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Kurzfassung

Gegenstand dieser Arbeit ist der Begriff der Hartman Meßbarkeit von Men-
gen bzw. Funktionen auf einer topologischen Gruppe. Der Name leitet sich
vom polnischen Mathematiker S. Hartman ab, welcher u.a. auf dem Gebiet
der Gleichverteilung von Folgen auf nichtkompakten topologischen Gruppen ar-
beitete. Grundidee dabei ist, einer Teilmenge H der topologischen Gruppe G,
welche als nicht kompakt angenommen werden kann, eine gewisse - zunächst nur
für Teilmengen kompakter Gruppen definierte - Eigenschaft zuzusprechen, wenn
/,(H) diese Eigenschaft besi.~zt und /,ein stetiger Homomorphismus von H in eine
kompakte Gruppe C ist. Ahnliches läßt sich für auf G definierte Funktionen f
bewerkstelligen, wenn man zu Funktionen der Gestalt F 0 /, mit einer auf der
kompakten Gruppe H definierten Funktion F übergeht.

Kapitell: Wir beginnen mit einigen allgemeinen Bemerkungen über Gruppenkom-
paktifizierungen und fast periodische Funktionen. Insbesondere führen wir die
Bohrkompaktifizierung (/'b, bG) einer topologischen Gruppe G ein und zeigen, dass
eine umkehrbar eindeutige Korrespondenz zwischen fastperiodischen Funktionen
auf G und stetigen Funktionen auf bG besteht. Der Inhalt dieses Kapitels orien-
tiert sich an den entsprechenden Resultaten in [BJM] und [HR].

Kapitel 2: Wir führen den Begriff der Hartman Meßbarkeit für Teilmengen einer
topologischen Gruppe G ,ein: Eine Menge H ç Gist genau dann Hartman
meßbar, wenn es eine Stetigkeitsmenge M ç M gibt (eine Stetigkeitsmenge ist
eine Menge, deren topologischer Rand eine Nullmenge bezüglich des Haarschen
Maßes ist) und eine Gruppenkompaktifizierung (/" C), sodass H = /,-l(M). Das
System aller Hartman meßbaren Mengen auf G ist eine Boolesche Algebra und
es gibt genau ein normiertes endlich additives und translationsinvariantes Maß
auf dieser Booleschen Algebra. Die Resultate dieses Kapitels orientieren sich vor
allem an [FPTW] und [Win].

Kapitel 3: In Verallgemeinerung von Kapitel 2 definieren wir die Hartman Meß-
barkeit für Funktionen wie folgt: Eine Funktion f :G -7 te ist genau dann Hart-
man meßbar, wenn es eine Riemann integrierbare Funktion F : C -7 te gibt (eine
Funktion ist Riemann integrierbar, wenn die Menge ihrer Unstetigkeitsstellen
eine Nullmenge bezüglich des Haarschen Maßes ist) und eine Gruppenkompak-
tifizierung (/" C), sodass f = F 0 /'. Insbesondere interessieren wir uns für die
Struktur der Menge aller Gruppenkompaktifizierungen (/" C) von G, sodass eine
gegebene Hartman meßbare Funktion fals F 0 /, mit einer auf C definierten Rie-
mann integrierbaren Funktion F dargestellt (wir sagen auch realisiert) werden
kann. Ist G eine LeA Gruppe mit separablem Dual, so ist eine solche Realisierung
stets schon auf einer metrisierbaren Gruppe C möglich (Theorem 2). In wichtigen
Spezialfällen läßt sich eine Realisierung auch mit Hilfe des Fourierspektrums der
Hartman meßbaren Funktion f angeben (Theorem 5). Da sich eine fastperio-
dische Funktion f stets als F 0 /, mit einer auf einer Gruppenkompaktifizierung
(/" C) definierten stetigen Funktion F darstellen läßt, ist jede fastperiodische



Funktion auch Hartman meßbar. Eine bekannte und gut untersuchte Verallge-
meinerung der fast periodischen Funktionen stellen die schwach fastperiodischen
Funktionen dar. In Theorem 6 zeigen wir, dass es i.a. Hartman meßbare funktio-
nen gibt, welche nicht schwach fastperiodisch sind. Theorem 9 dagegen zeigt, dass
Co-Funktionen, i.e. Funktionen die im Unendlichen verschwinden, stets Hartman
meßbar sind. Wir beschäftigen uns außerdem mit dem Zusammenhang zwischen
Fouriertransformation von Maßen und Hartman Meßbarkeit. Die Resultate dieses
Kapitels entstammen zum Großteil [Mar] und [MW].

Kapitel4: Wir zeigen die Existenz eines kompakten Hausdorffraumes hG, so-
dass jede stetige Funktion auf hG in eindeutiger Weise einer Hartman meßbaren
Funktion auf G entspricht und diskutieren das Darstellungsproblem für hG. Ab-
schließend führen wir die Funktionenklasse der Banach fastperiodischen Funk-
tionen (BAP) ein und zeigen Verknüpfungspunkte zu den Hartman meßbaren
Funktionen auf. Die Resultate dieses Kapitels stammen zum Teil aus einer Ko-

• operation mit M. Beiglböck, vgl. [BM].

•
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Abstract

Main topic of this paper is the concept of Hartman measurability of sets and
functions defined on some topological group G. Nomenclature is in honor of the
polish mathematician S. Hartman who worked on equidistribution of sequences
on noncompact groups. The main idea is the following: given a subset H of a
noncompact group G, we say that H has a certain property (e.g. being equidis-
tributed) iff L(H) has this property, for L : G -7 C a group homomorphism, and
C a compact group. Similarly we can extend this concepts to functions by con-
siderung functions f : G -7 CCwhich have a representation of the form F 0 /, for
a function F defined on the compact group H.

•
Chapter 1: We introduce group compactifications and collect some basic facts
regarding almost periodic functions. We show that almost periodic functions on
G are in one-one correspondence to the continuous functions defined on the Bohr
compactification (/'b, bG). The results presented in this chapter are mainly from
[BJM] and [HR].

Chapter 2: We introduce the concept of Hartman measurability: Given a topo-
logical group G and a subset H ç G, we say that H is Hartman measurable
if there exists a continuity set M ç C (recall that a set is a continuity set iff
its topological boundary is a null set with respect to the Haar measure) and a
group compactification (L, C) such that H = c1(M). The system of all Hartman
measurable sets on G is a Boolean algebra. There exists exactly one normal-
ized finitely additive and translation invariant measure on this Boolean algebra.
[FPTW] and [Win] are resources for the results of this chapter.

Chapter 3: Generalizing the results of the previous chapter we define Hartman
measurability for functions: a function f : G -7 CCis Hartman measurable iff
there exists a Riemann integrable function F : C -7 CC(recall that a function is
Riemann integrable when its set of discontinuities is a null set with respect to

• the Haar measure) and a group compactification (/" C) such that f = FoL. For
a given Hartman measurable function f we are interested in the structure of all
group compactifications (L, C) such that there is a Riemann integrable F : C -7 CC
with f = FoL. In this situation we say that F realizes f on C. If G is an LCA
group with separable dual, we prove that exists a realization with metrizable C
(Theorem 2). In some situations it is possible to use the Fourier spectrum of the
Hartman measurable function f to obtain a group compactification on which f
can be realized (Theorem 5). For every almost periodic function f :G -7 CCthere
exists a group compactification (L, C) and a continuous Function F : C -7 CCsuch
that f = FoL. Hence almost periodic functions are Hartman measurable. As
the weakly almost periodic functions generalize almost periodic functions, it is a
relevant question whether they are also a generalization of Hartman measurable
functions. We give a negative answer in Theorem 6, showing that in general
there are Hartman measurable functions which are not weakly almost periodic.
Theorem 9 shows that every Co-function, i.e. a function vanishing at infinity, is
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Hartman measurable. We consider Fourier transformations of measures and give
an example of a measure inducing a nontrivial Hartman measurable function.
The results of this chapter are taken from [Mar] and [MW].

Chapter 4: We prove the existence of a compact Hausdorff space hG such that
every continuous function on hG corresponds to a unique Hartman measurable
function f on G. Every Hartman measurable function can be obtained in such
a way. Finally we introduce Banach almost periodicity and connect this concept
with Hartman measurability. The results of this chapter were partly obtained in
cooperation with M. Beiglböck, cf. [BM].
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Chapter 1

Introduction

1.1 Preliminaries and Notation

A left invariant mean (L.LM.) is a functional m assigning to each bounded func-
tion (of a certain subspace of bounded functions) a complex number in a linear
way, such that for real-valued functions f the following two assertions hold

1. inf Ifl ::;m(lfl) ::;sup Ifl (hence "mean"),

2. m(fx) = m(f) for allleft translations fx : a I---t f(ax) (hence "invariant").

On a compact1 group G existence and uniqueness of Haar measure implies that
m : f I---t J fdMe, with the Haar measure Me on G, is the unique L.LM. on
the space C( G) of continuous functions on G. On non compact locally compact
groups this direct approach is no longer possible because Me( G) = 00 and there is
no way to normalize the Haar measure. Nevertheless, if the group G is amenable
(e.g. every abelian group is) there are plenty of invariant means defined even on
the larger algebra of bounded functions B (G). Of particular interest are those
bounded functions on which all L.LM.s defined on B( G) take the same value.
They are denoted by AC (G) and called almost convergent. In fact AC (G) is a
linear subspace of B(G) (but in general not a subalgebra). Well known subspaces
of AC( G) are those of almost periodic functions A( G) and the weakly almost
periodic functions W( G). As standard references we mention the monographs
[Gre] and [Pat].

As we will see in section 1.2 the algebra of (weakly) almost periodic functions
A(G) (resp. W(G)) is isomorphic to the algebra of continuous functions C(bG)
(resp. C(wG)). From the viewpoint of universal objects, (Lb, bG) turns out to
be the maximal topological group compactification, while (Lw, wG) turns out as

IThroughout this paper "compact" always includes the Hausdorff separation axiom.
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the maximal semitopological semigroup compactification of G. Regarding com-
pactifications we will stick to the notations established in [BJM] and used in
[FPTW, SchSW, Win]. For a modern and extensive treatment of (weakly) al-
most periodicity we refer to the monograph [BJM].

The greek letter /-l will denote an arbitrary Borel measure, the latin letter m a
mean resp. a finitely additive measure. The measure theoretic completion of !l
is denoted by {t. The support supp(/-l) of the Borel measure /-l on the topologi-
cal space X is defined by the requirement that X \ supp(/-l) is the union of all
open /-l-null sets. As usual we denote the set all of continuous (complex-valued)
functions defined on the topological space X by C (X), the set of all bounded
functions defined on X by B(X) and the set of all bounded continuous functions
by Cb(X). Both B(X) and Cb(X) equipped with the norm Ilflloo := SUPXEX If(x)1
are Banach spaces.

The filter of all neighborhoods of a point x in the topological space X will be
denoted by U(x ).

For two subsets A, B ç X of a metric space let dist(A, B) := infxEA,YEB d(x, y)
denote the distance between A and B. We will say that A and B are separated
if dist(A, B) > O. The diameter of a set A ç X is defined by diam(A) :=
SUPx,YEA d(x, y), the open ball with center x and radius c w.r.t. the metric d is
defined by Kd(X,c) = {y: d(x,y) < c} When it causes no confusion the subscript
d will be omitted.

The dual of a locally compact abelian group G will be denoted by G. As a
standard reference for topological groups resp. LeA groups we refer to [Arm]
and [HR]. For a function f : X ~ Y and A ç Y we will occasionally use the
notation [j E A] := {x EX: f(x) E A} = f-l(A). The characteristic function
llA of a set A is defined by the requirement llA(X) = 1 for x E A and llA(X) = 0
otherwise. A~B denotes the symmetric difference of sets: llAßB = IllA - llBI.

1.2 Almost periodic functions

The concept of almost periodicity was first introduced by Harald Bohr in a series
of papers published in Acta Mathematica between 1923 and 1926.

Definition 1.2.1. A continuous function f : IR ~ C is called almost periodic if
for every c > 0 the set PU; c) := {x E IR : 'Vy E IR If(x + y) - f(y)1 < c} of
c-almost periods has bounded gaps, i.e. there exists M = M(c) > 0 such that
PU; c) intersects every interval [a, b] ç IR with length b - a 2:: M.

Note that for periodic f we have PU; c) ;2 p. Z, where p is a primitive period
of f. Hence every continuous periodic function is also almost periodic. It is also
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clear that every almost periodic function is bounded since

If(y)1 ~ If(y) - f(x + y)1 + If(x)1 ~ E + sup If(x)l.
xE[O,M]

If we denote as usual by Tx : y 1---+ X + y the translation on IR by x E IR, it
is not hard to check that a bounded function f is almost periodic iff the set
0U):= {Txf: x E IR} has compact closure in the Banach space (Cb(IR),II.lloo)'
This concept of almost periodicity easily translates to an arbitrary topological
group G.

Definition 1.2.2. Let G be a topological group. A bounded continuous function
f : G -+ CC is (left) almost periodic iff OU) := {Àgf : g E G} has compact
closure in the Banach space (Cb(G), 11.1100)' Here Àg : h 1---+ gh denotes the (left)
translation on G by 9 E G.

In a similar fashion one can define right almost periodic functions using the right
translations Pg : h 1---+ hg. Nevertheless it turns out that a function is right almost
periodic iff it is left almost periodic.

The set A( G) of all almost periodic functions on G has the following properties:

• A( G) is an algebra, i.e. f + 9 and f g are almost periodic, whenever fand
9 are almost periodic. For f E A( G) and À E CCalso Àf E A( G) .

• A( G) is closed in Cb( G), i.e. limn->oofn is almost periodic, whenever every
fn is almost periodic and the limit is obtained W.r.t. the norm 11.1100'

• A( G) is translation invariant, i.e. for every 9 E G Àgf and Pgg are almost
periodic, whenever f is almost periodic

• A( G) admits a unique invariant mean, i.e. there is a unique L.LM. m :
A(G) -+ CCsuch that mU) ~ 0 whenever f ~ 0 and m(Àgf) = mU) for
every gE G.

In particular A(G) is a Banach subalgebra of Cb(G). Since A(G) contains all
constant functions and is also invariant under complex conjugation, A( G) is in
fact a unital *-subalgebra of Cb(G). A(G) is therefore even a unital C*-algebra,
because in any closed *-subalgebra of Cb(G) the C*-axiom IIf 1*11 = 111*fil = IIfl12

is valid.

1.3 Group compactifications

Let G be a topological group, C a compact group and L : G -+ C a continu-
ous homomorphism with image L(G) dense in C. In this case (L, C) is called a

3



group compactification of G. On the class of all group compactifications we can
impose a preorder by defining (/'1, Cd :::;(/'2, C2) iff there is a continuous group
homomorphism 7r : C2 - Cl such that 7r 0 /'2 = /'1, i.e. iff the diagram

C2

;/ 7r

G
/'1

I Cl.

commutes. Using compactness of Cl and C2 one obtains that (/'1, Cl) :::;(/'2, C2)

and (/'1, Cd ~ (/'2, C2) imply that 7r is a topological group isomorphism C2 - Cl.
We call two group compactifications (/'1, Cl) and (/'2, C2) equivalent iffthere exists
a topological group isomorphism 7r : C2 - Cl such that 7r 0 /'2 = /'1. Thus:::; is a
partial order on group compactifications modulo equivalence.

For each given topological group G there exists a maximal group compactification
w.r.t. the order :::;,the Bohr compactification (/'b, bG). Each group compactifi-
cation (/" C) is equivalent to a group compactification (i, C) :::;(/'b, bG) Thus the
Bohr compactification of a given group G is a universal object within the class of
group compactifications and up to equivalence there are at most 2card(bC) different
group compactifications of G.

The set of all group compactifications {(/',C) : C ç bG)} is a complete lattice.
The join

V (/'i, Ci) =: (/"C)
iE!

is equivalent to the compactification given by /'(g) .- (/'i(g))iE! E ITiE! Ci and
C := /'(G) ç ITiE! Ci.

One important property of group compactifications the following: Every contin-
uous function on G that can be extended to a continuous function on a group
compactification of G is almost periodic. More precise:

Proposition 1.3.1. Let G be a topological group and (/" X) a group compactifi-
cation of G. For F : X - CC denote by /,* F the function defined via /,* F(g) :=
F 0 /'(g). Then /'*C(X) ç A(G).

Proof. First note that due to compactness of X every continuous function F on
X is almost periodic. Indeed Ox(F) := {ÀxF : x E X} ç C(X) is the image of
the compact space X under the continuous mapping x I---t ÀxF. Next note that
/,* : C(X) - Cb(G) is a bounded linear mapping. Hence it sends the compact set
Ox(F) ç C(X) onto the compact set /'*Ox(F) ç Cb(G) and

/'*Ox(F) ;2 {/'*(À~(g)F) : 9 E G} = {Àg/'* F : 9 E G} = Oc(/'* F),

proving that /,*F is almost periodic on G.

4
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Using the Gelfand-Representation Theorem for unital abelian C*-algebras we can
show that every almost periodic function on G can be extended to a continuous
function on the Bohr compactification of G. First we need some auxiliary results.

Definition 1.3.2. Let G be a topological group f E Cb( G) and J-t E Cb( G)', the
dual space of Cb( G). We define the (left) introversion by J-t as

T,J(s) := J-t(>..sf);

a translation invariant subspace A ç Cb( G) is (left) introversion invariant if
T,J E A whenever f E A and J-t E A'.

If A ç Cb( G) is a *-subalgebra that is both translation and introversion invariant
one can define a semigroup operation on A' via l/ * J-t := T;l/, more explicitly this
means

l/ * J-tU) := l/(T,Jf, for f E A, l/, J-t E A'.
This binary operation can be regarded as an extension of the group operation on
G since Jg * Jh = Jgh, for g, hE Gand Jg the functional defined via JgU) := f(g).
If A ç A( G) is a translation and introversion invariant *-subalgebra then the
operation * is jointly continuous, i.e. continuous as a mapping A' x A' ---7 A',
W.r.t. the weak-*-topology. For details we refer to the monograph [BJM].

Theorem 1. Let G be a topological group. The algebra A( G) of almost periodic
functions on G is isometrically isomorphic to C (bG), the algebra of continuous
function on bG.

Sketch of Proof. We show that A( G) is isometrically isomorphic to the contin-
uous functions defined on the weak-* closure of {Jg : g E G} ç A(G)'. Let
us denote this closure by X. Note that by the Banach-Alaoglu theorem X is
compact. Furthermore J : G ---7 X is a continuous homomorphism W.r.t. the
group operation on G resp. the operation * on X. Using the joint continuity
of * and density of J (G) in X standard topological arguments yield that X is a
topological group, i.e. (J, X) is group compactification of G. For given f E A(G)
consider the function F E C(X) defined via F(J-t) := J-tU), with J-t E X. Clearly
J*F = F 0 J = f and thus J*C(X) :2 A(G). Since the inclusion J*C(X) ç A(G)
holds trivially, we have J*C(X) = A(G).

