

The approved original version of this thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DISSERTATION

Beiträge zur stereoselektiven Synthese von Kohlenhydrat-Derivaten

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von

> Ao. Univ. Prof. Dipl.-Ing. Dr. tech. Peter Gärtner E 163

Institut für Angewandte Synthesechemie

eingereicht an der Technischen Universität Wien Fakultät für Chemie

von

Dipl.-Ing. Christian Einzinger 9625935 Josef Schwarzstraße 63 2231 Strasshof

Wien, im Oktober 2007

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Peter Gärtner für die interessante Fragestellung, seine hilfreichen Ratschläge bei allen aufgetretenen Problemen, sowie für die sorgfältige Durchsicht dieser Dissertation.

Für die Anfertigung zahlreicher NMR-Spektren danke ich Herrn Ass. Prof. Christian Hametner.

Ein großes Dankeschön geht auch an meine Arbeitsgruppe: Katharina Bica, Karin Hofbauer und Thiti Junpirom. Ferner gilt dieser Dank natürlich auch allen ehemaligen Mitgliedern der FG "Gärtner" die während meiner Dissertation ihre Diplomarbeiten oder Dissertationen abgeschlossen haben. Mit euch habe ich manch schwierige aber vor allem viele schöne Stunden im Labor verbracht. Die Zeit meiner Dissertation war dadurch mit viel Freude verbunden. Ohne euch wäre der Laboralltag einfach unvergleichlich langweiliger und weniger motivierend gewesen.

Den Mitgliedern der FG "Stanetty/Mihovilovic" danke ich für das gute Arbeitsklima im zweiten Stock. Insbesondere gilt mein Dank Michael Schnürch und Marko Susnik, die mich auf meinem gesamten Studienweg begleitet haben und für die Freundschaft, die sich dabei entwickelt hat. Unserem IT-Fachmann Florian Untersteiner danke ich nicht nur für seine Hilfe bei allen nur erdenklichen Computerproblemen, sondern vor allem für unzählige Diskussionen und gesellige Stunden nach getaner Arbeit.

Bei Amitava Kundu, Martina Opietnik und Anna Ressmann möchte ich mich für ihre Mitarbeit an meiner Dissertation im Rahmen eines Wahlpraktikums bedanken.

Meinen Freunden möchte ich für die unzähligen schönen Stunden und Erlebnisse abseits meiner Arbeit danken.

Meiner Freundin Pia Graßl gilt ein ganz besonders großes Dankeschön. Ihre Liebe und ihr Rückhalt gaben mir immer wieder jene Kraft, die zum Entstehen dieser Arbeit maßgeblich beigetragen hat. Es war und ist einfach eine wunderbare Zeit mit dir an meiner Seite!

Schließlich gilt ein herzliches Danke meiner ganzen Familie, vor allem aber meinen Eltern für ihre Unterstützung und ihr großes Verständnis. Ohne euch und eure Liebe wäre diese Arbeit wohl nie entstanden!

Kurzfassung/Abstract

Im ersten Teil der hier vorliegenden Arbeit wurden vier unterschiedliche Wege zur Synthese von *C*-verknüpften Disacchariden untersucht. In den ersten beiden Synthesestrategien war eine Palladium-katalysierte Kreuzkupplung der Schlüsselschritt zum Aufbau der notwendigen C-C-Verknüpfung. Danach wurde der Einsatz unterschiedlicher 1,3-Dithian-Derivate zum Aufbau der *C*-Disaccharid-Struktur untersucht. Letztlich zeigte sich jedoch, dass die vierte Synthesestrategie, die im Schlüsselschritt den zweiten Pyranonring über eine oxidative Ringerweiterung von - mit *C*-Glucopyranosiden - substituierten Furfurylalkoholen aufbaut, die erfolgreichste Methode zur *C*-Disaccharid-Synthese darstellte. Eine diastereoselektive CBS-Reduktion erlaubte dabei sowohl den Aufbau von D- als auch L-Zucker-Strukturen mit bis zu 82% *de*.

Den zweiten Teil der Arbeit bildete die Synthese von *trans*-3'-Hydroxycotinin-O- β -glucuronid. Es wurden unterschiedliche Glucuronsäuredonoren für die Kupplungsreaktion untersucht und schließlich das pivaloyl-geschütze Glucuronid mit sehr guten 85% Ausbeute erhalten. In weiterer Folge wurden noch unterschiedliche Bedingungen zur Abspaltung der Schutzgruppen untersucht.

In the first part of this work four different synthetic strategies for the synthesis of *C*-linked disaccharides were investigated. Two of the strategies relied on a palladium catalyzed cross coupling as the key step for the desired C-C bond formation. Furthermore the usage of different 1,3-dithiane sugars as building blocks for the formation of the *C*-disaccharide structure was examined. However the last strategy which relied on an oxidative rearrangement of substituted furfuryl alcohols proved to be the best way to obtain the desired *C*-linked carbohydrate structure. A CBS reduction permitted the selective formation of D- or L-sugar structures with a diastereoselectivity of up to 82% de.

In the second part the synthesis of *trans*-3'-hydroxycotinine-O- β -glucuronide was examined. Thus, different kinds of glucuronic donors were used in the key coupling step and the desired glucuronide was finally received with 85% yield as its pivaloyl protected product. Eventually different deprotection strategies were investigated.

Inhaltsverzeichnis

1.		8
1.1.	Einleitung	8
1.2.	<i>C</i> -verknüpfte Di- und Oligosaccharide – Ein Überblick	10
1	.2.1. Strategien zur Synthese von C-Di- und C-Oligosacchariden - ein Update	12
	1.2.1.1. Anionische Synthesestrategien	
	1.2.1.2. Kationische Synthesestrategien	16
	1.2.1.3. Radikalische Synthesestrategien	16
	1.2.1.4. Übergangsmetallkatalysierte Synthesestrategien	
	1.2.1.5. Sigmatrope Verknüpfungen	19
	1.2.1.6. De Novo Synthese durch Zyklisierung von offenkettigen Kohlenhydrat-Fragmenten	
	1.2.1.7. Alternative Methoden	
	1.2.1.8. Strategien zur Synthese von C-Oligosacchariden	
1.3.	<i>trans</i> -Hydroxycotinin- <i>O</i> -β-glucuronid - ein wertvoller Phase II Metabolit des	
2		27
3.	SPEZIELLER TEIL	30
3.1.	Untersuchungen zur Synthese von "echten" und "pseudo" C-verknüpften Di- und	
	Oligosacchariden	
3	.1.1. Versuche zur Pd-katalysierten C(sp ³)-C(sp ³)-Kupplung – Synthesestrategie I	
	3.1.1.1. Einleitung	
	3.1.1.2. Auswahl der geeigneten Kupplungspartner	
	3.1.1.3. Synthese des C-Glycosylborans 7a und der elektrophilen Kupplungspartner 12a und 12b	
	3.1.1.4. Kupplungsversuche	
3	.1.2. Versuche zur Pd-katalysierten Suzuki-Kupplung mit elektrophilen Pyranderivaten – Synthesestr	ategie II
	3.1.2.1. Einleitung	
	3.1.2.2. Theoretische Überlegungen zur <i>B</i> -Alkyl Suzuki-Miyaura Kupplung	
	3.1.2.3. Herstellung der elektrophilen 2-Pyranone	
	3.1.2.4. Versuche zur Suzuki-Kupplung	
	3.1.2.5. Versuche zur Herstellung alternativer Kupplungspartner	
3	.1.3. 1,3-Dithiane in der Synthese von C-verknüpften Disacchariden – Synthesestrategie III	
	3.1.3.1. Einleitung	

3.1	1.3.2. Synthesestrategie	46
3.1	1.3.3. Synthese der 1,3-Dithian-Precursor	48
	3.1.3.3.1. Versuche zur nukleophilen Substitution von 4- und 6-Glucosetriflaten mit 1,3-Dithian	48
	3.1.3.3.2. Nukleophile Addition von 1,3-Dithian an Gluconolacton 4	49
3.1	1.3.4. Deprotonierungsversuche an Glucose-1,3-dithianen	50
	3.1.3.4.1. Versuche zur Deprotonierung von 34	50
	3.1.3.4.2. Versuche zur Deprotonierung von 36	53
3.1	1.3.5. Untersuchungen zur Smith-Tietze Multikomponenten-Kupplung	54
3.1.4.	Substituierte Furfurylalkohole in der stereoselektiven Synthese von $(1 \rightarrow 6)$ -verknüpften	
	C-Disacchariden - Synthesestrategie IV	57
3.1	1.4.1. Einleitung und Synthesestrategie	57
3.1	1.4.2. Synthese der α- und β-1-C-Carbonylglykoside	59
3.1	1.4.3. Synthese der substituierten Furfurylalkohole	62
	3.1.4.3.1. Addition von Furyllithium.	62
	3.1.4.3.2. Bestimmung der Diastereoselektivität und der Absolutkonfiguration	65
	3.1.4.3.3. Synthese der Furfurylalkohole durch CBS-Reduktion	66
	3.1.4.3.4. Modell zur Vorhersage der Konfiguration der gebildeten Furfurylalkohole	68
3.1	1.4.4. Achmatowicz Umlagerung	70
3.1	1.4.5. Funktionalisierung der Pyranone - Stereoselektiver Aufbau der 2. Kohlenhydratstruktur	71
	3.1.4.5.1. Luche Reduktion	71
	3.1.4.5.2. Ausblick	73
		= 4
3.2.	Untersuchungen zur Synthese von <i>trans-3</i> -Hydroxycotinin-O-β-D-glucuronid	74
3.2.1.	Einleitung	/4
3.2.2.	Retrosynthetische Betrachtung	/6
3.2.3.	wani der Schutzgruppe	/ /
3.2.4.	Synthese der aktivierten Glucuronsaure-Intermediate	/8
5.2.5. 2.2.6	Synthese von (3 R, 5 S)-3 -Hydroxycounin.	80
3.2.0. 2.2.7	Kupplungsversuche mit unterschledlichen aktivierten Glucuronsaure-Donoren	81
3.2.7.	versuche zur Abspattung der Schutzgruppen	83
3.3.	Zusammenfassung	87
4. EX	XPERIMENTELLER TEIL	91
4.1.	Allgemeine Angaben	91
4.2.	Untersuchungen zur Synthese von "echten" und "pseudo" <i>C</i> -verknüpften Di- und	_
	Oligosacchariden	94
4.2.1.	Versuche zur Pd-katalysierten C(sp ²)-C(sp ²)-Kupplung	94
4.2	2.1.1. Synthese von 2,3,4,6-Tetra- <i>O</i> -benzyl-1- <i>O</i> -methyl-α-D-glucopyranose	94
4.2	2.1.2. Synthese von 2,3,4,6-Tetra- <i>O</i> -benzyl-α-D-glucopyranose	95

4.2.1.3. Synthese von 2,3,4,6-Tetra-O-benzyl-D-glucoronsäure-δ-lacton	96
4.2.1.4. Synthese von Dimethyltitanocen	97
4.2.1.5. Synthese von 2,6-Anhydro-3,4,5,7-tetra-O-benzyl-1-deoxy-D-gluco-hept-1-enitol	98
4.2.1.6. Synthese von (2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)methanol	99
4.2.1.7. Synthese von 1-O-Methyl-6-O-trityl-α-D-glucopyranose	100
4.2.1.8. Synthese von 2,3,4-Tri- <i>O</i> -benzyl-1- <i>O</i> -methyl-6- <i>O</i> -trityl-α-D-glucopyranose	101
4.2.1.9. Synthese von 2,3,4-Tri- <i>O</i> -benzyl-1- <i>O</i> -methyl-α-D-glucopyranose	102
4.2.1.10. Synthese von 2,3,4-Tri- <i>O</i> -benzyl-6-brom-6-deoxy-1- <i>O</i> -methyl-α-D-glucopyranose	103
4.2.1.11. Synthese von 2,3,4-Tri-O-benzyl-6-deoxy-6-iod-1-O-methyl-α-D-glucopyranose	104
4.2.1.12. Synthese von <i>n</i> -Octadecan	105
4.2.2. Versuche zur Pd-katalysierten Suzuki-Kupplung mit elektrophilen Pyranderivaten	106
4.2.2.1. Synthese der Pyranon-Scaffolds	106
4.2.2.1.1. Synthese von 5,6-Dihydro-2H-pyran-2-on	106
4.2.2.1.2. Synthese von Pyran-2-on	107
4.2.2.1.3. Synthese von 5-Brom-2H-pyran-2-on	108
4.2.2.1.4. Synthese von 3-Brom-5,6-dihydro-2H-pyran-2-on	109
4.2.2.1.5. Synthese von 3-Brom-2H-pyran-2-on	110
4.2.2.1.6. Synthese von 3,5,6-Tribrom-5,6-dihydro-2H-pyran-2-on und 3,5-Dibrom-2H-pyran-2-on.	111
4.2.2.1.7. Synthese von 3,5-Dibrom-2H-pyran-2-on	112
4.2.2.1.8. Synthese von 6-Hydroxy-2H-pyran-3(6H)-on	112
4.2.2.1.9. Synthese von 6-Methoxy-2H-pyran-3(6H)-on	113
4.2.2.1.10. Synthese von N,N-Bis(trifluormethansulfonyl)anilin	114
4.2.2.2. Kupplungsversuche	115
4.2.2.2.1. Synthese von (2,3,4,6-Tetra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)phenylmethan	115
4.2.3. 1,3-Dithiane in der Synthese von <i>C</i> -verknüpften Disacchariden	117
$4.2.3.1. \ Synthese \ von \ 2,3,4-Tri-{\it O}-benzyl-1-{\it O}-methyl-6-{\it O}-trifluormethansulfonyl-\alpha-D-glucopyranose\ .$	117
4.2.3.2. Synthese von 4,6- <i>O</i> -Benzyliden-1- <i>O</i> -methyl-α-D-glucopyranose	118
4.2.3.3. Synthese von 2,3-Di-O-benzyl-4,6-O-benzyliden-1-O-methyl-α-D-glucopyranose	119
4.2.3.4. Synthese von 2,3,6-Tri- <i>O</i> -benzyl-1- <i>O</i> -methyl-α-D-glucopyranose	120
$4.2.3.5. Synthese \ von \ 2,3,6-Tri-\ O-benzyl-1-\ O-methyl-4-\ O-trifluor methylsulfonyl-\alpha-D-glucopyranose$	121
4.2.3.6. Synthese von 2,3,4-Tri-O-benzyl-6-deoxy-6-(1,3-dithian-2-yl)-1-O-methyl-α-D-glucopyranose	122
4.2.3.7. Synthese von 2,3,4,6-Tetra- <i>O</i> -benzyl-1-(1,3-dithian-2-yl)-α-D-glucopyranose	123
4.2.3.8. 2-(2,3,4,6-Tetra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)-1,3-dithian (36)	124
4.2.3.9. Synthese von 3,4,6-Tri-O-benzyl-D-glucal (38)	125
4.2.3.10. Synthese von 1,2-Anhydro-3,4,6-tri- <i>O</i> -benzyl-α-D-glucopyranose	126
4.2.3.11. Synthese von 2- <i>tert</i> -Butyldimethylsilyl-1,3-dithian	127
4.2.3.12. Deprotonierungsversuche am 1- und 6- Dithianglucose-Scaffold	128
4.2.3.12.1. Deprotonierung mit LDA von 2,3,4-Tri-O-benzyl-6-deoxy-6-(1,3-dithian-2-yl)-1-O-meth	ıyl-
α-D-glucopyranose	128
4.2.3.12.1.1 Allgemeine Arbeitsvorschrift:	128

4.2.3.12.1.2 Synthese von 2,3,4-Tri-O-benzyl-6-deoxy-6-(2-methyl-1,3-dithian-2-yl)-1-O-me	thyl-
α-D-glucopyranose	128
4.2.3.12.1.3 Synthese von 2,3,4-Tri-O-benzyl-6-deoxy-6-[2-(prop-2-yl)-1,3-dithian-2-yl]-1-C)_
methyl-α-D-glucopyranose	129
4.2.3.12.2. Deprotonierung mit n-BuLi von 2-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)-1,3	-
dithian	130
4.2.3.12.2.1 Synthese von 2,3,4,6-Tetra-O-benzyl-1-deoxy-1-(1,3-dithian-2-yliden)-D-glucito	1130
4.2.3.13. Versuch zur Smith-Tietze Dithian-Kupplung an 1,2-Anhydro-3,4,6-tri-O-benzyl-α-D-	
glucopyranose	132
4.2.3.13.1. Synthese von 3,4,6-Tri-O-benzyl-1-deoxy-2-O-[(1,1-dimethylethyl)dimethylsilyl]-1-(1,1-dimethylethylethylethylethylethylethylethyl	,3-
dithian-2-yliden)-5-O-methyl-D-glucitol	132
4.2.4. Substituierte Furfurylalkohole in der stereoselektiven Synthese von $(1 \rightarrow 6)$ -verknüpften	
C-Disacchariden	134
4.2.4.1. Synthese von 1-O-Acetyl-2,3,4,6-tetra-O-benzyl-α-D-glucopyranose	134
4.2.4.2. Synthese von 1-(2,3,4,6-Tetra- <i>O</i> -benzyl-α-D-glucopyranos-1-yl)prop-2-en	135
4.2.4.3. Synthese von 1-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)prop-2-en	136
4.2.4.4. Synthese von 2-(2,3,4,6-Tetra- <i>O</i> -benzyl-α-D-glucopyranos-1-yl)acetaldehyd	137
4.2.4.5. Synthese von 2-(2,3,4,6-Tetra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)acetaldehyd	138
4.2.4.6. Synthese von 3-(2,3,4,6-Tetra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)propan-1-ol	139
4.2.4.7. Synthese von 3-(2,3,4,6-Tetra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)propan-1-al	140
4.2.4.8. Addition von Furyllithium – Untersuchung der Selektivität mit bzw. ohne Additive	141
4.2.4.8.1. Herstellung von Furyllithium	141
4.2.4.8.2. Allgemeine Vorschrift zur Addition ohne Additiv	142
4.2.4.8.3. Allgemeine Vorschrift zur Addition mit MgBr2 als Additiv	142
4.2.4.8.4. Vorschrift zur Addition mit (-)-Spartein als Additiv	142
4.2.4.8.5. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)ethanol	143
4.2.4.8.6. Synthese von 1-(Furan-2-yl)-3-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)propan-1-	ol
	145
4.2.4.9. Synthese der Furanylketoverbindungen	146
4.2.4.9.1. Allgemeine Synthesevorschrift	146
$4.2.4.9.2. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-\alpha-D-glucopyranos-1-yl) ethanon .$	147
4.2.4.9.3. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)ethanon	148
4.2.4.9.4. Synthese von 1-(Furan-2-yl)-3-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)propan-1-	on
	149
4.2.4.10. CBS-Reduktionen	150
4.2.4.10.1. Herstellung der CBS-Reduktionslösung (CBS/BH ₃ ·DMS-Kat.)	150
4.2.4.10.2. Allgemeine Arbeitsvorschrift:	150
4.2.4.10.3. Synthese von (S)-1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranos-1-yl)ethan	nol
	151

4.2.4.10.4. Synthese von (<i>S</i>)-1-(Furan-2-yl)-3-(2,3,4,6-te	tra-O-benzyl-β-D-glucopyranos-1-yl)propan-1-
ol 4.2.4.10.5. Synthese von (<i>S</i>)-1-(Furan-2-yl)-2-(2,3,4,6-te	tra- <i>O</i> -benzyl-α-D-glucopyranos-1-yl)ethanol
4.2.4.10.6. Synthese von (<i>R</i>)-1-(Furan-2-yl)-2-(2,3,4,6-te	tra- <i>O</i> -benzyl-β-D-glucopyranos-1-yl)ethanol
4.2.4.11. Synthese von (2 <i>S</i> ,6 <i>S</i>)-6-[(2,3,4,6-Tetra- <i>O</i> -benzyl-f	3-D-glucopyranos-1-yl)methyl]-5-oxo-5,6-
dihydro-2 <i>H</i> -pyran-2-yl, benzoat	
4.2.4.12. Synthese von (2S, 5R, 6S)- 6-[(2,3,4,6-Tetra-O-ber	nzyl-β-D-glucopyranos-1-yl)methyl]-5-
hydroxy-5,6-dihydro-2H-pyran-2-yl, benzoat	
4.3. Synthese eines Nikotin-Metaboliten	
4.3.1. Synthese von 1- O -[(3' R ,5' S)-3'-Hydroxycotinin]- β -D	-glucuronsäure159
4.3.1.1. Synthese von 1,2,3,4-Tetra-O-acetyl-D-glucuronsäu	remethylester159
4.3.1.2. Synthese von 2,3,4-Tri-O-acetyl-1-brom-1-deoxy-o	-D-glucuronsäuremethylester
4.3.1.3. Synthese von 2,3,4-Tri-O-acetyl-D-glucuronsäurem	ethylester
4.3.1.4. Synthese von 2,3,4-Tri-O-acetyl-1-O-(trichloracetir	nidoyl)-a-D-glucuronsäuremethylester 162
4.3.1.5. Synthese von 1,2,3,4-Tetra- <i>O</i> -pivaloyl-D-glucur	onsäuremethylester
4.3.1.6. Synthese von 2,3,4-Tri-O-pivaloyl-1-brom-1-deoxy	-α-D-glucuronsäuremethylester164
4.3.1.7. Synthese von 2,3,4-Tri-O-pivaloyl-D-glucuronsäure	methylester
4.3.1.8. Synthese von 2,3,4-Tri-O-pivaloyl-1-O-(trichlorace	timidoyl)-α-D-glucuronsäuremethylester166
4.3.1.9. Synthese von (3'R,5'S)-3'-Hydroxycotinin	
4.3.1.10. Synthese von 1-O-[(3'R,5'S)-3'-Hydroxycotinin]-2	2,3,4-tri-O-acetyl-β-D-
glucuronsäuremethylester	
4.3.1.11. Synthese von 1-O-[(3'R,5'S)-3'-Hydroxycotinin]-2	2,3,4-tri- <i>O</i> -pivaloyl-β-D-
glucuronsäuremethylester	
4.3.1.12. Synthese von Tetraethylammonium-1-O-[(3'R,5'S)-3'-hydroxycotinin]-2,3,4-tri- <i>O</i> -pivaloyl-β-D-
glucuronat	
5. ABKÜRZUNGSVERZEICHNIS	
6. LITERATURVERZEICHNIS	
7. CURRICULUM VITAE	

1. ALLGEMEINER TEIL

1.1. Einleitung

Die Erforschung der Kohlenhydrate ist ohne Zweifel eng mit dem Namen Emil Fischer verbunden. Als dieser 1891 die relative Konfiguration einiger Monosaccharide aufklärte, legte er damit den Grundstein zu einem der größten aber wohl auch komplexesten Bereiche der Organischen Chemie.¹

Aus ihrer einzigartigen polyhydroxylierten Struktur, der damit verbundenen Anzahl an chiralen Zentren und der Möglichkeit durch Glykosylierung aus einfachen Monosaccharid-Einheiten komplexe Oligosaccharide zu bilden, resultiert ein beinahe unüberschaubarer Fundus an natürlich vorkommenden Kohlenhydraten. Zusammen mit den synthetisch hergestellten Kohlenhydrat-Derivaten findet man sie an fast allen lebensnotwendigen Prozessen beteiligt^{1,2,3} – einen, wenn auch nur kleinen Überblick zeigt Abbildung 1.

Abbildung 1: Kohlenhydrate im "täglichen" Leben

¹ *The Organic Chemistry of Sugars*; Levy, D. E.; Fügedi, P. Eds.; CRC Press, Taylor & Francis Group: Boca Raton, 2006.

² Essentials of Carbohydrate Chemistry and Biochemistry; Lindhorst, T. K.; Wiley-VCH: Weinheim, 2000.

³ Kohlenhydrate-Chemie und Biologie; Lehmann, J.; Georg Thieme Verlag: Stuttgart, 1996.

Im Bereich der synthetisch-organischen Chemie wurde in den letzten beiden Jahrzehnten neben dem Aufbau immer komplexerer Oligosaccharid-Einheiten vor allem die Synthese von "Carbohydrate Mimics" forciert. Diese den ursprünglichen Kohlenhydraten strukturell sehr ähnlichen Verbindungsklassen besitzen durch ihre jeweiligen Modifikationen spezielle Eigenschaften, die hinsichtlich ihrer pharmakologischen Wirkung als sehr interessant erscheinen.

Mit großem Interesse wurde dabei vor allem die Synthese von Aza-, Thio- oder Carbazuckern, also Kohlenhydraten deren Ringsauerstoff durch ein Stickstoff-, Schwefelbzw. Kohlenstoffatom ersetzt wurde, und die Synthese unterschiedlichster *C*-Glykoside, in diesem Fall wurde der exo-Sauerstoff durch eine Methylengruppe ersetzt, vorangetrieben (Abbildung 2).^{1,4}

Abbildung 2: Natürlich vorkommende "Carbohydrate Mimics"

Neben diesen neuen und interessanten "Zucker-Derivaten" trat auch ein weiterer Bereich der Kohlenhydratchemie aus seinem bisherigen Schattendasein. Bis vor kurzem galt die Substanzklasse der Glucuronide, also all jene Phase-2-Metabolite die durch Glykosylierung mit Glucuronsäure gebildet werden, eher als "biologisches Abfallmaterial" und deren Synthese wurde mit geringem oder gar keinem Interesse verfolgt.⁵

⁴ Carbohydrate Mimics; Chapleur, Y. Eds.; Wiley-VCH: Weinheim, 1998.

⁵ Stachulski, A.V.; Jenkins, G. N. Natural Product Reports 1998, 2,173.

Mit der Etablierung immer besserer und genauerer Analysemethoden können jedoch heute die meist in nur sehr geringer Menge vorhandenen *O*- bzw. *N*- glucuronidierten Verbindungen nachgewiesen werden.

Abbildung 3: Glucuronide - Phase II-Metabolite

Zum generellen Verständnis von Krankheiten, als Referenzsubstanz für klinische oder toxikologische Studien, zur Aufklärung von Stoffwechselwegen neuer Medikamente oder für die Dopinganalyse werden daher hochreine synthetisch hergestellte Glucuronide benötigt.

1.2. C-verknüpfte Di- und Oligosaccharide – Ein Überblick

Wird der anomere Sauerstoff in einem Di- oder Oligosaccharid durch eine Methylengruppe ersetzt erhält man das korrespondierende *C*-Di- bzw. *C*-Oligosaccharid (Abbildung 4). Prinzipiell sind alle gängigen Verknüpfungstypen, also $(1\rightarrow x)$ möglich und man spricht von "echten" *C*-Sacchariden, wenn diese im Fall einer $(1\rightarrow 1)$, $(1\rightarrow 2)$, $(1\rightarrow 3)$ und $(1\rightarrow 4)$ Verknüpfung über eine Methylengruppe, und bei einer $(1\rightarrow 6)$ Verknüpfung über zwei Methylengruppen erfolgt. Sollte die Verknüpfung direkt oder über mehr als ein bzw. zwei Kohlenstoffe erfolgen, oder andere Funktionalitäten beinhalten werden diese Verbindung formal "pseudo" *C*-Saccharide genant.⁶

Abbildung 4: O- vs. C-Disaccharid am Beispiel der Lactose

⁶ C-Glycoside Synthesis; Postema, M. H. D; CRC Press, Taylor & Francis Group: Boca Raton, 1995.

Der Vergleich der physikalischen Eigenschaften (Tabelle 1) zeigt, dass sich *C*-verknüpfte Kohlenhydrate vor allem in ihrer chemischen Reaktivität von ihren *O*-Analoga unterscheiden. Chemisch gesehen handelt es sich bei diesen Verbindungen um polyhydroxylierte zyklische Ether: Anomere Effekte fehlen daher, dafür besteht aber eine hohe Stabilität gegenüber saurer oder enzymatischer Spaltung.

	<i>O</i> -Glykoside	C-Glykoside
Bindungslänge:	O-C = 1.43 Å	C-C = 1.54 Å
Van der Waals – Radius:	O = 1.52 Å	C = 2.0 Å
Elektronegativität:	O = 3.51	C = 2.35
Dipolmoment: (der Glykosidbindung)	C-O = 0.74 D	C-C = 0.3 D
Rotationsbarriere C-O- bzw. C-C-Bindung:	CH ₃ -O-CH ₃ 2.7 kcal/mol	CH ₃ -CH ₃ 2.88 kcal/mol
Wasserstoffbrückenbindung:	2	0
Anomerer/Exoanomerer Effekt:	Ja	Nein
Stabilität gegenüber Säure/Enzyme:	Nein	Ja
Konformation: (siehe Abbildung 4)	$\begin{array}{c} \hline C_1 - C_2 \\ antiperiplanar zu \\ O_I - C_{II} \end{array}$	$\begin{array}{c} \hline C_1 - C_2 \\ antiperiplanar zu \\ C_{\Gamma} - C_{\Pi} \end{array}$

Tabelle 1: Physikalische Eigenschaften von O- und C-Glykosiden

Aus pharmakologischer Sicht ist vor allem diese Stabilität interessant da *C*-glykosidisch verknüpfte Zucker ihre natürlichen Analoga imitieren und dadurch als wirksame Enzym-Inhibitoren fungieren können.^{1,4,6,7}

Kishi *et al.* konnten in einer eindrucksvollen Serie von Arbeiten nicht nur neue Methoden zur Synthese von biologisch interessanten *C*-Di- und *C*-Trisacchariden entwickeln sondern auch deren Konformation untersuchen und zeigen, dass diese den zugrunde liegenden natürlichen Kohlenhydraten sehr ähnlich ist.^{8,9,10}

Die erste *C*-Disaccharid-Synthese wurde 1983 von Sinaÿ und Rouzad publiziert (Abbildung 5).¹¹

⁷ Du, L.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* **1998**, *54*, 9913.

⁸ Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. J. Org. Chem. 1992, 57, 490.

⁹ Wang, Y.; Goejkjian, P. G.; Ryckman, D. M.; Miller, W. H.; Babirad, St. A.; Kishi, Y. J. Org. Chem. 1992, 57, 482.

¹⁰ Goekjian, P. G.; Wu, T.-Ch.; Kang, H.-Y.; Kishi, Y. J. Org. Chem. 1991, 56, 6422.

¹¹ Rouzad, D.; Sinaÿ, P. J. Chem. Soc. Chem. Commun. 1983, 23, 1353.

Abbildung 5: 1 .C-Disaccharid-Synthese durch Sinaÿ und Rouzad

Der dabei wesentlich Schritt war die Addition der lithierten Gluco-Alkinylspezies an benzylisch geschütztes Glucolacton. Durch axiale Reduktion erfolgte die selektive Bildung der β -Verknüpfung und eine abschließende Hydrierung lieferte die gewünschte *C*-Gentiobiose.

Seit dieser ersten Synthese sind eine Vielzahl an unterschiedlichen Arbeiten zur Herstellung von "echten" und "pseudo" *C*-Sacchariden erschienen und vor allem Postema^{6,12} und Vlahov⁷ bieten dabei einen guten Überblick.

In der Regel zeigte sich die Synthese von C- $(1\rightarrow 6)$ verknüpften Saccharideinheiten im Vergleich zu allen anderen als deutlich einfacher, da in diesem Fall die Bindung nicht direkt am Pyranosering stattfand und somit ein bezogen auf die Stereo- und Chemoselektivität wesentlich einfacherer Zugang gewählt werden konnte.

Das folgende Kapitel zeigt einen kurzen Überblick über literaturbekannte Strategien zur Synthese von *C*-Di und *C*-Oligosacchariden, wobei für die einzelnen Methoden die jeweils letzte relevante Publikation als Referenz angegeben wurde.

1.2.1. Strategien zur Synthese von C-Di- und C-Oligosacchariden - ein Update

Der Einteilung von Postema¹² folgend, können *C*-Disaccharid-Synthesen im Wesentlichen in 7 Methodenbereiche unterteilt werden:

¹² Liu, L.; McKee, M.; Postema, M. H. D. Curr. Org. Chem. 2001, 5, 1133.

•	Anionsche Synthesestrategien		- Sonogashira-Kupplung	gen
	- Alkinyl-Anionen		- Suzuki-Miyaura-Kupp	lungen
	- Schwefel-stabilisierte Anionen		- Metathese	
	- Phosphor-stabilisierte Anionen (Wittig)	Sigmatrope Verknüpfungen		
	- Unstabilisierte Anionen	- Dipolare Cycloadditionen		
	-C ₁ -Vinyl-Anionen	- Hetero-Diels-Alder Reaktionen		
	- Enolate	-[3,3]-Umlagerungen (Claisen)		
	-Nitro-Aldol Reaktionen (Henry)	٠	De Novo Synthese du	ch Zyklisie
	- anomere Organosamarium-Intermediate		von offenkettigen	Kohlenhyo
•	Kationische Synthesestrategien		Fragmenten	
	- Glycale als Nukleophile		- Wittig-Horner	
	- Silyl-Nukleophile		- Anionische Additioner	1
•	Radikalische Synthesestrategien		- Veresterung - elektrop	hile Zyklisie
	- Intermolekulare Additionen		- Veresterung - Metathe	se
	- Intramolekulare Additionen		- Oxidative Ringerweite	rungen
•	Übergangsmetallkatalysierte	Alternative Methoden		

- Synthesestrategien
- Stille-Kupplungen

- rung drat
 - rung
 - Elektrochemische Methoden
 - Enzymatische Methoden

1.2.1.1. Anionische Synthesestrategien

Die Möglichkeit über ein Anion die gewünschte C-C Verknüpfung aufzubauen zählt sicher zu den beliebtesten Methoden zur Herstellung von C-Disacchariden.

¹³ Leeuwenburgh, M. A.; Timmers, C. M.; van der Marel, G. A.; van Boom, J. H.; Mallet, J.-M.; Sinaÿ, P. G. Tetrahedron Lett. 1997, 38, 6251.

Tabelle 2: Anionische Synthesestrategien I

Die bereits gemachten Erfahrungen mit Alkinyl-Anionen wurden von Sinaÿ *et al.* auch zur Synthese von C-Isomaltose verwendet. In diesem Fall wurde jedoch durch Verwendung des 1,2-Anhydrozuckers die normalerweise bei der Addition vorherrschende β -Selektivität in eine reine α -Selektivität umgewandelt. Über die Komplexierung mit Co(CO)₈ konnte durch Epimerisierung jedoch auch das β -Isomer erhalten werden (Tabelle 2; Eintrag 1). Die Verwendung von Schwefel-stabiliserten Anionen wurde durch Taylor *et al.* etabliert, der die notwendigen Sulfone durch Oxidation der korrespondierenden Thioether-Zucker erhielt und diese im Anschluss daran in einer Ramberg-Bäcklung Umlagerung in die gewünschten *C*-Glykoside umwandelte (Tabelle 2; Eintrag 2). Im dritten Beispiel erfolgte der Schlüsselschritt zum Aufbau der *C*-Galactobiose durch eine Wittig-Reaktion (Tabelle 2; Eintrag 3). Dondoni *et al.* verwendeten diese Synthesestrategie auch zum Aufbau von Tri-Tetra- und Penta-*C*-Sacchariden (siehe 1.2.1.8). Der Aufbau einer *C*-Glucose-Galactoseeinheit wurde von Schmidt und Preuss über eine unstabilisierte Lithio-Zucker-Spezies realisiert, wobei nach erfolgtem Metall/Halogen-Tausch die Addition an benzyl-

¹⁴ Paterson, D. E.; Griffin, F. K.; Alcaraz, M.-L.; Taylor, R. J. K. Eur. J. Org. Chem. 2002, 7, 1323.

¹⁵ Dondoni, A.; Zuurmond, H. M.; Boscarato, A. J. Org. Chem. **1997**, *62*, 8114.

¹⁶ Preuss, R.; Schmidt, R. R. J. Carbohydr. Chem. **1991**, 10, 887.

geschütztes Glucolacton erfolgte (Tabelle 2; Eintrag 4). Schmidt nutzte ferner C₁-Vinyl-Anionen zur Herstellung unterschiedlicher Hydroxymethyl-verknüpfter *C*-Disaccharide. Im dargestellten Beispiel wurde die Lithio-Vinyl-Spezies einerseits mit DMF gequencht und das daraus resultierende Aldehyd mit einem weiteren Äquivalent an Lithio-Zucker umgesetzt (Tabelle 3; Eintrag 5).

Durch Reaktion mit Me₂AlSPh wurde Levoglucosenon von Vogel und Zhu in das benötigte Enolat überführt, welches in Folge mit in Position 6 oxidierter Galactose umgesetzt wurde (Tabelle 3; Eintrag 6). Eine weitere sehr effiziente Methode zum Aufbau der C-C Verknüpfung erfolgt über die als Henry-Reaktion bekannte Addition von Nitro-stabilisierten Anionen an Aldehyde. Kobertz *et al.* nutzten diese Möglichkeit zur Synthese von *C*-Allolactose (Tabelle 3; Eintrag 7).

Abschließend sei hier noch die von Skrydstrup *et al.* etablierte Addition von Samarium-Glykosiden an unterschiedliche elektrophile Kohlenhydrat-Derivate erwähnt. Im dargestellten Beispiel erfolgt dadurch die α -(1 \rightarrow 4)-Verknüpfung zweier Mannosid-Einheiten (Tabelle 3; Eintrag 8).

¹⁷ Patro, B.; Schmidt, R. R. Synthesis **1998**, *12*, 1731.

¹⁸ Zhu, Y.-H.; Vogel, P. Tetrahedron Lett. 1998, 39, 31.

¹⁹ Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. 1996, 61, 1894.

Tabelle 3: Anionische Synthesestrategien II

1.2.1.2. Kationische Synthesestrategien

In der Literatur findet man weitaus weniger Beispiele zum Aufbau von *C*-verknüpften Disaccharid-Strukturen durch kationische Synthesestrategien. Die Generierung des anomeren Carbeniumions erfolgt dabei meist durch eine Lewis-Säure.

Tabelle 4: Kationische Synthesestrategien

Steel *et al.* verwendeten Acetylperchlorat als Lewis-sauren Promotor zur Dimerisierung unterschiedlicher Glucale (Tabelle 4; Eintrag 1). In ähnlicher Weise verknüpften Isobe *et al.* mit SnCl₄ als Lewis-Säure zwei Glucal-Bausteine über eine Diacetylenbrücke (Tabelle 4; Eintrag 2).

1.2.1.3. Radikalische Synthesestrategien

Die radikalischen Synthesemethoden können im Wesentlichen in zwei große Teilbereiche unterteilt werden: die inter- bzw. intramolekulare Addition freier Radikale. Dabei können die

²⁰ Mikkelsen, L. M.; Skrydstrup, T. J. Org. Chem. 2002, 68, 2123.

²¹ Byerley, A. L. J.; Kenwright, A. M.; Steel, P. G. Tetrahedron Lett. 1996, 37, 9093.

²² Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. J. Chem. Soc. Chem. Commun. 1998, 24, 2665.

notwendigen Radikale auf unterschiedlichste Art generiert werden. In den dargestellten Fällen wurde dazu jeweils Bu₃SnH in Verbindung mit AIBN verwendet.

Tabelle 5: Radikalische Synthesestrategien

Im ersten Beispiel verwendeten Witczak et al. ein anomeres C-Zuckeriodid zur Kupplung mit (+)-Levoglucosenon welches in Folge durch Reduktion mit Et₃SiH und BF₃·Et₂O in die gewünschte 3'-Desoxy-C-Cellobiose umgewandelt wurde (Tabelle 5; Eintrag 1). Vogel et al. lieferten mit ihrem "Naked Sugar"-Zugang eine Vielzahl an Beispielen zur Synthese von vorliegenden Fall C-Disacchariden. Im wurde das benötigte Radikal aus dem α -D-Mannopyranosylbromid hergestellt und nach erfolgter α -selektiver Kupplung der C-Disaccharid-Precursor zu einem α -(1 \rightarrow 3)-2'-Aminozucker funktionalisiert (Tabelle 5; Eintrag 2). Im Fall der intramolekularen Addition war es wiederum Sinaÿ der mittels einer Silizium-Verknüpfung die räumliche Nähe zweier Kohlenhydrat-Bausteine gewährleistete. Hier dargestellt ist die Verknüpfung von benzyl-geschütztem Gluco- bzw. Galactoexoglucal mit 3- bzw. 4-Iodozuckern über einen "Silizium-Tether". Im Anschluss daran erfolgt die Bu₃SnH/AIBN initiierte Kupplung zu den jeweiligen β -(1 \rightarrow 3) bzw. β -(1 \rightarrow 4) Derivaten (Tabelle 5; Eintrag 3).

²³ Witczak, Z. J.; Chhabra, R.; Chojnacki, J. Tetrahedron Lett. 1997, 38, 2215.

²⁴ Pasquarello, C.; Demange, R.; Vogel, P. Bioorg. Med. Chem. Lett. 1999, 9, 793.

²⁵ Vauzeilles, B.; Sinaÿ, P. Tetrahedron Lett. 2001, 42, 7269.

1.2.1.4. Übergangsmetallkatalysierte Synthesestrategien

Übergangsmetallkatalysierte Kupplungen oder Metathesereaktionen eignen sich aufgrund ihrer sehr milden Reaktionsbedingungen und dem sehr breiten Spektrum an tolerierten funktionellen Gruppen sehr gut zum Aufbau von *C*-verknüpften Zuckerstrukturen.

Tabelle 6: Übergangsmetallkatalysierte Synthesestrategien

Als Beispiel für eine carbonylierende Stille-Kupplung zeigen Vogel *et al.* die Kupplung eines anomeren Tributylzinn-Zuckers mit einem aus Isolevoglucosenon in zwei Stufen darstellbarem Triflat. Die daraus gebildete β -(1 \rightarrow 4)-Spezies wurde im Anschluss daran noch weiter funktionalisiert (Tabelle 6; Eintrag 1). Vasella und Alzeer nutzten die Bedingungen der Sonogashira-Kreuzkupplung zur Synthese von Diacetylen-verknüpften β -(1 \rightarrow 4)-*C*-Disacchariden (Tabelle 6; Eintrag 2), und in der Gruppe von Tachibana wurden durch Hydroborierung von MOM-geschützem Glucoexoglucal und darauf folgender Suzuki-Miyaura Kupplung selektiv die jeweiligen β -(1 \rightarrow 1)-Zucker dargestellt (Tabelle 6; Eintrag 3). Durch Metathese gelang es Chang und Lowary das aus 1-*O*-Acetyl- α -Darabinofuranose hergestellte ungesättigte *C*-Glykosid zu dimerisieren und daraus in weiterer

²⁶ Steunenberg, P.; Jeanneret, V.; Zhu, Y. H.; Vogel, P. Tetrahedron Asymm. 2005, 16, 337.

²⁷ Alzeer, J.; Vasella, A. Helv. Chim. Acta 1995, 78, 177.

²⁸ Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. Tetrahedron Lett. 1998, 39, 9027.

²⁹ Chang, G. X.; Lowary, T. L. *Tetrahedron Lett.* **2006**, *47*, 4561.

Folge ein *C*-Analogon des Zellwandmotifs des *Mycobacterium tuberculosis* zu synthetisieren (Tabelle 6; Eintrag 4).

1.2.1.5. Sigmatrope Verknüpfungen

Die in der Literatur beschriebenen Methoden reichen hierbei von dipolaren Cycloadditionen von Nitriloxiden oder Nitronen über Hetero-Diels-Alder Reaktionen zu der von Allyl-Vinyl-Ethern bekannten [3,3]-sigmatropen Claisen-Umlagerung.

Tabelle 7: Sigmatrope Verknüpfungen

Die Gruppe von Paton beschäftigte sich sehr aktiv mit der Darstellung von *C*-Disacchariden durch dipolare Cycloaddition von anomeren Nitriloxiden mit ungesättigten Kohlenhydraten. Das in Beispiel 1 dargestellte Dihydroisoxazol wurde in Folge in eine β -(1 \rightarrow 6)-Verbindung umgewandelt (Tabelle 7; Eintrag 1). Bei Dondoni *et al.* wurde der zweite Pyranring durch eine Hetero-Diels-Alder Reaktion mit Ethyl-Vinylether aufgebaut. Erwähnenswert hierbei ist auch die aus derselben Arbeitsgruppe entwickelte Methode zur Darstellung von anomeren Formylzuckern, die aus dem vorhandenen 1,3-Thiazol gebildet werden und in diesem Fall durch Reduktion in die gewünschte 6-Hydroxygruppe überführt wurden

³⁰ Paton, R. M.; Penman, K. J. *Tetrahedron Lett.* **1994**, *35*, 3163.

³¹ Dondoni, A.; Kniezo, L.; Martinkova, M.; Imrich, J. Chem. Eur. J. 1997, 3, 424.

³² Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. *Tetrahedron* **2005**, *61*, 7184.

