

M A G I S T E R A R B E I T

Generic web service client for SOPA framework

Ausgeführt am Institut für Softwaretechnik und Interaktive Systeme

Der Technischen Universität Wien

Unter der Anleitung von O. Univ. Prof. A Min Tjoa

durch

Reza Rawassizadeh

Fugbach gasse 8/6

A-1020,Wien

_______________ ________________

Datum Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Arbeit selbständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den
benutzen Quellen wörtlich oder entnommenen Stellen als solche kenntlich gemacht
habe.

7-2-2007 Reza Rawassizadeh

Abstract

In service Oriented computing domains, a service needs to be requested by a client or

another service, service will be executed after receiving a SOC patterned request

from a client (or another service).

The Main goal of this project is to provide a generic client which can execute all

given services by utilizing WSDL file.

This component is designed to be embedded in SOPA (Service Oriented Pipeline

Architecture) which is a lightweight implementation of service oriented framework.

SOPA aims to extend the usage of Web Services to personal computers with a simple

and powerful approach, using its enterprise components. This framework help

developers to build a useful gadget from existing services and share it with others.

SOPA framework has been developed in Institute of Software Technology and

Interactive Systems in conjunction with SemanticLIFE project.

In the first part of this thesis an introduction to web service technologies is provided

then each of java web service libraries will be analyzed separately, and finally the

functionality of this component in SOPA framework will be explored.

 2

Kurzfassung

Diese Diplomarbeit ist über die Bildung eines generischen Clients zur durschführung

von Service mittels WSDL.

In dieser Arbeit wird die SOPA(Service Oriented Pipeline Architecture) framework

als Basis der Implementierung herangezogen.

Auf der Grundlage von sogenannten Pipelines der SOPA Architektur wird in dieser

Diplomarbeit erreicht, dass der Benutzer in einfachster Weise geeignete Services für

die die Zusammensetzung (auch komplexer) Aufgaben generisch auszuwählen.

Nach Angabe geeigneter Inputparameter wird Innerhalb der Herangehenweise in

SOPA die entsprechenden SOPA request getätigt.

Als letzer Schrift erfolgt die Durchführung der SOPA requests durch die sogennante

„Execution engine” , welche die empfängen “SOPA-reuqests” bearbeitet und letzlich

in einem SOAP response oder String format der ergebnis des Web service liefert.

Die Arbeit liefert in den ersten Kapiteln eine Zusammenschau der Web-Service-

Technologie, um dann in die letzen zwei Kapiteln den Beitrag welcher vor allem in

der Implementierung zu sehen ist, zu beschreiben.

 3

Acknowledgment

This work is the successive result of the SOPA framework project which has been

done in the Institute for Software Technology and Interactive Systems (Vienna

University of Technology). I would like to thank Professor A Min Tjoa who accepted

me in his institute and helped me with this interesting project which was a

remarkable experience that will lead me to another research in this field.

Also I would like to sincerely thank Mr. Amin Anjomshoaa for his help, patience and

guidance.

I would like to thank my parents, for their love and support. Without their help this

degree would not have been possible.

 4

Table of Content

Chapter 1 ... 7
Introduction... 7

1.1. Web service Clients .. 8
1.1.1 SOAPClient.. 8
1.1.2 WSIF (Web Service Invocation framework) 9

Chapter 2 ... 11
Introduction to web service technology .. 11

2.1 What is Service? .. 11
2.2 Building Blocks of Service Oriented Architecture 12
2.3 Web service roles... 13
2.4 General Web service terms and definitions ... 15
2.5 Service Models .. 17
2.6 Web service description structure.. 18

Abstract definition .. 19
Concrete definition ... 19
Web Services Definition Language (WSDL)..................................... 20
Supplementary constructs... 25

2.7 SOAP ... 26
SOAP message structure .. 27

2.8 UDDI ... 30
2.9 Representational State Transfer ... 35

Chapter 3 ... 36
Java Web service client models .. 36

3.1 Few notes about JAX-WS 2.0 ... 37
3.2 Web Service Client for JAX-RPC 1.1 ... 39

3.2.1 Stub.. 39
3.2.2 DII (Dynamic Invocation Interface).. 41
3.2.3 Dynamic Proxies ... 43

3.3 Web Service Client for JAX-WS 2.0... 44
3.3.1 Dispatch (XML level Client)... 45
3.3.2 Proxy (Object level client)... 47

 5

3.4 Comparison between JAX-RPC and JAX-WS...................................... 48
Chapter 4 ... 50
Generic Client specification.. 50

4.1 Architecture ... 51
4.1.1 WSDL Parsing Phase .. 53
4.1.2 Message Creation Phase .. 55
4.1.3 Execution Phase... 56

4.2 Design .. 57
4.2.1 Design as Abstract component .. 57
4.2.2 Design as SOPA plug-in.. 59

4.3 Implementation .. 62
4.3.1 at.slife.webservice.clientGUI Package 63
4.3.2 at.slife.webservice.general package .. 67
4.3.3 at.slife.webservice.pipeline package ... 68
4.3.4 at.slife.webservice.wsClient package .. 70
4.3.5 at.slife.webservice Package ... 74

4.4 UML Diagrams.. 74
4.4.1 Class diagram .. 74
4.4.2 Sequence diagram.. 75

4.5 User Manual... 79
Chapter 5 ... 86
Integration with SOPA.. 86

5.1 General Information... 86
5.1.1 Coordination.. 87
5.1.2 Transaction .. 87
5.1.3 Business Activity... 89
5.1.4 Orchestration ... 90
5.1.5 Choreography .. 90

5.2 Introduction to BPEL4WS or WS-BPEL .. 92
5.3 Introduction to SOPA .. 93

5.3.1 What is pipeline? ... 94
5.3.2 SOPA plug-in model ... 95
5.3.3 SOPA features ... 97
5.3.4 SOPA Service monitoring framework....................................... 99
5.3.5 SOPA Alternative services (service backup) 99
5.3.6 SOPA implementation example (SemanticLIFE) 100

5.3.3 WS-BPEL (BPEL4WS) comparison with SOPA............................. 100
Appendix ... 102

 6

Restrictions .. 102
General Restrictions ... 102
WS Client invocation restrictions... 103

Reference ... 104

 7

Chapter 1

Introduction

Information of this chapter is coming from following resources:

• The Java™ EE 5 Tutorial For Sun Java System Application Server
Platform Edition 9

• WSIF: Web Service Invocation framework http://ws.apache.org/wsif

• SOAP client http://www.soapclient.com

In service Oriented computing domain, when a service is needed to be consumed, a
client or service requestor should be available for that service to consume (request)
it. The main steps for this approach are as follows:

1. Based on the service WSDL file, user can choose Service, port, operation and
fills associated input values. The results can be either exported as input of
SOPA framework as pipelines or can be used in abstract mode to call the
Web service.

2. After user provides operation’s essential inputs through GUI or CallWS client
plug-in, user or SOPA framework will create a SOAP request for web
service.

3. Execution engine gets the created SOAP request and sends it for execution;
process is suspended until the result is returned from web service. Result
would be a SOAP response (if service execution is available) in String
format.

 8

In rest of this chapter we will introduce some related technologies and existing
SOAP clients.

1.1. Web service Clients

Following technologies do the similar thing like generic client:

Stylus studio tool, Ssoapclient, WSIF

Unfortunately the details of Stylus approach is not published, however it behaves
similar to other SOAP clients. In this chapter we will introduce the other two well-
known web sources clients which are SOAPClient and WSIF.

1.1.1 SOAPClient

In this project SOAPclient used as test tool to check if the web service is available or
not and if my SOAP message created for exact service is right or wrong, when I was
in development phase the availability of service is checked with SOAPClient, For
example when Soap client can’t execute the given service this means for developer
this service is not available for execution. Unfortunately this tool is not free and not
open source so it can’t use it as pattern for this project implementation.

Soap client web site provides following concrete explanation for using soap client:

“This generic SOAP client allows you to access web services using a web browser. It

performs dynamic bindings and executes methods at remote web services. Executing

a SOAP service is a two-step process:

1. Enter the Web Service Description Language (WSDL) file, and click the

retrieve button. The SOAP Server will build HTML forms dynamically based

on the description file.

2. Enter parameters in the HTML form and click the Execute button. This

triggers the execution of the remote method. A SOAP client object will be

created, which performs parameter binding, message construction/delivery,

 9

and finally response decoding. The result is then sent to user’s browser as a

HTTP message.”

For more information you can refer to soap client web site: www.soapclient.com

1.1.2 WSIF (Web Service Invocation framework)

This is another tool provided by apache organization named WSIF, as apache
defined:

“WSIF enables developers to interact with abstract representations of Web services

through their WSDL descriptions instead of working directly with the Simple Object

Access Protocol (SOAP) APIs, which is the usual programming model. With WSIF,

developers can work with the same programming model regardless of how the Web

service is implemented and accessed.

WSIF allows stub less or dynamic invocation (DII) of a Web service, based upon

examination of the meta-data about the service at runtime. It also allows updated

implementations of a binding to be plugged into WSIF at runtime, and it allows the

calling service to defer choosing a binding until runtime.

Finally, WSIF is closely based upon WSDL, so it can invoke any service that can be

described in WSDL.”

It is free and open source like other Apache technologies, but the disadvantage of this
tool is; that it is implemented with JAX-RPC and it is compliant with J2EE 1.4, I In
the proposed approach we have used JAX-WS Which is compatible to JEE5

This component didn’t call web service within stub, proxy object or any other form
of object creation.

This component did it one level lower because WSDL file will be parsed, soap
request will be created from file and it sends soap request in XML format to service
and receive SOAP response also in XML format, we can say this solution is one step

 10

lower level than proxy object creation. For more information about WSIF you can
refer to following link: http://ws.apache.org/wsif

Web services are core component for Service oriented Architecture I tried to take
SOA and Web Service apart and analyze them in different part but it is not possible
to separate them, because Web service are core component of Service Oriented
architecture. I just take a glance on UDDI, because it is out of scope of this project
and try to explain SOAP part in detail because this project relies heavily on SOAP
message creation and SOAP level service execution.

 11

Chapter 2

Introduction to web service technology

Information for this chapter is adopted from following resources:
• Service Oriented Architecture Cocepts, technology and Design by Thomas

Erl
• Service Oriented Architecture a Field guide to integrating XML and web

services by Thomas Erl
• J2EE Web Services By Richard Monson-Haefel
• www.wikipedia.com
• SOAP's Two Messaging Styles By: Rickland Hollar

2.1 What is Service?

As W3C defines a Web service is a software system designed for supporting
interoperable Machine to Machine interaction over a network.
Web services are mostly nothing more than application programming interfaces that
can be accessed over Internet.

The W3C Web service definition cover many systems, but in common usage web
service refers to those services that use SOAP XML envelope and their interfaces
described by WSDL file.

The concept of services within an application has been around for a while.

 12

Web Services, like software components, are independent blocks that collectively
represent a software application. Oppose to traditional components, services have a
number of unique characteristics that allow them to participate as part of a service-
oriented architecture.
Each service is responsible for its own domain, which typically means limiting its
scope to a specific business function or a group of logically related functions.

This approach results in the creation of units of business functionality
loosely bound in a standard communications framework. Due to the independence
that services enjoy within this framework, the programming logic they encapsulate
does not need to comply to any one platform or technology set.

2.2 Building Blocks of Service Oriented Architecture

There is no much effort needed to append some Web services to application. This
limited integration is appropriate as supplementing current application architecture
with service-based functionalities that meets a specific project requirement.

There is a distinct difference between an application that uses Web services and an
application based on a service-oriented architecture

An SOA is a design model with concept of encapsulating application logic with
services that interact via a specific and common communications protocol.
SOA is based on XML Web services and builds upon established XML technologies,
with a focus on exposing loosely coupled services.

Following figure shows how an SOA alter the existing three-tier architecture by
introducing a logical layer that establishes a common point of integration.

 13

Figure 2-1 A logical representation of a service oriented architecture

When Web services are used for cross-application integration they establish
themselves as part of the enterprise infrastructure.

Well-designed service-oriented environments will attempt security and scalability
challenges with appropriate standard specification, rather than application specific
solutions.

2.3 Web service roles

Services can have different roles based on different interaction scenarios. Depending
on the context with which it's viewed, as well as the state of the currently

Service provider

When acting as a service provider, a Web service exposes a public interface through
which it can be invoked by requestors of the service. In a client-server model, the
service provider is mapped to the server and service consumer is mapped to client.

