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Abstract

In temporally or spatially varying environments species often evolve di�erent
phenotypes in response to this variety of niches. Such a phenotypic polymor-
phism can either be due to di�erent genotypes present in the population or due
to a mechanism that allows a single genotype to produce di�erent phenotypes.
Both possibilities were subject to many studies but rarely have they been com-
bined in a single analysis. Here, an eco-evolutionary model for the evolution in
time-varying environments is studied by means of individual based simulations.
This model has been introduced by Rue�er et al. (in prep.a, in prep.b) and
initially been studied by using the adaptive dynamics approximation. In this
model di�erent mechanisms of phenotype determination are allowed to evolve
simultaneously. The alternatives are a canalised genotype-phenotype map, phe-
notypic plasticity where an environmental cue is used to produce an adapted
phenotype and bet-hedging (randomisation). The simulations presented here
relax the assumptions of the adaptive dynamics approximation and show that
the analytical results remain valid under more general conditions. Additionally,
cases are treated in which the model is not analytically tractable. Contrary
to preceding work we �nd that genetic polymorphisms can outcompete a bet-
hedging strategy if a certain mutational correlation is introduced and mutational
step sizes are limited. Comparing canalised genotypes and phenotypic plastic-
ity we �nd that, depending on model parameters, di�erent outcomes − ranging
from polymorphisms of canalised phenotypes to evolutionary cycles − are pos-
sible. When canalised genotypes, phenotypic plasticity and bet-hedging are all
allowed for simultaneously, we �nd that the strategy approached by evolution is
a mixture of phenotypic plasticity and bet-hedging.
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1. Introduction

The genotype of an organism is the exact con�guration of the DNA in its cells
that was passed to the organism by its parents at the organism's conception. The
phenotype on the other hand is the totality of physical and behavioural charac-
teristics of the organism, e.g., size of body parts, eye colour, etc. A lot of work
has been done in order to determine how and to which degree the genotype maps
to the phenotype (starting from Mendel's (1866) pea �ower experiments down
to modern genetics). For the vast majority of traits the genotype-phenotype
maps remains, however, unknown. It is sure that the genotype has the greatest
in�uence on the development of the phenotype, but other factors, mainly the
environment an individual experiences and - for instance - the condition of an
o�spring's mother, can play an important role.
It is the phenotype that determines how successful an individual is in the en-

vironment it experiences; it is the phenotype selection acts upon. In di�erent
environments, di�erent phenotypes will be more or less successful. Thus, the
�tness of an individual clearly depends on its phenotype and the environmen-
tal conditions it experiences. In many situations it is not possible for a single
phenotype to be optimally adapted to di�erent environmental conditions simul-
taneously. As a result phenotypic trade-o�s should be prevalent; organisms that
are well adapted to one environmental condition might perform poorly in another
environmental condition.
The environment is seldom constant over space and time; an individual can

therefore not always be optimally adapted if its mobility is limited. In such a case
evolution often leads to phenotypic polymorphisms, meaning that individuals
with di�erent phenotypes exist within a population, some better adapted to one
environment, some better to others. Such polymorphisms can be generated by
di�erent mechanisms. In the following we give a short overview over possible
mechanisms.
The most straightforward case is a direct or �canalised� genotype-phenotype

mapping where the phenotype of an individual is exactly determined by its geno-
type. In this case a genetic polymorphism must be at the origin of a phenotypic
polymorphism, meaning that there are di�erent genotypes present in the pop-
ulation. Another possibility is bet-hedging, also called randomisation, where
an individual's phenotype is randomly chosen from a set of available strategies
during its development. In this case a single genotype can lead to di�erent
phenotypes. Thirdly, the phenotype could be in�uenced by environmental cues.
Some sensory machine could use hints about future environmental conditions
during early development, to equip an individual with an adapted phenotype.

13



1. Introduction

In this case a phenotypic polymorphism can be produced by one single genotype
as a response to di�erent cues received by di�erent individuals.
The �rst of these three mechanisms should not need any further description.

There the phenotype depends exclusively on the genotype. The second and the
third mechanism, though, bet-hedging and plasticity, are worth some discussion.

What is Bet-Hedging?

With �the phenotype is randomly chosen from a set of available strategies� is
meant that in addition to the genetic in�uence there is some �rolling of dices� in
the developmental process, so that di�erent phenotypes can be observed among
genetically identical clones. These �dices� can for instance be very locally chang-
ing environmental conditions or the concentration of some molecule in a cell. To
distinguish this strategy from phenotypic plasticity, no information about future
environmental conditions should be incorporated in this mechanism. There is
evidence that such bet-hedging strategies exist in nature: Delayed seed germi-
nation would be an example. For many di�erent plants it can be observed, that
genetically identical seeds exposed to the same environmental conditions will
germinate in di�erent years. A certain percentage germinates in the �rst year
after their creation, while the rest stays in the ground to shoot in one of the fol-
lowing years. This mechanism intuitively seems advantageous as it guarantees
that at least some seeds encounter optimal environmental conditions after germi-
nation. A theoretical model to explain this phenomenon quantitatively is given
by Cohen (1966) and Bulmer (1984). Other examples of bet-hedging strategies
in nature include the insectal diapause (Hopper, 1999) and characteristics of bac-
teria (Dubnau and Losick, 2006; Avery, 2006) such as persister cells of E. coli.
The underlying mechanisms for such a randomisation device are not well known
up to this day. Feedback loops between genes (if gene A is expressed is inhibits
the expression of gene B and vice versa, such that the gene activated �rst �wins�)
could be a potential randomisation mechanism (Smits et al., 2006). Note that
in the current study a genotype can give raise to two di�erent phenotypes.
If one considers an isolated individual, one could think that such a randomi-

sation device is not really useful. The fact that an individuals genotype can
produce two di�erent phenotypes does not increase the individuals own perfor-
mance. An individual itself always only develops one phenotype, no matter how
many alternative phenotypes it could potentially have developed. The great
utility of such a strategy can only be seen if one considers a line of generations
on which selection acts upon. If in each year at least some individuals of a given
genotype have a good chance of survival this will be bene�cial to the long term
growth rate of this genotype. More exactly, it can be shown (Lewontin and Co-
hen, 1969; Bulmer, 1980) that it is the geometric mean of the year to year growth
rate (which will be called �tness) that is maximised by selection. This can be
achieved by minimising the �tness variance, and that is what bet-hedging does.
A parent that produces o�spring with di�erent phenotypes ensures that at least

14



part of the o�spring has a good chance to be well adapted to the environment
they experience. A complete review on the advantages of a bet-hedging strategy
is given in Seger and Brockmann (1987).

What is Phenotypic Plasticity?

The third mechanism of phenotype determination we want to speak about, phe-
notypic plasticity, is a very general concept. In the broadest possible de�nition,
phenotypic plasticity is the ability of an organism with a given genotype to
change its phenotype in response to a changing environment. This would for
instance include the production of either sun- or shade-leafs of many kinds of
plants, depending on the degree of sunshine they encounter in their habitat, or
the adaptation of behavioural strategies of animals. The interested reader can
�nd more about the concept of phenotypic plasticity in DeWitt and Scheiner
(2004).
In this work we use a restricted form of this concept: We focus on organisms

that use environmental information during their early development in order to
produce a phenotype possibly well adapted to the environment they will expe-
rience when selection takes place. To say it in other words, we only allow for
adaptations of the phenotype at one point of an individuals development. One
could think of the development in a seed, egg or in the mother's uterus.
In the following we will investigate a temporally changing environment. In

such a case the environmental condition at the organisms conception does not
necessarily need to be a good indicator for the environmental condition the or-
ganism will encounter when selection takes place. In our model the phenotypes
are produced according to an environmental cue and the correlation between
this cue and the actual environment when selection takes place is an external
parameter depending on the predictability of the environment. Intuitively, such
a mechanism will help to adapt to changing environments if the information is
reliable, while it could be dangerous to �listen� to such a cue when it is not very
reliable. If such a mechanism is employed, it produces a polymorphism in the
sense that a single genotype can produce di�erent phenotypes. Note, however,
that if all individuals of a genetically uniform population that are born in the
same year receive the same cue (which will be the case in the model presented
here) they will all develop the same phenotype. But in di�erent years di�er-
ent cues can be received and di�erent phenotypes can be produced. We could
thus speak of a �temporal polymorphism�. Similar to the bet-hedging strategy,
the plastic mechanism in our model allows for two possible phenotypes a single
genotype can produce.

Now that we know that there are di�erent possibilities how a phenotypic
polymorphism can be achieved, we can ask the question: In an ecological set-
ting that favours the development of di�erent phenotypes, which of the three
mechanisms mentioned above will be favoured by selection? The answer to this
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1. Introduction

question strongly depends on the ecological system which is regarded. There
are situations, in which only one of these mechanisms is possible. In many bio-
logical settings, however, more than one outcome of the evolutionary process is
possible. Then one and the same ecological situation can lead to the develop-
ment of alternative ways of phenotype determination. The alternatives can be
the mechanisms explained above, a genetic polymorphism, a bet-hedging strat-
egy or phenotypic plasticity as well as other mechanisms or any combination of
those.
In Rue�er, Svardal, and Abrams (in prep.b) we allow for the simultaneous

evolution of genetic polymorphisms and bet-hedging and attempt to identify
conditions that favour one mechanism over the other. This work was strongly
motivated by preliminary studies by Leimar (2005). In Rue�er, Svardal, and
Abrams (in prep.a) a model is presented that allows for the evolution of bet-
hedging, plasticity and genetic polymorphisms in a common framework. For both
analyses we use the mathematical framework of adaptive dynamics, which is also
called evolutionary invasion analysis. Adaptive dynamics is brie�y outlined in
section 1.1. Section 1.2 describes the model we use and section 1.3 presents the
analytical results obtained.
My task, which will be presented in the following chapters, was to develop

a function, capable of performing individual based simulations to check and
complement the analytical results of the investigations named above. Chapter
2 deals with the technical issues of programming, while chapter 3 presents the
simulation results, decomposed into three steps:

1. bet-hedging versus genetic polymorphism (section 3.1)

2. plasticity versus genetic polymorphism (section 3.2)

3. the complete model where bet-hedging, plasticity and genetic polymor-
phisms are allowed for (section 3.3)

The objective of the simulations presented here is twofold:

- Adaptive dynamics makes a number of restrictive assumptions. These
assumptions shall be relaxed in the simulations to test the robustness of
the results based on the adaptive dynamics approximation.

- The simulations will treat situations that are not analytically tractable.
More precisely, we will investigate cases with

� more than one resident genotype simultaneously present in the pop-
ulation.

� correlations between the mutational steps in the trait values of the
alternative phenotypes.
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1.1. Adaptive Dynamics

1.1. Adaptive Dynamics

The mathematical framework of adaptive dynamics (A.D.), which is used for
the theoretical analysis of the present problem, was developed by Dieckmann
and Law (1996), Metz et al. (1996), and Geritz et al. (1997, 1998). Adaptive
dynamics links population dynamics to evolutionary dynamics and incorporates
the fundamental idea of frequency dependent selection from game theory.
The main assumption of the method is that the (slow) evolutionary and the

(fast) population dynamic time scales can be clearly separated. For this it is
necessary that mutations are su�ciently infrequent that the population has al-
ways reached a population dynamical equilibrium before a new mutant occurs.
Thus, there exists not more than one mutant sub-population within the popu-
lation at the same time. �Being at an population dynamic equilibrium� means
for a resident population that its long term growth rate is zero. Fitness of a
rare invading mutant is derived from population dynamics; the �tness of a small
mutant sub-population is its long term average exponential growth rate in the
environment made up by the resident population (Metz et al., 1992). To this
quantity we refer as invasion �tness. The invasion �tness of a rare mutant with
phenotypic trait vector x′ in an environment made up by the resident with trait
vector x, will be noted w(x′, x). As the resident is at a population dynamical
equilibrium, we have w(x, x) = 0.
If a mutant with w(x′, x) > 0 occurs, it has a positive probability to spread.

If w(x′, x) < 0 it will die out. Of course, even if a mutant has a positive �tness,
as long as it is rare it could still accidentally die out, due to bad luck. The
fundamental idea of A.D. is that once a mutant has left the region of accidental
extinction, its fate can be inferred from its initial growth rate (�tness) when
rare. This assumption is proven to hold under some conditions, especially that
mutations have su�ciently small phenotypic e�ects (see Geritz et al. (2002)).
In the following we will assume that these assumptions are ful�lled. If the
mutant has a positive long term growth rate in the environment made up by
the resident (w(x′, x) > 0) but the resident, on the other hand, has a negative
growth rate in an environment made up by the mutant (w(x, x′) < 0), then the
mutant phenotype will (except for random extinction due to bad luck) spread
and eventually replace the resident which is doomed to extinction. If, however,
w(x′, x) > 0 and w(x, x′) > 0 then the mutant can spread, but once it replaces x
as resident and the former resident population becomes rare, the former resident
is protected by a positive growth rate. This means that the two strategies x and
x′ coexist in a protected polymorphism as each of them has a positive growth
rate when rare.
To sum up, the evolutionary dynamics can be seen as a succession of mutations

that either

- fail to invade (w(x′, x) < 0)

- go to �xation (w(x′, x) > 0 and w(x, x′) < 0)

17



1. Introduction

- produce a protected polymorphism (w(x′, x) > 0 and w(x, x′) > 0)

It should be noted that A.D. neglects the possibility of accidental extinction
of the resident population. This can be justi�ed by the assumption that the
resident population is large.
If mutations have su�ciently small phenotypic e�ect, then the direction of the

local �tness gradient determines which mutants can invade. The components of
the gradient are given by

Si(x) =
∂w(x′, x)
∂x′i

∣∣∣∣
x′=x

(1.1)

The index i stands here for the ith component of the multi-dimensional trait
vector. If Si(x) > 0, mutants with x′i > xi can invade the resident with phe-
notype x, whereas if Si(x) < 0, this is only possible for mutants with x′i < xi
(where x′j = xj for j 6= i).
If the traits evolve in small but discrete steps, the change over time is well

approximated by the so-called canonical equation

d

dt
xi = m(x)

∑
j

Cij(x)Sj(x), (1.2)

where the Cij are the elements of the covariance matrix of the mutational incre-
ments in the di�erent traits and m(x) is a positive factor related to the mutation
rate (Dieckmann and Law, 1996).
The canonical equation predicts the direction and speed of evolutionary change.

If there is no covariance and if the variance in the traits is equal, this will be the
direction of the local �tness gradient. The population evolves until it reaches
the neighbourhood of an equilibrium point where the local �tness gradient is
zero (Si(x) = 0). The trait con�guration corresponding to such an equilibrium
point has been named �evolutionary singular strategy� by Metz and co-workers.
It is important to note that such a singular strategy can be approached from
very di�erent initial conditions, depending on the shape of the actual �tness
landscape. But, as we will see in the following, it need not to be approached at
all. This depends on the the type of singular point.
The type of such an equilibrium point can be determined by evaluating the Ja-

cobian matrix of the selection gradient and the Hessian matrix of invasion �tness
at the singular point. A comprehensive analysis of this is given in Leimar (in
press), while Geritz et al. (1997, 1998) treat in detail the case of one-dimensional
traits. The current work shall be restricted to description of the possible types
of equilibria. It is fundamental to clarify that there are two di�erent questions to
be posed when considering a singular point: The �rst is whether this point will
be approached by the evolutionary process, when starting with an evolutionary
strategy nearby. Leimar (in press) shows that this is always the case for any pos-
itive de�nite covariance matrix C in the canonical equation when the Jacobian
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1.1. Adaptive Dynamics

F
it
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ss

Phenotype

Figure 1.1.: A convergence stable �tness minimum or evolutionary branching
point. Nearby phenotypes experience selection towards this singular point. But
once the resident population has reached this point it turns into a �tness minimum.
Source: Rue�er et al. (2006)

matrix of the selection gradient is negative de�nite. If this criterion is met, the
singular strategy is called �strongly convergence stable�. The second question is
whether such an equilibrium point is a local �tness minimum or maximum. If it
is a maximum, the point is locally uninvadable, meaning that, once a population
at this point is established, all nearby mutants have negative �tness. This is the
classical ESS-condition of evolutionary game theory. If such a point is addition-
ally strongly convergence stable, it is called a continuously stable strategy (CSS).
Leimar (in press, 2005) shows that a su�cient condition for a local maximum
is the negative de�niteness of the Hessian matrix of the invasion �tness at this
point. On the other hand, if the Hessian is positive de�nite or inde�nite, this
point will be a minimum or a saddle point and (at least some) nearby mutants
will be able to invade. In the case of a minimum the selection at such a point
is called disruptive selection. If such a point is additionally convergence stable,
evolutionary branching may occur. Evolutionary branching means that the pop-
ulation evolves towards this point and once the point is attained it splits up into
two sub-population, which evolve in di�erent directions of the phenotype space.
At �rst sight the separation of these two questions might seem counter-intuitive.

It may seem strange that a point can be approached by evolution (convergence
stability), but once the population has arrived there the point turns out to be a
�tness minimum that can be invaded by nearby strategies. To understand this,
one should keep in mind that the �tness landscape is not something statical, but
is generated by the current resident. It is possible that a population follows the
direction of the �tness gradient in trait space, while it is simultaneously �over-
taken� by a �tness minimum �coming from behind�. This situation is illustrated
in Figure 1.1. Table 1.1 gives an overview of possible con�guration of singular
points.
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1. Introduction

Table 1.1.: Classi�cation of singular points
Here we consider the one-dimensional case: If a singular point is both convergence
stable and a local maximum, then it is called continuously stable strategy (CSS). A
maximum, which is not convergence stable is called Garden of Eden, as a population
will not converge to it from nearby and a population that has left this point by chance
will evolve away from it. A minimum which is convergence stable is called branching
point (BP), as all nearby populations evolve to it and then split into two distinct sub-
populations. A minimum which is not convergence stable is called evolutionary repellor,
because the population does not evolve towards such a point and a population initially
there evolves away from it.

E
x
tr
em

u
m Convergence stable

+ -
- BP Repellor
+ CSS Garden of Eden

Table 1.2.: Assumptions of the A.D. approximations

Basic assumptions of Adaptive Dynamics:
- Resident is at dynamical equilibrium when mutant occurs (mutations are rare)
- Mutation in small but discrete steps (for this one needs a quantitative trait)
- Population size large

A.D. is an approximation of the evolutionary dynamcis valid in the limit of
rare mutations. The assumptions made by the A.D. framework are summed up
in Table 1.2. Such an approximation is necessary in order to obtain a math-
ematically tractable model. It is of course necessary to explore the validity of
the approximation under more realistic conditions and this is one purpose of the
individual-based simulations presented in the following chapters.

