple problems. An example is shown in Figure 3.1.

> x <- rbind(matrix(rnorm(120), , 2), matrix(rnorm(120,

+ mean = 3), , 2))

> y <- matrix(c(rep(1, 60), rep(-1, 60)))

> svp <- ksvm(x, y, type = "C-svc", kernel = "rbfdot",

+ kpar = list(sigma = 2))

> plot(svp)

3.5 svm in e1071

Package e1071 provides an interface to libsvm (Chang and Lin, 2001, current
version: 2.8), complemented by visualization and tuning functions. libsvm is
a fast and easy-to-use implementation of the most popular SVM formulations
(C and ν classification, ε and ν regression, and novelty detection). It includes
the most common kernels (linear, polynomial, RBF, and sigmoid), only ex-
tensible by changing the C++ source code of libsvm. Multi-class classifi-
cation is provided using the one-against-one voting scheme. Other features
include the computation of decision and probability values for predictions
(for both classification and regression), shrinking heuristics during the fitting
process, class weighting in the classification mode, handling of sparse data,
and the computation of the training error using cross-validation. libsvm is
distributed under a very permissive, BSD-like licence.

3.5. svm in e1071 45

−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

−2

−1

0

1

2

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

SVM classification plot

X2

X
1

Figure 3.1: A contour plot of the fitted decision values for a simple binary
classification problem.

46 Chapter 3. Support Vector Machines in R

The R implementation is based on the S3 class mechanisms. It basically
provides a training function with standard and formula interfaces, and a
predict() method. In addition, a plot() method visualizing data, support
vectors, and decision boundaries if provided. Hyper-parameter tuning is done
using the tune() framework in e1071 performing a grid search over specified
parameter ranges.

The sample session starts with a C classification task on the iris data, using
the radial basis function kernel with fixed hyper-parameters C and γ:

> library("e1071")

> model <- svm(Species ~ ., data = iris_train,

+ method = "C-classification", kernel = "radial",

+ cost = 10, gamma = 0.1)

> summary(model)

Call:

svm(formula = Species ~ ., data = iris_train,

method = "C-classification", kernel = "radial",

cost = 10, gamma = 0.1)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 10

gamma: 0.1

Number of Support Vectors: 27

(12 12 3)

Number of Classes: 3

Levels:

setosa versicolor virginica

We can visualize a 2-dimensional projection of the data with highlighting
classes and support vectors (see Figure 3.2):

3.5. svm in e1071 47

> plot(model, iris_train, Petal.Width ~

+ Petal.Length, slice = list(Sepal.Width = 3,

+ Sepal.Length = 4))

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5 o

o

o

o

oo o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

ooo

o

oo
o

o

o

o

o

o

o

o

o

o

x

x

x

xx

xxx

x

x
x

x

x

x

x

x

x
xx

x
x

x
x

x

x
x

x

SVM classification plot

Petal.Length

P
et

al
.W

id
th

Figure 3.2: SVM plot visualizing the iris data. Support vectors are shown as
‘X’, true classes are highlighted through symbol color, predicted class regions
are visualized using colored background.

Predictions from the model, as well as decision values from the binary clas-
sifiers, are obtained using the predict() method:

> (pred <- predict(model, head(iris), decision.values = TRUE))

[1] setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

> attr(pred, "decision.values")

48 Chapter 3. Support Vector Machines in R

virginica/versicolor virginica/setosa

1 -3.833133 -1.156482

2 -3.751235 -1.121963

3 -3.540173 -1.177779

4 -3.491439 -1.153052

5 -3.657509 -1.172285

6 -3.702492 -1.069637

versicolor/setosa

1 -1.393419

2 -1.279886

3 -1.456532

4 -1.364424

5 -1.423417

6 -1.158232

Probability values can be obtained in a similar way.

In the next example, we again train a classification model on the spam data.
This time, however, we will tune the hyper-parameters on a subsample using
the tune framework of e1071:

> tobj <- tune.svm(type ~ ., data = spam_train[1:300,

+], gamma = 10^(-6:-3), cost = 10^(1:2))

> summary(tobj)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

gamma cost

0.001 10

- best performance: 0.1233333

- Detailed performance results:

gamma cost error

1 1e-06 10 0.4133333

2 1e-05 10 0.4133333

3 1e-04 10 0.1900000

4 1e-03 10 0.1233333

5 1e-06 100 0.4133333

3.5. svm in e1071 49

6 1e-05 100 0.1933333

7 1e-04 100 0.1233333

8 1e-03 100 0.1266667

tune.svm() is a convenience wrapper to the tune() function that carries
out a grid search over the specified parameters. The summary() method on
the returned object indicates the misclassification rate for each parameter
combination and the best model. By default, the error measure is computed
using a 10-fold cross validation on the given data, but tune() offers several
alternatives (e.g., separate training and test sets, leave-one-out-error, etc.).
In this example, the best model in the parameter range is obtained using
C = 10 and γ = 0.001, yielding a misclassification error of 12.33%. A
graphical overview on the tuning results (that is, the error landscape) can be
obtained by drawing a contour plot (see Figure 3.3):

> plot(tobj, transform.x = log10, xlab = expression(log[10](gamma)),

+ ylab = "C")

Using the best parameters, we now train our final model. We estimate the
accuracy in two ways: by 10-fold cross validation on the training data, and
by computing the predictive accuracy on the test set:

> bestGamma <- tobj$best.parameters[[1]]

> bestC <- tobj$best.parameters[[2]]

> model <- svm(type ~ ., data = spam_train,

+ cost = bestC, gamma = bestGamma, cross = 10)

> summary(model)

Call:

svm(formula = type ~ ., data = spam_train,

cost = bestC, gamma = bestGamma, cross = 10)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 10

gamma: 0.001

Number of Support Vectors: 313

50 Chapter 3. Support Vector Machines in R

0.15

0.20

0.25

0.30

0.35

0.40

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0

20

40

60

80

100

Performance of ‘svm'

log10(γ)

C

Figure 3.3: Contour plot of the error landscape resulting from a grid search
on a hyper-parameter range.

(162 151)

Number of Classes: 2

Levels:

nonspam spam

10-fold cross-validation on training data:

Total Accuracy: 91.7

Single Accuracies:

94 91 92 90 91 91 92 90 92 94

3.6. svmlight in klaR 51

> pred <- predict(model, spam_test)

> (acc <- table(pred, spam_test$type))

pred nonspam spam

nonspam 2075 196

spam 115 1215

> classAgreement(acc)

$diag

[1] 0.9136351

$kappa

[1] 0.8169207

$rand

[1] 0.8421442

$crand

[1] 0.6832857

3.6 svmlight in klar

Package klaR (Roever et al., 2005) includes utility functions for classification
and visualization, and provides the svmlight() function which is a fairly
simple interface to the SVMlight package. The svmlight() function in klaR
is written in the S3 object system and provides a formula interface along
with standard matrix, data frame, and formula interfaces. The SVMlight

package is available only for non-commercial use, and the installation of the
package involves placing the SVMlight binaries in the path of the operating
system. The interface works by using temporary text files where the data
and parameters are stored before being passed to the SVMlight binaries.

SVMlight utilizes a special active set method (Joachims, 1999) for solving the
SVM QP problem where q variables (the active set) are selected per iteration
for optimization. The selection of the active set is done in a way which
maximizes the progress towards the minimum of the objective function. At
each iteration a QP subproblem is solved using only the active set until the
final solution is reached.

The klaR interface function svmlight() supports the C-SVM formulation
for classification and the ε-SVM formulation for regression. SVMlight uses

52 Chapter 3. Support Vector Machines in R

the one-against-all method for multi-class classification where k classifiers are
trained. Compared to the one-against-one method, this requires usually less
binary classifiers to be built but the problems each classifier has to deal with
are bigger.

The SVMlight implementation provides the Gaussian, polynomial, linear,
and sigmoid kernels. The svmlight() interface employs a character string
argument to pass parameters to the SVMlight binaries. This allows direct
access to the feature-rich SVMlight and allows, e.g., control of the SVM pa-
rameters (cost, ε), the choice of the kernel function and the hyper-parameters,
the computation of the leave-one-out error, and the control of the verbosity
level.

The S3 object returned by the svmlight() function in klaR is of class svm-
light and is a list containing the model coefficients along with information
on the learning task, like the type of problem, and the parameters and ar-
guments passed to the function. The svmlight object has no print() or
summary() methods. The predict() method returns the class labels in case
of classification along with a class membership value (class probabilities) or
the decision values of the classifier.

> library("klaR")

> data("B3")

> Bmod <- svmlight(PHASEN ~ ., data = B3,

+ svm.options = "-c 10 -t 2 -g 0.1 -v 0")

> predict(Bmod, B3[c(4, 9, 30, 60, 80, 120),

+ -1])

$class

[1] 3 3 4 3 4 1

Levels: 1 2 3 4

$posterior

1 2 3 4

[1,] 0.09633177 0.09627103 0.71112031 0.09627689

[2,] 0.09628235 0.09632512 0.71119794 0.09619460

[3,] 0.09631525 0.09624314 0.09624798 0.71119362

[4,] 0.09632530 0.09629393 0.71115614 0.09622463

[5,] 0.09628295 0.09628679 0.09625447 0.71117579

[6,] 0.71123818 0.09627858 0.09620351 0.09627973

3.7. svmpath 53

3.7 svmpath

The performance of the SVM is highly dependent on the value of the regu-
larization parameter C, but apart from grid search, which is often computa-
tionally expensive, there is little else a user can do to find a value yielding
good performance. Although the ν-SVM algorithm partially addresses this
problem by reformulating the SVM problem and introducing the ν param-
eter, finding a correct value for ν relies on at least some knowledge of the
expected result (test error, number of support vectors, etc.).

Package svmpath (Hastie, 2004) contains a function svmpath() implementing
an algorithm which solves the C-SVM classification problem for all the values
of the regularization cost parameter λ = 1/C (Hastie et al., 2004). The
algorithm exploits the fact that the loss function is piecewise linear and thus
the parameters (coefficients) α(λ) of the SVM model are also piecewise linear
as functions of the regularization parameter λ. The algorithm solves the SVM
problem for all values of the regularization parameter with essentially a small
multiple (≈ 3) of the computational cost of fitting a single model.

The algorithm works by starting with a high value of λ (high regularization)
and tracking the changes to the model coefficients α as the value of λ is de-
creased. When λ decreases, ||α|| and hence the width of the margin decrease,
and points move from being inside to outside the margin. Their correspond-
ing coefficients αi change from αi = 1 when they are inside the margin to
αi = 0 when outside. The trajectories of the αi are piecewise linear in λ and
by tracking the break points all values in between can be found by simple
linear interpolation.

The svmpath() implementation in R currently supports only binary C clas-
sification. The function must be used through a S3 matrix interface where
the y label must be +1 or −1. Similarly to ksvm(), svmpath() allows the
use of any user defined kernel function, but in its current implementation
requires the direct computation of full kernel matrices, thus limiting the size
of problems svmpath() can be used on since the full m×m kernel matrix has
to be computed in memory. The implementation comes with the Gaussian
RBF and polynomial kernel as built-in kernel functions and also provides the
user with the option of using a precomputed kernel matrix K.

The function call returns an object of class svmpath which is a list containing
the model coefficients (αi) for the break points along with the offsets and the
value of the regularization parameter λ = 1/C at the points. Also included is
information on the kernel function and its hyper-parameter. The predict()

method for svmpath objects returns the decision values, or the binary labels
(+1,−1) for a specified value of the λ = 1/C regularization parameter. The

54 Chapter 3. Support Vector Machines in R

predict() method can also return the model coefficients α for any value of
the λ parameter.

> library("svmpath")

> data("svmpath")

> attach(balanced.overlap)

> svmpm <- svmpath(x, y, kernel.function = radial.kernel,

+ param.kernel = 0.1)

> predict(svmpm, x, lambda = 0.1)

[,1]

[1,] -0.8399810

[2,] -1.0000000

[3,] -1.0000000

[4,] -1.0000000

[5,] 0.1882592

[6,] -2.2363430

[7,] 1.0000000

[8,] -0.2977907

[9,] 0.3468992

[10,] 0.1933259

[11,] 1.0580215

[12,] 0.9309218

> predict(svmpm, lambda = 0.2, type = "alpha")

$alpha0

[1] -0.3809953

$alpha

[1] 1.0000000 1.0000000 0.9253461 1.0000000

[5] 1.0000000 0.0000000 1.0000000 1.0000000

[9] 1.0000000 1.0000000 0.0000000 0.9253461

$lambda

[1] 0.2

3.8 Benchmarking

In the following we compare the four SVM implementations in terms of train-
ing time. In this comparison we only focus on the actual training time of the

3.8. Benchmarking 55

ksvm() svm() svmlight() svmpath()

(kernlab) (e1071) (klaR) (svmpath)
spam 18.50 17.90 34.80 34.00
musk 1.40 1.30 4.65 13.80
Vowel 1.30 0.30 21.46 NA
DNA 22.40 23.30 116.30 NA
BreastCancer 0.47 0.36 1.32 11.55
BostonHousing 0.72 0.41 92.30 NA

Table 3.2: The training times for the SVM implementations on different
datasets in seconds. Timings where done on an AMD Athlon 1400 Mhz
computer running Linux.

SVM excluding the time needed for estimating the training error or the cross-
validation error. In implementations which scale the data (ksvm(), svm())
we include the time needed to scale the data. We include both binary and
multi-class classification problems as well as a few regression problems. The
training is done using a Gaussian kernel where the hyper-parameter was esti-
mated using the sigest() function in kernlab, which estimates the 0.1 and
0.9 quantiles of ‖x− x′‖2. The data was scaled to unit variance and the fea-
tures for estimating the training error and the fitted values were turned off
and the whole data set was used for the training. The mean value of 10 runs
is given in table 3.2; we do not report the variance since it was practically 0
in all runs. The runs were done with version 0.6-2 of kernlab, version 1.5-11
of e1071, version 0.9 of svmpath, and version 0.4-1 of klaR.

Table 3.2 contains the training times for the SVM implementations on the
various datasets. ksvm() and svm() seem to perform on a similar level
in terms of training time with the svmlight() function being significantly
slower. When comparing svmpath() with the other implementations, one
has to keep in mind that it practically estimates the SVM model coefficients
for the whole range of the cost parameter C. The svmlight() function seems
to suffer from the fact that the interface is based on reading and writing tem-
porary text files as well as from the optimization method (chunking) used
from the SVMlight software which in these experiments does not seem to
perform as well as the SMO implementation in libsvm. The svm() in e1071
and the ksvm() function in kernlab seem to be on par in terms of training
time performance with the svm() function being slightly faster on multi-class
problems.

56 Chapter 3. Support Vector Machines in R

3.9 Conclusions

Table 3.3 provides a quick overview of the four SVM implementations. ksvm()
in kernlab is a flexible SVM implementation which includes the most SVM
formulations and kernels and allows for user defined kernels as well. It pro-
vides many useful options and features like a method for plotting, class proba-
bilities output, cross validation error estimation, automatic hyper-parameter
estimation for the Gaussian RBF kernel, but lacks a proper model selection
tool. The svm() function in e1071 is a robust interface to the award winning
libsvm SVM library and includes a model selection tool, the tune() func-
tion, and a sparse matrix interface along with a plot() method and features
like accuracy estimation and class-probabilities output, but does not give the
user the flexibility of choosing a custom kernel. svmlight() in package klaR
provides a very basic interface to SVMlight and has many drawbacks. It
does not exploit the full potential of SVMlight and seems to be quite slow.
The SVMlight license is also quite restrictive and in particular only allows
non-commercial usage. svmpath() does not provide many features but can
nevertheless be used as an exploratory tool, in particular for locating a proper
value for the regularization parameter λ = 1/C.

The existing implementations provide a relatively wide range of features and
options but the implementations can be extended by incorporating new fea-
tures which arise in the ongoing research in SVM. One obvious extension
would be to allow for weights on the data points (Lin and Wang, 1999)
which is currently not supported by any of the implementations, the return
of the original predictor coefficients in the case of the linear kernel or an
interface and kernel for doing computation directly on structured data like
strings trees.

3.9. Conclusions 57

ksvm() svm() svmlight() svmpath()

(kernlab) (e1071) (klaR) (svmpath)
Formulations C-SVC,

ν-SVC,
C-BSVC,
spoc-SVC,
one-SVC, ε-
SVR, ν-SVR,
ε-BSVR

C-SVC,
ν-SVC, one-
SVC, ε-SVR,
ν-SVR

C-SVC,
ε-SVR

binary C-
SVC

Kernels Gaussian,
polyno-
mial, linear,
sigmoid,
Laplace,
Bessel,
Anova, Spline

Gaussian,
polynomial,
linear, sig-
moid

Gaussian,
polynomial,
linear, sig-
moid

Gaussian,
polynomial

Optimizer SMO, TRON SMO chunking NA
Model Selection hyper-

parameter
estimation
for Gaussian
kernels

grid-search
function

NA NA

Data formula, ma-
trix

formula, ma-
trix, sparse
matrix

formula, ma-
trix

matrix

Interfaces .Call .C temporary
files

.C

Class System S4 S3 none S3
Extensibility custom kernel

functions
NA NA custom kernel

functions
Add-ons plot function plot func-

tions, accu-
racy

NA plot function

License GPL GPL non-
commercial

GPL

Table 3.3: A quick overview of the SVM implementations.

58 Chapter 3. Support Vector Machines in R

Chapter 4

Step Size-Adapted Online
Support Vector Learning

4.1 Introduction

Stochastic (“online”) gradient methods incrementally update their hypothesis
by descending a stochastic approximation of the gradient computed from just
the current observation. Although they require more iterations to converge
than traditional deterministic (“batch”) techniques, each iteration is faster as
there is no need to go through the entire training set to measure the current
gradient. For large, redundant data sets, or continuing (potentially non-
stationary) streams of data, stochastic gradient thus outperforms classical
optimization methods. Much work in this area centers on the key issue of
choosing an appropriate time-dependent gradient step size ηt.

Recent years have seen a growing interest in stochastic gradient algorithms
applied to kernel methods (Kivinen et al., 2004b). These algorithms typically

let ηt simply decay in O(t−
1
2). Here we adopt the more sophisticated approach

of stochastic meta-descent : performing a simultaneous stochastic gradient
descent on the step size itself. Translating this technique into the kernel
framework yields a fast online optimization method for SVMs.

In this chapter we present an online Support Vector Machine (SVM) that
uses Stochastic Meta-Descent (SMD) to adapt its step size automatically.
We formulate the online learning problem as a stochastic gradient descent
in Reproducing Kernel Hilbert Space (RKHS) and translate SMD to the
nonparametric setting, where its gradient trace parameter is no longer a
coefficient vector but an element of the RKHS. We derive efficient updates
that allow us to perform the step size adaptation in linear time. We apply

59

60 Chapter 4. Step Size-Adapted Online Support Vector Learning

the online SVM framework to a variety of loss functions and in particular
show how to achieve efficient online multiclass classification. Experimental
evidence suggests that our algorithm outperforms existing methods.

Outline. We begin by providing an overview of SMD in Section 4.2. We
then briefly describe the optimization problems arising from SVMs and Gaus-
sian Processes in Section 4.3. The application of SMD to these problems is
discussed in Section 4.4. Experiments are presented in Section 4.5, followed
by a discussion.

4.2 Stochastic Meta-Descent

The SMD online algorithm (Schraudolph, 1999, 2002) for gradient step size
adaptation can greatly accelerate the convergence of stochastic gradient de-
scent; successful applications to date include independent component analysis
(Schraudolph and Giannakopoulos, 2000), turbulent flow modeling (Milano,
2002), and visual hand tracking (Bray et al., 2005). SMD updates a system’s
parameters α by the simple gradient descent

αt+1 = αt − ηt · gt , (4.1)

where g denotes the stochastic gradient, and · the element-wise (Hadamard)
product. The vector η of individual step sizes is adapted multiplicatively

ηt = ηt−1 ·max(1
2
, 1 + µ vt · gt) (4.2)

using a scalar meta-learning rate µ. Finally, the auxiliary vector v used in
(4.2) is itself updated iteratively via

vt+1 = %vt + ηt · (gt − %Gtvt) , (4.3)

where Gt � 0 is an extended Gauss-Newton approximation (Schraudolph,
2002) of the Hessian at time t, and 0≤%≤1 a decay factor. SMD is derived
as a dual gradient descent procedure, minimizing the objective with respect to
both α and η simultaneously. The Gvt term in (4.3) is typically computed
implicitly (Schraudolph, 2002) using efficient procedures from algorithmic
differentiation (Griewank, 2000) that do not require explicit—and likely to
be computationally expensive—computation of G.

4.3 Online Kernel Methods

We now present various kernel methods from a loss function and regulariza-
tion point of view. Our notation closely follows (Kivinen et al., 2004b) with
minor modifications and extensions.

4.3. Online Kernel Methods 61

4.3.1 Optimization Problem

Denote by X the space of observations and Y be the space of labels (wher-
ever appropriate). We use | Y | to denote the size of Y . Given a sequence
{(xi, yi)|xi ∈ X , yi ∈ Y} of examples and a loss function l : X ×Y ×H → R
the goal is to minimize the regularized risk

J(f) =
1

m

m∑
i=1

l(xi, yi, f) +
λ

2
‖f‖2H, (4.4)

where H is a Reproducing Kernel Hilbert Space (RKHS) of functions on
X ×Y . Its defining kernel is denoted by k : (X ×Y)2 → R and it satisfies
〈f, k((x, y), ·)〉H = f(x, y). In a departure from tradition we let our kernel
depend on the labels as well as the observations. Finally, we make the as-
sumption that l only depends on f via its evaluations at f(xi, y) and that l
is piecewise differentiable.

