
M A S T E R A R B E I T

A Resource List Server for the

IP Multimedia Subsystem

Ausgeführt am

Institut für Breitbandkommunikation

der Technischen Universität Wien

unter der Anleitung von

O. Univ. Prof. Dr. techn. Harmen R. Van As

Dipl.-Ing. Mag. Joachim Fabini

durch

Reinhold Buchinger

Josef Munggenaststraße 27

3591 Altenburg

Austria

Wien, 01. Februar 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Ein Presence Dienst stellt zahlreiche Informationen über Benutzer, Dien-

ste und Endgeräte (wie z.B. momentane Aktivitäten, Aufenthaltsort oder

verfügbare Kommunikationskanäle) anderen Benutzern und Diensten zur

Verfügung. Der Presence Dienst schafft Voraussetzungen für einige andere

Dienste, wie z.B. Instant Messaging, und wird voraussichtlich in Zukunft

allgegenwärtig sein.

In einem Mobilfunknetz ist aber die Kanalkapazität zwischen einem Endgerät

und dem Kernnetz, sowie die Rechnerleistung der Endgeräte, begrenzt. Hinzu

kommt, dass in vielen Anwendungsfällen ein Benutzer an der Presence In-

formation mehrerer anderer Benutzer zugleich interessiert ist. Falls ein End-

gerät die Presence Information jedes Benutzers einzeln abfragt, müsste es

eine unnötig hohe Zahl an Nachrichten senden und verarbeiten.

Ein Resource List Server (RLS) adressiert diese Problemstellung. Er ruft

die Presence Informationen aller gewünschter Benutzer ab und sendet diese

gesammelt in einer einzigen Nachricht an das Endgerät.

Wir stellen in dieser Arbeit ein generisches Design für solch einen RLS vor.

Weiters präsentieren wir die Implementierung eines Prototyps, welcher als

Modul für den OpenSER SIP Server realisiert wurde.

Als Erweiterung zum standardisierten Presence Dienst betrachten wir die

Aggregation von Presence Information. Ein Benutzer ist dabei an der Pre-

sence Information einer Gruppe selbst und nicht an der Presence Information

der einzelnen Mitglieder dieser Gruppe interessiert.

Wir schlagen verschiedene Architekturen zur Presence Aggregation vor und

diskutieren, wie die Presence Information einer Gruppe von Benutzern ag-

gregiert werden kann. Ein erweiterter Presence Server oder RLS übernimmt

dabei die Aufgabe der Presence Aggregation.

Abstract

A presence service provides extensive customized information of end-users

and services (like current activities, location or reachability for communica-

tion) to other end-users and services. The presence service is likely to become

omnipresent in the future and serves as an enabler for several other services

(e.g., instant messaging).

In a mobile network, the channel capacity between a terminal and the core

network, as well as the processing power of terminals, is limited. Additionally,

in many cases a user is interested in the presence information of several

resources at the same time. If a terminal retrieves the presence information

of each resource separately, it must send and process an unnecessarily high

number of messages.

A Resource List Server (RLS) addresses this problem. It fetches the desired

presence information of several resources and distributes them to a terminal

in a single message.

In this thesis, we propose a generic design for such a RLS and present a

prototype, which we have implemented as module for the OpenSER SIP

Server.

As extension to the standardized presence service, we discuss the aggregation

of presence information. In this scenario, a user is interested in the presence

information of a group itself, and not in the presence information of the

individual members of the group.

We propose several architectures for presence aggregation and discuss how

presence information of a group of users/identities can be aggregated. An

enhanced Presence Server or RLS can fulfill the task of presence aggregation.

CONTENTS 4

Contents

1 Introduction 7

1.1 Related Work . 8

1.2 Structure of this Thesis . 8

2 Presence Service in the IMS 10

2.1 Introduction to the IMS . 10

2.1.1 IMS Standardization 12

2.1.2 IMS Architecture . 12

2.1.3 Identities in the IMS 15

2.2 Presence Service . 18

2.2.1 Presence Service Specifications 18

2.2.2 Presence Service Concepts 19

2.2.3 Presence Service Architecture 21

2.3 OMA XML Document Management Enabler 24

2.3.1 XDM Architecture . 24

2.3.2 XDM Functionalities 27

2.3.3 XDM Security Issues 31

2.3.4 Common Application Usages 32

2.3.5 Presence Related Application Usages 33

2.4 Presence Data Formats . 39

2.4.1 Data Formats for 3GPP and OMA Presence 39

2.4.2 Presence Information Data Format (PIDF) 41

2.4.3 A Data Model for Presence 42

2.4.4 Mapping between the Data Model and the PIDF . . . 44

2.4.5 Rich Presence Information Data Format (RPID) 44

2.4.6 Other Data Formats 47

2.4.7 Resolving Ambiguity 47

CONTENTS 5

3 Resource List Server Design 49

3.1 Overview of RLS Operation 49

3.2 Example Message Flow . 52

3.3 Main Components . 55

3.4 Interfaces . 59

3.4.1 External Interfaces . 59

3.4.2 Internal Interfaces . 60

3.5 Component Descriptions . 61

3.5.1 Notifier . 61

3.5.2 Resource List Fetcher 62

3.5.3 Virtual Subscription Handler 63

3.5.4 SIP Back-end Subscriber 64

3.6 Design Decisions . 65

3.6.1 Rate of Notifications 65

3.6.2 Full/Partial State . 65

3.6.3 Subscriber Authorization 65

4 Resource List Server Implementation 67

4.1 OpenSER . 67

4.1.1 OpenSER Modules . 68

4.2 Mapping the Design to Source Code 69

4.3 Dependencies . 70

4.3.1 OpenSER Core and Modules 70

4.3.2 External Libraries . 73

4.4 Implementation Aspects . 74

4.4.1 Authentication and Authorization 74

4.4.2 Database Tables and Caching 74

4.4.3 Fetching of RLS-Service Definitions 76

4.4.4 Modeling of Resource Lists 77

4.4.5 Back-end Subscriptions 78

4.5 Limitations and Future Work 78

CONTENTS 6

5 Aggregation of Presence Information 81

5.1 Single Presentity State Aggregation 81

5.1.1 Architecture . 81

5.1.2 Composition . 83

5.1.3 Integration of XDM . 86

5.2 Multiple Presentities State Aggregation 86

5.2.1 An Architecture based on a Presence Server 87

5.2.2 An Architecture based on a RLS 88

5.2.3 Composition . 90

5.2.4 Integration of XDM . 91

5.3 Comparison . 91

5.4 Call-Center Scenario . 94

5.4.1 Single Presentity State Aggregation 94

5.4.2 Multiple Presentity State Aggregation 101

5.5 Video-Call Scenario . 105

5.5.1 Presence Information Documents 106

6 Summary 114

A RLS Module User Guide 116

A.1 Exported Module Parameter 116

A.2 Exported Functions . 119

A.3 Database Table Definitions . 120

B List of Abbreviations 123

7

1 Introduction

Since the introduction of the IP Multimedia Subsystem (IMS) in 3GPP

Release 5, the number of network operators and next-generation solution

providers which announce some level of support for the IMS is constantly

growing.

The 3rd Generation Partnership Project (3GPP) has standardized the IMS

as a cornerstone of the evolution of current networks to a single all IP-based

network. The standardized framework enables the delivery of a broad range

of services (telephony, messaging, etc.) and media (voice, video, text, etc.)

to fixed, mobile and cable customers. Different services can be combined and

integrated into a single user experience, independent from the currently used

device1 or access technology.

Camarillo and Garcia-Martin state that presence is one of the basic services

that in the future is likely to become omnipresent ([22], p. 295). The pres-

ence service can provide an extensive customized amount of information to

end-users or other services. The type of presence information ranges from

information about different communication means and their status, over lo-

cation information, to the mood of a person and much more. An industry

survey from 2005 among 120 vendors and providers emphasizes the impor-

tance of presence. The survey considers presence to be the most important

service for a successful IMS implementation [17].

Existing presence architectures for the IMS include a so-called Resource List

Server (RLS). A RLS enables a user to subscribe to a list of resources instead

of subscribing to each resource individually. The user gets notified about the

presence information of all resources in the resource list by receiving a single

message. In this way, a RLS saves network traffic and relieves terminals

of processing work. We propose a generic design for a RLS and discuss a

prototype implementation.

1In this thesis we use the terms device, terminal and User Equipment (UE) synony-
mously.

1.1 Related Work 8

Apart from the basic functionality a presence service offers, many advanced

applications are conceivable. One possibility is the aggregation of presence

information. It addresses the question how presence information of

users/identities who belong to the same group can be combined to a common

presence information of this group. Assuming a call center, a caller only

wants to know if at least one agent is available. The aggregate presence

status of all call-center agents (i.e., the call center is available if at least one

agent is available) is more useful than the presence status of a single agent.

We present several architectures for presence aggregation and compare their

pros and cons.

1.1 Related Work

A huge number of publications consider distinct aspects of presence (e.g.,

[76], [36], [32]). Several papers present ways of optimizing message traffic

in presence systems. Wegscheider suggests in [83] different ways of mini-

mizing the traffic on the air interface between a user terminal and a RLS

while maintaining full responsiveness for the end user. Zhao et al. introduce

in [84] the concept of an enhanced RLS, which allows subscriptions to the

information of part resources of one or multiple resource list(s). Beltran et

al. propose in [19] a Presence Personal Proxy for every user, which, among

other improvements, reduces the presence signaling traffic.

1.2 Structure of this Thesis

The remainder of this thesis is structured as follows:

Subsequent to this introductory section, Section 2 builds the theoretical foun-

dation for the Resource List Server by presenting and analyzing existing

presence-related standards and concepts, both from an architectural and from

a data format point of view. Following the theory part, Section 3 presents

the generic design which we propose for the Resource List Server. Section

1.2 Structure of this Thesis 9

4 illustrates the RLS prototype, which has been implemented as modular

extension to an existing open-source Session Initiation Protocol (SIP) server.

Subsequently, Section 5 discusses the aggregation of presence information

and Section 6 summarizes the contents of this thesis.

10

2 Presence Service in the IMS

This section discusses presence service and related terms. Section 2.1 gives

an introduction to the IMS before we discuss the concepts and architecture of

the OMA Presence SIMPLE enabler in Section 2.2. Section 2.3 presents the

OMA XML Document Management (XDM) enabler, which strongly interacts

with the OMA Presence SIMPLE enabler, whereas Section 2.4 focuses on

presence information modeling. We discuss several presence information data

formats.

2.1 Introduction to the IMS

The IP Multimedia Subsystem (IMS) is an architectural framework that

aims to combine the quality and interoperability of telecom with the quick

and innovative development of the Internet. It intends to provide a single

integrated network for all access types to enable common services, no matter a

customer uses a mobile device or a PC client. However, the IMS is still aware

of the used access network type to adapt a service to the characteristics of the

access network. The IMS standard supports multiple access types, including

2G and 3G cellular networks as well as Wireless LAN (WLAN), Worldwide

Interoperability for Microwave Access (WiMAX), Digital Subscriber Line

(DSL), cable or fiber-to-the-home.

Three strong arguments for the IMS are: Quality of Service (QoS), charging,

and integration of different services ([22], p. 7). The IMS enables operators

to control the QoS a user is allocated based on the user’s subscription and the

current state of the network. Regarding charging, the IMS allows very flexible

business models. Instead of charging per byte, an operator can charge certain

services or actions (e.g., a single instant message). This is feasible because the

IMS framework covers both the signaling and the media component, which

enables correlation for charging or QoS purposes.

A key aspect of the IMS is a fast and efficient service creation and delivery.

2.1 Introduction to the IMS 11

Figure 1: Vertical service versus horizontal service implementations (source:
[27], p. 5)

The IMS provides a number of common functions which can be reused by

virtually all services in the network. For example, the IMS defines how

service requests are routed, how charging is performed, and how a subscriber

is authenticated. In a non-IMS network each service is typically designed,

implemented and tested from the scratch, and must be separately maintained.

Fig. 1 depicts the difference between vertical service implementations in non-

IMS networks and horizontal service implementation in IMS networks. A

horizontal service implementation provides less parallel development, more

reliable systems and higher-level abstractions for developers, who can focus

on the actual application. A common service framework eases as well the

combination of services. E.g., a service can insert an announcement in an

2.1 Introduction to the IMS 12

ongoing video conference every time a colleague goes online.

Aside from service-oriented aspects, a strong argument is cost savings. The

IMS allows separating the costly access part of a network from the part of

the network responsible for service creation and management. According to

a partner with IBM, “[. . .] an opex reduction in excess of 20 per cent is

achievable with IMS compared with running legacy networks.” [37]

2.1.1 IMS Standardization

The IMS is an integral part of the 3rd Generation Partnership Project

(3GPP) standardization work for 3G mobile phone systems in Universal

Mobile Telecommunications System (UMTS) networks. It first appeared

in 3GPP Release 5 in 2002. 3GPP Release 6, which followed at the end

of 2004, includes the requirement of access independence and adds support

for WLAN. The European Telecommunications Standards Institute (ETSI)

Telecoms and Internet converged Services and Protocols for Advanced Net-

works (TISPAN) Working Group adopted the IMS architecture and added

support for fixed networks. 3GPP, in turn, integrated TISPAN-IMS Release

1 in its 3GPP Release 7. The standardization body for cellular networks in

North America and Asia, 3rd Generation Partnership Project 2 (3GPP2),

defined its own version of IMS. Both IMS are fairly similar but still differ in

a few aspects.

One outstanding characteristic of the IMS, when compared to previous 3GPP

standards, is that both signaling and media specifications rely on Internet

Engineering Task Force (IETF) based protocols. Most notable is the Session

Initiation Protocol (SIP) [73], which 3GPP has selected as the main signaling

protocol in IMS networks.

2.1.2 IMS Architecture

In this section we give a short and compact introduction to the IMS archi-

tecture. For a deeper insight, the reader can refer to 3GPP TS 23.002 [12].

2.1 Introduction to the IMS 13

Figure 2: 3GPP IMS architecture overview

The book “The 3G IP Multimedia Subsystem (IMS). Merging the Internet

and the Cellular Worlds“ [22] gives a good comprehensive introduction to

the IMS.

Fig. 2 shows an overview of the IMS architecture. The nodes in Fig. 2 repre-

sent logical functions and not standardized physical nodes. These functions

can be implemented in several nodes or a single node can combine several

functions. On the left-hand side, Fig. 2 shows two different User Equipments

(UEs), a mobile phone and a laptop. They attach to the network through

a packet-switched access network. Examples for such access networks are

General Packet Radio Service (GPRS) or DSL.

The IMS core is divided into Call/Session Control Functions (CSCFs), Ap-

2.1 Introduction to the IMS 14

plication Servers (ASs), Media Resource Functions (MRFs), Public Switched

Telephone Network (PSTN)/Circuit-Switched (CS) gateways and databases

(DBs).

The main database is the Home Subscriber Server (HSS), which stores all

user-related information. This includes location information, security infor-

mation, user profile information and the Serving-CSCF (S-CSCF) allocated

to the user. Only networks with more than one HSS require a Subscription

Locator Function (SLF). This database maps users’ addresses to HSSs.

The CSCFs handle the SIP signaling in the IMS and therefore play an es-

sential role. A CSCF is a SIP server and either a Proxy-CSCF (P-CSCF),

Interrogating-CSCF (I-CSCF) or S-CSCF.

The P-CSCF is the first point of contact and all requests from or to an

IMS terminal traverse this CSCF. Some tasks of the P-CSCF are related to

security. For instance, the P-CSCF asserts the identity of a registered user

to the rest of the network after a successful registration. Moreover, it verifies

the correctness of SIP-requests, (de-)compresses SIP messages for a possibly

narrowband channel to the terminal and generates charging information.

The I-CSCF is located at the edge of an administrative domain. Its address

is listed in the DNS and messages which are targeted to this domain arrive

at the I-CSCF. The I-CSCF interfaces the HSS, respectively SLF, to route

incoming SIP requests to the assigned S-CSCF.

The S-CSCF is the central node in the IMS architecture. Every message

traverses a S-CSCF, which routes the message to its destination directly or via

one or several Application Servers. The S-CSCF also maintains the binding

between a user and its location, authenticates the user, enforces policies and

downloads the user profile from the HSS. The user profile includes the service

profile which contains a set of triggers to route messages to one or several

Application Servers.

The Application Servers host and execute services. Three different types of

Application Servers exist and every type contains a SIP interface towards

2.1 Introduction to the IMS 15

the S-CSCF. A SIP AS is the native Application Server and provides IP

multimedia services based on SIP. The Open Service Access-Service Capa-

bility Server (OSA-SCS) interfaces the S-SCSF with SIP on the one side but

provides an interface to the OSA framework Application Server [13] on the

other side. The IP Multimedia Service Switching Function (IM-SSF) acts

in a similar way but allows reusing Customized Applications for Mobile net-

work Enhanced Logic (CAMEL) [9] services. As shown in Fig. 2, a Presence

Server (PS) and RLS are examples for SIP Application Servers. These servers

are mandatory components of the presence service, which we will discuss in

Section 2.2.

The Media Resource Function serves as source of media in the home net-

work. For instance, the MRF is in charge of playing announcements, mixing

media streams or transcoding between different codecs. Sessions originated

by an IMS terminal to a user in a circuit-switched network are routed by

the S-CSCF to a Breakout Gateway Control Function (BGCF). For more

information on the MRF and BGCF, the reader may refer to [12] or [22].

2.1.3 Identities in the IMS

Fundamental to the IMS architecture is its integrated identity framework.

While in pure SIP a public SIP URI2 [73], known as Address of Record (AoR),

identifies a user, the IMS differentiates between IP Multimedia Private Iden-

tities (IMPI) and IP Multimedia Public Identities (IMPU). TS 23.228 [11]

defines these identifiers in Section 4.3.3.

Private User Identities take the format of a Network Access Identifier (NAI)

as defined in RFC 2486 [18]. The format is username@operator

(e.g., joe.black@operator.com). Private User Identities are used, for in-

stance, for registration, authorization, administration and accounting but

they are not used for routing.

2Alternatively, SIPS URIs [73] are used if messages are secured with TLS between
network entities.

2.1 Introduction to the IMS 16

Public User Identities take the format of either a SIP URI (RFC 3261 [73])

or a tel URI (RFC 3966 [74]). An example of a SIP URI is:

sip: joe.black@operator.com

An example of a tel URI is:

tel: +1-222-555-123

Additionally, it is possible to include a phone number in a SIP URI (e.g.,

sip:+1-222-555-0123@operator.com;user=phone). The Public User Iden-

tity is used as contact information and, for instance, printed on business

cards. Public User Identities are used to route SIP signaling and by any

other user to request communication. The presence service, which we will

discuss in Section 2.2, is entirely based on Public User Identifiers. But each

Public User Identity must be registered with the IMS network whereby as-

sociated Private User Identities are involved.

Figure 3: Relation of Private and Public User Identities in 3GPP R5 (source:
[22], p. 41)

The network operator assigns Public and Private User Identities to each

2.1 Introduction to the IMS 17

subscriber. 3GPP Release 5 allows only one Private User Identity per IMS

subscriber but several Public User Identities can be assigned to a single

Private User Identity (Fig. 3). For instance, a subscriber can have one Public

User Identity for business use and another one for private use. In the case

of UMTS, a smart card (i.e., an Universal Integrated Circuit Card (UICC))

stores the Private User Identity and at least one Public User Identity.

Figure 4: Relation of Private and Public User Identities in 3GPP R6 (source:
[22], p. 42)

3GPP Release 6 has extended this relationship and allows more than one

Private User Identity per IMS subscriber (Fig. 4). Public User Identities

may be shared across several Private User Identities for the same subscriber.

In the case of UMTS, the restriction of one Private User Identity per smart

card is still valid but one subscriber may have several smart cards, which

store different Private User Identities. It allows using the same Public User

Identity simultaneously from different IMS devices.

A single IMS subscription can be valid for a group of people. For instance, a

call center has a single subscription with an IMS service provider and every

call-center agent gets his or her own terminal with a smart card that stores

a unique Private User Identity. But all of them share the same Public User

Identity (e.g., sip:callcenter@example.com).

2.2 Presence Service 18

2.2 Presence Service

As mentioned in the introduction, presence is one of the most promising

future services. In [22], p. 295, we can find the following definition of pres-

ence: “Presence is the service that allows a user to be informed about the

reachability, availability, and willingness of communication of another user.”

In the simplest case, the presence service indicates if a user is online or of-

fline. A more complex service indicates, for instance, if a user is on the

phone or in a meeting. Additionally, it can inform about possible communi-

cation means (e.g., audio, instant messaging, voice mail) and which terminals

support these communication means. The OMA Presence SIMPLE require-

ments document [48] defines a presence service even more generic and gives

as an example a radio station which publishes the songs currently playing as

presence information.