1.2. The Model

To investigate the questions posed in the beginning of this chapter, we use a
population dynamical model �rst presented by Chesson and Warner (1981).
They used it to address the question of coexistence of di�erent phenotypes. We
study in this so-called lottery model the evolution in temporary varying envi-
ronments. We allow for the evolution of genetic polymorphisms, randomisation
(bet-hedging) and phenotypic plasticity. Leimar (2005) used this model to inves-
tigate the question of the relative likelihood of the development of randomisation
versus evolutionary branching (which leads to a genetic polymorphism).
The lottery model by Chesson and Warner is characterised by the follow-

ing features: The population is censored in discrete time-steps. To an interval
between two census-points we refer as season, year or time-step. The habitat
consists of a �xed number of K patches, each of which can be occupied by one
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1.2. The Model

individual. An individual that has managed to settle in a patch stays there until
it dies. Now the following events occur each season:

1. Environmental condition: Each season is dominated by a certain envi-
ronmental condition. Here we allow for two di�erent environmental condi-
tions. Condition 1 occurs with probability p and condition 2 with proba-
bility 1− p.

2. Uniform number of o�spring: Each individual produces an equal, very
large amount of clonal o�spring (if no mutations occur, the o�spring's
genotype is an exact copy of the parental genotype).

3. Selection among o�spring: Only a fraction of the o�spring survives.
The survival of an o�spring depends on the current environmental con-
dition and the o�spring's phenotype, which is determined by its parent's
genotype. One could thus combine the last two steps and say: The num-
ber of surviving o�spring an individual has in a certain environment is a
function of its genotype.

4. Patches are emptied: A fraction d of the adult individuals occupying
patches dies. Mortality a�ects all individuals equally. Their genotype thus
only plays a role in determining the number of surviving o�spring they will
produce.

5. Empty patches �lled by o�spring: The total number of surviving
o�spring of step 3 form an o�spring pool. The patches emptied in step 4
are re�lled by o�spring. We assume that the number of surviving o�spring
is always large compared to the population size, so all empty patches will
be �lled each season. The o�spring is highly dispersive and therefore the
o�spring pool is well mixed. The o�spring genotypes �ll the empty patches
randomly with a probability equal to their frequency in the o�spring pool.
This is equivalent to an allocation of empty patches on a �rst-come �rst-
serve basis. O�spring that does not manage to settle in a patch (the
majority of it) die. After one season the population size thus always equals
the patch number, K.

6. Mutations occur: With a certain, small, probability the freshly settled
individuals carry a mutated genotype, di�ering from the one of their par-
ent.

Figure 1.2 gives a schematic representation of this population dynamics. Note
that selection only acts on newborn individuals. We will combine steps 2 and
3 by only considering the number of o�spring surviving the selection stage per
parent. More frequent genotypes among the o�spring then have a higher chance
to settle in the empty patches. For settled individuals death occurs randomly
with equal probability each year.
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Figure 1.2.: Schematic representation of the population dynamics. The numbers
correspond to the steps of the enumeration in the text.
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1.2. The Model

One might criticise in our model that the o�spring's phenotypes are deter-
mined by its parent's genotype rather than by its own. This has mostly technical
reasons, but we think that this assumption can be justi�ed. First, given that
the organisms in our model reproduce clonally, a di�erence only exists in the
rare case of mutation. And if a mutation occurs, this assumption just delays
the impact of a mutation by one generation. Second, there are examples in na-
ture where the phenotype on which selection acts is determined by an o�spring's
parent. Think for instance of seeds or eggs. Their phenotypes are determined
by the mother's genotype and it is plausible that there is selection in this stage
of the o�spring's development (e.g. resistance of seeds or eggs against external
conditions).
Biological examples of species with a life cycle similar to the one in our model

include territorial tropical reef �sh or sessile marine invertebrates such as corals
or shells (see Butler and Keough (1981)). These species produce a large amount
of larvae that are highly dispersive and once the larvae completed their develop-
ment they settle in discrete patches which they occupy until they die.
Note that our model features a �xed number of patches K. For the analytical

treatment, however, this patch number is assumed to be so large that all calcu-
lations can be done with frequencies instead of absolute values. The simulations
will use explicit patch numbers.
In the following superscripts correspond to di�erent genotypes in the popula-

tion. The population dynamics of the ith genotype (genotypic trait value noted
by zi ) living in a community of n di�erent genotypes is described by

N i(t+ 1) = (1− d)N i(t) +Kd
β(zi)N i(t)∑n
j=1 β(zj)N j(t)

, (1.3)

where β(zi) is the number of o�spring produced by a single individual of geno-
type i that reach the settling stage during (t,t+1] and N i(t) is the number of
individuals carrying genotype i. The term Kd is the number of empty patches,
whereas the fraction in equation 1.3 gives the probability that an empty patch
will be occupied by an individual of genotype i.
As mentioned above, each season one out of two di�erent environmental con-

ditions occurs. In each environmental condition the o�spring will need a special
adaptation in order to have a good chance to survive. Having a phenotype well
adapted to one condition will mean a suboptimal adaptation to the other con-
dition. As environmental conditions one could think of wet and dry years. Or
- in the light of the example of reef �sh or corals - the two environmental con-
ditions could re�ect the presence of two di�erent kinds of predators, preying on
the larvae. If one predator is dominant, one phenotype guarantees the best sur-
vival probability, while another phenotype is needed to cope best with the other
predator. The phenotype of an individual is a single (scalar) quantitative trait,
noted z ∈ [0, 1]. The function αi(z) gives the number of o�spring that reach set-
tling stage for an individual with o�spring of phenotype z under environmental
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Figure 1.3.: Trade-o� curve for di�erent values of the curvature parameter c. The
curvature parameter c determines the shape of the trade-o� curve. The abscissa
represents the number of o�spring of a phenotype lying on the curve under en-
vironmental condition 1, while the ordinate gives the number of o�spring under
environmental condition 2. The left upper end of each curve corresponds to z = 1
and the right bottom end to z = 0.

condition i, i ∈ {1, 2} .The trait value z parametrises a one-dimensional curve
in the two-dimensional (α1, α2)-plane (see Figure 1.3 ). These trade-o� curves
for the two environmental conditions have the following form:

α(z) =

{
α1(z) = α1max(1− z)

1
c in env. condition 1

α2(z) = α2max(z)
1
c in env. condition 2,

(1.4)

where the factors αimax correspond to the maximum number of surviving o�-
spring possible in environment i per individual and time-step. Specialists for
environmental condition 1 are characterised by z = 0, whereas an individual
with phenotype z = 1 is specialised in environment 2. The trade-o� parameter
determines how di�erent phenotypes perform in the two di�erent environments.
If the trade-o� curve is concave (weak trade-o�, trade-o� parameter c > 1)
intermediate phenotypes have relatively good survival probabilities in both en-
vironments. In this case a generalist with z = 0.5 would be the only best
strategy and polymorphisms do not occur. Under a strong trade-o� (c < 1) the
generalist is comparatively un�t, meaning that he performs quite poorly in both
environments.
In the following we want to use this model to answer di�erent questions.

First, we investigate situations in which � starting with a population at the
generalist genotype z = 0.5 � a genetic polymorphism evolves. At the same
time we implement a mechanism that allows for bet-hedging and investigate
whether bet-hedging evolves when starting from a non-bet-hedging genotype.
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1.2. The Model

This task is strongly motivated by the work of Leimar (2005) who compared the
relative likelihood of evolutionary branching (leading to a genetic polymorphism)
and the development of a bet-hedging strategy for a similar model. For this
part we try to stay as close as possible to Leimar's notations to allow a direct
comparison. This notation will be described in section 1.2.1. Second, we want
to generalise this approach and incorporate a mechanism that allows for bet-
hedging, phenotypic plasticity, and a �xed genotype-phenotype relation. For
this model we will determine which conditions favour the development of one
of these possibilities and whether mixtures of the strategies appear. For the
incorporation of these mechanisms, we introduce a convenient notation which is
explained in section 1.2.2.

1.2.1. Framework for the comparison with Leimar's work

To incorporate bet-hedging into the model we need three trait values to charac-
terise one genotype: (z1, z2, q). Here z1 and z2 correspond to the two di�erent
phenotypic trait values an individual with genotype (z1, z2, q) can have. The
third dimension of the genotype space, q, corresponds to the probability that
an o�spring of an individual with this genotype has the phenotype z1, whereas
with probability (1− q) the phenotype of an o�spring is z2. Hence, in our model
a genotype is in principle capable of producing two di�erent phenotypes. A
genotype where either z1 = z2 or q = 0 or 1 corresponds to a non-bet-hedging
strategy. In the �rst case the two phenotypes are simply identical, whereas in
the other cases only one phenotype is produced. In such a situation a phenotypic
polymorphism could only be achieved by a genetic polymorphism.
So how many o�spring that reach settling stage does an individual with a

certain genotype produce? The ith randomizing genotype produces larvae with
phenotypes zi1 and zi2 in proportions qi and (1 − qi). The number of surviving
o�spring an individual has in an environment j ∈ {1, 2}, βj(zi), as used in
equation 1.3, is given by

βij = qiαj(zi1) + (1− qi)αj(zi2). (1.5)

The function αj(zk), k ∈ {1, 2}, is the number of surviving o�spring if an in-
dividual would only produce o�spring of phenotype zk in environment j and is
given in equation 1.4. Equation 1.5 corresponds to a simple weighting of the
o�spring numbers over the di�erent phenotypes produced.

Example:

Although the analytical treatment uses in�nite population size and individual
frequencies, we will work with explicit numbers here for clearness. Let us consider
an individual of type i with a genotype (zi1, z

i
2, q

i) = (0.8, 0.2, 0.3). The trade-o�
parameter c shall be �xed at 0.6 and α1max = α2max = 100. In a year with
environmental condition 1 the individual produces βi = 0.3α1(0.8) + 0.7α1(0.2)
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o�spring. So there is 30% o�spring having phenotype zi1 = 0.8 and 70% o�spring
having phenotype zi2 = 0.2. The survival functions α1(0.8) and α1(0.2) give
6.8 and 68.9, respectively. Finally, βi = 50.3, which means that the individal
produces 50 o�spring that reach the settling stage. Whether each of them �nds
an empty patch to settle is of course another question. In this example with
environmental condition 1, only about 2 o�spring with the suboptimal phenotype
zi1 = 0.8 survive, whereas about 48 of the survivors have phenotype 2. In a year
with environmental condition 2 it would be other way round with about 21
survivors with phenotype 1 and only 5 having phenotype 2. One can see that
the bet-hedging mechanism allows an individual to have a reasonable amount of
o�spring under each environmental condition.

1.2.2. Framework for the complete model

Similar to the preceding section we denote individuals with di�erent phenotypic
trait values produced by the same genotype with subscripts: the ith pheno-
type of the jth genotype is denoted as zji . Here we want to introduce a system
allowing for all three strategies, bet-hedging, phenotypic plasticity and unique
genotype-phenotype mapping as ways of phenotype determination. We will also
be interested in mixtures of those mechanisms and possible evolutionary tran-
sitions from one mode of phenotype determination to another. A conceptual
framework that allows for such transitions was presented by Leimar et al. (2006)
and Leimar (2008). They introduce a switching device that processes environ-
mental cues as well as genetic information to determine discrete phenotypes as
output. We want to use a similar device capable of incorporating environmental
cues and some form of randomisation in the development of two alternative phe-
notypes per genotype. The randomisation - bet-hedging - shall be integrated in
the system via the input of some developmental noise, n, drawn from a normal
distribution N(0, 1). Simons and Johnston (1997) point out that a develop-
mental instability such as this developmental noise in our model is a possible
mechanism for bet-hedging to evolve. The switching device we consider for this
study is shown in Figure 1.4. We assume that the environmental cue can take
two values e1 and e2. The cue correctly predicts the future environment - in
which the newborns struggle for survival - with probability r (reliability) and
predicts it incorrectly with a probability 1 − r. The switching device processes
the input according to y = a ·ei+(1−a)n, leading to the development of pheno-
type 1 if y < t and to phenotype 2 if y > t. The e�ect of the switch can evolve
though changes in the weighting factor a and the threshold value t. Hence, a
genotype is characterised by (z1, z2, t, a). If a = 1 and e1 < t < e2, then the
phenotype is determined according to the environmental cue, corresponding to
pure phenotypic plasticity. If a = 0, the phenotype is determined by the e�ect of
the developmental noise, n, with the threshold value t determining the frequency
of the two possible phenotypes. In this case the system (z1, z2, t) is equivalent
the one described in 1.2.1, where t = ∞ corresponds to q = 1 and t = −∞ to
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Figure 1.4.: Developmental switch with environmental cue and developmental
noise as input. The switching device processes environmental and internal cues as a
weighted sum to determine one of two alternative phenotypes as output. Phenotype
1 is produced when the weighted sum is larger than the threshold t and phenotype
2 if the sum is smaller.

q = 0. For intermediate values of a and ae1 < t < ae2 the developmental path
is a mixture of bet-hedging and plasticity. One can show that

aei + (1− a)n < t with probability Φ
(
t− aei
1− a

)
(1.6)

aei + (1− a)n > t with probability Φ
(
aei − t
1− a

)
, (1.7)

where Φ(x) is the cumulative distribution function of the normal distribution

N(0, 1) (Φ(x) = 1√
2π

∫ x
−∞ exp[−

1
2v

2]dv). The equation Φ
(
t−aei
1−a

)
+ Φ

(
aei−t
1−a

)
=

1 holds of course, as every individual must either express phenotype 1 or pheno-
type 2.
Note that for very small t almost only phenotype 1 is expressed, whereas for

very large t virtually all o�spring expresses phenotype 2. In these cases we are
close to a unique genotype-phenotype mapping. For a = 0, the system presented
here is related to the one presented in the preceding section by q = Φ(t).
Table 1.3 gives the number of o�spring produced by an individual with geno-

type (z1, z2, t, a) under environmental condition j for the cases where the envi-
ronmental cue is correct or incorrect.
For simplicity we will mostly use a symmetric model with −e1 = e2 and

p = 0.5. If additionally the z1 value and the z2 value of the singular point are of
equal distance from 0.5 (|0.5 − z1| = |0.5 − z2|) - as it is the case in our model
- one can prove that the singular value t∗ = 0. Therefore we will in most of the
following reduce the dimension of the model by setting t = 0.
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Table 1.3.: Per capita number of surviving o�spring as a function of the envi-
ronmental condition on whether the cue, ei, is correct or not, the value of the
threshold of the switch device, t, and the weighting factor, a. The function Φ is
the cumulative distribution function of the normal distribution N(0, 1).
Env. cond. Cue Per-capita number of surviving o�spring Probability

1 correct β+
1 = Φ

(
t−ae1
1−a

)
α1(z1) + Φ

(
ae1−t
1−a

)
α1(z2) pr

1 wrong β−1 = Φ
(
t−ae2
1−a

)
α1(z1) + Φ

(
ae2−t
1−a

)
α1(z2) p(1− r)

2 correct β+
1 = Φ

(
t−ae2
1−a

)
α2(z1) + Φ

(
ae2−t
1−a

)
α2(z2) (1− p)r

2 wrong β+
1 = Φ

(
t−ae1
1−a

)
α2(z1) + Φ

(
ae1−t
1−a

)
α2(z2) (1− p)(1− r)

1.3. Analytical Results

The results of the application of adaptive dynamics (see section 1.1) to the model
described in section 1.2 are presented in detail in Rue�er et al. (in prep.b) and in
Rue�er et al. (in prep.a). The following sections give a brief summary of these
results. Section 1.3.1 gives the results for the model restricted to a canalized
genotype-phenotype map, section 1.3.2 gives the results for the case where bet-
hedging is allowed for and section 1.3.3 gives the results for the model with
phenotypic plasticity. Section 1.3.4 presents the results for the complete model
where all three mechanisms are possible. The section on bet-hedging mainly uses
the notation described in section 1.2.1, while the framework presented in section
1.2.2 is used for the analysis of the case with plasticity and for the complete
model.

1.3.1. Canalised Genotype-Phenotype Map

If z1 and z2 are constraint to be equal, it is su�cient to follow evolution in the
one dimensional trait space (z). Searching the zeros of the selection gradient it
is easy to show that z∗ = 1 − p, where p is the probability that environment 1
occurs, is the only singular point. This trait value is convergence stable for all
values of c. For c + d > 1 this point is a local maximum and consequently a
CSS, while it is a local minimum and hence an evolutionary branching point for
c+ d < 1.

1.3.2. Bet-Hedging

By searching the zeros of the selection gradient, equation 1.1, we �nd z∗1 =
z∗2 = 1− p as unique singular point in the 2-dimensional trait space. The third
dimension, q, is selectively neutral for these trait values, which means that we
have a line of equilibria (z∗1 , z

∗
2 , q) = (1− p, 1− p, q) with q ∈ [0, 1].

As mentioned in section 1.1 the de�niteness of the Hessian matrix (H) de-
termines whether a singular point is a maximum or a minimum in the �tness
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landscape and the de�niteness of the Jacobian matrix (J) determines whether
such a point is convergence stable or not. In this model the following cases can
be distinguished:

- c < 1−d⇒ J inde�nite, H positive de�nite: The singular point (1−p, 1−p)
is a saddle point of the evolutionary dynamics. A canalised genotype (z1 =
z2) can coexist with a resident at the singular point and branching in this
direction is thus possible. This is the case we will be interested in.

- 1−d < c < 1⇒ J inde�nite, H inde�nite: The singular point (1−p, 1−p) is
still a saddle point of the evolutionary dynamics but a canalised genotype
cannot coexist with the resident.

- c > 1 ⇒ J negative de�nite, H negative de�nite: The singular point (1 −
p, 1− p) is a continuously stable strategy (CSS). This means that it is an
evolutionary attractor and once the population has settled there only the
third dimension of the trait space, q, changes through neutral drift. We
will not treat these cases further as the development of polymorphisms is
not possible in such a setting.

In the �rst two cases of the listing above the population is not expected to
evolve to the singular point, but instead to evolve to the boundary of the trait
space (this means to extreme values of z1 and z2, i.e. 0 or 1). However, the
question we want to treat here, also asked by Leimar (2005), is what will be
the evolution of a population starting at a singular point. As the biological
mechanism underlying bet-hedging is something that most likely does not exist
a priori, but has to evolve, such a scenario seems realistic. In the case c < 1− d
three things can happen:

1. Mutation occurs along the diagonal of the trait-space (where z1 = z2).
Such a mutant can always coexist with the resident at the singular point
and a protected polymorphism of two genotypes without bet-hedging de-
velops.

2. Mutation occurs such that z1 6= z2 and this mutant can coexist with the
strategy at the singular point. Then a genetic polymorphism with two
bet-hedging strategies will develop.

3. Mutation occurs such that z1 6= z2 and this mutant cannot coexist with
the resident at the singular point. Then the mutant replaces the former
resident and a single bet-hedging genotype develops.

