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Abstract

There is a broad range of literature on long memory or long range dependent

processes, especially on fractionally integrated processes. Throughout the thesis

different models generating long memory processes, particularly the extensively

discussed fractional ARIMA model, are studied.

One of the main parts analyzes structural breaks versus long memory. To

shed new light on this problem I make heavy use of an error duration model,

which gives a nice view on stochastic processes in general and on short versus

long memory in specific.

After presenting various estimators and tests for long range dependence, I

compare short and long memory models for financial data (Dow Jones Index,

Alcoa Inc., and EUR / USD exchange rate).

My contribution is a model for time-varying (long) memory and herewith I

try to unify the concurring views of long memory and structural breaks.
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Chapter 1

Introduction

The first steps in long memory modeling date back to 1950 when Hurst [39]

studied Nile river flow data and found empirical evidence that yearly water

levels of the Nile river exhibit extreme persistence that can not be captured by

classic ARMA models.

Granger and Joyeux [30] established long memory in econometrics and fi-

nance in 1980 as a link between stationary I(0) and integrated I(1) processes.

At the same time Hosking [36] developed the concept of fractional integration

in biological sciences.

Parke [58] gives an interesting interpretation and very intuitive approach

to long range dependence by generating long memory with an error duration

model, which plays a major role in this thesis.

Some authors [3, 29, 43, 51] stress that structural changes in the mean,

variance, or the whole process itself are mistaken for long memory in the data.

Both model approaches have been applied to empirical data, and one can

find evidence for and against long memory (versus structural breaks). A lot of

financial and macro-economic time series are subject to research of long range

dependence, such as (absolute) returns, volatilities or inflation.

More recently, attention has turned to long memory stochastic volatility

models (see Section 7.1), which exhibit some typical features of real financial

data, such as stock or exchange rate returns.

The structure of the thesis is as follows: Chapter 1 introduces notation and

basic definitions of time series analysis and presents essential theoretical results

for a proper understanding and handling of time series. Chapter 2 deals with

definitions of long memory, proper models, and resulting properties of a long

memory process. Chapter 3 introduces the opposite viewpoint of structural

breaks as an explanation for the observed persistence in time series.

Chapters 5 and 7 present the most common estimators for long range depen-

dence and their application to real world data, respectively. My contribution

of this thesis can be found in Chapter 6, where I demonstrate the idea and
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general view of time-varying memory as an attempt to unify the long memory

and structural breaks point of view.

Appendix A collects necessary theorems and lemmas, and defines (commonly

used) notation for the thesis. For the sake of completeness I present essential

procedures and algorithms in Appendix B.

1.1 Basic definitions of stochastic processes and

time series

A time series xt is a stochastic process observed over time. To indicate the time

dependence I use the sub-script t to denote the individual observation, and T to

denote the number of observations. Due to the sequential nature of the process

we presume dependence between xt and xt−1. Therefore, results from classical

i.i.d. statistics are not valid anymore.

Definition 1.1.1 (Stochastic process). A stochastic process is a family of ran-

dom variables (xt|t ∈ T) defined on the probability space (Ω,A, P ).

As the general class of stochastic processes is far too wide, to be practicable,

the class of covariance stationary processes is introduced.

Definition 1.1.2 (Stationarity). A stochastic process xt is called covariance

(weakly) stationary if,

i) Ext = µ <∞ ∀t.

ii) Vxt = E(xt − µ)2 = σ2
x <∞ ∀t.

iii) cov(xt, xt+k) = γ(t, t+ k) =: γ(k) is independent of t for all k.

The autocovariance function γ(j) : Z→ C is symmetric, i.e. γ(j) = γ(−j).

Classic approaches to model time series are autoregressive (AR), moving

average (MA) and ARMA models. Here I give a brief overview about these

processes and refer to Brockwell and Davis [8] or Hamilton [34] for a detailed

discussion.

White Noise

A stochastic process εt satisfying

E εt = 0,

E ε2
t = σ2

ε <∞, (1.1.1)

E εtεs = 0 for s 6= t,

is called white noise.

Remark 1.1.3. Unless stated otherwise within the text, {εt} always denotes

white noise.
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Autoregressive and Moving Average Processes

A process xt satisfying the linear difference equation

xt − φ1xt−1 − φ2xt−2 − . . .− φpxt−p = εt, ∀t ∈ Z, φj ∈ R,

is called an autoregressive (AR) process of order p (provided φp 6= 0).

A process xt given by

xt = θ0εt + θ1εt−1 . . .+ θqεt−q, ∀t ∈ Z, θj ∈ R,

is called a moving average (MA) process of order q (provided θ0 6= 0 and θq 6= 0).

Without loss of generality θ0 can be set to 1. A MA(∞) process is defined as

the limit in mean square of
∑q

j=0 θjεt−j for q →∞ (see Example 1.2.4).

If we combine an AR and a MA system we get

xt − φ1xt−1 − . . .− φpxt−p = θ0εt + θ1εt−1 . . .+ θqεt−q (1.1.2)

where θj, φj ∈ R. Then (1.1.2) is an ARMA system and a solution xt is an

ARMA process.

For easier and more understandable notation we introduce the lag operator

L, which is a useful algebraic tool in time series analysis.

Definition 1.1.4. The lag operator L satisfies Lxt = xt−1.

Defining L2 = LL we get: L2xt = xt−2. In general we have Lkxt = xt−k.

Thus, differencing xt can be written as

xt − xt−1 = (1− L)xt =: ∆xt

Since the (1−L) operator is used quite frequently it is abbreviated with the

symbol ∆.

Integrated processes

Under certain conditions ARMA processes are stationary, but in practice one

often finds non-stationary processes. Usually non-stationary processes can be

transformed to stationary processes and then results from theory of stationary

time series can be applied.

Differencing the process is a very common transformation and there is a vast

literature on so called integrated processes.

Definition 1.1.5 (Integration). A process is integrated of order d ∈ Z if yt :=

(1− L)dxt is stationary.

3



If yt is an ARMA process, then xt is called an autoregressive integrated mov-

ing average process, denoted by xt ∼ ARIMA(p, d, q), where p and q are the

orders of the AR and MA systems, respectively.

Definition 1.1.6 (Causality). A process xt is called causal with respect to a

stationary process ut, if there is a

Φ(L) = φ0 + φ1L+ φ2L
2 + . . .

with
∑∞

k=0 |φk| <∞ and xt = Φ(L)ut.

Definition 1.1.7 (Invertibility). A process xt is called invertible with respect to

a stationary process ut, if there is a

Π(L) = π0 + π1L+ π2L
2 + . . .

with
∑∞

k=0 |πk| <∞ and ut = Π(L)xt.

Lemma 1.1.8. A MA(∞) process xt =
∑∞

k=−∞ ψkεt−k, ψk ∈ R is covariance-

stationary iff1
∑∞

k=−∞ ψ
2
k <∞.

Proof. The mean of xt equals zero, independent of t.

Ext = E
∞∑

k=−∞

ψkεt−k =
∞∑

k=−∞

ψk Eεt−k︸ ︷︷ ︸
=0

= 0 ∀t. (1.1.3)

Vxt = E
∞∑

j=−∞

ψjεt−jE
∞∑

k=−∞

ψkεt−k = E
∞∑

j=−∞

ψ2
j ε

2
t−j

=
∞∑

j=−∞

ψ2
jEε2

t−j = σ2
ε

∞∑
j=−∞

ψ2
j . (1.1.4)

Thus, the variance is finite iff
∑∞

j=−∞ ψ
2
j <∞.

cov(xt, xt+k) = E
∞∑

j=−∞

ψjεt−j

∞∑
i=−∞

ψiεt+k−i

= E
∑
i,j

ψjεt−jψiεt+k−i =
∑
i,j

ψj Eεt−jεt+k−i︸ ︷︷ ︸
6=0 for i=k+j

ψi

= σ2
ε

∞∑
j=−∞

ψjψk+j =: γ(k) (1.1.5)

Since the autocovariance only depends on the time lag k a MA(∞) process is

covariance stationary, provided that
∑∞

j=−∞ ψ
2
j <∞.

1Here and in the rest of the thesis I use iff as an abbreviation for if and only if.
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The autocovariance is a non-normalized measure for the time dependence

of a process. For comparable analysis it is necessary to introduce a normalized

measure.

Definition 1.1.9 (Autocorrelation Function). ρ(k) := γ(k)
γ(0)

is called the auto-

correlation function of xt. Especially ρ(0) = 1.

White Noise

White noise has no memory by definition, i.e. ρ(k) = 0 ∀k ≥ 1.

Autoregressive and Moving Average Processes

For a stationary and causal AR(1) process

xt = ρ1xt−1 + εt, |ρ1| < 1,

we have ρ(k) = ρk1 ∀k, i.e. the autocorrelation function decays exponentially.

For a MA(1) process xt = εt + θ1εt−1 we get

γ(0) = Extxt = E(εt + θ1εt−1)(εt + θ1εt−1) = σ2
ε(1 + θ2

1)

γ(1) = Extxt−1 = E(εt + θ1εt−1)(εt−1 + θ1εt−2) = σ2
εθ

2
1

γ(k) = 0 for k ≥ 2

So

ρ(k) =


1 if k = 0,
θ21

1+θ21
if k = 1,

0 if k ≥ 2.

In general the autocorrelation function of a MA(q) process displays a cutoff

to 0 at lag q+1.

Integrated Processes

For a simple random walk xt = xt−1 +εt we have ρ(k) = 1 ∀k. Nevertheless

the estimated autocorrelation function of a random walk realization decays very

slowly since the estimates for higher lags must use less data, but still average

over the full sample size T.

Sample autocorrelations of these four processes are displayed in Figure 1.1.
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Figure 1.1: Sample autocorrelation functions for realizations (T = 5000) of:
(top left) white noise εt; (top right) simple random walk; (bottom left) AR(1)
with ρ1 = 0.8; (bottom right) simple MA(1) with θ1 = −0.8

1.2 Hilbert space

Hilbert spaces are important for understanding the theory of stationary pro-

cesses and provide powerful tools for interpreting them in a geometric way.2

Subsequently I present two special Hilbert spaces, which simplify further

analysis of linear filters and spectral densities.

1. Consider the probability space (Ω,A, P ) underlying a stochastic process

xt and define

L2 :=

{
x ∈ (Ω,A, P )

∣∣∣E|x|2 <∞} , (1.2.1)

as the space of complex-valued random variables with finite variance.

The mapping < x, y >= Exy is not an inner product on L2, since E|x|2 = 0

does not imply x ≡ 0. Thus, we define an equivalence relation x ≡ y on

L2 iff x = y almost surely. The set of these equivalence classes is denoted

by L2 (Ω,A, P ). It is straightforward to show that L2 is a linear space

and < x, y >= Exy defined on L2 (Ω,A, P ) is an inner product. Thus,

L2 (Ω,A, P ) is a Hilbert space.

2For basic definitions and Hilbert space notations see A.2. For a detailed analysis see any
text on Functional Analysis, e.g. Yoshida [81].
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From < x, y >:= Exy we see that < x, y > is the non-central covariance

and ‖x‖2 is the non-central variance of the random variable x.

Thus, the stationarity conditions can be translated into Hilbert space no-

tation:

Ext = < xt, 1 >= const

Ex2
t = < xt, xt >= ‖xt‖2 = const

Extxt−1 = < xt, xt−1 >= const
...

This means that all xt are vectors in the Hilbert space L2 (Ω,A, P ) of the

same length and the angle between xt and 1 is constant, as is the angle

between xt and xt−1, and so forth. Thus, these angles do not depend on

t.

2. Especially for our purposes consider the probability space
(
[−π, π],B, µ

)
,

where B is the Borel σ-algebra of [−π, π] and µ is the normalized Lebesgue

measure on [−π, π], defined by

µ(x) =
1

2π

∫
[−π,π]

x dµ =
1

2π

∫ π

−π
|x(λ)| dλ. (1.2.2)

Consequently

L2
(
[−π, π],B, µ

)
=

{
x ∈

(
[−π, π],B, µ

) ∣∣∣µ(x2) <∞
}
, (1.2.3)

where x is a complex-valued random variable, is a Hilbert space. Notice

the equivalent interpretation of L2
(
[−π, π],B, µ

)
as the space of square

integrable functions on [−π, π]

L2[−π, π] :=
{
f
∣∣‖f‖2 <∞

}
with ‖f‖2 :=

(∫ π

−π
|f(t)|2 dt

) 1
2

,

where the norm comes from the inner product < f, g >=
∫ π
−π |f(t)g(t)| dt.

Likewise define the space of absolute integrable functions

L1[−π, π] :=
{
f
∣∣‖f‖1 <∞

}
with ‖f‖1 :=

∫ π

−π
|f(t)| dt.

Note that L1[−π, π] is not a Hilbert space, as there is no mapping < f, g >:

L1[−π, π]→ C that satisfies ‖f‖1 :=
√
< f, f >.
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To state the main result of this section we need several standard theorems.

Proofs can be found in introductory books about measure theory or Fourier

series (e.g. Zygmund [83]).

Theorem 1.2.1 (Riesz-Fisher). Let {et}∞t=0 be an orthonormal sequence in a

Hilbert space X. The infinite series
∑∞

j=0 αjej, αj ∈ C converges to an element

x ∈ X if and only if
∑∞

j=0 |αj|2. In that case αj =< x, ej >.

Hence, for a given square-summable sequence
{
αj
}∞
j=0
∈ C and an orthonor-

mal sequence {et}∞t=0 in a Hilbert space X, the series
∑∞

j=0 αjej is well defined

and converges to some element x ∈ X, and it holds αj =< x, ej >.

On the other hand, given an element x of a Hilbert space X and an or-

thonormal sequence {et}∞t=0, we can consider the family of functions

Sn(x) =
n∑
j=0

< x, ej > ej, n = 0, 1, 2, . . . . (1.2.4)

In general the sequence Sn(x) does not necessarily converge to x ∈ X.

Lemma 1.2.2. Let x be an element of the Hilbert space X, and {et}∞t=0 be an

orthonormal sequence in X. Then the Fourier polynomials

Sn(x) =
n∑
j=0

< x, ej > ej

converge to x̂ ∈ M , where M is the subspace of X, generated by {et}∞t=0. The

difference vector x− x̂ is orthogonal to M .

If the orthonormal sequence is a basis of X, i.e. the generated subspace

M ≡ X, then the space orthogonal to M is the null space; therefore, the Fourier

series converges to x ∈ X in the norm of the space X.

Lemma 1.2.3. The sequence
{
eiλt
}∞
t=0

is an orthonormal basis of L2[−π, π].

So, for every f ∈ L2[−π, π] it holds

lim
n→∞

∥∥f − Sn(f)
∥∥

2
= 0,

where

Sn(f) =
n∑

s=−n

ase
iλs with as :=

∫ π

−π
f(λ)eiλs dλ,

and norm

‖f‖2 =

∫ π

−π
|f(λ)|2 dλ.

Finally we can state the main result of this section
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Corollary 1.2.4 (MA(∞) in L2). For a given sequence
{
bj
}∞
j=−∞, consider the

process

yt :=
∞∑

j=−∞

bjηt−j, Vηt = σ2
η > 0, (1.2.5)

with a white noise input ηt. Then yt is covariance stationary if and only if∑∞
j=−∞ |bj|2 <∞.

Proof. The input sequence {ηt}∞t=−∞ is white noise. Thus, by definition

Eηt = 0, Eη2
t = σ2

η, and Eηtηs = 0 for t 6= s.

As ηt are elements of the Hilbert space L2(Ω,A, P ) with inner product

< x, y >:= Exy,

ηt is an orthogonal sequence in L2(Ω,A, P ) with‖ηt‖ = ση. To get an orthonor-

mal sequence we define the normalized white noise εt := ηt
ση

and consequently

αj = bjση. From theorem 1.2.1 it follows that
∑∞

j=−∞ bjηt−j =
∑∞

j=−∞ αjεt−j
converges to an element x ∈ L2 if and only if

∑∞
j=−∞ |αj|2 = σ2

η

∑∞
j=−∞ |bj|2 <

∞.

We will use this result later on to prove that the stochastic process

yt :=
∞∑

j=−∞

(
d

j

)
εt−j

is well defined in L2.

1.3 Frequency domain

So far the analysis of a time series was motivated by the interrelation of xt to

past values xt−j. But a time series xt can also be seen as an infinite sum of

sinusoidal oscillations with stochastic amplitude and frequency. For detailed

discussion of spectral analysis see [8]. The main result is summarized in the

Spectral Representation Theorem.

Theorem 1.3.1 (Spectral Representation Theorem). For every stationary pro-

cess xt there exists a process (z(λ)|λ ∈ [−π, π]) with orthogonal increments3

such that

xt =

∫ π

−π
eiλt dz(λ) (1.3.1)

holds. The process z(λ) is almost surely uniquely determined from xt.

3See A.1.2 for the definition of orthogonal increments and integration with respect to such
a process.
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Proof. See Brockwell and Davis [8].

The spectral representation is just a generalization of the Fourier transform

to stochastic processes, as it decomposes every stationary process into a sum of

sinusoidal components with random coefficients.

If z(λ) is the orthogonal increment process corresponding to xt, then F (λ) :=

Ez(λ)z(λ)∗ is the spectral distribution function of xt. If there exists a function

f : [−π, π]→ C such that

F (λ) =

∫ λ

−π
f(α) dα,

where α denotes the Lebesgue measure, then f is called the spectral density of

xt.

The autocovariance function γ(s) can be written as (i =
√
−1 and z is the

complex conjugate of z)

γ(s) = Exsx0 = E
∫ π
−π e

iλs dz(λ)
∫ π
−π e

iλ0 dz(λ)

=
∫ π
−π e

iλs dEz(λ)dz(λ)︸ ︷︷ ︸
dF (λ)

=
∫ π
−π e

iλs dF (λ). (1.3.2)

If the spectral density f(λ) exists, we get

γ(s) =

∫ π

−π
eiλsf(λ) dλ. (1.3.3)

Thus, γ(s) are the Fourier coefficients of fx(λ) and the Fourier series of f(λ)

is given by

f(λ) =
1

2π

∞∑
s=−∞

e−iλsγ(s). (1.3.4)

Since γ(s) = γ(−s), f(λ) is indeed a real-valued function

f(λ) =
1

2π

(
σ2
x + 2

∞∑
s=1

cos(λs)γ(s)

)
=
σ2
x

2π

(
1 + 2

∞∑
s=1

ρ(s) cosλs

)
.

Note that the spectral density does not necessarily exist. One sufficient (but

strong) condition for the existence of the spectral density is

∞∑
s=−∞

|γ(s)| <∞. (1.3.5)

Absolutely summable autocovariances guarantee a pointwise convergence of the

Fourier series to the spectral density.

Remark 1.3.2. The equality σ2
x = γ(0) =

∫ π
−π f(λ) dλ gives a straightforward
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relation between the variance of a process and the contribution of all cycles for

frequencies λ ∈ [−π, π].

In general, for −π ≤ a < λ < b ≤ π∫ b

a

f(λ) dλ

is the contribution of oscillations in the frequency band λ ∈ [a, b] to the total

variance σ2
x of xt.

Example 1.3.3 (White noise). For white noise {εt} we have

γε(j) =

σ2
ε if j = 0,

0 if j ≥ 1.

Trivially γε(j) satisfies (1.3.5) and thus

fε(λ) =
1

2π

∞∑
s=−∞

γε(s)e
−iλs =

1

2π
γε(0) =

σ2
ε

2π
. (1.3.6)

As the spectrum of εt is constant for all λ, every frequency has the same contri-

bution to the variance of the process.

To conclude this part on the frequency domain it is worth noting that the

spectral distribution and the spectral density, respectively, contain the same

information as the autocovariance function, but the information is displayed

differently. Given the purpose of analysis one approach might be easier to

interpret, compute, and work with than the other one.

1.4 Linear transformations

If {xt}∞t=−∞ is a stationary process, then

yt = a(L)xt with a(L) =
∞∑

j=−∞

ajL
j, aj ∈ R (1.4.1)

is called a linear transformation of {xt}∞t=−∞. To ensure the existence of the

sum for all stationary xt we assume

∞∑
j=−∞

|aj| <∞. (1.4.2)

{aj} is called the weighting sequence of the linear transformation.
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If xt = εt is white noise, then the condition on the weighting sequence can

be relaxed to
∞∑

j=−∞

|aj|2 <∞.

1.4.1 Frequency domain

Using the spectral representation theorem, we get

xt =

∫ π

−π
eiλt dzx(λ)

yt =
∞∑

j=−∞

ajxt−j =
∞∑

j=−∞

aj

∫ π

−π
eiλ(t−j) dzx(λ)

=

∫ π

−π
eiλt

∞∑
j=−∞

aje
−iλj dzx(λ).

Corresponding to the linear transformation (1.4.1) we define the transfer

function

k : [−π, π]→ C, λ 7−→
∞∑

j=−∞

aje
−iλj. (1.4.3)

As before, k(λ) and the weighting sequence aj are in a one-to-one relation since

aj = 1
2π

∫ π
−π e

iλjk(λ) dλ.

Theorem 1.4.1. Let xt be stationary with spectral density fx. If a(L) is ab-

solutely summable (or square summable for xt white noise), then the spectral

density fy of yt = a(L)xt and the cross spectral density fxy between xt and yt
exist, and are given by

fy = k(λ)fx(λ)k(λ)∗ (1.4.4)

fxy = k(λ)fx(λ)

where k(λ) = a(e−iλj) =
∑∞

j=−∞ aje
−iλj is the transfer function and z∗ is the

transpose and conjugate of z.

Proof. See Brockwell and Davis [8].

Example 1.4.2 (ARMA). For a stationary, invertible and causal ARMA(p, q)

process

ut =
Θ(L)

Φ(L)
εt =

∞∑
j=0

ϕjL
jεt, Θ(z) 6= 0 and Φ(z) 6= 0 for |z| ≤ 1, (1.4.5)
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with no common zeros of Θ(z) and Φ(z), the transfer function is given by

k(λ) =
Θ(e−iλ)

Φ(e−iλ)
=
∞∑
j=0

ϕje
−iλj (1.4.6)

and thus

fu(λ) = k(λ)fε(λ)k(λ)∗ =
Θ(e−iλ)

Φ(e−iλ)

σ2
ε

2π

Θ(eiλ)

Φ(eiλ)
=
σ2
ε

2π

|Θ(e−iλ)|2

|Φ(e−iλ)|2
(1.4.7)

Analyzing limλ→0 fu(λ) we see that this limit must be equal to a constant 0 <

c <∞. Assume c = 0, this implies limλ→0 |Θ(e−iλ)|2 = |Θ(e−i0)|2 = Θ(1)2 = 0.

But this is a contradiction to our invertibility assumption and roots outside the

unit circle. The same arguments for Φ(e−iλ) show that c 6=∞.

Subsequently, every ARMA(p, q) process satisfies the conditions of Example

1.4.2, i.e. it is stationary, causal, and invertible.
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Chapter 2

Long Memory Processes

Different definitions for long range dependence are used. I work with two com-

mon and very general definitions in the time and frequency domain, respec-

tively.1

Definition 2.0.3. A stochastic process {xt}∞t=−∞ with autocovariance function

γx(j) exhibits long memory iff

∞∑
j=−∞

γx(j) = γ(0) ·
∞∑

j=−∞

ρx(j) =

0 anti-persistent long memory,

∞ persistent long memory.
(2.0.1)

Definition 2.0.4. A stochastic process {xt}∞t=−∞ with spectrum fx(λ) exhibits

long memory iff

lim
λ→0

fx(λ) =

0 anti-persistent long memory,

∞ persistent long memory.
(2.0.2)

Consider the spectrum (1.4.7) of a stationary, causal and invertibleARMA(p, q)

process ut. As shown above

lim
λ→0

fu(λ) = c /∈ {0,∞}.

Thus, stationary, causal, and invertible ARMA models do not exhibit long mem-

ory. In consequence they are called short memory models.

In the following I present parametric conditions on γ(j) [ρ(j)] and f(λ), re-

spectively, such that processes with this autocovariance [autocorrelation] struc-

ture and spectrum exhibit long range dependence as in definition 2.0.3 or 2.0.4.

1 In this thesis I will not consider Gegenbauer processes xt satisfying

(1− 2νL+ L2)d(xt − µ) = εt,

where the spectral density has a pole at some frequency λ 6= 0, but only stochastic processes
xt with poles at the origin λ = 0. The interested reader is referred to [23, 31, 32].

14



Condition 2.0.5. A stationary process {xt}∞t=−∞ exhibits long memory if

lim
k→∞

ρx(k)

cpk2d−1
= 1 (2.0.3)

Here cp is a constant and d ∈ R is the memory parameter.2

Under certain assumptions, see Beran [4], there is an equivalent condition in

the frequency domain

Condition 2.0.6. A stochastic process {xt}∞t=−∞ exhibits long memory if

lim
λ→0

fx(λ)

cf |λ|−2d
= 1 (2.0.4)

Here cf is a positive constant and d ∈ R.

Note that this is only a specification of the spectrum fx(λ) close to zero. Out-

side a neighborhood of zero we assume that fx(λ) is a well-behaved function.

In specific fx(λ) is continuous and bounded for frequencies away from the origin.

Immediately we have

lim
λ→0

fx(λ) =

0 if d < 0,

∞ if d > 0.
(2.0.5)

Finally I introduce a different, but equivalent approach to long memory,

which is based on the asymptotic behavior of the variance of partial sums.

