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Kurzfassung

Da kardiovaskuläre Erkrankungen die häu�gste Todesursache in den

westlichen Industriestaaten sind, wird auf diesem Gebiet bereits intensiv

geforscht. Diese Arbeit beschäftigt sich mit der Simulation von Blut�uss in

den groÿen Arterien, wobei besonders auf die lokalen Strömungseigenschaften

des dynamischen Flusses eingegangen wird. Bei den charakteristischen Ge-

schwindigkeiten und Längen, die dabei auftreten, ist es möglich, Blut als

eine Newtonsche Flüssigkeit zu betrachten. Solche Flüssigkeiten können

mit den Navier-Stokes Gleichungen beschrieben werden. Diese Gleichungen

müssen im Allgemeinen numerisch gelöst werden, was anhand der Lattice

Boltzmann Methode geschieht.

Lattice Boltzmann Methoden sind explizite numerische Verfahren, die

durch einen Bottom-up-Ansatz hergeleitet werden können und häu�g in

der Strömungsmechanik zur Anwendung kommen. Ziel dieser Arbeit ist

es, diese Methode auf den kardiovaskulären Bereich anzuwenden. Dafür

muss das Verfahren um eine neue Randbedingung erweitert werden, welche

die Elastizität der Arterienwände beschreibt. Dadurch ist es möglich, die

Methode in der Blut�usssimulation einzusetzen, wobei auf die in technischen

Anwendungen unüblichen Reynoldszahlen, auf die Elastizität der Gefäÿe

und auf die kompliziert verzweigte Geometrie Rücksicht genommen wird.

Die vorgestellten Verfahren und Randbedingungen wurden in Java imple-

mentiert und auÿerdem wurde eine Softwareumgebung erstellt, die den Be-

nutzer in den folgenden Aufgaben unterstützt: Zunächst bei der Erfassung

der Daten, wobei geometrische Randwerte patientenspezi�sch durch Magnet
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Resonanz Angiographie gewonnen werden sollen. Weiters beim Platzieren

beliebiger Randwerte, vor allem von geeigneten dynamischen Ein- und Aus-

�üssen und anschlieÿend bei der Interpretation und Visualisierung der Ergeb-

nisse. Dabei können die Ergebnisse entweder nach Matlab exportiert werden

oder mit direkter Volumsvisualisiserung oder mit geometrie-basierten Ver-

fahren dargestellt werden.



Abstract

Cardiovascular diseases are the most frequent cause of death in the western

industrial countries, therefore recently a lot of research is done in this

area. This work focuses on blood �ow simulation in large arteries where

the local properties of the dynamic �ow are under investigation. The

characteristic velocities and lengths that thereby occur make it possible

to approximate blood as a Newtonian �uid. Therefore the �ow can be

described by the Navier-Stokes equations. These equations in general must

be calculated numerically, which is done with the Lattice Boltzmann method.

Lattice Boltzmann methods are explicit numerical schemes that are derived

with a bottom-up approach and are widely used in �uid mechanical appli-

cations. The aim of this work is to apply this method to the cardiovascular

domain. For this reason the procedure is extended for a new boundary

condition, which describes the properties of elastic vessel walls. Hence it is

possible to use the method in blood �ow simulation with regard to relevant

Reynolds numbers, elasticity and the complex branching of the vessels.

The proposed methods and boundary conditions have been implemented in

Java and a software environment has been created supporting the user with

the following tasks: First with data acquisition, where geometrical boundary

conditions shall be derived patient speci�c from magnetic resonance angiogra-

phy. Further with the setting of arbitrary boundary conditions, particularly

with feasible in- and out�ow pro�les, and �nally with the interpretation and

visualization of the results. The results can be either exported to Matlab or

visualized by direct volume visualization or geometry-based methods.
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Chapter 1

Introduction

The chapter gives a short survey to physiology, modeling and simulation.

First a short description of the cardiovascular system is given, then the fun-

damental terms of simulation and modeling are introduced. Finally the ob-

jectives and requirements of blood �ow simulation are presented, preliminary

works are examined and the aim of this work is described in detail.

1



CHAPTER 1. INTRODUCTION 2

1.1 Physiology of the arterial system

The cardiovascular system transports blood to the cells to provide them with

oxygen and nutrients as well as to dispose pollutants like carbon dioxide.

The circulation is extremely powerful, in example the heart beats on average

115200 times in one day transporting approximately 7200 liters of blood. In

this section only a short introduction can be given, for a complete survey on

the topic the reader may refer to [1].

The heart is the driving force of blood �ow. It consists of four chambers,

two pairs respectively each consisting of atrium and ventricle, see �gure 1.1.

From the left ventricle the blood is pumped into the aorta and enters the

systemic cycle. From the right ventricle it is pumped into the pulmonary

cycle. From the heart the blood branches to the arterioles, which are small

vessels with a diameter between 20-100 µm, and passes on to the capillaries

where the mass transfer occurs. In the systemic cycle oxygen and nutrients

are delivered and carbon dioxide is loaded, while in the pulmonary cycle the

blood is loaded with oxygen and the carbon dioxide is disposed. After this

exchange the blood returns through the veins where the oxygen-rich blood

from the pulmonary cycle enters the left atrium and the carbon dioxide-rich

blood enters the right atrium.

The cardiovascular system has a blood volume of approximately �ve liters.

The veins hold the majority of the blood, while the arteries' high pressure

system holds only a small proportion [2], see table 1.1.

pressure (mmHg) blood volume (ml)
arterial systemic 100 1000
veneous systemic 2 3500
arterial pulmonar 15 100
veneous pulmonar 5 400

Table 1.1: Pressure in the arterial and venous system
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Figure 1.1: The heart [3]

In the following section some aspects are described in more detail. Starting

point is the heart which is the source of blood �ow. Then the systemic ar-

teries are examined, which are important concerning cardiovascular diseases.

Subsequently the physiology of blood is described and in the last section the

most common cardiovascular diseases are summarized.

1.1.1 Heart

The heart pumps blood through the vascular system with contraction by pe-

riodic stimulation of its muscles. Its septum divides it into two sections each

containing two chambers the atrium and the more muscular ventricle, see �g-

ure 1.1. During the expansion of the heart, the diastolic phase, in each cycle

the two ventricles are �lled with blood from the left and right atria respec-

tively. In the systolic phase the heart contracts. The mitral and trikuspidal

valve prohibit a back�ow into the atrium. Thus the blood has to exceed

from the left ventricle into the aorta and from the right ventricle into the

pulmonary artery. The ejection continues until the �ow decelerates and the

aortic and pulmonary valves close. The sinus node controls the synchronous

contraction of the ventricles. The cardiac cycle takes approximately 0.7 s,

the systole endures between 0.2-0.3 s and the diastole 0.5-0.7 s.
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Figure 1.2: Velocity and pressure over one cardiac cycle in the main arteries [4].

1.1.2 Systemic arteries

The blood is pumped from the heart into the aorta. In the aorta the pres-

sure �uctuation is approximately between 70 mmHg and 110 mmHg. This is

much less than in the ventricle where the pressure �uctuates approximately

between 0 mmHg and 120 mmHg. This is possible because of the elasticity

of the aorta which is responsible for the so called Windkessel e�ect. The

Windkessel e�ect is often described with the analogy to a hand pumped �re

engine. The �reman pumps water into a air chamber with periodic injections

at high pressure. The chamber has a high mean pressure and therefore the

water streams out in a steady �ow.

A schematic illustration of the main branches of the aorta with velocity and

pressure pro�les is given in �gure 1.2. Except for the aorta and iliac all large
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Figure 1.3: Pressure and velocity pro�les moving away from the heart [4].

arteries are curved and branched in complicated ways. Only relatively few

straight segments exist where the �uid mechanics of long tubes apply [5].

This can be a problem in blood �ow simulation because the in�ow pro�le

is not known and must be chosen in a realistic way. This problem will be

discussed in chapter 4.1.2. Going down the vessel tree the mean pressure

stays approximately the same in the large arteries, while the maxima of

the pressure pro�les increase and the minima decrease. The �ow oscillation

on the other hand diminishes which is an e�ect of the re�ection in small

peripheral vessel, see �gure 1.3.

1.1.3 Blood

Blood is a suspension of formed elements in plasma. Those elements make

up to 45% of the blood and are red cells, white cells and platelets. The

majority are the red cells which mainly in�uence the mechanical properties

of blood. They can be described as elastic biconcave discs with a diameter

of 8 µm and a thickness of 1 µm at the center and 2-3 µm at the edge. The

white blood cells are larger than the red blood cells. Because they are far less

in number than the red cells they do not e�ect the mechanical properties of
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blood. Platelets are rounded cells with a diameter of 2-4 µm. They are not

important for mechanical properties of blood but they play a signi�cant role

in blood clotting and in the later stages of the development of arteriosclero-

sis. Plasma itself is a suspension of large molecules. It can be regarded as a

Newtonian �uid on the characteristic scales of motion and shear stress that

are encountered in the blood vessels.

Blood can be assumed as a homogeneous �uid when the microstructure of

blood is very small in comparison to the characteristic length under investi-

gation. In this case blood can be described with the Navier-Stokes equations.

This approximation is often used in large vessels, commonly it is assumed

that the suspension has a density of 1.052 g
cm3 and a kinematic viscosity of

0.04 cm2

s
[5].

1.1.4 Cardiovascular diseases

Cardiovascular diseases are the most frequent cause of death in the western

industrial countries [6] [7]. In this section the most common diseases are

summarized.

• Hypertension: The de�nition of the WHO of hypertension is that the

blood pressure at the arm at the height of the heart is higher than 160

mmHg in the systole or 95 mmHg in the diastole. Persistent hyperten-

sion is an important risk factor for cardiovascular diseases. It can lead

to strokes, heart failure and arterial aneurysm and is a leading cause

of chronic renal failure.

• Thrombosis and embolism: Thrombosis is the generation of a blood clot

on a vessel wall. The blood clot grows fast and then closures the vessel.

The blood clot is then called a thrombus. When the thrombus detaches

it is transported through the vessels until it again blocks a vessel. The

transported blood clot is called embolus. One of the most common

recognized scenarios is called coronary thrombosis, where a coronary

artery is blocked causing myocardial infarction commonly called a heart

attack.
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• Atherosclerosis: The disease is a�ecting arterial blood vessels and is

caused by the formation of multiple plaques within the arteries. As a

result the artery becomes less elastic, which weakens the Windkessel

e�ect and therefore burdens the whole cardiovascular system. Another

problem of atherosclerosis is that the atheromatous plaques can lead to

plaque ruptures and stenosis, which is a narrowing of the arteries. This

causes either insu�cient blood supply to the organs or an increased

blood pressure when the same blood volume has to be transported

through the narrowed vessels.
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1.2 Modeling and simulation

In this section basic terms of modeling and simulation will be introduced and

its appliance in medicine will be discussed. For a more detailed presentation

on modeling and simulation the reader may refer to [8] and [9].

Simulation is the replication of a dynamic process for gaining insights that

can be transferred to the real world. Therefore a fragment of reality, a system,

is described with a model. A system is a set of objects which are connected

by interdependence and interaction. According to this a model is the descrip-

tion of a concrete system and a mathematical model is the description of a

concrete system in terms of equations. The model is then implemented in a

suitably programming language. In a stricter sense simulation is the experi-

mentation with a computer model used to get insights about the properties

of the system. Possible objectives are predictions of the time behavior of the

system or the detection and analysis of system properties.

Modeling and simulation in medicine is becoming increasingly important and

is applied to many di�erent areas in medicine. In the following some of the

applications are summarized.

• Prediction of the course of a disease: If the time behavior of a disease

can be predicted by computer simulation a computer aided treatment

planning is possible.

• Prediction of the e�ects of an operation: The e�ects on operational

interferences are simulated which can enable a preoperation planning.

• Teaching: Experiments with a model can help to understand complex

coherence.

• Prediction of measurement: Many signi�cant parameters cannot be

measured directly, but sometimes it is possible to calculate those pa-

rameters using simulation.
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Figure 1.4: Modeling as an iterative process

The construction of a model takes several steps and is an iterative process,

see �gure 1.4. First the system under investigation must be restricted. As

few characteristics of the system as possible should be used to describe the

task. If too many characteristics are considered the system becomes too

complex and its description more di�cult. On the other hand the inclusion

of too little characteristics causes that the system does not capture essential

system properties. The complexity of the system depends on the one hand

of the complexity of the system under investigation and on the other hand

on the level of detail which is needed for the predetermined task.

Modeling and simulation is mostly performed on computers, hence a huge

amount of computer codes exist to support several tasks that occur in the

method simulation. These tasks are [10]:

1. Formulation of the problem

2. Data collection and data acquisition
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3. Mathematical modeling

4. Computer implementation

5. Model validation

6. Model identi�cation

7. Experiments with the model

8. Representation of results

9. Interpretation of results

Experimentations with the model (7) are usually in the time domain if the

system under investigation is dynamic. For computer programs di�erent

terms are used showing which tasks are supported. A Simulation Software

or a Simulation Language support the steps (4, 7, 8). A Simulator supports

also the data acquisition and the modeling process, thus (2, 3, 4, 7, 8).

A Simulation System additionally supports identi�cation, thus (2, 3, 4, 6,

7, 8). Finally a Simulation Environment adds features for validation, thus

supporting almost every step (2, 3, 4, 5, 6, 7, 8).



CHAPTER 1. INTRODUCTION 11

1.3 Problem formulation

In this section the main objectives of the thesis are given and the main tasks

in the development of a feasible blood �ow simulator are presented. A short

overview on previous works is given and a link to those models is established.

1.3.1 Motivation

As pointed out in section 1.1.4 nowadays a big amount of deaths in indus-

trial countries can be ascribed to diseases of the cardiovascular system like

atherosclerosis, hypertension or cardiac insu�ciency. Therefore a lot of re-

search is done in this area trying to comprehend the complex physiological

behavior of the cardiovascular system.

In recent years computer performance increased enormously making it pos-

sible to calculate �ows in three dimensions in arbitrary geometries which

are derived from tomographic images. The simulation of blood �ow in these

realistic geometries can help to understand the causes of certain diseases,

predict their in�uence on the cardiovascular system and simulate the e�ects

of surgery. Some interesting applications of blood �ow simulation in three

dimensions are:

• Vascular surgery planning: The e�ects of surgical procedures as shunts,

artery bypasses [11] or stents [12] are simulated. The aim is to �nd an

optimal treatment.

• Arteriosclerosis: It is well known that the formation of plaque is related

to wall shear stress, see for example [13] [14] [15]. On the one hand areas

of risk can be determined by examining the �ow �elds. On the other

hand the e�ects of arteriosclerosis can be examined in the simulation.

• Stenosis of the vascular type are often associated with turbulent �ow

over the narrowed blood vessel. The local �ow �eld within the stenosis

can be examined [16].
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• E�ect of compliance: The elasticity of the vessel walls alters the speed

of wave propagation and therefore the �ow and pressure �elds in the

arteries [17] [18] . The in�uence of elasticity on the �ow and shear

stress patterns is of major interest.

1.3.2 Simulation on di�erent scales

A lot of research concerning the cardiovascular system has been done at the

Austrian Research Centers over the last years. It has started with a pro-

gram simulating static arterial blood �ow in the human arterial system by

Martin Suda [19] [20]. This model has been extended by Christian Almeder

to a dynamic model with a rough network of the whole body existing of ap-

proximately 140 arteries [21]. Michael Wibmer has worked on �nite volume

methods for describing the wave propagation through this arterial network

[22]. These models have been extensively examined by Johannes Kropf [23]

and extended for new termination models at the cut o� from the arterial tree

[24].

The models presented above are one dimensional global models describing

the whole cardiovascular system. In this work a model for local blood �ow

in three dimensions will be proposed. The global models are extremely pow-

erful and can simulate a multitude of di�erent physiological sceneries. For

this reason it is important that a connection between the two approaches is

established [25]. The data from the one dimensional models can be used as

an input to the three dimensional model. Therefore in- and out�ow pro�les

for the three dimensional model are derived from pressure or �ow contours

from the one dimensional model, see �gure 1.5.