In which direction the population is most likely to evolve, depends on the
slope of the �tness landscape and on possible correlations (which we will treat
later). The leading eigenvector of the Hessian matrix gives the direction of the
steepest slope of the �tness landscape. Without correlations this direction will be

29



1. Introduction

favoured by selection. Figure 1.5(a) shows that the direction of the eigenvector
(dotted line) depends on the phenotype proportion, q. At the same time it
illustrates that the directions in which coexistence is possible depend as well on
q. Only mutants in a direction corresponding to the grey area of Figure 1.5(a)
can coexist with the resident. Others would drive the resident to extinction.
The border between grey and white areas is thus the line of distinction between
cases 2 and 3 of the enumeration above. Studying Figure 1.5 we can distinguish
several situations (note that the speci�c values of q at which these situations
merge depend on the particular parameter values):

- q = 0.5: If the two possible phenotypes per genotype are initially pro-
duced with equal frequency, roughly only mutants with either both in-
crements, in z1 and z2, positive or both negative can coexist in a pro-
tected polymorphism with the resident (grey area in Figure 1.5(c)). The
strongest selection (direction of eigenvector) is, however, in the direction
where δz1 = −δz2 (dotted line in Figure 1.5(c)). This means that for
q = 0.5 a pure bet-hedging strategy (case 3) is expected to evolve.

- 0.25 ≤ q ≤ 0.75: In these cases the strongest selection is still in a direc-
tion where coexistence is impossible. Consequently, similar to q = 0.5, we
expect a single bet-hedging genotype to evolve. In contrast to q = 0.5,
mutants with z1 and z2 not symmetric around 0.5 are favoured now. For
q = 0.25 and q = 0.75 the eigenvector points in the direction that distin-
guishes between angles in which coexistence is possible and impossible (see
Figure 1.5(b)).

- q < 0.25 or q > 0.75: In these cases the leading eigenvector of the Hessian
points in a direction where coexistence is possible (the dotted line lies in
the grey area in Figure 1.5(d) for q=0.9) and we expect the evolution of a
dimorphism of two bet-hedging genotypes (case 2 of the listing above).

Note that a genetic polymorphism of canalised phenotypes (mutation in the
direction of the diagonal, case 1 in the enumeration above) is never favoured in
our model. A more detailed discussion of the di�erent scenarios can be found in
Rue�er et al. (in prep.b).
In the current work we focus on the situation with equally frequent environ-

mental conditions (p=0.5), c < 1 − d and an initial population that is located
at the singular point (0.5, 0.5, q). Then genetic polymorphisms and bet-hedging
genotypes are both possible. Leimar (2005) �nds that in this model with a
temporal variable environment the evolution of bet-hedging is always favoured.
But Leimar only investigates the case where q = 0.5 and compares mutations
in the direction of bet-hedgers with phenotypes that are equally well adapted
for the two environments (mutational increments δz1 = −δz2) with with muta-
tions in the direction of a pure polymorphism with z1 = z2 for each of the two
sub-populations. Our results suggest, however, that if di�erent values of q are
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considered, the strongest selection can be for bet-hedging genotypes that can
coexist and form a genetic polymorphism. The question �Does bet-hedging or a
genetic polymorphism evolve?� is thus not well formulated in such cases.
The simulations presented in section 3.1 investigate the further evolution in

such situations and study evolution in the case of mutational covariance between
the traits.

1.3.3. Plasticity

If we �x a at 1, then the switching device presented in 1.2.2 allows for devel-
opmental plasticity but not for bet-hedging. In this case the z1- and z2-isocline
are given (see Rue�er et al. (in prep.a)) by, respectively, the vertical and the
horizontal line,(

1− p− r + pr

1− p− r + 2pr
, z2

)
and

(
z1,

−r + pr

−p− r + 2pr

)
. (1.8)

When both environmental conditions are equally probable (p = 0.5) the ex-
pressions for the isoclines simplify to

(1− r, z2) and (z1, r). (1.9)

The point of intersection of the two isoclines is the only singular point of the
two dimensional trait space (this point is not de�ned for (r, p) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}).
This point only coincides with the singular point of canalised genotype when
r = 0.5.
Both eigenvalues of the Jacobian matrix of invasion �tness are negative for all

values of r, p ∈ (0,1). Thus, the singular point is always convergence stable.
The eigenvalues of the Hessian matrix are positive if and only if c < 1 − d.

In that case the singular point is a branching point that can be invaded by
all nearby mutants leading to a genetic polymorphism. In the opposite case,
where c > 1 − d, the eigenvalues of the Hessian matrix a negative and the
singular point corresponds to a continuously stable strategy (CSS). Note that
disruptive selection, leading to a genetic polymorphism occurs under exactly the
same conditions as in the case of a canalized genotype-phenotype map. Hence,
the evolution of phenotypic plasticity does not annihilate disruptive selection.
The further evolution after a population has become polymorphic can not be
predicted by an analytical treatment. It shall be investigated by simulations in
the following chapters.

1.3.4. Complete Model

Here we consider the general case of the framework presented in section 1.2.2
where the weighting factor between plasticity and bet-hedging, a, can evolve
freely. We focus on the case with p = 0.5 and assume without loss of generality
that e1 = −e2. As t∗ = 0 in the symmetrical case, we will reduce the trait space
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Figure 1.5.: Evolutionary dynamics at a singular point (z1, z2) = (0.5, 0.5) for
c+d < 1. In this case the Hessian-matrix is positive de�nite and the singular point
is a minimum in the two-dimensional �tness landscape. The top panel (a) gives,
as a function of q, the angle of the dominant eigenvector of the Hessian matrix at
the singular point (dashed line). The points of the dashed line thus correspond to
the direction of strongest selection. The grey area of the graph marks directions in
which the coexistence of a mutant with the resident strategy at the singular point is
possible. In the white area coexistence is impossible and thus evolutionary branch-
ing does not occur. The dot-dashed line gives the direction in which Leimar (2005)
measures the strength of selection for bet-hedging. In this direction coexistence is
not possible. However, only for q = 0.5 this direction follows the steepest slope
of the �tness landscape marked by the dominant eigenvector. We can see that for
increasing distance of q from 0.5 the direction of the dominant eigenvector of the
Hessian matrix changes until it reaches a direction where coexistence is possible at
q = 0.25 and q = 0.75 respectively. For q < 0.25 or q > 0.75 genetic polymorphisms
can evolve. The panels (b)-(d) show the dominant eigenvector of the Hessian, the
area of coexistence and the line corresponding to the direction in which Leimar
measures the strength of selection for bet-hedging in the (z1,z2)-plane for three
values of q. Line styles are the same as in panel (a). Note that in panel (b) where
q = 0.25 the dominant eigenvector coincides with the border of the area of co-
existence and that in (c) where q = 0.5 the direction in which Leimar measures
the strength of selection for bet-hedging coincides with the dominant eigenvector.
Parameter values used: z = 0.6, d = 0.3.
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1.3. Analytical Results

for the analytical treatment to (z1, z2, a) by setting t = 0. This assumption
will be relaxed in the simulations. If a < 1 the isoclines can only be found
numerically. As mentioned in the preceding section, for pure plasticity (a = 1)
the singular point (z1, z2) = (1− r, r) is a CSS for c > 1−d. However, if a is not
�xed, mutants characterised by a smaller value of a can invade. A population
with a slightly smaller than 1, experiences selection towards more extreme values
of z. For the special case of c = 0.6 and d = 0.6 a population characterized
by the z-values at the intersection of the two isoclines and a = 0.88 starts to
experience disruptive selection in the direction of z1 and z2 and possibly starts
to branch into a genetic dimorphism. The exact evolutionary dynamics needs
to be investigated by the simulations presented in Chapter 3. If the population
does not branch but becomes invaded by individuals with even smaller values of
a it subsequently experiences directional selection towards z1 = 0 and z2 = 1.
For a population with t = 0, |ei| = 0.25, c = 0.6, d = 0.6, z1 = 0 and z2 = 1 in
an environment with p = 0.5 and r = 0.75 selection toward smaller a proceeds
until a∗ = 0.73. The genotype (z1, z2, a) = (0, 1, 0.73) combines elements of both
bet-hedging and plasticity and cannot be invaded by any other genotype.
Given that the sign of the �tness gradient in the directions of z1, z2 and a is

independent of the death probability d, the location of the z1 and z2 isoclines
does not change when d is varied. The convergence and uninvadability properties
of the singular point do, however, depend on d. For c+d < 1 the point (z1, z2) =
(1− r, r) turns into a branching point in the plane a = 1, while at the same time
selection favours mutants with smaller values of a. The question whether this
change in a occurs fast enough to prevent the populations from branching or
not, will be investigated by the simulations presented in section 3.3.
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As we have seen in the preceding chapter, the adaptive dynamics approach is
based on several assumptions (see Table 1.2). In many ecological scenarios these
assumptions seem unrealistic. This is the �rst point why individual-based sim-
ulations are important: To investigate the robustness of the results found with
the adaptive dynamics method, when these assumptions are not strictly ful�lled.
More precisely, we will use in the simulations �nite population sizes, consider-
able mutational step sizes and high mutation rates. The mutation rates will
be so high, that a separation of the population dynamical and the evolutionary
time-scales is not realised: The population will not be at an equilibrium before
a new mutant occurs, and many mutant sub-populations will exist within the
population at the same time.
Another reason for the necessity of these simulations is that it is di�cult to

calculate invasion �tness in our stochastic environment. In some situations the
deterministic treatment cannot provide any results. For example, situations with
polymorphic populations that are not symmetric around the singular point are
not analytically solvable. Thus, often simulations are required to know what
happens after branching has occurred. Also for the case with mutational covari-
ance between the two alternative phenotypes one has to rely on simulations.
Here we develop a general program that simulates the dynamics of the com-

plete model and that incorporates the possibility of mutational covariance be-
tween the traits. The functions used for these purposes are written in Matlab
(MathWorks, 2007). The main program is presented in section 2.1 and its graph-
ical output in section 2.1.1, while section 2.2 describes the technical di�culties
with the classi�cation of possible evolutionary end-points.

2.1. The Main Program

The �nal program used for the simulations is the result of a long process of
optimising and adapting earlier versions. Below, we only comment the main
decisions concerning the design of the program. A very straightforward approach,
keeping track of the genotype of each and every individual in the population
turned out to be computationally too demanding when population sizes are
larger than about 100 individuals. That is why the program �nally employed
uses a di�erent approach, which does not follow every individual, but follows the
di�erent genotypes present in the population and keeps track of the number of
individuals carrying these genotypes.
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Figure 2.1.: Schematic representation of the program's structure. The numbers
refer to the points of the enumeration in the main text.
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2.1. The Main Program

The program presented here uses the notation of the complete model described
in section 1.2.2. An earlier version of this program restricted to the special case
where only bet-hedging is allowed for was used for the simulation presented in
section 3.1. This version uses the notation described in section 1.2.2; it will
not be presented here, but section 1.2.2 describes how the two notations can be
transferred into each other. Figure 2.1 gives a schematic representation of the
program's structure, which is detailed in the following.
Input arguments: The program takes as input arguments the initial popula-

tion structure (genotypes present and their numbers) and the parameters deter-
mining the mutational process, such as mutation probability, variance-covariance
matrix of the probability distribution of the mutational increments and the step
sizes in trait space. Furthermore, the model parameters described in section 1.2,
such as the probability to encounter environmental condition 1, p, the death
probability, d, the trade o� parameter, c, and the cue reliability, r, are given as
input arguments. Other inputs are the maximal number of iterations, whether
the program should stop when a possible �end-point� (will be discussed later) is
attained and whether there should be a graphical output. The input arguments
are summarized in Table A.1. The function itself consists of a loop comprising
the following steps:

1. Determine the current environment.

2. Determine the number of o�spring for each genotype in the population.

3. Determine the number of empty patches. Each iteration, an individual
dies with a probability d.

4. Draw the number of settling o�spring for each genotype.

5. Determine the total number of mutations for the di�erent traits and allo-
cate them to the di�erent o�spring genotypes.

6. Draw the mutational step size for each mutating individual and add the
new genotypes to the populations.

7. Update the genotype matrix.

8. If not suppressed: Every 50 generations, add mean value and standard
deviation of z1, z2, a, t to a time-series plot. Every 100 generations draw a
z1, z2-phase diagram of the population.

Steps 1-8 are iterated until either the maximal number of generations or one of
the evolutionary end-points, which will be discussed in section 2.2, is reached.
Output variables: The output parameters of the function include the mean

values and standard deviations of a, z1, z2 and t for every time-step, the complete
genotype matrix every 100 time-steps, the type of evolutionary end-point, if any
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is attained, and the input parameters. These output parameters are summarized
in Table A.2.
The heart of the program is the genotype matrix. Each row contains the trait

values (z1, z2, a, t) of a di�erent genotype and the number of settled individuals
carrying this genotype. Hence, the number of rows is not �xed, but corresponds
to the number of di�erent strategies present in the population. In A.1.1 the
source code of the main program, called �BetHedgingGen_2_4_f�, is given. It
is documented in detail and should be comprehensible for interested readers
with a little bit of a Matlab background. Readers not familiar with Matlab,
however, should know that Matlab source code is comparatively hard to read,
as the dimensions of objects are not clearly de�ned and many functions can be
applied to scalars, vectors, matrices and even higher dimensional objects.
As parts of our studies incorporate covariance between the two traits z1

and z2, the sizes of the mutational increments in z1 and z2 are drawn from
a 2-dimensional Gaussian distribution, the shape of which is determined by a
variance-covariance matrix. This means that an individual that mutates in z1
necessarily also mutates in z2 (only a single drawing for z1 and z2 in step 5 of
the listing above), even if there is no covariance. This is of course unnatural,
but another version of the program, where z1 and z2 mutate independently gives
qualitatively identical results as the described program with zero covariance.
There are also other steps where the program does not exactly follow the

population dynamics, but makes approximations. The comparison with the sim-
ulation results of an exact - but much slower - individual based program showed
that these inaccuracies do not change the outcome. But we still want to mention
these approximations here:

1. The hypergeometric distribution for the allocation of o�spring to empty
patches is approximated by a multinomial distribution. At one time step,
the sum of o�spring from all the individuals present in the population is
called gamete pool. Assume that each individual has very many o�spring.
Then the structure of the gamete pool is nearly unchanged when one indi-
vidual is removed. Thus, one can draw the genotypes settling the vacant
patches from the same multinomial distribution, using the frequency dis-
tribution of the di�erent genotypes in the gamete pool as probabilities.
The approximation here is that the frequencies are not adapted after each
drawing (as an individual is removed), but they stay constant for all the
drawings at one time-step. The correct way would be to keep track of
each individual in the o�spring pool, but as we are using large numbers
of o�spring per individual the approximation done here can be considered
as very good. Comparisons with another version where the o�spring is
directly allocated to the empty patches, without passing over a frequency,
show identical results.

2. The hypergeometric distribution for the allocation of mutations to the
settled o�spring is approximated by a multinomial distribution. An ap-
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proximation, very similar to the one in the �rst point, is done to simulate
the mutational process. The function draws the total number of settled
o�spring mutating in z1 and z2 and the numbers mutating in a or t from
a binomial distribution. Here again, the mutations are allocated to the
di�erent genotypes by drawing from a multinomial distribution, with the
frequency distribution of the newly settled genotypes as parameter. In this
case, however, the approximation is more severe than for the settling of the
o�spring, because the number of settled o�spring is limited by the num-
ber of empty patches ((population size)∗(death rate)) and far from being
�in�nite�. It could be the case that - by chance - 2 individuals of one geno-
types are drawn, even though only one individual with such a genotype
exists among the settled o�spring. In such a case the program does as if
there was one more individual than empty patches. This makes that the
population size may grow slightly bigger than the patch number. However,
the growth is limited as in the following generation the emptied patches
are only �lled up to a population size equalling the total patch number.
This inexactness is of course inelegant, but simulations show that, with
the mutation rate used for the following analyses, the problem only occurs
about once every 10000 time-steps. Other versions of the program that
deal with this issue in a correct way, had, with the used parameters, an
about 25% longer running time and showed qualitatively identical results.
That is why this implementation was chosen.

3. The possibility of simultaneous mutations in z1/z2 and a or t is ignored.
As mentioned above z1 and z2 always mutate at the same time; a and
t, however, cannot mutate simultaneously or together with z1/z2. This
means that an individual that mutated in either z1/z2, a or t, will not
mutate in an other trait, which should biologically by chance be possible.
This, being an other inelegance of the code, does not seem to have any
in�uence on the outcome, as in the following generations a mutation in the
other traits is possible anyway. Additionally, for low mutation probabilities
the chance of double mutations becomes negligible.

In conclusion one can say that it was possible to create functions that are
able to simulate the dynamical system described in section 1.2 with acceptable
running times and in an automatized way. Several approximations were made
in order to optimise the performance of the code. Most of these approximations
are clearly justi�ed by the assumptions we make in our model and the others
were tested by the comparison with the outcome of exact versions of the code.
The program described in this section can be used in two di�erent ways: Either

one uses the graphical output included in the function to get direct qualitative re-
sults by observing how the population develops, or one runs simulations without
any graphical output and determines the results later with the help of analyse
tools. The following section presents the graphical output.
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2.1.1. Graphical Output

The graphical output is shown in Figure 2.2. The shot was taken after 5900
time-steps for a simulation with a maximum of 10000 time-steps. Figure 2.2(a)
gives the population wide mean values and standard deviations of a, z1, z2, (b)
gives a z1 − z2 phase diagram and (c) gives mean value and standard deviation
of the threshold t. The blue line in Figure 2.2(a) shows the mean of z1, while
the red one shows that of z2. One can see that at time T = 0 the mean values of
z1 and z2 were equal to 0.5 (panel (a)(2)), while their population wide standard
deviations were 0 (panels (a)(3) and (a)(4)). The �rst and the last panel of
graph (a) show that the weighting factor of the switching device, a, was equal
to zero for the whole population at T = 0, while Figure 2.2(c) tells us that t was
uniformly equal to 0.5 in the beginning. This example illustrates that we can
often use the population wide mean values and standard deviations to infer the
population structure. The values T = 0 show that the simulation was started at
a monomorphic population (z1, z2, a, t) = (0.5, 0.5, 0, 0.25). This corresponds to
a population located at the centre of the z1−z2-phase space, where phenotype z1
is more common than phenotype z2 (a t value of 0.5 corresponds to q > 0.5; see
section 1.2.2). The phenotypes expressed will be determined solely by internal
noise (a = 0), thus we have a bet-hedging strategy (not before z1 and z2 start
to diverge by mutations of course). In the interval 2000 < T < 3000 we see
that the standard deviation in z1 grows, meaning that there is a certain amount
of variation in these trait values present in the population. Large standard
deviations can be an indicator for genetic polymorphisms. For T > 3000 all
standard deviations are small again. This tells us that the vast majority of the
population is concentrated in a comparatively small volume of the trait space.
In our example the means of z1 and z2 become more and more distinct while a
stays small, hence we are observing the development of a bet-hedging strategy.
Figure 2.2(b) shows the population in the z1− z2-space for T = 5900. When the
simulations are running this plot is updated every 100 time-steps. Blue circles
correspond to genotypes with less than 10 individuals, green squares to 10-100
individuals and red diamonds to more than 100 individuals. We can see that the
population has moved from the initial point z1 = z2 = 0.5 halfway towards the
corner of the trait space where (z1, z2) = (1, 0). Note that in our example, as
in all the presented simulations, mutation rates are so high that populations are
never monomorphic, but we see populations consisting of a cloud of genotypes
with similar trait values. These �quasi-monomorphic� populations will not be
called polymorphic. Only two distinct clouds, each composed of genotypes with
similar trait values, will be referred to as dimorphisms or polymorphisms.