 14

Figure 2-2-0Sending request from service requestor

A service provider can also act as a service requestor.

Service requestor

A service requestor is the sender of a SOAP message or the software component
(that attached to SOAP message) which requesting a specific Web service.

A service requestor can also act as a service provider.

Intermediary

It receives a message from a service requestor then forwards the message to a
service provider.

Following figure explains how an intermediary processes a message; it too can act as
a service provider and as a service requestor.

Figure 2-3 Intermediary Service

 15

Intermediaries can exist in different forms. Some are passive, and simply relay or
route messages. Some others are actively process a message before passing it on.

Intermediaries only can process and modify the message header.

Initial sender

Initial senders can be named as a service requestors (Figure 3.8) but the one who first
create a request.

Ultimate receiver

This is the last Web service which receives a message. These kinds of services
represent the final destination of a message.

2.4 General Web service terms and definitions

When messages are passed between two or more Web services, a differnet
interaction scenarios can happened. For example initial sender can at as a service
requestor, or ultimate receiver can act also as service provider or vice versa.

 16

Message path

The route which a message travels have been named message path. It consists of one
initial sender, one ultimate receiver, and can contain zero or more intermediaries.

Figure 2-4 Message path

The transmission path that traveled by a message can be determined (dynamically)
by routing intermediaries.
Figure 2-4 shows how a message is sent.

 Message exchange patterns

Services which interact within a service-oriented environment participate in one of
the predefined message exchange patterns.

Typical patterns include:

• request and response
• publish and subscribe
• fire and forget (one to one)
• fire and forget (one to many or broadcast)

The request and response pattern are common patterns especially when using in
synchronous data exchange mode. The fire and forget and fire and forget patterns
are used to for asynchronous data transferring.

 17

Choreography

Rules that explains behavioral characteristics of how a group of Web services
interact with each other is choreography. These rules include the sequence in which
Web services can be invoked, conditions that apply to this sequence being carried
out, and a usage pattern that further defines allowed interaction scenarios.

Check figure 2-5 for sequence of logically related services.

Figure 2-5 Choreography example

Activity

Message exchange patterns form the basis for service Activities (also known as
tasks). An activity consists of a group of Web services that interact and collaborate to
perform a function or a logical group of functions.

2.5 Service Models

Web services contain different form of standardization on different levels, including:

• application architecture
• enterprise infrastructure

 18

• global data exchange
Despite their goal is to establishing a framework for information exchange, Web
services themselves don’t have standard shapes or sizes.

2.6 Web service description structure

An XML Web service is described through a stack of definition documents that
constitute a service description.
This description will saved in a file named WSDL (Web service description
language)

Abstract (Service Interface
definition)

Concrete (Service
implementation definition)

Service definition

Other Supplementary
definistions

Figure 2-6 Web Service definition document

 19

Abstract definition

Abstract definition is the logical description of a Web service interface, and it is
independent from implementation details of web service.
Within a WSDL document, this abstract definition is made up of the interface and
message constructs and can contains “types” construct, which is often classified
separately.

Concrete definition

Implementation details about a Web service compose the concrete part of a WSDL
document, It has the binding, service, and endpoint (or port) elements.

Service definition

Generally, Service definition is a root element of WSDL document which
includes the interface (or abstract) and implementation (or concrete) definitions.

Service description

Service description consists of only a WSDL document that provides a service
definition; it can include additional definition documents that they provides
supplemental information.

Web Service framework

The W3C framework for Web services consists of a of three core XML components:
'

• Web Services Definition Language (WSDL)
• Simple Object Access Protocol (SOAP)
• Universal Description, Discovery, and Integration (UDDI)

 20

These standard technologies, in context of service-oriented design, form XML-driven
SOA.

Figure02-7 Web Service architecture

Web Services Definition Language (WSDL)

Web services need to be defined in a consistent manner so that they can be
discovered by and interfaced with other services and applications. The Web Services
Definition Language is a W3C specification providing the foremost language for the
description of Web service definitions.

The integration layer introduced by the Web services framework establishes a
standard, universally recognized and supported programmatic interface. WSDL
enables communication between these layers by providing standardized endpoint
descriptions.
We explain each of the elements representing WSDL.

 21

<definition>

<interface name=”TestInterface”>

...

</interface>

<message name=”testMessage”>

...

</message>

...

<service>

...

</service>

<binding name=”binding1”>

...

</binding>

</definition>

A WSDL is host of primary following components:

• portType or interface: describes a set of messages that a service sends
and/or receives.

• message: This element defines the data elements of an operation.
• service: Defines the ports supported by the Web service.
• binding: Describes a specific communication protocol for a portType

element.

 22

Abstract interface definition

Individual Web service interfaces are represented by WSDL interface elements.
These constructs contain a group of logically related operations. In a component-
based architecture, WSDL interface is comparable to a component interface. An
operation is therefore the equivalent of a component method, as it represents a single
action or function.

A Web service operation consists of a group of related input and output messages.
The execution of an operation requires the transmission or exchange of these
messages between the service requestor and the service provider.

<definition>

 <message name=”BookInfo”>

 ...

 23

 </message>

 <interface name=”catalog”

 <operation name=”GetBook”>

 <input name=”msg1” message=”BookInfo”>

 </operation>

 </interface>

</definition>

A message element can contain one or more input or output parameters that belong
to an operation. Each part element defines one such parameter. It provides a
name/value set, along with an associated data type. In a component-based
architecture, a WSDL part is the equivalent of an input or output parameter (or a
return value) of a component method.

<definitions>

<message name="BookInfo">

 <part name=”title” type=”xs:string”>

 Field Guide

 </part>

 <part name=”author” type="xs:string”>

 Mr. T

 </part>

</message>

</definitions>

• interfaces represent service interfaces, and can contain multiple

• operations represent a Web service function, and can reference multiple

• messages represent collections of input or output parameters, and can contain

multiple parts

• parts represent either incoming or outgoing operation parameter data

 24

Concrete (Implementation) definition

According to the implementation details, this part of WSDL explains concrete
binding details for protocols, such as SOAP and HTTP and other implementation
details.

Within a WSDL document, the service element represents one or more endpoints at
which the Web service can be accessed. These endpoints consist of location and
protocol information, and are stored in a collection of endpoint or port elements.

<definitions>

 <service name=”testservice”>

<endpoint name=”TestEndpoint” binding=”TestBinding”>

 ...

 </endpoint>

 </service>

</definitions>

Now we need to define the invocation requirements of each of its operations.

<definitions>

<service>

<binding name=”” >

<operation>

<input name="Msgln message="book" />

</operation>

</binding>

</service>

</definitions>

The description of concrete information within a WSDL document can be
summarized as follows:

 25

• service elements is responsible for hosting collections of endpoints which
represented by endpoint elements

• endpoint elements contain endpoint data, including physical address and

protocol information

• binding elements associate themselves to web service operations

Supplementary constructs

It is an additional feature that has been used to provide data type support for Web
service definitions is the “types” element. Its construct allows XSD schemas to be
embedded or imported into the definition document.

<definitions>

 <types>

 <xsd:schema

 targetNameSpace=”http://www.sopa.com/”

 ...

 </xsd:schema>

 </types>

</definitions>

Documentation element is optional in WSDL and used for providing information
about the WSDL file.

<definitions>

<documentation>

This is for test.

</documentation>

</definitions>

 26

2.7 SOAP

SOAP's place in the web services technology stack is as a standardized packaging
protocol for the messages shared by applications. The specification defines nothing
more than a simple XML-based envelope for the information being transferred, and a
set of rules for translating application and platform-specific data types into XML
representations. SOAP's design makes it suitable for a wide variety of application
messaging and integration patterns.

SOAP is XML. That is, SOAP is an application of the XML specification. It relies
heavily on XML standards like XML Schema and XML Namespaces for its
definition and function.

SOAP is acronym of the Service-Oriented Architecture Protocol, instead of the
Simple Object Access Protocol.

SOAP facilitates synchronous (request and response) as well as asynchronous
(process driven) data exchange models. With WSDL establishing a standard endpoint
description format for applications, the document-centric message format is much
more common.

 27

SOAP message structure

SOAP message is in XML format and all elements gather in SOAP envelope. Let's
take a brief look at the underlying structure of a SOAP message.

The root Envelope element of following sections:
body section and an optional header area.

<env:Envelope xmlns:env=http://www.w3.org/2003/05/soap-

envelope>

 <env:Header>

 ...

 </env:Header>

 <env:Body>

 ...

 </env:Body>

</env>

The SOAP header is expressed using the Header construct, which can contain one or
more sections or blocks.

<env:Envelope mlns:env="http://www.w3.org/2OO3/O5/soap-

envelope"~

<env:Header>

<n:shipping >

DHL

</n:shipping>

</env:Header>

<env:Body>

...

</env:Body>

</env:Envelope>

 28

Header blocks used commonly for:

• SOAP extensions implementation, such as those introduced by second-
generation specifications.

• identification of target SOAP intermediaries
• providing some meta information about the SOAP message

While a SOAP message travel along a message path, intermediaries may process add
and remove data in/from SOAP header blocks. Header is an optional part of a SOAP
message, and it used for carrying header blocks.

The mandatory part of a SOAP message is the body. As represented by the Body
element, this section acts as a container of the data included in the SOAP message.
Data within the SOAP body is simetimes referred to as the payload or payload data.

<env:Envelope mlns:env=http://www.w3.org/2OO3/O5/soap-

envelope>

<env:Header>

 ...

</env:Header>

<env:Body>

<x:Book xmlns:x="http://irmw.examples.ws/">

<x :Title>Service-Oriented Architecture

 A Field Guide to Integrating XML,

 and Web services

</x:Title>

</x:Book>

</env:Body>

</env:Envelope>

The body construct can also be used to host exception information within nested
Fault elements. Fault part can locate in standard data payloads, fault is often sent
separately in response messages to explaining error conditions.

The Fault structure consists of a system elements used to identify characteristics of
the exception.

 29

<env:Envelope mlns:env=http://www.w3.org/2OO3/O5/soap-

envelope>

<env:Body>

<env:fault>

 <env:code>

 <env:value>

 Env: version mismatch

 <env:value>

 </env:code>

 <env:reason>

 <env:text xml:lang=”en”>

 Version do not match

 </env:text>

</env:reason>

</env:fault>

</env:Body>

</env:Envelope>

 30

2.8 UDDI

One of the fundamental components f a service-oriented architecture is a mechanism
for Web service descriptions to be discovered by potential requestors. To
establish this part of a Web services framework, a central directory to host service
descriptions is required. Such a directory can become an integral part of an
organization or an Internet community, so much so, it is considered an extension to
infrastructure.

This is why the Universal Description, Discovery, and Integration specification has
become increasingly important. A key part of UDDI is the standardization of profile
records stored within such a directory, also known as a registry. Depending on who
the registry is intended for, different implementations can be created.
A public business registry is a global directory of international business service
descriptions.

Instances of this registry are hosted by large corporations (also referred to as node
operators) on a series of dedicated UDDI servers. UDDI records are replicated
automatically between repository instances. Some companies also act as UDDI
registrars, allowing others to add and edit their Web service description profilesm.
The public business registry is complemented by number service market places
offering generic Web services for sale or lease.

Private registries are service description repositories hosted within an organization
Those authorized to access this directory may include select external
business partners. A registry restricted to internal users only can be referred to as
an Internal registry.

 31

Presentation

Business

data

Integration

Presentation

Business

data
 UDDI
registry

Figure 2.8: service description in UDDI registry(the private one)

UDDI registries organize registry entries using six primary types of data:

• business entities
• business services
• specification pointers
• service types
• business relationships
• subscriptions

Business entity data, as represented by the business Entity element, provides profile
information about the registered business, including its name, a description, and
aunique identifier.

Following shows a sample XML document which contains a businessEntity
construct.

<businessEntity xmlns:xsd="http://www.w3.org/20O1/XMLSchema"

mlns:xsi="http://www.w3.org/2OO1/XMLSchema-instance"

businessKey="e9355d51-32ca-49cf-8eb4-lce59a£b£4a7"

operator="Microsoft Corporation"

authorizedName="T. E."

xmlns="urn:uddi-org:api-v2">

<discoveryURLs>

<discoveryURL useType="business entitiy">

http://test.uddi.microso£t.com/discovery

?businesskey=e9355d51-32ca-49~£-8eb4-1ce59afb£4a7

</discoveryURL>

</discoveryURLs>

 32

<name xml:lang="en">

XMLTC Consulting Inc.