This approach tries to combine the bene�ts of both methods. Global aspects

can be examined with the one dimensional model. When the local mechanical

properties of blood �ow are of interest the full three dimensional �ow is

calculated in a certain region. The geometry of this region of interest can

be derived from patient speci�c tomographic data. In the next section the
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Figure 1.5: The connection between local and global models in blood �ow simula-
tion

requirements on a simulation environment calculating the three dimensional

�ows are discussed.

1.3.3 A simulator for blood �ow

In this work a simulation environment has been developed simulating blood

�ow in three spatial dimension with patient speci�c geometrical boundary

conditions and in- and out�ow conditions from global cardiovascular models.

The software environment supports the user in the following steps:

• Data acquisition. From tomographic images which are usually exported

in the DICOM format a lattice is generated, which is a representation

of the geometrical boundaries and which is used for computation.

• Experiments. Di�erent �ows can be simulated by the choice of di�erent

in- and out�ow pro�les. These �ow pro�les can be taken either from
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global cardiovascular models or from measured data.

• Changing the predetermined geometry: It is possible to alter the ge-

ometry to investigate the e�ects on the �ow and pressure �elds. Of

special interest is the placement of a shunt which is a major interven-

tion changing the pressure ratio of the whole domain. Goal is to �nd

the optimal size and position for a shunt.

• The e�ects of elasticity can be investigated by the usage of the bound-

ary condition describing elastic walls [26] as described in section 4.2.

• Representation and interpretation: The results of the simulation can

be visualized and analyzed in di�erent ways. During the simulation the

�ow is visualized with direct volume methods like maximum intensity

and �rst hit projection. Additionally the results of the simulation can

be examined afterwards with geometry based methods like stream rib-

bons or the �ow can be animated with particle based representations.

In the following chapter the �uid dynamics of blood �ow will be investigated.

Main focus of this work lies in the numerical treatment of the occurring

Navier-Stokes equations. This topic is examined in the next two chapters.

First the Lattice Boltzmann methods are introduced and second feasible

boundary conditions for blood �ow simulation are developed. Finally the

implementation of these methods are discussed and the resulting software is

presented.



Chapter 2

Fluid dynamics

In this work blood �ow is modeled with the aid of the Navier-Stokes equa-

tions. These equations govern the behavior of �uids, which are liquids and

gases. The main di�erence between liquids and gases is that gases can be

easily compressed, whereas liquids are almost incompressible.

The �rst section of this chapter is an introduction to �uid dynamics. It

provides a short explanation of the governing physical equations, which are

used in the following chapters. The main focus lies on the incompressible

Navier-Stokes equations and its derivation. Topics which can be neglected

for blood �ow simulation like thermodynamics are skipped.

The second section shows in which way the Navier-Stokes equations apply

to blood �ow simulation and describes the kinematic similarity of �ows on

di�erent scales. Further it presents two important analytical solutions of the

Navier-Stokes equations: Poiseuille and Womersley �ows. They can be used

to validate hemodynamical models and to gain insight about basic laws of

hemodynamics.

15
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2.1 Basic equations of �uid dynamics

First fundamental terms of �uid dynamics will be introduced. Then the

Euler and Navier-Stokes equations will be derived from more basic physical

principles. The most important tensors like the stress tensor and the mo-

mentum �ux tensor will be explained in detail because they are needed for

numerical considerations in the following chapters. The introduction is very

compact, a short but complete instruction to �uid dynamics can be found

in [27]. More detailed work about �uid dynamics are in example [28] or

especially for incompressible �uids [29].

2.1.1 Fundamental terms

A physical �ow is described with a velocity �eld u = u(x, t) a pressure �eld

p = p(x, t) and a density distribution ρ = ρ(x, t). Thus at a time t and a

position x in space, a certain velocity vector and the scalar values of pressure

and density are given. With a spatial domain Ω ⊆ IRN and temporal domain

I ⊆ IR these mappings are given by

u : Ω× I → IRN

p : Ω× I → IR

ρ : Ω× I → IR. (2.1)

Figure 2.1 shows a velocity �eld and �gure 2.2 the corresponding pressure

�eld of a so called 'Von Karman vortex street' behind an obstacle describing

an incompressible �uid in two spatial dimensions (N = 2).

A special case occurs when a �ow does not change over time. Those �ows

are called steady �ow, thus

∂u

∂t
= 0. (2.2)
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Figure 2.1: The velocity �eld of a Von Karman vortex street, the colors represent
|u(x, t0)| at a �xed time t0

Figure 2.2: The pressure �eld of a Von Karman vortex street, the colors represent
p(x, t0) at a �xed time t0

An example of a steady �ow is the Poiseuille �ow, which is discussed in sec-

tion 2.2.3.

For the visualization of two dimensional �ows stream lines are often used,

see �gure 2.3. A stream line is a curve x(s) that has the same tangential

direction as the velocity �eld at a �xed time t0, meaning

x : I ⊆ IR→ IRN

∂

∂s
x(s) = u(x(s), t0), ∀s ∈ I, (2.3)

where s is the parameter along the stream line.

In the governing equations of �uid dynamics the substantial derivative is of

major importance. It is de�ned as

D

Dt
f(x, t) =

d

dt
f(x(t), t) (2.4)
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Figure 2.3: Stream lines of a �ow �eld u(x, t0) at a �xed time t0

with x : I ⊆ IR → IRN and an arbitrary map f : Ω × I → IRN . If the chain

rule in several variables is applied to formula 2.4 and the fact that ẋ = u is

used, it follows that

Df

Dt
=

∂f

∂t
+ (u · ∇)f. (2.5)

In the case of steady �ow the substantial derivative describes the change

along a stream line. In time dependent �ows it can be interpreted as the

change while following the �uid. As a result the acceleration in a �uid is

given by

Du

Dt
=

∂u

∂t
+ (u · ∇)u (2.6)

The following two terms often arise in �uid dynamics:

• The term

(u · ∇)f = 0 (2.7)

indicates that f is constant along a stream line.

• The term

Df

Dt
= 0 (2.8)
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Engineering Fluid Dynamics
conservation of mass ⇒ continuity equation
Newton's second law ⇒ momentum equation

laws of thermodynamics ⇒ energy equation

Table 2.1: Terms of engineering and the corresponding terms in �uid dynamics

expresses that f is constant over time in every point.

This section has described fundamental terms which frequently occur in �uid

dynamics. The following sections will describe the most important equations

which govern the behavior of �uids.

2.1.2 Reynolds Transport Theorem

The Reynolds transport theorem is fundamental in formulating the laws of

�uids and is used to derive them from basic laws of engineering and physics,

see table 2.1.

The Reynolds transport theorem for an arbitrary extensive property f is

given by

D

Dt

∫
Ωt

f(x, t)dx =

∫
Ωt

{ ∂

∂t
f +∇ · (fu)}(x, t)dx, (2.9)

where Ωt is a time dependent control volume. To show that this equation is

valid, �rst the time dependent domain Ωt is transformed to a time indepen-

dent domain Ω0:

D

Dt

∫
Ωt

f(x, t)dx =
D

Dt

∫
Ω0

{f |J |}(y, t)dy, (2.10)

where

J =

(
∂gα

∂xβ

)
αβ

with α, β = 1 . . . N (2.11)
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is the Jacobian of the transformation with

yα(t) = gα(x, t). (2.12)

On the time independent domain Ω0 integration and di�erentiation can be

interchanged and the di�erentiation is performed:

D

Dt

∫
Ω0

{f |J |}(y, t)dy =

∫
Ω0

{Df

Dt
|J |+ f

D|J |
Dt

}(y, t)dy. (2.13)

With

D|J |
Dt

= |J |(∇ · u) (2.14)

the integral can be transformed backwards to the time dependent domain:∫
Ω0

{Df

Dt
|J |+ f |J |(∇ · u)}(y, t)dy =∫

Ωt

{Df

Dt
+ f(∇ · u)}(x, t)dx. (2.15)

Using the substantial derivative (equation 2.5) it follows that∫
Ωt

{Df

Dt
+ f(∇ · u)}(x, t)dx =∫

Ωt

{∂f

∂t
+ (u · ∇)f + f(∇ · u)}(x, t)dx =∫

Ωt

{∂f

∂t
+∇ · (fu)}(x, t)dx, (2.16)

which proves the Reynolds transport theorem (equation 2.9).

This is a pure formal proof of the transport theorem. A nice physical inter-

pretation of the theorem can be given by applying the divergence theorem

on the last term of the Reynolds transport theorem:∫
Ωt

{∇ · (fu)}(x, t)dx =

∫
∂Ωt

{fu · n}(s, t)ds. (2.17)
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Figure 2.4: In�ux and e�ux of a control volume

Thus the transport theorem can be stated as:

D

Dt

∫
Ωt

f(x, t)dx =

∫
Ωt

{ ∂

∂t
f}(x, t)dx +

∫
∂Ωt

{fu · n}(s, t)ds. (2.18)

This equation is called the Reynolds transport theorem in general form. It

can be read as rate of change of f following the �uid equals the rate of change

within the volume plus the net �ux of f through the surface ∂Ωt, see �gure

2.4.

The Reynolds transport theorem applies to an arbitrary extensive property of

a �uid. It is used in the two following sections �rst to derive the continuity

equation, where it is applied to the density of the �uid, and secondly the

momentum equation, where it is applied to the �uids momentum.

2.1.3 Continuity equation

The mass of a �uid over a time dependent area Ωt is the integral over its

density. The mass of the �uid stays the same over time, hence

const =

∫
Ω0

ρ(x, 0)dx =

∫
Ωt

ρ(x, t)dx (2.19)
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for all t ≥ 0. The substantial derivative (equation 2.4) of equation 2.19 and

the use of the Reynolds transport theorem shows that

0 =

∫
Ωt

{ ∂

∂t
ρ +∇ · (ρu)}(x, t)dx (2.20)

for all t ≥ 0 and for arbitrary areas Ωt. Thinking of small arbitrary areas Ωt

it is clear that the integrand must be zero, thus it follows that

∂

∂t
ρ +∇ · ρu = 0. (2.21)

This equation is called 'continuity equation for compressible �uids'. For

incompressible �uids meaning ρconst = ρ(x, t) the equation simpli�es to

∇ · u = 0. (2.22)

This is the 'continuity equation for incompressible �uids'.

2.1.4 Momentum Equation

The momentum of a rigid body is its mass times its velocity. The momentum

of a �uid is de�ned over an area Ωt as

j(t) =

∫
Ωt

{ρu}(x, t)dx. (2.23)

The second law of Newton states that the change of momentum in respect to

time equals the forces acting on the �uid. Forces can be divided into body

forces and surface forces:

• Body forces can be expressed by force per density, thus on an area Ωt

the body force is given by

body force =

∫
Ωt

{ρg}(x, t)dx. (2.24)

A common example is the gravitational force.



CHAPTER 2. FLUID DYNAMICS 23

Figure 2.5: The three components of the stress tensor σαβ (left), the stress tensor
t of a surface element dS (right)

• Surface forces are forces that act on a surface of the area Ωt. They are

expressed on a surface ∂Ωt with the stress tensor σ:

surface force =

∫
∂Ωt

{σ · n}(s, t)ds. (2.25)

Typical examples of surface forces are pressure and inner friction.

In three spatial dimensions the nine components of the stress tensor σαβ are

de�ned at any point in space relative to rectangular Cartesian coordinates.

The stress tensor σαβ describes the αth component of stress on a surface

element δS which has a normal n pointing in the βth direction, see �gure

2.5 (left). For an arbitrary surface element δS with unit normal n the stress

vector t can be calculated using the summation convention, see �gure 2.5

(right):

tα = σαβnβ. (2.26)

For more information about the summation convention as well as the tensor

algebra and calculus the reader may refer to [30].
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When the body and surface forces act on a �uid the second law of Newton,

stating that the change of momentum in respect to time equals the forces

acting on the �uid, takes the form

D

Dt
j(t) =

∫
Ωt

{ρg}(x, t)dx +

∫
∂Ωt

{σ · n}(s, t)ds. (2.27)

On the left hand side the transport theorem is used on every component

(α = 1 . . . N):

D

Dt
jα(t) =

D

Dt

∫
Ωt

{ρuα}(x, t)dx =∫
Ωt

{ ∂

∂t
ρuα +∇ · (ρuαu)}(x, t)dx =∫

Ωt

{ ∂

∂t
ρuα + (u · ∇)ρuα + ρuα(∇ · u)}(x, t)dx, (2.28)

and on the right hand side the divergence theorem is applied (α = 1 . . . N):∫
Ωt

{ρgα}(x, t)dx +

∫
∂Ωt

{(σ · n)α}(s, t)ds = (2.29)∫
Ωt

{ρgα + (∇ · σ)α}(x, t)dx. (2.30)

Thus 2.27 takes the form∫
Ωt

{ ∂

∂t
ρuα + (u · ∇)ρuα + ρuα(∇ · u)}(x, t)dx = (2.31)∫

Ωt

{ρgα + (∇ · σ)α}(x, t)dx. (2.32)

This applies for all areas Ωt and therefore yields into the momentum equation

in general form:

∂

∂t
ρu + (u · ∇)ρu + ρu(∇ · u)− ρg −∇ · σ = 0. (2.33)
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Often the momentum equation is used in combination with the continuity

equation. In the incompressible case the general form in combination with

the incompressible continuity equation (2.22) can be simpli�ed into the in-

compressible momentum equation:

Du

Dt
=

1

ρ
(∇ · σ) + g. (2.34)

The properties of these equations depend strongly on the stress tensor σ. In

the next two chapters two popular choices of σ are discussed in more detail.

In combination with the continuity equation the �rst one leads to the Euler

equations the second one to the Navier-Stokes equations.

2.1.5 Euler equations

The easiest choice for the stress tensor σ is to neglect all surface forces except

for the pressure. In this case σ takes the form

σ(x, t)αβ = −p(x, t)δαβ, (2.35)

where p is the pressure and δαβ the Kronecker symbol. Inserting σ into the

momentum equation of general form (2.33) and using the continuity equation

(2.21) the compressible Euler equations are obtained:

∂

∂t
ρu + (u · ∇)ρu + ρu(∇ · u) = −∇p(x, t) + ρg

∂

∂t
ρ +∇ · ρu = 0. (2.36)

In addition an energy equation must be added relating pressure and energy

and further a state equation relating pressure, density and energy, see for

example [31].

For incompressible �uids the situation is easier. It is assumed that the density

is constant ρconst = ρ(x, t). The incompressible Euler equations are obtained

with the incompressible momentum equation (2.34) and the incompressible
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continuity equation (2.22):

Du

Dt
= −1

ρ
∇p(x, t) + g

∇ · u = 0. (2.37)

Often it is convenient to rewrite the incompressible Euler equations in Carte-

sian coordinates. The resulting equation contains the momentum �ux tensor,

which is often needed in the derivation of numerical methods. Using tensor

notation and neglecting body forces the incompressible Euler equations can

be expressed as

∂

∂t
uα + uβ

∂

∂xβ

uα = −1

ρ

∂

∂xα

p

∂

∂xα

uα = 0. (2.38)

The momentum equation can be rewritten to

∂

∂t
uβ + uα

∂

∂xα

uβ + uβ
∂

∂xα

uα = −1

ρ

∂

∂xα

σαβ

∂

∂t
uβ +

∂

∂xα

(uαuβ) = −1

ρ

∂

∂xα

σαβ

∂

∂t
uβ = −

(
∂

∂xα

σαβ + ρ
∂

∂xα

(uαuβ)

)
∂

∂t
uβ = − ∂

∂xα

Παβ. (2.39)

Inserting the stress tensor σαβ from 2.35 gives the momentum �ux tensor of

the incompressible Euler equation:

Παβ = δαβp + ρuαuβ. (2.40)

The momentum �ux tensor describes the momentum �owing through a sur-

face element dS with a unit normal n. The momentum �ux through dS can
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be calculated, analog to equation 2.26, see �gure 2.5, thus

fα = Παβnβ. (2.41)

The momentum �ux tensor is important for understanding numerical schemes

that are based on a regular cartesian lattice.