By the reproducing property of H we can compute derivatives of the evalu-
ation functional. That is,

∂ff(x, y) = ∂f〈f, k((x, y), ·)〉H = k((x, y), ·). (4.5)

Since l depends on f only via its evaluations we can see that ∂f l(x, y, f) ∈ H,
and more specifically

∂f l(x, y, f) ∈ span{k((x, ỹ), ·) where ỹ ∈ Y}. (4.6)

Using the stochastic approximation of J(f):

Jt(f) := l(xt, yt, f) +
λ

2
‖f‖2H (4.7)

and setting gt := ∂fJt(ft), we can write the following online learning algo-
rithm:

Algorithm 1 Online learning (adaptive step size)

1. Initialize f0 = 0
2. Repeat

(a) Draw data sample (xt, yt)
(b) Adapt step size ηt

(c) Update ft+1 ← ft − ηtgt

Practical considerations are how to implement steps 2.b and 2.c efficiently.
We will discuss 2.c below. Step 2.b, which distinguishes the present algorithm
from the update rules of previous algorithms, is discussed in Section 4.4.

62 Chapter 4. Step Size-Adapted Online Support Vector Learning

4.3.2 Loss Functions

We now give specific details for two loss functions used in kernel methods.
Similar derivations can be found for binary classification, logistic regres-
sion, ε-insensitive regression, Huber’s robust regression, LMS problems, and
graph-structured output domains.

Multiclass Classification Here we employ a definition of the margin arising
from log-likelihood ratios. This leads to

l(x, y, f) = max(0, 1 + max
ỹ 6=y

f(x, ỹ)− f(x, y))

(4.8)
∂f l(x, y, f) =

{
0 if f(x, y) ≥ 1 + f(x, y∗)

k((x, y∗), ·)− k((x, y), ·) otherwise

Here y∗ is the maximizer of the maxỹ 6=y operation. If several y∗ exist we
pick one arbitrarily, e.g. by dictionary order. Note that when the number of
classes is exactly two (binary classification) and k((x, y), (x′, y′)) = yy′

2
k(x, x′)

the loss function reduces to the well-known hinge loss.

Novelty Detection uses a trimmed version of the log-likelihood as a loss
function. This means that labels are ignored and the one-class margin needs
to exceed 1, leading to

l(x, y, f) = max(0, 1− f(x))

∂f l(x, y, f) =

{
0 if f(x) ≥ 1

−k(x, ·) otherwise
(4.9)

Table 4.1 summarizes the expansion coefficient(s) ξt arising from the deriva-
tive of the loss at time t.

Table 4.1: Gradient expansion coefficients.

task expansion coefficient

Multiclass ξt = 0 if ft(xt, yt) ≥ 1 + ft(xt, y
∗)

Classification ξt,yt = −1, ξt,y∗ = 1 otherwise

Novelty
Detection

ξt =

{
0 if ft(xt) ≥ 1

−1 otherwise

4.3.3 Coefficient Updates

Since the update step 2.c in Algorithm 1 is not particularly useful in Hilbert
space, we now rephrase it in terms of kernel function expansions. From (4.7)

4.3. Online Kernel Methods 63

it follows that gt = ∂f l(xt, yt, ft) + λft and consequently

ft+1 = ft − ηt [∂f l(xt, yt, ft) + λft]

= (1− ληt)ft − ηt∂f l(xt, yt, ft). (4.10)

Using the initialization f1 = 0 this implies that

ft+1(·) =
t∑

i=1

∑
y

αtiyk((xi, y), ·). (4.11)

With some abuse of notation we will use the same expression for the cases
where H is defined on X rather than X ×Y . In this setting we replace
(4.11) by the sum over i only (with corresponding coefficients αti). Whenever
necessary we will use αt to refer to the entire coefficient vector (or matrix)
and αti (or αtiy) will refer to the specific coefficients. Observe that we can
write

gt(·) =
t∑

i=1

∑
y

γtiyk((xi, y), ·), (4.12)

where γt :=

[
λαt−1

ξ>t

]
. (4.13)

We can now rewrite (4.10) using the expansion coefficients as

αt =

[
(1− ληt)αt−1

−ηtξ
>
t

]
=

[
αt−1

0

]
− ηtγt. (4.14)

Note that conceptually α grows indefinitely as it acquires an additional row
with each new data sample. Practical implementations will of course retain
only a buffer of past examples with nonzero coefficients. If the loss function
has a bounded gradient (as in all cases of Table 4.1) then the quality of the
approximation increases exponentially with the number of terms retained
(Kivinen et al., 2004b), so good solutions can be obtained with limited buffer
size.

4.3.4 Handling Offsets

In many situations, for instance in binary classification, it is advantageous to
predict with f(·, y) + by where f ∈ H and b ∈ R| Y | is an offset parameter.
While the update equations described above remain unchanged, the offset b
is now adapted as well:

bt+1 = bt−ηt∂bJt(ft + bt) = bt−ηtξt. (4.15)

64 Chapter 4. Step Size-Adapted Online Support Vector Learning

4.4 Online SVMD

We now show how the SMD framework described in Section 4.2 can be used
to adapt the step size for online SVMs. The updates given in Section 4.3
remain as before, the only difference being that the step size ηt is adapted
before its value is used to update α.

4.4.1 Scalar Representation

When η is a scalar, (4.2) becomes

ηt+1 = ηt max(1
2
, 1− µ 〈gt+1, vt+1〉), (4.16)

where µ is the meta-step size described in Section 4.2. The update for v is
now given by

vt+1 = %vt − ηt(gt + %Htvt), (4.17)

where Ht is the Hessian of the objective function. Note that now Ht is an
operator in Hilbert space. For piecewise linear loss functions, such as (4.8),
and (4.9), we have Ht = λI, where I is the identity operator, and obtain
the simple update

vt+1 = (1− ηtλ)%vt − ηtgt. (4.18)

4.4.2 Expansion in Hilbert Space

The above discussion implies that v can be expressed as a linear combination
of kernel functions, and consequently is also a member of the RKHS defined
by k(·, ·). Thus v cannot be updated explicitly, as is done in the normal SMD
algorithm (Section 4.2). Instead we write

vt+1(·) =
t∑

i=1

∑
y

βtiyk((xi, y), ·) (4.19)

and update the coefficients β. This is sufficient for our purpose because we
only need to be able to compute the inner products 〈g, v〉H in order to update
η.

Analogous to the update on α we can determine the updates on β via

βt =

[
(1− ηtλ)%βt−1

0

]
− ηtγt. (4.20)

Although (4.20) suffices in principle to implement the overall algorithm, a
naive implementation of the inner product 〈gt, vt〉 takes O(t2) time. In the
next section we show how these updates can be performed in linear time.

4.5. Experiments 65

4.4.3 Linear-Time Incremental Updates

We now turn to computing 〈gt+1, vt+1〉 in linear time by bringing it into
an incremental form. We use the notation f(xt, ·) to denote the vector of
f(xt, ỹ) for ỹ ∈ Y . Expanding gt+1 into λft+1 + ξt+1 we can write

〈gt+1, vt+1〉 = λπt+1 + ξ>t+1vt+1(xt+1, ·), (4.21)

where πt := 〈ft, vt〉. The function update (4.10) yields

πt+1 = (1− ληt) 〈ft, vt+1〉 − ηtξ
>
t vt+1(xt, ·). (4.22)

The v update (4.17) then gives us

〈ft, vt+1〉 = %(1− ληt)πt − ηt 〈ft, gt〉 , (4.23)

and using gt = λft + ξt again we have

〈ft, gt〉 = λ‖ft‖2 + ξ>t ft(xt, ·). (4.24)

Finally, the squared norm of f can be maintained via:

‖ft+1‖2 = (1− ληt)
2‖ft‖2

− 2ηt(1− ληt)ξ
>
t ft(xt, ·) (4.25)

+ η 2
t ξ>t k((xt, ·), (xt, ·))ξt.

The above sequence (4.21)–(4.25) of equations, including the evaluation of
the associated functionals, can be performed in O(t) time.

4.5 Experiments

To show the utility of our approach we performed experiments on the the
USPS data set following (Kivinen et al., 2004b). The USPS dataset have
been used extensively in the past, especially in the SVM community. It con-
sists of 7291 training and 2007 test examples represented as 256 dimensional
vectors(16x16 matrices) with entries between 0 and 255 (grey level). The
vectors are images of handwritten digits from 0 to 9 and the task is to learn
to asign a handwritten digit to its corresponding class. Since our approach
is particularly useful when the data is non-stationary we create a data set
where we use 4 letters from the data set (0-3) and split them in two classes.
We create a data set of 1000 data points where the task at the first 500 is
to classify between the 0 and 1 classes and at the second part of the data

66 Chapter 4. Step Size-Adapted Online Support Vector Learning

0 200 400 600 800 1000

0.
05

0.
10

0.
20

0.
50

1.
00

iteration

cu
rr

en
t a

ve
ra

ge
 e

rr
or

Figure 4.1: Average error rate (on a log scale) incurred over a single run
through the digits 0 and 1 until iteration 500 and 2, 3 from 500 onwards of
the USPS data set, for SVMD (solid) vs. online SVM with scheduled step
size decay (dashed). SVMD performs better throughout the data.

4.5. Experiments 67

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

iterations

st
ep

 s
iz

e

Figure 4.2: Step size for classification over a single run of the USPS data
set where the first half of the data set are zeros and ones and the second
half twos and threes. The dased line is the sheduled step size of the online
SVM. Observe how the SVMD values (solid) of ηt respond to the change in
the dataset.

68 Chapter 4. Step Size-Adapted Online Support Vector Learning

between the 2 and 3 classes. This sudden change of the distribution in the
data although not usual illustrates the usefulness of the SVMD algorithm.

We compare SVMD to the conventional online SVM algorithm on binary
classification, using a standard decay for the learning rate ηt =

√
τ/(τ + t),

where τ was tuned appropriately to obtain good performance. A Gaussian
kernel width σ = 10 was used and the SVMD parameters where set to µ = 0.1
and ρ = 1 for this experiment.

We plot the value of the average error rate during the iterations in Figure 4.1
as well as the value of ηt in Figure 4.2. In Figure 4.1 we can see that SVMD
outperforms the online SVM algorithm during the initial 500 stationary iter-
ations and adapts well to the sudden change in the distribution of the data
outperforming the online SVM.

SVMD adapts the values of the learning rate ηt quite well to the changes in
the data set. Although both algorithms start with an initial value of ηt = 1
in the case of SVMD η is raised at the initial iterations providing slightly
better performance and then decays until halfway through the data where in
response to the change of the distribution η increases again. This shows that
our method is well suited for learning non-stationary distributions.

For our next experiment we use the full USPS dataset and performe multi-
class classification. Figure 4.3 shows our results for 10-way multiclass classifi-
cation using soft margin loss with λ = 2.15×10−7, η0 = 0.1, and µ = 0.1. We
plot current average error rate ,that is, the total number of errors divided by
the iteration number, and the step size in Figure 4.4. Online SVMD (solid)
makes significantly fewer classification errors compared to other methods,
adapting η from its conservative initial value to achieve good performance.
In our experiments we find the performance of online SVMD fairly indepen-
dent of the initial step size.

4.6 Conclusions

We presented online SVMD, an extension of the SMD step size adaptation
method to the kernel framework. Using an incremental approach to reduce a
naive O(t2) computation to O(t), we showed how the SMD parameters can be
updated efficiently even though they now reside in an RKHS. In experiments
online SVMD outperformed the online SVM with scheduled step size decay.

Adaptive step size control is clearly most useful when faced with a data
stream exhibiting irregular nonstationarities that thwart less reactive ap-
proaches, such as fixed decay schedules. We expect SVMD to become the
first viable online kernel algorithm for such data.

4.6. Conclusions 69

Figure 4.3: Online 10-way multiclass classification over a single run through
the USPS dataset. Current average error (left) for SVMD with % = 0.99
(solid), % = 0 (dotted), and online SVM with step size decay using τ = 100
(dashed).

70 Chapter 4. Step Size-Adapted Online Support Vector Learning

Figure 4.4: Online 10-way multiclass classification over a single run through
the USPS dataset. Step size for SVMD with % = 0.99 (solid), % = 0 (dotted),
and online SVM with step size decay using τ = 100 (dashed).

4.6. Conclusions 71

Future research will focus on the use of online learning techniques to prove
worst case loss bounds for SVMD.

72 Chapter 4. Step Size-Adapted Online Support Vector Learning

Chapter 5

Text clustering with string
kernels in R

5.1 Introduction

The application of machine learning techniques to large collections of text
documents is a major research area with many application such as document
filtering and ranking. Kernel-based methods have been shown to perform
rather well in this area, particularly in text classification with SVM using
either a simple “bag of words” representation (i.e. term frequencies with var-
ious normalizations) (Joachims, 1999), or more sophisticated approaches like
string kernels (Lodhi et al., 2002), or word-sequence kernels (Cancedda et al.,
2003). Despite the good performance of kernel methods in classification of
text documents, little has been done on the field of clustering text documents
with kernel-based methods.

In this chapter we present a package which provides a general framework,
including tools and algorithms, for text mining in R (R Development Core
Team, 2005) using the S4 class system. Using this package and the kernlab

R package we explore the use of kernel methods for clustering (e.g., kernel
k-means and spectral clustering) on a set of text documents, using string ker-
nels. We compare these methods to a more traditional clustering technique
like k-means on a bag of word representation of the text and evaluate the
viability of kernel-based methods as a text clustering technique.

73

74 Chapter 5. Text clustering with string kernels in R

5.2 Software

R is a natural choice for a text mining environment. Besides the basic string
and character processing functions it includes an abundance of statistical
analysis functions and packages and provides a Machine Learning task view
with a wide range of software.

5.2.1 The textmin R Package

The textmin package provides a framework for text mining applications
within R. It fully supports the new S4 class system and integrates seamlessly
into the R architecture.

The basic framework classes for handling text documents are:

textdocument: Encapsulates a text document, irrelevant from its origin, in
one class. Several slots are available for additional meta data, like an
unique identification number or a description.

textdoccol: Represents a collection of text documents. The constructor
provides import facilities for common data formats in text mining ap-
plications, like the Reuters21578 news format or the Reuters Corpus
Volume 1 format.

termdocmatrix: Stands for a term-document matrix with documents (in fact
their id numbers) as rows and terms as columns. Such a term-document
matrix can be easily built from a text document collection. A bunch
of weighting schemes are available, like binary, term frequency or term
frequency inverse document frequency. This class can be used as a fast
representation for all kinds of bag-of-words text mining algorithms.

Further, this package ships with scripts to extract all possible splits from the
Reuters21578 (Lewis, 1997) XML data.

5.2.2 kernlab

The kernel methods used in this chapter are already present in the kernlab
package. For performance reasons we implemented two versions of string
kernels in C linked through the .Call interface to R. For convenience we also
implemented a kernel matrix interface for the spectral clustering specc()

and the kernel k-means kkmeans() methods.

5.3. Methods 75

5.3 Methods

The k-means clustering algorithm is one of the most commonly used cluster-
ing methods providing solid results but also having some drawbacks. Denot-
ing clusters by πj and a partitioning of points as πj

k
j=1 the k-means objective

function using Euclidean distances becomes :

D(πj
k
j=1) =

k∑
j=1

∑
a∈πj

‖a−mj‖2

where mj = 1
‖πj‖

∑
a∈πj

a (5.1)

A major drawback of k-means is that it cannot separate clusters that are not
linearly separable in input space.

5.3.1 Kernel k-means

One technique for dealing with this problem is mapping the data into a high-
dimensional non-linear feature space with the use of a kernel. Kernel k-means
uses a kernel function to compute the inner product of the data in the feature
space. All computations are then expressed in terms of inner products thus
allowing the implicit mapping of the data into this feature space. If Φ is
the mapping function then the k-means objective function using Euclidean
distances becomes :

D(πj
k
j=1) =

k∑
j=1

∑
a∈πj

‖Φ(a)−mj‖2

where mj = 1
‖πj‖

∑
a∈πj

Φ(a) (5.2)

in the expansion of the square norm only inner products of the form 〈Φ(a), Φ(b)〉
appear which are computed by the kernel function k(a, b).

The implementation of kernel k-means included in kernlab makes use of the
triangle inequality (Elkan, 2003) in order to avoid unnecessary and compu-
tational expensive distance calculations. This leads to significant speedup
particularly on large data sets with a high number of clusters.

76 Chapter 5. Text clustering with string kernels in R

5.3.2 Spectral Clustering

Spectral clustering (Ng et al., 2001b), (Shi and Malik, 2000) works by embed-
ding the data points of the partitioning problem into the subspace of the k
largest eigenvectors of a normalized affinity matrix. The use of an affinity ma-
trix also brings one of the advantages of kernel methods to spectral clustering,
since one can define a suitable affinity for a given application. For example
if the feature vectors represent color histograms simple k-means clustering
is inappropriate since an L2 distance between histograms isn’t meaningful.
In such a case one can employ a suitable affinity function such as the χ2-
distance. In our case we use a string kernel to define the affinities between
two documents and construct the kernel matrix. The data is then embedded
into the subspace of the largest eigenvectors of the normalized kernel matrix.
This embedding usually leads to more straightforward clustering problems
since points tend to form tight clusters in the eigenvector subspace. Using a
simple clustering method like k-means on the embedded points usually leads
to good performance. It can be shown that most spectral clustering methods
boil down to a a graph partitioning problem (Dhillon et al., 2004) that can
be solved by a weighted kernel k-means algorithm.

5.3.3 String kernels

String kernels (Watkins, 2000), (Herbrich, 2002) are defined as a similarity
measure between two sets of characters x and x′. The generic form of string
kernels is given by the equation :

k(x, x′) =
∑

svx,s′vx′

λsδs,s′ =
∑
s∈A∗

nums(x)nums(x
′)λs (5.3)

where A∗ represents the set of all non empty strings and λs is a weight or
decay factor which can be chosen to be fixed for all substrings or can be set
to a different value for each substring. This generic representation includes
a large number of special cases, e.g. setting λs 6= 0 only for substrings that
start and end with a white space character gives the “bag of words” kernel
(Joachims, 2002). In this chapter we will focus on the case where λs = 0 for
all |s| > n that is comparing all substrings of length less that n, this kernel
will be referred to in the rest of the chapter as full string kernel. We also
consider the case where λs = 0 for all |s| 6= n which we referred to as the
string kernel. The computational complexity of the string kernels we consider
is O(n, |x|, |x′|).

5.4. Experiments 77

5.4 Experiments

We will now compare the performance of the various clustering techniques
on text data by running a series of experiments on the well known Reuters
text data set.

5.4.1 Data

The Reuters-21578 dataset (Lewis, 1997) contains stories for the Reuters
news agency. It was compiled by David Lewis in 1987, is publicly available
and is currently one of the most widely used datasets for text categorization
research. A Reuters category can contain as few as 1 or as many as 2877
documents. In our experiments we used a subset of the Reuters dataset so
that the computation of a full kernel matrix in memory was not a concern. We
used the “crude” which contains about 580 documents, the “corn” category
which includes 280 documents and a sample of 1100 documents from the
“acq” category. Our dataset thus consist of 1720 documents.

We removed the stop words that occur in a stop list and any empty documents
and convert all characters to lower case. We also removed punctuation and
white space and performed stemming on the documents using the Rstem
(Lang, 2005) omegahat R package.

5.4.2 Experimental Setup

We perform clustering on the dataset using the kernel k-means and spectral
clustering methods in the kernlab package and the k-means method in R.
For the kernel k-means and spectral methods we also use a the string kernels
implementations provided in kernlab. In order to learn more about the effect
of the string kernels hyper-parameters on the clustering results we run the
clustering algorithms over a range of the length parameter n which controls
the length of the strings compared in the two character sets and the decay
factor λ. We study the effects of the parameters by keeping the value of the
decay parameter λ fixed and varying the length parameter. Note that for
each parameter set a new kernel matrix containing different information has
to be computed.

We use values from n = 3 to n = 14 for the length parameter and λ = 0.2,
λ = 0.5 and λ = 0.8 for the decay factor. We also use both the string (or
spectral) and the full string kernel and normalize in order to remove any bias

introduced by document length. We thus use a new embedding φ̂ = φ(s)
‖φ(s)‖

78 Chapter 5. Text clustering with string kernels in R

which gives rise to the kernel :

K̂(s, s′) = 〈φ̂(s), φ̂(s′)〉 =

〈
φ(s)

‖φ(s)‖
φ(s′)

‖φ(s′)‖

〉
=

〈φ(s), φ(s′)〉
‖φ(s)‖‖φ(s′)‖

=
K(s, s′)√

K(s, s)K(s′, s′)
(5.4)

For the classical k-means method we create a term document matrix of the
term frequencies and also an inverse term frequencies matrix.

5.4.3 Performance measure

We evaluate the performance of the various clustering techniques using the
recall rate which is a typical measure for evaluating the performance of a
clustering algorithm when the actual labels of the clustered data are known.
Given a discovered cluster γ and the associated reference cluster Γ, recall R
is defined as in :

R =

∑k
Γ=1 nγΓ∑k
Γ=1 NΓ

(5.5)

where nγΓ is the number of documents from reference cluster Γ assigned to
cluster γ, NΓ is the total number of documents in cluster γ and NΓ is the
total number of documents in reference cluster Γ.

5.4.4 Results

The main goal of these experiments is to establish if kernel methods along
with string kernels are a valiable solution for grouping a set of text documents.

From the experiments we run it became obvious that the λ parameter influ-
ences the performance only minimally and thus we chose to look at the results
in relation to the string length kernel parameter which seems to have a more
profound influence on the performance of the kernel-based clustering meth-
ods. The performance of the k-means clustering method is also very similar
with both the simple document matrix or the inverse frequency document
matrix.

Figure 5.1 shows the average recall rate over 10 runs for the spectral clus-
tering methods, and the kernel k-means method with the full string kernel
compared to the reference recall rate of the inverse term document matrix
clustered with a simple k-means algorithm. The plot shows that both the
spectral method and kernel k-means fail to improve over the performance of

5.5. Conclusions 79

the standard k-means clustering technique. We also note that the spectral
clustering technique provides very stable results thous almost zero variance.
This can be attributed to the fact that the projection of the data into the
eigenspace groups the data into tight clusters which are easy to separate with
a standard clustering technique.