(Tabelle 7; Eintrag 2). Der Aufbau der α -(1 \rightarrow 6)-Verknüpfung erfolgt bei Fairbanks *et al.* durch eine Tebbe/Claisen Reaktionsabfolge. Zu Beginn erfolgte die Veresterung der beiden Kohlenhydrat-Teile. Danach wurde die Carbonyl-Funktionalität durch eine Tebbe-Petasis Olefinierung in den benötigten Vinylether umgewandelt. Folglich lieferte die nun mögliche [3,3]-Umlagerung die gewünschte *C*-Disaccharid-Struktur (Tabelle 7; Eintrag 3).

1.2.1.6. *De Novo* Synthese durch Zyklisierung von offenkettigen Kohlenhydrat-Fragmenten

In der Literatur findet man eine Vielzahl von unterschiedlichen Zyklisierungsmethoden zum Aufbau der zweiten Kohlenhydrat-Einheit. Die Stereochemie des neu gebildeten Zuckers wird dabei entweder durch Verknüpfung mit einem bereits stereochemisch-festgelegten offenkettigen Kohlenhydrat oder durch asymmetrische Funktionalisierung definiert.

³³ Armstrong, R. W.; Sutherlin, D. P. Tetrahedron Lett. 1994, 35, 7743.

³⁴ Khan, A. T.; Sharma, P.; Schmidt, R. R. J. Carbohydr. Chem. 1995, 14, 1353.

³⁵ Khan, N.; Cheng, X.; Mootoo, D. R. J. Am. Chem. Soc. **1999**, *121*, 4918.

³⁶ Postema, M. H. D.; Piper, J. L.; Liu, L.; Shen, J.; Faust, M. Andreana , P. J. Org. Chem. 2003, 68, 4748.

Tabelle 8: De Novo-Synthese durch Zyklisierung von offenkettigen Kohlenhydrat-Fragmenten

Durch Wittig-Horner Reaktion gelangten Armstrong und Sutherlin zu dem gewünschten konjungiert-ungesättigten α -C-Glykosid welches anschließend durch Osmylierung in vier unterschiedliche Diastereomere, und durch Reduktion mit DIBAL und darauf folgender Zyklisierung in die jeweiligen α -(1 \rightarrow 6)-C-Disaccharide umgewandelt wurde (Tabelle 8; Eintrag 1). In Anlehnung an die Reaktion der nicht-stabilisierten Anionen konnten Schmidt et al. durch Addition von lithierter 4-Iodmethylglucose an offenkettig-geschützte Glucose den für die erwünschte $(1\rightarrow 4)$ -Verknüpfung notwendigen Precursor aufbauen. Dabei zeigte sich jedoch, dass im Zyklisierungsschritt neben C-Zellobiose auch das korrespondierende Furanosid durch einen Eliminierungs-/Additionsschritt gebildet wurde (Tabelle 8; Eintrag 2). Mootoo et al. gelang der Aufbau einer β , α -(1 \rightarrow 1)-Struktur durch Veresterung des α -Carboxymethyl-C-Mannosids mit der - in Position 3 - freien Hydroxygruppe des S,O-Acetals der D-Threose. Der gebildete Ester wurde durch Methylenierung in den benötigten Vinylether überführt und durch elektrophile Zyklisierung das dargestellte C-Glucal gebildet (Tabelle 8; Eintrag 3). In einer eindrucksvollen Arbeit gelang Postema et al. die Synthese von insgesamt 12 unterschiedlichen C-Disacchariden. Der Schüsselschritt in dieser Reaktionssequenz war eine intramolekulare Metathese-Reaktion, wobei jeweils eine der beiden Doppelbindungen durch eine Veresterungs-/Tebbe-Petasis-Reaktionsabfolge aufgebaut wurde (Tabelle 8; Eintrag 4). Nelson et al. beschreiben den Aufbau von 11 stereodivergenten $(1 \rightarrow 6)$ -C-Disacchariden durch eine zwei-direktionale Synthesestrategie. Aus dem stereoselektiv hergestellten Difurfurylalkohol wurden in einer oxidativen Umlagerung die benötigten Pyranone gebildet welche in Folge in diastereoselektiver Art und Weise zu den dargestellten C-Disacchariden funktionalisiert wurden (Tabelle 8; Eintrag 5).

³⁷ Harding, M. Hodgson, R.; Majid, T.; McDowall, K. J.; Nelson, A. Org. Biomol. Chem. 2003, 1, 338.

1.2.1.7. Alternative Methoden

Abschließend seien hier noch zwei weitere Methoden abseits der klassischen organischen Synthese erwähnt:

Tabelle 9: Alternative Synthesemethoden

Im ersten Fall gelang es Vismara *et al.* auf elektrochemischem Weg aus den beiden Halogenzuckern ein Gemisch aus insgesamt 3 *C*-verknüpften Disacchariden zu erhalten, dabei belief sich allerdings die Ausbeute der einzelnen Produkte auf jeweils < 20%. (Tabelle 9; Eintrag 1) Weiters konnten Eyrisch und Fessner auf enzymatischem Weg aus dem enantiomerenreinen Diol in einer mehrstufigen Synthesesequenz eine direkt-verknüpfte *C*-Disaccharid-Struktur aufbauen (Tabelle 9; Eintrag 2).

1.2.1.8. Strategien zur Synthese von C-Oligosacchariden

Im Vergleich zu der Vielzahl an unterschiedlichen Strategien zum Aufbau von *C*-verknüpften Disacchariden findet man in der Literatur relativ wenige Beispiele für die Synthese von *C*-Oligosacchariden die aufgrund ihrer komplexeren Struktur natürlich eine weitaus größere synthetische Herausforderung darstellen. Verständlicherweise zeigt sich auch in diesem Fall, dass der Aufbau von linearen $(1\rightarrow 6)$ -Einheiten synthetisch einfacher zu bewerkstelligen ist, als die Synthese von verzweigten und unterschiedlich verknüpften *C*-Oligosacchariden.

³⁸ Guerrini, M.; Mussini, P.; Rondini, S.; Torri, G.; Vismara, E. J. Chem. Soc. Chem. Commun. 1998, 15, 1575.

³⁹ Eyrisch, O.; Fessner, W.-D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1639.

Tabelle 10: Synthese von C-Oligosacchariden I

Das erste in der Literatur beschrieben Beispiel eines C-Trisaccharides lieferten Kishi *et al.* die in beeindruckend einfacher Art durch eine Aldol-Reaktion die notwendige C-Disaccharid-Grundstruktur aufbauten und das in Folge gebildete Pyranon durch Deprotonierung an einen anomeren Formyl-Zucker addierten. Nach erfolgter Funktionalisierung und Abspaltung der Schutzgruppen wurden insgesamt drei C-Trisaccharid-Derivate der Typ II Blutgruppen-Determinante erhalten (Tabelle 10; Eintrag 1). Armstrong und Sutherlin stellten 12 stereochemisch und strukturell unterschiedliche C-Trisaccharide ebenfalls in einer

⁴¹ Xin, Y.-C.; Zhang, Y.-M.; Mallet, J.-M.; Glaudemans, C. P. J.; Sinaÿ, P. Eur. J. Org. Chem. 1999, 2, 471.

⁴⁰ Sutherlin, D. P.; Armstrong, R. W. J. Org. Chem. 1997 62, 5267.

⁴² Dondoni, A.; Marra, A. *Tetrahedron Lett.* **2003**, *44*, 4067.

zweigeteilten Synthesesequenz dar. Im Teil erfolgte Aufbau ersten der der C-Disaccharid-Struktur Nozaki-Kishi-Kupplung. über eine In einer mehrstufigen Funktionalisierung der verbliebenen Doppelbindung und durch eine abschließende Zyklisierung wurden letztlich die gewünschten Trisaccharide erhalten (Tabelle 10; Eintrag 2). Sinaÿ et al. nutzten ihre bereits etablierte Alkinyl-Anion-Additionsmethode zum Aufbau von β -(1 \rightarrow 6)-Galactan, welches aus zwei C-Disaccharid-Untereinheiten aufgebaut wurde (Tabelle 10; Eintrag 3). Dondoni und Marra hingegen nutzen ihre iterative Wittig-Strategie zum Aufbau von α -(1 \rightarrow 5)-Arabinofuranosyl-*C*-trisaccharid (Tabelle 10; Eintrag 4). Auf sehr ähnliche Art und Weise gelang der gleichen Arbeitsgruppe bereits 2002 die Synthese eines *C*-verknüpften Pentagalacto- und Pentaglucosids.⁴³

Tabelle 11: Synthese von C-Oligosacchariden II

In ihren Arbeiten zur Synthese von Acetylen-verknüpften *C*-Sacchariden konnten Vasella und Burli durch eine zweifache Glaser Kupplung die jeweiligen tetra-, hexa- und octameren Kohlenhydrateinheiten aufbauen (Tabelle 11; Eintrag 1). Zum Abschluss sei hier noch die Arbeit von Johnson und Johns erwähnt die durch eine Suzuki-Miyaura Kupplung mit 1,3,5-Tribrombenzol ein über einen Phenylring verknüpftes β -(1 \rightarrow 1)-*C*-Trisaccharid herstellten (Tabelle 11; Eintrag 2).

⁴³ Dondoni, A.; Marra, A.; Mizuno, M.; Giovannini, P. P. J. Org. Chem. 2002, 67, 4186.

⁴⁴ Burli, R.; Vasella, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 1852.

⁴⁵ Johnson, C. R.; Johns, B. A. Synlett **1997**, *12*, 1406.

1.3. *trans*-Hydroxycotinin-*O*-β-glucuronid - ein wertvoller Phase II Metabolit des Nikotinstoffwechselweges

Im nun folgenden Kapitel soll kurz anhand der aus Nikotin metabolisierten Cotininglucuronide die generelle Bedeutung dieser Substanzklasse als Referenzverbindungen in der medizinischen Forschung erläutert werden.

Laut Statistiken der Weltgesundheitsorganisation WHO ist das aktive bzw. passive Rauchen von Tabak einer der häufigsten Ursachen eines frühzeitigen Todes. Glaubt man den Prognosen so übersteigt bereits 2020 die Zahl der durch Rauchen verursachten jährlichen Todesfälle die 10 Millionengrenze und immerhin 50% der Langzeitraucher werden an den schädlichen Folgen ihres Tabakkonsums sterben.⁴⁶

Verständlicherweise war und ist daher das Thema "Rauchen" Grund für unzählige Untersuchungen die sich einerseits mit den daraus resultierenden Folgeerkrankungen und andererseits auch mit der Wirkungsweise der einzelnen Rauchinhaltsstoffe und deren Auswirkung auf das beobachtbare Rauchverhalten der Tabakkonsumenten beschäftigen.

Abbildung 6: Metabolismus von Nikotin

Nikotin, das suchterzeugende Hauptalkaloid der Tabakpflanze kann dafür aber aufgrund seiner geringen Halbwertszeit im Blut ($t_{1/2} = -2.5$ h) nur schlecht als Biomarker verwendet werden. Wesentlich besser dafür geeignet, ist das aus Nikotin durch Oxidation metabolisierte

⁴⁶ <u>http://www.who.int/tobacco/en/</u> Aktueller Stand: 15.10.2007.

Cotinin. Da immerhin 70% der aufgenommenen Nikotinmenge zu Cotinin umgewandelt werden und dieses mit einer Halbwertszeit von 15-17 h ausreichend lange im Blut vorhanden ist, eignen sich Cotinin und seine Stoffwechselabbauprodukte daher wesentlich besser als Referenzmaterial.⁴⁷

Neben Cotinin und seinem *N*-Glucuronid zählen dabei vor allem das in seinem weiteren metabolischem Verlauf gebildete *trans*-3'-Hydroxycotinin und sein *O*-Glucuronid mit einem Anteil von immerhin 40% zu den Hauptmetaboliten des Nikotinstoffwechselweges (Abbildung 6 und Abbildung 7).

Abbildung 7: Nikotin und seine Hauptmetabolite

2. AUFGABENSTELLUNG

In der vorliegenden Arbeit sollten 2 unterschiedliche Bereiche der Kohlenhydratchemie untersucht werden:

1. Neue Möglichkeiten zur Synthese von "echten" und "pseudo" *C*-verknüpften Di- und Oligosacchariden

Im Wesentlichen kann die Synthese von *C*-verknüpften Disacchariden in zwei unterschiedliche Strategien unterteilt werden. Im ersten Fall werden dabei zwei aktivierte Kohlenhydrateinheiten direkt miteinander verknüpft. Der große Vorteil darin liegt in einer relativ kurzen Synthesesequenz. Durch Variation der Kohlenhydratbausteine können somit unterschiedliche Disaccharide synthetisiert werden.

Abbildung 8: 1 Ziel - 2 Synthesestrategien

Der zweite Syntheseweg geht von einer Kupplung mit einem Kohlenhydrat-Precursor aus welcher in Folge durch Funktionalisierung in eine neue Kohlenhydrateinheit überführt wird. Durch die *de novo* Synthese des zweiten Zuckermoleküls kann dieses in vielfältiger Art und Weise diversifiziert werden. Dies gestattet die Bildung einer möglichst großen Anzahl an stereochemisch-unterschiedlichen Kohlenhydrateinheiten. In weiterer Folge können beide

Zugänge durch eine iterative Reaktionsführung zum Aufbau höherer *C*-verknüpfter Kohlenhydrate verwendet werden (Abbildung 8).

Der Schlüsselschritt der entwickelten Synthesestrategien basiert dabei entweder auf einer Palladium-katalysierten Kreuzkupplung oder auf einer nukleophilen Addition an eine C₁-elektrophile Kohlenhydratspezies (Abbildung 9).

Kupplung aktivierter Kohlenhydratbausteine

Precursor Kupplung

Abbildung 9: Synthesestrategie via Palladium-katalysierter Kreuzkupplung oder durch Addition an ein C_1 -Elektrophil

2. Synthese eines Nikotin-Metaboliten für die Verwendung als GC/MS-Standard in der Tabak-Analytik

Der zweite Teil der Arbeit galt der stereoselektiven Synthese des β -O-Glucuronids von *trans*-3'-Hydroxycotinin (**XI**).

Abbildung 10: Retrosynthese von trans-3'-Hydroxycotinin-O-β-glucuronid

Neben der Synthese von *trans-3'-*Hydroxycotinin sollte vor allem die darauf folgende Kupplung mit unterschiedlichen Glucuronsäure-Donoren hinsichtlich Ausbeute und Selektivität untersucht werden.

3. SPEZIELLER TEIL

3.1. Untersuchungen zur Synthese von "echten" und "pseudo" *C*-verknüpften Di- und Oligosacchariden

3.1.1. Versuche zur Pd-katalysierten C(sp³)-C(sp³)-Kupplung – Synthesestrategie I

3.1.1.1. Einleitung

Übergangsmetallkatalysierte Kreuzkupplungsreaktionen zwischen Organometallverbindungen und ihren elektrophilen Kupplungspartnern zählen in der organischen Chemie zu den einfachsten Möglichkeiten zur direkten Knüpfung von C-C Bindungen. Die gängigen möglichen Verknüpfungen beschränkten sich allerdings - bis vor wenigen Jahren - auf die Verwendung von C(sp)- und C(sp²)-Verbindungen als Kupplungspartner (im Fall der Suzuki-Kupplung auch C(sp³)-Boranverbindungen).^{48,49} Aufbauend auf Arbeiten von Suzuki⁵⁰ (Suzuki-Kupplung), Knochel⁵¹ (Negishi-Kupplung) und Kochi und Tamura^{52,53,54} (Kumada-Kupplung) wurden in den letzten Jahren allerdings große Fortschritte auf dem Gebiet der C(sp³)-C(sp³)-Kreuzkupplung gemacht.^{55,56,57}

Die in Abbildung 11 dargestellte Kupplung eines *C*-Glycosly-Metallorganyls mit einem in Position 6 aktivierten elektrophilen Glucosebausteins wäre ein einfacher und direkter Zugang zur Synthese von $(1\rightarrow 6)$ -*C*-verknüpften Disacchariden.

Abbildung 11: Kohlenhydrat Alkyl-Alkyl-Kupplung

⁵⁵ Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674.

 ⁴⁸ Metal-catalyzed Cross-coupling Reactions; de Meijere, A., Diederich, F. Eds.; Wiley-VCH: New York, 2004.
⁴⁹ Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I. Ed.; Wiley-Interscience: New York, 2002.

⁵⁰ Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. **1992**, *4*, 691.

⁵¹ Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. 1995, 107, 2952.

⁵² Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483.

⁵³ Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1485.

⁵⁴ Tamura, M.; Kochi, J. K. J. Organomet. Chem. 1972, 42, 205.

⁵⁶ Cardenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384.

⁵⁷ Cardenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018.

Eine anschließende Aktivierung des anomeren Zentrums und erneute Kupplung mit einem elektrophilen Kohlenhydratbaustein würde ferner die Möglichkeit zur iterativen Synthese von *C*-Oligosaccharideinheiten schaffen.

3.1.1.2. Auswahl der geeigneten Kupplungspartner

Bei der Auswahl der geeigneten Kupplungspartner kann bezüglich der möglichen *C*-Glycosyl-Metallorganyle schon folgende Einschränkung getroffen werden (Abbildung 12):

Abbildung 12: Auswahl des Kupplungsprecursors

Die in der Literatur beschrieben Suzuki-, Kumada- und Negishi-Kupplungen würden die Verbindungen Ia, Ib und Ic als Kupplungspartner voraussetzen.

Die Synthese von **Ib** und **Ic** wäre durch Reaktion von **II** mit Mg oder Zn vorstellbar, allerdings haben schon Boord *et al.*⁵⁸ gezeigt, dass β -Halogenether bei der Reaktion mit Mg bevorzugt unter Eliminierung und Ringöffnung zu den entsprechenden Olefinen reagieren. Im Fall von **Ib** und **Ic** würde dabei die ungesättigte-ringgeöffnete Verbindung **III** entstehen. Im Gegensatz dazu findet man in der Literatur^{59,60} für die Herstellung der Boranverbindung **Ia** einen 2-stufigen Syntheseweg ausgehend von Gluconolacton **4**.

⁵⁸ Swallen, L. C.; Boord, C. E. J. Am. Chem. Soc. 1930, 52, 651.

⁵⁹ Rajanbabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458.

⁶⁰ Csuk, R.; Glänzer, B. I. Tetrahedron **1991**, 47, 1655.

Fu *et al.*⁶¹ zeigten, dass im Fall der Suzuki- $C(sp^3)$ - $C(sp^3)$ -Kupplung unter Verwendung von $Pd(OAc)_2$ und sterisch anspruchsvollen Trialkyphosphinen als Katalysator die besten Ergebnisse erzielt wurden.

Abbildung 13: Katalysezyklus - Alkyl-Alkyl-Kupplung

Verglichen mit dem oxidativen Additionsschritt der C(sp²)-Kupplung verläuft der oxidative Additionsschritt der $C(sp^3)$ - $C(sp^3)$ -Kupplung aufgrund der elektronenreicheren $C(sp^3)$ -Xwesentlich langsamer. Im Gegensatz dazu ist der dabei gebildete Bindung Alkyl-Metallkomplex aber reaktiver als der vergleichbare C(sp²)-Komplex, da die stabilisierende Interaktion mit den vorhandenen d-Orbitalen des Metalls im Fall eines Alkyl-Restes nicht gegeben Durch die ebenfalls vorhandenen ist. β-H-Atome kommt es somit leicht zur unerwünschten β-Hydrideliminierung unter Bildung eines olefinischen Nebenprodukts. Durch Verwendung von sterisch anspruchsvollen Phosphinliganden wird die Stabilität des Additionskomplexes erhöht und das Gleichgewicht zwischen Eliminierung und Transmetallierung kann in Richtung der gewünschten Transmetallierungsreaktion verschoben werden.⁶¹

⁶¹ Netherton, M. R.; Dai, Ch.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099.

In einer weiteren Arbeit beschreiben Fu *et al.*⁶² die Abhängigkeit der Reaktionsgeschwindigkeit des oxidativen Additionsschritts von der Abgangsgruppe (I > Br > Cl), und die Abnahme der Reaktivität mit der Zunahme des sterischen Anspruchs (Verzweigung in Position $\alpha > \beta > \gamma >$ unverzweigt) des verwendeten Elektrophils.

Ausgehend von diesen Überlegungen wurde die sterisch am wenigsten-anspruchsvolle Hydroxygruppe in Position 6 zur jeweiligen Brom- bzw. Iodverbindung **12a** und **12b** umgesetzt (siehe 3.1.1.3).

3.1.1.3. Synthese des *C*-Glycosylborans 7a und der elektrophilen Kupplungspartner 12a und 12b

(i) BnBr, NaH, TBAI, DMF; (ii) AcOH, H₂SO₄; (iii) DMSO, Ac₂O; (iv) Cp₂TiMe₂, Toluol; (v) 9-BBN-H, THF; (vi) TrCl, Pyridin; (vii) BnBr, NaH, TBAI, THF; (viii) H₂SO₄, EtOH; (ix) PPh₃, CBr₄, CH₂Cl₂ oder PPh₃, I₂, Imidazol, Toluol; (x) MeLi, Et₂O

Abbildung 14: Formelschema – Glucose-Precursor

Synthese von C-Glycosylboran 7a

Zur Herstellung des gewünschten benzyl-geschützten Gluconolactons **4** wurde 1-*O*-Methylglucose (1) im ersten Schritt in einer klassischen Williamson'schen Ethersynthese benzyliert. Anschließend wurde das Methylacetal **2** sauer zu **3** gespalten und die

⁶² Hills, I. D.; Netherton M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749.

Hydroxygruppe in einer Variante der Swern-Oxidation⁶³ mit Ac₂O und DMSO zu 4 oxidiert. Der für die Hydroborierung benötigte Exomethylenzucker 7 wurde durch eine Petasis-Tebbe Olefinierung hergestellt. Bei der Olefinierung von Aldonolactonen ist das mildere Petasis-Reagens⁶⁴ dem herkömmlichern Tebbe-Reagens⁶⁵ hinsichtlich Handhabung und Ausbeute überlegen.⁶⁰ Das für die Petasis-Reaktion benötigte Dimethyltitanocen (6) wurde jeweils frisch aus Titanocendichlorid (5) durch Reaktion mit Methyllithium in wasserfreiem THF hergestellt.⁶⁰ Aufgrund der geringen Stabilität und der erhöhten Lichtempfindlichkeit von 6 wurde dieses nach der Herstellung sofort in wasserfreiem Toluol gelöst und unter Lichtausschluss im Kühlschrank aufbewahrt. Die Olefinierung erfolgte ebenfalls unter Lichtausschluss. 7 wurde in Folge mit 2.5 Äquivalenten 9-BBN in wasserfreiem THF bei Raumtemperatur umgesetzt und direkt als Lösung für alle weiteren Kupplungsreaktionen eingesetzt. Entsprechend der Literatur⁵⁹ wurde durch die Verwendung des sterisch anspruchsvollen 9-BBN jeweils nur die Bildung des gewünschten β-Produkts beobachtet.

Abbildung 15: Testreaktion - Hydroborierung

Da eine Isolierung von 7a nicht möglich und auch nicht notwendig war, wurde jeweils zur Kontrolle ein Teil der Alkylboranlösung oxidativ mit KOH/H₂O₂ behandelt. Der dabei gebildete Alkohol 8 konnte mit 92% Ausbeute isoliert werden (Abbildung 15).

Synthese der elektrophilen Kupplungspartner 12a und 12b

Ausgehend von 1-O-Methylglucose (1) wurde die primäre Hydroxygruppe in Position 6 selektive durch Umsatz mit Tritylchlorid in Pyridin geschützt. Danach wurden die verbleibenden freien OH-Gruppen benzyliert und durch Spaltung der 6-O-Tritylgruppe mit H₂SO₄ konnte 11 in sehr guter Ausbeute erhalten werden.⁶⁶ Die

 ⁶³ Fletcher, H. G.; Kuzuhara, H. J. Org. Chem. 1967, 32, 2531.
⁶⁴ Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.

⁶⁵ Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.

⁶⁶ Goto, J.; Murao, N.; Oohashi, J.; Ikegawa, S. Steroids **1998**, 63, 180.

Halogenierung zu **12a** und **12b** erfolgte jeweils mit Triphenylphosphin und Tetrabrommethan⁶⁷ bzw. Iod⁶⁸ als Halogenquelle.

3.1.1.4. Kupplungsversuche

In Anlehnung an die von Fu *et al.*⁶¹ beschriebene Methode zur Kreuzkupplung von Alkylboranen mit primären Alkylbromiden wurden alle Kupplungsversuche unter Argon mit 4 mol% $Pd(OAc)_2/8$ mol% Tricyclohexylphosphin als Katalysatorsystem und 1 Äq. K₃PO₄·H₂O als Base durchgeführt. Die verwendeten Alkylborane **7a** und **13a** wurden jeweils frisch - durch Umsatz der entsprechenden Olefine **7** und **13** mit 2.5 Äquivalenten 9-BBN in wasserfreiem THF - hergestellt und direkt in der Kupplungsreaktion eingesetzt (Abbildung 16).

(i) 9-BBN, THF; Kupplungsbedingungen: 4 mol% Pd(OAc)₂, 8 mol% PCy₃, 1 Äq. K₃PO₄· H₂O, THF, H₂O (kat.)

Abbildung 16: Kupplungsversuche

⁶⁷ Ishikawa, T.; Shimizu, Y.; Kudon, T.; Saito, S. Org. Lett. 2003, 5, 3879.

⁶⁸ Pasti, C.; Rinaldi, E.; Cervellati, C.; Dallocchio, F.; Hardre, R.; Salmon, L.; Hanan, St. *Bioorg. Med. Chem.* **2003**, *11*, 1207.
Bei der Kreuzkupplung zwischen dem *C*-Glykosylprecursorer **7a** und **12a** bzw. **12b** konnte unabhängig von der gewählten Abgangsgruppe keine *C*-Disaccharid **IVa**, sondern ausschließlich der nicht umgesetzte Halogenzucker **12a** bzw. **12b** isoliert werden. Als Kontrollreaktion - um einen systematischen Fehler auszuschließen - wurde die Kupplung mit Dodecylbromid (**14**) und Hexylboran **13a** durchgeführt⁶¹ und der Umsatz des gebildeten Octadecans (**15**) mittels GC/MS bestimmt, wobei **15** mit einer Ausbeute > 90% gebildet wurde. In Folge wurden **7a** mit Dodecylbromid (**14**) und **12b** mit Hexylboran **13a** unter den exakt gleichen Bedingungen umgesetzt. Dabei sollte untersucht werden ob das Scheitern der Kupplungsreaktion bereits im ersten oxidativen Additions-, oder erst im darauf folgenden Transmetallierungsschritt zu suchen ist. In beiden Fällen konnte jedoch das gewünschte Kupplungsprodukt **IVb** bzw. **IVc** nicht isoliert werden. Begründet durch die jeweils sterisch sehr anspruchsvollen Substrate kann man davon ausgehen, dass unter den gewählten Bedingungen weder die oxidative Addition von **12a** bzw. **12b** noch eine Transmetallierung von **7a** stattfindet. Weitere Versuche zur Alkyl-Alkyl-Kupplung wurden daher nicht durchgeführt.

3.1.2. Versuche zur Pd-katalysierten Suzuki-Kupplung mit elektrophilen Pyranderivaten – Synthesestrategie II

3.1.2.1. Einleitung

Ausgehend von den in der Literatur beschrieben Ergebnissen zur Suzuki-Kreuzkupplung von Exomethylenglucose 7 zur Herstellung von Aza-*C*-Disacchariden⁶⁹ und Aryl-substituierten *C*-Glykosiden⁷⁰ wurde ein möglichst flexibler Syntheseweg zur Herstellung von $(1\rightarrow 2)$ - und $(1\rightarrow 4)$ -verknüpften *C*-Disacchariden entwickelt (Abbildung 17).

Abbildung 17: Synthesestrategie

Die Pd-katalysierte Kupplung zwischen dem - wie unter 3.1.1.3 hergestellten - *C*-Glykosylboran **7a** und den 3- bzw. 5-Bromo substituierten 2-Pyranonen würde die notwendigen Precursor-Verbindungen **V** liefern, die in Folge durch Funktionalisierung in die jeweiligen *C*-Disaccharide übergeführt werden können. Die unterschiedliche Reaktivität der Doppelbindungen und das vorhandene Repertoire an asymmetrischen Dihydroxylierungs-⁷¹ und Epoxidierungsreaktionen⁷² wäre die Grundlage für den schnellen, diversen und einfachen Aufbau der gewünschten Kohlenhydratstrukturen. Die vorhandene Lactonfunktionalität

⁷⁰ Johnson, C. R.; Johns, B. A. Synlett **1997**, *12*, 1406.

⁶⁹ Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R. J. Am. Chem. Soc. 1997, 119, 4856.

 ⁷¹ Jacobsen, E. N.; Pfalz, A.; Yamamoto, H. Eds.; *Comprehensive Asymmetric Catalysis* Vol 2, 713-790, Springer-Verlag Berlin Heidelberg New York, 1999.
⁷² Jacobsen, E. N.; Pfalz, A.; Yamamoto, H. Eds.; *Comprehensive Asymmetric Catalysis* Vol 2, 621-696,

¹² Jacobsen, E. N.; Pfalz, A.; Yamamoto, H. Eds.; *Comprehensive Asymmetric Catalysis* Vol 2, 621-696, Springer-Verlag Berlin Heidelberg New York, 1999.

könnte wieder in ein für eine weitere Kupplung benötigtes Boran umgewandelt werden. Dies würde eine iterative Synthese höherer *C*-verknüpfter Kohlenhydrateinheiten ermöglichen.

3.1.2.2. Theoretische Überlegungen zur B-Alkyl Suzuki-Miyaura Kupplung

Die C-C Verknüpfung von *B*-Alkylverbindungen mit Aryl- und Alkenylhalogeniden wurde erstmals 1989 von Suzuki *et al.*⁷³ in der Literatur erwähnt. Der Reaktionsmechanismus folgt weitgehend dem unter 3.1.1.2 beschrieben Katalysezyklus, wobei eine β -Hydrideliminierung im ersten oxidativen Additionsschritt aufgrund der verwendeten Arylund Alkenylsubstrate natürlich nicht möglich ist. Die Verwendung der elektronenreichen PdCl₂(dppf) (Abbildung 18) und Pd(PPh₃)₄ Komplexe als Katalysatoren in THF/H₂O oder DMF liefert in den meisten Fällen die besten Ergebnisse.^{74,75}

Fe Pd Cl

Abbildung 18: PdCl₂(dppf) – Katalysator

Insbesondere die Geometrie des bidentaten Bis(diphenylphosphino)ferrocen-Liganden wirkt sich positiv auf den abschließenden reduktiven Eliminierungsschritt gegenüber einer möglichen unerwünschten β -Hydrideliminierung aus.⁷⁶

Abbildung 19: Einfluss der Base auf die Transmetallierung

Die Wahl einer geeigneten Base ist ebenfalls essentiell. Stärkere Basen (NaOH, TlOH und NaOMe) werden dabei bevorzugt in THF/H₂O und schwächere (K₂CO₃, K₃PO₄) in DMF

⁷³ Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. **1989**, 111, 314.

⁷⁴ Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457.

⁷⁵ Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4544.

⁷⁶ Marcone, J. E.; Moloy, K. G. J. Am. Chem. Soc. 1998, 120, 8527.

verwendet.⁷⁵ Die Bildung des reaktiven Hydroxyborat-Komplexes **A** und der ebenfalls aktivierten Palladiumspezies **B** ist dabei wesentlich für das Gelingen der Kupplungsreaktion. Beide liefern unter Ausbildung eines 4-gliedrigen Überganszustandes das gewünschte Transmetallierungsprodukt **C** (Abbildung 19).⁷⁷

3.1.2.3. Herstellung der elektrophilen 2-Pyranone

(i) Paraformaldehyd, AcOH, H_2SO_4 ; (ii) 1. NBS, Benzoylperoxid, CCl₄, 2. NEt₃; (iii) 1. NBS (2Äq.), Benzoylperoxid, CCl₄, 2. NEt₃, CHCl₃; (iv) 1. Br₂, CCl₄, 2. NEt₃, CHCl₃; (v) 1. NBS, Benzoylperoxid, CCl₄, 2. NEt₃, CHCl₃; (vi) Br₂, CCl₄, (vii) NEt₃, CH₂Cl₂;

Abbildung 20: Synthese von 3- und 5-Brom-2-pyranon

Die in der Literatur⁷⁸ beschriebene Synthese zur Herstellung von 5,6-Dihydro-2-pyranon (17) mittels Oxidation mit Pyridiniumdichromat (PDC) und t-BuOOH in wasserfreiem CH_2Cl_2 aus 3,4-Dihydro-2*H*-pyran konnte nicht reproduziert werden. Ausgehend von Vinylessigsäure (16) konnte 17 allerdings durch eine sauer-katalysierte Kondensation mit Paraformaldehyd mit 48% Ausbeute hergestellt werden. Durch selektive radikalische Bromierung der allylischen CH_2 -Gruppe mit frisch umkristallisiertem NBS und anschließender Dehydrobromierung mit einem Überschuss an Triethylamin wurde das gewünschte sehr flüchtige α -Pyron (18) mit mäßiger Ausbeute erhalten.⁷⁹ In Folge sollte 18 durch einen weiteren Bromierungs-/Dehydrobromierungsschritt mit Br₂ und Triethylamin zu 19b

⁷⁷ Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.

⁷⁸ Chidambaram, N.; Satyanarayana, K.; Chandrasekaran, S. *Tetrahedron Lett.* **1989**, *30*, 2429.

⁷⁹ Nakagawa, M.; Tonozuka, M.; Obi, M; Kiuchi, M.; Hino, T. Synthesis 1974, 7, 510.

umgesetzt werden. Da nach Zugabe von einem Äquivalent an Brom - laut DC - noch Ausgangsprodukt vorhanden war, wurde die Brommenge sukzessive erhöht bis kein Edukt mehr sichtbar war. Das erhaltene Produktgemisch enthielt allerdings - im Gegensatz zur Literatur⁸⁰ - nicht das gewünschte **19b** sondern **21a** und **21b** im Verhältnis 1:2 welche durch chromatographische Reinigung getrennt und letztlich mit 22% und 45% der Theorie erhalten wurden.

Abbildung 21: Bromierung von α -Pyron

Durch 1,2-Addition von Brom an die Enolether-Doppelbindung wurde direkt **21b** gebildet. Eine ebenfalls stattfindende 1,4-Addition lieferte über das Zwischenprodukt **A** durch Eliminierung von HBr das gewünschte **19b** welches aber durch abermalige Addition von Brom sofort zu **21a** weiterreagierte. Zur Bestätigung der aus dem NMR abgeleiteten Struktur wurde **21a** mit Triethylamin erwartungsgemäß zu **22** in sehr guter Ausbeute umgesetzt (Abbildung 21).

Letztlich konnten die gewünschten Brom-2-pyranone **19a** und **19b** direkt aus der Dihydroverbindung **17** erhalten werden.^{81,82} Dazu wurde im Fall von **19a**, **17** mit 2 Äq. NBS in allylischer Position doppelt bromiert und darauf folgend mittels Triethylamin 1 Äquivalent HBr abgespalten. Zur Synthese des in Position 3 bromierten 2-Pyranons **19b** wurde im ersten Schritt Brom an die Doppelbindung addiert und danach wiederum mit einem Überschuss an Triethylamin dehydrobromiert. In einem weiteren Schritt wurde **20** mit 1 Äq. NBS in Position 5 einfach-bromiert und die Doppelbindung abermals durch Reaktion mit

⁸⁰ Pirkle, W. H.; Dines, M. J. Org. Chem. 1969, 34, 2239.

⁸¹ Posner, G. H.; Afarinkia, K.; Dai, H. Org. Synth. 1996, 73, 231.

⁸² Afarinkia, K.; Posner, G. H. Tetrahedron Lett. 1992, 33, 7839.

Triethylamin aufgebaut. In diesem Fall wurde allerdings immer auch **19a** als Nebenprodukt isoliert. Dies kann wie folgt erklärt werden (Abbildung 22):⁸¹

Abbildung 22: Nebenreaktion zu 5-Brom-2-pyranon

Neben der erwarteten Eliminierung von HBr zu **19b**, kann es auch zu einer prototropen Umlagerung von Zwischenprodukt **A** zu **B** kommen, welches in Folge ebenfalls durch Eliminierung weiter zu in diesem Fall unerwünschtem **19a** reagiert (Abbildung 22).

3.1.2.4. Versuche zur Suzuki-Kupplung

In allen Versuchen wurde das frisch hergestellte Boran **7a** unter Argon am Ultraschallbad entgast und mit 3 Äq. Base (als 1 oder 3 M Lösung) versetzt und für 15 min zur Bildung des notwendigen Borat-Komplexes gerührt. 10 mol% PdCl₂(dppf) und 1.1 Äq. Elektrophil **19a** wurden in DMF gelöst und ebenfalls unter Argon für 15 min am Ultraschallbad entgast. Durch langsames Zutropfen der DMF-Lösung bei Raumtemperatur wurden beide Lösungen vereint. Eine sofortige Schwarzfärbung zeigte die Bildung der benötigten Pd⁰-Spezies welche nur unter absoluter Abwesenheit von Sauerstoff stattfand.

(i) Iodbenzol, Pd(dppf)Cl₂, K₃PO₄, DMF; (ii) 5-Brom-2-pyranon, Pd(dppf)Cl₂, verschiedene Basen, DMF

Abbildung 23: Versuche zur Suzuki-Kupplung

Bei der Reaktion mit 5-Brom-2-pyranon (**19a**) konnte jedoch auch unter Verwendung verschiedener Basen - K_3PO_4 , NaOH und Cs_2CO_3 - in keinem Fall das gewünschte *C*-Glykosid **V** isoliert werden. Daher wurde zur Kontrolle und zum Ausschluss von systematischen Fehlern die Kreuzkupplung ebenfalls - unter exakt gleichen Bedingungen - mit Iodbenzol als Kupplungspartner durchgeführt. Phenyl-*C*-glykosid **28** wurde dabei mit 60% Ausbeute isoliert (Abbildung 23).

Da **19a** in keinem der Fälle rückgewonnen wurde, kann man davon ausgehen, dass das Lacton bereits unter den schwach basischen Kupplungsbedingungen gespalten wurde. Zur Bestätigung dieser Annahme wurde **19a** in DMF gelöst mit Katalysator und 1M K₃PO₄ versetzt und über Nacht bei Raumtemperatur gerührt. Eine DC-Kontrolle zeigte, dass **19a** unter diesen Bedingungen bereits nach 12 Stunden vollständig zersetzt wurde. In Folge konnten auch nur nicht näher bestimmbare Zersetzungsprodukte von **19a** isoliert werden (Abbildung 24).

Abbildung 24: Stabilitätsversuch mit 5-Brom-2-pyranon

Die Kupplung von **7a** und **19a** unter wasserfreien Bedingungen - K_3PO_4 wurde direkt in wasserfreiem DMF gelöst - war ebenfalls nicht erfolgreich. Nach 12 Stunden bei Raumtemperatur konnte zwar unverbrauchtes **19a** mittels DC nachgewiesen werden jedoch keine Produktbildung. Eine Temperaturerhöhung auf 50°C führte wiederum zur Zersetzung von **19a**.

3.1.2.5. Versuche zur Herstellung alternativer Kupplungspartner

Die Basenlabilität von **19a** könnte durch Umwandlung der Lactonfunktionalität in ein Lactol umgangen werden.

Ein erster Versuch zur Reduktion von **19a** mit DIBAL-H bei -78 °C in CH_2Cl_2 war jedoch nicht erfolgreich (Abbildung 25).

Da neben Halogenverbindungen auch Triflate als gute Kupplungspartner für *B*-Alkyl Suzuki-Kupplungen gelten,⁷⁴ erschien die Synthese von **VI** als sinnvolle Alternative (Abbildung 26).

(i) m-CPBA, CH₂Cl₂; (ii) 1. Mel, Ag₂O, Aceton; (iii) verschiedene Tf-Reagenzien und Basen

Abbildung 26: Alternative Kupplungspartner II

Die Literatur beschreibt die Synthese des benötigten Methylacetals **25** ausgehend von Furfurylalkohol (**23**).^{83,84}

In einer oxidativen Umlagerung wurde **23** durch Reaktion mit 2.5 Äq. *m*-CPBA in CH₂Cl₂ hergestellt. Aufgrund der guten Wasserlöslichkeit von **24** wurde nach der Reaktion überschüssige *m*-CPBA und gebildete *m*-CBA bei -78 °C ausgefällt und nach Abdampfen des Lösungsmittels das Rohprodukt direkt chromatographisch gereinigt.⁸⁵ Das sehr flüchtige Methylacetal **25** wurde unter sehr milden Bedingungen mit je 1.2 Äq. an Methyliodid und Silber(I)oxid erhalten. In weiterer Folge wurde versucht, dass durch Deprotonierung erhaltene Enolat zu **VI** umzusetzen. In einem ersten Versuche wurde **25** mit einem Überschuss an Triethylamin und Trifluoressigsäureanhydrid (Tf₂O) in wasserfreiem CH₂Cl₂ versetzt.⁸⁶ Aus der tiefbraunen Reaktionslösung konnte allerdings weder Ausgangsmaterial noch Produkt isoliert werden. Stang *et al.*⁸⁷ beschreiben, dass bei sehr reaktiven Ausgangsverbindungen die Verwendung von sterisch sehr anspruchsvollem 2,6-Di-*t*-butyl-4-methylpyridin (DTBMP) als Base zu wesentlich besseren Ausbeuten und weniger Zersetzungsprodukten führt. Es zeigte sich jedoch, dass die Reaktion mit 1.2 Äq. DTBMP und 1.1 Äq. an Tf₂O bei Raumtemperatur

⁸³ Laliberte, R.; Medawar, G.; Lefebvre, Y. J. Med. Chem 1973, 16, 1084.

⁸⁴ Brescia, M.; Shimshock, Y. C.; DeShong, P. J. Org. Chem. 1997, 62, 1257.

⁸⁵ Hoffmann, H. M. R.; Krumwiede, D. Mucha, B.; Oehlerking, H. H.; Prahst, G. W. *Tetrahedron* **1993**, *49*, 8999.

⁸⁶ Stang, P. J.; Dueber, T. E. Org. Synth. **1974**, 54, 79.

⁸⁷ Stang, P. J.; Treptow, W. Synthesis **1980**, *4*, 283.

ebenfalls ausschließlich Zersetzungsprodukte von **VI** lieferte. Bei einer Deprotonierung bei -40 °C, Zugabe von Tf₂O und erwärmen auf 0 °C konnte allerdings kein Umsatz festgestellt werden und es wurde ausschließlich Ausgangsmaterial rückgewonnen. Dies legt den Schluss nahe, dass das gebildet Enolat bei Raumtemperatur nicht stabil ist, die Basizität von DTBMP unter 0 °C allerdings nicht ausreicht um **25** erfolgreich zu deprotonieren. Durch einen Wechsel hin zu LDA (pK_A:~30), welches im Vergleich zu DTBMP (pK_A:6.9) einen wesentlich höheren pK_A-Wert besitzt, könnte **25** auch noch bei sehr tiefen Temperaturen deprotoniert werden. Das dabei gebildete Enolat wäre unter diesen Bedingungen wahrscheinlich auch wesentlich stabiler. Da in diesem Fall THF das Lösungsmittel der Wahl ist und Tf₂O eine kationische Polymerisation desselben initiieren könnte, wurde für alle weiteren Versuche *N*,*N*-Bis(trifluormethansulfonyl)anilin⁸⁸ (**27**) (Abbildung 27) anstelle von Tf₂O verwendet.

Abbildung 27: Synthese von N,N-Bis(trifluormethansulfonyl)anilin

25 wurde bei -78 °C mit 1.1 Äq. LDA versetzt, für 1 Stunde gerührt und 1.1 Äq. 27 ebenfalls bei -78 °C zugegeben. Danach wurde langsam auf Raumtemperatur erwärmt. Aber auch in diesem Fall konnten nur Zersetzungsprodukte isoliert werden. In einem Kontrollexperiment wurde die Reaktionslösung nach der Deprotonierung mit LDA bei -78 °C hydrolysiert. Dabei zeigte sich, dass auch bei dieser Temperatur 25 bereits vollständig zerstört wurde. Weder eine inverse Zugabe, LDA wurde vorgelegt und danach langsam 25, gelöst in wasserfreiem THF, bei -78 °C zugetropft, noch ein Wechsel von LDA zu LHMDS brachte ein positives Ergebnis. Daraus kann geschlossen werden, dass das gebildete Enolat auch bei einer Temperatur von -78 °C nicht stabil ist. Weitere Versuche zur Synthese von VI wurden aufgrund der Instabilität der Enolat-Zwischenstufe nicht unternommen. Eine sinnvolle Auftrennung der gebildeten Zersetzungsprodukte war nicht möglich, daher konnten diese auch nicht genauer analysiert und bestimmt werden.