</name>

<description xml:lang="en">

XMLTC is a test eBusiness solution for corporation’s agencies.

It offers a range of design, development and integration

services.

</description>

<businessServices>

<businessservice

serviceKey="leeec£al-6f99-46Oe-a392-8328d38b763a"

businessKey="e9355d51-32ca-49cf-8eb4-lce59afbf4a7">

<name xml:lang="en-us"> Test Home Page </name>

<bindingTemplates>

<bindingTemplate

 bindingKey="48b02d40-0312-4293-a7f5-

44449cal90984"

 serviceKey="leeecfal-6f99-46Oe-a392-

8328d38b763a">

 <description xml:lang="en">

Entry point in the XMLTC Test Web site now a

number of resource and sites can be accessed

from here.

 </description>

<accespoint URLType="http">http://www.xmltc.com</accesspoint>

 <tModelInstanceDetails/>

</bindingTemplate>

<categoryBag>

<keyedrefernce tModelKey="uuid:calcf26d-9672-4404-

9d70-39b756e62ab4" keyname="Namespace"

keyValue="namespace"/>

 33

</categoryBag>

</businessservice>

</businessservices>

</businessentity>

Let's take this document apart to study the individual constructs.

<businessEntity xmlns:xsd="http://www.w3.org/2OO1/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 businessKey="e9355d51-32ca-49cf-8eb4-lce59afbf4a7"

 operator="Microsoft Corporation"

 authorizedName="T. E."

 xmlns="urn:uddi-org:api-v2">

When the reference registered XMLTC Consulting Inc. it was given a unique
identifier of e453453-32ca-49cf-8eb4-lce59afbf4a7, which was then assigned to the
businessKey attribute of the businessEntity parent element.
Microsoft acted as the operator to provide an instance of the UDDI registry, you can
check its name is displayed in the businessEntity element's operator attribute.

The discoveryURL element identifies the address used to locate this XML document.

The name element simply contains the official business name.
<name xml:lang="en">

XMLTC Test Inc.

</name>

Business Service records representing the actual services offered by the registered
business are nested within the businessEntity construct.

A business service is identified with a unique value assigned to the serviceKey
attribute. Its parent businessEntity element is referenced by the businessKey
attribute.

The only business service associated with this business entity is the business's Web
site home page, as identified by the name element.

 34

<name xml:lang="en-us">

Corporate Home Page

</name>

Each business service provides specification pointers, known as binding templates,
These records consist of addresses linking the business service to implementation
information. Using service pointers, a developer can learn how and where to
physically bind to a Web service.

The bindingTemplate construct displayed in the preceding example establishes the
location and description of the service using the accesspoint and description
elements.

Various categories can be assigned to business services. In our example, the URL we
identified has been classified as a namespace using the keyedRef erence child
element of the categoryBag construct.

<categoryBag>

<keyedrefernce tModelKey="uuid:calcf26d-9672-4404-9d70-

39b756e62ab4" keyname="Namespace" keyValue="namespace"/>

</categoryBag>

There is no formal relationship between UDDI and WSDL. A UDDl registry
provides a means of pointing to service interface definitions through the use of a
Model.

You can interface programmatically with a UDDI registry. For example, we could
make a SOAP message to search a company by name criteria with the following
message data (payload):

<find_business xmlns=”urn:uddi-org:api-v3”>

 <findQualifiers>

 <findQualifier>

 Uddi:uddi.org.findQualifier:exactMatch

 </findQualifier>

 35

 </findQualifiers>

 <name>

 XMLTC Consulting Inc.

 </name>

</find_business>

2.9 Representational State Transfer

This is new form of web services because it has lots of usage it have been take in this
chapter and a summary about REST web services have been explained here.

RESTful Web services attempt to emulate HTTP and similar protocols by
constraining the interface to a set of well-known, standard operations (e.g., GET,
PUT, DELETE). Here, the focus is on interacting with stateful resources, rather than
messages or operations.
RESTful Web services can use WSDL to describe SOAP messaging over HTTP,
which defines the operations, or can be implemented as an abstraction purely on top
of SOAP (e.g., WS-Transfer).
REST strictly refers to a collection of architectural principles. The term is also often
used in a loose sense to describe any simple interface that transmits domain-specific
data over HTTP without an additional messaging layer such as SOAP or session
tracking via HTTP cookies. These two meanings can conflict as well as overlap. It is
possible to design any large software system in accordance with Fielding's REST
architectural style without using the HTTP protocol and without interacting with the
World Wide Web. It is also possible to design simple XML+HTTP interfaces that do
not conform to REST principles, and instead follow a Remote Procedure Call (RPC)
model. The two different uses of the term REST cause some confusion in technical
discussions.

 36

Chapter 3

Java Web service client models

Information of this chapter is coming from:
• The Java API for XML-Based Web Services (JAX-WS) 2.0 Final Release
• JSR-110: Java™ APIs for WSDL (JWSDL) Version 1.2
• SOAP's Two Messaging Styles By: Rickland Hollar
• JAX-RPC vs JAX-WS By: Russell Butek and Nicholas Gallardo
• Java Web Services Architecture by James McGovern, Sameer Tyagi,

Michael Stevens and Sunil Matthew
• J2EE Web Services By Richard Monson-Haefel

JAX-RPC is technology which has been used in J2EE 1.4 for web service handling,
Currently the newest Java technology that have been designed for web service and
SOA operability is JAX-WS (for JEE 5 and JSE 6). In this chapter I explain the
client for web service invocation of both in more detail and try to show them with
example.
At the end I will make comparison between JAX-RPC and JAX-WS and explain the
advantages of JAX-WS over JAX-RPC, in this project I used JAX-WS because the
component should be JEE 5 compatible and JAX-RPC is not JEE5 compatible
otherwise WSIF which is based on J2EE 1.4 is good candidate for implementing
such a requirement.

What Is done here is to design a and implement a generic client base on JAX-WS
2.0, a SOAP message in format SOAP 1.1 is created, JAX-WS also support 1.2 but
SOAP 1.1 is used.

 37

3.1 Few notes about JAX-WS 2.0

Since the first release of JAX-RPC 1.0, some new specifications and new versions of
java web service components have been released; the latest one up to now is JAX-
WS 2.0.
The comparison will be provided in detail but for now note that JAX-WS 2.0 relates
to these specifications and standards as follows:

JAXB
Due primarily to scheduling concerns, JAX-RPC 1.0 defined its own data binding
facilities. With the release of JAXB 1.0 there is no reason to maintain two separate
sets of XML mapping rules in the Java platform. JAX-WS 2.0 will delegate data
binding-related tasks to the JAXB 2.0 specification that is being developed in parallel
with JAX-WS 2.0.
JAXB 2.0 will add support for Java to XML mapping, additional support for less
used XML
schema constructs, and provide bidirectional customization of Java , XML data
binding. JAXWS 2.0 will allow full use of JAXB provided facilities including
binding customization and optional schema validation.

SOAP 1.2
Whilst SOAP 1.1 is still widely deployed, it’s expected that services will migrate to
SOAP now that it is aW3C Recommendation. JAX-WS 2.0 will add support for
SOAP 1.2 whilst requiring continued support for SOAP 1.1.
There is really not a lot of difference, from a programming model perspective,
between SOAP 1.1 and SOAP 1.2.

 38

WSDL 2.0
TheW3C is expected to progress WSDL 2.0. JAX-WS 2.0 will add support for
WSDL 2.0 whilst requiring continued support for WSDL 1.1.

WS-I Basic Profile 1.1
JAX-RPC 1.1 supports WS-I's Basic Profile (BP) 1.0. BP 1.1 is newer and these new
profiles clarify some minor points.
 JAX-WS 2.0 supports these profiles. For the most parts, the differences is very small
and do not affect the Java programming model.
The exception is attachments. WS-I not only cleared up some questions about
attachments, but they also defined their own XML attachment type: wsi:swaRef.
 JAX-RPC 1.1 added support for WS-I Basic Profile 1.0. WS-I Basic Profile 1.1 is
expected to be use instead of 1.0.

A Metadata Facility for the Java Programming Language JAX-WS 2.0 will
define the use of Java annotations to simplify the most common development
scenarios for both clients and servers.

Implementing Enterprise Web Services This feature defined jaxrpc-mapping-info
deployment descriptor provides deployment time Java , WSDL mapping
functionality. JAX-WS 2.0 will complement this mapping functionality with
development time Java annotations that control Java , WSDL mapping.

Web Services Security (JSR 183) JAX-WS 2.0 will align with and complement the
security APIs

Asynchrony JAX-WS 2.0 will add support for client side asynchronous operations.

Non-HTTP Transports JAX-WS 2.0 will improve the separation between the XML
message format and the underlying transport mechanism to simplify use of JAX-WS
with non-HTTP transports.

 39

3.2 Web Service Client for JAX-RPC 1.1

JAX-RPC client can be written to invoke services using one of the following three
mechanisms:

• Dynamic invocation interface
• Dynamic proxies
• Stub

3.2.1 Stub

In stub form clients will locate the service endpoint by specifying a URI, and then
invoke the methods on a local object, a stub represents the remote service. JAX-RPC
stubs, or proxies, are different from RMI-IIOP stubs. Keep following statement in
mind:

A stub is never required to be downloaded or distributed to clients.

A client is not a required artifact on the client side. The end result of the invocation is
that the required SOAP envelope must be sent on the transport protocol. The client
can be written in a completely different programming language, as shown later in the
JAX_RPC Interoperability section.

• The stub is implemented in Java and is relevant only for a JAX-RPC client
runtime.
• A stub can be dynamically generated by the client side at runtime.
• A stub is specific to the client runtime.
• A stub is specific to a protocol and transport.
• A stub must implement the javax.xml.rpc.Stub interface.

Sometime stub is referred to as static invocation; because the stub must know the
remote interface about the service at compile time. Like RMI in java stub must have
the class file which represents the remote interface and the implementation available
for stub generation.

 The client doesn’t need the WSDL file at runtime. Stubs are specific to a particular
runtime and are not portable across different vendor implementations.

 40

Example of JAX-RPC Client using stub:

import java.util.Date;

public class StubClient {
 public static void main(String [] args) throws Exception {

 String
endpoint="http://127.0.0.1:8080/billpayservice/jaxrpc/BillPay";
 String namespace = "http://www.flutebank.com/xml";
 String wsldport = "BillPayPort";
 BillpayserviceImpl serviceproxy= new BillpayserviceImpl();
 BillPayStub stub=(BillPayStub)(serviceproxy.getBillPayPort());

stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,endpo
int);
 PaymentConfirmation conf= stub.schedulePayment(new Date(),
 "my account
as test account", 210);
 System.out.println("Payment was scheduled "+
conf.getConfirmationNum());
 PaymentDetail detail[]=stub.listScheduledPayments();
 for(int i=0;i<detail.length;i++) {
 System.out.println("Payee name "+
detail[i].getPayeeName());
 System.out.println("Account "+ detail[i].getAccount());
 System.out.println("Amount "+ detail[i].getAmt());
 System.out.println("Will be paid on "+
detail[i].getDate());
 }
 double lastpaid= stub.getLastPayment("my cable tv provider");
 System.out.println("Last payment: "+ lastpaid);
 }
}

Before using a stub, a client must first obtain a reference to it. The following code
shows the mechanism another JAX-RPC vendor might use:

InitialContext ctx = new InitialContext();
Billpayservice service =
 (Billpayservice) ctx.lookup("myserver:soap:Billpayservice");
BillPay bill1 = service. getBillPayPort ();
Stub stub= (Stub) bill1;

The stub can be configured by passing it name and value pairs of properties. The
javax.xml.rpc.Stub interface defines four standard properties to configure the stub,
using the stub. _setProperty(java.lang.String name, java.lang.Object value) method:

• javax.xml.rpc.security.auth.username. Username for authentication.
• javax.xml.rpc.security.auth.username.password. Password for authentication.
• javax.xml.rpc.service.endpoint.address. Optional string for the endpoint

service.

 41

• javax.xml.rpc.session.maintain. Use java.lang.Boolean to indicate that the
server needs to maintain session for the client

3.2.2 DII (Dynamic Invocation Interface)

The next way a consumer can access a service is using of dynamic invocation
interface (DII).