Condition 2.0.7. A stochastic process {xt}∞t=−∞ exhibits long memory if

VST = O(Tα), α 6= 1,

where ST =
∑T

t=1 xt.
3

As the spectral density is the limit of 1
T
ST at zero, it is clear that the par-

tial sums condition is equivalent to the spectral condition for long memory

(α = 2d+ 1).

Consider the autocorrelation function plotted in Figure 2.1(a). There is

only one significant negative autocorrelation in the first 100 lags, ρx(k) seems

to decay hyperbolically, and on top of that lags up to 80 ( ≈ 1.5 years) are

siginificant.

2Subsequently I refer to d lying in a certain interval of R. As the case d = 0 has been
studied extensively, I tacitly assume d 6= 0.

3See A.3.1 for the definition of O(g(t)) and o(g(t)).
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2.1 Motivation for introducing the concept of

long memory

Before modeling processes following a new scheme and introducing a parametric

classification of long memory processes, one should motivate the occurrence of

processes indicating such a pattern. There are reasonable explanations why

real life processes could follow an ARMA or ARIMA model. Here I present

intuitive explanations for the existence of long memory and the necessity to

develop models and theory for this family of stochastic processes.

2.1.1 Aggregation

One way to address the existence of long memory starts with short memory mod-

els. Granger [28] commences with n independent stationary AR(1) processes

xj,t with the root close to the unit disk,

xj,t = αjxj,t−1 + εj,t, j = 1, . . . , n,

where εj,t are zero-mean, independent white noise and αj are drawn from a Beta

distribution on (0, 1), with

dF (α) =
2

B(p, q)
α2p−1(1− α2)q−1dα, 0 ≤ α ≤ 1, and p > 0, q > 0.

If we set

xt :=
n∑
j=1

xj,t,

then – for n large – xt ∼ I(1− q
2
). For a proof see [18].

For example, consider a set of stocks and an index representing this set.

As the index is a (weighted) sum of these stocks, the aggregation model could

be a reasonable explanation for long range dependence of stock indices, if the

corresponding stocks are stationary AR(1) processes on the threshold to random

walks.

2.1.2 Spectral examination

Above we have already inspected an autocorrelation function with a rather

hyperbolical than exponential decay. A similar – empirically motivated – ap-

proach for the appearance of long memory gives a spectral domain examination.

Consider a process xt, when differenced d times, results in a stationary pro-

cess ut := (1−L)−dxt with spectrum fu(λ). xt is then called an integrated series

of order d, denoted by xt ∼ I(d). The process xt does not necessarily have a
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spectrum, but from filtering theory, the spectrum – if it exists – must satisfy

fx(λ) = (1− e−iλ)−d(1− eiλ)−dfu(λ) =
(
2(1− cosλ)

)−d
fu(λ)

=

(
2 sin

λ

2

)−2d

fu(λ). (2.1.1)

Example 2.1.1 (ARMA). Previously ut is just a stationary process, no further

assumptions are needed. Suppose ut has an ARMA(p, q) representation, then

lim
λ→0

fu(λ) =
σ2
ε

2π
lim
λ→0

|Θ(e−iλ)|2

|Φ(e−iλ)|2
=
σ2
ε

2π

|Θ(1)|2

|Φ(1)|2
= cu, (2.1.2)

where cu is a constant 0 < cu < ∞. Ergo the behavior of the spectrum fx(λ)

(2.1.1) for λ→ 0 does not depend on the ARMA specification in the sense that

lim
λ→0

fx(λ) = cu lim
λ→0

(
2 sin

λ

2

)−2d

.

This property is the basis for the GPH estimator (see Section 5.3.2).

Now let d ∈ R, 1
2
≤ d < 1. Below I show that this implies infinite variance

for the process xt. The classical Box-Jenkins method in consequence suggests

differencing xt to get a well-behaved, covariance stationary and invertible, series.

But differencing results in a spectrum

f∆x(λ) = |1− e−iλ|2fx(λ) = |1− e−iλ|2|1− e−iλ|−2dfu(λ)

= |1− e−iλ|2(1−d)fu(λ) =
[
2(1− cosλ)

]2(1−d)
fu(λ),

so that limλ→0 f∆x(λ) = 0. For the same reasons as above the difference operator

(1 − L)1 is not appropriate for time series xt having a spectrum (2.1.1) with
1
2
≤ d < 1, as the resulting process ut := (1 − L)xt is stationary but not

invertible.

Therefore, neither differencing (no invertible MA representation), nor not

differencing (infinite variance) seems appropriate for data having a spectrum

with characteristics as in (2.1.1). These properties are illustrated in Figure

2.1(b).

Letting λ go to 0 in (2.1.1) we differ between 2 cases:

lim
λ→0

fx(λ) =

0 if d < 0, anti-persistent

∞ if d > 0, persistent
(2.1.3)

Algebraically fx(λ) = 1
2π

∑∞
j=−∞ γ(j)e−iλj. Since fx(0) = 1

2π

∑∞
j=−∞ γ(j),

we have that for d > 0 the sum of autocorrelations diverge; the persistent case.

For d < 0 the autocorrelations sum up to 0; we will refer to this as the anti-
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Figure 2.1: Time and frequency analysis for transformed DJI log-returns from
1964 – 2006

persistent case.

Remark 2.1.2. In practice one will find almost exclusively processes with per-

sistent behavior. However, if in practice

f̂u(ωj)→ 0 as ωj → 0,

then this is an indication that the data have been over-differenced (see Figure

2.1(b)). Besides a process with negative d is an unstable status, as already a

small zero-mean independent perturbation ξt with variance σ2
ξ > 0 added to an

anti-persistent process

yt = xt + ϑt

destroys the property
∑∞

j=−∞ γ(j) = 0 since

∞∑
j=−∞

γy(j) = σ2
ξ +

∞∑
j=−∞

γx(j)︸ ︷︷ ︸
=0

= σ2
ξ > 0.

Of course, a persistent process remains persistent.4

2.2 Error duration model

Parke [58] proposes an error duration model as the driving force for long memory

processes and herewith gets an elegant and very insightful representation and

justification for the – non spurious – occurrence of long memory processes:

4See Section 7.1 for a more detailed analysis.
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The basic mechanism for an error duration model is a sequence of

shocks of stochastic magnitude and stochastic duration. The variable

observed in a given period is the sum of those shocks that survive to

that point. The distribution of the durations of the shocks determines

whether or not the process is fractionally integrated. Fractional in-

tegration requires that a small percentage of the shocks have long

durations.

Let
{
εt|t = 1, 2, . . .

}
be i.i.d. shocks with zero mean and constant variance

σ2
ε . Let εs have a stochastic duration of ns ≥ 0 with distribution function

F (k) = P (ns ≤ k). Define gs,t as the indicator function for the event εs survives

until period t

gs,t :=

1 t ≤ s+ ns,

0 t > s+ ns.
(2.2.1)

and pk as the probability of εs surviving until period s+ k,

pk := P (gs,s+k = 1), k = 0, 1, 2, . . . .

For easier handling note that

pk+1 = P (gs,s+k+1 = 1) = E I{shock duration≥k+1}

= P (ns ≥ k + 1) = 1− P (ns ≤ k) = 1− F (k).

Thus, pk is the probability that any shock lasts k or more periods (ns ≥ k).

In some sense the survival probabilities are similar to covariance stationarity,

as they do not depend on s but only on the lag k.

By definition it holds 1 = p0 ≥ p1 ≥ p2 ≥ . . ., and for further analysis we

assume pk
k→∞→ 0.5 Thus, the probabilities of surviving exactly k periods

πk := P (ns = k) = P (ns ≥ k)− P (ns ≥ k + 1)

= pk − pk+1 = F (k)− F (k − 1), k = 1, 2, 3, . . . , (2.2.2)

are well defined.

Set

yt :=
t∑

s=−∞

gs,tεs, (2.2.3)

then yt is the realization of all shocks, occurred since the infinite past, that

survived until period t.

5Otherwise the probability of a shock having infinite duration is greater than zero and
trivially the variance of yt goes to infinity. For pk ≡ 1 ∀k we have the simple random walk.
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Claim 2.2.1. The autocovariances γ(k) of yt are given by

γ(k) = σ2
ε

∞∑
i=k

pi ≥ 0. (2.2.4)

Note that
{
γ(k)

}
is a nonincreasing, nonnegative sequence. Therefore, only

persistent memory can be achieved within this model.

Besides pk = γ(k)−γ(k+1)
σ2
ε

≥ 0.

Proof. Since gs,t and εs are independent it follows that

Eyt = E
t∑

s=−∞

gs,tεs =
t∑

s=−∞

Egs,tEεs =
t∑

s=−∞

Egs,t0 = 0.

γ(k) = Eytyt−k = E

 ∞∑
i=0

gt−i,tεt−i

 ∞∑
j=k

gt−j,t−kεt−j

 . (2.2.5)

As εt−i and εt−j are independent for i 6= j, equation (2.2.5) reduces to

γ(k) =
∞∑
i=k

Eg2
t−i,tEε2

t−i. (2.2.6)

Recall that gt−i,t is an indicator function only taking values 0 or 1, so trivially

g2
t−i,t = gt−i,t; thus, Eg2

t−i,t = Egt−i,t. gt−i,t represents the event that shock εt−i
survives until period t, i.e. that the shock duration ns is greater or equal to i,

so we have

E g2
t−i,t = E gt−i,t = P (ns ≥ i) = pi.

Substituting into (2.2.6) gives

γ(k) =
∞∑
i=k

piEε2
t−i = σ2

ε

∞∑
i=k

pi independent of t,

which completes the proof.

Remark 2.2.2. The variance of yt equals

σ2
y = γ(0) = σ2

ε

∞∑
i=0

pi = σ2
ε

∞∑
i=0

P (ns ≥ i).

As ns is a nonnegative random variable the expectation – if it exists – is

given by (see Lemma A.1.5)

Ens =
∞∑
i=1

P (ns ≥ i) =: ν.
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Thus, the variance of an ED process is directly related to the expected error

duration, as σ2
y = σ2

ε (1 + ν). Note that σ2
y > σ2

ε unless ν = 0, which implies the

degenerate case of ns ≡ 0.

Given the explicit formula for γy(k) we can set restrictions on pk such that

yt is covariance stationary.

Condition 2.2.3 (Stationarity – Non-stationarity). If ν is finite, Vyt = σ2
ε(1 +

ν) < ∞ ∀t and γ(k) = σ2
ε

∑∞
i=k pi independent of t. Therefore, the process yt

in (2.2.3) is covariance stationary.

If ν is not finite, the expected error duration is infinite, as is the variance

yt; thus, yt is non-stationary.

Analogously we get conditions on pk for long memory features.

Condition 2.2.4 (Short Memory – Long Memory). The process defined in

(2.2.3) exhibits long memory iff
∑∞

k=0(k + 1) pk diverges.

Proof. This follows directly by substitution of γ(k) =
∑∞

i=k pi into the definition

of long memory (
∑∞

k=0 |γ(k)| diverges).

Obviously
∑∞

i=1 pi does not converge for pi = 1, ∀i = 1, 2, . . .. This degen-

erate distribution corresponds to the unit root case. However, the condition for

nonstationarity – in the error duration sense – is much weaker than the condi-

tion for a unit root, which states that all shocks last forever. For pk = 1
k+1

the

probability of having an impact for k or more periods goes to zero as k tends

to infinity. But as the probability does not vanish fast enough the variance of

the process tends to infinity, resulting in a non-stationary process.

2.2.1 Simulate duration driven processes

The procedure to simulate processes from the ED model is quite obvious:6

1. generate an i.i.d. random sample {εt}Tt=1−K ,

2. choose a feasible, discrete probability distribution for the survival proba-

bilities pk, k = 0, 1, 2, . . .,

3. draw a random sample of shock durations ns and calculate the indicator

function gs,t(k),

4. compute xt =
∑T

s=1−K gs,t(k)εs.

See Example 2.2.5 for a short memory (AR(1)), and Example 2.3.11 for a

long memory (ARFIMA) realization.

6The described truncated method is only an approximation, as it suffers from a presampling
bias [38]. Choosing a large presample size K, simulate an error duration process for T + K
shocks, and omitting the first K simulations, should be sufficient for our purposes.
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2.2.2 Short memory and error duration

The error duration framework is of course not limited to long memory processes.

Consider the AR(1) process

xt = φxt−1 + ηt, 0 < |φ| < 1, ηt ∼ N(0, σ2
η), (2.2.7)

with autocovariances

γx(k) = Extxt−k = σ2
η

φk

1− φ2
. (2.2.8)

The autocovariances for a realization yt of an ED model with survival probabil-

ities pi and error variance σ2
ε satisfy

γy(k) = σ2
ε

∞∑
i=k

pi ⇔ pk =
γy(k)− γy(k + 1)

σ2
ε

.

Therefore, γx(k) ≡ γy(k) iff

pk =
γx(k)− γx(k + 1)

σ2
ε

=
σ2
η

σ2
ε

φk − φk+1

1− φ2
=
σ2
η

σ2
ε

1

1 + φ
φk

p0 ≡ 1⇒ σ2
ε =

σ2
η

1 + φ
> 0⇒ pk = φk and φ > −1

pk ≥ 0 ∀k ⇒ φ ≥ 0,

pk ≥ pk+1 ∀k ⇒ φ ≥ 0.

Again, only a certain class of AR(1) processes can be reproduced, but for 0 <

φ < 1 a realization of

yt =
t∑

s=−∞

gs,tεs, εs ∼ N

(
0, σ2

ε =
σ2
η

1 + φ

)
(2.2.9)

pk = P (gs,s+k = 1) = φk, (2.2.10)

is not distinguishable from the realization of the AR(1) model in equation

(2.2.7). The survival probabilities are just the autocorrelations of xt, which

is not surprising considering the MA(∞) representation of an AR(1) process.

Yet, the error structure is different as σ2
ε < σ2

η = σ2
ε(1 + φ) for every 0 < φ < 1.

Example 2.2.5 (AR(1) versus ED). Specifically consider an AR(1) process with

φ = 0.9 and σ2
η = 1. Thus, the corresponding error duration representation is

given by

yt =
t∑

s=−∞

gs,tεs, εs ∼ N (0, 0.526)

pk = P (gs,s+k = 1) = 0.9k.
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Figure 2.2: (left) yt: simulated AR(1) process from ED model; (middle) auto-
correlations of yt; (right) Densities of corresponding sample innovations.

Figure 2.2 shows one realization of this error duration model. In fact, the au-

tocorrelations show an almost perfect exponential decay to zero. Estimating an

AR(1) model for the data gives

yt = 0.113(0.273) + 0.884(0.015)yt−1 + ηt, σ̂2
η = 1.026. (2.2.11)

So, all the characteristics of the AR(1) model – zero mean, φ = 0.9, σ2
η = 1 –

have been reproduced.

As I have simulated the data, I know the innovations for the error duration

model. For the AR(1) process I did not observe the innovations, but the residuals

of (2.2.11) should be a fairly good approximation. The right plot in Figure 2.2

shows the innovation densities for the two models. As already predicted above,

the AR(1) innovations have fatter tails than the ED innovations.

2.2.3 Different view of the world

Although some AR and ED models are equivalent in the way that realizations

are not distinguishable from a second order point of view, the driving forces

behind a realization are quite different.

Consider a stationary, causal and invertible MA(∞) process

xt =
∞∑
j=0

ψjηt−j, ηt ∼ WN(0, σ2
η). (2.2.12)

Condition 2.2.6. In order that pk := γx(k)−γx(k+1)
σ2
ε

is a valid ED probability

sequence, the autocovariances of the MA(∞) process must satisfy
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a) p0 = 1⇒ 0
!
< σ2

ε = γx(0)− γx(1),

b) pk ≥ 0⇒ γx(k) ≥ γx(k + 1),

c) pk ≥ pk+1 ⇒ γx(k − 1)− γx(k) ≥ γx(k)− γx(k + 1).

By the Cauchy-Schwarz inequality, condition a) is always satisfied for co-

variance stationary processes. Thus, this condition must be seen as a necessary

equality for the variance of the ED innovations.

Given the autocorrelations γx(k) of a MA(∞) satisfy condition 2.2.6,

yt =
∞∑
s=0

εsds,t, εs ∼ WN(0, σ2
ε), σ2

ε = γx(0)− γx(1), (2.2.13)

is an equivalent error duration representation for an MA(∞) process xt.

For a specific realization {xt}Tt=1 the left hand side of (2.2.12) and (2.2.13)

are equal of course, but the way this realization is formed is different. For

clarification, write down the first couple of observations x1, x2, x3, x4, . . . (assume

that innovations prior to the first observation are equal to zero):

x1 = η1

x2 = η2 + ψ1η1

x3 = η3 + ψ1η2 + ψ2η1

x4 = η4 + ψ1η3 + ψ2η2 + ψ3η1

...

Thus, in the MA model xt is a realization of shocks ηt that have a decaying

impact on future observation. So, η3 has an impact of 1 on x3. The next period

η3 still influences the outcome x4, but with an impact of |ψ1| < 1, and so on.

By the nature of a MA(∞) model, the influence of innovation ηt on xt+h equals

ψh > 0 for every h ≥ 0 independent of t.7

In the ED model, assume the first four shocks (ε1, ε2, ε3, ε4) have a duration

of (3, 1, 2, 2), i.e.

x1 = ε1

x2 = ε1 + ε2

x3 = ε1 + 0 + ε3

x4 = 0 + 0 + ε3 + ε4

...

7For a MA(q) process ηh = 0 for h > q, thus the influence horizon is equal to q.
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In an economical/social environment one can interpret the shocks as in-

novations and the random variable ns as a stochastic influence horizon of an

innovation. At time t = 1 a shock ε1 occurs, and people remember the shock

for three periods. At t = 2 a new shock ε2 occurs, but also ε1 is still present.

As the second shock is not very important, it has no impact on t = 3 anymore

and vanishes.

Of course, the realized values of xt are equal for both models, but the inno-

vations ηt in the ARFIMA case, are different to the innovations εs in the ED

model. As we only observe xt and neither know the reason for nor the realized

values of the shocks, which influenced the process, this distinction should not

bother us.

I will resume to study this idea and refine it theoretically in Section 3.3

about structural breaks versus long memory.

2.2.4 Conditional survival probabilities

An interesting insight can be gained by studying the conditional survival prob-

ability, which is the probability that a shock εs survives k + 1 periods given it

already survived k periods. By Bayes’ rule

P (ns ≥ k + 1|ns ≥ k) =
P (ns ≥ k + 1 ∧ ns ≥ k)

P (ns ≥ k)
=
P (ns ≥ k + 1)

P (ns ≥ k)
=
pk+1

pk
,

where the second to last equality follows, as the event ns ≥ k+1 implies ns ≥ k.

For an AR(1) process pk+1 = φpk and thus

P (ns ≥ k + 1|ns ≥ k) = φ < 1 ∀k.

The probability of surviving the current period k equals φ > 0 independent of

k. This means that the probability of surviving the next period is independent

of the already survived time of the shock.

Claim 2.2.7. The conditional survival probabilities pk+1

pk
of a long memory pro-

cess converge to one.

Proof. Assume pk+1

pk
was bounded from above by φ < 1, then pk would go to

zero faster than φk. But as

∞∑
k=0

(k + 1)φk =
d

dφ

∫ ∞∑
k=0

(k + 1)φk dφ =
d

dφ

∞∑
k=0

∫
(k + 1)φk dφ

=
d

dφ

∞∑
k=0

φk+1 =
d

dφ

φ

1− φ2
=

1 + φ2

(1− φ2)2
<∞,

in contradiction to the long memory property of the underlying model.

25



Therefore, a necessary condition for a long range dependence is that con-

ditional survival probabilities tend to 1. Loosely speaking, although far more

shocks die in the first couple of periods for a long memory process than for a

short memory process, once an innovation reaches a certain importance level

the probability of dying out goes to zero for k to infinity.

2.2.5 Spectral density

Under certain conditions on pk the process yt is a stationary, causal process.

The spectral density – if it exists – is equal to

fED(λ) =
1

2π

∞∑
s=−∞

e−iλsγ(s) =
1

2π

[
γ(0) +

∞∑
s=1

γ(s) cosλs

]

=
σ2
ε

2π

1 +
∞∑
s=1

∞∑
i=s

pi cosλs

 . (2.2.14)

If there is a maximum duration S, then γ(s) will vanish for s > S and the

existence is trivially given. Note that this corresponds to the MA(q) case.

Although this model allows a deep understanding of the underlying structure

of a process, it is of limited use in practice, as the population second moments

must satisfy condition 2.2.6. Besides, even if the population autocovariances

meet the conditions, the estimated sample autocovariances γ̂x(k) do not satisfy

condition 2.2.6 in general.

2.3 ARFIMA

Until now no assumptions have been made on the process xt itself, but only

on the second moments. Here I present the widely discussed ARFIMA model,

which is a natural expansion of the well known ARIMA model.8

Definition 2.3.1 (ARFIMA). A process xt, with Ext = µ, is called an autore-

gressive fractionally integrated moving average process with parameters p, d and

q – denoted by ARFIMA(p, d, q) – if xt solves

Φ(L)(xt − µ) = Θ(L)(1− L)−dεt. (2.3.1)

with AR and MA lag polynomials (Φ(L) and Θ(L), respectively) of order p and

q.

If d is a non-positive integer, then we get the well known ARIMA(p, d, q)

process. Granger and Joyeux [30], and Hosking [37] suggested that noninteger

8In main points and derivations of this section I follow [57] and [34].
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values of d might be useful. If d ∈ R, the operator (1−L)−d does not necessarily

exist in L2. Thus, define

n(z) := (1− z)−d. (2.3.2)

Theorem 2.3.2 (Newton’s generalized binomial theorem). The binomial series

is the series

(1 + w)α =
∞∑
k=0

(
α

k

)
wk = F (−α, 1; 1;−w), (2.3.3)

where(
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
=

1

k!

Γ(−α + k)

Γ(−α)
=

Γ(−α + k)

Γ(−α)Γ(k)
,

and

F (a, b; c;w) :=
∞∑
n=0

(a)n(b)n
(c)n

wn

n!
with (x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1)

is the hypergeometric function.

a) If |w| < 1, the series converges for any complex number α.

b) If |w| = 1, the series converges absolutely if and only if either Re(α) > 0

or α = 0.

c) If |w| = 1 and w 6= −1, the series converges if and only if Re(α) > −1,

where Re(a+ ib) = a.

Therefore, n(z) = (1− z)−d is analytic in the open disk
{
z ∈ C||z| < 1

}
for

every d ∈ C and converges at z = 1(⇔ w = −1) only for d < 0(⇔ Re(α) > 0).

Thus, the filter n(L) = (1− L)−d can be expanded to the infinite series and we

get the MA(∞) representation

xt =
∞∑
k=0

(
d

k

)
εt−k =

∞∑
k=0

nkεt−k. (2.3.4)

From lemma 1.1.8 we know that xt is covariance stationary if and only if∑∞
k=0 |nk|2 < ∞. As nk ∈ R we can omit the modulus in the convergence

analysis.

Claim 2.3.3. The sequence
{(

d
k

)}
is square summable for d < 1

2
.

27



Proof. Consider the Taylor expansion of h(x) = (1 + x)d−1

(1 + x)d−1 = h(0) +
∂h

∂x

∣∣∣
x=0
· x+

1

2

∂2h

∂x2

∣∣∣
x=δ
· x2

= 1 + (d− 1)x+
1

2
(d− 1)(d− 2)(1 + δ)d−3x2

for some δ ∈ (0, x). For x > −1 and d < 1, this implies (1+x)d−1 ≥ 1+(d−1)x.

Setting x ≡ 1
k
, we have

1 +
d− 1

k
≤
(

1 +
1

k

)d−1

=

(
k + 1

k

)d−1

(2.3.5)

(
d

k

)
=

d!

k!(d− k)!
=

(
d+ k − 1

k

)(
d+ k − 2

k − 1

)
. . .

(
d

1

)
=

(
k + d− 1

k

)(
k − 1 + d− 1

k − 1

)
. . .

(
k − (k − 1) + d− 1

k − (k − 1)

)
=

(
1 +

d− 1

k

)(
1 +

d− 1

k − 1

)
. . .

(
1 +

d− 1

k − (k − 1)

)
≤
(
k + 1

k

)d−1(
k

k − 1

)d−1

. . .

(
2

1

)d−1

= (k + 1)d−1 (2.3.6)

Finally we get

∞∑
k=0

(
d

k

)2

≤
∞∑
k=0

(k + 1)2d−2 =
∞∑
n=1

1

ns
= ζ(s) with s = 2− 2d. (2.3.7)

The Riemann zeta function ζ(s) converges for Re(s) > 1 ⇔ d < 1
2
, which

completes the proof.

Thus, xt has a covariance stationary MA(∞) representation.

Theorem 2.3.4 (Stationarity, Causality and Invertibility).

a) If the roots of Φ(z) lie outside the unit circle
{
z ∈ C

∣∣|z| = 1
}

, then there is

a stationary solution to (2.3.1) given by

xt =
∞∑

j=−∞

ψjεt−j. (2.3.8)

This solution is unique in the L2 sense.

b) If the roots of Φ(z) lie outside the closed unit disk
{
z ∈ C

∣∣|z| ≤ 1
}

, then

the solution is causal.
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c) If the roots of Θ(z) lie outside the closed unit disk
{
z ∈ C

∣∣|z| ≤ 1
}

, then

the solution is invertible.

Proof. Define fractional noise νt := (1−L)−dεt with coefficients nj as in (2.3.3).