⁸⁸ Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 46, 4607.

3.1.3. 1,3-Dithiane in der Synthese von *C*-verknüpften Disacchariden – Synthesestrategie III

3.1.3.1. Einleitung

Mit ihren richtungsweisenden Arbeiten lieferten Corey und Seebach bereits 1965 die Grundlage zur Reaktivitätsumpolung von Carbonylverbindungen durch 1,3-Dithiane.^{89,90,91} Durch Maskierung kann das Acceptor-Zentrum der Carbonylverbindung in ein gewünschtes Donor-Zentrum überführt werden und aus vormals - nach Seebach⁹² - $a(cceptor)^{1}$ -Verbindungen werden die entsprechenden $d(onor)^{1}$ -Reagenzien. 1,3-Dithiane können daher als Acylanion-Äquivalente aufgefasst werden und durch Hydrolyse des Dithioacetals erhält man die entsprechenden Carbonylverbindungen. Eine Reduktion der Dithianfunktionalität erlaubt ferner die direkte Umwandlung in eine CH₂-Gruppe (Abbildung 28).

Abbildung 28: Reaktivitätsumpolung nach Seebach

Die besondere Stabilität der eingesetzten 2-Lithio-1,3-dithiane beruht auf der stabilisierenden Wechselwirkung der vorhandenen d-Orbitale der Schwefelatome mit dem freien Elektronenpaar des Carbanions.⁹³

Die Herstellung von 1,3-Dithianen^{94,95} erfolgt entweder durch Säure-katalysierte Thioacetalisierung der Carbonylgruppe oder direkt durch Reaktion des (un)substituierten

⁸⁹ Corey, E. J.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1965, 4, 1075.

⁹⁰ Corey, E. J.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1965, 4, 1077.

⁹¹ Seebach, D.; Corey, E. J. J. Org. Chem. **1975**, 40, 231.

⁹² Seebach, D. Angew. Chem. **1979**, *91*, 259.

⁹³ Yus, M.; Najera, C.; Foubelo, F. *Tetrahedron* **2003**, *59*, 6147.

1,3-Dithiananions mit unterschiedlichen Elektrophilen. Die im zweiten Fall benötigten 2-Lithio-1,3-dithiane werden durch Reaktion mit *n*-Buli in THF bzw. bei bereits in Position 2 substituierten 1,3-Dithianen mit *t*-Buli als Base und bei Bedarf unter Zusatz von HMPA, DMPU oder TMEDA hergestellt.

3.1.3.2. Synthesestrategie

Aufgrund dieser Eigenschaften scheint die Verwendung von 1,3-Dithian zum Aufbau von C-verknüpften Zuckerstrukturen als besonders geeignet. Ein zweifacher nukleophiler Angriff an zwei elektrophile Kohlenhydratbausteine würde das notwendige C-Grundgerüst aufbauen. Anschluss erhält durch Reduktion direkt Im daran man das gewünschte C-verknüpfte Disaccharid. Durch Spaltung der Thioacetalfunktionalität wäre ferner eine weitere Modifizierung der Carbonylfunktionalität des gebildeten C-Disaccharides vorstellbar. Zwei Synthesewege erschienen daher als sinnvoll (Abbildung 29):

Abbildung 29: Synthesestrategie 1,3-Dithiane

⁹⁴ Seebach, D. Synthesis **1969**, *1*, 17.

⁹⁵ Gröbel B.-T.; Seebach, D. Synthesis 1977, 6, 357.

Im ersten Fall wird der in Position 2,3,4 oder 6 aktivierte Kohlenhydratbaustein **A** in einer SN₂-Reaktion mit lithiertem 1,3-Dithian zu **D** umgesetzt. In Folge würde durch Deprotonierung von Dithian **D** und Reaktion mit Gluconolacton **C** das gewünschte Grundgerüst **VII** aufgebaut. Im komplementären Syntheseweg erfolgt der Aufbau der *C*-Glykosid-Struktur **B** bereits am Anfang der Synthesesequenz durch nukleophilen Angriff von 2-Lithio-1,3-Dithian an Gluconolacton **C**, welches in Folge durch nukleophilen Angriff an das aktivierte Kohlenhydrat **A** zu **VII** reagiert. Zur Untersuchung der beiden Synthesestrategien sollten einerseits das in Position 1 funktionalisierte Glucose-1,3-dithian **36** (siehe 3.1.3.3.2) und weiters die in 4- und 6- substituierten Glucose-1,3-dithiane **VIII** und **34** (siehe 3.1.3.3.1) hergestellt werden. Als mögliche Kupplungspartner kommen die elektrophilen Glucoseverbindungen **4**, **12a**, **12b** (siehe 3.1.1.3) und **12c** (siehe 3.1.3.3.1) in Frage. Ferner sollte in beiden Fällen die Umpolungsstrategie noch mit anderen Elektrophilen hinsichtlich möglicher sterischer Einflüsse untersucht werden.

3.1.3.3. Synthese der 1,3-Dithian-Precursor

3.1.3.3.1. Versuche zur nukleophilen Substitution von 4- und 6-Glucosetriflaten mit 1,3-Dithian (Abbildung 30)

(i) Tf₂O, DTBMP, CH₂Cl₂; (ii) 1,3-Dithian, *n*-BuLi, HMPA, THF (iii) ZnCl₂, Benzaldehyd; (iv) BnBr, NaH, DMF; (v) NaBH₃CN, HCl_{Ether}, THF; (vi) Tf₂O, DTBMP, CH₂Cl₂; (vii) 1,3-Dithian, *n*-BuLi, HMPA, THF;

Abbildung 30: Nukleophile Substitution von 4- und 6-Glucosetriflaten

Ausgehend von in Position 6 entschützter Glucose **11** wurde diese in Anlehnung an die Literatur⁹⁶ mit DTBMP und Trifluoressigsäureanhydrid in guter Ausbeute zu Triflat **12c** umgesetzt. Unter klassischen Bedingungen konnte **34** durch Deprotonierung von 1,3-Dithian mit *n*-BuLi, unter Zusatz von HMPA und Reaktion mit **12c** bei tiefer Temperatur in ebenfalls guter Ausbeute gewonnen werden.

Zur Herstellung von Triflat **32** wurde laut Literatur^{97,98} ausgehend von 1-*O*-Methylglucose (1) in einer dreistufigen Sequenz die in Position 4 entschützte Glucose **31** hergestellt, welche daraufhin ebenfalls mit DTBMP und Tf₂O zu **32** umgesetzt wurde. Um eine mögliche

⁹⁶ Shen, Q.; Sloss, D. S.; Berkowitz, D. B. Synth. Commun. **1994**, 24, 1519.

⁹⁷ Yoza, K.; Amanokura, N.; Ono, Y.; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai, S.; Reinhoudt, D. N. *Chem. Eur. J.* **1999**, *5*, 2722.

⁹⁸ Rice, K.G.; Elhalabi, J. Carbohydrate Res. 2001, 35, 159.

Hydrolyse des sehr reaktiven sekundären Triflats **32** zu verhindern, wurde dieses direkt durch SC, ohne vorherige wässrige Aufarbeitung, gereinigt. **32** konnte ohne merkliche Zersetzung mehrere Monate im Kühlschrank aufbewahrt werden. Die folgende nukleophile Substitution gestaltete sich allerdings als schwierig. Analog zu **12c** sollte durch Reaktion mit deprotonierten 1,3-Dithian unter Zusatz von HMPA **VIII** erhalten werden. Allerdings konnte neben einer Vielzahl an nicht näher bestimmbaren Zersetzungsprodukten nur das Eliminierungsprodukt **32a** mit 13% Ausbeute isoliert werden. Dies überraschte dahingehend, da der Angriff des 2-Lithio-1,3-dithians via SN₂ angenommen wurde und die konkurrierende Eliminierung via E₂, aufgrund der äquatorial-axial Anordnung der Abgangsgruppe und des Wasserstoffs als eher unwahrscheinlich galt. Es muss daher angenommen werden, dass in diesem Fall die Eliminierung via E₁ und der Ausbildung eines sekundären Carbeniumions verläuft welches durch die Anwesenheit von HMPA auch ausreichend stabilisiert wird (Abbildung 31).

Abbildung 31: Eliminierung - Nebenreaktion

3.1.3.3.2. Nukleophile Addition von 1,3-Dithian an Gluconolacton 4 (Abbildung 32)

Die Synthese von **36** erfolgte, in Anlehnung an die in der Literatur^{99,100} beschriebene Addition von Bis(methylthio)methyllithium, ausgehend von Gluconolacton **4** durch Addition von *in situ* hergestelltem 2-Lithio-1,3-dithian. Sowohl Fukase *et al.*,⁹⁹ als auch Laberguere *et al.*¹⁰⁰ beschreiben, dass ein vollständiger Umsatz nur durch Einsatz eines 2-4-fachen Überschusses an Dithioverbindung und Base erreicht wurde. Übereinstimmend damit wurde **36** mit jeweils 3 Äq. an 1,3-Dithian und *n*-BuLi erhalten.

⁹⁹ Fukase, H.; Horii, S. J. Org. Chem. 1992, 57, 3642.

¹⁰⁰ Labeguere, F.; Lavergne, J.-P.; Martinez, J. Tetrahedron Lett. 2002, 43, 7271.

Abbildung 32: Nukleophile Addition an Gluconolacton 4

Die Reduktion von **35** mittels Triethylsilan unter Lewis-sauren Bedingungen¹⁰¹ lieferte **36** in sehr guter Ausbeute. Der Angriff des Hydridwasserstoffs erfolgte dabei von der sterisch günstigeren axialen Seite unter selektiver Bildung der β -Verbindung. Übereinstimmend damit wurde eine Kopplungskonstante zwischen H-1 und H-2 von J = 9.3 Hz gemessen. Dies bestätigte die Annahme einer 1,2-*trans*-diaxialen Anordnung der beiden Protonen in einer β -D-Glucoseverbindung mit ${}^{4}C_{1}$ -Konformation (Abbildung 33).

Abbildung 33: Reduktion mittels Triethylsilan

3.1.3.4. Deprotonierungsversuche an Glucose-1,3-dithianen

3.1.3.4.1. Versuche zur Deprotonierung von 34

In einer ersten Versuchsreihe sollten die optimalen Bedingungen für die Deprotonierung und die anschließende Reaktion mit einem elektrophilen Kupplungspartner gefunden werden.

(i) Base (LDA, n-BuLi oder t-BuLi, Additive (HMPA oder TMEDA), Elektrophil, THF

Abbildung 34: Versuche zur Deprotonierung von 34

¹⁰¹ Lewis, M.; Cha, J.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.

Im Vergleich zu unsubstituierten 1,3-Dithianen gestaltet sich die Deprotonierung der 2-substituierten Verbindungen oftmals als schwierig. Das Zusammenspiel aus Base, Additiven (z.B.: HMPA oder TMEDA) und den passenden Zeit/Temperatur-Bedingungen ist dabei ausschlaggebend und kann davor nur schwer abgeschätzt werden.^{93,95}

Die Deprotonierungsversuche von **34** wurden stets unter Argon in wasserfreiem THF/Additiv 10:1 durchgeführt. Die Zugabe der Base erfolgte bei -70 °C und es wurde in Folge auf -50 °C bis -20 °C erwärmt, kurz gerührt und vor der Zugabe des Elektrophils abermals gekühlt. Bei der Wahl des Kupplungspartners erschien ein Überschuss an MeI (5 Äq.) augrund seiner Reaktivität und seines geringen sterischen Anspruchs als am Besten geeignet.

Bei der Verwendung von *t*-BuLi unter Zusatz von HMPA wurde mit 1.3 Äq. Base kein Umsatz beobachtet. In weiterer Folge wurde die Menge an *t*-BuLi sukzessive erhöht, allerdings zeigte der Einsatz von 2 Äq. *t*-BuLi und Erwärmen auf -20 °C ebenfalls kein Umsatz. Daraufhin wurden weitere 2 Äq. Base zugegeben und auf Raumtemperatur erwärmt, dies hatte allerdings die Zersetzung von **34** zur Folge. Bei der Verwendung von *n*-BuLi (2 Äq.) unter Zusatz von HMPA und TMEDA wurde ebenfalls keine Deprotonierung beobachtet und ausschließlich nicht verbrauchtes Ausgangsmaterial rückgewonnen. Erstaunlicherweise wurde letztlich mit LDA das beste Ergebnis erzielt. Ein erster Versuch mit 2.2 Äq. an LDA und HMPA als Additiv blieb zwar erfolglos, erhöhte man allerdings die Basenmenge auf 6 Äq. konnte ein teilweiser Umsatz zu **41** beobachtet werden. Eine vollständige Deprotonierung war allerdings auch unter diesen Umständen nicht möglich.

Eine Erklärung, warum **34** generell schlecht und nur unter sehr rigiden Bedingungen deprotonierbar ist, findet man bei Eliel *et al.*^{95,102,103,104,105,106}

Abbildung 35: Einfluss der Konformation auf die Deprotonierung

¹⁰⁴ Eliel, E. L.; Abatjoglou, A.; Hartmann, A. A. J. Am. Chem. Soc. **1974**, *96*, 1807.

¹⁰² Hartmann, A. A.; Eliel, E. L. J. Am. Chem. Soc. 1971, 93, 2572.

¹⁰³ Eliel, E. L.; Abatjoglou, A.; Hartmann, A. A. J. Am. Chem. Soc. 1972, 94, 4786.

¹⁰⁵ Eliel, E. L. *Tetrahedron* **1974**, *30*, 1503.

¹⁰⁶ Abatjoglou, A.; Eliel, E. L.; Kuyper, L. F. J. Am. Chem. Soc. 1977, 99, 8262.

Ausgehend von einer Sesselkonformation in der die beiden Methylgruppen eine jeweils äquatoriale Position einnehmen, zeigte sich bei Versuchen mit 4,6-Dimethyl-1,3-dithian (A), dass die Deprotonierung bevorzugt am äquatorialen Wasserstoff stattfand. Bei analogen Verbindungen (B) wurde eine thermodynamische Präferenz für jene Konformation beobachtet in der das Lithium-Ion ebenfalls eine äquatoriale Position einnimmt. Übereinstimmend damit gestaltete sich die Deprotonierung des axialen Wasserstoffs in C als besonders schwierig. Das analoge äquatoriale Isomer konnte jedoch unter wesentlich kürzeren Reaktionszeiten und bei tieferen Temperaturen umgesetzt werden. Ob sterische oder elektronische Faktoren die äquatoriale Anordnung des Anions begünstigen ist - bis dato - nicht ganz geklärt (Abbildung 35).¹⁰⁷

Betrachtet man die beiden Konformationen von **34** kann davon ausgegangen werden, dass der sterisch sehr anspruchsvolle Zucker-Rest eine äquatoriale Position einnimmt. Daraus resultiert jedoch eine, bezogen auf die Deprotonierung, ungünstige axiale Anordnung des verbleibenden Wasserstoffs (Abbildung 36).

Abbildung 36: Konformation von 34

In weiterer Folge wurde der räumliche Einfluss der elektrophilen Kupplungspartner unter Verwendung von unterschiedlich sterisch anspruchsvollen Alkyliodiden untersucht. Unter den bereits optimierten Reaktionsbedingungen mit LDA als Base und HMPA als Additiv zeigte die Reaktion mit *i*-Propyliodid interessanterweise einen fast doppelt so großen Umsatz im Vergleich zur Reaktion mit dem wesentlich kleineren Methyliodid. Im Fall von *t*-Butyliodid dürfte eine bereits ausreichend große 1,3-Abstoßung zwischen der *t*-Butyl-Gruppe und den

¹⁰⁷ Boche, G. Angew. Chem. **1989**, 101, 286.

axialenWasserstoffen im 1,3-Dithianring eine Reaktion verhindern. Der Einsatz von **12b** als Elektrophil verlief ebenfalls erfolglos, dies kann durch die große räumliche Ausdehnung des Glucoserings erklärt werden.

Unter diesen Vorraussetzung wurden keine weiteren Versuche zur Synthese von *C*-Disacchariden mit **34** als Precursor durchgeführt.

3.1.3.4.2. Versuche zur Deprotonierung von 36

Konformelle Überlegungen lassen auch bei **36** auf eine äquatoriale Anordnung des *C*-Glucose-Rests schließen. Der verbleibende Wasserstoff befindet sich daher hinsichtlich einer Deprotonierung wiederum in der ungünstigeren axialen Position. Die Auswahl der richtigen Base in Kombination mit einem geeigneten Additiv erschien daher als essentiell für das Gelingen der Reaktion. Aus den Erfahrungen mit **34** wurde in allen Fällen MeI oder *i*-PrI als Elektrophil wiederum im 5-fachen Überschuss der Reaktion zugeben.

Die Reaktionsdurchführung erfolgte ebenfalls in Anlehnung an **34** durch Deprotonierung zwischen -80 °C und -70 °C in THF/Additiv (10:1). In weiterer Folge wurde innerhalb einer Stunde auf ungefähr -40 °C erwärmt, das Elektrophil zugegeben und über Nacht weiter auf Raumtemperatur erwärmt.

In den ersten Versuchen mit *n*-BuLi und *t*-BuLi als Base und unter Zugabe von HMPA und DMPU als Additiv wurde die Annahme einer schwierigen Deprotonierung bestätigt und vor allem Ausgangsmaterial **36** isoliert. Allerdings waren von Beginn an auch Spuren einer vorerst mittels NMR nicht eindeutig bestimmbaren zweiten Verbindung erkennbar, welche aber nicht in ausreichender Menge und Reinheit isoliert werden konnte.

(i) Base (n-BuLi oder t-BuLi), Additiv (HMPA, DMPU oder TMEDA), Mel, THF

Abbildung 37: Versuche zur Deprotonierung von 36

Ein im ¹H-NMR Spektrum beobachtetes Dublett bei 5.91 ppm ließ allerdings bereits eine Doppelbindung im Zuckerfragment vermuten. Letztlich wurde bei der Reaktion von 36 mit 2 Äq. n-BuLi, TMEDA als Additiv und MeI als Elektrophil ausschließlich das beobachtete Nebenprodukt mit 40% Ausbeute isoliert. Eine nähere Betrachtung des Protonenspektrums bestätigte den bereits geäußerten Verdacht, dass deprotoniertes 36 nicht wie gewünscht mit MeI, sondern unter β-Eliminierung und Ringöffnung des Glucosefragments zu 43 reagierte. Die Struktur von 43 konnte auch durch ¹³C-NMR Analyse bestätigt werden, da der guartäre Kohlenstoff bei 133.7 als charakteristisch für die ppm vorhandene Ketendithioacetalfunktionalität gilt. Man kann also davon ausgehen, dass die vorhandene β-Alkoxy-Struktur eine ausreichend gute Abgangsgruppe darstellt und daher die Fragmentierung des Pyranrings begünstigt ist gegenüber einer Reaktion des Carbanions mit MeI.

3.1.3.5. Untersuchungen zur Smith-Tietze Multikomponenten-Kupplung

Ein alternativer Zugang wurde in einem ausgezeichneten Review von Smith *et al.*¹⁰⁸ gefunden. Die in der Literatur¹⁰⁹ als Smith-Tietze Kupplung bekannte Reaktion erlaubt den sequentiellen Umsatz zweier unterschiedlicher Elektrophile mit 2-Silyl-1,3-dithianen (Abbildung 38).

Abbildung 38: Smith-Tietze Kupplung

¹⁰⁸ Smith, III, A. B.; Pitram, S. M.; Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, Ch.; Moser, W. H. J. Am. Chem. Soc. **2003**, *125*, 14435.

¹⁰⁹ Strategic Applications of Named Reaction in Organic Synthesis; Kürti, L.; Czako, B.; Elsevier Academic Press, 2005.

In einem ersten Schritt reagiert dabei das 2-Lithio-2-silyl-1,3-dithian mit dem ersten Elektrophil. Durch eine Lösungsmittel-initiierte 1,4-Brook-Umlagerung erfolgt in situ die neuerliche Generierung eines Carbanions welches in Folge mit einem zweiten Elektrophil konformellen Einschränkungen gekuppelt werden kann. Die einer bevorzugten Deprotonierung des äquatorialen Wasserstoffs bei herkömmlichen 1,3-Dithianen gelten nicht - im übertragenen Sinn - für substituierte 2-Silyl-1,3-dithiane. Die beobachtete Brook-Umlagerung^{110,111} ist dabei unabhängig von der ursprünglichen Lage (axial oder äquatorial) der Sily-Gruppe im 1,3-dithian.¹⁰⁸ Ein weiterer Vorteil liegt in der Darbietung des zweiten Elektrophils. Dieses kann bereits vor der Umlagerung der Reaktionslösung im Überschuss zugegeben werden und steht daher dem in situ generierten Anion sofort zur Verfügung.

Wendet man die Prinzipien der Smith-Tietze Kupplung auf den Anhydrozucker **39** an, so können nach der Reaktion mit 2-TBS-1,3-dithian und der Bildung von intermediärem *C*-Glykosid **39a** zwei Reaktionsverläufe postuliert werden. Im Fall von A reagiert das durch Silyl-Wanderung generierte Carbanion mit dem im Überschuss vorhandenem MeI zu gewünschtem **IX**. Im Gegensatz dazu kommt es bei **B** zur sofortigen Fragmentierung unter Spaltung des Glucoserings und Bildung von Ketendithioacetal **44** (Abbildung 39).

Abbildung 39: Mögliche Reaktionswege bei der Kupplung mit Anhydroglucose 39

¹¹⁰ Brook, A. G. Acc. Chem. Res. **1974**, 7, 77.

¹¹¹ Moser, W. H. Tetrahedron 2001, 57, 2065.

Die Herstellung des benötigen Anhydrozucker **39** erfolgte ausgehend von kommerziell erhältlichem **37** durch Transformation der Schutzgruppen¹¹² und anschließender milder Epoxidierung mit DMDO¹¹³ nach *Holcomb und Danishefsky*¹¹⁴. 2-TBS-1,3-dithian (**40**) wurde ebenfalls laut Literatur¹¹⁵ aus 1,3-Dithian hergestellt (Abbildung 40).

(i) BnBr, NaOH, TBAI, THF; (ii) DMDO, CH2Cl2, (iii) TBDMS, n-BuLi, THF

Abbildung 40: Formelschema - Anhydrozucker 39, 2-TBS-1,3-Dithian

Der Reaktionsverlauf der Smith-Tietze Kupplung mit **39** ist in Abbildung 41 dargestellt. Zuerst wurden 2 Äq. 2-TBS-1,3-dithian mit *t*-BuLi bei -70 °C versetzt. Zur vollständigen Generierung der lithierten Dithianspezies wurde auf -35 °C erwärmt. Danach erfolgte die Zugabe dieser Lösung zu einer etherischen Lösung von **39** bei ebenfalls -70 °C. Zur Gewährleistung einer vollständigen Addition wurde wiederum auf -30 °C erwärmt und hierauf abermals auf -70 °C gekühlt. Die Initiierung der Brook-Umlagerung erfolgte durch Zugabe von HMPA, welches gleichzeitig mit einem Überschuss an MeI (5 Äq.) der Reaktionslösung zugegeben wurde.

¹¹² Madhusudan, S. K.; Agnihotri, G.; Negi, D. S.; Misra, A. K. Carbohydr. Res. 2005, 340, 1373.

¹¹³ Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. **1991**, 124, 2377.

¹¹⁴ Holcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. **1989**, 111, 6661.

¹¹⁵ Chuang, T.-H.; Fang, J.-M.; Jiaang, W.-T.; Tsai, Y.-M. J. Org. Chem. 1996, 61, 1794.

Abbildung 41: Beobachteter Reaktionsverlauf

Der weitere Reaktionsverlauf kann wie folgt beschrieben werden: Die Eliminierungsreaktion scheint gegenüber der Reaktion mit MeI auch in diesem Fall begünstig. Eine DC-Kontrolle bei -45°C zeigte neben einem Startfleck (welcher aus nicht näher bestimmbaren Zersetzungsprodukten besteht) die Bildung von nicht-methyliertem Ketendithioacetal. Erwärmt man die Reaktionslösung auf Raumtemperatur kann **44** letztlich mit 25% Ausbeute isoliert werden.

Trotz dieser interessanten Zugänge zur Synthese von Ketendithioacetalen wurde letztlich die Strategie zur Synthese von *C*-verknüpften Disacchariden mittels Addition von 1,3-Dithianen nicht mehr weiter verfolgt.

3.1.4. Substituierte Furfurylalkohole in der stereoselektiven Synthese von (1→6)-verknüpften C-Disacchariden - Synthesestrategie IV

3.1.4.1. Einleitung und Synthesestrategie

Die Möglichkeit aus substituierten Furfurylalkoholen durch oxidative Umlagerung das für pyranoide Zucker notwendige Ringsystem aufzubauen wurde erstmals von Achmatowicz et

al.^{116,117} in der Literatur beschrieben. Diese einfache und flexible Methode wurde in Folge auch zur *de novo* Synthese von unterschiedlichsten Zuckerderivaten (D- und L-Hexosen^{118,119}, Aminozuckeren,¹²⁰ Oligosacchariden,¹²¹ Azakohlenhydraten,^{122,123,124} *C*-Glykosiden¹²⁵ und modifizierten *C*-Disacchariden^{126,127,128}) verwendet.

Das Zusammenspiel der in der Literatur beschriebenen exzellenten Möglichkeiten zur enantio- und diastereoselektiven Modifizierung der gebildeten Pyranongrundgerüste^{119,125} und die gezielte stereoselektive Synthese der Furfurylalkohole **52** und **53** bildeten die Grundlage für die in Abbildung 42 dargestellte Synthesestrategie.

Abbildung 42: Substituierte Furfurylalkohole als Basis für die C-Disaccharid-Synthese

- ¹²⁰ Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 3899.
- ¹²¹ Babu, R. S.; Zhou, M.; O'Doherty, G. A. J. Am. Chem. Soc. 2004, 126, 3425.
- ¹²² Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 401.
- ¹²³ Kennedy, A.; Nelson, A.; Perry, A. Beilstein J. Org. Chem. 2005, 1, 2.
- ¹²⁴ Kennedy, A.; Nelson, A. Chem. Commun. 2005, 12, 1646.
- ¹²⁵ Hodgson, R.; Majid, T.; Nelson, A. J. Chem. Soc., Perkin Trans. 1 2002, 12, 1444.
- ¹²⁶ Sharma, G. V. M.; Hymavathi, L.; Krishna, P. R. Tetrahedron Lett. 1997, 38, 6929.
- ¹²⁷ Harding, M.; Nelson, A. Chem. Commun. 2001, 8, 695.
- ¹²⁸ Harding, M.; Hodgson, R.; Majid, T.; McDowall, K. J.; Nelson, A. Org. Biomol. Chem. 2003, 1, 338.

¹¹⁶ Achmatowicz, jr., O.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. *Tetrahedron* **1971**, *27*, 1973.

¹¹⁷ Zamoiski, A.; Banaszek, A.; Grynkiewicz, G. Adv. Carbohydr. Chem. Biochem. 1982, 40, 1.

¹¹⁸ Harris, J. M.; Keränen, M. D.; O'Doherty, G. A. J. Org. Chem. 1999, 64, 2982.

¹¹⁹ Harris, J. M.; Keränen, M. D.; Nguyen, H.; Young, V. G.; O'Doherty, G. A. Carbohydr. Res. 2000, 328, 17.

Ausgehend von Glucosederivat **3** können alle 32 möglichen pyranoiden *C*-Disaccharide und ihre um einen Kohlenstoff verkürzten Analoga hergestellt werden.

Die Wahl der anomeren Konfiguration erfolgt bereits am Anfang der Synthesesequenz durch Angriff unterschiedlicher Allyl-Spezies an einen elektrophilen Zucker. In Folge bestimmt die Synthese der Aldehydverbindungen **49** und **51** den Abstand der beiden *C*-verknüpften Kohlenhydrateinheiten. Die stereoselektive Bildung der Hydroxygruppe in den darauf folgenden Furfurylalkoholen **52** und **53** bestimmt ob es sich bei dem neu gebildeten Kohlenhydrat um einen D- oder L-Zucker handelt. Abschließend erfolgt die Diversifizierung von **57** in alle 8 möglichen Hexopyranosen.

3.1.4.2. Synthese der α- und β-1-*C*-Carbonylglykoside

Zur Synthese der β -1-*C*-Carbonylverbindungen **49** β und **51** β wurde Allyl-*C*-Glykosid **46** β durch Angriff von Allylmagnesiumbromid an Gluconolacton **4**¹²⁹ und anschließender selektiver axialer Hydridübertragung mittels Triethylsilan/BF₃·Et₂O¹⁰¹ bei -78 °C in sehr guter Ausbeute (96%) über beide Stufen gewonnen (Abbildung 43).

(i) Allylmagnesiumbromid, THF; (ii) Et₃SiH, BF₃· Et₂O, CH₂Cl₂; (iii) 1. 9-BBN, THF, 2. KOH, H₂O₂, THF/H₂O; (iv) 1. O₃, CH₂Cl₂ 2. Zn, AcOH; (v) Dess-Martin Periodinan, CH₂Cl₂

Durch Hydroborierung mit 9-BBN in THF, basisch-oxidative Aufarbeitung und anschließender Oxidation des primären Alkohols mittels Dess-Martin Periodinan¹³⁰ wurde **51** β in ebenfalls sehr guter Ausbeute erhalten.

Abbildung 43: Synthese der β -C-Carbonylverbindungen 49 β und 51 β

¹²⁹ Brenna, E.; Fuganti, C.; Grasselli, P.; Serra, S.; Zambotti, S. Chem. Eur. J. 2002, 8, 8.

¹³⁰ Dess, D.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.

Die Ozonolyse zu 49β war zu Beginn problematisch. In einem Lösungsmittel aus CH₂Cl₂/MeOH konnte unter Einsatz von DMS zur Spaltung der entstandenen Hydroperoxide lediglich das Dimethylacetal 48a isoliert werden. Erwartungsgemäß fand in reinem CH₂Cl₂ die Spaltung des Sekundärozonoids nicht statt. Interessanterweise war dessen Stabilität gegenüber einer wässrigen Aufarbeitung und anschließenden chromatographischen Reinigung ausreichend und 48b konnte als farbloses Öl isoliert werden (Abbildung 44).

Abbildung 44: Ozonolyse - DMS zur Spaltung der sekundären Ozonoide

Da im Fall von **48b** zwei diastereomere Sekundärozonide gebildet wurden, konnte in Folge auch ein doppelter Satz an Signalen für die Kohlenstoffe im 1,2,4-Trioxolanring und für jene in dessen unmittelbarer Umgebung im ¹³C-NMR beobachtet werden (Abbildung 45).

Abbildung 45: Diastereomere Sekundärozonoide

Die Spaltung erfolgte letztlich mit Zink/Essigsäure in CH_2Cl_2 und **49** β konnte in guter Ausbeute isoliert werden.

Die Synthese des α -1-C-Carbonylglykosids 49 α (Abbildung 46) erfolgte ausgehend von 1-O-Methyl-a-D-glucopyranose (1) durch Schützung der freien Hydroxygruppen als Benzylether. Die darauf folgende direkte Umwandlung¹³¹ der 1-O-Methyl- in eine 1-O-Acetyl-Gruppe konnte nicht reproduziert werden, da unter den angebenden Bedingungen die Etherfunktionalität in Position 6 ebenfalls gespalten und nachfolgend acetvliert wurde. Eine Variation der Reaktionsbedingungen hinsichtlich der Menge an Acetylierungsmittel (Essigsäureanhydrid), Reaktionszeit und -temperatur ergab lediglich ein Reaktionsgemisch aus unverbrauchtem Ausgangsmaterial, Produkt und der doppelt-acetylierten Verbindung in unterschiedlichen Zusammensetzungen. Weiters war eine chromatographische Trennung der doppelt-acetylierten Verbindung aufgrund ähnlichen einfachund eines sehr Retentionsverhaltens nicht möglich.

(i) BnBr, NaH, TBAI, DMF; (ii) HAc, H_2SO_4 ; (iii) Ac₂O, Pyridin (iv) TMS-Allyl, BF₃· Et₂O, CH₂Cl₂(v) 1.O₃, CH₂Cl₂, 2. Zn, AcOH

In Abwesenheit von Essigsäureanhydrid wurde 2 in mäßiger Ausbeute zu freiem Halbacetal 3

Abbildung 46: Synthese der α -C-Carbonylverbindung 51 α

¹³¹ Vaghefi, M. M.; Bernacki, R. J.; Dalley, N. K.; Wilson, B. E.; Robins, R. K. J. Med. Chem. 1987, 30, 1383.

umgesetzt¹³² und im Anschluss daran mit einem Überschuss an Ac₂O in Pyridin¹³³ in einem Verhältnis von α : $\beta = 0.7 : 0.3$ acetyliert.

In Anlehnung an Giannis *et al.*¹³⁴ erfolgte die Synthese zu 49α mit sehr guter Stereoselektivität. Dabei wurde 45 in einer Lewis-Säure katalysierten Substitution mit Allytrimethylsilan bei 0°C zu 46 in einem Verhältnis von $\alpha:\beta = 95:5$ umgesetzt. Durch eine anschließende chromatographische Trennung konnte das gewünschte α -Anomer erhalten werden. In zu 46β analoger Weise wurde 46α durch Ozonolyse zu 49α umgesetzt. Die Synthese von 51α konnte im Rahmen dieser Arbeit nicht mehr durchgeführt werden, eine zweistufige Sequenz in Anlehnung an 51β ist allerdings denkbar.

3.1.4.3. Synthese der substituierten Furfurylalkohole

3.1.4.3.1. Addition von Furyllithium

Durch die Addition von Furyllithium gelangt man in Folge zu den für die Achmatowicz-Umlagerung¹¹⁶ notwendigen substituierten Furfurylalkoholen (Abbildung 47).

Abbildung 47: Addition von Furyllithium

In nachfolgender Tabelle sind die Ergebnisse der Additionsreaktionen zusammengefasst:

	Aldehyde	Additiv	Selektivität ^a (% <i>de</i>)	Umsatz		
1	49β	-	1:1.8 (28%)	68%		
2	51β	-	1:1.4 (17%)	84%		
3	49β	MgBr ₂	1:1.3 (13%)	<u>52β:49β</u> 2:1		
4	51β	MgBr ₂	1:1.2 (9%)	<u>53β:51β</u> 2.5:1		
5	49β	(-)-Spartein	1:1.2 (9%)	<u>52β:49β</u> 1:1.2 + Zersetzungsprodukte		
^a Be	^a Bei 3-5 wurde die Selektivität und der Umsatz direkt aus den NMRs der Rohprodukte bestimmt.					

Tabelle 12: Ergebnisse - Addition von Furyllithium

¹³² Presser, A.; Kunert, O.; Poetschger, I. Monatsh. Chem. 2006, 137, 365.

¹³³ Spencer, R.; Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1999, 11, 3987.

¹³⁴ Giannis, A. Sandhoff, K. Tetrahedron Lett. 1985, 26, 1479.

Zur Untersuchung einer möglichen chiralen Induktion durch den vorhandenen Kohlenhydratsubstituenten wurden in einer ersten Versuchsreihe die beiden Aldehyde 49β und 51ß mit einem Überschuss an Furyllithium bei tiefer Temperatur in wasserfreiem THF umgesetzt. Dabei zeigte sich, dass in beiden Fällen ein Diastereomer bevorzugt gebildet wurde. Allerdings konnten im Fall von 49ß ein de von 28% und bei dem um einen Kohlenstoff verlängerten Aldehyd 51ß lediglich ein de von 17% beobachtet werden. Basierend auf Beobachtungen von Cram^{135,136} und Reetz¹³⁷ kann die bevorzugte Bildung eines Diastereomers über einen azyklischen Übergangszustand A (gezeigt für Aldehyd 49β) erklärt werden (Abbildung 48).

Abbildung 48: Unterschiedliche 1,3-Induktion bei der Addition von Furyllithium

¹³⁵ Leitereg, T. J. Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4011.

¹³⁶ Leitereg, T. J. Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4019.

¹³⁷ Reetz, M. T.; Kessler, K.; Jung, A. Tetrahedron Lett. 1984, 25, 729.

Das Stereozentrum in β -Position befindet sich dabei *anti* zur Carbonylgruppe und der elektronenziehende Sauerstoff nimmt die der C=O-Gruppe abgewandte Position ein um die vorhandenen Dipol-Dipol-Wechselwirkungen zu minimieren. Resultierend daraus befinden sich die verbleibenden Reste in jeweils unterschiedlichen diastereotopen Halbräumen der Carbonylgruppe. Der Angriff des Nukleophils erfolgt dabei von der sterisch weniger anspruchsvollen Seite. In den vorliegenden Fällen ergibt sich daraus ein Angriff von der *re*-Seite unter bevorzugter Bildung der *S*-Carbinole. Übereinstimmend mit den beobachteten Ergebnissen hat dabei die 1,3-Induktion bei **49** β einen stärkeren Einfluss auf die Selektivität als die 1,4-Induktion bei **51** β (Tabelle 12; Einträge 1,2).

Betrachtet man die Reaktion vom Standpunkt einer chelatkontrollierten Addition sind im Fall von **49** β zwei Chelate im Übergangszustand denkbar. Im Fall des β -Chelats wäre der Aldehydsauerstoff über einen Sechserring mit dem Ringsauerstoff verknüpft. Unter dieser Annahme würde ein Angriff bevorzugt von der *si*-Seite unter Bildung des *R*-Carbinols erfolgen. Zur Untersuchung einer möglichen Chelatisierung wurden **49** β und **51** β mit jeweils 8 Äquivalenten an MgBr₂ versetzt, gerührt und anschließend bei -80 °C 1.5 Äquivalente Furyllithium zugegeben. Ein Teil des überschüssigen MgBr₂ fiel bei dieser Temperatur wieder aus. Ferner konnte auch nach zusätzlicher Zugabe von 0.5 Äquivalent an frischem Furyllithium in beiden Fällen kein vollständiger Umsatz erzielt werden. Die dabei beobachteten Diastereoselektivitäten zeigten allerdings nur eine leicht Verschiebung in Richtung der *R*-Carbinole. Die Annahme einer bevorzugten Chelatisierung konnte daher durch die erhaltenen Ergebnisse nicht bestätigt werden (Tabelle 12; Einträge 3,4).

In einem letzten Experiment wurde der Einfluss eines "chiralen Carbanions"¹³⁸ auf die Selektivität der Addition untersucht. Dazu wurde Furyllithium mit (-)-Spartein für 30 Minuten bei 0 °C in wasserfreiem Ether komplexiert und danach bei -70 °C einer wasserfreien THF/Ether-Lösung von **49** β zugegeben und diese innerhalb von 2 Stunden auf -40 °C erwärmt. Die Analyse der NMR-Daten des Rohprodukts zeigte allerdings einen geringen Umsatz zu **52** β und das Vorhandensein mehrerer nicht näher definierbarer Nebenprodukte. Weiters betrug die Diastereoselektivität nur 9% und weitere Versuche mit (-)-Spartein als Additiv wurden daher nicht unternommen (Tabelle 12; Eintrag 5).

Aufgrund dieser nur sehr unbefriedigenden Selektivitäten wurde als Alternative ein zusätzlicher Oxidations- und diastereoselektiver Reduktionsschritt in Kauf genommen (siehe 3.1.4.3.3).

¹³⁸ Hoppe, D.; Hense, T. Angew. Chem. **1997**, 109, 2376.

3.1.4.3.2. Bestimmung der Diastereoselektivität und der Absolutkonfiguration

Die beobachteten Diastereoselektivitäten wurden jeweils durch Integration und Vergleich der Signale für den Carbinolkohlenstoff bzw. für die benachbarten Furan- und Methylenkohlenstoffe aus den ¹³C-NMR-Spektren der jeweiligen Rohprodukte bestimmt.

Die Bestimmung der Absolutkonfiguration erfolgte nach der von Noe *et al.* beschrieben Methode durch Acetalisierung mit exo-Dilactol **75**.¹³⁹ Dazu wurde **52** β also Isomerengemisch mit einem Überschuss an exo-Dilactol in wasserfreiem CH₂Cl₂ unter Zugabe einer katalytischen Menge an *p*-TsOH umgesetzt (Abbildung 49).

Abbildung 49: Reaktion mit exo-Dilactol 75

Anhand der charakteristischen Verschiebung der 2-H Lactolprotonen im ¹H-Spektrum konnte nach der Bulky/Planar/Wasserstoff-Regel von Noe¹⁴⁰ eine Zuordnung getroffen werden. Das Verhältnis der beiden Lactolprotonen entsprach dabei dem Verhältnis der beobachteten Selektivität bei der Addition von Furyllithium. Für das 2-H-Proton des *R*-Acetals *R*-52a wurde eine Verschiebung von 5.21 ppm und für das entsprechende Proton der *S*-Verbindung *S*-52a - mit einer charakteristischen Hochfeldverschiebung - eine Verschiebung von 5.05 ppm gemessen.

¹³⁹ Noe, C. R.; Knollmüller, M.; Göstl, G.; Oberhauser, B.; Völlenkle, H. Angew. Chem. 1987, 99, 467.

¹⁴⁰ Noe, C.; Knollmüller, M.; Wagner, E.; Völlenkle, H. Chem. Ber. 1985, 118, 1733.

3.1.4.3.3. Synthese der Furfurylalkohole durch CBS-Reduktion

Die aus der Addition von Furyllithium erhaltenen Alkohole **52** und **53** konnten durch Oxidation mit Dess-Martin Periodinan in die für die CBS-Reduktion^{141,142,143} benötigten Ketone **54** und **55** überführt werden (Abbildung 50).

Abbildung 50: Stereoselektive Synthese über CBS-Reduktion

Die Alkohole 52α , 52β und 53β wurden durch Addition von 2 Äquivalenten Furyllithium erhalten. Eine Reinigung war generell nicht notwendig, und sie konnten nach Trocknen am Hochvakuum sofort in die darauf folgende Oxidation eingesetzt werden. Die Ergebnisse der Oxidation sind in Tabelle 13 zusammengefasst:

	Keton	Ausbeute (über 2 Stufen)
1	BnO BnO CONTRACTOR	52%
2	Bno bno con con con con con con con con con c	52%
3	Bno OBn	49%

Tabelle 13: Synthese der Furanylketone 54 und 55

¹⁴¹ Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. J. Chem. Soc. Chem. Commun. 1981, 7, 315.

¹⁴² Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.

¹⁴³ Corey, E. J.; Helal, C. J. Chem. Rev. **1998**, 37, 1986.

In Anlehnung an Prasad und Joshi¹⁴⁴ wurde die CBS-Reduktion mit (S)- oder (R)- (α, α) -Diphenylprolinol und BH₃·DMS als Reduktionsmittel in wasserfreiem THF durchgeführt.

Die beiden enantiomerenreinen Auxiliare wurden laut Literatur hergestellt.^{142, 145} Das zur Aufbewahrung als Sulfat vorliegende (*R*)-Diphenylprolinol wurde vor der Reaktion durch Rühren mit einem Überschuss an 2 N NaOH in das freie Amin überführt und nach Extraktion mit Ether und Trocknen am Hochvakuum in die Reaktion eingesetzt.

Durch Variation der Menge an Prolinol und BH₃·DMS bzw. der Temperatur wurde deren Einfluss bezüglich Umsatz und Selektivität in einer Versuchreihe untersucht.

In einem ersten Versuch wurden 1.5 Äq. an BH₃·DMS mit 10 mol% (*S*)-Diphenylprolinol zur Bildung der aktiven Oxazaborolidin-Spezies in wasserfreiem THF über Nacht bei 45 °C gerührt und danach langsam **54** β gelöst in wasserfreiem THF zugegeben. Da nach 24 h der Umsatz noch nicht vollständig war, wurden weitere 1.5 Äq. BH₃·DMS zugegeben, die Temperatur auf 60 °C erhöht und für weitere 24 h gerührt. Obwohl laut DC 100%-iger Umsatz beobachtet wurde, konnte nach chromatographischer Reinigung **52** β mit nur 43% Ausbeute isoliert werden (Tabelle 14; Eintrag 1). Die beobachtete Selektivität betrug dabei lediglich 34% *de*. Wurde **54** β direkt mit 10 mol% (*S*)-Diphenylprolinol und 2.5 Äq. BH₃·DMS in wasserfreiem THF auf 60 °C erhitzt und über Nacht gerührt, wurden 100% Umsatz beobachtet und die Selektivität stieg auf 74% *de* an (Tabelle 14; Eintrag 2).