Figure 5.1 displays the average recall rate of the kernel k-means with a string
kernel along with the standard k-means clustering results. It is clear that
for a range of values of the string length parameter the kernel k-kmeans
functions outperforms k-means clustering and the full string kernel methods
with a full string kernel. The method does not provide stable performance
and the variance of the recall rate over the 10 runs seems quite high compared
to the other methods.

Figure 5.3 shows the recall rate of the spectral clustering method with a string
kernel averaged over 10 runs compared to the standard k-means clustering
results. This is clearly the best performing clustering method for this set of
text documents and also exhibits some interesting behavior. For rather small
lengths of substrings considered (3, 4, 5) the performance seems to increase
monotonically and at the the value of 6 hits a threshold. For the range of
values between 6 and 10 the performance increase is much smaller and for
the value of 10 the highest recall rate of 0.927 is reached. For higher values of
the length parameter the performance drops sharply only to increase again
for a string length value of 14. Again this method is very stable and exhibits
minimal variance.

5.4.5 Timing

We have also evaluated the methods in terms of running time. The experi-
ments where run on a Linux machine with a 2.6 GHz Pentium 4 CPU. Table
5.1 provides the running time for the calculation of a full kernel matrix and
the running time for the clustering methods. Note that the running time for
the kernel-based clustering methods is the time needed to cluster data with
a precomputed kernel matrix. From the results it is clear that most of the
computing time is spend on the calculation of the kernel matrix.

5.5 Conclusions

From the results it is clear that the spectral clustering technique combined
with a string kernel outperforms all other methods and provides very strong
performance even comparable to the classification performance of an SVM

80 Chapter 5. Text clustering with string kernels in R

kernel matrix calculations ≈ 2 h.
spectral clustering ≈ 20 sec.
kernel k-means ≈ 30 sec.
term matrix k-means ≈ 40 sec.

Table 5.1: Timings for the clustering methods and the computation of the
kernel matrix.

● ● ● ● ● ● ● ●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Results

string length

re
ca

ll
ra

te

● spectral c. full string

●

●

●

●

●

●

●

●

●

●

kernel k−means full string
spectral c. full string

● ● ● ● ● ● ● ● ● ● ●

●

●

●

k−means text matrix
kernel k−means full string
spectral c. full string

●

●

●

●

●

●

●

●

Figure 5.1: Average recall rate over 10 runs for the spectral clustering , kernel
k-means, with full string kernels and k-means on a inverse frequencies term
matrix methods. On the y axis is the recall rate and the x axis the string
length hyper-parameter of the string kernel.

5.5. Conclusions 81

● ● ● ● ● ● ● ● ● ● ●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Results

string length

re
ca

ll
ra

te

●

●

●

k−means text matrix
kernel k−means full string
spectral c. full string

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

kernel k−means string
k−means text matrix
kernel k−means full string
spectral c. full string

●

●

●

●

●

●

●
●

●
●

●

Figure 5.2: Average recall rate over 10 runs for the kernel k-means, with
string/spectral kernels and k-means on a inverse frequencies term matrix
methods. On the y axis is the recall rate and the x axis the string length
hyper-parameter of the string kernel.

82 Chapter 5. Text clustering with string kernels in R

●

●

●

● ● ●

●
●

●
●

●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Results

string length

re
ca

ll
ra

te ● ● ● ● ● ● ● ● ● ● ●

●

●

spectral c. string
k−means text matrix

Figure 5.3: Average recall rate over 10 runs for the spectral clustering with a
string/spectral kernel and the k-means on a inverse frequencies term matrix
methods. The x axis represents the string length hyper-parameter of the
string kernel.

5.5. Conclusions 83

with a string kernel on similar dataset (Lodhi et al., 2002). This is very
encouraging and shows that kernel-based clustering methods can be consid-
ered as a viable text grouping method. The behavior of the kernel-based
algorithms, particularly of the spectral clustering method, seem to strongly
depend on the value of the string length parameter. It is an open question if
the range of good values of this parameter (6−10) on this dataset can be also
used on other text datasets in the same or other languages to provide good
performance. It is interesting to note that a string length of 6 to 10 characters
corresponds to the size of one or two words in the English language. It would
also be interesting to study the behavior of the method for string lengths
higher than 14. The good performance of the spectral clustering technique
could be an indication that graph partitioning methods combined with string
kernels could provide good results on text clustering.

One drawback of the kernel based methods is the amount of time spend
on the computation of the kernel matrix and, particularly for the spectral
methods, the necessity to store a full m × m where m the number of text
documents, in memory. A suffix tree based implementation of the string
kernels as in (Vishwanathan and Smola, 2004) combined with the Nystrom
method (Williams and Seeger, 2001) for computing the eigenvectors of the
kernel matrix as in (Fowlkes et al., 2004) by using only a sample of the data
points could provide a solution to this issues. It would also be interesting to
explore the application of some other types of string kernels on text clustering.
Of particular interest would be the mismatch (Leslie et al., 2004) kernels
especially on raw (i.e. non pre-processed) text data.

84 Chapter 5. Text clustering with string kernels in R

Appendix A

SVM formulations

A.0.1 ν-SVM formulation for classification

The primal quadratic programming problem for the ν-SVM is the following:

minimize t(w, ξ, ρ) =
1

2
‖w‖2 − νρ +

1

m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ ρ− ξi (i = 1, . . . ,m) (A.1)

ξi ≥ 0 (i = 1, . . . ,m), ρ ≥ 0.

The dual is of the form:

maximize W (α) = −1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤
1

m
(i = 1, . . . ,m) (A.2)

m∑
i=1

αiyi = 0

m∑
i=1

αi ≥ ν

A.0.2 spoc-svm for classification

The dual of the Crammer and Singer multi-class SVM problem is of the form:

85

86 Chapter A. SVM formulations

maximize W (α) =
l∑

i=1

αiεi −
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ C (i = 1, . . . ,m) (A.3)
k∑

m=1

αm
i = 0, (i = 1, . . . , l)

m∑
i=1

αi ≥ ν

A.0.3 Bound constraint C-SVM for classification

The primal form of the bound constraint C-SVM formulation is:

minimize t(w, ξ) =
1

2
‖w‖2 +

1

2
β2 +

C

m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (A.4)

ξi ≥ 0 (i = 1, . . . ,m)

The dual form of the bound constraint C-SVM formulation is:

maximize W (α) =
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαj(yiyj + k(xi, xj))

subject to 0 ≤ αi ≤
C

m
(i = 1, . . . ,m) (A.5)

m∑
i=1

αiyi = 0.

A.0.4 SVM for regression

The dual form of the ε-SVM regression is:

87

maximizeα ∈ Rm =


−1

2

∑m
i,j=1(α

∗
i − αi)(α

∗
i − αi)k(xi, xj)

−ε
∑m

i=1(α
∗
i + αi) +

∑m
i=1 yi(α

∗
i − αi)

(A.6)

subject to
m∑

i=1

(αi − α∗i) = 0 and ai, a
∗
i ∈ [0, C/m]

The primal form of the ν-SVM formulation is:

minimize t(w, ξ∗, ε) =
1

2
‖w‖2 +

C

νε
+

1

m

m∑
i=1

(ξi + ξ∗i)

subject to (〈Φ(xi),w〉+ b)− yi ≥ ε− ξi (i = 1, . . . ,m) (A.7)

yi − (〈Φ(xi),w〉+ b) ≥ ε− ξ∗i (i = 1, . . . ,m) (A.8)

ξ∗i ≥ 0, ε ≥ 0, (i = 1, . . . ,m)

The dual form of the ν-SVM formulation is:

maximize W (α∗) =
m∑

i=1

(α∗i − αi)yi −
1

2

m∑
i,j=1

(α∗i − αi)(α
∗
j − αj)k(xi, xj)

subject to
m∑

i=1

(αi − α∗i) (A.9)

α∗i ∈
[
0,

C

m

]
,

m∑
i=1

(αi + α∗i) ≤ Cν

A.0.5 SVM novelty detection

The dual form of the SVM QP for novelty detection is:

minimize W (α) =
∑
i,j

αiαjk(xi, xj)

subject to 0 ≤ αi ≤
1

νm
(i = 1, . . . ,m) (A.10)∑

i

αi = 1

88 Chapter A. SVM formulations

Appendix B

kernlab Reference Manual

as.kernelMatrix Assing kernelMatrix class to matrix objects

Description

as.kernelMatrix in package in Package ‘kernlab’ can be used to assing the
kernelMatrix class to matrix objects representing a kernel matrix. This ma-
trixes can then be used with the kernelMatrix interfaces which most of the
functions in ’kernlab’ support.

Usage

S4 method for signature ’matrix’:
as.kernelMatrix(x)

Arguments

x matrix to be assinged the kernelMatrix class

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

kernelMatrix, dots

89

90 couple

Examples

couple Probabilities Coupling function

Description

couple is used to link class-probability estimates produced by pairwise cou-
pling in multi-class classification problems.

Usage

couple(probin, coupler = "minpair")

Arguments

probin The pairwise coupled class-probability estimates

coupler The type of coupler to use. Currently minpar and pkpd and
vote are supported (see reference for more details). If vote is
selected the returned value is a primitive estimate passed on
given votes.

Details

As binary classification problems are much easier to solve many techniques
exist to decompose multi-class classification problems into many binary clas-
sification problems (voting, error codes, etc.). Pairwise coupling (one against
one) constructs a rule for discriminating between every pair of classes and then
selecting the class with the most winning two-class decisions. By using Platt’s
probabilities output for SVM one can get a class probability for each of the
k(k − 1)/2 models created in the pairwise classification. The couple method
implements various techniques to combine these probabilities.

Value

A matrix with the resulting probability estimates.

csi-class 91

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Ting-Fan Wu, Chih-Jen Lin, ruby C. Weng
Probability Estimates for Multi-class Classification by Pairwise Coupling
Neural Information Processing Symposium 2003
http://books.nips.cc/papers/files/nips16/NIPS2003_0538.pdf

See Also

predict.ksvm, ksvm

Examples

create artificial pairwise probabilities
pairs <- matrix(c(0.82,0.12,0.76,0.1,0.9,0.05),2)

couple(pairs)

couple(pairs, coupler="pkpd")

couple(pairs, coupler ="vote")

csi-class Class ”csi”

Description

The reduced Cholesky decomposition object

Objects from the Class

Objects can be created by calls of the form new("csi", ...). or by calling
the csi function.

http://books.nips.cc/papers/files/nips16/NIPS2003_0538.pdf

92 csi-class

Slots

.Data: Object of class "matrix" contains the decomposed matrix

pivots: Object of class "vector" contains the pivots performed

diagresidues: Object of class "vector" contains the diagonial residues

maxresiduals: Object of class "vector" contains the maximum residues

predgain Object of class "vector" contains the predicted gain before adding
each column

truegain Object of class "vector" contains the actual gain after adding each
column

Q Object of class "matrix" contains Q from the QR decomposition of the
kernel matrix

R Object of class "matrix" contains R from the QR decomposition of the
kernel matrix

Extends

Class "matrix", directly.

Methods

diagresidues signature(object = "csi"): returns the diagonial residues

maxresiduals signature(object = "csi"): returns the maximum residues

pivots signature(object = "csi"): returns the pivots performed

predgain signature(object = "csi"): returns the predicted gain before
adding each column

truegain signature(object = "csi"): returns the actual gain after adding
each column

Q signature(object = "csi"): returns Q from the QR decomposition of
the kernel matrix

R signature(object = "csi"): returns R from the QR decomposition of
the kernel matrix

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

csi 93

See Also

csi, inchol-class

Examples

data(iris)

create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1

datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

csi Cholesky decomposition with Side Information

Description

The csi function in in Package ‘kernlab’ is an implementation of an incomplete
Cholesky decomposition algorithm which exploits side information (e.g. clas-
sification labels, regression responses) to compute a low rank decomposition of
a kernel matrix from the data.

Usage

S4 method for signature ’matrix’:
csi(x, y, kernel="rbfdot", kpar=list(sigma=0.1), rank,
centering = TRUE, kappa = 0.99 ,delta = 40 ,tol = 1e-5)

94 csi

Arguments

x The data matrix indexed by row

y the classification labels or regression repsonses. In classifica-
tion y is a m × n matrix where m the number of data and
n the number of classes y and yi is 1 if the corresponting x
belongs to class i.

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which
computes a dot product between two vector arguments. kern-
lab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel
• stringdot String kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. For valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

rank maximal rank

centering if TRUE centering is performed (default: TRUE)

csi 95

kappa trade-off between approximation of K and prediction of Y (de-
fault: 0.99)

delta number of columns of cholesky performed in advance (default:
40)

tol minimum gain at each iteration (default: 1e-4)

Details

An incomplete cholesky decomposition calculates Z where K = ZZ ′ K being
the kernel matrix. Since the rank of a kernel matrix is usually low, Z tends to
be smaller then the complete kernel matrix. The decomposed matrix can be
used to create memory efficient kernel-based algorithms without the need to
compute and store a complete kernel matrix in memory.
csi uses the class labels, or regression responses to compute a more apropriate
aproximation for the problem at hand considering the aditional information
from the response variable.

Value

An S4 object of class ”inchol” which is an extension of the class ”matrix”. The
object is the decomposed kernel matrix along with the slots :

pivots Indices on which pivots where done

diagresidues Residuals left on the diagonal

maxresiduals Residuals picked for pivoting

predgain predicted gain before adding each column

truegain actual gain after adding each column

Q QR decomposition of the kernel matrix

R QR decomposition of the kernel matrix

slots can be accessed either by object@slot or by accessor functions with the
same name (e.g. pivots(object))

Author(s)

Alexandros Karatzoglou (based on Matlab code by Francis Bach)
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

96 dots

References

Francis R. Bach, Michael I. Jordan
Predictive low-rank decomposition for kernel methods.
Proceedings of the Twenty-second International Conference on Machine Learn-
ing (ICML) 2005
http://cmm.ensmp.fr/~bach/bach_jordan_csi.pdf

See Also

inchol, chol

Examples

data(iris)

create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1

datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

dots Kernel Functions

http://cmm.ensmp.fr/~bach/bach_jordan_csi.pdf

dots 97

Description

The kernel generating functions provided in kernlab.
The Gaussian RBF kernel k(x, x′) = exp(−σ‖x− x′‖2)
the Polynomial kernel k(x, x′) = (scale < x, x′ > +offset)degree.
the Linear kernel k(x, x′) =< x, x′ >
the Hyperbolic tangent kernel k(x, x′) = tanh(scale < x, x′ > +offset) the
Laplacian kernel k(x, x′) = exp(−σ‖x− x′‖)
the Bessel kernel k(x, x′) = (−Besseln(ν+1)σ‖x− x′‖2)
the ANOVA RBF kernel k(x, x′) =

∑
1≤i1...<iD≤N

∏D
d=1 k(xid, x

′
id) where k(x,x)

is an Gaussian RBF kernel. the Spline kernel
∏D

d=1 1+xixj +xixjmin(xi, xj)−
xi+xj

2 min(xi, xj)2 + min(xi,xj)
3

3

Usage

rbfdot(sigma = 1)

polydot(degree = 1, scale = 1, offset = 1)

tanhdot(scale = 1, offset = 1)

vanilladot()

laplacedot(sigma = 1)

besseldot(sigma = 1, order = 1, degree = 1)

anovadot(sigma = 1, degree = 1)

splinedot()

Arguments

sigma The inverse kernel width used by the Gaussian the Laplacian,
the Bessel and the ANOVA kernel

degree The degree of the polynomial, bessel or ANOVA kernel func-
tion. This has to be an positive integer.

scale The scaling parameter of the polynomial and tangent kernel
is a convenient way of normalizing patterns without the need
to modify the data itself

offset The offset used in a polynomial or hyperbolic tangent kernel

order The order of the Bessel function to be used as a kernel

98 dots

Details

The kernel generating function are used to initialize a kernel function which
calculates the dot (inner) product between two feature vectors in a Hilbert
Space. These functions can be passed as a kernel argument on almost all
functions in kernlab (eg. ksvm, kpca etc).

Although using one of the existing kernel functions as a kernel argument in
various functions in kernlab has the advantage that optimized code is used to
calculate various kernel expressions, any other function implementing a dot
product of class kernel can also be used as a kernel argument. This allows the
user to use, test and develop special kernels for a given data set or algorithm.

Value

Return an S4 object of class kernel which extents the function class. The
resulting function implements the given kernel calculating the inner (dot) prod-
uct between two vectors.

kpar a list containing the kernel parameters (hyperparameters) used.

The kernel parameters can be accessed by the kpar function.

Note

If the offset in the Polynomial kernel is set to 0, we obtain homogeneous poly-
nomial kernels, for positive values, we have inhomogeneous kernels. Note that
for negative values the kernel does not satisfy Mercer’s condition and thus the
optimizers may fail.

In the Hyperbolic tangent kernel if the offset is negative the likelihood of ob-
taining a kernel matrix that is not positive definite is much higher (since then
even some diagonal elements may be negative), hence if this kernel has to
be used, the offset should always be positive. Note, however, that this is no
guarantee that the kernel will be positive.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

kernelMatrix , kernelMult, kernelPol

gausspr-class 99

Examples

rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel

kpar(rbfkernel)

create two vectors
x <- rnorm(10)
y <- rnorm(10)

calculate dot product
rbfkernel(x,y)

gausspr-class Class ”gausspr”

Description

The Gaussian Processes object

Objects from the Class

Objects can be created by calls of the form new("gausspr", ...). or by
calling the gausspr function

Slots

tol: Object of class "numeric" contains tolerance of termination criteria

kernelf: Object of class "function" contains the kernel function used

kpar: Object of class "list" contains the kernel parameter used

kcall: Object of class "ANY" contains the used function call

type: Object of class "character" contains type of problem

terms: Object of class "ANY" contains the terms representation of the symbolic
model used (when using a formula)

xmatrix: Object of class "matrix" containing the data matrix used

ymatrix: Object of class "ANY" containing the response matrix

fitted: Object of class "ANY" containing the fitted values

100 gausspr-class

lev: Object of class "vector" containing the levels of the response (in case of
classification)

nclass: Object of class "numeric" containing the number of classes (in case
of classification)

alpha: Object of class "ANY" containing the computes alpha values

alphaindex Object of class "list" containing the indexes for the alphas in
various classes (in multi-class problems).

nvar: Object of class "numeric" containing the computed variance

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross validation error

n.action: Object of class "ANY" containing the action performed in NA

Methods

alpha signature(object = "gausspr"): returns the alpha vector

cross signature(object = "gausspr"): returns the cross validation error

error signature(object = "gausspr"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "gausspr"): returns the call performed

kernelf signature(object = "gausspr"): returns the kernel function used

kpar signature(object = "gausspr"): returns the kernel parameter used

lev signature(object = "gausspr"): returns the response levels (in classi-
fication)

type signature(object = "gausspr"): returns the type of problem

xmatrix signature(object = "gausspr"): returns the data matrix used

ymatrix signature(object = "gausspr"): returns the response matrix used

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

gausspr, ksvm-class

gausspr 101

Examples

train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)

gausspr Gaussian processes for regression and classification

Description

gausspr is an implementation of Gaussian processes for classification and re-
gression.

Usage

S4 method for signature ’formula’:
gausspr(x, data=NULL, ..., subset, na.action = na.omit)

S4 method for signature ’vector’:
gausspr(x,...)

S4 method for signature ’matrix’:
gausspr(x, y, type="classification", kernel="rbfdot",

kpar=list(sigma = 0.1),var=1, tol=0.001, cross=0,
fit=TRUE, ... , subset, na.action = na.omit)

Arguments

x a symbolic description of the model to be fit or a matrix or
vector when a formula interface is not used. When not using
a formula x is a matrix or vector containg the variables in the
model

102 gausspr

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘gausspr’ is called from.

y a response vector with one label for each row/component of x.
Can be either a factor (for classification tasks) or a numeric
vector (for regression).

type Type of problem. Either ”classification” or ”regression”

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

var the initial noise variance

tol tolerance of termination criterion (default: 0.001)

gausspr 103

fit indicates whether the fitted values should be computed and
included in the model or not (default: ’TRUE’)

cross if a integer value k>0 is specified, a k-fold cross validation
on the training data is performed to assess the quality of the
model: the Mean Squared Error for regression

subset An index vector specifying the cases to be used in the training
sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

A Gaussian process is specified by a mean and a covariance function. The
mean is a function of x (which is often the zero function), and the covariance is
a function C(x, x′) which expresses the expected covariance between the value
of the function y at the points x and x’. The actual function y(x) in any
data modelling problem is assumed to be a single sample from this Gaussian
distribution. Model parameter estimation in classification is done by a gradient
descent algorithm.

Value

An S4 object of class ”gausspr” containing the fitted model along with infor-
mation. Accessor functions can be used to access the slots of the object which
include :

alpha The resulting model parameters

error Training error (if fit == TRUE)

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Christopher K.I. Williams, Carl Edward Rasmussen
Gaussian Processes for Regression

104 inchol-class

Advances in Neural Information Processing Systems, NIPS
http://books.nips.cc/papers/files/nips08/0514.pdf

See Also

rvm, ksvm

Examples

train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)

predict on the training set
predict(test,iris[,-5])

create regression data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)

regression with gaussian processes
foo <- gausspr(x, y)
foo

predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")

inchol-class Class ”inchol”

Description

The reduced Cholesky decomposition object

Objects from the Class

Objects can be created by calls of the form new("inchol", ...). or by calling
the inchol function.

http://books.nips.cc/papers/files/nips08/0514.pdf

inchol-class 105

Slots

.Data: Object of class "matrix" contains the decomposed matrix

pivots: Object of class "vector" contains the pivots performed

diagresidues: Object of class "vector" contains the diagonial residues

maxresiduals: Object of class "vector" contains the maximum residues

Extends

Class "matrix", directly.

Methods

diagresidues signature(object = "inchol"): returns the diagonial residues

maxresiduals signature(object = "inchol"): returns the maximum residues

pivots signature(object = "inchol"): returns the pivots performed

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

inchol, csi-class

Examples

data(iris)
datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- inchol(datamatrix,kernel=rbf)
dim(Z)
pivots(Z)
diagresidues(Z)
maxresiduals(Z)

106 inchol

inchol Incomplete Cholesky decomposition

Description

inchol computes the incomplete Cholesky decomposition of the kernel matrix
from a data matrix.