2.2.1 Presence Service Specifications

For pure SIP, instant messaging and presence are enabled through spe-

cific SIP extensions, collectively known as SIMPLE. SIMPLE stands for the

IETF’s SIP for Instant Messaging and Presence Leveraging Extensions Work-

ing Group [6].

Based on the RFCs defined in the SIMPLE working group, both 3GPP (in

3GPP TS 23.141 [14]) and the Open Mobile Alliance (OMA) have defined

their own presence service specifications. OMA is a standardization body

which develops open standards to provide interoperable mobile data ser-

vices. OMA’s efforts result in Release Packages which contain a set of OMA

specifications. The OMA presence service is specified by the Enabler Release

Package for OMA Presence SIMPLE [45].

OMA does not extend the IMS but communicates new requirements on the

IMS to 3GPP. This avoids having different IMS versions. However, sometimes

there is no clear cut between the IMS and the services on top of it, as it is

the case for presence.

2.2 Presence Service 19

In its work, OMA focuses on usability and presumes the existence of a net-

work technology (e.g., IMS) specified by outside parties. The specifications

are agnostic to the particular (cellular) network technologies being used.

This distinguishes the presence service specifications of OMA and 3GPP.

The specifications are compatible but 3GPP includes specifications on the

network layer, while OMA restricts their scope to the application layer. The

3GPP specification addresses, in contrast to OMA, the communication be-

tween functional elements of the presence service (e.g., Presence Server) and

various elements of the 3GPP network architecture (e.g., Gateway GPRS

Support Node (GGSN)). Since the primary focus of this thesis is on the

service aspect, we concentrate on the OMA Presence SIMPLE enabler spec-

ification.

2.2.2 Presence Service Concepts

Figure 5: Presence service components

Fig. 5 shows various roles the OMA Presence SIMPLE enabler defines or,

2.2 Presence Service 20

more precisely, mainly reuses from different IETF Request for Comments

(RFCs) and 3GPP specifications.

A Presentity is a “[. . .] logical entity that has presence information [. . .]

associated with it” ([48], p. 8) and is a short name for presence entity. Most

commonly, a single person plays the role of a Presentity but it may also

reference, for instance, a group of people, a help desk, a radio station or a

conference room. Most likely, a Presentity is referenced using a sip:, pres: or

tel: URI.

A Presentity publishes its presence information with the help of one or several

Presence Sources. Examples for Presence Sources are a piece of software

on a user equipment (e.g., on a laptop), a network element (e.g., GGSN) or a

3rd party application (e.g., an external calendar application). The Presence

Sources send the presence information to a Presence Server (PS). This logical

entity, in turn, makes this information available to Watchers.

A Watcher is “any uniquely identifiable entity that requests presence infor-

mation about a Presentity, or watcher information about a Watcher, from

the presence service” ([48], p. 9). Watcher information identifies information

about a Watcher and may be of interest for Presentities. We distinguish

three different types of Watchers: fetcher, poller, and subscribed-watcher. A

fetcher asks the presence information of one or more Presentities only once.

A poller requests presence information on a regular basis. A subscribed-

watcher, by contrast, requests notifications about future changes in the Pre-

sentity’s presence information.

The Presence Server has more responsibilities than just relaying presence

information from Presence Sources to Watchers. First, it must compose the

presence information of different sources into one single document (we detail

on this topic in Section 5.1). In a next step, the Presence Server filters this

raw document according to Watcher specific privacy rules. Some Watchers

may be allowed to see only some parts of the presence information or some

information may be adapted (e.g., show an offline status to some Watchers

2.2 Presence Service 21

even if the Presentity is online). The resulting documents are transformed

on per-watcher rules which include, for example, filtering and partial notifi-

cation. Eventually, the Presence Server sends the final notifications to the

Watchers.

2.2.3 Presence Service Architecture

Figure 6: OMA Presence SIMPLE reference architecture (source: [47], p.
12)

Fig. 6 shows the Presence SIMPLE reference architecture as defined in the

OMA Presence SIMPLE architecture document [47]. Bold elements and ref-

erence points with solid lines are defined in the OMA Presence SIMPLE

architecture itself whereas the remaining elements are external to this speci-

fication. The XDM elements are specified in the XDM Enabler and discussed

in Section 2.3.

The functionality of the entities Presence Source, Watcher, and Presence

Server has already been discussed in Section 2.2.2. The Presence Source is

either located in a user terminal or within a network entity. As mentioned

2.2 Presence Service 22

in the introduction, a Resource List Server (RLS) allows subscriptions to

resource lists (see Section 2.3.5) and enables a Watcher application to get

notified about the presence information of all Presentities in a presence list

using one single subscription. We will discuss the concept of a RLS in Section

3. Beside the tasks mentioned in Section 2.2.2, the Presence Server is able to

subscribe to changes to documents stored in the Shared and Presence XML

Document Management Servers (XDMSs) and fetches XML documents from

there. In an analogous manner, the RLS accesses the Shared XDMS and RLS

XDMS. The Presence and RLS XDMS are special types of enabler specific

XDMS. We discuss Shared and enabler specific XMDS in Section 2.3.1. The

Presence XDMS stores presence authorization rules while the RLS XDMS

stores Presence Lists. We discuss these XML data formats in Section 2.3.5.

The Content Server is capable of managing Multipurpose Internet Mail Ex-

tensions (MIME) objects for Presence. It allows Presence Sources and the

Presence Server to store objects within the Content Server and link to those

objects.

The communication between Presence Sources, Presence Server and Watch-

ers is built on top of the SIP event notification framework (RFC 3265 [61]).

However, this framework cannot be used directly but is extended by addi-

tional specifications, so-called event packages. The event package presence

(RFC 3856 [63]) is one example. The SIP methods SUBSCRIBE and NO-

TIFY [61] handle event notification in SIP and are used for the communica-

tion between Presence Server and Watchers. Presence Sources report their

presence information with so-called PUBLISH requests, which are defined in

RFC 3903 [38].

Fig. 7 depicts an exemplary message flow. A Watcher sends a SUBSCRIBE

request (1) to the Presence Server and receives a 200 OK (2) and an immedi-

ate mandatory NOTIFY request (3). The Request URI of the SUBSCRIBE

request (i.e., sip: alice@ex.org) identifies the Presentity the Watcher wants to

know the presence information of. Whenever presence information changes

2.2 Presence Service 23

the Presence Source sends a PUBLISH request. This triggers sooner or later

another NOTIFY request to inform the Watcher about the change. Depend-

ing on the value of the Expires header field in the SUBSCRIBE message, the

Presence Server keeps sending NOTIFY requests to the Watcher for a cer-

tain amount of time. The bodies of the respective PUBLISH and NOTIFY

requests contain the presence information.

Figure 7: PUBLISH/SUBSCRIBE/NOTIFY example message flow

2.3 OMA XML Document Management Enabler 24

2.3 OMA XML Document Management Enabler

Many OMA enablers, like Presence [45] or Instant Messaging [43], need to

access and manipulate certain information they require for their services.

The OMA XML Document Management enabler [46] “defines a common

mechanism that makes user-specific service-related information accessible to

the service enabler that need them.” ([53], p. 10). This information is

defined in well-structured XML documents stored in the network. Two main

features of XDM are:

• Principals3 can store, access and manipulate information stored in XML

files by means of the XML Configuration Access Protocol (XCAP) [72].

• Principals can be informed about changes to documents by means of

the SIP SUBSCRIBE/NOTIFY mechanism.

The following subsections examine the XDM architecture (Section 2.3.1), its

functionality (Section 2.3.2), security issues related to XDM (Section 2.3.3)

and common application usages (Section 2.3.4). Section 2.3.5 discusses pres-

ence related application usages.

2.3.1 XDM Architecture

Fig. 8 shows the functional entities of XDM and the interfaces between them.

Entities in bold boxes and reference points with solid lines are specified by

the XDM enabler [46]. All other entities and reference points are subject to

definition by specific enablers (e.g., Presence). The following list summarizes

the functionalities of these entities. The reader can refer to [53] for the

detailed specification.

3“An entity that has an identity, that is capable of providing consent and other data,
and to which authenticated actions are done on its behalf. Examples of principals include
an individual user, a group of individuals, a corporation, service enablers/applications,
system entities and other legal entities” ([53], p. 8).

2.3 OMA XML Document Management Enabler 25

Figure 8: XML Document Management architecture (source: [53], p. 14)

XDM Client: XDM Clients (XDMCs) can be implemented in terminals or

servers and provide access to XDM Servers. They support (possibly a

subset) of the features listed in Section 2.3.2.

Aggregation Proxy: An Aggregation Proxy is a contact point for XDMCs

implemented in a terminal. Its tasks are:

• Authentication of XDM Clients

• Routing of XCAP requests to the correct XDM Server

• Charging (optional)

2.3 OMA XML Document Management Enabler 26

• Compression/decompression of XCAP requests (optional)

Enabler specific XDMS: An enabler specific XDM Server stores docu-

ments specific to a certain service enabler and performs the following

functions:

• Authorization of XCAP and SIP requests

• Managing of XML documents

• Aggregation of notifications of changes in (several) documents

• Notification of subscribers about changes in documents

The Presence XDMS and RLS XDMS (see Section 2.2.3) are examples

of such enabler specific XDM Servers.

Shared XDMS: In contrast to enabler specific XDM Servers, which man-

age XML documents specific to a certain service enabler, a Shared

XDM Server manages documents which can be reused by several other

enablers. According to the OMA XDM enabler, a Shared XDMS only

supports URI Lists (see Section 2.3.5).

Enabler specific Server: The functionality of an enabler specific Server

is defined by the specific enabler. In the case of the OMA Presence

SIMPLE enabler the Presence Server and Resource List Server (see

Section 2.2.3) are enabler specific Servers.

SIP/IP Core: The XDM enabler uses IMS or 3GPP2 CDMA2000 Multi-

media Domain (MMD) networks. The IMS supports the XDM Service

with the following functions (quoted from [53], p. 15 et seq.):

• Routes the SIP signaling between the XDM Client and the XDM

servers

• Provides discovery and address resolution services

• Supports SIP compression

2.3 OMA XML Document Management Enabler 27

• Performs a certain type of authorization of the XDM Client based

on the user’s service profile

• Maintains the registration state

• Provides charging information

DMS: “The Device Management Server [42] allows initializations and up-

dates of all configuration parameters necessary for XDMC.” ([53], p.

16)

DMC: The Device Management Client (DMC) communicates with the De-

vice Management Server (DMS) to initialize and update all configura-

tion parameters.

Tab. 1 summarizes all reference points of the XDM architecture. Since

the DM-1 reference point between a DM Client and Server has a somehow

separated functionality, it is not included in Tab. 1. The DM-1 reference

point is specified in [42] and the necessary configuration objects are defined

in [44].

2.3.2 XDM Functionalities

The main functionalities of XDM are manipulation and change notification

of XML documents.

Manipulation of XML Documents: XDM supports the following oper-

ations on a XML document (quoted from [53], p. 12):

• Creating or replacing a document

• Deleting a document

• Retrieving a document

• Creating or replacing an XML element

• Deleting an XML element

2.3 OMA XML Document Management Enabler 28
R

e
fe

re
n
ce

P
o
in

t
P

ro
to

co
l

F
u
n
ct

io
n
a
li
ty

S
p
e
ci

fi
ca

ti
o
n
/
IM

S
-

In
te

rf
a
ce

X
D

M
C

li
en

t
-

S
IP

/I
P

C
or

e
(X

D
M

-1
)

S
IP

S
u
b
sc

ri
b
e/

N
ot

if
y

3G
P

P
T

S
23

.0
02

[1
2]

/I
S
C

in
te

rf
ac

e
(X

D
M

C
in

a
se

rv
er

en
ti

ty
),

G
m

in
te

rf
ac

e
(X

D
M

C
in

a
te

rm
in

al
)

S
h
ar

ed
X

D
M

-
S
IP

/I
P

C
or

e
(X

D
M

-2
)

S
IP

S
u
b
sc

ri
b
e/

N
ot

if
y

3G
P

P
T

S
23

.0
02

[1
2]

/I
S
C

in
te

rf
ac

e

X
D

M
C

li
en

t
-
A

gg
re

ga
ti

on
P

ro
x
y

(X
D

M
-3

)
X

C
A

P
X

M
L

d
o
cu

m
en

t
m

an
ag

em
en

t,
m

u
tu

al
au

th
en

ti
ca

ti
on

3G
P

P
T

S
23

.0
02

[1
2]

/U
t

in
te

rf
ac

e

S
h
ar

ed
X

D
M

S
-

A
gg

re
ga

ti
on

P
ro

x
y

(X
D

M
-4

)
X

C
A

P
S
h
ar

ed
X

M
L

d
o
cu

m
en

t
m

an
-

ag
em

en
t

R
F
C

48
25

[7
2]

E
n
ab

le
r

sp
ec

ifi
c

X
D

M
S

-
A

gg
re

-
ga

ti
on

P
ro

x
y

E
n
ab

le
r

sp
ec

ifi
c

E
n
ab

le
r

sp
ec

ifi
c

X
M

L
d
o
cu

-
m

en
t

m
an

ag
em

en
t

E
n
ab

le
r

sp
ec

ifi
c

E
n
ab

le
r

sp
ec

ifi
c

X
D

M
S

-
S
IP

/I
P

C
or

e
S
IP

S
u
b
sc

ri
b
e/

N
ot

if
y

E
n
ab

le
r

sp
ec

ifi
c

E
n
ab

le
r
sp

ec
ifi

c
X

D
M

S
-
E

n
ab

le
r

sp
ec

ifi
c

se
rv

er
E

n
ab

le
r

sp
ec

ifi
c

T
ra

n
sf

er
of

en
ab

le
r

sp
ec

ifi
c

d
o
cu

m
en

ts
fr

om
X

D
M

S
to

en
-

ab
le

r
sp

ec
ifi

c
S
er

ve
r

E
n
ab

le
r

sp
ec

ifi
c

S
h
ar

ed
X

D
M

S
-
E

n
ab

le
r

sp
ec

ifi
c

se
rv

er
X

C
A

P
T
ra

n
sf

er
of

U
R

I
L
is

ts
to

en
-

ab
le

r
sp

ec
ifi

c
S
er

ve
r

E
n
ab

le
r

sp
ec

ifi
c

E
n
ab

le
r

sp
ec

ifi
c

S
er

ve
r

-
S
IP

/I
P

C
or

e
S
IP

S
u
b
sc

ri
b
e/

N
ot

if
y

E
n
ab

le
r

sp
ec

ifi
c

T
ab

le
1:

R
ef

er
en

ce
p
oi

n
ts

(X
D

M
ar

ch
it

ec
tu

re
)

2.3 OMA XML Document Management Enabler 29

• Retrieving an XML element

• Creating an XML attribute for an XML element

• Deleting an XML attribute

• Retrieving an XML attribute

It is not necessary that a certain document supports all operations.

The document tree on a XDM Server is divided into a global tree for

global documents and a user tree for user-specific documents. Docu-

ments, and XML elements and attributes within a document, are ad-

dressed with XCAP URIs (see RFC 4825 [72]). A generic XCAP URI

for the user tree has the following format:

[XCAPRootURI]/[AUID]/users/[XUI]/[docPath]/~~/[nodeSelector]

For a XDM Client implemented in a terminal a Domain Name Server

(DNS) must resolve the hostname of the XCAP root to the aggrega-

tion server. Every application which makes use of XCAP defines its

own application usage, which is identified by an Application Unique

ID (AUID). Along with other key pieces of information, an application

usage defines the XML schema for the data used by the application.

The XCAP User Identifier (XUI) [72] identifies a specific user and is

either a SIP URI or a tel URI, followed by the specific path to the XML

document. Subsequent to the document selector an optional node se-

lector selects an element or attribute within the document. Fig. 13 in

Section 3.2 shows an example of a XCAP request.

Change Notifications of XML Documents: The second main feature of

XDM is to inform entities about changes to XML documents. XDM

utilizes the SIP SUBSCRIBE/NOTIFY mechanism [61] in combination

with the User Agent (UA) profile change event package [57].

This event package is part of a framework “for discovery, delivery, no-

tification and updates of user agent profile data” ([57], p. 1) and is

2.3 OMA XML Document Management Enabler 30

defined in draft-ietf-sipping-config-framework [57]. The event-package

token name for this package is ua-profile.

The draft defines several parameters, which can be added to the Event

header field in SUBSCRIBE/NOTIFY requests. Tab. 2 summarizes

these parameters together with the extensions defined in [58] (see be-

low).

Parameter Message Description Value(s)

profile-type SUBSCRIBE Token value of the profile
type

“device”,“user”,“local-
network”, “applica-
tion”

vendor SUBSCRIBE Specified by implementer of
the user agent

Quoted-string, should
include DNS domain
name for uniqueness

model SUBSCRIBE Specified by implementer of
the user agent

Quoted-string

version SUBSCRIBE Specified by implementer of
the user agent

Quoted-string

network-user SUBSCRIBE/
NOTIFY

User’s Address of Record network user address

effective-by NOTIFY Max. seconds before new
profile becomes effective

Digit(s)

auid SUBSCRIBE/
NOTIFY

Selects all documents under
this auid for a specific user

Quoted-string

document SUBSCRIBE/
NOTIFY

Selects a document Quoted-string

Table 2: Parameters of the event package ua-profile

The draft draft-ietf-sip-xcap-config [58] defines an extension to the User

Agent (UA) profile change event package. The document introduces

the new profile-type application and two new Event header parameters:

auid and document. A subscriber sets the parameter profile type to ap-

2.3 OMA XML Document Management Enabler 31

plication when it wants to get informed about document changes. If no

auid parameter is present, the subscriber requests to be informed about

changes to all documents both in the global and home tree for all ap-

plication usages associated with the identity given in the Request URI

of the SUBSCRIBE message. If the auid parameter is present, the sub-

scription informs about changes to all documents for the given AUID.

If the document parameter is present, notifications about changes to

the specific document will be made. The document parameter contains

a XCAP document selector to a complete document.

The body of a NOTIFY message contains a well-formed XML docu-

ment in the xcap-diff document format (draft-ietf-simple-xcap-diff [68]).

Such a XML document includes - for every changed document - an iden-

tifier, the former and new entity tags (XCAP uses them for versioning)

and potentially the changes to the document in the XML patch format.

The patch instructions follow the specifications of draft-ietf-simple-xml-

patch-ops [82] and allow constructing the current document. The ini-

tial NOTIFY of a SUBSCRIBE/NOTIFY dialog informs the Watcher

about the current version of the XML document(s) and is used as ref-

erence for further notifies.

2.3.3 XDM Security Issues

This section describes security mechanisms between a XDM Client in a ter-

minal and an Aggregation Proxy. Security mechanisms between the Aggre-

gation Proxy and a XDM Server or between an Application Server and a

XDM Server are defined in the corresponding 3GPP specifications and are

not part of the OMA XDM enabler.

In case of the IMS, the mutual authentication between a XDMC and an

Aggregation Proxy follows the mechanism defined for Presence in TS 33.141

[15]. If present, the Generic Authentication Architecture (TS 33.222 [10])

is used and the procedures of TS 24.109 [8] are followed. The Aggregation

2.3 OMA XML Document Management Enabler 32

Proxy first verifies if the XDM Client has inserted a valid identity in the X-

3GPP-Intended-Identity header field [8] and if no header is present, the proxy

inserts the authenticated identity in a X-3GPP-Asserted-Identity header field

[8].

If the Generic Authentication Architecture is not present, HTTP Digest au-

thentication (RFC 2617 [29]) is used. The username parameter of the Au-

thorization header is set to a Public User Identity (SIP or tel URI) which

matches the XUI for XCAP. Upon a successful authentication, the Aggre-

gation proxy inserts a X-XCAP-Asserted-Identity header field to the XCAP

request. This OMA specific extension header is defined in the XDM specifi-

cation [54] and contains the asserted identity.

Transport Layer Security (TLS) conforming to RFC 2818 [60] provides in-

tegrity and confidentiality protection of the exchanged messages.

The default access control policy of XCAP is also applied to XDM. Only the

creator of a document is allowed to perform all actions. Application Servers

of the trusted network are allowed to read documents but other entities have

no access at all. Permission-based systems are subject to future releases. For

global documents each application usage defines the authorization policy.

2.3.4 Common Application Usages

Section 6.7 of the OMA XDM specification [54] quotes two common applica-

tion usages.

XCAP server capabilities: XCAP server capabilities enables clients to

know which extensions, application usages or namespaces a XCAP

server supports. For this purpose the XCAP standard [72] introduces

the XCAP server capabilities application usage with the AUID xcap-

caps. The XCAP specification [72] requires that every XCAP server

supports this application usage and alike the XDM specification [54]

requests that every XDM server must support this application usage.