	Auxiliar [mol%] (S)-Diphenylprolinol	Reduktionsmittel ^a [Äq.] BH ₃ ·DMS	Temperatur/Zeit [°C]/[h]	Umsatz ^b	Selektivität S:R [%de]
1	10%	1.5 Äq. 1.5 Äq.	45 °C/24 h 60 °C/24 h	43% isolierte Ausbeute	67:33 34%
2	10%	2.5 Äq.	60 °C	>95%	87:13 74%
3	20%	2.5 Äq.	50 °C/24 h	45%	93:7 86%
4	25%	2.5 Äq.	60 °C	98% isolierte Ausbeute	91:9 82%
^a Bei 1, 3 und 4 wurden das Auxiliar und BH ₃ ·DMS vor der Reaktion jeweils über Nacht zwischen 45° und 60 °C in wasserfreiem THF gerührt. ^b Bei 2 und 3 wurde der Umsatz direkt aus dem NMR des Rohprodukts bestimmt.					

Tabelle 14: Optimierungsversuche zur CBS-Reduktion

¹⁴⁴ Prasad, K. R. K.; Joshi, N. N. Tetrahedron Asymm. 1997, 8, 173.

¹⁴⁵ Mathre, D. J.; Jones, T. K.; Xavier, L. C.; Blacklock, T. J.; Reamer, R. A.; Mohan, J. J.; Turner Jones, E. T.; Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. *J. Org. Chem.* **1991**, *56*, 751.

In weitere Folge wurde die Menge an (*S*)-Diphenylprolinol auf 20 bzw. 25 mol% erhöht und das Auxiliar wiederum über Nacht mit 2.5 Äq. BH₃·DMS in wasserfreiem THF bei 50 °C bzw. 60 °C gerührt. Unter Verwendung von 20 mol% Diphenylprolinol zeigte sich auch nach 24 h bei 50 °C lediglich ein Umsatz von 45%. Jedoch betrug der aus dem ¹³C-NMR des isolierten Rohprodukts berechnete *de* sehr gute 86% (Tabelle 14; Eintrag 3). Eine Temperaturerhöhung auf 60 °C lieferte letztlich die besten Ergebnisse. Bereits nach 3 Stunden konnte *S*-52β mit 98% Ausbeute und 82% *de* isoliert werden.

Alle weiteren Versuche wurden daher unter diesen Bedingungen durchgeführt. Die verwendeten Diphenylprolinol/Boran-Lösungen konnten unter Argon auch für längere Zeit aufbewahrt werden, ohne dass eine Einbuße hinsichtlich Ausbeute oder Selektivität beobachtet wurde.

	Alkohol	Auxiliar Diphenylprolinol	Ausbeute	Selektivität [%de]
1	^{OBn} BnO BnO OBn OBn OBn OBn OBn OBn OBn S-52β	S	98%	91:9 82%
2	овп впо впо овп овп овп овп овп овп овп	R	95%	77:23 54%
3	BnO BnO OBn OBn OBn OH OH OH OH OH OH OH OH OH OH	S	95%	71:29 42%
4	Bno Bno Bno Bno Bno Bno C C C C C C C C C C C C C C C C C C C	S	91%	86:14 72%

In Tabelle 15 sind die Ergebnisse der Reduktionsversuche zusammengefasst:

Tabelle 15: Ergebnisse der CBS-Reduktion

3.1.4.3.4. Modell zur Vorhersage der Konfiguration der gebildeten Furfurylalkohole

Ein weiterer großer Vorteil der CBS-Reduktion liegt in der Vorhersagbarkeit der Absolutkonfiguration der synthetisierten Alkohole. Ausschlaggebend dabei ist der sterische Anspruch der beiden Reste an der Carbonylgruppe. Im Fall von **54** β kann man davon ausgehen, dass das Glucosefragment den sterisch wesentlich anspruchsvolleren Rest R_L darstellt und der verbleibende Furanylrest kann daher als R_S definiert werden (Abbildung 51).

Abbildung 51: CBS-Reduktion - Modell zur Vorhersage der Absolutkonfiguration

Betrachtet man den Katalysatorkomplex im Übergangszustand erfolgt im ersten Schritt eine Koordination von BH₃ an das freie Elektronenpaar des Stickstoffs. Dadurch werden einerseits die Boranwasserstoffe zu starken Hydriddonoren und andererseits wird das endozyklische Bor-Atom eine stärkere Lewis-Säure und vermag daher besser an ein freies Elektronenpaar des Carbonyl-Sauerstoffs zu binden. Diese Bindung ist essentiell für den stereochemischen Ausgang der Reaktion und erfolgt in der Regel an das sterisch weniger anspruchsvolle (näher zu dem kleineren Rest R_S) Elektronenpaar. Eine *cis*-Anordnung des Ketons und des am Stickstoff koordinierten Borans ergeben die geringsten sterischen Wechselwirkungen und der Hydridtransfer findet in Folge über einen sechsgliedrigen Übergangszustand statt.

Für die vorliegenden Fälle liefert das (*S*)-Diphenylprolinol daher einen bevorzugten Angriff von der *re*-Seite unter Bildung der (*S*)-Carbinole *S*-52 β und (*R*)-Diphenylprolinol ergibt die entsprechenden (*R*)-Verbindungen *R*-52 β durch Angriff von der *si*-Seite.

3.1.4.4. Achmatowicz Umlagerung

Die oxidative Umlagerung von Furfurylalkoholen zu den korrespondierenden ungesättigten 3-Pyranonen wurde bereits 1971 von Achmatowicz *et al.* in der Literatur¹¹⁶ erwähnt. Die Umlagerung findet dabei unter Erhalt der Konfiguration des Stereozentrums in α -Position zum Furanring statt.

(i) VO(acac)₃, TBHP, Toluol, THF; (ii) NBS, NaHCO₃, NaOAc, THF, H₂O; (iii) PCC, CH₂Cl₂; (iv) BzCl, NEt₃, DMAP, CH₂Cl₂

Abbildung 52: Achmatowicz Umlagerung

Anfänglich wurde versucht **56** durch Reaktion von *S*-**52** β mit einer katalytischen Menge an VO(acac)₃ und *t*-Butylhydroperoxid als Oxidationsmittel herzustellen allerdings ohne Erfolg. Ein Wechsel zu *N*-Bromsuccinimid in wässrigem THF lieferte schlussendlich gewünschtes **56** in guter Ausbeute. Eine genaue Charakterisierung der beiden gebildeten Anomere war allerdings nicht möglich. Einerseits waren diese chromatographisch nicht trennbar und anderseits instabil gegenüber einer längeren Lagerung. Da eine Oxidation mit PCC in wasserfreiem CH₂Cl₂ nicht das gewünschte Ketolacton **X** sondern nur dessen Zersetzungsprodukte lieferte, wurde in Folge das anomere Zentrum mit Benzoylchlorid, Pyridin und einer katalytischen Menge an DMAP acyliert. Harris *et al.* beschreiben bei vergleichbaren Hemiacetalen unter Verwendung von Benzoylchlorid bei -78 °C die bevorzugte Bildung des α -Anomers (>20:1). Dieses Ergebnis konnte mit **56** nicht reproduziert

werden und das Verhältnis der beiden Anomere lag bei lediglich 2.5:1. Eine zweifache chromatographische Reinigung erlaubte aber die Trennung der beiden anomeren Verbindungen 57α und 57β mit einer Gesamtausbeute von 67% über 2 Stufen.

Die Bestimmung der anomeren Konfiguration erfolgte über den Vergleich der ¹³C-NMR-Shifts der anomeren Kohlenstoffe. In Übereinkunft mit der allgemeingültigen Regel, dass axiale Substituenten (α) am anomeren Zentrum eine Verschiebung des Signals nach höherem Feld bewirken, wurde das beobachtete Signal bei 87.5 ppm dem im Überschuss gebildeten α -Anomere zugeordnet - im Vergleich dazu befindet sich das Signal für das andere Anomer bei 88.3 ppm (Abbildung 53).

Abbildung 53: NMR-Shifts des α - und β -Lactols

3.1.4.5. Funktionalisierung der Pyranone - Stereoselektiver Aufbau der 2. Kohlenhydratstruktur

3.1.4.5.1. Luche Reduktion

In einem ersten Funktionalisierungsschritt wurde die Carbonylgruppe in Position 5 durch eine Luche Reduktion¹⁴⁶ in den entsprechenden Alkohol **58** überführt (Abbildung 54).

¹⁴⁶ Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.

Abbildung 54: Luche Reduktion

Dabei wurde 57α in wasserfreiem CH₂Cl₂ bei -75 °C mit 2.5 Äquivalenten CeCl₃ versetzt, kurz gerührt und danach NaBH₄ als Reduktionsmittel langsam zugegeben und für eine weitere Stunde gerührt. In einem ersten Versuch wurde **58** als isomerenreiner *R*-Alkohol mit 40% Ausbeute isoliert. Man kann allerdings davon ausgehen, dass nach Optimierung der Reaktionsbedingungen eine höhere Ausbeute an **58** zu erwarten ist. Leider konnten diese Optimierungsversuche im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

In Übereinstimmung mit der Literatur³ kann aufgrund einer beobachteten Kopplungskonstante von J = 9.0 Hz zwischen H-4' und H-5' für diese beiden Protonen eine 1,2-*trans*-diaxiale Anordnung angenommen werden. Eine anschauliche Darstellung liefert Abbildung 55: Der Pyranonring wurde dabei in einer Halbsessel-Konformation dargestellt. Aus sterischen Gründen kann angenommen werden, dass sich die Benzyloxy-Gruppe am C₁ in einer axialen und der Glucose-Rest in einer äquatorialen Anordnung befindet. Der Phenylring schirmt dabei die *re*-Seite der Carbonylgruppe wirkungsvoll ab und der Angriff des Hydrids erfolgt daher bevorzugt von der sterisch weniger anspruchsvollen *si*-Seite unter Bildung des *R*-Alkohols **58**.

Abbildung 55: Selektivität bei der Luche Reduktion

3.1.4.5.2. Ausblick

Eine abschließende Funktionalisierung zum vollständigen Aufbau des L-Zucker-Fragments war im Rahmen dieser Arbeit leider nicht mehr möglich. Man kann allerdings davon ausgehen, dass der Aufbau stereodivergenter Hexosestrukturen durch Dihydroxylierung oder Epoxidierung (und der darauf folgenden nukleophilen Epoxidöffnung) der vorhandenen Doppelbindung möglich ist. Die gezielte Inversion einzelner Hydroxygruppe unter Mitsunobu-Bedingungen¹⁴⁷ würde ferner eine weitere Diversifizierung erlauben (Abbildung 56).

Abbildung 56: Funktionalisierung von 58

¹⁴⁷ Hughes, D. L. Org. React. 1992, 42, 335.

3.2. Untersuchungen zur Synthese von *trans*-3'-Hydroxycotinin-*O*-β-D-glucuronid

3.2.1. Einleitung

Die Glucuronidsynthese kann vom Prinzip her mit den herkömmlich bekannten Methoden zur Glykosylierung verglichen werden. Im Regelfall aber lassen sich Glucuronide schwieriger herstellen als die vergleichbaren Glucopyranoside.⁵ Laut Schmidt¹⁴⁸ kann die Reaktivität (bei gleicher Abgangsgruppe und unter gleichen Bedingungen) der einzelnen Kohlenhydratdonoren wie folgt angeben werden:

3-Deoxy-2-glyculosonate > Ketose > Deoxy-Zucker > Aldose > Glucuronide

Die schwächere Reaktivität der Glucuronide kann vor allem auf die vorhandene elektronenziehende 5-Alkoxycarbonyl-Gruppe zurückgeführt werden, die einen destabilisierenden Einfluss auf das während der Glucuronidierung gebildete C_1 -Kation hat (Abbildung 57).

Abbildung 57: Destabilisierung durch -I-Effekt

Die Wahl der Schutzgruppe liegt in den meisten Fällen bei den einfacher herstellbaren Acyl-Intermediaten, die weiters durch den in Position 2 vorhandenen Nachbargruppeneffekt eine gute β-Selektivität in den darauf folgenden Glucuronidierungsreaktionen aufweisen. Bei einer Unverträglichkeit des verwendeten Aglykons gegenüber den meist basischen Abspaltungsbedingungen der Ester-Schutzgruppe kann diese auch durch eine Etherfunktionalität ersetzt werden. Die Verwendung von Benzyl- bzw. Allyl-Schutzgruppen hat hier aufgrund der sehr milden Spaltungsbedingungen (Pd⁰, H₂) den größten Stellenwert. Die verwendeten Benzyl- bzw. Allyl-Ether zeichnen sich generell durch eine höhere Reaktivität aus, die allerdings mit einer geringeren Stabilität des verwendeten Glucuronsäure-

¹⁴⁸ Müller, T.; Schneider, R.; Schmidt, R. R. Tetrahedron Lett. 1994, 35, 4763.

Donors einhergeht. Ein weiterer Nachteil ist eine geringere α/β -Selektivität aufgrund des fehlenden Nachbargruppeneffektes.

Als bevorzugte Glucuronsäure-Donoren findet man vor allem die α-Halogen-Intermediate. Diese werden entweder unter klassischen Königs-Knorr Bedingungen¹⁴⁹ - als Promotoren werden Schwermetallsalze (Ag, Hg oder Cd) verwendet - oder mit Lewis-sauren Katalysatoren gekuppelt. Sollte die Reaktivität des verwendeten Aglykons ausreichen, können auch direkt die Perester-Verbindungen oder die freien Halbacetale eingesetzt werden. Eine Aktivierung erfolgt auch hier meist durch Lewis-Säuren (SnCl₄, BF₃·Et₂O, Ag(OTf), uvm.). Eine höhere Donoraktivität erreicht man durch die Verwendung von Trichloracetimidoyl-Intermediate, welche erstmals von Schmidt¹⁵⁰ in der Literatur erwähnt wurden.

 ¹⁴⁹ Königs, W.; Knorr, E. Chem. Ber. **1901**, *34*, 957.
¹⁵⁰ Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. **1994**, *50*, 21.

3.2.2. Retrosynthetische Betrachtung

Ausgehend von der in Abbildung 58 dargestellten Retrosynthese kann die Herstellung von *trans*-3'-Hydroxycotinin-O- β -D-glucuronid in 3 wesentliche Schritte unterteilt werden:

- Synthese des aktivierten Glucuronsäure-Donors ausgehend von Glucuronsäure-γlacton und stereoselektive Synthese von *trans*-3'-Hydroxycotinin
- Synthese des gewünschten Alkaloid-Metaboliten selektive β-Glucuronidierung
- Abspaltung der Schutzgruppen

Abbildung 58: Retrosynthese

3.2.3. Wahl der Schutzgruppe

Die Carbonsäure wurde in allen Fällen als Methylester geschützt. Die Maskierung der freien Hydroxygruppen erfolgte durch Acylierung unter Bildung der Acetoxy- und der sterisch anspruchsvolleren Pivaloyloxy-Verbindungen. In beiden Fällen kann aufgrund der Esterfunktionalität in Position 2 und dem daraus resultierenden Nachbargruppeneffekt bei der Glucuronidierung eine erhöhte β-Selektivität erwartet werden (Abbildung 59):

Abbildung 59: β-Selektivität bei der Glucuronidierung

Prinzipiell kann der Angriff des Aglykons (R₁-OH) wie unter **A** von beiden Seiten erfolgen, als Ergebnis bekommt man ein Gemisch aus 1,2-*cis* (α) und 1,2-*trans* (β) Glucuronid. Die dabei resultierende α/β Selektivität wird durch eine Vielzahl von Faktoren (Abgangsgruppe X, anomerer Effekt, Katalysator und Lösungsmittel) bestimmt. Ist allerdings die Hydroxygruppe in Position 2 als Ester geschützt, kann das intermediär gebildete Acyloxonium-Ion **B** die Selektivität nachhaltig beeinflussen. Im Fall einer axialen 2-*O*-Acyl-Gruppe wird dabei die α -Seite wirksam abgeschirmt und der Angriff des Nukleophils erfolgt bevorzugt von der β -Seite. Ein kürzerer Syntheseweg für die Acyl-geschützten Glucuronsäure-Donoren kann ebenfalls als Vorteil gesehen werden. Vergleicht man die in der Literatur beschriebenen Wege zur Herstellung der Acetoxy-^{151,152,153} bzw. Pivaloyloxy-geschützten¹⁵⁴ 1-Brom- bzw. 1-Trichloroacetimidat-Derivate gegenüber der Benzyl-geschützten Varianten^{19,155} ergibt sich in beiden Fällen ein um 2 Reaktionsschritte kürzerer Syntheseweg (Abbildung 60).

Abbildung 60: Vergleich der Synthesewege

3.2.4. Synthese der aktivierten Glucuronsäure-Intermediate

Für die folgenden Kupplungsversuche wurden insgesamt 6 unterschiedliche aktivierte Glucuronsäuren verwendet. In Abbildung 61 sind diese nach ansteigender Reaktivität abgebildet:

Abbildung 61: Reaktivitätsvergleich – aktivierte Glucuronsäuren

¹⁵¹ Bollenback, G. N.; Long, J. W.; Benjamin, D. G.; Lindquist, J. A. J. Am. Chem. Soc. 1955, 77, 3310.

¹⁵² Pelzer, H. Physiol. Chem. **1959**, *314*, 234.

¹⁵³ Fischer, B.; Nudelman, A.; Ruse, M.; Herzig, J.; Gottlieb, H. E.; Keinan, E. J. Org. Chem. **1984**, 49, 4988.

¹⁵⁴ Vlahov, J.; Snatzke, G. Liebigs Ann. Chem. 1983, 4, 570.

¹⁵⁵ Schmidt, R.; Grundler, G. Synthesis 1981, 11, 885.

Ausgehend von Glucuronsäure-γ-lacton wurden die gewünschten Verbindungen in 2 bis 5 Stufen in mäßig bis guten Ausbeuten hergestellt (Abbildung 62).

(i) NaOH, MeOH; (ii) NaOMe, MeOH; (iii) Ac₂O, Pyridin; (iv) PivCl, Pyridin, CHCl₃; (v) HBr, AcOH; (vi) HBr, AcOH, CH₂Cl₂; (vii) Ag₂CO₃, Aceton, H₂O; (viii) Cl₃CCN, K₂CO₃, CH₂Cl₂

Abbildung 62: Synthese der aktivierten Glucuronsäure-Derivate

Im ersten Schritt wurde durch Methanolyse von Glucuronsäure-y-lacton der gewünschte Methylester 60 gebildet. Das getrocknete Rohprodukt wurde direkt in die folgenden Acylierungsreaktionen eingesetzt. Als Base diente hierbei Pyridin welches mit Essigsäureanhydrid bzw. Pivalinsäurechlorid umgesetzt wurde. Zur vollständigen Acylierung aller Hydroxygruppen musste mehrere Tage bei Raumtemperatur gerührt werden. Die anschließende Halogenierung des anomeren Zentrums erfolgte durch Bromierung mit 33% HBr in Eisessig. Aufgrund des bei 1-Halogen-Kohlenhydratverbindungen stark wirkenden anomeren Effekts wurde in beiden Fällen ausschließlich das α-Halogenid gebildet. Das freie Halbacetal 63 wurde durch Hydrolyse mit Silber(I)carbonat in Aceton/Wasser erhalten. Im Fall von 67 wurde ausgehend von 65 nach der Bromierung überschüssiges HBr/Eisessig im Vakuum entfernt und der Rückstand direkt für die Hydrolyse eingesetzt. Die abschließende Umsetzung zu den Trichloroacetimidaten 64 und 68 erfolgte analog zur Literatur,¹⁵⁶ dabei wurde K₂CO₃ als Base in wasserfreiem CH₂Cl₂ verwendet. Die α -Selektivität war bei beiden Reaktionen gegeben. Allerdings konnten laut NMR im Fall der Piv-geschützten Verbindung 68 auch Spuren an β-Produkt beobachtet werden, welches

¹⁵⁶ Brown, R. T.; Scheinmann, F.; Stachulski, A. V. J. Chem. Research (S) 1997, 10, 370.

allerdings durch eine einfache chromatographische Reinigung entfernt wurde. Alle hergestellten 1- α -Brom (62, 64) und 1- α -Trichloracetimidoyl-Derivate (66, 68) wurden aufgrund ihrer geringen Stabilität unter Lichtausschluss bei -20 °C aufbewahrt.

3.2.5. Synthese von (3'R, 5'S)-3'-Hydroxycotinin

McKennis, *et al.*¹⁵⁷ haben 1963 zum ersten Mal Hydroxycotinin aus dem Urin von Rauchern isoliert und dessen Struktur bestimmt. Es handelt sich dabei um ein sekundäres Stoffwechselprodukt von Nikotin, welches durch α -Hydroxylierung aus Cotinin gebildet wird.¹⁵⁸

Abbildung 63: Metabolismus - trans-Hydroxycotinin

In der Literatur findet man verschiedene Synthesestrategien zur Herstellung von *cis*- und *trans*-3'-Hydroxycotinin.^{157,159,160,161,162} Hierbei handelt es sich aber fast ausschließlich um Mehrstufensynthesen,^{157,159,160} welche als letzten Schritt ein aufwendiges Trenn- und Reinigungsverfahren des entstanden Isomerengemisches beinhalten. Ausgehend von (*S*)-Cotinin findet man 2 Wege zur Synthese von *trans*-3'-Hydroxycotinin.^{161,162} In der Arbeit von Jacob *et al.*¹⁶¹ wird **71** (siehe Abbildung 65) durch α -Oxidation mit einem Molybdänperoxo-Komplex hergestellt. Aber auch in diesem Fall betrug das Verhältnis zwischen *trans*:*cis* Produkt lediglich 80:20 und ein weiterer Derivatisierungsschritt war zur Trennung der beiden Isomere notwendig. Im Gegensatz dazu wird bei Lin *et al.*¹⁶² die asymmetrische α -Hydroxylierung mit einem chiralen (+)-(Camphersulfonyl)oxaziridin (**70**) durchgeführt. Dabei entsteht ausschließlich das gewünschte *trans*-Isomer in sehr guten Ausbeuten.

¹⁵⁸ McKennis, Jr., H.; Schwartz, S. L.; Bowman; E. R. J. Biol. Chem. **1964**, 239, 3990.

¹⁶⁰ Crooks, P. A.; Bhatti, S. B.; Ravard, A.; Riggs, R. M.; Caldwell, W. S. Med. Sci. Res. 1992, 20, 881.

¹⁵⁷ McKennis, Jr., H.; Turnbull, E. R.; Bowman; E. R.; Tamaki, E. J. Org. Chem. 1963, 28, 383.

¹⁵⁹ Dagne, E.; Castagnoli, Jr., N. J. Med. Chem. 1972, 15, 356.

¹⁶¹ Jacob, III, P.; Shulgin, A. T.; Benowitz, N. L. J. Med. Chem. **1990**, *33*, 1888.

¹⁶² Lin, N. H.; Carrera, Jr., G. M.; Anderson, D. J. J. Med. Chem. 1994, 37, 3542.

Das von Davis erstmal hergestellte (+)-(Camphersulfonyl)oxaziridin kann in einer 4 Stufen Synthese¹⁶³(Abbildung 64) ausgehend von (+)-Camphersulfonsäure hergestellt werden und findet vor allem zur Synthese von optisch aktiven α -Hydroxy-Carbonylverbindungen breite Anwendung.¹⁶⁴

Abbildung 64: Retrosynthese von (+)-(Camphersulfonyl)oxaziridin

Zur Synthese von **71**, wurde **69** mit LDA bei -78 °C deprotoniert. Die Oxidation fand dabei bevorzugt an der *re*-Seite des Enolats statt, da die *si*-Seite von dem in pseudo-axialer Position befindlichen Pyridyl-Rest abgeschirmt wurde (Abbildung 65). Das gewünschte *trans*-Isomer **71** wurde mit >99% *de* und in guter Ausbeute erhalten.

Abbildung 65: Synthese von trans-3'-Hydroxycotinin

3.2.6. Kupplungsversuche mit unterschiedlichen aktivierten Glucuronsäure-Donoren

Zur Synthese des *O*-Glucuronids (Abbildung 66) wurde 71 mit aktivierten Glucuronsäuren (**62-66** und **68**) unterschiedlicher Reaktivität umgesetzt.

¹⁶³ Davis, F. A.; Towson, J. C.; Weismiller, M. C.; Lal, S.; Carroll, P. J. J. Am. Chem. Soc. 1988, 110, 8477.

¹⁶⁴ Davis, F. A.; Sheppard, A. C. Tetrahedron 1989, 45, 5703.

(i) Eingesetzte aktivierte Glucuronsäure (62, 63, 64, 65, 66 und 68) und Reaktionsbedingungen (1-9) siehe Tabelle 16

Abbildung 66: Kupplungsversuche

	Glucuronsäure Donor	Äquivalente	Rkt. Bedingungen	Ausbeute (% der Th.)
1	AcO AcO AcO AcO AcO AcO AcO OH	1.1	TMS(OTf) (1.0 Äq.) DCE RT/ÜN	0
2	MeO ₂ C PivO PivO PivO PivO OPiv 65	3	SnCl ₄ (1.5 Äq.) CH ₂ Cl ₂ RT/ÜN	0
3	MeO ₂ C PivO PivO PivO PivO Br 66	2.5	Hg(CN) ₂ (2.5 Äq.) CH ₃ NO ₂ /Benzol RT bzw. RF/ÜN	0
4	MeO ₂ C PivO PivO PivO PivO Br 66	2.5	Hg(CN) ₂ (2 Äq) CH ₃ NO ₂ Mikrowelle (200°C/200W/15-30 min)	0
5	ACO ACO ACO ACO Br 62	2.5	AgOTf (3.2 Äq) CH ₂ Cl ₂ 4Å Molsieb RT/ÜN	0
6	MeO ₂ C PivO PivO PivO PivO Br 66	2.5	AgOTf (3.2 Äq) CH ₂ Cl ₂ 4Å Molsieb RT/ÜN	9
7	MeO ₂ C AcO ACO O NH CCI ₃ 64	1.2	BF₃∙Et₂O (0.8 Äq) CH₂Cl₂ 4Å Molsieb RT/ÜN	16
8	$\begin{array}{c} \text{MeO}_{2C} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{O} \\ \text{O} \\ \text{NH} \\ \text{CCI}_{3} \\ 64 \end{array}$	1.2	BF3·Et2O (1.4 Äq.) CH2Cl2 4Å Molsieb RT/ÜN	24
9	MeO ₂ C PivO PivO PivO PivO O FivO O CCl ₃ 68	2.0	BF ₃ ·Et ₂ O (1.2 Äq.) CH ₂ Cl ₂ 4Å Molsieb RT/ÜN	85

Tabelle 16: Glucuronsäure-Kupplungsversuche

Ferner wurde im Fall der 1-Brom-Zucker **62** und **66** der Einfluss unterschiedlicher Reaktionsbedingungen und Katalysatoren auf die Glucuronidierung untersucht (Tabelle 16; Eintrag 2-6).

Versuche zur Kupplung mit 1-Hydroxy- und 1-Acyloxy-Zuckern

In Anlehnung an die Literatur wurde **71** mit 1.1 Äq. an 1-Hydroxy-Donor **63** unter Zugabe von 1.0 Äq. TMS-Triflat in wasserfreiem Dichlorethan¹⁵³ (Tabelle 16; Eintrag 1) und mit 3.0 Äq. an 1-Pivaloyloxy-Verbindung **65** mit 1.5 Äq. SnCl₄ als Promotor in wasserfreiem CH₂Cl₂¹⁶⁵ (Tabelle 16; Eintrag 2) umgesetzt. In beiden Fällen konnte bereits mittels DC keine Produktbildung beobachtet werden und auch nach der Aufarbeitung wurden ausschließlich unumgesetzter Zucker-Donor bzw. dessen Zersetzungsprodukte isoliert. Der Grund für das Scheitern der Reaktion liegt wahrscheinlich in einer zu geringen Aktivität der eingesetzten Hydroxy- bzw. Acyloxyverbindungen.

Versuche zur Kupplung mit α -1-Brom-Derivaten

Da sich in unserer Arbeitsgruppe bereits bei der Synthese von Steroidglucuroniden¹⁶⁶ die pivaloy-geschützt Glucuronsäure **66** im Vergleich zur acetyl-geschützten Verbindung **62** als besserer Kupplungspartner erwiesen hatte, wurden die ersten Versuche auch in Anlehnung an die bereits gemachte Erfahrung durchgeführt. In einer verbesserten Variante der klassischen Königs-Knorr Reaktion¹⁶⁷ wurden dabei **71** und 2.0 Äq. Hg(CN)₂ in wasserfreiem Nitromethan und Benzol vorgelegt und danach - um vollständige Wasserfreiheit zu gewährleisten - 2/3 des Lösungsmittels abdestilliert. Nach der Zugabe von **66** wurde jeweils über Nacht bei Raumtemperatur und in einer 2. Versuchreihe auch bei Rückfluss gerührt (Tabelle 16; Eintrag 3). Es konnte allerdings in beiden Fällen kein Kupplungsprodukt **73** isoliert werden. Um den Energieeintrag zu erhöhen wurde abschließend noch ein Versuch in der Mikrowelle durchgeführt (200°C/200W/15-30 min), aber auch hier konnte kein Umsatz festgestellt werden (Tabelle 16; Eintrag 4).

Im Anschluss daran wurde die Kupplung, in Anlehnung an Schultz, *et al.*¹⁶⁸ mit reaktiverem Silbertriflat (3.2 Äq.) als Promotor durchgeführt. Das sterisch weniger anspruchvolle acetyl-geschützte Bromid **62** (2.5 Äq.) brachte allerdings auch in diesem Fall kein positives Ergebnis (Tabelle 16; Eintrag 5). Letztlich konnte allerdings mit 2.5 Äq. an

¹⁶⁵ Menger, F. M.; Binder, W. H.; Keiper, J. S. *Langmuir* **1997**, *13*, 3247.

¹⁶⁶ Gärtner, P.; Novak, C.; Einzinger, Ch.; Felzmann, W.; Knollmüller, M.; Gmeiner, G.; Schänzer, W. *Steroids* **2003**, *68*, 85.

¹⁶⁷ Mori, K.; Fukamatsu, K.; Kido, M. Liebigs Ann. Chem. 1993, 657.

¹⁶⁸ Schultz, M.; Zörkler, G. Liebigs Ann. Chem. **1989**, *6*, 393.

pivaloyl-geschützer Glucuronsäure **66** ein Umsatz von 9% erzielt werden (Tabelle 16; Eintrag 6).

Versuche zur Kupplung mit *α*-1-Trichloracetimidaten

Bedingt durch diesen ersten Erfolg mit der eingesetzten α -1-Brom-Verbindungen **66**, schien ein Wechsel hin zu den reaktiveren α -1-Imidat-Analoga **64** und **68** als sehr vielversprechend. In den ersten Versuchen wurden 1.2 Äq. **64** mit **71** in wasserfreiem CH₂Cl₂ bei Raumtemperatur umgesetzt.¹⁵⁵ Dabei zeigte sich, dass die Menge an eingesetzter Lewis-Säure wesentlichen Einfluss auf den beobachteten Umsatz hatte: Wurden 0.2 Äq. an BF₃·Et₂O der Reaktion zugesetzt, konnte mittels DC kein Umsatz festgestellt werden. Erhöhte man die Zugabe der Lewis-Säure allerdings auf 0.8 Äq. konnten 16% an **72** isoliert werden. (Tabelle 16; Eintrag 7) Bei der sukzessive Zugabe von 1.4 Äq. BF₃·Et₂O konnte der Umsatz auf schließlich 24% gesteigert werden (Tabelle 16; Eintrag 8). Eine weitere Erhöhung brachte keine besseren Ergebnisse.

Ein wirklicher Durchbruch wurde durch den Wechsel der Schutzgruppen erzielt. Das pivaloyl-geschützte Imidat **68** zeigte bei der Zugabe von 0.2 Äq. an BF₃·Et₂O laut DC nur geringfügigen Umsatz. Mit Erhöhung der Promotormenge auf 1.2 Äq. und durch Einsatz von 2.5 Äq. an Zucker-Donor konnte allerdings das gewünschte *trans*-Hydroxycotinin-*O*-glucuronid **73** in sehr guten 85% Ausbeute erhalten werden. Die relativ hohe Menge an Lewis-Säure lässt sich durch die wahrscheinlich ebenfalls stattfindende Quartärnisierung des vorhandenen Pyridinstickstoffs erklären. Durch diese intermediäre Stickstoff-Maskierung kann eine *N*-Glucuronidierung aber ausgeschlossen werden. Übereinstimmend mit dieser Überlegung wurde in keinem Fall die Bildung des *N*- bzw. *N*,*O*-Glucuronids beobachtet.

3.2.7. Versuche zur Abspaltung der Schutzgruppen

Die Abspaltung der vorhandenen Piv-Schutzgruppe gestaltet sich als besonders schwierig (Abbildung 67).

(i) unterschiedliche Abspaltungsbedingungen; (ii) 1 Äq. TBAOH, i-PrOH Abbildung 67: Versuch zur Abspaltung der Schutzgruppen

Eine Abspaltung der Pivaloyl-Schutzgruppe unter sauren Bedingungen¹⁶⁹ kann von Beginn an ausgeschlossen werden, da diese die vorhandene labile Glucuronidbindung ebenfalls hydrolysieren würde. Die beschriebenen reduktiven Methoden¹⁶⁹ scheiden ebenfalls aus, da diese auch den sterisch wesentlich weniger anspruchsvollen Methylester reduzieren würden. Leider war auch der Einsatz unterschiedlicher basischer Abspaltungsbedingungen zu Beginn nicht erfolgreich. Weder der Einsatz von 5 Äg. NaOH in MeOH, von 8 Äg. LiOH in einem Gemisch aus THF/Wasser, die Verwendung von 5 Äg. Natriummethanolat in MeOH oder von 20 Äq. Tetrabutylammoniumhydroxid in einem Gemisch aus Dioxan und Wasser, noch ein Versuch in der Mikrowelle mit neutralem Aluminiumoxid¹⁷⁰ lieferten das gewünschte entschützte Glucuronid XI. Der erste Verdacht. dass unter den basischen Reaktionsbedingungen die Lactamfunktionalität gespalten wird, kann vorerst nicht bestätig werden. Der Grund dafür liegt in der nicht durchführbaren Interpretation der erhaltenen NMR-Spektren der aus den Abspaltungsversuchen isolierten Rohprodukte, die jeweils aus mehreren nicht auftrennbaren Zersetzungsprodukten bestehen dürften und sich jeglicher

¹⁶⁹ Protective Groups in Organic Synthesis; Green, T. W.; Wuts, P. G. M.; John Wiley & Sons, Inc: 1999.

¹⁷⁰ Ley, St.; Mynett, D. M. *Synlett* **1993**, *8*, 793.

chromatographischen Reinigung über Kieselgel widersetzten. Es zeigte sich aber auch, dass eine klassische wässrige Aufarbeitung aufgrund der guten Wasserlöslichkeit der entstehenden (teilweise) entschützten Verbindungen als ungeeignet erscheint. Deshalb wurde versucht diese durch eine Aufarbeitung mit aktiviertem saurem Ionentauscherharz zu umgehen. Dazu wurde der mit 2 N HCl aktivierte und mit Methanol gewaschene Ionentauscher der jeweiligen Reaktionslösung zugegeben bis ein pH von ~3.5 erreicht wurde. Die Reaktionslösung wurde danach noch kurz gerührt. Im Anschluss daran wurde das Harz abfiltriert und mit einem Gemisch aus Methanol und wässrigem Ammoniak (Gradient: MeOH \rightarrow Ammoniak) gewaschen. Die erhaltenen Fraktionen wurden im Vakuum eingedampft und mittels NMR analysiert. Aber auch mit dieser Methode konnten entweder nur geringe Spuren an Zersetzungsprodukten oder gar kein Rohprodukt isoliert werden. Ein möglicher Grund dafür ist wahrscheinlich die Basizität des vorhandenen Pyridinstickstoffs der unter Ausbildung eines quartären Ammoniumsalzes irreversibel an das saure Ionentauscherharz bindet.

Letztlich konnte aber durch die Verwendung von Tetraethylammoniumhydroxid in Isopropanol und einer direkten chromatographischen Reinigung über "Reversed-Phase-Kieselgel" (Merck LiChroprep[®]RP-18(40-63µm)) eine erste erfolgreiche Abspaltung erzielt werden. In einem ersten Versuch wurde versehentlich nur 1 Äq. TEAOH zur Abspaltung zugegeben und für 5 Tage bei Raumtemperatur gerührt. Nach dem Eindampfen der Lösung wurde der Rückstand in Methanol gelöst und im Anschluss daran direkt durch Säulenchromatographie gereinigt (Gradient: Methanol: $H_2O = 80:20 \rightarrow 20:80$). Die aus dem ¹H-NMR-Spektrum abgeleitete Struktur des - wenn auch nur mit 20% Ausbeute - isolierten Produkts lässt auf eine bevorzugte Spaltung des Methylesters unter Bildung des Ammoniumsalzes 74 schließen. In Anlehnung an Harding *et al.*¹⁷¹ wurde im Anschluss die Abspaltung mit 10 Äq. Base durchgeführt und das Reaktionsgemisch unter identen Bedingungen aufgearbeitet und gereinigt. Unter den gewählten Bedingungen konnte XI nicht als Reinsubstanz isoliert werden. Die erhaltenen NMR-Daten lassen aber auf eine erfolgreiche Abspaltung schließen, allerdings kann das gebildete Glucuronid nicht von dem ebenfalls im Überschuss vorhanden Tetraethylammoniumhydroxid abgetrennt werden. Eine genaue Detektion während der chromatographischen Reinigung gestaltete sich ebenfalls als schwierig und der beste Weg zur Aufreinigung wäre wahrscheinlich die Trennung des Reaktionsgemisches mittels präparativer "Reversed-Phase-HPLC". Diese Untersuchungen konnten aber im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

¹⁷¹ Harding, J. R.; King, D. K.; Perrie, J. A.; Sinnott, D.; Stachulski, A. V. Org. Biomol. Chem. 2005, 3, 1501.

3.3. Zusammenfassung

Im ersten Teil der hier vorliegenden Arbeit wurden 4 unterschiedliche Methoden zur Synthese von $(1\rightarrow 6)$, $(1\rightarrow 4)$ bzw. $(1\rightarrow 2)$ verknüpften *C*-Disacchariden untersucht.

Ausgehend von den in Position 6 halogenierten Glucosederivaten 12a und 12b sollte in einer Palladium-katalysierten Alky-Alkyl Kupplung mit *C*-Glucoboran 7a die gewünschte $(1\rightarrow 6)$ -Verknüpfung aufgebaut werden. Es zeigte sich jedoch, dass aufgrund des sterischen Anspruchs der beiden Kupplungspartner unter den gewählten Bedingungen weder die oxidative Addition mit 12a bzw. 12b noch die darauf folgende Transmetallierung mit 7a stattfand. In weiterer Folge wurde die Synthese von $(1\rightarrow 4)$ -*C*-Zuckern durch Suzuki-Miyaura Kupplung von 7a mit 5-Brom-2-pyranon (19a) untersucht. Die dafür notwendigen Precursorverbindungen V wurde aber aufgrund der Instabilität der eingesetzten Brompyranone gegenüber den - für die Kupplung notwendigen - basischen Reaktionsbedingungen nicht erhalten. Bereits der Einsatz von 1 M Kaliumphosphat in DMF führte zur vollständigen Zersetzung von 19a. Ein Wechsel zu den wesentlich stabileren Lactolen VI scheiterte am Aufbau ebendieser (Abbildung 68).

Abbildung 68: Zusammenfassung Synthesestrategie I und II

In der dritten Synthesestrategie wurde die Verwendung von 1,3-Dithian-Derivaten und ihr Einsatz in einer Additions-/Deprotonierungs-/Additionssequenz mit unterschiedlichen elektrophilen Kohlenhydratbausteinen als Schlüsselschritt zum Aufbau der *C*-Disaccharid-Struktur untersucht. Nach erfolgter Deprotonierung reagierte das anomere 1,3-Dithiane **36** allerdings bevorzugt - unter Spaltung des vorhandenen Pyranrings - zu Dithioketenacetal **43**. Das mit dem 1,3-Dithian-Teil in Position 6 des Zuckers synthetisierte Analogon **34** war aufgrund der ungünstigen axialen Position des vorhandenen Wasserstoffs nur sehr schlecht deprotonierbar und der beobachtet Umsatz war ebenfalls abhängig vom sterischen Anspruch des eingesetzten Elektrophils. Durch eine Smith-Tietze-Kupplung von 2-Silyl-1,3-dithian mit Anhydroglucose **39** sollten die beobachteten Probleme umgangen werden, aber auch in diesem Fall reagierte das gebildete anomere 1,3-Dithian nach erfolgter Brook-Umlagerung bevorzugt zu Dithioketenacetal **44** (Abbildung 69).

Abbildung 69: Zusammenfassung - Synthesestrategie III

Letztlich zeigte sich jedoch, dass die vierte Synthesestrategie, die im Schlüsselschritt den zweiten Pyranonring durch eine oxidative Ringerweiterung aus - mit *C*-Glucopyranosiden - substituierten Furfurylalkoholen aufbaut, die erfolgreichste Methode zur *C*-Disaccharid-Synthese darstellte. Ausgehend von Glucolacton 4 wurden die jeweiligen α - und β -*C*-Aldehyde 49 α , β und 51 β synthetisiert. Eine direkte Addition von Furyllithium wurde aufgrund der erhaltenen schlechten Diastereoselektivitäten durch eine zusätzliche

Oxidations-/CBS-Reduktionsequenz ersetzt. Dadurch wurden die jeweiligen *R*- bzw. *S*-Carbinole **52** und **53** mit mittelmäßigen bis guten Diastereoselektivitäten (bis zu 82% *de*) erhalten. Der Aufbau der zweiten Hexosestruktur erfolge durch eine oxidative Umlagerung mit NBS. Abschließend wurde die Möglichkeit einer gezielten selektiven Funktionalisierung der gebildeten L-Zucker-Struktur am Beispiel einer Luche Reduktion von **57** α gezeigt (Abbildung 70).

Abbildung 70: Zusammenfassung - Synthesestrategie IV

Den zweiten Teil der Arbeit bildete die Synthese von trans-3'-Hydroxycotinin-O-βglucuronid. Die Kupplung von trans-3'-Hydroxycotinin mit unterschiedlich aktivierten Glucuronsäuren wurde dabei eingehend untersucht. Durch den Einsatz von Pivaloyl-geschützem Glucuronsäureimidat 68 wurde 73 letztlich mit sehr guten 85% Ausbeute erhalten. In weiter Folge wurden noch unterschiedliche Bedingungen zur Abspaltung der Schutzgruppe untersucht. Der Einsatz von Tetraethylammoniumhydroxid gekoppelt mit einer chromatographischen Reinigung über "Reversed-Phase-Kieselgel" erscheint hier vorerst als am Besten geeignet (Abbildung 71).

Abbildung 71: Zusammenfassung - trans-3'-Hydroxycotinin-O-β-glucuronid

4. EXPERIMENTELLER TEIL

4.1. Allgemeine Angaben

Schmelzpunkte:

Schmelzpunkte wurden auf einem Heiztischmikroskop nach Kofler bestimmt und sind nicht korrigiert.

Kernresonanzspektroskopie:

NMR-Spektren wurden auf einem Bruker AC 200 (¹H: 200 MHz; ¹³C: 50 MHz) oder auf einem Bruker AC 400 (¹H: 400 MHz; ¹³C: 100 MHz) aufgenommen. Die Messungen erfolgten bei 300 K. Die chemischen Verschiebungen sind als δ -Werte in ppm angegeben. Die Referenzierung erfolgte automatisch auf die jeweiligen Lösungsmittelpeaks. Die Multiplizitäten der Peaks wurden wie folgt abgekürzt: Breit (b), Singulett (s), Dublett (d), Triplett (t), Quadruplett (q) und Multiplett (m).

Dünnschichtchromatographie:

DC-Alufolien 60 F_{254} (Merck); Detektion: Im UV-Licht oder durch Besprühen mit Molybdatophosphorsäure (5% in Ethanol) bzw. mit Ninhydrin-Lösung (100:3:0.3 Butanol:Essigsäure:Ninhydrin) und anschließendem Erhitzen.

Gaschromatographie:

GC/MS-Analysen wurden auf einem VOYAGER Quadrupol (Thermo Finnigan) als Masse und einem GC 800 TOP Gaschromatographen mit einer BGB-5 (30 m × 0.32 mm i.D., 1.0 μ m Filmstärke) Kapillarsäule durchgeführt. Die Elektronenenergie betrug dabei 70 eV und die Ionenquelle hatte eine Temperatur von 200 °C. Das Temperaturprofil für die Messung betrug 80 °C (2 min) // 10 °C/min // 280 °C (3 min).

Elementaranalysen:

Elementaranalysen wurden am Institut für Physikalische Chemie der Universität Wien, Mikroanalytisches Laboratorium, Währinger Str. 42, 1090 Wien durchgeführt.

Polarimetrie:

Drehwerte wurden mit einem Perkin-Elmer 241 Polarimeter bestimmt. Die Schichtdicke der Küvette war bei allen Messungen 10 cm.