The incompressible Euler equations describe the behavior of ideal �uids.

They capture a lot of important properties of �uids but cannot be used to

describe viscous liquids like blood because they neglect inner friction. This

means the stress tensor σ must be chosen accordingly.

2.1.6 Navier-Stokes equations

To obtain the Navier-Stokes equations from the momentum equation the

stress tensor σ is selected as

σαβ = −pδαβ + µ

(
∂uα

∂xβ

+
∂uβ

∂xα

)
, (2.42)

where µ is the dynamic viscosity.

In 1845 Stokes deduced this choice of σ from three elementary hypothesis.

Therefor the stress is divided into

σαβ = −pδαβ + σD
αβ. (2.43)

The resulting deformation tensor σD
αβ must satisfy the following three prop-

erties:

1. Each σD
αβ must be a linear function in the velocity gradients ∂uα

∂xβ
with

α, β = 1 . . . N .

2. Each σD
αβ must vanish if the �ow involves no deformation of �uid ele-

ments.

3. The relationship of σD
αβ to the velocity gradients must be isotropic.
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Note that the symmetric deformation tensor

σD
αβ = µ

(
∂uα

∂xβ

+
∂uβ

∂xα

)
(2.44)

exactly matches the described properties.

The incompressible momentum equation (2.34) with the choice of σ (see

2.42) and the incompressible continuity equation (2.22) are called the incom-

pressible Navier-Stokes equations and are given by

Du

Dt
= −1

ρ
∇p + ν∆u + g

∇ · u = 0, (2.45)

where ν = µ
ρ
is called the kinematic viscosity. The Navier-Stokes equa-

tions are the most important equations in �uid dynamic. They describe the

behavior of Newtonian �uids, that are �uids which are incompressible, homo-

geneous and have the property that their shear stress is linearly proportional

to the velocity gradient.

Obtaining analytical solutions is only possible in special cases. There is even

no proof of existence for solutions of the incompressible Navier-Stokes equa-

tions in three spatial dimensions. Clay Mathematics Institute states that

this is one of the most important unsolved mathematical problems.

The momentum �ux tensor for the incompressible Navier-Stokes equations

can be derived in analogy to the incompressible Euler equations that have

been presented in the last section. The Navier-Stokes equations in tensor

notation are given by

∂

∂t
uα + uβ

∂

∂xβ

uα = −1

ρ

∂

∂xα

p + ν
∂

∂xβ

∂

∂xβ

uα

∂

∂xα

uα = 0. (2.46)
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Inserting the stress tensor σαβ from 2.42 into 2.39 yields the momentum �ux

tensor for the incompressible Navier-Stokes equations:

Παβ = ρuαuβ + δαβp− µ

(
∂uα

∂xβ

+
∂uβ

∂xα

)
. (2.47)

Using the momentum �ux tensor the incompressible Navier-Stokes equations

have the simple form

∂

∂t
uβ = − ∂

∂xα

Παβ

∂

∂xα

uα = 0, (2.48)

which is favored when numerical schemes based on a regular cartesian lattice

are investigated.

In this section the most important equations of �uid dynamics have been

presented. The basic terms and de�nition will be used frequently within this

work. In the next section the equations of �uid dynamic will be applied to

blood �ow simulation.
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2.2 Simulation of blood �ow with the Navier-

Stokes equations

The equations which have been explained in the previous section will be

used to describe dynamic blood �ow through an artery tree. Blood �ow

is in�uenced by a lot of parameters. First it must be clari�ed to which

extent the equations apply. Next the kinematic similarity of di�erent �ows

is examined. Further analytical solutions which are relevant for blood �ow

simulation are presented. The last section describes in which way these

results can be used for education with the objective to gain more insight

about the basic principles in hemodynamics.

2.2.1 Presumptions

The incompressible Navier-Stokes equations apply for Newtonian �uids. These

are �uids in which the shear stress is linearly proportional to the velocity gra-

dient in the direction perpendicular to the plane of shear (see �gure 2.5 and

equation 2.42). The constant of proportionality is known as the dynamic

viscosity µ. Further the �uid must be incompressible and homogeneous.

Blood is not a Newtonian �uid. It is inhomogeneous and viscosity is not

constant (particulary in small vessels) and shows complex behavior. In this

section it is discussed how far the Navier-Stokes equations are feasible to de-

scribe blood �ow. When the Navier-Stokes equations are used two important

assumptions must be made:

• Blood is homogeneous: In reality blood consists of plasma (55 per-

cent) and cellular constituents (45 percent), see section 1.1.3 and �gure

2.6. But if the internal diameter of the vessel under consideration is

large compared with the size of red blood cells it behaves like a ho-

mogeneous �uid and can be treated as one. Thus the assumption that

blood is homogeneous depends strongly on the scale of the problem.

Normally inhomogeneous e�ects can be neglected in vessels with a di-

ameter larger than 0.5 mm.
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Figure 2.6: Blood is a suspension of particles in plasma

• The viscosity is the same at all rates of shear: In larger arteries (diam-

eter > 0.5 mm) the viscosity is independent of the velocity gradient.

On the contrary in smaller arteries viscosity is in�uenced by inhomo-

geneous e�ects and shows more complex behavior (for a discussion see

[4] pp. 18-22).

The consequence of the these two arguments is that in larger vessels blood

behaves like a Newtonian �uid and therefore it can be described with the

Navier-Stokes equations. The dynamic viscosity of blood is commonly as-

sumed to be 0.04 Poise, which o�ers a good approximation in large arteries

[32] [5].

When solving the Navier-Stokes equations analytically (see section 2.2.3 and

2.2.4) properties of the �ow �eld and boundary conditions must be stated.

In the following some frequently used assumptions are discussed in detail.

1. The liquid does not slip at the wall: The assumption that the velocity is

zero at the wall is often applied as boundary condition. This is used for

example in Poiseuille �ows, see equation 2.61. While this assumption is

physically correct sometimes a slip at the wall is presumed to simulate

a lower viscosity zone near the wall.

2. The �ow is laminar: Under normal circumstances blood �ow is laminar,

but in large vessels with rates of �ow above a critical value turbulence
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can occur. The kinematic properties of �ows are discussed in the next

paragraph. Note that in case of laminar �ow all points move parallel

to the wall of the tube.

3. The rate of �ow is steady: Blood �ow in arteries is pulsatile. Never-

theless it is important to examine steady �ows, because in some cases

conclusions can be drawn from steady �ow to the more complex pul-

satile �ow.

4. The tube is long compared to the region studied: Tubes are often

examined in cylindrical coordinates and it is convenient to assume the z

axis to have in�nite length. This enables an analytically investigation of

the �ow �eld avoiding in�uences from in- and outlets. Thus the results

are only realistic in vessels which are long compared to the region under

investigation.

5. The tube is cylindrical in shape: In analytical calculations it is con-

venient to use a simpli�ed geometry in combination with cylindrical

coordinates. Of course vessels can have more complicated geometri-

cal structure, but in many cases cylinders are a good approximation.

Important insights can be gained investigating �ows through idealized

shapes.

6. The tube is rigid: It is easier to calculate �ows in time independent

geometries. During a systolic cycle the diameter of larger arteries varies

from �ve to ten percent [33]. Normally the geometry is obtained from

tomographic images which have an error in this order of magnitude.

From this point of view the change of geometry can be neglected. But

when the interest lies in the behavior of the �uid �ow near the vessel

wall, for example when the wall shear stress is under investigation, it

seems important to include the e�ects of elasticity [34]. The reason for

this is that elasticity in�uences the shear stress patterns at walls.

In this work blood will be treated as a Newtonian �uid with a viscosity of

0.04 Poise. Depending on the problem the presumptions and approximations

from above will be applied.
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2.2.2 Kinematic similarity of di�erent �ows

In this paragraph the kinematic similarity of di�erent �ows is examined.

This considerations are of major importance for both physical experiments

like �ows in wind tunnels and for numerical experiments in computer �uid

dynamics.

Two �ows show similar behavior when the relation between their govern-

ing forces are the same. The forces which are related in the Navier-Stokes

equations are:

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

vis inertiae

=

pressure︷ ︸︸ ︷
−1

ρ
∇p + ν∆u︸︷︷︸

viscous force

+g. (2.49)

To estimate the magnitude of these forces �rst a characteristic �ow speed U

and a characteristic length L is chosen, meaning

|u| = O(U) and

xj = O(L) (2.50)

with j = 1 . . . N and therefore∣∣∣∣ δuδxj

∣∣∣∣ = O

(
U

L

)
. (2.51)

In this way the order of vis inertiae and viscous force are obtained:

|(u · ∇)u| = O

(
U2

L

)
,

|ν∆u| = O

(
ν

U

L2

)
. (2.52)
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Now the relation between the two forces can be calculated:

|(u · ∇)u|
|ν∆u|

= O

(
U2

L
/ν

U

L2

)
= O

(
UL

ν

)
. (2.53)

Thus two systems with characteristic speeds U1 and U2, characteristic lengths

L1 and L2 and kinematic viscosities ν1 and ν2 are kinematic similar if

U1L1

ν1

≈ U2L2

ν2

. (2.54)

The number

Re =
UL

ν
(2.55)

is called Reynolds number. It characterizes kinematic properties of the �ow.

Note that the Reynolds number is dimensionless, in example U = [ cm
s

], L =

[cm] and ν = [ cm2

s
]. A �ow with a high Reynolds number is called turbulent

(Re > 2300), a low Reynolds number �ow is called laminar (Re < 2100).

2.2.3 Poiseuille �ows

In general the Navier-Stokes equations cannot be solved analytically. There

are only a few known solutions. For blood �ow simulation Poiseuille �ows and

Womersley �ows have proved to be of major importance. A lot of progress

in understanding hemodynamics has been done by T. J. Pedley [5] and Y.

C. Fung [32] [35] using analytical methods. These solutions can be used to

explain basic properties of blood �ow and to validate numerical methods that

are applied to blood �ow simulation.

Steady laminar �ow through a rigid tube has been calculated independently

by Hagen in 1839 and by Poiseuille in 1842. The resulting formula is called

the Hagen-Poiseuille equation or often only Poiseuille equation. The equation

states that the �ow Q is dependent on the fourth power of the radius R, thus

Q =
πR4(P1 − P2)

8µL
(2.56)
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with the pressure di�erence (P1 − P2) and the tube length L with dynamic

viscosity µ.

The Poiseuille equation has been stated before the Navier-Stokes equations

and can be justi�ed by basic physical arguments, see for example [4], pp. 12-

15. In this section the velocity pro�le of such �ows shall be derived directly

from the Navier-Stokes equations in two and in three spatial dimensions. In

the following derivation some presumptions from section 2.2.1 are applied.

The incompressible Navier-Stokes equations in two spatial dimensions with-

out body forces are given by

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2ux

∂x2
+

∂2ux

∂y2
)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2uy

∂x2
+

∂2uy

∂y2
)

∂ux

∂x
+

∂uy

∂y
= 0. (2.57)

If a laminar steady �ow is assumed the direction of the x axis the �ow �eld

is independent of x and there is no movement along the y axis (see �gure

2.7), thus

ux(x, y) = ux(y)

uy(x, y) = 0. (2.58)

The �ow �eld is inserted into equation 2.57. Note that the �ow �eld has the

properties ∂ux

∂x
= ∂uy

∂x
= 0 and ∂uy

∂y
= 0. Therefore the problem simpli�es to

∂ux

∂t
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂y2

0 = −1

ρ

∂p

∂y
. (2.59)

Thus there is no change of pressure in y direction and since we assume steady

�ow ∂ux

∂t
= 0. The pressure gradient is set to ∂p

∂x
= P1−P2

L
and the resulting
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Figure 2.7: The parabolic velocity pro�le of a Poiseuille �ow

ordinary di�erential equation in y is given by

1

ρ

P1 − P2

L
= ν

∂2

∂y2
ux(y). (2.60)

The boundary conditions

ux(R) = ux(−R) = 0 (2.61)

describe that there is no movement at the bounding walls. This is often

called a no-slip condition. The solution of equation 2.60 with 2.61 is given

by

ux(y) =
(R2 − y2)(P1 − P2)

2ρνL
=

(R2 − y2)(P1 − P2)

2µL
, (2.62)

which is the parabolic velocity pro�le of a Poiseuille �ow, see �gure 2.7. The

Poiseuille pro�le is often used for a simple veri�cation of numerical methods

in two dimensions.

The classical Poiseuille equation (equation 2.56) applies only in three spatial

dimension. It can be easily obtained by applying the same arguments to

the incompressible Navier-Stokes equations in cylindrical polar coordinates
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which are given by

∂ur

∂t
+ (u · ∇)ur −

u2
ϕ

r
= −1

ρ

∂p

∂r
+ ν(∇2ur −

ur

r2
− 2

r2

∂uϕ

∂ϕ
)

∂uϕ

∂t
+ (u · ∇)uϕ +

uruϕ

r
= − 1

ρr

∂p

∂ϕ
+ ν(∇2uϕ +

2

r2

∂ur

∂ϕ
− uϕ

r2
)

∂uz

∂t
+ (u · ∇)uz = −1

ρ

∂p

∂z
+ ν∇2uz

1

r

∂(rur)

∂r
+

1

r

∂uϕ

∂ϕ
+

∂uz

∂z
= 0 (2.63)

with

(u · ∇) = ur
∂

∂r
+

uϕ

r

∂

∂ϕ
+ uz

∂

∂z
(2.64)

∇2 =
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
. (2.65)

Again a laminar �ow following its z axis is assumed:

ur = 0

uϕ = 0

uz = uz(r, t). (2.66)

Inserting the �ow �eld into the equations 2.63 the Navier-Stokes equations

take the form

0 = −1

ρ

∂p

∂r

0 = − 1

ρr

∂p

∂ϕ

∂uz

∂t
= −1

ρ

∂p

∂z
+ ν

1

r

∂

∂r

(
r

∂

∂r

)
uz. (2.67)

When steady �ow ∂uz

∂t
= 0 is assumed and a constant pressure gradient
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∂p
∂z

= P1−P2

L
is given the following equation is obtained:

1

µ

P1 − P2

L
=

1

r

∂

∂r

(
r

∂

∂r

)
uz. (2.68)

If the no-slip boundary condition uz(R) = 0 is applied, the solution of the

di�erential equation is given by

uz(r) =
(R2 − r2)(P1 − P2)

4µL
. (2.69)

Integrating uz over one slice gives the �ow Q resulting the Poiseuille equation:

Q =

∫ R

0

2πruz(r)dr =
πR4(P1 − P2)

8µL
. (2.70)

As discussed in section 2.2.1 the elasticity of the vessel wall e�ects the shear

stress pattern of the �uid. The Poiseuille theory of laminar �ows can be easily

extended to elastic tubes. Normally Hook's law is used for the description of

elasticity. But vessel walls do not obey Hook's law and therefore and easier

approach can be used. The following approximation has been proposed by

Y. C. Fung [32], who assumed a linear pressure radius relationship

r(z) = r0 + α
p(z)

2
, (2.71)

where r0 is the tube radius when transmural pressure p(z) is zero and α is

the compliance constant. When the derivative in respect to z is taken, thus

δr(z)

δz
=

α

2

δp

δz
, (2.72)

the pressure gradient can be inserted into the pressure �ow relationship.