Since (J, X) is a group compactification with J*C(X) = A(G), due to maximal-
ity the same must hold for the Bohr compactification: ibC(bG) = A(G). The
Banach-Stone Theorem asserts that there exists a homeomorphism <p : X ---7 bG
such that <p 0 J = ibo Since J has dense image, it is easy to deduce that <p is
actually a continuous group isomorphism. Thus (J, X) ~ (ib, bG). The universal
property of the Bohr compactification implies (J, X) :::; (ib, bG) and thus (J, X)
and (ib, bG) are equivalent group compactifications. 0

After we have established the isomorphy A(G) ~ C(bG) we can describe the
invariant mean for A( G): Since every almost periodic function is of the form

5



F 0 tb with a unique F E C(bG) and tb(G) is dense in bG L.LM.s on A(G) and
L.LM.s on bG are in one-one correspondence. Uniqueness of the Haar measure
/-Lbon bG implies that the only L.LM. mbG on C(bG) is given by F 1---+ IbG fd/-LbG'
Hence the unique L.LM. mG on A( G) is given by

where F is the unique function from C(bG) such that f = F 0 tb.

We can mimic these constructions when replacing the category of topological
groups by categories of other topological-algebraic objects, for example by semi-
groups with compatible topology:

Definition 1.3.3. A topological space S with a semigroup operation. is semi-
topological if for each sES the mappings Às : t 1---+ st and Ps : t 1---+ ts are
continuous. A pair (t, C) is a semitopological semigroup compactification of S if
C is a compact semitopological semigroup and t : S ---+ C is continuous semigroup
homomorphism with dense image t( S) .

There exists a maximal semitopological semigroup compactification (which IS

unique up to equivalence), the so called w.a.p. compactification (tw, wS).

Definition 1.3.4. Let S be a semitopological semigroup. A continuous function
f : S ---+ te is {left} w. a.p. iff the closure of the set OU) := {Àsf : SES} w. r. t.
the weak topology on Cb(S) is compact.

Again one can show that left and right w.a.p. functions are the same thing and
that the set W(S), consisting of all w.a.p. functions defined on S is a *-subalgebra
of Cb(S). Every w.a.p. function on S can be extended to a continuous function
on wS and W(S) coincides with the space t:nC(wS). If S = G is a topological
group, then (tb, bG) ::; (tw, wG) as semitopological semigroup compactification.
Denoting the canonical projection 1f : wG ---+ bG (note that 1f is open), one can
show that the measure /-Lw,defined by the requirement /-Lw(A) := /-Lb(1fA),induces
the only L.LM. on C(wG). Hence the unique L.LM. mG on W(G) is given by

mGU) := 1 Fd/-Lw
wS

where F is the unique function from C (wG) such that f = F 0 tw. There are pos-
itive weakly almost periodic functions with zero mean value, denoted by W( G)o,
while every positive almost periodic function has a positive mean value.

6



Chapter 2

Hartman measurable sets

2.1 Definition and Basic Properties

In this section we will describe how for a topological group G the Haar measure
f.1e on a group compactification ('" C) can be used to define a finitely additive
probability measure f.1e on a non trivial Boolean set algebra on G.

The idea is to consider sets H = cl(M) and define f.1e(H) := f.1e(M). Inves-
tigations in [FPTW] have shown that this approach works if one requires that
M ç C is a continuity set (also called Jordan measurable), i.e. a set the topolog-
ical boundary aM of which satisfies f.1e(aM) = O. We will now give the relevant
arguments:

It is easy to verify that the system Se ç 5,p( C) of all f.1e-continuity sets on C is a
Boolean set-algebra (due to the fact that aM = aMc and a(A U B) ç aA U aB).
However Se is in general no a-algebra.

Lemma 2.1.1. Let G be a topological group and let ('" C) be a group compacti-
fication. If Ml ç C and M2 ç Care f.1e-continuity sets with ,,-I (Md = ,,-1(M2)
then f.1e(Ml) = f.1e(M2) .

Proof. Let D := ,,(G) and note that D is dense in X. Also note that Ml nD =
" 0 ,,-I (Md = "0 ,,-1(M2) = M2 n D. First we show that (Ml \ M2)O = 0.
Suppose by contradiction that there exists x E (Ml \ M2)O = Mf \ M2. Since D
is dense we may w.l.o.g. assume that xED. In particular x E Ml but x tj. M2
contradicting Ml nD = M2 n D. Thus (Ml \ M2)O = 0 and so the f.1e-continuity
set Ml \ M2 (remember that f.1e-continuity sets form a Boolean algebra) is a
f.1e-null set because

0= f.1e (a(Ml \ M2)) = f.1e ((Ml \ M2) \ (Ml \ M2t) = f.1e(Ml \ M2).

Thus we have f.1e(A1lU M2) = f.1e(Ml) + f.1e(M2 \ Md = f.1e(1\1l). By symmetry
f.1e(Ml) = f.1e(Ml U M2) = f.1e(M2). 0

7
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This enables us for each group compactification (i, C) to define a finitely additive
measure on the Boolean set algebra i-I (Sc) ç l,p(G) by letting /.Le : i-I(M) 1---7

/.Lc (M). Sets H ç G arising in this way are called (i, C)-Hartman measurable.
Next we show that we can get rid of the dependence on a particular group com-
pactification (i, C).

Lemma 2.1.2. Let G be a topological group and let (iI, Cl) resp. (i2, C2) be group
compactifications. If Ml ç Cl and M2 ç C2 are /.Lc! resp. /.LC2-continuity sets
with i-I (1V[I)= i-I(M2) then /.Lc!(Md = /.LC2(M2).

Proof. Let (i, C) = (iI, Cd V (i2, C2) be the supremum of the two group compact-
ifications and 7fi : C -. Ci, i = 1,2 the canonical epimorphisms. Sinee the Haar

C

measure on Ci is given by /.LCi = 7fi0 /.Lc, where /.Lc is the Haar measure on C, it
is easy to show that lV-h := 7f11(MI) and M2 := 7fil(M2) are /.Lc-continuity sets
on C (we will give a more detailed argument in Lemma 3.2.5). Furthermore

i-I (MI) = i-I 0 7f11(MI) = i11(MI) = iil(M2) = i-I 0 7fil(M2) = i-I(M2).

Thus Lemma 2.1.1 implies /.Lc(M2) = /.Lc(MI) and thus

/.Lc! (Md = 7f10/.LM! = /.L(MI) = /.L(M2) = 7f20/.LM2 = /.Lc2(M2).

o
Definition 2.1.3. Let G be a topological group. A set H ç G is called Hartman
measurable if one of the following equivalent assertions holds:

1. There exists a group compactification (iC, C) such that H is (i, C)-Hartman
measurable,

2. H is (ib, bG)-Hartman measurable.

Here (ib, bG) denotes the Bohr compactification of the topological group G. The
system of all Hartman measurable sets on G is denoted by 5)(G).

For the case G = Z (additive group of integers) number theoretic aspects of Hart-
man measurable sets have been studied in [SchSW], while in [Win] the dynamical
aspect has been stressed. This gets clear by the observation that i : Z -. C
can be interpreted as a Z-action on C, generated by the ergodic group rotation
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T : c I---t c + 1.,(1). In particular the information about (t, C) contained in H or,
equivalently, in the binary coding sequence llH (characteristic function) of this
dynamical system has been investigated. We will extend these results in chapter
2.

From Definition 2.1.3 it is clear that Sj(G) = t;l(Sbe) ç IfJ(G) is a Boolean set-
algebra and /-Le = tb 0 /-Lb is a finitely additive invariant measure on Sj(G). As
a starting point we will restrict our investigations to the case G = Z and prove
uniqueness of /-Lz.

Remark: Every finitely additive invariant measure on the Boolean algebra Sj(G)
can be extended to a finitely additive invariant measure on 1fJ( G) whenever the
group G is amenable (Z along with any other abelian group is amenable). How-
ever, this extension need not to be unique (cf. Theorem 10.8 in [Wag]).

Proposition 2.1.4. Let v be a finitely additive invariant measure on Sj(Z). Then
• v = /-Le.

Proof. Let H E S)(Z) be fixed. There exists a group compactification (t, C) and
a /-Le-continuity set M such that H = t-1(M). Suppose that C is metrizable (we
will show in Theorem 2 that this is no loss of generality). Consider the dynamical
system (C, T) where T : x I---t x + 1.,(1). Since T is an ergodic group rotation of
the compact metrizable monothetic group C, the transformation T is uniquely
ergodic (Theorem 6.20 in [Wal]). Thus Lemma 6.19 in [Wal] assures that

N-l

~ ~ f 0 Tn -t 1f /-Le
n=O e

(2.1)

in the topology of uniform convergence, for every continuous function f : C -t C-
It is not hard to show that (2.1) is also valid for functions of the form f = llM
with M a /-Le-continuity set (the relevant property is Riemann integrability, which
is of major concern for chapter 2 and will there be discussed in great detail). Thus

N-l

~ ~ llM(Tnx) -t /-Le(M)
n=O

uniformly for x E C. Restricting this relation to t(Z) yields that

(2.2)

uniformly for 9 E Z. Let v be any finitely additive translation invariant measure
on Sj(Z). We establish a one-one correspondence between finitely additive trans-
lation invariant measures on Sj(Z) and non negative invariant linear functionals
on span Sj(Z): For a given measure v let n := nv be defined via nv(llH) := v(H),
and for a given functional n defined a measure via v = Vn := n(llH). Note that
nonnegativity of these functionals implies boundedness w.r.t. to the topology
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of uniform convergence. Thus if we regard n = nv as a non negative invariant
functional on span S)(Z) the LHS of (2.2) equals v(H). Since the RHS of (2.2)
equals 1.1/11(H) the two measures v and f-Lzcoincide. 0

Although every set H E S)(Z) has a unique measure, Hartman sets are rather
special among sets with this property. For example, the system

Qte:(Z) := {A ç Z : f-L(A) = v(A) for every two translation invariant
finitely additive measures f-Land v}

is not closed under forming intersections, while the system S)(Z) is.

Proposition 2.1.5. A subset A ç Z has a uniform density (Banach density) iff
A E Qte:(Z).

• Proof. Consider the upper resp. lower Banach density d*(A) resp. d*(A) of A.
Recall that

resp.

d*(A) := limsup #{[a, b] nA}
Ib-al->oo #[a, b]

. . #{[a, b] nA}
d*(A) := hmmf #[ b] .

Ib-al->oo a,

(2.3)

(2.4)

By definition A has uniform density iff upper and lower Banach density coincide.
It is important to note that

b
_#_{ [_a_+_x_' b_+_x_]_n_A_} = _1_ 2:an lIA (x)

#[a, b] #[a, b] n=a

for any interval [a, b] and X E Z (recall that a is the shift operator on Z). Thus
in particular

d*(A) = limsupsup (#[1 bl Î>nllA(X)) = supsup (#lF 2:anlIA(X)) .
Ib-al->oo xEZ a, n--a FÇZ. xEZ EF

finite n

It is known (cf. [Pat]) that d* (A) coincides with the quantity

S(A) := sup{f-L(A) : f-Lis an invariant finitely additive measure on ~(Z)}.

By symmetry we get that d* (A) coincides with

I(A) := inf{f-L(A): f-Lis an invariant finitely additive measure on ~(Z)}.

Thus A E Qte:(Z) is equivalent to S(A) = ud(A) = d*(A) = I(A) = d*(A). 0
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Having this characterization of QlQ:(Z), we can find A, B in QlQ:(Z) such that
An B tJ- QlQ:(Z):

Let C be any set with d*(C) > 0 and d*(C) = 0, e.g. C = U~=l :l:[2n, 2n + n].
Let A := 3Z and B := 3Z \ Cù ((3Z \ C) + 1), then ud(A) = ud(B) = ~ but
An B = C tJ- QlQ:(Z). In fact for any given infinite set S ç Z we can find subsets
A, B ç S with this property.

Proposition 2.1.6. For a subset A ç Z the following assertions are equivalent:

1. A E QlQ:(Z)

2. (lIA - ILc(A) . lIA) E Ko(Z) where

00

Ko(Z):= U (an - I)B(Z)
n=-oo

and the closure is taken w. r. t. the topology of uniform convergence.

Proof. This is a special case of Propositions 2.1 and 2.2 in [Pat]. o
Example 2.1.7. Invariant transformations of QlQ:(Z): We will construct a
family of measure preserving transformations T, called cut-and-paste operators,
such that TQlQ:(Z) ç QlQ:(Z) but TSj(Z) g; Sj(Z).

To this end let us identify a subset A ç Z with its characteristic function lIA E
B(Z). We are going to consider linear operators T : B(Z) ---7 B(Z) of the form

N

T = Lak;pA;, ki E Z.
i=l

(2.5)

• a denotes again the shift operator defined by a f(k) := f(k + 1) and PA; denotes
the multiplication operator defined by PAJ := flIA;. Observe that PA; is a
projection onto the subspace II(Ai) := {f E B(Z) : supp(f) ç Ad. If all the
sets Ai + ki are pairwise disjoint, then it is obvious that T maps characteristic
functions on characteristic functions. Thus we can write TlIA := lITA for a
mapping T :~(Z) ---7 ~(Z).

We claim that TQlQ:(Z) ç QlQ:(Z)whenever the following conditions on the sets
A hold:.

2. Aiß(A + n) is finite for each i = 1, ... , Nand nEZ,

3. Z \ (AI U ... U AN) is finite.
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Note that the last condition implies that ud(TZ) = 1 (this will also ensure that
T preserves measure). Let us denote the commutator of two linear operators by
[Tl, T2] = TIT2 - T2TI' Elementary calculations yield that

T(an - 1)1= (an - 1)T 1 + [T, an]J, nEZ.

Since Ko(G) is shift invariant, we have TKo ç Ko+U~=_oo[T, an]Ko. To calculate
the commutator [T, an] we use that

[Pi, akj 1 = aI, (liA; - lIA;-k) C II(Ai~(A - n)),
[ak;Pi,an 1 = ak;[Pi,an]J - [ak;,an]J C II((Ai + ki)~(A - n)).

Thus for each nEZ:
N N

[T, an] ç UII((Ai + ki) ~ (A - n)) ç II(U(Ai + ki) ~ (A - n) ) .
i=l i=l

Since Condition 2 implies that [T, an]J is of finite support, we can conclude
that [T, an]B(Z) ç Ko(Z). This already implies invariance of 2t<!:(Z) W.r.t. the
transformation T:

T2t<!:(Z) = TKo(Z) + TC .1Iz ç TKo(Z) + C. Tliz ç Ko(Z) + C .1ITZ ç 2t<!:(Z).

Let us have a closer look at the simplest case and consider the transforma-
tion T associated with the parameters Al = -N, A2 = N, kl = 0, k2 = 1.
Thus T maps a binary sequence (... X-2X-IXOXIX2' .. ) onto the binary sequence
( ... X-2X-IQX2X3" .).

We show that for this particular transformation T there exits a Hartman measur-
able set H E .5)(71..) such that THis not Hartman measurable. Suppose by con-
tradiction that both Hand TH are Hartman measurable. Then also H~ TH E
.5)(71..); if we denote H again as a binary sequence, this means (... OOQ * * ... ) E
.5) (71..). Since H~ THE .fj (71..) has arbitrarily long blocks of zeros Theorem 4 in
[SchSW] implies that any finite subword w of HßTH appears with asymptotic
frequency p( w) = O. On the other hand it is easily computed that if the sub-
word (10) occurs with positive asymptotic frequency in H, then the subword
(1) occurs with positive asymptotic frequency in H~ TH. As there clearly exist
Hartman measurable sets H ç 71.. with the property that (10) occurs with positive
asymptotic frequency this is a contradiction.

For an arbitrary transformation of the form (2.5) essentially the same reasoning
as above applies once we replace the subword (10) by a subword of length kl
resp. of length ki + 1 for i = 2, ... , N such that the chosen subwords occur with
positive asymptotic frequencies within the set Ai.

2.2 Characterization results

Let G be an abelian group and Tg the translation by 9 E G. We introduce two
mappmgs:
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• for a Hartman measurable set M denote by dM : G ---7 [0, 1] the mapping
9 I---t mc(M 6.TgM),

• for a J.Le-continuity set M* on some group compactification (i, C) denote by
dM. : C ---7 [0,1] the mapping 9 I---t J.Le(M*6.TgM*).

Note that the mapping dM. (and similarly the mapping dM) can be used to define
a translation invariant pseudometric by letting PM.(g, h) := dM.(g - h). The set
of zeros {g E C : dM. (g) = O} is always a closed subgroup. We will denote this
subgroup by ker dM. (g).

Now consider sets of the form F(M, E) := {g E G : dM(g) < E} and denote
by :F(M) the filter on G generated by {F(M,E) : E > O}, i.e. the set of all
F ç G such that there exists an E > 0 with F(M,E) ç F. When we have a
realization M* of M on some group compactification (i, C) we can transfer the
topological data encoded in the neighborhood filter of the unit De in C to the
original group G by considering its preimage under i. To be precise: Let (i, C) be
a group compactification and ll( C, Oe) the filter on C generated by neighborhoods
of the unit element De in C. By ll(~,e) we denote the filter on G generated by
i-I (ll(C, De)). Note that if the mapping i is one-one, i-I (ll(C, De)) is already a
filter.

For the group Z of the integers, Theorem 2 in [Win] states that the filter ll(~,e) ç
l,p(Z) contains much information about the filter ll( C, Oe) ç l,p( C) and hence
about the group compactification (i, C):

Theorem: Let M ç Z be a Hartman measurable set and (i, C) a group com-
pactification of the integers such that M can be realized on C via the continuity
set M*, i.e. there is a J.Le-continuity set M* ç C such that i-I(M*) = M.
Then H = ker dM. is a closed subgroup of C and :F(M) = ll(7l"HO~,e/H),for
7rH : C ---7 C/ H the canonical mapping.

With the tool developed in the next chapter we will able to prove the following
generalization:

Proposition 2.2.1. Let G be an LeA group with separable dual ê. If M ç G
is a Hartman measurable set and (i, C) is a group compactification of G such
that M can be realized on C via the continuity set M* then H = ker dM. is a
closed subgroup of X and :F(M) = ll(7rHO~,e/H),for 7rH : C ---7 C/ H the canonical
mappmg.