The graphs shown in Figure 2.2(a) and 2.2(c) are directly produced by the
main program �BetHedgingGen_2_4_f�, while the sub-function �plot_pip_f.m�
produces the z1, z2-phase-diagram (Figure 2.2(b)). The documented source code
of �plot_pip_f.m� is presented in appendix A.1.2.
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(a)

(b)

(c)
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Figure 2.2.: Graphical output

Graphical output of the main program. Graph (a) gives the population wide
mean of a (panel 1), z1 (blue line) and z2 (red line) (both panel 2) and the
standard deviations of z1 (panel 3), z2 (panel 4) and a (panel 5) as a function of
time. Graph (b) gives the z1, z2 phase diagram at time T . Graph (c) gives the
population wide mean (panel 1) and standard deviation (panel 2) of t.
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2.2. Determination of Evolutionary End-Points

The objective of this investigation is to study the evolutionary path in a situation
characterised by certain parameter values. We are especially interested in the
outcome of evolution, i.e., the population has reached some kind of evolutionary
attractor. In the simulations this outcome will mostly be an (at least locally)
optimal strategy that cannot be invaded by nearby mutants. In this case we can
talk of a local �tness maximum. These evolutionary end-points will most often
be situated next to the borders of the trait space (e.g. z1 and z2 are 0 or 1),
where the local �tness gradient points in the direction of the border of the trait
space. Another possible evolutionary outcome would be a cyclic succession of
strategies, i.e., the occurance of evolutionary branching where one or more sub-
populations evolve away from a �mother-population�, die out after some time and
then branching takes place again. A common de�nition for such evolutionary
end-points would be that when such a point is reached the population stays in
a restricted volume of the trait space.
In the light of the simulations presented in this work, evolutionary end-points

can either be detected by looking at the data of each run of the simulation
(usually via the graphical output) and interpreting it, or by developing a pro-
grammed routine capable of determining when an end-points is attained. The
second approach has important advantages. First, in order to avoid stochastic
e�ects most studies incorporate information from a large amount of simulation-
runs. It would be very time consuming to examine all these runs by hand (eye).
Dealing with the results in an automatised way helps to cope with the huge
amount of information and to reduce the needed memory capacity. Second, a
programmed routine de�nes clear criteria when an end-point is reached. This
guarantees reproducible results. Third, how many time-steps it takes to reach
an evolutionary end-point depends on the evolutionary path and can vary con-
siderably between simulation-runs for a given set of parameters. This is due to
stochastic e�ects. To minimize computational and storage costs it is desirable
to run a simulation only until an evolutionary end-point is reached, because the
further development does not provide any new information (The evolutionary
dynamics has either come to a halt or it continues in predictable cycles.). An
automatised stopping routine can be launched during a simulation and terminate
the run if an endpoint is reached before the maximum number of time-steps was
reached.
The number and kind of such evolutionary end-points depends on the exam-

ined situation, i.e., the model parameters and the initial population. Therefore
the development of a detection routine for a number of simulations where a
system parameter is gradually changed is not an easy task. First, one has to
investigate a large number of simulations by hand to get a picture of the possible
end-points. Then reliable yet not too complicated criteria how to identify such
a point unambiguously in given data have to be found. Here we want to present
the routines determining evolutionary end-points and de�ne break conditions
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for two situations. The comparatively simple routine presented in section 2.2.1
was employed for investigations in the bet-hedging model, while section 2.2.2
describes the more complicated routine for a situation with pure plasticity.

2.2.1. Evolutionary End-Points in a Bet-Hedging Model

Here we want to describe the development of a routine that is able to deter-
mine the evolutionary-end points in a situation where a genotype can produce
alternative phenotypes by bet-hedging but not via phenotypic plasticity. This
corresponds to a population where the weighting factor a of the switching de-
vice presented in 1.2.2 is �xed to 0. In a scenario where the singular point is a
branching point (c+ d < 1) we want to investigate the frequency of the di�erent
evolutionary end-points as a function of the initial threshold value t (equivalent
to the initial phenotype weighting factor q in the notation of section 1.2.1) and
the mutational covariance between the two alternative phenotypes z1 and z2.
The results of this investigation are presented in section 3.1.2.
A manual investigation of many runs of the program for di�erent parameter

values showed that the following end-points occur:

1. A (quasi-)monomorphic population in the neighbourhood of the bet-hedging
strategy (z1, z2)=(1,0) and q=1− p.

2. A (quasi-)monomorphic population in the neighbourhood of the bet-hedging
strategy (z1, z2)=(0,1) and q=p.

3. A (quasi-)dimorphic population with two clouds of genotypes; one situ-
ated around (z1, z2)=(0,0), the other one around (z1, z2)=(1,1), where q
(respectively t) is selectively neutral and hence shows a larger variation.

To detect these end-points the function �PolyOutcome_f.m� was developed.
The �rst input argument is the population matrix at a �xed time-step. The
second input argument is a number that determines the maximum distance of
a population from an end-point such that it is identi�ed as that end-point. Re-
member that we will use high mutation rates that imply that resident strategies
always consist of a large number (of more or less) similar mutants. Given that
all the sub-populations existing at the possible evolutionary end-points are in
corners of the z1 − z2-trait space, the function just counts the individuals that
are contained in a quadratic neighbourhood of the corners. For end-point 1 of
the listing above to be detected, more than 80% of the population has to have
trait values z1 and z2 closer to 1 resp. 0 than the number given as second in-
put argument. In that case the function returns the integer 1. End-point 2 is
treated in an equivalent way. For end-point 3 to be attained 90% of the pop-
ulation has to have trait values in the quadratic neighbourhoods around (0,0)
and (1,1), and none of these two neighborhoods should be empty. The function
gives 3 as output. In the case where none of those criteria is ful�lled the output
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is 0. The commented source code of this function is given in appendix A.1.3. It
is implemented in the main program in the way that it is launched every 1000
time-steps. If it returns an outcome other than 0, the simulation is stopped.

2.2.2. Evolutionary End-Points in a Plasticity Model

In a situation that allows for the development of phenotypic plasticity but not for
bet-hedging (a �xed to 1) and where the singular point is a branching point (c+
d < 1) more complicated evolutionary end-points exist. We want to investigate
the type and frequency of the evolutionary end-points reached by the dynamics
for di�erent values of the trade-o� parameter, c, the death rate, d, and the
cue reliability, r. The threshold, t, was �xed to 0. The results of this study
are presented in section 3.2. The examination of preliminary results by hand
showed two di�erent categories of end-points. On the one hand, similar to the
bet-hedging model, we get stable end-points consisting of genotypes that are
situated in the corners of the trait space. On the other hand, cyclic end-points
occurred in a large number of cases. These cyclic end-points are of the following
form:

1. branching occurs

2. sometimes a second branching event occurs to one of the two sub-populations

3. sub-populations evolve to di�erent regions of the trait space

4. one or more of the sub-populations go extinct

5. a) if only one sub-population is left, it evolves back to the branching
point and the cycle restarts at point 1

b) if more sub populations are left, one of them branches again and the
cycle is back at point 3

With cyclic end-points, it is not enough to develop a function that determines
which of the corners are populated, because we could have a cycle where things
change after some time. In this case a routine that determines whether an end-
point is reached should not only take into account the current situation, but also
the con�guration at some points in the past. Technically this is realised by two
functions. One, very similar to the one presented in appendix A.1.3 for the case
of bet-hedging, determines which of the corners are populated and a second one
compares the current result with the results of the last 15 queries (there is one
query every 1000 time-steps). If all the results are identical, the corresponding
end-point is detected. If the succession of results shows the characteristics of a
cyclic end-point, it is detected.
In conclusion one can say that the possible evolutionary end-points depend on

the investigated situation. A programmed routine that is capable of determining
when an end-point is reached has to be adapted to deliver satisfying results in
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di�erent studies. Especially the detection of cyclic end-points will need new
adjustments when mutation probabilities or mutational step sizes are changed.
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3. Results and Discussion

This chapter contains most of the results obtained from simulations performed
with the program presented in 2.1 and a discussion of the �ndings. Part of the
simulations was performed to test the predictions of the deterministic model,
while other simulations investigate situations in which an analytical treatment
is impossible.

3.1. Bet-Hedging

Here we investigate the situation where the genetic architecture allows for the
evolution of a bet-hedging mechanism for the determination of o�spring-phenotypes
but not for phenotypic plasticity. This corresponds to a = 1 in the formalism
presented in 1.2.2 but for convenience and easier comparison with Leimar (2005)
we will use the notation presented in 1.2.1. Thus genotypes are described by
(z1, z2, q), where q is the probability that phenotype z1 is expressed. Note that,
when a = 0, the notations are related by q = Φ(t) = 1√

2π

∫ t
−∞ exp[−1

2v
2]dv.

The simulations that will be presented in section 3.1.1 were performed to test
the predictions of the deterministic model. As noted in Table 1.2, the adap-
tive dynamics approach assumes low mutation rates, such that the population
dynamics is at an equilibrium before a new mutant occurs. In the simulations
mutations occur with probabilities of 0.1 or 0.01 per time-step, trait and indi-
vidual. With these parameters the population never reaches a population dy-
namical equilibrium before new mutants occur and populations always consist
of extended clouds in trait space. For easier comparison with the results of the
deterministic model a cloud of genotypes with similar trait values will be called
monomorphic in the following, two clouds each composed of similar genotypes
dimorphic or polymorphic and so on. Section 3.1.2 presents an investigation of
the in�uence of mutational covariance between the alternative phenotypes on
the outcome of evolution, while section 3.1.3 tests how the results depend on
mutation rate and population size.

3.1.1. Qualitative Investigations

A large number of simulations with di�erent parameter values was performed.
The results always matched well with the deterministic predictions: In the case
of a concave trade-o� (c > 1) the population stays at the generalist genotype
(z1, z2, q) = (0.5, 0.5, q) or evolves there if initially away from this manifold.
Remember that q is neutral in this case. For weakly convex trade-o�s (1− d <
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c < 1) the population evolves towards a perfect bet-hedging strategy with trait
values in the neighbourhood of (z1, z2, q) = (1, 0, p) or (0, 1, 1 − p), where p is
the probability to encounter environmental condition 1. Polymorphisms do not
evolve with such parameter values. For strongly convex trade-o�s (c < 1 − d)
the singular point is a branching point in some directions of the trait space
and genetic polymorphisms can occur. Again, the analytical result, that the
likelihood that such polymorphisms evolve at a branching point depends on the
initial proportion with which alternative phenotypes are produced, is well met.
When both phenotypes are initially produced with equal frequencies (q = 0.5),
genetic polymorphisms are extremely rare. The further the initial distribution is
biased towards one of the phenotypes (q away from 0.5), the larger proportion of
simulation runs with a genetic polymorphism can be observed. The interesting
observation, however, is, that without any covariance these polymorphisms are
only temporary and vanish after a certain time. Figure 3.1 shows the typical
evolution for a case where a polymorphism forms: a population that started
with a single genotype (z1, z2) = (0.5, 0.5) (and q = 0.9 in this example) is
composed of di�erent mutants close to this point (Figure 3.1(a)). After some
time (for a mutation rate of 0.1 typically within the �rst 4000 time-steps) the
cloud of genotypes splits into two distinct clusters (Figure 3.1(b)). These clusters
usually evolve away from the branching point in two opposite directions (c). For
q > 0.5 the clusters move faster in the z1-direction (horizontal), and for q < 0.5
they move faster in the z2-direction (vertical). This is intuitive as in these cases
the respective other trait value is less expressed. After some time one of the
two clusters disappears (Figure 3.1(f)). For initial q close to 0.5 this happens
before the two clusters can reach the (opposite) borders of the trait space, for
q close to 0 or 1 they typically reach the borders, as can be seen in Figure
3.1(d). If q is close to 1 for instance, the two clusters usually evolve to z1 = 1
and z1 = 0, respectively, while z2 is nearly neutral. At the borders the two
clusters experience more or less neutral drift in z2. Once a cluster has evolved
into a corner corresponding to a perfect bet-hedger ((0, 1) or (1, 0)), it drives the
other cluster to extinction (Figure 3.1(e)) and q evolves to its optimum. This
optimum equals the probability that the environmental condition individuals
with trait value z1 are specialised in occurs. In the example of Figure 3.1 this
would be q = p, where p is the probability to encounter environment 1.
The polymorphisms in the simulations vanish after some time because at some

point they stop to be protected. To understand why this is the case, one has
to understand the underlying mechanism of protection. This mechanism is de-
scribed in Warner and Chesson (1985) and in Ellner and Hairston (1994). Two
canalised genotypes with phenotypes on the opposite sides of the singular point
(one more specialised in environmental condition 1, the other one in condition
2) always bene�t from a certain protection in the form of negative frequency
dependant selection. This can be understood intuitively: In years where one of
the two genotypes performs well (high o�spring survival) the other one performs
poorly (low o�spring survival). Given that the number of patches is limited, a
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good year leads to considerably higher relative growth rates for rare genotypes
than for genotypes that are already abundant. This mechanism helps genotypes
that are rare to increase in favourable years and thus protects them against ex-
tinction. The strength of this mechanism does of course depend on the model
parameters such as d, c and K. A coalition of two bet-hedging genotypes, how-
ever, does not bene�t from such a protection mechanism because they perform
more or less equally well under both environmental conditions. That is why
two genotypes are protected as long as nearly only one phenotype is expressed
(q close to 0 or 1) but one of them dies out when they approach bet-hedging
strategies with two equally expressed phenotypes that are each specialised in one
of the two environmental conditions.

3.1.2. Mutational Covariance

The results of the preceding section show that without covariance in the muta-
tional step size for z1 and z2 genetic polymorphisms are only temporal. Sim-
ulations and analytical results alike suggest that a genetic polymorphism with
one cluster near z1 = z2 = 0 and another cluster near z1 = z2 = 1 (left bottom
and right top corner in the phase diagram presented in �gure 2.2(b)) cannot be
invaded by nearby mutants. The simulations presented here investigate whether
such a genetic polymorphism of the two specialists with canalised genotype-
phenotype map could evolve if the development of a bet-hedging strategy was
hindered to some degree. The di�culties in the development of a bet-hedging
strategy shall be incorporated by two mechanisms.

- If an organism that originally produced only one phenotype starts to pro-
duce two di�erent phentoypes, then it seems plausible that the alternative
phenotype is initially produced with low frequency. This will be simulated
by varying the initial frequency distribution of the two phenotypes, q. In
the last section we saw, however, that extreme values of q can lead to the
establishment of a temporary polymorphism but that a genetic polymor-
phism of the two canalised phenotypes ((z1, z2) = (0, 0) and (1,1)) is never
attained.

- If an organism that originally only produced one phenotype, starts to pro-
duce two di�erent phentoypes, then it seems intuitive that the genetic
and developmental pathways underlying these alternative phenotypes are
coupled to some degree and cannot evolve totally independent. This will
be modelled by a positive correlation between the mutational steps in z1
and z2, also called mutational covariance. Given that the advantage of a
bet-hedging strategy is to simultaneously produce o�spring adapted to two
di�erent environments, it is obvious that, starting at (z1, z2) = (0.5, 0.5),
the alternative phenotypes should evolve in opposite directions (sign δz1 =
− sign δz2). The results in section 1.3.2 show that the strongest selection
is indeed always in a direction where sign δz1 = − sign δz2. A positive
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(a) (b) (c)

(d) (e) (f)

Figure 3.1.: Example of a temporary polymorphism occurring when c < 1 − d.
The pictures show the genotypes present in the population in the z1 − z2-space.
Blue circles correspond to genotypes with less than 10 individuals, green squares
to 10-100 individuals and red diamonds to more than 100 individuals. After about
2000 time-steps the population separates into two distinct clusters which evolve
to the borders of the trait space and eventually one cluster dies out when the
other one reaches a corner corresponding to perfect bet-hedging. The proportion
of phenotypes with trait value z1, q, evolves to be equal to the probability that the
environmental condition a phenotype z1 is specialised in occurs; here this would be
q = p. Figures (a)-(f) correspond to 1000, 2500, 3500, 5000, 6000, 7000 time-steps,
respectively. The initial q-value equals 0.9. Parameter values used are K = 2000,
d = 0.2, c = 0.6. The mutation probability is 0.1.
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mutational covariance now means that mutations where z1 and z2 change
in the same direction are more likely to occur than the opposite case.

A run of the simulations with mutational covariance between z1 and z2 is
shown in Figure 3.2. We see that, contrary to the example without covariance
in Figure 3.1, branching now occurs in the direction of the �rst main diagonal
(z1 = z2). During the whole evolutionary process the genotypes stay close to
this diagonal and in the end we get a stable genetic dimorphism of two canalised
phenotypes ((z1, z2) = (0, 0) and (1,1)).
In the following results for di�erent combinations of initial values of q and for

di�erent amounts of correlation between z1 and z2 are presented. The possible
evolutionary end-points are a population of perfect bet-hedgers or a genetic
polymorphism of two canalised genotypes. Section 2.2.1 describes how this end-
points can automatically be detected by the program. For various combinations
of the initial q-value and values of the covariance between z1 and z2 100 runs of
the simulation were performed on a computer cluster. The maximum number
of time-steps was set so high that always an end-point was reached. Table 3.1
gives an overview of the parameter values used, while Figure 3.3 presents the
simulation results. Covariance is measured relative to the variance of the step
sizes in z1 and z2 (which are drawn from a normal distribution). In the absence
of covariance the simulations only lead to the genetic polymorphism of canalised
phenotypes as an evolutionary end-point in 4% of the cases for q = 1, but not
for other values of q. In general one can see that the proportion of genetic
polymorphisms among the end-points increases monotonically with increasing
covariance and with increasing q. Only the data point q = 0.6 and covariance =
0.2 does not �t in this pattern. This phenomenon is most probably due to
stochastic e�ects and should disappear with a higher number of simulations.
Note that for intermediate values of covariance (0.3) q has a great in�uence on
the distribution of evolutionary end-points. While for q = 0.5 only 19% of the
runs produce a genetic polymorphism, this is the case in 96% of the runs for
q = 1.