Then
∑∞

j=0 n
2
j < ∞ and we have convergence in L2. Especially

∑∞
j=0 nje

−iλ

converges to n(e−iλ) = (1−e−iλ)−d. Thus, νt is a well defined stationary process.

Since Φ(z) 6= 0 for |z| = 1, an absolutely convergent Laurent series exists

ϕ(z) =
∞∑

j=−∞

ϕjz
j =

Θ(z)

Φ(z)
, δ−1 < |z| < δ, for some δ > 1

and xt := ϕ(L) νt is a stationary process. As νt =
∑∞

j=−∞ njεt−j is a stationary

process and
∑∞

j=−∞ |ϕj| <∞ we can write

xt = Ψ(L)εt =
∞∑

j=−∞

ψjεt−j, Ψ(z) = ϕ(z)n(z). (2.3.9)

By applying the filter Φ(L) we get

Φ(L)xt = Φ(L)ϕ(L)n(L)εt = Θ(L)n(L)εt.

Thus, {xt} is a stationary process that satisfies (2.3.1).

To show uniqueness, assume there is a process {yt} satisfying

Φ(L)yt = Θ(L)n(L)εt.

Since Φ(z) 6= 0 on the unit circle, there is an absolutely convergent Laurent

series
1

Φ(z)
=

∞∑
j=−∞

gjz
j = g(z)

and we can multiply equation (2.3) by g(L) and get

yt = g(L)Θ(L)n(L)εt = ϕ(L)n(L)εt = Ψ(L)εt.

But the difference between xt and yt is 0 in L2, which proves uniqueness.

Points b) and c) can be easily derived following the comment of Beran [4],

who noted that an ARFIMA(p, d, q) process can be interpreted as a fractional

noise process νt := (1− L)−dεt passed through an ARMA(p, q) filter. The def-

inition for stationarity and invertibility is not constrained to white noise, but

only to stationary processes. Since νt is stationary, the conditions for stationar-

ity and invertibility are satisfied, as we already know that such a ARMA(p, q)

model is causal and invertible.
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Sometimes an ARFIMA process is defined as

Φ(L)(1− L)dxt = Θ(L)εt.

For the persistent case (d > 0) the solution to this equation is not unique.

Let yt be a solution, and assume W is a random variable with finite variance.

Then the process xt := yt +W is stationary and also satisfies the equation since

for d > 0, the coefficients of (1−z)d =
∑∞

j=0 πj = Π(z) are absolutely summable,

and Π(1) = 0.

Corollary 2.3.5. An autoregressive fractional integrated moving average pro-

cess xt is the unique solution to (2.3.1). If the roots of the AR and MA polyno-

mials lie outside the unit disk

Θ(z) 6= 0 and Φ(z) 6= 0, |z| ≤ 1

and d ∈
(
−1, 1

2

)
, then xt has a covariance stationary, causal and invertible

MA(∞) representation

xt = (1− L)−d
Θ(L)

Φ(L)
εt =

∞∑
k=0

(
d

k

)
Lk

Θ(L)

Φ(L)
εt = Ψ(L)εt

=
∞∑
n=0

ψnL
nεt, (2.3.10)

where the weighting sequence {ψn} can be calculated by matching terms.

The constraint to the interval
(
−1, 1

2

)
is not a rigid restriction as we can

easily define ARFIMA(p, d, q) processes with d /∈
(
−1, 1

2

)
.

Definition 2.3.6. A process yt is called integrated of order D /∈
(
−1, 1

2

)
, iff

(1− L)[D+ 1
2

]yt ∼ I(d) with d ∈
(
−1

2
, 1

2

)
, where [x] is the smallest integer less or

equal to x.

For example, yt is said to be integrated of order 2.3 if (1− L)2yt ∼ I(0.3).

Interested in stationary and invertible processes and due to the manipula-

tions above we can restrict further analysis to d ∈ [−1
2
, 1

2
).9 So far the solution xt

to (2.3.1) is covariance-stationary, causal and invertible for d ∈
(
−1, 1

2

)
. Below

we see that such processes actually display long memory, as defined in (2.0.3).

9I will analyze the special boundary case of d ≡ 1
2 within the ED model in Section 2.3.2.

30



2.3.1 Frequency domain analysis

From theorem 1.4.1 we obtain that
∑∞

k=0 nke
−iλ converges to n(e−iλ) and the

spectral density of xt exists (in the L2 sense) and is given by

fx(λ) = n(e−iλ)fε(λ)n(eiλ) = fε(λ)(1− e−iλ)−d(1− eiλ)−d

=
σ2
ε

2π

(
2 sin

λ

2

)−2d

. (2.3.11)

On the other hand

fx(λ) :=
1

2π

∞∑
s=−∞

e−iλsγx(s), (2.3.12)

with γx(s) = E(xt − µ)(xt−s − µ). Already knowing the explicit form of the

spectral density we can calculate the autocovariances γx(s) by the inverse Fourier

transform.

Notice that the usually used point-wise convergence condition

∞∑
s=−∞

|γx(s)| <∞,

does not hold by definition of long memory. Although we already have a well

defined spectrum in the L2 sense (
∑∞

s=−∞ |γx(s)|2 is finite for d < 0.5), I also

prove the existence of f(λ) in L1[−π, π] for λ ∈ [δ, π), δ > 0.

Why L2 is not sufficient?

Knowing that the spectrum exists in L2, L1 convergence seems to be un-

necesserily complex. Yet, an overseen condition – as it is somehow trivial, when

speaking of L2 convergence – is that the spectral density fx(λ) must be an

element of L2. But

fx(λ) ∈ L2 ⇔

(∫ π

−π

(
fx(λ)

)2
dλ

) 1
2

<∞⇔
∫ π

−π

(
fx(λ)

)2
dλ <∞.

Lemma 2.3.7. Let φ(x) > 0, f(x) nonnegative, unbounded and limx→b f(x) =

∞, but integrable over every interval [a, c] for a < c < b. Calculate

lim
x→b

φ(x)

f(x)
= c ∈ [0,∞].

a) If c > 0 and
∫ b
a
φ(x) dx converges, so does the integral of f(x).

b) If c <∞ and
∫ b
a
φ(x) dx diverges, so does the integral of f(x).

Proof. See Prudnikov, Marichev, and Brychkov [66], p. 739.
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Take φ(λ) =
(
λ
2

)−2d

. Then

lim
λ→0

fx(λ)

φ(λ)
= lim

λ→0

(
2 sin λ

2

)−2d

(
λ
2

)−2d
= 2−2d lim

λ→0

(
sin λ

2
λ
2

)−2d

= 2−2d /∈ {0,∞}.

Therefore, fx(λ) converges if and only if φ(λ) converges.

Ergo we can set up conditions on d such that fx(λ) ∈ L1 and L2 ,respectively.

As

‖fx‖1 =

∫ π

−π
fx(λ) dλ <∞⇔

∫ π

−π

(
λ

2

)−2d

dλ =
2

2−2d

∫ π

0

λ−2d dλ <∞,

we obtain fx(λ) ∈ L1 iff −2d > −1⇔ d < 1
2
.

Yet,

√
‖fx‖2 =

∫ π

−π
fx(λ)2 dλ <∞⇔

∫ π

−π

((
λ

2

)−2d
)2

dλ =
2

2−4d

∫ π

0

λ−4d dλ <∞,

and consequently fx(λ) ∈ L2 iff −4d > −1⇔ d < 1
4
.

Thus, only settling for the trivially given L2[−π, π] convergence has the

immense flaw that although the process is covariance stationary for d < 1
2
, the

corresponding spectrum is only defined for d < 1
4
.10

So, for d ∈ [0, 1
4
) we define fx(λ) in the L2 sense, and for d ∈ [1

4
, 1

2
) in the L1

sense.

Compute the autocovariances of xt

As already noted above, we will compute the autocovariances γx(j) by the

inverse Fourier transform.

γx(j) =

∫ π

−π
eiλjfx(λ) dλ

=
σ2
ε

2π

{∫ π

−π
cos(λj)

(
2 sin

λ

2

)−2d

dλ+ i

∫ π

−π
sin(λj)

(
2 sin

λ

2

)−2d

dλ

}

=
σ2
ε

2π

∫ π

−π
cos(λj)

(
2 sin

λ

2

)−2d

dλ =
σ2
ε

π

∫ π

0

cos(λj)

(
2 sin

λ

2

)−2d

dλ

= σ2
ε

(−1)jΓ(1− 2d)

Γ(1− d+ j)Γ(1− d− j)
. (2.3.13)

The second line holds, since h(λ) := sin(λj)
(

2 sin λ
2

)−2d

is an odd function

10Additionally, in practice most long memory processes exhibit long memory with d > 1
4 .
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on [−π, π]; thus,
∫ π
−π h(λ) = 0. The identity∫ π

0

cos(jx) sinr−1(x) dx =
π cos( jπ

2
)Γ(r + 1)21−r

rΓ( r+h+1
2

)Γ( r−h+1
2

)
,

gives the final result.11

Especially

σ2
x = γx(0) = σ2

ε

Γ(1− 2d)(
Γ(1− d)

)2 . (2.3.14)

Therefore, the autocorrelations are

ρx(j) =
γx(j)

γx(0)
=

Γ(j + d)Γ(1− d)

Γ(j − d+ 1)Γ(d)
. (2.3.15)

Applying Stirling’s asymptotic approximation Γ(x) ∼
√

2πe−x+1(x− 1)x−
1
2 ,

we get

ρx(j) ∼
Γ(1− d)

Γ(d)
j2d−1 for large j.

Herewith the autocorrelations of an ARFIMA process display a hyperbolical

decay, i.e. a slower decay as the exponential rate of an ARMA process. This

hyperbolical decay and 0 < d < 1
2

results in non-summable autocorrelations.

For a quantitative comparison see Table 2.1 and Figure 2.3. Both the autocor-

relations are the same for lag 1, but the long memory autocorrelations decay

very slowly (ρx(100) = 0.0338), whereas the AR(1) autocorrelation at lag 100

is in fact zero.

From properties of the Gamma function Γ(·) it follows that the autocor-

relations of an ARFIMA(0, d, 0) process have the same sign as the memory

parameter d, for all lags k. The autocorrelations for a persistent process are

positive for all k, and are all negative for anti-persistent memory. On the oppo-

site the autocorrelations of an AR(1) process with ρ1 < 0 alternate.

The next lemma gives sufficient and necessary conditions for the L1-convergence

of even functions, save possibly at λ = 0.

Lemma 2.3.8 (Convergence of the Fourier series). Let f ∈ L1[−π, π] be an even

function and Sn(x) :=
∑n

j=0 aj cos jx be the partial sums of the Fourier series of

f , with aj =< f, eiλj >=
∫ π
−π f(λ)eiλj dλ. If the sequence {aj} is nonnegative,

decreasing, and limj→∞ aj = 0, then

lim
n→∞

∥∥f − S(n)
∥∥

1
= 0 (save possibly at x = 0), (2.3.16)

if and only if

lim
j→∞

aj log j = 0. (2.3.17)

11See Gradshteyn and Ryzhik [25].
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The norm in L1[−π, π] is defined as

‖f‖1 =

∫ π

−π
|f(x)| dx.

Proof. See Zygmund [83], p. 183/184.

If γx(s) satisfies (2.3.17), then the spectrum is well defined in L1 for 0 < δ ≤
λ ≤ π, and for 0 ≤ λ < δ we use L2 convergence.

Claim 2.3.9. The autocovariances γ(s) of fractional noise ARFIMA(0, d, 0), d <
1
2

are positive and nonincreasing, and satisfy

lim
s→∞

γ(s) log s = 0.

Proof.

lim
s→∞

γ(s) log s = γ(0) lim
s→∞

ρ(s) log s = γ(0) lim
s→∞

s2d−1

s2d−1
ρ(s) log s

= γ(0) lim
s→∞

ρ(s)

s2d−1
s2d−1 log s = γ(0) lim

s→∞

ρ(s)

s2d−1︸ ︷︷ ︸
=1 by Stirling

lim
s→∞

s2d−1 log s

α=1−2d
= γ(0) lim

s→∞
s−α log s = γ(0) lim

s→∞

log s

sα

de l’Hospital
= γ(0) lim

s→∞

1
s

αsα−1
= γ(0) lim

s→∞

1

αsα

= 0 given α > 0⇔ d <
1

2
.

Thus, the spectral density of fractional white noise is well defined and we

can proceed with the spectral density of a general ARFIMA process. For this

rearrange

xt = (1− L)−d
Θ(L)

Φ(L)
εt to xt =

Θ(L)

Φ(L)
(1− L)−dεt︸ ︷︷ ︸

=:νt

.

Since νt is covariance stationary and has a well defined density fν we get

fx(λ) =
|Θ(e−iλ)|2

|Φ(e−iλ)|2
fν(λ) =

|Θ(e−iλ)|2

|Φ(e−iλ)|2
σ2
ε

2π

(
2 sin

λ

2

)−2d

. (2.3.18)

Using again the asymptotic approximation

lim
λ→0

sin λ
2

λ
2

= 1,
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Lag ρI(d)(j) ρAR(1)(j) ρI(d)(j) ρAR(1)(j)
j d = 1

4
ρ = 1

3
d = −1

4
ρ = −1

5

1 0.3333 0.3333 −0.2000 −0.2000
2 0.2381 0.1111 −0.0667 0.0400
3 0.1948 0.0370 −0.0359 −0.0080
4 0.1688 0.0123 −0.0232 1.6× 10−3

5 0.1511 4.11× 10−3 −0.0166 −3.2× 10−4

10 0.1069 1.69× 10−5 −5.85× 10−3 1.03× 10−7

20 0.0756 2.86× 10−10 −2.07× 10−3 1.05× 10−14

50 0.0478 1.39× 10−24 −5.23× 10−4 1.125× 10−35

100 0.0338 1.94× 10−48 −1.85× 10−4 1.27× 10−70

200 0.0239 3.76× 10−96 −6.54× 10−5 1.61× 10−140

500 0.0151 2.75× 10−239 −1.65× 10−5 3.27× 10−280

Table 2.1: Exact autocorrelations for I(d) and AR(1) processes

we can easily prove that xt displays long memory since

lim
λ→0

fx(λ) =
σ2
ε

2π
lim
λ→0

(
2 sin

λ

2

)−2d |Θ(e−iλ)|2

|Φ(e−iλ)|2

=
σ2
ε

2π

|Θ(1)|2

|Φ(1)|2
lim
λ→0

λ−2d (2.3.19)

=

0 d < 0,

∞ d > 0.

Conclusion

A process xt satisfying definition 2.3.1 is a stationary, causal and invertible

process with a well defined spectral density fx(λ) and exhibits long memory. As

ARMA parts also play a role in this model, an ARFIMA process is a suitable

and – at least equally important – a parsimonious model for short and long run

behavior of both stationary and non-stationary time series.

2.3.2 ARFIMA versus error duration

Since the autocovariances γ(k) for a persistent ARFIMA(0, d, 0) process xt
are positive and nonincreasing, we can calculate survival probabilities pk, such

that the second moments of yt from the corresponding error duration model are

equivalent to the second moments of xt.

Claim 2.3.10. For 0 < d ≤ 1 the survival probabilities for an ARFIMA(0, d, 0)
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Figure 2.3: ρ(j): Theoretical autocorrelation functions for ARFIMA(0, d, 0)
and AR(1) processes.

process are

pk =
Γ(k + d)Γ(2− d)

Γ(k + 2− d)Γ(d)
. (2.3.20)

Proof. See Parke [58].

Yet, the resulting ED process is just a special case of an ARFIMA(p, d, q)

process, i.e. only persistent memory can be modeled, since pk ≥ 0. Moreover the

ED model can mimic some features of an ARFIMA model, but certain properties

(e.g. asymptotic results) are not the same.

To cut a long story short, the ED model does not equal an ARFIMA model,

but for our purposes it is a useful, different approach to the second moments

structure of fractionally integrated processes.

Example 2.3.11 (ARFIMA(0, 0.4, 0)). For T = 3000, i.i.d. Gaussian inno-

vations, and probabilities

pk =
Γ(k + d)Γ(2− d)

Γ(k + 2− d)Γ(d)
k = 1, . . . 3000, d = 0.4,

we get one realization displayed in Figure 2.4. Not only the figures, but also

the estimates (d̂ELW , d̂GPH) = (0.36, 0.38) (for m = T 0.6 ≈ 122) demonstrate

the capability of the error duration model to simulate fractionally integrated pro-

cesses. A maximum likelihood estimator gives an ARFIMA(0, d, 1) model for

xt,

(1− L)0.32xt = ut, ut = εt + 0.6εt−1, σ̂ε = 1.5.

But only this special form of pk results in an I(d) realization. Thus, the ED

model is on the one hand limited as it can not mimic anti-persistent behavior,
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Figure 2.4: Error Duration simulation for d = 0.4 and T = 3000.

but on the other hand can simulate processes with long range dependence that

are not fractionally integrated.

Nonetheless it must be mentioned that any long memory process yt with a

MA(∞) representation can be approximated arbitrarily well by an ARFIMA

process xt in the sense that ∣∣∣∣fy(λ)

fx(λ)
− 1

∣∣∣∣ < ε,

uniformly for λ ∈ [−π, π] [see 57, p. 55].

Conditional survival probability

The survival probabilities of an I(d) process satisfy the recursion

pk+1 =
k + d

k + 2− d
pk ⇔

k + d

k + 2− d
=
pk+1

pk
= P (ns ≥ k + 1|ns ≥ k).

As already proved above, the conditional survival probabilities for an I(d) pro-

cess tend to 1, in contrast to short memory models.

On the threshold

Now consider the special case of d ≡ 1
2
, where I(d) represents a process on

the threshold between stationarity and non-stationarity. The coefficients ψk of

the MA(∞) representation of an I(1
2
) process are:

{ψk}∞k=0 =

{
1,

1

2
,
3

8
,
15

48
,
105

384
,

945

3840
, . . .

}
.
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Trying to intuitively expand these coefficients for higher k seems impossible. On

the contrary the survival probabilities for an I(1
2
) process follow a very regular

pattern

{pk}∞k=0 =

{
1,

1

3
,
1

5
,
1

7
,
1

9
, . . .

}
,

and an explicit formula can be found very easily: p
I( 1

2
)

k = 1
2k+1

for k = 0, 1, 2, . . . .

Both expressions are valid, and both indicate a non-stationary process be-

cause the variance of yt is infinite. Nevertheless the ED representation gives

a more natural, intuitive approach to this special border case than the MA

representation.
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Chapter 3

Long Memory versus Structural

Breaks: Is it spurious?

Although the models in the previous chapter generate covariance stationary

long memory processes, there are also other processes that display the same

properties as long range dependence. Thereupon many authors [3, 51, 74, 75]

point out that long memory is a spurious phenomenon, evoked by structural

breaks in the series. Although we can apply estimation methods derived for

stationary time series, the results might falsely indicate long range dependence,

as the underlying process is in fact non-stationary.

3.1 Structural breaks

Domingo and Tonella [19] give a very good description of structural change:

Structural changes appear when some part or properties are lost

or added to the object, some relations appear, disappear or change

their form. [. . .] this may happen in such a small degree that the

change is unnoticeable, or in such a degree that the system becomes

practically a new one.

Application of the theory of stationary time series require a constant mean

µ, constant variance σ2 and time-invariant autocovariances γ(k). These are

simplifications to develop a profound theory of time series. But real world time

series often violate at least one of these conditions, e.g.

- Trending time series (e.g. world population) violate the first condition of a

constant µ. By detrending the series first one can apply stationary theory

and results to the new series.

- Integrated series do not have a constant variance. Consider the simple
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random walk :

yt = yt−1 + εt ⇔ yt =
t∑

j=1

εj

⇒ σ2
y = Vyt = E

t∑
j=1

εj

t∑
l=1

εl =
t∑

j=1

σ2
ε = tσ2

ε

This implies limt→∞ σ
2
y = ∞. Differencing the process yt gives simple

white noise. In practice, one often can observe that differencing integrated

time series will nevertheless give a – bounded, but still – time-varying

variance (e.g. stock returns).

- The autocovariance structure of a process can change over time.

The first two points, are the basis for a vast literature on tests between

stochastic and deterministic trends, i.e. tests to differ between I(1) versus I(0)

+ trend. Likewise common tests for structural breaks versus long memory, are

based on the distinction I(d), d ∈ R versus I(0) + structural change.

Remark 3.1.1. Recently, the third assumption of a constant second moment

structure gained high interest and a lot of current research deals with models

allowing time-varying coefficients, and developing estimation techniques for e.g.

time-varying spectra. In Chapter 6, I present a basic, empirically motivated

approach for time-varying memory. For deeper analysis see [9, 60].

A standard test for structural change is the CUSUM test, either based on

recursive OLS or standard OLS residuals.

TS = sup
λ∈(0,1)

|CT (λ)|, where CT (λ) =
1

σ̂εT 1/2

[λT ]∑
t=1

et,

and et are the (recursive) residuals of the expanding model yi = xiβ + εi, i =

1, . . . t. Large values of the TS lead to a rejection of a constant parameter vector

β.

Krämer and Sibbertsen [43] show that TS tends to infinity (both for recursive

and standard residuals) in the presence of long memory disturbances, meaning

that the probability of rejecting a constant parameter vector β tends to 1.

3.1.1 Spurious long memory

Diebold and Inoue [18] give a detailed overview about three models with changes

in the mean that exhibit long range dependence. They perform an extensive

Monte Carlo simulation and I refer to their work for an overview of a finite

sample analysis.
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Mixture model

Consider the simple model

vt =

0 with probability 1− p,
wt

i.i.d.∼ N(0, σ2
w) with probability p.

Note that V
(∑T

t=1 vt

)
= pTσ2

w = O(T ). By definition 2.0.7 vt is I(0). It is

straightforward to show that for p = O(T 2d−2), V
(∑T

t=1 vt

)
= O(T 2(d−1)+1)

and thus vt ∼ I(d− 1).

Now consider the more advanced mean-plus-noise model

xt = µt + εt, εt
i.i.d.∼ N(0, σ2

ε)

µt = µt−1 + vt

vt =

0 with probability p,

wt
i.i.d.∼ N(0, σ2

w) with probability 1− p.

A solution for µt is given by µt =
∑t

j=1 vj, and as vt is I(d−1) we have µt ∼ I(d).

As µt is uncorrelated with εt

Vxt = Vµt + Vεt
and fx(λ) = fµ(λ) + fε(λ).

Hence, xt exhibits long memory with memory parameter d.

STOPBREAK model

Engle and Smith [20] propose the stochastic permanent break model,

xt = µt + εt, εt
i.i.d.∼ N(0, σ2

ε)

µt = µt−1 + qt−1εt−1

where qt = q(|εt|) can be any nondecreasing function in |εt| and bounded by zero

and one, which means that bigger innovations have more permanent effects. In

their study [20] use qt =
ε2t

γ+ε2t
with γ > 0.

Calculating V
(∑T

t=1 ∆xt

)
, Diebold and Inoue [18] again show that for

γ = O(T δ), and certain regularity assumptions on εt, the stochastic process

xt is I(1− δ).

Note that the standard STOPBREAK model is I(1), as γt = γ = O(T 0).
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Markov switching model

Let {st}Tt=1 be a Markov process switching between state 1 and state 2 with

transition matrix

M :=

(
p11 1− p11

1− p22 p22

)
, with Mi,j = P (st = j|st−1 = i) ∀t.

For both states, st is a first order autoregressive processes with corresponding

means µ1 and µ2. Now consider the sample path of an observed time series

{yt}Tt=1 with conditional density depending on µst ,

f(yt|st; θ) =
1√
2πσ

e
−(yt−µst )

2

2σ2 .

Hence, yt is Gaussian white noise with a Markov switching mean (between µ1

and µ2 respectively) and can be written as

yt = µst + εt,

where εt
i.i.d.∼ N(0, σ2

ε), and sτ and εt are independent for all t and τ .

Claim 3.1.2. For µ1 6= µ2 and p11 = 1 − c1T
−δ1 and p22 = 1 − c2T

−δ2, with

δ1, δ2 > 0, and 0 < c1, c2 < 1, the process yt is I(min(δ1, δ2)).

Proof. See [18].

As the transition probabilities in the standard Markov switching model do

not depend on T it is I(0) in contrast to the standard STOPBREAK model,

which is I(1).1

3.2 Testing long memory versus short memory

In the previous chapter I have presented various models generating spurious

long memory. Krämer and Sibbertsen [43] and Mayoral [51, 52] propose test

procedures to distinguish between long memory processes and short memory

processes with random shifts in the mean.

3.2.1 Subsampling the process

Shimotsu [73] introduces a testing procedure for long memory versus short mem-

ory plus breaks by splitting up the whole sample in b subsamples and analyzing

the underlying divided model. For a long memory process the subsample models

are also long range dependent, and thus the local estimates should be close to

1Granger and Hyung [29] also use a Markov switching process to generate stochastic pro-
cesses that exhibit long memory behavior.
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Figure 3.1: Long memory versus Structural Breaks: (top left) stationary AR(1)
ut; (top right) autocorrelation function of ut; (bottom left) Short memory plus
structural breaks: xt = ut + 3 I1200≤t≤1900; (bottom right) autocorrelation func-
tion of xt.

the global d̂. This is not the case for models with spurious long memory. [73]

considers the three presented models for structural breaks and provides a Monte

Carlo simulation on the behavior of the test for structural break alternatives.

Illustration of the idea

As a motivating example consider the specific model

xt = (1− L)d0ut + δ I1200≤t≤1900, t = 1, 2, . . . , 3000, with ut = 0.9ut−1 + εt.