For the group of integers Z and a Hartman measurabl~ set M ç Z the filter
:F = :F(M) can also used to define a subgroup of'JI' = Z consisting of all those
elements a, such that the limit of {na }nEZwith respect to the filter :F vanishes:

Sub(M) := :F-limlnaJ = O.
n

Recall that for some sequence {Xn}nEZ we have :F -limn Xn = 0 iff for every
E > 0 the set {n E Z : IXn I ::; E} belongs to the filter:F. In [Win] it is shown
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that all three objects - filter, compactification and subgroup - carry the same
information regarding a fixed Hartman set M. It is worth to note that in [BSW]
it proven that any subgroup of a compact abelian group G can be written as
{g E G : F-limxEê X(g) = Qc} for some filter Fan ê.
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Chapter 3

Hartman measurable functions

3.1 Motivation

As any set M ç G can be identified with the characteristic function f := 11ME
B(G), the characterizing properties of M being Hartman measurable can be for-
mulated in terms of the function M. It turns out that the relevant property is
Riemann integrability: M ç G is Hartman measurable iff there exists a charac-
teristic function F = lIM* on some group compactification (l" C) that is Riemann
integrable and such that f = Fol,. Once such a characterization in functional
terms is obtained, we can extend the concept of Hartman measurability from
sets to functions, by dropping the requirement that f has to be a characteristic
function and deal with arbitrary bounded complex-valued functions instead.

3.2 Riemann integrability

In the following let X be a compact (including the Hausdorff separation axiom)
space and f-l a positive regular Borel measure with full support supp(f-l) = X. A
bounded function f :X ---+ C is called f-l-Riemann integrable iff the set disc(f) of
points of discontinuity is a f-l-null set. Let us denote the set of all these functions
by RJ-L(X),

Note that for any continuous (complex-valued) function 9 : CC---+ CCthe inclusion
disc(g 0 1) ç disc(f) holds for arbitrary f : G ---+ C. Thus every continuous 9 is a
left multiplier for RJ-L(X) in the sense that 9 : CC---7 C continuous and f E RJ-L(X)
implies gof E RJ-L(X),

The following characterization of Riemann integrability, a proof of which can be
found in [Tal], is important for us:

Proposition 3.2.1. For a real-valued f-l-measurable function f the following as-

15



l

sertions are equivalent:

1. f is J.L-Riemann integrable

2. For every ê > 0 there exist continuous functions ge and he such that ge :::;
f:::; he and Ix(he - ge)d/-l < ê.

For a complex-valued J.L-measurable function f consider its decomposition in real
and imaginary part f = Ref + ilmf. Since disc(f) ç disc(Ref) U disc(lmf)
Riemann integrability of the real-valued functions Ref and lmf implies Riemann
integrability of f. On the other hand the mappings Re : C -t IR and 1m : C -t IR
are left multipliers for Rf.L(X), so Riemann integrability of f implies Riemann
integrability of Ref and lmf. Thus we obtain Proposition 3.2.1 also for complex-
valued functions

Corollary 3.2.2. For a complex-valued /-l-measurable function f the following
assertions are equivalent:

1. f is J.L-Riemann integrable

2. a. For every ê > 0 there exist continuous functions gé and hé such that
gé :::;Ref:::; hé and Ix(hé - gé)d/-l < ê.

b. For every ê > 0 there exist continuous functions [1£ and hé such that
[1£ :::; Imf :::;he and Ix (he - [h)d/-l < ê.

Using the notation from Proposition 3.2.1 we collect some easy but important
implications:

1. Let 9 := sUPnENgl and h := infnENhl, then 9 = h J.L-a.e., so f coincides
n n

/-l-a.e. with a /-l-measurable function and is itself fi,-measurable (recall that
fi, denotes the completion of the measure /-l).

2. Rf.L(X) is a uniformly closed and translation invariant *-subalgebra of both
B(X) and LOO(X; fi,).

3. If X is a compact group and J.Lthe normalized Haar measure on X, then
the L.LM. m : f 1-7 Ix fdJ.L defined on C(X) can be extended to a L.LM.
defined on Rf.L(X) by letting

m(f) := sup m(f) = inf
gEC(X), gS.1 hEC(X), lS.h

for real-valued Riemann integrable functions f. This extension is unique.
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Remark: Let f be p,-Riemann integrable on the compact space X and p, a finite
regular Borel measure with supp(p,) = X. Let us denote the oscillation of f at x
by

OSf(x) := limsupf(y) -liminf f(y).
y--+x y--+x

Since Os f is upper semicontinuous (a proof of this fact can be found e.g. in
[BouI]) the sets An := [Osf ~ ~] ç disc(f) are closed. Using monotonicity of p,
we conclude that each An is a closed p,-null set and hence nowhere dense. This
implies that disc(f) = Un~O An is both Fu and a meager p,-null set.

Corollary 3.2.3. Let X, Y be compact topological spaces, p, a positive regular
Borel measure with supp(p,) = X, and'lr : X -7 Y a continuous mapping. Let
v := 'Ira p, denote the Borel measure on Y defined by v(A) := p,('Ir-l(A)). Then
fE RlI(Y) implies f a 'Ir E RJ1-(X),

Proof. Using the elementary fact that disc(f a 'Ir) ç 'Ir-ldisc(f), one immediately
obtains that p,(disc(f a 'Ir)) ::; p,('Ir-ldisc(f)) = v(disc(f)) = O. 0

Let CJ1-(X) denote the linear space generated by characteristic functions of p,-
continuity sets on X. Let us call these functions simple (p,-)continuity functions.
Clearly CJ1-(X) ç RJ1-(X),

Proposition 3.2.4. CJ1-(X) is uniformly dense in RJ1-(X),

Proof. Let f be p,-Riemann integrable and w.l.o.g. assume that f takes values in
the interval [0,1). We introduce the level-sets Mt := [0 ::; f < t] and the function

<Pf(t) := P,(Mt).

Since <P f is increasing, it has at most countably many points of discontinuity.
Consider p,({x : f(x) = t}) ::; <pf(r) - <Pf(s) for s < t < r. If <Pf is continuous at
t this implies

sUP<Pf(s) = f(t) = inf<pf(r),
s<t r>t

and so {x : f(x) = t} is a p,-null set for t tf:. disc(<Pf).

Now let x E âMt. If f is continuous at x we have f(x) = t. So

aMt ç disc(f) U {x: f(x) = t}.

The first set on the right-hand side is a p,-null set since f is p,-Riemann integrable
and the second one is a p,-null set at least for each continuity point t of <Pf' So for
all but at most countably many t the set Mt is a p,-continuity set. In particular
the set Nf := {t : p,(âMt) = O} ç [0,1] is dense.

Now we can approximate f uniformly by members of CJ1-(X): Given é > 0 let
n > ~. Pick real numbers {ti}?=o ç Nf with

1 i n-I
to = 0 < tl < - < ... < ti < - < tH 1 < ... < -- < tn = IIf" 00 < 1.n n n
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Let Ai := IvIti \ Mti_1, so If(x) - i~ll < E on Ai for i = 1,2, ... , n. For

n

X E UAi = Ml \ Mo = X
i=l

we conclude
n .

IL ~llAi(X) - f(x)1 < E,

i=l
'-v-"

ECj.L(X)

I.e. 112:~=1*llAi - flloo < E and thus f is in the uniform closure of C{L(X), 0

Lemma 3.2.5. Let X, Y be compact topological spaces, J-la positive regular Borel
measure with supp(J-l) = X, and 7f : X -+ Y a continuous mapping. Let v := 7fOp,
denote the Borel measure on Y defined by v(A) := p,(7f-l(A)). If f is a simple
v-continuity function on Y, then there exists a simple p,-continuity function g of
y such that I = 9 0 7f .

Proof. The mapping f 1---7 I 0 7f is linear, so it suffices to prove the assertion
for characteristic functions. Let f = lIA with a v-continuity set A. Since
p,(â(7f-l A)) ::; (7f 0 p,)(A) = v(A) = 0 we obtain that B := 7f-l(A) is a p,-
continuity set. Thus we can pick 9 = lIB. 0

Lemma 3.2.6. Let f, 9 be J-l-Riemann integrable functions on the compact space
X and J-la positive regular Borel measure with supp(J-l) = X. If fand 9 coincide
on a dense set, then they coincide on the complement of a meager p,-null set.

Proof. It suffices to show that [I #- gJ ç disc(f) U disc(g). To do so, let x be a
point of continuity both for fand g. For any E > 0 we can pick a a neighborhood
U of x such that yEU implies If(y) - I(x)1 < E/2 and Ig(y) - g(x)1 < E/2. Since
[J = gJ is dense there exists y", E Un [J = gJ. We conclude

If(x) - g(x)1 :::;II(x) - f(y",) 1 + Ig(y",) - g(x)1 < E.

Since E > 0 was arbitrary this implies I(x) = g(x). o
Corollary 3.2.7. Let f, 9 be simple J-l-continuity functions on the compact space
X and p, a positive regular Borel measure with supp(J-l) = X. If fand 9 coin-
cide on a dense set, then they coincide on a set of full J-l-measure with non-void
interior.

Proof. There are (possibly after refinement) disjoint p,-continuity sets Al, ... , Ak
such that I = 2:7=1 aillAi and g = 2:7=1 ßillAi' From Lemma 3.2.6 we know
that [J #- gJ is a p,-null set. Thus ai i= ßi for some i = 1, ... k implies that Aï
is a p,-null set. Since the closure of any J-l-continuity null set is again a null set,
UO:dßi Ai is a closed J-l-continuity null set containing [J i= gJ. 0
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3.3 Hartman measurability

Let us now introduce the concept of Hartman measurability for functions defined
on a topological group G:

Definition 3.3.1. A function bounded function f : G ---t <C is Hartman measur-
able iff f can be extended to a Riemann integrable function on the Bohr compact-
ification (Lb,bG), i.e. denoting the normalized Haar measure on bG by Mb, f is
Hartman measurable iff there exists a Riemann integrable function F E RJ.Lb(bG)
such that F 0 Lb. The set of all Hartman measurable functions on G is denoted by
H(G).

Since Lb : F 1--+ F 0 Lb is a linear and multiplicative mapping from the *-algebra
RJ.Lb(bG)onto H(G), the set of Hartman measurable functions on G is also a *-
algebra. Having the implications of Proposition 3.2.1 in mind, we conclude that
H( G) is translation invariant and consists of functions with unique mean-value.
If G is locally compact, then every Hartman measurable function is measurable
with respect to Me, the completion of the Haar measure on G.

For a Boolean set-algebra 3 ç I,p(X) on X let us define

B(X,3) := span{lIA : A E 3} ç B(X)

where the closure is taken w.r.t. the topology of uniform convergence.

Let us denote the Boolean set-algebra of M-continuity sets in bG by b~. Thus
the algebra of Hartman measurable sets on G is Lbl(b~). With this notation
B(bG, b~) is the space of Riemann integrable functions on bG and the space
H(G) of Hartman measurable functions is LbB(bG, b~).

Proposition 3.3.2. Let G be a topological group. Then H(G) = B(G, Lblb~), in
particular H( G) is uniformly closed .

Proof. Obviously span{lIA : A E Lbl(b~)} ç H(G) ç B(G,Lbl(b~)). Since
span{lIA : A E Lbl(b~)} is dense in B(G, Lblb~), it suffices to show that H(G) =
LbB(bG, b~) is uniformly closed. Lb : F 1--+ FOLb is a continuous homomorphism of
the C*-algebra B(bG, b~) into the C*-algebra B(G, Lblb~). By basic C*-algebra
theory its image is closed (Theorem 1.5.5 in [Dav]). D

Remark: Application of Proposition 3.2.1 yields that if a real-valued function f
is Hartman measurable, then for every é > 0 there are almost periodic functions
9E and hE with 9E :::; f :::;hE such that m(hE - 9E) < é for the unique invariant
mean m on A(G).

At least for so called maximally almost periodic (MAP) groups we can reverse
this assertion. Recall that a topological group G is MAP iff for the Bohr com-
pactification (Lb,bG) the morphism Lb : G ---t bG is one-one or, equivalently, iff
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the almost periodic functions A( G) separate the points of G. Since continuous
characters of LCA groups separate points and are almost periodic, every LCA
group is MAP.

Proposition 3.3.3. Let G be a MAP group. For a real-valued function f on G
the following assertions are equivalent:

1. J is Hartman measurable.

2. For every é > 0 there are almost periodic functions gé and hé with
gé ::; J ::; hé such that m( hé - gé) < é for the unique invariant mean m on
A(G).

Proof. Sinee the implication (1) =} (2) follows immediately from the definition
of Hartman measurability and Proposition 3.2.1, we will only prove (2) =} (1).
Suppose for every n E N there exist gn, hn E A( G) with gn ::; f ::; hn and
m(hn - gn) < ~. Let ([" C) be any group compactification on which all gn and
hn may be realized and such that [, : G ~ C is one-one; w.l.o.g. we may take C
to be the Bohr compactification bG of G.

Denote the unique continuous extensions of gn, hn to bG by 9n resp. hn. Accor9ing
to Proposition 3.2.1 every function F on bG satisfying SUPn 9n ::; F ::; infn hn is
Riemann integrable with respect to the Haar measure on bG and any two such
functions differ only on (a subset of) a Mb-null set. Now pick F subject to the
conditions

2. F 0 [,b(g) = f(g) for every 9 E G.

Note that gn = 9n 0 [,b ::; f ::;hn 0 [,b = hn ensures that Condition 1 and Condition
2 are compatible. Sinee [,b is one-one such a function F exists. 0

Let us turn now towards the realizability of Hartman measurable functions. Given
a Hartman measurable function J, we say that F realizes f, if F is a Riemann
integrable function defined on a group compactification ([" C) such that f = F 0 [,.

In this situation we also say that f can be realized on (["C). On the other hand,
if we are given a Riemann integrable function F on some group compactification
([" C) we say that F induces the Hartman measurable function f = F 0 [,.

Proposition 3.3.4. Every Hartman measurable Junction J defined on the group
of integers Z can be realized on a metrizable group compactification ([,f , Cf), i. e.
there exists a Riemann integrable function F E RJ.LC ( Cf) such that f = F 0 [,f .

f
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Proof. If a characteristic function i is Hartman measurable, the set A := [J = 1]
must be a Hartman set in the sense of [FPTW]. By Theorem 4 of [Win] there
exists a metrizable group compactification (tf, Cf) and a continuity set B ç Cf
such that A = t""t(B), so liA = liB 0 'I The same applies if i is a finite linear
combination of such characteristic functions; in this case we have to replace the
metrizable group compactification for A by the supremum (=subdirect product)
of all finitely many involved group compactifications (cf. [BJM]). This supremum
is metrizable because it is a subspace of a finite product of metrizable spaces.

If i = F 0 tb is an arbitrary Hartman measurable function (w.l.o.g. induced by
a Riemann integrable function defined on the Bohr-compactification bG) there
exists a sequence of simple continuity functions Fn uniformly approximating F,
according to Proposition 3.2.4. Let (tn, Cn) be a metrizable group compactifi-
cation on which the function in := Fn 0 tb can be realized. Denote by (tf, Cf)
the supremum of the group compactifications (tn, Cn), n E N. Cf is a subdirect

• product of at most countable many metrizable factors and hence also metrizable.

Let 7r,7rn be the canonical projections bG ~ Cf resp. bG ~ Cn, i.e. 7r 0 tb = tf
and 7rn 0 tb = tn Since (tn, Cn) ~ (t, Cf) each in can be realized on Cf by a
simple fLrcontinuity function Rn (Lemma 3.2.5). So Rn 0 tf = in = Fn 0 tb. Next

we prove that the functions 7r* Rn and Fn coincide on the dense set tbG: 9 E G
implies that

Since 7r* Rn' Fn E CJ.Lb (bG), the set of simple fLb-continuity functions, we may
invoke Corollary 3.2.7 to conclude that 7r* Rn and Fn coincide on an open set
U ç bG with fLb(U) = 1. This is the same as to say that the sequence {Rn}~=l
converges uniformlyon the set V := 7rU. Since 7r is an open mapping, V is open
and has measure fLf(7rU) = fLb(7r-1(7rU)) ;:::fLb(U) = 1.

Thus the sequence {Rn}~=l converges on V ç Cf to a function R which satisfies
R 0 tf = F 0 tb = i. Since V is open with full measure we may extend R as we
wish without adding discontinuities on a set of more than zero fLrmeasure. Since
fLf( disc(Rlv)) = fLb(disc(Flu)) = 0, the function R is Riemann integrable. 0
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Note that we can adopt this proof for an arbitrary topological group C once we
know that every Hartman set can be realized on a metrizable group compacti-
fication. Careful consideration of the proofs of the relevant parts in Theorem 2
in [FPTW] and Theorem 4 in [Win] show that the arguments given there apply
not only to Z but to any LCA group with separable dual. We will give now the
details of these arguments.

There is a unified approach to the theory of Bohr compactifications of LCA
groups (cf. [HR] Theorem 26.12). Bohr compactifications bG of an LCA group C
may either be regarded as the Pontryagin dual of êd, the Pontryagin dual of ê
endowed with the discrete topology, or as a certain subgroup of the product space
fIXEê X( C). Note that X( C) is topologically isomorphic to }R/Z or to Z/nZ.

A group compactification (i, C) of C is called finite resp. countable dimensional
iff (i, C) is equivalent to a supremum (=subdirect product) of finitely resp. count-
ably many group compactifications of the type (X, X( C)). Since each of the spaces
X( C) E {}R/Z,Z/2Z, Z/3Z, ... } is metrizable, we may use the term countable di-
mensional group compactification synonymously to the term metrizable group
compactification. Furthermore we call a group compactification (i, C) injective
iff i is one-one.

Lemma 3.3.5. Let C be an LCA group with separable dual. Then each metriz-
able group compactification (i, C) is covered by an injective and metrizable group
compactification (i, C).

Proof. First we construct a metrizable group compactification (im, Cm) such that
im is one-one. Let A be a dense countable subgroup of ê. Let

Cm:= IIX(C).
XEA

We claim that the continuous homomorphism im : C ---+ Cm defined by 9 1---+

(X(g) )XEA is one-one. Suppose gl =1= g2. The continuous characters separate
points on C, so there exists XO E C such that IXo(gd - X(g2) I = E > O. Pick
X E A such that IX(gi)-XO(gi)1 < E/2 for i = 1,2. Thus IX(gl)-X(g2)1 2:: E/2 > 0,
in particular X(gl) =1= X(g2). Finally we conclude

This proves that im is one-one. Let (i, C) be the supremum of (i, C) and (im, Cm)
Clearly (i, C) 2:: (i, C) and C is metrizable. Furthermore i(g) = i( h) implies both
im(g) = im(h) and i(g) = i(h). Thus i is one-one. 0

Lemma 3.3.6. Let G be an LCA group and T ç C a Hartman measurable
set. For every E > 0 there are Hartman measurable sets Té and Té, realized
on a finite dimensional (and hence metrizable) group compactification, such that
Té ç T ç Té and m(Té \ Té) < E, where m denotes the invariant finitely additive
measure defined on Hartman sets.
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Proof. Theorem 2 in [SchSW] tells us how to approximate an arbitrary Hartman
measurable set by a finite dimensional one: Let M ç bG be a /-Lb-continuity-set
realizing T, i.e. T = iï;I(M). Use the inner regularity of the Haar measure on
bG to find an inner approximation K ç M and /-Lb(M\ K) < e, K compact.