3.1.3. Dependence on Mutation Rate and Population Size

On the one hand we use high mutation rates and comparatively small population
sizes in our simulations to relax the assumptions of the deterministic model, on
the other hand this was convenient because it helped to reduce the necessary
hardware resources and computation time. In situations where we could not
obtain any analytical results, it is important to know how sensitive the simulation
results are with respect to the chosen mutation rate and populations size. To
investigate this question we take a point of the parameter space used in the
previous section where both possible evolutionary end-points can be observed
and study the proportion of the di�erent outcomes in dependence on mutation
rate and population size.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2.: Example of a simulation with strong correlation. The pictures show
the genotypes present in the population in the z1−z2-space. Blue circles correspond
to genotypes with less than 10 individuals, green squares to 10-100 individuals and
red diamonds to more than 100 individuals. After branching the strong positive
correlation holds the two clusters near the �rst main diagonal (z1 = z2) and the
population gradually evolves to a pure genetic polymorphism of the two specialists.
Panels (a)-(f) correspond to 1000, 2000, 6000, 9000, 11000, 13000 time-steps, re-
spectively. The initial q-value is 0.8. Parameter values used are K = 1000, d = 0.2,
c = 0.6. The mutation probability is 0.1. The covariance is 60% of the variance in
the mutational step sizes of z1 and z2.

Table 3.1.: Input parameters used

Initial population structure 10000 individuals with (z1, z2)=(0.5,0.5)
q is varied

Mutation probability 0.01 per time-step in z1, z2 and q
Variance 0.0001 in z1, z2 and q
Mutational step size 0.01 in z1, z2 and q
Environment distribution, p 0.5
Death probability, d 0.2
Maximal number of o�spring 50 per individual
Trade-o� parameter, c 0.6
Maximal simulation time 500000 time-steps
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3.1. Bet-Hedging

Figure 3.3.: Proportion of genetic polymorphisms of two specialists as evolu-
tionary end-point. The other possible end-point is a perfect bet-hedging strategy
with (z1, z2)=(0,1) or (1,0). Both a positive correlation between z1 and z2 and an
asymmetric initial q make a genetic polymorphism as end-point more likely. With
strongly asymmetric q already a small covariance shifts the outcome distribution
towards the genetic polymorphism. Parameter values are summarised in Table 3.1.
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In the present case we use q = 0.8 and a relative covariance of 0.4 and deter-
mine the proportions of the alternative end-points for di�erent mutation rates
between 0.1 and 0.001 and di�erent population sizes between 500 and 20000.
The results are presented in Figure 3.4. We see that:

- For populations smaller than 5000 individuals we have a strong dependence
of the frequency of the di�erent evolutionary end-points on the mutation
rate. The proportion of polymorphisms of the two specialist increases with
mutation rate. The smaller the population size, the stronger is this e�ect.
An intuitive explanation for this dependence could not be found so far.
Simultaneously, the proportion of polymorphisms decreases with popula-
tion size. This is because small population sizes make a polymorphism less
protected because the sub-populations are more vulnerable to stochastic
e�ects. In the extreme case of a population size of 100 individuals poly-
morphisms are always only very short-lived and a polymorphic end-point
is never attained.

- For populations of 10000 individuals or more the outcome does not depend
on the mutation rate anymore.

Therefore we used a population size of 10000 individuals in the simulations pre-
sented in section 3.1.2. Biologically realistic mutation rates of 10−4 to 10−5

would have been too computationally demanding, but considering the fact that
for population sizes ≥ 10000 the outcome is unchanged over two orders of mag-
nitude, it seem reasonable to assume that the results presented here are valid
for even smaller mutation rates.

3.2. Pure Plasticity

In this section the simulation results obtained for the model where only plasticity
is allowed to evolve are presented. This means that the weighting factor of the
switching device, a, is �xed to 1. The analytical results presented in section
1.3.3 reveal that for equiprobable environmental conditions (p = 0.5) we get the
singular point (z1, z2) = (1− r, r), where r is the reliability of the environmental
cue. This point is strongly convergence stable for all values of r, c, d ∈ (0, 1).
While the point is a continuously stable strategy for c+ d > 1, it is a branching
point in the opposite case. For c + d < 1 it can be invaded by mutants in all
directions and coexistence is possible. The analytical treatment cannot predict
how a population will evolve once it became dimorphic. To investigate this
question a large amount of simulations with di�erent values of r, c and d was
performed. The cue reliability, r, was taken from {0.6, 0.7, 0.8, 0.9}, while trade-
o� parameter, c, and death probability, d, were varied in the interval (0,1) in
steps of 0.2 such that the condition for disruptive selection (c + d < 1) was
satis�ed.
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Figure 3.4.: Proportions of genetic polymorphisms among the evolutionary out-
comes as a function of mutation rate and population size. The other possible
outcome is a perfect bet-hedging strategy with (z1, z2)=(0,1) or (1,0). Simulations
performed for q = 0.8 and covariance = 0.4 · variance. We see that for population
sizes smaller than 5000 individuals there is a strong dependence of the outcome on
the mutation rate, but for population sizes greater or equal 10000 the proportion
of polymorphisms does not depend on the mutation rate. Other parameter values:
Mutational step-size: 0.01; Mutational variance: 10−4; p = 0.5, d = 0.2, c = 0.6.
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3.2.1. Evolutionary Dynamics

For all parameter combinations the simulations con�rmed that the population
evolves to the neighbourhood of the point (1− r, r) and then splits. But then a
considerable variety of evolutionary trajectories and end-points is possible. Sec-
tion 2.2.2 describes how these end-points can be detected by a program routine.
Basically the evolutionary dynamics can be divided into two categories:

1. Branching takes place in the direction of the 45◦-line. This situation is
shown in Figure 3.5. Starting from the point (1− r, r) (Figure 3.5(1)), the
two sub-populations evolve along the line with slope 1 to the two opposite
borders of the trait space (z2 = 1 (2a) and z2 = 0 (2b) respectively). Then
again two main possibilities need to be distinguished:

a) The sub-populations at (2a) and (2b) evolve towards the corners (1,1)
and (0,0) of the trait space ((3a) and (3b)).

b) One of the two sub-populations branches again giving raise to a third
sub-population (Figure 3.6). While two sub-populations ((1b) and
(2b)) evolve into the same direction as in case 1a of this enumeration,
the third sub-population (2a) evolves towards the corner (0,1) (3a).

2. Branching takes place in the direction of the −45◦-line. After branching at
(1−r, r) (Figure 3.7(1)) the two sub-populations evolve along the −45◦-line
in the direction of the corners (0,1) and (1,0). The corner (1,0) is always
reached comparatively fast.

3.2.2. Evolutionary End-Points

Depending on the parameter values the di�erent evolutionary trajectories lead to
di�erent evolutionary end-points. We can distinguish between three stable end-
points that follow from the three types of branching described in the enumeration
in section 3.2.1 and a cyclic end-point:

1. Dimorphism of canalised specialists: The situation described in point
1a of the enumeration above can lead to a stable end-point with two sub
populations situated at (z1, z2)=(0,0) and (1,1). This corresponds to a
genetic polymorphism of two genotypes displaying a canalised genotype-
phenotype mapping. They do not use phenotypic plasticity.

2. Trimorphism of canalised specialists and plastic genotype: The
situation described in point 1b of the enumeration above can lead to a sta-
ble genetic trimorphism of the two canalised genotypes (z1, z2)=(0,0) and
(1,1) and the genotype (z1, z2) = (0, 1). The latter one is using plasicity.

3. Dimorphism of plastic and anti-plastic genotype: The situation de-
scribed in point 2 of the enumeration above can lead to a stable dimorphism
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(1)

(2a)

(2b)

(3a)

(3b)

Figure 3.5.: Branching in the di-
rection of the 45◦-line in the model
where only plasticity is allowed for
(a = 1). Branching occurs at the
singular point (z1, z2) = (1 − r, r)
given c + d < 1. At the branching
point (1) the population splits into
two sub populations which evolve to
(2a) and (2b), respectively. Further
evolution towards (3a) and (3b) may
take place. Along this way one sub-
population may die out or the devel-
opment shown in Figure 3.6 may hap-
pen.

(1a)

(1b)

(2a) (2b)(3a) (3b)

Figure 3.6.: In some cases a subse-
quent branching event (1a) happens
to one of the two sub-populations
from Figure 3.5. The newly cre-
ated sub-populations at (2a) and
(2b) evolve to a plastic genotype
of extreme phenotypes (3a) and to
a canalised phenotype (3b), respec-
tively. The original sub-population,
that did not participate in the sec-
ond branching event evolves to the
canalised genotype with the opposite
phenotype (1b). Depending on pa-
rameter values, the sub-populations
at (1b) and (2b) may die out before
they reach the corners corresponding
to the canalised phenotypes (0,0) and
(1,1).
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(1)

(2a)

(2b)

(3)

Figure 3.7.: Branching in the direction of the 45◦-line. This development is
equally possible as its orthogonal counterpart in Figure 3.5. The sub-populations
separate at the branching point (1 − r, r) (1). One sub-population reaches the
plastic genotype (2a) while the other one evolves in the direction of the anti-plastic
genotype (3). Depending on parameter values the latter sub-population often dies
out before it can reach point (3).

of sub-populations with the genotypes (z1, z2)=(0,1) and (z1, z2)=(1,0).
These strategies both show phenotypic plasticity with two extreme phe-
notypes. The di�erence is that the genotype (0,1) always produces the
phenotype that is perfectly adapted to the environmental condition indi-
cated by the cue, while the genotype (1,0) always produces exactly the
opposite phenotype. One could say that the second one totally mistrusts
the cue.

4. Cyclic end-point: In many cases no stable end-point is reached. Instead
cyclic end-points evolve. In this case, after branching, one of the sub-
populations dies out after some time. This can either happen �somewhere
along the way�, before a corner of the trait space is reached, or when the
sub-population under consideration is already in a corner of the trait space.
Such extinction events can happen in all the scenarios listed in section
3.2.1. In the cases where two sub-populations exist (points 1a and 2 of
the listing above) the surviving sub-population immediately evolves back
to the branching point (1 − r, r) after the other one has died out. There
branching occurs again and all the three possible developments are again
possible. In the case of a trimorphism (point 1b of the listing in section
3.2.1) only the sub-populations evolving in the direction of (0,0) and (1,1)
are vulnerable to extinction. If one of them dies out, the population at
(0,1) branches again in the direction of the extinct sub-population to re-
establish the situation before the extinction. If both sub-populations die
out at the same time, the remaining population at (1,0) evolves back to
the branching point and the various scenarios can unfold again.
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3.2.3. Qualitative Results

In this section we will outline the general trend of how the parameters c, r and
d in�uence which of the scenarios sketched above may take place.

The role of the trade-o� parameter c

Low values of c correspond to a strongly convexly curved trade-o� (see Figure
1.3 and equation 1.4). The simulations show that the smaller the value of c the
faster the evolution towards the corners of the genotype-space proceeds after
branching. The questions whether the corners can be reached before one of the
sub-populations dies out and whether a stable end-point can be achieved is also
in�uenced by c, but the other parameters play a stronger role here. In some
cases, however, a smaller value of c can stabilise an end-point that was unstable
for identical values of r and d and larger c.
It is intuitively clear that a strong trade-o� (low values of c) speeds up evo-

lution as it increased the strength of selection for more specialised phenotypes.
Also the fact that a strong trade-o� can stabilise a polymorhism of specialists
can be understood intuitively because it gives the specialists advantage over
intermediate phenotypes.

The role of the cue reliability r

The reliability of the cue predicting the future environment, r, directly in�uences
how �well� a genotype displaying plasticity performs. A genotype that lies above
the diagonal z1 = z2 in trait space (z1 < z2) responds to the cue and produces
the phenotype that is better adapted to the predicted environmental condition,
while a phenotype underneath the diagonal (z1 > z2) responds contrarily to the
cue and always produces the phenotype that is better adapted to the condition
not predicted. It follows that the higher the reliability of the cue the better
performs the �rst type and the worse performs the second type. In the following
the second strategy will be called anti-plasticity for convenience. For r = 0.5
the cue does not provide any information and the model is symmetric while
in the case r < 0.5 the plastic and the anti-plastic strategies change roles. The
simulations showed that r has a strong in�uence on the stability of the end-points
presented in section 3.2.1:

- For r = 0.9 no stable evolutionary outcomes exist, independently of the
values of c and d. In this case there is always a part of the population at or
close to the point (0,1) and the other sub-populations detailed in section
3.2.1 die out before they reach a corner of the trait space.

- For r = 0.8 all runs with death rate d = 0.1 lead to stable evolutionary
end-points. In this case the end-point with the two canalised phenotypes
(0,0) and (1,1) is quite rare, while the trimorphism (0,1), (0,0) and (1,1)
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is the outcome of most of the simulations. A coalition of plasticity and
anti-plasticity of the extreme phenotypes (0,1) and (1,0) occurs in an in-
termediate number of cases.

- The trend for smaller r-values (that are still larger than one half) is as
follows: The smaller the r-value the higher values of d lead to a stable end-
point. For r ≤ 0.7 the dimorphism of canalised phenotypes (0,0) and (1,1)
is the most common end-point. A coalition of plasticity and anti-plasticity
of the extreme phenotypes (0,1) and (1,0) is rare and a trimorphism is very
rare.

If the environmental cue is highly reliable, the plastic genotype has a much
higher average number of o�spring than the two canalised specialists and the
anti-plastic genotype. On the one hand, this explains why for high reliabilities
always a sub-population of plastic genotypes evolves. On the other hand, it
is intuitive that in such a case no stable end-points can be attained, as the
average sizes of other sub-populations are small and they are thus vulnerable to
extinction (due to a series of years with the environmental condition they are
not adapted to).
For r > 0.5, which is always the case in our studies, the anti-plastic strategy

produces an correctly adapted phenotype in on average less years than a canalised
genotype and in much less years than the plastic genotype. In a dimorphism of
the canalised specialists the two sub-populations have the same average size, as
they have the same average number of o�spring. In a dimorphism of plastic and
anti-plastic genotypes, however, the sub-population following the anti-plastic
strategy is always smaller, as its individuals have a lower average number of
o�spring. Given that the smallest sub-population is most prone to extinction, it
is understandable that the �plasticity−anti-plasticity�-end-point is less frequent
than the end-point including the canalised genotypes. Furthermore, it is intuitive
that this e�ect becomes stronger for higher cue reliabilities.

The role of the death probability d

The death probability, d, plays an important role in the stability of polymorphic
populations. This is intuitively clear because a small d means that settled in-
dividuals have a high chance to live for several years and therefore to produce
o�spring under both environmental conditions. On the other hand if d is close
to 1, a genotype that only produces o�spring of one phenotype has a high risk of
extinction in a series of years favouring the other phenotype. The death prob-
ability determines how �protected� a polymorphism is (Warner and Chesson,
1985; Ellner and Hairston, 1994). The simulations show that:

- Values of d ≥ 0.5 make the evolutionary development unstable, regardless
of the parameters c and r. The larger the value of d, the shorter are the
evolutionary cycles.
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- For d=0.7 the sub-populations do not even reach the borders of the trait
space before one of them goes extinct. The remaining sub-population
evolves back to the branching point where it experiences disruptive se-
lection again.

- For d = 0.3 the dimorphism (0,0) and (1,1) is stable for r = 0.6 and
r = 0.7, while the other polymorphisms described in section 3.2.1 are not
always stable.

- For d = 0.1 all end-points are stable given r ≤ 0.8.

Conclusion

In conclusion one can say that regardless of the values of c, r and d, both ways
of branching, in the 45◦-direction (see Figure 3.5) and the −45◦-direction (see
Figure 3.7) do occur. For how long the polymorphisms persist after branching
and whether they reach a stable end-point in the corners of the trait space does
depend on all three parameters. Generally, branching in the 45◦-direction is
more frequent than in the orthogonal direction and polymorphisms produced by
such a branching event exist for a longer time. Whether after branching in the
45◦-direction a second branching event occurs that gives raise to a trimorphism
depends on r. If the environmental cue is highly reliable, then these trimorphisms
are frequent.
The death rate plays an important role in the maintenance of polymorphisms.

A small value of d protects a sub-population against a succession of years their
o�spring is not well adapted to. To examine whether this really is the crucial
feature explaining the in�uence of d on the outcome of the simulations, we ran
simulations where the environmental conditions strictly alternate. The results
of this investigation are presented in the following section.

3.2.4. Comparison With the Case of Strictly Alternating
Environments

In the preceding section we saw that many cases with small d led to the estab-
lishment of stable polymorphisms, while - all other parameters being equal - no
stable end-points could be found with higher values of d. Intuitively one would
expect that small death rates, which correspond to a large generation overlap,
protect the specialist phenotypes from extinction by giving them a chance to
survive a succession of unfavourable years and to reproduce at least occasionally
under optimal conditions. Small death rates protect against the stochasticity in
nature. If this is the only way how d in�uences the dynamics then simulations
with stricly alternating environmental conditions should also lead to stable end-
points in cases with higher values of d. Here we investigate such simulations.
Alternating environmental conditions should of course only help the dimorphic
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coalition of two canalized phenotypes. Genotypes displaying plasticity still ex-
perience stochasticity in nature because the cue can be wrong. A series of years
with wrong cues could still drive these genotypes to extinction if d is not su�-
ciently small.
To investigate the role of environmental stochasticity we performed similar

simulations as in section 3.2.3 but now with strictly alternating environmental
conditions 1 and 2. The results are as follows:

- For r = 0.9 the results are qualitatively similar to those with random
environmental conditions. No stable end-point exists regardless of the
values for c and d.

- For r = 0.8 the results are also similar to the general model. In some cases
the time to extinction takes longer but stable end-points can be found for
exactly the same parameter values.

- For r = 0.7 and 0.6 strong deviations from the results in section 3.2.3 can
be observed. In most cases the simulations with alternating environmental
conditions resulted in a polymorphism of the two canalised phenotypes
for all values of d that satisfy c + d < 1. By contrast, in the case with
random environmental conditions this was only possible for d = 0.1. As
expected, the end-point of the plastic and the anti-plastic phenotype was
stable under the same conditions in both investigations.