2.3 OMA XML Document Management Enabler 33

XML Documents Directory: A new application usage with the AUID

org.openmobilealliance.xcap-directory allows XDM Clients to fetch - for

a given XUI (quoted from [54], p.24):

1. the list of all XCAP managed documents corresponding to that

XUI across all XDMSs, or

2. the list of all documents for a given AUID corresponding to that

XUI stored in an XDMS.

Therefore, every XDMS maintains a document named directory.xml

for each XUI. For every AUID, this document contains a list of the

documents managed by this XDMS together with some additional in-

formation (i.e., etag, last-modified, size) for each document. Upon a

request from a XDM Client the Aggregation Proxy aggregates the re-

sponses from all XDM Servers before forwarding a single response to

the XDM Client.

2.3.5 Presence Related Application Usages

Beside the common application usage discussed in Section 2.3.4, the OMA

XDM enabler defines one application usage for resource lists (i.e., so-called

URI Lists) [52]. The Shared XDM server handles this application usage.

The OMA Presence SIMPLE enabler specifies two application usages: one

for Presence Authorization Rules [50] and one for Presence Lists [51] used

by Resource List Servers.

Presence Authorization Rules: The architecture document of the OMA

Presence SIMPLE enabler [47] divides Watcher authorization into sub-

scriber authorization and presence content authorization. The Pres-

ence XDM specification [50] defines a single application usage for both.

The AUID is org.openmobilealliance.pres-rules and both subscriber and

presence content authorization rules are defined in a XML document

2.3 OMA XML Document Management Enabler 34

named pres-rules. Such a document exists for every user; no global

documents are used.

This application usage reuses the document structure for presence rules

defined in draft-ietf-simple-presence-rules [71]. Listing 1 shows an ex-

ample of such a document. A document contains a set of rules and

each rule has three parts:

• Conditions - conditions to apply this rule

• Actions - actions the server takes

• Transformations - transformations to presence information

The element <identity> defines conditions which restrict a rule to a

single identity or a group of identities (e.g., everybody excepts...) [79].

Additionally, the OMA XDM specification [54] extends the allowed el-

ements by <external-list>, <anonymous request> and

<other-identity>. The <external-list> element allows the match-

ing of all identities in a URI List. The <anonymous request>

element allows the matching of requests identified as anonymous and

the <other-identity> element allows the matching of all identities

which do not match any other rule. This allows a default policy.

The only allowed action element is <sub-handling>. It defines the

subscription authorization decision (e.g., confirm, polite-block). Sec-

tion 3.2.1 of [71] gives the complete list of possible decisions.

Transformations define which elements of the presence information a

Watcher can see. The elements <provide-persons>, <provide-devices>

and <provide-services> grant access to the information about per-

sons, devices and services of a certain class or instance (see Section

2.4.3). Other elements make particular elements of the presence infor-

mation visible (e.g., <provide-network-availability>,

2.3 OMA XML Document Management Enabler 35

<provide-mood>). Section 5.1.2.1 of [50] gives the complete list of

possible transformations.

Note that not all child elements of <conditions>, <actions> or

<transformations> defined in [71] are defined for the the OMA appli-

cation usage (e.g., <sphere> is not defined).

<?xml version="1.0" encoding="UTF -8"?>

<cr:ruleset

xmlns:op="urn:oma:xml:prs:pres -rules"

xmlns:pr="urn:ietf:params:xml:ns:pres -rules"

xmlns:cr="urn:ietf:params:xml:ns:common -policy">

<cr:rule id="ck81">

<cr:conditions >

<cr:identity >

<cr:one id="tel: +43012345678"/>

<cr:one id="sip:lisi@ibkt.tuwien.ac.at"/>

</cr:identity >

</cr:conditions >

<cr:actions >

<pr:sub -handling >allow</pr:sub -handling >

</cr:actions >

<cr:transformations >

<pr:provide -services >

<op:service -id>org.openmobilealliance:PoC -session </op:service -id>

</pr:provide -services >

<op:provide -willingness >true</op:provide -willingness >

<pr:provide -status -icon>true</pr:provide -status -icon>

</cr:transformations >

</cr:rule >

</cr:ruleset >

Listing 1: Example of Presence Authorization Rules

Presence Lists: The RLS XDM specification [51] defines an application

usage for Presence List documents. The structure of such a document

is identical with the structure of a RLS-services document defined in

Section 4 of draft-ietf-simple-xcap-list-usage4 [65].

4The latest version is RFC 4826 [70] but the studied version of the RLS XDM specifi-
cation [51] cites the draft in version 5.

2.3 OMA XML Document Management Enabler 36

The AUID of this application usage is rls-services and the Presence List

for a particular user is stored under his/her directory in a file named

index. There also exists an index file in the global tree which is an

aggregation of all index files in the user tree. This makes it easier for

a RLS to find the <service> element for a particular URI.

Listing 2 shows an example of a Presence List. A Presence List docu-

ment consists of a sequence of <service> elements. Each <service>

element has a uri attribute, which contains the identifier a client can

subscribe to in order to use this service. A <service> element in-

cludes either a <resource-list> element, which contains a link to a

resource list, or directly a list of URIs with the help of the <list>

element (see next paragraph). In addition, each service definition in-

cludes a <packages> element. The child elements of <packages> are

<package> elements, which specify SIP event packages supported by

this service.

The only differences between the definition of a RLS-service document

in draft-ietf-simple-xcap-list-usage [65] and a Presence-List document

defined in the RLS XDM specification [51] are that the latter must

include at least one <package> element as child of <packages> and

must at least support the presence event package.

2.3 OMA XML Document Management Enabler 37

<?xml version="1.0" encoding="UTF -8"?>

<rls -services xmlns="urn:ietf:params:xml:ns:rls -services"

xmlns:rl="urn:ietf:params:xml:ns:resource -lists"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance">

<service uri="sip:mybuddies@ibkt.tuwien.ac.at">

<resource -list>

http: //ibkt.tuwien.ac.at/resource -lists/users/sip:skytale@ibkt.tuwien

.ac.at/index /~~/ resource -lists/list%5 b@name =%22 friends %22%5d

</resource -list>

<packages >

<package >presence </package >

</packages >

</service >

</rls -services >

Listing 2: Example of a Presence List

URI Lists and Group Usage Lists: The URI List application usage with

the AUID resource-list is defined by the Shared XDM specification [52].

This application usage is not enabler specific but used whenever there

is the need to refer to a group of resources. Therefore, the documents

are stored on a special XDM Server named Shared XDMS (see Section

2.3.1). For each user, there is a single file for all shared URI Lists in

his/her directory called index.

The document format is based on resource-list documents which are

specified in Section 3 of draft-ietf-simple-xcap-list-usage [65]. A resource-

list document contains one or more <list> elements, one for each re-

source list. A list can recursively contain other lists which allows a

hierarchical structuring. Listing 3 shows an example of a URI List.

Allowed child elements of <list> are <entry>, <entry-ref> and

<external>. A particular resource is identified by an <entry> element.

It has a single mandatory attribute uri which names the URI of the re-

source. The other two elements, <external> and <entry-ref>, include

a reference. An <entry-ref> element contains a relative URI to an en-

try of another list within the same XCAP root, while an <external>

2.3 OMA XML Document Management Enabler 38

element refers to a complete list on any XCAP server. Optionally, the

child element <display-name> specifies a name for a resource or a list.

Moreover, the OMA specification [52] makes the optional name at-

tribute of a <list> entry compulsory. The name has the format oma xyz

and the Shared XDM specification lists four allowed names:

oma allcontacts, oma buddylist, oma pocbuddylist and oma blockedcontacts.

Other enablers can define new names. The Open Mobile Naming Au-

thority (OMNA) URI-List Usage Name Registration [41] keeps a list of

all valid names.

Additionally, the Shared XDM specification [52] defines a new child

element of <list> with the name <appusages>. “The <appusages>

element contains the node URI and the AUID value of those application

usages referring to the <list> element” ([52], p. 8).

The Shared XDM specification [52] also defines a second application

usage which may be supported. It is called Group Usage List with

the AUID org.openmobilealliance.group-usage-list and allows a client to

maintain a list of group names or service URI it knows. The structure

again complies with the structure of a resource-list document specified

in [65]. Additionally, the specification introduces the <uriusage> el-

ement as new child element of <entry>. This element indicates what

the uri attribute of the <entry> element is used for. It is an abstract

type and every application usage defines the <uriusage> element. Fur-

thermore, the elements <external> and <entry-ref> are not allowed

in order to reduce complexity.

In this context, a common extension which is specified in Section 6.6 of

the OMA XDM specification [54] is worth mentioning . The specifica-

tion defines the <external> element which allows various application

usages to refer to URI Lists stored in the Shared XDMS. The element

contains either a XCAP document URI pointing to a resource-list doc-

2.4 Presence Data Formats 39

ument or a XCAP node URI pointing to a <list> element within a

resource-list document.

<?xml version="1.0" encoding="UTF -8"?>

<resource -lists xmlns="urn:ietf:params:xml:ns:resource -lists"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance">

<list name="oma_buddylist">

<display -name>colleagues </display -name>

<entry uri="sip:alice@ibkt.tuwien.ac.at">

<display -name>Alice </display -name>

</entry >

<entry uri="sip:christoph@ibkt.tuwien.ac.at"/>

<external anchor="http: //xcap.ibkt.tuwien.ac.at/resource -lists/users

/sip:marco@ibkt.tuwien.ac.at/index /~~/ resource -lists/list%5

b@name =%22 support %22%5d">

<display -name>Technical Support </display -name>

</external >

<entry -ref ref="resource -lists/users/sip:marco@ibkt.tuwien.ac.at/

index /~~/ resource -lists/list%5 b@name =%22 list1 %22%5d/entry %5 b@uri

=%22 sip:bernhard@ibkt.tuwien.ac.at%22%5d"/>

</list>

</resource -lists>

Listing 3: Example of a URI List

2.4 Presence Data Formats

In the previous section we have discussed the architecture and protocols to

manage presence information. But common protocols alone are not sufficient.

In order to achieve interoperability between different presence systems, it is

necessary to agree on common data formats for presence information. This

section presents such presence data formats.

2.4.1 Data Formats for 3GPP and OMA Presence

The requirement document [48] of the OMA Presence SIMPLE enabler lists

building blocks of presence information that must be supported. In Section

10.3 and Section 10.4 of the OMA Presence SIMPLE specification [49] these

building blocks are mapped to elements of several presence formats. Table

2.4 Presence Data Formats 40

3 lists the supported data formats. If no mapping to existing elements is

possible, OMA-specific extensions to the Presence Information Data Format

(PIDF) are used. The complete list of OMA-specific PIDF extensions is

available from [40].

The OMA specification [49] allows Presence Sources to publish elements from

other PIDF extensions as long as a Watcher can ignore the extensions it does

not understand and the meaning of the elements the Watcher understands

does not change. To allow easy registration of new presence information

packages, the Open Mobile Naming Authority (OMNA) [40] maintains a

registry of presence information packages.

Name Standard OMA
Sup-
port

3GPP
Sup-
port

Presence Information Data
Format (PIDF)

RFC 3863 [81] m m

Presence Data Model RFC 4479 [66] m m

Rich Presence Information
Data Format (RPID)

RFC 4480 [77] m m

Location Information RFC 4119 [55] m o

OMA-specific extensions to
PIDF

OMNA [40] m -

Contact Information for the
PIDF (CIPID)

RFC 4482 [75] - o

SIP User Agent Capabilities draft-ietf-simple-prescaps-ext
[34]

- o

Table 3: Supported presence data formats (m: mandatory, o: optional,
-: unmentioned)

Table 3 also lists the presence data formats supported by 3GPP. 3GPP TS

2.4 Presence Data Formats 41

24.141 [16] mentions in Section 5.3.1.2 the formats a presence source5 must

implement. Additional extensions can also be used but their usage is out of

the scope of TS 24.141 [16].

If a Presence Source wants to support partial publication of presence infor-

mation, it reverts to the following specifications:

• Publication of Partial Presence Information (draft-ietf-simple-partial-

publish [39])

• PIDF Extension for Partial Presence (draft-ietf-simple-partial-pidf-format

[35])

The following subsections give an overview of the mentioned presence for-

mats.

2.4.2 Presence Information Data Format (PIDF)

The intention of the PIDF [81] is to provide a minimal set of presence status

values to enable interoperability between different presence systems and to

provide a framework for extensions. All other presence formats we discuss in

the following subsections are defined as extensions to the PIDF. Extensions

must be defined in a way that, if a client does not support these extensions,

it can still understand the minimal mandatory set of presence values defined

in the PIDF.

RFC 3863 [81] introduces the new content type application/pidf+xml for

a XML MIME entity that contains presence information. A PIDF object

itself is a well-formed XML document which contains zero or more <tuple>

elements. Each <tuple> element contains (without optional extensions) a

<status> element, an optional <contact> element, storing a URL of the

5In 3GPP and IETF SIMPLE specifications, the term Presence User Agent is used
instead of Presence Source. A Presence User Agent is one type of Presence Source. We
use the term Presence Source in this thesis.

2.4 Presence Data Formats 42

contact address, an optional <node> element for human readable information

and an optional <timestamp> element.

To describe the status of a Presentity the PIDF only defines the <basic>

element that allows differentiating between open (i.e., online) and closed (i.e.,

offline). Other status values may be included through extensions. Listing 4

shows an example of a PIDF document.

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

entity="pres:alice@ibkt.tuwien.ac.at">

<tuple id="sg89ae">

<status >

<basic>open</basic>

</status >

<contact priority="0.8">tel: +09012345678 </contact >

<note>My cell phone </note>

</tuple >

</presence >

Listing 4: Example of a PIDF document

2.4.3 A Data Model for Presence

The PIDF models presence information as a series of tuples but it gives

no guidance how to map real-world communication systems into a presence

document. The data model for presence (RFC 4479 [66]) closes this gap.

Fig. 9 shows the data model. A Presentity is identified by a URI, which is,

in case of SIP, often the Address of Record of the user or, in case of IMS, the

Public User Identifier. The data model has three central elements: person,

service and device. Each attribute is attached to a person, a service or

a device element because it describes a person, a service or a device. The

attributes of these components are divided into characteristics and status.

Characteristics describe properties which usually do not change over time

while status describes dynamic information.

A person component models information about the end-user (which could

be a conference room or a call center in reality). There can be only one person

2.4 Presence Data Formats 43

Figure 9: The SIP presence data model (source: [22], p. 300)

component per Presentity. A characteristic for a person is, for instance, his

birthday. His mood (e.g., happy) or his current activity (e.g., on the phone)

are examples for his status.

A service component represents a point of reachability for communication

(e.g., telephony, instant messaging, push-to-talk). Characteristics describe

the nature and capabilities of a service. Examples of characteristics include

used media or supported SIP extensions. A helpful characteristic is the device

ID, which links to the device the service is running on. The reach information

for a service gives information on how to contact this service. This might be

a simple URI or more complex. The reach information also helps to decide

what to model as service. A service which can be reached independently

from other services should be modeled as a separate service. The status

2.4 Presence Data Formats 44

of a service is in the simplest form the basic status (open or closed). All

information about a service should help a Watcher to decide how likely a

communication will succeed or when it should start a communication, if not

now.

A device component models the physical environment a service runs on

(e.g., a cell phone, a laptop, a PC). Examples for characteristics of a device

are physical dimension, size of its display or speed of its CPU. Examples for

status are whether a device is turned on or off, the amount of battery power

left or the geographic location of a device.

RFC 4479 [66] also defines some guidelines which extensions of the data model

must follow. For instance, extensions must define to which data components

new attributes are applicable.

2.4.4 Mapping between the Data Model and the PIDF

Since the PIDF is the minimum standard all presence systems agree on,

there is a need to map the data model to the PIDF. For it, the data model

uses existing elements and extends the PIDF when necessary. Therefore,

RFC 4479 [66] introduces the new <person> and <device> elements. If

a Watcher does not understand these extensions, it will ignore them and

only process the PIDF information. Service components are mapped to the

<tuple> element, which is defined in the PIDF. Fig. 10 shows the mapping

of the data model to the PIDF.

2.4.5 Rich Presence Information Data Format (RPID)

The Rich Presence Information Data Format (RPID), specified in RFC 4480

[77], defines additional presence attributes to describe the person, service and

data elements defined in RFC 4479 [66]. The main goals are:

• to be able to describe information comparable to current commercial

presence systems

2.4 Presence Data Formats 45

Figure 10: The SIP presence data model mapped to the PIDF (source: [22],
p. 302)

• the possibility to set presence information automatically (e.g., from a

calendar or user activity)

• backward compatibility to the PIDF (the content-type

application/pidf+xml is also used for the RPID).

One example of a new element is the <activities> element, which gives

information about the activities a Presentity is currently doing. The specifi-

cation defines a list of possible activities (e.g., on the phone, dinner, holiday,

travel) and allows a user-defined string enclosed in an <other> element. The

list of possible values can also be extended with Internet Assigned Numbers

2.4 Presence Data Formats 46

Authority (IANA)-registered values from other namespaces.

Another example is <status-icon>, which includes a URI pointing to an

icon representing the current status of a person or service.

Some elements can have from and to attributes which reveal when the in-

formation is expected to be valid. These elements allow to give information

about a future status.

Tab. 4 lists all elements defined by RFC 4480 [77].

Element Description

<activities> Activities a person is doing

<class> Groups similar person elements, devices or services

<deviceID> A device identifier

<mood> The mood of a person

<place-is> Properties of the place a person is currently at

<place-type> Type of place the person is located in

<privacy> Distinguishes whether the communication service
is likely to be observable by other parties

<relationship> Indicates how a person who is likely to be reached
(e.g., an assistant) is related to the person who is
associated with the Presentity

<service-class> Describes the type of service in categories as elec-
tronic, post, etc.

<sphere> Characterizes the overall current role of the Pre-
sentity (e.g., home)

<status-icon> Depicts the current status

<time-offset> Quantifies the timezone the person is in

<user-input> Based on human user input, this element records
the usage state of a device or service

Table 4: Elements of the RPID

2.4 Presence Data Formats 47

2.4.6 Other Data Formats

Besides the RPID some other extensions to the PIDF exist. This section will

shortly summarize extensions for contact information, location information

and user agent capabilities since either the relevant 3GPP or OMA specifi-

cations mention these extensions (see Section 2.4.1).

RFC 4482 [75] specifies contact information for the PIDF (CIPID). The

elements standardized by this data format describe contact information of

a Presentity. Some of this information is usually found on business cards

and includes references to the homepage, display name, an icon, a map and

a representative sound, for instance. In contrast to the RPID, the CIPID

focuses on the static part of a Presentity’s presence information.

The presence-based GEOPRIV Location Object Format (RFC 4119

[55]) defines elements which describe a geographical position in the world.

The XML schema extends the <status> element of the PIDF with a complex

type named <geopriv>. This type has two mandatory child elements:

<location-info> for location information and <usage-rules> for usage

rules. Usage rules limit the retransmission and retention of location informa-

tion. Optional child elements indicate the method by which a location was

determined and describe the entity that supplied the location information.

The draft draft-ietf-simple-prescaps-ext [34] defines elements which describe

SIP user agent capabilities. It specifies service capabilities as well as

device capabilities. Service capabilities are used to describe characteristics,

like which media type(s) a service support(s) (e.g., audio, data, text) or if

the service represents an automata or a human. A device capability is, for

instance, whether the device is fixed or mobile.

2.4.7 Resolving Ambiguity

The data model for Presence [66] takes ambiguity explicitly into account

by allowing multiple descriptions of a single person, single service, or single

device.

2.4 Presence Data Formats 48

In some cases a compositor at the Presence Server can resolve this ambiguity

in an automated way (see Section 5.1.2). But in many cases, as RFC 4479 [66]

claims, the Watcher of the presence information can solve ambiguity best. A

Watcher can have more information than the compositor or can present the

ambiguity to the human user, who can resolve ambiguity often better than

an automaton.

In general it is important that some attributes exist which help to resolve

ambiguity. For an automaton any element can be useful; for a human user

the <note> element can give useful hints in many cases. Often very helpful

for both is a timestamp to determine the time of the most recent change.

49

3 Resource List Server Design

In this section we propose a generic design of a Resource List Server. The

term Resource List Server (RLS) and its functionality is defined in RFC 4662

[62], which is an extension to the SIP-specific event notification framework

(RFC 3265 [61]). The extension allows subscribing to a homogeneous list of

resources instead of to a single resource. This helps to substantially reduce

the network traffic. A Watcher need not handle subscriptions to many single

resources but only a single subscription to a resource list. To save further

traffic, a RLS can easily throttle the rate of notifications and adapt it to the

capacity of the channel and/or terminal.