The pressure �ow relationship is calculated analog to equation 2.70 but with

a pressure gradient dependent of the location z. The �ow Q is equal in

every subsection of the tube, thus it is independent of z. The pressure �ow



CHAPTER 2. FLUID DYNAMICS 39

relationship is obtained by integrating 2.69 or respectively 2.62 over one cross

section. In three dimension the result is

δp

δz
=

8µ

πa4
Q (2.73)

and in two dimensions it is

δp

δz
=

3µ

2a3
Q. (2.74)

The equations 2.73 and 2.74 are inserted into the pressure radius relationship

2.72 and integrated in respect to z. Using equation 2.71 the following radius

�ow relationship is obtained in three dimensions:

r(z) =
5

√
20µα

π
Qz + c1, (2.75)

respectively in two dimensions:

r(z) = 4
√

12µαQz + c2. (2.76)

The integration constant c can be calculated from the boundary condition,

thus c1 = r(0)5 and c2 = r(0)4. The �ow radius relationship is plotted in

�gure 2.8 for di�erent �ows. The approximation of elastic walls is often used

to validate numerical methods that can handle elasticity, see section 4.2.

2.2.4 Womersley �ows

Blood �ow is not steady hence the theory of Poiseuille �ows cannot be ap-

plied. J. R. Womersley studied laminar incompressible �ows through a rigid

tube with a pulsating �ow and therefore time dependent pressure gradient,

see [36], [37] and [38]. In these works the incompressible Navier-Stokes equa-

tions in cylindrical polar coordinates (equation 2.63) are used as starting

point.

Again laminar �ow is assumed, thus from the Navier-Stokes equations in
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Figure 2.8: The vesseel radius r(z) in an elastic tube for di�erent �ows Q =
{1, 2, 3, 4} with α = 0.1, r0 = 1, µ = 0.04

cylindrical polar coordinates equation 2.67 is obtained, which is the starting

point of the following considerations. This equation is rewritten to

1

ν

∂uz(r, t)

∂t
= − 1

ρν

∂p(t)

∂z
+

1

r

∂uz(r, t)

∂r
+

∂2uz(r, t)

∂r2
. (2.77)

For simplicity the time dependent pressure gradient will be taken as a simple

harmonic motion

−∂p(t)

∂z
= Aceiωt. (2.78)

Note that an arbitrary piecewise continuous and square-integrable pressure

gradient could be expressed with a Fourier series as sum of such harmonics.

Inserting the pressure gradient into equation 2.77 gives

∂2uz

∂r2
+

1

r

∂uz

∂r
− 1

ν

∂uz

∂t
= −Ac

µ
eiωt. (2.79)

With the substitution

uz(r, t) = w(r, t)eiωt (2.80)
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Figure 2.9: The time dependent velocity pro�le of a Womersley �ow

the following Bessel's equation is obtained:

d2w

w2
+

1

r

dw

dr
− iω

ν
w = −Ac

µ
. (2.81)

The equation has the solution (see for example [39])

w(r) =
Ac

iωρ

(
1− J0(r

√
i3/2ω/ν)

J0(R
√

i3/2ω/ν)

)
, (2.82)

where J0 is a Bessel function of the �rst kind of order zero with a complex

argument. It is given by

J0(x) =
∞∑
i=0

(−1)m

mΓ(m + 1)

(x

2

)2m

. (2.83)

The number

α = R

√
ω

ν
(2.84)

is referred to as Womersley number. It is a non-dimensional number and

characterizes the kinematic properties of the �uid. With α, y = r
R

and

resubstitution the solution

uz(y, t) =
AcR2

iµα2

(
1− J0(αyi3/2)

J0(αi3/2)

)
eiωt (2.85)
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Figure 2.10: Poiseuille �ows

is obtained. This is the typical pro�le of a Womersley �ow, see �gure 2.9.

The velocity pro�le is often used to validate numerical solutions in two and

three dimensions with time dependent boundary conditions.

2.2.5 Selected examples for education in hemodynamics

In the previous chapter a introduction to �uid dynamics has been given. The

governing equations for �uids are the Navier-Stokes equations. These partial

di�erential equations apply under certain assumptions for hemodynamics,

see 2.2.1. Medical students studying hemodynamics often have not got the

time to fully understand the occuring partial di�erential equations, but nev-

ertheless they urgently need insights about the nature of blood �ow. For this

reason interactive Java Applets have been developed to present basic results

and to teach the nature of Poiseuille and Womersley �ows, see section 2.2.3

and 2.2.4.

The Applets have been developed in course of a thesis [40] and later have

been extended to various �ow types and geometries [41]. Every applet is a

graphical representation of one or more physical laws that can be investi-

gated by changing parameters interactively. This shall encourage students

to experiment with the mathematical models and therefore get a deeper un-

derstanding of the topic.

The �rst Applet shows the velocity pro�le inside a rigid tube in respect to

the tube radius, length and pressure gradient, see �gure 2.10. Furthermore
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Figure 2.11: Poiseuille �ow in a bifurcation

the Applet calculates the total �ux through the tube. This is an important

aspect, which shows for example that if the radius is doubled the �ux in-

creases eightfold. As a consequence a change of only 1% in the vessel causes

a change in blood �ow of approximately 4%. If the �ux stays constant the

pressure di�erence must increase 4%, thus tiny narrowing of vessels can lead

to hypertension. These are simple but important insights derived from the

Poiseuille equation 2.56.

The second applet explains the �ow in a bifurcation, see �gure 2.11. The

radii and pressure di�erences can be chosen freely, the velocity pro�les in the

di�erent sections are calculated and updated in realtime. The Applet shall

encourage the students to experiment with the di�erent parameters and gives

an idea about pressure radius relationship in bifurcations.

The third applet explains the in�uence of elasticity, see �gure 2.12. Steady

�ow in an elastic tube is calculated analytically, see section 2.2.3. Parame-

ters are radius, length, pressure gradient and the Young modulus. The Young

modulus is a measure of sti�ness and is de�ned as the rate of change between



CHAPTER 2. FLUID DYNAMICS 44

Figure 2.12: Poiseuille �ow in elastic vessels

Figure 2.13: Flow pro�le of a pulsatile �ow in three dimensions

stress and strain. The in�uence of the pressure gradient and the �ow to the

tubes geometry is of major importance in hemodynamics. Another impor-

tant aspect is the in�uence of the compliance on the velocity pro�le.

For understanding the in�uence of a time dependent pressure gradient to the

velocity pro�le two Applets have been developed representing equation 2.77.

One applet calculates the velocity pro�les in two spatial dimensions drawing

all pro�les over one period. The resulting �gure is similar to the representa-

tion in �gure 2.9.

The second applet calculates the velocity pro�les in three spatial dimensions.
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This is done in realtime and animated with Java3D, see �gure 2.13. The Ap-

plet draws a realistic picture of velocity pro�les in arteries. In the �rst and

the second Applet viscosity and frequency of the pulsation are important

parameters changing the shape of the velocity pro�les.



Chapter 3

The Lattice Boltzmann Equation

The incompressible Navier-Stokes equation can only be solved analytically

in special occasions. For this reason numerical methods must be developed

to simulate blood �ow. The method must work for relevant Reynolds and

Womersley numbers and must handle time dependent pressure gradients in

arbitrary geometries.

There is a huge amount of di�erent methods to calculate the Navier-Stokes

equations. The introduction gives a short summary and comparison of the

most common methods. After that general Lattice Boltzmann models are

introduced. From these models Lattice Bhatnagar Gross and Krook (LBGK)

methods are investigated in more detail. LBGK methods are simple and very

stable explicit schemes to calculate the Navier-Stokes equations numerically

in two and three dimensions.

46
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3.1 Introduction

The numerical treatment of the Navier-Stokes equations in general is compli-

cated. There is a multitude of di�erent numerical schemes and methods that

have certain advantages depending on the Reynolds and Womersley numbers

under investigation. Recently the LBGK method has been applied to blood

�ow simulation successfully. In this section the problems solving the Navier-

Stokes numerically are discussed and the bene�ts of the LBGK method are

examined.

3.1.1 Numerical methods for the Navier-Stokes equa-

tions

The Navier-Stokes equations are a set of nonlinear partial di�erential equa-

tions. When applying standard methods for numerical calculation special

care must taken because of the following properties of the equations:

• Physical constraints: The numerical scheme has to consider the con-

servation of mass and momentum.

• Nonlinearity: In the nonlinear advection term high velocities can lead

to numerical instabilities.

• Complex boundary conditions: In �uid dynamics often problems with

both complex geometrical boundaries and complex dynamic boundary

values appear.

In the domain of blood �ow simulation more di�culties arise due to:

• Unusual Reynolds numbers: The Reynolds numbers in the arterial sys-

tems are just about laminar, in big arteries turbulence can occur.

• The vessel trees have a big amount of bifurcations: Through branching

the amount of vessel sections grows very fast (2depth end sections).

• Unusual properties of the vessel walls: The elasticity is higher than in

common engineering applications.
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• Unusual instationary e�ects because of the dynamic nature of pressure

and �ow.

The classical approach to develop numerical schemes happens in a top down

way. This means the Navier-Stokes equations are the starting point, then

certain discretization and approximations are performed until an implicit or

explicit set of equations are obtained that can be calculated numerically. The

most common top down approaches can be summarized in the following way

[42]:

• Finite Di�erences: This is the simplest approach, di�erential quotients

are replaced by di�erence quotients.

• Finite Volumes: The di�erential equations are integrated over the spa-

tial domain, the volume integrals are transformed to surface integrals,

describing the behavior of the boundary surfaces of discrete cells.

• Finite Elements: The solution is approximated in a weak sense with

certain basis functions.

The numerical method presented in this work uses another approach. The

�uid is described in a bottom-up way. Instead of developing the discrete

scheme from the continuous Navier-Stokes equations a numerical scheme is

developed from the underlying Boltzmann equation by basic considerations

about molecule behavior.

3.1.2 Description of �uids on di�erent scales

Fluids can be described on di�erent scales. The smallest possible scale is to

describe single molecules as point like structureless particles that move along

trajectories. This is described by the Newton equations and can be simulated

with lattice gas cellular automata (LGCA). On a larger scale, the so called

mesoscopic scale, a statistical description of the particles is used. This is

done in the Liouville and the Boltzmann equation. The discretization of the

Boltzmann equation leads to the Lattice Boltzmann equation (LBE). This

equation can be approximated with schemes that are very similar to cellular
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Figure 3.1: Description of �uids on di�erent scales

automaton, but have continuous state variables. The macroscopic description

of �uids uses arguments of continuum mechanics and yields in the Navier-

Stokes equations describing the �uid by relating macroscopic properties, see

�gure 3.1.

Historically the LBE has developed from LGCA. It has been shown that sim-

ple Cellular Automata called FHP can be used to calculate the Navier-Stokes

equations [43] and therefore can mimic the complex behavior of �uids. The

cellular automata approach is amazing for its simplicity but has some draw-

backs like numerical noise and �xed viscosity. Soon after the development of

LGCA the LBE has been presented for the �rst time by G. R. McNamara

and G. Zanetti [44]. The LBE lifts many limitations of the LGCA while stay-

ing su�ciently simple. LBE can be interpreted as a special discretization of

the Boltzmann equation and therefore can be seen as a self-contained theory

without the need of LGCA theory. In this work this approach is favored,

thus the LBE is derived as a discretization of the Boltzmann equation in the

following section.
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The Boltzmann equation is used to develop a scheme in a bottom-up way

for solving its �uid limit, which are the Navier-Stokes equations. Before the

exact derivation of the method is done in chapter 3.2 some advantages of the

resulting scheme will be presented.

3.1.3 Advantages of the LBGK method

In the next chapter the Lattice Boltzmann equation and especially the LBGK

method will be examined in detail. The main advantages of the LBGK

method are:

• LBGK is a bottom-up approach. Starting point are distribution densi-

ties of particles. This enables a physical interpretation of every step in

the resulting algorithm.

• The physical constraints are ful�lled in a natural way, conservation of

mass and momentum are assured.

• LBGK is an explicit scheme, this makes the calculation and implemen-

tation very simple, while it is stable enough to deal with Reynolds and

Womersley numbers relevant for blood �ow simulation.

• LBGK can be calculated very fast and due to its strictly local nature

the method is highly feasible for parallel computing.

• Because of the physical interpretation of the method complex boundary

conditions can be developed in a heuristic way.
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3.2 The Lattice Boltzmann Equation for solv-

ing the incompressible Navier-Stokes equa-

tions

The main focus of this section lies on the presentation of the LBGK method,

a stable explicit method used to solve the incompressible Navier-Stokes equa-

tions numerically. First the Lattice Boltzmann Equation (LBE) will be de-

rived from the Boltzmann equation which is the starting point of the devel-

opment of the LBGK method. In the following section it is proved that the

resulting explicit scheme solves the Navier-Stokes equations.

3.2.1 From Boltzmann to Lattice Boltzmann Equation

In 1872 Ludwig Boltzmann has developed his most famous formulas, the

Boltzmann equation and the H-theorem. This has been the foundation of

classical statistical mechanics. In this section only a few aspects, which are

needed for the derivation of the LBE can be shown. An introduction to

statistical mechanics is not in scope of this work, a good introduction can

be found in [45] and or in [46], where the connection to �uid dynamics is

investigated.

The classical Newtonian equations describe molecules as point like structure-

less particles. The equations cannot be used for practical computations of

�uids because there are just too many molecules even on small scales. Usu-

ally the number of molecules is in order of the Avogadro number, thus ≈ 1023,

and for computation their paths would have to be tracked over time. Since

this is clearly not possible a statistical description is favored.

For this reason distribution functions f(x,v, t) are introduced expressing the

probable number of molecules around x with velocity v at a speci�c time t.

Boltzmann was able to describe the evolution of these distribution functions
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over time with the so called Boltzmann equation:(
δ

δt
+ v · ∇

)
f(x,v, t) = C(f, f) (3.1)

The left hand side of the kinetic equation describes the streaming motion,

the right hand side the collision C(f, f).

A link to hydrodynamics is easily obtained, the macroscopic quantities can

be calculated as

ρ(x, t) =

∫
mf(x,v, t)dv

j(x, t) = ρ(x, t)u(x, t) =

∫
(mv)f(x,v, t)dv

Παβ(x, t) =

∫
(mvαvβ)f(x,v, t)dv. (3.2)

were ρ is the density, j the momentum, u the velocity and Π the momentum

�ux tensor of the Euler equations, see chapter 2.1.5 and equation 2.40. The

Navier-Stokes equations can be recovered by the Chapman Enskog multiscale

expansion in section 3.2.3. The expansion will be performed for the LBGK

equation. The Chapman Enskog procedure links the two di�erent approaches

of statistical mechanics and �uid dynamics.

An equilibrium of a distribution function is de�ned as the distribution func-

tion f eq that is unchanged by the collision operator, thus

C(f eq, f eq) = 0 (3.3)

Maxwell showed that

f eq(x,v, t) = ρ

(
m

2πkBT

)D
2

e
−m(v−u)2

2kBT (3.4)

is an equilibrium distribution function, the so called Maxwell-Boltzmann

distribution, where v is the particle velocity, m is the particle mass, T is
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the temperature, kB is the Boltzmann constant and D is the spatial dimen-

sion. The distribution function depends only implicitly on x and t via the

macroscopic quantities ρ(x, t), the �uids density, and u(x, t), the �uids mean

velocity (see equation 3.2). With the H-theorem Boltzmann has shown that

every initial distribution that satis�es the Boltzmann equation decays to the

Maxwell-Boltzmann distribution:

H(t) = −
∫

f ln fdvdx

dH

dt
≤ 0. (3.5)

To derive the LBE from the Boltzmann equation �rst the phase space is

discretized. Instead of all possible particle speeds and directions the phase

space is reduced to a small set of allowed velocities. The Boltzmann equation

then takes the form (
δ

δt
+ ci · ∇

)
fi(x, t) = Ci (3.6)

with the set of velocities ci and for simplicity fi(x, t) ≡ f(x, ci, t). Popular

choices of the set ci will be presented in the following section.