Reagenzien und Lösungsmittel:

Reagenzien wurden in handelsüblicher Qualität - wenn nicht anders vermerkt - ohne weitere Reinigung verwendet.

Methylenchlorid, Diethylether, Petrolether und Ethylacetat wurden vor der Verwendung destilliert.

Wasserfreie Lösungsmittel:

Wasserfreies Tetrahydrofuran, wasserfreier Diethylether und wasserfreies Toluol wurden durch Destillieren über Natriumdraht als Trockenmittel und Benzophenon als Indikator gewonnen. Methylenchlorid und Chloroform wurden über Phosphorpentoxid, Methanol mit Magnesium als Trockenmittel und Ethanol mit Natriumdraht als Trockenmittel destilliert. DMF, DMSO und Aceton wurden mit geglühtem Molsieb gerührt, abfiltriert und über Molsieb gelagert.

Disopropylamin und Triethylamin

Beide Amine wurden über CaH₂ gerührt, destilliert und unter N₂-Atmosphäre über Molsieb aufbewahrt.

Pyridin, Anilin und TMEDA

Alle drei Amine wurden jeweils vor ihrer Verwendung destilliert und danach über Molsieb gelagert.

N-Bromsuccinimid

N-Bromsuccinimid wurde aus Wasser umkristallisiert und am Hochvakuum getrocknet.

Lithiumorganyle

n-Butyllithium wurde als \sim 2.5 M Lösung in Hexan, *t*-Butyllithium wurde als \sim 1.7 M Lösung in Pentan und Methyllithium wurde als \sim 1.6 M Lösung in Ether von der Firma Fluka bezogen. Die genaue Konzentration wurde jeweils wie folgt bestimmt:

Ein Körnchen 1,10-Phenanthrolin wurde in 2 ml wasserfreiem Diethylether gelöst und dieser mit 0.50 ml *n*-BuLi-Lösung versetzt. Die braune Lösung wurde in Folge mit einer 1.0 M *sek*-BuOH in wasserfreiem Toluol bis zur Entfärbung nach gelb titriert.¹⁷²

LDA-Lösung

Zur Herstellung der LDA-Lösung wurden unter N₂-Atmospähre 1.1 Äquivalente wasserfreies Diisopropylamin in wasserfreiem THF gelöst auf -50 °C gekühlt und danach 1.0 Äquivalent an *n*-BuLi zugegeben. Es wurde auf -20 °C erwärmt, eine Stunde gerührt und zum Abschluss noch 10 min bei 0 °C gerührt.

Dimethyldioxiran

Die Herstellung der Dimethyldioxiran-Lösung erfolgte laut Literatur¹¹³ durch Oxidation von Aceton mit Oxone[®]. Die blassgelbe Lösung wurde im Eisfach aufbewahrt und konnte für ~14 Tage verwendet werden.

(+)-(Camphersulfonyl)oxaziridin

Die Herstellung des Oxaziridins erfolgte nach Davis *et al.*¹⁶³ ausgehend von (+)-Camphersulfonsäure. Die Herstellung erfolgte durch DI Katharina Bica.

CBS-Katalysatoren

(S)- und (R)- (α, α) -Diphenylprolinol wurden laut Literatur^{142,145} aus den jeweiligem (S)- bzw. (R)-Prolin synthetisiert. Die Herstellung erfolgte durch DI Katharina Bica und DI Stefan Böhmdorfer.

¹⁷² Watson, S. C.; Eastham, J. F. J Organomet. Chem. **1967**, *9*, 165.

4.2. Untersuchungen zur Synthese von "echten" und "pseudo" *C*-verknüpften Di- und Oligosacchariden

4.2.1. Versuche zur Pd-katalysierten C(sp³)-C(sp³)-Kupplung

4.2.1.1. Synthese von 2,3,4,6-Tetra-O-benzyl-1-O-methyl-α-D-glucopyranose (2)

Ansatz:

17.0 g	87.0 mmol	α -Methyl-D-glucopyranosid (1)
119.0 g	696.0 mmol	Benzylbromid
25.0 g	520.8 mmol	Natriumhydrid/50%-ige Suspension in Mineralöl
2.1 g	8.7 mmol	Tetrabutylammoniumiodid
200 ml		wasserfreies DMF

Durchführung:

Natriumhydrid wurde unter N₂-Atmospäre in wasserfreiem DMF vorgelegt und 1, gelöst in 200 ml wasserfreiem DMF, bei 0 °C zugetropft. Danach wurde langsam Benzylbromid zugetropft und die Suspension für 72 Stunden bei Raumtemperatur gerührt. Die Reaktionslösung wurde langsam auf 400 ml Eiswasser gegossen und insgesamt 3x mit Ether extrahiert. Die vereinigten Phasen wurden 1x mit gesättigter Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde mittels SC gereinigt (300 g SiO₂; Gradient: PE:EE 8:1 \rightarrow 1:1).

Ausbeute:

47.5 g (98% der Theorie) leicht gelbes Öl

Analytik:

 R_{f} -Wert: 0.64 (PE:EE = 3:1)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.42-7.10 (m, 20H, Phenyl-H), 5.04-4.42 (m, 9H, H-1 und PhCH₂), 4.01 (t, J = 9.1 Hz, 1H, H-5), 3.83-3.52 (m, 5H, H-2, H-3, H-4, 2x H-6), 3.58 (dd, $J_1 = 9.6$ Hz, $J_2 = 3.5$ Hz, 1H, H-5), 3.10 (s, 3H, CH₃) - entspricht Lit.¹⁷³

4.2.1.2. Synthese von 2,3,4,6-Tetra-*O*-benzyl-α-D-glucopyranose (3)

Ansatz:

yl-α-D-gl	-D-glucopyranose (2)
	D Shoopy

Durchführung:

Glucose 2 wurde in Essigsäure und 2 N Schwefelsäure gelöst und für 16 Stunden auf Rückfluss erhitzt. Die Reaktionslösung wurde auf 800 ml Wasser gegossen und der zähe weiße Niederschlag über eine Glassintertrichter filtriert, mit Wasser gewaschen und in CH_2Cl_2 aufgenommen. Die organische Phase wurde 1x mit Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde durch SC gereinigt (200 g SiO₂; Gradient: PE:EE 5:1 \rightarrow 1:1, dann CH₂Cl₂). Die ebenfalls erhaltenen Mischfraktionen wurden vom Lösungsmittel befreit und aus PE/EE umkristallisiert.

Ausbeute:

9.8 g (37% der Theorie) farbloser Feststoff

Verhältnis α : β = 2:1

Analytik:

 R_{f} -Wert: 0.21 (PE:EE = 3:1)

F_p: 149-152 °C; Lit.:¹⁷⁴ 151-152 °C

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.45-7.06 (m, 20H, Phenyl-H), 5.16 (d, J = 2.8 Hz, 0.7H, H-1_α), 5.00-4.41 (m, 8.3H, PhCH₂, H-1_β), 4.08-3.48 (m, 6H, H-2, H-3, H-4, H-5, 2x H-6), 2.87 (bd, J = 2.2 Hz, 0.7H, OH_α) – entspricht Lit.¹⁷⁴

¹⁷³ Bombard, S.; Maillet, M.; Capmau, M.-L. Carbohydr. Res. 1995, 275, 433.

4.2.1.3. Synthese von 2,3,4,6-Tetra-O-benzyl-D-glucoronsäure-δ-lacton (4)

Ansatz:

5.0 g	9.25 mmol	2,3,4,6-Tetra- O -benzyl- α -D-glucopyranose (3)
20.5 g	200 mmol	Essigsäureanhydrid
30.8 g	395 mmol	wasserfreies DMSO

Durchführung:

Glucopyranose **3** wurde in wasserfreiem DMSO und frisch destilliertem Essigsäureanhydrid gelöst und bei Raumtemperatur für 24 Stunden gerührt. Das Reaktionsgemisch wurde auf Eiswasser gegossen, langsam mit gesättigter NaHCO₃-Lösung neutralisiert und 2x mit EE extrahiert. Die vereinigten organischen Phasen wurden 1x mit Wasser und 2x mit gesättigter Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde mittels VFC gereinigt (200 g SiO₂; Gradient: PE:EE $15:1 \rightarrow 3:1$).

Ausbeute:

4.5 g (90% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.45 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.45-7.06 (m, 20H, Phenyl-H), 5.04 (d, *J* = 11.3, 1H, H-2), 4.78-4.39 (m, 8H, PhCH₂), 4.18-4.04 (m, 1H, H-5), 4.01-3.84 (m, 2H, H-4, H-3), 3.78 (dd, *J*₁ = 11.0 Hz, *J*₂ = 2.5 Hz, 1H, H-6_a), 3.70 (dd, *J*₁ = 11.0 Hz, *J*₂ = 3.2 Hz, 1H, H-6_b) – entspricht Lit.¹⁷⁵

¹⁷⁴ Damager, I.; Olsen, C. E.; Møller, B. L.; Motawia, M. S. *Carbohydr. Res.* **1999**, *320*, 19.

¹⁷⁵ Brunckova, J.; Crich, D. *Tetrahedron* **1995**, *51*, 11945.

4.2.1.4. Synthese von Dimethyltitanocen (6)

Cp∖ _{⊤i} ∕Cl	MeLi	Cp _{∖⊤i} ∕CH ₃
Cp´''`Cl	Ether	Cp´''`CH ₃
5		6
249.00		208.16
C ₁₀ H ₁₀ Cl ₂ Ti		C ₁₂ H ₁₆ Ti

Ansatz:

1.50 g	6.02 mmol	Titanocendichlorid (5)
9.00 ml	14.45 mmol	Methyllithium in Ether 1.6 M
30 ml		wasserfreier Ether

Durchführung:

Unter Argonatmosphäre wurde **5** in wasserfreiem Ether suspendiert und auf 0 °C gekühlt. Aufgrund der Lichtempfindlichkeit des Produkts wurde der Reaktionskolben mit Alufolie abgedeckt. Methyllithium wurde langsam zugeben und die Reaktionslösung auf Raumtemperatur erwärmt. Es wurde für weitere 45 Minuten gerührt, auf 0 °C gekühlt und mit H₂O hydrolysiert. Die etherische Phase wurde abgetrennt und die wässrige Phase noch 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel schonend (20 °C) am Rotavapor entfernt. Der erhaltene orange Feststoff musste nicht mehr weiter gereinigt werden. Aus Stabilitätsgründen und zur einfacheren Handhabung wurde das Produkt in 10 ml wasserfreiem Toluol gelöst und im Kühlschrank aufbewahrt.

Ausbeute:

1.10 g (88% der Theorie) oranger Feststoff gelöst in 10 ml wasserfreiem Toluol (0.52 M Lösung)

Analytik:

F_p: >93 °C Zersetzung; Lit.:⁶⁰ 93-96 °C

4.2.1.5. Synthese von 2,6-Anhydro-3,4,5,7-tetra-*O*-benzyl-1-deoxy-D-gluco-hept-1enitol (7)

Ansatz:

1.00 g	1.86 mmol	Gluconolacton 5
8.94 ml	4.65 mmol	Dimethyltitanocen in Toluol 0.52 M

Durchführung:

Unter Argonatmosphäre wurde Lacton 5 mit einer Dimethyltitanocen-Lösung versetzt und anschließend über Nacht auf 70 °C erhitzt. Die Reaktionslösung wurde direkt für die SC verwendet und dadurch das gewünschte gereinigte Produkt erhalten (100 g SiO₂; Gradient: PE:EE $30:1 \rightarrow 2:1$).

Ausbeute:

0.89 g (88% der Theorie) farbloser Feststoff

Analytik:

R_f-Wert: 0.54 (CH₂Cl₂:MeOH)

F_p: 65-67 °C; Lit.:⁶⁰ 65-68 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.34-7.00 (m, 20H, Phenyl-H), 4.84-4.39 (m, 10H, C=CH₂, PhCH₂), 3.88 (bd, *J* = 7.0 Hz, H-3), 3.76-3.56 (m, 5H, H-2, H-4, H-5, 2x H-6) – entspricht Lit.⁶⁰

4.2.1.6. Synthese von (2,3,4,6-Tetra-*O*-benzyl-β-D-glucopyranos-1-yl)methanol (8)

Ansatz:

100 mg	0.186 mmol	1-Methylen-C-glykosid 7
0.97 ml	0.465 mmol	9-BBN in THF 0.5 M
2 ml		wasserfreies THF
0.36 ml		wässrige KOH 5%
0.70 ml		Wasserstoffperoxid 35%

Durchführung:

Unter N₂-Atmosphäre wurde 7 in wasserfreiem THF gelöst und auf 0 °C gekühlt. 9-BBN wurde zugegeben, die Reaktionslösung auf Raumtemperatur erwärmt, und für 3.5 Stunden gerührt. Anschließend wurde wieder auf 0 °C gekühlt und zuerst H_2O_2 und dann KOH zugetropft und über Nacht bei Raumtemperatur gerührt. Es wurde mit H_2O und Ether verdünnt, die etherische Phase abgetrennt und die wässrige Phase noch 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohprodukts erfolgte durch SC (10 g SiO₂; Eluens: PE:EE 2:1).

Ausbeute:

95 mg (92% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.20 (PE:EE = 2:1)

F_p: 87-90 °C; Lit.: ⁵⁹ 93-94 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.34-7.01 (m, 20H, Phenyl-H), 4.89-4.38 (m, 8H, PhCH₂), 3.89-3.74 (m, 1H, H-3), 3.71- 3.35 (m, 7H), 3.29 (ddd, J_1 = 9.5 Hz, J_2 = 4.6 Hz, J_3 = 2.8 Hz, 1H) – entspricht Lit.⁵⁹

4.2.1.7. Synthese von 1-O-Methyl-6-O-trityl-α-D-glucopyranose (9)

Ansatz:

10.0 g	51.5 mmol	1- <i>O</i> -Methyl- α -D-glucopyranose (1)
17.4 g	62.4 mmol	Triphenylmethanchlorid
75 ml		Pyridin

Durchführung:

Glucose 1 wurde in frisch destilliertem Pyridin gelöst, Triphenylmethanchlorid zugegeben und das Reaktionsgemisch für 12 Stunden bei Raumtemperatur gerührt. Es wurde mit 150 ml H₂O verdünnt und 2x mit EE extrahiert. Die vereinigten organischen Phasen wurden 4x mit 2 N HCl, 2x mit einer gesättigten NaHCO₃-Lösung und 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde aus PE/Aceton umkristallisiert.

Ausbeute:

18.2 g (80% der Theorie) leicht gelbe Kristalle

Analytik:

 R_{f} -Wert: 0.50 (CH₂Cl₂:MeOH = 9:1)

F_p: 129-131 °C; Lit.:⁶⁶ 97-99 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.44-7.05 (m, 15H, Phenyl-H), 4.67 (d, *J* = 3.7 Hz, 1H, H-1), 3.69-3.23 (m, 7H, H-2, H-3, H-4, H-5, 2x H-6, 1xOH), 3.33 (s, 3H, CH₃), 2.67 (d, *J* = 8.6 Hz, 1H, OH) – entspricht Lit.⁶⁶

4.2.1.8. Synthese von 2,3,4-Tri-*O*-benzyl-1-*O*-methyl-6-*O*-trityl-α-Dglucopyranose (10)

Ansatz:

5.00 g	11.45 mmol	Glucopyranose 9
11.60 g	68.10 mmol	Benzylbromid
2.30 g	57.25 mmol	Natriumhydrid/60%-ige Suspension in Mineralöl
150 mg	kat.	Tetrabutylammoniumiodid
20 ml		wasserfreies THF

Durchführung:

Unter N_2 -Atmosphäre wurde **9** in wasserfreiem THF gelöst, Benzylbromid und Tetrabutylammoniumiodid zugegeben und auf 0 °C gekühlt. Bei dieser Temperatur wurde Natriumhydrid portionsweise zugegeben, auf Raumtemperatur erwärmt und für weitere 36 Stunden gerührt.

Die Reaktionslösung wurde langsam auf H₂O gegossen und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit 2 N HCl, 2 N NaOH und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch VFC gereinigt (200 g SiO₂; Gradient: PE:EE 15:1 \rightarrow 2:1).

Ausbeute:

6.12 g (76% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.60 (PE:EE = 5:1)

F_p: 45-47 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.49-7.00 (m, 28H, Phenyl-H), 6.85-6.68 (m, 2H, Phenyl-H), 4.94-4.56 (m, 6H, PhCH₂, H-1), 4.21 (d, J = 10.3, 1H, PhCH₂), 3.89 (t, J = 9.2 Hz, 1H, H-3), 3.73 (ddd, $J_1 = 9.7$, $J_2 = 4.2$, $J_3 = 1.0$, 1H, H-5),

3.61-3.30 (m, 3H, H-4, H-6), 3.37 (s, 3H, CH₃), 3.20 (dd, $J_1 = 10.3$ Hz, $J_2 = 4.8$ Hz, 1H, H-2) – entspricht Lit.⁶⁶

4.2.1.9. Synthese von 2,3,4-Tri-O-benzyl-1-O-methyl-α-D-glucopyranose (11)

Ansatz:

6.00 g	8.49 mmol	Glucopyranose 10
6.65 g	67.90 mmol	konz. H ₂ SO ₄
60 ml		Ethanol

Durchführung:

10 wurde in Ethanol suspendiert und auf 0 °C gekühlt. Danach wurde langsam konz. H_2SO_4 zugetropft und die nun klare Lösung für weitere 3 Stunden bei Raumtemperatur gerührt. Es wurde mit 2 N NaOH neutralisiert und das Lösungsmittel am Rotavapor entfernt. Die wässrige Phase wurde 3x mit Ether extrahiert und die vereinigten Phasen jeweils 1x mit H_2O und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt.

Das Rohprodukt wurde über VFC gereinigt (200 g SiO₂; Gradient PE:EE 15:1 \rightarrow reines EE).

Ausbeute:

3.62 g (92% der Theorie) leicht gelbes Öl

Analytik:

R_f-Wert: 0.20 (PE:EE =3:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.34-7.13 (m, 15H, Phenyl-H), 4.96-4.45 (m, 7H, PhCH₂, H-1), 3.93 (t, *J* = 9.1, 1H, H-3), 3.75-3.36 (m, 5H, H-2, H-4, H-5, 2x H-6), 3.28 (s, 3H, CH₃) – entspricht Lit.⁶⁶

4.2.1.10. Synthese von 2,3,4-Tri-*O*-benzyl-6-brom-6-deoxy-1-*O*-methyl-α-Dglucopyranose (12a)

Ansatz:

325 mg	0.70 mmol	2,3,4-Tri- <i>O</i> -benzyl-1- <i>O</i> -methyl- α -D-glucopyranose (11)
275 mg	1.05 mmol	Triphenylphosphin
348 mg	1.05 mmol	Tetrabrommethan
5 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Glucopyranose **11** wurde in wasserfreiem CH_2Cl_2 gelöst, Triphenylphosphin und Tetrabrommethan bei 0 °C zugegeben und für 12 Stunden bei Raumtemperatur gerührt. Anschließend wurde mit H₂O hydrolysiert und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt.

Das Rohprodukt wurde durch SC gereinigt (50 g SiO₂; Gradient: PE:Ether 10:1 \rightarrow 2:1).

Ausbeute:

330 mg (89% der Theorie) farbloser klebriger Feststoff

Analytik:

 R_{f} -Wert: 0.72 (PE:EE = 3:1)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 138.5/2x137.9 (3s, Phenyl-C), 128.4-127.7 (15d, Phenyl-CH), 98.1 (d, C-1), 81.8 (d, C-3), 80.0 (d, C-2), 79.6 (d, C-4), 75.8/75.3/73.4 (3t, PhCH₂), 69.3 (d, C-5), 55.4 (q, CH₃), 33.6 (t, C-6) – entspricht Lit.¹⁷⁶

¹⁷⁶ Limousin, C.; Olesker, A.; Cleophax, J.; Petit, A.; Loupy, A. Lukacs, G. Carbohydr. Res. 1998, 312, 23.

4.2.1.11. Synthese von 2,3,4-Tri-*O*-benzyl-6-deoxy-6-iod-1-*O*-methyl-α-Dglucopyranose (12b)

Ansatz:

360 mg	0.78 mmol	2,3,4-Tri- O -benzyl-1- O -methyl- α -D-glucopyranose (11)
244 mg	0.93 mmol	Triphenylphosphin
329 mg	0.93 mmol	Iod
127 mg	1.86 mmol	Imidazol
5 ml		wasserfreies Toluol

Durchführung:

Verbindung **11** wurde in wasserfreiem Toluol gelöst, Triphenylphosphin, Iod und Imidazol zugeben und das Reaktionsgemisch für 2 Stunden auf Rückfluss erhitzt.

Es wurde mit Ether verdünnt und jeweils 1x mit einer 5% Na₂S₂O₃-Lösung und einer gesättigten Kochsalzlösung extrahiert, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt.

Die Reinigung des Rohprodukts erfolgte durch SC (30 g SiO₂; Gradient: PE:Ether 9:1 \rightarrow 2:1).

Ausbeute:

440 mg (98% der Theorie) farbloser klebriger Feststoff

Analytik:

 R_{f} -Wert: 0.65 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.47-7.20 (m, 15H, Phenyl-H), 5.11-4.54 (m, 7H, PhCH₂, H-1), 4.04 (t, *J* = 9.3 Hz, 1H, H-3), 3.65-3.20 (m, 5H, H-2, H-4, H-5, 2x H-6), 3.44 (s, 3H, CH₃) – entspricht Lit.¹⁷⁷

¹⁷⁷ Ko, K.-S.; Zea, C. J.; Pohl, N. L. J. Am. Chem. Soc. 2004, 126, 13188.

4.2.1.12. Synthese von *n*-Octadecan

Durchführung:

Unter Argonatmosphäre wurde 1-Hexen vorgelegt, 9-BBN bei 0 °C zugetropft und danach über Nacht bei Raumtemperatur gerührt.

Ebenfalls unter Argon wurden Pd(OAc)₂, PCy₃, K₃PO₄ in einem Kolben vorgelegt, H₂O zugegeben und danach über eine Spritze die Alkylboran-Lösung zugetropft. Das Reaktionsgemisch wurde noch über Nacht bei Raumtemperatur gerührt. Der Reaktionsumsatz wurde mittels GC/MS bestimmt. Dazu wurden 0.1 ml Reaktionslösung entnommen, mit Ether verdünnt, filtriert, 1x mit H₂O gewaschen, über Na₂SO₄ getrocknet, filtriert und danach direkt für die GC/MS-Analyse verwendet.

Ausbeute:

Laut GC/MS > 90%

Analytik:

GC/MS: 17.22 min; m/z (EI⁺): 254.35 (M⁺, 3.80), 112.92 (M⁺, 11.0), 98.86 (M⁺, 18.8), 84.68 (M⁺, 75.8), 70.61 (100.0), 56.59 (M⁺, 98.4)

4.2.2. Versuche zur Pd-katalysierten Suzuki-Kupplung mit elektrophilen Pyranderivaten

4.2.2.1. Synthese der Pyranon-Scaffolds

4.2.2.1.1. Synthese von 5,6-Dihydro-2H-pyran-2-on (17)

Ansatz:

8.60 g	0.10 mmol	Vinylessigsäure (16)
3.00 g	0.10 mmol	Paraformaldehyd
0.40 ml	cat.	konz. Schwefelsäure
25 ml		Essigsäure (98%)

Durchführung:

Vinylessigsäure und Paraformaldehyd wurde in Essigsäure vorgelegt, Schwefelsäure zugetropft und das Reaktionsgemisch für 15 Stunden auf Rückfluss erhitzt. Es wurde zuerst mit festem Natriumacetat und danach mit einer gesättigten NaHCO₃-Lösung neutralisiert und mehrere Male mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden 1x mit H₂O gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Laut NMR war eine weitere Reinigung des Rohprodukts nicht mehr notwendig.

Ausbeute:

4.75 g (48% der Theorie) leicht braunes Öl

Analytik:

R_f-Wert: 0.74 (CH₂Cl₂:MeOH = 10:1) ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 6.89 (dt, J_1 = 9.7 Hz, J_2 = 4.3 Hz, 1H, H-4), 5.94 (dt, J_1 = 9.7 Hz, J_2 = 1.9 Hz, 1H, H-3), 4.35 (dt, J_1 = 6.2 Hz, J_2 = 0.2 Hz, 2H, 2x H-6), 2.40 (ddt, J_1 = 6.2 Hz, J_2 = 4.3 Hz, J_3 = 1.9 Hz, 2H, 2x H-5) – entspricht Lit.⁷⁹

4.2.2.1.2. Synthese von Pyran-2-on (18)

Ansatz:

1.00 g	10.19 mmol	5,6-Dihydro-2 <i>H</i> -pyran-2-on (17)
2.00 g	11.21 mmol	N-Bromsuccinimid
50 mg	kat.	Dibenzoylperoxid
10 ml		Triethylamin
100 ml		Tetrachlorkohlenstoff

Durchführung:

Pyranon 17 wurde in CCl₄ gelöst, *N*-Bromsuccinimid und eine katalytischen Menge an Dibenzoylperoxid zugegeben und das Reaktionsgemisch für 1 Stunde auf Rückfluss erhitzt. Danach wurde abgekühlt, das ausgefallene Succinimid abfiltriert, Triethylamin in einer Portion zugegeben und abermals für 12 Stunden auf Rückfluss erhitzt. Das Lösungsmittel wurde am Rotavapor entfernt und der Rückstand durch SC gereinigt (60 g SiO₂; Gradient: CH₂Cl₂:MeOH 100:0 \rightarrow 10:1).

Das somit erhaltene - leicht verunreinigte - Produkt wurde noch durch Kugelrohrdestillation gereinigt (0.5 Torr; K_p : 35-40 °C).

Ausbeute:

0.33 g (34% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.36 (CH₂Cl₂:MeOH = 100:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.48 (ddd, J_1 = 5.2 Hz, J_2 = 2.2 Hz, J_3 = 1.2 Hz, 1H, H-6), 7.31 (ddd, J_1 = 9.5 Hz, J_2 = 6.4 Hz, J_3 = 2.2 Hz, 1H, H-4), 6.33 (dt, J_1 = 9.5 Hz, J_2 = 1.2 Hz, 1H, H-3), 6.20 (ddd, J_1 = 6.4 Hz, J_2 = 5.2 Hz, J_3 = 1.2 Hz, 1H, H-5) – entspricht Lit.¹⁷⁸

¹⁷⁸ Pirkle, W. H.; Dines, M. J. Org. Chem. **1969**, 6, 1.
4.2.2.1.3. Synthese von 5-Brom-2H-pyran-2-on (19a)

Ansatz:

504 mg	5.14 mmol	5,6-Dihydro-2 <i>H</i> -pyran-2-on (17)
1.88 g	10.28 mmol	N-Bromsuccinimid
0.70 ml	5.14 mmol	Triethylamin
50 mg	kat.	Dibenzoylperoxid
100 ml		Tetrachlorkohlenstoff
30 ml		Chloroform

Durchführung:

Pyranon 17 wurde in CCl₄ gelöst, *N*-Bromsuccinimid und eine katalytische Menge an Dibenzoylperoxid zugegeben und das Reaktionsgemisch für 12 Stunde auf Rückfluss erhitzt. Danach wurde abgekühlt, das ausgefallene Succinimid abfiltriert und das Filtrat danach eingedampft. Der Rückstand wurde in Chloroform gelöst und bei 0 °C Triethylamin zugegeben. Es wurde für 3 Stunden gerührt, danach das Lösungsmittel am Rotavapor entfernt und das Rohprodukt direkt durch VFC gereinigt (70 g SiO₂; Eluens: CH₂Cl₂:MeOH 100:1).

Ausbeute:

317 mg (35% der Theorie) leicht brauner Feststoff

Analytik:

 R_{f} -Wert: 0.64 (CH₂Cl₂:MeOH = 100:1)

F_p: 60-63 °C; Lit.:⁸² 58-60 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.57 (dd, J_1 = 2.7 Hz, J_2 = 1.1 Hz 1H, H-6), 7.32 (dd, J_1 = 9.8 Hz, J_2 = 2.7 Hz, 1H, H-4), 6.28 (dd, J_1 = 9.8 Hz, J_2 = 1.1 Hz, 1H, H-3) – entspricht Lit.⁸²

4.2.2.1.4. Synthese von 3-Brom-5,6-dihydro-2H-pyran-2-on (20)

Ansatz:

1.00 g	10.20 mmol	5,6-Dihydro-2 <i>H</i> -pyran-2-on (17)
1.71 g	10.68 mmol	Brom
1.09 g	10.80 mmol	Triethylamin
20 ml		Tetrachlorkohlenstoff
10 ml		Chloroform

Durchführung:

Pyranon 17 und Brom wurden in Tetrachlorkohlenstoff gelöst und für 7 Stunden auf Rückfluss erhitzt. Das Lösungsmittel wurde im Vakuum entfernt und der ölige Rückstand abermals in Chloroform gelöst und Triethylamin bei Raumtemperatur zugegeben. Es wurde für 12 Stunden gerührt, das Lösungsmittel am Rotavapor entfernt und das Rohprodukt direkt durch SC gereinigt (100 g SiO₂; Eluens: CH₂Cl₂:MeOH 100:1).

Ausbeute:

1.76 g (97% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.50 (CH₂Cl₂:MeOH = 100:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.26 (t, *J* = 4.6 Hz, 1H, H-4), 4.45 (t, *J* = 6.1 Hz, 2H, 2x H-6), 2.54 (m, 2H, 2x H-5) – entspricht Lit.⁸¹

4.2.2.1.5. Synthese von 3-Brom-2H-pyran-2-on (19b)

Ansatz:

1.76 g	9.94 mmol	3-Brom-5,6-dihydro-2 <i>H</i> -pyran-2 <i>H</i> -on (20)
1.83 g	10.33 mmol	N-Bromsuccinimid
1.29 g	12.92 mmol	Triethylamin
50 mg	kat.	Dibenzoylperoxid
200 ml		Tetrachlorkohlenstoff
20 ml		Chloroform

Durchführung:

20 wurde in CCl₄ gelöst, *N*-Bromsuccinimid und eine katalytische Menge an Dibenzoylperoxid zugegeben und das Reaktionsgemisch für 6 Stunde auf Rückfluss erhitzt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand wurde in Chloroform aufgenommen, mit Triethylamin versetzt und für 5 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wurde abgezogen und das Rohprodukt direkt durch SC gereinigt (100 g SiO₂; Eluens: CH₂Cl₂:MeOH 100:1).

Ausbeute:

646 mg (37% der Theorie) leicht brauner Feststoff; das ebenfalls entstandene 5-Brom-2*H*-pyran-2-on konnte aufgrund des gleichen R_{f} -Werts chromatographisch nicht vollständig abgetrennt werden.

Analytik:

 R_{f} -Wert: 0.64 (CH₂Cl₂:MeOH = 100:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.68 (dd, J_1 = 7.0 Hz; J_2 = 1.9 Hz, 1H, H-4), 7.50 (dd, J_1 = 5.1 Hz, J_2 = 1.9 Hz, 1H, H-6), 6.24 (dd, J_1 = 7.0 Hz, J_2 = 5.1 Hz, 1H, H-5) – entspricht Lit.⁸¹

4.2.2.1.6. Synthese von 3,5,6-Tribrom-5,6-dihydro-2H-pyran-2-on (21a) und 3,5-Dibrom-2H-pyran-2-on (21b)

Ansatz:

100 mg	1.04 mmol	2-Pyranon (17)
326 mg	2.04 mmol	Brom
2 ml		Tetrachlorkohlenstoff

Durchführung:

Pyranon **18** wurde in Tetrachlorkohlenstoff gelöst und 1.04 Äquivalent Brom bei Raumtemperatur tropfenweise zugegeben und die Reaktionslösung für 12 Stunden auf Rückfluss erhitzt. Da der Umsatz laut DC noch nicht vollständig war, wurden weitere 0.5 Äquivalente an Brom zugegeben und für weitere 12 Stunden auf Rückfluss erhitzt. Dieser Vorgang wurde ein weiteres Mal wiederholt bis eine DC-Kontrolle vollständigen Umsatz ergab. Das Lösungsmittel wurde am Rotavapor entfernt und das Rohprodukt direkt durch SC gereinigt (30 g SiO₂; Eluens: PE:CH₂Cl₂ 1:1).

Ausbeute:

73 mg (22% der Theorie) gelbes Öl an 21a

120 mg (45% der Theorie) gelbes Öl an 21b

Daraus ergibt sich eine Gesamtausbeute von 67% der Theorie.

Analytik:

<u>21a</u>

 R_{f} -Wert: 0.70 (PE:CH₂Cl₂ = 2:3)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.39 (dd, J_1 = 6.3 Hz, J_2 = 1.9 Hz, 1H, H-4), 6.76 (dd, J_1 = 1.9 Hz, J_2 = 0.9 Hz, 1H, H-6), 4.99 (dd, J_1 = 6.3 Hz, J_2 = 0.9 Hz, H-5) – entspricht Lit. ¹⁷⁸

<u>21b</u>

 R_{f} -Wert: 0.60 (PE:CH₂Cl₂ = 2:3)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.07 (ddd, J_1 = 9.8 Hz, J_2 = 5.7 Hz, J_3 = 2.2 Hz, 1H, H-4), 6.80 (dd, J_1 = 2.2 Hz, J_2 = 0.9, 1H, H-6), 6.23 (d, J = 9.8 Hz, H-3), 4.98 (dd, J_1 = 5.7 Hz, J_2 = 0.9 Hz, 1H, H-5) – entspricht Lit.¹⁷⁸

4.2.2.1.7. Synthese von 3,5-Dibrom-2H-pyran-2-on (22)

Ansatz:

50 mg	0.15 mmol	3,5,6-Tribrom-2 <i>H</i> -pyran-2-on (21b)
23 mg	0.23 mmol	Triethylamin
1 ml		CH ₂ Cl ₂

Durchführung:

Verbindung **21b** wurde in CH₂Cl₂ gelöst und Triethylamin bei Raumtemperatur zugegeben. Die Reaktionslösung wurde für 45 Minuten gerührt, das Lösungsmittel im Vakuum entfernt und das Rohprodukt direkt durch SC gereinigt (7 g SiO₂; Eluens: PE:CH₂Cl₂ 1:1).

Ausbeute:

33 mg (87% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.34 (PE:CH₂Cl₂ = 2:3)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.75 (d, *J* = 2.4 Hz, 1H, H-6), 7.60 (d, *J* = 2.4 Hz, 1H, H-4) – entspricht Lit.¹⁷⁸

4.2.2.1.8. Synthese von 6-Hydroxy-2H-pyran-3(6H)-on (24)

Ansatz:

2.50 g	25.48 mmol	Furfurylalkohol (23)
9.25 g	37.52 mmol	3-Chlorperbenzoesäure (70%)
100 ml		CH ₂ Cl ₂

Durchführung:

Furfurylalkohol (23) wurde in CH_2Cl_2 gelöst und auf 0 °C gekühlt. 3-Chlorperbenzoesäure wurde in einer Portion zugegeben und das Reaktionsgemisch innerhalb von 4.5 Stunden auf 10 °C erwärmt. Zum Abtrennen der gebildeten 3-Chlorbenzoesäure wurde auf -78 °C gekühlt und der farblose Feststoff über eine Nutsche filtriert. Das Filtrat wurde am Rotavapor eingedampft und das erhaltene Rohprodukt über SC gereinigt (200 g SiO₂; Gradient: PE:EE $5:1 \rightarrow 1:1$).

Ausbeute:

1.72 g (59% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.33 (PE:EE = 1:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 6.96 (dd, J_1 = 10.4 Hz, J_2 = 3.1, 1H, H-5), 6.16 (d, J = 10.4 Hz, 1H, H-4), 5.63 (bs, 1H, H-6), 4.58 (d, J = 17.0 Hz, 1H, H-2_a), 4.13 (d, J = 17.0 Hz, 1H, H-2_b) – entspricht Lit.¹⁷⁹

4.2.2.1.9. Synthese von 6-Methoxy-2H-pyran-3(6H)-on (25)

Ansatz:

15.07 mmol	6-Hydroxy-2 <i>H</i> -pyran-3(6H)-on (24)
18.09 mmol	Iodmethan
18.09 mmol	Silber(I)oxid
	wasserfreies Aceton
	15.07 mmol 18.09 mmol 18.09 mmol

Durchführung:

Unter N₂-Atmosphäre wurde 24 in wasserfreiem Aceton gelöst, Silber(I)oxid und Iodmethan zugegeben und die Reaktionsgemisch für 15 Stunden bei Raumtemperatur gerührt. Es wurde über Hyflo filtriert und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde durch SC gereinigt (150 g SiO2; Gradient: PE:Ether $5:1 \rightarrow 3:1$).

¹⁷⁹ Ali, M. A.; Bhogal, N.; Findlay, J. B. C.; Fishwick, C. W. G. J. Med. Chem. 2005, 48, 5655.

Ausbeute:

1.10 g (57% der Theorie) farblose Flüssigkeit

Analytik:

R_{f} -Wert: 0.63 (PE:EE = 1:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 6.89 (dd, J_1 = 10.4 Hz, J_2 = 3.3 Hz, 1H, H-5), 6.13 (d, J = 10.4 Hz, 1H, H-4), 5.10 (d, J = 3.3 Hz, 1H, H-6), 4.45 (d, J = 16.8 Hz, 1H, H-2a), 4.10 (d, J = 16.8 Hz, 1H, H-2b), 3.52 (s, 3H, CH₃) – entspricht Lit. ¹⁸⁰

4.2.2.1.10. Synthese von N,N-Bis(trifluormethansulfonyl)anilin (27)

Ansatz:

2.50 g	26.84 mmol	Anilin
15.15 g	53.69 mmol	Trifluormethansulfonsäureanhydrid
5.43 g	53.69 mmol	Triethylamin
30 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Frisch destilliertes Anilin wurde unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ vorgelegt und auf -78 °C gekühlt. Trifluormethansulfonsäureanhydrid wurde zugeben und danach langsam frisch destilliertes Triethylamin zugetropft. Es wurde langsam auf -30 °C erwärmt und noch für 1.5 Stunden bei dieser Temperatur gerührt. Nach der Hydrolyse mit H₂O wurde mit CH₂Cl₂ verdünnt, die wässrige Phase abgetrennt und die organische Phase 1x mit H₂O, 2x mit 2 N HCl und 1x mit H₂O gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum abgezogen. Zur Reinigung wurde aus PE umkristallisiert und das daraus gewonnene Produkt mit kaltem CH₂Cl₂ digeriert.

Ausbeute:

2.75 g (29% der Theorie) leicht brauner Feststoff

¹⁸⁰ Liu, Z. D.; Khodr, H. H.; Liu, D. Y.; Lu, S. L.; Hider, R. C. J. Med. Chem. 1999, 42, 4814.

Analytik:

F_p: 99-101 °C; Lit: 93-94 °C ¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.65-7.28 (m, 5H, Phenyl-H) ¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 132.1 (s, C-1), 131.0 (2d, C-3, C-5), 129.9 (3d, C-2, C-4, C-6), 119.4 (2q, J = 325 Hz, 2x CF₃)

4.2.2.2. Kupplungsversuche

4.2.2.2.1. Synthese von (2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1yl)phenylmethan (28)

Ansatz:

54 mg	0.101 mmol	1-Methylen-C-glykosid 7
0.50 ml	0.252 mmol	9-BBN in THF 0.5 M
41 mg	0.202 mmol	Iodbenzol
0.10 ml	0.303 mmol	wässrige Kaliumphosphat-Lösung 3 M
8 mg	0.010 mmol	Pd(dppf)Cl ₂ ·CH ₂ Cl ₂
1 ml		wasserfreies DMF

Durchführung:

Unter Argonatmosphäre wurde 7 mit einer 0.5 M 9-BBN-Lösung versetzt und es wurde über Nacht bei Raumtemperatur gerührt. Nach der Zugabe von K₃PO₄ wurde die Reaktionslösung am Ultraschallbad entgast und anschließend noch für 5 Minuten gerührt.

Der Palladiumkatalysator und Iodbenzol wurden in wasserfreiem DMF gelöst und anschließend wurde diese Lösung ebenfalls am Ultraschallbad unter Argon entgast. Die Lösung aus Katalysator und Iodbenzol wurde langsam zu der basischen Boranlösung zugetropft und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt.

Es wurde mit H_2O und Ether verdünnt. Die wässrige Phase wurde 3x mit Ether extrahiert und die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung

gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum abgezogen. Das Rohprodukt wurde durch SC gereinigt (6 g SiO₂; Gradient: PE:EE 20:1 \rightarrow 8:1).

Ausbeute:

40 mg (64% der Theorie) gelbes Öl

Analytik:

 R_{f} -Wert: 0.52 (PE:EE = 10:1)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.31-7.03 (m, 25H, Phenyl-H), 4.92-4.36 (m, 8H, PhCH₂), 3.73-3.19 (m, 7H, H-1, H-2, H-3, H-4, H-5, 2x H-6), 3.08 (dd, J_1 = 14.0 Hz, J_2 = 2.0 Hz, 1H, CH_{2a}), 2.65 (dd, J_1 = 14.0 Hz, J_2 = 8.6 Hz, 1H, CH_{2b}) – entspricht Lit.⁷⁰

4.2.3. 1,3-Dithiane in der Synthese von C-verknüpften Disacchariden

4.2.3.1. Synthese von 2,3,4-Tri-*O*-benzyl-1-*O*-methyl-6-*O*-trifluormethansulfonylα-D-glucopyranose (12c)

Ansatz:

2.35 g	5.06 mmol	2,3,4-Tri- O -benzyl-1- O -methyl- α -D-glucopyranose (11)
1.56 g	7.59 mmol	2,6-Di-tert-butyl-4-methylpyridin
2.00 g	7.08 mmol	Trifluormethansulfonsäureanhydrid
50 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde **11** in wasserfreiem CH_2Cl_2 gelöst, DTBMP zugegeben und auf -50 °C gekühlt. Anschließend wurde Trifluormethansulfonsäure tropfenweise zugeben und das Reaktionsgemisch bei -50 °C bis zum vollständigen Umsatz (DC Kontrolle) gerührt. Es wurde mit einer gesättigten NaHCO₃-Lösung hydrolysiert und 3x mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit H₂O und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt.

Das Rohprodukt wurde mittels SC gereinigt (200 g SiO₂; Gradient: PE:EE 20:1 \rightarrow 5:1).

Ausbeute:

2.10 g (70% der Theorie) farbloser zäher Feststoff

Analytik:

 R_{f} -Wert: 0.73 (PE:EE = 3:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.43-7.19 (m, 15H, Phenyl-H), 5.09-4.40 (m, 9H, 3x PhCH₂, H-1, H-6), 3.94 (t, *J* = 9.0 Hz, 1H, H-3), 3.78 (ddd, *J*₁ = 10.0 Hz, *J*₂ = 4.9 Hz,

 $J_3 = 2.1$ Hz, 1H, H-5), 3.45 (dd, $J_1 = 9.0$ Hz, $J_2 = 3.5$ Hz, 1H, H-2), 3.37 (dd, $J_1 = 10$ Hz, $J_2 = 9.0$ Hz, 1H, H-4), 3.30 (s, 3H, OCH₃) – entspricht Lit.¹⁸¹

4.2.3.2. Synthese von 4,6-*O*-Benzyliden-1-*O*-methyl-α-D-glucopyranose (29)

Ansatz:

5.00 g	25.75 mmol	1- <i>O</i> -Methyl- α -D-glucopyranose (1)
3.86	28.32 mmol	Zinkchlorid (geglüht)
12.5 ml	123.75 mmol	Benzaldehyd

Durchführung:

Glucopyranose 1 wurde unter N₂-Atmospäre in Benzaldehyd gelöst, frisch geglühtes Zinkchlorid zugegeben und für 12 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde auf 100 ml H₂O gegossen und der ausgefallene weiße Niederschlag wurde filtriert, mit H₂O und PE gewaschen und am Vakuum getrocknet. Das Rohprodukt wurde aus Chloroform/PE umkristallisiert.

Ausbeute:

4.56 g (63% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.10 (PE:EE = 1:1)

F_p: 153-154 °C; Lit.:¹⁸² 156-158 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.55-7.30 (m, 5H, Phenyl-H), 5.51 (s, 1H, PhCH), 4.76 (d, *J* = 3.9 Hz, 1H, H-1), 4.28 (dd, *J*₁ = 8.9 Hz, *J*₂ = 3.4 Hz, 1H), 3.99-3.46 (m, 5H,), 3.43 (s, 3H, OCH3), 3.11 (bs, 1H, OH), 2.58 (d, *J* = 9.2 Hz, 1H, OH) – entspricht Lit.¹⁸³

¹⁸¹ Schmidt, R. R.; Moering, U.; Reichrat, M. Chem. Ber. 1982, 115, 39.