First, Section 3.1 gives an overview of the functionalities of a RLS and Section

3.2 shows an exemplary message flow. Section 3.3 defines the main compo-

nents of the proposed design and Section 3.4 the interfaces between them.

Section 3.5 presents the different components more in detail. We conclude

with some design decisions in Section 3.6. The formats of presence and URI

Lists have been discussed already in Section 2.3.5.

3.1 Overview of RLS Operation

This section gives a comprehensive overview of the functionality of a Re-

source List Server (RLS). Fig. 11 shows the involved network entities and

the interactions between these entities. Note that the interactions do not

directly map to any standardized messages.

The messages exchanged between the Watcher and the Resource List Server

follow the SIP SUBSCRIBE/NOTIFY mechanism as defined in [61]. The

Watcher acts as subscriber and the Resource List Server plays the role of a

notifier.

There is no difference between a subscription to a single resource or to a

list. If a client supports the event list extension, the target of a SUBSCRIBE

request can either be a single resource or a list. The support is indicated

3.1 Overview of RLS Operation 50

Figure 11: RLS network diagram

by including an option tag eventlist in a Supported header field of every

SUBSCRIBE message. If the subscription is to a list, the RLS indicates this

by including the tag eventlist in a Require header field of the response to a

SUBSCRIBE message and in all following NOTIFY messages.

The returned NOTIFY body is of MIME type multipart/related. The first

section of the multipart/related document is always of type

application/rlmi+xml and contains meta-information about each resource in

the list. The other sections provide information about the state of individ-

ual resources. Listing 18 in Section 5.5.1 shows such a multipart/related

document including a RLMI document.

The root element of a RLMI document is <list> which contains, among

other information, the URI identifying the list. A <list> can have several

3.1 Overview of RLS Operation 51

<resource> child elements, which describe a single list entry. A <resource>

element must have an uri attribute, which specifies the URI identifying this

resource. Finally, a <resource> element contains one or several <instance>

elements which inform about the state of a virtual subscription6 (e.g., active)

and link to a presence document which is included in the multipart/related

body. The format of the individual state information is determined by the

event package of the initial SUBSCRIBE request to the RLS (e.g., presence).

When the RLS receives a SUBSCRIBE request, it must obtain the rls-service

definition (i.e., Presence List in terms of the OMA Presence SIMPLE enabler)

which corresponds to the Request-URI in the SUBSCRIBE message. As

described in Section 2.3.5, the service definition either directly includes a

resource list (i.e., URI List in terms of the OMA XDM enabler) or links to

such a list. In the latter case, the RLS follows the link to obtain the resource

list. Generally spoken, a XCAP server stores the rls-service and resource-list

definitions and the RLS queries them over the XCAP protocol. In context

of the OMA Presence SIMPLE enabler, a RLS XDMS stores the Presence

Lists and a Shared XDMS the URI Lists.

In the end, the RLS has a list of URIs which represents resources the RLS

should learn the state of. How the RLS learns the state of a resource is up

to the RLS. The RLS can be the authority of the state and access the state

directly. Alternatively, the RLS can subscribe to another entity and learn

resource states from this entity. In Fig. 11, Resource A and Resource B are

such entities (e.g., Presence Server) which manage the state of resource A

and resource B. Any subscription that a RLS creates to learn the state of

a resource the RLS is not the authority of is called back-end subscription.

Back-end subscriptions can be a SIP subscription or of any other type.

The resource lists stored on a XCAP server (i.e., a Shared XDMS in terms

of the OMA XDM enabler) can be created and maintained by sending suit-

6“A Virtual Subscription is a logical construct within an RLS that represents subscrip-
tions to the resources in a resource list.” ([62], p.3)

3.2 Example Message Flow 52

able XCAP requests to the server. The configuration entity (i.e., a XDM

client in terms of the OMA XDM enabler) which allows a user to manage

her/his resource lists can be integrated in the same terminal as the Watcher

or be an independent application on a separate terminal. For instance, the

configuration can be done over a website.

3.2 Example Message Flow

Figure 12: Exemplary RLS message flow

Fig. 12 illustrates an exemplary message flow. In this example, the back-end

subscriptions, which are sent by the RLS to learn the state of a resource,

are SIP subscriptions. If we assume presence as event package, the state of

3.2 Example Message Flow 53

resource A could be controlled by a Presence Server. Resource B could again

be a list whose state is controlled by another RLS. Security mechanisms are

intentionally omitted in Figure 12 for simplicity reasons.

Let us assume the Watcher wants to subscribe to sip:friends@example.com.

Therefore, the Watcher sends a SUBSCRIBE message (1), which terminates

at the RLS. The RLS acknowledges the message with a 200 OK (6). RFC

3265 [61] requires an immediate NOTIFY message. This NOTIFY message

contains a RLMI document describing the complete buddy list. Therefore,

the RLS must first fetch the service definition from a XCAP server.

Figure 13: XCAP <service> request example

HTTP /1.1 200 OK

Etag: "xyzz"

Content -Type: application/xcap -el+xml

<service uri="sip:friends@example.com">

<resource -list>http://xcap.example.com/resource -lists/users/bob/index /~~/

resource -lists/list%5 b@name =%22 acd2r %22%5d</resource -list>

<packages >

<package >presence </package >

</packages >

</service >

Listing 5: XCAP <service> response example

The RLS sends an XCAP GET request (2) to the XCAP server and receives

as reply a <service> element (3). Fig. 13 shows the XCAP request for the

<service> element associated with the URI sip:friends@example.com stored

in the file index on the host xcap.example.com. The request consists of a

document selector, which selects the XML document, and a node selector,

which selects an element or attribute within this document. In this case,

3.2 Example Message Flow 54

the node selector references the <service> element with the mandatory uri

attribute set to sip:friends@example.com. This URI identifies the service.

The response to the request is shown in Listing 5. The <service> element

defines the event packages which are allowed for this service and includes a

resource list or a link to a resource list. In our scenario, the latter case is

true which causes the RLS to fetch the list definition in a second query (4).

A request to the URI specified in the service definition and shown in Listing

5 will return the list definition starting with the opening bracket of <list>

until the closing bracket of </list>. Listing 6 gives an example of a list

definition (also compare Section 2.3.5).

<?xml version="1.0" encoding="UTF -8"?>

<resource -lists xmlns="urn:ietf:params:xml:ns:resource -lists"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance">

<list name="acdr2">

<entry uri="sip:bill@example.com">

<display -name xml:lang="en">Bill Doe</display -name>

</entry >

<entry uri="sip:bob@example.com">

<display -name>Bob Buse</display -name>

</entry >

<list name="close -friends">

<display -name>Close Friends </display -name>

<entry uri="sip:joe@example.com">

<display -name>Joe Smith </display -name>

</entry >

<entry uri="sip:nancy@example.com">

<display -name>Nancy Lu</display -name>

</entry >

</list>

</list>

</resource -lists>

Listing 6: Resource list example

Now the RLS has all necessary data in order to send the required immediate

NOTIFY message (7). In this NOTIFY request the RLS can also include

the state information it has knowledge about already (i.e., in case the RLS

3.3 Main Components 55

is the authority for the state). In order to obtain the state of the remain-

ing resources, the RLS sends SUBSCRIBE messages to Resource A (9) and

Resource B (13). The incoming NOTIFY message (11) contains the state of

resource A. The RLS could now send this new information to the Watcher

but it decides to buffer this information and reduce the rate of notifications.

Next the RLS receives a state information of resource B in another NOTIFY

message (15).

The RLS decides that there is sufficient information available for justifying a

subscriber notification. It sends a NOTIFY message with the updated state

informations to the Watcher (17). It is left to the implementor of a RLS to

define a policy when a list subscriber is informed about state changes.

3.3 Main Components

After a general overview of the RLS functionality, we now introduce our RLS

design. In the following we discuss external entities which interact with the

RLS, the main components of the RLS design and the interfaces between

them.

Fig. 14 depicts the external entities the RLS interacts with and which are

explained in the following list:

• A Configuration is a file which contains all configuration parameters.

• A Watcher subscribes to a resource list.

• An Authority of local resources is an application which manages

the statuses of Presentities and runs on the same physical node as the

RLS (e.g., a Presence Server).

• A Notifer is any entity which is able to inform the RLS about the

status of a Presentity using a SUBSCRIBE/NOTIFY dialog (e.g., a

Presence Server).

3.3 Main Components 56

Figure 14: External Entities

• Database, XCAP server and HTTP server store RLS-service def-

initions and resource lists.

Fig. 15 shows the main components of the design and the interfaces between

them, which we discuss in the following.

Notifier: This component acts as a notifier as defined in [61]. It handles

incoming SUBSCRIBE messages and generates NOTIFY messages. It

interacts with the Resource List Fetcher component to obtain a list of

URIs the RLS should subscribe to. The task of determining the state

of a single resource is delegated to the Virtual Subscription Handler

component.

We assume that the subscriber has been authenticated at some point

before the request is forwarded to the RLS. If this is not the case, the

3.3 Main Components 57

Figure 15: RLS block diagram

Notifier component’s responsibility is also subscriber authentication.

A subscriber authentication is mandatory because the SIP Back-end

Subscriber component (see Section 3.5.4) relies on it. The Notifier

component is also responsible to authorize the subscriber if she/he is

allowed to subscribe to the desired list.

Resource List Fetcher: This component is responsible for fetching the ap-

propriate resource list from a XCAP source. Depending on the sub-

scriber and the R-URI in the SUBSCRIBE request, this component re-

trieves the appropriate service definition. The service definition is part

of a rls-service document and either contains directly a resource list or

links to a resource list in a resource-list document. In the latter case,

this component also fetches the resource list. Both document types are

defined in [65] (compare Section 2.3.5). The elements can be fetched

from different sources. In this design the components XCAP Client,

XCAP Adapter and XCAP DB Client are responsible for fetching el-

3.3 Main Components 58

ements. Since all components offer the same interface the location is

transparent for the Resource List Fetcher. The component transforms

a resource-list definition to a list of URIs the RLS can subscribe to and

returns this list to the Notifier component.

XCAP Client: This component fetches required XML documents from a

XCAP server. The functionality of a XCAP client is defined in [72]. It

is sufficient that the client supports the GET operation.

XCAP Adapter: Instead of a fully-fledged XCAP server, a common HTTP

server serves as source of XML documents. The XCAP Adapter fetches

complete XML documents from an HTTP server and extracts the nec-

essary elements locally according to the passed XCAP query. It is

sufficient that the component only understands the queries needed by

the Resource List Fetcher.

XCAP DB Client: This component offers the same functionality as the

XCAP Adapter component but queries the XML documents from a

database.

Virtual Subscription Handler: This component decides how the RLS learns

the state of a certain single resource by dispatching the subscription

information to the right component. This flexible design enables two

options. If the RLS is collocated with a program which is the authority

for the resource, the Local Subscriber component interacts with this

program and handles the subscription. Otherwise the task is passed to

the SIP Back-end Subscriber component.

Local Subscriber: The Local Subscriber learns the state of a resource from

another external program or software module.

SIP Back-end Subscriber: This component learns the state of a resource

due to a SIP subscription. It plays the role of a subscriber as defined

in [61].

3.4 Interfaces 59

Configuration: The Configuration component encapsulates all configurable

parameters and makes them available via the config interface.

Init: This component does all necessary initializations on startup and cleans

up on shutdown of the RLS.

3.4 Interfaces

This section describes the external and internal interfaces of the RLS module.

A dashed line together with a name in italic marks the interfaces in Fig. 15.

3.4.1 External Interfaces

rls: This interface allows a user agent to subscribe to a resource list and

obtain presence information. It is defined in RFC 4662 [62].

sql: This interface allows querying/saving information from/to a database.

xcap: This interface allows querying information from an XCAP server. It is

defined in the XCAP specification [72] whereas the RLS acts as XCAP

client. Only a subset of the XCAP interface must be implemented for

a RLS.

http: This common interface is defined in RFC 2616 [28] and allows fetching

information from a web server.

extSubscriber: This interface allows subscribing to state information pro-

vided by an other program/software module. The interface can be

equal to the internal interface subscriber (see Section 3.4.2) but need

not be.

event: This interface allows subscribing to the presence information of a

particular resource. It corresponds to the SIP Event Notification de-

fined in RFC 3265 [61] plus an event package (e.g., the presence event

package [63]).

3.4 Interfaces 60

extConfig: This interface provides the values of all RLS configuration pa-

rameters.

3.4.2 Internal Interfaces

list: The list interface allows querying a list of resources. The R-URI of a

SUBSCRIBE request, which identifies the RLS service, together with

the identity of the subscriber and the event package of a subscription to

a resource list are passed to the Resource List Fetcher. The Resource

List Fetcher returns a hierarchical list of resources. A list can consist of

several sub-lists and each list consists of zero or more resources. Zero

or more names can be assigned to both a list and a resource.

intXCAP: A XCAP query is passed to one of the XCAP handling compo-

nents and the queried xml data is returned.

subscriber: This interface allows establishing and canceling subscriptions

to a single resource. The following information must be passed over

the interface in order to establish a subscription:

• URI which identifies the resource

• identity of the list subscriber

• event-type

• accepted MIME-types of the list subscription.

The subscription handling component is not allowed to reuse a sub-

scription to a certain resource for several users because this would cir-

cumvent authorization policies. A back-end subscription is always done

in the name of the list subscriber.

The subscription handling component informs the calling component

about changes of the resource state (e.g., a received NOTIFY) it has

3.5 Component Descriptions 61

successfully subscribed to. It gives the calling component access to the

following information:

• status of the subscription

• reason (if state is terminated)

• MIME content-type

• NOTIFY body (i.e., resource state).

config: This interface exposes all configuration parameters to the other com-

ponents. Since almost all components make use of parameter settings,

the information flow to every single component is not shown in the

Figures.

3.5 Component Descriptions

While the previous section has presented an overview of the RLS design, this

section illustrates design details specific to some of the components.

3.5.1 Notifier

As shown in Fig. 16, the Notifier is divided in the following sub-blocks:

Subscription Handler: The handler accepts incoming SUBSCRIBE mes-

sages. It retrieves a list of resources from the Resource List Fetcher

component and initiates a virtual subscription for each resource in the

list.

Notify Generator: This component is responsible for creating and sending

NOTIFY messages. It creates the RLMI document and merges it to-

gether with the resource state information into a single message. This

component controls the rate of notifications.

Subscriber Authorization: This component determines if the subscriber

is authorized to subscribe to the desired list.

3.5 Component Descriptions 62

Figure 16: Notifier component

3.5.2 Resource List Fetcher

As shown in Fig. 17, the Resource List Fetcher is subdivided into the follow-

ing components:

Service Fetcher: The Service Fetcher fetches a rls-service definition [62]

from one of the possible sources. It chooses the XCAP Client com-

ponent if the documents must be fetched from a XCAP server. The

XCAP Adapter component is used if the documents are saved on an

HTTP server and the XCAP DB Client component if they are saved

in a database. The source is determined by a module parameter. The

list definition is either part of the service definition or stored in a sepa-

rate document. In the latter case, this component also fetches the list

definition.

List Creator: The List Creator reads the XML list definition from the Ser-

vice Fetcher and creates a (hierarchical) list of URIs plus some addi-

tional information (i.e., names) which is necessary for the later pro-

cessing. The Notifier component uses this list later on to create virtual

3.5 Component Descriptions 63

Figure 17: Resource List Fetcher component

subscriptions and a RLMI document.

3.5.3 Virtual Subscription Handler

The sole task of the Virtual Subscription Handler is to decide on base of

subscription parameters for a specific resource which component takes care

of reporting the resource state. This could be an external program/module

if this module is the authority for the state of this resource, the SIP Back-

end Subscriber component for SIP subscriptions or another component which

maybe will be defined in the future.

In a first release, every resource state will be obtained by SIP back-end

subscriptions. This means that even for locally known states a new SIP

subscription is initiated.

In later releases, the decision procedure could be the following: If the domain

part of the URI of a resource is equal to the local domain, the resource

state is obtained by another local module. Otherwise the SIP Back-end

3.5 Component Descriptions 64

Subscriber component initiates a back-end subscription. A module parameter

determines if every resources should lead to a back-end subscription or not.

3.5.4 SIP Back-end Subscriber

Figure 18: SIP Back-End Subscriber component

Fig. 18 shows the sub-blocks of the SIP Back-End Subscriber component.

Subscriber: The Subscriber component implements the subscriber inter-

face. It generates and sends SUBSCRIBE messages and is in charge of

refreshing existing subscriptions.

Authentication Service: The Authentication Service calculates a hash value

over some header fields, signs this hash value and includes the signature

in the header of a back-end subscription. Thereby the Authentication

Service ensures other servers that the user in the From header is au-

thenticated. This requires that the user is first authenticated in the

home domain.

The Authentication Service enables the RLS to receive the same pres-

ence information as if the list subscriber itself subscribes to the resource.

RFC 4474 [56] defines the role of an authentication service.

Notify Handler: The Notify Handler receives incoming NOTIFY messages

as response to the SUBSCRIBE messages sent by the Subscriber com-

ponent. It stores the state information in the database and informs

other components about the state change.

3.6 Design Decisions 65

3.6 Design Decisions

This section summarizes some design decisions concerning rate of notifica-

tions, full/partial state and subscriber authorization.

3.6.1 Rate of Notifications

One of the purposes of a RLS is to buffer notifications and reduce the traffic

to the Watcher. The RLS can be configured to send at maximum each nth

second a NOTIFY message to the Watcher. If this value is set to 0, every

state change results immediately in a new NOTIFY message.

3.6.2 Full/Partial State

RFC 4662 [62] allows NOTIFYs which contain either full or partial state.

If partial state is indicated, only state information about resources with an

updated state are included. The type of state (full/partial) does not refer to

any underlying event package, which potentially allows some kind of partial

state information for a single resource.

The RLS module can be configured to either only send NOTIFY messages

with full state or allow NOTIFY messages with partial state. In the latter

case, a full state is only sent when this is forced by RFC 4662 [62] (i.e, for

immediate NOTIFY requests upon the reception of a SUBSCRIBE request).

3.6.3 Subscriber Authorization

RFC 4826 [70] suggests the presence authorization rules defined in [71] (see

Section 2.3.5) for a subscriber authorization. But this specification defines

several conditions and transformations which are not useful in case of a re-

source list. Generally, the RLS cannot rely on reading the state information

of resources because the bodies of incoming NOTIFY requests may be en-

crypted. The RLS only knows the Resource List Meta Information for sure.

3.6 Design Decisions 66

Basically, the information worth to protect is the membership of a resource

in a list and not the state of resources. A client can always learn the state

of a single resource due a subscription to this single resource instead of a

subscription to the list. The implemented prototype only allows a subscrip-

tion to a certain resource list if the resource list is stored in the user tree of

the subscriber on the XCAP/HTTP server or stored in the database for this

particular subscriber (see Section 4.4.1).

67

4 Resource List Server Implementation

Based on the RLS design presented in Section 3, we have implemented a RLS

prototype which integrates with the modular concept of the OpenSER SIP

proxy [5]. Therefore, we give an overview of OpenSER in Section 4.1. Section

4.2 establishes a connection between the design of Section 3 and source-code

files. Subsequently, Section 4.3 identifies the dependencies of the imple-

mented module on functionalities of the OpenSER core, other OpenSER

modules and external libraries. We conclude with selected implementation

aspects in Section 4.4. Appendix A summarizes all module parameters, ex-

ported module functions and database table definitions.

4.1 OpenSER

OpenSER [5] is a flexible open-source SIP proxy, which, depending on config-

uration, can act as SIP Proxy, SIP Registrar or SIP Application Server. The

code is written in pure C for Unix/Linux-like systems in order to support a

wide range of (embedded) architectures.

OpenSER includes its own scripting language for configuration files. Among

others, this scripting language allows loading and configuring modules, ma-

nipulating SIP messages and determining the Proxy’s routing logic.

OpenSER is deployed as part of commercial systems (e.g., Cisco Service

Node servers [3]) and included in many official Unix-based distributions (e.g.,

Ubuntu).

The OpenSER project is a spin-off of the SIP Express Router (SER) project.

SER has been mainly developed by the FhG FOKUS research institute in

Berlin and had its first release in autumn 2002. Due different views in

the management and development of the SER project, two core develop-

ers started the OpenSER project in June 2005. The latest major release was

OpenSER v1.3.0 in December 2007.

4.2 Mapping the Design to Source Code 68

4.1.1 OpenSER Modules

One of the main features of OpenSER is a plug&play module interface which

is similar to the one implemented by the Apache Web Server [1]. It allows

keeping the core highly stable and of small size. Functionality is added by

modules without a need to change the core. This is a powerful tool to deploy

flexible and custom SIP services.