(3.2.1)

For d0 = 0 and δ 6= 0 the observed process is of the form AR(1) plus breaks,

whereas for d0 6= 0 and δ = 0 it is an ARFIMA(1,d,0) process.

Assume we observe {xt}T=3000
t=1 , generated with d0 = 0 and δ = 3. Therefore,

the realization is not an ARFIMA(1, d, 0) process, but a short memory AR(1)

process with an upward mean shift of magnitude 3 for t ∈ [1200, 1900]. Nev-

ertheless the autocorrelations suggest long range dependence (see Figure 3.1),

and a maximum likelihood estimate, for an underlying ARFIMA(1, d, 0) model,

gives (d̂, φ̂1) = (0.40, 0.45) with standard error (0.015, 0.023).
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Figure 3.2: For subperiods 1 and 3, xt is a zero mean AR(1) process; for sub-
period 2, it is an AR(1) with shift in the mean (0→ 3).

Splitting up the model in 3 subsamples of equal size gives

xt = (1− L)d0ut, t = 1, . . . , 1000, (3.2.2)

xt = (1− L)d0ut + δ I1200≤t≤1900, t = 1001, . . . , 2000, (3.2.3)

xt = (1− L)d0ut, t = 2001, . . . , 3000. (3.2.4)

The only possible spurious long memory can occur in the second subsample,

as the other ones are purely I(0). Hence, memory parameter estimates for

subsample 1 and 3 should give d̂(i) ≈ 0, i ∈ {1, 3}, whereas for subsample 2,

spurious long memory could occur again and d̂(2) = d̃, in general not close to

zero, and presumably d̃ is even greater than – the also spurious – d̂ for the whole

sample.

The proposed test compares the global estimate d̂ for the whole sample, with

the local estimates d̂(i), i = 1, 2, 3. A first approach would probably compare

the average of d̂(i), i = 1, 2, 3 with d̂. It is correct that if the process is truly

long range dependent (d0 6= 0, δ = 0), then the average of the local estimates

is approximately equal to the global estimator. But note that in general the

reverse is not true (see Table 3.2), as for an I(0) plus breaks process the lower

estimates for the I(0) subsample could cancel out with a substantially higher d̃

in the break subsample.

General study

Practically we want to construct a test between H0 : long memory versus

H1 : short memory plus breaks. To parametrize H0 we use the derivations above

and divide the sample in b subsamples. Under H0 (long memory) the local long

memory parameters d
(i)
0 , i = 1, . . . , b are all the same, and furthermore are equal
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{xt}3000
t=1 {xt}1000

t=1 {xt}2000
t=1001 {xt}3000

t=2001 average dtrue
d̂ 0.40 0.01 0.44 0.01 0.15 0

φ̂1 0.45 0.82 0.37 0.81 0.66 0.9

Table 3.1: Local variation in the spurious memory parameter for xt defined in
(3.2.1)

to the global d0. Thus, a parametric null hypothesis is given by

H0 : d0 = d
(1)
0 = d

(2)
0 = · · · = d

(b)
0 .

Now assume that for a sample process estimates are d̂ for the global parame-

ter and d̂(i) for subsample i. Loosely speaking, the null hypothesis becomes less

probable the larger the distance between the parameter estimates and the true

parameters – under H0 – gets. So, with an appropriate distance measure we get

a quantitative test statistic and are able to derive certain properties of the test

(e.g. critical values, asymptotic behavior). Recall that in the example above, we

know the parametric structure of the short memory process ut (AR(1)) and a

maximum likelihood estimator can be applied. In general, we just assume short

memory for ut and make no assumptions on the type of short memory. Thus, a

semi-parametric estimator for the memory parameter should be used (ELW in

[73]; see 5.3.1 for details).

Remark 3.2.1. For a, b ∈ Rn, an inherent distance measure d(a, b) is given by

d(a, b) :=‖a− b‖ ,

where ‖·‖ is an arbitrary norm on Rn. Frequently used in statistic is

‖x‖ = xTWx,

where W is a positive definite weighting matrix. A good choice of W is

crucial to get an estimator with desirable properties. For W = In the norm

reduces to the sum of squares.

As under H0 the local parameters are equal to the global parameter, this

should also hold for the estimates. Thus, the b× 1 vector

θd,b =


d̂− d̂(1)

d̂− d̂(2)

...

d̂− d̂(b)


in connection with a weighting matrix W would be an appropriate measure. But

in this setting the true parameter d0 is not part of the test statistic, which is not
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desirable as we want to derive test properties depending on the true memory

parameter of the underlying process. It can be easily seen that θd,b = Ad0 d̂b,d0
with

d̂b,d0 =


d̂− d0

d̂1 − d(1)
0

...

d̂b − d(b)
0

 under H0=


d̂− d0

d̂1 − d0
...

d̂b − d0

 (3.2.5)

and Ad0 =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1

 =
(
ιb Ib

)
∈ Rb×b+1, (3.2.6)

where ιb is a b× 1 vector of ones. [73] shows that under H0

√
md̂b,d0 = Zn + bias(m), Zn

d→ N

(
0,

1

4
Ω

)
, where Ω =

(
1 ιTb
ιb bIb

)
.

Recall that the initial goal is to test the distance of θd,b = Ad0 d̂b,d0 to zero. As

Ad0 is constant, it holds

√
mθd,b = Ad0Zn + Ad0bias(m), Ad0Zn

d→ N

(
0,

1

4
Ad0ΩA

T
d0

)
.

Simple algebra shows that Ad0ΩA
T
d0

= bIb − ιbιTb , which has rank b− 1. There-

fore, computing a generalized inverse (Ad0ΩA
T
d0

)+ is necessary and we can con-

sequently define a Wald statistic

W = 4m(Ad0 d̂b,d0)(Ad0ΩA
T
d0

)+(Ad0 d̂b,d0)
T, (3.2.7)

and W has a chi-squared limiting distribution with b− 1 degrees of freedom.

However, the variance of the ELW estimator for finite samples tends to be

larger than the asymptotic bound 1
4m

, leading to an overrejection of the null by

the Wald statistic W . Hurvich and Chen [40] propose to replace m by

cm :=
m∑
j=1

ν2
j , νj = log λj −

1

m

m∑
j=1

log λj = log j − 1

m

m∑
j=1

log j.

As cm/m tends to 1 for m to infinity, asymptotic results still hold, but for finite

sample it provides better estimates. After all, the corrected Wald statistic for

46



m global d̂ average of d̂(i) p value for χ2
b−1

T = 3000 b=2 b=4 b=8 b=16 b=2 b=4 b=8 b=16

T 0.45 ≈ 37 0.51 0.44 0.19 0.13 0.07 0.91 0.00∗∗ 0.00∗∗ 0.00∗∗

T 0.5 ≈ 55 0.51 0.46 0.32 0.20 0.07 0.50 0.02∗ 0.00∗∗ 0.00∗∗

T 0.55 ≈ 82 0.41 0.33 0.15 0.06 0.01 0.62 0.16 0.04∗ 0.00∗∗

T 0.6 ≈ 122 0.40 0.33 0.20 0.16 0.14 0.82 0.12 0.19 0.00∗∗

T 0.65 ≈ 183 0.38 0.35 0.27 0.26 0.26 0.55 0.36 0.14 0.10

Table 3.2: Summary of the corrected Wald statistic Wc for structural break
versus long memory

the null of long memory is defined as

Wc = 4m ·
cm/b
m/b

Ad̂b(AΩA
′
)+(Ad̂b)

′
. (3.2.8)

The computation of Wc is straightforward and the chi square distribution is a

standard distribution, so critical values are tabulated. Under the null hypothesis

of long memory θd,b = Ad̂b = 0 and so Wc equals zero. Thus, small values

support long memory in the data, whereas large values ofWc lead to the rejection

of long memory in favor of structural breaks.

Example 3.2.2 (Continued). Recall that the series has breaks at t = 1200 and

t = 1900. So, it is not surprising that the Wald statistic does not posses a lot of

power for b = 2 (see Table 3.2), as both subsamples have one break in the mean.

But by splitting up the data in more subsamples, we can reject long memory in

the data. Although in this case the widespread rule of thumb m = T 0.5 seems to

be a good choice for the Wald statistic, the value of m is in general crucial for

useful results.

Additionally, this example shows that jumping to conclusions by just considering

the average of the subsample estimates is not always proper ( m = T 0.6 and

b = 16).

See [73] for detailed assumptions, proofs and a comprehensive Monte Carlo

simulation.

3.2.2 Differencing the process

Another simple way to test for fractional integration is based on the d-th differ-

ences of a long memory process. If xt is I(d), then ut := ∆d(xt − µ) is I(0) and

the cumulative sum yt :=
∑t

i=1 ui is I(1). If xt is of the form I(0) plus breaks,

then in general neither ut has short memory, nor yt is I(1). This can be tested

with modified PP and KPSS tests [see 73].
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The underlying H0 model is

xt − µ0 = ∆−d0utIt≥1, ut ∼ I(0),

where µ0 = Ext. Note that for d ≥ 0.5 the process is nonstationary. So, instead

of seeing µ0 as a mean value it should be interpreted as an initial state of xt.

As in [73] I use a linear combination of x (sample mean) and x1 (initial state)

as an estimator for µ0,

µ̂d = w(d)x+ (1− w(d))x1,

where w(d) is a twice differentiable weighting function with w(d) = 1 for d ≤ 0.5,

and w(d) = 0 for d ≥ 0.75. In applications I use w(d) := 1
2
(1 + cos 4πd).

Thus, after estimating a consistent d̂ I calculate µ̂0 := w(d̂) and compute

the dth differences of xt − µ̂0

Under H0, the differenced series ut is I(0) and the cumulative sum yt is I(1).

Testing yt for I(1) we can use the test statistic Zt by Phillips and Perron [63].

For the I(0) test we have to modify the KPSS [45] test slightly, as the variance

estimator is not consistent. The modified KPSS statistic is defined as

η̂µ :=
1

T 2

T∑
t=1

S2
t

s2(q)
, with St =

t∑
k=1

ek,

and s2(q) =
1

T

T∑
t=1

e2
t +

2

T

q∑
s=1

(
1− s

q + 1

) T∑
t=s+1

etet−s

= γ̂(0) + 2

q∑
s=1

(
1− s

q + 1

)
γ̂(s),

where et are the residuals from regressing ût on an intercept. So, et is the mean

corrected ût and the variance of et equals the variance of the sample mean esti-

mator. For short memory processes we have that VxT = O(T ), but if xt is long

range dependent, VxT = O(T−α) with α 6= 1 (see Section 5.1.2 for details).

Therefore, the classic variance estimator of et has to be corrected to get good

asymptotic properties for the test statistic. Here I use a weighted sum (Bartlett

window) of the first q autocovariances, where the choice of the truncation lag q

is crucial to get an accurate test statistic. Critical values, depending on d, for

Zt and η̂t are presented in Table 3.3 [obtained from 73].

Suppose xt is a realization of one of the structural break models presented

above. Without going into details, it is plausible that the power of Zt and ηµ is

different for each model, as the possible structural break process xt is either I(0)

(Markov switching) or I(1) (STOPBREAK).2 Overall combining both statistics,

2Of course these models are just two examples of a wide range of possible structural break
models. But it meets the requirements to show that the power of Zt and ηµ is different.
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Zt ηµ
d 10% 5% 1% 10% 5% 1%

0.0 -2.750 -3.025 -3.556 0.347 0.460 0.736
0.1 -2.710 -2.989 -3.532 0.344 0.460 0.737
0.2 -2.678 -2.960 -3.500 0.342 0.453 0.731
0.3 -2.640 -2.932 -3.469 0.337 0.446 0.715
0.4 -2.600 -2.893 -3.432 0.335 0.440 0.702
0.5 -2.558 -2.850 -3.398 0.334 0.435 0.699
0.6 -2.475 -2.767 -3.336 0.321 0.419 0.661
0.7 -2.550 -2.838 -3.430 0.340 0.451 0.721
0.8 -2.568 -2.855 -3.430 0.348 0.463 0.743
0.9 -2.563 -2.849 -3.428 0.347 0.462 0.736
1.0 -2.563 -2.849 -3.424 0.347 0.460 0.737
1.1 -2.564 -2.850 -3.425 0.347 0.460 0.735
1.2 -2.565 -2.851 -3.426 0.347 0.460 0.735
1.3 -2.564 -2.852 -3.427 0.346 0.460 0.736
1.4 -2.564 -2.852 -3.425 0.346 0.460 0.736

Table 3.3: Critical Values for Zt and ηµ

offers a robust test against two types of spurious long memory (originating from

I(0) and I(1) models).

3.2.3 Relating the number of frequencies

Besides a very detailed analysis of mean-shift models and an application to a

data set of almost 20,000 daily S&P 500 observations, Perron and Qu [61] also

give another simple test procedure for long memory versus mean shifts.

Let d̂α be the GPH estimator for mα = Tα. Although a popular rule is

α = 0.5, the behavior of d as a function of m gives a wide range of distinctive

features of I(0) plus breaks and I(d). For an extensive analysis of this special

relation see [61], full of reflections on short memory plus mean-shift models, and

an enormous amount of practicable test procedures.

Under the null of a fractionally integrated I(d0) process and some (asymp-

totic) conditions on d and m

√
mα (d̂α − d0)

d→ N

(
0,
π2

24

)
.

For 0 < a < 4
5

and some b ∈ (a, 1) consider

td(a, b) =

√
T a24

π2

(
d̂a − d̂b

)
, (3.2.9)

49



then td(a, b)
d→ N (0, 1). This can be easily seen as

td(a, b) =

√
T a24

π2

(
d̂a − d̂b

)
=

√
T a24

π2

(
d̂a − d̂0

)
−
√
T a24

π2

(
d̂b − d̂0

)
=

√
T a24

π2

(
d̂a − d̂0

)
−
√
T b24

π2

(
d̂b − d̂0

)√T a

T b

d→ N(0, 1)−N(0, 1) · 0 ∼ N(0, 1),

where the last line holds as b > a. Under the alternative hypothesis of short

memory process with shifts in the mean, td(a, b) tends to infinity since the limit

of d̂a is strictly smaller than the limit d̂b [for a proof see 61]. Due to certain

features of d(m), observed in Monte Carlo studies, [61] suggest a = 1
3

and b = 4
5

as good parameters for a powerful test.

3.3 Error duration model - revisited

The ED model presented in Section 2.2 not only motivates long memory and

persistent ARFIMA processes, but also sheds new light on the issue of structural

breaks.

Recall that (under certain conditions on pk) an ED model and an ARFIMA

model exhibit the same features from a second moments point of view. Thus,

observing a persistent process one can choose between an ARFIMA or an ED

model. Of course, in research the ARFIMA model is much easier to estimate

and implement for further analysis, such as forecasting. But the ED model is a

good way to see the particular problem of structural breaks versus long memory

from a different perspective.

3.3.1 Spurious structural breaks

Assume a process zt is the sum of two independent processes xt and yt,

zt = xt + yt, (3.3.1)

where yt is a stationary ARMA(p, q) process and xt has persistent long memory.

As the processes are independent, the spectrum fz(λ) decomposes into

fz(λ) = fx(λ) + fy(λ). (3.3.2)

In practice, we only observe {zt}Tt=1 and have to decide whether long memory

is real or spurious.
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If we represent xt in the ED framework we get the equivalent representation

zt =
T∑
s=1

εsds,t + yt, (3.3.3)

where ds,t equals one for the interval (s, s+ns) and zero otherwise (εs as above).

In the error duration sense ds,t is a stochastic indicator function for the active

time of εs. Looking at it the opposite way, εs can be thought as a random

coefficient on the stochastic mean shifting process ds,t. Accordingly, each term

εs ds,t can be regarded as a structural change to an otherwise stationary short

memory ARMA(p, q) process yt.

Thus, large errors εs with long durations ns might be mistaken as significant

structural changes in the mean of a process, although the true process features

persistent long memory.

In the following we examine a realization of a time series. Thus, let

MK =
{
s|ns(ω) > K

}
be the set of all points in time, where the realized shock duration ns of εs is

greater than K. Of course it holds MK ∪MC
K = {1, . . . , T}. Now rewrite (3.3.3)

to

zt =
∑
s∈MK

εsds,t +
∑
s/∈MK

εsds,t + yt.

Both, the second and the third process are stationary, short memory processes.

In the first term – as noted above – ds,t can be seen as an indicator function for

active times of a mean process εs.

Finally we can write

zt = υt + µt (3.3.4)

υt =
∑
s/∈MK

εsds,t + yt (3.3.5)

µt =


µ1 for 0 ≤ t ≤ τ1,

µ2 0 ≤ t ≤ τ2,
...

...

µw for 0 ≤ t ≤ τw,

(3.3.6)

where vt is a short memory process (the maximum duration length equals K−1)

and µt is i.i.d. with outcomes (µ1, . . . , µw). Example 3.3.1 and Figure 3.3 give

an experimental and graphical explanation of this point.

Example 3.3.1 (ARFIMA(0, 0.4, 0) – Continued). Recall Example 2.3.11 of

a simulated ARFIMA(0, d, 0) process zt within the ED model. As I know the

51



realized stochastic durations I can compute the set MK =
{
s|ns(ω) > K

}
. I

set K = 31, which is the 99.5 % quantile of ns. Figure 3.3 displays the three

components of zt:

zt – original series: the top left panel shows the original series (black line),

µt – mean shifts: the red line shows the spurious structural breaks in the se-

ries,

υt – short memory: the top right panel shows the mean corrected process υt :=

zt − µt.

Suppose we observe zt, look at the autocorrelation structure and the spectrum

(see Figure 2.4), and have to decide whether the observed long range dependence

arises from structural breaks, which can also be spotted in the series, or true long

memory.

Both estimators (ELW and GPH) give an estimated value of approximately

0.37, almost constant for different values of m. Although the Zt statistic does

not reject the null of long memory in the data, the modified KPSS test rigor-

ously rejects long memory in favor of structural breaks (5% critical value for the

modified KPSS for d = 0.4, is 0.44; see Table 3.5).

Consequently we compute a mean shift corrected version υt. After plotting

the autocorrelations, we would presumably try to fit a short memory ARMA(p, q)

model, and not consider a long memory ARFIMA model. And indeed, (d̂ELW , d̂GPH) =

(0.10, 0.11) (for m = T 0.6 ≈ 122) does not suggest a long memory approach. Also

ηµ and Zt do not reject I(0) for various frequency cutoffs m (see Table 3.6).

Via a Box Jenkins method we get an ARMA(3, 1) model for υt

υt − 0.36(0.02)υt−1 − 0.12(0.02)υt−3 = εt + 0.51(0.02)εt−1, σ̂2
ε = 1.44. (3.3.7)

Even the Ljung Box statistic does not reject white noise for the data. Ergo we

would falsely conclude that zt is an ARMA(3, 1) process with stochastic breaks

in the mean, although the generating model is purely long range dependent and

stationary.

3.4 Spurious discussion?

From the results above, both theoretically and empirically, different ways of

dealing with long range dependence are possible:

Lags 1 2 5 10 20 50

ε̂ 0.98 0.97 0.98 1.00 0.73 0.68

Table 3.4: p-values of Ljung-Box statistic for residuals of (3.3.7)
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Figure 3.3: Error Duration simulation with d = 0.4 and T = 3000

m d̂GPH d̂ELW ηµ Zt
T=3000 q=5 qopt = 40

T 0.45 ≈ 37 0.45 0.43 0.43 0.60 -1.66
T 0.5 ≈ 55 0.34 0.41 0.52 0.68 -1.56
T 0.55 ≈ 82 0.38 0.39 0.66 0.79 -1.46
T 0.6 ≈ 122 0.37 0.36 0.93 0.98 -1.33
T 0.65 ≈ 183 0.36 0.37 0.91 0.96 -1.34

Table 3.5: Structural break tests for original series

m d̂GPH d̂ELW ηµ Zt
T=3000 q=5 qopt = 28

T 0.45 ≈ 37 -0.09 -0.16 0.80 0.36 -1.47
T 0.5 ≈ 55 -0.13 -0.13 0.60 0.29 -1.59
T 0.55 ≈ 82 -0.06 -0.08 0.36 0.19 -1.86
T 0.6 ≈ 122 0.00 -0.01 0.19 0.12 -2.28
T 0.65 ≈ 183 0.07 0.07 0.09 0.07 -2.94

Table 3.6: Structural break tests for spuriously demeaned series

- Long memory processes can result from a stochastic error duration model

where no breaks are present theoretically.

- ARFIMA models are a natural expansion of ARIMA models, and ARFIMA

processes are covariance stationary, i.e. there are neither breaks in the

mean nor in the variance (given it is finite).

- On the other hand, there is a wide range of literature and Monte Carlo sim-

ulations about processes representing spurious long memory solely based

on structural breaks, as seen in the three models above (see Section 3.1.1).

- The simple error duration analysis at least invites debate on the question
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of spurious structural breaks in long range dependent time series.

Both, long memory and structural breaks, are theoretically appealing and

demonstrate that at least two explanations for long range dependence in the data

exist. And presumably one model by itself may not capture all of the persistence

in a time series, i.e. the residuals under a breakpoint null model may still exhibit

persistence and on the other hand, residuals from an I(d) estimation may still

display sudden changes in the mean or variance, respectively.

Nevertheless an ARFIMA model for a stochastic process is a parsimonious

model that can explain long and short range dependences in time series. Even if

the long memory is spurious due to actual structural breaks, ARFIMA models

might provide better forecasts.3

However, after studying various literature about structural breaks versus

long memory and describing the error duration point of view of this question, I

close this part with two – despite, or actually because of their inconclusiveness

– quintessential comments from recent literature:

We believe, however, that the temptation to jump to conclusions

of “structural change producing spurious inferences of long memory”

should be resisted, as such conclusions are potentially naive. Even

if the ‘truth’ is structural change, long memory may be a conve-

nient shorthand description, which may remain very useful for tasks

such as prediction.4 Moreover, at least in the sorts of circumstances

studied in this paper, “structural change” and “long memory” are

effectively different labels for the same phenomenon, in which case

attempts to label one as “true” and the other as “spurious” are of

dubious value.

Diebold and Inoue [18]

And almost simultaneous to this thesis, supporting my exemplified analysis

of the structural break issue within the ED model:

The models [ED model] intrinsically possess both structural change

and long memory, in an inextricably intertwined manner, and thus

may help practitioners to view these two phenomena as a duality

rather than a dichotomy.

Hsieh et al. [38]

3Bhardwaj and Swanson [6] find that ARFIMA models outperform ARIMA, ARMA,
ARCH and related models in ex ante forecasting of absolute returns. As expected ARFIMA
models perform better especially for greater forecast horizons.

4In a development that supports this conjecture, Clements and Krolzig [11] show that
fixed-coefficient autoregressions often outperform Markov switching models for forecasting in
finite samples, even when the true data-generating process is Markov switching.
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Chapter 4

Forecasting

In forecasting we commence from a stationary process xt ∈ L2(Ω,A, P ) and want

to approximate future values xt+h (h > 0) by a feasible function of past values

xs, s ≤ t. To get a well posed problem we have to specify the class of feasible

functions and the approximation criterion in the Hilbert space L2(Ω,A, P ).

We consider affine functions and our rule for the best function is the least

squares criterion. Ergo we have to solve the minimization problem

min
b,aj∈R

E

xt+h −
b+

∑
j∈J

ajxt−j



xt+h −

b+
∑
j∈J

ajxt−j


 (4.0.1)

The index set J is either finite or infinite.

If the class of approximation functions is the class of measurable functions,

then the general least squares approximation is the conditional expectation. For

Gaussian processes the conditional expectation is in fact linear. Ergo the re-

striction to affine functions is less restrictive the more the distribution of the

forecast errors is similar to Gaussian.

The next theorem prepares the ground for calculating the parameters b and

aj, using results from functional analysis of orthogonal subspaces in Hilbert

spaces.

Theorem 4.0.1 (Projection Theorem). Let H be a Hilbert space and M be a

closed subspace. Corresponding to every x ∈ H, there is a unique decomposition

x = x̂+ u

such that x̂ ∈ M and u⊥M. Furthermore x̂ is the unique element of M satis-

fying

||x− x̂|| = min
y∈M
||x− y|| (4.0.2)

Proof. See [81].
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x̂ ∈M is called the projection of x on M ⊆ H and is denoted by PMx = x̂.

Thus, PM is a mapping from H onto M and it holds PMPM = PM.

Remark 4.0.2. Note that the decomposition is unique; therefore, it is not nec-

essary to find the explicit solution for the operator PM, which maps any x0 ∈ H
onto its projection x̂0 ∈ M. If we find a decomposition of x0 in y0 ∈ M and

v0, with x0 = y0 + v0 and y0⊥v0, then this is the projection and we know that

y0 ≡ x̂ and v0 ≡ u.

4.1 Prediction from a finite past

Let H(xt, xt−1, . . . , xt−r, 1) be the space spanned by the xt−j, j = 0, . . . , r and

by the constant 1. Note that H(xt, xt−1, . . . , xt−r, 1) is a Hilbert space and a

subspace of L2(Ω,A, P ). Since {xt}∞t=−∞ ∈ L2(Ω,A, P ) the prediction of xt+h
from finite past can be seen as finding the element x̂t,h ∈ H(xt, xt−1, . . . , xt−r, 1)

such that the distance between xt+h and x̂t,h is minimal.