Since the Bohr compactification bG can be regarded as subspace of TIXEc X( G), a
topological base (Bi)iEI of bG is obtained by restricting the standard topological
base (Bi)iEI of the product space TIXEc X(G) to bG. The sets Bi can be chosen
to be finite intersections of sets of the form

This implies that the base (Bi)iEI consists of /-Lb-continuity sets.

We can cover K by finitely many sets of the form Bi n M, i = 1, ... n with
(Bi)iEI. Each set BinM is a /-Lb-continuity set and induces a Hartman measurable
set on G that may be realized on a finite dimensional group compactification
(i, C). The same is true for the finite union K ç U~=l(Bi n M) ç M, so let
Tc := i-I(U~=1 Bi n M). In a similar fashion one constructs Tc using outer
regularity of the Haar measure /-Lb. 0

Lemma 3.3.7. Any Hartman measurable set T on an LCA group G with separa-
ble dual ê can be realized on a metrizable group compactification of G, i. e. there
exists a group compactification (i, C) with C metrizable and a /-Lc-continuity set
M ç C, such that T = i-I(M).

Proof. We follow the lines of Theorem 4 in [Win]. So let T be a Hartman mea-
surable set and {TI/n}~=l' {TI/n}~l sequences of finite dimensional Hartman
measurable sets, approximating T from inside resp. outside. Let (i, C) be the
supremum of all involved, at most countably many, compactifications. This im-
plies that C is metrizable. By Lemma 3.3.5 we can assume w.l.o.g. that (i, C) is
injective as well.

Denote by Mn resp. Mn the /-Lc-continuity sets on C that realize the Hartman
measurable sets TI/n resp. TI/n. Thus Moo := U~=lM~ is open, Moo := n~=l Mn
is closed and i-I(Moo) ç T ç i-I(Moo). Let M := Moo U ic(T). Since iC is one-
one the preimage of M under i coincides with the given Hartman measurable set
T. Furthermore

/-Lc(8M) :::;/-L(Moo\ Moo) = lim /-L(1vr \ Mn) = an-+oo

shows that M is actually a /-Lc-continuity set.

We can now generalize Proposition 3.3.4 and obtain the following

o

Theorem 2. Any Hartman measurable function f on an LCA group G with
separable dual ê can be realized on a metrizable group compactification.
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Proof. Apply Proposition 3.3.4 and Lemma 3.3.7. o

Remark: Note that the class of all LCA groups with countable dual contains all
countable and 1st countable LCA groups.

Sinee Hartman measurable functions on the group G correspond to the Riemann
integrable functions on the compact group bG, Theorem 2 essentially states that
Riemann integrable functions on LCA groups with separable dual always factor
through metrizable groups.

Next we will show that there exists a LCA group G with non-separable dual ê,
such that is a Hartman measurable set T ç G that cannot be obtained via a
metrizable group compactification of G.

Example 3.3.8. Let G = 2'. The dual of the compact group G is the discrete
group ê = 2'*. We may interpret G as the group of all functions f : IR -7 {O, I}
and ê as the group of all functions with finite support f : IR -7 {O, I}; the group
operation is pointwise addition of functions modulo 2. In particular note that
ê is a discrete uncountable group, hence non-separable. Consider the subgroups
GN and GIR\N consisting of all those functions the support of which is a subset of
N resp. IR\ N. Clearly G = GN E9GIR\N. Note that both GN and GIR\N are closed
ILc-null sets.

Let us construct a set A ç GIR\N with the property that Vg E GIR\N, 9 =1= 0
3a E A, b E GIR\N \ A, a, b =1= 0 such that 9 = a + b. To find such a set A pick a
well-ordering {xo: : a < 2'} of GIR\N.

Transfinite induction: Suppose that for all ordinals a < aa we have already
defined a function ß : aa -7 2' such that

{Xo: + xß(o:) : a < aa} n {xß(o:) : a < aa} = 0.

We want to find a ß( aa) such that xß(o:o) tt. {xo: + xß(o:) : a < aa} and xß(o:o) =1=
Xo:o + xß(o:o)' The "exeeptional" set Do:o := {8 : Xä = Xo: + xß(o:) for an a < aa}
has a most aa many elements. Sinee laal < 2' the set {xo: : a < 2'} \ Do:o is not
empty. Define ß(aa) := min ({xo: : a < 2'} \ Do:o). The set {xß(o:) : a < 2'} has
the desired property.

Since GIR\N is a closed ILc-null set, such a set A is a ILc-continuity set and f := llA
is a Hartman measurable function.

Claim: The Hartman measurable function f cannot be realized on any metrizable
compactification of G.

- -Proof. Suppose by contradiction f = f 0 7r with a Riemann integrable function f
defined on the compactification ([" C) and the canonical epimorphism 7r : G -7 C.
7r(G) = C implies that we must have j = llnA and thus llA(X) = llnA(7rX). Sinee
C is metrizable, but G is not, 7r cannot be one-one. Henee ker 7r must contain
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some non trivial gEe. Since e = eN EBeR\N and eN is metrizable kef7r ~ eN
and hence ker 7r must contain an element 9 = g1 EBg2 with g2 =I- O.

Let 9 = g1 + a + b with g1 E eN, a E A, bE elR\N \ A and a, b =I- o.
Case 1: If g1 = a we obtain the following contradiction:

Case 2: If g1 =I- 0, then the support of g1 + b is not contained in :IR \ N and hence
not contained in A. Thus we obtain the following contradiction:

D

3.4 Filters associated with Hartman measurable
functions

By definition every Hartman measurable function <p on the (abelian) group e has
a realization on the Bohr compactification be by a Riemann integrable function
<p*E RJ.Lb (be). The mapping

dcpo : x ~ 1I<p* - Tx<p*lh =11<p* - Tx<P*ldlL,' x E be
be

is continuous on be (cf. [Els], Corollary 2.32). This implies that dcp := dcpo 0 ib is
an almost periodic function on e. Denoting the unique invariant mean on 7-t( e)
by me, we can also write dcp(g) = me(!<P - Tg<pl). It is then tempting to define
F(<p,é):= {g E e: dcp(Tg<p) < é} and denote by F(<p) the filter on e generated
by {F (<p, é) : é > O}.

In the LCA setting, we can apply the tools developed in [Win] to conclude a
functional analogue of Theorem 2 in [Win].

Definition 3.4.1. Let <pE 7-t (e) be realized by <p* on the group compactification
(i, C). <po is called an aperiodic realization of<p iff kerdcpo := {x E C : 11<p* -
Tx<p*lh = O} = {ac}.

Theorem 3. Let<p E 7-t(e) be realized by <p*on the group compactification (i, C).
Then F( <p) ç ti(L,G). Furthermore F( <p) = ti(L,C) if <po is an aperiodic realization.

Proof. Suppose <p= <p*0 i with <p*E RJ.Lc(C) for a group compactification (i, C).
For any set A E F ( <p) there exists é > 0 such that dcp(x) < é im plies x E A.
Using almost periodicity of dcp, i.e. continuity of dcpo, we find a neighborhood
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U E ll(C,Oe) such that dcp.(U) ç [O,E). For every x E ,,-I(U) E Fe we have
dcp(x) < E. Consequently ,,-I(U) ç A E ll(~,e) and hence F(<p) ç ll(~,c).

Suppose that <p*E RJLc(C) is aperiodic, i.e. dcp'(x) = 0 iff x = Oe, the unit in
C. Let A E ll(~,e) be arbitrary; w.l.o.g. we can assume A ~ ,,-I(U) for an open
neighborhood U E ll( C, Oe). Due to the continuity of dcp. and compactness of C
we have dcp'(x) ~ E > 0 for x E C \ UO. This implies ,,({g E G : dcp(g) < E}) ç U
and hence {g E G : dcp(g) < E} ç ,,-I(U) ç A E F(<p). Thus ll(~,e) ç F(<p) and
consequently ll(~,e) = F(<p). 0

Definition 3.4.2. Let<p E 1t(G) and let ('" C) be a group compactification ofG.
A function 'ljJ* E RJLC (C) is called an almost realization of<p iff me(l<p - 'ljJ1) = 0
for'ljJ := 'ljJ* 0" and me the unique invariant mean on 1t( G).

Theorem 4. Every<p E 1t( G) has an aperiodic almost realization on some group
compactification ('" X) . If <p*: X ---+ te is an aperiodic almost realization of <p
then F( <p)= ll(~,x).

Proof. We only have to prove that an aperiodic almost realization exists, the rest
follows from Theorem 3. Let <p*be a realization of <pon X. The reader will easily
check that H := kerdcp. = {x EX: dcp.(x) = O} is a closed subgroup of the
compact abelian group X.

Weil's formula for continuous functions on quotients (Theorem 3.22 in [Eis]) states
that there exists a > 0 such that for every f E C (X)

Ix/H (/,/(S + t)dI'H(t:)dI'X/H(S) ~ "Ix J(u)dl'x(u) (3.1)
v

='/(8)

holds. This implies that the canonical mapping" : C(X) ---+ C(XI H), f ---+ "i
defined by "f(s + H) = IR f(s + t)df.LR(t) satisfies lI"fliI ::;allflk We rescale the
Haar measure on H such that a = 1. Thus we can extend" to a continuous linear
operator U (X) ---+ LI (X IH). Furthermore positivity of " enables us to extend "
to a mapping defined on RJLX (X) in the following way:

According to Proposition 3.2.1 f E RJLx(X) implies that there are gn, hn E C(X)
such that gn ::; f ::; hn and Ilhn- 9nliI ---+ 0 as n ---+ 00. Thus every function f on
XI H satisfying

is in RJLx/H (XI H). Note that f. and rare f.Lwmeasurable and coincide f.Lwa.e..
To define "f we pick any function j satisfying f. ::;j ::;r. Then Weil's formula
(3.1) will still be valid, regardless of the particular choice of the functions gn, hn
and "f.
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Since c.p* is Riemann integrable on X, there exist functions c.pn E C (X) such that
11c.p*- c.pnIiI -+ O. Note that the convergence d'Pn -+ d'P. is even uniform on X:

Using the continuity of Pas a mapping on L1(X) the same argument also shows
that Id.'P. (s + H) - d''PJs + H)I :::; 211c.pn- c.p*lll-+ 0 uniformlyon XI H. Now
suppose d: (s + H) = O. Thus

'P

implies s E H, i.e. s + H = Ox + H E XI H. So Pc.p*is aperiodic.

We show that c.p* being a realization of c.pimplies that Pc.p*is an almost realization
of c.p. By definition t E H iff At := {s EX: c.p*(s + t) = c.p*(s)} has /-Lx-measure
1. Applying Weil's formula (3.1) to the function f = llAt E L1(X) gives

r Pfd/-Lx/H = r PrrAt (s + H)d/-Lx/H(s + H) = r fd/-Lx = 1. (3.2)J~H J~H k
Plugging the definition of Pinto (3.2) we get /-LX/H-a.e. the identity

So for every t E Hand /-LX/H-a.e. s + H we know that the set {u E H
c.p*(s + t + u) =I=- c.p*(s + u)} is a /-Lwnull set. This means

Thus Tsc.p* is constant /-LH-a.e. on H and for /-LX/H almost all s + H we have

Let 7fH : X -+ XI H be the quotient mapping onto the group compactification
(i, XI H). Let 'ljJ* := Pc.p*07fH. Since Pc.p*is Riemann integrable on XI H it follows
by Lemma 3.2.5 that 'ljJ* is Riemann integrable on X. Weil's formula (3.1),
together with the fact that the Haar measure on the quotient X IH is given by
/-LX/H = 7fj/ 0 /-Lx, implies 'ljJ* = c.p* /-Lx-a.e. Thus the function 'ljJ defined by

'ljJ := 'ljJ* 0 /, = Pc.p*0 i

satisfies me(lc.p - 'ljJ1)= 1Ic.p*- 'ljJ*lll= 0 for the unique invariant mean me. Thus
'ljJ* is the required almost realization of c.p. 0

Corollary 3.4.3. Every c.p E A( G) has an aperiodic realization on some group
compactification (/" X) .
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Proof. We use the notation from Theorem 4. If <pis almost periodic then <p*is
continuous. Consequently D<p* and 'IjJ* := D<p* 07r are also continuous. Since these
functions coincide /-lx-a.e. they coincide everywhere on X. This implies that <p*
is constant on H -cosets and D<p* (s + H) = <p*(s) for all s + HEX IH. So <p*is
even a realization of <p, not only an almost realization. 0

This Corollary is a special case of F0lner's "Main Theorem for Almost Periodic
Functions" in [F01].

Remark: Note that for any given realization of a Hartman measurable function
<p E H( C) on a group compactification (i, C) we can w.l.o.g. assume that there
exists an aperiodic almost realization of <p on a group compactification (i,6)
with (i,6) :::;(i, C). Since we have shown in Theorem 2 that every Hartman
measurable function on an LCA group with separable dual has a realization on a
metrizable group compactification, every Hartman measurable function on such a
group has an aperiodic almost realization on a metrizable group compactification.

Definition 3.4.4. Let C be an LCA group and r a subgroup of ê. The induced
group compactification (ir, Xr) is defined via

Xr := {(X(g))XEr : g E C}:::; II CX,
xEr(cp)

C ~ { 'JI' if ord(x) = 00,
x ZlnZ if ord(x) = n.

Lemma 3.4.5. Let C be an LCA group and let (i, C) a group compactification.
Then there exists a unique subgroup r :::;ê such that (ir, Xr) and (i, C) are
equivalent. Furthermore (i, C) is the supremum of all group compactifications
(iI" Xl') such that (iI" Xl') :::; (i, C) (writing in short (iI" Xl') for (i(l')' X(-y})).

The mapping (i, C) 1---7 r is a bijection between equivalence classes of group com-
pactifications of C and subgroups of ê.

Proof. See Theorem 26.13 in [HR]. o
Corollary 3.4.6. Let<p E H(C). Any two group compactifications (iI, Cl) and
(i2, C2) on which <phas an aperiodic almost realization are equivalent.

Proof. By Theorem 3 we have ll(q,cl) = :F(<p) = ll(L2,C2)' A straight forward
adaption of Theorem 1in [Win] implies that the mapping

coincides with the composition of the mappings

~ : (ib, bC) ~ (i, C) 1---7 ll(L,C),

W : S:P(C) ;2:F 1---7 {, E ê: ,(:F) -7 a}.
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Since Lemma 3.4.5 states that <P = W 0 ~ is invertible, ~ must be one-one. In
particular ll(q ,CI) = 1l(~2,c2) implies that (il, Cd and (i2, C2) are equivalent group
compactifications. 0

For the rest of this section assume that 0 is an LCA group with separable dual.

Corollary 3.4.7. Every filter :F(<p) with<p E H(O) coincides with a filter ll(~,c)
for a metrizable group compactification (i, C). If <p*is an arbitrary realization of
<p,sayan the Bohr compactification bO, we can take X rv bO / ker d'Po.

Corollary 3.4.8. Hartman measurable functions induce exactly the filters coming
from metrizable group compactifications.

Proof. In Theorem 3 in [Win] for every metrizable group compactification (i, C)
of the integers 0 = Z, an aperiodic Hartman periodic function of the form f = llA
is constructed. The same construction can be done in an arbitrary LeA group 0
as long as the dual ê: contains a countable and dense subset. This shows that any
ll(~,c)with metrizable C can be obtained already by an Hartman measurable set,
i.e. by a filter :F(<p)with <p= llA. As we have shown in Theorem 2 any Hartman
measurable function on 0 can be realized on a metrizable group compactification.
Thus Theorem 3 implies that no filter :F( <p) can coincide with ll(~,c)for a non
metrizable group compactification (i, C). 0

3.5 Subgroups associated with Hartman mea-
surable functions

For Hartman measurable <plet us denote by r(<p)the (countable) subgroup of ê:
generated by the set

spec <p:= {X E ê: : mc(<p' xJ =1= a}

of all characters with non vanishing Fourier coefficients. We will prove that
r = r(<p)determines a group compactification (ir, XI') such that <pcan be realized
aperiodically on XI'. First we deal with almost periodic functions:

Proposition 3.5.1. Let (i, X) be a group compactification of the LCA group 0
and let r be a subgroup of ê:. If every character X E r has a representation X =
Tl0 i with a continuous character TlEX, then every function f E span r ç A( 0)
has a realization on (i, X).

Proof. This is essentially a reformulation of Theorem 5.7 in [Bur]. In fact the
Stone- Weierstrass Theorem implies that span r = i*C(X). 0

If r = r(<p)for some <pE A( 0), we want to show that <pE span r(<p),i.e. that
the almost periodic function <p can be realized on X.
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Proposition 3.5.2. Let cp E A(G) and (£,r,Xr) the group compactification ofG
induced by the subgroup f = f( cp) ~ ê. Then for every continuous character
XE r(cp) there exists a continuous character TJ E Xr such that X = TJ a £'r.

Proof. The compact group Xr is by definition topologically isomorphic with

{(X(g))XEr(cp) : 9 E G} ~ IICx,
xEr

{
'JI' if ord(x) = 00,

Cx f"V Z/nZ if ord(x) = n.

For each XO E r(cp) the restriction of the projection

7fxo: II Cx ---+ Cxo
xEf(cp)

to Xr is a continuous character. Thus 7fxolXr is an element of Z and XO
7fxoIXr0£'r. 0

Proposition 3.5.3. Let cp E A(G) and let (£,r, Xr) be a group compactification
of G such that cp can be realized by a continuous function cp* : Xr ---+ ce. Then
each continuous character X E f( cp) has a representation X = TJ a £'r with TJ E Xr.

Proof. Obviously it is enough to prove the assertion for a generating subset of
f(cp). Let X E ê be such that mc(cp . X) ~ O. Define a linear functional mx :
C(Xr) ---+ ce via 'Ij; f-7 mx('Ij;) = me(('Ij; a £,r)' X) for'lj; E C(Xr). It is routine to
check that mx is bounded, in fact IlmxII ~ 1. Since Xr is compact the complex-
valued mapping ij : Xr f-7 mx(Txcp*) is continuous on Xr (the mapping x f-7 TxCP
is continuous). For g E G we compute

mc( (T~dg)CP*a £,r) . X) = mc( Tg(cp* a £,r) . X)
mc((cp* a £,r). LgX) = mc((cp* a £,r)' X(g)X)
x(g)mx(cp*) = X(g)ij(O).