The next step is to discretize time and space using simple forward di�erences

of �rst order:

1

∆t
(fi(x, t + ∆t)− fi(x, t))

+cix
1

∆x
(fi(x + ∆x, t + ∆t)− fi(x, t + ∆t))

+ciy
1

∆y
(fi(x + ∆y, t + ∆t)− fi(x, t + ∆t))

+ciz
1

∆z
(fi(x + ∆z, t + ∆t)− fi(x, t + ∆t) = Ci. (3.7)

The lattice spacing is chosen in a way that ∆x = ci∆t. This couples the spa-

tial and temporal resolution and guaranties Lagrangian behavior. Inserted
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into 3.7 the LBE is obtained:

fi(x + ci∆t, t + ∆t)− fi(x, t) = ∆tCi. (3.8)

The velocities ci and the collision operator Ci must be chosen carefully. The

macroscopic hydrodynamic quantities are the zeroth, �rst and second mo-

ment of the discrete distribution function (in analogy to equation 3.2):

ρ(x, t) =
∑

i

fi(x, t)

j(x, t) = ρ(x, t)u(x, t) =
∑

i

cifi(x, t)

Παβ(x, t) =
∑

i

ciαciβfi(x, t). (3.9)

When the LBE has been presented for the �rst time the collision operator has

been chosen in strict analogy to the LGCA leading to a nonlinear collision

operator, which is computational expensive, see [44]. First improvements

have been done by F. Higuera and J. Jimenez [47] who have presented a

linear collision operator, which has been constructed by linearization about

a local equilibrium f eq. The resulting LBE is called quasilinear LBE and the

collision operator Ci can be described as

Ci = Aij(fj − f eq
j ). (3.10)

For a detailed description of the construction of Aij the reader may refer to

[48].

In this work a coarser approximation of the collision operator is favored, the

so called Bhatnagar Gross and Krook (BGK) approximation. The discrete

version BGK approximation leads to the LBGK method. A detailed de-

scription of the method and the most popular choices of sets of velocities ci

and corresponding equilibria distribution functions f eq are given in the next

section.
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3.2.2 LBGK schemes

The collision operator C in the Boltzmann equation (see 3.1) is of very com-

plicated nature. P. L. Bhatnagar, E. P. Gross and M. Krook [49] and at the

same time P. Welander [50] have approximated the collision with a movement

towards an equilibrium:(
δ

δt
+ v · ∇

)
f(x,v, t) = −1

τ
(f(x,v, t)− f eq(x,v, t))), (3.11)

where f eq is the Maxwell distribution (see equation 3.4) and τ is the collision

time and thus 1
τ
the collision frequency. The BGK approximation captures

two important properties of the collision operator. First the collision invari-

ants of the operator are conserved. These invariants are mass, moment and

kinetic energy. Secondly the distribution function decays to the Maxwell dis-

tribution through collision. This means that the H-theorem (3.5) is still valid.

The discrete version of the Boltzmann equation with the BGK approximation

of the collision operator has been presented by [51] and [52] and is usually

called LBGK equation. It is obtained by inserting the BGK approximation

into the discrete kinetic equation 3.8. Hence the LBGK equation takes the

form

fi(x + ci∆t, t + ∆t)− fi(x, t) = −∆t

τ
(fi(x, t)− f eq

i (ρ(x, t), j(x, t))) (3.12)

with ρ(x, t) and j(x, t) from equation 3.9. The parameter τ is the collision

time and the discrete equilibrium distribution function f eq
i (x, t) ≡ f eq(x, ci, t)

is an approximation of the Maxwell-Boltzmann distribution function (see

equation 3.4). Often the LBGK equation is formulated as

fi(x, t + ∆t) = (1− ω)fi(x− ci∆t, t) + ωf eq
i (x− ci∆t, t) (3.13)

with the collision frequency ω = ∆t
τ
. This representation of the LBGK makes

the explicit nature of the method more visible. In the following possible

choices of the equilibrium distribution function f eq
i and the velocities ci are
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discussed in more detail.

The approximated equilibrium distribution function is derived by applying

the maximum entropy principle under the constraint of conservation of mass,

momentum and momentum �ux, see [52]. The result is a polynom of second

order

f eq
i (ρ, j) =

wi

ρ0

(ρ +
m

kBT
ci · j +

m

2ρkBT
(

m

kBT
(ci · j)2 − j2)) (3.14)

with weighting factors wi, mass density ρ0, particle mass m, particle speed

v, Boltzmann constant kB, temperature T and with density ρ = ρ(x, t) and

moment j = j(x, t) from equation 3.9. Note that the conservation of mass

and momentum of f eq
i yields:

ρ(x, t) =
∑

i

f eq
i (ρ, j)

j(x, t) = ρ(x, t)u(x, t) =
∑

i

cif
eq
i (ρ, j). (3.15)

The weighting factors wi must be chosen in accordance to the velocities ci

in a way that for vanishing velocities, thus j = 0, the velocity moments up

to fourth order of the approximated equilibrium function equals the velocity

moments of the Maxwell-Boltzmann distribution. For vanishing velocities

the Maxwell-Boltzmann distribution (equation 3.4) takes the form

f eq(v) = ρ0

(
m

2πkBT

)D
2

e
− mv2

2kBT , (3.16)

where ρ0 is the mass density, m the particle mass, v the particle speed, kB

the Boltzmann constant, T the temperature and D the spatial dimension.

The moments of the weighting factors on the left hand side equal the cor-

responding moments of the Maxwell-Boltzmann distribution for vanishing
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velocities on the right hand side, thus∑
i

wi = ρ0∑
i

ciαwi = 0

∑
i

ciαciβwi = ρ0
kBT

m
δαβ∑

i

ciαciβciγwi = 0

∑
i

ciαciβciγciδwi = ρ0

(
kBT

m

)2

(δαβδγδ + δαγδβδ + δαδδβγ). (3.17)

The weighting factors wi and the value kBT/m must be calculated from the

equations above. Note that kBT/m has no analogy in the macroscopic equa-

tions and is regarded to be constant. Valid solutions for wi and kBT/m can

be found whenever the number of velocities ci is large enough. Qian has

presented various solutions in [51] and [53] for di�erent lattices.

The lattices used for LBGK methods are normally called DdQq, where d is

the spatial dimension and q denoting the number of lattice velocities. The

lattice velocities ci are the same for every lattice node x and are given on

cube ∆V = [−c, c]D, where the lattice velocity

c =
∆x

∆t
(3.18)

couples the spatial resolution ∆x to the temporal resolution ∆t. In this way

it is assured that x + ci∆t is again a lattice node.

In two spatial dimensions the most popular lattice is the D2Q9 lattice (see

�gure 3.2) with the corresponding weights from table 3.1. In this work the

D2Q9 LBGK method is used for simulation in two dimensions.

In three spatial dimensions there are two popular choices, the D3Q15 LBGK
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Figure 3.2: The velocities c0 . . . c8 of the D2Q9 lattice

Index of ci length of ci Weights wi kBT/m
0 0 4

9
1
3
c2

1,2,3,4 c 1
9

5,6,7,8
√

2c 1
36

Table 3.1: Weights of D2Q9 LBGK

method and the D3Q19 LBGK method. In this work the D3Q15 LBGK

method is favored. The D3Q15 lattice, see �gure 3.3, needs less storage than

the D3Q19 lattice and is computationally cheaper. The weights can be found

in table 3.2.

In literature the D3Q19 LBGK method is frequently used, see �gure 3.4 with

the corresponding weights in table 3.3. The advantage of the higher number

of lattice velocities is a higher stability range of the D3Q19 LBGK method.

In the domain of blood �ow simulation the D3Q15 method has proved to be

su�cient.

The LBGK models described in this section are explicit schemes for calcu-

lating the incompressible Navier-Stokes equations 2.45. The LBGK consists
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Figure 3.3: The velocities c0 . . . c14of the D3Q15 lattice

Index of ci length of ci Weights wi kBT/m
0 0 2

9
1
3
c2

1,2,3,4,5,6 c 1
9

7,8,9,10,11,12,13,14,15
√

3c 1
72

Table 3.2: Weights of D3Q15 LBGK

of the kinetic equation 3.13 and a set of velocities, which de�ne the neigh-

borhood of a lattice node and the corresponding weight of its equilibrium

distribution f eq. The velocity �eld u(x, t) of the Navier-Stokes equations is

then given by 3.9, the pressure �eld is obtained by

p(x, t) = ρ(x, t)
kBT

m
=

c2

3
ρ(x, t), (3.19)

the viscosity ν can be adjusted with the parameter τ or ω respectively

ν =
c2

3
(τ − ∆t

2
) =

c2

3
(
1

ω
− 1

2
)∆t, (3.20)
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Figure 3.4: The velocities c0 . . . c18 of the D3Q19 lattice

Index of ci length of ci Weights wi kBT/m
0 0 3

9
1
3
c2

1,2,3,4,5,6 c 1
18

7,8,9,10,11,12,13,14,15,16,17,18
√

2 c 1
36

Table 3.3: Weights of D3Q19 LBGK

and the speed of sound cs can be expressed as

cs =

√
dp

dρ
=

1√
3
c. (3.21)

The LBGK methods have been derived by discretization of the Boltzmann

equation and by a coarse approximation of the collision operator. In this

section no proof has been done that this scheme can mimic the behavior of

�uids. In the following section it will be shown that the presented LBGK

methods actually approximate the Navier-Stokes equations with the pressure

and viscosity from above, but as the Capman-Enskog expansion will reveal,

only in the incompressible low Mach number limit.
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3.2.3 Chapman-Enskog expansion

The Navier-Stokes equations can be derived from the Boltzmann equation by

the Chapman-Enskog expansion. The multi scale expansion links statistical

mechanics and �uid dynamics. In the discrete version the method is applied

to the LBGK method deriving the incompressible Navier-Stokes equations in

the low Mach number limit. For the sake of clarity external body forces have

been neglected in the description of the LBGK method and in the multiscale

expansion. For an expansion including external body forces the reader may

refer to [54].

The main idea of the multiscale expansion is to pick out scales of interest.

Three di�erent spatial variations can be distinguished:

• Relaxation towards a local equilibrium (very fast, time scale ε0)

• Sound waves and advection (normal, time scale ε−1)

• Di�usion (slow, time scale ε−2)

The Boltzmann equation describes the �uid on a mesoscopic scale, thus lit-

tle spatial and short temporal scales (ε0). The macroscopic description of

the Navier-Stokes equations describes advection and di�usion. They act

on di�erent temporal scales (ε1 and ε2) but on the same spatial scale (ε1).

Therefore the following scaling is introduced:

t0 (discrete time step)

t1 = εt0 (speed of sound and advection)

t2 = ε2t0 (di�usion) (3.22)

for temporal scales and

x0 (length of lattice node)

x1 = εx0 (characteristic length scale of the �ow) (3.23)
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for spatial scales. Now the following scaling of the derivatives is applied:

δt → εδ
(1)
t + ε2δ

(2)
t

δxα → εδ(1)
xα

. (3.24)

This scaling neglects local relaxation processes. This contraction of the

LBGK equation enables the recovery of macroscopic behavior and there-

fore the governing equations of �uid dynamics.

First the distributions fi(x, t) are expanded around the equilibrium distribu-

tions f eq(x, t) in the following way:

fi(x, t) = f eq
i (x, t) + εf

(1)
i (x, t) + ε2f

(2)
i (x, t) + O(ε3) (3.25)

with ∑
i

f
(1)
i (x, t) = 0

∑
i

cif
(1)
i (x, t) = 0∑

i

f
(2)
i (x, t) = 0

∑
i

cif
(2)
i (x, t) = 0, (3.26)

thus f
(1)
i and f

(2)
i do not contribute to mass or moment but are only the

derivation from the equilibria in the scales ε and ε2. The parameter ε can

be interpreted as the Knudsen number which is the ratio between mean free

path length and the characteristic length scale of the �ow. The parameter ε

labels a perturbation of the equilibrium to a certain characteristic scale.

The kinetic equation is given by

fi(x + ci∆t, t + ∆t) = (1− ω)fi(x, t) + ωf eq
i (x, t), (3.27)

which is equivalent to 3.13. First the left hand side of the equation is ex-



CHAPTER 3. THE LATTICE BOLTZMANN EQUATION 63

panded into a Taylor series up to second order:

fi(x + ci∆t, t + ∆t) = fi + ∆t(δtfi + ciαδxαfi) +
1

2
∆t2(δ2

t fi + 2δtciαδxαfi + ciαciβδxαδxβ
fi) + O(∆t3). (3.28)

Now the scaling of the partial derivatives 3.24 is inserted into equation 3.28.

This leads to

fi(x + ci∆t, t + ∆t) = fi +

ε∆t(δ
(1)
t fi + εδ

(2)
t fi + ciαδ(1)

xα
fi) +

ε2 1

2
∆t2(δ

(1)
t δ

(1)
t fi + 2εδ

(1)
t δ

(2)
t + 2δ

(1)
t ciαδ(1)

xα
fi + εδ

(2)
t ciαδ(1)

xα
fi +

ε2δ
(2)
t δ

(2)
t fi + ciαciβδ(1)

xα
δ(1)
xβ

fi) + O(∆t3). (3.29)

The expanded fi(x, t) (equation 3.25) is inserted into 3.29. Sorted by ε up

to second order this yields

fi(x + ci∆t, t + ∆t) =

ε0f eq
i +

ε(f
(1)
i + ∆t(δ

(1)
t f eq

i + ciαδ(1)
xα

f eq
i )) +

ε2(f
(2)
i + ∆t(δ

(1)
t f

(1)
i + δ

(2)
t f eq

i + ciαδ(1)
xα

f
(1)
i ) +

1

2
∆t2(δ

(1)
t δ

(1)
t f eq

i + 2δ
(1)
t ciαδ(1)

xα
f eq

i + ciαciβδ(1)
xα

δ(1)
xβ

f eq
i )) +

O(ε3). (3.30)

Next the scaled Taylor expansion 3.30 is inserted into the kinetic equation

3.27 on the left hand side, on the right hand side the expanded distribution

function 3.25 is inserted. The scaled kinetic equation then takes the form

0 = εE
(0)
i + ε2E

(1)
i + O(ε3) (3.31)
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with

E
(0)
i := δ

(1)
t f eq

i + ciαδxαf eq
i +

ω

∆t
f

(1)
i

E
(1)
i := δ

(1)
t f

(1)
i + δ

(2)
t f eq

i + ciαδ(1)
xα

f
(1)
i +

∆t

2
(δ

(1)
t δ

(1)
t f eq

i + 2δ
(1)
t ciαδ(1)

xα
f eq

i + ciαciβδ(1)
xα

δ(1)
xβ

f eq
i ) +

ω

∆t
f

(2)
i . (3.32)

From this representation of the scaled kinetic equation the macroscopic equa-

tions of �uid dynamic can be obtained by taking the zeroth and �rst moment

of Ei in �rst order (describing advection) and second order (describing di�u-

sion) of ε. The zeroth moments yield macroscopic equations about density

ρ, the second moments about the �uid's moment j:∑
i

E
(0)
i → continuity equation∑

i

ciE
(0)
i → Euler equations∑

i

E
(1)
i → no mass di�usion∑

i

ciE
(1)
i → momentum di�usion

⇒ Navier-Stokes equations (3.33)

From the zeroth moment of E
(0)
i (�rst order in ε), the compressible continuity

equation is derived:

0 =
∑

i

E
(0)
i =

∑
i

δ
(1)
t f eq

i + ciαδxαf eq
i +

ω

∆t
f

(1)
i

= δ
(1)
t ρ + δ(1)

xα
jα + 0

= δtρ +∇ · j. (3.34)
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The sum is calculated using the conservation of mass and moment of feq given

in 3.15. The conservative properties of the equilibrium density function will

be frequently used in the following calculations. In the incompressible limit

δtρ can be neglected, yielding the incompressible continuity equation

0 = ∇ · u. (3.35)

From the �rst moment of E
(0)
i (�rst order in ε), the Euler equations are

obtained by

0 =
∑

i

ciαE
(0)
i

=
∑

i

ciα(δ
(1)
t f eq

i + ciβδxβ
f eq

i +
ω

∆t
f

(1)
i )

= δ
(1)
t jα + δ(1)

xβ
Παβ + 0 (3.36)

with the momentum �ux tensor (see chapter 2.1.5, equation 2.40)

Παβ =
1

ρ
jαjβ + pδαβ. (3.37)

For the calculation of the momentum �ux tensor the structure of the equi-

librium function is needed, see 3.14. Therefore the momentum �ux tensor

takes the form

Παβ =
∑

i

ciαciβf eq
i (3.38)

=
∑

i

ciαciβ
wi

ρ0

(ρ +
m

kBT
ci · j +

m

2ρkBT
(

m

kBT
(ci · j)2 − j2)).