¹⁸² Lipshutz, B. H., Nguyen, S. L.; Elworth, T. R. *Tetrahedron* **1988**, *44*, 3355.

¹⁸³ Deng, S.; Gangadharmath, U.; Chang, C.-W. T. J. Org. Chem. 2006, 71, 5176.

4.2.3.3. Synthese von 2,3-Di-O-benzyl-4,6-O-benzyliden-1-O-methyl-α-Dglucopyranose (30)

Ph O HO HO	BnBr Pr NaH DMF OMe	BnO BnO OMe
29 282.30 C ₁₄ H ₁₈ O ₆		30 462.55 C ₂₈ H ₃₀ O ₆
15.94 mmol	Glucopyranose 29	
38.26 mmol	Benzylbromid	

Ansatz:

4 50 σ

1.50 5	19.9 1 111101	
6.54 g	38.26 mmol	Benzylbromid
3.83 g	95.64 mmol	Natriumhydrid/60%-ige Suspension in Mineralöl
150 ml		wasserfreies DMF

Durchführung:

Unter N₂-Atmospähre wurde **29** in wasserfreiem DMF vorgelegt, auf 0 °C gekühlt und Natriumhydrid portionsweise zugegeben. Die Suspension wurde für 30 Minuten gerührt, danach Benzylbromid langsam zugetropft und das Reaktionsgemisch bei Raumtemperatur für 15 Stunden gerührt.

Die Reaktionslösung wurde auf Eiswasser gegossen und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten NaHCO₃-Lösung und 2x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde mit PE digeriert.

Ausbeute:

6.02 g (82% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.7 (PE:EE = 2:1)

F_p: 91-93 °C; Lit.:¹⁸⁴ 93 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.57-7.20 (m, 15H, Phenyl-H), 5.56 (s, 1H, PhC<u>H</u>), 5.00-4.55 (m, 5H, PhCH₂, H-1), 4.30 (dd, J_1 = 9.3 Hz, J_2 = 4.1 Hz, 1H, H-4), 4.06 (t, J = 9.3 Hz, H-3), 3.93-3.51 (m, 4H, H-2, H-5, 2x H-6), 3.42 (s, 3H, OCH₃) – entspricht Lit.⁹⁸

¹⁸⁴ Bell, D. L.; Lorber, J. J. Chem. Soc. **1940**, *1*, 453.

4.2.3.4. Synthese von 2,3,6-Tri-*O*-benzyl-1-*O*-methyl-α-D-glucopyranose (31)

Ansatz:

4.00 g	8.65 mmol	Glucopyranose 30
7.06 g	112.4 mmol	Natriumcyanoborhydrid
250 ml		gesättigte etherische HCl-Lösung
90 ml		wasserfreies THF

Durchführung:

Glucopyranose **30** wurde in wasserfreiem THF gelöst, NaBH₃CN zugegen und bis zum vollständigen Lösen (20 Minuten) gerührt. Danach wurde die Reaktionslösung auf -40 °C gekühlt und innerhalb einer Stunde langsam 250 ml einer gesättigten etherischen HCl-Lösung zugetropft. Die entstehende Blausäure wurde durch eine mit Eisen(II)sulfat-Lösung befüllte Gaswaschflasche in den Abzug geleitet.

Die Reaktionslösung wurde für 5 Minuten mit N_2 gespült, auf eine kalte gesättigte NaHCO₃-Lösung gegossen, danach noch jeweils 1x mit 2 N HCl, einer gesättigten NaHCO₃-Lösung und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt.

Das erhaltene Rohprodukt wurde durch zweifache VFC gereinigt (1. 250 g SiO₂; Gradient: PE:Ether $6:1 \rightarrow 2:1$; 2. 200 g SiO₂; Gradient: $10:1 \rightarrow 5:1$).

Ausbeute:

3.03 g (76% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.33 (PE:EE = 3:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.48-7.20 (m, 15H, Phenyl-H), 5.02 (d, *J* = 11.5 Hz, 1H, PhCH₂), 4.85-4.52 (m, 6H, PhCH₂, H-1), 3.87-3.48 (m, 6H, H-2, H-3, H-4, H-5, 2x H-6), 3.40 (s, 3H, OCH₃), 2.38 (bd, *J* = 2.0 Hz, OH) – entspricht Lit.⁹⁸

4.2.3.5. Synthese von 2,3,6-Tri-O-benzyl-1-O-methyl-4-O-trifluormethylsulfonyl-

α-D-glucopyranose (32)

Ansatz:

300 mg	0.646 mmol	Glucopyranose 31
228 mg	0.808 mmol	Trifluormethansulfonsäureanhydrid
172 mg	0.840 mmol	2,6-Di-tert-butyl-4-methylpyridin
7 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde **31** in wasserfreiem CH_2Cl_2 gelöst, DTBMP zugegeben und die Reaktionslösung auf -50 °C gelöst. Danach wurde Trifluormethansulfonsäure langsam zugetropft und das Reaktionsgemisch auf Raumtemperatur erwärmt und für weitere 12 Stunden gerührt. Das Rohprodukt wurde ohne weitere Aufarbeitung direkt durch SC gereinigt (30 g SiO₂; Eluens: PE:EE 10:1).

Ausbeute:

420 mg gelbes Öl

Analytik:

R_f-Wert: 0.70 (PE:EE 3:1)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.44-7.19 (m, 15H, Phenyl-H), 5.10-4.43 (m, 8H, PhCH₂, H-1, H-4), 3.99 (t, J = 9.4 Hz, 1H, H-3), 3.89 (dt, $J_1 = 10.2$ Hz, $J_2 = 2.7$ Hz, H-5), 3.72-3.55 (m, 3H, H-2, 2x H-6), 3.39 (s, 3H, OCH₃) – entspricht Lit.¹⁸⁵

¹⁸⁵ Weizhen, X.; Shawn, A.; Springfield, J. T. K. Carbohydr. Res. 2000, 325, 69.

4.2.3.6. Synthese von 2,3,4-Tri-*O*-benzyl-6-deoxy-6-(1,3-dithian-2-yl)-1-*O*-methylα-D-glucopyranose (34)

Ansatz:

2.00 g	3.35 mmol	Triflat 12c
1.41 g	11.73 mmol	1,3-Dithian (33)
4.80 ml	11.73 mmol	<i>n</i> -BuLi in Hexan 2.43 M
2.10 g	11.73 mmol	HMPA
50 ml		wasserfreies THF

Durchführung:

1,3-Dithian (**33**) wurde unter N₂-Atmosphäre in 30 ml wasserfreiem THF gelöst, HMPA zugegeben und auf -70 °C gekühlt. Nach der Zugabe von *n*-BuLi wurde für 45 Minuten bei -70 °C gerührt und anschließend **12c**, gelöst in 20 ml wasserfreiem THF, langsam zugetropft. Das Reaktionsgemisch wurde innerhalb von 2 Stunden auf -40 °C erwärmt, danach mit einer gesättigten NH₄Cl-Lösung hydrolysiert, mit H₂O verdünnt und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit 2 N HCl und einer gesättigten NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch SC gereinigt (200 g SiO₂; Gradient: PE:EE 20:1 → 5:1).

Ausbeute:

1.50 g (79% der Theorie) farbloser leicht gelber Feststoff

Analytik:

R_f-Wert: 0.30 (PE:EE = 5:1) F_p: 66-68 °C $[\alpha]_D^{20}$: +28.2 (c=0.82; CHCl₃) ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.35-7.06 (m, 15H, Phenyl-H), 5.00-4.34 (m, 7H, PhCH₂, H-1), 4.09 (dd, J_1 = 10.6 Hz, J_2 = 3.7 Hz, 1H, H-2′), 3.99-3.78 (m, 2H), 3.41 (dd, J_1 = 9.7 Hz, J_2 = 3.4 Hz, 1H), 3.35 (s, 3H, OCH3), 3.10 (t, J = 9.3 Hz, 1H), 2.82-2.61 (m, 4H), 2.33-2.12 (m, 1H, H-6_a), 2.10-1.93 (m, 1H, H-6_b), 1.90-1.55 (m, 2H, H-5′) ¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 138.7/138.2/138.1 (3s, Phenyl-C), 128.5-127.6 (15d, Phenyl-CH), 97.9 (d, C-1), 82.0/81.9/80.1 (3d, C-2, C-3, C-4), 75.8/75.2/73.4 (3t, PhCH₂), 66.7 (d, C-5), 55.5 (q, CH₃), 43.1 (C-2′), 37.9 (C-6), 29.9/29.3 (2t, C-4′, C-6′), 26.0 (t, C-5′) Elementaranalyse: C₃₂H₃₈O₅S₂x0.5 H₂O: C 66.75, H 6.83; gefunden C 66.72, H 6.73

4.2.3.7. Synthese von 2,3,4,6-Tetra-*O*-benzyl-1-(1,3-dithian-2-yl)-α-Dglucopyranose (35)

Ansatz:

3.00 g	5.57 mmol	Lacton 4
2.01 g	16.71 mmol	1,3-Dithian (33)
6.77 ml	16.71 mmol	<i>n</i> -BuLi in Hexan 2.47 M
60 ml		wasserfreies THF

Durchführung:

1,3-Dithian wurde unter N₂-Atmosphäre in 40 ml wasserfreiem THF gelöst und auf -70 °C gekühlt. Nach der Zugabe von *n*-BuLi wurde innerhalb von 2 Stunden auf -35 °C erwärmt, wiederum auf -70 °C gekühlt und anschließend 4, gelöst in 20 ml wasserfreiem THF, langsam zugetropft. Das Reaktionsgemisch wurde innerhalb von 3 Stunden auf -35 °C erwärmt, danach mit einer gesättigten NH₄Cl-Lösung hydrolysiert, mit H₂O verdünnt und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch SC gereinigt (100 g SiO₂; Gradient: PE:CH₂Cl₂ 5:1 → 2:1).

 R_{f} -Wert: 0.25 (PE:EE = 5:1)

Ausbeute:

3.66 g (99% der Theorie) farblos leicht gelbes Öl

Analytik:

 $[\alpha]_{365}^{20}$: +2.3 (c=0.35; CHCl₃) ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.41-7.17 (m, 20H, Phenyl-H), 5.02-4.00 (m, 12H, PhCH₂, H-2', H-2, H-3, OH), 3.78-3.57 (m, 4H, H-3, H-4, 2x H-6), 3.52-3.25 (m, 2H, H-4'_a, H-6'_a), 2.39-2.20 (m, 2H, H-4'_b, H-6'_b), 2.10-1.84 (m, 2H, H-5') ¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 138.7/138.2/2x 138.0 (4s, Phenyl-C), 128.5-127.5 (20d, Phenyl-CH), 102.1 (s, C-1), 84.3/78.6/77.9/71.2 (4d, C-2, C-3, C-4, C-5), 75.5/75.3/ 75.0/73.3 (4t, PhCH₂), 69.3 (t, C-6), 44.2 (d, C-2'), 25.6/25.2 (2t, C-4', C-6'), 24.8 (C-5') Elementaranalyse: C₃₈H₄₂O₆S₂: C 69.27, H 6.43; gefunden C 69.02, H 6.75

4.2.3.8. 2-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)-1,3-dithian (36)

Ansatz:

1.50 g	2.28 mmol	Glucopyranose 35
1.32 g	11.38 mmol	Triethylsilan
0.97 g	6.83 mmol	BF ₃ ·Et ₂ O
20 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde **35** in wasserfreiem CH₂Cl₂ vorgelegt und auf -70 °C gekühlt, zuerst Triethylsilan, dann tropfenweise BF₃·Et₂O zugegeben und innerhalb von 4 Stunden langsam auf 0 °C erwärmt. Das Reaktionsgemisch wurde mit einer gesättigten NaHCO₃-Lösung hydrolysiert und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Die Reinigung der Rohprodukts erfolgte durch SC (100 g SiO₂; Gradient: PE:EE 5:1 \rightarrow 2:1).

Ausbeute:

1.05 g (71% der Theorie) farbloses zähes Öl

Analytik:

 R_{f} -Wert: 0.44 (PE:EE = 5:1)

 $[\alpha]_{365}^{20}$: -10.8 (c=1.22; CHCl₃)

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.42-7.22 (m, 20H, Phenyl-H), 4.97 (d, J = 11.0 Hz, 1H, PhCH₂), 4.95 (d, J = 10.8 Hz, 1H, PhCH₂), 4.93 (d, J = 11.0 Hz, 1H, PhCH₂), 4.87 (d, J = 10.8 Hz, 1H, PhCH₂), 4.76 (d, J = 10.8 Hz, 1H, PhCH₂), 4.66 (d, J = 10.8 Hz, 1H, PhCH₂), 4.65 (d, J = 12.1 Hz, 1H, PhCH₂), 4.61 (d, J = 12.1 Hz, 1H, PhCH₂), 4.09 (bs, 1H, H-2'), 3.91 (t, J = 9.1 Hz, H-2), 3.82-3.66 (m, 5H, H-1, H-3, H-4, 2x H-6), 3.54 (ddd, $J_1 = 9.7$ Hz, $J_2 = 4.0$ Hz, $J_3 = 2.1$ Hz, H-5), 3.33-3.25 (m, 1H, H-4'_a), 3.24-3.15 (m, 1H, H-6'_a), 2.74-2.64 (m, 1H, H-4'_b), 2.60-2.50 (m, 1H, H-6'_b), 2.10-1.97 (m, 2H, H-5')

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 138.5/138.3/138.2/138.1 (4s, Phenyl-C), 128.5-127.5 (20d, Phenyl-CH), 87.0 (d, C-3), 86.3 (d, C-1), 79.3 (d, C-5), 79.2 (d, C-2), 78.4 (d, C-4), 75.5/75.2/75.0/73.3 (4t, PhCH₂), 69.0 (d, C-6), 43.9 (d, C-2'), 28.9 (t, C-4'), 28.6 (t, C-6'), 25.8 (t, C-5')

Elementaranalyse: C₃₈H₄₂O₅S₂: C 71.00, H 6.59; gefunden C 70.99, H 6.34

4.2.3.9. Synthese von 3,4,6-Tri-O-benzyl-D-glucal (38)

Ansatz:

2.80 g	10.30 mmol	3,4,6-Tri- <i>O</i> -acetyl-D-glucal (37)
7.91 g	46.24 mmol	Benzylbromid
2.50 g	62.50 mmol	Natriumhydroxid
100 mg	kat.	Tetrabutylammoniumiodid
10 ml		wasserfreies THF

Durchführung:

Unter N₂-Atmospähre wurde das Glucal **37** in wasserfreiem THF vorgelegt und langsam gepulvertes Natriumhydroxid und TBAI zugegeben. Die entstandene Suspension wurde für

10 Minuten bei Raumtemperatur gerührt, danach Benzylbromid langsam zugetropft und das Reaktionsgemisch für 4.5 Stunden gerührt. Es wurde mit H₂O und Ether verdünnt und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit H₂O gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Die Reinigung des Rohprodukts erfolgte durch SC (150 g SiO₂; Gradient: PE:EE 100:1 \rightarrow 20:1).

Ausbeute:

1.83 g (43% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.65 (PE:EE = 5:1)

F_p: 55-56 °C; Lit.:¹⁸⁶ 56 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.27-7.14 (m, 15H, Phenyl-H); 6.35 (dd, J_I = 6.1 Hz, J_2 = 1.2 Hz, 1H, H-1), 4,80 (dd, J_I = 6.1 Hz, J_2 = 2.6 Hz, H-2), 4,76 (d, J = 11.5 Hz, 1H, PhCH₂), 4.53-4.44 (m, 5H, PhCH₂), 4.16-4.11 (m, 1H, H-3), 4.02-3.95 (m, 1H, H-5), 3,82-3,70 (m, 3H, H-4, 2x H-6) – entspricht Lit.¹⁸⁷

4.2.3.10. Synthese von 1,2-Anhydro-3,4,6-tri-O-benzyl-α-D-glucopyranose (39)

Ansatz:

1.00 g	2.40 mmol	3,4,6-Tri- <i>O</i> -benzyl-D-glucal (38)
28.9 ml	2.88 mmol	Dimethyldioxiran in Aceton 0.10 M
20 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde das Glucal **38** in wasserfreiem CH₂Cl₂ vorgelegt und auf -10 °C gekühlt. Anschließend wurde DMDO innerhalb von 2 Stunden zugetropft und es wurde für weitere 30 Minuten gerührt. Die Reaktionslösung wurde mit CH₂Cl₂ verdünnt, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum abgezogen. Eine weitere Reinigung war nicht mehr notwendig.

¹⁸⁶ Bovin, N. V.; Zurabyan, S. E.; Khorlin, A. Y. Carbohydr. Res. 1981, 98, 25.

¹⁸⁷ Fischer, S.; Hamann, C. H. J. Carbohydr. Chem. 1995, 14, 327.

Ausbeute:

1.03 g (99% der Theorie) farbloser zäher Feststoff

 α : $\beta = 10:1$

Analytik:

 R_{f} -Wert: 0.10 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.39-7.01 (m, 15H, Phenyl-H), 5.00 (d, *J* = 1.4 Hz, H-1), 4.80-4.37 (m, 6H, PhCH₂), 3.99 (d, *J* = 6.8 Hz, H-3), 3.76-3.45 (m, 4H, H-4, H-5, 2x H-6), 3.08 H (d, *J* = 2.3 Hz, H-2) – entspricht Lit.¹¹⁴

4.2.3.11. Synthese von 2-tert-Butyldimethylsilyl-1,3-dithian (40)

Ansatz:

2.00 g	16.63 mmol	1,3-Dithian (33)
9.20 ml	22.50 mmol	<i>n</i> -BuLi in Hexan 2.43 M
2.76 g	18.30 mmol	tert-Butyldimethylsilylchlorid
20 ml		wasserfreies THF

Durchführung:

1,3-Dithian wurde unter N₂-Atmosphäre in 18 ml wasserfreiem THF vorgelegt, auf -20 °C gekühlt und *n*-BuLi langsam über eine Spritze zugegeben. Die Reaktionslösung wurde für 45 Minuten gerührt und anschließend wurde TBSCl, gelöst in 2 ml wasserfreiem THF, zugetropft, auf 0 °C erwärmt und bei dieser Temperatur für weitere 12 Stunden gerührt. Es wurde mit einer gesättigten NH₄Cl-Lösung hydrolysiert und 2x mit EE extrahiert. Die vereinigten organischen Phasen wurden 2x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch SC gereinigt (150 g SiO₂, Eluens: PE:EE:NEt₃ 50:1:0.25).

Ausbeute:

3.65 g (94% der Theorie) gelbes Öl

Analytik:

 R_{f} -Wert: 0.17 (PE:EE = 50:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 3.69 (s, 1H, H-2), 2.78 (ddd, J_1 = 14.0 Hz, J_2 = 11.3 Hz, J_3 = 3.3 Hz, 2H, H-4_a, H-6_a), 2.58 (dt, 2H, J_1 = 14.0 Hz, J_2 = 3.7 Hz, 2H, H-4_b, H-6_b) – entspricht Lit.¹⁸⁸

4.2.3.12. Deprotonierungsversuche am 1- und 6- Dithianglucose-Scaffold

4.2.3.12.1. Deprotonierung mit LDA von 2,3,4-Tri-O-benzyl-6-deoxy-6-(1,3-dithian-2-yl)-1-O-methyl-α-D-glucopyranose (34)

4.2.3.12.1.1 Allgemeine Arbeitsvorschrift:

Unter Argonatmosphäre wurde das Dithian **34** in wasserfreiem THF vorgelegt, HMPA zugegeben und auf -75 °C gekühlt. Bei dieser Temperatur wurden 6 Äquivalente der frisch hergestellten LDA-Lösung zugetropft und das Reaktionsgemisch innerhalb 1 Stunde auf -30 °C erwärmt. Danach wurde abermals auf -70 °C gekühlt und 6 Äquivalente an Elektrophil zugegeben. Es wurde über Nacht gerührt und auf Raumtemperatur erwärmt und mit Ether und einer gesättigten NH₄Cl-Lösung verdünnt. Die wässrige Phase wurde 2x mit Ether extrahiert und die vereinigten organischen Phasen 1x mit einer gesättigten NHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotavapor entfernt. Das erhaltene Rohprodukt wurde durch SC gereinigt.

4.2.3.12.1.2 Synthese von 2,3,4-Tri-O-benzyl-6-deoxy-6-(2-methyl-1,3-dithian-2-yl)-1-Omethyl-α-D-glucopyranose (41)

¹⁸⁸ Silverman, R. B.; Xingliang, L.; Banik, G. M. J. Org. Chem. **1992**, *57*, 6617.

Ansatz:

55 mg	0.097 mmol	Dithian 34
0.90 ml	0.582 mmol	LDA in THF 0.65 M
69 mg	0.485 mmol	Iodmethan
0.15 ml		HMPA
1.5 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.3.12.1.1. Das erhaltene Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:EE 15:1 \rightarrow 5:1).

Ausbeute:

14 mg (24% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.41 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.43-7.21 (m, 15H, Phenyl-H), 5.07-4.47 (m, 7H, PhCH₂, H-1), 4.09-3.89 (m, 2H), 3.54-3.42 (m, 4H darunter 3.47 (s, 3H, OCH₃)), 3.19 (t, *J* = 9.2 Hz, 1H), 2.87-2.47 (m, 5H, H-4′, H-6′, H-6_a), 1.90-1.68 (m, 3H, H-6_b, H-5′), 1.27 (s, 3H, CH₃)

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 138.7/138.3/138.2 (3s, Phenyl-C), 128.4-127.6 (15d, Phenyl-CH), 98.2 (d, C-1), 82.0/81.9/79.9 (3d, C-2, C-3, C-4), 75.7/75.6/73.3 (3t, PhCH₂), 69.1 (d, C-5), 56.4 (q, OCH3), 48.1 (C-2′), 41.8 (C-6), 29.7 (q, CH3), 26.7/26.0 (2t, C-4′, C-6′), 24.7 (t, C-5′)

4.2.3.12.1.3 Synthese von 2,3,4-Tri-*O*-benzyl-6-deoxy-6-[2-(prop-2-yl)-1,3-dithian-2-yl]-1-*O*-methyl-α-D-glucopyranose (42)

Ansatz:

55 mg	0.097 mmol	Dithian 34
0.90 ml	0.582 mmol	LDA in THF 0.65 M

82 mg	0.485 mmol	2-Iodpropan
0.15 ml		HMPA
1.5 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.3.12.1.1 Das erhaltene Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:EE 10:1 \rightarrow 1:1).

Ausbeute:

26 mg (43% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.53 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.42-7.13 (m, 15H, Phenyl-H), 5.08-4.50 (m, 7H, PhCH₂, H-1), 4.15-3.96 (m, 2H), 3.54-3.40 (m, 4H, darunter 3.47 (s, 3H, OCH₃)), 3.20 (t, J = 9.5 Hz, 1H), 2.80-2.20 (m, 6H, H-4', H-6', H-6_a, C<u>H</u>(CH₃)₂), 2.08-1.90 (m, 1H, H-6_b), 1.83-1.66 (m, 2H, H-5'), 1.13 (d, J = 6.8 Hz, 3H, CH(C<u>H₃)₂), 1.06 (d, J = 6.7 Hz, 3H, CH(C<u>H₃)₂)</u></u>

4.2.3.12.2. Deprotonierung mit n-BuLi von 2-(2,3,4,6-Tetra-O-benzyl-β-Dglucopyranos-1-yl)-1,3-dithian (36)

4.2.3.12.2.1 Synthese von 2,3,4,6-Tetra-*O*-benzyl-1-deoxy-1-(1,3-dithian-2-yliden)-Dglucitol (43)

Ansatz:

55 mg	0.086 mmol	Dithian 36
66 µl	0.172 mmol	<i>n</i> -BuLi in Hexan 2.7 M
60 mg	0.430 mmol	Iodmethan
0.1 ml		TMEDA
1 ml		wasserfreies THF

Durchführung:

Unter Argon Atmosphäre wurde **36** in wasserfreiem THF gelöst, TMEDA zugegeben und die Reaktionslösung auf -78 °C gekühlt. Nach der langsamen Zugabe von *n*-BuLi wurde innerhalb 1 Stunde auf -45 °C erwärmt und danach Methyliodid zugegeben. Es wurde auf Raumtemperatur erwärmt mit H₂O hydrolysiert und mehrmals mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit H₂O gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung der Rohprodukts erfolgte durch SC (10 g SiO₂; Gradient: PE:Ether 4:1 \rightarrow 1:1).

Ausbeute:

22 mg (40% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.27 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.35-7.10 (m, 20H, Phenyl-H), 5.91 (d, *J* = 9.5 Hz, 1H, C₁H=C₂), 4.78-4.32 (m, 9H, PhCH₂, H-2), 3.95-3.82 (m, 1H, OH), 3.72 (m, 2H), 3.55-3.47 (m, 2H), 2.88-2.64 (m, 5H, H-4', H-6', H-6_b), 2.15-2.00 (m, 2H, H-5')

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 138.5/138.4/138.2/138.1 (4s, Phenyl-C), 133.7 (s, C₁H=<u>C₂</u>), 128.9-126.5 (21d, Phenyl-C, <u>C</u>₁H=C₂), 80.9/78.5/75.9 (3d, C-3, C-4, C-5), 74.6, 73.6, 73.2, 71.1, 71.0 (4t, 3x PhCH₂, C-6), 70.6 (d, C-2), 29.6, 29.2 (2t, C-4', C-6'), 24.5 (t, C-5')

Weitere Analysen waren nicht möglich da sich 43 innerhalb von 48 h zersetzte.

4.2.3.13. Versuch zur Smith-Tietze Dithian-Kupplung an 1,2-Anhydro-3,4,6-tri-*O*-benzyl-α-D-glucopyranose (39)

4.2.3.13.1. Synthese von 3,4,6-Tri-O-benzyl-1-deoxy-2-O-[(1,1dimethylethyl)dimethylsilyl]-1-(1,3-dithian-2-yliden)-5-O-methyl-Dglucitol (44)

Ansatz:

100 mg	0.231 mmol	Anhydroglucose 39
102 mg	0.462 mmol	2- <i>tert</i> -Butyldimethylsilyl-1,3-dithian (40)
0.28 ml	0.462 mmol	t-BuLi in Hexan 1.63 M
99 mg	0.693 mmol	Iodmethan
0.1 ml		HMPA
3 ml		wasserfreier Ether

Durchführung:

Dithian **40** wurde unter Argonatmosphäre in 1 ml wasserfreiem Ether vorgelegt, auf -70 °C gekühlt und *t*-BuLi bei dieser Temperatur zugegeben. Die Reaktionslösung wurde innerhalb einer Stunde auf -35 °C erwärmt und anschließend über eine Spritze zu **39**, gelöst in 1 ml wasserfreiem Ether bei -70 °C zugetropft. Es wurde abermals innerhalb von 2.5 Stunden auf -30 °C erwärmt. Nach abermaligem Abkühlen auf -70 °C wurde eine Lösung aus Iodmethan und HMPA in 1 ml Ether zugetropft, auf Raumtemperatur erwärmt und noch für 3 Stunden gerührt. Es wurde mit Wasser hydrolysiert und 4x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:Ether 10:1 \rightarrow Ether).

Ausbeute:

40 mg (25% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.42 (PE:EE = 10:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.31-7.05 (m, 15H, Phenyl-H), 5.95 (d, J = 9.1 Hz, 1H, H-1), 4.87 (dd, J_1 = 9.1 Hz, J_2 = 5.4 Hz, 1H, H-2), 4.75-4.40 (m, 6H, PhCH₂), 3.85-3.76 (m, 1H), 3.74-3.64 (m, 1H), 3.62-3.44 (m, 3H), 3.26 (s, 3H, OCH₃), 2.87-2.53 (m, 4H, H-4', H-6'), 2.10 (m, 2H, H-5'), 0.80 (s, 9H, C(CH₃)₃), 0.01 (s, 6H, CH₃)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 139.0/138.9/138.5 (3s, Phenyl-C), 129.9 (s, C₁H=<u>C₂</u>·), 128.4-124.6 (16d, Phenyl-CH, <u>C</u>₁H=C₂·), 82.0/80.9/78.1 (3d, C-3, C-4, C-5), 74.4/73.9/73.3 (3t, PhCH₂), 70.3 (d, C-2), 69.3 (t, C-6), 57.7 (q, OCH₃), 29.7/29.3 (2t, C-4′, C-6′), 26.0 (3q, C(<u>C</u>H₃)₃), 25.6 (2q, 2x CH₃), 24.7 (t, C-5′), 18.2 (s, <u>C</u>(CH₃)₃)

Weitere Analysen waren nicht möglich da sich 44 innerhalb von 24 h zersetzte.

4.2.4. Substituierte Furfurylalkohole in der stereoselektiven Synthese von (1→6)-verknüpften C-Disacchariden

4.2.4.1. Synthese von 1-O-Acetyl-2,3,4,6-tetra-O-benzyl-α-D-glucopyranose (45)

Ansatz:

2.00 g	3.70 mmol	2,3,4,6-Tetra- <i>O</i> -benzyl-α-D-glucopyranose (3)
1.88 g	18.50 mmol	Essigsäureanhydrid
20 ml		Pyridin

Durchführung:

Glucopyranose **3** wurde in frisch destilliertem Pyridin gelöst und Essigsäureanhydrid zugegeben. Das Reaktionsgemisch wurde für 4 Stunden bei Raumtemperatur gerührt und mit Ether verdünnt, jeweils 2x mit gesättigter NaHCO₃-Lösung und Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Laut ¹H-NMR war eine Reinigung des Rohprodukts nicht notwendig.

Ausbeute:

2.10 g (97% der Theorie) gelbes Öl

α : β = 3:1

Analytik:

 R_{f} -Wert: 0.45 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 7.50-7.10 (m, 20H, Phenyl-H), 6.42 (d, J = 3.5 Hz, 0.75H, H-1_α), 5.67 (d, J = 7.8 Hz, 0.25H, H-1_β), 5.10-4.45 (m, 8H, PhCH₂), 4.10-3.56 (m, 6H, H-2, H-3, H-4, H-5, 2x H-6), 2.18 (s, 2.25H, OCH_{3α}), 2.10 (s, 0.75H, OCH_{3β}) – entspricht Lit.¹⁸⁹

¹⁸⁹ Schmidt, R. R.; Michel, J. J. Org. Chem. 1981, 46, 4787.

4.2.4.2. Synthese von 1-(2,3,4,6-Tetra-*O*-benzyl-α-D-glucopyranos-1-yl)prop-2-en (46α)

Ansatz:

3.43 mmol	1 -Acetyl-2,3,4,6-tetra-O-benzyl- α -D-glucopyranose (45)
6.86 mmol	Allyltrimethylsilan
13.73 mmol	BF ₃ ·Et ₂ O
	wasserfreies Acetonitril
	3.43 mmol6.86 mmol13.73 mmol

Durchführung:

Unter N₂-Atmosphäre wurde **45** in wasserfreiem Acetonitril gelöst und auf -15 °C gekühlt. Über eine Spritze wurden Allytrimetylsilan und BF₃·Et₂O langsam zugegeben und über Nacht zwischen -15 °C und +5 °C gerührt. Da laut DC der Umsatz noch nicht vollständig war, wurden weitere 2 Äquivalente Allyltrimethylsilan zugegeben und für weitere 12 Stunden bei Raumtemperatur gerührt. Die Reaktionslösung wurde auf gesättigte NaHCO₃-Lösung gegossen und 2x mit Ether extrahiert. Die vereinigten Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohprodukts erfolgte durch SC (40 g SiO₂; Eluens: PE:EE 8:1). Dabei wurden 2 Produktfraktionen erhalten: 1. 540 mg reines α -Anomer; 2. 660 mg α -Anomer mit 10% β -Anomer.

Ausbeute:

1.20 g (67% der Theorie) farbloser Feststoff (Anomerenverhältnis α : β = 95:5), davon 540 mg als reines α -Anomer **46\alpha** erhalten

Analytik:

 R_{f} -Wert: 0.66 (PE:EE = 5:1)

F_p: 54-55 °C; Lit.:¹²⁹ 60 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.45-7.25 (m, 18H, Phenyl-H), 7.20-7.10 (m, 2H, Phenyl-H), 6.00-5.73 (m, 1H, CH₂-C<u>H</u>=CH₂), 5.25-4.40 (m, 10H, CH₂-CH=C<u>H₂</u>, PhCH₂),

4.25-4.10 (m, 1H, H-1), 3.91-3.57 (m, 6H, H-2, H-3, H-4, H-5, H-6), 2.60-2.46 (m, 1H, CH₂-CH=CH₂) – entspricht Lit.¹²⁹

4.2.4.3. Synthese von 1-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)prop-2-en

(46β)

Ansatz:

2.15 g	4.00 mmol	2,3,4,6-Tetra- <i>O</i> -benzyl-D-glucoronsäure-δ-lacton (4)
6.00 ml	6.00 mmol	Allylmagnesiumbromid-Lösung 1 M/Et ₂ O
20 ml		wasserfreies THF
1.39 g	12.00 mmol	Triethylsilan
1.13 g	8.00 mmol	BF ₃ ·Et ₂ O
20 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Lacton **4** wurde unter N₂-Atmosphäre in wasserfreiem THF vorgelegt und auf -78 °C gekühlt. Die Allylmagnesiumbromid-Lösung wurde langsam zugetropft und das Reaktionsgemisch innerhalb von 2.5 Stunden auf -55 °C erwärmt. Es wurde mit gesättigter NH₄Cl-Lösung und Wasser hydrolysiert und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit gesättigter Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Vakuum entfernt. Das - als farbloses Öl - erhaltene Rohprodukt (2.19 g) wurde am Hochvakuum getrocknet und direkt in den nächsten Reaktionsschritt eingesetzt. Dazu wurde **47** unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ gelöst und auf -78 °C gekühlt. Danach wurden Triethylsilan und BF₃·Et₂O langsam zugegeben und das Reaktionsgemisch für weitere 3.5 Stunden bei -78 °C gerührt. Es wurde abermals mit gesättigter NaHCO₃-Lösung und Wasser hydrolysiert und 2x mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden 1x mit Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Laut ¹H NMR war eine weitere Reinigung des erhaltenen Produkts nicht notwendig.

Ausbeute:

2.15 g (96% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.64 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.35-7.00 (m, 20H, Phenyl-H), 6.00-5.73 (m, 1H, CH₂-C<u>H</u>=CH₂), 5.11-4.40 (m, 10, CH₂-CH=<u>C</u>H₂, PhCH₂), 3.75-3.45 (m, 4H), 3.40-3.15 (m, 3H), 2.61-2.43 (m, 1H, C<u>H_{2a}-CH=CH₂), 2.34-2.14 (m, 1H, C<u>H_{2b}-CH=CH₂)</u> - entspricht Lit.¹²⁹</u>

4.2.4.4. Synthese

2-(2,3,4,6-Tetra-O-benzyl-a-D-glucopyranos-1-

yl)acetaldehyd (49a)

von

Ansatz:

460 mg	0.815 mmol	C-Glykosid 46α
532 mg	8.145 mmol	Zink (Pulver)
521 mg	8.145 mmol	Essigsäure (98%)
50 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

In einer Dreihalskolben wurde unter N₂-Atmospähre **46** α in wasserfreiem CH₂Cl₂ vorgelegt und auf -78 °C gekühlt. Durch ein Einleitrohr wurde Ozon solange eingeleitet bis die Reaktionslösung eine deutliche Blaufärbung zeigte. Anschließend wurde für 10 Minuten bei -78 °C nachgerührt und für weiter 10 Minuten N₂ eingeleitet. Zur Spaltung des gebildeten Sekundärozonids wurde Zinkpulver und konzentrierte Essigsäure zugegeben und die Reaktionslösung wurde innerhalb von 12 Stunden auf Raumtemperatur erwärmt.

Es wurde mit CH₂Cl₂ verdünnt, filtriert und anschließend 1x mit einer gesättigten NaHCO₃-Lösung extrahiert und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde unter

¹⁹⁰ Allevi, P.; Anastasia, M.; Ciuffreda, F. A. Scala, A. J. Chem. Soc. Chem. Commun. 1987, 16, 1245.

Vakuum entfernt und das erhaltene Rohprodukt durch SC gereinigt (20g SiO₂; Gradient: PE:EE 8:1 \rightarrow 5:1).

Ausbeute:

300 mg (65% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.32 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 9.63 (dd, J_1 = 2.93 Hz, J_2 = 1.57 Hz, 1H, CHO), 7.32-6.92 (m, 20H, Phenyl-H), 4.89-4.30 (m, 9H, PhCH₂, H-1), 3.78-3.43 (m, 6H, H-2, H-3, H-4, 2x H-6), 2.79 (ddd, J_1 = 16.0 Hz, J_2 = 5.8 Hz, J_3 = 1.57 Hz, 1H, C<u>H_{2a}-CHO</u>), 2.63 (ddd, J_1 = 16.0 Hz, J_2 = 8.6 Hz, J_3 = 2.93 Hz, 1H, C<u>H_{2b}-CHO</u>) – entspricht Lit.¹⁹¹

Ansatz:

1.00 g	1.77 mmol	C-Glykosid 46β
1.74 g	26.57 mmol	Zink (Pulver)
1.70 g	26.57 mmol	Essigsäure (98%)
50 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

In einer Dreihalskolben wurde unter N₂-Atmospähre **46** β in wasserfreiem CH₂Cl₂ vorgelegt und auf -78 °C gekühlt. Durch ein Einleitrohr wurde Ozon solange eingeleitet bis die Reaktionslösung eine deutliche Blaufärbung zeigte. Anschließend wurde für 10 Minuten bei -78 °C nachgerührt und für weiter 10 Minuten N₂ eingeleitet. Zur Spaltung des gebildeten Sekundärozonoids wurde je 5 Äquivalente Zinkpulver und konzentrierte Essigsäure zugegeben und die Reaktionslösung innerhalb von 12 Stunden auf Raumtemperatur erwärmt.

¹⁹¹ Sparks, M. A.; Panek, J. S. *Tetrahedron Lett.* **1989**, *30*, 407.

Da die Reaktion noch nicht vollständig war (DC-Kontrolle) wurden weitere 10 Äquivalente an Zink und Essigsäure zugegeben und für eine weitere Stunde bei Raumtemperatur gerührt.

Es wurde mit CH_2Cl_2 verdünnt, filtriert und anschließend 1x mit einer gesättigten NaHCO₃-Lösung extrahiert und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde unter Vakuum entfernt und das erhaltene Rohprodukt durch SC gereinigt (40 g SiO₂; Gradient: PE:EE 8:1 \rightarrow 5:1).

Ausbeute:

810 mg (81% der Theorie) leicht gelber Feststoff

Analytik:

 R_{f} -Wert: 0.35 (PE:EE = 5:1)

F_p: 88-91 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 9.72 (bt, *J* = 2.3 Hz, 1H, CHO), 7.40-7.10 (m, 20H, Phenyl-H), 5.00-4.42 (m, 8H, PhCH₂), 3.90-3.76 (m, 1H, H-1), 3.75-3.60 (m, 4H, H-3, H-4, 2x H-6), 3.52-3.40 (m, 1H, H-5), 3.40-3.27 (t, *J* = 9.0 Hz, 1H, H-2), 2.72 (ddd, *J*₁ = 16.1 Hz, *J*₂ = 4.5 Hz, *J*₃ = 2.1 Hz, 1H, C<u>H_{2a}-CHO</u>), 2.55 (ddd, *J*₁ = 16.1 Hz, *J*₂ = 7.6 Hz, *J*₃ = 2.5 Hz, 1H, C<u>H_{2b}-CHO</u>) – entspricht Lit.³⁶

4.2.4.6. Synthese von 3-(2,3,4,6-Tetra-*O*-benzyl-β-D-glucopyranos-1-yl)propan-1ol (50)

Ansatz:

800 mg	1.42 mmol	C-Glyoksid 48
7.28 ml	3.64 mmol	9-BBN in THF 0.5M
15 ml		wasserfreies THF

Durchführung:

Unter Argon wurden **48** in wasserfreiem THF gelöst und bei 0 °C 9-BBN in THF über eine Spritze zugegeben. Anschließen wurde für 12 Stunden bei Raumtemperatur gerührt.

Die Lösung wurde mit Wasser hydrolysiert und danach 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohprodukts erfolgte mittels SC (100 g SiO₂; Eluens: PE:EE 2:1).

Ausbeute:

660 mg (80% der Theorie) farbloses Öl

Analytik:

R_f-Wert: 0.15 (PE:EE = 3:1) F_p : 66-70 °C ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.36-7.00 (m, 20H, Phenyl-H), 4.92-4.35 (m, 8H, PhCH₂), 3.72-3.43 (m, 6H), 3.42-3.30 (m, 1H), 3.28-3.11 (m, 2H), 2.22 (bs, 1H OH), 2.00-1.80 (m, 1H), 1.72-1.35 (m, 3H) – entspricht Lit.¹⁹²

4.2.4.7. Synthese von 3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranos-1-yl)propan-1al (51β)

Ansatz:

640 mg	1.10 mmol	Alkohol 50
935 mg	2.20 mmol	Dess-Martin Periodinan
30 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter Argon wurde Dess-Martin Periodinan in 20 ml wasserfreiem CH_2Cl_2 vorgelegt und **50**, gelöst in 10 ml wasserfreiem CH_2Cl_2 , bei Raumtemperatur zugegeben und für weitere 12 Stunden gerührt. Die Reaktionslösung wurde mit 2 N NaOH versetzt und 2x mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden 1x mit H_2O gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde durch SC gereinigt (60 g SiO₂; Eluens: PE:EE 2:1).

¹⁹² Oguri, H.; Hishiyama, S.; Sato, O.; Oishi, T.; Hirama, M. *Tetrahedron* **1997**, *53*, 3057.

Ausbeute:

518 mg (81% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.45 (PE:EE = 3:1)

F_p: 89-91 °C

 $[\alpha]_{365}^{20}$: -33.8 (c=0.37; CHCl₃)

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 9.73 (bt, J = 9.7 Hz, 1H, CHO), 7.40-7.10 (m, 20H, Phenyl-H), 4.95-4.48 (m, 8H, PhCH₂), 3.75-3.58 (m, 4H, H-3, H-4, 2x H-6), 3.43-3.32 (m, 1H, H-5), 3.31-3.20 (m, 2H, H-1, H-2), 2.57-2.44 (m, 2H, CH₂-CH₂-CHO), 2.28-2.09 (m, 1H, CH_{2a}-CH₂-CHO), 1.87-1.65 (m, 1H, CH_{2b}-CH₂-CHO)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 202.3 (s, CHO), 138.5/138.2/138.1/137.9 (4s, Phenyl-C), 128.5-127.6 (20d, Phenyl-CH), 87.2/81.8/78.9/78.5/78.3 (5d, C-1, C-2, C-3, C-4, C-5), 75.5/75.2/75.0/73.5 (4t, PhCH₂), 69.0 (t, C-6), 40.2 (t, CH₂-CH₂-CHO), 24.6 (t, CH₂-CH₂-CHO)

Elementaranalyse: C₃₇H₄₀O₆: C 76.53, H 6.94; gefunden C 76.36, H 6.92

4.2.4.8. Addition von Furyllithium – Untersuchung der Selektivität mit bzw. ohne Additive

4.2.4.8.1. Herstellung von Furyllithium

Ansatz:

400 mg	5.88 mmol	Furan
2.05 ml	5.34 mmol	<i>n</i> -BuLi in Hexan 2.61 M
10 ml		wasserfreies THF (Ether)

Durchführung:

Unter N₂-Atmosphäre wurde Furan in 10 ml wasserfreiem THF (Ether) vorgelegt und mittels Eis/Kochsalzbad auf -15 °C gekühlt. *n*-BuLi wurde zugegeben und bei -15 °C für 2.5 Stunden gerührt. Anschließend wurde noch für weitere 20 Minuten bei 0 °C gerührt.

Ergebnis:

12 ml Furyllithium in THF (Ether) 0.45 M

4.2.4.8.2. Allgemeine Vorschrift zur Addition ohne Additiv

Der Aldehyd wurde unter N₂-Atmosphäre in wasserfreiem THF gelöst und anschließend auf -70 °C gekühlt. Furyllithium wurde über eine Spritze zugegeben und die Reaktionslösung zwischen -70 °C und -60 °C für 2.5 Stunden gerührt. Anschließend wurde mit H₂O hydrolysiert und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor abgezogen. Die Reinigung des Rohprodukts erfolgte durch SC (SiO₂; Gradient: PE:Ether 3:1 \rightarrow 2:1).