From the projection theorem 4.0.1 this is a projection of xt+h ∈ L2(Ω,A, P )

on the subspace H(xt, xt−1, . . . , xt−r, 1), i.e.

x̂t,h = PH(xt,xt−1,...,xt−r,1)xt+h. (4.1.1)

Without loss of generality we assume that the mean of xt is equal to zero.

Hence, it is clear from remark 4.0.2 that x̂t,h =
∑r

j=0 ajxt−j is the projection

x̂ ∈ M if and only if the errors xt+h − x̂t,h are elements of M⊥, i.e. they are

uncorrelated with xt−s, s = 0, . . . , r.

Hence, we get r + 1 equations

0
!

= < xt+h − x̂t,h, xt−s >= E
(
xt+h − x̂t,h

)
xt−s, ∀s = 0, . . . , r

Ext+hxt−j
!

= Ex̂t,hxt−s = E

 r∑
j=0

ajxt−j

xt−s, ∀s = 0, . . . , r

γx(h+ j)
!

=
r∑
j=0

ajγx(s− j), ∀s = 0, . . . , r

The last equation can be written in matrix form

(
γ(h) · · · γ(h+ r)

)
=
(
a0 · · · ar

) γ(0) · · · γ(r)
...

. . .
...

γ(−r) · · · γ(0)

 =:
(
a0 · · · ar

)
Γr

Thus, we get a solution for the coefficients aj by inverting Γr. The inverse
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exists, given Γr is not singular.1

Solution 4.1.1 (Yule - Walker equations). The best linear predictor of xt+h is

given by x̂t,h :=
∑r

j=0 ajxt−j where(
a0 · · · ar

)
=
(
γ(h) · · · γ(h+ r)

)
Γ−1
r . (4.1.2)

In practice we only have data from the finite past, but since estimation of

the autocorrelation function is not accurate for high lags and the inversion of a

T × T matrix is time consuming for large T , I present the prediction from the

infinite past below.

4.2 Prediction from the infinite past

Let Hx(t) be the Hilbert space spanned by all xs, s ≤ t, which is the set of

all linear combinations of xs, s ≤ t and their limiting elements in L2(Ω,A, P ).

Analogously define Hε(t).

Consider the stationary, causal and invertible ARFIMA(p, d, q) process

Φ(z)xt = Θ(z)n(z)εt, n(z) = (1− z)−d =
∑∞

j=0

(
d
j

)
zj =

∑∞
j=0 njz

j

and Φ(z)−1Θ(z) =: ϕ(z) =
∑∞

i=0 ϕiz
i.

As Φ(z),Θ(z) 6= 0 ∀|z| ≤ 1, and d ∈ [−1
2
, 1

2
), we have

xt = Φ(z)−1Θ(z)n(z)εt = k(z)εt =
∞∑
j=0

kjεt−j, (4.2.1)

εt = n(z)−1Θ(z)−1Φ(z)xt = r(z)xt =
∞∑
n=0

rnxt−n. (4.2.2)

This implies

Hx(t) ≡ Hε(t).

Going back again to the initial problem of forecasting xt+h we can write

xt+h =
∞∑
j=0

kjεt+h−j︸ ︷︷ ︸
x

=
h−1∑
j=0

kjεt+h−j︸ ︷︷ ︸
u

+
∞∑
j=h

kjεt+h−j︸ ︷︷ ︸
x̂

. (4.2.3)

1The covariance matrix of a vector of random variables u is singular iff a‘u = 0 for some
a 6= 0. In our context, this means that the covariance matrix of a stochastic process is singular
iff the random variables xt, . . . , xt−r are linearly dependent. As this is a state with Lebesgue
measure zero, the computation of the inverse does not lead to problems in practice and we
will not consider this special case any further.
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Therefore, x̂ is contained in Hε(t) = Hx(t) ⊆ L2(Ω,A, P ), implying that x̂

is a linear combination of past and present values xs, s ≤ t. u is orthogonal

to all elements of Hε(t), as εt is white noise. Since Hε(t) = Hx(t), the term u

is also orthogonal to all elements of Hx(t), especially Eux̂ = 0. Therefore, the

projection x = x̂+ u is implicitly given by equation (4.2.3).

Thus, by the projection theorem the h-step predictor and the corresponding

h-step prediction error satisfy

x̂t,h ≡ x̂ and ε̂t,h ≡ u. (4.2.4)

As x̂t,h is the best (in the L2 sense) linear approximation of xt+h by past and

present values of xt, it is still necessary to express x̂t,h =
∑∞

j=h kjεt+h−j in terms

of xt−j, j ≥ 0. Since εt = n(L)−1Θ(L)−1Φ(L)xt =
∑∞

n=0 rnL
nxt

x̂t,h =
∞∑
j=h

kjL
jεt+h =

∞∑
j=h

kjL
j

∞∑
n=0

rnL
nxt+h =

∞∑
j=0

kj+hL
j+h

∞∑
n=0

rnL
nxt+h

=
∞∑
j=0

kj+hL
j

∞∑
n=0

rnL
nLhxt+h =

∞∑
j=0

kj+hL
j

∞∑
n=0

rnL
nxt (4.2.5)

=:
∞∑
i=0

ai(h)Lixt = Ah(z)xt. (4.2.6)

The weighting sequence {ai(h)} is given by matching terms. In general the co-

efficients of Ah(z) are different for every h.

Consequently the projection operator is explicitly given by

x̂t,h = PHx(t)(xt+h) =
∞∑
n=0

an(h)Lnxt ∈ Hx(t). (4.2.7)

The essence of any thought dealing with forecasts is causality of events. The

Wold decomposition provides the basis for forecasting a covariance stationary

process.

Theorem 4.2.1 (Wold‘s decomposition). Any zero-mean covariance stationary

process xt can be represented in the form

xt =
∞∑
j=0

ψjεt−j + κt, (4.2.8)

where ψ0 = 1 and
∑∞

j=0 ψ
2
j < ∞. εt is white noise and represents the error in

forecasting xt with a linear function of lagged xt:

εt := xt − E(xt | xt−1, xt−2, . . .). (4.2.9)
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κt is uncorrelated with εt−j, for any j, but κt can be predicted arbitrarily well

from a linear function of past values of xt:

κt = E(κt | xt−1, xt−2, . . .).

Proof. See Brockwell and Davis [8].

In practice the Wold representation requires fitting an infinite number of

parameters, which is impossible as T <∞. A typical assumption is that Ψ(L)

can be written as the ratio of two finite-order polynomials (this leads to an

ARMA(p, q) model):
∞∑
j=0

ψjL
j =

Θq(L)

Φp(L)
=: ϕ(L).

With this simplification only p + q + 1 parameters have to be estimated (AR

and MA coefficients and the variance of εt).

If we write an ARFIMA process xt in the MA(∞) representation

xt =
∞∑
j=0

d(d+ 1) . . . (d+ j − 1)

j!
εt−j,

we see that this already has the form (4.2.8) with κt = 0 and ψj =
(
d
j

)
.2

Now it becomes clear why ARFIMA models are parsimonious models for

long range dependent processes, as the Wold decomposition for these models

depends on the memory parameter d exclusively. Thus, after estimating d, the

computation of {ψj} and consequently prediction of xt+h is straightforward.

4.2.1 Prediction error

Since we are not only interested in the forecast itself, but also in the confidence

region of the forecast we have to analyze the prediction error (4.2.4):

E ε̂t,h = Ext+h − E(xt | xt−1, xt−2, . . .) = E
h−1∑
j=0

kjεt+h−j = 0

V ε̂t,h = E ε̂2
t,h = E

h−1∑
j=0

kjεt+h−j

h−1∑
i=0

kiεt+h−i

=
h−1∑
j=0

k2
jE ε2

t+h−j = σ2
ε

h−1∑
j=0

k2
j .

Therefore, prediction is unbiased and the forecast variance is non-decreasing in

h. Assuming a Gaussian error term and known mean, the symmetric (1 − α)

2Processes with κt = 0 are called purely linearly indeterministic.
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confidence interval for the forecast x̂t,h is given by

x̂t,h ∓ u1−α
2
σε

√√√√h−1∑
j=0

k2
j , (4.2.10)

where u1−α
2

is the (1− α
2
) percentile of the standard Gaussian.

Remark 4.2.2 (Asymptotics). For a zero-mean covariance stationary process

xt, the prediction for the infinite future tends to Ext = µ = 0:

lim
h→∞

x̂t,h = lim
h→∞

∞∑
j=h

kjεt+h−j = 0,

The prediction error variance tends to Vxt = σ2
x <∞:

lim
h→∞

Vε̂t,h = σ2
ε lim
h→∞

h−1∑
j=0

k2
j = σ2

ε

∞∑
j=0

k2
j = σ2

x.

ARFIMA forecasts

For better understanding consider the ARFIMA(0, d, 0) case with d ∈
(−1, 1]. If d ∈

(
−1, 1

2

)
, then xt has an MA(∞) representation with coefficients

πj =

(
d

j

)
=

Γ(j + d)

Γ(d)Γ(j + 1)
=


0 if j < 0,

1 if j = 0,
d(d+1)···(d+j−1)

j!
if j > 0.

(4.2.11)

The coefficients satisfy the recursion πj+1 = πj
d+j
j+1

.

We can differ between three cases

a) for −1 < d < 1
2

the process is covariance stationary; thus, the forecast for

h→∞ tends to the mean of the process, and the prediction error variance

Vε̂t,h
h→∞−→ σ2

x <∞.

b) for 1
2
≤ d < 1 the process is mean-reverting but has infinite variance, so the

forecast still tends to the mean of the process, but as the forecast horizon

increases the forecast error variance
∑h−1

j=0 π
2
j · σ2

ε goes to infinity.

c) for d = 1 we get the simple random walk model, and the best forecast for

xt+h given the infinite past is

E(xt+h|xt, xt−1, . . .) = xt with Vε̂t,h = σ2
ε · h.

The optimal forecast for a random walk equals the last observations xt for

all h, and the forecast error variance grows linearly in h.
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For the general ARFIMA(p,d,q) case

xt = Φ(z)−1Θ(z)n(z)εt =
∞∑
j=0

rjz
jεt. (4.2.12)

By matching terms we get the weighting sequence rj and proceed as above.
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Chapter 5

Estimation of the Long Memory

Parameter

With theoretical results in hand one is interested in estimating the long memory

parameter d. From first – heuristic – detection tools, like an inspection of

the ACF, to the Full Information Maximum Likelihood (FIML) estimator, one

can choose between various estimation techniques. They mainly differ in their

accuracy and computational burden.

5.1 Heuristic methods

As long memory implies hyperbolically decaying autocorrelations and a pole at

0 for the spectral density, taking a closer look at the sample autocorrelations

and the periodogram is a first step in a broad analysis for possible long memory

in the data.

5.1.1 Autocorrelation inspection

The autocorrelations of a long memory process decay hyperbolically with rate

α = 2d − 1; hence, they satisfy ρ(k) = O(kα), α ∈ R. Thus, for high lags it

should approximately hold

log ρ̂(k) ≈ log cρ + α log k + ε, k = kmin, . . . , kmax. (5.1.1)

The examination of the estimated autocorrelation function ρ̂(k) is a first

heuristic, simple and fast tool to detect long memory but has various drawbacks:

- The characteristic of a long memory process are hyperbolically decay-

ing autocorrelations, but not the actual size of ρ(k). Therefore, large

lags might seem insignificant considering the usual ± 2√
T

band and one is

tempted to reject the hypothesis of long memory in the data, although the

autocorrelations decay hyperbolically (see remark 7.1.4 for a theoretical

discussion and Figure 7.1 for a graphical illustration of this point ).
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- A hyperbolical decay is a necessary condition for long memory, but not

sufficient as also e.g. realizations of structural break models exhibit such

a decay.

- Beran [4] pointed out that it is very hard to distinguish between short

memory and long memory for α close to −1 (or d close to 0, respectively)

Nonetheless estimating the slope α (with OLS) is a first indicator for the –

possibly long memory – nature of a process.

To get a log-linear model, the lag range (kmin, kmax) has to be specified. To

get satisfying and precise estimates the lag region has to be quite large. But

setting kmin too low, might lead to perturbations from short time dependence

in the data, and setting kmax too high, will lead to biased estimates because the

autocorrelation function itself can not be estimated precisely for large k.

5.1.2 Variance method

Consider the sample mean estimator xT := 1
T

∑T
t=1 xt. It holds

V(xT ) =
σ2
x

T

(
1 + δT (ρ)

)
, with δT (ρ) =

1

T

∑
i 6=j

corr(xi, xj).

If xt is i.i.d., then δT (ρ) = 0 and we have the classic result of i.i.d. statistics

that the variance of the sample mean decays to zero with a rate of T−1. Of

course, we do not expect that observations in time are independent, so in gen-

eral δT (ρ) 6= 0.

In practice one often finds a slower convergence rate, i.e. V(xT ) = o(T−α)

with −1 < α < 0, which is in fact one definition for long range dependence with

long memory parameter d = 1+α
2

. So, an estimate for α is given by the slope

estimate of

logS2
t = log c+ α log t+ ε, 1 < t = tmin, . . . , tmax < T. (5.1.2)

where S2
t is the sample variance of all calculated rolling sample means using

t observations. Typically, the points
(
log t, logS2

t

)
are scattered around a line

with slope α. For short memory processes α̂ ≈ −1, whereas for long memory in

the data α̂ 6= −1. The relationship between the convergence rate α, the Hurst

parameter H, and the memory parameter d is given in Table 5.1.

The variance method can be easily implemented, but it has drawbacks if the

variance changes over time, since the estimator depends explicitly on a constant

variance. Thus, a heteroskedastic process might falsely indicate long memory,

because time variation is wrongly assigned to δT (ρ) and not to the variance of

the process.
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type of memory α H = 1 + α
2

d = H − 1
2

short memory = −1 = 1
2

= 0
anti-persistent < −1 < 1

2
< 0

persistent > −1 > 1
2

> 0

Table 5.1: Time series memory: Relation between α, H, and d

See Beran [4] for a detailed description of the variance method, and Görg

and Draghicescu [24] for applications to exchange rates and riverflow data.

5.2 Time domain

5.2.1 R/S statistic

The rescaled range statistic was first introduced by Hurst [39] and extended by

Mandelbrot [48]. The R/S statistic is the range of partial sums of deviations of

a time series from its mean, normalized by its standard deviation.

Given a stochastic process xt the classic rescaled range statistic

QT :=
1

σ̂x

 max
l=1,...,T


l∑

j=1

(xj − xT )

− min
j=1,...,T


l∑
l=1

(xj − xT )


 , (5.2.1)

where xT = 1
T

∑T
t=1 xt is the sample mean, and σ̂x =

√
1
T

∑T
t=1(xt − xT )2 is

the (maximum likelihood) standard deviation estimator. A table with critical

values is given in [48].

Furthermore it can be shown that asymptotically

ER/S ∼ c TH .

The Hurst parameter H is another measure for long range dependence, and it

holds H = d + 1
2
. Thus, a natural estimate of H (and d, respectively) can

be obtained by calculating the R/S statistic for different values of T and then

estimate a log-linear model with intercept log c and slope coefficient H = d+ 1
2
.

I refer the interested reader to Hurst [39] for an intuitive motivation for the

rescaled range statistic in a hydrological context.
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5.2.2 Modified R/S statistic

If xt is i.i.d., then 1√
T
QT is weakly convergent to ν, where ν is the range of a

Brownian bridge1 on the unit interval [47]. Lo [47] stresses that normalizing the

range with the sample standard deviation σ̂x can be misleading if there is short

term dependence in xt. For an AR(1) process xt with parameter |φ1| < 1 the

normalized R/S statistic converges to ξ · ν, where ξ =
√

1+φ1

1−φ1
.

This bias of ignoring the short term effects, has remarkable consequences on

finite sample properties of the R/S statistics. In particular, Davies and Harte

[13] analyze the behavior of the standard rescaled range statistics for AR(1)

processes with φ1 = 0.3. Although the memory parameter d equals 0 by defini-

tion the rejection rate for the 5% significance level of the Mandelbrot regression

test equals 47%.

Consequently the R/S statistic should be normalized by the value of ξ. As

in practice the specific short term dependence is unknown ξ can not be plugged

in the formula as a given value. Desirably an invariant calculation method for a

normalizing factor should be obtained that captures a broad band of short term

dependence, but still is sensitive to long memory effects.

Thus, [47] introduces the modified R/S statistic, which accounts for possible

short memory structure in the data:

Qm
T :=

1

σ̂T (q)

 max
l=1,...,T


l∑

j=1

(xj − xT )

− min
j=1,...,T


l∑
l=1

(xj − xT )


 , (5.2.2)

where

σ̂2
T (q) =

1

T

T∑
j=1

(xj − xT )2 +
2

T

T∑
j=1

wj(q)

 T∑
i=j+1

(xi − xT )(xi−j − xT )

(5.2.3)

= σ̂2
x + 2

q∑
j=1

wj(q)γ̂(j), with wj(q) = 1− j

q + 1
, q < T. (5.2.4)

Qm
T differs from the classic rescaled range QT only by the denominator. The

normalizing factor relies on the subtle fact that the variance of a sum is, in

general, not equal to the sum of the variances, but also autocovariances have

to be taken into account. In principle any feasible weight function wj(q) can be

used.

Under the null of any short range dependence 1√
T
Qm
T converges to ν, where

1See definition A.1.4 in the appendix.
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ν is the Brownian bridge. As expected, the modified R/S statistic has the same

asymptotic distribution independent of the specific short term dependence in

the data.

Under long memory alternatives it can be shown that in presence of persis-

tent (d > 0) long memory the R/S statistic converges in probability to infinity.

For anti-persistent behavior (d < 0) it converges to zero in probability. In

both cases, the probability of rejecting the null hypothesis of short memory ap-

proaches unity.

Although Teverovsky, Taqqu, and Willinger [79] conclude that the modified

R/S statistic is a major improvement to the classic one, they also report draw-

backs of the test statistic, like the tendency to reject true long memory. Their

findings concentrate on the truncation lag q and its asymptotic behavior. In

[47] only asymptotic properties of q (e.g. q = O(T 0.25)) are stated to guarantee

optimality for the derived test statistic. In practice, these asymptotic conditions

are no assistance for choosing an optimal value.

As q should correct the classic R/S statistic for short term effects in the data

several problems arise:

- If the true process is short memory, but the truncation lag q is quite

small, then the modification is too conservative and long memory would

be indicated.

- Choosing q too large, corrects the statistic for effects that might already be

contributable to the long memory structure of the process. Specifically,

[79] show that asymptotically Qm
T ∼ q−d. Therefore, the R/S statistic

decreases, as q increases (for d > 0) and sooner or later it will be within

the 95% confidence region [0.809, 1.862] for short memory, reported in [47].

Consequently [79] present a data driven optimal value for q given by

qopt =

(3T

2

) 1
3
(

2ρ̂1

1− ρ̂2
1

) 2
3

 , (5.2.5)

where [x] is the largest integer less than or equal to x. As this optimal value

is obtained under the null hypothesis of an AR(1) process, it can only be an

indicator for the right value of q.

However the (modified) R/S statistic is a quick way to check for long range

dependence in an observed time series, but considering the difficulties with the

optimal choice of q it should not be the exclusive criterion to test for long

memory in the data.
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5.2.3 Full Information Maximum Likelihood

Let θ be the vector of parameters in a parametric model for data x = (x1, . . . , xT )T

from a stationary time series xt. Assume xt has spectral density f(x|θ), sample

autocovariances γx(k|θ), and a T × T covariance matrix ΣT,θ. For a Gaussian

process the likelihood function is

L(θ|x) = (2π)−
T
2

1√
|ΣT,θ|

e−
1
2
xTΣ−1

T,θx. (5.2.6)

The maximum likelihood estimator θ̂ is the value θ that maximizes the likelihood

function L(θ|x) given x. This is equivalent to minimizing

− 2 logL(θ) = T log 2π + log |ΣT,θ|+ xTΣ−1
T,θx. (5.2.7)

As for a stationary process the covariance matrix is a Toeplitz matrix it

simplifies to

Σi,j = [γ(i− j)] for i, j = 1, . . . , T.

In order to maximize (minimize) the (log) likelihood function we have to

rewrite the covariance matrix in terms of the parameters of the model. Ergo we

have to derive γ(s) explicitly for an ARFIMA process xt. This will be done by

the inverse Fourier transform

γ(s) =
1

2π

∫ 2π

0

fx(λ)eiλs dλ. (5.2.8)

As a fractionally integrated process xt can be seen as a linear transformation

of xt = (1 − L)dut, where ut is an ARMA(p, q) process the spectral density

fx(λ) = |1 − e−iλ|−2dfu(λ). Accordingly the calculation of fx(λ) (and γ(s)

consequently) is divided in two steps. First we calculate the spectral density

fu(λ) of ut = (1 − L)dxt and then we use the relation given above. See Sowell

[76] for complete derivations and proofs.

ARMA spectral density

We assume that ut is a covariance stationary ARMA(p, q) process, thus ut
is the unique solution to

Φ(L)ut = Θ(L)εt with equivalent MA(∞) representation ut =
Θ(L)

Φ(L)
εt.

Since all roots of Φ(L) lie outside the closed unit disk we can write Φ(z) =∏p
j=1(1− ρjz), where |ρj| < 1 for j = 1, . . . , p. Thus (z = e−iλ),

fu(λ) =
|Θ(z)|2

|Φ(z)|2
σ2
ε = σ2

ε |Θ(z)|2
p∏
j=1

(1− ρjz)−1(1− ρjz−1)−1. (5.2.9)
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After all, the spectral density of a stationary ARMA(p, q) process can be

written as

fu(λ) = σ2
ε

q∑
l=−q

ϑ(l)zl
p∑
j=1

ζjz
p

[
ρ2p
j

1− ρjeiλ
− 1

1− ρ−1
j eiλ

]
(5.2.10)

where ϑ(l) =

min(q,q−l)∑
s=max(0,l)

θsθs−l and ζj =

ρj l∏
i=1

(1− ρjρi)
∏
m6=j

(ρj − ρm)

−1

.

Transfer function for (1− L)d

The spectral density of xt can be written as

fx(λ) = σ2
ε

q∑
l=−q

ϑ(l)zl
p∑
j=1

ζjz
p

[
ρ2p
j

1− ρjeiλ
− 1

1− ρ−1
j eiλ

]
︸ ︷︷ ︸

fu(λ)

(1− z)−d(1− z−1)−d.

(5.2.11)

This is one representation of the spectral density of an ARFIMA process where

the roots of the AR polynomial are simple.2

Analytic expression for γ(s)

Define

C(d, h, ρ) =
1

2π

∫ 2π

0

[
ρ2ρ
j

1− ρje−iλ
− 1

1− ρ−1
j e−iλ

]
(1− e−iλ)−d(1− eiλ)−de−iλh dλ

and embed (5.2.11) in (5.2.8), then the autocovariances satisfy

γ(s) = σ2
ε

q∑
l=−q

p∑
j=1

ϑ(l)ζjC(d, p+ l − s, ρj).

Evaluating the integral remains the biggest difficulty in the optimization.

But C(d, h, p) simplifies to

C(d, h, ρ) =
Γ(1− 2d)Γ(d+ h)

Γ(1− d+ h)Γ(1− d)Γ(d)

·
[
ρ2ρF (d+ h, 1; 1− d+ h; ρ) + F (d− h, 1; 1− d− h; ρ)− 1

]
for d <

1

2
.

The advantage of this representation is that several software packages3 possess

2In practice this is not a restriction as multiple roots in the lag polyonomials are a state
with Lebesgue measure zero.

3I use the fracdiff method in the R package fracdiff. See appendix B for acknowledg-
ments and credits for routines and packages used in the computations within this thesis.
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fast algorithms to compute the hypergeometric function

F (a, b; c; z) :=
Γ(c)

Γ(a)Γ(b)

∞∑
i=0

Γ(a+ i)Γ(b+ i)

Γ(c+ i)Γ(i+ 1)
zi. (5.2.12)

Starting values

Good starting values are important such that the optimization de facto gives

the global maximum for the parameter vector θ = (σ2
ε , d, φ1, . . . , φp, θ1, . . . , θq).

The following procedure should give good starting values:

1. estimate d using another reasonable estimator (e.g. ELW, GPH);

2. compute ut = (1 − L)−d̂xt and apply Box-Jenkins methods to obtain op-

timal ARMA parameters;

3. compute the residuals εt = Φ(L)
Θ(L)

ut and estimate the variance σ2
ε .

Simulation studies show optimal properties of the maximum likelihood es-

timator but it is computationally extensive, since it requires inverting a T × T
matrix and evaluating an integral, depending on three parameters. Further-

more, the exact structure of the underlying ARFIMA(p, d, q) model must be

specified. If correct, then the FIML is the best we can get; if the model is

misspecified, then the estimators are in general useless. Hence, approximations

and robustifications for the FIML have been proposed.

5.3 Frequency domain

So far we have considered estimation techniques in the time domain. Consider

the fractionally integrated process xt satisfying (1 − L)dxt = ut, where ut is a

short memory process with spectrum fu(λ).4

It holds (see equation (2.1.1))

fx(λ) =

(
2 sin

λ

2

)−2d

fu(λ) =

(
4 sin2 λ

2

)−d
fu(λ).

Almost every estimator in the frequency domain uses this relation in one or the

other way.