Each OpenSER module defines a structure which exports the following in-

formation:

• Module name

• Initialization, per-child initialization (called by all processes after the

fork) and destroy module functions

• Exported functions which can be called from the configuration script

• Module parameters

• Exported statistics

• Exported management interface (MI) functions

• Exported pseudo-variables

• Additional processes required by the module

• dlopen() flags (dlopen() loads the dynamic library file)

• Function which handles response messages

The Resource List Server is implemented as an OpenSER module. The rls

module exports module parameters and functions which are accessible from

the configuration script but no other functions or pseudo-variables.

4.2 Mapping the Design to Source Code 69

Figure 19: Source-code files and dependencies on OpenSER modules and
external libraries

4.2 Mapping the Design to Source Code

Fig. 19 shows which source-code files (in bold letters) implement which parts

of the design described in Section 3.

The RLS prototype does not implement the components Virtual Subscription

Handler and Local Subscriber. Even if the Presence Server and RLS are

collocated and run within a single OpenSER instance, the RLS sends a back-

end subscription for every resource. It has the advantage that the Presence

Server and RLS can be easily split into two independent servers and the

load distributed at anytime. On the other hand, this solution is slower and

4.3 Dependencies 70

increases the network traffic. However, a Virtual Subscription Handler can be

added at any time. Additional coding of the Local Subscriber component is

needed to access presence information locally without sending a SUBSCRIBE

request. Section 4.5 discusses some potential problems in doing so.

Table 5 briefly presents the individual source-code files.

4.3 Dependencies

The prerequisites for the rls module are OpenSER itself, along with the

modules listed in 4.3.1, the libraries listed in 4.3.2 and a database of a type

OpenSER supports.

4.3.1 OpenSER Core and Modules

Since the RLS is implemented as an OpenSER module, it highly makes use

of functionalities offered by the OpenSER core and other OpenSER modules.

The rls module uses the following OpenSER core APIs:

Module interface: It allows setting the module parameters in the config-

uration file and calling module functions upon the reception of SIP

messages.

Memory management: OpenSER has its own memory management to

allocate and free private and shared memory.

Database interface: OpenSER offers a generic interface to query and store

data from/to a database. In version 1.3.0, OpenSER supports MySQL,

PostgreSQL, Berkeley, flat files, all database types which have unixodbc

drivers, and a Perl virtual database.

Message parsing: OpenSER includes its own message parser designed for

speed.

Timer: Timers allow the execution of periodical tasks.

4.3 Dependencies 71

Source file Description

rls.c Implements OpenSER’s module interface

configuration.c Repository of all module parameters

rls db.c Encapsulates the initialization and termination of a
database connection; the corresponding header file de-
fines all column names of the used database tables

rlsSubscription.c Handles incoming subscriptions to a resource list and
sends appropriate responses and NOTIFY requests

rlmi.c Creates multipart/related documents composed of
RLMI document(s) and the presence information of
individual resources

backendSubscription.c Starts and stops back-end subscriptions with the help
of the pua module, handles corresponding incoming
NOTIFY requests and stores dialog information to
the database

resourceListFetcher.c Fetches service-definitions/resource-lists from the de-
sired source and parses the necessary information into
an internal structure

resourceList.c Offers methods to create resource-list structures as
used internally, add different attributes and copy com-
plete lists

resourceList Hash.c Hash table which stores resource lists

xcap.c Offers a common interface for all XCAP sources and
binds functions depending on the used source

xcapClient.c Fetches (partial) XML documents from a XCAP
server with the help of curlHelper.c

xcapAdapter.c Fetches complete XML documents from an HTTP
server with the help of curlHelper.c and processes the
node selector locally with the help of xcapNodeSelec-
tor.c

xcapDBClient.c Fetches complete XML documents from a database
and processes the node selector locally with the help
of xcapNodeSelector.c

xcapNodeSelector.c Processes a XCAP node selector and returns the de-
sired part of a XML document

curlHelper.c Uses the libcurl library to fetch a document from a
XCAP or HTTP server

Table 5: Source-code files

4.3 Dependencies 72

Locking: OpenSER includes its own locking library.

Logging: OpenSER has logging facilities for debug and error messages.

Helper functions: Some useful definitions and helper functions are used

from the core (e.g., string definition, hash-code generation).

Besides some functionalities offered by the core, the rls module depends on

the OpenSER modules presence, pua, sl, tm and one database module. Fig.

19 shows these modules as green ellipses. Only the database module is not

shown because it depends on the used database type.

presence: The presence module evolved from, as the name states, pres-

ence handling module, into a more generic module which handles PUB-

LISH and SUBSCRIBE messages and generates NOTIFY messages in

a general, event independent way. However, it is not possible with the

provided API to handle incoming SUBSCRIBE messages and send NO-

TIFY messages. The rls module uses the presence module to save/delete

resource-list subscriptions to/from a hash table and save/restore this

hash table to/from the database (rlsSubscription.c). Moreover, the API

allows extracting dialog information from message headers and copying

stored dialog information. Last but not least, the module manages a

list of the event types which the RLS supports.

pua (presence user agent): The pua module offers the functionality of

a presence user agent (i.e., Presence Source) client and enables other

modules to send SUBSCRIBE and PUBLISH messages. The rls module

uses the pua module to send back-end subscriptions (backendSubscrip-

tion.c).

sl (stateless replier): The sl module allows generating SIP replies to SIP

requests without keeping a state. The rls module makes use of this

functionality when sending replies to incoming SUBSCRIBE messages

4.3 Dependencies 73

(rlsSubscription.c) or incoming NOTIFY messages (backendSubscrip-

tion.c).

tm (Transaction (stateful) module): The tm module enables stateful

processing of SIP transactions and allows processing transaction state

as opposed to individual messages. This is needed when the rls mod-

ule sends NOTIFY messages within an established dialog (rlsSubscrip-

tion.c).

database module: The generic database interface is part of the core but

implemented by modules. A separate module exists for each supported

database type. For instance, the module for MySQL connectivity is

named mysql.

4.3.2 External Libraries

In Fig. 19, the pastel-colored rectangles indicate external libraries. The rls

module depends on the libraries libxml2 and libcurl.

libxml2: Libxml2 [7] is a XML C parser and toolkit, which is known to be

very portable. We use libxml2 for:

• parsing XML documents when processing a XCAP node selector

(xcapNodeSelector.c)

• parsing service definitions and resource lists (resourceListFetcher.c)

• creating RLMI documents (rlmi.c).

libcurl: Libcurl [4] is a free and easy-to-use client-side URL transfer library,

supporting a various number of protocols and is highly portable. We

use libcurl for:

• fetching documents from an HTTP server (curlHelper.c)

• fetching documents from a XCAP server (curlHelper.c).

4.4 Implementation Aspects 74

4.4 Implementation Aspects

In this section we highlight some implementation aspects. We discuss sub-

scriber authentication and authorization, how the prototype caches data and

stores them in a database. We explain how the prototype fetches rls-service

definitions, how these definitions relate to a RLMI document and how the

prototype handles back-end subscriptions.

4.4.1 Authentication and Authorization

The rls module itself does not authenticate subscribers. In the OpenSER de-

sign other modules handle authentication before the routing logic calls the ap-

propriate rls module function. The auth module provides common functions

which are needed by other more advanced authentication related modules,

namely auth db (database-backend authentication module), auth diameter

(Diameter-backend authentication module) and auth radius (Remote Au-

thentication Dial In User Service (RADIUS)-backend authentication mod-

ule). However, if the RLS is an Application Server in an IMS network,

authentication is anyway the task of the S-CSCF and not of the RLS.

Authorization is done insofar that the rls module only fetches resource lists

which are saved under the identity of the resource-list subscriber in the

database or in the XCAP user tree on an HTTP/XCAP server. Therefore,

users can only subscribe to their own resource lists.

Furthermore, the RLS supports Simple and Digest HTTP authentication

when fetching documents from an HTTP/XCAP server. Section 4.5 suggests

some improvements on this issue for a next release.

4.4.2 Database Tables and Caching

The rls module utilizes two database tables. A third one is necessary if the

module fetches the XML documents from a database.

4.4 Implementation Aspects 75

• The table rls rl subscriptions stores the dialog information of resource-

list subscriptions.

• The table rls backend subscriptions (partly) stores the dialog informa-

tion of back-end subscriptions (some information is stored by the pua

module).

• The table xcap stores rls-service and resource-list XML documents.

The xcap table need not be in the same database as the other two tables. A

separate database can be specified via the xcap root module parameter. The

database table structures are defined in Appendix A.3.

The information about ongoing resource-list subscriptions is copied from the

database table rls rl subscriptions into a hash-table on start-up and modified

entries are regularly written back to the database. This caching is mainly

handled by the presence module.

The Resource List Fetcher fetches the service and resource-list XML docu-

ments from a XML source and keeps the parsed resource lists in memory.

After a configurable period of time (resource list cache time module param-

eter), the resource list is deleted from memory and need to be fetched and

parsed again (if still needed). This removes unneeded resource lists from

memory but also allows noticing changes in resource lists. However, the

terminal also needs to send a new SUBSCRIBE request to recognize these

changes correctly. Section 4.5 suggests some improvements on this issue for

a next release.

By contrast, the information about back-end subscriptions is not cached

because the entries only change when a back-end subscription is started or

stopped, a notification is received or an unsuccessful subscription is renewed.

If the notification and retry intervals for unsuccessful subscriptions are not

too small, the frequency of a database access is similar to the frequency the

data in a cache would be saved to the database. In this case, a cache does not

improve the performance. However, an optional cache is a possible feature

4.4 Implementation Aspects 76

of a next release.

4.4.3 Fetching of RLS-Service Definitions

In order to fetch a service definition, the Resource List Fetcher component

requests the following URL from one of the XCAP components:

/rls-services/users/[RL-SUBSCRIBER]/index/~~/rls-services/

service[@uri="[R-URI]"]

[RL-SUBSCRIBER] is replaced by the SIP URL in the From header of the

SUBSCRIBE request to the resource list. [R-URI] is replaced by the Request

URL of the SUBSCRIBE request. The XCAP Adapter and XCAP Client

components insert the configured XCAP root in the front to complete the

URL.

The XCAP Client component sends the full URL to the XCAP server. The

XCAP Adapter removes the node selector, which is separated from the doc-

ument selector by two tilde characters, and fetches the file index stored

at /rls-services/users/[RL-SUBSCRIBER]/ from an HTTP server. The

HTTP server is specified by the XCAP root. The node selector is processed

locally.

The XCAP DB Client parses the node selector locally as well but fetches the

rls-service document that is stored for the particular user [RL-SUBSCRIBER]

in the database table xcap (see Appendix A.3 for the table definition).

If the service definition does not contain a list but a reference to a list, this

reference is resolved by the Resource List Fetcher component. However, the

reference must contain the same XCAP root as where the service definition

was fetched from and point to the same user directory of [RL-SUBSCRIBER].

Section 4.5 lists missing features of the prototype and suggests some improve-

ments for a next release.

4.4 Implementation Aspects 77

4.4.4 Modeling of Resource Lists

RFC 4826 [70] defines a XML format for representing resource lists (compare

Section 2.3.5) and RFC 4662 [62] defines a XML format for RLMI. The

RLMI is a part of the multipart/related document which the RLS sends to a

subscriber in NOTIFY messages. It is the task of the Resource List Fetcher

Component to extract the necessary information from the XML resource-

list document and to cache it in an internal structure. The Notifier (more

precisely rlmi.c) uses this data to create the RLMI document.

Figure 20: Relation between a resource list and multipart/related document

The rls module can handle hierarchical resource lists. In other words, a list

can contain several other lists which can contain other lists and so forth. Fig.

20 shows the relation between a XML resource-list definition and the mul-

tipart/related document. For each sub-list the top level document embeds

another multipart/related document. If a resource has an active back-end

subscription, the resource state is added to the multipart/related document

(in this case in form of application/pidf+xml documents). Unfortunately,

eyeBeam 1.17 does not support hierarchical multipart/related documents as

7The rls module was tested with eyeBeam 1.1 because the latest version 1.5 does not
support subscriptions to resource lists anymore.

4.5 Limitations and Future Work 78

described here.

4.4.5 Back-end Subscriptions

RFC 4662 [62] states that “implementations MUST NOT present the result

of one back-end subscription to more than one user, unless [. . .]”([62], p.

32) certain constraints are fulfilled which is considered as difficult and not

recommended. The utilization of one back-end subscription for several users

circumvents any authorization policies which the notifier maintains for this

resource.

In other words, if a user subscribes with the same event package to several

resource lists (or to the same resource list several times) and these lists con-

tain a common resource, a single back-end subscription is sufficient for the

common resource. However, a user could send subscriptions from different

devices which support different data types. In this case, back-end subscrip-

tions either only accept data types which must be supported or the module

always starts a new back-end subscription, which supports the intersection

of all data types supported by the different subscriptions to the resource list.

The advantage of fewer back-end subscriptions (i.e, less traffic) contrasts with

a higher complexity of the RLS.

Therefore, the RLS prototype starts a new back-end subscription for every

resource-list subscription and every resource. One back-end subscription is

assigned to one and only one resource-list subscription.

4.5 Limitations and Future Work

Apart from Authentication Service, TLS support and references in resource

lists (see below), the first prototype fulfills all requirements stated in the

relevant RFCs. In this section, we summarize the limitations of the first

prototype and propose enhancements for future releases.

The RLS design comprises the Authentication Service as part of the SIP

4.5 Limitations and Future Work 79

Back-end Subscriber component (see Section 3.5.4). RFC 4662 [62] demands

that a “RLS that uses SIP back-end subscriptions to acquire information

about the resources in a resource list MUST be able to act as an authenti-

cation service [. . .], provided that local administrative policy allows it to do

so” ([62], p. 31). The role of an Authentication Service is defined in RFC

4474 [56] and not implemented in the prototype.

Since resource lists contain sensitive information, the XCAP standard (RFC

4825 [72]) makes all XCAP clients implement TLS [60]. TLS is not supported

by the rudimental XCAP client of the RLS prototype.

The authorization of resource-list subscribers has also space for improve-

ments. As discussed in Section 4.4.1, a subscriber can only access service

definitions, respectively resource lists, which are saved under her/his iden-

tity in a database or in the XCAP user tree on an HTTP/XCAP server. The

files on the HTTP/XCAP server can be protected by a password, which is

set by module parameters (see Appendix A.1). But instead of using a single

password, as it is the case for the prototype, credentials for every subscriber

could be stored and fetched in/from a database table. For this purpose,

the rls module could reuse the OpenSER subscriber table. Moreover, we

could extend the authorization policy and access common resource lists in

the XCAP global tree or implement more advanced authorization policies.

As discussed in Section 2.3.2, the XDM architecture allows subscribing to

changes in documents. The RLS prototype does not implement this feature.

If implemented, it would allow a faster detection of changes in resource lists

than it is possible by now with the caching mechanism.

Section 4.2 has outlined already that a Local Subscriber component, as sug-

gested in the design, is not implemented yet. However, this is not easily done

because the presence xml module, which implements the functionality of a

Presence Server, does not offer an appropriate interface. It is not sufficient

to simply take the presence information stored in the database because the

Presence Server does more than just relaying presence information (compare

4.5 Limitations and Future Work 80

Section 2.2.2).

Furthermore, an optional caching of back-end subscription information could

be considered for a performance improvement.

Resource lists may include references to other lists or to entities of other lists

(see Section 2.3.5). The prototype is not able to resolve these references.

The RLS prototype supports hierarchical resource lists (see Section 4.4.4)

but eyeBeam, the SIP User Agent (UA) which we have used for testing, does

not. It could be of interest to implement a client which supports hierarchical

resource lists.

81

5 Aggregation of Presence Information

The introduction of a RLS can significantly improve performance of low-

bandwidth links and mobile terminals as shown in the last two sections. A

useful extension to standardized presence service concepts is the aggregation

of presence information and therefore this section focuses on aggregation

aspects.

There are two main scenarios to consider when analyzing the aggregation of

presence information. The first scenario refers to the aggregation of presence

information of one single Presentity which uses distinct Presence Sources

(e.g., a mobile phone and a notebook). The different Presence Sources may

send different views of the world which need to be aggregated into a single

view. Section 5.1 discusses this aspect.

The second scenario concerns the aggregation of presence information of sev-

eral Presentities. The aim is to have presence information about a group of

Presentities instead of having just the presence information of all particular

Presentities of the group. For instance, a user wants to know if the group

(i.e., all members) is available for a phone call. For this purpose, the presence

information of all group members must be aggregated. Section 5.2 discusses

this issue.

Following this, we discuss aggregation using the examples of a call center and

a video conference call.

The following subsections rely on the architecture of the OMA Presence

SIMPLE enabler [45] as presented in Section 2.2.3.

5.1 Single Presentity State Aggregation

5.1.1 Architecture

Fig. 21 depicts one part of the OMA Presence SIMPLE enabler architecture

(see Section 2.2.3). The respective reference points are defined in the OMA

Presence SIMPLE architecture [47]. We assume that all shown Presence

5.1 Single Presentity State Aggregation 82

Figure 21: Aggregation of multiple Presence Sources

Sources publish presence information of the same Presentity. It means that

the entity attribute of the <presence> element is the same for all published

PIDF documents. The OMA Presence SIMPLE specification [49] demands

that the URI of the entity attribute in a PIDF document equals the request-

URI of the PUBLISH request which contains the PIDF document. In the

IMS, this URI is known as Public User Identity.

A Watcher subscribes to the presence status of the Presentity and receives

presence information composed of the presence information published by

the different Presence Sources. The fact that all Presence Sources provide

presence information of the same Presentity does not preclude that several

people (e.g., call-center agents) use the respective terminals. The registration

of several devices with the same Public User Identity (i.e., Presentity) is only

possible since (full) 3GPP IMS Release 6 because Release 5 does not allow

that a single Public User Identity is associated with several Private User

Identities (see Section 2.1.3).

5.1 Single Presentity State Aggregation 83

5.1.2 Composition

The Presence Server needs to combine the presence documents provided by

different Presence Sources into one single raw presence document. This func-

tion is called composition.

The OMA Presence SIMPLE specification [49] defines a default compo-

sition policy. It specifies under which conditions and how a Presence Server

should aggregate person, service or device elements (see Section 2.4.3). For

instance, two <tuple> elements are aggregated into one <tuple> element if

they contain identical <contact> elements, identical <class> elements, iden-

tical <service-id> and <version> elements of <service-description> el-

ements and if there are “no conflicting elements (i.e., same elements with

different values) or attributes under the <tuple> elements” ([49], p. 28).

Different timestamps are not considered as conflicting elements. Similar rules

apply for the aggregation of <device> and <person> elements. The specifi-

cation allows local policies which augment the default composition policy but

these policies may not violate the default policy. Consequently, additional

policies to the default policy of the OMA Presence SIMPLE specification [49]

are needed if, for instance, different services or different statuses should be

composed.

The (expired) drafts “A Processing Model for Presence” (draft-rosenberg-

simple-presence-processing-model [67]) and “Composing Presence Informa-

tion” (draft-schulzrinne-simple-composition [78]) discuss presence composi-

tion. A Processing Model for Presence introduces a model for processing

presence information. The model divides the different steps at the Presence

Server into SIP subscription processing and presence document processing

whereas the latter is further divided into collection, composition, privacy

filtering, watcher filtering and post-processing composition.

For this thesis the step composition is of primary interest. The applied

composition policy is selected by the presence authorization rules. According

to [67], composition consists of the following steps:

5.1 Single Presentity State Aggregation 84

1. Correlation

2. Conflict resolution

3. Merging

The first step correlates existing presence information to new presence infor-

mation. For instance, provided that a Presentity represents a single person,

the Presence Server can deduce that the person is on the phone if a telephone

service reports that it is busy. Correlation identifiers (e.g., device-id which

links a service to a device) can support here.

The second step resolves the conflict of multiple person/service/device ele-

ments for the same person/service/device. After a conflict has been detected

the conflict resolution itself can be based on the likelihood how accurate the

information of each source is (e.g., if one device reports user activity, it prob-

ably is a more accurate source). Another possibility is to take the identity

of the source (if known) into account.

The last step is merging. It allows merging different services or devices into a

single service or device. Therewith it is possible, for instance, to merge mul-

tiple telephony services reported by multiple sources into a single telephony

service. One way to choose the services/devices that should be merged is to

define a particular attribute as selector (e.g., status online). The draft [67]

calls this element a pivot element. How the different attributes of the services

are merged is a matter of local policy. If the services have different SIP URIs

as contact address, the draft [67] proposes that the Presence Server creates

a URI which represents the collection of services. “Requests made to that

URI could fork to the set of services that were combined together” ([67], p.