Usage

inchol(x, kernel="rbfdot", kpar=list(sigma=0.1), tol = 0.001,
maxiter = dim(x)[1], blocksize = 50, verbose = 0)

Arguments

x The data matrix indexed by row

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which
computes a dot product between two vector arguments. kern-
lab provides the most popular kernel functions which can be
used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

inchol 107

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.

• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

tol algorithm stops when remaining pivots bring less accuracy
then tol (default: 0.001)

maxiter maximum number of iterations and colums in Z

blocksize add this many columns to matrix per iteration

verbose print info on algorithm convergence

Details

An incomplete cholesky decomposition calculates Z where K = ZZ ′ K being
the kernel matrix. Since the rank of a kernel matrix is usually low, Z tends to
be smaller then the complete kernel matrix. The decomposed matrix can be
used to create memory efficient kernel-based algorithms without the need to
compute and store a complete kernel matrix in memory.

Value

An S4 object of class ”inchol” which is an extension of the class ”matrix”. The
object is the decomposed kernel matrix along with the slots :

pivots Indices on which pivots where done

diagresidues Residuals left on the diagonal

maxresiduals Residuals picked for pivoting

slots can be accessed either by object@slot or by accessor functions with the
same name (e.g. pivots(object))

Author(s)

Alexandros Karatzoglou (based on Matlab code by S.V.N. (Vishy) Vishwanathan
and Alex Smola)
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

108 income

References

Francis R. Bach, Michael I. Jordan
Kernel Independent Component Analysis
Journal of Machine Learning Research 3, 1-48
http://www.jmlr.org/papers/volume3/bach02a/bach02a.pdf

See Also

chol

Examples

data(iris)
datamatrix <- as.matrix(iris[,-5])
initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- inchol(datamatrix,kernel=rbf)
dim(Z)
pivots(Z)
calculate kernel matrix
K <- crossprod(t(Z))
difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]

income Income Data

Description

Customer Income Data from a marketing survey.

Usage

data(income)

http://www.jmlr.org/papers/volume3/bach02a/bach02a.pdf

income 109

Format

A data frame with 14 categorical variables (8993 observations).

Explanation of the variable names:

110 inlearn

1 INCOME annual income of household
(Personal income if single) ordinal

2 SEX sex nominal
3 MARITAL.STATUS marital status nominal
4 AGE age ordinal
5 EDUCATION educational grade ordinal
6 OCCUPATION type of work nominal
7 AREA how long the interviewed person has lived

in the San Francisco/Oakland/San Jose area ordinal
8 DUAL.INCOMES dual incomes (if married) nominal
9 HOUSEHOLD.SIZE persons living in the household ordinal
10 UNDER18 persons in household under 18 ordinal
11 HOUSEHOLDER householder status nominal
12 HOME.TYPE type of home nominal
13 ETHNIC.CLASS ethnic classification nominal
14 LANGUAGE language most often spoken at home nominal

Details

A total of N=9409 questionnaires containg 502 questions were filled out by
shopping mall customers in the San Francisco Bay area. The dataset is an ex-
tract from this survey. It consists of 14 demographic attributes. The dataset is
a mixture of nominal and ordinal variables with a lot of missing data. The goal
is to predict the Anual Income of Household from the other 13 demographics
attributes.

Source

Impact Resources, Inc., Columbus, OH (1987).

inlearn Onlearn object initialization

Description

Online Kernel Algorithm object onlearn initialization function.

inlearn 111

Usage

S4 method for signature ’numeric’:
inlearn(d, kernel = "rbfdot", kpar = list(sigma = 0.1),

type = "novelty", buffersize = 1000)

Arguments

d the dimensionality of the data to be learned

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

type the type of problem to be learned by the online algorithm :
classification, regression, novelty

buffersize the size of the buffer to be used

112 ipop-class

Details

The inlearn is used to initialize a blank onlearn object.

Value

The function returns an S4 object of class onlearn that can be used by the
onlearn function.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

onlearn, onlearn-class

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),type="classification")

learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

sign(predict(on,x))

ipop-class Class ”ipop”

Description

The quadratic problem solver class

ipop-class 113

Objects from the Class

Objects can be created by calls of the form new("ipop", ...). or by calling
the ipop function.

Slots

primal: Object of class "vector" the primal solution of the problem

dual: Object of class "numeric" the dual of the problem

how: Object of class "character" convergence information

Methods

primal Return the primal of the problem

dual Return the dual of the problem

how Return information on convergence

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

ipop

Examples

solve the Support Vector Machine optimization problem
data(spam)

sample a scaled part (300 points) of the spam data set
m <- 300
set <- sample(1:dim(spam)[1],m)
x <- scale(as.matrix(spam[,-58]))[set,]
y <- as.integer(spam[set,58])
y[y==2] <- -1

##set C parameter and kernel
C <- 5
rbf <- rbfdot(sigma = 0.1)

114 ipop

create H matrix etc.
H <- kernelPol(rbf,x,,y)
c <- matrix(rep(-1,m))
A <- t(y)
b <- 0
l <- matrix(rep(0,m))
u <- matrix(rep(C,m))
r <- 0

sv <- ipop(c,H,A,b,l,u,r)
primal(sv)
dual(sv)
how(sv)

ipop Quadratic Programming Solver

Description

ipop solves the quadratic programming problem :
min(c′ ∗ x + 1/2 ∗ x′ ∗H ∗ x)
subject to:
b <= A ∗ x <= b + r
l <= x <= u

Usage

ipop(c, H, A, b, l, u, r, sigf = 7, maxiter = 40, margin = 0.05,
bound = 10, verb = 0)

Arguments

c Vector or one column matrix appearing in the quadratic func-
tion

H Matrix appearing in the quadratic function

A Matrix defining the constrains under which we minimize the
quadratic function

b Vector or one column matrix defining the constrains

l Lower bound vector or one column matrix

ipop 115

u Upper bound vector or one column matrix

r Vector or one column matrix defining constrains

sigf Precision (default: 7 significant figures)

maxiter Maximum number of iterations

margin how close we get to the constrains

bound Clipping bound for the variables

verb Display convergence information during runtime

Details

ipop uses an interior point method to solve the quadratic programming prob-
lem.

Value

An S4 object with the following slots

primal Vector containing the primal solution of the quadratic problem

dual The dual solution of the problem

how Character string describing the type of convergence

all slots can be accessed through accessor functions (see example)

Author(s)

Alexandros Karatzoglou (based on Matlab code by Alex Smola)
alexandros.karatzoglou@ci.tuwien.ac.at

References

R. J. Vanderbei
LOQO: An interior point code for quadratic programming
Optimization Methods and Software 11, 451-484, 1999
http://www.sor.princeton.edu/~rvdb/ps/loqo3.ps.gz

See Also

solve.QP

http://www.sor.princeton.edu/~rvdb/ps/loqo3.ps.gz

116 kcca-class

Examples

solve the Support Vector Machine optimization problem
data(spam)

sample a scaled part (500 points) of the spam data set
m <- 500
set <- sample(1:dim(spam)[1],m)
x <- scale(as.matrix(spam[,-58]))[set,]
y <- as.integer(spam[set,58])
y[y==2] <- -1

##set C parameter and kernel
C <- 5
rbf <- rbfdot(sigma = 0.1)

create H matrix etc.
H <- kernelPol(rbf,x,,y)
c <- matrix(rep(-1,m))
A <- t(y)
b <- 0
l <- matrix(rep(0,m))
u <- matrix(rep(C,m))
r <- 0

sv <- ipop(c,H,A,b,l,u,r)
sv
dual(sv)

kcca-class Class ”kcca”

Description

The ”kcca” class

Objects from the Class

Objects can be created by calls of the form new("kcca", ...). or by the
calling the kcca function.

kcca 117

Slots

kcor: Object of class "vector" describing the correlations

xcoef: Object of class "matrix" estimated coefficients for the x variables

ycoef: Object of class "matrix" estimated coefficients for the y variables

xvar: Object of class "matrix" holds the canonical variates for x

yvar: Object of class "matrix" holds the canonical variates for y

Methods

kcor signature(object = "kcca"): returns the correlations

xcoef signature(object = "kcca"): returns the estimated coefficients for
the x variables

ycoef signature(object = "kcca"): returns the estimated coefficients for
the y variables

xvar signature(object = "kcca"): returns the canonical variates for x

yvar signature(object = "kcca"): returns the canonical variates for y

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

kcca, kpca-class

Examples

kcca Kernel Canonical Correlation Analysis

Description

Computes the canonical correlation analysis in a feature space.

118 kcca

Usage

S4 method for signature ’matrix’:
kcca(x, y, kernel="rbfdot", kpar=list(sigma=0.1), ...)

Arguments

x a matrix containing data index by row

y a matrix containing data index by row

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

... adittional parameters for the kpca function

kernel-class 119

Details

The kernel version of canonical correlation analysis.

Value

An S4 object containg the following slots:

kcor Correlation coefficients in feature space

xcoef estimated coefficients for the x variables in the feature space

ycoef estimated coefficients for the y variables in the feature space

xvar The canonical variates for x

yvar The canonical variates for y

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Malte Kuss, Thore Graepel
The Geometry Of Kernel Canonical Correlation Analysis
http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2233.pdf

See Also

cancor kpca

Examples

kernel-class Class ”kernel” ”rbfkernel” ”polykernel”, ”tanhkernel”,
”vanillakernel”

Description

The build in kernel classes in kernelab

http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2233.pdf

120 kernel-class

Objects from the Class

Objects can be created by calls of the form new("rbfkernel", ...), new{"polykernel"},
new{"tanhkernel"}, new{"vanillakernel"} or by calling the rbfdot, polydot,
tanhdot, vanilladot functions.

Slots

.Data: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel parameters

Extends

Class "kernel", directly. Class "function", by class "kernel".

Methods

kernelMatrix signature(kernel = "rbfkernel", x = "matrix"): computes
the kernel matrix

kernelMult signature(kernel = "rbfkernel", x = "matrix"): computes
the quadratic kernel expression

kernelPol signature(kernel = "rbfkernel", x = "matrix"): computes
the kernel expansion

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

dots

Examples

rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel
is(rbfkernel)
kpar(rbfkernel)

kernelMatrix 121

kernelMatrix Kernel Matrix functions

Description

kernelMatrix calculates the kernel matrix Kij = k(xi, xj) or Kij = k(xi, yj).
kernelPol computes the quadratic kernel expression H = zizjk(xi, xj), H =
zikjk(xi, yj).
kernelMult calculates the kernel expansion f(xi) =

∑m
i=1 zk(xi, xj)

kernelFast computes the kernel matrix this function identical to kernelMatrix,
except that it also requires the squared norm of the first argument as additional
input.

Usage

S4 method for signature ’kernel’:
kernelMatrix(kernel, x, y = NULL)

S4 method for signature ’kernel’:
kernelPol(kernel, x, y = NULL, z, k = NULL)

S4 method for signature ’kernel’:
kernelMult(kernel, x, y = NULL, z, blocksize = 256)

S4 method for signature ’kernel’:
kernelFast(kernel, x, y, a)

Arguments

kernel the kernel function to be used to calculate the kernel matrix.
This has to be a function of class kernel, i.e. either one of
the build in kernel functions or a fnction taking two vector
arguments and returning a scalar.

x a data matrix to be used to calculate the kernel matrix

y second data matrix to calculate the kernel matrix

z a suitable vector or matrix

k a suitable vector or matrix

a the squared norm of x e.g. rowSums(x^2)

122 kernelMatrix

blocksize the kernel expansion computations are done block wise to
avoid storing the kernel matrix into memory. blocksize de-
fines the size of the computational blocks.

Details

Common functions used during kernel based computations.
The kernel parameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab provides the most
popular kernel functions which can be initialized by using the following func-
tions:

• rbfdot Radial Basis kernel function

• polydot Polynomial kernel function

• vanilladot Linear kernel function

• tanhdot Hyperbolic tangent kernel function

• laplacedot Laplacian kernel function

• besseldot Bessel kernel function

• anovadot ANOVA RBF kernel function

• splinedot the Spline kernel

(see example.)

kernelFast is mainly used in situations where colums of the kernel matrix are
computed per invocation. In these cases, evaluating the norm of each row-entry
over and over again would cause significant computational overhead.

Value

kernelMatrix returns a symmetric diagonal semi-definite matrix.
kernelPol returns a matrix.
kernelMult usually returns a one-column matrix.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

rbfdot, polydot, tanhdot, vanilladot

kfa-class 123

Examples

use the spam data
data(spam)
dt <- as.matrix(spam[c(10:20,3000:3010),-58])

initialize kernel function
rbf <- rbfdot(sigma = 0.05)
rbf

calculate kernel matrix
kernelMatrix(rbf, dt)

yt <- as.matrix(as.integer(spam[c(10:20,3000:3010),58]))
yt[yt==2] <- -1

calculate the quadratic kernel expression
kernelPol(rbf, dt, ,yt)

calculate the kernel expansion
kernelMult(rbf, dt, ,yt)

kfa-class Class ”kfa”

Description

The class of the object returned by the Kernel Feature Analysis kfa function

Objects from the Class

Objects can be created by calls of the form new("kfa", ...) or by calling
the kfa method. The objects contain the features along with the alpha values.

Slots

alpha: Object of class "matrix" containing the alpha values

alphaindex: Object of class "vector" containing the indexes of the selected
feature

kernelf: Object of class "function" containing the kernel function used

xmatrix: Object of class "matrix" containing the selected features

kcall: Object of class "ANY" containig the kfa function call

terms: Object of class "ANY" containing the formula terms

124 kfa

Methods

alpha signature(object = "kfa"): returns the alpha values

alphaindex signature(object = "kfa"): returns the index of the selected
features

kcall signature(object = "kfa"): returns the function call

kernelf signature(object = "kfa"): returns the kernel function used

predict signature(object = "kfa"): used to embed more data points to
the feature base

xmatrix signature(object = "kfa"): returns the selected features.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

kfa, kpca-class

Examples

data(promotergene)
f <- kfa(~.,data=promotergene)

kfa Kernel Feature Analysis

Description

The Kernel Feature Analysis algorithm is an algorithm for extracting structure
from possibly high-dimensional data sets. Similar to kpca a new basis for the
data is found. The data can then be projected on the new basis.

Usage

S4 method for signature ’formula’:
kfa(x, data = NULL, na.action = na.omit, ...)

S4 method for signature ’matrix’:
kfa(x, kernel = "rbfdot", kpar = list(sigma = 0.1),

features = 0, subset = 59, normalize = TRUE, na.action = na.omit)

kfa 125

Arguments

x The data matrix indexed by row or a formula describing the
model. Note, that an intercept is always included, whether
given in the formula or not.

data an optional data frame containing the variables in the model
(when using a formula).

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

features Number of features (principal components) to return. (de-
fault: 0 , all)

subset the number of features sampled (used) from the data set

126 kfa

normalize normalize the feature selected (default: TRUE)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

Kernel Feature analysis is similar to Kernel PCA, but instead of extracting
eigenvectors of the training dataset in feature space, it approximates the eigen-
vectors by selecting training patterns which are good basis vectors for the train-
ing set. It works by choosing a fixed size subset of the data set and scaling it
to unit length (under the kernel). It then chooses the features that maximize
the value of the inner product (kernel function) with the rest of the patterns.

Value

kfa returns an object of class kfa containing the features selected by the
algorithm.

xmatrix contains the features selected

alpha contains the sparse alpha vector

The predict function can be used to embed new data points into to the selected
feature base.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Alex J. Smola, Olvi L. Mangasarian and Bernhard Schoelkopf
Sparse Kernel Feature Analysis
Data Mining Institute Technical Report 99-04, October 1999
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps

See Also

kpca, kfa-class

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps

kha-class 127

Examples

data(promotergene)
f <- kfa(~.,data=promotergene,features=2,kernel="rbfdot",kpar=list(sigma=0.01))
plot(predict(f,promotergene),col=as.numeric(promotergene[,1]))

kha-class Class ”kha”

Description

The Kernel Hebbian Algorithm class

Objects objects of class ”kha”

Objects can be created by calls of the form new("kha", ...). or by calling
the kha function.

Slots

pcv: Object of class "matrix" containing the principal component vectors

eig: Object of class "vector" containing the coresponding normalization val-
ues

eskm: Object of class "vector" containing the kernel sum

kernelf: Object of class "function" containing the kernel function used

kpar: Object of class "list" containing the kernel parameters used

xmatrix: Object of class "matrix" conatining the data matrix used

kcall: Object of class "ANY" containing the function call

n.action: Object of class "ANY" containg the action performed on NA

Methods

eig signature(object = "kha"): returns the normalization values

kcall signature(object = "kha"): returns the performed call

kernelf signature(object = "kha"): returns the used kernel function

pcv signature(object = "kha"): returns the principal component vectors

eskm signature(object = "kha"): returns the kernel sum

predict signature(object = "kha"): embeeds new data

xmatrix signature(object = "kha"): returns the used data matrix

128 kha

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

ksvm-class, kcca-class

Examples

another example using the iris
data(iris)
test <- sample(1:50,20)

kpc <- kha(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),
features=2)

#print the principal component vectors
pcv(kpc)
kernelf(kpc)
eig(kpc)

kha Kernel Principal Components Analysis

Description

Kernel Hebbian Algorithm is a nonlinear iterative algorithm for principal com-
ponent analysis.

Usage

S4 method for signature ’formula’:
kha(x, data = NULL, na.action, ...)

S4 method for signature ’matrix’:
kha(x, kernel = "rbfdot", kpar = list(sigma = 0.1), features = 5,

eta = 0.005, th = 1e-4, maxiter = 10000, verbose = FALSE,
na.action = na.omit...)

kha 129

Arguments

x The data matrix indexed by row or a formula descibing the
model. Note, that an intercept is always included, whether
given in the formula or not.

data an optional data frame containing the variables in the model
(when using a formula).

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

features Number of features (principal components) to return. (de-
fault: 5)

eta The hebbian learning rate (default : 0.005)

130 kha

th the smallest value of the convergence step (default : 0.0001)

maxiter the maximum number of iterations.

verbose print convergence every 100 iterations. (default : FALSE)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

The original form of KPCA can only be used on small data sets since it re-
quieres the estimation of the eigenvectors of a full kernel matrix. The Ker-
nel Hebbian Algorithm iteratively estimates the Kernel Principal Components
with only linear order memory complexity. (see ref. for more details)

Value

An S4 object containing the principal component vectors along with the cor-
responding normalization values.

pcv a matrix containing the principal component vectors (column
wise)

eig The normalization values

xmatrix The original data matrix

all the slots of the object can be accessed by accessor functions.

Note

The predict function can be used to embed new data on the new space

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

kkmeans 131

References

Kwang In Kim, M.O. Franz and B. Schölkopf
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis
Max-Planck-Institut für biologische Kybernetik, Tübingen (109)
http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2302.pdf

See Also

kpca, kfa, kcca, pca

Examples

another example using the iris
data(iris)
test <- sample(1:150,20)

kpc <- kha(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),
features=2)

#print the principal component vectors
pcv(kpc)

#plot the data projection on the components
plot(predict(kpc,iris[,-5]),col=as.integer(iris[,5]),

xlab="1st Principal Component",ylab="2nd Principal Component")

kkmeans Kernel k-means

Description

A weigthed kernel version of the famous k-means algorithm.

Usage

S4 method for signature ’formula’:
kkmeans(x, data = NULL, na.action = na.omit, ...)

S4 method for signature ’matrix’:

http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2302.pdf

132 kkmeans

kkmeans(x, centers, kernel = "rbfdot", kpar = list(sigma = 0.1),
alg="kkmeans", p=1, na.action = na.omit, ...)

S4 method for signature ’kernelMatrix’:
kkmeans(x, centers, ...)

S4 method for signature ’list’:
kkmeans(x, centers, kernel = "stringdot",

kpar = list(length=4, lambda=0.5),
alg ="kkmeans", p = 1, na.action = na.omit, ...)

Arguments

x the matrix of data to be clustered, a symbolic description of
the model to be fit, a kernel Matrix of class kernelMatrix, or
a list of character vectors.

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘kkmeans’ is called from.

centers Either the number of clusters or a set of initial cluster centers.
If the first, a random set of rows in the eigenvectors matrix
are chosen as the initial centers.

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel ”Gaussian”
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

Setting the kernel parameter to ”matrix” treats x as a kernel
matrix calling the kernelMatrix interface.

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kkmeans 133

kpar a character string or the list of hyper-parameters (kernel pa-
rameters). The default character string "automatic" uses a
heuristic the determine a suitable value for the width param-
eter of the RBF kernel.

A list can also be used containing the parameters to be used
with the kernel function. Valid parameters for existing kernels
are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.

• sigma, degree for the ANOVA kernel ”anovadot”.

• length, lambda, normalized for the ”stringdot” kernel
where length is the length of the strings considered, lambda
the decay factor and normalized a logical parameter de-
termining if the kernel evaluations should be normalized.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

alg the algorithm to use. Options currently include kkmeans and
kerninghan.

p a parameter used to keep the affinity matrix positive semidef-
inite

na.action The action to perform on NA

... additional parameters

Details

The algorithm is implemented using the triangle inequality to avoid unnec-
essary and computational expensive distance calculations. This leads to sig-
nificant speedup particularly on large data sets with a high number of clus-
ters. With a particular choice of weights this algorithm becomes equivalent to
Kernighan-Lin, and the norm-cut graph partitioning algorithms.
The function also support input in the form of a kernel matrix or a list of
characters for text clustering.