DII is a concept that, like most other things in JAX-RPC, should be familiar to
CORBA developers. Unlike static invocation, which requires that the client
application include a client stub, DII enables a client application to invoke a service
whose data types were unknown at the time the client was compiled.

This lets a client to discover interfaces dynamically (at runtime instead of compile
time).

JAX-RPC supports DII with the javax.xml.rpc.Call interface. A Call object can be
created on a javax.xml.rpc.Service using the port name and service name. Then,
during runtime, the following details are set:

• Operation to invoke
• Port type for the service
• Address of the endpoint
• Name, type, and mode (in, out, inout) of the arguments
• Return type

This information is derived by looking at the WSDL file for the service. For instance,
the service name=" Billpayservice "> element, the portname is the port
name="BillPayPort " element, and so on.

Example: Client using DII

import javax.xml.namespace.QName;
import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.ParameterMode;
import javax.xml.rpc.ServiceFactory;

public class DIIClient_NoWSDL{
 public static void main (String[] args) throws Exception {

 String
endpoint="http://127.0.0.1:9090/billpayservice/jaxrpc/BillPay";

 42

 String namespace = "http://www.flutebank.com/xml";
 String schemaNS = "http://www.w3.org/2001/XMLSchema";
 String serviceName = "Billpayservice";

 ServiceFactory myfactory = ServiceFactory.newInstance();
 // the Billpayservice service does not exist
 // (no stub, skeleton, or Service was generated by xrpcc)
 // but createService will return a Service object
 // that can be used to create the dynamic call

 Service service = (Service)myfactory.createService
 (new QName(namespace,serviceName));

 QName portName = new QName(namespace," BillPayPort");
 QName operationName = new QName(namespace," getLastPayment");
 Call call = service.createCall(portName, operationName);
 call.setTargetEndpointAddress(endpoint);
 call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
 "http://schemas.xmlsoap.org/soap/encoding/");

 QName paramType = new QName(schemaNS, "string");
 QName returnType = new QName(schemaNS, "double");

 call.addParameter("String_1", paramtype, ParameterMode.IN);
 call.setReturnType(returntype);

 Object[] params = {"Test for cable tv company provider"};
 Object lastpaid= (Double)call.invoke(params);
 System.out.println("Last payment: "+ lastpaid);
 }
}

The client wraps the DII request in a Call object. DII can be used directly, by passing
these values (port, operation, location, and part information) to the Call, or indirectly,
by passing the WSDL to the Call.
In indirect DII, only the port and operation names are knowm at compile time. The
runtime will determine the type information about the part and location, based on the
WSDL. In this case, the parameters and return types do not need to be configured
using the addParameter or setReturnType method.

Example: Client using DII indirectly, where all parameters are not known (WSDL is
dynamically inspected)

public class DIIClient_WSDL{

 public static void main(String[] args) throws Exception {

 String wsdllocation=
http://127.0.0.1:9090/billpayservice/billpayservice.wsdl";

 String namespace = "http://www.flutebank.com/xml";
 String serviceName = "Billpayservice";

 ServiceFactory myfactory = ServiceFactory.newInstance();
 Service service = (Service) myfactory.createService

 43

 (new URL(wsdllocation),new
QName(namespace,serviceName));

 QName portName = new QName(namespace," BillPayPort");
 QName operationName = new QName(namespace," getLastPayment");
 Call call = service.createCall(portName, operationName);
 Object[] params = {"my cable tv provider"};
 Object lastpaid= (Double)call.invoke(params);
 System.out.println("Last payment was "+ lastpaid);
 }
}

3.2.3 Dynamic Proxies

The JAX-RPC specification also specifies a third way for clients to access services:
using the concept of dynamic proxy classes available in the standard J2SE Reflection
API (the java.lang.reflect.Proxy class and the java.lang.reflect .InvocationHandler
interface). A dynamic proxy class implements a list of interfaces specified at
runtime. The client can use this proxy or façade as though it actually implemented
these interfaces, although it actually delegates the invocation to the implementation.

Classes allowing any method on any of these interfaces can be called directly on the
proxy (after casting it). Thus, a dynamic proxy class is used to create a type-safe
proxy object for an interface list without requiring pregeneration of the proxy class,
as you would with compile-time tools.

Example: Client using dynamic proxies

import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
// java classes
import java.util.Date;
import java.net.URL;
// Interface class
import com.flutebank.billpayservice.BillPay;

public class DynamicProxyClient {
 public static void main(String[] argv) throws Exception{
 String namespace = "http://www.flutebank.com/xml";
 String wsldport = "BillPayPort";
 String wsdlservice = "Billpayservice";
 String wsdllocation =

 44

"http://127.0.0.1:8080/billpayservice/billpayservice.wsdl";
 URL wsdlurl = new URL(wsdllocation);
 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(wsldurl,
 new
QName(namespace, wsdlservice));
// make the call to get the stub for this service
 BillPay stub = (BillPay) service.getPort(new
QName(namespace,wsldport) , BillPay.class);
// call methods on the service
 double lastpaid= stub.getLastPayment("test cable tv co.
provider");
 System.out.println("Last payment: "+ lastpaid);
 }
}

Note that there is no compile-time stub generation. CORBA developers will see the
similarity in the above code with its counterpart:

BillPay stub = (BillPay)
PortableRemoteObject.narrow(initial.lookup("Billpayservice"),BillPay
.class);

3.3 Web Service Client for JAX-WS 2.0

In JAX-WS there are two methods available for invoking client, one is via creating
proxy object, the other one is to create SOAP message request and send it via request
Dispatcher to service, then service after execution sends back SOAP response.

So we have following cases to consume Web Service as client (Service Requestor):

• SOAP XML level
• Proxy object creation

 45

Service object is created base on the methods we choose to implement if it is going
to be SOAP message service is dynamic and if it is proxy object service going to be
static.

3.3.1 Dispatch (XML level Client)

XML Web Services use XML SOAP messages for communication between services
and service clients. The higher level JAX-WS APIs are designed to hide the details
of converting between Java method invocations and the corresponding XML
messages, but in some cases operating at the XML message level is desirable. The
Dispatch interface provides support for this mode of interaction, and all my JAX-WS
usage is based on Dispatch
Dispatch supports two usage modes, identified by the constants
javax.xml.ws.Service.Mode.MESSAGE and javax.xml.ws.Service.Mode.PAYLOAD
respectively:

1. Message

In this mode, client applications work directly with protocol-specific message
structures.

2. Message Payload

In this mode, client applications work with the payload of messages rather than the
messages themselves. E.g., when used with a SOAP protocol binding, a client
application would work with the contents of the SOAP Body rather than the SOAP
message as a whole.
Dispatch is a low level API that requires clients to construct messages or message
payloads as XML and requires an intimate knowledge of the desired message or
payload structure. Implementations are required to support the following types of
object:

 46

javax.xml.transform.Source
Use of Source objects allows clients to use XML generating and consuming APIs
directly. Source objects may be used with any protocol binding in either message or
message payload mode. When used with the HTTP binding in payload mode, the
HTTP request and response entity bodies must contain XML directly or a MIME
wrapper with an XML root part. A null value for Source is allowed to make it
possible to invoke an HTTP GET method in the HTTP Binding case.

JAXB
Objects Use of JAXB allows clients to use JAXB objects generated from an XML
Schema to create and manipulate XML representations and to use these objects with
JAX-WS without requiring an intermediate XML serialization. JAXB objects may be
used with any protocol binding in either message or message payload mode. When
used with the HTTP binding in payload mode, the HTTP request and response entity
bodies must contain XML directly or a MIME wrapper with an XML root part.
When used in message mode, if the message is not an XML message a
WebServiceException will be thrown.
javax.xml.soap.SOAPMessage Use of SOAPMessage objects allows clients to work
with SOAP messages using the convenience features provided by the java.xml.soap
package. SOAPMessage objects may only be used with Dispatch instances that use
the SOAP binding in message mode.

javax.xml.soap.SOAPMessage
Use of SOAPMessage objects allows clients to work with SOAP messages using the
convenience features provided by the java.xml.soap package. SOAPMessage objects
only have been used with Dispatch instances that use the SOAP binding in message
mode.

javax.activation.DataSource
Use of DataSource objects allows clients to work withMIME-typed messages.
DataSource objects may only be used with Dispatch instances that use the HTTP
binding in message mode.

 47

I used dispatch method in my project is so I don’t provide example here for checking
example of dispatch check chapter 4 “Execute service” class.

3.3.2 Proxy (Object level client)

Proxies provide access to service endpoint interfaces at runtime without requiring
static generation of a stub class. See java.lang.reflect.Proxy for more information on
dynamic proxies as supported by the JDK.

A proxy is created using the getPort methods of a Service instance:

T getPort(Class<T>) Returns a proxy for the specified SEI, the Service instance is
responsible for selecting the port (protocol binding and endpoint address).

T getPort(QName port, Class<T>) Returns a proxy for the endpoint specified by
port. Note that the namespace component of port is the target namespace of the
WSDL definitions document.

The service Endpoint Interface parameter specifies the interface that will be
implemented by the proxy. The service endpoint interface provided by the client
needs to conform to the WSDL to Java mapping rules. Creation of a proxy can fail if
the interface doesn’t conform to the mapping or if any WSDL related metadata is
missing from the Service instance.

The following example shows the use of a proxy to invoke a method
(getLastTradePrice) on a service endpoint interface
(com.example.StockQuoteProvider). Note that no statically generated stub class is
involved.

Example: Following example shows a Static client creation for consuming service:

 48

javax.xml.ws.Service service = ...;

com.example.StockQuoteProvider proxy = service.getPort(portName,
com.example.StockQuoteProvider.class)

javax.xml.ws.BindingProvider bp =

(javax.xml.ws.BindingProvider)proxy;

Map<String,Object> context = bp.getRequestContext();

context.setProperty("javax.xml.ws.session.maintain", Boolean.TRUE);

proxy.getLastTradePrice("ACME");

3.4 Comparison between JAX-RPC and JAX-WS

Here in the following I lists the advantages of JAX-WS over JAX-RPC base on
technology or specification:

SOAP 1.2
JAX-WS and JAX-RPC both support SOAP 1.1. JAX-WS additionaly supports
SOAP 1.2.

XML/HTTP
The WSDL 1.1 specification defined an HTTP binding, which is a means by which
you can send XML messages over HTTP without SOAP. JAX-RPC ignored the
HTTP binding. JAX-WS adds support for it.

WS Basic Profiles

JAX-RPC supports WS-I's Basic Profile (BP) version 1.0. JAX-WS supports BP 1.1.
(WS-I is the Web services interoperability organization.)

New Java features

 49

1. JAX-RPC maps to Java 1.4. JAX-WS maps to Java 5.0. JAX-WS relies on many

of the features new in Java 5.0.
2. Java EE 5, the successor to J2EE 1.4, adds support for JAX-WS, but it also

retains support for JAX-RPC, which could be confusing to today's Web services
novices.

 50

Chapter 4

Generic Client specification

Information of this chapter are coming from:
• The Java API for XML-Based Web Services (JAX-WS) 2.0 Final Release
• JSR-173: Streaming API For XML
• JSR-110: Java™ APIs for WSDL (JWSDL) Version 1.2
• Eclipse Rich Client Platform: Designing, Coding, and Packaging Java™

Applications By Jeff McAffer, Jean-Michel Lemieux
• Note on the Eclipse Plug-in Architecture, By Azad Bolur
• SWT/JFace in Action by Matthew Scarpino, Stephen Holder, Stanford

Ng, Laurent Mihalkovic
• XML in Nutshell 3rd Edition By Elliotte Rusty Harold, W. Scott Means

In this chapter we will focus on explaining the implemented component in detail. We
will start with Architecture and design, and then in design part we will go further
inside the technical details like the used technologies etc. Afterward a user manual or
tutorial for user of this component in “abstract mode” and as “pipeline client in
SOPA framework” will be provided. Before startup, some explanation about the
usage of this component is provided.

In Service oriented computing when an application requests to consume a service, it
is necessary to prove a way to access that service. Like most message oriented
technology client is responsible to handle connection to the service. Client
establishes appropriate form of access to required service.