14).

The draft Composing Presence Information [78] also discusses compo-

sition and partly overlaps with [67]. As goal it defines to remove information

that is either stale, contradictory or redundant. The draft assumes that a

Presentity is a single human being and does not represent a group of people.

5.1 Single Presentity State Aggregation 85

The composition process is divided into the following steps:

1. Discarding

2. Derivation

3. Conflict resolution

4. Merging

Discarding removes tuples with stale or redundant information. This is the

case if services have the status closed, tuples are older than a certain threshold

or devices are not referenced by any service.

Derivation provides useful new data and corresponds to the step correlation

of [67].

Conflict resolution also corresponds to a step of the same name in [67]. For

instance, conflicts can be found by comparing values of distinct elements (e.g.,

sleeping and steering) whereas the focus is mainly on the <person> element.

To decide which tuples of the conflicting elements should be included in the

final presence document, the draft suggests several heuristics, namely recent

tuple, trustworthy tuple based on type or identity of a source, or the value

of another element (e.g., user input).

Merging has a different meaning than in [67]. “Merging combines several

tuples that logically represent the same information” ([78], p. 11). Therefore,

only <person> elements or services with the same contact URI are merged.

In contrast to [67], the draft [78] specifies a composition policy format in

XML. Several XML elements are defined for the different composition steps.

The XML patch format [82] is used for the insertion of new information

whereas XPath [20] expressions define where the new contents should be

inserted. The format has limited possibilities but may serve as a basis for a

more comprehensive format which allows more complex compositions. The

authors of the draft [78] present their approach also in [80].

5.2 Multiple Presentities State Aggregation 86

The paper A Script-based Approach to Distributed Presence Ag-

gregation [21] tries to solve the problem of composition with a script-based

approach. The authors have chosen JavaScript to ease development for peo-

ple who have already experience in web programming. The JavaScript-based

Presence Aggregation Language (PAL) is introduced and used to combine

presence information from different sources into a single document. Addi-

tionally, PAL scripts can modify, add, or remove information and force or

block sending of status notifications.

Provided that a Presentity represents a group of people, the composition

process becomes more complex. For instance, if one telephony service is

busy this need not mean that the group is busy.

In conclusion, no standard exists which allows advanced composition of pres-

ence information like Boolean operations on entities. The drafts discussed in

this section and Section 2.4.7 can help in defining new composition policies

and composition policy formats.

5.1.3 Integration of XDM

If the composition policy format is defined in XML, the respective documents

can be stored on XDM Servers. For it, not only a XML schema but also a

new application usage needs to be defined. This document introduces the

name composition-policy for this non-existing application usage.

The architecture discussed in this section makes already use of the Presence

XDM (see Fig. 6) in order to apply presence authorization rules. In the same

way, we add a new composition-policy XDMS which stores the composition

policy to the architecture depicted in Fig. 6.

5.2 Multiple Presentities State Aggregation

The task of merging presence information from several Presentities is similar

to the task of merging presence information from different Presence Sources of

5.2 Multiple Presentities State Aggregation 87

a single Presentity. The main difference is that, a priori, no unique identifier

connects the different presence information documents. This connection can

be established using a URI List [52]. A list has a unique identifier and

the presence information of all Presentities in the list can be merged. We

introduce the term Presence Aggregation Server as name for the entity where

the aggregation of presence information happens.

5.2.1 An Architecture based on a Presence Server

Figure 22: Aggregation solution with a Presence Server

Fig. 22 models the Presence Aggregation Server as extended Presence Server

with integrated Watcher (i.e., subscriber) functionality. A stand-alone Pres-

ence Server as defined by the OMA Presence SIMPLE specification [49] is

not sufficient. As per the OMA Presence SIMPLE specification, a Presence

Server must be able to receive PUBLISH requests but does not need to sup-

port subscriptions to presence information stored on other Presence Servers.

If a Presence Aggregation Server wants to aggregate not only locally stored

presence information, it needs to subscribe to the presence information man-

5.2 Multiple Presentities State Aggregation 88

aged by different Presence Servers. Moreover, the OMA Presence SIMPLE

specification states that a Presence Server “handles publications from one or

multiple Presence Source(s) of a certain Presentity” ([49], p. 24) and not of

several Presentities like in this case.

The integrated Watcher has two possibilities to collect the presence informa-

tion of the different Presentities. The Watcher can fetch the appropriate URI

List from a Shared XDMS via XCAP and subscribe to all the URIs in the

list. Alternatively, the Watcher delegates this work to a RLS. The Watcher

subscribes to the list and receives the collected presence information of all

Presentities. In the first case the Watcher must support XCAP in order to

fetch the URI List; in the latter case the Watcher must support the event

list extension [62] in order to subscribe to the RLS. In any case, the inte-

grated Watcher does the subscription with the identity of the watcher of the

aggregate information.

A client which is interested in the aggregate presence information subscribes

to a URI which identifies a URI List. The SUBSCRIBE request is routed to

the Presence Aggregation Server whereon the integrated Watcher collects the

presence information of all Presentities on the list. Following a composition

policy for this list, the Presence Aggregation Server composes the presence

documents of all Presentities into a single document. The integrated Pres-

ence Server can process this raw document like any presence document for

a single Presentity and apply authorization rules, event notification filtering

and partial notification (see Section 2.2.2).

5.2.2 An Architecture based on a RLS

Fig. 23 shows a slightly different approach. The Presence Aggregation Server

is directly integrated into a Resource List Server. According to to the OMA

Presence SIMPLE specification [49], a RLS “SHALL support list subscrip-

tions to the presence event package, according to the RLS procedures de-

scribed in [RFC4662]” ([49], p. 32). A NOTIFY message from a RLS contains

5.2 Multiple Presentities State Aggregation 89

Figure 23: Aggregation solution with a RLS

a multipart/related [33] body. The root document of the multipart/related

body must be a RLMI document [62] as discussed in Section 3.1.

The key for presence aggregation is that the top-level <list> element of a

RLMI document itself may refer to “a section within the multipart/related

body that contains aggregate state information for the resources contained

in the list” ([62], p.12). The definition of such aggregate information is not

part of the RLS specification [62] and is defined on a per-package basis. In

other words, the RLMI format allows inserting aggregate information about

the complete list. This aggregate information is derived from the received

presence information of the individual resources in the list according to some

composition policy.

If now a subscriber should only be notified about the aggregate state and the

presence status of the particular resources must be hidden, no <resource>

elements are included in the RLMI document. Then the multipart/related

document only consists of the RLMI document and the presence document

containing the aggregate state. At any time, the RLS can include detailed

presence information about a particular Presentity. Hence, a <resource>

5.2 Multiple Presentities State Aggregation 90

element is added to the RLMI document and the presence document for the

particular Presentity is included in the multipart/related document.

RFC 4462 [62] mentions that, in general, a RLS should not rely on being able

to read the MIME bodies received from any back-end subscription because

they can be encrypted. However, the same problem exists if a Presence Ag-

gregation Server implemented as Presence Server receives encrypted MIME

bodies.

It is questionable how Watchers handle aggregate information of a complete

list and how they render this information if no information about individual

resources is included in a RLMI document. Additionally, a RLS requires

more features of a terminal because the terminal must support the eventlist

option tag and be able to accept the application/rlmi+xml MIME type plus

the application/pidf+xml MIME type.

If a client only wants to subscribe to aggregate information, the RLS could

also return just a NOTIFY with the aggregate presence information like a

normal Presence Server. This equals the architecture described before when

the integrated Watcher subscribes to all resources8. The crucial point is

that a particular subscription is either a subscription to a list or to a single

resource but cannot be mixed. “In particular, this means that RLSs MUST

NOT send NOTIFY messages that do not contain RLMI for a subscription if

they have previously sent NOTIFY messages in that subscription containing

RLMI. Similarly, RLSs MUST NOT send NOTIFY messages that do contain

RLMI for a subscription if they have previously sent NOTIFY messages in

that subscription which do not” ([62], p. 7).

5.2.3 Composition

The conclusions of 5.1.2 also apply for the architecture we have discussed

in this section. Additionally, a composition policy can consider the different

8In contrast to the first architecture a RLS retrieves a Presence List from a RLS XDMS
instead of a URI List from a Shared XDMS. The Presence List can include a link to a
URI List.

5.3 Comparison 91

identifiers of the Presentities.

Resource Lists as specified in [65] can be nested. This should be taken into

account when defining the composition policies.

5.2.4 Integration of XDM

The proposed Presence Aggregation Server uses four different XDM Servers

(see Fig. 6): a Shared XDMS, a RLS XDMS, a Presence XDMS and a new

composition-policy XDMS.

A Presence Aggregation Server implemented as RLS aggregates the presence

information of resources in a particular Presence List which is stored on a

RLS XDMS. The RLS-service definitions stored on a RLS XDMS contain

these lists directly or include a link to a URI List stored on a Shared XDMS.

If no RLS is used, the integrated Watcher of a Presence Aggregation Server

retrieves a URI List from a Shared XDMS. The Shared XDM specification

[52] defines only four types of lists (see Section 2.3.5) but new types can be

registered.

A Presence Aggregation Server applying presence authorization rules fetches

them from a Presence XDMS. The composition policy is retrieved from a

composition-policy XDMS, which is not part of a standard yet.

5.3 Comparison

To conclude the discussion on presence aggregation, we outline some strength

and drawbacks of the proposed architectures. Independent of the particular

architecture, there is no difference for a Watcher if it subscribes to aggregate

information or presence information of a single Presentity as there is no

difference between a subscription to a single resource and to a resource list.

Comparing the composition of presence information of a single Presentity to

the aggregation of presence information of several Presentities, the problem

is somehow just moved to another level. In the first case, group members

5.3 Comparison 92

have a common (IMS) subscription and a common Public User Identity, but

different Private Identities. In the latter case, group members have a common

resource list but nothing else in common. Every group member has its own

Public User Identity.

Tab. 6 summarizes some strengths and drawbacks of all discussed architec-

tures.

5.3 Comparison 93

Single Presentity State Aggregation

+ All reference points, except between PS and composition-policy XDMS,
follow existing standards.
+ Forking of a request to all group members is simple.
- Requires (full) 3GPP IMS Rel. 6 or later (if several devices are used)
- It is harder to differentiate between particular group members because the
all have the same Public User Identity.
- All group members must have the same IMS subscription.

Multiple Presentities State Aggregation (Presence Aggregation
Server as PS)

+ All reference points, except between PS and composition-policy XDMS,
follow existing standards.
+ There are no constraints for group members (e.g., same subscription).
+ Due the different Public User Identities of group members, they are easier
specifiable.
- It is necessary to maintain and access resource lists.
- No simple forking of a request to all group members is possible.
Watcher subscribing to all resources Watcher utilizing a RLS
+ Easy integration of locally known
presence information.

+ The RLS manages all subscriptions
to particular group members.

+ no RLS is needed. - The main advantages of a RLS (re-
ducing the traffic between Watcher
and PS and throttle the rate of notifi-
cations) are not true anymore if both
Watcher and PS are in the core net-
work.

+ Support of subscriptions to presence
information is sufficient.

- A Presence Aggregation Server can-
not use locally known presence infor-
mation.

- The Watcher must manage a dialog
for each group member.

- A Watcher must support eventlist.

Multiple Presentities State Aggregation (Presence Aggregation
Server as RLS)

+ All reference points, except between PS and composition-policy XDMS,
follow existing standards.
+ Easy integration of complete presence information about particular group
members.
- Watcher in the terminal must support eventlist.
- It is necessary to maintain and access resource lists.
- No simple forking of a request to all group members is possible.

Table 6: Comparison of aggregation architectures

5.4 Call-Center Scenario 94

5.4 Call-Center Scenario

Figure 24: Call-center scenario

This scenario is based on a simplified call center. On the right side, Fig.

24 shows some call-center agents. Their terminals are connected to an IMS

network and they publish the presence status of the agents. In Fig. 24 the

green dot for agent 1 indicates that he is currently available; the red dot

for agent 2 indicates that the agent is currently busy. The customer on the

left side is not interested in the presence statuses of single agents. He wants

to know if the call center is available (i.e., if one of the agents is available).

Since one agent is available, the customer sees a green dot.

The following Subsections model the call center first as a single Presentity

and then as a group of Presentities.

5.4.1 Single Presentity State Aggregation

The architecture presented in Section 5.1 serves as basis for the discussions

in this section. The call center is modeled as a single Presentity. Every user

agent has its own Private User Identity but registers the same Public User

Identity with the IMS network. This is only possible since (full) 3GPP IMS

Release 6.

Each terminal registers the Public User Identity sip:callcenter@ex.org with

5.4 Call-Center Scenario 95

Figure 25: The Presence Sources of the agents publishing presence informa-
tion

the IMS core. Additionally, a second Public User Identity, which is exclu-

sively associated with the Private User Identity used with this device, is

registered implicitly. For instance, sip:agent1@ex.org is registered for the

terminal of agent 1 and sip:agent2@ex.org for the terminal of agent 2.

Upon a successful registration with the IMS core, the Presence Source ap-

plications which run on the terminals of the call-center agents start to pub-

lish their presence information. The message flow is illustrated in Fig. 25.

First, agent 1 sends a PUBLISH request (1) with the Request-URI set to

sip:callcenter@ex.org. The request is routed to a S-CSCF where one of the

initial filter criteria indicates that this request should be forwarded to the

Presence Server (3). The Presence Server handles the request as any other

PUBLISH request following the procedure described in Section 5.4.1 of the

OMA Presence SIMPLE specification [49].

5.4 Call-Center Scenario 96

The terminal of agent 2 also sends a PUBLISH request (7) with the Request-

URI set to sip:callcenter@ex.org. The message could be routed to a different

P-CSCF and a different S-CSCF (not shown) but the S-CSCF forwards the

request to the same Presence Server (9).

The message flow corresponds to the usual publication of presence informa-

tion as described in the OMA Presence SIMPLE specification [49].

Minimalistic examples of the PIDF documents sent in the bodies of the PUB-

LISH requests are displayed in Listing 7 for agent 1 and Listing 8 for agent

2. Both indicate one service but for agent 2 the status of its service is closed.

The Public User Identity registered additionally to sip:callcenter@ex.org is

used as contact address for a service. The <person> element in Listing 8

includes an <activity> element that indicates that the person is currently

on the phone.

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:callcenter@ex.org">

<tuple id="a1232">>

<status >

<basic>open</basic>

</status >

<contact >sip:agent1@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

</pdm:person >

</presence >

Listing 7: Published PIDF document of agent 1 (body of messages (1)-(3) in

Fig. 25)

5.4 Call-Center Scenario 97

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:callcenter@ex.org">

<tuple id="a4222">>

<status >

<basic >closed </basic>

</status >

<contact >sip:agent2@ex.org</contact >

<timestamp >2007 -05 -29 T09:15:16Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

<rpid:activities >

<rpid:on -the -phone/>

</rpid:activities >

</pdm:person >

</presence >

Listing 8: Published PIDF document of agent 2 (body of messages (7)-(9) in

Fig. 25)

According to our scenario, a call-center customer is interested in the presence

status of the call center. As depicted in Fig. 26, the terminal sends a SUB-

SCRIBE request (1) with the Request-URI set to sip:callcenter@ex.org to the

P-CSCF. The SUBSCRIBE request is routed over several hops to the Pres-

ence Server which successfully accepts the request. The Presence Server sends

a XCAP request (7) to the composition-policy XDMS and fetches the compo-

sition policy document for sip:callcenter@ex.org. Furthermore, the Presence

Server gets the presence authorization rules from the Presence XDMS9 (9-10)

like for every other subscription. According to the composition policy, the

Presence Server creates a raw presence document out of all received presence

documents. Afterward, the Presence Server can apply content rules, event

notification filtering and partial notification on this raw document. Eventu-

ally, the transformed presence document is included in a NOTIFY message

9The Presence Server can also fetch the presence authorization rules before any com-
position policy.

5.4 Call-Center Scenario 98

and sent to the Watcher (11-13).

Figure 26: Subscription to aggregate presence information (single Presentity)

Since the aggregation of presence information does not affect the interfaces,

the message flow corresponds to the usual SUBSCRIBE/NOTIFY procedure

as described in the OMA Presence SIMPLE specification [49]. The only

difference is the download and application of an advanced composition policy.

Listing 9 shows one possibility how the two received presence documents of

Listing 7 and Listing 8 can be aggregated. The raw presence document in-

cludes the <person> element without the <on-the-phone/> element because

one agent is available. The service with the basic status open is included too.

5.4 Call-Center Scenario 99

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:callcenter@ex.org">

<tuple id="a1232">>

<status >

<basic>open</basic>

</status >

<contact >sip:agent1@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

</pdm:person >

</presence >

Listing 9: Aggregate PIDF document with the contact address of an agent

(body of messages (11)-(13) in Fig. 26)

It is a matter of policy if all available services are included or only one of

the available services. If all available services are included, the terminal of

the Watcher must decide to which service it should try to connect to. If this

service is not available anymore, the terminal can try immediately another

service.

5.4 Call-Center Scenario 100

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:callcenter@ex.org">

<tuple id="a1232">>

<status >

<basic>open</basic>

</status >

<contact >sip:callcenter@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

</pdm:person >

</presence >

Listing 10: Aggregate PIDF document with the contact address of the call

center (body of messages (11)-(13) of Fig. 26)

Instead of the Public User Identity which is specific for a user agent, the

common identity sip:callcenter@ex.org can be included as contact address

for the service. Listing 10 depicts the PIDF document with the SIP URI of

the call center as contact address. The decision which agent should be called

is then up to the S-CSCF or an AS on the path. An easy and reasonable

guideline would be to fork the request to all agents. If an agent is available

he/she answers the call. This approach has several advantages. The agents

do not need to have an extra Public User Identity and a customer only gets

to know one Public User Identity - sip:callcenter@ex.org. Moreover, there is

a high chance in a call center that the services reported as available in the

presence information are not available anymore when the call is initiated.

But still, the presence information that the call center is available is correct

as long as one arbitrary service is available. Therefore, it is reasonable to

postpone the decision which agent(s) to call until the session initiation.

5.4 Call-Center Scenario 101

5.4.2 Multiple Presentity State Aggregation

In this scenario each call center agent has its own IMS subscription and

does not share a common Public User Identity with all agents. The common

identity is the identity of a URI List where the Public User Identities of all

agents are in.

Since we are not interested in complete presence documents of a single agent,

the Presence Aggregation Server does not act as RLS but rather as Presence

Server.

It is quite possible that the published documents of all call-center agents

end up at the same PS which is a Presence Aggregation Server at the same

time. Then the Presence Aggregation Server does not need to subscribe

to presence information managed by other Presence Servers. But still the

Presence Aggregation Server needs to carry out local subscriptions. It needs

to know when one of the Presentities in the list has changed its status,

possibly composite the presence documents of a single Presentity and apply

presence authorization rules dependent on the watcher.

We assume that the presence information we want to aggregate is spread

over several Presence Servers. For instance, this will probably be the case

if volunteers with different backgrounds run a call center for a joint project.

Further we assume that the Presence Aggregation Server itself subscribes to

all resources and does not utilize a RLS.

Fig. 27 depicts the message flow for publishing presence information. In

contrast to Fig. 25, the terminals send PUBLISH requests with different

Public User Identifiers as Request-URI. The PUBLISH requests terminate

at different Presence Servers.

Fig. 28 shows the message flow for subscribing to aggregate presence informa-

tion. The message flow between the Watcher and the Presence Aggregation

Server corresponds to the message flow in Fig. 26. Upon the reception of a

SUBSCRIBE request, the Presence Aggregation Server downloads the cor-

responding URI List from the Shared XDM Server (4-5). Subsequently, it

5.4 Call-Center Scenario 102

Figure 27: The Presence Sources of the agents (Presentities) publishing pres-
ence information

subscribes to all URIs in the list and receives NOTIFY requests containing

the presence information of a particular Presentity (9-16). For this part, Fig.

28 omits the CSCFs on the path. In the next step, the Presence Aggre-

gation Server downloads the composition policy for this URI List from the

composition-policy XDMS (17-18). Now the Presence Aggregation Server

has all necessary information to aggregate the presence documents into one.

The aggregate presence document is handled like any other presence docu-

ment. Presence authorization rules are transfered from the Presence XDMS

(19,20) and applied. Eventually, the aggregate presence document is sent to

the Watcher in a NOTIFY request (21-23).

Listing 11 and Listing 12 show the PIDF documents published by agent

1, respectively agent 2. These PIDF documents only differ from the PIDF

documents of Section 5.4.1 in the entity attribute. In the first place, the two

PIDF documents are not related to each other. The aggregate document in

Listing 13 uses the URI identifying the URI List for the entity attribute.