134 kkmeans

Value

An S4 object of class specc wich extends the class vector containing integers
indicating the cluster to which each point is allocated. The following slots
contain useful information

centers A matrix of cluster centers.

size The number of point in each cluster

withinss The within-cluster sum of squares for each cluster

kernelf The kernel function used

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Inderjit Dhillon, Yuqiang Guan, Brian Kulis
A Unified view of Kernel k-means, Spectral Clustering and Graph Partitioning
UTCS Technical Report
http://www.cs.utexas.edu/users/kulis/pubs/spectral_techreport.pdf

See Also

specc, kpca, kcca

Examples

Cluster the iris data set.
data(iris)

sc <- kkmeans(as.matrix(iris[,-5]), centers=3)

sc
centers(sc)
size(sc)
withinss(sc)

http://www.cs.utexas.edu/users/kulis/pubs/spectral_techreport.pdf

kpca-class 135

kpca-class Class ”kpca”

Description

The Kernel Principal Components Analysis class

Objects of class ”kpca”

Objects can be created by calls of the form new("kpca", ...). or by calling
the kpca function.

Slots

pcv: Object of class "matrix" containing the principal component vectors

eig: Object of class "vector" containing the coresponding eigenvalues

rotated: Object of class "matrix" containing the projection of the data on
the principal components

kernelf: Object of class "function" containing the kernel function used

kpar: Object of class "list" containing the kernel parameters used

xmatrix: Object of class "matrix" conatining the data matrix used

kcall: Object of class "ANY" containing the function call

n.action: Object of class "ANY" containg the action performed on NA

Methods

eig signature(object = "kpca"): returns the eigenvalues

kcall signature(object = "kpca"): returns the performed call

kernelf signature(object = "kpca"): returns the used kernel function

pcv signature(object = "kpca"): returns the principal component vectors

predict signature(object = "kpca"): embeeds new data

rotated signature(object = "kpca"): returns the projected data

xmatrix signature(object = "kpca"): returns the used data matrix

136 kpca

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

ksvm-class, kcca-class

Examples

another example using the iris
data(iris)
test <- sample(1:50,20)

kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),
features=2)

#print the principal component vectors
pcv(kpc)
rotated(kpc)
kernelf(kpc)
eig(kpc)

kpca Kernel Principal Components Analysis

Description

Kernel Principal Components Analysis is a nonlinear form of principal compo-
nent analysis.

Usage

S4 method for signature ’formula’:
kpca(x, data = NULL, na.action, ...)

S4 method for signature ’matrix’:
kpca(x, kernel = "rbfdot", kpar = list(sigma = 0.1), features = 0,

th = 1e-4, ...)

kpca 137

Arguments

x The data matrix indexed by row or a formula descibing the
model. Note, that an intercept is always included, whether
given in the formula or not.

data an optional data frame containing the variables in the model
(when using a formula).

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

features Number of features (principal components) to return. (de-
fault: 0 , all)

th the value of the eigenvalue under which principal components
are ignored (only valid when features = 0). (default : 0.0001)

138 kpca

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

Using kernel functions one can efficiently compute principal components in
high-dimensional feature spaces, related to input space by some non-linear
map.

Value

An S4 object containing the principal component vectors along with the cor-
responding eigenvalues.

pcv a matrix containing the principal component vectors (column
wise)

eig The corresponding eigenvalues

rotated The original data projected (rotated) on the principal compo-
nents

xmatrix The original data matrix

all the slots of the object can be accessed by accessor functions.

Note

The predict function can be used to embed new data on the new space

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Schoelkopf B., A. Smola, K.-R. Mueller :
Nonlinear component analysis as a kernel eigenvalue problem
Neural Computation 10, 1299-1319
http://mlg.anu.edu.au/~smola/papers/SchSmoMul98.pdf

http://mlg.anu.edu.au/~smola/papers/SchSmoMul98.pdf

ksvm-class 139

See Also

kcca, pca

Examples

another example using the iris
data(iris)
test <- sample(1:150,20)

kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),
features=2)

#print the principal component vectors
pcv(kpc)

#plot the data projection on the components
plot(rotated(kpc),col=as.integer(iris[-test,5]),xlab="1st Principal Component",

ylab="2nd Principal Component")

#embed remaining points
emb <- predict(kpc,iris[test,-5])
points(emb,col=iris[test,5])

ksvm-class Class ”ksvm”

Description

An S4 class containing the output (model) of the ksvm Support Vector Ma-
chines function

Objects from the Class

Objects can be created by calls of the form new("ksvm", ...) or by calls to
the ksvm function.

Slots

type: Object of class "character" containing the support vector machine
type (”C-svc”, ”nu-svc”, ”C-bsvc”, ”spoc-svc”, ”one-svc”, ”eps-svr”, ”nu-
svr”, ”eps-bsvr”)

140 ksvm-class

param: Object of class "list" containing the Support Vector Machine param-
eters (C, nu, epsilon)

kernelf: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel function parameters (hy-
perparameters)

kcall: Object of class "ANY" containing the ksvm function call

scaling: Object of class "ANY" containing the scaling information performed
on the data

terms: Object of class "ANY" containing the terms representation of the sym-
bolic model used (when using a formula)

xmatrix: Object of class "matrix" the data matrix used during computations
(possibly scaled and whithout NA)

ymatrix: Object of class "ANY" the response matrix/vector

fitted: Object of class "ANY" with the fitted values, predictions using the
training set.

lev: Object of class "vector" with the levels of the response (in the case of
classifiaction)

prob.model: Object of class "list" with the class prob. model

prior: Object of class "list" with the prior of the training set

nclass: Object of class "numeric" containing the number of classes (in the
case of classification)

alpha: Object of class "ANY" containing the resulting alpha vector (list or
matrix in case of multiclass classification) (support vectors)

coef: Object of class "ANY" containing the resulting coefficients

alphaindex: Object of class "list" containing

b: Object of class "numeric" containing the resulting offset

SVindex: Object of class "vector" containing the indexes of the support vec-
tors

nSV: Object of class "numeric" containing the number of suppport vector
machines

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross-validation error

n.action: Object of class "ANY" containing the action performed for NA

ksvm-class 141

Methods

SVindex signature(object = "ksvm"): return the indexes of support vec-
tors

alpha signature(object = "ksvm"): returns the complete alpha vector (wit
zero values)

alphaindex signature(object = "ksvm"): returns the indexes of non-zero
alphas (support vectors)

cross signature(object = "ksvm"): returns the cross-validation error

error signature(object = "ksvm"): returns the training error

fitted signature(object = "vm"): returns the fitted values (predict on train-
ing set)

kernelf signature(object = "ksvm"): returns the kernel function

kpar signature(object = "ksvm"): returns the kernel parameters (hyper-
parameters)

lev signature(object = "ksvm"): returns the levels in case of classification

prob.model signature(object="ksvm"): returns class prob. model values

prior signature(object="ksvm"): returns the prior of the training set

kcall signature(object="ksvm"): returns the ksvm function call

scaling signature(object = "ksvm"): returns the scaling values

show signature(object = "ksvm"): prints the object information

type signature(object = "ksvm"): returns the problem type

xmatrix signature(object = "ksvm"): returns the data matrix used

ymatrix signature(object = "ksvm"): returns the response vector

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzolgou@ci.tuwien.ac.at〉

See Also

ksvm, rvm-class, gausspr-class

142 ksvm

Examples

simple example using the promotergene data set
data(promotergene)

train a support vector machine
gene <- ksvm(Class~.,data=promotergene,kernel="rbfdot",kpar=list(sigma=0.015),

C=50,cross=4)
gene

the kernel function
kernelf(gene)
the alpha values
alpha(gene)
the coefficients
coef(gene)
the fitted values
fitted(gene)
the cross validation error
cross(gene)

ksvm Support Vector Machines

Description

Support Vector Machines are an excellent tool for classification novelty de-
tection as well as regression. ksvm supports the well known C-svc, nu-svc,
(classification) one-class-svc (novelty) eps-svr, nu-svr (regression) formulations
along with the Crammer-Singer for multi-class classification formulation spoc-
svc and bound-constraint SVM C-bsvc, eps-bsvr.
The implementation also supports class-probabilities output and confidence
intervals for regression.

Usage

S4 method for signature ’formula’:
ksvm(x, data = NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature ’vector’:
ksvm(x, ...)

ksvm 143

S4 method for signature ’matrix’:
ksvm(x, y = NULL, scaled = TRUE, type = NULL, kernel ="rbfdot",

kpar = list(sigma = 0.1), C = 1, nu = 0.2, epsilon = 0.1,
prob.model = FALSE, class.weights = NULL, cachesize = 40,
tol = 0.001, shrinking = TRUE, cross = 0, fit = TRUE, ...,
subset, na.action = na.omit)

Arguments

x a symbolic description of the model to be fit. Note, that the
intercept is always excluded, whether given in the formula or
not. When not using a formula x is a matrix or vector containg
the variables in the model

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘ksvm’ is called from.

y a response vector with one label for each row/component of x.
Can be either a factor (for classification tasks) or a numeric
vector (for regression).

scaled A logical vector indicating the variables to be scaled. If scaled
is of length 1, the value is recycled as many times as needed
and all non-binary variables are scaled. Per default, data are
scaled internally (both x and y variables) to zero mean and
unit variance. The center and scale values are returned and
used for later predictions.

type ksvm can be used for classification , for regression, or for nov-
elty detection. Depending on whether y is a factor or not, the
default setting for type is C-svc or eps-svr, respectively, but
can be overwritten by setting an explicit value.
Valid options are:

• C-svc (classification)
• nu-svc (classification)
• C-bsvc bound-constraint svm (classification)
• spoc-svc (Crammer Singer multi-class)
• one-svc (novelty detection)
• eps-svr (regression)
• nu-svr (regression)
• eps-svr bound-constraint svm (regression)

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments.

144 ksvm

kernlab provides the most popular kernel functions which can
be used by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel ”Gaussian”
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

Setting the kernel parameter to ”matrix” treats x as a kernel
matrix calling the kernelMatrix interface.
The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.
• length, lambda, normalized for the ”stringdot” kernel

where length is the length of the strings considered, lambda
the decay factor and normalized a logical parameter de-
termining if the kernel evaluations should be normalized.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well. In the case of a Radial Basis kernel
function (Gaussian) kpar can also be set to the string ”auto-
matic”which uses the heuristics in sigest to calculate a good
sigma value for the Gaussian RBF or Laplace kernel, from the
data. (default = ”automatic”).

C cost of constraints violation (default: 1)—it is the ‘C’-constant
of the regularization term in the Lagrange formulation.

ksvm 145

nu parameter needed for nu-svc, one-svc, and nu-svr. The nu
parameter sets the upper bound on the training error and the
lower bound on the fraction of data points to become Support
Vectors (default: 0.2).

epsilon epsilon in the insensitive-loss function used for eps-svr, nu-
svr and eps-bsvm (default: 0.1)

prob.model if set to TRUE builds a model for calculating class probabilities
or in case of regression, calculates the scaling parameter of
the Laplacian distribution fitted on the residuals. Fitting is
done on output data created by performing a 3-fold cross-
validation on the training data. For details see references.
(default: FALSE)

class.weights

a named vector of weights for the different classes, used for
asymmetric class sizes. Not all factor levels have to be supplied
(default weight: 1). All components have to be named.

cachesize cache memory in MB (default 40)

tol tolerance of termination criterion (default: 0.001)

shrinking option whether to use the shrinking-heuristics (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation
on the training data is performed to assess the quality of
the model: the accuracy rate for classification and the Mean
Squared Error for regression

fit indicates whether the fitted values should be computed and
included in the model or not (default: TRUE)

... additional parameters for the low level fitting function

subset An index vector specifying the cases to be used in the training
sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

Details

For multiclass-classification with k levels, k>2, ksvm uses the ‘one-against-one’-
approach, in which k(k-1)/2 binary classifiers are trained; the appropriate class
is found by a voting scheme.
If the predictor variables include factors, the formula interface must be used

146 ksvm

to get a correct model matrix. In classification when prob.model is TRUE a
3-fold cross validation is performed on the data and a sigmoid function is fitted
on the resulting decision values f . The plot function for binary classification
ksvm objects displays a contour plot of the decision values with the correspond-
ing support vectors highlighted. The predict function can return probabilistic
output (probability matrix) in the case of classification by setting the type
parameter to ”probabilities”.

Value

An S4 object of class "ksvm" containing the fitted model, Accessor functions
can be used to access the slots of the object (see examples) which include:

alpha The resulting support vectors, (alpha vector) (possibly scaled).

alphaindex The index of the resulting support vectors in the data matrix.
Note that this index refers to the pre-processed data (after the
possible effect of na.omit and subset)

coef The corresponding coefficients times the training labels.

b The negative intercept.

nSV The number of Support Vectors

error Training error

cross Cross validation error, (when cross > 0)

prob.model Contains the width of the Laplacian fitted on the residuals in
case of regression, or the parameters of the sigmoid fitted on
the decision values in case of classification.

Note

Data is scaled internally, usually yielding better results.

Author(s)

Alexandros Karatzoglou (SMO optimizers in C/C++ by Chih-Chung Chang
& Chih-Jen Lin)
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

• Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm

ksvm 147

• Exact formulations of models, algorithms, etc. can be found in the doc-
ument:
Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

• J. Platt
Probabilistic outputs for support vector machines and comparison to reg-
ularized likelihood methods
Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schoelkopf
and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000.
http://citeseer.nj.nec.com/platt99probabilistic.html

• H.-T. Lin, C.-J. Lin and R. C. Weng
A note on Platt’s probabilistic outputs for support vector machines
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps

• C.-W. Hsu and C.-J. Lin
A comparison on methods for multi-class support vector machines
IEEE Transactions on Neural Networks, 13(2002) 415-425.
http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz

• C.-W. Hsu and C.-J. Lin.
A simple decomposition method for support vector machines
Machine Learning 46(2002), 291-314.
http://www.csie.ntu.edu.tw/~cjlin/papers/decomp.ps.gz

• K. Crammer, Y. Singer
On the learnability and design of output codes for multiclass prolems
Computational Learning Theory, 35-46, 2000.
http://www.cs.huji.ac.il/~kobics/publications/mlj01.ps.gz

See Also

predict.ksvm, couple

Examples

simple example using the spam data set
data(spam)

create test and training set
index <- sample(1:dim(spam)[1])
spamtrain <- spam[index[1:floor(2 * dim(spam)[1]/3)],]
spamtest <- spam[index[((2 * ceiling(dim(spam)[1]/3)) + 1):dim(spam)[1]],]

train a support vector machine

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz
http://citeseer.nj.nec.com/platt99probabilistic.html
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/decomp.ps.gz
http://www.cs.huji.ac.il/~kobics/publications/mlj01.ps.gz

148 ksvm

filter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",
kpar=list(sigma=0.05), C=5,cross=3)

filter

predict mail type on the test set
mailtype <- predict(filter,spamtest[,-58])

Check results
table(mailtype,spamtest[,58])

Another example with the famous iris data
data(iris)

Create a kernel function using the build in rbfdot function
rbf <- rbfdot(sigma=0.1)
rbf

train a bound constraint support vector machine
irismodel <- ksvm(Species~.,data=iris,type="C-bsvc",kernel=rbf,

C=10,prob.model=TRUE)

irismodel

get fitted values
fitted(irismodel)

Test on the training set with probabilities as output
predict(irismodel, iris[,-5], type="probabilities")

Demo of the plot function
x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2))
y <- matrix(c(rep(1,60),rep(-1,60)))

svp <- ksvm(x,y,type="C-svc")
plot(svp)

Use custom kernel

k <- function(x,y) {(sum(x*y) +1)*exp(-0.001*sum((x-y)^2))}
class(k) <- "kernel"

data(promotergene)

train svm using custom kernel
gene <- ksvm(Class~.,data=promotergene,kernel=k,C=10,cross=5)

gene

lssvm-class 149

regression
create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)

train support vector machine
regm <- ksvm(x,y,epsilon=0.01,kpar=list(sigma=16),cross=3)
plot(x,y,type="l")
lines(x,predict(regm,x),col="red")

lssvm-class Class ”lssvm”

Description

The Gaussian Processes object

Objects from the Class

Objects can be created by calls of the form new("lssvm", ...). or by calling
the lssvm function

Slots

tol: Object of class "numeric" contains tolerance of termination criteria

kernelf: Object of class "function" contains the kernel function used

kpar: Object of class "list" contains the kernel parameter used

kcall: Object of class "ANY" contains the used function call

type: Object of class "character" contains type of problem

terms: Object of class "ANY" contains the terms representation of the symbolic
model used (when using a formula)

xmatrix: Object of class "matrix" containing the data matrix used

ymatrix: Object of class "ANY" containing the response matrix

fitted: Object of class "ANY" containing the fitted values

lev: Object of class "vector" containing the levels of the response (in case of
classification)

nclass: Object of class "numeric" containing the number of classes (in case
of classification)

150 lssvm-class

alpha: Object of class "ANY" containing the computes alpha values

alphaindex Object of class "list" containing the indexes for the alphas in
various classes (in multi-class problems).

nvar: Object of class "numeric" containing the computed variance

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross validation error

n.action: Object of class "ANY" containing the action performed in NA

Methods

alpha signature(object = "lssvm"): returns the alpha vector

cross signature(object = "lssvm"): returns the cross validation error

error signature(object = "lssvm"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "lssvm"): returns the call performed

kernelf signature(object = "lssvm"): returns the kernel function used

kpar signature(object = "lssvm"): returns the kernel parameter used

lev signature(object = "lssvm"): returns the response levels (in classifi-
cation)

type signature(object = "lssvm"): returns the type of problem

xmatrix signature(object = "lssvm"): returns the data matrix used

ymatrix signature(object = "lssvm"): returns the response matrix used

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

lssvm, ksvm-class

Examples

train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)

lssvm 151

test
alpha(test)
error(test)
lev(test)

lssvm Least Squares Support Vector Machine

Description

The lssvm function in package in Package ‘kernlab’ is an implementation of
a reduced version of the Least Squares SVM. By utilizing the csi function a
decomposition of the kernel matrix is computed and all subsequend calculations
are done using this decomposed matrix.

Usage

S4 method for signature ’formula’:
lssvm(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)

S4 method for signature ’vector’:
lssvm(x, ...)

S4 method for signature ’matrix’:
lssvm(x, y = NULL, scaled = TRUE, kernel = "rbfdot",
kpar = "automatic", type = NULL, tau = 0.01, tol = 0.0001, rank =
floor(dim(x)[1]/4), delta = 40, cross = 0, fit = TRUE, ..., subset,
na.action = na.omit)

S4 method for signature ’kernelMatrix’:
lssvm(x, y, type = NULL, tau = 0.01, tol =

0.0001, rank = floor(dim(x)[1]/3), delta = 40,
cross = 0, fit = TRUE, ...)

S4 method for signature ’list’:
lssvm(x, y, scaled = TRUE, kernel = "stringdot",

kpar = list(length=4, lambda = 0.5), type = NULL, tau = 0.01,
reduced = TRUE, tol = 0.0001, rank = floor(dim(x)[1]/3),
delta = 40, cross = 0, fit = TRUE, ..., subset)

152 lssvm

Arguments

x a symbolic description of the model to be fit, a matrix or vector
containing the training data when a formula interface is not
used or a kernelMatrix or a list of character vectors.

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘lssvm’ is called from.

y a response vector with one label for each row/component of x.
Can be either a factor (for classification tasks) or a numeric
vector (for classification or regression - currently nor suported
-).

scaled A logical vector indicating the variables to be scaled. If scaled
is of length 1, the value is recycled as many times as needed
and all non-binary variables are scaled. Per default, data are
scaled internally to zero mean and unit variance. The center
and scale values are returned and used for later predictions.

type Type of problem. Either ”classification” or ”regression”. De-
pending on whether y is a factor or not, the default setting
for type is ”classification” or ”regression” respectively, but can
be overwritten by setting an explicit value. (regression is cur-
rently not supported)

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel ”Gaussian”
• polydot Polynomial kernel
• vanilladot Linear kernel
• tanhdot Hyperbolic tangent kernel
• laplacedot Laplacian kernel
• besseldot Bessel kernel
• anovadot ANOVA RBF kernel
• splinedot Spline kernel
• stringdot String kernel

Setting the kernel parameter to ”matrix” treats x as a kernel
matrix calling the kernelMatrix interface.

lssvm 153

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.
• length, lambda, normalized for the ”stringdot” kernel

where length is the length of the strings considered, lambda
the decay factor and normalized a logical parameter de-
termining if the kernel evaluations should be normalized.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

kpar can also be set to the string ”automatic” which uses the
heuristics in sigest to calculate a good sigma value for the
Gaussian RBF or Laplace kernel, from the data. (default =
”automatic”).

tau the regularization parameter (default 0.01)

reduced if set to FALSE the full linear problem of the lssvm is solved,
when TRUE a reduced method using csi is used.

rank the maximal rank of the decomposed kernel matrix, see csi

delta number of columns of cholesky performed in advance, see csi
(default 40)

tol tolerance of termination criterion for the csi function, lower
tolerance leads to more preciese approximation but may in-
crease the training time and the decomposed matrix size (de-
fault: 0.0001)

fit indicates whether the fitted values should be computed and
included in the model or not (default: ’TRUE’)

cross if a integer value k>0 is specified, a k-fold cross validation
on the training data is performed to assess the quality of the
model: the Mean Squared Error for regression

154 lssvm

subset An index vector specifying the cases to be used in the training
sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

Least Squares Support Vector Machines are reformulation to the standard
SVMs that lead to solving linear KKT systems. The algorithm is based on the
minimization of a classical penalized least-squares cost function. The current
implementation approximates the kernel matrix by an incomplete Cholesky
factorization optained by the csi function, thus the solution is an approxima-
tion to the exact solution of the lssvm optimization problem. The quality of
the solution depends on the approximation and can be influenced by the ”rank”
, ”delta”, and ”tol” parameters.

Value

An S4 object of class "lssvm" containing the fitted model, Accessor functions
can be used to access the slots of the object (see examples) which include:

alpha the parameters of the "lssvm"

coef the model coefficients (identical to alpha)

b the model offset.

xmatrix the training data used by the model

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

J. A. K. Suykens and J. Vandewalle
Least Squares Support Vector Machine Classifiers
Neural Processing Letters vol. 9, issue 3, June 1999

musk 155

See Also

ksvm, gausspr, csi

Examples

simple example
data(iris)

lir <- lssvm(Species~.,data=iris)

lir

lirr <- lssvm(Species~.,data= iris, reduced = FALSE)

lirr

Using the kernelMatrix interface

iris <- unique(iris)

rbf <- rbfdot(0.5)

k <- kernelMatrix(rbf, as.matrix(iris[,-5]))

klir <- lssvm(k, iris[, 5])

klir

pre <- predict(klir, k)

musk Musk data set

Description

This dataset describes a set of 92 molecules of which 47 are judged by human
experts to be musks and the remaining 45 molecules are judged to be non-
musks.