These results seem to be inconsistent as in some cases (r = 0.6 or 0.7) the
strictly alternating environmental conditions help to establish a stable end-point
for larger values of d, while in other cases (r = 0.8 or 0.9) they do not. One has to
bear in mind that the scenario with strictly alternating environmental conditions
only eliminates the stochastic variations that are due to the environment. But
stochasticity that is due to the random allocation process at the settling stage can
still lead to stochastic extinction. Alternatively, these results could be explained
as follows: As we have seen in section 3.2.3, depending on r, evolution either
favours a dimorphism with (0,0) and (1,1) or a trimorphism with a third sub-
population at the plastic strategy (0,1). For low values of r the �rst situation is
favoured, while larger values of r favour the second situation. If one examines the
result presented in the current section in more detail, one can �nd that in cases
where the trimorphism is favoured in the system with random environmental
conditions, strictly alternating environments cannot help to establish stability. In
situations where the original system favours the development of the dimorphism
of canalised genotypes, however, the alternating environments make the outcome
independent of d. This �nding can to some extend be understood intuitively.
The third sub-population at (0,1) makes that a sub-population at (0,0) or (1,1)
even in its good years has a competitor that is equally �t (given that the cue is
correct). A succession of several years in which the environmental cue is correct,
can drive a sub-population at (0,0) or (1,1) to extinction, as it experiences strong
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competition for the empty patches even in the years it produces a large amount
of o�spring. The protection mechanism from which a dimorphism of canalised
phenotypes bene�ts does not apply in such a case.

3.3. The Complete Model

An overview of the analytical results obtained for the complete model is given
in section 1.3.4. For intermediate values of the cue reliability, r, there exists a
genotype that combines a bet-hedging strategy with phenotypic plasticity (in-
termediate a) that corresponds to a convergence stable �tness maximum that
cannot be invaded by any other genotype. For example, for a population char-
acterised by t = 0, e1 = −0.25 = −e2, c = 0.6, d = 0.6 in an environment with
p = 0.5, r = 0.75 we �nd the optimal genotype to be (z1, z2, a) = (0, 1, 0.73).
The threshold value, t, was �xed for the analytical treatment but this assump-
tion is relaxed in the simulations. The following section presents the simulation
results for the parameter values listed above. Simulations are started either from
a bet-hedging strategy (a = 0) or from pure plasticity (a = 1). Section 3.3.2
deals with the question whether polymorphisms can be observed in the model.

3.3.1. The Evolutionary Trajectories

We study evolution starting from two di�erent initial conditions:

- Initial genotype (z1, z2, a) = (0.5, 0.5, 0): Simulations were started with
a genotype that is initially only sensitive to internal noise and not to the
environmental cue but at the beginning produces a single generalist geno-
type. The simulations show that, depending on stochastics, two di�erent
evolutionary end-points can be reached. About 50% of the runs lead to the
end-point predicted by the analytical results, (z1, z2, a) = (0, 1, 0.73). In
the other half of the simulations the phenotypes evolve to (z1, z2) = (1, 0),
while a stays close to 0. An example of the �rst case is shown in Figure 3.8.
After about 1000 time steps, the initial population (z1, z2, a) = (0.5, 0.5, 0)
evolves towards smaller values of z1 and larger values of z2. At the same
time the value of a slowly increases. As soon as the phenotpic trait values
reach the opposite extremes, at T ≈ 5000, the a-value starts to increase
much faster until it reaches at T ≈ 13000 the neigborhood of 0.73 where it
stabilises. In these simulations the threshold value, t, stays close to 0. A
run illustrating the second scenario is shown in Figure 3.9. There the trait
values of z1 and z2 evolve to 1 and 0, respectively. Note the exchanged
roles of z1 and z2 in Figure 3.8 and Figure 3.9. Remember that for pure
bet-hedging the strategies (z1, z2) = (0, 1) and (1, 0) are equivalent in the
sense that they correspond to the same average number of o�spring and
that they have the same probability of emergence. In the plasticity model,
however, the point (z1, z2)=(1,0), corresponds to a anti-plastic genotype.
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It always produces the (�wrong�) phenotype that was not indicated by the
cue. The population is trapped at a local �tness peak from which it could
only escape if z1 and z2 switched roles.

- Initial genotype (z1, z2, a) = (0.5, 0.5, 1): Simulations were started with
a genotype that is initially only sensitive to the environmental cue and not
to internal noise but in the beginning produces a single generalist geno-
type. Here only one end-point is possible. The observation of several
simulation runs con�rms that for the parameter values mentioned above
the evolutionary end-point (z1, z2, a) = (0, 1, 0.73) is reached by the dy-
namics. An exemplary run with a mutation rate of 0.01 and a population
size of 10000 individuals is presented in Figure 3.10. By following the
mean values of z1, z2 and a (which is su�cient because the small stan-
dard deviation in these parameters indicate that the populations is (quasi-
) monomorphic) we see that the population evolves to the singular point
(z1, z2) = (1− r, r)=(0.25,75) in the plane corresponding to the model for
phenotypic plasticity (a = 1). After a little more than 3000 time-steps
this point is attained and then the population experiences a strong selec-
tion for smaller values of a, while at the same time z1 and z2 evolve to
more extreme values to reach the borders of the trait space 0 and 1. After
about 5500 generations the mean value of a reaches 0.73 and stays in the
neighbourhood of this point for the rest of the simulation. The mean value
over the last 500 time steps of the population wide mean of a is 0.7297
with a standard deviation of 0.0036. The mean value over the last 500
time steps of the population wide standard deviation in a is 0.0207. Thus,
the analytical results are well met. Figure 3.10(b) shows that the popula-
tion wide mean value and standard deviation of the threshold value of the
switching device, t, stay very close to zero during the whole simulation.
The assumption t = 0 used for the analytical treatment is thus justi�ed.

3.3.2. Polymorphisms

A question that came up at the presentation of the deterministic model was
whether the population would experience disruptive selection in z1 and z2 at
some point during evolution. The following list summarises analytical and sim-
ulation results.

- Using the parameter values from above, the analytical results predict that
a population with z1 and z2 at the intersection of the two isoclines experi-
ences disruptive selection at a = 0.88. A large amount of simulations was
performed in order to investigate whether this disruptive selection could
lead to evolutionary branching and to the establishment of a genetic di-
morphism. In none of the cases a genetic dimorphism was observed. It
seems that a evolves to smaller values before branching of the populations
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3.3. The Complete Model

(a) (b)

Figure 3.8.: Evolution in the complete model where starting with a genotype only
sensitive to developmental noise leads to a mixture of bet-hedging and plasicity.
Panel (a) shows the population wide mean values of the traits and panel (b) the
standard deviations. The threshold, t (not shown), stays always close to 0.

(a) (b)

Figure 3.9.: Evolution in the complete model where the phenotypes of a bet-
hedger evolve in a direction that makes the development of plasticity impossible.
Panel (a) shows the population wide mean values of the traits and panel (b) the
standard deviations.
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(a)

(b)

Figure 3.10.: Evolution in the complete model starting form a generalist genotype
that is only sensitive to the environmental cue (plasticity) and not to internal
noise (bet-hedging). Evolution starting from (z1, z2, a)=(0.5,0.5,1). The population
wide mean values of (z1, z2) evolve to (1 − r, r) while the mean a-value equals 1.
Then the value of a gradually evolves to 0.73 while z1 and z2 evolve to 0 and 1
respectively. Since the population wide standard deviations for the di�erent traits
stay close to zero, the mean values correspond to a (quasi-)monomorphic population
of individuals with trait values close to the mean values. Graph (b) con�rms that
the assumption for the numerical treatment, t = 0, was justi�ed as t stays always
close to zero.
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can take place. Even when the mutation probability in a was 5 times
smaller than in z1 and z2 a dimorphism did not evolve. In some of the
simulations, however, a slightly increased population wide standard devia-
tion was detected in z1 and/or z2 at the time where a ≈ 0.88, which could
be a footprint of disruptive selection.

- Analytical results show that for a combination of a strong trade-o� and
strong generation overlap (c + d < 1) the singular point is a branching
point for all values of a. We investigate the case of d = 0.3 with all other
parameters being equal as above. Then the point (z1, z2) = (1 − r, r)
is a branching point in the plane a = 1. At the same time, however,
selection favours smaller values of a. Numerical treatment could not reveal
whether the evolutionary change in a would occur fast enough to prevent
the establishment of polymorphisms. Simulations showed that sometimes
temporal polymorphism occur, but they vanish after some time. In all cases
the same end-point is reached as for d = 0.6, i.e. (z1, z2, a) = (0, 1, 0.73). A
series of six z1−z2-phase diagrams illustrating a temporal polymorphism is
shown in Figure 3.11. The population branches close to (z1, z2) = (1−r, r)
(Figure 3.11(b)). The two sub-populations slowly evolve into two opposite
directions (c). After they reached the borders of the trait space (d) one of
the two sub-populations dies out (e) and the population reaches the end-
point (z1, z2, a) = (0, 1, 0.73) (f). If branching does not occur, the evolution
is similar to the case where d = 0.6, except that it takes longer until the
end-point is reached (smaller d means a slower population turnover).

3.4. Discussion

Simulations as back-up for the analytical treatment

The adaptive dynamics approximation makes several assumptions. (1) Muta-
tions occur in small, discrete steps, (2) they have to be su�ciently rare so that
the population is at a population dynamical equilibrium before new mutants oc-
cur and (3) resident populations have to be su�ciently large such that stochastic
e�ects can be neglected. In most biological scenarios, however, one or more of
these assumptions are unlikely to be ful�lled. A.D. has often been criticised for
these restrictions and its applicability to realistic situations has been controver-
sially discussed. A critical discussion of the A.D. approach is given in a review
by Waxman and Gavrilets (2005).
Most studies that apply the A.D. framework to a biologically motivated model

back-up their analytical �ndings with individual-based simulations that allow
for the relaxation of the A.D. assumptions. One of the main targets of the
simulations presented in this work is to test the analytical results by Rue�er et
al. (in prep.a, in prep.b). For the simulations we use:
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(a) (b) (c)

(d) (e) (f)

Figure 3.11.: Example for a temporal dimorphism occuring in the complete model
when c + d < 1. Phase diagrams in the z1 − z2-space for di�erent points in time.
Note that with increasing time the a-value decreases from a = 1 to an intermediate
equilibrium value. Parameter values: d = 0.3, c = 0.6.
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- Mutational step sizes that are drawn from a normal distribution.

- High mutation probabilities, mostly 0.01 per trait, generation and indi-
vidual. This leads to a situation where mutants occur frequently and no
population dynamical equilibrium is reached before a new mutant occurs.

- Comparatively small population sizes of mostly 1000 or 10000 individuals.

The simulation results are always consistent with the analytical �ndings and
suggest that the deterministic approach gives the correct predictions even tough
the assumptions are violated. However, there is no formal proof for this and
situations could exist in which the A.D. assumptions become crucial.
Furthermore, simulations allow to analyse situations where no analytical re-

sults could be obtained. In the present model simulations were necessary to
investigate the long-term dynamics of polymorphic populations and cases with
mutational covariance.

The Bet-Hedging Model

In the �rst part of our studies we consider genotypes that produce o�spring of
two di�erent phenotypes in an environment that consists of two randomly alter-
nating environmental conditions. The limiting case where the two alternative
phenotypes are equal corresponds to a canalised genotype. We are interested in
situations where coexistence is possible for canalised genotypes. For this we need
a combination of su�cient generation overlap (see Warner and Chesson (1985)
and Ellner and Hairston (1994) for a discussion of the role of generation overlap
for coexistence) and a strong trade-o� between the performances under the two
environmental conditions.
One of the main motivations for this project was the extension of the work

by Leimar (2005). His objective was to compare the relative likelihood for the
emergence of a bet-hedging strategy and a genetic polymorphism. We extend
Leimar's study in three directions:

1. Leimar only considers bet-hedging genotypes where the two alternative
phenotypes are specialised to equal degree in the two environments. We
also allow for bet-hedgers whose alternative phenotypes are specialised to
di�erent degrees in the two environments. In the following the �rst ones
will be called symmetric bet-hedgers and the second ones asymmetric bet-
hedgers.

2. Leimar restricts his analysis of the model to an equal initial frequency of
the two alternative bet-hedging phenotypes (q = 0.5). We also consider
cases where the two phenotypes of a bet-hedger are initially not produced
in equal proportions (q 6= 0.5).
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3. Leimar focuses on what happens at the singular point. We also consider
how the evolution proceeds after a possible phenotypic diversi�cation at
the singular point.

Leimar compared the strength of selection for a monomorphic symmetric bet-
hedging genotype with the strength of selection for a polymorphism of two
canalised genotypes. He �nds that the selection for bet-hedging is always stronger.
Our results suggest that with the above extension this conclusion need not to be
true. We �nd:

1. As soon as the two alternative bet-hedging phenotypes are initially not
produced in equal proportions, the strongest selection is not anymore for
symmetric bet-hedgers but for certain asymmetric bet-hedgers.

2. Coexistence (and thus the emergence of polymorphisms) is not only pos-
sible for canalised genotypes, but also for a large class of asymmetric
bet-hedgers. The more the initial production of alternative phenotypes
is skewed, the less asymmetric a bet-hedger genotype needs to be so that
it can coexist with the resident. At some degree of initial deviation from
equal proportions the strongest selection is for asymmetric bet-hedging
genotypes which can coexist with the resident and the analytical results
predict a dimorphism of bet-hedging strategies to evolve.

The simulations con�rmed these results but showed that such dimorphisms
are only temporally stable. The two bet-hedging sub-populations evolve to geno-
types that produce more and more specialised phenotypes; one in the direction
where the �rst phenotype specialises for environment 1 and the second for en-
vironment 2 and one in the opposite direction. After some time one of the two
sub-populations dies out. This is due to the fact that symmetric bet-hedgers,
which always evolve in the long run, do not bene�t from the same protection
mechanism as we described it for a polymorphism of canalised phenotypes in
the results part but they are neutral if their phenotypes are equally specialised.
Asymmetric bet-hedgers bene�t from the protection mechanism to some degree.
So the �nal result is a genetically monomorphic bet-hedging strategy.
In a second step we introduce a positive genetic correlation in the mutational

increments of the two alternative phenotypes. This means that it is more likely
that the trait values of both phenotypes mutate in the same direction, either
both to higher or both to smaller values. In the case of positive correlation the
dimorphism of two canalised specialists is an end-point of evolutionary dynamics
in a certain fraction of the simulations. The rest of the simulations leads to
the establishment of a monomorphic bet-hedging strategy with two alternative
specialist phenotypes, as all of the simulations in the case without mutational
correlation did. Increasing positive correlation increases the probability that the
basin of attraction of the dimorphism of canalised specialists is entered.
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Originally the predominant idea was that temporal �uctuations favour bet-
hedging over genetic �uctuations (Seger and Brockmann, 1987). Ellner and
Hairston (1994) �nd for our model (actually for a broader class of models) that
every genetic polymorphism can be invaded by a bet-hedging genotype producing
both phenotypes present in the polymorphism. Leimar (2005) shows that, start-
ing from the singular point, selection is always strongest towards a bet-hedging
strategy. In nature, however, genetic polymorphisms are commonly observed,
while there are only few examples for bet-hedging strategies. This raises the
question why we do not observe bet-hedging more often if it is strongly favoured
over genetic polymorphisms?
We show that with some constraints on bet-hedging genetic polymorphisms

are more likely to evolve and that, once they have evolved, they can be evolu-
tionary stable. This could be an explanation for the discrepancy between the
previous results and the biological observations. In our model genetic polymor-
phisms are favoured by genetic correlation between the traits for the alternative
phenotypes and by asymmetric initial proportions of the two phenotypes. Once
a polymorphism of the two canalised specialist genotypes is established, it is
stable given limited mutational step sizes. Even though a bet-hedging strategy
of the two phenotypes present in a genetic polymorphism could outcompete the
genetic polymorphism (as Ellner and Hairston (1994) show), it cannot evolve
except if one assumes extremely large mutational steps because a wide �tness
valley lies in between these strategies.
Whether mutational steps are small or not is a controversely discussed issue.

However, it is not unrealistic that a bet-hedging device needs a complex physi-
ological and developmental-biological machinery. We think that genetic correla-
tions are a good way to give the genetically canalised genotypes some �headstart�
over bet-hedging genotypes without regarding the actual genetics and biological
machineries. Also the assumptions of small mutational steps (actually we draw
the mutations from a Gaussian distribution, so big mutational steps can occur
with a small probability) seem reasonable in the light of complex adaptations
necessary for a bet-hedging strategy.

Pure Plasticity

In section 3.2 we investigate the evolutionary dynamics in a situation where an
environmental cue predicts (with some certainty) the environmental condition
of the next season. Following this cue a genotype can produce one out of two
possible phenotypes. Analytical results show that a singular point exists whose
values depend on the reliability of the environmental cue. The singular point
is an evolutionary stable strategy for a combination of weak trade-o� and short
generation overlap. The simulations investigate parameter combinations where
the singular point is a branching point. The simulation results show that dif-
ferent evolutionary outcomes are possible, depending on the generation overlap,
the strength of the trade-o� and the reliability of the environmental cue. We �nd
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cyclic end-points as well as stable polymorphisms. Stable polymorphisms include
a dimorphism of the canalised genotypes producing specialised phenotypes and
a dimorphism of a plastic genotype producing the two specialised phenotypes
according to the cue and a plastic genotype producing always the phenotype not
suggested by the cue. The latter polymorphism seems very counter-intuitive but,
similar to two canalised phenotypes, the plastic genotype producing the pheno-
type not predicted by the cue is to some degree protected against extinction by
high relative growth rates in years in which the cue is wrong (and the other geno-
type thus only has a very small amount of o�spring). Also a stable trimorphism
of the two specialised canalised genotypes and the plastic gentoype producing
specialised phenotypes can be observed. The role of the di�erent parameters we
observe can be understood as follows:

- A high reliability of the environmental cue favours evolutionary end-points
that include the plastic genotype, while the dimorphism of two canalised
genotypes is favoured for low cue reliabilities. This is intuitive as a reliable
cue means that the o�spring of plastic genotypes is well adapted in most
of the years.

- An increasing death rate in�uences the stability of the end-points nega-
tively. A low death rate, corresponding to a high generation overlap, helps
to protect the members of a polymorphisms against extinction. This can be
understood considering the storage e�ect of generation overlap explained
by Warner and Chesson (1985).

- The strength of the trade-o� determines the strength (and thus the speed)
of selection towards specialised phenotypes. Except for the speed of the
evolutionary dynamics it has comparatively little in�uence on the evolu-
tionary outcome.