5.4 Call-Center Scenario 103

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:agent1@ex.org">

<tuple id="a1232">>

<status >

<basic>open</basic>

</status >

<contact >sip:agent1@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

</pdm:person >

</presence >

Listing 11: Published PIDF document of agent 1 (body of messages (1)-(3)

of Fig. 27)

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:agent2@ex.org">

<tuple id="a4222">>

<status >

<basic>closed </basic>

</status >

<contact >sip:agent2@ex.org</contact >

<timestamp >2007 -05 -29 T09:15:16Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

<rpid:activities >

<rpid:on -the -phone/>

</rpid:activities >

</pdm:person >

</presence >

Listing 12: Published PIDF document of agent 2 (body of messages (7)-(9)

of Fig. 27)

5.4 Call-Center Scenario 104

F
ig

u
re

28
:

S
u
b
sc

ri
p
ti

on
to

ag
gr

eg
at

e
p
re

se
n
ce

in
fo

rm
at

io
n

(m
u
lt
ip

le
P

re
se

n
ti

ti
es

)

5.5 Video-Call Scenario 105

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity="sip:callcenter@ex.org">

<tuple id="a1232">>

<status >

<basic>open</basic>

</status >

<contact >sip:callcenter@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >agent </rpid:class >

</pdm:person >

</presence >

Listing 13: Aggregate PIDF document ((body of messages (21)-(23) of Fig.

28)

Again the Presence Aggregation Server can choose between two addresses to

include as contact address of a service. The Public User Identity of one of the

agents or the identity of the URI List. The latter does not unfold the identity

of an agent but makes the call processing more difficult. In the scenario of

Section 5.4.1, the call could be forked to all terminals because they have been

registered with the same Public User Identity. In this scenario an AS must

handle the call and rely it to some agent(s) in the list.

5.5 Video-Call Scenario

This scenario is basically an enhancement of the call-center scenario. The

discussion leader of a video conference wants to initiate the conference only

if all mandatory members of the group can send/receive video on one of

their currently registered devices. Optional members are not relevant for the

presence status. In this scenario, the group members are Alice, Bob and

Carol. Alice and Carol are mandatory members; Bob is an optional member.

5.5 Video-Call Scenario 106

5.5.1 Presence Information Documents

The message flows of this scenario correspond to the message flows of the call-

center scenario in Section 5.4.2. But in this example the published presence

information is richer. As consequence, the aggregation of this information is

more difficult. This section shows examples how terminals can indicate video

support and different levels of group membership and how the aggregate

presence information could look like. The details of the aggregation process,

how the aggregation rules look like and how they can be modeled, are again

left for further studies.

Draft draft-ietf-simple-prescaps-ext [34] defines elements to model service

capabilities (see Section 2.4.6). According to Section 5.3.1.2 of 3GPP TS

24.141 [16], a Presence Source must implement this draft “if it wants to

make use of SIP user agent capabilities in the presence document” ([16],

p. 11). The OMA Presence SIMPLE enabler does not mention this draft

in its specification [49] but it allows Presence Sources to publish elements

from other PIDF extensions as long as these extensions do not violate other

extensions.

Listing 14, Listing 15 and Listing 16 show exemplary PIDF documents for the

group members Alice, Bob and Carol. The <video> element, which is a child

element of <servcaps>, indicates whether a service supports video or not.

The <class> element shows if this person is a mandatory or optional member

of the group. The RPID (see Section 2.4.5) defines the <class> element,

which describes the class of a service, device, or person. The naming of the

class is left to the Presentity. This makes automatic checks more complicated

but using this element is more straightforward than defining a new extension

to PIDF.

However, if the Presence Aggregation Server does not receive presence infor-

mation from all group members, it cannot know if all mandatory members

are available. Fortunately, the <entry> element of URI Lists [52] can con-

tain elements from other namespaces. A new element could be defined which

5.5 Video-Call Scenario 107

indicates if a member is optional or mandatory.

The service included in the presence information of Carol (listing 16) supports

video but does not support audio. Moreover, the contact address is a tel

URI and not a SIP URI. Is it sufficient for a video conference to support

only video? Does the contact address of the service must be a SIP address?

The example shows that a reasonable aggregation of presence information

can become very complex.

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:alice@ex.org">

<tuple id="a8098a .67236">>

<status >

<basic>open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >true</pcp:audio >

</pcp:servcaps >

<contact >sip:alice@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >mandatory member </rpid:class >

</pdm:person >

</presence >

Listing 14: Published PIDF document of Alice

5.5 Video-Call Scenario 108

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:bob@ex.org">

<tuple id="a8098a .67236">>

<status >

<basic>closed </basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >true</pcp:audio >

</pcp:servcaps >

<contact >sip:bob@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:59Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >optional member </rpid:class >

</pdm:person >

</presence >

Listing 15: Published PIDF document of Bob

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:carol@test.com">

<tuple id="a8098a .67111">>

<status >

<basic>open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >no</pcp:audio >

</pcp:servcaps >

<contact priority="0.9">tel: +1 -212 -555 -1234</contact >

<timestamp >2007 -05 -29 T09:15:03Z </timestamp >

</tuple >

<pdm:person id="s007">

<rpid:class >mandatory member </rpid:class >

</pdm:person >

</presence >

Listing 16: Published PIDF document of Carol

5.5 Video-Call Scenario 109

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:conference -group@ex.org">

<tuple id="a8012r .67111">>

<status >

<basic>open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

</pcp:servcaps >

<contact >sip:conference -group@ex.org</contact >

<timestamp >2007 -05 -29 T09:15:03Z </timestamp >

</tuple >

</presence >

Listing 17: Aggregate PIDF document

--50 UBfW7LSCVLtggUPe5z

Content -Transfer -Encoding: binary

Content -ID: <nXYxAE@ps.ex.org>

Content -Type: application/rlmi+xml;charset="UTF -8"

<?xml version="1.0" encoding="UTF -8"?>

<list xmlns="urn:ietf:params:xml:ns:rlmi"

uri="sip:conference -group@ex.org"

version="1" fullState="true"

cid="aURBsM@ps.ex.org">

<name xml:lang="en">Video conference group </name>

<resource uri="sip:bob@ex.org">

<name>Bob Smith </name>

<instance id="juwigmtboe" state="active"

cid="bUZBsM@ps.ex.org"/>

</resource >

<resource uri="sip:alice@ex.org">

<name>Alice Anders </name>

<instance id="hqzsuxtfyq" state="active"

cid="ZvSvkz@ps.ex.org"/>

</resource >

5.5 Video-Call Scenario 110

<resource uri="sip:carol@test.com">

<name>Carol Evol</name>

<instance id="pozcuxttyq" state="active"

cid="U5Gvkr@ps.ex.org"/>

</resource >

</list>

--50 UBfW7LSCVLtggUPe5z

Content -Transfer -Encoding: binary

Content -ID: <aURBsM@ps.ex.org>

Content -Type: application/pidf+xml;charset="UTF -8"

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:conference -group@ex.org">

<tuple id="a8012r .67111">>

<status >

<basic >open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

</pcp:servcaps >

<contact >sip:conference -group@ex.org</contact >

<timestamp >2007 -05 -29 T09:15:03Z </timestamp >

</tuple >

</presence >

--50 UBfW7LSCVLtggUPe5z

Content -Transfer -Encoding: binary

Content -ID: <bUZBsM@ps.ex.org>

Content -Type: application/pidf+xml;charset="UTF -8"

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:bob@ex.org">

<tuple id="a8098a .67236">>

<status >

<basic>closed </basic>

</status >

5.5 Video-Call Scenario 111

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >true</pcp:audio >

</pcp:servcaps >

<contact >sip:bob@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:59Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >optional member </rpid:class >

</pdm:person >

</presence >

--50 UBfW7LSCVLtggUPe5z

Content -Transfer -Encoding: binary

Content -ID: <ZvSvkz@ps.ex.org>

Content -Type: application/pidf+xml;charset="UTF -8"

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:alice@ex.org">

<tuple id="a8098a .67236">>

<status >

<basic>open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >true</pcp:audio >

</pcp:servcaps >

<contact >sip:alice@ex.org</contact >

<timestamp >2007 -05 -29 T09:14:56Z </timestamp >

</tuple >

<pdm:person id="a1233">

<rpid:class >mandatory member </rpid:class >

</pdm:person >

</presence >

--50 UBfW7LSCVLtggUPe5z

Content -Transfer -Encoding: binary

5.5 Video-Call Scenario 112

Content -ID: <U5Gvkr@ps.ex.org>

Content -Type: application/pidf+xml;charset="UTF -8"

<?xml version="1.0" encoding="UTF -8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pdm="urn:ietf:params:xml:ns:pidf:data -model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

xmlns:pcp="urn:ietf:params:xml:ns:pidf:caps"

entity="sip:carol@test.com">

<tuple id="a8098a .67111">>

<status >

<basic >open</basic>

</status >

<pcp:servcaps >

<pcp:video >true</pcp:video >

<pcp:audio >no</pcp:audio >

</pcp:servcaps >

<contact priority="0.9">tel: +1 -212 -555 -1234</contact >

<timestamp >2007 -05 -29 T09:15:03Z </timestamp >

</tuple >

<pdm:person id="s007">

<rpid:class >mandatory member </rpid:class >

</pdm:person >

</presence >

Listing 18: Multipart/related body sent by an RLS

Listing 17 shows how the aggregate document could look like. It only includes

one <tuple> element and indicates that the service is available and supports

video. The contact address is set to the group identifier sip:conference-

group@ex.org. A S-CSCF could route a call to an AS which manages the

conference.

In this scenario, it can be useful to know the presence information of partic-

ular Presentities. For instance, if the conference leader wants to add certain

optional members to a video conference, presence information about these

Presentities can come in handy. A Presence Aggregation Server implemented

as RLS could provide this. Listing 18 shows an example of a multipart/re-

lated document. This document is the body of a NOTIFY message received

5.5 Video-Call Scenario 113

from a RLS. It includes the RLMI document, the aggregate presence infor-

mation and the presence information of the particular resources.

114

6 Summary

The IP Multimedia Subsystem simplifies the deployment of IP-based services

in the cellular world. Ongoing IMS releases add interworking with WLAN

and support for fixed and cable networks, which brings the IMS closer to

the goal of access independence. Apart from new services, cost savings are a

strong argument for the IMS.

The presence service for the IMS is more than a simple service; it serves as an

enabler for many different services (e.g., Instant Messaging). The presence

service provides information about points of reachability for communication

and their status, location information, current activities and so forth. De-

pending on the context, presence service can be perceived either as integral

part of the IMS or as a service enabler on top of the IMS. This is the rea-

son why 3GPP as well as OMA have their own, compatible, presence service

specifications.

The OMA Presence SIMPLE enabler strongly interacts with the OMA XDM

enabler. XDM allows access and manipulation of user-specific service-related

information in terms of XML files stored in the network. XCAP is the pro-

tocol to access and manipulate XML files and the SUBSCRIBE/NOTIFY

mechanism permits subscriptions to changes in XML files. Presence Au-

thorization Rules, Presence Lists, URI Lists and Group Usage Lists are the

application usages supported by the OMA Presence SIMPLE enabler. Other

enablers can introduce new application usages.

In Section 2.4, we have discussed different data formats for presence informa-

tion. The least common denominator of all presence data formats is PIDF.

Whenever a client cannot understand certain extensions, it understands at

least the presence information encoded in PIDF. Both the IMS specifications

for Presence and the OMA Presence SIMPLE enabler support several exten-

sions to PIDF and both are open for new extensions. The discussed presence

data formats are applicable for a broad range of services.

A RLS helps to save network traffic and reduces the load on terminals. We

115

have proposed a generic RLS design, which utilizes, next to a XCAP server,

a HTTP server or database as source of XML files. The presence information

of a single resource is either fetched from a Presence Server using SIP sub-

scriptions or queried from a local authority of resources. The modular design

allows adding new sources of XML files in a transparent way and extending

the possibilities to query the presence information of a single resource. Sec-

tion 4 has highlighted some implementation details of the RLS prototype,

which has been implemented as module for the open-source OpenSER SIP

server.

In Section 5, we have proposed several architectures for a Presence Aggrega-

tion Server. A Watcher does not perceive any difference between a subscrip-

tion to aggregate or plain presence information. Apart from a subscription

to a RLS, the Watcher does not even know if the presence information is

aggregated or not.

Aggregation of presence information has a wide field of application but the

existing concepts for aggregation are often limited. The aggregation can

become very complex and it is to question whether an aggregation policy

can be efficiently modeled in XML.

The question how presence aggregation could be implemented in detail and

how to model advanced aggregation rules is left for further studies.

116

A RLS Module User Guide

A.1 Exported Module Parameter

This section summarizes all possible rls module configuration parameters.

Please note that the module is named rls rb in order to avoid conflicts with

the existing OpenSER code base.

db url (str): The database URL. This parameter is compulsory.

Example:

modparam(“rls rb”,“db url”, “mysql://openser:openserrw@192.168.10.35/openser”)

backend subs table (str): The name of the database table which stores

back-end subscription information. The default is “rls backend subscriptions”.

Example: modparam(“rls rb”,“backend subs table”, “backend subs”)

rl subs table (str): The name of the database table which stores informa-

tion about resource-list subscriptions. The default is “rls rl subscriptions”.

Example: modparam(“rls rb”,“rl subs table”, “rl subs”)

supported event (str): Adds an event to the list of events which the RLS

handles. At least one event type must be supported.

Example: modparam(“rls rb”,“supported event”, “presence”)

xcap source (str): The source of the rls-service and resource-list defini-

tions. The valid values are “XCAP” (XCAP server), “HTTP” (HTTP

Server) and “DB” (database). The default value is “DB”.

Example: modparam(“rls rb”,“xcap source”, “HTTP”)

xcap root (str): The URL pointing to the XCAP source. Depending on

the value of the xcap source parameter the value must be a URL to a

XCAP, HTTP or database server. This parameter is compulsory.

Example: modparam(“rls rb”,“xcap root”, “http://example.org/”)

A.1 Exported Module Parameter 117

xcap table (str): The name of the database table which stores XML files.

The default value is “xcap”.

Example: modparam(“rls rb”,“xcap table”, “xml table”)

xcap auth type (str): The type of authentication used for the HTTP or

XCAP server. The valid values are “digest” for HTTP Digest authen-

tication and “simple” for HTTP Simple authentication. The default

value is “digest”.

Example: modparam(“rls rb”,“xcap auth type”, “simple”)

xcap username (str): The authentication user name. The default value is

NULL.

Example: modparam(“rls rb”,“xcap username”, “marlene”)

xcap password (str): The authentication password. The default value is

NULL.

Example: modparam(“rls rb”,“xcap password”, “ab12cd”)

retry interval (int): The time in seconds before an unsuccessful back-end

subscription is, at the earliest, retried. The default value is 120.

Example: modparam(“rls rb”,“retry interval”, 480)

retry timer interval (int): The timer interval in seconds before a timer

retries all expired back-end subscriptions and back-end subscriptions

with an expired retry interval. The default value is 100.

Example: modparam(“rls rb”,“retry timer interval”, 30)

notify interval (int): The timer interval when the module sends notifica-

tions for active resource-list subscriptions (only if presence information

has changed). If the value is 0, a NOTIFY is sent immediately with

every presence information update of a resource in the list. The default

value is 40.

Example: modparam(“rls rb”,“notify interval”, 0)

A.1 Exported Module Parameter 118

resource list cache time (int): The time in seconds how long a resource

list should be kept in the cache. The default value is 1800.

Example: modparam(“rls rb”,“rl cache timer”, 560)

no rl subs return code (int): The return code of the function rls handle subscribe

if no resource list corresponds to the requested URI. The default value

is 1.

Example: modparam(“rls rb”,“no rl subs return code”, 42)

always reply (int): If this parameter is set to 1, the module sends an ap-

propriate response message to SUBSCRIBE requests, even if no re-

source list corresponds to the requested URI. The default value is 0.

Example: modparam(“rls rb”,“always reply”, 1)

max expires (int): The maximum admissible expires value of resource-list

subscriptions. The default value is 3600.

Example: modparam(“rls rb”,“max expires”, 120)

send partial state (int): If this value is set to 1, the module sends notifi-

cations with partial state. The default value is 1.

Example: modparam(“rls rb”,“send partial state”, 0)

server address (str): The RLS address which will become the value of

Contact header fields. This parameter is obligatory.

Example: modparam(“rls rb”,“server address”, “sip:ps01.ibkt.tuwien.ac.at:5060”)

outbound proxy (str): The outbound proxy URL to be used when send-

ing back-end subscribe requests. The default value is NULL.

Example: modparam(“rls rb”,“outbound proxy”, “sip:10.10.0.1”)

rl subs hash size (int): The size of the hash table which stores resource-

list subscriptions. The default value is 512.

Example: modparam(“rls rb”,“rl subs hash size”, 1024)

A.2 Exported Functions 119

rl hash size (int): The size of the hash table which stores resource lists.

The default value is 512.

Example: modparam(“rls rb”,“rl hash size”, 1024)

A.2 Exported Functions

The module exports two functions which can be called from the configuration

script.

rls handle subscribe(): This function handles incoming SUBSCRIBE re-

quests. If the SUBSCRIBE request targets a resource list, this function

stores/updates the dialog information, initiates back-end subscriptions

(in the case of a new subscription), sends a reply message and an imme-

diate NOTIFY request. If the parameter “always reply” is set to 1, this

function sends a reply message even if the SUBSCRIBE request is not

for a resource list. This function can be used from REQUEST ROUTE.

The return values are:

• 0 if no error has occurred

• -1 if an error has occurred

• the value specified by the parameter “no rl subs return code” if

the SUBSCRIBE request is not for a resource list and the param-

eter “always reply” is not set to 1.

rls handle notify(): This function handles incoming NOTIFY requests of

back-end subscriptions. It stores/updates the information to the database

and sends an appropriate reply message. This function can be used

from REQUEST ROUTE. The return values are:

• 0 if no error has occurred.

• -1 if an error has occurred.

A.3 Database Table Definitions 120

A.3 Database Table Definitions

The module depends on two database tables. One stores the dialog infor-

mation of resource-list subscriptions (rls rl subscriptions) and a second one

(partly) the dialog information of back-end subscriptions (rls backend subscriptions).

A third table (xcap) is necessary if the module fetches the rls-service, respec-

tively resource list, definitions from the database.

Tab. 7 outlines the layout of table rls rl subscriptions. Since the presence

module is in charge of caching resource-list subscriptions, the presence mod-

ule forces this layout.

Tab. 8 shows the layout of table rls backend subscriptions. The dialog infor-

mation of back-end subscriptions is partly stored in the table pua used by

the pua module.