Usage

data(musk)

156 onlearn-class

Format

A data frame with 476 observations on the following 167 variables.

Variables 1-162 are ”distance features” along rays. The distances are measured
in hundredths of Angstroms. The distances may be negative or positive, since
they are actually measured relative to an origin placed along each ray. The
origin was defined by a ”consensus musk” surface that is no longer used. Hence,
any experiments with the data should treat these feature values as lying on an
arbitrary continuous scale. In particular, the algorithm should not make any
use of the zero point or the sign of each feature value.

Variable 163 is the distance of the oxygen atom in the molecule to a designated
point in 3-space. This is also called OXY-DIS.

Variable 164 is the X-displacement from the designated point.

Variable 165 is the Y-displacement from the designated point.

Variable 166 is the Z-displacement from the designated point.

Class: 0 for non-musk, and 1 for musk

Source

UCI Machine Learning data repository

Examples

data(musk)

muskm <- ksvm(Class~.,data=musk,kernel="rbfdot",C=1000)

muskm

onlearn-class Class ”onlearn”

Description

The class of objects used by the Kernel-based Online learning algorithms

onlearn-class 157

Objects from the Class

Objects can be created by calls of the form new("onlearn", ...). or by calls
to the function inlearn.

Slots

kernelf: Object of class "function" containing the used kernel function

buffer: Object of class "numeric" containing the size of the buffer

kpar: Object of class "list" containing the hyperparameters of the kernel
function.

xmatrix: Object of class "matrix" containing the data points (similar to sup-
port vectors)

fit: Object of class "numeric" containing the decision function value of the
last data point

onstart: Object of class "numeric" used for indexing

onstop: Object of class "numeric" used for indexing

alpha: Object of class "ANY" containing the model parameters

rho: Object of class "numeric" containing model parameter

b: Object of class "numeric" containing the offset

pattern: Object of class "factor" used for dealing with factors

type: Object of class "character" containing the problem type (classification,
regression, or novelty

Methods

alpha signature(object = "onlearn"): returns the model parameters

b signature(object = "onlearn"): returns the offset

buffer signature(object = "onlearn"): returns the buffer size

fit signature(object = "onlearn"): returns the last decision function value

kernelf signature(object = "onlearn"): return the kernel function used

kpar signature(object = "onlearn"): returns the hyper-parameters used

onlearn signature(obj = "onlearn"): the learning function

predict signature(object = "onlearn"): the predict function

rho signature(object = "onlearn"): returns model parameter

show signature(object = "onlearn"): show function

type signature(object = "onlearn"): returns the type of proplem

xmatrix signature(object = "onlearn"): returns the stored data points

158 onlearn

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

onlearn, inlearn

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),type="classification")

learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

sign(predict(on,x))

onlearn Kernel Online Learning algorithms

Description

Online Kernel-based Learning algorithms for classification, novelty detection,
and regression.

Usage

S4 method for signature ’onlearn’:
onlearn(obj, x, y = NULL, nu = 0.2, lambda = 1e-04)

onlearn 159

Arguments

obj obj an object of class onlearn created by the initialization
function inlearn containing the kernel to be used during learn-
ing and the parameters of the learned model

x vector or matrix containing the data. Factors have to be nu-
merically coded. If x is a matrix the code is run internally one
sample at the time.

y the class label in case of classification. Only binary classifica-
tion is supported and class labels have to be -1 or +1.

nu the parameter similarly to the nu parameter in SVM bounds
the training error.

lambda the learning rate

Details

The online algorithms are based on a simple stochastic gradient descent method
in feature space. The state of the algorithm is stored in an object of class
onlearn and has to be passed to the function at each iteration.

Value

The function returns an S4 object of class onlearn containing the model pa-
rameters and the last fitted value which can be retrieved by the accessor method
fit. The value returned in the classification and novelty detection problem
is the decision function value phi. The accessor methods alpha returns the
model parameters.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Kivinen J. Smola A.J. Williamson R.C.
Online Learning with Kernels
IEEE Transactions on Signal Processing vol. 52, Issue 8, 2004
http://mlg.anu.edu.au/~smola/papers/KivSmoWil03.pdf

See Also

inlearn

http://mlg.anu.edu.au/~smola/papers/KivSmoWil03.pdf

160 plot

Examples

create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)

initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),type="classification")

ind <- sample(1:100,100)
learn one data point at the time
for(i in ind)
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)

or learn all the data
on <- onlearn(on,x[ind,],y[ind],nu=0.03,lambda=0.1)

sign(predict(on,x))

plot plot method for support vector object

Description

Plot a binary classification support vector machine object. The plot function
returns a contour plot of the decision values.

Usage

S4 method for signature ’ksvm’:
plot(object, data=NULL, grid = 50, slice = list())

Arguments

object a ksvm classification object created by the ksvm function

data a data frame or matrix containing new data

grid granularity for the contour plot.

slice a list of named numeric values for the dimensions held constant
(only needed if more than two variables are used). Dimensions
not specified are fixed at 0.

prc-class 161

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

ksvm

Examples

Demo of the plot function
x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2))
y <- matrix(c(rep(1,60),rep(-1,60)))

svp <- ksvm(x,y,type="C-svc")
plot(svp)

prc-class Class ”prc”

Description

Principal Components Class

Objects of class ”prc”

Objects from the class cannot be created directly but only contained in other
classes.

Slots

pcv: Object of class "matrix" containing the principal component vectors

eig: Object of class "vector" containing the coresponding eigenvalues

kernelf: Object of class "kfunction" containing the kernel function used

kpar: Object of class "list" containing the kernel parameters used

xmatrix: Object of class "input" containing the data matrix used

kcall: Object of class "ANY" containing the function call

n.action: Object of class "ANY" containg the action performed on NA

162 predict.ksvm

Methods

eig signature(object = "prc"): returns the eigenvalues

kcall signature(object = "prc"): returns the performed call

kernelf signature(object = "prc"): returns the used kernel function

pcv signature(object = "prc"): returns the principal component vectors

predict signature(object = "prc"): embeeds new data

xmatrix signature(object = "prc"): returns the used data matrix

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

kpca-class,kha-class, kfa-class

predict.ksvm predict method for support vector object

Description

Prediction of test data using support vector machines

Usage

S4 method for signature ’ksvm’:
predict(object, newdata, type = "response", coupler = "minpair")

Arguments

object an S4 object of class ksvm created by the ksvm function

newdata a data frame or matrix containing new data

type one of response, probabilities ,votes indicating the type
of output: predicted values, matrix of class probabilities, or
matrix of vote counts.

coupler Coupling method used in the multiclass case, can be one of
minpair or pkpd (see reference for more details).

predict.ksvm 163

Value

If type(object) is C-svc, nu-svc, C-bsvm or spoc-svc the vector returned
depends on the argument type:

response predicted classes (the classes with majority vote).
probabilities

matrix of class probabilities (one column for each class and
one row for each input).

votes matrix of vote counts (one column for each class and one row
for each new input)

If type(object) is eps-svr, eps-bsvr or nu-svr a vector of predicted values
is returned. If type(object) is one-classification a vector of logical values
is returned.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

• T.F. Wu, C.J. Lin, R.C. Weng.
Probability estimates for Multi-class Classification by Pairwise Coupling
http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

• H.T. Lin, C.J. Lin, R.C. Weng
A note on Platt’s probabilistic outputs for support vector machines
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps

Examples

example using the promotergene data set
data(promotergene)

create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind,]
genetest <- promotergene[ind,]

train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",kpar=list(sigma=0.015),

C=70,cross=4,prob.model=TRUE)

http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps

164 promotergene

gene

predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype

promotergene E. coli promoter gene sequences (DNA)

Description

Promoters have a region where a protein (RNA polymerase) must make contact
and the helical DNA sequence must have a valid conformation so that the two
pieces of the contact region spatially align. The data contains DNA sequences
of promoters and non-promoters.

Usage

data(promotergene)

Format

A data frame with 106 observations and 58 variables. The first variable Class
is a factor with levels + for a promoter gene and - for a non-promoter gene.
The remaining 57 variables V2 to V58 are factors describing the sequence. The
DNA bases are coded as follows: a adenine c cytosine g guanine t thymine

Source

UCI Machine Learning data repository
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/molecular-biology/
promoter-gene-sequences

References

Towell, G., Shavlik, J. and Noordewier, M.
Refinement of Approximate Domain Theories by Knowledge-Based Artificial
Neural Networks.
In Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90)

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/molecular-biology/promoter-gene-sequences
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/molecular-biology/promoter-gene-sequences

ranking-class 165

Examples

data(promotergene)

Create classification model using Gaussian Processes

prom <- gausspr(Class~.,data=promotergene,kernel="rbfdot",
kpar=list(sigma=0.02),cross=4)

prom

Create model using Support Vector Machines

promsv <- ksvm(Class~.,data=promotergene,kernel="laplacedot",kpar="automatic",
C=60,cross=4)

promsv

ranking-class Class ”ranking”

Description

Object of the class "ranking" are created from the ranking function and
extend the class matrix

Objects from the Class

Objects can be created by calls of the form new("ranking", ...).

Slots

.Data: Object of class "matrix" containing the data ranking and scores

convergence: Object of class "matrix" containing the convergence matrix

edgegraph: Object of class "matrix" containing the edgegraph

Extends

Class "matrix", directly.

Methods

show signature(object = "ranking"): displays the ranking score matrix

166 ranking

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

ranking

Examples

data(spirals)

create data set to be ranked
ran<-spirals[rowSums(abs(spirals)<0.55)==2,]

rank points according to "relevance" to point 54 (up left)
ranked<-ranking(ran,54,kernel="rbfdot",kpar=list(sigma=100),

edgegraph=TRUE)

ranked
edgegraph(ranked)[1:10,1:10]

ranking Ranking

Description

A universal ranking algorithm which assigns importance/ranking to data points
given a query.

Usage

S4 method for signature ’matrix’:
ranking(x, y, kernel ="rbfdot", kpar = list(sigma = 1),

scale = TRUE, alpha = 0.99, iterations = 600,
edgegraph = FALSE, convergence = FALSE ,...)

ranking 167

Arguments

x a matrix containing the data to be ranked

y The index of the query point in the data matrix or a vector
of length equal to the rows of the data matrix having a one at
the index of the query points index and zero at all the other
points.

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

scale If TRUE the data matrix columns are scaled to zero mean and
unit variance.

alpha The alpha parameter takes values between 0 and 1 and is used
to control the authoritative scores received from the unlabeled

168 ranking

points. For 0 no global structure is found the algorithm ranks
the points similarly to the original distance metric.

iterations Maximum number of iterations
edgegraph Construct edgegraph (only supported with the RBF kernel)
convergence Include convergence matrix in results
... Additional arguments

Details

A simple universal ranking algorithm which exploits the intrinsic global geo-
metric structure of the data. In many real world applications this should be
superior to a local method in which the data are simply ranked by pairwise
Euclidean distances. Firstly a weighted network is defined on the data and an
authoritative score is assigned to each query. The query points act as source
nodes that continually pump their authoritative scores to the remaining points
via the weighted network and the remaining points further spread the scores
they received to their neighbors. This spreading process is repeated until con-
vergence and the points are ranked according to their score at the end of the
iterations.

Value

An S4 object of class ranking which extends the matrix class. The first
column of the returned matrix contains the original index of the points in
the data matrix the second column contains the final score received by each
point and the third column the ranking of the point. The object contains the
following slots :

edgegraph Containing the edgegraph of the data points.
convergence Containing the convergence matrix

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

D. Zhou, J. Weston, A. Gretton, O. Bousquet, B. Schoelkopf
Ranking on Data Manifolds
Advances in Neural Information Processing Systems 16.
MIT Press Cambridge Mass. 2004
http://www.kyb.mpg.de/publications/pdfs/pdf2334.pdf

http://www.kyb.mpg.de/publications/pdfs/pdf2334.pdf

rvm-class 169

See Also

ranking-class, specc

Examples

data(spirals)

create data from spirals
ran <- spirals[rowSums(abs(spirals) < 0.55) == 2,]

rank points according to similarity to the most upper left point
ranked <- ranking(ran, 54, kernel = "rbfdot", kpar = list(sigma = 100), edgegraph = TRUE)
ranked[54, 2] <- max(ranked[-54, 2])
c<-1:86
op <- par(mfrow = c(1, 2),pty="s")
plot(ran)
plot(ran, cex=c[ranked[,3]]/40)

rvm-class Class ”rvm”

Description

Relevance Vector Machine Class

Objects from the Class

Objects can be created by calls of the form new("rvm", ...). or by calling
the rvm function.

Slots

tol: Object of class "numeric" contains tolerance of termination critiria used.

kernelf: Object of class "function" contains the kernel function used

kpar: Object of class "list" contains the hyperparameter used

kcall: Object of class "ANY" contains the function call

type: Object of class "character" contains type of problem

terms: Object of class "ANY" containing the terms representation of the sym-
bolic model used (when using a formula interface)

170 rvm-class

xmatrix: Object of class "matrix" contains the data matrix used during com-
putation

ymatrix: Object of class "ANY" contains the response matrix

fitted: Object of class "ANY" with the fitted values, (predict on trianing set).

lev: Object of class "vector" contains the levels of the response (in classifi-
cation)

nclass: Object of class "numeric" contains the number of classes (in classifi-
cation)

alpha: Object of class "ANY" containing the the resulting alpha vector

nvar: Object of class "numeric" containing the calculated variance (in case
of regression)

mlike: Object of class "numeric" containing the computed maximum likeli-
hood

RVindex: Object of class "vector" containing the indexes of the resulting
relevance vectors

nRV: Object of class "numeric" containing the number of relevance vectors

cross: Object of class "ANY" containing the relusting cross validation error

error: Object of class "numeric" containing the training error

n.action: Object of class "ANY" containing the action performed on NA

Methods

RVindex signature(object = "rvm"): returns the index of the relevance
vectors

alpha signature(object = "rvm"): returns the resulting alpha vector

cross signature(object = "rvm"): returns the resulting cross validation er-
ror

error signature(object = "rvm"): returns the training error

fitted signature(object = "vm"): returns the fitted values

kcall signature(object = "rvm"): returns the function call

kernelf signature(object = "rvm"): returns the used kernel function

kpar signature(object = "rvm"): returns the parameters of the kernel func-
tion

lev signature(object = "rvm"): returns the levels of the response (in clas-
sification)

rvm-class 171

mlike signature(object = "rvm"): returns the estimated maiximum likeli-
hood

nvar signature(object = "rvm"): returns the calculated variance (in re-
gression)

type signature(object = "rvm"): returns the type of problem

xmatrix signature(object = "rvm"): returns the data mmatrix used dur-
ing computation

ymatrix signature(object = "rvm"): returns the used response

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

rvm, ksvm-class

Examples

create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

train relevance vector machine
foo <- rvm(x, y)
foo

alpha(foo)
RVindex(foo)
fitted(foo)
kernelf(foo)
nvar(foo)

show slots
slotNames(foo)

172 rvm

rvm Relevance Vector Machine

Description

The Relevance Vector Machine is a Bayesian model for regression and classi-
fication of identical functional form to the support vector machine. The rvm
function currently supports only regression.

Usage

S4 method for signature ’formula’:
rvm(x, data=NULL, ..., subset, na.action = na.omit)

S4 method for signature ’vector’:
rvm(x, ...)

S4 method for signature ’matrix’:
rvm(x, y, type="regression", kernel="rbfdot", kpar=list(sigma=0.1),
alpha=1, var=0.1, var.fix=FALSE, iterations=100, verbosity=0, tol=
.Machine, double.eps,minmaxdiff = 1e-3, cross = 0, fit =TRUE, subset,
na.action = na.omit,...)

Arguments

x a symbolic description of the model to be fit. Note, that an
intercept is always included, whether given in the formula or
not. When not using a formula x is a matrix or vector containg
the variables in the model.

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘rvm’ is called from.

y a response vector with one label for each row/component of x.
Can be either a factor (for classification tasks) or a numeric
vector (for regression).

type rvm can only be used for regression at the moment.

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab

rvm 173

provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar the list of hyper-parameters (kernel parameters). This is a
list which contains the parameters to be used with the kernel
function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

alpha The initial alpha vector. Can be either a vector of length equal
to the number of data points or a single number.

var the initial noise variance

var.fix Keep noise variance fix during iterations (default: FALSE)

iterations Number of iterations allowed (default: 100)

tol tolerance of termination criterion

minmaxdiff termination criteria. Stop when max difference is equall to
this parameter (default:1e-3)

verbosity print information on algorithm convergence (default = FALSE)

fit indicates whether the fitted values should be computed and
included in the model or not (default: TRUE)

174 rvm

cross if a integer value k>0 is specified, a k-fold cross validation
on the training data is performed to assess the quality of the
model: the Mean Squared Error for regression

subset An index vector specifying the cases to be used in the training
sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

... additional parameters

Details

The Relevance Vector Machine typically leads to sparser models then the SVM.
It also performs better in many cases (specially in regression).

Value

An S4 object of class ”rvm” containing the fitted model. Accessor functions
can be used to access the slots of the object which include :

alpha The resulting relevance vectors

alphaindex The index of the resulting relevance vectors in the data matrix

nRV Number of relevance vectors

RVindex The indexes of the relevance vectors

error Training error (if fit == TRUE)

...

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Tipping, M. E.
Sparse Bayesian learning and the relevance vector machine
Journal of Machine Learning Research 1, 211-244
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

sigest 175

See Also

ksvm

Examples

create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

train relevance vector machine
foo <- rvm(x, y)
foo
print relevance vectors
alpha(foo)
RVindex(foo)

predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")

sigest Hyperparameter estimation for the Gaussian Radial
Basis kernel

Description

Given a range of values for the ”sigma”inverse width parameter in the Gaussian
Radial Basis kernel for use with Support Vector Machines. The estimation is
based on the data to be used.

Usage

S4 method for signature ’formula’:
sigest(x, data=NULL, frac = 0.25, na.action = na.omit, scaled = TRUE)
S4 method for signature ’matrix’:
sigest(x, frac = 0.25, scaled = TRUE, na.action = na.omit)

176 sigest

Arguments

x a symbolic description of the model upon the estimation is
based. When not using a formula x is a matrix or vector
containing the data

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘ksvm’ is called from.

frac Fraction of data to use for estimation. By default a quarter of
the data is used to estimate the range of the sigma hyperpa-
rameter.

scaled A logical vector indicating the variables to be scaled. If scaled
is of length 1, the value is recycled as many times as needed
and all non-binary variables are scaled. Per default, data are
scaled internally to zero mean and unit variance (since this the
default action in ksvm as well). The center and scale values
are returned and used for later predictions.

na.action A function to specify the action to be taken if NAs are found.
The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative is
na.fail, which causes an error if NA cases are found. (NOTE:
If given, this argument must be named.)

Details

sigest estimates the range of values for the sigma parameter which would
return good results when used with a Support Vector Machine (ksvm). The
estimation is based upon the 0.1 and 0.9 quantile of ‖x − x′‖2. Basicly any
value in between those two bounds will produce good results.

Value

Returns a vector of length 2 defining the range (upper bound and lower bound)
of the sigma hyperparameter.

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

spam 177

References

B. Caputo, K. Sim, F. Furesjo, A. Smola,
Appearance-based object recognition using SVMs: which kernel should I use?
Proc of NIPS workshop on Statitsical methods for computational experiments
in visual processing and computer vision, Whistler, 2002.

See Also

ksvm

Examples

estimate good sigma values for promotergene
data(promotergene)
srange <- sigest(Class~.,data = promotergene)
srange

s <- sum(srange)/2
s
create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind,]
genetest <- promotergene[ind,]

train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",kpar=list(sigma = s),

C=50,cross=3)
gene

predict gene type on the test set
promoter <- predict(gene,genetest[,-1])

Check results
table(promoter,genetest[,1])

spam Spam E-mail Database

Description

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as
spam or non-spam. In addition to this class label there are 57 variables indi-
cating the frequency of certain words and characters in the e-mail.

178 spam

Usage

data(spam)

Format

A data frame with 4601 observations and 58 variables.

The first 48 variables contain the frequency of the variable name (e.g., business)
in the e-mail. If the variable name starts with num (e.g., num650) the it
indicates the frequency of the corresponding number (e.g., 650). The variables
49-54 indicate the frequency of the characters ‘;’, ‘(’, ‘[’, ‘!’, ‘$’, and ‘#’. The
variables 55-57 contain the average, longest and total run-length of captial
letters. Variable 58 indicates the type of the mail and is either "nonspam" or
"spam", i.e. unsolicited commercial e-mail.

Details

The data set contains 2788 e-mails classified as "nonspam" and 1813 classified
as "spam".

The “spam” concept is diverse: advertisements for products/web sites, make
money fast schemes, chain letters, pornography... This collection of spam e-
mails came from the collectors’ postmaster and individuals who had filed spam.
The collection of non-spam e-mails came from filed work and personal e-mails,
and hence the word ’george’ and the area code ’650’ are indicators of non-spam.
These are useful when constructing a personalized spam filter. One would
either have to blind such non-spam indicators or get a very wide collection of
non-spam to generate a general purpose spam filter.

Source

• Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt
at Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304

• Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835

These data have been taken from the UCI Repository Of Machine Learning
Databases at http://www.ics.uci.edu/~mlearn/MLRepository.html

References

T. Hastie, R. Tibshirani, J.H. Friedman. The Elements of Statistical Learning.
Springer, 2001.

http://www.ics.uci.edu/~mlearn/MLRepository.html

specc-class 179

specc-class Class ”specc”

Description

The Spectral Clustering Class

Objects from the Class

Objects can be created by calls of the form new("specc", ...). or by calling
the function specc.