Four sums arise:

1.

ρ

ρ0

∑
i

ciαciβwi = ρ
kBT

m
δαβ (3.39)
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The sum is calculated using the de�nition of the weighting factors wi

in 3.17.

2.

1

ρ0

m

kBT

∑
i

ciαciβ(ci · j)wi =
1

ρ0

m

kBT
jγ

∑
i

ciαciβciγwi = 0 (3.40)

Note that on the right hand side the summation convention applies to

γ. The sum vanishes because it is an odd sum in ci, see 3.17.

3.

1

2ρ0ρ
(

m

kBT
)2
∑

i

ciαciβ(ci · j)2wi =

1

2ρ0ρ
(

m

kBT
)2jγjδ

∑
i

ciαciβciγciδwi =

1

2ρ

∑
γ,δ

jγjδ(δαβδγδ + δαγδβδ + δαδδβγ) =

1

2ρ
(j2δαβ + 2jαβ) (3.41)

In the second line the summation convention applies to γ and δ, further

the de�nition of the weighting factors wi is used, see 3.17. The result

can be easily obtained �rst by inserting 1 . . . D for α and β, where D

is the spatial dimension, and then summing over γ and δ.

4.

1

2ρ0ρ

m

kBT
j2
∑

i

ciαciβwi = − 1

2ρ
j2δαβ (3.42)

The sum can be calculated using de�nition of the weighting factors wi,

see 3.17.

If the sums one to four are added together the momentum �ux tensor (equa-
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tion 3.37) is obtained, if the pressure term is set to

p = ρ
kBT

m
, (3.43)

thus LBGK �uids obey the ideal gas equation. Note that the momentum

dependent part of the pressure term j2δαβ in 3.41 and 3.42 cancels out. For

this reason the terms of �rst order in ε yield in equation 3.34 and 3.36. In the

incompressible limit these equations equal exactly the incompressible Euler

equations:

∇ · u = 0
δ

δt
u + (u · ∇)u = −1

ρ
∇p. (3.44)

See section 2.1.5 for a physical interpretation of the macroscopic Euler equa-

tions and a derivation of its momentum �ux tensor.

The terms of second order in ε give the dissipative terms (see 3.22) and will

yield the Navier-Stokes equations in the low Mach number limit. First the

zeroth moment of E
(1)
i is investigated (second order in ε). This will show

that there is no mass di�usion.

0 =
∑

i

E
(1)
i

=
∑

i

δ
(2)
t f eq

i

+
∆t

2
(δ

(1)
t δ

(1)
t f eq

i + 2δ
(1)
t ciαδ(1)

xα
f eq

i + ciαciβδ(1)
xα

δ(1)
xβ

f eq
i ) (3.45)

Note that the terms
∑

i δ
(1)
t f

(1)
i ,

∑
i ciαδ

(1)
xα f

(1)
i and

∑
i

ω
∆t

f
(2)
i from E

(1)
i vanish

because of equation 3.26. Next it will be shown that the last term of the

previous equation vanish, thus

δ
(1)
t δ

(1)
t

∑
i

f eq
i + 2δ

(1)
t δ(1)

xα

∑
i

ciαf eq
i + δ(1)

xα
δ(1)
xβ

∑
i

ciαciβf eq
i = 0. (3.46)
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To calculate the sums the temporal partial derivatives are substituted by

spatial derivatives using equation 3.34 and 3.36:

δ
(1)
t δ

(1)
t

∑
i

f eq
i = δ

(1)
t δ

(1)
t ρ = δ

(1)
t δxαjα = δ(1)

xα
δ(1)
xβ

Παβ

2δ
(1)
t δ(1)

xα

∑
i

ciαf eq
i = 2δ

(1)
t δ(1)

xα
(jα) = −2δ(1)

xα
δ(1)
xβ

Παβ

δ(1)
xα

δ(1)
xβ

∑
i

ciαciβf eq
i = δ(1)

xα
δ(1)
xβ

Παβ. (3.47)

Adding the sums together shows equation 3.46 and therefore

0 =
∑

i

E
(1)
i =

∑
i

δ
(2)
t f eq

i = δ2
t ρ, (3.48)

expressing there is no mass di�usion.

The �rst moment of E
(1)
i second order in ε yields the momentum di�usion of

the Navier-Stokes equations in the incompressible low Mach number limit.

0 =
∑

i

ciαE
(1)
i

=
∑

i

ciαδ
(2)
t f eq

i + ciαciβδ(1)
xβ

f
(1)
i + (3.49)

∆t

2
(ciαδ

(1)
t δ

(1)
t f eq

i + 2ciαciβδ
(1)
t δ(1)

xβ
f eq

i + ciαciβciγδ
(1)
xβ

δ(1)
xγ

f eq
i )

Again the terms
∑

i ciαδ
(1)
t f

(1)
i and

∑
i

ω
∆t

ciαf
(2)
i of E

(1)
i vanish because of

equation 3.26. The term
∑

i ciαciβδ
(1)
xβ f

(1)
i does not vanish but is rewritten

in terms of the equilibrium distribution function f eq. In the �rst order of

ε equation 3.31 yields E
(0)
i = 0, thus with equation 3.32 the distribution

function f
(1)
i can be expressed as

f
(1)
i = −∆t

ω
δ
(1)
t f eq

i − ∆t

ω
ciαδ(1)

xα
f eq

i . (3.50)
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When inserted into the �rst moment (second order in ε) this leads to

0 =
∑

i

ciαE
(1)
i

=
∑

i

ciαδ
(2)
t f eq

i +
∆t

2
ciαδ

(1)
t δ

(1)
t f eq

i (3.51)

+(∆t− ∆t

ω
)ciαciβδ

(1)
t δ(1)

xβ
f eq

i + (
∆t

2
− ∆t

ω
)ciαciβciγδ

(1)
xβ

δ(1)
xγ

f eq
i

The occurring four sums are calculated:

1.

δ
(2)
t

∑
i

ciαf eq
i = δ

(2)
t jα (3.52)

2.

∆t

2
δ
(1)
t δ

(1)
t

∑
i

ciαf eq
i =

∆t

2
δ
(1)
t δ

(1)
t jα

= −∆t

2
δ
(1)
t δ(1)

xβ
Παβ (3.53)

Where one temporal derivative is substituted with a spatial derivative

using equation 3.36.

3.

(∆t− ∆t

ω
)δ

(1)
t δ(1)

xβ

∑
i

ciαciβf eq
i = ∆t(1− 1

ω
)δ

(1)
t δ(1)

xβ
Παβ (3.54)

4.

(
∆t

2
− ∆t

ω
)δ(1)

xβ
δ(1)
xγ

∑
i

ciαciβciγf
eq
i =

∆t(
1

2
− 1

ω
)

m

kBT

1

ρ0

δ(1)
xβ

δ(1)
xγ

∑
i

wiciαciβciγ(ci · j)

∆t(
1

2
− 1

ω
)

m

kBT

1

ρ0

δ(1)
xβ

δ(1)
xγ

jδ

∑
i

wiciαciβciγciδ (3.55)
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At this point the structure of the equilibrium function f eq is used. Note

that all terms except for the (ci · j) term vanish because they are odd

moments of the weights wi, see equation 3.17. When the fourth moment

of wi is inserted it yields

∆t(
1

2
− 1

ω
)
kBT

m
δxβ

δxγ

∑
δ

jδ(δαβδγδ + δαγδβδ + δαδδβγ) =

∆t(
1

2
− 1

ω
)
kBT

m
(δxβ

δxβ
jα + 2δxαδxβ

jβ) =

∆t(
1

2
− 1

ω
)
kBT

m
(∇2j + 2∇(∇ · j)). (3.56)

First sum two and sum three are added together and following approximation

is done:

(2) + (3) = ∆t(
1

ω
− 1

2
)δtδxb

Παβ

≈ ∆t(
1

ω
− 1

2
)
kBT

m
δtδxb

ρδαβ. (3.57)

The approximation neglects terms of order O(j2). As a consequence the

Navier-Stokes equations are only recovered in the low Mach number limit.

Again the temporal derivation is substituted with spatial derivation (see

equation 3.34):

(2) + (3) ≈ ∆t(
1

ω
− 1

2
)
kBT

m
δtδxβ

ρδαβ

= −∆t(
1

ω
− 1

2
)
kBT

m
δxβ

δxαjα

= −∆t(
1

ω
− 1

2
)
kBT

m
∇(∇ · j). (3.58)

Putting everything together this yields the momentum di�usion of the Navier-
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Stokes equations:

(1) = [(2) + (3)] + (4)

δ
(2)
t j = ∆t(

1

ω
− 1

2
)
kBT

m
(∇2j +∇(∇ · j)). (3.59)

The Navier-Stokes equations are obtained by combining the �rst and second

order terms of ε, thus 3.34, 3.36 and 3.59 yield:

δtu + (u · ∇)u = −1

ρ
∇p + ν∇2u

∇ · u = 0, (3.60)

when density �uctuations can be neglected, with the pressure

p = ρ
kBT

m
, (3.61)

the corresponding speed of sound cs

cs =

√
dp

dρ
=

√
kBT

m
(3.62)

and the viscosity

ν =
kBT

m
(
1

ω
− 1

2
)∆t =

kBT

m
(τ − ∆t

2
). (3.63)

Note that kBT/m is dependent of the lattice velocities ci, in the cases dis-

cussed in the last section D2Q9, D3Q15 and D3Q19 the value is given by

kBT

m
=

c2

3
, (3.64)

and the velocity c = ∆x/∆t is dependent of spatial and temporal resolution,

see 3.18.
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3.3 Implementation

One of the big advantages of the LBGK method is that its implementation is

relatively simple. Nevertheless there are di�erent approaches implementing

the method, each of them having di�erent advantages. In this section �rst

the implementation of the kinetic equation and the splitting of its operator

is discussed. Next the most common data structures for LBGK simulations

are presented and �nally the methods ability of parallelization is examined.

3.3.1 Splitting of the collision operator

LBGK schemes can be implemented very e�ciently because of their explicit

nature. The pseudo code for the LBGK method can be formulated as

while(running) {

for each node {

calculate kinetic equation

}

for each node {

calculate local equilibria

}

}

First the structure of the kinetic equation will be discussed. The kinetic

equation (in analogy to equation 3.12) is given by

fi(x + ci, t + 1)− fi(x, t) = −1

τ
(fi(x, t)− f eq

i ) (3.65)

The operator can be split into a collision step and a streaming step in the

following way:

f ∗(x, t) = (1− 1

τ
)fi(x, t) +

1

τ
f eq

i

fi(x + ci, t + 1) = f ∗(x, t). (3.66)
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This splitting of the operator is called collide-and-stream update order. The

operator could as well be split into stream-and-collide update order.

For the knowledge of the equilibrium density distribution f eq
i (ρ, j) only the

node itself is required, no neighboring nodes are needed. The density ρ and

moment j can be calculated with the aid of equation 3.9, the equilibrium is

given in 3.14 and the weighting factors wi can be found in the tables 3.1, 3.2

and 3.3 for D2Q9, D2Q15 and D2Q19 respectively.

Every step in the LBGK algorithm is very simple. Nevertheless the optimal

low level implementation on certain CPUs is a hard task because the CPU

cache must be used in an optimal way. A detailed work about optimization of

computer codes for LBGK schemes can be found in [55] and with particulary

regard to parallelization of the LBGK method in [56].

3.3.2 Data structures for LBGK schemes

For the implementation of the LBGK method an adequate data structure is

needed to store the densities, equilibria and information about neighborhood.

Basically there are three approaches for the representation of the data:

• The simplest approach is to store all states in a lattice. Two lattices are

needed. In one time step the new values are calculated from lattice A

to lattice B, in the following time step from B to A and so on, see �gure

3.5c. There is no need to store extra information about neighborhood

because the position of the data in the lattice and therefore the position

in memory is known.

• A major drawback of the method with lattices is when small struc-

tures lie in a big volume, like arteries in tissue. Most of the nodes are

boundary nodes and there is only a small percentage of �uid nodes

that actually must be processed. The idea is to calculate and store

only relevant nodes. Relevant nodes are �uid nodes and no-slip nodes
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D2Q9 D3Q15
int[n] references int[n] references

Lattice 0 0 0 0
List 8*n 0 15*n 0
Objects 0 8*n 0 8*n

double[n] 9 + 9 + 3 = 21 15 + 15 + 4 = 34

Table 3.4: Storage demand in two and three dimensions using three di�erent ap-
proaches

neighboring �uid nodes. The data of the relevant nodes are written in

a list. Two sets of states are needed, old states and new states. In ad-

dition extra information about neighborhood is needed, see �gure 3.5a.

Thus the indices of the neighbors must be stored in an extra table for

each node in the list.

• A more intuitive but slightly slower and more storage demanding ap-

proach is to represent every node as an object. The states are stored

within the object. Neighborhood is realized by storing the references to

the neighbors, see �gure 3.5b. The object oriented approach simpli�es

experiments with new node types. When feasible node types are found,

a faster implementation can be favored.

Independently of the chosen approach every time step has a complexity of

O(n). The storage demands of the di�erent approaches are listed in table

3.4. The required double values are the same for all three methods. In D2Q9

three and in D3Q15 four doubles per node are needed to store the density

and velocity for the local equilibria.

The LBGK D2Q9 and LBGK D3Q15 methods have been implemented in

Java and were tested on one to four processors. The algorithm scales nearly

linear. A discussion of parallelization and an example with the D3Q15

method are presented in the following section.
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Figure 3.5: Three di�erent representations of the data needed for the D3Q15
LBGK computation

3.3.3 Parallelization of LBGK schemes

A great advantage of the LBGK method is its simple parallelization, which

is possible due to the strictly local nature of the method. Considering CPUs

with multiple cores this property is of increasing importance.

To adjust the method for multiple threads the set of nodes must be dis-

tributed on the processors. In each calculated time step the threads must
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wait for each others two times.

while(running) {

for each thread {

calculate kinetic equation for all nodes

}

wait for all threads

for each thread {

calculate equilibrium for all nodes

}

wait for all threads

}

The example models are boxes of 20*20 nodes with a length of 20, 100 and

200 nodes. The boxes are surrounded with no-slip nodes describing the walls,

see section 4.1.1. At the top and bottom of the box a boundary condition

describes the time dependent pressure gradient. The results of the simula-

tion are in best accordance with the analytic solution by Womersley, see 2.2.4.

The simulation is done on a Dell Precision 670 containing two Intel Xeon dual

core processors with 2.8 GHz with Windows XP SP2 and J2SE 5 Update 7.

Time is measured over 100 time steps. The simulation is done 20 times on

one to four processors. The run times are compared to the calculation time

of one processor. Thus ideally two processors should work exactly with twice

the performance as one. The blue line in the following plots is the regression

line of all sample points, the red line is the regression line of all points except

the three worst results.