4.2.4.8.3. Allgemeine Vorschrift zur Addition mit MgBr₂ als Additiv

Der Aldehyd wurde unter N₂-Atmosphäre in wasserfreiem THF gelöst und frisch geglühtes MgBr₂ zugegeben. Danach wurde auf -80 °C gekühlt - ein Teil des MgBr₂ fiel dabei wieder aus - und Furyllithium langsam über eine Spritze zugegeben. Anschließend wurde für zwei Stunden zwischen -80 °C und -60 °C gerührt. Da der Umsatz laut DC noch nicht vollständig war, wurde abermals auf -80 °C gekühlt und ein weiteres halbes Äquivalent an Furyllithium zugegeben und für eine weitere Stunde gerührt.

Es wurde mit MeOH hydrolysiert, mit H₂O verdünnt und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Die Selektivität wurde direkt aus dem Rohprodukt bestimmt.

4.2.4.8.4. Vorschrift zur Addition mit (-)-Spartein als Additiv

(-)-Spartein wurde unter Argonatmosphäre in 0.5 ml wasserfreiem Ether gelöst, bei 0 °C wurde Furyllithium zugegeben und für 30 min gerührt. Danach wurde auf -75 °C gekühlt und der Aldehyd, gelöst in 1 ml wasserfreiem Ether, langsam zugetropft. Da der Aldehyd bei -75 °C nur sehr schlecht in Ether löslich war wurden noch weitere 0.5 ml wasserfreies THF zugegeben. Die Reaktionslösung wurde zuerst für 2 Stunden bei -70 °C gerührt und danach innerhalb von 2 Stunden auf -40 °C erwärmt.

Es wurde mit Wasser hydrolysiert und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit 2 N HCl, einer gesättigten NaHCO₃-Lösung und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Die Selektivität der Reaktion wurde direkt aus dem Rohprodukt bestimmt.

4.2.4.8.5. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)ethanol (52β)

Ansatz ohne Additiv:

100 mg	0.176 mmol	Aldehyd 49β
0.46 ml	0.264 mmol	Furyllithium in THF 0.57M
1 ml		wasserfreies THF

Die Herstellung erfolgte analog zu 4.2.4.8.2. Das Rohprodukt wurde mittels SC gereinigt (10 g SiO₂; Gradient: PE:Ether $3:1 \rightarrow 2:1$).

Ausbeute:

75 mg (68% der Theorie) leicht gelber Feststoff

Selektivität:

1:1.8 (28% de)

Ansatz mit MgBr₂:

100 mg	0.176 mmol	Aldehyd 49β
0.65 ml	0.352 mmol	Furyllithium in THF 0.54 M
195 mg	1.056 mmol	MgBr ₂ (frisch geglüht)
2 ml		wasserfreies THF

Die Herstellung erfolgte analog zu 4.2.4.8.3. Die Selektivität wurde direkt aus dem Rohprodukt bestimmt.

Selektivität:

1:1.3 (13% de)
Ansatz mit (-)-Spartein:

50 mg	0.088 mmol	Aldehyd 49β
0.40 ml	0.176 mmol	Furyllithium in Ether 0.45 M
41 mg	0.176 mmol	(-)-Spartein
1.5 ml		wasserfreier Ether
0.5 ml		wasserfreies THF

Die Herstellung erfolgte analog zu 4.2.4.8.4. Die Selektivität wurde direkt aus dem Rohprodukt bestimmt.

Selektivität:

1:1.2 (19% de)

Analytik:

 R_{f} -Wert: 0.26 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.36-6.98 (m, 21H, Phenyl-CH, H-5'), 6.23 (dd, $J_1 = 3.2$ Hz, $J_2 = 1.9$ Hz, 1H, H-4'), 6.11, (d, J = 3.2 Hz, 1H, H-3'), 4.88 (dd, $J_1 = 9.0$ Hz, $J_2 = 3.5$ Hz, 1H, C<u>H</u>-OH), 4.84-4.37 (m, 8H, PhCH₂), 3.70-3.17 (m, 8H, H-1, H-2, H-3, H-4, H-5, 2x H-6, OH), 2.33-2.17 (m, 1H, CH_{2a}), 1.97-1.74 (m, 1H, CH_{2b})

Eine eindeutige Unterscheidung der beiden Diastereomere konnte nur im ¹³C NMR beobachtet werden:

(S)-52β

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 156.1 (s, C-2'), 141.8 (d, C-5'), 138.4/137.9/137.8/ 137.5 (4s, Phenyl-C), 128.4-127.7 (20d, Phenyl-CH), 110.0 (d, C-4'), 105.6 (d, C-3'), 86.9 (d, C-3), 82.0 (d, C-2), 79.3/78.6/78.4 (3d, C-1, C-4, C-5), 75.6/75.3/75.0/73.5 (4t, PhCH₂), 69.1 (t, C-6), 67.5 (d, C<u>H</u>-OH), 37.3 (t, CH₂)

(R)-52 β

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 156.7 (s, C-2'), 141.7 (d, C-5'), 138.5/138.0/ 2x 137.9 (4s, Phenyl-C), 128.4-127.7 (20d, Phenyl-CH), 110.1 (d, C-4'), 105.6 (d, C-3'), 87.1 (d, C-3), 81.4 (d, C-2), 78.7/78.4/76.7 (3d, C-1, C-4, C-5), 75.6/75.3/75.0/73.4 (4t, PhCH₂), 69.0 (t, C-6), 65.6 (d, C<u>H</u>-OH), 36.9 (t, CH₂)

Elementaranalyse: C₄₀H₄₂O₇: C 75.69, H 6.67; gefunden C 75.36, H 6.84

4.2.4.8.6. Synthese von 1-(Furan-2-yl)-3-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)propan-1-ol (53β)

Ansatz ohne Additiv:

100 mg	0.172 mmol	Aldehyd 51 β
0.46 ml	0.258 mmol	Furyllithium in THF 0.54 M
1 ml		wasserfreies THF

Die Herstellung erfolgte analog zu 4.2.4.8.2. Das Rohprodukt wurde mittels SC gereinigt (9 g SiO₂; Gradient: PE:Ether $3:1 \rightarrow 2:1$).

Ausbeute:

93 mg (84% der Theorie) leicht gelber Feststoff

Selektivität:

1:1.3 (17% de)

Ansatz mit MgBr₂

100 mg	0.172 mmol	Aldehyd 51β
0.64 ml	0.344 mmol	Furyllithium in THF 0.54 M
190 mg	1.032 mmol	MgBr ₂ (frisch geglüht)
2ml		wasserfreies THF

Die Herstellung erfolgte analog zu 4.2.4.8.3. Die Selektivität wurde direkt aus dem Rohprodukt bestimmt.

Selektivität:

1:1.2 (9% de)

Analytik:

 R_{f} -Wert: 0.45 (PE:EE = 3:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.45-7.12 (m, 21H, Phenyl-CH, H-5'), 6.37-6.29 (m, 1H, H-4', für (*S*)-H-4 bei 6.24 (dd, J_1 = 3.0 Hz, J_2 = 1.9 Hz)), 6.14, (bd, J = 3.1 Hz, 1H, H-3'), 4.96-4.48 (m, 9H, PhCH₂, C<u>H</u>-OH), 3.79-3.19 (m, 8H, H-1, H-2, H-3, H-4, H-5, 2x H-6, OH), 2.13-1.90 (m, 3H, CH_{2a}-CH₂-CHOH), 1.75-1.49 (m, 1H, CH_{2b}-CH₂-CHOH)

Eine eindeutige Unterscheidung der beiden Diastereomere konnte nur im ¹³C NMR beobachtet werden:

(S)-53β

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 156.9 (s, C-2′), 141.7 (d, C-5′), 138.6/138.1/2x 138.0 (4s, Phenyl-C), 128.4-127.6 (20d, Phenyl-CH), 110.0 (d, C-4′), 105.7 (d, C-3′), 87.2 (d, C-3), 81.9 (d, C-2), 79.2/78.7/78.5 (3d, C-1, C-4, C-5), 75.5/75.3/75.0/73.4 (4t, PhCH₂), 69.0 (t, C-6), 67.6 (d, C<u>H</u>-OH), 32.0 (t, CH₂-C<u>H</u>₂-CHOH), 27.3 (t, C<u>H</u>₂-CH₂, CHOH)

(*R*)-53β

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 157.0 (s, C-2'), 141.6 (d, C-5'), 138.6/138.0/ 2x 138.0 (4s, Phenyl-C), 128.4-127.6 (20d, Phenyl-CH), 110.0 (d, C-4'), 105.6 (d, C-3'), 87.2 (d, C-3), 81.9 (d, C-2), 79.2/78.7/78.5 (3d, C-1, C-4, C-5), 75.5/75.2/75.0/73.5 (4t, PhCH₂), 69.0 (t, C-6), 67.8 (d, C<u>H</u>-OH), 32.2 (t, CH₂-C<u>H</u>₂-CHOH), 27.9 (t, C<u>H</u>₂-CH₂, CHOH) Elementaranalyse: C₄₁H₄₄O₇: C 75.90, H 6.84; gefunden C 76.00, H 7.02

4.2.4.9. Synthese der Furanylketoverbindungen

4.2.4.9.1. Allgemeine Synthesevorschrift

Der Aldehyd wurde unter N₂-Atmosphäre in wasserfreiem THF gelöst und auf -15 °C gekühlt. Danach wurde Furyllithium zugegeben und die Reaktion für 2.5 Stunden bei -15 °C gerührt. Es wurde mit H₂O hydrolysiert und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde am Hochvakuum getrocknet.

Danach wurde es in wasserfreiem CH₂Cl₂ gelöst und Dess-Martin Periodinan bei Raumtemperatur zugegeben und für 5 Stunden gerührt. Sollte danach noch Ausgangsmaterial vorhanden gewesen sein, wurden weitere 1-2 Äquivalente Dess-Martin Periodinan zugegeben und für 12 Stunden bei Raumtemperatur gerührt.

Das Reaktionsgemisch wurde auf 2 N NaOH gegossen und 2x mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit 2 N NaOH und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt.

4.2.4.9.2. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranos-1-yl)ethanon (54 α)

Ansatz:

250 mg	0.441 mmol	Aldehyd 49 α
1.95 ml	0.882 mmol	Furyllithium in THF 0.45 M
5 ml		wasserfreies THF
375 mg	0.882 mmol	Dess-Martin Periodinan
10 ml		wasserfreies CH ₂ Cl ₂

Die Herstellung erfolgte analog zu 4.2.4.9.1. Das Rohprodukt wurde durch SC gereinigt (30 g SiO₂; Eluens PE:EE 5:1).

Ausbeute:

145 mg (52% der Theorie über 2 Stufen) farbloses Öl

Analytik:

 R_{f} -Wert: 0.29 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.46 (dd, J_1 = 1.7 Hz, J_2 = 0.7 Hz, 1H, H-5'), 7.35-6.98 (m, 21H, Phenyl-H, H-3'), 6.42 (dd, J_1 = 3.5 Hz, J_2 = 1.7 Hz, 1H, H-4'), 4.92-4.30 (m, 9H, PhCH₂, H-1), 3.82-3.45 (m, 6H, H-2, H-3, H-4, H-5, 2x H-6), 3.23 (dd, J_1 = 15.0 Hz, J_2 = 5.4 Hz, 1H, CH_{2a}), 3.06 (dd, J_1 = 15.0 Hz, J_2 = 8.3 Hz, 1H, CH_{2b})

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 186.6 (s, CO), 152.9 (s, C-2'), 146.2 (d, C-5'), 138.6/ 138.1/138.0/137.9 (4s, Phenyl-C), 128.5-127.6 (20d, Phenyl-CH), 117.0 (d, C-4'), 112.4 (d, C-3'), 82.1/79.4/77.7/72.5/71.2 (5d, C-1, C-2, C-3, C-4, C-5), 75.4/75.1/73.4/73.2 (4t, PhCH₂), 68.7 (t, C-6), 35.7 (t, <u>C</u>H₂-CO)

4.2.4.9.3. Synthese von 1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranos-1-yl)ethanon (54 β)

Ansatz:

800 mg	1.412 mmol	Aldehyd 49β
6.34 ml	2.823 mmol	Furyllithium in THF 0.45 M
10 ml		wasserfreies THF
1900 mg	4.469 mmol	Dess-Martin Periodinan
40 ml		wasserfreies CH ₂ Cl ₂

Die Herstellung erfolgte analog zu 4.2.4.9.1. Das Rohprodukt wurde mittels SC gereinigt. (50 g SiO₂; Gradient: PE:EE 8:1 \rightarrow 1:1). Um eine analytisch reine Probe zu erhalten, konnte noch aus PE/EE umkristallisiert werden.

Ausbeute:

470 mg (52% der Theorie über 2 Stufen) beige Kristalle

Analytik:

 R_{f} -Wert: 0.32 (PE:EE = 5:1)

F_p: 121-123 °C

 $[\alpha]_D^{20}$: -18.6 (c=0.59; CHCl₃)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.48 (dd, J_1 = 1.8 Hz, J_2 = 0.7 Hz, 1H, H-5'), 7.33-6.98 (m, 21H, Phenyl-H, H-3'), 6.41 (dd, J_1 = 3.5 Hz, J_2 = 1.8 Hz, 1H, H-4'), 4.98-4.26 (m, 8H, PhCH₂), 3.89 (ddd, J_1 = 9.6 Hz, J_2 = 7.2 Hz, J_3 = 4.5 Hz, 1H, H-1), 3.70-3.52 (m, 4H, H-3, H-4, 2x H-6), 3.45-3.27 (m, 2H, H-2, H-5), 3.05-2.84 (m, 2H, CH₂)

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 186.4 (s, CO), 153.0 (s, C-2'), 146.3 (d, C-5'), 138.5/ 138.1/138.0/137.9 (4s, Phenyl-C), 128.4-127.5 (20d, Phenyl-CH), 117.4 (d, C-4'), 112.1 (d, C-3'), 87.3 (d, C-3), 81.2 (d, C-2) 79.0/78.4 (2d, C-4, C-5) 74.9 (d, C-1) 75.6/75.4/74.9/73.4 (4t, PhCH₂), 68.6 (t, C-6), 40.8 (t, <u>C</u>H₂-CO) Elementaranalyse: C₄₀H₄₀O₇: C 75.93, H 6.37; gefunden C 75.96, H 6.40

4.2.4.9.4. Synthese von 1-(Furan-2-yl)-3-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)propan-1-on (55β)

Ansatz:

370 mg	0.637 mmol	Aldeyhd 51 β
2.81 ml	1.274 mmol	Furyllithum in THF 0.45 M
10 ml		wasserfreies THF
1084 mg	2.548 mmol	Dess-Martin Periodinan
10 ml		wasserfreies CH ₂ Cl ₂

Die Herstellung erfolgte analog zu 4.2.4.9.1. Das Rohprodukt wurde mittels SC gereinigt (30 g SiO₂; Gradient: PE:EE 10:1 \rightarrow 5:1). Es wurde zusätzlich noch aus PE/EE umkristallisiert.

Ausbeute:

200 mg (49% der Theorie über 2 Stufen) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.45 (PE:EE = 3:1)

F_p: 89-90 °C

[α]₃₆₅²⁰: -47.0 (c=0.50; CHCl₃)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.49 (dd, J_1 = 1.7 Hz, J_2 = 0.7 Hz, 1H, H-5'), 7.37-7.06 (m, 21H, Phenyl-H, H-3'), 6.44 (dd, J_1 = 3.5 Hz, J_2 = 1.7 Hz, 1H, H-4'), 4.95-4.44 (m, 8H, PhCH₂), 3.73-3.50 (m, 4H, H-3, H-4, 2x H-6), 3.41-3.18 (m, 3H, H-1, H-2, H-5), 3.04-2.77 (m, 2H, CH₂-CH₂-CO), 2.38-2.19 (m, 1H, CH₂a-CH₂-CO), 1.94-1.71 (m, 1H, CH₂b-CH₂-CO)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 189.1 (s, CO), 152.7 (s, C-2'), 146.0 (d, C-5'), 138.5/ 138.2/138.1/137.9 (4s, Phenyl-C), 128.4-127.6 (20d, Phenyl-CH), 116.9 (d, C-4'), 112.1 (d, C-3'), 87.1 (d, C-3), 82.1 (d, C-2) 78.8/78.5/78.2 (3d, C-4, C-5, C-1), 75.5/75.2/ 75.0/73.4 (4t, PhCH₂), 69.0 (t, C-6), 34.5 (t, CH₂-<u>C</u>H₂-CO), 26.3 (t, <u>C</u>H₂-CH₂-CO) Elementaranalyse: C₄₁H₄₂O₇x0.6H₂O: C 74.89, H 6.62; gefunden C 74.87, H 6.50

4.2.4.10. CBS-Reduktionen

4.2.4.10.1. Herstellung der CBS-Reduktionslösung (CBS/BH₃·DMS-Kat.)

Ansatz:

25 mg	0.100 mmol	(<i>S</i>)- α , α -Diphenyl-2-pyrolidinmethanol (<i>S</i>-56) bzw.
		(<i>R</i>)- α , α -Diphenyl-2-pyrolidinmethanol (<i>R</i> -56)
0.50 ml	1.000 mmol	BH ₃ ·DMS in THF 2 M
5 ml		wasserfreies THF

Durchführung:

Der Aminoalkohol *S*-56 bzw. *R*-56 wurde unter Argonatmosphäre in wasserfreiem THF gelöst, BH₃·DMS zugegeben und die Reaktionslösung über Nacht auf 60 °C erhitzt. Die klare 0.18 M Reduktionslösung wurde direkt für die folgenden Reduktionsversuche verwendet.

Ergebnis:

5 ml 0.18 M CBS/BH₃·DMS Reduktionslösung

4.2.4.10.2. Allgemeine Arbeitsvorschrift:

Unter Argonatmosphäre wurde das entsprechende Keton in wasserfreiem THF vorgelegt, mit 2.5 Äquivalenten an Reduktionslösung versetzt und für 3-5 Stunden auf 60 °C erhitzt. Es wurde mit Methanol hydrolysiert und mit Ether verdünnt. Anschließend wurde die organische Phase 2x mit 2 N HCl und 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde durch SC gereinigt.

4.2.4.10.3. Synthese von (S)-1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-β-Dglucopyranos-1-yl)ethanol (S-52β)

Ansatz:

50 mg	0.079 mmol	Keton 54β
1.10 ml	0.198 mmol	(S)-CBS/BH ₃ ·DMS-Lösung 0.18 M
1.50 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.4.10.2. Das Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:EE 10:1 \rightarrow 5:1).

Ausbeute:

49 mg (98% der Theorie) farbloser Feststoff

Selektivität:

91:9 (82% de)

Analytik:

F_p: 86-89 °C

 $[\alpha]_{365}^{20}$: -10.2 (c=0.28; CHCl₃)

R_f-Wert, ¹H und ¹³C NMR und Elementaranalyse siehe 4.2.4.8.5

4.2.4.10.4. Synthese von (S)-1-(Furan-2-yl)-3-(2,3,4,6-tetra-O-benzyl-β-Dglucopyranos-1-yl)propan-1-ol (S-53β)

Ansatz:

10 mg	0.016 mmol	Keton 55β
0.22 ml	0.040 mmol	(S)-CBS/BH ₃ ·DMS-Lösung 0.18 M
0.30 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.4.10.2. Das Rohprodukt wurde durch SC gereinigt (5 g SiO₂; Gradient: PE:EE $6:1 \rightarrow 3:1$).

Ausbeute:

9.5 mg (95% der Theorie) farbloser Feststoff

Selektivität:

71:29 (42% de)

Analytik:

F_p: 85-88 °C

 $[\alpha]_{365}^{20}$: +16.3 (c=0.22; CHCl₃)

Rf-Wert, ¹H und ¹³C NMR und Elementaranalyse siehe 4.2.4.8.6

4.2.4.10.5. Synthese von (S)-1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-α-D-

glucopyranos-1-yl)ethanol (S-52 α)

Ansatz:

55 mg	0.087 mmol	Keton 54α
1.20 ml	0.217 mmol	(S)-CBS/BH ₃ ·DMS-Lösung 0.18 M
2.00 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.4.10.2. Das Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:EE 10:1 \rightarrow 5:1).

Ausbeute:

50 mg (91% der Theorie) farbloses Öl

Selektivität:

86:14 (72% de)

Analytik:

 R_{f} -Wert: 0.30 (PE:EE = 3:1)

 $[\alpha]_D^{20}$: +29.7 (c=0.33; CHCl₃)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 7.42-7.05 (m, 21H, Phenyl-CH, H-5'), 6.34 (dd, $J_1 = 3.1$ Hz, $J_2 = 1.9$ Hz, 1H, H-4'), 6.26, (d, J = 3.1 Hz, 1H, H-3'), 5.00-4.32 (m, 10H, PhCH₂, C<u>H</u>-OH, H-1), 3.82-3.40 (m, 6H, H-2, H-3, H-4, H-5, 2x H-6), 2.42-2.11 (m, 2H, CH₂)

Eine eindeutige Unterscheidung der beiden Diastereomere konnte nur im ¹³C NMR beobachtet werden:

(S)-52 α

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 156.6 (s, C-2'), 141.7 (d, C-5'), 138.5/138.0/137.9, 137.8 (4s, Phenyl-C), 128.4-127.6 (20d, Phenyl-CH), 110.2 (d, C-4'), 105.8 (d, C-3'), 82.1/79.2/77.9/71.6/70.8 (5d, C-1, C-2, C-3, C-4, C-5), 75.3/74.9/73.4/73.0 (4t, PhCH₂), 68.9 (t, C-6), 65.0 (d, C<u>H</u>-OH), 30.5 (t, CH₂)

(R)-52 α

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 155.9 (s, C-2'), 141.8 (d, C-5'), 138.5/138.3/137.9/ 137.7 (4s, Phenyl-C), 128.4-127.6 (20d, Phenyl-CH), 110.1 (d, C-4'), 106.0 (d, C-3'), 81.9/ 79.5/78.1/71.5/70.5 (5d, C-1, C-2, C-3, C-4, C-5), 75.4/75.0/73.3/73.0 (4t, PhCH₂), 68.9 (t, C-6), 67.6 (d, C<u>H</u>-OH), 29.7 (t, CH₂)

Elementaranalyse: C₄₀H₄₂O₇x0.9H₂O: C 73.80, H 6.78; gefunden C 73.88, H 6.48

4.2.4.10.6. Synthese von (R)-1-(Furan-2-yl)-2-(2,3,4,6-tetra-O-benzyl-β-Dglucopyranos-1-yl)ethanol (R-52β)

Ansatz:

10 mg	0.016 mmol	Keton <i>54β</i>
0.22 ml	0.040 mmol	(<i>R</i>)-CBS/BH ₃ ·DMS-Lösung 0.18 M
0.30 ml		wasserfreies THF

Durchführung:

Die Herstellung erfolgte analog zu 4.2.4.10.2. Das Rohprodukt wurde durch SC gereinigt (10 g SiO₂; Gradient: PE:EE 10:1 \rightarrow 5:1).

Ausbeute:

9.5 mg (95% der Theorie) farbloses Öl

Selektivität:

77:23 (54% de)

Analytik:

 $[\alpha]_{365}^{20}$: -15.5 (c=0.38; CHCl₃)

R_f-Wert, ¹H- und ¹³C-NMR und Elementaranalyse siehe 4.2.4.8.5

4.2.4.11. Synthese von (2*S*,6*S*)-6-[(2,3,4,6-Tetra-*O*-benzyl-β-D-glucopyranos-1yl)methyl]-5-oxo-5,6-dihydro-2*H*-pyran-2-yl, benzoat (57)

Ansatz:

50 mg	0.079 mmol	Alkohol S-52β
13 mg	0.158 mmol	Natriumcarbonat
7 mg	0.079 mmol	Natriumacetat
16 mg	0.087 mmol	N-Bromsuccinimid
1.5 ml		THF
0.25 ml		H ₂ O
19 mg	0.138 mmol	Benzoesäurechlorid
175 mg	1.729 mmol	Triethylamin
Kat.		DMAP
1 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Alkohol *S*-52 β wurde in 1 ml THF und H₂O gelöst, NaHCO₃ und NaOAc zugegeben und das Reaktionsgemisch wurde auf 0 °C gekühlt. Nach der Zugabe von NBS, gelöst in 0.5 ml THF wurde noch 1.5 Stunden bei 0 °C gerührt und mit einer gesättigten NaHCO₃-Lösung hydrolysiert. Es wurde 3x mit Ether extrahiert. Die vereinigten Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotavapor entfernt. Eine Reinigung durch SC (10 g SiO₂; Gradient: PE:EE 4:1 \rightarrow 1:1) ergab 45 mg 56 (88% der Theorie) als farbloses Öl, welches direkt in den nächsten Reaktionsschritt eingesetzt wurde.

Dazu wurde **56** unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ gelöst, Triethylamin und DMAP zugeben und die Reaktionslösung auf -60 °C gekühlt. In Folge wurde Benzoesäurechlorid langsam zugetropft und 3 Stunden zwischen -60 °C und -50 °C gerührt. Nach der Hydrolyse mit einer gesättigten NaHCO₃-Lösung wurde 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 1x mit einer gesättigten NaHCO₃-Lösung und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde durch zweimalige SC gereinigt (5 g bzw. 7 g SiO₂; Gradient: PE:EE 8:1 \rightarrow 4:1).

Ausbeute:

20 mg (33% der Theorie) farbloses Öl an 2*R*-Benzoat

10 mg (17% der Theorie) farbloses Öl als Gemisch 56:44 an 2*R*- und 2*S*-Benzoat

10 mg (17% der Theorie) farbloses Öl als Gemisch 31:69 an 2R- und 2S- Benzoat

Insgesamt 67% der Theorie über 2 Stufen

Analytik:

 α -Anomer: 57 α

 R_{f} -Wert: 0.57 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.07-7.97 (m, 2H, Bzl-H-2, Bz-H-6), 7.64-7.49 (m, 1H, Bz-H-4), 7.47-7.06 (m, 22H, Phenyl-H, Bz-H-3, Bz-H-5), 6.86 (dd, J_1 = 10.0 Hz, J_2 = 4.0 Hz, 1H, H-2′), 6.73 (d, J = 4.0 Hz, 1H, H-1′), 6.20 (d, J = 10 Hz, 1H, H-3′), 4.94-4.33 (m, 8H, PhCH₂), 3.75-3.27 (m, 8H, H-1, H-2, H-3, H-4, H-5, 2x H-6, H-5′), 2.50 (dt, J_1 = 14.6 Hz, J_2 = 4.5 Hz, 1H, CH_{2a}), 2.14 (ddd, J_1 = 14.6 Hz, J_2 = 7.8 Hz, J_3 = 5.0 Hz, 1H, CH_{2b})

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 195.1 (s, C-4'), 165.1 (s, BzCOOR), 140.2 (d, C-3'), 138.6/138.3/2x 138.1 (4s, Phenyl-C), 133.6 (d, Bz-C-4), 130.0 (2d, Bz-C-2, Bz-C-6), 129.2 (s, Bz-C-1), 128.5-127.5 (23d, Phenyl-CH, Bz-C-2, Bz-C-5, C-2'), 87.5 (d, C-1'), 87.1 (d, C-3), 81.7/78.8/78.6/74.7/72.8 (5d, C-1, C-2, C-4, C-5, C-5'), 75.3/2x 74.9/73.3 (4t, PhCH₂), 69.1 (t, C-6), 31.6 (t, CH₂)

β-Anomer: **57**β

 R_{f} -Wert: 0.49 (PE:EE = 5:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = es werden hier die wesentlichen Unterschiede zu **57α** angegeben: 6.93 (dd, J_1 = 10 Hz, J_2 = 2.4 Hz, 1H, H-2′), 6.79 (dd, J_1 = 2.4 Hz, J_2 = 1.0 Hz, 1H, H-1′), 6.25 (dd, J_1 = 10 Hz, J_2 = 1.0 Hz, 1H, H-3′)

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 195.0 (s, C-4'), 164.8 (s, BzCOOR), 142.6 (d, C-3'), 138.5/138.3/138.2/138.1 (4s, Phenyl-C), 133.7 (d, Bz-C-4), 129.9 (2d, Bz-C-2, Bz-C-6), 128.7 (s, Bz-C-1), 128.5-127.5 (23d, Phenyl-CH, Bz-C-2, Bz-C-5, C-2'), 88.3 (d, C-1'), 87.1 (d, C-3), 82.4/78.8/78.2/75.9/72.8 (5d, C-1, C-2, C-4, C-5, C-5'), 75.4/2x 74.9/73.4 (4t, PhCH₂), 68.7 (t, C-6), 35.5 (t, CH₂)

4.2.4.12. Synthese von (2*S*, 5*R*, 6*S*)- 6-[(2,3,4,6-Tetra-*O*-benzyl-β-D-glucopyranos-1-yl)methyl]-5-hydroxy-5,6-dihydro-2*H*-pyran-2-yl, benzoat (58)

Ansatz:

20 mg	0.027 mmol	Keton <i>R</i>-57
1.5 mg	0.040 mmol	Natriumborhydrid
25 mg	0.066 mmol	CeCl ₃ ·7H ₂ O
1 ml		wasserfreies CH ₂ Cl ₂
0.5 ml		wasserfreies Methanol

Durchführung:

Keton *R*-57 wurde unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ gelöst und auf -75 °C gekühlt, nach der Zugabe von CeCl₃, gelöst in wasserfreiem Methanol, wurde für 10 min gerührt und danach NaBH₄ bei -75 °C zugegeben. Nach 1 Stunde Rühren wurde mit H₂O hydrolysiert und 3x mit Ether extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohprodukts erfolgte durch SC (5 g SiO₂; Gradient: PE:EE 6:1 \rightarrow 4:1).

Ausbeute:

8 mg (40% der Theorie) farbloses Öl

Analytik:

 R_{f} -Wert: 0.32 (PE:EE = 3:1)

 $[\alpha]_D^{20}$: +10.0 (EtOH; c = 0.20)

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.01 (dd, J_1 = 8.2 Hz, J_2 = 0.9Hz, 2H, Bz-H-2, Bz-H-6), 7.52-7.46 (m, 1H, Bz-H-4), 7.40-7.08 (m, 22H, Phenyl-H, Bz-H-3, Bz-H-5), 6.55 (bs, 1H, H-1'), 6.17 (d, J = 10.1 Hz, 1H, H-3'), 5.89 (dd, J_1 = 10.1 Hz, J_2 = 2.4 Hz, 1H, H-2'), 4.87 (s, 2H, 2x PhCH₂), 4.77 (d, J = 10.9 Hz, 1H, PhCH₂), 4.75 (d, J = 10.3 Hz, 1H, PhCH₂),

4.61 (d, J = 10.3 Hz, 1H, PhCH₂), 4.58 (d, J = 11.7 Hz, 1H, PhCH₂), 4.51 (d, J = 11.7 Hz, 1H, PhCH₂), 4.47 (d, J = 10.9 Hz, 1H, PhCH₂), 4.18 (bd, J = 9.1 Hz, 1H, H-4'), 4.14-4.07 (m, 1H, H-5'), 3.69-3.44 (m, 7H, H-1, H-2, H-3, H-4, H-5, 2x H-6), 2.23 (ddd, $J_I = 15.3$ Hz, $J_2 = 4.9$ Hz, $J_3 = 4.5$ Hz, 1H, CH_{2a}), 2.16 (ddd, $J_I = 15.3$ Hz, $J_2 = 6.7$ Hz, $J_3 = 3.7$ Hz, 1H, CH_{2b})

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 165.5 (s, BzCOOR), 138.6/137.9/2x 137.8 (4s, Phenyl-C), 135.8 (d, C-3'), 133.1 (d, Bz-C-4), 129.9 (s, Bzl-C-1), 2x 129.8 (2d, Bz-C-2, Bz-C-6), 128.4-127.5 (22d, Phenyl-CH, Bz-C-3, Bz-C-5), 123.7 (d, C-2'), 89.2 (d, C-1'), 87.0 (d, C-3), 80.5 (d, C-2), 2x 78.1 (2d, C-4, C-5), 75.8 (d, C-1), 75.4/75.2/75.1/73.5 (4t, PHCH₂), 71.0 (d, C-5'), 68.7 (t, C-6), 67.3 (d, C-4'), 34.6 (t, CH₂)

4.3. Synthese eines Nikotin-Metaboliten

4.3.1. Synthese von 1-O-[(3'R,5'S)-3'-Hydroxycotinin]-β-D-glucuronsäure

4.3.1.1. Synthese von 1,2,3,4-Tetra-O-acetyl-D-glucuronsäuremethylester (61)

Ansatz:

10.0 g	56.8 mmol	D-Glucuronsäure-γ-lacton (59)
0.05 g	1.3 mmol	Natriumhydroxid
75 ml		Methanol
43.3 g	424.0 mmol	Essigsäureanhydrid
25 ml		Pyridin

Durchführung:

NaOH wurde in Methanol vorgelegt, Lacton **59** in kleinen Portionen bei Raumtemperatur zugegeben und die Reaktionslösung für 3 Stunden gerührt. Das Lösungsmittel wurde im Vakuum entfernt und danach in möglichst wenig Essigsäureanhydrid gelöst, auf 0 °C gekühlt und ein Gemisch aus Pyridin und Essigsäureanhydrid zugetropft. Es wurde auf Raumtemperatur erwärmt und das Reaktionsgemisch für weitere 80 Stunden bei Raumtemperatur gerührt. Die Reaktionslösung wurde auf Eis gegossen, mit einer gesättigten NaHCO₃-Lösung neutralisiert und mehrmals mit Chloroform extrahiert. Die vereinigten organischen Phasen wurden 1x mit einer gesättigten NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotavapor entfernt. Das Rohprodukt wurde in Ethanol umkristallisiert.

Ausbeute:

6.7 g (31% der Theorie) leicht beige Kristalle

Analytik:

 R_{f} -Wert: 0.10 (PE:EE = 5:1) F_{p} : 174-177 °C; Lit.:¹⁵¹ 176-178 °C ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 5.73 (d, *J* = 8.0 Hz, 1H, H-1), 5.36-5.08 (m, 3H, H-2, H-3, H-4), 4.19 (d, *J* = 9.7 Hz, 1H, H-5), 3.75 (s, 3H, COOCH₃), 2.10 (s, 3H, CH₃), 2.00 (s, 9H, 3x CH₃) – entspricht Lit.¹⁵¹

4.3.1.2. Synthese von 2,3,4-Tri-*O*-acetyl-1-brom-1-deoxy-α-D-

glucuronsäuremethylester (62)

Ansatz:

4.50 g12.0 mmol1,2,3,4-Tetra-O-acetyl-D-glucuronsäuremethylester (61)25 mlHBr/Eisessig (33%)

Durchführung:

Verbindung 61 wurde unter N₂-Atmosphäre in HBr/Eisessig gelöst und für 12 Stunden bei Raumtemperatur gerührt. Es wurde mit EE verdünnt und anschließend jeweils 2x mit Eiswasser und einer gesättigten NaHCO₃-Lösung extrahiert, danach noch jeweils 1x mit H₂O und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotavapor entfernt. Laut NMR war eine weitere Reinigung nicht mehr notwendig.

Ausbeute:

4.50 g (94% der Theorie) leicht gelbe Kristalle

Analytik:

 R_{f} -Wert: 0.39 (PE:EE = 2:1)

F_p: 96-99 °C; Lit.:¹⁹³ 104-105 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 6.60 (d, *J* = 4.1 Hz, 1H, H-1), 5.60 (t, *J* = 9.9 Hz, 1H, H-3), 5.20 (t, *J* = 9.9 Hz, 1H, H-4), 4.84 (dd, *J*₁ = 9.9 Hz, *J*₂ = 4.1 Hz, 1H, H-2), 4.55 (d, *J* = 9.9 Hz, 1H, H-5); 3.75 (s, 3H, COOCH₃), 2.10 (s, 3H, CH₃), 2.00 (s, 6H, 2x CH₃) – entspricht Lit.¹⁹³

¹⁹³ Bowering, W. D. S.; Timell, T. E. J. Am. Chem. Soc. 1960, 82, 2827.

4.3.1.3. Synthese von 2,3,4-Tri-O-acetyl-D-glucuronsäuremethylester (63)

Ansatz:

4.50 g	11.33 mmol	Glucuronsäureester 62
3.28 g	11.90 mmol	Silber(I)carbonat
27 ml		Aceton
0.23 ml		H ₂ O

Durchführung:

Glucuronsäureester 62 wurde in Aceton und H₂O gelöst, Silber(I)carbonat zugegeben und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Es wurde filtriert und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde durch SC gereinigt (100 g SiO₂; Gradient: PE:EE 2:1 \rightarrow 1:2).

Ausbeute:

2.93 g (77% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.16 (PE:EE = 2:1)

F_p: 90-95 °C; Lit.:¹⁹⁴ 91-92 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 5.68-5.43 (m, 1.5H, H-3_{α}, H-1_{α}), 5.29-5.04 (m, 1.25H, H-3_{β}, H-1_{β}, H-4_{α}), 4.92-4.69 (m, 1.25H, H-2_{α}, H-2_{β}, H-4_{β}), 4.52 (d, *J* = 10.0 Hz, 0.75H, H-5_{α}), 4.15 (d, *J* = 8.2 Hz, 0.25 H, H-5_{β}), 5.09-4.00 (m, 1H, OH), 3.69 (s, 0.75H, COOCH_{3 β}), 3.68 (s, 2.25H, COOCH_{3 α}), 2.04-1.95 (3s, 3x CH₃) entspricht Lit.¹⁵³

¹⁹⁴ Keglevic, D.; Pradavic, N. J. Chem. Soc. **1964**, *1*, 4633.

4.3.1.4. Synthese von 2,3,4-Tri-*O*-acetyl-1-*O*-(trichloracetimidoyl)-α-Dglucuronsäuremethylester (64)

Ansatz:

2.93 g	8.77 mmol	Glucuronsäureester 63
4.43 g	30.68 mmol	Trichloracetonitril
6.66 g	48.24 mmol	Kaliumcarbonat
45 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde **63** in wasserfreiem CH₂Cl₂ vorgelegt und Trichloroacetonitril und Kaliumcarbonat zugegeben. Der Reaktionskolben wurde mit Alufolie abgedeckt und die Reaktionslösung über Nacht bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und das Rohprodukt durch SC (150 g SiO₂; Eluens: PE:EE 2:1) gereinigt und anschließend noch aus PE/EE umkristallisiert.

Ausbeute:

1.88 g (44% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.33 (PE:EE = 2:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.73 (s, 1H, NH), 6.63 (d, *J* = 3.6 Hz, 1H, H-1), 5.62 (t, *J* = 9.9 Hz, 1H, H-4), 5.26 (t, *J* = 9.9 Hz, 1H, H-3); 5.14 (dd, *J*₁ = 9.9 Hz, *J*₂ = 3.5, 1H, H-2), 4.49 (d, *J* = 9.9 Hz, 1H, H-5), 3.74 (s, 3H, COOCH₃), 2.04 (2s, 6H, 2x CH₃), 2.01 (s, 3H, CH₃) – entpricht Lit.¹⁵³

4.3.1.5. Synthese von 1,2,3,4-Tetra-*O*-pivaloyl-D-glucuronsäuremethylester (65)

Ansatz:

15.0 g	85.2 mmol	D-Glucuronsäure-γ-lacton (59)
153 mg	2.8 mmol	Natriummethanolat
75 ml		wasserfreies Methanol
67.1 g	554 mmol	Pivalinsäurechlorid
60 ml		Pyridin
110 ml		wasserfreies Chloroform

Durchführung:

Lacton **59** wurde in 70 ml wasserfreiem Methanol gelöst und eine frisch hergestellte Natriummethanolat-Lösung (65 mg Natrium in 5 ml wasserfreiem Methanol) bei Raumtemperatur zugetropft. Es wurde für 2 Tage gerührt und anschließend das Lösungsmittel am Rotavapor entfernt. Der zähe Rückstand wurde abermals in wasserfreiem Chloroform gelöst, Pyridin zugegeben, das Reaktionsgemisch auf 0 °C gekühlt und danach Pivalinsäurechlorid langsam zugetropft. Es wurde auf Raumtemperatur erwärmt und anschließend für 4 Tage gerührt. Pyridin und überschüssiges Pivalinsäurechlorid wurde am Rotavapor abgezogen und der erhaltene braune zähe Rückstand in H₂O und Ether aufgenommen. Es wurde mehrmals mit Ether extrahiert. Die vereinigten organischen Phasen wurden jeweils 3x mit einer gesättigten KHSO₄-Lösung, einer gesättigten NaHCO₃-Lösung, H₂O und 1x mit einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Anschließend wurde aus Ethanol umkristallisiert und das erhaltene Produkt am Hochvakuum getrocknet.

Ausbeute:

20.3 g (43% der Theorie) beige-brauner Feststoff

Analytik:

 R_{f} -Wert: 0.50 (PE:EE = 7:1)

F_p: 153-155 °C; Lit.:¹⁶⁶ 150-154 °C ¹H NMR (200 MHz, CDCl₃): δ (ppm) = 5.75 (d, *J* = 8.0 Hz, 1H, H-1), 5.42 (t, *J* = 9.2 Hz, 1H, H-3), 5.33-5.18 (m, 2H, H-2, H-4), 4.17 (d, *J* = 9.7 Hz, 1H, H-5), 3.71 (s, 3H, COOCH₃), 1.18-1.11 (12s, 36H, 4x C(C<u>H</u>₃)₃) – entspricht Lit.¹⁶⁶

glucuronsäuremethylester (66)

Ansatz:

16.60 g	30.48 mmol	Tetra-Piv-glucuronsäuremethylester 65
33.75 ml		HBr/Eisessig (33%)
28 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde **65** in wasserfreiem CH₂Cl₂ gelöst, auf 0 °C gekühlt und HBr/Eisessig langsam zugegeben. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt und das Lösungsmittel und überschüssiges HBr/Eisessig am Rotavapor abgezogen. Der Rückstand wurde in CH₂Cl₂ gelöst und 2x mit einer gesättigten NaHCO₃-Lösung extrahiert, danach noch jeweils 1x mit H₂O und einer gesättigten Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde aus EtOH umkristallisiert.

Ausbeute:

9.66 g (60% der Theorie) beige-brauner Feststoff

Analytik:

 R_{f} -Wert: 0.60 (PE:EE = 7:1)

F_p: 89-91 °C; Lit.:¹⁶⁶ 87-90 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 6.63 (d, *J* = 4.1 Hz, 1H, H-1), 5.68 (dd, *J*₁ = 9.9 Hz, *J*₂ = 9.7 Hz, 1H, H-3), 5.27 (dd, *J*₁ = 10.3 Hz, *J*₂ = 9.7 Hz, 1H, H-4), 4.84 (dd, *J*₁ = 9.9 Hz, *J*₂ = 4.1 Hz, 1H, H-2), 4.57 (d, *J* = 10.3 Hz, 1H, H-5), 3.73 (s, 3H, COOC<u>H</u>₃), 1.18-1.13 (9s, 27H, 3x C(CH₃)₃) – entspricht Lit.¹⁶⁶

4.3.1.7. Synthese von 2,3,4-Tri-O-pivaloyl-D-glucuronsäuremethylester (67)

Ansatz:

4.00 g	7.34 mmol	Tetra-Piv-glucuronsäuremethylester 65
7.00 ml		HBr/Eisessig (33%)
10 ml		wasserfreies CH ₂ Cl ₂
2.19 g	7.93 mmol	Silber(I)carbonat
18 ml		Aceton
0.15 ml		H ₂ O

Durchführung:

Unter N₂-Atmosphäre wurde **65** in wasserfreiem CH_2Cl_2 gelöst und tropfenweise mit HBr/Eisessig versetzt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Mit Eiswasser und einer gesättigten NaHCO₃-Lösung neutralisiert und mehrmals mit EE extrahiert. Die vereinigten organischen Phasen wurden jeweils 2x mit einer gesättigten NaHCO₃-Lösung und H₂O gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotavapor entfernt.

Das erhaltene Zwischenprodukt wurde in Aceton und Wasser gelöst, Silber(I)carbonat zugegeben und abermals über Nacht bei Raumtemperatur gerührt. Die festen Silbersalze wurden abfiltriert und das vorhandene Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde durch SC gereinigt (100 g SiO₂; Gradient: PE:EE 2:1 \rightarrow 1:1).