 51

Our requirement is to create a client which is just based on WSDL. This client should
establishes appropriate connection and make service call to service provider as
service requestor.
This means we need a general way to create one client for any kind of web services.
Please note that client will located on service consumer part and acts as service
requestor and not service provider, if it acts as service provider it is service not client.

In architecture part this component is explained very general and doesn’t go into
detail. Detailed information about classes and their related method will be provided
in design and implementation part of this chapter.

4.1 Architecture

In this section the functional behavior and specification of generic client will be
explained, it is not important if it will be used as an abstract component or if it will
be used as a client for invoking pipeline in SOPA framework, in both cases the
functional behavior is same.

The following figure depicts the required steps that have been mentioned in previous
chapters:

Execute Create MessageParse

Receive
Response

WSDL4J

StAX

JSR-110

JEE 5JSR -173
JSR - 224
JAX - WS

Figure 4-1 generic client architecture phases

 52

The figure will give you an overall view of generic client (or service requestor) that
will do its job in three Steps, first step is to parse a given WSDL file, parse process
will be done on abstract part (not concrete part) of WSDL file. After parsing abstract
part of the WSDL file, generic client tries to create a SOAP request message based
on the Service Name, port name, operation and related operation arguments. As a
convention from now on we will use “message creation”, instead of “SOAP message
creation”.

 As noted before, SOAP is a message format of Service oriented communication, and
client must send its request in SOAP message format which has been described in
detail in chapter 3. Then the client will send this SOAP request to appropriate web
service based on the chosen service Name, port Name, etc and waits for results. The
results will come as SOAP message response. Then result is shown to user or given
to another part of SOPA framework for further administration.

If we take an overall overview of project, the following three use cases are expected
from this project:

Figure 4-2 Generic client use case

Now we will go inside each step and explain them in more details.

 53

4.1.1 WSDL Parsing Phase

This section explains the process of parsing the given WSDL file. WSDL structure is
rather complex to parse. SAX is the fastest java parser currently available but it is not
useful for parsing complex XML-structured file like WSDL, DOM is good candidate
for parsing complex XML structure but since it parses document tree based and not
event based it is not fast. We have used WSDL4J libraries for parsing WSDL which
is available from IBM. It is the current implementation of JWSDL or JSR–110.
JWSDL provides a standard set of Java APIs for representing, manipulating, reading
and writing WSDL (Web Services Description Language) documents, including an
extension mechanism for WSDL extensibility.

According to JSR – 110 Java APIs for WSDL [JWSDL] is an API for representing
WSDL documents in Java. More specifically, JWSDL v1.2 represents WSDL v1.1 as
described by a W3C Note and XML Schema, with the relaxed extensibility permitted
by WS-I Basic Profile 1.1.

The WSDL4J and JWSDL provide a rich set of features, but since I need to create
SOAP request message, more detailed information from WSDL file is required. For
example to extract the “service target namespace” of definition element and similar
information, a more useful and optimized technology like StAX is used.

According to JSR -173 StAX is bi-directional Streaming API for reading and writing
XML. The Streaming API for XML gives parsing control to the programmer by
exposing a simple iterator based API and an underlying stream of events. Methods
such as next() and hasNext() allow an application developer to ask for the next event
(pull the event) rather than handling the event in a callback. This gaves a developer
more procedural control over the processing of the XML document. The Streaming
API also allows the programmer to stop processing the document, skip ahead to
sections of the document, and get subsections of the document. For more information
about parsers you can refer to XML process methods in last chapters.

Now let’s take a look at WSDL structure again

 54

<definition>

<interface name=”TestInterface”>

...

</interface>

<message name=”testMessage”>

...

</message>

...

<service>

...

</service>

<binding name=”binding1”>

...

</binding>

</definition>

Service
definition

Concrete definition

Abstract definition

JAX-WS libraries required information (to call an operation on service) are coming
from abstract part of WSDL file, because as I noted before concrete part is for
implementation and not definition of services, abstract part is for logical definition of
services.

Via WSDL4J library and the implemented StAX-based parser methods, application
processes the WSDL in order to perform the user selected operation and fill its
arguments.

User will follow the WSDL parsing process as described below:

Service Name Port Name Operation Fills operation’s arguments

The first thing that should have been specified in generic client is “the selected
service that user wants to work with”. As mentioned in the restriction section (see
Appendix), it is assumed that WSDL file has only one definition element.

Then after user chooses the Service, application goes one step forward and user
should choose which port to operate with. Ports are specified in WSDL files by their
names, after user choosing the port he/she should choose operation which is the last
step before initializing the operation arguments.

 55

The selection of service, port and operations is required because one WSDL file
could have more than one service, each service could have more than one port and
each port could have different operations with same operation name but absolutely
different functionality so it is not possible to directly go to operation list and choose
one operation, for example we can have one WSDL file with two operation both
named QueryUserInformation one is for querying user’s information of application
X and the other one query user’s information of application Y.

For checking the WSDL parsing strategy you can check
at.slife.webservice.wsClient.ParseWSDL class and its methods.

4.1.2 Message Creation Phase

After parsing is finished what is needed to be done is to create SOAP request
message based on chosen Service, port and operation. In web service specification
each operation has zero or more argument and can have zero one or more (opposite
to java) return parameters.

What is provided to operation is message; message is xml form of gathering different
arguments in logically related set.

For example this is a message:
<wsdl:message name="getUserDatarequest">
 <wsdl:part name="info" element="esxsd:GetUserdata"/>
 <wsdl:part name=”userName” type="string"/>
</wsdl:message>

Above message has one simple type and one complex type that referred to
GetUserdata XSD complex type.

Each operation can have input message, output message and fault message.
Each message could be just one xml simple type like string or complex type (XSD
complex type)

For example following operation contains three message:
<wsdl:operation name="GetEndorsingBoarder">
 <wsdl:input message="es:GetEndorsingBoarderRequest"/>
 <wsdl:output message="es:GetEndorsingBoarderResponse"/>

 56

 <wsdl:fault message="es:GetEndorsingBoarderFault"/>
</wsdl:operation>

What I developed in this version supports messages with simple type only, complex
types are not supported in this version, for more information about this you can refer
to restriction chapter of this document.

This project uses java.xml.soap for creating SOAP messages. SOAP message
creation needs operation name, input namespace and input arguments with values.

As I mentioned input arguments should contain values which should some how filled
by user. In GUI user can fill input argument’s values via related form and in SOPA
frame work user can check pipeline and fills parameter for it(in SOAP web service
client application), there are some other constants must be attended in SOAP request
message creation to, these constants are mentioned in SOAP creations methods of
SOAPReqCreator class.

For realizing SOAP message creation you can check
at.slife.webservice.wsClient.SOAPReqCreator class, method
makeSOAPmessage(String targetNS,String operationName,String inputParam,String
inputNS).

4.1.3 Execution Phase

In two last phases SOAP request is made base on user chosen Operation, services ...
and given parameter. Now SOAP request message is ready, required parameters also
should have been filled for example in SOPA as given parameter or in GUI in related
input form, now we should send this SOAP message to service.

For sending request to web service in JEE 5, JAX-WS technology is used, based on
JAX-WS structure first a service object needed to be created then afterward iteration
trough Service object is necessary to find required port object, now port object and
service object is available when this two object is ready we can create Dispatch
object from them.

XML Web Services uses XML messages for communication between services and
service clients. The higher level JAX-WS APIs are designed to hide the details of
converting between Java method invocations and the corresponding XML messages,

 57

but in some cases operating at the XML message level is desirable. The Dispatch
interface provides support for this mode of interaction.

Dispatch works very simple if SOAP request message is ready, when request
message is available simply dispatch can call service via soap request as argument
like following:
SOAPMessage response = disp.invoke(soapRequest);

For more information about calling web service via JAX-WS 2.0 libraries you can
refer to at.slife.webservice.wsClient.ExecuteService class, there are different
methods in this class but they all use for calling service base on given SOAP
message.

4.2 Design

This phase has been done in two different ways, one for abstract generic client and
the other one is for SOPA framework’s generic client. I will explain each of them in
separate parts first, then for technical explanation on class structures and java codes
details I will explain them both together.

4.2.1 Design as Abstract component

Before I start to explain check the figure 4.3, this figure shows you how generic
client can use as an abstract component via its GUI independent from SOPA
framework.

 58

Read/Write from Repository

Send SOAP response

Web Service
Execution

Engine

WSDL Extractor
Engine

User

WSDL Repository

WSDL Parser
Engine

R
ea

d
W

SD
L

Interact

Use Parser

G
et

 m
es

sa
ge

WEB

text
WSDL

Web Service

SOAP message
Creator Engine

Read Info

Call

User Interface Interact

Figure 4-3 Generic Client for web service execution in abstract mode

You see in above figure user has only interaction with engines (they located in GUI)
, this means via GUI user parses WSDL file and chooses appropriate information
from WSDL file, GUI has lots of interaction with WSDL parser
(at.slife.webservice.wsClient.parseWSDL class) after parsing and data entry is
finished as third phase Web service execution engine
(at.slife.webservice.wsClient.ExecuteService) receives information from GUI and
call operation on service then the result of execution is shown to user.

GUI contains six forms developed based on SWT eclipse libraries:
First form is WSDL repository which save the chosen WSDL URL in text file,
second one is for choosing to operates on web service’s operation or create pipeline
for that web service.
If you choose to operate on web service with out pipelines usage (separate from
SOPA) you can choose service, port type, operation fill the value and execute service
call. These forms and their usage will explained more in detail.

 59

4.2.2 Design as SOPA plug-in

In this section the SOPA framework integration will be explored. SOPA framework
is a flexible framework that provides the possibility to compose services using
simpler services. It can combine Eclipse plug-ins with external web services in a
simple and powerful way. The implemented component enables SOPA to interact
with external services and empower the so called pipelines with Web Service
communications.

Core SOPA framework is based on two main components: “Service Bus” which is
used for core SOPA processes and the other one is “Pipeline” which is used for
pipeline administration and related tasks. The Generic client can feed the Pipeline
plug-in by creating the pipeline XML files from the service definition (WSDL file),
it is also possible to invoke “Service Bus” instead of pipeline but all arguments like
service name, port name, etc should be given by user in this case. In Pipeline case all
arguments will be read from pipeline that created before. User just needs to fill
variables for input parameters and call related pipeline.
For better understanding consider the following figure and examples:

“Service Bus” call example:
Object[] params={"

http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"

,"CurrencyExchangeService"

,"CurrencyExchangePort"

,"getRate"

,"<country2

xsi:type=\"xs:string\">Austria</country2><country1>xsi:type=\"xs:str

ing\">UK</country1>"};

Call client = new Call("at.slife.webservice");

result = client.invoke("wsCall",params);

 60

Above example have been written in an eclipse plug-in we named it Client4WS.
Client4WS is a client (not web service client it is an eclipse client) which makes a
new call to at.slife.webservice according to above codes.
Note that wsCall is eclipse operation and it must be defined in at.slife.xmas.services
as a service operation, by client plug-in developer.

Call client = new Call("at.slife.webservice");

With instantiated parameter like this:
Object[] params={"

http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"

,"CurrencyExchangeService"

,"CurrencyExchangePort"

,"getRate"

,"<country2

xsi:type=\"xs:string\">Austria</country2><country1>xsi:type=\"xs:str

ing\">UK</country1>"};

And at the end appropriate operation(wsCall) on XMAS plug-in services is invoked.
Same as following:
result = client.invoke("wsCall",params);

PIPELINE Call Example:
Object[] params =

{"CurrencyExchangeService_CurrencyExchangePort_getRate:getRate"

,"<country2>Germany</country2><country1>Austria</country1>"};

Call client = new Call("at.slife.pipeline");

result = client.invoke("invokePipe",params);

Above example shows the required code for calling one web service via pipeline.
Again like “Service Bus” client call, these codes should be located in an eclipse
client use for calling eclipse service, which has been derived from
at.slife.xmas.services but in this case Pipeline service is called not “Service Bus”
service.

 61

WSDL

CallWS-plugin Parses WSDL File

CallWS-plugin Creates pipeline

1

2
4

6
Execute webService

5

CallWS-Plugin

CallWS-Client

pipeline-Plugin

Plugin
Repository

XMAS-Plugin

Call pipeline
3

Request pipeline

Receive data from pipeline

Figure 4-4 Generic client in SOPA framework

Figure 4.4 depicts the usage of generic client in SOPA framework, assume the green
plug-ins as core SOPA plug-in CallWS plug-in is the one which is designed in this
project to handle generic client, as you can see there, client (blue one) named
CallWS – Client provided for accessing the CallWS-plugin.