5.3.1 Whittle approximation to the MLE

Consider any stationary process xt (not necessarily ARFIMA) with an existing

spectral density fx(λ) and a model with parameter β that tries to capture

the properties of xt. A good estimator should minimize the distance between

4As above, assume that the spectrum of ut is a well behaved function, especially it is
bounded for frequencies away from the origin, and limλ→0 fu(λ) = fu(0) = G /∈ {0,∞}.
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the true spectral density fx(λ) and a parametric approximation f
β
x (λ), as a

function of β. Using results from the Kullback-Leibler information divergence,

which measures the difference between two probability distributions, we can

develop an estimator for β by minimizing the difference between two spectral

distributions.

It can be shown [see 59] that the asymptotic information divergence for a

Gaussian process xt is

L(β) =
1

4π

∫ π

−π
log fβx (λ) +

fx(λ)

f
β
x (λ)

dλ+ const. (5.3.1)

Since f(λ) is unknown it is replaced with the periodogram ITx (λ), obtained from

a sample of T observations, and we get the Whittle function

LT (β) =
1

4π

∫ π

−π
log fβx (λ) +

ITx (λ)

f
β
x (λ)

dλ+ const. (5.3.2)

The Whittle estimator is defined as (dropping const and 1
4π

)

β̂W := arg min
β∈B
LT (β) = arg min

β∈B

∫ π

−π
log fβx (λ) +

ITx (λ)

f
β
x (λ)

dλ (5.3.3)

The only assumption of the process xt is Gaussianity; therefore, the optimiza-

tion gives useful results for any Gaussian process with a well defined spectral

density. For an underlying AR(p) model it can be shown that β̂ is equal to the

solution of the Yule-Walker equations (see solution 4.1.1).

Local Whittle Estimator

For a special underlying ARFIMA(p0, d, q0) model, we can compute the

exact spectrum and perform the optimization. This might circumvent the high

cost of matrix inversions of the FIML, but still it is not robust to misspecified

models.

The local Whittle estimator uses the approximation

fβx (λ) = fβu (λ)

(
2 sin

λ

2

)−2d

≈ G(d)λ−2d for λ� 1, (5.3.4)

where G(d) := f
β
u (0) = σ2

ε

2π
|Θ(1)|2
|Φ(1)|2 6= 0 is a finite constant. The spectral density

of ut does not depend directly on d as it does not appear on the right hand side.

But, in general, the AR and MA lag polynomials are different for any given d;

therefore, f
β
u (0) changes for different values of d.

70



In discrete time the Whittle function reduces to

LT (β) −→ 1

m

m∑
j=1

log fβx (ωj) +
1

m

m∑
j=1

ITx (ωj)

f
β
x (ωj)

. (5.3.5)

Substituting (5.3.4) in (5.3.5) we get

1

m

m∑
j=1

log fβx (ωj) +
ITx (ωj)

f
β
x (ωj)

 ≈ 1

m

m∑
j=1

[
log
(
G(d)ω−2d

j

)
+

ω2d
j

G(d)
ITx (ωj)

]
,

(5.3.6)

where m is some integer less than T . The local Whittle estimator is given by

(Ĝ, d̂) = arg min
G∈(0,∞), d∈[d1,d2]

Qm(G, d) (5.3.7)

with Qm(G, d) =
1

m

m∑
j=1

[
log
(
G(d)ω−2d

j

)
+

ω2d
j

G(d)
ITx (ωj)

]

where −1
2
< d1 < d2 <∞ [see 44].

Necessary optimality conditions are

∂

∂G
Qm(G, d)

!
= 0 and

∂

∂d
Qm(G, d)

!
= 0.

Substituting

Gopt(d)
!

=
1

m

m∑
j=1

ω2d
j Ix(ωj)

in the objective function gives a one-dimensional optimization problem in d.

The solution is the local Whittle estimator

d̂LW = arg min
d∈[d1,d2]

R(d), (5.3.8)

where R(d) = logGopt(d)− 2d
1

m

m∑
j=1

logωj. (5.3.9)

This optimization must be performed numerically. For a detailed discussion

see Künsch [44], Robinson [69].

Exact local Whittle estimator

The local Whittle estimator minimizes the Whittle function of the long mem-

ory process xt, to get an optimal value for d. Phillips and Shimotsu [64] start

the other way around, and transform the Whittle function for the stationary
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process ut := (1− L)dxt

LELWT (d) =
1

m

m∑
j=1

log fu(ωj) +
1

m

m∑
j=1

ITu (ωj)

fu(ωj)

≈ 1

m

m∑
j=1

(
logG(d) +

ITu (ωj)

G(d)

)
, (5.3.10)

to be dependent on xt.

Assume for a moment that also ITu (ωj) ≈ ω2d
j I

T
x (ωj) holds. Making a change

of variables and adding the Jacobian in (5.3.10) gives,

1

m

m∑
j=1

(
logG(d) +

ITu (ωj)

G(d)

)
=

1

m

m∑
j=1

(
logG(d) +

ω2d
j I

T
x (ωj)

G(d)
+ logω−2d

j

)

=
1

m

m∑
j=1

(
log
(
G(d)ω−2d

j

)
+
ω2d
j I

T
x (ωj)

G(d)

)
.

This equals the objective function of the classic local Whittle estimator. But

[64] note that the approximation ITu (ωj) ≈ ω2d
j I

T
x (ωj) only holds for |d| < 0.5.

Especially for |d| > 1, ω2d
j I

T
x (ωj) is not a good approximation for ITu (ωj), since

xt is nonstationary; therefore, the meaning of the periodogram as an estimated

– in fact non-existent – spectral density gets lost. The data-driven scheme uses

the definition of ut as the dth differences of xt, so ITu (ωj) = IT
∆dxt

(ωj) and thus

[64] get the objective function

QELW
m (G, d) =

1

m

m∑
j=1

[
log(Gω−2d

j ) +
1

G
I∆dx(ωj)

]
. (5.3.11)

As above, the two dimensional problem can be reduced to a one dimensional

problem, and the ELW estimator is

d̂ELW = min
d∈[d1,d2]

R(d), (5.3.12)

where R(d) = logGopt(d)− 2d
1

m

m∑
j=1

logωj with Gopt(d) =
1

m

m∑
j=1

I∆dx(ωj).

Phillips and Shimotsu [65] state that the exact local Whittle estimation

(numerical optimization) lasts about ten times longer than the local Whittle

estimator, but now also non stationary processes beyond d = 1 can be estimated

accurately.
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5.3.2 GPH

Geweke and Porter-Hudak [22] use the exact relation

fx(λ) =

(
4 sin2 λ

2

)−d
fu(λ), (5.3.13)

as the basis for a simple (log) linear regression, with slope coefficient −d.

Let {xt}Tt=1 be a sample of size T , ωj = 2πj
T

j = 0, . . . , T−1 be the harmonic

ordinates, and let ITx (ωj) denote the periodogram. As the above relation holds

for all λ ∈ [−π, π], it especially holds for λ = ωj. Hence,

fx(ωj) =

(
4 sin2 ωj

2

)−d
fu(ωj) =

(
4 sin2 ωj

2

)−d
fu(ωj) ·

(
fu(0)

fu(0)

ITx (ωj)

ITx (ωj)

)

Rearranging terms and applying log(·) gives

log ITx (ωj) = log fu(0)− d log 4 sin2 ωj
2

+ log
fu(ωj)

fu(0)
+ log

ITx (ωj)

fx(ωj)

=

(
log fu(0) + E log

ITx (ωj)

fx(ωj)

)
− d log 4 sin2 ωj

2

+

(
log

ITx (ωj)

fx(ωj)
− E log

ITx (ωj)

fx(ωj)

)
+ log

fu(ωj)

fu(0)
(5.3.14)

Log-linear model

Equation (5.3.14) is quite similar to a simple linear model yj = β0 · 1 + β1 ·
xj + ε, j = 1, . . . ,m, with

- dependent variable yj = log ITx (ωj),

- intercept β0 · 1 =
(

log fu(0) + E log
ITx (ωj)

fx(ωj)

)
,

- explanatory variable xj = log 4 sin2 ωj
2

with slope coefficient β1 = −d,

- zero-mean disturbances ε =
(

log
ITx (ωj)

fx(ωj)
− E log

ITx (ωj)

fx(ωj)

)
with variance σ2

ε ,

and

- the term log
fu(ωj)

fu(0)
becomes negligible, as attention is drawn to ωj close to

zero and limωj→0 log
fu(ωj)

fu(0)
= 0.
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Consequently the GPH estimator is the negative value of the slope estimate

β̂OLS1 . Since this is a simple linear regression

β̂OLS1 = ĉorr(x, y) =

∑m
j=1(xj − µ̂x)(yj − µ̂y)∑m

j=1(xj − µ̂x)2

we have that

d̂GPH := −β̂OLS1 = −
∑m

j=1(log 4 sin2 ωj
2
− µ̂x)(log I(ωj)− µ̂y)∑m

j=1(log 4 sin2 ωj
2
− µ̂x)2

. (5.3.15)

As the approximation only holds for ωj close to zero, the linear model must

be estimated for ωj close to zero, where m specifies the maximum number of

frequencies to include in the sample.

In practice, there is no guideline for the optimal choice of m. As can be seen

in the proposition below, the higher m the smaller the variance; but it is also

clear that if m becomes too large, the last term in (5.3.14) is not negligible and

therefore the OLS estimate of d gets more and more biased.

Proposition 5.3.1 (Consistency of GPH). For Gaussian processes d̂GPH is

asymptotically normal with

√
m (d̂GPH − d)

d→ N

(
0,
π2

24

)
, (5.3.16)

as long as m→∞ for T →∞, and m logm
T
→ 0 for T →∞.

Proof. See Hurvich, Deo, and Brodsky [41].

Note that m = c · Tα, 0 < α < 1 satisfies the conditions in proposition

5.3.1. As a rule of thumb m = T 0.5 is common practice, but as [41] point out,

the choice of m = T 0.5 can perform considerably inferior to the optimal MSE

minimizing choice of m, which they report as mopt = O(T 0.8).

5.4 Comparison of estimators – Monte Carlo

Although the presented estimators would give good estimates in theory, the

main problem of every estimator is the disability to draw a line between short

memory and long memory effects. In the frequency domain this is reflected by

the difficult choice of m. To overcome the risk of choosing the wrong maximum

frequency, Taqqu and Teverovsky [78] suggest to rather look at d as a function

of m, and choose that m = m∗, where d̂(m) seems to be constant in a neighbor-

hood of m∗.
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5.4.1 Feasible properties of an estimator

A desired property of an estimator for the memory parameter is invariance to

differencing the series. More formally, let T (xt) be an estimator of the mem-

ory parameter. If xt ∼ I(d), then T (xt) should be approximately equal to d.

Additionally T (∆xt) should be close to d−1 since ∆xt ∼ I(d−1) by definition.

Unfortunately this intuitive requirement for a test statistic does not hold for

every memory parameter estimator. For example if we simulate a long memory

process xt ∼ I(0.3) and d̂ = 0.29, we expect that for the differenced process

yt = (1 − L)xt ∼ I(0.7) we get an estimate of d̂ = 0.71. As the proposed

estimators have different feasible intervals where estimates are unbiased, it is

clear that they do no fulfill these basic requirements.

5.4.2 Monte Carlo simulation

Almost every proposed estimator or test statistic comes with a Monte Carlo sim-

ulation, showing superior properties compared to other estimators. I simulated

xt ∼ I(d) processes over a grid of d ∈ {−0.5,−0.3, . . . 0.7, 0.9} and compare four

common estimators for the long memory parameter.

A first look at the properties of the estimators for a sample size of T = 500

with 50 replication shows (Figure 5.1) that only the GPH and ELW estimator

perform accurately outside the persistent and stationary interval (0, 0.5) (here

m = 0.5).5 The R/S statistic is far off the true values and maximum likelihood

estimation for d /∈ [0, 0.5] was not doable, as it obviously suffers from numerical

problems (fracdiff package in R 2.5.0 [67]).

Thus, we will restrict the advanced Monte Carlo simulation – with sample

sizes of T = 500 and T = 1000, and 1000 replications – to the interval (0, 0.5)

where a comparison between all four estimators is worthwhile.

Figure 5.2 and Table 5.2 show:

• ELW performs better than FIML and GPH, but on this level the bias is

in fact 0 for the three estimators. The R/S statistic does not prove to be

a good estimator for the long memory parameter at all, although we just

considered fractional noise with no short term perturbations.

• The GPH standard deviation is about 5 (!) times larger than for ELW or

FIML.

• For d ∈ {0.1, 0.2, 0.3, 0.4} the FIML has a slightly smaller standard de-

viation than the ELW. The very small standard errors at the boundary

values of d = 0 and 0.5 for FIML are dubious since, as one can see from

5The y-axis of all figures in this section represents d̂− dtrue, so we can concentrate on the
horizontal line at 0.
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Figure 5.1: Comparison of four commonly used estimators for the long memory
parameter with xt ∼ ARIMA(0, d, 0) and d on the interval (−0.5, 0.9)

Figure 5.2, the small variance results from feasible optimal values limited

to the interval [0, 0.5].

To check if the variance of GPH remains higher for d /∈ {0, 0.5}, I perform

another simulation with T = 500 observations and d ranging from −0.7 to 1.3

with step-size 0.2.

Analyzing Figure 5.3, and Tables 5.3 and 5.4 we can observe the same pattern

as before:

• ELW and GPH are unbiased estimators for d ∈ {−0.5,−0.3, . . . , 0.9}.

true d 0.0 0.1 0.2 0.3 0.4 0.5

ELW bias −0.002 −0.002 −0.001 −0.000 −0.002 −0.002
ELW variance 0.027 0.028 0.027 0.028 0.028 0.027
FIML bias 0.007 −0.005 −0.004 −0.005 −0.008 −0.023
FIML variance 0.013 0.026 0.025 0.026 0.025 0.014
GPH bias 0.000 −0.003 0.005 0.007 0.016 0.016
GPH variance 0.138 0.141 0.14 0.134 0.140 0.141
R/S bias 0.066 0.032 −0.000 −0.039 −0.082 −0.125
R/S variance 0.078 0.085 0.085 0.089 0.092 0.086

Table 5.2: Summary statistics (mean and standard deviation) for 4 memory
parameter estimators: ELW, FIML, GPH, and R/S. Sample size T = 1000 and
1000 replications for every d.
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Figure 5.2: Comparison of four commonly used estimators for the long memory
parameter with xt ∼ ARIMA(0, d, 0) and d on the interval [0, 0.5]. Sample size
T = 1000 and 1000 replications for every d.

true d -0.7 -0.5 -0.3 -0.1 0.1

ELW bias −0.006 −0.007 −0.006 −0.005 −0.004
ELW variance 0.04 0.040 0.039 0.039 0.039
GPH bias 0.120 0.045 0.012 0.003 −0.002
GPH variance 0.206 0.185 0.176 0.172 0.171

Table 5.3: a) Estimator comparison: sample size T = 500 and 1000 replications
for every d.

For d > 1 both estimators have difficulties to estimate an accurate d.

Whereas the ELW estimator overestimates the coefficient, the GPH statis-

tic underestimates the memory parameter.

For d = −0.7 the GPH estimator has a slight bias, and presumably this

bias will increase for d < −0.7.

• Again the GPH standard deviation is about 4 times larger than for ELW

(for d ∈ {−0.5,−0.3, . . . , 0.9}).

After all, we face a tradeoff between a fast estimator (fast OLS regression

for GPH / slow numerical optimization for ELW) versus small standard errors

(data driven ELW).
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Figure 5.3: Comparison of the ELW and GPH estimator with xt ∼
ARIMA(0, d, 0) and d on the interval [−0.7, 1.3]. Sample size T = 500 and
1000 replications for every d.

true d 0.3 0.5 0.7 0.9 1.1 1.3

ELW bias −0.005 −0.004 −0.004 −0.004 0.154 0.081
ELW variance 0.040 0.039 0.041 0.04 0.115 0.08
GPH bias 0.008 0.021 0.033 0.026 −0.093 −0.278
GPH variance 0.177 0.165 0.171 0.167 0.057 0.088

Table 5.4: b) Estimator comparison: sample size T = 500 and 1000 replications
for every d.

78



Chapter 6

Time – Varying Memory

In an economical/financial framework one can interpret d as a measure of mem-

ory length of investors or the influence of the past in the market. By imposing a

constant memory parameter in such processes, investors would always take the

same amount of past information into account when making their investment

decisions. This view of the world is neither reasonable nor supported by empir-

ical data.

Here I present an empirically motivated approach to capture time variation in

the memory parameter. Although many authors [6, 29] detect different memory

parameters for subperiods of analyzed data, they do not pursue this issue but

deduce possible breaks in the mean, and consequently refer to spurious long

memory.1

Based on my point of view on the spurious long memory discussion, I do not

consider locally changing memory parameters as an instantaneous indication for

structural breaks, but as a potential demand for time-varying memory models.

This is not supposed to be a complete theoretical analysis of time-varying

long memory models, but rather a collection of ideas on time-varying memory,

its implications for the defined stochastic process, and possible practical ap-

plications to get better forecasts and more accurate confidence intervals. For

more theoretical considerations I refer the reader to [27, 42], which are – to my

knowledge – the only theoretical considerations of time-varying long memory

models. Subsequently I will present simulations of time-varying (long) memory

processes, also performed in [60].

Time-varying memory is probably similar to locally stationary processes [see

12], although the length of memory is not restricted to the case where Vxt <∞.

Thus, non stationary processes are also allowed in this concept.

1See Morana and Beltratti [54] for a structural breaks and long memory modeling of
exchange rate volatility.
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6.1 Bounded variation

In the standard model the memory parameter is restricted to a constant value in

R, but there are no restrictions on the value of d. If the parameter d is allowed

to change, then this variation should reflect some behavior of the underlying

forces. From an economical perspective, time variation in d displays a constantly

changing behavior of people in the market, but this variation is presumably

limited to a certain range (dmin, dmax). I distinct between (at least) two possible

variations in time:

a) The process starts in a state A and evolves into a final equilibrium state

B. In our context this means that starting from state A =̂ d−∞ ∈ R, the

memory parameter tends – in a nice way – to the final state B =̂ d∞ ∈ R.

b) The process changes back and forth between two (or more) states in

a repetitive way. Correspondingly dt follows a periodic path in some

bounded interval.

In the first case, consider a process starting in a totally chaotic fashion

(random walk) and as time goes on the process tends to an equilibrium, e.g.

white noise. Here d goes from 1 to 0 in some well-behaved manner.

For the periodic case, I am expecting that natural boundaries are 0, 0.5

and 1, as these values represent thresholds where the structure of the process

changes rigorously. (0 . . . short/long memory; 0.5 . . . finite/infinite variance; 1

. . . mean reversion / no mean reversion). Thus, in a market people change their

behavior if dt reaches these bounds, and this consequently results in a change

of dt.

6.2 Different memory measure

Although ARFIMA models are possibly one of the best models for estimation

and prediction for long range dependent processes, one flaw for a time-varying

consideration is that for the wide class of long memory processes, d is in the

open set (0, 1), whereas for short memory models, which represent just as well a

broad class of processes, d is reduced to the point d = 0 (see Table 6.1). Thus,

for a reflective explanation I suggest a different measure and the ED model is

again of great help.

6.2.1 Time – varying stochastic duration

In the error duration model an extension to time variation can be achieved by

a varying distribution function F (k) = Fs(k) for ns.

Consequently pk = p(s,k) is the probability that shock εs survives until s+ k,

p(s,k) := P (gs,s+k = 1), k = 0, 1, 2, . . . ∼ Fs.
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Memory Properties ARFIMA ED pk =
(

1
k+1

)a
No MR, FV d=0 pk = 0 for k ≥ 1 a =∞

Short MR, FV d=0
∑∞

k=0(k + 1)pk <∞ 2 < a <∞
Long MR, FV 0 < d < 0.5

∑∞
k=0(k + 1)pk = ∞,∑∞
k=0 pk <∞

1 < a ≤ 2

Long MR, no FV 0.5 ≤ d < 1
∑∞

k=0(k + 1)pk = ∞,∑∞
k=0 pk =∞

0 < a ≤ 1

Unit Root no MR, no FV d = 1 pk = 1 ∀k a = 0

Table 6.1: Different memory and its classification. MR . . . mean reversion; FV
. . . finite variance.

For further analysis we use a specific structure of pk depending on the am-

nesia parameter a ∈ R ∪ {−∞,∞},

P (ns ≥ k) = pk :=

(
1

k + 1

)a
∈ [0, 1] ∀a and k ≥ 0. (6.2.1)

Claim 6.2.1. For a ∈ [0,∞] the probabilities in (6.2.1) are feasible in the error

duration sense.

A classification of memory depending on a is given by the last column in

Table 6.1.

Proof. A sequence {pk} is a suitable probability measure in the error duration

sense if

1. p0 = 1

2. pk+1 ≤ pk k = 0, 1, 2, . . .

The first condition holds for every a ∈ R ∪ {−∞,∞}. The second condition

implies (
1

k + 2

)a
≤
(

1

k + 1

)a
⇔
(

1− 1

k + 2

)a
≤ 1.

As
(

1− 1
k+2

)
< 1 ∀k, it follows that only a ∈ [0,∞] give proper ED probabil-

ities.

No memory – White noise: For white noise p0 = 1 and pk = 0 ∀k ≥ 1. It

is clear that only a =∞ gives this result.

Short memory: The ED model possesses short memory iff
∑∞

k=0(k + 1)pk <

∞. Since

∞∑
k=0

(k + 1)

(
1

k + 1

)a
=
∞∑
k=0

(k + 1)1−a =
∞∑
n=1

1

na−1
.

it follows that only for a− 1 > 1⇔ a > 2 the sum converges.
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Figure 6.1: Classification of types of memory

Long memory, finite variance: For a ≤ 2 the process exhibits long memory.

The variance of an ED process equals
∑∞

k=0 pk =
∑∞

n=1
1
na

. Hence, the

variance is finite for a > 1.

Long memory, infinite variance: For 0 < a ≤ 1 we have long memory with

infinite variance.

Unit root: As a unit root means that every shock lasts forever (no mean re-

version and infinite variance), i.e. pk = 1 ∀k, it follows that a = 0.

As this classification only depends on convergence results it can be used for

every feasible probability sequence pk that satisfies pk = O((k + 1)−a).

Within this classification, processes with short memory, long memory with

finite variance, and long memory with infinite variance are all represented by

(half-)open sets in R (see Table 6.1 and Figure 6.1). So, contrary to the

ARFIMA classification short memory models do not reduce to a set with Lebesgue

measure zero.

Remark 6.2.2. Note the connection of the long memory condition and the

variance of the process to Riemann’s zeta function ζ(s) =
∑∞

n=1
1
ns

. (Zeta dis-

tribution ?)

Remark 6.2.3. Also note the similarity of the ED model to compound Poisson

processes and renewal theory.
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6.2.2 The model

As noted above, a time varying memory parameter d in the ARFIMA model

would lead to ugly behavior of the path of d. With the amnesia parameter we

have a nice smooth parameter for different memory models and we can easily

formulate time-varying properties of an ED model.

The standard ED model is based on i.i.d. shocks with stochastic durations

ns and corresponding probability distribution function F (k) = P (ns ≤ k).

yt :=
t∑

s=−∞

gs,tεs, εs ∼ IID(0, σ2
ε) (6.2.2)

and gs,t :=

1 t ≤ s+ ns,

0 t > s+ ns.
(6.2.3)

Already noted in condition 2.2.3 the variance of an ED process yt equals

1 + ν, where ν = Ens.
Suppose the random variable shock duration is switching between various

states with corresponding distribution functions F1, F2, . . . , FQ. If the expected

values ν1, ν2, . . . , νQ all equal ν, the variance of the process remains constant

over time. But note that as the underlying probability distribution changes, the

covariance structure also varies.

Example 6.2.4. For simplicity I consider a special class of distribution func-

tions, namely the negative binomial distribution function with parameters 0 <

p < 1 and r > 0. For a negative binomial distributed random variable X it holds

P (X = k) = f(k; r, p) =
Γ(r + k)

k! Γ(r)
pr (1− p)k for k = 0, 1, 2, . . . .

We have

µ = EX = r
1− p
p

and σ2 = VX = r
1− p
p2

=
1

p
µ.

Now suppose the error duration switches from f1(k; r(1), p(1)) to f2(k; r(2), p(2)).

Set (r(1), p(1)) = (5, 1/2) and (r(2), p(2)) = (5/3, 1/4), then

µ1 = 5
1/2

1/2
= 5, σ2

1 =
1

1/2
µ1 = 2µ1 = 10 and (6.2.4)

µ2 =
5

3

3/4

1/4
= 5, σ2

2 =
1

1/4
µ2 = 20 = 2σ2

1. (6.2.5)

Thus, in either state V yt = σ2
ε(1 + 5) = 6σ2

ε , but the durations in state 2

have fatter tails than in the first state resulting in higher autocavariances in the

second state than in the first one (γ2(k) ≥ γ1(k) for high lags k).
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Definition 6.2.5. A time-varying memory ED model is given by

yt :=
t∑

s=−∞

gs,tεs, εs ∼ IID(0, σ2
ε),

gs,t :=

1 t ≤ s+ ns,

0 t > s+ ns.
(6.2.6)

and ns ∼ Fs(k) for an Fs in a set of distribution functions
{
Fj
}
j∈J ,

with J either a finite or infinite index set.

For the amnesia classification, the index set is infinite and Fs(k) ∼ ps,k =(
1

k+1

)a(s)

, where a(s) is the trajectory of the parameter in time.