Since ij(O) = mx(cp*) = mc(cp, X) ~ 0 we can define TJ := ij(O)-lij. The mapping
TJ : Cr ---+ 'JI' is continuous and satisfies the functional equation

on the dense set £'r( G). Hence TJ is a bounded character and TJ a £'r = X. 0

Corollary 3.5.4. Let cp E 1i(G) be realized by cp* on the group compactification
(£,r,Xr). Then each X E f(cp) has a representation X = TJ a £'r with TJ E Xr.

Proof. For every X E ê with me( cp' X) = 0: ~ 0 we can pick a continuous function
'Ij;* : Cr ---+ ce such that II'1j;*- cplii < 10:1/2. Then'lj; := 'Ij;* a £'r satisfies

Imc(cp, X) - mc('Ij; . x)1 ~ mc(lcp - 'lj;1)~ II'1j;*- cp*11I< 10:1/2.

In particular mc('Ij;.x) ~ O. Applying Proposition 3.5.3 to the function 'Ij; E A(G)
yields tImt the character X can be realized on Xr. 0
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For an almost periodic function <P the subgroup f( <p) contains all the relevant
information not only to reconstruct <P from its Fourier-data but also describes
a minimal group compactification on which a realization of <P exists. It is not
obvious how to obtain similar results for non almost periodic Hartman measurable
functions. The following example illustrates how the straight forward approach
breaks down.

Example 3.5.5. Let <Pn(k) := n7=1 cos2 (271" ~) on G = Z. As each factor in this
product is periodic (hence almost periodic) and A( G) is closed under multiplica-
tion, each <Pnis an almost periodic function. As we will show in Proposition 3.7.4
limn-+oo<Pn(x) =: <p(x) exists and defines a non negative Hartman measurable
function with mz( <p)= O. Since f( <Pn) ~ Z/3nZ

for the Prüfer 3-group Z3 (i.e. the subgroup of all complex 3n-th roots of unity
for n E N). On the other hand

f( lim <Pn)= {O}.n-+oo

Thus f(1imn-+oo <Pn) =llimn-+oo r(<Pn).

Proposition 3.5.6. Let {Kn}~=1 denote the family of Fejér kernels on 'Irk. The
convolution operators on LI ('Irk) defined by

are non negative, their norm is uniformly bounded by lIanll = 1 and an<p(x) ~
<p(x) a.e. for every <PE L1('Irk). Furthermore an<p E span f(<p) for every nE N.

Proof. This is a reformulation of the results form 44.51 in [HR]. D

Let f be Riemann integrable on X = 'Irk, w.l.o.g. real-valued, and <Pi,'!/JiE C(X)
such that <Pi ~ f ~ '!/Ji and II<pi - '!/Jilh < Ci for a sequence {ci}~1 of positive
real numbers, tending monotonically to O. We know that anf(x) ~ f(x) for a.e.
xE X. Thus we have

and

Let <p* := infnEN <Pnand '!/J* := sUPnEN'!/Jn' If we assume w.l.o.g. '!/Jn to increase
and <pn to decrease as n ~ 00, the same will hold for '!/J~and <p~. This implies
that in the inequality

<p*(x) = lim <p~(x) ~ limsup anf ~ lim inf anf ~ lim '!/J~(x) = '!/J*(x)
n---+oo n---+oo n---+oo n---+oo
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equality holds /-lx-a.e. on X. Thus we can apply Proposition 3.2.1 and conclude
that any function 1* with r.p* 2:: 1* 2:: 'IjJ* is Riemann integrable (and coincides /-lx-
a.e. with 1). In particular r := lim sUPn-->oo(Tnf and f. := lim infn-->oo(Tnf are
(lower resp. upper semicontinuous) Riemann integrable functions that coincide
/-lx-a.e. with f.
We have use countable dimensional group compactifications already in chapter 2.
Let us call a group compactification (t, C) finite dimensional iff C is topologically
isomorphic to a closed subgroup of 'Irn for some n E N. Note that if (t, C) is
finite dimensional, then every group compactification covered by (t, C) is finite
dimensional as well. A Hartman measurable function r.p E H( G) can be realized
finite dimensionally iff there exists a realization of r.p on some finite dimensional
group compactification.

Proposition 3.5.7. For a compact LeA group C the following assertions are
equivalent:

1. C is finite dimensional,

2. ê is finitely generated,

3. C is topological isomorphic to 'Irk x F for kEN and a finite group F of the
form

N

F = ITC::ZjniZ)Pi, Pi przme.
i=l

Proof. (I):::} (2): Suppose C is a closed subgroup of 'Irn. By Pontryagin's duality
Theorem ê rv j;; j Ann( C) rv zn j Ann( C). Since zn is a finitely generated abelian
group and the class of finitely generated abelian groups is closed under taking
quotients, this implies (2).

(2) :::} (3): Theorem A.27 in [HR] implies that ê is of the form Zk x F, with
kEN and F finite of the postulated form. Invoking again Pontryagin duality,
we conclude C ~ (Zk x Fr rv 'Irk X F.

(3) :::} (1): Let m := 2:[:1 Pi. Clearly 'Irk x n[:l (ZjniZ)Pi is topologically
isomorphic to a closed subgroup of Tk+m. 0

Proposition 3.5.8. Let r.p E H( G). If r.p can be realized finite dimensionally, then
there is an almost realization of r.p on the (finite dimensional) compactification
induced by r := r(r.p).

Proof. Let r.p be realized finite dimensionally on some group compactification
(t, C). Since there exists a group compactification covered by (t, C), on which
r.p can be almost realized aperiodically (cf. Theorem 4), we can assume w.l.o.g.
that r.p can realized aperiodically already on (t, C). We have to show that (t, C)
and (tr, Xr) are equivalent.
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Let 'IjJ* be an aperiodic almost realization of<p on Xr rv 1['k X F with kEN and
F finite. Let us denote the elements of Tk x F by tupels (â, x). For every fixed
â E 1['k define a mapping 'ljJët: F ~ IR via

'ljJ~(x) := 'ljJ*(â, x).

For each X E P, the dual of the finite group F, define the F-Fourier coefficient
of 'ljJ~ as

cx(â) := 1'ljJ~(x)x(x)dx = #lF L 'ljJ*(â; x)x(x) E cc.
F xEF

is a Riemann integrable function defined on 1['k:

For every x E F the mapping 'Yx : 1['k ~ X defined via â 1---+ (â; x) is continuous
and measure-preserving. 'ljJ* is, by definition, Riemann integrable. Thus for each
xE F the mapping 'ljJ* 0'Yx : 1['k ~ C is Riemann integrable (cf. [EIs]). Note that

cx(â) = L('ljJ* ° ix)(â)X(x) .
xEF

Hence for each fixed character X E P the mapping Cx : 1['k ~ C defined via
cx(â) 1---+ L.xEF('ljJ* ° 'Yx)(â)X(x) is Riemann integrable on 1['k. Thus Proposition
3.5.6 implies O"ncx(â) ~ cx(â) a.e. on 1['k. Taking into account that the Haar
measure on F is the normalized counting measure, we get

for almost every â E 1['k and every x E F, as n ~ 00. Since Haar measure /-te on C
is the product measure of the Haar measures on 1['k and F, (3.5) holds /-te-a.e. on
C. /-tx-a.e. on X. Thus we conclude that any function majorizing lim infn---+oo'ljJ~
and minorizing lim sUPn->oo'ljJ~ is an almost realization of <p. Note that according
to the properties of the Fejér kernels on 1['k (see 44.51 in [HR]) for each character
(If x X)(â; x) := If(â)X(x), If E ik and X E P, there exists an no E N such that
for n 2 no in the Fourier expansion of 'ljJ~ the X-Fourier coefficient associated
with the character does not vanish iff the 1['k-Fourier coefficient

Cry(cx) = r cx(â)fj(â)dâJ1fk
does not vanish. A simple computation shows that the X - Fourier coefficients of
'ljJ* are given by

r r 'ljJ*(â, x)fj(â)X(x)dâdxJ1fk J F

r cx(â)fj(â)dâ = c71(CX)J1fk
So the character If x X contributes to the X-Fourier expansion of 'ljJ* if and only
if Cryxx('ljJ) =I- O. Thus 'ljJ~ E span f(<p) for every n E N, implying that there
exist almost realizations of <p on the group compactification induced by f(<p), e.g.
lim infn---+oo'ljJ~ or lim sUPn---+oo'ljJ~. 0
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Combining this result with the results of the previous section we obtain

Theorem 5. Let <P E H (G) and f = f (<p)::;ê. The following assertions hold:

1. (Lr, X r) ::; (L, C) for every compactification (L, C) on which <P can be realized.
In particular F( <p)ç U(Lr,Xr)'

2. Assume that <P E A( G) or that <P can be realized finite dimensionally. Then
<P can be realized aperiodically on Xr. In particular F(<p) = U(Lr,Xr)'

We strongly conjecture that the second assertion in Theorem 5 holds for any
Hartman measurable function, at least on LCA groups G with separable dual ê.
A proof of this might utilize more general summation methods (in the flavour of
Theorems 44.43 and 44.47 in [HR]) than the Fejér summation presented here.

In [Win] it is shown that for any Hartman measurable set M ç G = Il and the
induced filter F = F(M) there is an aperiodic realization of <PM = JIM on the
compactification determined by the subgroup Sub(M) = {et : F-limnlnetJ = O}
or, equivalently, Sub(M) = {et: F-limn e2rrino: = I}.

Together with Theorem 5 this implies that for Hartman sets M with finite dimen-
sional realization both the group compactifications of Il induced by the subgroups
f(<PM) and Sub(M) admit aperiodic realizations of <PM. Hence uniqueness (up
to equivalence) of the minimal compactification admitting an aperiodic almost
realization of <P (Corollary 3.4.6) implies that in this situation f( <PM) = Sub( M)
holds. In the general situation we can prove the following

Proposition 3.5.9. For a Hartman measurable function <P E H(G) let F =
F(<p), f = f(<p) andSub(<p) = {X E ê: F-limgx(g) = le}. Thenf(<p):::; Sub(<p).

Proof. Suppose X E f(<p). To prove F-limg X(g) = Ie (unit element of the
multiplicative group of complex numbers) we have to show that for every é > 0
the set {g E G : 11 - X(g) I < é} belongs to the filter F( <p), i.e. that there exists
()= {)(é) > 0 such that

{g E G: me(ITg<p - <pI) < 6} ç {g E G: 11- x(g)1 < é} E F(<p). (3.3)

Using the fact that me is an invariant mean and that X is a homomorphism, we
can do the following calculation:

Using Ilxlloo = 1 this further implies

Since me(<P' X) =I- 0 we can define () := é' ml~~(:;~1)> O. With this choice of ()
indeed me(ITg<p - <pI) < ()implies 11 - x(g)1 < é, i.e. (3.3) holds. D
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3.6 Generalized jump discontinuities

The first part of this section is devoted to the study of a certain type of discon-
tinuities and its connection to Riemann integrability.

3.6.1 Riemann integrable functions with(out) a g.j.d.

Definition 3.6.1. A function f : X --t te on a topological space X has a gener-
alized jump discontinuity (g.j.d.) at x E X iff there exist open sets 01 and O2,
such that x E 01 n O2 but f( 01) n f( O2) = 0.

Note that this is the same as to say that the sets f( 01) and f( O2) are separated
or, equivalent, dist(f(Od, f(02)) > a for the standard metric on IR.

A few examples concerning generalized jump discontinuities:

1. The function f1(x) = 1I[O,4)(x)on X = [0,1] has a g.j.d. at x = ~. On the
other hand the function f2(x) = lIg}(x) has no g.j.d.

2. Generalizing the previous example: The characteristic function of a conti-
nuity set A such that both A and AC have non-void interior has g.j.d.s at
the common boundary of the interiors.

3. The function
f(x) = { sOin(~) x > 0,x=o

defined on X = [0,1] has a g.j.d. at O. To see this, consider the open sets
01 := f-1((1/2, 1]) and O2 := f-1([-1, -1/2)) .

4. If f is constant {t-a.e. on X and supp({t) = X, then f has no g.j.d. in X.
The argument goes as follows: For c E te the fact {t([J =1= cl) = a implies
that set [J = c] is dense in X. Thus c E f(Ol) n f(02) for any non-void
open sets 01 and O2.

Proposition 3.6.2. Let X be a topological space. The set J(X) of all functions
having a g.j.d. is open in B(X) w.r.t. the topology of uniform convergence.

Proof. Let f E J(X) have a g.j.d. at x E X. Thus there exist disjoint non-
void open sets 01 and O2 with a01 n a02 =1= 0 but f(Ol) n f(02) = 0. Let
c := dist(f(Ol)' f(02)) > a and suppose g E B(X) is such that Ilf - glloo :::;c/S.
Then

Idist(g(Od,g(02)) - dist(f(Od,f(02))I:::; c/2.

This implies dist(g(Ol), g(02)) ~ c/2 > 0, i.e. g has a g.j.d. at x E X. 0

35



•

Lemma 3.6.3. Let f, 9 be j-t-Riemann integrable functions on the compact space
X and j-t a positive regular Borel measure with supp(j-t) = X. If f has a g.j.d. at
x and f = g j-t-a.e. on X, then 9 has a g.j.d. at x.

Proof. Choose 01 and O2 according to the definition of a g.j.d. for f at x. Since
fand g coincide j-t-a.e. they coincide on a dense set of continuity points. Thus
for every open neighborhood U of x we can pick xf ç Un Oi, which is both a
point of continuity for fand 9 and such that f(xf) = g(xf), i = 1,2. Now pick
open neighborhoods OY of xf such that OY ç U n Oi and

diam(g(Of)) < ~ dist(f(Od, f(02)), i = 1,2.

Let Ui:= UUEU(X)OY, for i = 1,2. The U1,U2 are open sets with

Furthermore we have xf E Ui for all U E ll(x) ,i = 1,2. Thus x E U1 nU2. Henee
x is a g.j.d. for g. 0

Proposition 3.6.4. Let f be a j-t-Riemann integrable function on the compact
metric space X and j-t a positive regular Borel measure with supp(j-t) = X. If f
has no g.j.d., then there is a unique continuous function fr, the regularization of
f, such that fand fr coincide on X \ disc(f).

Proof. Note that the regularization fr is uniquely determined by the requirement
that fr is continuous and fr(x) = f(x) for x tf. disc(f).

Let d be compatible metric on X. Let x E disc(f). For each y E X \ disc(f)
there is Cy > 0 such that f(K(y, Cy)) has diameter less than d(x, y). Let Vn :=
K(x, ~) \ disc(f). So x E On for each of the open sets On := UYEVn K(y, cy),
n E N. We are going to show that A := n~=lf(On) ç C consists of exactly one
point .

A is non-void thanks to the finite intersection property of the compact sets
f(On), n E N. Suppose by contradiction that A contains two distinct points
À1 =1= À2. Thus there are sequences {X~)}~=l ç X such that x~) E On and

lim XCi) = Xn ,
n-->oo

lim f(x~)) = Ài, for i = 1,2.
n-->oo

For arbitrary 7]> 0 and x' E K(x~), C (i») we have
Xn

If(x') - Àil :S; If(x') - f(x~))1 + If(x~)) - Àil < d(x, x~)) + If(x~)) - Àil < 27]

whenever n = n(7]) is large enough i = 1,2. Let N := n(IÀ1 - À21/2) and

O(i) = U K(x~),c (i»), for i = 1,2.
Xn

n?N
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01 and O2 are disjoint open sets with x E 0(1) n 0(2) and f(O(l») n f(0(2») = 0.
Hence x is a g.j.d. for f; contradiction.

Define fr (x) to be the unique point in the intersection n~=lf (On). We claim that
fr is continuous. Suppose again by contradiction that x is a point of discontinuity
for fr. Since X is metrizable there are sequences {x~)} ~=1 ç X such that

lim X(i) = Xn ,n->oo

for i = 1,2 and (1 =I- (2. W.l.o.g we can assume x~) E On, hence we can repeat
the argument given above and x E X would be a g.j .d. for f; contradiction. 0

Remark: Note that for a function f without g.j.d.s we have

Ilfrlloo = sup Ifr(x)1 = sup Ifr(x)1 = sup If(x)l:S sup If(x)1 = Ilflloo.
xEX xEx\disc(f) xEx\disc(f) xEX

Thus the mapping f I---t fr is continuous (w.r.t. the topology of uniform conver-
gence) on its domain of definition.

Corollary 3.6.5. Let f be a J-L-Riemann integrable function on the compact met-
ric space X and J-La positive regular Borel measure with supp(J-L) = X. The
following assertions are equivalent:

1. There exists a function g E C(X) such that [j =I- g] is a meager J-L-null set.

2. f has no g.j. d.

Proof. (I):::} (2): Suppose f has a g.j.d. at x. Pick open sets 01 and O2 according
to the definition of a g.j .d. and pick two sequences {x~)} ~=1 ç Oi n [f = g] such
that limn->oox~) = x, for i = 1,2. Thus we obtain the contradiction

(2) :::} (1):Apply Proposition 3.6.4 and Lemma 3.6.3.

3.6.2 Hartman measurable functions with(out) a g.j.d.

o

As an application of the previous section we use the concept of generalized jump
discontinuities to discuss the connections between Hartman measurability and
weakly almost periodicity.

For our next main result we need the (easy implication of) Grothendieck's Double
Limit Criterion for weakly almost periodic functions (cf. [BJM]).
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Recall that (iw, wG) denotes the w.a.p.-compactification of G. The mapping
i:n : C (wG) -7 C (G) defined via i:n : f 1-+ f 0 iw is an isometry onto W( G),
the space of weakly almost periodic (w.a.p.) functions on G. This definition
of weakly almost periodicity is equivalent to the classical notion of Eberlein. By
Grothendieck's Double Limit Criterion a bounded continuous function f :G -7 te
is weakly almost periodic iff

lim lim f(xnYm)
m--tOO n-+oo

(3.4)

•

for all sequences {Xn}~=l' {Ym}~=l ç G such that the two invoked limits exist.

Claim: f E W( G) implies that (3.4) holds.