Simulation of the box with 20*20*20 nodes: The smallest experiment with

only 8000 nodes works very well and scales nearly linear. Eye catching is that

two CPUs have more than twice the performance than one CPU, see �gure

3.6(a). An explanation for this behavior can be found looking at computer

layout. When two threads are used they run on the cells of only one CPU,

while the second CPU can serve the operation system. The threads on the
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(a) 8000 nodes (b) 20000 nodes

(c) 40000 nodes

Figure 3.6: Simulation run times for using one to four cores

two cells can use the cache in an optimal way. This small example shows

that four threads are able to solve the problem four times faster than only

one thread.

Simulation of the box with 20*20*50 nodes: The slightly bigger example with

20000 nodes shows a di�erent behavior. In this case the simulation time is

longer, thus more in�uences from the operation system can a�ect the simu-

lation. Further performance is lost because the cache usage is not as good

as in the smaller model. This results in slower simulation times than in the

�rst example. Four threads are only three times faster than one thread, see

�gure 3.6(b).
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Simulation of the box with 20*20*100 nodes: The biggest example with 40000

nodes shows similar behavior than the model with 20000 nodes. Four threads

have nearly the same performance as three threads, see �gure 3.6(c). The

reason for this is that system services take a lot of time from one processor

and therefore all other threads have to wait.



Chapter 4

LBGK schemes applied to

hemodynamics

In the previous chapter an explicit scheme has been presented to calculate

the Navier-Stokes equations numerically. Main focus of this section is to

point out how LBGK schemes can be applied to hemodynamics. Therefore

feasible boundary conditions must be developed. Special care is taken of the

treatment of elastic vessel walls and it is shown that the LBGK method can

be used with the Reynolds and Womersley numbers relevant for blood �ow

simulation.

LBGK schemes have been successfully applied to arterial blood �ow simu-

lation [57]. Using the LBGK method has two main bene�ts: The �rst is

the simplicity and the explicit nature of the method, which enables an easy

implementation and parallelization. In two spatial dimensions interesting

observations have been made investigating shear stress patterns in bifurca-

tions [58] and the in�uence of stenosis [59]. The second bene�t is that LBGK

schemes work on a cartesian lattice. Generally this is a drawback, but when

geometry is obtained from tomographic methods every voxel is simply as-

signed to a corresponding lattice node. This simpli�es the process of data

acquisition. Some experiments have been performed by A. M. M. Artoli, who

simulated the �ow in the abdominal aorta in [60] and [61].

79
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4.1 Boundary Conditions

S. Chen et al. [62] state that achieving self-consistent boundary conditions

with a given accuracy is to a certain degree as important as developing nu-

merical schemes themselves.

A strong advantage of the LBGK method is that the state variables of the

algorithm have a physical interpretation. For this reason boundary conditions

can be developed in intuitive and heuristic way.

4.1.1 Elementary boundary conditions

S. Succi di�erences between elementary and complex boundary conditions

[48]. Elementary boundary conditions are those where the boundary is

aligned with the grid coordinates. Complex boundaries are more accurate

than the grid, as a result the boundaries lie between the lattice nodes. In

this work elementary boundary conditions are more important than complex

boundary conditions, because the surface is obtained from tomographic im-

ages and is represented by voxels. In the following section the most common

elementary boundary conditions are discussed in detail, more information

can be found in [63].

• No-slip

The most important boundary condition in LBGK simulations is surely

the no-slip boundary condition. It describes a rigid wall and uses the

fact that near a wall there is a no-slip situation, thus direct at the wall

the �uid's velocity is zero. This e�ect is achieved by simply re�ecting

every incoming distribution function fi, thus

fi(x, t + 1) = f−i(x, t) (4.1)

where −i denotes the index in the opposite direction of index i. A

distinction is drawn between complete bounce back schemes, where

the boundary is aligned at the lattice node, see �gure 4.1(b), and half
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(a) Complete bounce back (b) Half-way bounce back

Figure 4.1: Bounce back schemes

way bounce back schemes, where the boundary is aligned between two

lattice nodes, see �gure 4.1(a).

• Periodic

In many experiments periodic domains are useful, for example when

fully developed �ows in theoretically in�nite tubes are under investiga-

tion, see section 2.2.3 and 2.2.4. Periodic boundary conditions can be

implemented very easy:

fi(xin, t + 1) = f−i(xout, t) and

fi(xout, t + 1) = f−i(xin, t). (4.2)

This rule applies to all indices i where the nodes xin or xout have no

neighbors in direction −ci. Thus all outgoing distribution functions

f out
i are clued together with the corresponding incoming distribution

functions f in
i on the opposite side of the domain, see �gure 4.2.

• Velocity and �ow

In blood �ow simulation based on realistic data periodic boundary con-

ditions often cannot be used. Instead of periodic boundary conditions

in- and out�ow pro�les are predetermined. These pro�les are not known

and must be chosen in a realistic way. A simple approach how to choose

the pro�les will be discussed in the following section. When a velocity
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Figure 4.2: Velocity pro�les of unsteady �ow

pro�le is predetermined the distribution functions f in
i are set to the

equilibrium populations of the corresponding velocity pro�les:

f in
i = f eq

i (ρ0(x, t),u0(x, t)) (4.3)

where ρ0(x, t) is the density of f in
i , if the domain is periodic or set to

one if the boundary represents an in- or out�ow.

• Pressure

In LBGK simulations density and pressure have to be handled carefully.

The problem is that the pressure p is linearly related to the density ρ

with p = ρkBT
m

. Since the �ow is incompressible density �uctuations

must stay negligible. The pressure gradient is a result of small density

�uctuation on a density ρ0. Nevertheless it can be useful to change

the density of certain nodes to achieve a predetermined pressure. The

nodes distribution functions can be updated in two ways, one is to

conserve the nodes momentum:

fnew
i (xp, t) = f eq

i (ρ0(x, t), 0), (4.4)

the other one is to conserve the nodes velocity:

fnew
i (xp, t) = f eq

i (ρ0(x, t), u(x, t)). (4.5)
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Figure 4.3: Velocity pro�les at an inlet N = {5, 4, 3, 2} from left to right

The boundary condition must be used in a way so that mass conserva-

tion is ensured. Over a certain time span the added density must equal

the density that is removed from the lattice nodes.

In the following the in- and out�ow boundary conditions for blood �ow sim-

ulation are discussed in detail and a numerical validation of the proposed

methods is presented. Furthermore a short summary of complex boundary

conditions is given.

4.1.2 The in- and out�ow of a vessel

The in�ow boundary condition for the LBGK methods works very simple.

In every discrete time step the in�ow is set with the velocity boundary con-

dition, see equation 4.3.

The di�cult task is to choose the right velocity or �ow pro�le. The velocity

pro�les for blood �ow simulation can be obtained from analytical consider-

ations. As derived in the sections 2.2.3 and 2.2.4 a fully developed laminar

steady �ow is called a Poiseuille �ow and is given by:

uP
z (r) =

(R2 − r2)(P1 − P2)

4µL
(4.6)

and a fully developed laminar pulsatile �ow is called a Womersley �ow and

is given by:

uW
z (r, t) =

AcR2

iµα2

(
1− J0(α(r/R)i3/2)

J0(αi3/2)

)
eiωt. (4.7)
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The two equations can be used to create realistic �ows at the in- and outlets.

The Poiseuille �ow is used when steady �ows are under investigation, whereas

Womersley �ow can be used when a dynamic model is calculated. A problem

is that especially Poiseuille �ow is often not fully established in realistic

settings [4]. As a result the �ow at the inlet has a �atter pro�le than the

fully developed �ow. This can be approximated with

uapp
z (r) = (RN − rN)c0 (4.8)

with a constant c0 for scaling and N ≥ 2, see �gure 4.3.

The velocity pro�les must be scaled to yield the predetermined �ow q(t)

which can be a prediction from a coarser model of the cardiovascular system,

see chapter 1.3.2. The in�uence of di�erent choices of the in�ow velocity

pro�le to the overall simulation has been discussed in [64].

4.1.3 Numerical validation

For numerical validation of the method Poiseuille andWomersley �ows, which

have bee presented in section 2.2.3 and 2.2.4, have been simulated in two and

three spatial dimension with lengths and velocities, which are relevant for

blood �ow simulation, thus with relevant Reynolds and Womersley numbers.

The �ow has been simulated in a rigid tube with a radius of 0.5 cm and

a length of 5 cm. The relaxation parameter τ is chosen in a way that the

simulated �uid has a viscosity of 0.04 Poise, which is a good approximation

for the viscosity of blood.

∆x ∆t speed of sound cs relaxation parameter τ (for 0.04 Poise)
0.1 cm 1E-4 s 577.35 cm/s 0.501202887
0.04 cm 1E-4 s 230.94 cm/s 0.52999788
0.02 cm 2E-5 s 577.35 cm/s 0.505996053

Table 4.1: Parameters that are used for simulation of Poiseuille and Womersley
�ows.
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(a) Poiseuille �ow with node sizes: 0.1
cm (green), 0.04 cm (red), 0.02 cm
(blue), exact (black)

(b) Womersley �ow with node size 0.04 cm
and equal time spacing 1

6 s

Figure 4.4: LBGK D2Q9 solutions in a rigid tube

For the Poiseuille �ow a constant in- and out�ow velocity of 10 cm/s has

been predetermined. The �ow has been calculated with di�erent spatial res-

olutions, ranging from the size of 0.1 cm to 0.02 cm per lattice node, see

table 4.1. The simulation results are in best agreement with the analytical

solution, see �gure 4.4(a) for two dimensions and �gure 4.5 for three dimen-

sions.

For the Womersley �ow the pressure boundary condition has been used. A

sinus shaped pressure gradient of 1 mmHg over a time period of 1 second has

been applied. In �gure 4.4(b) the results in two dimensions for a spatial res-

olution of 0.04 cm per lattice node are presented. In three spatial dimensions

the �ow pro�les are plotted in �gure 4.6.

4.1.4 Complex boundary conditions

Complex boundary conditions are those where the boundary is not aligned

with the grid coordinates. Thus the boundary can be placed arbitrary within

the lattice nodes. There are basically two di�erent approaches to handle this

situation:
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Figure 4.5: Poiseuille �ow: LBGK D3Q15 solution with node size 0.04 cm

Figure 4.6: Womersley �ow: LBGK D3Q15 solution with node size 0.04 cm

The �rst approach is to calculate the outgoing distribution functions f out
i of

the boundary node from the incoming distributions functions f in
i according

to the curved wall inside the node. Di�erent methods have been proposed

which in generally use extrapolation of the distribution densities, see R. Mei

[65] [66] and R. Verberg [67] [68].

The second approach is to use grid re�nement near the curved wall to in-

crease the spatial resolution. The problem of this approach is that in LBGK

schemes the temporal and spatial resolution are coupled. For this reason

the LBGK method becomes a nested time scheme, thus the di�erent lattices

have di�erent time steps ∆t which increases the complexity of the implemen-

tation. A detailed description of the LBGK method with grid re�nement can

be found in [69] or [70].
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4.2 Elasticity

In blood �ow simulation it is important to consider the compliance of ves-

sels. Therefore a boundary condition must be developed that describes the

movement of the vessel wall in dependence of pressure. Fang et al. [71] have

proposed a method which parameterizes the walls and uses a special treat-

ment for curved boundaries. The method has been tested and successfully

applied to pulsatile �ow in two spatial dimensions [34].

The problem of this method is that the description of the vessel walls with

the aid of surfaces is very complicated in three dimensions. The problem is

comparable to the creation of feasible grids for FEM or FVM computation

from tomographic images, which is avoided using the LBGK method. Thus

using this method the simplicity and advantages of the LBGK method are

partly lost. Therefore in this work a simpler approach is chosen [26], which

does not require parameterized walls but works on the voxel representation

of the geometrical domain.

4.2.1 Introduction

In the following method elasticity is basically described by displacement of

voxels, which represents the boundary as a solid wall. The displacement is

dependent of the local pressure in the surrounding nodes. Every boundary

node has a �xed threshold. When the surrounding pressure exceeds this

threshold the node is replaced by a �uid node. On the other hand if the sur-

rounding pressure goes below a certain threshold the �uid node is replaced by

a solid node. The boundary conditions are updated in every time step. Thus

the method is a realization of the hemoelastic feedback system described by

Fung in [35], see �gure 4.7.

To avoid a rupture of the vessel wall a cellular automaton (CA) is used

to update the walls in every time step. For more information about CA

the reader may refer to [72]. The proposed method o�ers some advantages

compared to the classical approach:
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Figure 4.7: A hemoelastic system analyzed as a feedback system of two functional
units: an elastic body and a �uid mechanism [35]

1. It avoids a surface representation of the geometrical domain but works

directly on the voxel representation.

2. The method does not increase the complexity of the algorithm because

it works strictly local like the LBGK method.

3. The approach enables a simple implementation in two and three di-

mensions.

In the following the steps of the algorithm are explained in more detail. First

the representation of the volume with voxels is explained, next in which way

the threshold values for the displacement are chosen and �nally how the CA

works which prevents rupture of the vessel wall.

4.2.2 Voxel representation

The geometrical data in the LBGK method are represented with the aid of

voxels. The data structure that is used for the representation depends on

the chosen implementation, see section 3.3. For simplicity it is assumed that

the geometrical data are stored in a two or three dimensional array. This

array works as a look up table for the �uid dynamical computation. Note

that the CA will work on the geometrical data array containing the boundary

conditions, while the LBGK method will use the look up array to check if

boundary conditions have to be applied.
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Figure 4.8: Elastic boundaries are created from tomographic images

When the vessel walls are considered to be rigid the layer of solid nodes

that surrounds the �uid domain has a thickness of one. When elasticity is

considered the layer of elastic nodes has to have the thickness of maximal

circumference plus maximal narrowing. To set up the geometrical data in

two dimensions is an easy task. Every solid node simply has to be replaced

by a column of elastic nodes. In three dimensions more care must be taken

when establishing the elastic layer.

In three dimensions the volume is created by binary segmentation from to-

mographic images, see section 5.1.1. The nodes inside the vessel are �uid

nodes, the nodes describing the tissue are no-slip nodes. The elastic layer is

built from this rigid layer in every cross section image, see �gure 4.8. This

is done in a recursive way. The nodes of the �rst layer are exactly the no-

slip nodes which are neighbors to �uid nodes. The following layers consist

of the no-slip nodes next to elastic nodes. When the cross section images

are put together the resulting geometry has the desired elastic layer in three

dimensions. The result is comparable to an onion skin. The outside layers
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have large thresholds, which are descending moving inside the vessel. In the

following section the choice of threshold values will be examined.

4.2.3 Identi�cation of the threshold values

When the pressure is higher than a certain value the no-slip boundary condi-

tion shall be replaced by a normal �uid node and vice versa. In this section

it is described in which way the threshold values can be assigned.

For the simulation a linear pressure radius relationship is assumed as pre-

sented in the end of section 2.2.3:

r(z) = r0 + α
p(z)

2
, (4.9)

where r0 is the radius when the transmural pressure p(z) is zero. The pa-

rameter α is a compliance constant, thus the threshold values are set to:

p(z) =
2

α
(r(z)− r0). (4.10)

The parameters r0 and α must be chosen carefully. In two spatial dimensions

the radius r0 can be set to the distance of the wall to the center line. The

compliance constant α can be calculated from the maximal extension of the

vessel.

In three spatial dimensions the situation is more complicated because the

center line is not known in advance. In the voxel representation of the geo-

metrical data the elastic boundary layer has a certain predetermined thick-

ness, which prede�nes the maximal expansion and maximal contraction of

the vessel. Two values for pressure must be chosen, pmax, the pressure where

the maximal expansion occurs and pmin, the pressure where the maximal
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contraction occurs, thus

rmax(x)− r0 = α
pmax(x)

2
and

rmin(x)− r0 = α
pmin(x)

2
. (4.11)

From the two equations the values r0 and α can be easily calculated and the

thresholds for the elastic layer can be chosen accordingly.