For a comparison of these results with empirical data it is important to �nd
species with life cycles similar to the one in our model and that employ a similar
kind of plasticity as de�ned in our model.
In nature phenotypic plasticity is a widespread phenomenon. Many species

display phenotypic plasticity. Basically one has to distinguish between plasticity
as a response to environmental constraints (e.g. an organism stays small be-
cause it lacks nutrients to grow to normal size) and plasticity as an adaptation
to the environment. There are countless examples for phenotypic plasticity as
an adaptation ranging from plant's production of small thick leafs to reduce va-
porisation in dry periods to the production of normal or persister eggs by Brine
shrimp (Artemia salina) in response to salinity. Every adaptation of physical or
behavioural characteristics that is not induced by a speci�c allele at a gene locus
can be seen as phenotypic plasitcity.
The de�nition of phenotypic plasticity that is used in our model, however, is

very restrictive. First, the adaptation only happens once in early development
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(as this is the only time selection acts in our model) and, second, rather than just
responding to the current environment, the plasticity uses a cue that predicts
the coming environment when development is �nished and selection acts. This
cue can, for instance, be interpreted as the current environmental condition
predicting the future environment (�if it is dry now it might be dry when I am
(or my o�spring is) born�).
Examples where adaptation happens in early development include several

species of �sh. Snorrason and Skúlason (2004) study �sh that colonised lakes
in the northern countries that where freshly formed after the last glacial period.
They bring examples of species with low genetic variance that produce morpho-
logically very di�erent phenotypes adapted to di�erent foraging strategies. In
this example, however, it is unlikely that there exists a speci�c environmental
cue. The di�erent resources are more or less stable and the purpose of adap-
tation is rather to avoid intraspeci�c competition than to adapt to changing
environmental conditions.
One of the species named above, Brine shrimp, would be an example of a

species that uses a cue (the current salinity) to predict future environment (will
the lake dry out or not). In this case, however, the population dynamics is very
di�erent to the one described in our model. In these shrimps the plastic trait
is the type of egg determining hatching-time. Hatching can either as soon as
possible or, with a delay, after a dry period.
In conclusion one can say that we had di�culties to �nd well studied examples

of species with similar population dynamics as described by our model that use
an environmental cue to produce o�spring adapted to changing environmental
conditions. Another problem is that our results are obtained for clonally re-
producing species and the generalisation to sexually reproducing organisms is
non-trivial. Additionally, even if we �nd species that match well with the char-
acteristics of our model, it will be very di�cult to measure parameters as cue
reliability and strength of trade-o� which determine the outcome that our model
predicts.
Nonetheless, we can draw important conclusions that should hold true in more

general cases. For weak trade-o�s a monomorphic population that, depending
on the cue reliability, shows some degree of plasticity is expected to evolve. For
strong trade-o�s and su�cient generation overlap we expect a genetic variance
in the population to evolve. For intermediate cue reliabilities a polymorphism of
canalised specialists is an alternative evolutionary scenario to phenotypic plas-
ticity. We expect that, similar to the bet-hedging case, already small amounts
of correlation in the mutational step sizes of the alternative phenotypes strongly
increase the likelihood that a dimorphism of canalized genotypes evolves.

Complete Model

For the complete model, where bet-hedging and plasticity are limiting cases
produced by a switching device that processes internal noise (bet-hedging) and
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environmental cues (plasticity) to determine the phenotypes of the o�spring, we
�nd that for intermediate cue reliabilities the most common evolutionary out-
come is a genotype that combines elements of plasticity and bet-hedging. While
this strategy will always be approached from an initially purely plastic strategy,
this mixture cannot evolve if a bet-hedging strategy produces the phenotypes
that correspond to the optimal adaptation for the environment not predicted by
the cue in the plastic model. This, however, could be a peculiarity of our model.
Leimar et al. (2006) use a similar switching device that takes genetic and

environmental information as input. For intermediate reliabilities of the envi-
ronmental cue he also �nds a mixture of the two forms of phenotype determi-
nation. This suggests that, in cases where cues are not perfectly reliable (which
will always be the case in nature), it is advantageous to rely on more than one
mechanism in order to adapt to the environment.

Limitations of our Study and Perspective

In our model a genotype can only produce two di�erent phenotypes and there are
only two possible environmental conditions. A possible extension would be to
allow a genotype to produce a distribution of phenotypes and to use a continuous
distribution of environmental conditions. Sasaki and Ellner (1995), however,
show that stable phenotype distributions are always discrete for environmental
distributions with bounded support. It would be interesting to generalise our
results to a broader class of models including more general environmental and
phenotype distributions as Sasaki and Ellner (1995) use them but also more
general population dynamics. A start for the second point could be the model
by Ellner and Hairston (1994) where seeds, diapausing eggs or adults can be the
long lived state.
A very important feature that strongly in�uences the evolution in our model

is the limited patch number. All preliminary results we refer to (Chesson and
Warner, 1981; Warner and Chesson, 1985; Ellner and Hairston, 1994; Sasaki and
Ellner, 1995) have a similar characteristic in their model. The selection for the
limited patch or habitat number only depends on the frequency of the di�erent
types. At this stage the phenotype does not play a role for selection. The
frequency dependent selection that protects polymorphisms in our model does
depend on this feature of the model and does not necessarily exist in models that
do not have this feature. It would be interesting to study whether our results
could be generalised to di�erent sources of frequency dependent selection as it
exists in other systems (e.g. di�erent resources).
In our model the death rate is constant over time and equal for all adults.

Warner and Chesson (1985), however, stress that phenotype dependent death
rates can totally change the results. The storage e�ect induced by the generation
overlap will be reduced and then conditions for coexistence would thus be more
restrictive.
For the plasticity model we present qualitative results how the frequency of dif-
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ferent evolutionary outcomes depends on the parameter values. A quantitative
analysis of many simulation runs would be useful here. In both the plastic-
ity model and the complete model the incorporation of mutational correlations
would be an interesting extension.
Our model does not include any spacial structure. Leimar (2005) and Leimar

et al. (2006) show that spatially varying environments in combination with lim-
ited migration (or dispersal) can make an individuals genotype a cue for the
environment its o�spring will experience (if the o�spring does not disperse too
far it is likely to experience the same environment the parent was adapted to).
In such a case a (spatial) genetic polymorphism is likely to evolve. This mecha-
nism does not depend on genetic polymorphisms to be mutationally favoured as
it is the case in our model and therefore is an alternative for explaining the large
amount of genetic variation that is found in nature. We expect that in nature
both mechanisms act together.
Finally, one should bear in mind that our model assumes clonal organisms.

With sexual organisms the picture for polymorphic populations will be more
di�cult.
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A. Appendix

A.1. Programming

A.1.1. Main Program

In the following the commented Matlab source code of the main program used for
the simulations. is given Table A.1 gives a description of the input parameters
while Table A.2 explains the output variables.

1 function[amean,z1mean,z2mean,tmean,astd,z1std,z2std,tstd,gen100,params,...
2 outc]=BetHedgingGen_2_4_f(genstart,mP,covz1z2,var_a_t,mS,p,d,amax,...
3 c,r,tmax,nobreak,noplot)
4

5 %function[amean,z1mean,z2mean,astd,z1std,z2std,tmean,tstd,gen100,params,...
6 % outc]=BetHedgingGen_2_4_f(genstart,mP,covz1z2,var_a_t,mS,p,d,amax,...
7 % c,r,tmax,noplot)
8

9 %Function that simulates the evolution of a population in a variable
10 %environment following a model proposed by
11 %Rueffler, Svardal, and Abrams (in prep.a).
12 %This function allows for the development of bet−hedging and phenotypic
13 %plasticiy as mechanism of phenotype determination.
14 %Notation used in the description follows Rueffler et al. (in prep.a). A
15 %description of this function can be found in my diploma thesis available
16 %from: hannes.svardal@univie.ac.at
17 %
18 %A modified version of the function multrnd (avalable in the internet) is
19 %necessary for this function to run stable. It is necessary to delete the
20 %query asking wheter I==1 in the function multrnd.m. Otherwise
21 %numerical problems make that 1==1.00000000000000001 leads to an error.
22 %
23 %The function PolyOutcome.m is needed.
24 %
25 %For further information on this function contact:
26 %hannes.svardal@univie.ac.at
27 %
28 %Input arguments:
29 %
30 %genstart(mx5 matrix): Matrix containing in each line the genotypic values
31 %[z1 z1 a n t] where n is the number of Individuals having the
32 %genotype defined by [z1 z2 a t], z1 and z2 correspond to the two
33 %alternative phenotypes and a and t are respectively weighting factor and
34 %threshold of the switching device presented in section 1.2.2
35 %and in figure 1.4
36
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Table A.1.: Input Arguments

Name Dim Description
genstart mx4 Genotype matrix of the initial population.

Each line containing (z1, z2, q,Number of individuals)
for one sub-population.

mP 1x3 Probability per generation of a mutation in z1/z2, a, t.
covz1z2 2x2 Variance-Covariance matrix between z1 and z2.
var_a_t 1x2 Variance in a, t
mS 1x3 Mutational step size for z1/z2, a, t.
p scalar Probability that environmental condition 1 occurs in a certain year.
d scalar Death probability per year.
amax 1x2 Maximal number of o�spring per individual

1st entry: environment 1, 2nd entry: env. 2.
c scalar Trade-o� parameter.
r scalar Reliability of the environmental cue.
tmax scalar Maximal number of iterations the simulation runs.
nobreak scalar Suppresses abort of the program when end-point was detected if 1.
noplot scalar Suppresses graphical output if 1.
m ... number of di�erent genotypes present in the population

Table A.2.: Output Parameters

Name Dim Description
amean 1xtmax Population wide mean of a for each time-step.
z1mean 1xtmax Population wide mean of z1 for each time-step.
z2mean 1xtmax Population wide mean of z2 for each time-step.
tmean 1xtmax Population wide mean of t for each time-step.
astd 1xtmax Standard deviation of a within the population

for each time-step.
z1std 1xtmax Standard deviation of z1 within the population.
z2std 1xtmax Standard deviation of z2 within the population.
tstd 1xtmax Standard deviation of t within the population.
gen100 1x Cell array containing whole genotype matrix

(tmax/100) for every 100 time-steps.
params struct Structure containing input parameters

and total simulation time.
outc scalar Outcome of the simulation as determined

by �PolyOutcome.m�
tmax ... number of time-steps the simulation ran
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37 %The number of lines of genstart is the number of different
38 %genotypes that are present in the initial population.
39 %The (constant) number of patches equals the sum over all n.
40

41 %mP=[mPz mPa mPt]: Array containing the mutation probabilities in z1/z2, a
42 %and t. All probabilities are taken as equal if the input is a scalar.
43 %
44 %
45 %
46 %covz1z2 (2x2 matrix): Mutational Variance−Covariance Matrix between z1
47 %and z2
48 %
49 %var_a_t=[vara vart]: Array containing the variances in a
50 %and t. Variances are taken as equal if the input is a scalar.
51 %
52 %
53 %mS=[mSz mSa mSt]: Array containing the mutational stepsizes in z1/z2, a
54 %and t. All step sizes are taken as equal if the input is a scalar.
55 %
56 %p: probability that a year brings enviroment condition 1 ((1−p) is
57 %probability for env. cond. 2)
58 %
59 %d: probability that a patch is emptied in a year (death probability of the
60 %inhabitant)
61 %
62 %amax(1x2 array): array containing [alpha1 alpha2] where alpha1,alpha2 are
63 %the maximum numbers of offspring in years with env. cond. 1,2.
64 %values of amax must both be >>1
65 %
66 %c: trade off in offspring survival funtion
67 %
68 %tmax: Number of generations the simulation runs
69 %
70 %noplot(optional):supresses graphical output if 1
71 %
72 %Output:
73 %
74 %amean(1xtmax array): array containing the mean a−value of the pop for each
75 %generation t
76 %z1mean(1xtmax array): array containing the mean z1−value of the
77 %pop for each generation t
78 %z2mean(1xtmax array):array containing the mean z2−value of the pop
79 %for each generation t
80 %astd(1xtmax array):array containing the standard deviation of a of the pop
81 %for each generation t
82 %z1std(1xtmax array): array containing the standard deviation of z1
83 %of the pop for each generation t
84 %z2std(1xtmax array): array containing the standard deviation of z2
85 %of the pop for each generation t
86 %gen100(1x(tmax/100) cell obj): cell obj. containing the geotypes of whole
87 %population (gen) of every 100 generations
88 %params (structure object): containing the input parameters and the time
89 %elapsed between start and end of this function
90 %genstart(mx4 matrix): containing the inital population genstart
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91 %outc: result of the simulation determined by *Outcome.m, where * stands
92 %for different prefixes, as different functions have to be employed in
93 %different situations as the possible outcomes depends on the parameter
94 %combinations regarded.
95 %The scalar outc is 0 if the outcome is undefined. The other values it can
96 %take are described in the different functions *Outcome.m.
97 %The function detOutcome_* determines whether an evolutionary end−point is
98 %reached.
99

100 %start timer
101 tic
102

103 %initialise the variable defining the outcome
104 outc=[];
105

106 % standard deviation in a,t is the square root of the variance in a,t
107 stda=sqrt(var_a_t(1));
108 % if var_a_t is a scalar the variances for a and t are both defined by this
109 % scalar
110 if length(var_a_t)<2
111 stdt=sqrt(var_a_t(1));
112 else
113 stdt=sqrt(var_a_t(2));
114 end
115

116 % assignment of the mutation probabilities
117 %if the respective entry of mP does not exsit the first entry is taken
118 mPz=mP(1);
119 switch length(mP)
120 case 3
121 mPa=mP(2);
122 mPt=mP(3);
123 case 2
124 mPa=mP(2);
125 mPt=mP(1);
126 case 1
127 mPa=mP(1);
128 mPt=mP(1);
129 end
130

131 % assignment of the mutational step size
132 %if the respective entry of mS does not exsit the first entry is taken
133 mSz=mS(1);
134 switch length(mS)
135 case 3
136 mSa=mS(2);
137 mSt=mS(3);
138 case 2
139 mSa=mS(2);
140 mSt=mS(1);
141 case 1
142 mSa=mS(1);
143 mSt=mS(1);
144 end
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145

146

147

148

149

150 %determining the (constant) number of patches from the inital number of
151 %patches
152 K=sum(genstart(:,4));
153

154 %initalising inital population:
155 gen=genstart;
156

157

158 %if input noplot is not assigned, noplot is false
159 if nargin<13, noplot=0; end;
160

161 %if input nobreak is not assigned, nobreak is false
162 if nargin<12, nobreak=0; end;
163

164 % determine the seeds of the randomization algorithm used initially by the
165 % functions rand and randn (statistics toolbox)
166 seed=rand('twister');
167 seedn=randn('state');
168

169 %save parameters for output:
170 params=struct('K',K,'mP',mP,'mS',mS,'p',p,'d',d,'amax',amax,'c',c,...
171 'tmax',tmax,'seed',seed,'seedn',seedn,'covz1z2',covz1z2,...
172 'var_a_t',var_a_t, 'genstart',genstart);
173

174 %starting the recursion from 1st to last generation (tmax)
175 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 %start of the iteration of the time−steps
177 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
178 for t=1:tmax
179

180

181 %calculate mean values and standard deviations of a, z1, z2, t
182 amean(t)=sum(gen(:,3).*gen(:,4))/K;
183 astd(t)=sqrt((1/sum(gen(:,4)))*sum(gen(:,4).*(gen(:,3)−amean(t)).^2));
184 z1mean(t)=sum(gen(:,1).*gen(:,4))/K;
185 z2mean(t)=sum(gen(:,2).*gen(:,4))/K;
186 z1std(t)=sqrt((1/sum(gen(:,4)))*sum(gen(:,4).*(gen(:,1)−...
187 z1mean(t)).^2));
188 z2std(t)=sqrt((1/sum(gen(:,4)))*sum(gen(:,4).*(gen(:,2)−....
189 z2mean(t)).^2));
190 tmean(t)=sum(gen(:,5).*gen(:,4))/K;
191 tstd(t)=sqrt((1/sum(gen(:,4)))*sum(gen(:,4).*(gen(:,5)−tmean(t)).^2));
192

193 % −−−−−−−−−−−−−−−−−−−−−−−−−−
194 % graphical output
195 % −−−−−−−−−−−−−−−−−−−−−−−−−−
196 %if not supressed, plot mean values, refresh plot every 50 generations:
197 if ¬noplot && t/50==floor(t/50)
198 figure(9)
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199 subplot(2,1,1)
200 plot(1:t,tmean);
201 ylabel('Mean t');
202 axis([0 tmax −1 1]);
203 subplot(2,1,2);
204 plot(1:t,tstd);
205 ylabel('Mean t');
206 xlabel('time');
207 axis([0 tmax −0.1 0.5]);
208 figure(7)
209 subplot(5,1,1);
210 plot(1:t,amean);
211 ylabel('Mean a');
212 title(['K=',num2str(K),' c=',num2str(c),' d=',num2str(d)]);
213 axis([0 tmax 0 1]);
214 subplot(5,1,2);
215 plot(1:t,z1mean);
216 hold on
217 plot(1:t,z2mean,'r');
218 hold off
219 xlabel('Time');
220 ylabel('Mean z');
221 axis([0 tmax 0 1]);
222 subplot(5,1,3);
223 plot(1:t,z1std);
224 xlabel('Time');
225 ylabel('Std z1');
226 axis([0 tmax −0.1 .5]);
227 subplot(5,1,4);
228 plot(1:t,z2std);
229 xlabel('Time');
230 ylabel('Std z2');
231 axis([0 tmax −0.1 .5]);
232 subplot(5,1,5);
233 plot(1:t,astd);
234 xlabel('Time');
235 ylabel('Std a');
236 axis([0 tmax −0.1 .5]);
237 drawnow;
238 end;
239 % every 100th generation, do:
240 if t/100==floor(t/100)
241 %save the whole population in the cell array gen100
242 gen100{floor(t/100)}=gen;
243

244 %if graphical output is not suppressed, plot the current population
245 %in a phase diagram of z1,z2
246 %Plotting described in plot_pip_f.m in appendix ??