Core SOPA framework is XMAS and PIPELINE, client can used via PIPELINE
plug-in, and also other forms of plug-in can be plugged into SOPA framework.

CallWS is a generic client which has been designed as eclipse plug-in derived from
XMAS services and provides web service access to SOPA framework.

First step is to call WSDL file, after CallWS accesses content of WSDL file and
parses it via at.slife.webservice.wsClient.ParseWSDL it can creates pipeline for that
WSDL file via at.slife.webservice.pipeline.Createpipeline class in second step.

After pipeline have been created (base on WSDL file) for web service, now it is
possible to call it and execute operations on that web service(via pipeline).

 62

Third step could be the first one if pipeline is available before, in simple term when
we don’t need pipeline creation process can jump to third step.
 “callWS client” query PIPELINE plug-in for service execution (XMAS has some
internal interaction with pipeline which is not in the scope of this document) XMAS
plug-in requests pipeline for appropriate pipeline XML block and if there is any
available pipeline plug-in provides it to callWS, then callWS can execute specified
operation on specified service via user given parameter and information coming from
pipeline.

The result is sent back as String but it is SOAP response message, like following:

String result = client.invoke("invokePipe",params);

String result in above in nothing than a SOAP response message in String format.

4.3 Implementation

In this part, java classes and all their associated methods in details will be explained.
This part is about technical specification and contains nothing about requirement or
analysis.
Project class diagram and sequence diagram is explained after the package
description.
First java packages are explained. Then we will go in details of their associated
classes and for each class member variables (if necessary) and methods will be
explained.

As a convention all package names containing at.slife.webservice as prefix are
simplified to the last part of package name. For instance the “clientGUI” package
name is at.slife.webservice.clientGUI package.

 63

4.3.1 at.slife.webservice.clientGUI Package

This package has been used in abstract mode independent of SOPA framework. The
main goal of this package is to provide users with the graphical user interface which
have been used for two purposes: first to create pipelines that are very important
because there is only one way to create pipeline, and the second is to let user uses
GUI without SOPA framework and go trough web services for execution of
operations.

ReadWSDL_1

This class is first GUI class which appears for user. It contains a list of Web services
that came from web service repository (web service repository is a text file for
storing WSDL URLs) this class maps to first GUI form and has following methods:

public static void main(String[] args) throws Exception
This is the main entry point to GUI application.

private void createSShell(Display disp) throws Exception
This method initializes sShell, this GUI is written by SWT libraries and sShell means
an Shell member variable of SWT libraries.
This method cares about clicking add, delete button that are responsible for adding
and removing WSDL to/from repository.
And a Next button which sends user to another form.

SelectBrowseOrPipleLine_2

This class appears as second GUI frame, I mentioned before that you can do two
things with GUI, one is to parse WSDL and call its operation the other one is to
create pipeline for each operation in chosen WSDL file.
This class has following methods:

 64

public void initGUI() throws Exception
This method used to initialize the SWT shell and create GUI

public static void main(String[] args) throws Exception{
This method open initialized shell and display it to user.

private void createSShell(Display disp)

This method use for creating SWT shell and shows the GUI to user, it also contains
some java code for handling Next and Back button. The other important thing that
this method will handle is saving status of user selection (if user wants to create
pipeline for this wsdl or user wants to execute operation on web service with GUI)

SelectService_3

This class have been assigned to third GUI frame, after parser parses the chosen
WSDL file in this form(frame) user gets the list of available services, then he/she can
choose the service and click on next button to go to next GUI form

public void initGUI() throws Exception
Same as other GUI classes.This method is using for initializing the SWT shell and
creating GUI.

private void createSShell(Display disp) throws Exception
This method have been used to create SWT shell and shows GUI to user, it also
contains some java code for handling “Next” and “Back” button. It saves the selected
service from user selection, and then next form will show the associated port base on
chosen service in this form.

 65

SelectPortType_4

This class is 4th GUI form that will been shown to user, base on chosen service in last
form(SelectService_3) user can see the port names which are related to that service
in this form and select which port he/she wants to operate with.

public void initGUI() throws Exception
Same as other GUI class, this method used to initialize the SWT shell and create GUI

private void createSShell(Display disp) throws Exception
This method use to creating SWT shell and showing the GUI to user, it also contains
some java code for handling Next and Back button. It saves the port name from user
selection, and (next form after this one) shows the associated operation base on
chosen port in this form.

SelectOperation_5

public void initGUI() throws Exception
Same as other GUI class, this method have been used to initializing the SWT shell
and creating GUI

private void createSShell(Display disp) throws Exception
This method have been used to creates SWT shell and shows the GUI to user it also
contains some java code for handling Next and Back button. It saves the operation
name from user selection, and then next form shows the associated SOAP message
which is created base on chosen operation in this form.

MessageInput_6

This class will generate a SOAP request message based on selected information in
last forms, It contains “-----” for input arguments of selected operation and they
should filled by user.

 66

There are two SWT tab in this form one is to check the created SOAP request and if
user like he/she can manipulate it, the other tab is some GUI form for user to enter
input argument’s values easily.

public void initGUI() throws Exception
Same as other GUI class, This method is using for initializing the SWT shell and
creating GUI.

public void fillInputsfromSOAP(String input) throws Exception
This method gets the input part from SOAP message and updates SOAP message
with user given input values on the input Data tab. It uses DOM parser for parsing
given input xml and updates values in Data tab.

public String fillSOAPwithInput(String oldInputs)throws Exception
This method acts opposite to fillInputfromSOAP. In this method data from input
Data tab are gathered and filled in appropriate message (in SOAP message tab), this
means you can enter input arguments in both tabs SOAP message tab or Input data
tab.

public String readInput4mGUI(String txtmsg) throws Exception
When input argument is read from SOAP message, they have some extra attribute
like type. For sending SOAP request this extra information can remove. This method
is responsible for removing extra attributes from input XML elements and returns
another xml input element with out extra attribute.

private void createSShell(Display disp) throws Exception
This method have been used for SWT shell creation it also has some calculation to
do what when tab changes, This calculation done in tabfolder.addSelectionListener
inner methods, above methods that I explained for this class, are all used in this
method.
It also has some business logic to call related class and method to execute service
(with created SOAP request message) and call web service then the SOAP response
message is shown SOAP message tab in text.

 67

4.3.2 at.slife.webservice.general package

This package used for storing different kind of information about the project, for
examples forms have one image on the first part of them, or state of the chosen
things in GUI should stored some where, WSDL repository is container of WSDL
file, its location and … needs to be stored somewhere.

In following associated classes will explained in detail

Setting

This class holds place of the created pipeline in constant member variable named
PIPELINE_LOCATION.

Place of the WSDL repository file which is responsible for storing WSDL file is
defined in REPOSITORY_LOCATION member variable.

Repository file name is defined in REPOSITORYFILE_NAME member variable.

Header image of each GUI form is defined in GUI_IMAGEx member variables, x
range is from 1 to 6 and related to the number after “_” in form name.

StateHolder

This class contains member variables which are responsible for storing user selection
when user is working with GUI.
There are predefined private and static String as member variable in this class.
Application forms fills these private Static String with their Setter methods and reads
them with their associated getter methods.
Each one of this member variable has a role in creating SOAP message for
requesting a service. Here is the list of these variables:
targetNameSpace, inputNameSpace, chooseWSDL, choosePortType, chooseServic,
chooseOperation, chooseMessage, chFunction

 68

chFunction here is exception. It has been used for second
(SelectBrowseOrPipeLine_2) form(the one we choose to create pipeline or browse
and operate on web service).

WebServiceRepository

As mentioned before WSDL files URL stored in repository, and for each execution
of Application in Abstract mode user can check the list of WSDL files, adds new
WSDL to repository or removes them from repository, Repository is nothing than a
simple text file.
For writing and reading from repository this class is created. In simple term this class
is used for repository file administration.
It contains following methods:

public void writeInWSDLRep(String wsdl) throws Exception
This method will be used to add new WSDL file in repository file.

public void del4mWSDLRep(String wsdl) throws Exception
This method will be used to remove the selected WSDL file(in GUI) from repository.

public String[] readAllWSDLs() throws Exception
This method reads the entire WSDL files from repository file and provide them to
GUI.

4.3.3 at.slife.webservice.pipeline package

This package as name shown will be used for pipeline administration. When we
choose a WSDL in second GUI form, it asks us if we need to create a pipeline for

 69

that WSDL or not? if we accept to create a pipeline for each operation in that WSDL
a new pipeline XML file will be created.
This package contains two classes one is for development test purposes and the other
one is for creating pipeline. I explain second one in detail.

After pipeline is created it stored in xml file that has special pattern like as following:
xxx_yyy_zzz.xml
xxx stands for service name, yyy stands for port name and finally zzz stands for
operation name.

PipelineAdmin

This class is used for development test purposes and doesn’t have any effect on
project in operational phase so I don’t explain methods.

CreatePipeline
This is the main class that used for pipeline creation and administration.

public void executePipelineCreation(String wsdl) throws Exception
This method gets WSDL URL as String and for each methods in WSDL creates one
pipeline it doesn’t contain business process, business processes happens via calling
createPipeline method.

public ArrayList readAllInfo(String wsdl) throws Exception
This method reads WSDL file and puts all pipeline creation required data, in
Arraylist then it returns that array list. Array list contains important data like port
name, service name and …

public void createPipeline(ArrayList allInfo,String wsdl) throws Exception
This method gets the array list that comes from readAllInfo method and WSDL
URL; via processing the content of these data pipeline file is created.

 70

Please consider for each web service operation one pipeline file is created and this
pipeline contains information about that specific operation.

4.3.4 at.slife.webservice.wsClient package

This package is core package for generic client business process, general package is
storage for project setting, clientGUI is mapping to GUI of application and this
package maps to business process of application.
It contains one class for parsing WSDL which used WSDL4J libraries and it is
responsible for getting information out of WSDL file. The other important class in
this package is the one that executes web service within given SOAP request
message.
Here are class descriptions for this package:

ExecuteService

This class is used for Web Service execution (Here connection to web service is
established and service is executed). For operating on Web service it uses JAX-WS
libraries.
This class contains following methods:

public void callAsynch(String wsdlPlace,String tNS,String serviceNam ,

String portNam, String operNam,
String inputParams,String inNS) throws Exception

This method will be used for asynchronous web service executionو it is not supported
in current version of this project.

public String callSynch(String wsdlPlace,String tNS,String serviceNam ,

 String portNam, String operNam,

 71

String IputParams,String inNS) throws Exception
This method gets all necessary inputs as arguments, makes SOAP message, executes
the service, gets SOAP result and changes the format to String then returns it.

public String callSynch(String SOAPReq) throws Exception
This method gets the whole SOAP request message as String, makes SOAP message
from SOAP message with argument(in String format), executes the Service, gets the
SOAP response and returns the SOAP Response in String format.

public void execute() throws Exception
This method will be use for executing service from GUI, GUI has all the required
information for web service, then this service reads them from general.StateHolder
class and executes the service via making call to callSynch method.

public static void main(String[] args) throws Exception
This is just for internal test purposes.

ParseWSDL

This class will be used for parsing WSDL file, it uses StAX and WSDL4J libraries
for parsing the WSDL file. First it reads WSDL and then parse its component.
 All WSDL4J libraries are written with DOM and other nonWSDL4J dependent
methods is written with StAX.

public ParseWSDL(String wsdlLocation)
This method will be used to initialize the parser. It has some WSDL4J internal usage
and there is no business logic related to this method.

public String readTargetNamespace(String wsdlLocation) throws Exception
This method gets WSDL URL as input, reads it, parses it and returns the associated
name Space for given WSDL file.

public String readInputNameSpace(String wsdlLocation,String operationName)

throws Exception

 72

This method gets WSDL URL and operation name as input arguments, then finds
associated input name space for given operation and returns it.

private String[] readPortNAMESFromServiceName(String wsdlLoc,

 String serviceName) throws Exception
This method gets WSDL URL and service name as input arguments and finds
associated ports which assigned to given Service name and return them in array of
Strings.

public String[] readAllServices(tring wsdlLocation) throws Exception
This method gets WSDL URL as input argument and finds associated Service names
which assigned to given WSDL URL and returns them in array of Strings.

public String[] readAllports(String serviceName, String wsdlLOC)
 throws Exception
This method gets Service name, WSDL URL as input arguments then finds
associated port names which assigned to given WSDL URL and service name and at
the end returns them in array of Strings.

public String[] readOperations(String currServName, String currPortName,
 String wsdlLoc) throws Exception
This method gets Service name, port name,WSDL URL as input arguments and finds
associated operation which assigned to given WSDL URL, port name and service
name and then returns all founded operation in array of Strings.

public String readInputParam(String currServName,String currPortName,
 String wsdlLoc,String operNam)
 throws Exception
This method gets all necessary information for given operation and returns a string
which contains input parameters like following as example:

<country1 xsi:type=”xs:String”>- - - - - </<country1>
Please consider instead of value this method inserts “-----“and afterward user can
manipulate it.

public ArrayList readinputs4Pipeline(String currServName,

String currPortName, String wsdlLoc,
String operNam) throws Exception

 73

This method reads inputs for given operation but it will be used for creating
pipelines.