4.2.4 Cellular Automaton for coherence of the vessel

wall

The solid nodes are displaced when the pressure exceeds its threshold value.

In this section a CA is developed to avoid rupture of the vessel wall intro-

duced by this displacement process.

Note that the LBGK method and CAs are closely related. Historically LBGK

schemes have even been developed from LGCA. The main di�erence between

the two approaches is that the LBGK method has continuous state variables

on its lattice nodes, while CA have discrete state variables in its cells. Appro-

priate update rules for the elastic walls boundary condition should therefore

be strictly local and should have the same discretization in time and in the

spatial domain as the LBGK model. The boundary conditions used by the

LBGK method are normally de�ned in a separate lattice. This lattice can be

interpreted as a CA with its own update rules which interact with the �uid

dynamical model, see �gure 4.9.

The CA has two di�erent states, one is representing the �uid node and one

is representing a no-slip boundary node as presented in section 4.1.1. The

update rules of these states are divided into two steps:

In the �rst step the pressure pca(x, t) is compared to the threshold value tp.

If the nodes state is '�uid' its pressure is used. If the node state is 'solid' the
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Figure 4.9: The LBGK Model and the CA are discretized in the same spatial and
temporal domain

pressure of the neighboring �uid nodes are averaged, thus

pca(x, t) =

{
p(x, t) �uid node
1

#f

∑N
i=1 p(x + ci, t) solid node,

(4.12)

where value #f is the number of �uid nodes surrounding the solid node x.

The pressure p(x, t) of a solid node is de�ned to be zero. The value N is four

in two dimensions and six in three dimensions corresponding to the four and

six neighbors of the Neumann neighborhood. Every node x in the CA has a

certain threshold value tp which is chosen according to the previous section.

The boolean value Pca is introduced:

Pca(x, t) =

{
1 pca(x, t) ≥ tp

0 pca(x, t) < tp.
(4.13)

The cells state is set to '�uid node' if Pca(x, t) = 1 and set to 'solid node' if

Pca(x, t) = 0.

In the second step the following rotational symmetric scheme is applied in

two dimensions, see �gure 4.10. The rules are chosen in a way that holes are

closed, thus solid nodes diminish in �uid nodes and the other way around.
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Figure 4.10: Rules of the boundary conditions CA, the given rules are rotational
symmetric

In three spatial dimensions the rules are chosen in a similar way as in two

dimensions. In general the method can be formulated as change of states

when the following conditions are met:

change from �uid to solid :
N∑
i

Pca(x, t) < tfs

change from solid to �uid :
N∑
i

Pca(x, t) > tsf (4.14)

with tfs = 2 and tsf = 2 in two dimensions (N = 4) and tfs = 2 and tsf = 4

in three dimensions (N = 6).

When the LBM switches from 'solid node' to '�uid node' the �uid node is

set to f eq(ρ,u), where u is zero and ρ is determined on the basis of the

threshold value tx. This simple numerical scheme leads to the analytical

behavior representing linear pressure radius relationship as introduced in

section 2.2.3.
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4.2.5 Numerical validation

In this section Poiseuille �ow in an elastic tube will be investigated and the

numerical results are compared with the analytical solution, see equation

2.76.

In two dimensions the �ow �eld has been calculated in a tube of 2 cm length

and a radius of 0.225 cm at a transmural pressure of 0 mmHg. A resolution

of 400*70 nodes is used, thus one lattice node equals 0.01 mm2. Between the

inlet and the outlet a pressure gradient of 1 mmHg is applied. The elastic

boundary conditions evolve to a steady state which is represented in �gure

4.11(a). The radius r(z) is plotted in �gure 4.11(b). The simulated result is

in good accordance with the analytical results that have been presented in

section 2.2.3.

In three dimensions a rigid tube with 20 cm length and 2 cm radius at max-

imal expansion and a radius of 1.25 cm at transmural pressure of 0 mmHg is

under investigation. This has been realized with a lattice of 40*40*200 nodes

with a predetermined pressure gradient of 1 mmHg. Again a steady state

evolves after a certain time. The three dimensional pressure and velocity is

given in �gure 4.12.

In this chapter it has been explained in which way the LBGK method can be

applied to blood �ow simulation. In the next chapter a software environment

(a) Velocity �eld in an elastic tube (b) Analytical values r(z) (line)
and calculated values (circles)

Figure 4.11: An elastic tube in two dimensions



CHAPTER 4. LBGK SCHEMES APPLIED TO HEMODYNAMICS 95

Figure 4.12: Maximum intensity projection of velocity and pressure �eld in an
elastic tube

will be presented, which o�ers an implementation of the proposed methods.

Further dynamic blood �ow is investigated in selected case studies.



Chapter 5

Results

In this chapter the developed simulation environment is presented. Some of

the single steps that are needed for simulating blood �ow in three dimensions

are examined in more detail. First the data acquisition and the creation of

the cartesian lattice are explained, then the placement of time dependent

boundary nodes and last the possibilities visualizing the results are demon-

strated.

In the second part selected applications are investigated. First the e�ect of

arteriosclerosis is examined in two dimensions. In three spatial dimensions

�ow through the abdominal aorta is simulated. Furthermore the in�uence of

stenosis is demonstrated for di�erent �ow speeds and di�erent magnitudes

of the narrowing.

96
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5.1 Computational Framework

The section explains important steps which have to be performed in blood

�ow simulation. The simulation of the �ow �eld itself is not in scope of

this section, selected examples will be presented in the next section. The

methods and algorithms that are used in the following have been explained

in the previous chapters.

5.1.1 Data acquisition

In three dimensional blood �ow simulation geometrical boundaries can be

obtained from magnetic resonance angiography. The geometric structure

can be revealed by the use of paramagnetic contrast agents. The acquired

data are cross section images and are normally stored in the DICOM format,

which is widely used for medical applications. To import these images into

Java programs they are �rst converted into JPG images.

The JPG images are imported into the software and a volume consisting of

Figure 5.1: A cross section of the data (left) and a maximum intensity projection
of the volume (right)
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Figure 5.2: The �rst hit projection of the volume (left) acts as a preview of the
resulting lattice (right)

voxels is created. Depending on the number of cross section images additional

slices have to be created by interpolation. The result is a box consisting of

voxels representing di�erent densities. This volume can be visualized with a

maximum density projection (MIP), see �gure 5.1.

In the representation �rst the region of interest (ROI) is chosen by determin-

ing a rectangular domain, either in the cross section area on the left or in

the MIP of the volume on the right, see �gure 5.1. After this the volume is

cropped to the ROI.

Finally a binary segmentation is performed. Every voxel is assigned to be

solid or �uid in dependence of its density. If the density is above a certain

threshold it is assigned to be '�uid' otherwise it is assigned to be 'solid'. In

�gure 5.2 it is shown how the threshold value can be found. On the right

side a �rst hit projection is used as a preview. When an adequate threshold

value is chosen a cartesian lattice is created, in which only relevant nodes are

stored. These nodes are �uid nodes and solid no-slip nodes, which have �uid

nodes in their neighborhood.
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Figure 5.3: Boundary nodes can be placed in the �rst hit projection of the seg-
mented volume

Geometrical artefacts are a common problem in blood �ow simulation. There

are basically two di�erent approaches to remove artefacts:

1. A �lter is applied to the volume before segmentation. Often the images

contain numerical noise with high density. A low pass �lter is a simple

way to remove it.

2. After segmentation steady �ow is simulated through the relevant �uid

domain. All �uid nodes that have a velocity of zero are removed. In a

second step all no-slip nodes with no �uid neighbors are removed. In

practice this is a very powerful approach to remove both artefacts and

vessels that can be neglected.

The two methods are normally su�cient to create feasible lattices for �uid

dynamical computations.

5.1.2 Placing of boundary nodes

In section 4.1.1 the most common boundary conditions in the LBGK method

have been presented. The di�erent boundary conditions can be applied to
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Figure 5.4: A typical time dependent pressure gradient

voxels that are selected in the �rst hit projection of the volume, see �gure 5.3

The supported steady boundary conditions are:

• No-Slip

• Fixed pressure gradient

• Fixed �ow,

and the time dependent boundary conditions are:

• Time dependent pressure gradient: The gradient can be chosen arbi-

trary, see �gure 5.4. Particulary it can result from one dimensional

global blood �ow simulation or from measurements.

• Time dependent �ow: Again a time dependent mean �ow is chosen,

from the mean �ow di�erent �ow pro�les can be created according to

section 4.1.2.

Note that the elastic boundary condition cannot be placed but is created

with the lattice, see section 4.2.

5.1.3 Visualization

For visualization of the simulation results di�erent methods are used. During

the calculation fast methods are needed. Simple direct volume visualization
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techniques are applied to enable the user to get a quick impression of the run-

ning simulation. When the simulation is �nished more elaborate methods can

be used to visualize the results. Therefore the data under investigation are

mapped to certain geometries and animation can be used to visualize time

dependent velocity and pressure �elds. In the following the implemented

methods shall be summarized.

Direct volume visualization is used during simulation, the following ray cast-

ing techniques are applied:

• Maximum intensity projection: MIP maps the maximum value on a

ray to a color. This is used to visualize velocity and pressure.

• First Hit Projection: When an intensity along a ray is higher than a

certain threshold for the �rst time the intensity is mapped to a color.

Additionally some lightning in dependence of the surrounding voxels

can be introduced. First hit projection is used to visualize properties

of the vessel wall like the wall shear stress.

The simulation results can be visualized with geometry based methods. The

implementation uses Java3D, which is a scene graph based application pro-

gramming interface on top of OpenGL:

• Animated particles: Particles like points, cubes or line segments �oat

through the time dependent velocity �eld. The resulting animation is

a very intuitive representation of the time dependent �ow.

• Cross sections: Surfaces are used to visualize properties of cross sections

along the main axis. This is the best way to visualize velocity or �ow

pro�les in straight segments, see for example �gure 4.5 or 4.6.

• Stream lines and Stream ribbons: They are a good way to visualize

turbulence. A drawback is that the velocity �eld can only be visualized

at a �xed time.
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5.2 Case studies

In the following section selected case studies are presented. First the e�ect of

atherosclerosis plaque on a �ow �eld is investigated in two spatial dimensions

with special focus on the time dependency of the �ow. Next �ow through

the abdominal aorta is simulated in three dimensions with realistic in- and

out�ow boundary conditions, whereas the geometric boundaries are gained

from tomographic images. Further the e�ect of stenosis is investigated in a

three dimensional tube, where di�erent mean velocities lead to di�erent �ow

behavior.

5.2.1 Atherosclerosis

The following example is taken from [32] pp. 153-155. It describes the

in�uence of atherosclerosis plaque to the dynamic �ow �eld. The human ab-

dominal aorta is simulated in two spatial dimensions, in which the geometric

boundaries are taken from [73]. A two dimensional model with 35887 nodes

is constructed and on the entrance of the �ow a dynamic pressure gradient

is predetermined, see �gure 5.5(e).

The two dimensional �ow �elds are simulated over one cardiac cycle. Flow

separation can occur behind the atherosclerotic plaque in the right common

iliac artery, see 5.5 (red arrow). The colors denote the velocity of the �ow

�eld and the white lines represent the stream lines, which help to identify

the region where the �ow separation takes place.

Because of the dynamic pressure gradient the point and the size of the sep-

aration region varies with time. At the peak of the pressure gradient no

�ow separation occurs due to the acceleration of the �uid, see 5.5(a). In the

next �gure 5.5(b) the pressure gradient is zero. The �uid's mean velocity is

higher than in �gure 5.5(a) but the acceleration of the �uid is much smaller.

For this reason strong �ow separation occurs in �gure 5.5(b) behind the red

arrow. When the pressure gradient is on its minimum the �ow collapses and

therefore the velocities are very slow. As a result of the deceleration the �ow
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(a) Peak of the pressure gradient (b) Same pressure at entrance and exit

(c) Minimum of the pressure gradient (d) Small pressure gradient during dias-
tole

(e) Pressure gradient of the time de-
pendent �ow

Figure 5.5: Two dimensional �ow in the abdominal aorta

shows many eddies, see �gure 5.5(c) which diminish during the diastole, see

�gure 5.5(d).
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5.2.2 Abdominal Aorta

In three spatial dimensions the abdominal aorta is reconstructed from 50

images with a resolution of 512*512. After choosing the region of interest

and removing artefacts with both methods described in 5.1.1 a lattice with

260451 nodes is obtained. The abdominal aorta lies in a bounding box of

13*27*14 cm3.

(a) t = 0.041 s (b) t = 0.124 s (c) t = 0.206 s

(d) t = 0.329 s (e) t = 0.453 s (f) t = 0.576 s

Figure 5.6: Simulation of �ow in the abdominal aorta during systole (upper row)
and diastole (lower row)
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(a) Cross sections above the above
the bifurcation showing velocity
pro�les

(b) Stream lines showing vortex forma-
tion

Figure 5.7: The �ow �eld in the abdominal aorta during diastole at t= 0.329

At the inlet a pressure gradient is predetermined which has been taken from

[4]. The resulting �ow �eld is presented in �gure 5.6 at di�erent times during

systole and diastole. During the systole high velocities can be observed in

the right and left iliac due to the smaller radius of these arteries.

During the diastole two important properties can be observed: First their

negative velocities appear, see �gure 5.7(a). Second, due to the deceleration

of the �ow vortices occur, see 5.7(b). The results of the simulations show

good agreements to the observations presented in [60], where a LBGK solver

has been used on a realistic data set of an aorta.

5.2.3 Stenosis

The �ow �eld in a stenosis is simulated. A tube with a radius of 3 cm and

a length of 15 cm is approximated with 92262 nodes, every node has a size

of 0.1 cm3. In the middle of the tube is a narrowing reducing the radius to

2 cm over a length of 5 cm.
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(a) Mean velocity 0.8 cm/s, Re ≈ 60

(b) Mean velocity 4 cm/s, Re ≈ 300

(c) Mean velocity 8 cm/s, Re ≈ 600

Figure 5.8: Simulation of �ow through a stenosis in three spatial dimensions

Di�erent mean velocities are predetermined, leading to di�erent mean Rey-

nolds numbers and therefore to di�erent behavior of the �ow, see �gure 5.8.

The �ow with lowest mean velocity of 0.8 cm/s is represented in �gure 5.8(a)

and shows no �ow separation. The size of the region of separation is depen-

dent on the mean �ow velocity. At a mean velocity of 4 cm/s the region

of separation can clearly be identi�ed, see �gure 5.8(b). The region grows

when the velocity is further increased, see 5.8(c) and can lead to turbulent

behavior behind the narrowing.
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In dynamic �ow simulation stenosis can lead to eddies, which propagate

through the vessels. Note that the narrowing leads to a massive pressure

drop. This can be explained by the Poiseuille equation, see 2.2.3. Since

mass transport has to stay constant, when the radius becomes smaller, the

pressure gradient has to increase.

5.2.4 Conclusion

In this work a simulation environment has been developed which is able to

simulate blood �ow through arbitrary patient speci�c geometries. Tools for

data acquisition as well as for postprocessing of simulation results have been

presented. For calculating the �ow numerically the LBGK method has been

extended for a new type of boundary node supporting elastic vessel walls. A

solver for two and three dimensional �ow based on the LBGK method has

been developed in Java working parallel on arbitrary multi-processor ma-

chines.

A drawback of the LBGK method is the coupling of spatial and temporal

resolution, thus when the spatial resolution is increased time steps must be

decreased. For an higher accuracy the software could be extended for grid

re�nement near the vessel walls. This approach would be very interesting in

respect to the wall shear stress.

The LBGK method has proven to be feasible for hemodynamic calculations.

The accuracy of the method is in good accordance to the accuracy of available

boundary data like geometry, which is obtained from magnetic angiography,

or pressure and velocities, which are obtained from in vivo measurements or

global cardiovascular simulation. At the current resolution the method works

very fast, in two spatial dimension it is even possible to calculate the �uid

�ow in realtime.
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