

Master's Thesis

A Domain Specific Language for
Building AJAX-enabled

Web Application

carried out at the

 Information Systems Institute
 Distributed Systems Group

 Technical University of Vienna

 under the guidance of
Univ.Prof. Dr. Schahram Dustdar

and
Univ.Ass. Dipl.-Ing. Johann Oberleitner
as the contributing advisor responsible

 by

 Hannes Etl

 Josefistraße 20 - 7132 Frauenkirchen
 Matr.Nr. 0027601

 Vienna, 27. November 2007 _______________________

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Acknowledgements

My special thanks go to my advisor Johann Oberleitner for his guidance, advice and support

during the whole work. His expertise and research experience were crucial to improve the

outcome of this thesis.

I also want to thank my parents for their support during the last years. With their patience and

support they made it possible for me to finish my studies and write this master thesis.

3

Abstract

Nowadays developers of web applications aim at developing dynamic web applications with a

high degree of user acceptance. AJAX (Asynchronous JavaScript and XML) is one promising

technique for building modern desktop-application-like user-interfaces with a high level of

interactivity. This thesis introduces a model-driven approach for building AJAX-enabled user

interfaces specified by models and their relationships. Our prototype implementation is based on

the Microsoft Domain Specific Language Tools and the Microsoft AJAX framework ASP.NET

AJAX. Its key aspect is to accelerate and simplify the development process of professional

AJAX-enabled web applications.

4

Zusammenfassung

Die Entwicklung von Internetapplikationen erfreut sich seit einigen Jahren immer größerer

Beliebtheit. Zum einen ermöglichen moderne, dynamische Technologien wie beispielsweise Java

Server Pages (JSP) oder Active Server Pages (ASP.NET) die Realisierung beliebiger

Anforderungen im Umfeld von Internetanwendungen, zum anderen verfügen die genannten

Technologien über spezielle Eigenschaften, welche eine rasche Entwicklung von professionellen

Lösungen ermöglichen. Aus Sicht der Benutzerfreundlichkeit sind klassische

Internetanwendungen dennoch nicht mit Desktop Anwendungen gleich zu setzen. AJAX

(Asynchronous JavaScript and XML) ist eine Technologie, welche eine Verbesserung

hinsichtlich Benutzerfreundlichkeit in Internetapplikationen verspricht. In dieser Arbeit wird eine

Applikation beschrieben, welche die Realisierung von AJAX basierten Internetanwendungen auf

Basis des modelgetriebenen Ansatzes sowohl ermöglicht als auch beschleunigt. Eine graphische

Entwicklungsumgebung bietet Entwicklern die Definition des Models einer gewünschten

Internetapplikation sowie die Generierung des Quellcodes. Die Implementierung dieser

Anwendung basiert auf .NET Technologien. Insbesondere kommen das ASP.NET AJAX

Framework von Microsoft zur Integration von AJAX basierten Steuerelementen in der

Benutzerschnittstelle sowie die Microsoft Visual Studio DSL Tools zur Realisierung einer

domänenspezifischen Sprache zum Einsatz.

5

Contents

Acknowledgements ... 2

Abstract ... 3

Zusammenfassung .. 4

1 INTRODUCTION ... 9

1.1 Organization of this thesis ... 11

2 REVIEW OF THE STATE OF THE ART ... 12

2.1 AJAX ... 12
2.1.1 Components of AJAX ... 13
2.1.2 Advantages of AJAX .. 16
2.1.3 Disadvantages of AJAX .. 17
2.1.4 Implementing an AJAX-enabled Web Application... 18

2.2 ASP.NET ... 19
2.2.1 The Code-Behind Coding Model .. 21
2.2.2 AJAX-enabled web page using ASP.NET .. 23
2.2.3 Data Binding ... 26

2.3 Frameworks for Developing AJAX-enabled Web Applications ... 26
2.3.1 Echo2 .. 27
2.3.2 Google Web Framework (GWT) .. 27
2.3.3 Backbase ... 28
2.3.4 ASP.NET AJAX ... 28

2.4 Model-Driven Development .. 33
2.4.1 Domain Specific Development ... 34
2.4.2 Domain Specific Language Tools ... 37

3 MAXAL – A DOMAIN SPECIFIC LANGUAGE FOR BUILDING WEB APPLICATIONS........................ 41

3.1 The Meta-Model .. 41

3.2 A Prototype Implementation of MAXAL ... 47
3.2.1 The MAXAL-Designer ... 48
3.2.2 Features ... 49
3.2.3 Built-In Controls ... 51
3.2.4 The Generation Process of Artifacts ... 52
3.2.5 Bind Data to User-Interface Controls .. 53
3.2.6 Generated Artifacts ... 57
3.2.7 Generating unique Identifiers .. 57
3.2.8 Displaying Custom Attributes ... 58
3.2.9 Rendering .. 59
3.2.10 Validation of Models ... 61
3.2.11 Extensibility .. 63