SOAPReqCreator

This class do all the SOAP message creation things

public String makeSOAPMessage(String targetNS,String operationName,String
inputParam,String inputNS) throws Exception
This method gets all the required information for creating SOAP Request message,
creates a SOAP request in String format and returns it.

public SOAPMessage makeSOAPmsgFromString(String msg)
This method gets the SOAP Request message in String format and makes a java
SOAP message then returns the result; input of this method is return value of
makeSOAPMessage.

public SOAPMessage makeSOAPmsgFromString_test()
This method is for development test purposes and doesn’t need any explanations.

public static void main(String args[])
This method is for development test purposes and doesn’t need any explanations.

XMLInstmaker
This class used for creating XML Instance for complex schema and doesn’t
supported in this version

 74

4.3.5 at.slife.webservice Package

Connect2WS
This class located in root of at.slife.webservice and contains one methods for reading
parameter from client and calling web service in SOPA framework, in another term
this class is gateway to SOPA framework.
It has one method public String wsCall(String wsdlLoc, String serviceName,
 String portName,
 String operName, String inputs)
And this method does the execution of web service via making call to other methods
in other packages.
Client code calls this method via Pipeline Plug-in because this class and its method
registered as XMAS service and operation.

4.4 UML Diagrams

For better understanding the execution process and structure of this project I try to
explain the class diagram and sequence diagram of this project, first I explain class
diagram and then sequence diagram.

4.4.1 Class diagram

Figure 4.5 depicts UML class diagram of this project.

 75

Classes that are using for GUI are shown in alliaceous and the other classes which
are presented in blue are used for business process of generic client. StateHolder is
also used for Client when GUI doesn’t require, and web services have been executed
(via making call to pipeline) we don’t need to maintain any state because all
information are coming from pipeline.

You can also mention that all alliaceous classes have association relation (has a) with
ParseWSDL, because parseWSDL class will be used in both cases (SOPA or GUI) to
parse WSDL file.

4.4.2 Sequence diagram

Figure 4.6 depicts UML sequence diagram of this project. In sequence diagram you
can see all GUI classes have interaction with StateHolder classes, because it saves
the user selection on each form, you can also see that some of them have interaction
with ParseWSDL.

With checking Sequence diagram in figure 4.6 you can realize the message flow in
generic client within GUI.

When we work on SOPA framework level there is no usage for GUI classes, except
creating Pipeline.
In SOPA framework following classes are used:
Setting, createPipeline, ReadWSDL_1, ExecuteService, ParseWSDL,
SOAPReqCreator

 76

Figure 4-5 Generic Client class diagram

 77

 78

Figure 4-6 generic client Sequence Diagram

 79

4.5 User Manual

In this part I try to explain how user can use generic client in SOPA framework or

the abstract mode.

Before starting this tutorial please note that if user wants to use Generic client or use

SOPA framework in both cases he/she needs to create pipeline and run GUI so I start

with GUI explanation.

Imagine user runs the first GUI file ReadWSDL_1 then he/she gets the following

figure (figure 4.7)

Figure 4-7 Read WSDL

 80

This form has two functionalities, one is to add and removing web services to/from

web service repository and the other one is for choosing which web service we want

operate with.

If we need to add new WSDL file to web service repository we should write WSDL

URL in WSDL Location text box then click on add button, if we want to remove

WSDL file from web service repository we should choose the remove candidate

from WSDL lists, it appears in WSDL Location then after we clicked delete Button

that WSDL file Location is removed from web service repository.

After clicking next button second form will be appeared (figure 4.8)

Figure 4-8 Choose functionality

 81

In this form user chooses what he/she wants to do with the selected WSDL file, does
he wants to create Pipeline for it or he/she wants to browse its services and execute
its operation on GUI level.

If user selects “Create pipeline for this WSDL” when he clicks next he gets message
box that informs him pipeline for your WSDL file is created and shows him the path
of created pipeline in Operating system.

If he chooses “Browse this WSDL and creates SOAP Message request for it” he will
go to next form shown in figure 4.9

Figure04-9 choose Service

Figure 4.9 shows you the list of services of a chosen WSDL file, for example this
one has one services and it is CurrencyExchangeService here.
After user selecting the service he can click the Next button and see the next form
(figure 4.10), if he doesn’t select any service and clicks next he will get an alert to
select one service.

 82

Figure04-10 choose Port

Above form shows the ports that coming from chosen service in last form. Now user
should choose the port he/she want to operate with, and click Next button.
After user clicks next button another form appears and this form shows the
operations which are available for chosen port in last form.

 83

Figure04-11 choose web service operation

Figure 4.11 shows the form that has been used for selecting operations.

After Operation is selected by user, user gets the last form that shows SOAP request
message created for the chosen operation, note that places for input variables are
empty and shown with “-----“in figure 4.12. User can go to input Data tab figure 4.13
and enters values for input variables. It is possible to enter data for input variables for
both tabs (SOAP message tab and Data tab).

 84

Figure 4-12 Message Input, SOAP message tab

After entering input variable data by user is finished, user can click Execute button
and checks the SOAP response result in SOAP Message tab.

 85

Figure04-13 Message Input, Input data tab

 86

Chapter 5

Integration with SOPA

Information of this chapter coming from following references:
• Oracle BPEL Tutorial http://otn.oracle.com
• Semantic Enrichment of Search Result: the Coupling of Semantic Strore

and Google Services. by Khabib Mustafa, Amin Andjomshoaa, A Min
Tjoa Institue for Software Technology and Interactive Systems TU
Viennsa, Austria

• Service Oriented Architecture Cocepts, technology and Design by
Thomas Erl

• Service Oriented Architecture a Field guide to integrating XML and web
services by Thomas Erl

5.1 General Information

For understanding Business process (BPEL or SOPA) following terms should have
been explained in detail: Coordination, orchestration, business Activity, Atomic
transaction.
First these terms will be explained then as second step BPEL and SOPA will be
explained, at the end a comparison between each of them will be provided.

 87

5.1.1 Coordination

Every activity introduces a level of context into an application runtime environment.
Something that is happening or executing has meaning during its lifetime, and the
description of its meaning can be classified as context information.
The complexity of an activity can relate to a number of factors, including:

• The amount of services that participate in the activity

• The duration of the activity

• The frequency with which the functionality of the activity changes

• Whether or not multiple instances of the activity can concurrently exist

A coordinator based context management framework, as provided by WS-
Coordination and its supporting coordination types, introduces a layer of composition
control to SOA. It standardizes the management and interchange of context
information within a variety of key business protocols.
Coordination also reduces the need for service to retain state. Statelessness is a key
service orientation principle applied to services for use within SOA, coordination
forces statelessness by assuming responsibility for the management of context
information.

5.1.2 Transaction

Atomic transaction

Atomic transaction implements the familiar commit and rollback features to enable
cross service transaction support. Most salient adjective of Atomic Transaction is
that it can’t be broken in smaller logical part.

 88

ACID transaction

The protocols provided by the WS-AutomicTransaction specification enable cross
service transaction functionality comparable to the ACID compliant transaction
features found in most distributed application platforms.

The term ACID is acronym representing following characteristics:
Atomic: Either all of the changes within the scope of the transaction succeed or none
of them succeed. This characteristic introduces the need for the rollback feature that
is responsible for restoring any changes completed as part of failed transaction to
their original state.
Consistent: None of the data changes made as a result of the transaction can violate
the validity of any associated data models. Any violations result in a rollback of the
transaction.
Isolated: If multiple transactions occur concurrently, they may not interfere with
each other. Each transaction must be guaranteed an isolated execution environment.
Durable: Upon the completion of a successful transaction, changes made as result of
the transaction can survive subsequent failures.

Much of the transactional functionality implemented in service oriented solutions is
done so among the components that executes an activity on behalf of a single service.
However, as more services emerge within an organization and as service
compositions become more commonplace, the need to move transaction boundaries
into cross-service interaction scenarios increases. Being able to guarantee an
outcome of an activity is a key part of enterprise-level computing, and atomic
transactions therefore play an important role in ensuring quality of service.

Not only do atomic transactional capabilities lead to a robust execution environment
for SOA activities, they also make interoperability when used into integrated
environments.
This allows the scope of an activity to span different solutions built with different
vendor platforms, while still being assured a guaranteed all-or-nothing outcome.
If WS-Atomic Transaction used by different application this of course broadens the
option of two phase commit protocol.

 89

5.1.3 Business Activity

Business activities govern long-running complex service activities. Lots of effort
need to be done to cause business activity has enough ability to complete. During this
period, the activity can perform numerous tasks that involve many participants.

What distinguish business activity from a regular complex activity is that its
participants are required to follow specific rules defined by protocols. Business
activities primarily differ from the also protocol-based atomic transaction in how
they deal with exceptions and in the nature of the constraints introduced by the
protocol rules.

For instance, business activity protocols don’t offer rollback capabilities. Given the
potential for business activities to be long-running, it would not be realistic to expect
ACID-type transaction functionality. Instead, business activities provide an optional
compensation process that can be invoked when exception conditions are
encountered.

Business Activity is obvious reason of SOA’s compos-able nature. Service autonomy
and statelessness are preserved by permitting services to participate within an activity
for only the duration they are absolutely required to. This also allows for the design
of highly adaptive business activities wherein the participants can augment activity
or process logic to accommodate changes in the business tasks being automated.
Through the use of the compensation process, business activities increase SOA’s
quality of services by providing built in fault handling logic.

Please consider that the use of business activity doesn’t exclude the use of atomic
transactions. In fact, it is likely that a long-running business activity will encompass
the execution of several atomic transactions during its lifetime.

 90

5.1.4 Orchestration

The role of orchestration broadens in service oriented environments. Through the use
of extensions that allow for business process logic to be expressed via services,
orchestration can represent and express business logic in a standardized, service base
context.
When building service oriented solutions, this provides an attractive means of
housing and controlling the logic representing the process being automated.

Orchestration further leverages the interoperability in service designs by providing
potential integration endpoints into processes. A key aspect to how orchestration is
positioned within SOA is the fact that orchestrations themselves exist as services.
Therefore building base on orchestration logic standardizes process representation
across organization, while addressing the goal of enterprise orientation.

A primary industry specification that standardizes orchestration is the Web services
Business Process Execution languages (WS-BPEL or formerly known BPEL4WS),
which I explain in more detail and compare it with SOPA. SOPA is also another
form of business orchestration.

5.1.5 Choreography

In ideal world all organizations would agree on how internal processes should be
structured, so that should they ever have to interoperate, they would already have
their automation solutions in perfect alignment.

But this not reality just imagination, the requirement of organizations to interoperate
via services is becoming increasingly real and increasingly complex. This is
especially true when interoperation requirements extend into the realm of

 91

collaboration, where multiple services from different organizations need to work
together to achieve a common goal.

The Web services choreography description language (WS-CDL) is one of several
specification that attempts to organize information exchange between multiple
organizations (or even multiple application within organizations), with an emphasis
on public collaboration.

An important characteristic of choreographies is that they are intended for public
message exchanges. The goal is to establish a kind of organized collaboration
between services representing different service entities, none of the entities
necessarily controls the collaboration logic.

The fundamentals concept of exposing business logic through autonomous services
can be applied to just any implementation scope. Two services within a single
organization, each exposing a simple function, can interact via a basic MEP
(Message exchange protocol) to complete a simple task. Two services belonging to
different organizations, each exposing functionality form entire enterprise business
solutions, can interact via a basic choreography to complete task. Both scenarios
involve two services, and both scenarios support SOA implementations.