Proof. Since f is w.a.p. the translation orbit 0(1) = {Tgf : g E G} is condition-
ally compact W.r.t. the weak topology on Cb(G). We need (a) Eberlein's Theorem
which states that in the Banach space Cb( G) weak compactness is equivalent to
weak sequential compactness and (b) the Banach-Alaoglu Theorem which states
that the unit ball in Cb( G)' is weak- *-compact. Since all the relevant limits exists
we can assume w.l.o.g. that Txnf -7 g weakly for a function g E Cb(G) and
that 0Ym -7 <p weak-* for a functional <p E Cb(G)'. As usual Txnf denotes the
function defined by Txf : y 1-+ f(xy) and 0Ym denotes the functional defined by
oY : f 1-+ f(y). Thus

LHS of (3.4) lim lim 0Ym(Txnf) = lim <p(Txnf) = <p(g)
n~<x> m-too n--+oo

lim 0Ym(g) = lim lim 0Ym(Txnf) = RHS of (3.4).
m-+oo m-+oo n-+oo

o
Theorem 6. Let G be a topological group and let f E 1t(G) be a Hartman mea-
surable function on G that can be realized on a metrizable group compactification
(i, C). If there exists a realization F E RJ.Lc(C) of f in C, such that disc(F)
contains a g.j. d., then f is not weakly almost periodic.

Note that according to Theorem 2 for an LCA group with separable dual every
Hartman measurable function has a realization on a metrizable group compacti-
fication.

Proof. Let d(.,.) be a translation-invariant metric on C ( such a metric exists,
Theorem 8.6 in [HR]). Assume that ç E C is a g.j.d. for F and let 01 and O2 be as
in the definition of a g.j .d. Since i( G) is dense we find a sequence {iyd k=l ç O2

converging to ç. Since O2 is open we can find a decreasing sequence of positive
real numbers {ad ~1' such that the open ball with radius ak and center iYk still
is in O2. Now choose a sequence {iXn}~l ç 01 converging to ç in such a way
that d(iXn, ç) ::; am/3. So for n > k we have

d(iXn, iXk) ::; 2/3. ak < ak.
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This construction guarantees that LYk . LXn . LX;l E O2 for n > k. Now let
Zk := X;l . Yk. Since LZk tends to zero for k ~ 00, for each fixed X E 01 the
sequence {x'Lzdk=l stays eventually in 01. We may pass over to any subsequence
{Zkl} ~l without losing this property.

On the other hand for each k the sequence {LXn' Lzd~=l = {LXn' LX;l }~=l' LYk is in
O2 whenever n > k. Thus for each k the sequence of real numbers {I(xn' Zk) }~=l
has an accumulation point in 1(02), By a routine diagonalization argument we
find a subsequence such that {I(xnm • Zk)}~=l converges for each fixed k. Doing
the same again, but now for the other index, we find that

(3.5)

By passing over to convergent subsequences again, we not only preserve conver-
gence of the iterated limit (3.5) but also get symmetrically

(3.6)

Suppose by contradiction that 1 is weakly almost periodic. Grothendieck's Dou-
ble Limit Criterion implies that both the iterated limits (3.5) and (3.6) coincide.
Since 1(01) is separated from 1(02), this cannot be true. Thus 1 tj. W(G). 0

Let us call a LCA group H-rich if there is a function defined on G which is
Hartman measurable but not weakly almost periodic.

Corollary 3.6.6. Each LCA group with separable dual is H-rich.

Proof. Let (L, C) be an injective and metrizable group compactification of G. By
Theorem 6 it suffices to find two disjoint J.Lc-continuity sets 01 and O2 with non-
void interior and a common boundary-point ç and consider the function 1= liai'
i = 1,2. Then ç is a g.j.d. for 1 and thus by Theorem 6 1 E H(G) \ W(G).

Let d(.,.) be a compatible metric on C. In the following we use the fact that
for every X E C there are open balls K(x, r) with center X and arbitrarily small
radius r > 0 that are J.Lc-continuity sets (cf. Example 1.3, 175 p. in [KN], or an
argument similar to the proof of our Proposition 3.2.4).

Let X E C be arbitrary. We define two sequences of disjoint open J.Lc-continuity
sets {O~l)}~=l and {0~2)}~l by induction: Suppose we have already defined

(1) (1) (2) (2)01 , ... , On and 01 , ... , On such that

Let r < mini,j {dist(OY), x)} and take Xl, X2 E K(x, r). Pick p < minH, 2nl+1}

and such that O~~l := Up(Xi) are J.Lc-continuity sets of J.Lc-measure less than 2n~1'
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Letting ai := U~l O;i),i = 1,2 we obtain two disjoint open sets. It is easy to

check that aOi = {x} U U~=lao~), i = 1, 2. So 01 and O2 are JLc-continuity
sets with x E aal n a02. Thus x is a g.j.d. of f = lIo! (or f = lIo2) and
f E 1t(C) \ W(C). 0

For the sake of completeness we present a more direct approach to construct
examples of functions f E 1t( C) \ W( C) for an LCA group C. We will heavily use
LCA structure theory (as a standard reference we refer to the monograph [Arm]).
Note that if a group H is 1t-rich and there is a continuous homomorphism from
C onto H, then C is also 1t-rich. As in Corollary 3.6.6 this essentially boils
down to finding two disjoint continuity sets with non-void interior and a common
boundary point.

Example 3.6.7. If C admits a continuous character X with infinite range - a
moment's reflections shows that this is equivalent to ê being not a torsion group
- we can take two disjoint continuity sets with non-void interior and a common
boundary point on 1I' (which certainly exist) and transfer them via x-Ion C.

Example 3.6.8. Let Z(p) denote the factor group Z/pZ. We consider the (dis-
crete) weak direct product

*IT Z(p).
iEI

The character group of C is topologically isomorphic to the (compact) direct
product

ê = IT Z(n).
iEI

Obviously every X(g) E 1I' with 9 E C, X E ê is a n-th root of unity. Therefore
X( C) is finite and the construction of the previous example won't work here.

Let p=2. We can identify every member of C with a function x : W -t {a, 1}
having finite support, i.e. C rv 2<w. Equivalently we can identify every member
of C with a finite 0-1 sequence.

Now consider the group compactification of C given by the natural embedding
l, : 2<w -t 2W

• Let

M := {x E 2w
: 3k E w such that Xk = Xk+1 = 1}.

M is the union of dopen sets Ak := {x E 2w : Xk = Xk+1 = 1} and hence is
open itself. Since M is invariant under the unilateral shift, which is an ergodic
transformation on 2w, and since M is of positive measure we have JL( M) = 1.
Thus M is a continuity set.

Ao := {x : x(a) = a} and Al := {x: x(a) = 1} forms a partition of ê into dopen
sets and l,-I(Ao n M), cl(AI n M) are the desired disjoint continuity sets with
non-void interior and common boundary point on C.
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For p > 2 the same ideas apply to the set

{x : 3k E W, 3j =I 0 such that Xk = Xk+1 = j}.

In a similar fashion one can construct examples when the underlying group is
a weak direct product of the form n:E! Z(ni) with bounded factors. To do so,
note that one of the sets J (n) = {i E J : ni = n} is infinite. Hence G can be
decomposed into a product

* *IIZ (2) x ... x II Z (N)
iE!(2) iE!(N)

with one factor isomorphic to a weak direct product for which we have already
constructed suitable sets.

Lemma 3.6.9. Each non-compact discrete LeA group G is [{-rich.

Proof. If the dual ê is not a torsion group, then Example 3.6.7 shows that G
is [{-rich. If the dual ê is a torsion group, ê is even a compact torsion group
and hence of the form niE! Z(ni) with bounded ni and infinite index set J. By
duality G is topologically isomorphic to the corresponding weak direct product
and hence (the last part of) Example 3.6.8 shows that G is [{-rich. 0

Theorem 7. Each non-compact LeA group G is [{-rich.

Proof. Suppose G (or one of its subgroups) is non-compact but compactly gen-
erated. Then G rv ]Rn X 2m X K where K is compact and n, mEN are not both
O. In either case there is a subgroup admitting a character with infinite range,
extending this character to G we can use Example 3.6.7.

Suppose neither G nor one of its non-compact subgroups is compactly generated.
This implies that for any compact set C ç G the enveloping closed subgroup
(C) is again compact and distinct from G. Let us call such a group hereditarily
non-compactly generated. We will show that every hereditarily non-compactly
generated group is "large enough" to be [{-rich.

By Theorem 5.14 in [HR] there exists a compact open subgroup H ç G, which is
in our situation necessarily distinct from G. So the LCA group G/ H is discrete.
If this quotient is non-compact we are done, because Lemma 3.6.9 tells us that
any such LCA group is [{-rich. If on the other hand this quotient is compact it
must be finite. So G is the union of finitely many compact residue classes and
therefore also compact, which is a contradiction to our assumption. 0

The converse problem, namely to find weakly almost periodic functions that are
not Hartman measurable seems to be harder. So we content ourselves with the
special case G = 71... The key ingredient for our example are ergodic sequences.
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These sequences were extensively studied by Rosenblatt and Wierdl in their paper
[RW]. Also in the context of Hartman measurability ergodic sequences were
already mentioned in [SchSW].

Example 3.6.10. Ergodic sequences: It is known (Theorem 11 and Examples
in [SchSW]) that ergodic sequences such as (Ikllog Ikl)kEZ cannot be Hartman
measurable. On the other hand 0-1 sequences with the property that the length
between consecutive Is tends to infinity while the length of consecutive Os stays
bounded are weakly almost periodic (Theorem 4.2 in [BiH]). Thus £ ç W(Z) \
1t(Z) for the class £ of characteristic functions of ergodic sequences on Z.

Question 1:Can this example be modified for general LCA groups?

Theorem 6 motivates us to further investigate Hartman measurable functions
without g.j.d.s. First we show that the property of having g.j.d.s does not depend
on the special realization of a Hartman measurable function.

Proposition 3.6.11. Let f be a Hartman measurable function on G, realized
both by FI and F2 on the group compactifications ("I, Cl) resp. ("2, C2). If FI has
a g.j.d., then F2 also has a g.j.d.

Proof. Let x be a g.j .d. for Fl' First suppose ("l, Cl) ~ ("2, C2), i.e. there is a
continuous epimorphism 7f : Cl -t C2 with "2 = 7f° "I and f = FI ° "I = F2 ° "2.

Cl/~~
G "2. C2 F2 • te.

Thus FI and F2 ° 7f coincide on "1(G). Hence Lemma 3.6.3.1 implies that FI =
F207f ILI-a.e. and Lemma 3.6.3.2 implies that F207f has a g.j.d. at x whenever FI
has a g.j.d. at x. Pick disjoint open sets 01, O2 ç Cl according to the definition
of a g.j.d. for F2 ° 7f at x, i.e. xE 01 n O2 but F2 °7f(Od n F2 °7f(02) = 0.

Since 7f is a continuous and open mapping, 7f(01) and 7f(02) are open sets such
that 7f(x) E 7f(Od n7f(02)' We claim that 7f(01) and 7f(02) are disjoint: Suppose
by contradiction y E 7f(01) n7f(02)' Since 7f(01) n7f(02) is open it has non-void
intersection with the dense set "2(G). Thus we may w.l.o.g. assume y E ,,(G),
i.e. there exists 9 E G such that y E "2 (g) = 7f ° "I (g). Consequently there exist
Xi E Oi such that 7f(Xi) = y, i = 1,2. Thus

contradicts the choice of 01 and O2.

So 7f(01),7f(02) ç C2 are disjoint open sets such that 7f(x) E 7f(Od n 7f(02)'
Also, per definition F2(7f(01)) n H(7f(02)) = 0. Thus x is a g.j.d. for F2.
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In the general case let 7r be the canonical epimorphism bG ~ Cl and define
Fb := FI 0 7r. It is easy to check that if FI has a g.j.d. at x, Fb has a g.j.d.
at every point of 7r-l {x}. It is also clear that Fb, FI and F2 induce the same
Hartman measurable function f on G. Now apply the first part of this prove to
the two functions Fb and F2. 0

This result shows that "being realized by a function having a g.j.d." is an inert
property of the Hartman measurable function and does not depend on the partic-
ular realization. In particular if f = FOi with F having a g.j.d. on an arbitrary
compactification, then any realization on a metric compactification has a g.j.d.
as well. In virtue of this proposition we can consider the set of all Hartman
measurable functions such that one (and hence all) realizations lack a g.j.d.

Definition 3.6.12. Let G be a topological group. Let

Hc(G) := {f E H(G) : V(i, C)Vx E C f = FOi with F E RJ1-c(C)
implies that F has no g.j. d. at x}

{f E H(G) : :J(i, C)Vx E C f = FOi with F E RJ1-c(C)
implies that F has no g.j. d. at x}.

Let us turn now to another property regarding realizability of Hartman measur-
able functions, similar to the one we have just discussed.

Proposition 3.6.13. Let f be a Hartman measurable function on G, realized
bath by FI and F2 via the compactifications (il, Cl) resp. (i2, C2). If [FI =1= 0] is
a meager /-LI-null set, then [F2 =1= 0] is a meager /-L2-null set.

Proof. First suppose (iI, Cl) 2:: (i2, C2), i.e. f = F2 0 i2 = FI 0 il E H(G). We
know that [FI =1= 0] is a meager /-Lrnull set. Lemma 3.6.3.1 implies that F2 = Flo7r
on i2(G). Thus 7r-l([Fl =1= 0]) and [F2 =1= 0] differ at most on a meager /-L2-nullset.
Note that /-L2(7r-l([Fl =1= 0])) = /-Ll([Fl =1= 0]) = a implies that 7r-l([Fl =1= 0]) is a
/-L2-nullset.

7r is an open continuous surjection of compact spaces. It is easy to verify that
7r preserves Baire-categorical properties, i.e. preimages of 1st-category sets are
1st-category sets and preimages of 2nd-category sets are 2nd-category sets. Thus
if [FI =1= 0] is meager in Cl then 7r-I([FI =1= 0]) is meager in C2.

In the general case let 7r be the canonical epimorphism bG ~ Cl and define
Fb := FI 07r. It is easy to check that if [FI =1= 0] is a meager /-LI-nullset, then
[Fb =1= 0] is a meager /-Lb-nullset. Again, Fb, FI and F2 induce the same Hartman
measurable function f on G. Now apply the first part of this prove to the two
functions Fb and F2. 0

Similar to the situation of g.j.d.s for different realizations of a fixed Hartman
measurable function, cf. Proposition 3.6.11, also the property of vanishing outside
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a meager null set does not depend on the special choice of the realization. Thus we
define the set of all those Hartman measurable functions such that all realizations
vanish outside a meager null set.

Definition 3.6.14. Let G be a topological group. Let

1io(G) := {f E 1i(G) : V(i, C) f = FOi with F E RJ1-c(C)
implies that [F =1= 0] is a meager J-Lc-null set}

{f E 1i(G) : :3(i, C) f = FOi with F E RJ1-c(C)
implies that [F =1= 0] is a meager J-Lc-null set }.

Proposition 3.6.15. 1io(G) and 1ic(G) are translation invariant and uniformly
closed *-algebras.

Proof. From the definition resp. Corollary 3.6.5 it is clear that both 1io( G) and
1ic( G) are *-algebras and invariant under translations.

1. Let Ro(G) := {f E RJ1-(bG) : [f =1= 0] is a meager null set}. Note that
Ro(G) is a closed sub algebra of RJ1-(bG) (due to the fact that a countable
union of meager null sets is again a meager null set). Since ib is a continuous
homomorphism of C*-algebras and ibRo(G) = 1io(G) (Definition 3.6.14),
1io(G) is closed (Theorem 1.5.5 in [Dav]).

2. J(bG), the set of all bounded functions on bG having a g.j.d., is open W.r.t.
the topology of uniform convergence (Proposition 3.6.2). Thus C(bG) E9
Ro(G), the set of all bounded functions on bG without a g.j.d., is closed
(cf. Corollary 3.6.5). Since C(bG) E9A is a closed algebra and 1ic(G) =
ib(C(bG) E9A), again Theorem 1.5.5 in [Dav] yields that 1-lc(G) is closed

D

Remark: It is worthwhile to note that A(G) n 1io(G) = {O}. This is due to the
fact that f E 1io(G) implies m(lfl) = 0, which is impossible for almost periodic
functions different from O.

An easy way to obtain functions from 1io( G) is to consider compact J-Lb-nullsets:
J-Lb(K) = 0 implies KO = 0, in particular K is a meager J-Lb-continuity set. Thus
f := lILbl(K) E Ho(G) and mU) = 0 for the unique invariant mean defined on
1i(G).

1. f is almost periodic iff K n ib( G) = 0,

2. f E Co(G) iff iï;l(K) is compact.

Lemma 3.6.16. For any topological group G the inclusion 1io( G) ç 1ic( G) holds.
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Proof. It suffices to show that f E Ho( G) implies F( 01) n F( O2) i= 0 for every
realization F of f and any pair of disjoint open subsets 01, O2. This follows from
the fact that [F i= 0] is a null set w.r.t. the Haar measure, implying that the set
[F = 0] is dense. 0

In the last part of this section want to identify those topological groups G for
which He(G) = Ho(G) and shed some light on the structure of He(G) \ Ho(G).

Proposition 3.6.17. For every f E He(G) there exists a unique almost periodic
function fa and a unique function fa E Ho( G) such that f := fa + fa.

Proof. Existence: Let FI be a realization of f on a group compactification (i, C).
Using Proposition 3.6.4 we can decompose F = Fr + (F - Fr), the first summand
being continuous and the second one having support on a meager J.Lc- null set (cf.
the Remark on page 17). Thus fa:= FOi E A(G), fo:= (F - Fr) 0 i E Ho(G)
and, obviously, f = fa + fa.

Uniqueness: Suppose f = jJ1) + fJ1) = fJ2) + fJ2) with f2), fJ2) E A( G) and
fJ1) , fJ2) E Ho( G). This implies

f2) - f~2) = fJ1) - fJ2) E A( G) n Ho( G) = 0

o

A direct consequence is the following

Theorem 8. Let G be a topological group. The mapping P : He ---7 A( G) defined
via f t---7 fa is bounded projection with IIPII = 1. Furthermore m(Pf) = mU) for
the unique invariant mean m on H( G).

Theorem 8 together with the fact A( G) n Ho( G) imply He( G) = A( G) EElHo( G).

Corollary 3.6.18. Let G be a topological group. He(G) = Ho(G) iffG is mini-
mally almost periodic (map).

Question 2: How are He and W related? We know that He 2 H n W. Is this
inclusion strict? We conjecture that He \ W is "large".

In the last part of this section we try to relate the spaces Co, of functions vanishing
at infinity, and Ho. Recall that every LeA group is maximally almost periodic
(MAP).

Lemma 3.6.19. Let G be a non-compact topological group and let (i, C) be a
group compactification.