Tab. 9 shows the layout of table xcap. The valid values for doc type are:

• 1 - pres-rules

• 2 - resource-list

• 3 - rls-services

A.3 Database Table Definitions 121

Key Type Description

id int(10) Unique ID, primary key

presentity uri varchar(128) Presence URI

to user varchar(64) User part of To header URI

to domain varchar(64) Domain part of To header URI

watcher username varchar(64) The watchers’s user name

watcher domain varchar(64) The watchers’s domain

expires int(11) The time at which the subscription ex-
pires; Expires header field value + time()

event varchar(64) Event string

event id varchar(64) Event ID parameter value

callid varchar(64) Call-ID header field value

to tag varchar(64) Tag value from the To header field

from tag varchar(64) Tag value from the From header field

local cseq int(11) Local CSeq header field value

remote cseq int(11) Remote CSeq header field value

record route text Record-Route header field

socket info varchar(64) Socket information

contact varchar(64) Contact header field

local contact varchar(64) Local contact

version int(11) Version; used for sending NOTIFYs

status int(11) Subscription status

reason varchar(64) Reason parameter value

Table 7: rls rl subscription table

A.3 Database Table Definitions 122

Key Type Description

id int(10) Unique ID, primary key

resource uri varchar(128) Resource URI

watcher uri varchar(128) Watcher URI

event varchar(64) Event String

supported mime types varchar(255) Comma separated string of supported
MIME types

state varchar(64) Subscription status

reason varchar(64) Reason parameter value

body binary NOTIFY body

content type varchar(64) Content type of NOTIFY body

retry time datetime Point in time when an inactive sub-
scription is retried

expires datetime Point in time when an active subscrip-
tion expires

rl subs id varchar(512) Dialog ID of corresponding resource-
list subscription

dirty int(1) 1 if updated status has not been re-
ported to the resource-list subscriber
yet

Table 8: rls backend subscriptions table

Key Type Description
id int(10) Unique ID, primary key
username varchar(64) Owner’s user name
domain varchar(54) Owner’s domain
doc binary XML document
doc type int(11) Type of the XML document

Table 9: xcap table

123

B List of Abbreviations

2G Second Generation

3G Third Generation

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

AoR Address of Record

AS Application Server

AUID Application Unique ID

BGCF Breakout Gateway Control Function

CAMEL Customized Applications for Mobile network Enhanced Logic

CIPID Contact Information for the PIDF

CS Circuit Switched

CSCF Call/Session Control Function

DB Database

DMC Device Management Client

DMS Device Management Server

DNS Domain Name Server

DSL Digital Subscriber Line

ETSI European Telecommunications Standards Institute

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

I-CSCF Interrogating-CSCF

IETF Internet Engineering Task Force

IMPI IP Multimedia Private Identities

IMPU IP Multimedia Public Identities

IMS IP Multimedia Subsystem

IM-SSF IP Multimedia Service Switching Function

124

MIME Multipurpose Internet Mail Extensions

MGCF Media Gateway Control Function

MGW Media Gateway

MMD Multimedia Domain

MRF Media Resource Function

MRFC Media Resource Function Controller

MRFP Media Resource Function Processor

NAI Network Access Identifier

OMA Open Mobile Alliance

OMNA Open Mobile Naming Authority

OSA-SCS Open Service Access-Service Capability Server

PAL Presence Aggregation Language

P-CSCF Proxy-CSCF

PIDF Presence Information Data Format

PNA Presence Network Agent

PS Presence Server

PSTN Public Switched Telephone Network

PUA Presence User Agent

QoS Quality of Service

RADIUS Remote Authentication Dial In User Service

RFC Request for Comments

RLMI Resource List Meta Information

RLS Resource List Server

RPID Rich Presence Information Data Format

S-CSCF Serving-CSCF

SER SIP Express Router

SGW Signaling Gateway

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SLF Subscription Locator Function

125

TISPAN Telecoms and Internet converged Services and Protocols for Advanced Networks

TLS Transport Layer Security

UA User Agent

UE User Equipment

UICC Universal Integrated Circuit Card

UMTS Universal Mobile Telecommunications System

WLAN Wireless Local Access Network

XCAP XML Configuration Access Protocol

XDM XML Document Management

XDMC XML Document Management Client

XDMS XML Document Management Server

XML eXtensible Markup Language

XUI XCAP User Identifier

LIST OF FIGURES 126

List of Figures

1 Vertical service versus horizontal service implementations (source:

[27], p. 5) . 11

2 3GPP IMS architecture overview 13

3 Relation of Private and Public User Identities in 3GPP R5

(source: [22], p. 41) . 16

4 Relation of Private and Public User Identities in 3GPP R6

(source: [22], p. 42) . 17

5 Presence service components 19

6 OMA Presence SIMPLE reference architecture (source: [47],

p. 12) . 21

7 PUBLISH/SUBSCRIBE/NOTIFY example message flow . . . 23

8 XML Document Management architecture (source: [53], p. 14) 25

9 The SIP presence data model (source: [22], p. 300) 43

10 The SIP presence data model mapped to the PIDF (source:

[22], p. 302) . 45

11 RLS network diagram . 50

12 Exemplary RLS message flow 52

13 XCAP <service> request example 53

14 External Entities . 56

15 RLS block diagram . 57

16 Notifier component . 62

17 Resource List Fetcher component 63

18 SIP Back-End Subscriber component 64

19 Source-code files and dependencies on OpenSER modules and

external libraries . 69

20 Relation between a resource list and multipart/related document 77

21 Aggregation of multiple Presence Sources 82

22 Aggregation solution with a Presence Server 87

23 Aggregation solution with a RLS 89

LIST OF FIGURES 127

24 Call-center scenario . 94

25 The Presence Sources of the agents publishing presence infor-

mation . 95

26 Subscription to aggregate presence information (single Presen-

tity) . 98

27 The Presence Sources of the agents (Presentities) publishing

presence information . 102

28 Subscription to aggregate presence information (multiple Pre-

sentities) . 104

LIST OF TABLES 128

List of Tables

1 Reference points (XDM architecture) 28

2 Parameters of the event package ua-profile 30

3 Supported presence data formats (m: mandatory, o: optional,

-: unmentioned) . 40

4 Elements of the RPID . 46

5 Source-code files . 71

6 Comparison of aggregation architectures 93

7 rls rl subscription table . 121

8 rls backend subscriptions table 122

9 xcap table . 122

LISTINGS 129

Listings

1 Example of Presence Authorization Rules 35

2 Example of a Presence List . 37

3 Example of a URI List . 39

4 Example of a PIDF document 42

5 XCAP <service> response example 53

6 Resource list example . 54

7 Published PIDF document of agent 1 (body of messages (1)-

(3) in Fig. 25) . 96

8 Published PIDF document of agent 2 (body of messages (7)-

(9) in Fig. 25) . 97

9 Aggregate PIDF document with the contact address of an

agent (body of messages (11)-(13) in Fig. 26) 99

10 Aggregate PIDF document with the contact address of the call

center (body of messages (11)-(13) of Fig. 26) 100

11 Published PIDF document of agent 1 (body of messages (1)-

(3) of Fig. 27) . 103

12 Published PIDF document of agent 2 (body of messages (7)-

(9) of Fig. 27) . 103

13 Aggregate PIDF document ((body of messages (21)-(23) of

Fig. 28) . 105

14 Published PIDF document of Alice 107

15 Published PIDF document of Bob 108

16 Published PIDF document of Carol 108

17 Aggregate PIDF document . 109

18 Multipart/related body sent by an RLS 109

REFERENCES 130

References

[1] Apache HTTP Server Project. Available at http://httpd.apache.org, Last

retrieved Jan. 15, 2008.

[2] CounterPath Homepage. Available at http://www.counterpath.com, Last

retrieved Jan. 15, 2008.

[3] Data sheet Cisco Service Node for Linksys One. Available at

http://www.cisco.com/en/US/products/ps7194/products_data_

sheet0900aecd805c3cc1.html, Last retrieved Jan. 15, 2008.

[4] Libcurl - the multiprotocol file transfer library. Available at http://curl.

haxx.se/libcurl/, Last retrieved Jan. 15, 2008.

[5] OpenSER. Available at http://www.openser.org, Last retrieved Jan. 15,

2008.

[6] SIP for Instant Messaging and Presence Leveraging Extensions (simple) Char-

ter. Available at http://www.ietf.org/html.charters/simple-charter.

html, Last retrieved Jan. 15, 2008.

[7] The XML C parser and toolkit of Gnome. Available at http://xmlsoft.

org/, Last retrieved Jan. 15, 2008.

[8] 3GPP. Bootstrapping interface (Ub) and network application function inter-

face (Ua); Protocol details. TS 24.109 V6.9.0, 3rd Generation Partnership

Project (3GPP).

[9] 3GPP. Customized Applications for Mobile network Enhanced Logic

(CAMEL); Service description; Stage 1. TS 22.078 V6.9.0, 3rd Generation

Partnership Project (3GPP).

[10] 3GPP. Generic Authentication Architecture (GAA); Access to network ap-

plication functions using Hypertext Transfer Protocol over Transport Layer

Security (HTTPS). TS 33.222 V6.6.0, 3rd Generation Partnership Project

(3GPP).

[11] 3GPP. IP Multimedia Subsystem (IMS); Stage 2. TS 23.228 V6.16.0, 3rd

Generation Partnership Project (3GPP).

[12] 3GPP. Network architecture. TS 23.002 V6.10.0, 3rd Generation Partnership

Project (3GPP).

REFERENCES 131

[13] 3GPP. Open Service Access (OSA); Stage 2. TS 23.198 V6.0.0, 3rd Genera-

tion Partnership Project (3GPP).
[14] 3GPP. Presence service; Architecture and functional description; Stage 2.

TR 23.141 V6.9.0, 3rd Generation Partnership Project (3GPP).
[15] 3GPP. Presence service; Security. TS 33.141 V6.2.0, 3rd Generation Part-

nership Project (3GPP).
[16] 3GPP. Presence service using the IP Multimedia (IM) Core Network (CN)

subsystem;Stage 3. TS 24.141 V6.8.0, 3rd Generation Partnership Project

(3GPP).
[17] ABI Research. IP Multimedia Subsystem Industry Survey Results,

2005. Available at http://www.abiresearch.com/whitepaperDL.jsp?id=

15, Last retrieved Jan. 15, 2008.
[18] B. Aboba and M. Beadles. The Network Access Identifier. RFC 2486, Internet

Engineering Task Force, Jan. 1999.
[19] V. Beltran, X. Sanchez-Loro, J. Paradells, and J. Casademont. Optimization

of Presence Enabled Services over Cellular Networks based on a Personal

Proxy. European Internet and Multimedia Systems and Applications , Pro-

ceedings of, Mar. 2007.
[20] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and

J. Siméon. XML Path Language (XPath) 2.0. Technical report, W3C, June

2006. Available at http://www.w3.org/TR/2006/CR-xpath20-20060608/,

Last retrieved Jan. 15, 2008.
[21] O. Bergmann, J. Ott, and D. Kutscher. A Script-based Approach to Dis-

tributed Presence Aggregation. Wireless Networks, Communications and Mo-

bile Computing, 2005 International Conference on, pages 1168– 1174 Vol.2,

2005.
[22] G. Camarillo and M. A. Garcia-Martin. The 3G IP Multimedia Subsystem

(IMS). Merging the Internet and the Cellular Worlds. John Wiley & Sons

Ltd, second edition, Dec. 2005.
[23] I. Cooper, I. Melve, and G. Tomlinson. Internet Web Replication and Caching

Taxonomy. RFC 3040, Internet Engineering Task Force, Jan. 2001.
[24] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and Instant

Messaging. RFC 2778, Internet Engineering Task Force, Feb. 2000.

REFERENCES 132

[25] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, Internet

Engineering Task Force, Jan. 1999.
[26] E. E. Burger. A Mechanism for Content Indirection in Session Initiation

Protocol (SIP) Messages. RFC 4483, Internet Engineering Task Force, May

2006.
[27] Ericsson. Introduction to IMS, Mar. 2007. Available at http://www.

ericsson.com/technology/whitepapers/8123_Intro_to_ims_a.pdf, Last

retrieved Jan. 15, 2008.
[28] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June

1999. Updated by RFC 2817.
[29] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,

and L. Stewart. HTTP Authentication: Basic and Digest Access Authenti-

cation. RFC 2617, Internet Engineering Task Force, June 1999.
[30] J. Galvin, S. Murphy, S. Crocker, and N. Freed. Security Multiparts for

MIME: Multipart/Signed and Multipart/Encrypted. RFC 1847, Internet En-

gineering Task Force, Oct. 1995.
[31] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Exten-

sions for Distributed Authoring – WEBDAV. RFC 2518, Internet Engineering

Task Force, Feb. 1999.
[32] J. C. Han, S. O. Park, S. G. Kang, and H. H. Lee. A Study on SIP-based

Instant Message and Presence. Advanced Communication Technology, The

9th International Conference on, pages 1298 – 1301, Feb. 2007.
[33] E. Levinson. The MIME Multipart/Related Content-type. RFC 2387, Inter-

net Engineering Task Force, Aug. 1998.
[34] M. Lonnfors and K. Kiss. Session Initiation Protocol (SIP) User Agent Ca-

pability Extension to Presence Information Data Format (PIDF). Internet

Draft draft-ietf-simple-prescaps-ext-07, Internet Engineering Task Force, July

2006.
[35] M. Lonnfors, E. Leppanen, H. Khartabil, and J. Urpalainen. Presence

Information Data format (PIDF) Extension for Partial Presence. Inter-

net Draft draft-ietf-simple-partial-pidf-format-08, Internet Engineering Task

Force, Nov. 2006.

REFERENCES 133

[36] I. Miladinovic. Presence and event notification in UMTS IP multimedia sub-

system. 3G Mobile Communication Technologies, 2004. 3G 2004. Fifth IEE

International Conference on , pages 44 – 48, 2004.

[37] I. Morris. IMS Under Scrutiny, Nov. 2006.

[38] A. Niemi. Session Initiation Protocol (SIP) Extension for Event State Pub-

lication. RFC 3903, Internet Engineering Task Force, Oct. 2004.

[39] A. Niemi, M. Lonnfors, and E. Leppanen. Publication of Partial Presence

Information. Internet Draft draft-lonnfors-simple-partial-publish-06, Internet

Engineering Task Force, Feb. 2007.

[40] OMA. Open Mobile Naming Authority. Available at http://www.

openmobilealliance.org/tech/omna/, Last retrieved Jan. 15, 2008.

[41] OMA. Open Mobile Naming Authority URI-List Usage Name Registry,.

[42] OMA. OMA Device Management. Technical Report v1.1.2, Open

Mobile Alliance Ltd. (OMA), Jan. 2004. Available at http://www.

openmobilealliance.org/release_program/dm_v112.html, Last retrieved

Jan. 15, 2008.

[43] OMA. OMA Instant Messaging and Presence Service [IMPS]. Techni-

cal Report v1.2.1, Open Mobile Alliance Ltd. (OMA), Oct. 2005. Avail-

able at http://www.openmobilealliance.org/release_program/imps_

v1_2_1.html, Last retrieved Jan. 15, 2008.

[44] OMA. OMA Management Object for XML Document Management. Tech-

nical Report v1.0.1, Open Mobile Alliance Ltd. (OMA), Nov. 2006.

[45] OMA. OMA Presence SIMPLE. Technical Report v1.0, Open Mobile Alliance

Ltd. (OMA), Aug. 2006. Available at http://www.openmobilealliance.

org/release_program/Presence_simple_v1_0.html, Last retrieved Jan.

15, 2008.

[46] OMA. OMA XML Document Management. Technical Report v1.0.1,

Open Mobile Alliance Ltd. (OMA), Nov. 2006. Available at http://

www.openmobilealliance.org/release_program/xdm_v1_0_1.html, Last

retrieved Jan. 15, 2008.

[47] OMA. Presence SIMPLE Architecture Document. Technical Report v1.0.1,

Open Mobile Alliance Ltd. (OMA), Nov. 2006.

REFERENCES 134

[48] OMA. Presence SIMPLE Requirements. Technical Report v1.0, Open Mobile

Alliance Ltd. (OMA), July 2006.

[49] OMA. Presence SIMPLE Specification. Technical Report v1.0.1, Open Mobile

Alliance Ltd. (OMA), Nov. 2006.

[50] OMA. Presence XDM Specification. Technical Report v1.0.1, Open Mobile

Alliance Ltd. (OMA), Nov. 2006.

[51] OMA. Resource List Server (RLS) XDM Specification. Technical Report

v1.0.1, Open Mobile Alliance Ltd. (OMA), Nov. 2006.

[52] OMA. Shared XDM Specification. Technical Report v1.0.1, Open Mobile

Alliance Ltd. (OMA), Nov. 2006.

[53] OMA. XML Document Management Architecture. Technical Report v1.0,

Open Mobile Alliance Ltd. (OMA), June 2006.

[54] OMA. XML Document Management (XDM) Specification. Technical Report

v1.0.1, Open Mobile Alliance Ltd. (OMA), Nov. 2006.

[55] J. Peterson. A Presence-based GEOPRIV Location Object Format. RFC

4119, Internet Engineering Task Force, Dec. 2005.

[56] J. Peterson and C. Jennings. Enhancements for Authenticated Identity Man-

agement in the Session Initiation Protocol (SIP). RFC 4474, Aug. 2006.

[57] D. Petrie. A Framework for Session Initiation Protocol User Agent Profile

Delivery. Internet Draft draft-ietf-sipping-config-framework-09, Internet En-

gineering Task Force, Oct. 2006.

[58] D. Petrie. Extensions to the Session Initiation Protocol (SIP) User Agent Pro-

file Delivery Change Notification Event Package for the Extensible Markup

Language Language Configuration Access Protocol (XML). Internet Draft

draft-ietf-simple-xcap-00, Internet Engineering Task Force, Oct. 2006.

[59] B. Ramsdell. S/MIME Version 3 Message Specification. RFC 2633, Internet

Engineering Task Force, June 1999.

[60] E. Rescorla. HTTP over TLS. RFC 2818, Internet Engineering Task Force,

May 2000.

[61] A. B. Roach. Session Initiation Protocol (SIP)-Specific Event Notification.

RFC 3265, June 2002.

REFERENCES 135

[62] A. B. Roach, B. Campbell, and J. Rosenberg. A Session Initiation Protocol

(SIP) Event Notification Extension for Resource Lists. RFC 4662, Internet

Engineering Task Force, Aug. 2006.

[63] J. Rosenberg. A Presence Event Package for the Session Initiation Protocol

(SIP). RFC 3856, Internet Engineering Task Force, Aug. 2004.

[64] J. Rosenberg. A Watcher Information Event Template-Package for the Session

Initiation Protocol (SIP). RFC 3857, Internet Engineering Task Force, Aug.

2004.

[65] J. Rosenberg. Extensible Markup Language (XML) Formats for Representing

Resource Lists. Internet Draft draft-ietf-simple-xcap-list-usage-05, Internet

Engineering Task Force, Aug. 2005. Replaced by RFC 4826.

[66] J. Rosenberg. A Data Model for Presence. RFC 4479, Internet Engineering

Task Force, July 2006.

[67] J. Rosenberg. A Processing Model for Presence. Internet Draft draft-

rosenberg-simple-presence-processing-model-02, Internet Engineering Task

Force, June 2006.

[68] J. Rosenberg. An Extensible Markup Language (XML) Document Format

for Indicating A Change in XML Configuration Access Protocol (XCAP)

Resources. Internet Draft draft-ietf-simple-xcap-diff-04, Internet Engineering

Task Force, Oct. 2006.

[69] J. Rosenberg. Coexistence of P-Asserted-ID and SIP Identity. Internet Draft

draft-rosenberg-sip-identity-coexistence-00, Internet Engineering Task Force,

June 2006.

[70] J. Rosenberg. Extensible Markup Language (XML) Formats for Representing

Resource Lists. RFC 4826, May 2007.

[71] J. Rosenberg. Presence Authorization Rules. Internet Draft draft-ietf-simple-

presence-rules-10, Internet Engineering Task Force, July 2007.

[72] J. Rosenberg. The Extensible Markup Language (XML) Configuration Access

Protocol (XCAP). RFC 4825, Internet Engineering Task Force, May 2007.

[73] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.

RFC 3261, Internet Engineering Task Force, June 2002.

REFERENCES 136

[74] H. Schulzrinne. The tel URI for Telephone Numbers. RFC 3966, Internet

Engineering Task Force, Dec. 2004.
[75] H. Schulzrinne. CIPID: Contact Information for the Presence Information

Data Format. RFC 4482, Internet Engineering Task Force, July 2006.
[76] H. Schulzrinne. The SIMPLE Presence and Event Architecture. Communi-

cation System Software and Middleware, 2006. Comsware 2006. First Inter-

national Conference on , pages 1 – 9, Jan. 2006.
[77] H. Schulzrinne, V. Gurbani, P. Kyzivat, and J. Rosenberg. RPID: Rich Pres-

ence Extensions to the Presence Information Data Format (PIDF). RFC

4480, Internet Engineering Task Force, July 2006.
[78] H. Schulzrinne, R. Shacham, W. Kellerer, and S. Thakolsri. Composing Pres-

ence Information. Internet Draft draft-schulzrinne-simple-composition-02, In-

ternet Engineering Task Force, June 2006.
[79] H. Schulzrinne, H. Tschofenig, J. Morris, J. Cuellar, J. Polk, and J. Rosen-

berg. Common Policy: A Document Format for Expressing Privacy Prefer-

ences. RFC 4745, Internet Engineering Task Force, Feb. 2007.
[80] R. Shacham, H. Schulzrinne, W. Kellerer, and S. Thakolsri. Composition for

Enhanced SIP Presence. Computers and Communications, 2007. ISCC 2007.

IEEE Symposium on , pages 203 – 210, July 2007.
[81] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J. Peterson.

Presence Information Data Format (PIDF). RFC 3863, Internet Engineering

Task Force, Aug. 2004.
[82] J. Urpalainen. An Extensible Markup Language (XML) Patch Operations

Framework Utilizing XML Path Language (XPath) Selectors. Internet Draft

draft-ietf-simple-xml-patch-ops-02, Internet Engineering Task Force, Mar.

2006.
[83] F. Wegscheider. Minimizing Unnecessary Notification Traffic in the IMS Pres-

ence System. Wireless Pervasive Computing, 2006 1st International Sympo-

sium on, page 6 pp., Jan. 2006.
[84] B. Zhao and C. Liu. Efficient SIP-Specific Event Notification. Networking,

International Conference on Systems and International Conference on Mobile

Communications and Learning Technologies, 2006. ICN/ICONS/MCL 2006.

International Conference on, page 1, Apr. 2006.