Therefore choreography can assist in the realization of SOA across organization
boundaries while it supports compos-ability, reusability and extensibility.
Choreography can also increase organizational agility and discovery. Organizations
are able to join into multiple online collaborations, which can dynamically extend or
even alter related business processes that integrate with the choreographies.

 92

5.2 Introduction to BPEL4WS or WS-BPEL

In computing, Business Process Execution Language (or BPEL), is a business
process language that grew out of WSFL (web service flow language) and XLANG.
It is serialized in XML and aims to enable programming in the large. The concepts of
programming in the large and programming in the small distinguish between two
aspects of writing the type of long-running asynchronous processes that one typically
sees in business processes.
In another word BPEL uses for process orchestration.

In BPEL Business process logic is centralized in one location, as opposed to being
distributed across and embedded within multiple services.

Following XML shows you BPEL structure, explanation of each part is out of scope
of this document:

<process>

 <partnerLinks>

 ...

 </partnerLinks>

 <variables>

 ...

 </variables>

 <faultHandlres>

 ...

 </faultHandlres>

 <sequence>

 <receive …>

 <invoke…>

 <reply…>

 ...

 </sequence>

</process>

 93

Example:

Following is Hello world example provides from Oracle BEPL tutorial.
In following example we have partner link as client for providing service:

5.3 Introduction to SOPA

As explained before, Orchestration service layer provides a powerful means by
which contemporary service-oriented solutions can realize some key benefits.
One of the most significant advantages of service oriented computing is separation of
Logic from other application layers.

 94

By Abstracting business process we get following advantages:

• Application and business services can be freely designed to be process
agnostic and reusable.

• The process service has better degree of statefulness, thus changing on

services in process flow has no effect on other services.

SOPA stays for service oriented pipeline architecture; it is a service oriented
framework which has been developed to implement Service composition and service
orchestration (business process layer of SOA) , base on creating pipelines and calling
services (both eclipse and web services) from pipelines.

5.3.1 What is pipeline?

Pipeline term which has been used in SOPA defines a set of related service calls and
intermediate transformations. In another word it provides some mechanism to
orchestrate set of logically related services. Pipeline has XML structure and makes a
call to service located in pipeline in XML structure format.

Following example shows you a pipeline calling “getRate” operation of “currency
exchange” web service belongs to xmethods:

<?xml version="1.0" encoding="UTF-8"?>

<pipelines><pipeline name="getRate">

 <parameters>

 <parameter name="country2" type="string"/>

 <parameter name="country1" type="string"/>

 </parameters>

<call service="at.slife.webservice" operation="wsCall"

returns="string">

<parameter name="wsdlLoc" type="string">

http://www.xmethods.net/sd/CurrencyExchangeService

.wsdl

</parameter>

 95

<parameter name="serviceName" type="string">

CurrencyExchangeService

</parameter>

<parameter name="portName" type="string">

CurrencyExchangePort

</parameter>

 <parameter name="operName" type="string">

getRate

</parameter>

 <parameter type="string"> {country2} </parameter>

 <parameter type="string"> {country1} </parameter>

 </call>

 <serialize type="xml"/>

</pipeline></pipelines>

5.3.2 SOPA plug-in model

As noted before generic client component can be used separately from SOPA
framework and also it can integrate in SOPA framework as plug-in, before we go
further in integration part I prefer to explain about SOPA framework and make an
overview about BPEL then at the end we will make some few notes about their
differences.

SOPA is type of architecture which is based on eclipse platform and provides a
service bus, but SOPA services are not restricted to web services there are three
different categories of services (two are eclipse services and one is web services,
second one is the main goal of this project) which can integrate in SOPA framework.
Here in following an concrete explanation provided.

 96

5.3.2.1 Eclipse services

1. GUI Plug-ins

GUI services which have been used as visual eclipse plug-in. They can be use in
SOPA framework as SOPA services.

2. Business Services
There is a possibility for integrating all types of non GUI eclipse plug-ins, they will
be located in SOPA framework as external service.

5.3.2.2 Non Eclipse services

Web Services

Standard web services which are distributed on the web can also bring inside SOPA
framework via generic client plug-in. This plug-in is main focus of this document
and is core responsible component of executing external web services in SOPA
framework, within this feature SOPA framework can act as Service Bus.

Following figure shows you how can SOPA act as Service Bus for three different
kind of services

 97

Plug-in
Services

Pipelines External
Web Services

Services Bus
Plug-in

Generic Client

Figure 5-1 SOPA service Bus Plug-in and the location of generic client

5.3.3 SOPA features

As I mentioned before SOPA provided a Service composition and service
orchestration like BPEL, I will explained BPEL in this chapter in detail.
SOPA implementation policy is to make integration and service consumption easy to
use, in another word I can say SOPA is light weight ESB (Enterprise Service Bus)
which is easy to extend. Every kind of web services can be add to SOPA as extension
plug-in and there is no or less overhead in service extension and service integration.
The idea of SOPA is because current computer are strong enough to handle different
kind of web service operation’s call, we can bring interface to desired service on
local machine and via that interface (pipeline) in first step fill arguments and in
second step call operation.

 98

One another Interesting feature in SOPA is inside SOPA you can add a pipeline to
call another pipeline like BPEL that from one partner link you can call another
complete BPEL process.

For example following shows you how via one pipeline another pipeline has been
called:

<pipeline name="internalCall">

 <parameters>

 <parameter name="a" type="int"/>

 <parameter name="b" type="int"/>

 </parameters>

 <call id="node" service="at.slife.test" operation="multiply"

 returns="int">

 <parameter type="int">{a}</parameter>

 <parameter type="int">{b}</parameter>

 </call>

<call id="node" service="at.slife.test" operation="add"

returns="int">

 <parameter type="int">{b}</parameter>

 <parameter type="int">

 </call>

 <call service="at.slife.pipeline" operation="complex:square">

 <parameter type="int">{b}</parameter>

 </call>

 <call id="node" service="at.slife.test@localhost" operation="add"

returns="int">

<parameter type="int">

 {xpath:/html/body/number[1]/text()}

</parameter>

<parameter type="int"

 {xpath:/html/body/number[2]/text()}

</parameter>

 </call>

 <transform xsl="transformer.xsl"/>

 <serialize type="xml"/>

 </pipeline>

 99

In above example the bold part shows you how a pipeline can be called as parameter
of another pipeline.

5.3.4 SOPA Service monitoring framework

What is important in Service composition is quality of Service, traditional service
quality measurement forms are not sufficient for Service oriented architecture
context.

Service Oriented system’s quality relies on the quality of each service that it has been
composed of. In Service oriented architecture components are not managed centrally,
because they are distributed over the network.

Important monitoring factor for service in Service oriented architecture could be
availability, correctness and response time.

SOPA monitoring component can be configured to check specific services at
required intervals and log the results. This process measure Availability, response
time and correctness.

5.3.5 SOPA Alternative services (service backup)

In SOPA each service may be backed up with a set of alternative services, an
alternative service may be composition of two or more services.
At system design time the alternative service backup sets can be defined for each
service. When original service is not available SOPA will automatically switch to
one of the alternative service based on administrator defined criteria.

 100

For example imagine a service which used for currency exchange if this service is
not available it should be replaced with a similar service that provide us the same
result.

At system design time the alternative service backup sets can be defined for each
service. At runtime if the original service is not available or fails, SOPA will
automatically switch to one of the alternative services based on administrator defined
criteria.
This feature will increase the failure tolerance and level of service reliability.

5.3.6 SOPA implementation example (SemanticLIFE)

SemanticLIFE is a personal information management supporting personal data like
emails, contacts web browsing, sessions, chat sessions and fileupload.
Explaining semantic life is out of scope of this document but for more information
you can refer to this link: http://storm.ifs.tuwien.ac.at/

The whole SemanticLIFE system is designed as a set of interactive plug-ins that fit
into the main application and this guarantees flexibility and extensibility of the
SemanticLIFE platform. Communication inside system is Service oriented and via
SOPA it is possible to compose complex solutions and scenarios from atomic
services of SemanticLIFE plug-ins.

5.3.3 WS-BPEL (BPEL4WS) comparison with SOPA

Both BPEL and SOPA are used for service composition, BPEL4WS is current
standard language used for service orchestration and composition and lots vendors

 101

implement tools for it. But there are differences between SOPA and BPEL I try to
explain advantage of SOPA over BEPL in following:

• SOPA has potential to include a built-in monitoring frame work, this could be
an advantage over BPEL4WS because BPEL lack the unit test tooling support
and this is a drawback for BPEL in terms of quality and efficiency. There are
test methods available for BPEL but they are platform specific and there is no
standard specification available for BPEL4WS monitoring yet, but vendors
provide monitoring tools for example oracle BAM(Business Activity
monitoring) provides process monitoring and Sensor technology to monitor
quality of services. SOPA has a monitoring framework which have been used
to measure quality and quantity of web service characteristics in order to
decrease failure.

• Another difference between SOPA and BPEL4WS is: BPEL4WS language
currently does not support the explicit definition of business process
fragments that can be invoked from another (or the same) business process.
The only way to approximate similar behavior today is by defining a
complete business process as an independent service and invoking it using an
<invoke> activity. The fact that the invoked activity is really implemented as
another process is completely hidden from the parent process, in other words,
there is no chance to establish any coupling of process instance lifecycles.
There are some new extension for subprocesses that aim to overcome this
problem however it doesn’t cover empirical aspects of Service oriented
architectures such as quality assurance, statistical based decision making, unit
test and monitoring system status, but SOPA has this feature.

 102

Appendix

Restrictions

Please consider following restrictions according to the usage of generic client.

General Restrictions

• This component is designed for JEE5 and it uses JAX-WS library as
execution engine so it is not designed for JAX-RPC and of course there is no
possibility to use JAX-RPC library for further code manipulation.

• GUI is designed with SWT libraries, Parser is designed with WSDL4J
library and Call-WS plug-in part is SOPA framework dependent.

• This component is designed and implemented on windows XP operating
system, there should be no restriction to run it on other platforms but I didn’t
test that.

• There is no port needed to be occupied for executing of this component but
because it calls services via HTTP, standard HTTP port will establishes
connection to service.

 103

WS Client invocation restrictions

• Most of WSDL files have only one definition element, parser part of generic
client component is designed in a way to assume each WSDL has one and
only one definition element, this means any WSDL which has more than one
definition element inside, is not supported here in this work.

• Complex data types as type definition in WSDL file is not supported in this
version so any web service’s operation which contains complex XSD type as
input is not executable or callable via this component.

• In client invocation of web service we have different ways to call an

operation on service. This component is designed to invoke synchronously
(one way). Asynchronous invocation or any other form of service invocation
is not supported in this version.

 104

Reference

- The Java API for XML-Based Web Services (JAX-WS) 2.0 Final Release

- JSR-110: Java™ APIs for WSDL (JWSDL) Version 1.2

- JSR-173: Streaming API For XML

- Service Oriented Architecture a Field guide to integrating XML and web services

by Thomas Erl

- Service Oriented Architecture Cocepts, technology and Design by Thomas Erl

- Semantic Enrichment of Search Result: the Coupling of Semantic Strore and

Google Services

by Khabib Mustafa, Amin Andjomshoaa, A Min Tjoa Institue for Software

Technology and Interactive Systems TU Viennsa, Austria

- Java Web Services Architecture by James McGovern, Sameer Tyagi, Michael

Stevens and Sunil Matthew

- The Java™ EE 5 Tutorial For Sun Java System Application Server Platform

Edition 9

- Eclipse Rich Client Platform: Designing, Coding, and Packaging Java™

Applications By Jeff McAffer, Jean-Michel Lemieux

- Note on the Eclipse Plug-in Architecture, By Azad Bolur

- SOAP's Two Messaging Styles By: Rickland Hollar

 105

- JAX-RPC vs JAX-WS By: Russell Butek and Nicholas Gallardo (http://www-

128.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html)

- J2EE Web Services By Richard Monson-Haefel

- XML in Nutshell 3rd Edition By Elliotte Rusty Harold, W. Scott Means

- Oracle BPEL Tutorial http://otn.oracle.com

- SWT/JFace in Action by Matthew Scarpino, Stephen Holder, Stanford Ng, Laurent
Mihalkovic