1. If G is a MAP group then J.Lc( i( K)) = a for every a -compact K ç G.
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2. IfG is a LeA group then and i(G) is /-lc-measurable then /-lC(i(G)) = O.

Proof. To prove (1) first suppose that K is compact. We claim that there is
a sequence (gi)iEN such that giK n gjK = 0 for i =f=. j: Let us construct such
a sequence inductively. Suppose that (giK)i=l is a family of pairwise disjoint
sets; we prove that there exists gn+l E G such that (giK)i=l is also a family
of pairwise disjoint sets. Suppose by contradiction that for every 9 E G there
is a j such that gjK n gK =f=. 0. Then 9 E gjK K-1. So G = U7=1 gjK K-1

is compact, contradiction. Thus there exists gn+l E G such that (giK)~;} is a
pairwise disjoint family.

Since G is MAP, i is one-one. The sets i(giK) form an infinite collection of
pairwise disjoint translates of the compact subset i(K). If /-lc(i(K)) > 0 would
hold, this would imply

00 00

1= /-lc(i(K)) ~ L/-lC(i(giK)) = L/-lc(i(K)) = 00.

i=l i=l

Consequently /-lc(i(K)) = O.

If K is not compact but a-compact the assertion follows clearly from the fact
that /-lc is a-additive.

To prove (2) we use a result of Glicksberg (cf. Theorem 1.2 in [Gli]) which states
that for an LCA group G and a group compactification (i, C) a subset A ç i(G)

is compact in C iff i-1(A) is compact in G.

Suppose i( G) has positive Haar measure. Due to inner regularity of /-lc there is
a compact subset A ç i( G) ç C which also has positive Haar measure. Consider
K := i-1(A) which is a compact subset of G due to Glicksberg's Theorem. Since
i is one-one we conclude A = i(i-1(A)) = i(K). According to assertion (1) A
must be a null set W.r.t. Haar measure on C, a contradiction. 0

Theorem 9. Let G be a MAP group. Then Co(G) ç H(G). If G is not compact
then we even have Co (G) ç Ho (G) .

Proof. In the first step we show Co(G) ç H(G). If G is compact there is nothing
to prove, so suppose that G is not compact. Let f E Co(G) be a function on G
vanishing at infinity. Define F on bG by

F(x) := { f~) if x = ib (g), 9 E G
else,

then f = F 0 ibo W.l.o.g. assume f ~ 0 and IIflloo ~ 1. For every ê > 0 there
exists a compact set Ke ç G such that If(x)1 < ê for x E G \ Ke. By Lemma
3.6.19 we have /-lb(ib(Ke)) = 0, thus regularity of the Haar measure implies that
we can find an open set 0 containing the compact set A := ib(Ke) such that
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!-lb(O) < é. Let h be an Urysohn function separating A and bG \ O. Consider the
continuous function gê := h + élIbG. Since a ::; F ::; gê and

Lemma 3.2.1 implies F E RJ.L(bG). Hence f is Hartman measurable. It remains
to show that [F =1= 0] is a meager !-lb-null set. For each n E N the set [lfl ~ lin]
is compact. Hence "b([lfl ~ lin]) = [IFI ~ lin] is a compact !-lb-null set, In

particular [IFI > lin] ç [IFI ~ lin] is nowhere dense. Since we have

00

U[lFI > lin] = [F =1= 0] ç "b(G),
n=l

Lemma 3.6.19 implies that [F =1= 0] is a meager !-lb-null set. Thus f E 1-to(G). 0

The following example shows that for G = Z the space Co( G) of functions van-
ishing at infinity is a proper subspace of 1-to(G).

Example 3.6.20. Let T = {tn : n E N be a lacunar set of positive integers, i. e.
t1 < t2 < t3 < ... with limsuPn-+ootnltn+1 = é < 1. Then lIT E 1-to(Z) \ Co(Z).

Proof. The proof of Theorem 9 in [SchSW] tells us that for each n E N there
exists an n-dimensional compactification Cn and a compact continuity set Kn with
!-ln(Kn) ::; 4nén such that ,,;;1 (Kn) ~ T. Furthermore we can arrange ("n, Cn) ::;
("n+1, Cn+1) and 7r;;~l,n(Kn) ~ Kn+1, where 7rn+1,n: Cn+1 ---7 Cn is the canonical
projection. Let ('" C) be the supremum of the compactifications {("n, Cn) : n E
N}, and let 7rn : C ---7 Cn be the canonical projection onto Cn. Thus K :=n~=l7r;;l(Kn) is a compact !-l-null set (hence a !-lb-continuity set) with ,,-l(K) ~
T. 0

Question 3: Can this example be modified for more general LCA groups?

3.7 Hartman measurability and Fourier Trans-
formation

For any topological group G the set Co of functions vanishing at infinity provides
a particularly easy example of functions that are weakly almost periodic but not
almost periodic. Thus A E9Co ç W. However, the "interesting" weakly almost
periodic functions are the members of W \ (A EBCo).

There are locally compact groups with the property that W = A E9Co, namely
the so called minimally w.a.p. groups. For these groups Theorem 9 implies
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W = AœCo ç H. However no non-compact LCA group can be minimally w.a.p.
(cf. [Chou]).

Question 4: Do there exist LCA groups or non minimally w.a.p. groups with
W ç H?

In this section we will explicitly construct a function f E W(Z) nHc(Z) \ (A(Z) œ
Co(Z)). Let us first recall some facts about the Fourier transformation of measures
on LCA groups, since our example will heavily rely on these facts. Let G be an
LCA group. By M (G) we denote the set of all finite complex Borel measures on
G. Recall that M(G) can be regarded as the dual ofthe Banach space Co(G) via
the mapping:

(i, p,) := fa f(x)dp,(x).

Also recall that we convolute two measures p" v E M (G) according to the formula

(i,p, * v) =1 f(x + y)d(p, 0 v)(x, y).
Cxc

The Fourier-Stieltjes trapsform p, ---t fi, assigns to each p, E M (G) a uniformly
continuous function on G:

The mapping p, ---t fi, is a continuous homomorphism of the convolution algebra
(M(G), *) into the algebra (UCb(ê),.) of uniformly continuous functions on G,
equipped with pointwise multiplication. The set {fi, : p, E M (G)} of all Fourier-
Stieltjes transforms is called Fourier-Stieltjes algebra of ê and denoted by B( ê).
Bochner's Theorem implies that for every p, E M(G) the Fourier-Stieltjes trans-
form fi, is a linear combination of positive definite functions. Since every positive
definite function is weakly almost periodic, every Fourier-Stieltjes transformation
is weakly almost periodic. It is well known that in general (i.e. for non compact
G) the inclusions A( G) ç B( G) ç W( G) are strict.

Proposition 3.7.1. Let G be a locally compact group. The following assertions
hold

1. if P, is discrete, then fi, E A( ê),

2. if P, is absolute continuous with respect to the Haar measure Àc on G, then
fi, E Co(ê) (for G = 'II' this is the Riemann-Lebesgue Lemma),

3. mdfi,) = p,( {Oc}) for the unique invariant mean mô on ê; in particular:
if p, is continuous, then fi, has zero mean-value.
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Proof. See section 1.3 in [Rud] o

Before we present our example we need the following simple lemma. Note that
for LeA groups G f'.J (Gr via Pontryagin's Duality Theorem.

Lemma 3.7.2. Let G be a discrete LeA group and {l/n}~=l a norm-bounded
sequence of discrete measures in M (G). Then the following assertions are equiv-
alent:

1. The sequence {LÎn}~=l of almost periodic functions on G converges pointwise
to a function f.

2. The sequence {l/n}~=l of discrete measures on G converges weak- * to a
measure f-L.

In either case f is the Fourier-Stieltjes transform of l/ := weak- *-limn~oo l/n.

Proof. (1) =? (2): Let fn := LÎn. By weak-*-compactness of the unit ball in
Ca(G)' = M(G) we can find a weak-*-limit-point f-Lof the set {l/n : n EN}. So
for every x E Gand é > 0 there is a subsequence nk (depending of course on x)
such that for k ~ ka

Here we needed the compactness of G (this implies that the function 5: : X t--+ X(x)
defined on G vanishes at infinity). Now we use the that fn(x) ~ f(x) pointwise:

thus weak-*-limn~oo l/n = f-Land limn~oo fn(x) = Mx). (2) =? (1) is trivial since
f-Lt--+ jl(x) = Jô 5:df-Lis a weak-*-continuous functional for every x E G. 0

Lemma 3.7.3. Let f E A(Z), f ~ 0 and f =I O. Then limsuPlkl~oo f(k) > 0,
't.e. there exists é > 0 such that for every N E N

sup f(k) ~ é > O.
Ikl2:N

Proof. f E A(Z) implies that the set Pf(€) := {k : Ilf - Tkflloo < é} of é-almost
periods is relatively dense in Z, i.e. there exists Ke EN such that [a, b]nPf(é) =10
whenever Ib - al ~ Ke (Theorem 4.10.3 in [BJM]). Since f =I 0 there is some
ka E Z such that f(ka) > 0, w.l.o.g. assume ka = O. Let é := f(0)/2 > O.
Relative density of Pf(é) implies that for each N E N there exists ke ~ N such
that Ilf - TkJlloo < é. In particular If(O) - f(ke)1 < é and hence f(ke) ~ é. 0
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We will construct a function on Z using discrete measures on Z = T. Denote
by 6xo the Dirac measure on Z rv [0, 1] which is concentrated on the character
Xu : k 1---7 exp (27rika). The discrete measures I/n defined recursively by I/o := 6X1/2

and

I/n := I/n-1 * ~ (6x_1/3n + 6x1/3n)

are all probability measures, so their norm is bounded by 1. Using the fact
I/n-;;V;;--l = Vnl/nA_l one easily computes

_ n (k)fn(k) := vn(k) = ncos 27r3j .

)=1

Proposition 3.7.4. Let /-L be the Cantor measure on the ternary Cantor set
C ç [0,1]. Then the Fourier-Stieltjes transform f:= Ji*7l is a member ofthe set
(H(Z) n Wo(Z)) \ (A(Z) EBCo(Z)).

Proof. We use the notation from above and break the proof into three steps:

1. f E Wo(Z) : Every ln is almost periodic. We show now that the ln converge
pointwise: Since limj-+oocas (27r~) -7 1 for each fixed k, and since all terms
of this sequence are non negative whenever j ~ log32k =: j(k). We see
that {lj(k)+n(k)/ lj(k) (k)}':=l is a monotonically decreasing sequence of non
negative real numbers. Hence limn-+ooln(k) exists. So we can use Lemma
3.7.2 to conclude that

j(k) = il cos (21r ~)
is a Fourier-Stieltjes transform. Lemma 3.7.2 also implies that f is the
Fourier-Stieltjes transform of the canonical singular measure /-L on the ternary
Cantor set1 C ç [0, 1] ~ Z. This is due to the fact that the probability
measures I/n -7 /-L in the weak-*-topology. Thus not only f E W(Z) but
f E Wo(Z). The same considerations apply verbatim to the discrete mea-
sures I/n * I/n and the function

f(k):= j'(k) ~ D,COS2 (21r~) 2 O.

2. f E H(Z) : If we let fn := l~ E A(Z) we get that 0 ::; f ::; fn for each
n E N. Via the Fourier-Stieltjes transform we can compute the invariant
mean value of fn as follows (cf. [Rud]):

m(fn) = m(V;;;V-n) = I/n * I/n({O}) = L Il/n({'Y})12 = 2
1
n -7 O.

-yä

Thus Proposition 3.3.3 implies f E H(Z).

lif t denotes the Cantor-Lebesgue ternary function then /1-([0,x)) := t(x)
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3. f rt. A(Z) EBCo(Z): Since] satisfies the functional equation ](3k) = ](k),
k E Z, we have ](3k

) = ](0) =I O. Thus] rt. Co(Z) and f = P rt. Co(Z).
Suppose there exists a representation f = fa + fa 2': 0 with fa E A(Z) and
fa E Co(Z). Furthermore let

fa = (fa V 0) + (fa !\ 0) .
'-v--' '-v--'
:=I:?o :=/;;5.0

m(f) = m(fo) implies m(fa) = 0 and hence m(f:) = -m(f;;). Since we
already know f rt. Co(Z) necessarily fa =I O. Thus m( - f;;) > O. - f;; is
a non negative almost periodic function with non zero mean-value. Hence
- f;; =I 0 and we can apply Lemma 3.7.3. We obtain that there exists € > 0
such that

inf fa(k) = inf f;;(k)::; -€ < O.
Ikl?N Ikl?N

Note that f;;(ko) =I 0 implies f:(ko) = O. Let No be such that Ifo(k)1 < €/2
for Ik I 2': No. Thus there exists ka 2': No such that

f(ko) = fa(ko) + fo(ko) = f;;(ko) + fo(ko) ::; -€ + €/2 = -€/2 < O.

Since f 2': 0 this is a contradiction.

o

Finally we want to construct a realization of f without g.j.d. and thus prove that
f E Hc(Z). Consider the compact group of the 3-adic integers Z(3) realized as
projective limit of the cyclic groups Z/3nZ

-(3)
Z

~n-l~ l/ /~n.
{O}- Z/3Z -- ... -- Z/3nz --.:.

~ ~ ~-1 Wn

Regarding Z/3n Z as {O, 1/3n, ... , 1 - 1/3n} with addition modulo 1, we can
interpret the projective limit Z(3) as set of certain sequences (an)nEN ç [O,I]N
with an E {O, 1/3n, ... , 1 - 1/3n}. One easily checks that for each integer k E Z
the sequence '-3(k) = (k/3n)nEN defines an element of the projective limit Z(3) and
h h . '7} '7}(3) . t' h h' H ('7}(3)) .t at t e mappmg '-3 : ILJ ~ ILJ ISa con muous omomorp Ism. ence '-3, ILJ IS

group compactification of Z. One can also realize the projective limit Z(3) as set of
formal sums 2:~=0an3n with an E {O, 1, 2}. Mapping the formal sum 2:~=0an3n
to the sequence (2:~:~ak/3n)nEN establishes a one-one correspondence.

Observe that
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where /'i,n denotes the canonical projections from the projective limit onto the
cyclic group 7l/3n71 ~ {a, 1/3n, ... ,1 - 1/3n} ç [0,1]. Thus for each n the
continuous function

D ( ) = 2 (2 /'i,n-l (x) )
rn X cos 'Tf 3n '

-(3)xE71

•

satisfies Fn 0 i3 = In. Let F(x) = I1~=1Fn(x), so I= F 0 i3. F, however, cannot
be continuous since this would imply that I is almost periodic.

A necessary condition for F(k) i=- a is that /'i,n_l(x)/3n mod 1 tends to zero
(so that Fn(x) tends to 1). If x corresponds to the formal sum 2:::0 ak3k with
nth-partial sum sn this means

Since an_I/32+ ... +ao/3n+1 :S 1/3-1/3n+2 this is only possible if aj = a finally or
aj = 2 finally (otherwise 3-n/'i,n_lX mod 1 E (1/3,2/3) infinitely often). Formal
sums with this property correspond to the elements of i3(71). So this implies
F(x) = a for every x E 7l(3) \ i3(71) and disc(F) = [F i=- 0] = i3(71), which is both
meager and a 1-L3-nullset. Thus I E 1ic(71).

Loosely spoken, F has a similar behavior with respect to points of continuity as
the classical example of a Riemann integrable function on [0,1] with infinitely
many points of discontinuity:

I(x) = { i for x. ~'. gcd(p, q) = 1
a for x IrratIOnal.

• 3.8 Relation to other spaces of functions

The part of the lattice of sub algebra of B(71) drawn on page 53, summarizes some
of our results concerning the space 1i(71) of Hartman measurable functions on the
integers.
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AC

•

•

W

A

A E9 'Ho

'Ho

B

• AC
W
'H
A
B

'He

'Ho

Co

{O}
bounded functions
almost convergent functions, cf. Section 1.1
weakly almost periodic functions, cf. Section 1.1
Hartman measurable functions, cf. Definition 3.3.1
almost periodic functions, cf. Section 1.1
Fourier-Stieltjes algebra, cf. Section 3.7
Hartman measurable functions without g.j.d.,
cf. Definition 3.6.12
Hartman measurable functions with support
on a meager null set, cf. Definition 3.6.14
functions vanishing at infinity, cf. Section 1.1

Inclusions indicated by I are proper, spaces connected by : could possibly coincides
(although we think this is very unlikely) .

• For W(Z) \ 'H(Z) =I 0 and 'H(Z) \ W(Z) =I 0 cf. Corollary 3.6.6 and Example
3.6.10.
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•

• For H =1= A EElHo cf. Corollary 3.6.6 .

• For any non compact LCA group W \ B =1= 0, cf. Theorem 4.9 in [Bur] .

• For (BnH) \ (AEElCo) =1= 0 and G = Z, cf. Section 3.7. We conjecture that
this holds for any non compact LCA group as well.

• For Hm \ Co =1= 0 and G = Z, cf. Example 3.6.20.

Question 5: For which topological groups G do exist functions f E ß \ Hand
functions fEH \ ß.

Question 6: How are Band WnH related: Is there a simple condition on functions
in B that implies Hartman measurability?
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Chapter 4

The Hartman compactification

• 4.1 Gelfand Theory

When dealing with the space of Hartman measurable functions two aspects are
important: First 1t( G) is a unital *-subalgebra of B( G) and, second, 1t( G) =
B('L" G) where 'L, is the Boolean algebra of Hartman measurable sets (Proposition
3.3.2).

Regarding the first aspect we recall again the Gelfand Representation Theorem
and the Banach-Stone Theorem:

Theorem 10. Every commutative unital C* -algebra A is isometrically isomor-
phic to the algebra of continuous functions C(X) of saine compact Hausdorff space
X. The space X is called the structure space of A, or, synonymously the Gelfand
compactum of A.

Theorem 11. Let Xl and X2 be compact Hausdorff spaces. C(XI) and C(X2)

are isometrically isomorphic as unital Banach algebras iff Xl and X2 are home-
omorphic as topological spaces.

The proofs of both the Gelfand Representation Theorem and the Banach-Stone
Theorem can be found in the books [Dav] resp. [DS]. The Banach-Stone Theorem
implies that the structure space of a commutative unital C*-algebra is unique up
to homeomorphisms.

Definition 4.1.1. For a topological group G the structure space of 1t( G), the
space of Hartman measurable functions, is denoted by hG.