Example 6.2.6. Suppose we observe a process with the following varying be-

havior (see Figure 6.2):

1. nice behavior (mean reverting (MR) and finite variance (FV); short mem-

ory) in the beginning (2 < a ≤ ∞),

2. memory lengthens (1 < a ≤ 2),

3. the process goes to a state of infinite variance, but still MR (no unit root)

(0 < a < 1),

4. Then the variance is decreasing again to a finite level (1 < a ≤ 2), but

does not stay long and

5. increases again to infinite variance (0 < a < 1),

6. at this point a break in the mean occurs (a = 0),

7. after the break the variance is still high but decreasing (0 < a < 2),

8. and finally the process behaves nicely again (2 < a ≤ ∞).

6.3 Time varying ARFIMA

Replacing d by dt in

(1−L)d(xt−µ) = Ψ(L)εt −→ (1−L)dt(xt−µ) = Ψ(L)εt ⇒ xt−µ =
∞∑
j=0

wj(t)εt−j

(6.3.1)

provides a natural expansion from static memory to dynamic memory.
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Figure 6.2: (left) Realization of the time varying memory model described in
Example 6.2.6; (right) Harmonically changing memory with structural breaks

Although the simulation of time varying d = dt might seem straightforward,

there are certain difficulties that arise. The biggest problem is that as the sam-

ple is always finite, the sum stops at a certain maximum lag. Thus, even if

dt equals 1 for some t = t∗, after a certain time frame, this obvious structural

break in the series will be forgotten again. Additionally time-varying ARFIMA

simulation is computationally much more extensive than time-varying ED sim-

ulation.

But for the estimation of time-varying memory parameters I will use the

ARFIMA framework, since the literature on long memory estimators for ARFIMA

models is excessive.

6.4 Estimating time variation

Using a rolling window approach, I integrate usual estimation methods of the

long memory parameter d in a time-varying framework.

Let L = 2b+ 1 be the window size and b denote the bandwidth. This special

choice simplifies notation in the text below. A varying estimator for a sample

{xt}Tt=1 is given by

d̂t(xt) = d̂(y) for the subsample y = {xt−2b, . . . , xt} , (6.4.1)

and d̂ is one of the classic estimators, such as ELW, FIML, or GPH.
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The use of moving windows needs a huge amount of computational work,

since d has to be estimated for every window. To lower the computation time,

one can use more heuristic, and thus less computationally skilled, methods as

the time-variance or ACF method to determine the variation in d. Besides,

estimating d̂ not for every single t, but for a grid {0 < L,L+ s, L+ 2s, . . . , T}
with step size s > 1, will also decrease computation time (trivially by the factor
1
s
). As the window length is 2b+1, we can not start at t = 1 but with t = b+1. If

a time-varying memory approach seems justifiable, local estimates for dt should

be computed with the most accurate estimators as ELW, FIML or GPH.

6.5 Analyzing time variation

After estimating dt, forecasting dt itself is interesting to get even better pre-

dictions for xt and more accurate confidence intervals. Before proceeding, we

have to decide whether dt should be modeled deterministically or stochastically.

This will determine the mehtods to forecast dt; either non-parametrically or

with parametric models.

6.5.1 Parametric or non-parametric

In parametric analysis dt is subject to time series analysis. Thus, fitting (sea-

sonal) ARIMA models – with possible explanatory variables, e.g. variance of

the process – not only provide a basis for further analysis, but also help to get

a better understanding for the process’ memory.

From empirical work it becomes clear that dt is a combination of smooth

functions and very erratic behavior. Therefore, applying parametric models for

dt does not seem reasonable. Hence, methods from non-parametric analysis like

polynomial regression and splines can be used to model the time variation.

I think the decision between parametric or non-parametric modeling is strongly

related to the question whether dt is periodic or tending to an equilibrium state.

For parametric modeling of the time-variation see Granger and Zhuanxin [27],

who consider AR(1) and Markov switching models for dt.

6.5.2 Forecasting d

Recall that dt is just another notation for the function

d : N→ R
t→ d(t).
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Figure 6.3: Recurrence plots with same i.i.d. innovations: (left) fractional noise
with d = 0.2; (middle) fractional noise with d = 0.7; (right) random walk, d = 1

For a well behaved dt the Taylor expansion around the point α is given by

d(t) =
∞∑
n=0

d(n)(α)

n!
(t− α)n where d(n) is the n-th derivative of d(t).

Expanding d(t+ h) in a Taylor series around t

d(t+ h) =
∞∑
n=0

d(n)(t)

n!
hn

we intuitevly get a forecast for dt+h by truncation of the infinite power series at

some maximum lag K:

d̂t+h =
K∑
n=0

d(n)(t)

n!
hn. (6.5.1)

Given a sequence of forecasted values d̂t+h we can compute a time-varying

weighting sequence
{
wj(t+ h)

}T
t=1−h and consequently forecast xt+h by

x̂t,h =
∞∑
j=h

wj(t+ h)εt+h−j. (6.5.2)
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Figure 6.4: (top) Time – varying log spectral densities; (bottom) Time – varying

d̂GPH and smoothed version (red line); window length = 150, step size = 1.

6.6 Graphical detection tools

Here I present two graphical tools that help detect time-varying structures in a

process.

Recurrence plot: A recurrence plot displays the closeness of points in time.

This is not only interesting for the time variation, but also for the distinction

between I(d) processes with d ∈ [1
2
, 1) and I(1) processes, as the first is mean

reverting, but the second is not. Thus, there should be a distinct difference

between the recurrence plot of a long memory and a random walk (see Figure

6.3).

Time-varying spectrum: Computing the spectrum for different time peri-

ods and plotting a heat map (see Figure 6.4) or a 3-dimensional graph gives a

first indication about possible time-variation.

Figure 6.4 displays the estimated time variation of dt. The moment dt hits

the limit of 1 corresponds to a break in the series (≈ 0.58 ∗ 3000 = 1160).

Reconsidering Example 6.2.6 and Figure 6.2 shows that the moving window

approach detects the break almost perfectly.

6.7 Conclusion

Of course the presented ideas do not stand on a fully developed theoretical basis,

but are empirically motivated approaches for time series modeling. As noted

above, a time-varying model (not restricted to varying memory) is also a more
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realistic way of seeing the world. Undoubtedly, consideration of time-varying

models is much more complex than just writing down a model and simulating

data. Nevertheless, it is a first step towards a more profound, – and in my

opinion – promising analysis of time-varying memory.
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Chapter 7

Applications

In this chapter I will apply the theory described above to real data. The goal is

to estimate parameters of a model for xt and predict future values xt+l, l ≥ 1.

As an underlying model for financial data I use a stochastic volatility model

presented below and used in several publications (e.g. Deo and Hurvich [15]).

All computations and plots have been done with R 2.5.0 [see 67].

7.1 LMSV model

There is a considerably large literature about ARCH models, which model con-

ditional heteroskedasticity by an autoregressive model. Extending this to long

memory models might seem straightforward, but as there are certain restric-

tions on the parameters some difficulties occur for defining such a long memory

heteroskedastic model. I will not go into detail here, but refer to [7, 16].

Breidt et al. [7] and Harvey [35] introduce the long memory stochastic volatil-

ity model (LMSV) for modeling volatility, which is an extension of the basic

stochastic volatility model proposed by Melino and Turnbull [53].

Definition 7.1.1 (Stochastic Volatility Model). The stochastic volatility model

for rt is defined as

rt = σtεt, σt = σe
vt
2 , σ > 0 (7.1.1)

where εt ∼ IID(0, 1) is independent of vt.

Common choices for εt are Gaussian processes or processes with a normalized

t-distribution and n degrees of freedom. If vt ∼ ARIMA(p, d, q), we have a long

memory stochastic volatility model.

Definition 7.1.2 (Log normal distribution). A random variable Y has a log

normal distribution if X = ln(Y) has a normal distribution. If X ∼ N (µ, σ2),

then the probability density function for Y is

f(Y ) =
1√

2πσY
e−

ln(Y )−µ
2σ .
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Corollary 7.1.3 (Moment generating function). The moment generating func-

tion Eyn =
∫∞

0
ynf(y) dy of a log normal distribution is given by

MGn(µ, σ) := enµ+n2σ2

2 . (7.1.2)

7.1.1 Properties of LMSV

If the long memory process vt is a zero mean Gaussian process with autocovari-

ance function γv(j), then

Ert = Eσtεt = EσtEεt = Eσt · 0 = 0 (7.1.3)

Vrt = Er2
t = Eσ2

t ε
2
t = Eσ2

tEε2
t

= Eσ2
t = σ2Eevt = σ2MG1(0, γv(0)) = σ2e

γv(0)
2 (7.1.4)

cov(rt, rt+k) = 0 for k 6= 0, since εt is i.i.d.. (7.1.5)

Therefore, rt is covariance stationary white noise, which is compatible with

the efficient market hypothesis.

Another compelling feature of the proposed model, with Gaussian i.i.d. εt,

is a positive excess kurtosis.

γ2 :=
Er4

t(
Er2

t

)2 − 3 =
Eσ4

t ε
4
t(

Eσ2
t ε

2
t

)2 − 3 =
Eσ4

t

=3︷︸︸︷
Eε4

tEσ2
t Eε2

t︸︷︷︸
=1


2 − 3

= 3

(
σ4E(evt)2

(σ2Eevt)2 − 1

)
= 3

(
σ4MG2(0, γv(0))

σ4MG1(0, γv(0))2
− 1

)

= 3

 e2µ+
4γv(0)

2(
e1µ+

γv(0)
2

)2 − 1

 = 3
(
eγv(0) − 1

)
> 0. (7.1.6)

Note that γ2 is always positive, as γv(0) = σ2
v > 0. Also known as leptokurtic, a

positive excess kurtosis represents fat tails in a density and is quite character-

istic for financial data.
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Interested in the volatility of rt we analyze the squared returns yt := r2
t .

Eyt = Er2
t = σ2e

γv(0)
2 (7.1.7)

Vyt = Ey2
t − (Eyt)2 = Er4

t −
(
σ2e

γv(0)
2

)2

= 3σ4Ee2vt − σ4eγv(0)

= σ4
(

3MG2(0, γv(0))− eγv(0)
)

= σ4
(

3 e2γv(0) − eγv(0)
)

= σ4eγv(0)
(

3 eγv(0) − 1
)

(7.1.8)

cov(yt, yt+k) = σ4eγv(0)
(
eγv(k) − 1

)
for k 6= 0. (7.1.9)

Squaring equation (7.1.1) and applying the logarithm we get a simple (log) linear

model

xt = µ+ ζt + vt, (7.1.10)

where µ = log(σ2) + E log(ε2
t ) and ζt = log(ε2

t ) − E log(ε2
t ) is i.i.d. with zero

mean and variance σ2
ζ = E

(
log(ε2)− E log(ε2

t )
)2

. Disregarding the mean µ, xt
is a signal plus noise model with a long memory signal vt uncorrelated to the

(non-Gaussian) noise ζt.

For xt we have

Ext = µ

Vxt = Vζt + Vvt = σ2
ζ + γv(0)

cov(xt, xt+k) = γx(k) =

γv(0) + σ2
ζ if k = 0,

γv(k) if k ≥ 1.

Remark 7.1.4. Note that

ρx(k) =

1 if k = 0,
γv(k)

γv(0)+σ2
ζ

if k ≥ 1.
(7.1.11)

The autocorrelation function explicitly depends on the error variance σ2
ζ : the

higher the variance, the smaller the autocorrelations for k ≥ 1.

Suppose σ2
ζ tends to ∞, then the autocorrelations go to 0 and we might be

entrapped into rejecting long memory in the data in favor of white noise. See

Granger and Marmol [26] for a detailed discussion.

If we set up an ARFIMA(p, d, q) model for vt

vt = (1− L)−dΦ(L)Θ(L)ηt, ηt ∼ N(0, σ2
η),
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Figure 7.1: DJI in the time domain

then the spectral density of the signal plus noise process xt is given by

fx(λ) = fv(λ) + fζ(λ)

=
σ2
η

2π

|Θ(e−iλ)|2

|1− e−iλ|2d|Φ(e−iλ)|2
+
σ2
ζ

2π
, −π ≤ λ ≤ π. (7.1.12)

Although there is a gap between lag 0 and lag 1, the autocovariance function

of xt is the same as for vt for k ≥ 1. Since estimation methods, both in the

time and frequency domain, draw attention to high lags and low frequencies,

respectively, I estimate the long memory parameter d for xt and then the ARMA

parameters for the residual series.

7.2 Weekly DJI log returns

I study weekly log returns rt (see Figure 7.1(a)) of the Dow Jones Index from

July 6th, 1964 – September 5th, 20061, giving a total number of 2200 observa-

tions. For out-of-sample forecasts comparison, I split up the data in a training

set {x1, . . . , x2000} and a test set {x2001, . . . , x2200}. All tests below only use the

training data.

As noted above, I manipulate the data to

xt = log(µ0 + r2
t ), µ0 � 1,

and presuppose that the process is generated by a LMSV model (7.1.10). The

constant µ0 is added to r2
t for numerical issues, as log r2

t gives undefined values

for returns equal to 0. In this application µ0 = 10−9.

1Source: Yahoo Finance – http://finance.yahoo.com.

93

http://finance.yahoo.com


H0 H1 Test Lags / q Statistic p - value

I(0) I(1) KPSS 31 0.49 0.04
I(1) I(0) Phillips - Perron 25 −45.44 0.01
I(1) I(0) Augmented DF 12 −9.76 0.01
I(1) bounded process Bounded R/S 4 0.36 0.01

Table 7.1: DJI: Unit root tests

As we can see from the autocorrelation function of the original data, rt seems

to be white noise, although there is a slight 1 month (4-5 weeks) dependence in

the data. The transformed series xt exhibits the patterns described in remark

7.1.4. In specific the very small autocorrelations for k ≥ 1, due to a presumably

large error variance σ2
ζ . Nevertheless we can make out a very slow decay for

higher lags autocorrelations (see Figure 7.1(b)).

7.2.1 Unit root

Inspecting the data in Figure 7.1(b) indicates that

- there is no apparent global trend in the data; thus, unit root tests do not

need a trend component in their null hypothesis.

- the data are skewed to the left, since a considerable amount of times the

returns rt are very close, or even equal, to zero; therefore, the Gaussian

condition will not be met.

- the autocorrelations do not show a typical exponential decay to zero.

Nevertheless I perform three widely used unit root tests (Dickey and Fuller

[17], Kwiatkowski et al. [45], Phillips and Perron [63]). Additionally Cavaliere

[10] proposed a unit root test based on the range of a process, which is a gen-

eralization of the R/S statistic (Section 5.2.1).

The results of the tests (see Table 7.1) confirm the guess of fractional in-

tegration, as both, the I(0) and the I(1) hypothesis, can be rejected at a 0.5

and 0.01 level respectively. Additionally the test procedures detect significant

autocorrelations for large lags, as they include lagged values from 10 to 31.

7.2.2 Long memory

Analyzing several unit root tests the true d seems to lie in the interval (0, 1).

Although the observed data exhibits fat tails a value of d < 1
2

is reasonable.

As the structure of the stationary process ut is not known a priori, I apply the

semi-parametric estimators ELW and GPH to get good starting values for the

FIML procedure.
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m = Tα 0.4 0.45 0.5 0.55 0.6 0.65 0.7
GPH 0.33 0.31 0.27 0.29 0.28 0.27 0.26
ELW 0.42 0.37 0.31 0.33 0.25 0.25 0.24

Table 7.2: DJI: semiparametric estimators for different values of m.
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Figure 7.2: (left) Autocorrelation function of ut (without ρ(0) = 1); (right)
Spectrum of ut

Semiparametric Estimation

Considering Table 7.2, d0 = 0.29 seems to be a good starting value for

d̂. Figure 7.2 shows the autocorrelation function of ut := (1 − L)−0.29xt, with

significant lags at k = 1, 2, 4, and the spectral density with a peak around

ωj = 0.136. This corresponds to a period of 1
ωj

= 7.35. As we deal with weekly

data, this corresponds to a cycle length of almost 2 months (8 weeks), which is

important for the variation of Dow Jones volatility.

FIML

I choose an ARFIMA(4, d, 2) model as the underlying structure of the FIML

estimation. After various modifications I get

(1− L)0.3(1− 0.92L+ 0.55L2 + 0.14L4)xt = (1− 1.17L+ 0.66L2)εt, σ̂2
ε = 5.04(7.2.1)

with standard errors (NA, 0.21, 0.13, 0.02, 0.21, 0.16) for (d, φ1, φ2, φ4, θ1, θ2).

The Ljung-Box statistic for the residuals, squared residuals, and absolute

residuals is presented in Table 7.3. The residuals seem to be white noise, and

also no heteroskedasticity effects are present.

7.2.3 Time variation

Figure 7.4 displays the time – varying spectrum and Figure 7.3 time varying

memory parameter d̂t.
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Lags 1 2 5 10 20 50

ε̂ 0.81 0.79 0.78 0.96 0.99 0.57
ε̂2 0.58 0.85 0.52 0.82 0.86 0.97
|ε̂| 0.66 0.52 0.10 0.36 0.42 0.70

Table 7.3: p-values of Ljung-Box statistic for the residuals of (7.2.1)

Figure 7.3: DJI: (top) Time – varying
spectrum with window length = 150
(≈ 3 years) and step size 1; (bottom)
Time varying memory parameter dt
and smoothed version .

Figure 7.4: DJI: Time varying
spectrum with window length =
150 (≈ 3 years) and step size 4 (1
month)

7.2.4 Model comparison

I compare different models and try to measure the goodness of fit by descriptive

and adequate criteria. As our final goal are better forecasts I use the following

criteria with regard to the out-of-sample errors ei = xt+i − x̂t,i, i = 1, . . . , h

for different time horizons:

RMSE relative mean square error = MSE
MSEµ

,

RMdAE relative median error of prediction = MdAE
MdAEµ

.

Here I compare models to the naive forecast, i.e. x̂t,h = µ, where µ is the

mean of the training sample.

One should expect better forecast for medium and larger forecast horizons

with ARFIMA models.

I consider the following models

naive model xt = µ

ARMA(p,q) xt = Θ(L)
Φ(L)

εt

ARIMA(p,1,q) (1− L)xt = Θ(L)
Φ(L)

εt
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ARFIMA(p,d,q) (1− L)dxt = Θ(L)
Φ(L)

εt d ∈ R

I select the best ARIMA models by minimizing the AIC value. Doing this, I

get a short memory ARIMA(5,0,1) and an integrated ARIMA(5,1,2) model for

the training data.

Table 7.4 shows the out-of-sample accuracy measures for four different mod-

els. Using the mean squared error as an accuracy measure we see that the

ARIMA model performs better than ARFIMA, and better than ARMA in the

beginning, but as the forecast horizon increases ARIMA and ARMA change

positions and the ARFIMA model is again in the middle of the two models.

As mean square procedures (also classic OLS) are non-robust to outliers and

this series actually exhibits some outliers (rt ≈ 0), the RMSE might not be a

reasonable accuracy measure. Therefore, I also consider the RMdAE, which is

more robust to outliers than the RMSE.

Here we can see that the long memory model is superior to ARMA and

ARIMA models especially for the mid term horizon.

Horizon h 1 2 4 10 25 50 100 150 200

MSE
mean 2.16 2.82 2.46 2.69 3.31 2.68 3.88 3.88 5.05

RMSE
ARMA 1.83 0.93 0.72 0.62 0.75 0.87 0.97 0.98 0.99
ARIMA 2.40 1.03 0.76 0.54 0.65 0.94 1.22 1.26 1.23

ARFIMA 2.61 1.12 0.82 0.62 0.69 0.89 1.07 1.08 1.06

MdAE
mean 1.47 1.67 1.67 1.68 1.47 1.27 1.46 1.36 1.34

RMdAE
ARMA 1.35 0.93 0.72 0.69 0.76 0.88 0.89 0.95 0.94
ARIMA 1.55 0.92 0.55 0.57 0.64 0.81 0.82 0.93 0.89

ARFIMA 1.62 0.96 0.57 0.55 0.62 0.77 0.82 0.89 0.90

Table 7.4: DJI: Forecast accuracy measured by RMdAE and RMSE

7.3 Weekly Stock returns

As a stock index can be seen as a sum of different stocks, the long memory in

the data is probably a result of aggregation. Thus, I analyze weekly stock log

returns of Alcoa Inc., for the same period as the Dow Jones Index, i.e. from July

15th, 1964 to September 5th, 2006 (see Figure 7.6).

As the data from Yahoo were not corrected for splits I corrected the data to

current prices, i.e. for obvious stock splits (drop in price of ≈ 50%) I multiplied

the data before this point by a factor of 0.5. Starting from the end, I proceeded
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Figure 7.5: DJI: Comparison of forecasts for a time horizon of 50 periods
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ut := (1− L)−0.15

Figure 7.6: Time and frequency analysis for transformed Alcoa log-returns from
1964 – 2006

until no obvious breaks were present (in total 6 stock splits in this period).

Considering Figure 7.6 we can spot three characteristics:

- There is no apparent global trend in the data; thus, unit root tests do not

need a trend component in their null hypothesis.

- A serious issue for the robustness of the model are 49 returns equal to

0. Adding µ0 = 10−9 to the squared returns, unfortunately does not

straighten out this problem.

- A first look at the autocorrelations indicate white noise, but the spectrum
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H0 H1 Test Lags / q Statistic p - value

I(0) I(1) KPSS 10 0.352 0.10
I(1) I(0) Phillips - Perron 25 −45.51 0.01
I(1) I(0) Augmented DF 12 −11 0.01
I(1) bounded process Bounded R/S 4 0.40 0.01

Table 7.5: Unit Root tests performed on weekly DJI log–returns.

shows quite clearly that white noise is not a proper model for this time

series. Also notice that about 80% of the autocorrelations are positive.

7.3.1 Unit root

The data show similar properties as the DJI time series and unit root tests can

reject I(1) rigorously. But the KPSS test can reject short memory I(0) only on

the 10% level. Thus, we will presumably get a lower d̂ than for the DJI data,

or even an I(0) process.

7.3.2 Long memory

Semiparametric Estimation

And indeed, the values in Table 7.6 indicate a lower memory parameter.

I use d̂ = 0.15 as a starting point for further analysis. The autocorrelation

function of ut = (1 − L)−0.15xt suggests a MA(2) process for the differenced

series (see Figure 7.6(b)). To include possible autoregressive behavior in the

market, the FIML estimator is based on the ARFIMA(5, d, 2) model.

m = Tα 0.4 0.45 0.5 0.55 0.6 0.65 0.7
GPH 0.40 0.39 0.24 0.15 0.12 0.14 0.10
ELW 0.59 0.50 0.24 0.23 0.15 0.16 0.16

Table 7.6: Alcoa: semiparametric estimators for different values of m

FIML

After several estimations with restricted parameters and different lag lengths

and comparing AIC values, the FIML estimation procedure gives the final model

(1− L)0.17(1− 0.35L)xt = (1− 0.52L)εt, σ̂2
ε = 7.47, (7.3.1)

with standard errors (0.02, 0.11, 0.10) for (d, φ1, θ1).
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7.3.3 Model comparison

Again I compare the forecasting accuracy for different time horizons. An IMA(1, 1)

seems to be the best model for stochastic volatility except for very large forecast

horizons.

Horizon h 1 2 4 10 25 50 100 150 200

MSE
mean 0.36 3.38 3.93 3.22 3.62 4.48 5.96 5.70 6.27

RMSE
ARMA(2,1) 3.34 0.82 0.72 0.64 0.71 0.89 0.96 0.97 0.99

ARIMA(0,1,1) 4.67 0.75 0.59 0.48 0.55 0.86 0.97 1.02 1.05
ARFIMA(1, 0.17, 1) 3.91 0.82 0.73 0.68 0.75 0.90 0.96 0.98 0.99

MdAE
mean 0.60 1.56 2.07 1.64 1.66 1.60 1.69 1.62 1.65

RMdAE
ARMA(2,1) 1.83 1.02 0.79 0.74 0.85 0.79 0.89 0.90 0.92

ARIMA(0,1,1) 2.16 1.00 0.75 0.69 0.80 0.77 0.83 0.83 0.86
ARFIMA(1, 0.17, 1) 1.98 1.03 0.78 0.76 0.89 0.83 0.91 0.89 0.91

Table 7.7: Alcoa: Forecast accuracy measured by RMdAE and RMSE

Figure 7.7: Alcoa: (top) Time
– varying spectrum with win-
dow length = 150 (≈ 3 years)
and step size 1; (bottom) Time
varying memory parameter dt
and smoothed version .

Figure 7.8: Alcoa: Time varying spec-
trum with window length = 150 (≈ 3
years) and step size 1
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H0 H1 Test Lags / q Statistic p - value

I(0) I(1) KPSS 31 1.55 0.10
I(1) I(0) Phillips - Perron 25 −46.91 0.01
I(1) I(0) Augmented DF 12 −9.72 0.01
I(1) bounded process Bounded R/S 4 0.09 0.01

Table 7.8: EUR / USD : Unit Root tests performed on absolute daily exchange
rates

m ηµ d̂ELW Zt
T = 2000 qopt=1 q=2 q=4 q=8

T 0.40 ≈ 21 0.03 0.04 0.05 0.07 0.29 −1.30
T 0.45 ≈ 31 0.05 0.06 0.08 0.10 0.24 −0.89
T 0.50 ≈ 45 0.03 0.04 0.05 0.07 0.29 −1.28
T 0.55 ≈ 66 0.03 0.04 0.05 0.07 0.28 −1.26
T 0.60 ≈ 95 0.04 0.05 0.06 0.08 0.26 −1.07

Table 7.9: ηµ and Zt for absolute daily EUR - USD returns

7.4 EUR / USD daily exchange rate

Here I consider the dailz returns of the EUR / USD exchange rate between

March 25th, 1999 and September 14th, 2007 (2200 observations)2. Missing

values have been replaced with the last available observation such that the

time series possesses equidistant observations. Again I split up the sample in a

training and test set with 2000 and 200 observations, respectively.