247 if ¬noplot
248 figure(8);
249 clf;
250 plot_pip_f(gen,0,t)
251

252 end
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253 end
254

255 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 %Population dynamics
257 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
258

259 % Determing whether env 1 or env 2
260 env=1+(rand([1 1])>p);
261

262 % e is −1 if env 1 and +1 if env 2
263 e=sign(env−1.5);
264 % corr determines whether the cue is correct
265 corr=binornd(1,r);
266 % the cues are symmetric around 0. ec correct if is has the same sign as
267 % e
268 ec=(e*corr+(−e*(¬corr)))*0.25;
269

270 % Determining the number of offspring for each genotype (Directly using
271 % the expectation value instead of drawing from a poisson distribution)
272 % This is the implementation of formula 1.5 of chapter 1
273

274 % Number of offspring per individual if only z1 was expressed
275 offsprz1=amax(env)*((1−e)/2+sign(e)*gen(:,1)).^(1/c);
276 % Number of offspring per individual if only z2 was expressed
277 offsprz2=amax(env)*((1−e)/2+sign(e)*gen(:,2)).^(1/c);
278 % Proportion of offspring that expresses z1
279 ProbaSm_t=normcdf((gen(:,5)−gen(:,3)*ec)./(1−gen(:,3)));
280

281 % Vector containing the total number of offspring of the different
282 % genotypes present in the population
283 newgen=gen(:,4).*(ProbaSm_t.*offsprz1+(1−ProbaSm_t).*offsprz2);
284

285 % Determining number of dying adults (=emptied patches) by drawing from
286 % binomial distributions for each genotype
287 dead=binornd(gen(:,4),d);
288

289 % The number of empty patches = Number of not filled
290 % patches in the last generation + number of died adults, but cannot be
291 % smaller than zero
292 Nemptypatch=max(0,K−sum(gen(:,4))+sum(dead));
293

294 % The probability that an individal with genotype X settles is
295 % propotional to the frequency of X in the offspring pool
296 % If sum(newgen)==0 (Only possible in the beginning if there are only
297 % poorly adapted strategies), division trough 0 has to be prevented.
298 if sum(newgen)6=0
299 SettleProba=(newgen./sum(newgen))';
300 % Correction of the settling probabilities to be sure that they sum up to
301 % 1
302 [temp I]=max(SettleProba);
303 SettleProba(I)=SettleProba(I)+(1.0−sum(SettleProba));
304 % Draw how many individuals of each genotype can settle
305 newgenSettle=(mnrnd(Nemptypatch,SettleProba))';
306 else
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307 % if sum(newgen)==0 no one is there who could settle
308 newgenSettle=zeros(1,length(newgen));
309 end
310

311 % If frequencies don't exactly sum up to 1 (due to numerical problems)
312 % the arrays produced by mnrnd constist only of NaN. In that case an
313 % version of the slower function multrnd is used.
314 if any(isnan(newgenSettle))
315 try
316 newgenSettle=(multrnd(Nemptypatch,SettleProba))';
317 catch
318 % display these values for problem−solving if errors occur
319 display('Problems with multrnd.m')
320 sum(SettleProba)
321 sum(SettleProba)==1
322 Nemptypatch==round(Nemptypatch)
323 Nemptypatch
324 display('Problems with multrnd.m')
325 end
326

327 end
328

329

330 % Total number of settling offspring mutating in:
331

332 % − z1/2 (Mutations in z1 and z2 are coupled. So in this model
333 % they always mutate together. The direction is determinded by the
334 % covariance matrix)
335 Mutz1=binornd(Nemptypatch,mPz);
336 % − a
337 Muta=binornd(Nemptypatch,mPa);
338 % − t
339 Mutt=binornd(Nemptypatch,mPt);
340

341

342 % Security measure that there cannot be a division trough zero.
343 if sum(newgenSettle)6=0
344 % The probability that a mutation occurs on an initial genotype is
345 % proportional to the frequency of this genotype among the settled
346 % individuals
347 MutProba=(newgenSettle/sum(newgenSettle))';
348 [temp I]=max(MutProba);
349 MutProba(I)=MutProba(I)+(1.0−sum(MutProba));
350

351 % allocating the number of mutations in z1/2 ('Mutz1') to
352 % the different genotypes according to their frequency in the
353 % population
354 if Mutz1>0
355 newgenMutz1=(mnrnd(Mutz1,MutProba))';
356 else
357 % for zero mutations one has to create the mutation vector explicitly
358 % to account for problems with input 0 to mnrnd.m occuring only on the
359 % simulation server
360 newgenMutz1=zeros(1,length(newgen))';
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361 end
362

363 % equivalent as for z1/2
364 if Muta>0
365 newgenMuta=(mnrnd(Muta,MutProba))';
366 else
367 % for zero mutations one has to create the mutation vector explicitly
368 % to account for problems with input 0 to mnrnd.m occuring only on the
369 % simulation server
370 newgenMuta=zeros(1,length(newgen))';
371 end
372

373 % equivalent as for z1/2
374 if Mutt>0
375 newgenMutt=(mnrnd(Mutt,MutProba))';
376 else
377 % for zero mutations one has to create the mutation vector explicitly
378 % to account for problems with input 0 to mnrnd.m occuring only on the
379 % simulation server
380 newgenMutt=zeros(1,length(newgen))';
381 end
382

383 else
384 % If no individual settles noone can mutate
385 newgenMutz1=zeros(1,length(newgen))';
386 newgenMuta=zeros(1,length(newgen))';
387 newgenMutt=zeros(1,length(newgen))';
388 end
389

390

391 % If the function mnrnd.m produces NaN values as output the slower
392 % function multrnd is used instead
393 if any(isnan(newgenMutz1))
394 newgenMutz1=(multrnd(Mutz1,MutProba))';
395 end
396 if any(isnan(newgenMuta))
397 newgenMuta=(multrnd(Muta,MutProba))';
398 end
399 if any(isnan(newgenMutt))
400 newgenMutt=(multrnd(Mutt,MutProba))';
401 end
402

403

404 % the new population (here still without mutated offspring) is:
405 % old population − died individuals + offspring that can settle −
406 % part of settling offspring that mutates
407 gen(:,4)=gen(:,4)−dead+newgenSettle−(newgenMutz1+newgenMuta+newgenMutt);
408

409

410

411 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
412 %Mutational process
413 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
414
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415 % Produce a vector with the indices of the genotypes (line number in the
416 % genotype matrix) for which at least one mutation occurs
417 Idx_newgenMutz1=find(newgenMutz1);
418 Idx_newgenMuta=find(newgenMuta);
419 Idx_newgenMutt=find(newgenMutt);
420

421 %Mutation in z1/z2
422 %for all the indices of the genotypes that contain mutating offspring
423 for i=1:length(Idx_newgenMutz1)
424

425 % for each mutating individual of this initial genotype
426 for j=1:newgenMutz1(Idx_newgenMutz1(i))
427

428 % Draw the mutational step in z1/2 from a 2−dimensional
429 % normal distribution, the two values beeing coupled by the
430 % covariance.
431 % If the new value of z1 or z2 exceeds the bounds 0,1 it
432 % is set to respectivlely 0 or 1
433 A=chol(covz1z2);
434 zNew=max([0 0],min([1 1],[gen(Idx_newgenMutz1(i),1) ...
435 gen(Idx_newgenMutz1(i),2)]+...
436 round(1/mSz*randn(1,2)*A)*mSz));
437

438 % if the new genotype already exists within the population, find
439 % its index
440 x=find((gen(:,1)==zNew(1)).*(gen(:,2)==zNew(2)).*...
441 (gen(:,3)==gen(Idx_newgenMutz1(i),3)).*(gen(:,5)==...
442 gen(Idx_newgenMutz1(i),5)),1);
443 %if it doesn't exist, create it
444 if isempty(x)
445 gen(length(gen)+1,:)=[zNew(1) zNew(2) ...
446 gen(Idx_newgenMutz1(i),3) 1 gen(Idx_newgenMutz1(i),5)];
447 %if it exists, add the current individal to it
448 else
449 gen(x,4)=gen(x,4)+1;
450 end
451

452

453 end
454 end
455

456

457

458 % Mutation in a
459 % Same prodecure as for z1/2 but without coupling. Mutational step
460 % is drawn from normal distribution. Values exceeding the bounds are set
461 % to the bounds. Detetermine whether resulting genotype is already
462 % present in population. If not create it.
463 for i=1:length(Idx_newgenMuta)
464 for j=1:newgenMuta(Idx_newgenMuta(i))
465 aNew=max(0,min(1,gen(Idx_newgenMuta(i),3)+...
466 round(stda/mSa*randn)*mSa));
467 x=find((gen(:,3)==aNew).*...
468 (gen(:,1)==gen(Idx_newgenMuta(i),1)).*...
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469 (gen(:,2)==gen(Idx_newgenMuta(i),2)).*(gen(:,5)==...
470 gen(Idx_newgenMuta(i),5)),1);
471 if isempty(x)
472 gen(length(gen)+1,:)=[gen(Idx_newgenMuta(i),1) ...
473 gen(Idx_newgenMuta(i),2) aNew 1 ...
474 gen(Idx_newgenMuta(i),5)];
475 else
476 gen(x,4)=gen(x,4)+1;
477 end
478

479 end
480 end
481

482 % Mutation in t
483 % Same procedure as for the mutation in a
484 for i=1:length(Idx_newgenMutt)
485 for j=1:newgenMutt(Idx_newgenMutt(i))
486 tNew=max(0,min(1,gen(Idx_newgenMutt(i),5)+...
487 round(stdt/mSt*randn)*mSt));
488

489 x=find((gen(:,5)==tNew).*...
490 (gen(:,1)==gen(Idx_newgenMutt(i),1)).*...
491 (gen(:,2)==gen(Idx_newgenMutt(i),2)).*(gen(:,3)==...
492 gen(Idx_newgenMutt(i),3)),1);
493 if isempty(x)
494 gen(length(gen)+1,:)=[gen(Idx_newgenMutt(i),1) ...
495 gen(Idx_newgenMutt(i),2) ...
496 gen(Idx_newgenMutt(i),3) 1 tNew];
497 else
498 gen(x,4)=gen(x,4)+1;
499 end
500

501 end
502 end
503

504

505 % Clear genotypes with population sizes 0 from the populations (meaning
506 % that no individual actually has this genotype)
507 gen(gen(:,4)≤0,:)=[];
508

509 % Security measure for stability, as sometimes the value 0. is taken as
510 % beeing negative
511 if any(gen<0)
512 display('gen <0');
513 end
514 gen=abs(gen);
515

516 % Test whether any trait value is >1
517 if any(gen(:,1:3)>1)
518 display 'genvalues >1'
519 end
520

521 % Every 1000 generations determine whether the population already
522 % converged to one of the "end points" beeing the boundaries of the
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523 % trait space.
524 % The "end−points" depend on the scenario one regards.
525 % The functions PlastiOutcome.m and detOutcome_Plasti.m have to be
526 % adapted for different investigations
527

528 if (t/1000)==floor(t/1000)
529 % Determine the evolutionary end points. Possible end−points
530 % depend on the scenario regarded and are described section \ref{sec:end−points}
531 % and in the documentation of PlastiOutcome.m and
532 % detOutcome_Plasti.m.
533 % PlastiOutcome.m determines the location of the population in the
534 % trait space
535 % detOutcome_Plasti.m. determies whether the location determined
536 % by PlastiOutcome.m corresponds to a stable end−point by
537 % comparing the results of the last 15 generations.
538 outc(floor(t/1000))=PlastiOutcome(gen,.12);
539 if length(outc)≥15 && ¬nobreak
540 brk=detOutcome_Plasti(outc(floor(t/1000)−14:floor(t/1000)));
541 if brk==1
542 return;
543 end
544 end;
545 end
546

547

548

549

550

551 end
552

553 % If the population didn't converge to an endpoint bevore. Determine here
554 % the outcome of the simulation. outc=0 if non of the endpoints is reached
555 outc(end+1)=PlastiOutcome(gen,.12)
556

557 % Determine elapsed time and write it to the struct params
558 eltime=toc
559 params.eltime=eltime;
560

561 end

A.1.2. Phase Diagram

The commented Matlab source code of the function �plot_pip_f.m� producing
the z1, z2-phase-diagram.

1 function[]=plot_pip_f(pop,params,t)
2 %function[]=plot_pip_f(pop,params,t)
3 %
4 %Function that plots a z1−z2 phase diagram for a fixed point in time.
5 %
6 %It is implemented in the main program BetHedgingGen_2_4_f.m presented
7 %in appendix A.1.1.
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8 %
9 %A figure environment has to be opened in Matlab before running this

10 %function.
11 %
12 %Input arguments:
13 %
14 %pop(mx5 matrix): Matrix containing the population that should be
15 %plotted. pop(i)=[z1 z2 a n t], where n is the number of individuals of
16 %the ith genotype present in the population. i=1..m, where m is the
17 %number of different genotypes present. Equivalent to the matrix "gen"
18 %used in BetHedgingGen_2_4_f.m. See there for a further descripiton.
19 %
20 %params(struct):System parameters as they are created in
21 %BetHedgingGen_2_4_f.m. Optional input, needed only for the diagram
22 %title.
23 %
24 %t(integer):Time−step this plot corresponds to. Optional input, needed
25 % only for the diagram title.
26 %
27 %Output arguments:
28 %
29 %none
30

31 % if no parameters are entered, the params variable is set to zero to
32 % suppress the creation of a diagram title
33 if nargin<2, params=0; end;
34 % same for t
35 if nargin<3, t=0; end;
36

37 %sumation over all genotypes with fixed z1 and z2 as we do not regard a
38 %t
39

40 %for all genotypes in the population
41 for i=1:length(pop)
42 %deterimine the genotypes that have identical z1 and z2 as the
43 %first genotype (but they differ in a and/or t)
44 log=logical((pop(:,1)==pop(1,1)).*(pop(:,2)==pop(1,2)));
45 %create a matrix containing these genotypes
46 same=pop(log,:);
47 % put the total number of individuals having this z1 and z2 in the
48 % ith line of the matrix contpop (regardless of their a and t
49 % values)
50 contpop(i,:)=[pop(1,1) pop(1,2) sum(same(:,4))];
51 % substract all the genotypes counted by this iteration of the loop
52 % from the population
53 pop=pop(¬log,:);
54 % if all genotypes have allready been contracted to contpop, stop
55 % the iteration
56 if isempty(pop)
57 break;
58 end
59 end
60

61 %few=all genotypes (z1,z2) in the population (contracted over a and t)
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62 %that are rarer than ported by 11 individuals
63 few=find((contpop(:,3)≤10).*(contpop(:,3)>0));
64

65 %inter= all genotypes that are possessed by 11−100 individuals
66 inter=find((contpop(:,3)≤100).*(contpop(:,3)>10));
67

68 %many=genotypes that are possessed by more than 100 individuals
69 many=find((contpop(:,3)>100));
70

71 %do not clear the diagramm after drawing once
72 hold on;
73

74 %plot the rare genotypes with blue circles
75 few=plot(contpop(few,1),contpop(few,2),'o');
76 set(few,'MarkerSize',3);
77

78 %plot the intermediate genotypes with green squares
79 inter=plot(contpop(inter,1),contpop(inter,2),'gs');
80 set(inter,'MarkerSize',3);
81

82 %plot the frequent genotypes with red diamonds
83 many=plot(contpop(many,1),contpop(many,2),'rd');
84 set(many,'MarkerSize',3);
85

86 %clear the figure next time you plot something
87 hold off;
88 %axes
89 xlabel('z1');
90 ylabel('z2');
91 axis([0 1 0 1]);
92

93 %create a title if parameters are given as input
94 if isstruct(params)
95 if t
96 title({['t=',num2str(t),' K=',num2str(params.K),...
97 ' mP=',num2str(params.mP),' mS=',num2str(params.mS)];...
98 [' p=',num2str(params.p), ' d=',num2str(params.d),...
99 ' amax(1)=',num2str(params.amax(1)),...

100 ' amax(2)=',num2str(params.amax(2)),...
101 ' c=',num2str(params.c),' tmax=',num2str(params.tmax)]});
102 else
103 title({['K=',num2str(params.K),' mP=',num2str(params.mP),...
104 ' mS=',num2str(params.mS)];[' p=',num2str(params.p),...
105 ' d=',num2str(params.d),' amax(1)=',num2str(params.amax(1)),...
106 ' amax(2)=',num2str(params.amax(2)),' c=',num2str(params.c),...
107 ' tmax=',num2str(params.tmax)]});
108 end
109 % if no parameters are give, print only time (if available)
110 elseif t
111 title({['t=',num2str(t)]},'FontSize',14);
112 end
113 end
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A.1.3. Determining End-Points in a Bet-Hedging Model

The commented Matlab source code of the function �PolyOutcome_f.m� deter-
mining if one of the possible end-points in the situation where only bet-hedging
is allowed for is reached.

1 function[outc]=PolyOutcome(gen,limit)
2 % function[outc]=PolyOutcome(gen,limit)
3 %
4 % Function that determines whether a population generated by the
5 % main program BetHedgingGen_2_4_f.m has reached one
6 % of the possible evolutionary end−points. The possible−end points are
7 % described in more detail in section 2.2.1
8 %
9 %

10 % The possible endpoints this function can detect:
11 % a) BetHedging Strategy with (z1,z2)−>(1,0) (outc=1)
12 % b) BetHedging Strategy with (z1,z2)−>(0,1) (outc=2)
13 % c) Genetic Polymorphism (z1,z2)−>(0,0) and (1,1) (outc=3)
14 % if non of those can be detected outc=0
15 %
16 % Input Arguments:
17 %
18 % gen(mx4 matrix): Population matrix as created by BetHedgingGe_2_4.m
19 % each time step
20 %
21 % limit(double): parameter that decides how close to an endpoint the
22 % population has to be before the endpoint is considered as outcome
23 % (limit in [0.01,0.3] make sens, depending on mutation rate). Small values
24 % of limit mean that the population has to be close to the end−point.
25 %
26 % Output:
27 %
28 % outc(ineger): Classification of the end−point the population reached (see
29 % above)
30 %
31 % Determine the total population size
32 K=sum(gen(:,4));
33 % Determine the number of individuals in a square being situated in
34 % the left bottom (z1,z2)=(0,0) corner. Side lenght = limit
35 slb=sum(gen(logical((gen(:,1)<limit).*(gen(:,2)<limit)),4));
36 % Same for left top corner (z1,z2)=(0,1)
37 slt=sum(gen(logical((gen(:,1)<limit).*(gen(:,2)>(1−limit))),4));
38 % Same for rigth bottom corner (z1,z2)=(1,0)
39 srb=sum(gen(logical((gen(:,1)>(1−limit)).*(gen(:,2)<limit)),4));
40 % Same for right top corner (z1,z2)=(1,1)
41 srt=sum(gen(logical((gen(:,1)>(1−limit)).*(gen(:,2)>(1−limit))),4));
42

43 % if 90% of the population is in one of the corners
44 if (slb+slt+srb+srt)>K*.9
45 % if 90% of the population is in (0,0) or (1,1) corner
46 % −> outcome 3
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47 if ((slb6=0 && srt6=0)) && ((slb+srt)>K*.9)
48 outc=3;
49 % outcome (1,0)?
50 elseif srb>K*.8
51 outc=1;
52 % outcome (0,1) ?
53 elseif slt>K*.8
54 outc=2;
55 % If individuals with about (1,0) and about (0,1) exist, take
56 % the dominating population as end−point as one of the
57 % sub−populations will die out in long term
58 elseif (slt+srb)>K*.9
59 if slt>srb
60 outc=2;
61 else
62 outc=1;
63 end
64 % If non of these end points is reached, set outc to 0
65 else
66 outc=0;
67 end
68 else
69 outc=0;
70 end
71

72

73 end
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