Ausbeute:

2.05 g (60% der Theorie über 2 Stufen) leicht gelber Feststoff

Verhältnis α : β = 2.5:1

Analytik:

 R_{f} -Wert: 0.20 (PE:EE = 3:1)

F_p: 109-111 °C; Lit.:¹⁷¹ 114-116 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 5.64 (t, *J* = 9.7 Hz, 0.7H, H-3_{\alpha}), 5.51 (d, *J* = 3.5 Hz, 0.7H, H-1_{\alpha}), 5.37 (t, *J* = 9.4 Hz, 0.3H, H-3_{\beta}), 5.27-5.08 (m, 1.3H, H-1_{\beta}, H-4), 4.95 (t, *J* = 8.8 Hz, 0.3H, H-2_{\beta}), 4.82 (dd, *J*₁ = 9.7 Hz, *J*₂ = 3.5 Hz, 0.7H, H-2_{\alpha}), 4.55 (d, *J* = 10.2 Hz,

0.7H, H-5_{α}), 4.08 (d, J = 9.8 Hz, 0.3H, H-5_{β}), 3.68 (s, 0.9H, COOCH_{3 β}), 3.67 (s, 2.1H, COOCH_{3 α}), 1.25-1.02 (9s, 27H, 3x C(CH₃)₃) – entspricht Lit.¹⁷¹

4.3.1.8. Synthese von 2,3,4-Tri-*O*-pivaloyl-1-*O*-(trichloracetimidoyl)-α-Dglucuronsäuremethylester (68)

Ansatz:

2.20 g	4.77 mmol	$2,3,4-Tri-{\it O}\mbox{-pivaloyl-D-glucurons} \\ auremethylester~(67)$
6.90 g	47.77 mmol	Trichloracetonitril
3.95 g	28.66 mmol	Kaliumcarbonat
30 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurde 67 in wasserfreiem CH_2Cl_2 gelöst, Trichloracetonitril und Kaliumcarbonat zugegeben und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand direkt durch SC gereinigt (80 g SiO₂; Gradient: PE:EE 100:1 \rightarrow 5:1).

Aubeute:

1.91 g (66% der Theorie) farbloser glasartiger Feststoff

Analytik:

 R_{f} -Wert: 0.66 (PE:EE = 3:1)

F_p: 103-105 °C; Lit.:¹⁷¹ 104-106 °C

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.72 (s, 1H, NH), 6.66 (d, *J* = 3.5 Hz, 1H, H-1), 5.71 (t, *J* = 9.9 Hz, 1H, H-3), 5.31 (t, *J* = 9.9 Hz, 1H, H-4), 5.20 (dd, *J*₁ = 9.9 Hz, *J*₂ = 3.5 Hz, 1H, H-2), 4.49 (d, *J* = 9.9 Hz, 1-H, H-5), 3.71 (s, 3H, COOCH₃), 1.20-1.06 (3s, 27H, 3x C(CH₃)₃) – entspricht Lit.¹⁷¹

4.3.1.9. Synthese von (3'*R*,5'*S*)-3'-Hydroxycotinin (71)

Ansatz:

200 mg	1.135 mmol	<i>S</i> -(-)-Cotinin (69)
417 mg	1.819 mmol	(+)-(Camphersulfonyl)oxaziridin 70
2.08 ml	2.270 mmol	LDA in THF 1.09 M
10 ml		wasserfreies THF

Durchführung:

Cotinin (69) wurde unter N₂-Atmosphäre in 5 ml wasserfreiem THF gelöst und auf -78 °C gekühlt. Über eine Spritze wurden langsam 2.08 ml frisch hergestellte LDA-Lösung zugetropft. Die Reaktionslösung wurde auf 0 °C gebracht und bei dieser Temperatur für 30 min gerührt. Die nun tief orange Lösung wurde abermals auf -78 °C gekühlt und das Oxazaridin 70, gelöst in 5 ml wasserfreiem THF zugetropft. Anschließend wurde noch weitere 3 Stunden bei dieser Temperatur gerührt und danach mit Methanol hydrolysiert. Das Lösungsmittel wurde am Rotavapor entfernt und das erhaltene Rohprodukt direkt über SC gereinigt (30 g SiO₂; Eluens PE:EE:NH₃ 100:1:1).

Ausbeute:

170 mg (78% der Theorie) gelbes zähes Öl

Analytik:

R_{f} -Wert: 0.38 (CH₂Cl₂:MeOH = 9:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.54 (dd, J_1 = 5.0 Hz, J_2 = 1.8 Hz, 1H, Pyr-H-6), 8.42 (bd, J = 2.0 Hz, 1H, Pyr-H-2), 7.39 (dt, J_1 = 7.7 Hz, J_2 = 2.0 Hz, 1H, Pyr-H-4), 7.27 (dd, J_1 = 7.7 Hz, J_2 = 5.0 Hz, 1H, Pyr-H-5), 4.59 (dd, J_1 = 8.5 Hz, J_2 = 3.0 Hz 1H, H-3'), 4.53 (t, J = 7.7 Hz, 1H, H-5'), 2.71 (s, 3H, CH₃), 2.45 (ddd, J_1 = 13.4 Hz, J_2 = 8.5 Hz, J_3 = 7.7 Hz, 1H, H-4'_a), 2.26 (ddd, J_1 = 13.4 Hz, J_2 = 7.7 Hz, J_3 = 3.0 Hz, 1H, H-4'_b) – entspricht Lit.¹⁶²

4.3.1.10. Synthese von 1-*O*-[(3'*R*,5'*S*)-3'-Hydroxycotinin]-2,3,4-tri-*O*-acetyl-β-Dglucuronsäuremethylester (72)

Ansatz:

282 mg	1.467 mmol	(3' <i>R</i> ,5' <i>S</i>)-3'-Hydroxycotinin (71)
842 mg	1.760 mmol	Glucuronsäureimidat 64
250 mg	1.760 mmol	$BF_3 \cdot Et_2O$
~200 mg		4Å Molsieb
10 ml		wasserfreies CH ₂ Cl ₂

Durchführung:

Unter N₂-Atmosphäre wurden Hydroxycotinin **71** und die aktivierte Glucuronsäure **64** in wasserfreiem CH₂Cl₂ gelöst und auf 0 °C gekühlt. Über eine Spritze wurden 0.2 Äquivalente an BF₃·Et₂O zugegeben und über Nacht bei Raumtemperatur gerührt. Da laut DC noch Edukt vorhanden war, wurden im Abstand von 12 Stunden nochmals jeweils 0.5 Äquivalente BF₃·Et₂O zugegeben und abermals über Nacht gerührt. Es wurde mit Methanol hydrolysiert und das Rohprodukt direkt durch zweimalige SC gereinigt (100 g SiO₂; Eluens: CH₂Cl₂:MeOH:NH₃ 50:1:1; 25 g SiO₂; Gradient: Aceton:Toluol 1:1 \rightarrow 3:1).

Ausbeute:

177 mg (24% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.55 (CH₂Cl₂:MeOH = 9:1)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.60 (dd, J_1 = 4.0 Hz, J_2 = 0.6 Hz, 1H, Pyr-H-6), 8.47 (bs, 1H, Pyr-H-2), 7.45 (dt, J_1 = 8.0 Hz, J_2 = 1.8 Hz, 1H, Pyr-H-4), 7.39-7.10 (m, 1H Pyr-H-5), 5.31-4.87 (m, 4H, H-1, H-2, H-3, H-4), 4.70 (dd, J_1 = 7.2 Hz, J_2 = 5.9 Hz, 1H, H-3'), 4.53 (dd, J_1 = 7.2 Hz, J_2 = 4.1 Hz, 1H, H-5'), 4.10-3.97 (m, 1H, H-5), 3.72 (s, 3H, COOCH₃), 2.71-2.38 (m, 5H, H-4' und bei 2.66 (s, 3H, N-CH₃), 2.05 (s, 3H, CH₃COOR), 2.00 (2s, 6H, 2x CH₃COOR)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 171.0/170.0/169.4/169.3 (4s, 3x CH₃COOR, RCOOCH₃), 167.0 (s, RCONR₂), 150.0 (d, Pyr-C-2), 148.6 (d, Pyr-C-6), 135.2 (s, Pyr-C-3), 133.8 (d, Pyr-C-4), 124.0 (d, Pyr-C-5), 98.5 (d, C-1), 75.0/72.3/72.1/71.1/69.2 (5d, C-2, C-3, C-4, C-5, C-3'), 59.8 (d, C-5'), 52.8 (q, RCOOCH₃), 37.0 (t, C-4'), 28.4 (q, N-CH₃), 20.7/20.6/20.5 (3q, 3x CH₃COOR)

4.3.1.11. Synthese von 1-*O*-[(3'*R*,5'*S*)-3'-Hydroxycotinin]-2,3,4-tri-*O*-pivaloyl-β-Dglucuronsäuremethylester (73)

Ansatz:

(0.988 mmol)	(3' <i>R</i> ,5' <i>S</i>)-3'-Hydroxycotinin (71)
(1.977 mmol)	Glucuronsäureimidat 68
(1.186 mmol)	BF ₃ ·Et ₂ O
	4Å Molsieb
	wasserfreies CH ₂ Cl ₂
	(0.988 mmol) (1.977 mmol) (1.186 mmol)

Durchführung:

Hydroxycotinin **71** und die aktivierte Glucuronsäure **68** wurden unter N₂-Atmosphäre in 10 ml wasserfreiem CH₂Cl₂ gelöst. Nach der Zugabe einer Spatelspitze Molsieb wurde auf 0 °C gekühlt und BF₃·Et₂O langsam zugetropft. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und über Nacht gerührt. Eine spezielle Aufarbeitung war nicht notwendig, das Reaktionsgemisch wurde direkt durch SC gereinigt (30 g SiO₂; Gradient: CH₂Cl₂:MeOH 100:1 \rightarrow 20:1).

Ausbeute:

530 mg (85% der Theorie) leicht gelber Feststoff

Analytik:

R_f-Wert: 0.65 (CH₂Cl₂:MeOH = 9:1) F_p: 105-110 °C $[\alpha]_{365}^{20}$: +42.9 (c=0.65; CHCl₃)

¹H NMR (200 MHz, CDCl₃): δ (ppm) = 8.57 (bs, 1H, Pyr-H-6), 8.45 (bs, 1H, Pyr-H-2), 7.45 (bd, J = 7.8 Hz, 1H, Pyr-H-4), 7.32 (dd, $J_I = 7.8$ Hz, $J_2 = 4.5$ Hz, 1H, Pyr-H-5), 5.42-4.91 (m, 4H, H-1, H-2, H-3, H-4), 4.70 (t, J = 6.8 Hz, 1H, H-3′), 4.43 (dd, $J_I = 6.9$ Hz, $J_2 = 3.3$ Hz, 1H, H-5′), 4.06 (d, J = 9.6 Hz, 1H, H-5), 3.68 (s, 3H, COOCH₃) 2.62 (s, 3H, N-CH₃) 2.49 (ddd, $J_I = 13.7$ Hz, $J_2 = 7.2$ Hz, $J_3 = 3.3$ Hz, 1H, H-4′_a), 2.07 (dt, $J_I = 13.7$ Hz, $J_2 = 6.8$ Hz, 1H, H-4′_b), 1.13/1.10/1.08 (9s, 27H, 3x C(CH₃)₃)

¹³C NMR (50 MHz, CDCl₃): δ (ppm) = 176.9/176.5/176.3 (3s, 3x PivCOOR), 171.1 (s, R<u>C</u>OOCH₃), 167.1 (s, RCONR₂), 150.0 (d, Pyr-C-2), 148.6 (d, Pyr-C-6), 135.1 (s, Pyr-C-3), 133.9 (d, Pyr-C-4), 124.0 (d, Pyr-C-5), 98.8 (d, C-1), 75.4/72.5/71.7/70.7/69.1 (5d, C-2, C-3, C-4, C-5, C-3'), 59.8 (d, C-5'), 52.7 (q, RCOO<u>C</u>H₃), 3x 38.7 (3s, 3x C(CH₃)₃) 37.1 (t, C-4'), 28.4 (q, N-CH₃), 27.1/27.0/26.9 (9q, 3x C(<u>C</u>H₃)₃)

4.3.1.12. Synthese von Tetraethylammonium-1-*O*-[(3'*R*,5'S)-3'-hydroxycotinin]-2,3,4-tri-*O*-pivaloyl-β-D-glucuronat (74)

Ansatz:

30 mg	(0.047 mmol)	Glucuronid 73
7.1 mg	(0.047 mmol)	Tetraethylammoniumhydroxid 20% in $\mathrm{H_{2}O}$
1 ml		Isopropanol

Durchführung:

Glucuronid **73** wurde in *i*-PrOH gelöst, TEAOH zugegeben und die Reaktionslösung für 5 Tage bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, das erhaltene Rohprodukt wurde in wenig Methanol gelöst und durch "Reversed Phase" SC (Merck LiChroprep[®]RP-18 (40-63 µm) gereinigt (2 g RP-SiO₂; Gradient: H₂O:MeOH 8:1 \rightarrow 1:8).

Ausbeute:

7 mg (20% der Theorie) farbloser Feststoff

Analytik:

 R_{f} -Wert: 0.30 (CH₂Cl₂:MeOH = 9:1)

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.59 (bd, *J* = 3.5 Hz, 1H, Pyr-H-6), 8.45 (s, 1H, Pyr-H-2), 7.51 (d, *J* = 8.5 Hz, 1H, Pyr-H-4), 7.41-7.32 (m, 1H, Pyr-H-5), 5.43-520 (m, 2H), 5.07 (t, *J* = 8.9 Hz, 1H), 4.80 (t, *J* = 6.9 Hz, 1H) 4.67-4.57 (m, 2H, H-3', H-5'), 3.90 (d, *J* = 9.6 Hz, 1H, H-5), 3.43 (4q, *J* = 7.0 Hz, 8H, 4x CH₂-CH₃) 2.77 (s, 3H, N-CH₃) 2.48-2.38 (m, 1H, H-4'_a), 2.30-2.20 (m, 1H, H-4'_b), 1.38 (4t, *J* = 7.0 Hz, 12H, 4x CH₂-CH₃), 1.16/1.11/ 1.06 (9s, 27H, 3x C(CH₃)₃)

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 177.0/176.9/176.6 (3s, Piv<u>C</u>OOR), 171.6 (s, R<u>C</u>OOCH₃), 170.2 (s, RCONR₂), 150.0 (d, Pyr-C-2), 148.5 (d, Pyr-C-6), 135.3 (s, Pyr-C-3), 133.7 (d, Pyr-C-4), 124.3 (d, Pyr-C-5), 99.8 (d, C-1), 75.5/74.7/73.0/71.3/69.9 (5d, C-2, C-3, C-4, C-5, C-3'), 59.2 (d, C-5'), 52.7 (4t, 4x <u>C</u>H₂-CH₃), 38.7/2x 38.6 (3s, 3x C(CH₃)₃) 35.8 (t, C-4'), 28.8 (q, N-CH₃), 27.2 (9q, 3x C(<u>C</u>H₃)₃), 7.7 (4q, 4x CH₂-<u>C</u>H₃)

5. ABKÜRZUNGSVERZEICHNIS

9-BBN	9-Borabicyclo[3.3.1]nonan	M; N	Molar, normal
Ac	Acetyl	<i>m</i> -CBA	3-Chlorbenzoesäure
acac	Acetylacetonyl	<i>m</i> -CPBA	3-Chlorperbenzosäure
AIBN	2,2'-Azobisbuttersäurenitril	Me	Methyl
Äq.	Äquivalente	MeCN	Acetonitril
Bn	Benzyl	MeLi	Methyllithium
BuLi	Butyllithium	MOM	(Methoxy)methyl
Bz	Benzoyl	Ms	Mesityl
CBS	Corey-Bakshi-Shibata	NBS	N-Bromsuccinimid
Ср	Cyclopentadienyl	NMR	Magnetresonanzspektroskopie
Су	Cyclohexyl	Nu	Nukleophil (allgemein)
DC	Dünnschichtchromatographie	PCC	Pyridiniumchlorochromat
Dec	<i>n</i> -Decyl	Pd/C	Palladium auf Aktivkohle
DCE	1,2-Dichlorethan	PE	Petrolether
de	Diastereomerenüberschuss	PG	Schutzgruppe (allgemein)
DIBAL-H	Diisobutylaluminiumhydrid	Ph	Phenyl
DMAP	4-(N,N-Dimethylamino)pyridin	Piv	Pivaloyl
DMDO	Dimethyldioxiran	<i>p</i> -TsOH	<i>p</i> -Toluolsulfonsäure
DMF	Dimethylformamid	Pyr	Pyridyl
DMS	Dimethylsulfid	R	Rest (allgemein)
DMSO	Dimethylsulfoxid	RF	Rückfluss
Dod	Dodecyl	RT	Raumtemperatur
DMPU	1,3-Dimethyl-3,4,5,6-tetrahydro-	SC	Säulenchromatographie
	2(1 <i>H</i>)-pyrimidon	SiO_2	Kieselgel 60
dppf	Bis(diphenylphosphino)ferrocen	TBAI	Tetrabutylammoniumiodid
DTBMP	2,6-Di-t-butyl-4-methylpyridin	TBDPS	tert-Butyldiphenylsilyl
E	Elektrophil (allgemein)	TBHP	tert-Butylhydroperoxid
EE	Essigsäureethylester	TBS	tert-Butyldimethylsilyl
Et	Ethyl	<i>t</i> -Bu	<i>tert</i> -Butyl
Et ₂ O	Diethylether	TEAOH	Tetraethylammoniumhydroxid
F _p ; K _p	Schmelzpunkt, Siedepunkt	Tf	Trifluormethylsulfonyl
GC/MS	Gaschromatographie-Massenspektroskopie	THF	Tetrahydrofuran
HMPA	Hexamethylphosphorsäuretriamid	TIPS	Triisopropylsilyl
HPLC	High Performance Liquid Chromatography	TMEDA	N,N,N,N-Tetramethylethylendiamin
<i>i</i> -Pr	Isopropyl	TMS	Trimethylsilyl
konz.	konzentriert	Tr	Trityl
LDA	Lithiumdiisopropylamid	ÜN	über Nacht
LHMDS	Lithiumhexamethyldisilazan	VFC	Vakuumflashchromatographie

6. LITERATURVERZEICHNIS

¹ *The Organic Chemistry of Sugars*; Levy, D. E.; Fügedi, P. Eds.; CRC Press, Taylor & Francis Group: Boca Raton, 2006.

- ² Essentials of Carbohydrate Chemistry and Biochemistry; Lindhorst, T. K.; Wiley-VCH: Weinheim, 2000.
- ³ Kohlenhydrate-Chemie und Biologie; Lehmann, J.; Georg Thieme Verlag: Stuttgart, 1996.
- ⁴ Carbohydrate Mimics; Chapleur, Y. Eds.; Wiley-VCH: Weinheim, 1998.
- ⁵ Stachulski, A.V.; Jenkins, G. N. Natural Product Reports 1998, 2,173.
- ⁶ C-Glycoside Synthesis; Postema, M. H. D; CRC Press, Taylor & Francis Group: Boca Raton, 1995.
- ⁷ Du, L.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* **1998**, *54*, 9913.
- ⁸ Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. J. Org. Chem. 1992, 57, 490.
- ⁹ Wang, Y.; Goejkjian, P. G.; Ryckman, D. M.; Miller, W. H.; Babirad, St. A.; Kishi, Y. J. Org. Chem. 1992, 57, 482.
- ¹⁰ Goekjian, P. G.; Wu, T.-Ch.; Kang, H.-Y.; Kishi, Y. J. Org. Chem. 1991, 56, 6422.
- ¹¹ Rouzad, D.; Sinaÿ, P. J. Chem. Soc. Chem. Commun. 1983, 23, 1353.
- ¹² Liu, L.; McKee, M.; Postema, M. H. D. Curr. Org. Chem. 2001, 5, 1133.
- ¹³ Leeuwenburgh, M. A.; Timmers, C. M.; van der Marel, G. A.; van Boom, J. H.; Mallet, J.-M.; Sinaÿ, P. G. *Tetrahedron Lett.* **1997**, *38*, 6251.
- ¹⁴ Paterson, D. E.; Griffin, F. K.; Alcaraz, M.-L.; Taylor, R. J. K. Eur. J. Org. Chem. 2002, 7, 1323.
- ¹⁵ Dondoni, A.; Zuurmond, H. M.; Boscarato, A. J. Org. Chem. 1997, 62, 8114.
- ¹⁶ Preuss, R.; Schmidt, R. R. J. Carbohydr. Chem. 1991, 10, 887.
- ¹⁷ Patro, B.; Schmidt, R. R. Synthesis 1998, 12, 1731.
- ¹⁸ Zhu, Y.-H.; Vogel, P. Tetrahedron Lett. **1998**, *39*, 31.
- ¹⁹ Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. 1996, 61, 1894.
- ²⁰ Mikkelsen, L. M.; Skrydstrup, T. J. Org. Chem. 2002, 68, 2123.
- ²¹ Byerley, A. L. J.; Kenwright, A. M.; Steel, P. G. Tetrahedron Lett. 1996, 37, 9093.
- ²² Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. J. Chem. Soc. Chem. Commun. 1998, 24, 2665.
- ²³ Witczak, Z. J.; Chhabra, R.; Chojnacki, J. Tetrahedron Lett. 1997, 38, 2215.
- ²⁴ Pasquarello, C.; Demange, R.; Vogel, P. Bioorg. Med. Chem. Lett. 1999, 9, 793.
- ²⁵ Vauzeilles, B.; Sinaÿ, P. *Tetrahedron Lett.* **2001**, *42*, 7269.
- ²⁶ Steunenberg, P.; Jeanneret, V.; Zhu, Y. H.; Vogel, P. Tetrahedron Asymm. 2005, 16, 337.
- ²⁷ Alzeer, J.; Vasella, A. Helv. Chim. Acta 1995, 78, 177.
- ²⁸ Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. Tetrahedron Lett. 1998, 39, 9027.
- ²⁹ Chang, G. X.; Lowary, T. L. Tetrahedron Lett. 2006, 47, 4561.
- ³⁰ Paton, R. M.; Penman, K. J. Tetrahedron Lett. 1994, 35, 3163.
- ³¹ Dondoni, A.; Kniezo, L.; Martinkova, M.; Imrich, J. Chem. Eur. J. 1997, 3, 424.
- ³² Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. *Tetrahedron* **2005**, *61*, 7184.
- ³³ Armstrong, R. W.; Sutherlin, D. P. Tetrahedron Lett. 1994, 35, 7743.
- ³⁴ Khan, A. T.; Sharma, P.; Schmidt, R. R. J. Carbohydr. Chem. 1995, 14, 1353.
- ³⁵ Khan, N.; Cheng, X.; Mootoo, D. R. J. Am. Chem. Soc. **1999**, 121, 4918.

- ³⁶ Postema, M. H. D.; Piper, J. L.; Liu, L.; Shen, J.; Faust, M. Andreana, P. J. Org. Chem. 2003, 68, 4748.
- ³⁷ Harding, M. Hodgson, R.; Majid, T.; McDowall, K. J.; Nelson, A. Org. Biomol. Chem. 2003, 1, 338.
- ³⁸ Guerrini, M.; Mussini, P.; Rondini, S.; Torri, G.; Vismara, E. J. Chem. Soc. Chem. Commun. 1998, 15, 1575.
- ³⁹ Eyrisch, O.; Fessner, W.-D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1639.
- ⁴⁰ Sutherlin, D. P.; Armstrong, R. W. J. Org. Chem. 1997 62, 5267.
- ⁴¹ Xin, Y.-C.; Zhang, Y.-M.; Mallet, J.-M.; Glaudemans, C. P. J.; Sinaÿ, P. Eur. J. Org. Chem. 1999, 2, 471.
- ⁴² Dondoni, A.; Marra, A. Tetrahedron Lett. 2003, 44, 4067.
- ⁴³ Dondoni, A.; Marra, A.; Mizuno, M.; Giovannini, P. P. J. Org. Chem. 2002, 67, 4186.
- ⁴⁴ Burli, R.; Vasella, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 1852.
- ⁴⁵ Johnson, C. R.; Johns, B. A. Synlett 1997, 12, 1406.
- ⁴⁶ <u>http://www.who.int/tobacco/en/</u> Aktueller Stand: 15.10.2007.
- ⁴⁷ Tricker, A. R. *Toxicology* **2003**, *183*, 151.
- ⁴⁸ Metal-catalyzed Cross-coupling Reactions; de Meijere, A., Diederich, F. Eds.; Wiley-VCH: New York, 2004.
- ⁴⁹ Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I. Ed.; Wiley-Interscience: New York, 2002.
- ⁵⁰ Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. **1992**, *4*, 691.
- ⁵¹ Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. 1995, 107, 2952.
- ⁵² Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483.
- 53 Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1485.
- ⁵⁴ Tamura, M.; Kochi, J. K. J. Organomet. Chem. 1972, 42, 205.
- ⁵⁵ Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674.
- ⁵⁶ Cardenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384.
- ⁵⁷ Cardenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018.
- ⁵⁸ Swallen, L. C.; Boord, C. E. J. Am. Chem. Soc. **1930**, *52*, 651.
- ⁵⁹ Rajanbabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458.
- ⁶⁰ Csuk, R.; Glänzer, B. I. Tetrahedron 1991, 47, 1655.
- ⁶¹ Netherton, M. R.; Dai, Ch.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099.
- 62 Hills, I. D.; Netherton M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749.
- 63 Fletcher, H. G.; Kuzuhara, H. J. Org. Chem. 1967, 32, 2531.
- ⁶⁴ Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
- ⁶⁵ Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.
- ⁶⁶ Goto, J.; Murao, N.; Oohashi, J.; Ikegawa, S. Steroids 1998, 63, 180.
- ⁶⁷ Ishikawa, T.; Shimizu, Y.; Kudon, T.; Saito, S. Org. Lett. 2003, 5, 3879.
- ⁶⁸ Pasti,C.; Rinaldi, E.; Cervellati, C.; Dallocchio, F.; Hardre, R.; Salmon, L.; Hanan, St. *Bioorg. Med. Chem.* **2003**, *11*, 1207
- 69 Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R. J. Am. Chem. Soc. 1997, 119, 4856.
- ⁷⁰ Johnson, C. R.; Johns, B. A. Synlett **1997**, *12*, 1406.
- ⁷¹ Jacobsen, E. N.; Pfalz, A.; Yamamoto, H. Eds.; *Comprehensive Asymmetric Catalysis* Vol 2, 713-790, Springer-Verlag Berlin Heidelberg New York, 1999.
- ⁷² Jacobsen, E. N.; Pfalz, A.; Yamamoto, H. Eds.; *Comprehensive Asymmetric Catalysis* Vol 2, 621-696, Springer-Verlag Berlin Heidelberg New York, 1999.

- ⁷³ Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314.
- ⁷⁴ Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457.
- ⁷⁵ Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4544.
- ⁷⁶ Marcone, J. E.; Moloy, K. G. J. Am. Chem. Soc. 1998, 120, 8527.
- ⁷⁷ Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
- ⁷⁸ Chidambaram, N.; Satyanarayana, K.; Chandrasekaran, S. *Tetrahedron Lett.* **1989**, *30*, 2429.
- ⁷⁹ Nakagawa, M.; Tonozuka, M.; Obi, M; Kiuchi, M.; Hino, T. Synthesis 1974, 7, 510.
- ⁸⁰ Pirkle, W. H.; Dines, M. J. Org. Chem. 1969, 34, 2239.
- ⁸¹ Posner, G. H.; Afarinkia, K.; Dai, H. Org. Synth. 1996, 73, 231.
- ⁸² Afarinkia, K.; Posner, G. H. Tetrahedron Lett. 1992, 33, 7839.
- ⁸³ Laliberte, R.; Medawar, G.; Lefebvre, Y. J. Med. Chem 1973, 16, 1084.
- ⁸⁴ Brescia, M.; Shimshock, Y. C.; DeShong, P. J. Org. Chem. 1997, 62, 1257.
- ⁸⁵ Hoffmann, H. M. R.; Krumwiede, D. Mucha, B.; Oehlerking, H. H.; Prahst, G. W. *Tetrahedron* **1993**, *49*, 8999.
- ⁸⁶ Stang, P. J.; Dueber, T. E. Org. Synth. 1974, 54, 79.
- ⁸⁷ Stang, P. J.; Treptow, W. Synthesis 1980, 4, 283.
- ⁸⁸ Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 46, 4607.
- ⁸⁹ Corey, E. J.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1965, 4, 1075.
- ⁹⁰ Corey, E. J.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1965, 4, 1077.
- ⁹¹ Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231.
- 92 Seebach, D. Angew. Chem. 1979, 91, 259.
- 93 Yus, M.; Najera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147.
- 94 Seebach, D. Synthesis 1969, 1, 17.
- 95 Gröbel B.-T.; Seebach, D. Synthesis 1977, 6, 357.
- ⁹⁶ Shen, Q.; Sloss, D. S.; Berkowitz, D. B. Synth. Commun. 1994, 24, 1519.
- ⁹⁷ Yoza, K.; Amanokura, N.; Ono, Y.; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai, S.; Reinhoudt, D. N. *Chem. Eur. J.* **1999**, *5*, 2722.
- 98 Rice, K.G.; Elhalabi, J. Carbohydrate Res. 2001, 35, 159.
- 99 Fukase, H.; Horii, S. J. Org. Chem. 1992, 57, 3642.
- ¹⁰⁰ Labeguere, F.; Lavergne, J.-P.; Martinez, J. Tetrahedron Lett. 2002, 43, 7271.
- ¹⁰¹ Lewis, M.; Cha, J.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
- ¹⁰² Hartmann, A. A.; Eliel, E. L. J. Am. Chem. Soc. 1971, 93, 2572.
- ¹⁰³ Eliel, E. L.; Abatjoglou, A.; Hartmann, A. A. J. Am. Chem. Soc. 1972, 94, 4786.
- ¹⁰⁴ Eliel, E. L.; Abatjoglou, A.; Hartmann, A. A. J. Am. Chem. Soc. 1974, 96, 1807.
- ¹⁰⁵ Eliel, E. L. *Tetrahedron* **1974**, *30*, 1503.
- ¹⁰⁶ Abatjoglou, A.; Eliel, E. L.; Kuyper, L. F. J. Am. Chem. Soc. 1977, 99, 8262.
- ¹⁰⁷ Boche, G. Angew. Chem. **1989**, 101, 286.
- ¹⁰⁸ Smith, III, A. B.; Pitram, S. M.; Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, Ch.; Moser, W. H. *J. Am. Chem. Soc.* **2003**, *125*, 14435.
- ¹⁰⁹ Strategic Applications of Named Reaction in Organic Synthesis; Kürti, L.; Czako, B.; Elsevier Academic Press, 2005.

- ¹¹⁰ Brook, A. G. Acc. Chem. Res. 1974, 7, 77.
- ¹¹¹ Moser, W. H. Tetrahedron 2001, 57, 2065.
- ¹¹² Madhusudan, S. K.; Agnihotri, G.; Negi, D. S.; Misra, A. K. Carbohydr. Res. 2005, 340, 1373.
- ¹¹³ Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 2377.
- ¹¹⁴ Holcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661.
- ¹¹⁵ Chuang, T.-H.; Fang, J.-M.; Jiaang, W.-T.; Tsai, Y.-M. J. Org. Chem. 1996, 61, 1794.
- ¹¹⁶ Achmatowicz, jr., O.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. *Tetrahedron* **1971**, *27*, 1973.
- ¹¹⁷ Zamoiski, A.; Banaszek, A.; Grynkiewicz, G. Adv. Carbohydr. Chem. Biochem. 1982, 40, 1.
- ¹¹⁸ Harris, J. M.; Keränen, M. D.; O'Doherty, G. A. J. Org. Chem. 1999, 64, 2982.
- ¹¹⁹ Harris, J. M.; Keränen, M. D.; Nguyen, H.; Young, V. G.; O'Doherty, G. A. Carbohydr. Res. 2000, 328, 17.
- ¹²⁰ Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 3899.
- ¹²¹ Babu, R. S.; Zhou, M.; O'Doherty, G. A. J. Am. Chem. Soc. 2004, 126, 3425.
- ¹²² Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 401.
- ¹²³ Kennedy, A.; Nelson, A.; Perry, A. Beilstein J. Org. Chem. 2005, 1, 2.
- ¹²⁴ Kennedy, A.; Nelson, A. Chem. Commun. 2005, 12, 1646.
- ¹²⁵ Hodgson, R.; Majid, T.; Nelson, A. J. Chem. Soc., Perkin Trans. 1 2002, 12, 1444.
- ¹²⁶ Sharma, G. V. M.; Hymavathi, L.; Krishna, P. R. Tetrahedron Lett. 1997, 38, 6929.
- ¹²⁷ Harding, M.; Nelson, A. Chem. Commun. 2001, 8, 695.
- ¹²⁸ Harding, M.; Hodgson, R.; Majid, T.; McDowall, K. J.; Nelson, A. Org. Biomol. Chem. 2003, 1, 338.
- ¹²⁹ Brenna, E.; Fuganti, C.; Grasselli, P.; Serra, S.; Zambotti, S. Chem. Eur. J. 2002, 8, 8.
- ¹³⁰ Dess, D. ; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
- ¹³¹ Vaghefi, M. M.; Bernacki, R. J.; Dalley, N. K.; Wilson, B. E.; Robins, R. K. J. Med. Chem. 1987, 30, 1383.
- ¹³² Presser, A.; Kunert, O.; Poetschger, I. Monatsh. Chem. 2006, 137, 365.
- ¹³³ Spencer, R.; Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1999, 11, 3987.
- ¹³⁴ Giannis, A. Sandhoff, K. Tetrahedron Lett. 1985, 26, 1479.
- ¹³⁵ Leitereg, T. J. Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4011.
- ¹³⁶ Leitereg, T. J. Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4019.
- ¹³⁷ Reetz, M. T.; Kessler, K.; Jung, A. *Tetrahedron Lett.* **1984**, *25*, 729.
- ¹³⁸ Hoppe, D.; Hense, T. Angew. Chem. **1997**, 109, 2376.
- ¹³⁹ Noe, C. R.; Knollmüller, M.; Göstl, G.; Oberhauser, B.; Völlenkle, H. Angew. Chem. 1987, 99, 467.
- ¹⁴⁰ Noe, C.; Knollmüller, M.; Wagner, E.; Völlenkle, H. Chem. Ber. 1985, 118, 1733.
- ¹⁴¹ Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. J. Chem. Soc. Chem. Commun. 1981, 7, 315.
- ¹⁴² Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.
- ¹⁴³ Corey, E. J.; Helal, C. J. Chem. Rev. **1998**, 37, 1986.
- ¹⁴⁴ Prasad, K. R. K.; Joshi, N. N. Tetrahedron Asymm. 1997, 8, 173.
- ¹⁴⁵ Mathre, D. J.; Jones, T. K.; Xavier, L. C.; Blacklock, T. J.; Reamer, R. A.; Mohan, J. J.; Turner Jones, E. T.;
- Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. J. Org. Chem. 1991, 56, 751.
- ¹⁴⁶ Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
- ¹⁴⁷ Hughes, D. L. Org. React. **1992**, 42, 335.
- ¹⁴⁸ Müller, T.; Schneider, R.; Schmidt, R. R. Tetrahedron Lett. 1994, 35, 4763.

- ¹⁴⁹ Königs, W.; Knorr, E. Chem. Ber. **1901**, *34*, 957.
- ¹⁵⁰ Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
- ¹⁵¹ Bollenback, G. N.; Long, J. W.; Benjamin, D. G.; Lindquist, J. A. J. Am. Chem. Soc. 1955, 77, 3310.
- ¹⁵² Pelzer, H. Physiol. Chem. **1959**, *314*, 234.
- ¹⁵³ Fischer, B.; Nudelman, A.; Ruse, M.; Herzig, J.; Gottlieb, H. E.; Keinan, E. J. Org. Chem. 1984, 49, 4988.
- ¹⁵⁴ Vlahov, J.; Snatzke, G. Liebigs Ann. Chem. 1983, 4, 570.
- ¹⁵⁵ Schmidt, R.; Grundler, G. Synthesis 1981, 11, 885.
- ¹⁵⁶ Brown, R. T.; Scheinmann, F.; Stachulski, A. V. J. Chem. Research (S) 1997, 10, 370.
- ¹⁵⁷ McKennis, Jr., H.; Turnbull, E. R.; Bowman; E. R.; Tamaki, E. J. Org. Chem. 1963, 28, 383.
- ¹⁵⁸ McKennis, Jr., H.; Schwartz, S. L.; Bowman; E. R. J. Biol. Chem. 1964, 239, 3990.
- ¹⁵⁹ Dagne, E.; Castagnoli, Jr., N. J. Med. Chem. 1972, 15, 356.
- ¹⁶⁰ Crooks, P. A.; Bhatti, S. B.; Ravard, A.; Riggs, R. M.; Caldwell, W. S. Med. Sci. Res. 1992, 20, 881.
- ¹⁶¹ Jacob, III, P.; Shulgin, A. T.; Benowitz, N. L. J. Med. Chem. 1990, 33, 1888.
- ¹⁶² Lin, N. H.; Carrera, Jr., G. M.; Anderson, D. J. J. Med. Chem. 1994, 37, 3542.
- ¹⁶³ Davis, F. A.; Towson, J. C.; Weismiller, M. C.; Lal, S.; Carroll, P. J. J. Am. Chem. Soc. 1988, 110, 8477.
- ¹⁶⁴ Davis, F. A.; Sheppard, A. C. Tetrahedron 1989, 45, 5703.
- ¹⁶⁵ Menger, F. M.; Binder, W. H.; Keiper, J. S. Langmuir 1997, 13, 3247.
- ¹⁶⁶ Gärtner, P.; Novak, C.; Einzinger, Ch.; Felzmann, W.; Knollmüller, M.; Gmeiner, G.; Schänzer, W. *Steroids* **2003**, *68*, 85.
- ¹⁶⁷ Mori, K.; Fukamatsu, K.; Kido, M. *Liebigs Ann. Chem.* **1993**, *6*, 657.
- ¹⁶⁸ Schultz, M.; Zörkler, G. Liebigs Ann. Chem. 1989, 6, 393.
- ¹⁶⁹ Protective Groups in Organic Synthesis; Green, T. W.; Wuts, P. G. M.; John Wiley & Sons, Inc: 1999.
- ¹⁷⁰ Ley, St.; Mynett, D. M. Synlett **1993**, *8*, 793.
- ¹⁷¹ Harding, J. R.; King, D. K.; Perrie, J. A.; Sinnott, D.; Stachulski, A. V. Org. Biomol. Chem. 2005, 3, 1501.
- ¹⁷² Watson, S. C.; Eastham, J. F. J Organomet. Chem. **1967**, *9*, 165.
- ¹⁷³ Bombard, S.; Maillet, M.; Capmau, M.-L. Carbohydr. Res. 1995, 275, 433.
- ¹⁷⁴ Damager, I.; Olsen, C. E.; Møller, B. L.; Motawia, M. S. Carbohydr. Res. 1999, 320, 19.
- ¹⁷⁵ Brunckova, J.; Crich, D. *Tetrahedron* **1995**, *51*, 11945.
- ¹⁷⁶ Limousin, C.; Olesker, A.; Cleophax, J.; Petit, A.; Loupy, A. Lukacs, G. Carbohydr. Res. 1998, 312, 23.
- ¹⁷⁷ Ko, K.-S.; Zea, C. J.; Pohl, N. L. J. Am. Chem. Soc. 2004, 126, 13188.
- ¹⁷⁸ Pirkle, W. H.; Dines, M. J. Org. Chem. **1969**, 6, 1.
- ¹⁷⁹ Ali, M. A.; Bhogal, N.; Findlay, J. B. C.; Fishwick, C. W. G. J. Med. Chem. 2005, 48, 5655.
- ¹⁸⁰ Liu, Z. D.; Khodr, H. H.; Liu, D. Y.; Lu, S. L.; Hider, R. C. J. Med. Chem. 1999, 42, 4814.
- ¹⁸¹ Schmidt, R. R.; Moering, U.; Reichrat, M. Chem. Ber. 1982, 115, 39.
- ¹⁸² Lipshutz, B. H., Nguyen, S. L.; Elworth, T. R. Tetrahedron 1988, 44, 3355.
- ¹⁸³ Deng, S.; Gangadharmath, U.; Chang, C.-W. T. J. Org. Chem. 2006, 71, 5176.
- ¹⁸⁴ Bell, D. L.; Lorber, J. J. Chem. Soc. **1940**, 1, 453.
- ¹⁸⁵ Weizhen, X.; Shawn, A.; Springfield, J. T. K. Carbohydr. Res. 2000, 325, 69.
- ¹⁸⁶ Bovin, N. V.; Zurabyan, S. E.; Khorlin, A. Y. Carbohydr. Res. 1981, 98, 25.
- ¹⁸⁷ Fischer, S.; Hamann, C. H. J. Carbohydr. Chem. 1995, 14, 327.
- ¹⁸⁸ Silverman, R. B.; Xingliang, L.; Banik, G. M. J. Org. Chem. 1992, 57, 6617.

- ¹⁸⁹ Schmidt, R. R.; Michel, J. J. Org. Chem. **1981**, 46, 4787.
- ¹⁹⁰ Allevi, P.; Anastasia, M.; Ciuffreda, F. A. Scala, A. J. Chem. Soc. Chem. Commun. 1987, 16, 1245.
- ¹⁹¹ Sparks, M. A.; Panek, J. S. *Tetrahedron Lett.* **1989**, *30*, 407.
- ¹⁹² Oguri, H.; Hishiyama, S.; Sato, O.; Oishi, T.; Hirama, M. *Tetrahedron* **1997**, *53*, 3057.
- ¹⁹³ Bowering, W. D. S.; Timell, T. E. J. Am. Chem. Soc. **1960**, 82, 2827.
- ¹⁹⁴ Keglevic, D.; Pradavic, N. J. Chem. Soc. **1964**, 1, 4633.

7. CURRICULUM VITAE

PERSÖNLICHE DATEN

geboren am 15.12.1976 in Wien

BERUFSERFAHRUNG & PRAKTIKA

2003/11 – Heute	Wissenschaftlicher Mitarbeiter am Institut für Angewandte Synthesechemie – TU Wien
2006/06 - 2006/09	Wissenschaftlicher Gastaufenthalt bei Prof. Adam Nelson University of Leeds/UK
2003/02 - 2003/11	Projektmitarbeiter der Forschungsgruppe Prof. Gärtner
Sommersemester 2002	Studienassistent – Betreuung eines Grundlagenlabors am Institut für Angewandte Synthesechemie – TU Wien
2001/09 - 2001/08	6-wöchiges Praktikum – Bayer AG Forschungszentrum Elberfeld, Wuppertal/Deutschland ° Schwerpunkt Pharmaforschung/Parallelsynthese
2000/09 - 2001/09	 4-wöchiges Praktikum – OMV AG Abteilung Technik-Qualitätskontrolle, Wien Schwerpunkt Öl- & Treibstoffanalytik
1999/09 – 1999/09	 4-wöchiges Praktikum – OMV AG Abteilung Technik-Qualitätskontrolle, Wien Schwerpunkt Abwasseranalytik

AUSBILDUNG & ZIVILDIENST

2003/04 – Heute	Dissertation bei Prof. Dr. Gärtner am Institut für Angewandte Synthesechemie – TU Wien Beiträge zur stereoselektiven Synthese von Kohlenhydrat-Derivaten			
1996/09 – 2003/01	 Studium der Technischen Chemie an der TU Wien Studienzweig: Organische Chemie und Technologie Diplomarbeit am Institut für Angewandte Synthesechemie bei Prof. Dr. Gärtner Diplomarbeitsthema: Beiträge zur enantioselektiven Synthese von Salmeterolmetaboliten 			
1995/10 - 1996/08	Zivildienst als Rettungssanitäter – Rotes Kreuz			
1983/09 - 1995/05	Schulausbildung mit Maturaabschluss am BG & BRG Gänserndorf			
PUBLIKATIONEN & POSTER

Publikationen

A facile and high yielding synthesis of 2,2,3,4,4-d₅-androsterone- β -D-glucuronide - an internal standard in dope analysis

Gärtner, P.; Novak, C.; Einzinger, Ch.; Felzmann, W.; Knollmüller, M.; Gmeiner, G.; Schänzer, W. *Steroids* **2003**, *68*, 85-96

Synthesis of partially deuterated N-nitrosamines – new standards in tobacco-smoke analysis

Gärtner, P.; Bica, K.; Einzinger, Ch. Monatshefte für Chemie 2004, 135, 549-555

Poster

Synthesis of partially deuteratrd N-nitorsamines – standards in tobacco smoke analysis and trans-3'-hydroxycotinine-O-glucuronide – a major nicotine metabolite

Gärtner, P.; Einzinger, Ch.; Bica, K. 10th Blue Danube Symposium on Heterocyclic Chemistry, Vienna, Austria, September 2003

A novel approach to the synthesis of C-linked di- & oligosaccharides

Einzinger, Ch.; Gärtner, P. First AGI Meeting of Organic Chemistry, Vienna, Austria, April 2005

From substituted furfuryl alcohols to C-linked disaccharides

Einzinger, Ch.; Gärtner, P. 13th European Carbohydrate Symposium, Bratislava, Slovakia, August 2005

INTERESSEN & HOBBYS

- Seit 1993 Pfadfinderbetreuer in der Pfadfindergruppe Strasshof
 - Ausbildung zum Jugendleiter im Rahmen von Kursen der Pfadfinder und Pfadfinderinnen Österreichs
 - Organisation von diversen Jugendcamps
- Reisen (Europa Skandinavien, Nord Amerika und Nord Afrika), Outdoor-Aktivitäten