Slots

centers: Object of class "matrix" containing the cluser centers

size: Object of class "vector" containing the number of points in each cluster

withinss: Object of class "vector" containing the within-cluster sum of squares
for each cluster

kernelf Object of class kernel containing the used kernel function.

Methods

centers signature(object = "specc"): returns the cluster centers

withinss signature(object = "specc"): returns the within-cluster sum of
squares for each cluster

size signature(object = "specc"): returns the number of points in each
cluster

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

See Also

specc, kpca-class

180 specc

Examples

Cluster the spirals data set.
data(spirals)

sc <- specc(spirals, centers=2)

centers(sc)
size(sc)

specc Spectral Clustering

Description

A spectral clustering algorithm. This algorithm clusters points using eigenvec-
tors of kernel matrixes derived from the data.

Usage

S4 method for signature ’formula’:
specc(x, data = NULL, na.action = na.omit, ...)

S4 method for signature ’matrix’:
specc(x, centers, kernel = "rbfdot", kpar = list(sigma = 0.1),

iterations = 200, mod.sample = 0.6, na.action = na.omit, ...)

Arguments

x the matrix of data to be clustered or a symbolic description of
the model to be fit.

data an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
‘specc’ is called from.

centers Either the number of clusters or a set of initial cluster centers.
If the first, a random set of rows in the eigenvectors matrix
are chosen as the initial centers.

kernel the kernel function used in training and predicting. This pa-
rameter can be set to any function, of class kernel, which com-
putes a dot product between two vector arguments. kernlab
provides the most popular kernel functions which can be used
by setting the kernel parameter to the following strings:

specc 181

• rbfdot Radial Basis kernel function ”Gaussian”
• polydot Polynomial kernel function
• vanilladot Linear kernel function
• tanhdot Hyperbolic tangent kernel function
• laplacedot Laplacian kernel function
• besseldot Bessel kernel function
• anovadot ANOVA RBF kernel function
• splinedot Spline kernel

The kernel parameter can also be set to a user defined function
of class kernel by passing the function name as an argument.

kpar a character string or the list of hyper-parameters (kernel pa-
rameters). The default character string "automatic" uses a
heuristic the determine a suitable value for the width param-
eter of the RBF kernel. The second option "local" (local
scaling) uses a more advanced heuristic and sets a width pa-
rameter for every point in the data set. This is particularly
useful when the data incorporates multiple scales. A list can
also be used containing the parameters to be used with the
kernel function. Valid parameters for existing kernels are :

• sigma inverse kernel width for the Radial Basis kernel
function ”rbfdot” and the Laplacian kernel ”laplacedot”.

• degree, scale, offset for the Polynomial kernel ”poly-
dot”

• scale, offset for the Hyperbolic tangent kernel func-
tion ”tanhdot”

• sigma, order, degree for the Bessel kernel ”besseldot”.
• sigma, degree for the ANOVA kernel ”anovadot”.

Hyper-parameters for user defined kernels can be passed through
the kpar parameter as well.

mod.sample Proportion of data to use when estimating sigma default 0.6

iterations The maximum number of iterations allowed.

na.action The action to perform on NA

... additional parameters

Details

In Spectral Clustering one uses the top k (number of clusters) eigenvectors
of a matrix derived from the distance between points. Very good results are
obtained by using a standard clustering technique to cluster the resulting eigen-
vector matrixes.

182 specc

Value

An S4 object of class specc wich extends the class vector containing integers
indicating the cluster to which each point is allocated. The following slots
contain useful information

centers A matrix of cluster centers.

size The number of point in each cluster

withinss The within-cluster sum of squares for each cluster

kernelf The kernel function used

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzoglou@ci.tuwien.ac.at〉

References

Andrew Y. Ng, Michael I. Jordan, Yair Weiss
On Spectral Clustering: Analysis and an Algorithm
Neural Information Processing Symposium 2001
http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz

See Also

kkmeans, kpca, kcca

Examples

Cluster the spirals data set.
data(spirals)

sc <- specc(spirals, centers=2)

sc
centers(sc)
size(sc)
withinss(sc)

plot(spirals, col=sc)

http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz

spirals 183

spirals Spirals Dataset

Description

A toy data set representing two spirals with Gaussian noise. The data was
created with the mlbench.spirals function in mlbench.

Usage

data(spirals)

Format

A matrix with 300 observations and 2 variables.

Examples

data(spirals)
plot(spirals)

ticdata The Insurance Company Data

Description

This data set used in the CoIL 2000 Challenge contains information on cus-
tomers of an insurance company. The data consists of 86 variables and includes
product usage data and socio-demographic data derived from zip area codes.
The data was collected to answer the following question: Can you predict who
would be interested in buying a caravan insurance policy and give an explana-
tion why ?

Usage

data(ticdata)

184 ticdata

Format

ticdata: Dataset to train and validate prediction models and build a descrip-
tion (9822 customer records). Each record consists of 86 attributes, containing
sociodemographic data (attribute 1-43) and product ownership (attributes 44-
86). The sociodemographic data is derived from zip codes. All customers
living in areas with the same zip code have the same sociodemographic at-
tributes. Attribute 86, CARAVAN:Number of mobile home policies, is the
target variable.

Data Format

1 STYPE Customer Subtype
2 MAANTHUI Number of houses 1 - 10
3 MGEMOMV Avg size household 1 - 6
4 MGEMLEEF Average age
5 MOSHOOFD Customer main type
6 MGODRK Roman catholic
7 MGODPR Protestant ...
8 MGODOV Other religion
9 MGODGE No religion
10 MRELGE Married
11 MRELSA Living together
12 MRELOV Other relation
13 MFALLEEN Singles
14 MFGEKIND Household without children
15 MFWEKIND Household with children
16 MOPLHOOG High level education
17 MOPLMIDD Medium level education
18 MOPLLAAG Lower level education
19 MBERHOOG High status
20 MBERZELF Entrepreneur
21 MBERBOER Farmer
22 MBERMIDD Middle management
23 MBERARBG Skilled labourers
24 MBERARBO Unskilled labourers
25 MSKA Social class A
26 MSKB1 Social class B1
27 MSKB2 Social class B2
28 MSKC Social class C
29 MSKD Social class D
30 MHHUUR Rented house
31 MHKOOP Home owners
32 MAUT1 1 car
33 MAUT2 2 cars

ticdata 185

34 MAUT0 No car
35 MZFONDS National Health Service
36 MZPART Private health insurance
37 MINKM30 Income >30.000
38 MINK3045 Income 30-45.000
39 MINK4575 Income 45-75.000
40 MINK7512 Income 75-122.000
41 MINK123M Income <123.000
42 MINKGEM Average income
43 MKOOPKLA Purchasing power class
44 PWAPART Contribution private third party insurance
45 PWABEDR Contribution third party insurance (firms)
46 PWALAND Contribution third party insurane (agriculture)
47 PPERSAUT Contribution car policies
48 PBESAUT Contribution delivery van policies
49 PMOTSCO Contribution motorcycle/scooter policies
50 PVRAAUT Contribution lorry policies
51 PAANHANG Contribution trailer policies
52 PTRACTOR Contribution tractor policies
53 PWERKT Contribution agricultural machines policies
54 PBROM Contribution moped policies
55 PLEVEN Contribution life insurances
56 PPERSONG Contribution private accident insurance policies
57 PGEZONG Contribution family accidents insurance policies
58 PWAOREG Contribution disability insurance policies
59 PBRAND Contribution fire policies
60 PZEILPL Contribution surfboard policies
61 PPLEZIER Contribution boat policies
62 PFIETS Contribution bicycle policies
63 PINBOED Contribution property insurance policies
64 PBYSTAND Contribution social security insurance policies
65 AWAPART Number of private third party insurance 1 - 12
66 AWABEDR Number of third party insurance (firms) ...
67 AWALAND Number of third party insurane (agriculture)
68 APERSAUT Number of car policies
69 ABESAUT Number of delivery van policies
70 AMOTSCO Number of motorcycle/scooter policies
71 AVRAAUT Number of lorry policies
72 AAANHANG Number of trailer policies
73 ATRACTOR Number of tractor policies
74 AWERKT Number of agricultural machines policies
75 ABROM Number of moped policies
76 ALEVEN Number of life insurances

186 ticdata

77 APERSONG Number of private accident insurance policies
78 AGEZONG Number of family accidents insurance policies
79 AWAOREG Number of disability insurance policies
80 ABRAND Number of fire policies
81 AZEILPL Number of surfboard policies
82 APLEZIER Number of boat policies
83 AFIETS Number of bicycle policies
84 AINBOED Number of property insurance policies
85 ABYSTAND Number of social security insurance policies
86 CARAVAN Number of mobile home policies 0 - 1

Note: All the variables starting with M are zipcode variables. They give
information on the distribution of that variable, e.g. Rented house, in the
zipcode area of the customer.

Details

Information about the insurance company customers consists of 86 variables
and includes product usage data and socio-demographic data derived from
zip area codes. The data was supplied by the Dutch data mining company
Sentient Machine Research and is based on a real world business problem.
The training set contains over 5000 descriptions of customers, including the
information of whether or not they have a caravan insurance policy. The test
set contains 4000 customers. The test and data set are merged in the ticdata
set. More information about the data set and the CoIL 2000 Challenge along
with publications based on the data set can be found at http://www.liacs.
nl/~putten/library/cc2000/.

Source

• UCI KDD Archive:http://kdd.ics.uci.edu

• Donor: Sentient Machine Research
Peter van der Putten
Sentient Machine Research
Baarsjesweg 224
1058 AA Amsterdam
The Netherlands
+31 20 6186927
pvdputten@hotmail.com, putten@liacs.nl

http://www.liacs.nl/~putten/library/cc2000/
http://www.liacs.nl/~putten/library/cc2000/
http://kdd.ics.uci.edu

vm-class 187

References

Peter van der Putten, Michel de Ruiter, Maarten van Someren CoIL Challenge
2000 Tasks and Results: Predicting and Explaining Caravan Policy Ownership
http://www.liacs.nl/~putten/library/cc2000/

vm-class Class ”vm”

Description

An S4 VIRTUAL class used as a base for the various vector machine classes in
kernlab

Objects from the Class

Objects from the class cannot be created directly but only contained in other
classes.

Slots

alpha: Object of class "listI" containing the resulting alpha vector (list in
case of multiclass classification) (support vectors)

type: Object of class "character" containing the vector machine type e.g.
(”C-svc”, ”nu-svc”, ”C-bsvc”, ”spoc-svc”, ”one-svc”, ”eps-svr”, ”nu-svr”,
”eps-bsvr”)

kernelf: Object of class "function" containing the kernel function

kpar: Object of class "list" containing the kernel function parameters (hy-
perparameters)

kcall: Object of class "call" containing the function call

terms: Object of class "ANY" containing the terms representation of the sym-
bolic model used (when using a formula)

xmatrix: Object of class "input" the data matrix used during computations
(support vectors) (possibly scaled and whithout NA)

ymatrix: Object of class "output" the response matrix/vector

fitted: Object of class "output" with the fitted values, predictions using the
training set.

http://www.liacs.nl/~putten/library/cc2000/

188 vm-class

lev: Object of class "vector" with the levels of the response (in the case of
classifiaction)

nclass: Object of class "numeric" containing the number of classes (in the
case of classification)

error: Object of class "numeric" containing the training error

cross: Object of class "numeric" containing the cross-validation error

n.action: Object of class "ANY" containing the action performed for NA

Methods

alpha signature(object = "vm"): returns the complete alpha vector (wit
zero values)

cross signature(object = "vm"): returns the cross-validation error

error signature(object = "vm"): returns the training error

fitted signature(object = "vm"): returns the fitted values (predict on train-
ing set)

kernelf signature(object = "vm"): returns the kernel function

kpar signature(object = "vm"): returns the kernel parameters (hyperpa-
rameters)

lev signature(object = "vm"): returns the levels in case of classification

kcall signature(object="vm"): returns the function call

type signature(object = "vm"): returns the problem type

xmatrix signature(object = "vm"): returns the data matrix used(support
vectors)

ymatrix signature(object = "vm"): returns the response vector

Author(s)

Alexandros Karatzoglou
〈alexandros.karatzolgou@ci.tuwien.ac.at〉

See Also

ksvm-class, rvm-class, gausspr-class

Bibliography

Agrawal R, Srikant R (1994). “Fast Algorithms for Mining Associa-
tion Rules.” In JB Bocca, M Jarke, C Zaniolo (eds.), “Proc. 20th
Int. Conf. Very Large Data Bases, VLDB,” pp. 487–499. Morgan Kauf-
mann. URL http://www.almaden.ibm.com/software/projects/hdb/

Publications/papers/vldb94.pdf.

Baldi P, Brunak S (1998). Bioinformatics The Machine Learning Approach.
MIT Press.

Blake C, Merz C (1998). “UCI Repository of Machine Learning Databases.”
University of California, Irvine, Dept. of Information and Computer Sci-
ences,http://www.ics.uci.edu/~mlearn/MLRepository.html.

Boser BE, Guyon IM, Vapnik VN (1992). “A Training Algorithm for Optimal
Margin Classifiers.” In D Haussler (ed.), “Proceedings of the Annual Con-
ference on Computational Learning Theory,” pp. 144 – 152. ACM Press,
Pittsburgh, PA.

Bray M, Koller-Meier E, Müller P, Van Gool L, Schraudolph NN (2005).
“Stochastic Optimization for High-Dimensional Tracking in Dense Range
Maps.” IEE Proceedings Vision, Image & Signal Processing.

Cancedda N, Gaussier E, Goutte C, Renders JM (2003). “Word-Sequence
Kernels.” Journal of Machine Learning Research, 3, 1059–1082. URL
http://mitpress.mit.edu/journals/pdf/jmlr_3_6_1059_0.pdf.

Canu S, Grandvalet Y, Rakotomamonjy A (2003). “SVM and Kernel
Methods Matlab Toolbox.” Perception Systemes et Information, INSA
de Rouen, Rouen, France. http://asi.insa-rouen.fr/~arakotom/

toolbox/index.

Caputo B, Sim K, Furesjo F, Smola A (2002). “Appearance-based Object
Recognition using SVMs: Which Kernel Should I Use?” Proc of NIPS

189

http://www.almaden.ibm.com/software/projects/hdb/Publications/papers/vldb94.pdf
http://www.almaden.ibm.com/software/projects/hdb/Publications/papers/vldb94.pdf
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://mitpress.mit.edu/journals/pdf/jmlr_3_6_1059_0.pdf
http://asi.insa-rouen.fr/~arakotom/toolbox/index
http://asi.insa-rouen.fr/~arakotom/toolbox/index

190 BIBLIOGRAPHY

workshop on Statistical methods for computational experiments in visual
processing and computer vision, Whistler, 2002.

Chambers JM (1998). Programming with Data. Springer, New York. ISBN
0-387-98503-4.

Chang CC, Lin CJ (2001). “LIBSVM: A Library for Support Vector Ma-
chines.” Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

Collins M, Duffy N (2001). “Convolution Kernels for Natural Language.”
Advances in Neural Information Processing Systems, 14. URL http://

books.nips.cc/papers/files/nips14/AA58.pdf.

Collobert R, Bengio S, Mariethoz J (2002). “Torch: A Modular Machine
Learning Software Library.” http://www.torch.ch/.

Crammer K, Singer Y (2000). “On the Learnability and Design of Output
Codes for Multiclass Prolems.” Computational Learning Theory, pp. 35–
46. URL http://www.cs.huji.ac.il/~kobics/publications/mlj01.

ps.gz.

Dhillon I, Guan Y, Kulis B (2004). “A Unified View of Kernel k-
means, Spectral Clustering and Graph Partitioning.” UTCS Technical Re-
port. URL http://www.cs.utexas.edu/users/kulis/pubs/spectral_

techreport.pdf.

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2005). “e1071:
Misc Functions of the Department of Statistics (e1071), TU Wien, Version
1.5-11.” Available from http://cran.R-project.org.

Elkan C (2003). “Using the Triangle Inequality to Accelerate k-Means.” In
Proceedings of the Twentieth International Conference on Machine Learn-
ing (ICML’03), pp. 147–153. URL http://www-cse.ucsd.edu/~elkan/

kmeansicml03.pdf.

Fowlkes C, Belongie S, Chung F, Malik J (2004). “Spectral grouping using
the Nystrom method.” Transactions on Pattern Analysis and Machine In-
telligence, 26(2), 214–225. URL http://www.cs.berkeley.edu/~malik/

papers/FBCM-nystrom.pdf.

Gammerman A, Bozanic N, Schölkopf B, Vovk V, Vapnik V, Bottou L, Smola
A, Watkins C, LeCun Y, Saunders C, Stitson M, Weston J (2001). “Royal
Holloway Support Vector Machines.” URL http://svm.dcs.rhbnc.ac.

uk/dist/index.shtml.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://books.nips.cc/papers/files/nips14/AA58.pdf
http://books.nips.cc/papers/files/nips14/AA58.pdf
http://www.torch.ch/
http://www.cs.huji.ac.il/~kobics/publications/mlj01.ps.gz
http://www.cs.huji.ac.il/~kobics/publications/mlj01.ps.gz
http://www.cs.utexas.edu/users/kulis/pubs/spectral_techreport.pdf
http://www.cs.utexas.edu/users/kulis/pubs/spectral_techreport.pdf
http://cran.R-project.org
http://www-cse.ucsd.edu/~elkan/kmeansicml03.pdf
http://www-cse.ucsd.edu/~elkan/kmeansicml03.pdf
http://www.cs.berkeley.edu/~malik/papers/FBCM-nystrom.pdf
http://www.cs.berkeley.edu/~malik/papers/FBCM-nystrom.pdf
http://svm.dcs.rhbnc.ac.uk/dist/index.shtml
http://svm.dcs.rhbnc.ac.uk/dist/index.shtml

BIBLIOGRAPHY 191

Griewank A (2000). Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM,
Philadelphia.

Guermeur Y (2004). “M-SVM.” Lorraine Laboratory of IT Research and its
Applications, URL http://www.loria.fr/~guermeur/.

Gunn SR (1998). “Matlab Support Vector Machines.” University of
Southampton, Electronics and Computer Science, URL http://www.

isis.ecs.soton.ac.uk/resources/svminfo/.

Guyon I, Boser B, Vapnik V (1993). “Automatic Capacity Tuning of Very
Large VC-Dimension Classifiers.” In SJ Hanson, JD Cowan, CL Giles
(eds.), “Advances in Neural Information Processing Systems 5,” pp. 147 –
155. Morgan Kaufmann Publishers.

Hastie T (2004). “svmpath: The SVM Path Algorithm.” R package, Version
0.9. Available from http://cran.R-project.org.

Hastie T, Rosset S, Tibshirani R, Zhu J (2004). “The Entire Regulariza-
tion Path for the Support Vector Machine.” Journal of Machine Learning
Research, 5, 1391–1415. URL http://www.jmlr.org/papers/volume5/

hastie04a/hastie04a.pdf.

Hastie T, Tibshirani R, Friedman JH (2001). The Elements of Statistical
Learning. Springer.

Haussler D (1999). “Convolutional Kernels on Discrete Structures.” Techni-
cal Report UCSC-CRL-99 - 10, Computer Science Department, UC Santa
Cruz.

Herbrich R (2002). Learning Kernel Classifiers Theory and Algorithms.
Adaptive Computation and Machine Learning. The MIT Press.

Hsu CW, Lin CJ (2002a). “A Comparison of Methods for Multi-class Support
Vector Machines.” IEEE Transactions on Neural Networks, 13, 1045–1052.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz.

Hsu CW, Lin CJ (2002b). “A Comparison of Methods for Multi-class Support
Vector Machines.” IEEE Transactions on Neural Networks, 13, 415–425.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz.

Hsu CW, Lin CJ (2002c). “A Simple Decomposition Method for Support
Vector Machines.” Machine Learning, 46, 291–314. URL http://www.

csie.ntu.edu.tw/~cjlin/papers/decomp.ps.gz.

http://www.loria.fr/~guermeur/
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
http://cran.R-project.org
http://www.jmlr.org/papers/volume5/hastie04a/hastie04a.pdf
http://www.jmlr.org/papers/volume5/hastie04a/hastie04a.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.ps.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/decomp.ps.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/decomp.ps.gz

192 BIBLIOGRAPHY

Jaakkola T, Haussler D (1999). “Exploiting Generative Models in Discrim-
inative Classifiers.” Advances in Neural Information Processing Systems,
12. URL http://books.nips.cc/papers/files/nips11/0487.pdf.

Joachims T (1998). “Text Categorization with Support Vector Machines:
Learning with Many Relevant Features.” In “Proceedings of the European
Conference on Machine Learning,” pp. 137 – 142. Springer, Berlin.

Joachims T (1999). “Making Large-scale SVM Learning Practical.” In
Advances in Kernel Methods — Support Vector Learning. URL http:

//www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz.

Joachims T (2002). Learning to Classify Text Using Support Vector Ma-
chines: Methods, Theory, and Algorithms. The Kluwer International Se-
ries In Engineerig And Computer Science. Kluwer Academic Publishers,
Boston.

Karatzoglou A, Meyer D, Hornik K (2006). “Support Vector Machine in R
(forthcoming).” Journal of Statistical Software.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab - An S4
Package for Kernel Methods in R.” Journal of Statistical Software, 11(9).
URL http://www.jstatsoft.org/counter.php?id=105&url=v11/i09/

v11i09.pdf&ct=1.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2005a). “kernlab – Ker-
nel Methods.” R package, Version 0.6-2. Available from http://cran.

R-project.org.

Karatzoglou A, Vishwanathan S, Schraudolph NN, Smola AJ (2005b). “Step
Size-Adapted Online Support Vector Learning.” Proc. 8th Intl. Symp. Sig-
nal Processing & Applications, 2, 823–826. URL http://ieeexplore.

ieee.org/xpl/RecentCon.jsp?punumber=10550.

Kivinen J, Smola A, Williamson R (2004a). “Online Learning with Kernels.”
IEEE Transactions on Signal Processing, 52. URL http://mlg.anu.edu.

au/~smola/papers/KivSmoWil03.pdf.