As the problem of outliers in this (daily) time series is even more severe than

in the previous ones, I analyze absolute returns xt = |rt|.

7.4.1 Unit root and structural breaks

Both, I(0) and I(1), can be rejected on the 1% level from the four tests.

I also apply the modified KPSS and PP test, for different values of ηµ and for

different values of q and m, but not one single constellation can reject constant

long memory in the data in favor of structural breaks.

7.4.2 Long memory

Using a starting value of d̂ = 0.35 we get a process with significantly autocorre-

lations for the first 3 lags (see Figure 7.9(a)) and lag 6; thus, I start the FIML

estimation with an underlying ARFIMA(6, d, 3) structure (see Table 7.11).

In this case the FIML procedure faces the problem already noted above. The

numerical optimization procedure can not evaluate the Hessian matrix. Since

2Source http://sdw.ecb.int, [21].
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0.4 0.45 0.5 0.55 0.6 0.65
GPH 0.48 0.32 0.41 0.43 0.33 0.21
ELW 0.29 0.24 0.29 0.28 0.26 0.17

Table 7.10: EUR / USD: semiparametric estimators for different values of m

Estimate Std. Error z value Pr(> |z| )
d 0.381 0.000 Inf 0.000

ar1 0.690 0.000 2278.080 0.000
ar2 −1.015 0.017 −59.551 0.000
ar3 0.407 0.000 Inf 0.000
ar4 0.109 0.043 2.556 0.011
ar5 −0.009 0.013 −0.729 0.466
ar6 0.028 0.001 53.538 0.000

ma1 1.084 0.000 Inf 0.000
ma2 −1.187 0.038 −31.357 0.000
ma3 0.803 0.025 32.330 0.000

Table 7.11: EUR / USD: FIML estimates with an underlying ARFIMA(6, d, 3)
model

the fracdiff package does not support fixed parameters in the FIML estima-

tion, I apply the filter (1 − L)0.38 to xt and analyze the – presumably short

memory – residual series ut.

Figure 7.9(b) displays the reciprocal values of the AR and MA roots. The

close MA and AR roots on the right half plane make clear why the FIML

procedure has problems evaluating the Hessian.

In the ARMA(6, 3) model for ut, only φ6 and θ1 are significant at the 5%

level. Consequently, I estimate restricted models and finally get an ARMA(6, 1)

model for ut and consequently

(1− L)0.38(1− 0.30L+ 0.06L6)xt = (1− 0.70L)εt, σ̂2
ε = 0.16,(7.4.1)

with standard errors (NA, 0.04, 0.02, 0.03) for (d, φ1, φ6, θ1).

7.4.3 Time - variation

For the absolute exchange rate returns the time variation approach shows its

capacities, as this time series would be a textbook example for the reflections

about bounded variation of dt made in Section 6.1. Here I estimate the time-

varying memory parameter dt and a time-varying spectrum with window length

of 250 days ( ≈ 1 year) and step size 5 days. The blue dashed line in Figure

7.10 is the Nadaraya Watson kernel estimator with bandwidth 13 (13 · 5 = 13
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(a) (top) xt := |rt|: daily EUR / USD
squared returns from 1999 - 2007; (bottom)
autocorrelation function ρx(k), k 6= 0
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(b) (top) ut = (1 − L)−0.38xt: autocorrela-
tion function of the FIML estimated short
memory ρu(k), k 6= 0; (bottom) inverse com-
plex roots of the AR(6) and MA(3) polyno-
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Figure 7.9: EUR / USD in the time domain

Horizon h 1 2 4 10 25 50 100 150 200

MSE
mean 0.02 0.01 0.03 0.05 0.08 0.08 0.09 0.09 0.09

RMSE
ARMA(7,1) 0.08 1.17 0.53 0.78 0.79 0.74 0.72 0.74 0.78

ARIMA(1,1,1) 9.86 14.3 6.94 4.49 3.45 3.59 3.71 3.80 3.74
ARFIMA(6,0.38,1) 0.07 1.06 0.55 0.79 0.81 0.77 0.74 0.75 0.78

MdAE
mean 0.15 0.08 0.10 0.21 0.27 0.26 0.27 0.27 0.27

RMdAE
ARMA(7,1) 0.28 1.28 1.13 0.90 0.75 0.79 0.76 0.81 0.83

ARIMA(1,1,1) 3.14 5.08 4.12 2.06 1.90 2.12 2.11 2.11 2.12
ARFIMA(6,0.38,1) 0.27 1.22 0.92 0.90 0.84 0.85 0.83 0.84 0.85

Table 7.12: EUR / USD: Forecast accuracy measured by RMdAE and RMSE

weeks =̂ 3 months), and normal density kernels. These are scaled such that

their quartiles (viewed as probability densities) are at ±0.25 · bandwidth.

Figure 7.11 shows that the spectral density is substantially higher in the

beginning than at the end. This can also be seen by almost white (high values)

versus red (low values) areas in the heat map.

It is not unreasonable that the variance decay also has an impact on the

memory parameter since the variance is a function of d (besides other param-

eters). So, ceteris paribus d0 < d1 implies V
(
I(d0)

)
< V

(
I(d1)

)
. In practice

this relation must be seen the other way around; thus, a decaying variance gives

decaying memory parameters d, all other equal. As already stated above, dt
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is not any random function of t but can be well approximated with a periodic

function with cycle length of about 120 weeks.

Figure 7.10: EUR / USD:
(top) Time – varying spec-
trum with window length =
250 (≈ 1 year) and step size
5; (bottom) Time varying
memory parameter dt and
smoothed estimates

Figure 7.11: EUR / USD: Time varying
spectrum with window length = 250 (≈ 1
year) and step size 5 (1 week)

7.5 Usefulness of long memory modeling

After all, a model should capture the structure of a process, its reaction to

shocks, and provide a reasonable understanding of the process. In Section 2.1

I laid out different ideas why a model that allows long term dependence might

be useful for analyzing real world data.

In fact the comparison of Alcoa and the Dow Jones Index is a good example

for the role of aggregation with respect to long term dependence, as the DJI has

a substantially higher memory parameter than Alcoa.

Also noticeable is that an I(d) model is not only theoretically in between

I(0) in I(1), but also the forecast accuracy of ARFIMA models is (with few ex-

ceptions) just between ARMA and ARIMA models. In the beginning integrated

models perform better as they principally use the last observation as there fore-

cast. Thus, if the actual series is far off the mean of the process, ARIMA models

perform better as they forecast the last observed level. As the horizon increases,

the process reverts to the mean and ARMA and ARFIMA models gain accuracy

for large time horizons.

Although for these time series an ARFIMA approach is not the best model

to accurately forecast the out-of-sample series, it must be noted that the partly

better performing ARIMA models possess infinite variance, which – looking at
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the time varying approach – does not seem to be a suitable property of the data.

Besides the time-varying approach also delivers quite interesting results to

the question of finite or infinite variance in financial data.

All three time series are driven by forces that somehow do not allow in-

finite variance in the process and thus every time the (theoretical) variance

approaches the threshold d = 0.5, the market counteracts the transmission to

infinite variance and the memory parameter decreases again below 0.5.

Overall the best model choice to use for an analysis of a process depends

on the forecast horizon and the importance of accurately describing the second

moments of the process. Especially interesting are ARFIMA models with 0.5 ≤
d < 1 as they are mean reverting, but possess infinite variance. Neither ARMA

nor ARIMA models can accomplish this combination. But in this analysis not

one of the series exhibits this behavior.
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Chapter 8

Conclusion and Outlook

The proposed models for time-varying memory certainly need further theoretical

and empirical investigation. Disregarding the competing theories of structural

breaks and long memory the proposed concept is a powerful tool to analyze

processes that locally change between stationarity and non-stationarity.

The concept of time-varying memory has a variety of theoretical implica-

tions, mainly dealing with structural breaks in and changing variance of the

process. Even though the error duration approach shows that time-varying

memory does not necessarily imply a heteroskedastic variance, I am convinced

that time-varying memory models might have similar fields of applications as

GARCH models.

Elaborating the theory of time-varying memory, to get a well defined concept

for stochastic processes, remains a task for future work.
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Appendix A

Theorems and Proofs

The appendix gives an overview about certain subjects and notation needed in

the thesis. As most of the presented theory can be found in any basic text book

on the subject, the standard theorems are stated without proof or reference.

A.1 Probability theory

Definition A.1.1 (Probability Space). A probability space (Ω,A, P ) is a mea-

sure space with a measure P that satisfies the probability axioms:

i) P (E) ≥ 0 ∀E ∈ Ω.

ii) P (Ω) = 1

iii) Any countable sequence of pairwise disjoint events E1, E2, . . . satisfies

P (E1 ∪ E2 ∪ · · · ) =
∑

i P (Ei).

Definition A.1.2 (Orthogonal increments). A stochastic process (z(λ)|λ ∈
[−π, π]) with random variables z(λ) : Ω → Cn is called a process of orthog-

onal increments if

i) z(−π) = 0 almost everywhere and z(π) = x0 a.e.

ii) limε→0 z(λ+ ε) = z(λ) for λ ∈ [−π, π) (right continuity).

iii) Ez(λ)∗z(λ) <∞ ∀λ[−π, π]

iv) E(z(λ4)− z(λ3))(z(λ2)− z(λ1))∗ = 0 for all λ1 < λ2 ≤ λ3 < λ4.

Definition A.1.3 (Stochastic Integral). For a given deterministic function g :

[−π, π] → C and a partition −π = λn1 < λn2 < . . . < λnn = π of the interval

[−π, π], define the finite sum

In(g) =
n−1∑
i=0

g(λni )(z(λni+1)− z(λni )).
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If for all sequences of partitions with maxi(λ
n
i+1 − λni )→ 0 the limit for n→∞

in mean square sense of In(g) exists and is the same for every partition, then

I(g) =

∫ π

−π
g(λ) dz(λ) := l.i.mn→∞In(g)

is the stochastic integral of g with respect to z(λ).

Using linearity and continuity of the expectation and properties of z(λ),

it can be shown that the stochastic integral features similar properties as the

Riemann integral (for proofs see Brockwell and Davis [8]):

• interchangeability of expectation and integration: E I(g) = E
∫ π
−π g(λ) dz(λ) =∫ π

−π g(λ) dEz(λ).

• E I(g)I(h)∗ =
∫ π
−π g(λ)h(λ) dF (λ) where F (λ) = Ez(λ)z(λ)∗.

Definition A.1.4 (Brownian motion). Brownian motion is a Gaussian process

Bd(λ) with stationary increments and variance EB2
d(λ) = kλ2d+1, where k is a

positive constant.

Brownian motion is self-similar with parameter d, i.e. c−dBd(cλ) has the

same distribution as Bd(λ) for every c. For standard Brownian motion d = 1
2
.

Lo [47] defines a Brownian bridge B0
d as

B0
d(λ) := Bd(λ)− λBd(1).

Lemma A.1.5. For a nonnegative random variable X that takes only integer

values it holds EX =
∑∞

n=1 P (X ≥ n).

Proof. We have

EX =
∞∑
k=1

kP (X = k) =
∞∑
k=1

k∑
n=1

P (X = k) =
∞∑
n=1

∞∑
k=n

P (X = k) =
∞∑
n=1

P (X ≥ n),

after interchanging order of summation.

A.2 Hilbert spaces

Definition A.2.1 (Inner Product). A mapping < ·, · >: H × H → C where H
is a linear space is an inner product if

i) < a1x1 + a2x2, y >= a1 < x1, y > +a2 < x2, y > for all a1, a2 ∈ C and

x1, x2, y ∈ H

ii) < x, y >= < x, y >

iii) < x, x >≥ 0 and < x, x >= 0⇔ x ≡ 0.
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The inner product defines in a natural way a norm on H, given by ‖x‖ =√
< x, x >

Definition A.2.2 (Hilbert Space). A set H is a Hilbert space if

i) H is a linear space,

ii) with an inner product,

iii) which is complete in the norm defined by the inner product.

Two elements f and g of H are orthogonal, i.e. f⊥g iff < f, g >= 0.

Example A.2.3 (L2). Let (Ω,A, P ) be a probability space and define

L2 :=
{
x ∈ (Ω,A, P )|x is a complex-valued random variable with E|x|2 <∞

}
.

If we define an inner product by < f, g >:= Ef g, then L2 is a Hilbert space on

R.1

The norm of x ∈ L2 is equal to the noncentral variance Exx <∞. And the

distance between x and y is defined as

||x− y|| =
√

E(x− y) (x− y).

Therefore, convergence in this space is mean-square convergence.

An infinite series
∑∞

j=0 xj converges to x ∈ H iff the partial sums st =∑t
j=0 xj converge to xt,

lim
t→∞
‖x− st‖ = 0.

Definition A.2.4 (Convergence in r-th mean). The sequence of random vari-

ables (xk|k ∈ N) converges to x0 in the r-th mean or in the Lr sense if

E|x0|r <∞, r ≥ 1

and

lim
k→∞

E|xk − x0|r = 0.

Although r can be any integer, r = 1 and r = 2 are the most commonly

used convergence concepts.

For r = 1 we say that xk converges in the mean to x0, and for r = 2 we say

that xk converges to x0 in the mean square sense and denote this convergence

by

l.i.mk→∞ xk = x0.

In the following I present some useful results for Hilbert spaces.

1As already mentioned in the text, the random variable x is a representantive element
of the equivalence class of all random variables that equal x, except on a set with Lebesgue
measure zero.
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Lemma A.2.5 (Cauchy-Schwarz Inequality). For all x, y ∈ H it holds <

x, y >≤‖x‖‖y‖. Equality only if x = a · y for some a ∈ C or y = 0.

Corollary A.2.6. Without loss of generality assume Ext = 0, then for xt, xt−s ∈
L2 with inner product < xt, xt−s >:= Extxt−s the Cauchy Schwarz Inequality

becomes γ(s) = Extxt−s ≤
√

Vxt
√

Vxt−s = σ2
x = γ(0). Therefore, if Vxt < ∞,

then γ(s) <∞, which guarantees the existence of the series
∑∞

j=−∞ bjbj−s for a

stationary process.

Lemma A.2.7 (Continuity of the Inner product). If xn → x and yn → y in H,

then < xn, yn >→< x, y >.

A.2.1 Fourier series

Definition A.2.8. If a sequence {et}∞t=1 in a Hilbert space satisfies < et, es >=

0 for s 6= t and ‖et‖ = 1, then {et}∞t=1 is called orthonormal.

Lemma A.2.9. If f, g ∈ L2, then fg ∈ L1.

Proof.

0 ≤ (f ± g)2 = f 2 ± 2fg + g2

⇒ ±2fg ≤ f 2 + g2

⇔ 2|fg| ≤ |f |2 + |g|2.

As the left and right hand side are greater or equal to zero, it must also hold

‖fg‖1 =

∫
|fg| dµ ≤

∫
|f |2 dµ+

∫
|g|2 dµ =‖f‖2 +‖g‖2 <∞.

A.3 Analysis

Definition A.3.1 (Landau symbols). A function f(t) = O(g(t)) iff

lim
t→∞

f(t)

g(t)
= c /∈ {0,∞}.

A function f(t) = o(g(t)) iff

lim
t→∞

f(t)

g(t)
= 0.
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Theorem A.3.2. For a well behaved, smooth function f(x) on a compact in-

terval K, it holds

f(x) =
∞∑
j=0

aj(x− x0)j with aj =
f (j)(x0)

j!
(A.3.1)

where f (j)(x0) is the j-th derivative of f(x), evaluated at x0.

115



Appendix B

Code

B.1 R and packages

The following packages in R 2.5.01 have been used throughout the analysis:

• zoo

• uroot

• urca

• rgl

• fracdiff

• longmemo

• xtable

• forecast

• its

B.2 Algorithms

Here I present the essential procedures I use throughout the thesis; any improve-

ments are welcome. For use in research please cite this thesis as the source for

the obtained programs.

B.2.1 Estimation

Exact Local Whittle estimation

1available at http://www.r-project.org and [67].
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################################

# ELW ... Exact Local Whittle Estimation

################################ Input

# wts ... one dimensional time series

# m ... number of frequencies included;

either natural number or as exponent for T^m

# plot ... should the result be plotted

# d.start ... starting value for optimization; default = GPH

################################ Output

# d ... ELW estimate of the memory parameter

################################

require(fracdiff)

ELW=function(wts, m=ceiling(length(wts)^0.5),

plot=FALSE, d.start=c("automatic")){

T=length(wts)

if (m <1) m = ceiling(T^m)

glob.exp=log(m)/log(T)

if (d.start == "automatic") d.start=fdGPH(wts,bandw.exp=glob.exp)$d

R_d=function(d){

T=length(wts)

if (m <1) m = ceiling(T^m)

x=diffseries(wts, d=d)

I_diff.x=spectrum(x, plot=F)$spec[1:m]

G=mean(I_diff.x)

a=mean(log(1:m))

Q=log(G)-2*d*(log(2*pi/T)+a)

return(Q)

}

est=optim(d.start,R_d, method = c("BFGS"))

d.hat=est[1]$par

######################### Plot

if (plot) {

l=25

R.d=rep(0,l)

d=seq(d.hat-0.25*d.hat, d.hat+0.25*d.hat,length=l)

for (i in 1:l)

{

R.d[i]=R_d(d[i])

}

plot(d,R.d)
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}

###########################

return(d=d.hat)

}

B.2.2 Coefficient conversion

I(d) to MA conversion

############################

# FRACtoMA ... Fractional noise to MA(\infty) representation

############################ Input

# d ... memory parameter

# q.max ... truncation lag for MA coefficients

############################ Output

# coeff.ma ... MA coefficients

############################

FRACtoMA=function(d, q.max) {

coeff.ma=NULL

coeff.ma[1]=d

for (k in 2:q.max) {

coeff.ma[k]=(k-1+d)/(k)*coeff.ma[k-1]

}

return(coeff.ma)

}

ARFIMA(p,d,q) to MA conversion

##############################

# ARFIMAtoMA ... ARFIMA(p,d,q) to MA(\infty) representation

############################## Input

# d ... memory parameter

# ar ... AR part of the model; as vector

# ma ... MA part of the model; as vector

# lag.max ... maximum lag number to match terms for z-transform

# plot ... plot the Cauchy product results

############################## Output

# c ... MA(\infty) coefficients of an ARFIMA(p,d,q) model

##############################

source("FRACtoMA.r")

source("Cauchy.product.r")

ARFIMAtoMA=function(d, ar=0, ma=0, lag.max=250, plot=TRUE) {

a=c(1, ARMAtoMA(ar=ar, ma=ma, lag.max))
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eta=c(1, FRACtoMA(d, lag.max))

c=Cauchy.product(a,b=eta, plot)

return(c)

}

B.2.3 Prediction

Implemented matching terms for forecasting from the infinite past (see equation

(4.2.5)).

Predict ARFIMA processes

##################################

# predict.ARFIMA ... predict ARFIMA processes from infinite past

################################## Input

# wts.train ... trainings data / original data

# d ... memory parameter

# ar ... ar coeffs in the form c(1,-ar) x_t = eps_t

# ma ... ma coeffs in the form x_t = c(1,ma) eps_t

# h.step ... forecast horizon

# tol ... cut-off tolerance for coefficients different to 0

# lag.max ... max number of lags used for the infinite forecast coeffs

################################## Output

# wts.pred ... predicted values of wts.train

##################################

predict.ARFIMA=function(wts.train,d=0,ar=0, ma=0,

h.step, tol=10^(-4), lag.max=200) {

phi=ar

theta=ma

k=ARFIMAtoMA(d=d,ar=phi, ma=theta, lag.max, plot=FALSE)

r=ARFIMAtoMA(d=-d, ma=-phi, ar=-theta, lag.max, plot=FALSE)

k.trunc=k[1:(which(abs(k)<tol)[1]-1)]

r.trunc=r[1:(which(abs(r)<tol)[1]-1)]

A=matrix(0, nrow=h.step, ncol=length(k.trunc)+length(r.trunc)-1)

wts.pred=rep(0,h.step)

for (h in 1:h.step) {

A[h,]=c(Cauchy.product(k.trunc[(h+1):length(k.trunc)],

r.trunc,plot=FALSE),rep(0,h-1))

}
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wts.pred=A%*%as.matrix(rev(wts.train[(length(wts.train)-ncol(A)+1):

length(wts.train)]))

return(wts.pred)

}

B.2.4 Simulation

Fractional noise – I(d)

Although the fracdiff package provides a simulation procedure for ARFIMA(p,d,q)

processes, d is limited to the interval [−1
2
, 1

2
). By cumulating and differencing

the series appropriately arfima sim expands the feasible values to any d ∈ R.

###############################

# I_d_sim ... simulate fractional noise I(d); d arbitrary

############################### Input

# T ... sample size

# d ... memory parameter

# innov ... innovations

############################### Output

# x ... simulated I(d) process

###############################

I_d_sim=function(T, d, innov=rnorm(T)) {

d.bk=d

data=fracdiff.sim(n=T, d=d-ceiling(d), innov=innov)$series

int.order=floor(d)

if (d>=0) {

while (ceiling(d)>0) {

data=cumsum(data)

d=d-1

}

d=d.bk

}

if (d<0) {

while (ceiling(d)<0) {

data=diff(data)

d=d+1

}

d=d.bk

}
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x=ts(data)

return(x)

}

ARFIMA(p,d,q)

#############################

# arfima_sim ... simulate ARFIMA processes for arbitrary d in R

############################# Input

# T ... sample size

# d ... memory parameter

# ar ... optional AR parameters

# ma ... optional MA parameters

# innov ... innovations

############################# Output

# arfima_d ... simulated ARFIMA process

#############################

source("I_d_sim.r")

arfima_sim=function(T, d, ar=c(0), ma=c(0), innov=rnorm(T)) {

v=I_d_sim(T=T,d=d, innov=innov) # simulate I(d) process with arbitrary d

if (ar ==0 && ma ==0) arfima_d=v

if (ar!=0) arfima_d=arima.sim(n=T, innov=v,list(ar = ar))

if (ma!=0) arfima_d=arima.sim(n=T, innov=v,list(ma = ma))

if (ar!=0 && ma!=0) arfima_d=arima.sim(n=T, innov=v,list(ar = ar, ma=ma))

return(arfima_d)

}

(Time – varying) Error duration simulation

###########################

# ED_sim_vector ... Error duration simulation; time variation allowed

###########################

# T ... sample length

# p.exp ... amnesia parameter (exponents) OR defined probabilities

# sd ... error standard deviation

# plot ... plot different characteristic features

# seeds ... specific set.seed()

# variation ... time varying ED; default is FALSE

###########################

# A ... matrix with column 1: shocks \varepsilon_s;

column 2: corresponding durations n_s

# series ... simulated series
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###########################

require(Runuran)

ED_sim_vector=function(T=1000, p.exp=1,nar=0, nma=0, plot=TRUE,

seeds=0, sd=1, variation=FALSE){

prob=prob.control=NULL

p.i=NULL

K.max=T

g=function(x, a=p.exp) {

return(a*1/(1+x)^(a+1))

}

dpmf <- new("unuran.discr",pmf=g,lb=1,ub=K.max)

unr <- unuran.new(dpmf, "dgt")

n_s <- unuran.sample(unr, 2*T)

########################### dynamic memory

if (variation != FALSE) {

if (T!=length(p.exp)) stop("the length of time varying exponents

must equal the length of the simulated process.")

p.exp=c(rep(p.exp[1], T), p.exp)

n_s=NULL

for (t in 1:length(p.exp)) {

g=function(x, a=p.exp[t]) {

return(a*1/(1+x)^(a+1))

}

dpmf <- new("unuran.discr",pmf=g,lb=1,ub=K.max)

unr <- unuran.new(dpmf, "dgt")

n_s[t] <- unuran.sample(unr, 1)

if (p.exp[t] < 0.01) n_s[t]=K.max

}

}

############################# simulate ED

if (seeds!=0) {set.seeds=seeds}

eps=rnorm(length(n_s), 0, sd)

A=matrix(0, ncol=2, nrow=length(eps))

A[,1]=eps

A[,2]=n_s
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x.sim=rep(0,length(eps))

for (j in 1:length(eps)) {

ind=j:(j+A[j,2])

x.sim[ind]=x.sim[ind]+eps[j]

}

x.sim=na.omit(x.sim)

x.sim.trim=x.sim[(T+1):(2*T)]

############## PLOTS

if (plot==TRUE) {

par(mfcol=c(3,2))

plot(x.sim.trim, type="l", xlab="Time", ylab="", main="x_t")

plot((x.sim.trim-mean(x.sim.trim))^2, type="l",

xlab="Time", ylab="", main="x_t")

plot(n_s[(T+1):(2*T)], main="", ylab="duration length",

xlab="t", type="h", col=c(rep(1, K.max),rep(2,K.max)))

title(paste("Shock duration at time t"))

abline(K.max,0)

acf(x.sim.trim,T^0.8, main="Series x_t")

spectrum(x.sim.trim,sqrt(T),sqrt(T))

spectrum(diff(x.sim.trim),sqrt(T),sqrt(T))

par(mfrow=c(1,1))

}

return(list(A=A, series=x.sim.trim))

}
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