Remark: The structure space of A( G), the space of almost periodic functions is
bG, the Bohr compactification. The structure space of W( G), the space of weakly
almost periodic functions is wG, the w.a.p. compactification.
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•

There are various models for the structure space of a commutative unital C*-
algebra, for instance the space of maximal ideals. For *-subalgebras of B(G)
(such as A(G), H(G) or W(G)) we can construct the Gelfand compactum in the
following way (for details we refer to [BJM]): Consider o( G) = {Og : 9 E G} the
set of all linear functionals of the form Og(f) := f(g) with 9 E Gand f E H(G).
Cleary o(G) is a bounded subset of the dual space H(G)'. The weak-* closure of
6(G) in H(G)' is a compact Hausdorff space (Banach-Alaoglu Theorem). Indeed~. .
6(G) is homeomorphic to hG (Theorem 2.1.8 in [BJM]). Note that 6(G)w
equals MM(H(G)), the set of all multiplicative means on H(G).

This shows in particular that 6 : G ~ hG is a continuous mapping with dense
image, i.e. (0, hG) is a compactification of the topological space G (it is in general
not a group compactification!).

Recall that a right-topological semigroup is a topological space S that is alge-
braically a semigroup such that for each sES the mapping Ps : t I---t ts is
continuous.

Proposition 4.1.2. hG is a compact right-topological semigroup and 6 : G ~ hG
is a continuous homomorphism of right topological semigroups.

~.
Proof. Using the representation hG rv 6(G) the semigroup operation * is given
by

p, * v(f) := p,(Tvf),

where Tv is the so-called introversion operator given by

We have to show that the binary operation * is well defined, i.e. we have to show
that Tvf E H(G) whenever v E hG and f E H(G). We use the fact that

{Tvf: v E hG} = co(p){Tgf : 9 E G},

where the closure is taken w.r.t. the topology of pointwise convergence (cf.
Proposition 2.2.3 in [BJM]) and co denotes the convex hull. Let (t" C) be a
group compactification of G, such that there exists a Riemann integrable function
F : C ~ CC that realizes f. Theorem 8 in [Tal] implies that co(p) {TL(g)F : 9 E G}
consists entirely of Riemann integrable functions. Continuity of t, : G ~ C im-
plies continuity of the mapping t,* : F I---t Fot, W.r.t. the topology of pointwise
convergence on C resp. G. Thus

It is then easy to check that hG equipped with the operation * is indeed right-
topological (cf. Theorem 2.2.11 in [BJM]). 0
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For a discrete semigroup S it is possible to endow the Stone-Cech compactification
ßS with such a semigroup operation, that ('-b, ßS) is maximal among all right-
topological semigroup compactifications of S. This means that for any right-
topological semigroup compactification ('-, C) there exists a continuous semigroup
homomorphism 7r : ßS -t C such that 7r 0 '-b = '-.For all it's worth we also note
that for LCA groups G with separable dual the Hartman compactification hG
is strictly right-topological - and not semitopological - because this would imply
'H( G) ç W( G) in contradiction with Corollary 3.6.6.

4.2 Representation of Riemann integrable func-
tions

The Stone-Representation Theorem is an analogue of the Gelfand-Representation
Theorem for Boolean algebras.

Theorem 12. Every Boolean algebra B is isomorphic to the algebra of dopen
sets Cl(X) of some totally disconnected compact Hausdorff space X. X is called
the Stone space of A.

Theorem 13. Let Xl and X2 be totally disconnected compact Hausdorff space.
Cl(XI) and Cl(X2) are isomorphic as Boolean algebras iff Xl and X2 are home-
omorphic as topological spaces.

This implies that the structure space of a Boolean algebra is unique up to home-
omorphisms. The proofs of both Theorems can be found in [Via].

When we deal with algebras of the form B(G, L:;)with a Boolean algebra L:;ç
~(G) the concepts of Gelfand compactum and Stone space nicely fit together.

Proposition 4.2.1. The Stone space of a unital Boolean algebra L:;ç ~(G) 'lS

homeomorphic to the Gelfand compactum of the C*-algebra B(G, L:;).

Proof. Let X be the Gelfand compactum of B(G, L:;). We know that X consists
of all multiplicative means m E B( G, L:;)' equipped with the weak-*-topology.
Each such mean m defines a finitely additive measure on L:;via JLm(A) := m(lIA),

A E L:;. Note that due to multiplicativity JLm takes only the values 0 and 1 and
hence is a Boolean homomorphism of L:;onto {O, I}. On the other hand each
multiplicative mean on B(G, L:;)is uniquely determined by its values on the set
{liA: A E L:;}. Thus the mapping MM(B(G,L:;)) -t Hom(L:;,{O, I}) that sends a
multiplicative mean m to the Boolean homomorphism induced by JLm is one-one
and onto. Since the Stone space of L:;is homeomorphic to the set of Boolean
homomorphisms Hom(L:;, {O,l}) equipped with the topology inherited form the
product topology on {O,1}~ it only remains to show that the mapping m -t JLm
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is continuous. But this is obvious since for c < 1/2 a basic weak-* neighborhood
ofmü

is mapped onto the basic neighborhood of /-Lü

o

Let E ç IfJ(X) be a Boolean set-algebra. A E-ultrafilter is an element p E
1fJ(IfJ(E)) such that the following conditions are fulfilled

1.0tJ-p

2. A E p, BEp =? An BEp

3. A E p, BEE, A ç B =? BEp

4. VA E E : A E P V X \ A E p.

Lemma 4.2.2. There is a one-one correspondence between E-ultrafilters and mul-
tiplicative means of B(E, X).

Proof. For p a E-ultrafilter consider the canonical extension of the mapping
mp(IA) = Ip(A) to B(E, X) and for m a multiplicative functional consider the
set Pm := {A E E : m(A) = I}. 0

Conclusion: determining the Gelfand space of the space of Hartman measurable
functions is equivalent to determine the Stone space of the Boolean algebra of
Hartman measurable sets.

The same considerations apply for R[O, 1], the space of Riemann integrable func-
tions on the unit interval, and Jor, the Boolean Algebra of Jordan measurable
sets. However the problem of giving a satisfactory description of the structure
space is still unsolved.

Example 4.2.3 (Regulated functions).

A bounded function f : [0, 1] ~ C is called regulated iff for each t E (0,1)
both 6t(1) := limx-tt+ f(x) and 6;(1) := limx-tt- f(x) exists and furthermore
limx-tü+ f(x) and limx-tl- f(x) exist. It is easily seen that Rg[O, 1], the space of
regulated functions, is a unital Banach algebra, when endowed with the usual
norm 11.1100' Furthermore

Rg[O, 1] = B([O, 1], J) ç B([O, 1], Jor) = R[O, 1],
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where J denotes the Boolean algebra generated by all (open and closed) subin-
tervals of [0,1] (cf. [Bou2]). Let p be a J-ultrafilter with {a} ~ p and {l} ~ p.
Define ap := inf{t : [0, t) E p} and ßp := SUp{8 : (8,1] E p}. It is easy to see that
ap = ßp and that there are only three possible cases

1. [O,a) E p, (a, 1] ~ P

2. [0,a) ~ p, (a, 1] E P

3. [0, a) ~ p, (a, 1] ~ p

Ultrafilters satisfying 1 correspond to the measure concentrated on the interval
[0,a] (as element of the Boolean algebra J), while ultrafilters satisfying 2 corre-
spond to the measure concentrated on the interval [a, 1] and ultrafilters satisfying
3 correspond to the measure concentrated on the singleton {a }. Speaking in terms
of functionals, the interval [0, a] corresponds to 0;;, the interval [a, 1] corresponds
to 0;; and the singleton {a} corresponds to 00, The ultrafilters generated by {a}
resp. {I} correspond to the functionals 00 resp. oi.
Thus the structure space of Rg[O, 1] is homeomorphic to the space

x = {o:: t E (0, l]}U{o: t E [0, l]}U{o;: t E [0, I)}

endowed with the following topology:

1. basic neighborhoods of 0; are given by

2. basic neighborhoods of 0: are given by

1
'- {f.L: f.L((t - -,1] = I}

n
[0:--1.,0;) U (0:-1.,0:] U (Ot_~, Ot),

n n

3. a basic neighborhood of Ot is given by

U(t) := {f.L : f.L([0, t]) = f.L([t, 1]) = I} = {od,

i.e. each element Ot is isolated.

A moment's reflection shows that this topology coincides with the order topology
induced by the total order defined via 0: < Ot < 0; and 0; < 0: whenever 8 < t.
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4.3 Banach almost periodic functions

The results of this section were obtained in joint work with Mathias Beiglböck,
cf. [BM].

Definition 4.3.1. A subset A ç Z is called relatively dense, or syndetic, iff there
exists a finite set F ç Z such that A + F = Z.

Recall the classical definition of Bohr's almost periodic functions: a bounded
function f : Z --t C is almost periodic iff for each E > a the set {t : IIf - ft II < E}
is syndetic. We want to replace the norm 11.1100 by mz(I.1) for the unique invariant
mean on AC(Z). Note that for any f E AC(Z) the L.LM. Mz(J) coincides with
d*(J), the upper Banach density.

Definition 4.3.2. A boundedfunction f : Z --t C is called Banach almost periodic
(BAP) iff for every E > a there exists a syndetic set 5 ç Z such that for all t E 5,
d*(lf - ftl) :::;E holds uniformly in t. More precisely this means: f is Banach
almost periodic iff for all E > a there exist n E N and a syndetic set 5 such that
for all a, bEN, b - a ~ nand t E 5 we have d[a,b](lf - ftl) :::;E. The set of all
Banach almost periodic functions on Z is denoted by BAP(Z).

We collect some basic properties of BAP functions:

Proposition 4.3.3. Let fE BAP(Z)). Then the following assertions hold

1. Definition 4.3.2 yields the same class of functions if 'syndetic' is replaced
by 'IP' or 'positive upper Banach density'.

2. The inclusion 7-i(Z) ç BAP(Z) holds and is proper.

3. BAP(Z) is a C* -subalgebra of B(Z), the bounded functions defined on Z.

4. Every lIA E BAP(Z) n 2z has uniform density in all block lengths. More
precisely, this means: for every finite word w E 2<w there exists a number
d( w; A) E [a, 1], called the asymptotic frequency of w in A, such that 'tiE > a
3N E N such that

15w;~a~b])_ d(W;A)I:::; E,

whenever b - a ~ N. Here 5wjA([a, b]) denotes the number of occurrences
of w within lIA r[a,b]'

5. f E BAP(Z) implies co(p)O(J) ç BAP(Z), where co denotes the convex hull
and the closure is taken w. r. t. the topology of pointwise convergence.

6. f E BAP(Z) and e E E(ßZ) imply d*(lf - e-limt ftl) = a. Here E(ßZ)
denotes the set of all idempotent ultrafilters on Z, and e -lim denotes the
filter limit w.r. t. e.
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Proof:

1. It is clear that BAP(IP*) :::} BAP(syndetic) :::} BAP(density). Pick I E
BAP(density). For e > 0 pick no E Nand E ç Z such that d*(E) > 0 and
for all a, bE Z, b-a 2: no, tEE we have d[a,bj(II - Itl) < e/2. Let tl, t2 E E
and a, b E Z, b - a > no. Then

d[a,b](II - Itl -t21) = d[a-t2,b-t2] (IIt2 - Itl I)

::; d[a-t2 ,b-t2] (II - Itll) + d[a-t2 ,b-t2j (IIt2 - I I) < e.

Since E - Eis IP*, we see that I E BAP(IP*). Thus BAP(density) :::}
BAP(IP*).

2. Let I E 'H(Z). For every e > 0 there exists 9 E AP(Z) ç BAP(Z)
such that and p;z(lg - II) = d*(lg - II) ::; e. Since we have d*(II - Itl) ::;
d*(1f - gl) + d*(lg - gtl) + d(lgt - It I) ::; 3é 9 E BAP(Z) implies I E BAP(Z).

3. BAP(Z) is uniformly closed because III - glloo ::; e implies
Id[a,b](J - It) - d[a,b](g - gt) I ::; 2e.

Next we show that along with I, 9 E BAP(Z) also I + 9 E BAP(Z) resp.
Ig E BAP(Z). Let S = S(J' e) and T = T(g, e) be IP* sets. Note that
S n T is an IP* set and for tES n T we have

resp.

d[a,b](I(Ig) - (Jg)tl) < d[a,b](I(I - It)gl) + d[a,bj(IIt(g - gt)1)
< Ilgllood[a,b](II - Itl) + IIItllood[a,b](lg - gtl)
< 2max{IIIII00,llglloo}e

Thus SnT is good for 1+ 9 and 2e resp. for Ig and 2 max{IIIlloo, IIglloo}e.

4. Fix w E 2<w and,suppose by contradiction that ß = d*(w; A) < d*(w; A) =:
a. For any e > 0 we can find arbitrarily long intervals [al, bl] and [a2, b2]
(denoting nI = bl - al and n2 = b2 - a2) such that SW;A~:l,bd) > a - e and
Sw;A([a2,b2]) < ß + e and e := O:-4ß. Subsequently we will use the following

n2

Fact: Suppose d[a,bj(II - gl) < é with I = liA and 9 = liB then (for large
n = b - a) we have

ISw;A([a, b] - Sw;B([a, b])1< elWI.

Proof: d[a,bj(II - gl) < e implies that I r [a, b] and 9 r [a, b] differ at most at
en positions. Each variation can alter at most Iwl occurrences of w within
A resp. B.
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Let 5 be a syndetic set that is good for I and ék > 0 and let Mk E N
be such that 5 + [0, Mk] = Z. W.l.o.g. we may suppose nIl Mk > k resp.
n2/nl > k and that nI is large enough that

Since Mk is syndetic there exist pairwise distinct elements SI, ... SI E Mk

such that [al + Si, bl + Si] ç [a2, b2] for i = 1, ... , l. Note that the set

[a2, b2] \ (U~=l [al + Si, bl + Si]) has O(k-l) elements and that also I~2- ;1 I
is O(k-l) We want to give a lower bound for 5w;A([a2, b2]: Since in each
translate of [al, bl] by an element of Mk we have at least 5w;A([al, bl] -

éklwlnl occurrences of w this implies

(4.1)

(4.2)

for arbitrary TJ > 0 whenever k is large enough. Picking an TJ < a~ß yields
a contradiction.

5. For given é > 0 let 5 = 5(J, é) ç Z and N E N be such that 5 is syndetic
and d[a,b](II - It!) < é whenever t E 5 and b - a ~ N. We claim that
d[a,b](lg - gtl) < 2é whenever t E 5 and b - a ~ N. Since 9 E co(p)O(J), for
each fixed t E 5 there exists a convex combination

k

h = L Àdmi E co(p)O(J)
i=l

such that Ih-gl r [a, b] < é/2 and Iht-gtl r [a, b] = Ih-gl r [a+t, b+t] < é/2.
Thus

d[a,b](lg - gt!) < d[a,bj(lg - h!) + d[a,bj(!h - ht!) + d[a,b](Iht - gtl)
< é + d[a,bj(lh - htl).

Plugging in the definition of h yields

k

d[a,b](lh - ht!) = d[a,b]( L Ài(Jmi - Imi+t) )
i=l

k

< L Àid[a+mi,b+mi] (lI- It!)
i=l

k

< LÀié = é.

i=l

Thus 5(J, é) = 5(g, 2é).
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6. Let 9 = e -limt ft. For é > 0 choose an IP* set S and no E N such that
for all a, b E Z, b - a > no and tES one has d[a,b](1f - ft!) < é. By the
definition of the filter limit

B = {t E Z : max 19 (s) - ft (s ) 1 ~ é} E e.
a~s~b

Since SEe, B n S is nonempty, so pick t E B n S. Then

Since é was arbitrary, the claim follows.

Remark: Since BAP(Z) is an abelian unital C*-algebra BAP(Z) ~ C(baZ) for
some compact space baZ, the structure space or Gelfand compactum of BAP(Z).
According to the Gelfand theory for semigroups we can find a compatible right-
topological semigroup structure on baZ.

Lemma 4.3.4. Let (X, T) be a dynamical system and let e be a minimal idem-
potent in ßN and let x EX. Then e -limn Tn (x) is uniformly recurrent.

Proof. See 6.9. in [BeR]. D

Proposition 4.3.5. Let 91 = lh1 and 92 = lh2 be members of UDB(Z). Then
if(91) = if (92) iff there exists f E 2W such that if (9i) ç; if (J) .

Proof. Suppose that (7(9i) ç; (7(J). We will prove that (7(91) = (7(92)'

First we show that for any finite word w E 2<w the asymptotic densities d( w; 9d
and d( w; 92) coincide. For each é > 0 there exists n = n( é) such that for b - a 2: n

where Sw;Ai([a, b]) denotes the number of occurrences of w within llAi f[a,b]' There
exist k1, k2 E Z such that Tk191 and Tk292 coincide on [a, b] (and equal 1). Thus

I
SW;Al ([a - k1, b1 - k1]) _ SW;A2([a - k2, b2 - k2]) I < é/2

b-a b-a

differ at most at é/2 resp. d(w; 91) and d(w; 92) differ at most at é. Since é > 0
was arbitrary d(w;91) = d(W;92)'

Note that there are only finitely many words of a given length that contain a
prescribed subword w. Thus for every w with SW;Ai > 0 we can find w' > w
with SW';Ai > O. Take a sequence WI < W2 < ... < Wn < ... of finite words with
Iwnl ~ 00 and SW;Ai > O. Then there exist ln, kn E Z such that Tlnf f[O,lwnll=

Tkn9 f[O,lwnll= wn. This implies dist ((7(91),(7(92)) = 0, i.e. (7(91)n(7(92) =1= 0.
Thus (7(J) = (7(9).

D
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Corollary 4.3.6. Let f E BAP(7L). There exists a uniformly recurrent 9 E if (f)
such that d*(If - 91) = O. Furthermore for every such two uniformly recurrent
functions 91 and 92 the orbits closures cr (9d and cr (92) coincide. Let us denote
this orbit closure by M (f).

Proof. We can assume w.l.o.g. that f is real-valued. Fix ex,ß E IR such that
f E [ex,ß]z. Pick a minimal idempotent e E ßN. Then 9 = e-limt ft is uniformly
recurrent in the dynamical system ([ex,ß]Z, a) by Lemma 4.3.4. By Proposition
4.3.3 we have d*(lf - 91) = O. Note that any minimal subsystem of ?Y(f) is
generated by an uniformly recurrent function 9 belonging to UDB(7L). Nowapply
Proposition 4.3.5 to yield uniqueness of M(f). 0

Corollary 4.3.7. For Hartman measurable f every uniformly recurrent member
9 in M (f) is also Hartman measurable.

Proof. Since M(f) ç cr(f) ç 1t(7L) this is obvious, cf. Proposition 4.1.2. 0

Let N(7L) be the set of all functions f E B(7L) such that d*(f) = O. It follows
from the statements above that BAP(7L) :2 1t(7L) +N(7L). Whether this inclusion
can be reversed is an open problem.
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