Kivinen J, Smola A, Williamson RC (2004b). “Online Learning with Kernels.”
IEEE Transactions on Signal Processing, 52(8).

Knerr S, Personnaz L, Dreyfus G (1990). “Single-layer Learning Revisited:
A Stepwise Procedure for Building and Training a Neural Network.” J.
Fogelman, editor, Neurocomputing: Algorithms, Architectures and Appli-
cations.

http://books.nips.cc/papers/files/nips11/0487.pdf
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz
http://www.jstatsoft.org/counter.php?id=105&url=v11/i09/v11i09.pdf&ct=1
http://www.jstatsoft.org/counter.php?id=105&url=v11/i09/v11i09.pdf&ct=1
http://cran.R-project.org
http://cran.R-project.org
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10550
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10550
http://mlg.anu.edu.au/~smola/papers/KivSmoWil03.pdf
http://mlg.anu.edu.au/~smola/papers/KivSmoWil03.pdf

BIBLIOGRAPHY 193

Kreßel U (1999). “Pairwise Classification and Support Vector Machines.”
B. Schölkopf, C. J. C. Burges, A. J. Smola, editors, Advances in Kernel
Methods — Support Vector Learning, pp. 255–268.

Kuss M, Graepel T (2003). “The Geometry of Kernel Canonical Correla-
tion Analysis.” MPI-Technical Reports. URL http://www.kyb.mpg.de/

publication.html?publ=2233.

Lang DT (2005). Rstem: Interface to Snowball implementation of Porter’s
word stemming algorithm. R package version 0.2-0.

Leisch F, Dimitriadou E (2001). “mlbench—A Collection for Artificial and
Real-world Machine Learning Benchmarking Problems.” R package, Ver-
sion 0.5-6. Available from http://CRAN.R-project.org.

Leslie C, Eskin E, Cohen A, Weston J, Noble WS (2004). “Mismatch
String Kernels for Discriminative Protein Classification.” Bioinformat-
ics, 20(4), 467–476. URL http://www1.cs.columbia.edu/compbio/

mismatch/journal-mismatch-final.pdf.

Leslie C, Eskin E, Weston J, Noble WS (2002). “Mismatch String Kernels
For SVM Protein Classification.” In “Proceedings of Neural Information
Processing Systems 2002,” In press.

Lewis D (1997). “Reuters-21578 Text Categorization Test Collection.”
URL http://www.daviddlewis.com/resources/testcollections/

reuters21578/.

Lin CF, Wang SD (1999). “Fuzzy Support Vector Machines.” IEEE Transac-
tions on Neural Networks, 13, 464–471. URL ftp://ftp.cs.wisc.edu/

math-prog/tech-reports/98-18.ps.

Lin CJ, More JJ (1999). “Newton’s Method for Large-scale Bound Con-
strained Problems.” SIAM Journal on Optimization, 9, 1100–1127. URL
http://www-unix.mcs.anl.gov/~more/tron/.

Lin CJ, Weng RC (2004). “Probabilistic Predictions for Support Vector Re-
gression.” Available at http://www.csie.ntu.edu.tw/~cjlin/papers/

svrprob.pdf.

Lin HT, Lin CJ, Weng RC (2001). “A Note on Platt’s Probabilistic Outputs
for Support Vector Machines.” Available at http://www.csie.ntu.edu.

tw/~cjlin/papers/plattprob.ps.

http://www.kyb.mpg.de/publication.html?publ=2233
http://www.kyb.mpg.de/publication.html?publ=2233
http://CRAN.R-project.org
http://www1.cs.columbia.edu/compbio/mismatch/journal-mismatch-final.pdf
http://www1.cs.columbia.edu/compbio/mismatch/journal-mismatch-final.pdf
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps
http://www-unix.mcs.anl.gov/~more/tron/
http://www.csie.ntu.edu.tw/~cjlin/papers/svrprob.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/svrprob.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps

194 BIBLIOGRAPHY

Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C (2002).
“Text Classification using String Kernels.” Journal of Machine Learn-
ing Research, 2, 419–444. URL http://www.jmlr.org/papers/volume2/

lodhi02a/lodhi02a.pdf.

Mangasarian O, Musicant D (1999). “Successive Overrelaxation for Support
Vector Machines.” IEEE Transactions on Neural Networks, 10, 1032–1037.
URL ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps.

MathWorks T (2005). “Matlab - The Language of Technical Computing.”
URL http://www.mathworks.com.

Meyer D, Leisch F, Hornik K (2003). “The Support Vector Machine under
Test.” Neurocomputing, 55, 169–186.

Mika S, Rätsch G, Weston J, Schölkopf B, Müller KR (1999). “Fisher dis-
criminant analysis with kernels.” Neural Networks for Signal Processing
IX, pp. 41–48. URL http://ieeexplore.ieee.org/iel5/6375/17054/

00788121.pdf?tp=&arnumber=788121&isnumber=17054.

Milano M (2002). Machine Learning Techniques for Flow Modeling and Con-
trol. Ph.D. thesis, Eidgenössische Technische Hochschule (ETH), Zürich,
Switzerland.

Mitchell T (1997). Machine Learning. McGraw Hill.

Ng AY, Jordan MI, Weiss Y (2001a). “On Spectral Clustering: Analysis and
an Algorithm.” Neural Information Processing Symposium 2001. URL
http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz.

Ng AY, Jordan MI, Weiss Y (2001b). “On Spectral Clustering: Analysis and
an Algorithm.” Advances in Neural Information Processing Systems, 14.
URL http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz.

Osuna E, Freund R, Girosi F (1997). “Improved Training Algorithm for
Support Vector Machines.” IEEE NNSP Proceedings 1997. URL http:

//citeseer.ist.psu.edu/osuna97improved.html.

Platt JC (1998). “Probabilistic Outputs for Support Vector Machines and
Comparison to Regularized Likelihood Methods.” B. Schölkopf, C. J.
C. Burges, A. J. Smola, editors, Advances in Kernel Methods — Sup-
port Vector Learning. URL http://research.microsoft.com/~jplatt/

abstracts/smo.html.

http://www.jmlr.org/papers/volume2/lodhi02a/lodhi02a.pdf
http://www.jmlr.org/papers/volume2/lodhi02a/lodhi02a.pdf
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps
http://www.mathworks.com
http://ieeexplore.ieee.org/iel5/6375/17054/00788121.pdf?tp=&arnumber=788121&isnumber=17054
http://ieeexplore.ieee.org/iel5/6375/17054/00788121.pdf?tp=&arnumber=788121&isnumber=17054
http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz
http://www.nips.cc/NIPS2001/papers/psgz/AA35.ps.gz
http://citeseer.ist.psu.edu/osuna97improved.html
http://citeseer.ist.psu.edu/osuna97improved.html
http://research.microsoft.com/~jplatt/abstracts/smo.html
http://research.microsoft.com/~jplatt/abstracts/smo.html

BIBLIOGRAPHY 195

Platt JC (2000). “Probabilistic Outputs for Support Vector Machines and
Comparison to Regularized Likelihood Methods.” Advances in Large Mar-
gin Classifiers, A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans,
Eds. URL http://citeseer.nj.nec.com/platt99probabilistic.html.

Putten PVD, Ruiter MD, Someren MV (2000). “CoIL Challenge 2000
Tasks and Results: Predicting and Explaining Caravan Policy Ownership.”
Coil Challenge 2000. URL http://www.liacs.nl/~putten/library/

cc2000/.

Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers.

R Development Core Team (2005). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge
University Press.

Roever C, Raabe N, Luebke K, Ligges U (2005). “klaR – Classification and
Visualization.” R package, Version 0.4-1. Available from http://cran.

R-project.org.

Rüping S (2004). “mySVM - A Support Vector Machine.” University of
Dortmund, Computer Science, URL http://www-ai.cs.uni-dortmund.

de/SOFTWARE/MYSVM/index.html.

Russell S, Norvig P (2002). Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition.

Schölkopf B, Platt J, Shawe-Taylor J, Smola AJ, Williamson RC (1999).
“Estimating the Support of a High-Dimensonal Distribution.” Microsoft
Research, Redmond, WA, TR 87. URL http://research.microsoft.

com/research/pubs/view.aspx?msr_tr_id=MSR-TR-99-87.

Schölkopf B, Smola A (2002). Learning with Kernels. MIT Press.

Schölkopf B, Smola A, Müller KR (1998). “Nonlinear Component Analysis as
a Kernel Eigenvalue Problem.” Neural Computation, 10, 1299–1319. URL
http://mlg.anu.edu.au/~smola/papers/SchSmoMul98.pdf.

Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000). “New Sup-
port Vector Algorithms.” Neural Computation, 12, 1207–1245. URL

http://citeseer.nj.nec.com/platt99probabilistic.html
http://www.liacs.nl/~putten/library/cc2000/
http://www.liacs.nl/~putten/library/cc2000/
http://www.R-project.org
http://cran.R-project.org
http://cran.R-project.org
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://research.microsoft.com/research/pubs/view.aspx?msr_tr_id=MSR-TR-99-87
http://research.microsoft.com/research/pubs/view.aspx?msr_tr_id=MSR-TR-99-87
http://mlg.anu.edu.au/~smola/papers/SchSmoMul98.pdf

196 BIBLIOGRAPHY

http://caliban.ingentaselect.com/vl=3338649/cl=47/nw=1/rpsv/

cgi-bin/cgi?body=linker&reqidx=0899-7667(2000)12:5L.1207.

Schraudolph NN (1999). “Local Gain Adaptation in Stochastic Gradient
Descent.” In “Proceedings of the International Conference on Artificial
Neural Networks,” pp. 569–574. IEE, London, Edinburgh, Scotland.

Schraudolph NN (2002). “Fast Curvature Matrix-Vector Products for Second-
Order Gradient Descent.” Neural Computation, 14(7), 1723–1738.

Schraudolph NN, Giannakopoulos X (2000). “Online Independent Com-
ponent Analysis With Local Learning Rate Adaptation.” In SA Solla,
TK Leen, KR Müller (eds.), “Neural Information Processing Systems,”
volume 12, pp. 789–795. The MIT Press, Cambridge, MA.

Schwaighofer A (2005). “SVM toolbox for Matlab.” Intelligent Data Analysis
group (IDA), Fraunhofer FIRST, URL http://ida.first.fraunhofer.

de/~anton/software.html.

Shawe-Taylor J, Christianini N (2004). Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shi J, Malik J (2000). “Normalized Cuts and Image Segmentation.” Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. URL
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf.

Smola AJ, Mangasarian OL, Schölkopf B (2000). “Sparse Kernel Feature
Analysis.” 24th Annual Conference of Gesellschaft für Klassifikation. URL
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps.

Stitson M, Gammerman A, Vapnik V, Vovk V, Watkins C, Weston J (1997).
“Support vector regression with ANOVA decomposition kernels.” Technical
Report CSD-TR-97 - 22, Royal Holloway, University of London.

Tax DMJ, Duin RPW (1999). “Support Vector Domain Description.” Pattern
Recognition Letters, 20, 1191–1199. URL http://www.ph.tn.tudelft.

nl/People/bob/papers/prl_99_svdd.pdf.

Thomas Gärtner PAF, Wrobel S (2003). “On Graph Kernels: Hardness Re-
sults and Efficient Alternatives.” Proceedings of the Sixteenth Annual Con-
ference on Computational Learning Theory and Seventh Kernel Workshop
(COLT-2003). URL http://springerlink.metapress.com/link.asp?

id=vfhe64530q1x4ylj.

http://caliban.ingentaselect.com/vl=3338649/cl=47/nw=1/rpsv/cgi-bin/cgi?body=linker&reqidx=0899-7667(2000)12:5L.1207
http://caliban.ingentaselect.com/vl=3338649/cl=47/nw=1/rpsv/cgi-bin/cgi?body=linker&reqidx=0899-7667(2000)12:5L.1207
http://ida.first.fraunhofer.de/~anton/software.html
http://ida.first.fraunhofer.de/~anton/software.html
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-04.ps
http://www.ph.tn.tudelft.nl/People/bob/papers/prl_99_svdd.pdf
http://www.ph.tn.tudelft.nl/People/bob/papers/prl_99_svdd.pdf
http://springerlink.metapress.com/link.asp?id=vfhe64530q1x4ylj
http://springerlink.metapress.com/link.asp?id=vfhe64530q1x4ylj

BIBLIOGRAPHY 197

Tipping ME (2001). “Sparse Bayesian Learning and the Relevance Vector
Machine.” Journal of Machine Learning Research, 1, 211–244. URL http:

//www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf.

Vanderbei R (1999). “LOQO: An Interior Point Code for Quadratic Pro-
gramming.” Optimization Methods and Software, 12, 251–484. URL
http://www.sor.princeton.edu/~rvdb/ps/loqo6.pdf.

Vapnik V (1995). The Nature of Statistical Learning Theory. Springer, NY.

Vapnik V (1998). Statistical Learning Theory. Wiley, New York.

Vishwanathan S, Smola A (2002). “Fast Kernels on Strings and Trees.” In
“Proceedings of Neural Information Processing Systems 2002,”URL http:

//users.rsise.anu.edu.au/~vishy/papers/VisSmo02.pdf.

Vishwanathan S, Smola A (2004). “Fast Kernels for String and Tree Match-
ing.” In K Tsuda, B Schölkopf, J Vert (eds.), “Kernels and Bioinformat-
ics,” MIT Press, Cambridge, MA. URL http://users.rsise.anu.edu.

au/~vishy/papers/VisSmo04.pdf.

Vishwanathan S, Smola A, Murty N (2003). “SimpleSVM.” Proceedings of
the 20th International Conference on Machine Learning ICML-03. URL
http://www.hpl.hp.com/conferences/icml2003/papers/352.pdf.

Watkins C (2000). “Dynamic Alignment Kernels.” In A Smola, PL Bartlett,
B Schölkopf, D Schuurmans (eds.), “Advances in Large Margin Classifiers,”
pp. 39 – 50. MIT Press, Cambridge, MA.

Weingessel A (2004). “quadprog – Functions to Solve Quadratic Pro-
gramming Problems.” R package, Version 1.4-7. Available from http:

//cran.R-project.org.

Weston J, Elisseeff A, BakIr G, Sinz F (2005). “Spider: Object-Oriented
Machine Learning Library.”Max Planc Institute for Biological Cybernetics,
URL http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

Williams CKI, Rasmussen CE (1995). “Gaussian Processes for Regression.”
Advances in Neural Information Processing, 8. URL http://books.nips.

cc/papers/files/nips08/0514.pdf.

Williams CKI, Seeger M (2001). “Using the Nystrom method to Speed up
Kernel Machines.” In TK Leen, TG Dietterich, V Tresp (eds.), “Advances
in Neural Information Processing Systems 13,” pp. 682 – 688. MIT Press,

http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
http://www.sor.princeton.edu/~rvdb/ps/loqo6.pdf
http://users.rsise.anu.edu.au/~vishy/papers/VisSmo02.pdf
http://users.rsise.anu.edu.au/~vishy/papers/VisSmo02.pdf
http://users.rsise.anu.edu.au/~vishy/papers/VisSmo04.pdf
http://users.rsise.anu.edu.au/~vishy/papers/VisSmo04.pdf
http://www.hpl.hp.com/conferences/icml2003/papers/352.pdf
http://cran.R-project.org
http://cran.R-project.org
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://books.nips.cc/papers/files/nips08/0514.pdf
http://books.nips.cc/papers/files/nips08/0514.pdf

198 BIBLIOGRAPHY

Cambridge, MA. URL http://books.nips.cc/papers/files/nips13/

WilliamsSeeger.pdf.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2 edition.

Wright S (1999). “Modified Cholesky Factorizations in Interior-point Algo-
rithms for Linear Programming.” Journal in Optimization, 9, 1159–1191.

Wu TF, Lin CJ, Weng RC (2003). “Probability Estimates for Multi-class
Classification by Pairwise Coupling.” Advances in Neural Information
Processing, 16. URL http://books.nips.cc/papers/files/nips16/

NIPS2003_0538.pdf.

Zhou D, Weston J, Gretton A, Bousquet O, Schölkopf B (2003). “Ranking
on Data Manifolds.” Advances in Neural Information Processing Systems,
16. URL http://www.kyb.mpg.de/publications/pdfs/pdf2334.pdf.

http://books.nips.cc/papers/files/nips13/WilliamsSeeger.pdf
http://books.nips.cc/papers/files/nips13/WilliamsSeeger.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_0538.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_0538.pdf
http://www.kyb.mpg.de/publications/pdfs/pdf2334.pdf

List of Tables

3.1 The data sets used throughout the chapter. Legend: b=binary,
c=categorical, m=metric. 40

3.2 The training times for the SVM implementations on different
datasets in seconds. Timings where done on an AMD Athlon
1400 Mhz computer running Linux. 55

3.3 A quick overview of the SVM implementations. 57

4.1 Gradient expansion coefficients. 62

5.1 Timings for the clustering methods and the computation of
the kernel matrix. 80

199

200 LIST OF TABLES

List of Figures

2.1 A contour plot of the SVM decision values for a toy binary
classification problem using the plot function 20

2.2 Relevance vector regression on data points created by the
sinc(x) function, relevance vectors are shown circled. 21

2.3 The points on the left are ranked according to their similarity
to the upper most left point. Points with a higher rank appear
bigger. Instead of ranking the points on simple Euclidean
distance the structure of the data is recognized and all points
on the upper structure are given a higher rank although further
away in distance then points in the lower structure. 24

2.4 Clustering the two spirals data set with specc 27

2.5 Projection of the spam data on two kernel principal compo-
nents using an RBF kernel . 29

2.6 Projection of the spam data on two features using an RBF
kernel . 30

3.1 A contour plot of the fitted decision values for a simple binary
classification problem. 45

3.2 SVM plot visualizing the iris data. Support vectors are shown
as ‘X’, true classes are highlighted through symbol color, pre-
dicted class regions are visualized using colored background. . 47

3.3 Contour plot of the error landscape resulting from a grid search
on a hyper-parameter range. 50

4.1 Average error rate (on a log scale) incurred over a single run
through the digits 0 and 1 until iteration 500 and 2, 3 from
500 onwards of the USPS data set, for SVMD (solid) vs. on-
line SVM with scheduled step size decay (dashed). SVMD
performs better throughout the data. 66

201

202 LIST OF FIGURES

4.2 Step size for classification over a single run of the USPS data
set where the first half of the data set are zeros and ones and
the second half twos and threes. The dased line is the sheduled
step size of the online SVM. Observe how the SVMD values
(solid) of ηt respond to the change in the dataset. 67

4.3 Online 10-way multiclass classification over a single run through
the USPS dataset. Current average error (left) for SVMD with
% = 0.99 (solid), % = 0 (dotted), and online SVM with step
size decay using τ = 100 (dashed). 69

4.4 Online 10-way multiclass classification over a single run through
the USPS dataset. Step size for SVMD with % = 0.99 (solid),
% = 0 (dotted), and online SVM with step size decay using
τ = 100 (dashed). 70

5.1 Average recall rate over 10 runs for the spectral clustering
, kernel k-means, with full string kernels and k-means on a
inverse frequencies term matrix methods. On the y axis is the
recall rate and the x axis the string length hyper-parameter of
the string kernel. 80

5.2 Average recall rate over 10 runs for the kernel k-means, with
string/spectral kernels and k-means on a inverse frequencies
term matrix methods. On the y axis is the recall rate and the
x axis the string length hyper-parameter of the string kernel. . 81

5.3 Average recall rate over 10 runs for the spectral clustering
with a string/spectral kernel and the k-means on a inverse
frequencies term matrix methods. The x axis represents the
string length hyper-parameter of the string kernel. 82

	Contents
	Introduction
	Machine Learning
	Kernel Methods
	Kernels
	Kernel Classes

	Kernel algorithms and Software
	Thesis Outline

	kernlab -- An S4 package for kernel methods in R
	Introduction
	Software Review
	R Software

	kernlab
	S4 objects
	Namespace
	Data
	Kernels
	Kernel Utility Methods

	Kernel Methods
	Support Vector Machine
	Relevance Vector Machine
	Gaussian Processes
	Ranking
	Online Learning with Kernels
	Spectral Clustering
	Kernel Principal Components Analysis
	Kernel Feature Analysis
	Kernel Canonical Correlation Analysis
	Interior Point Code Quadratic Optimizer
	Incomplete Cholesky Decomposition

	Conclusions

	Support Vector Machines in R
	Introduction
	Support Vector Machines
	Classification
	Novelty detection
	Regression
	R software overview

	Data
	ksvm in kernlab
	svm in e1071
	svmlight in klaR
	svmpath
	Benchmarking
	Conclusions

	Step Size-Adapted Online Support Vector Learning
	Introduction
	Stochastic Meta-Descent
	Online Kernel Methods
	Optimization Problem
	Loss Functions
	Coefficient Updates
	Handling Offsets

	Online SVMD
	Scalar Representation
	Expansion in Hilbert Space
	Linear-Time Incremental Updates

	Experiments
	Conclusions

	Text clustering with string kernels in R
	Introduction
	Software
	The textmin R Package
	kernlab

	Methods
	Kernel k-means
	Spectral Clustering
	String kernels

	Experiments
	Data
	Experimental Setup
	Performance measure
	Results
	Timing

	Conclusions

	SVM formulations
	nu-SVM formulation for classification
	spoc-svm for classification
	Bound constraint C-SVM for classification
	SVM for regression
	SVM novelty detection

	kernlab Reference Manual
	as.kernelMatrix
	couple
	csi-class
	csi
	dots
	gausspr-class
	gausspr
	inchol-class
	inchol
	income
	inlearn
	ipop-class
	ipop
	kcca-class
	kcca
	kernel-class
	kernelMatrix
	kfa-class
	kfa
	kha-class
	kha
	kkmeans
	kpca-class
	kpca
	ksvm-class
	ksvm
	lssvm-class
	lssvm
	musk
	onlearn-class
	onlearn
	plot
	prc-class
	predict.ksvm
	promotergene
	ranking-class
	ranking
	rvm-class
	rvm
	sigest
	spam
	specc-class
	specc
	spirals
	ticdata
	vm-class

	Bibliography