6

3.3 Setting up a Demo Application ... 68

4 EVALUATION AND FUTURE WORK ... 69

4.1 Future Work ... 74

5 RELATED WORK ... 76

6 SUMMARY AND CONCLUSION .. 81

APPENDIX ... 83

REFERENCES ... 92

7

List of Figures

Figure 1: Completion of Matching Airport Codes ... 13
Figure 2: Form Validation using JavaScript ... 16
Figure 3: HTML Code before Executing the Script ... 16
Figure 4: HTML Code after Executing the Script .. 16
Figure 5: AJAX-enabled Web Application .. 19
Figure 6: Transform a Web Form and a Code-Behind File to HTML ... 21
Figure 7: ASP.NET 2.0 Code-Behind Model - Web Form .. 22
Figure 8: ASP.NET 2.0 Code-Behind Model - Code-Behind File ... 22
Figure 9: Event Handlers & Delegates ... 23
Figure 10: AJAX-enabled Web Page using ASP.NET .. 23
Figure 11: AJAX-enabled Web Page – Web Form .. 24
Figure 12: Instantiation of the Request Object ... 24
Figure 13: Submission of a Background Request .. 25
Figure 14: Update Content of an AJAX-enabled Web Page .. 25
Figure 15: ASP.NET AJAX ScriptManager .. 29
Figure 16: ASP.NET AJAX Timer – Web Form ... 29
Figure 17: ASP.NET AJAX Timer – Code-Behind ... 30
Figure 18: Using the ASP.NET AJAX UpdatePanel ... 31
Figure 19: The Relationship between the PIM and the PSM ... 34
Figure 20: Software Installer Concerns .. 35
Figure 21: Model Driven Development – Fundamentals ... 36
Figure 22: Development Process using the MS DSL Tools ... 38
Figure 23: A Typical Text Template .. 39
Figure 24: A Meta-Model for Developing Web Applications ... 42
Figure 25: The Model of a Simple Web Page .. 42
Figure 26: The Browser View of the Simple Web Page .. 43
Figure 27: DSL – A Typical Page Implementation ... 43
Figure 28: DSL – A Typical Attribute Implementation ... 44
Figure 29: DSL – A Typical Control Implementation ... 44
Figure 30: A Typical Event Implementation .. 45
Figure 31: A Typical HorizontalLayout Implementation ... 46
Figure 32: A Typical VerticalLayout Implementation ... 46
Figure 33: MAXAL Essentials ... 48
Figure 34: The MAXAL-Designer – A Visual Development Environment .. 49
Figure 35: The Text Template Maxal.tt ... 52
Figure 36: The Implementation of SimpleDataBinding – Web Form .. 54
Figure 37: The Implementation of SimpleDataBinding – Code-Behind Class ... 54
Figure 38: The Implementation of ComplexDataBinding – Web Form ... 56
Figure 39: The Implementation of ComplexDataBinding - Object .. 56
Figure 40: A UML Diagram of Generated Artifacts and Components .. 57
Figure 41: Generate Identifiers for Variables and Method Stubs ... 58
Figure 42: Mapping an Abstract Instance of the Class Control to a Specific UI Control .. 59
Figure 43: The MAXAL Rendering Process .. 60
Figure 44: The Constraint Validation of the Control Name ... 62
Figure 45: The Constraint Validation of the Control Attribute .. 62
Figure 46: Loading Controls using the .NET Reflection API .. 64
Figure 47: Definition of the Interface ILayout ... 64
Figure 48: Definition of the Interface IControl .. 66
Figure 49: The Database Schema of the Sample Application .. 70
Figure 50: Model of the Sample Application ... 71

8

Figure 51: The Browser View of the Sample Application ... 72
Figure 52: ASP.NET AJAX Control Toolkit Template ... 89
Figure 53: Advanced Setup .. 90

9

Chapter 1

Introduction

Over the past decade web applications have become increasingly popular. Various available

dynamic web technologies like Active Server Pages (ASP.NET) or Java Server Pages (JSP)

provide frameworks and rich capabilities to build complex, high functional web applications. At

the same time the time-to-market scales down and the complexity of web applications grows

continually. For this reason developers aim at making web applications easier, enhancing

usability and integrating a high degree of functionality. By using new innovative techniques web

applications gradually achieve desktop-like behavior and appearance. Although the movement

from desktop applications to web applications has gained much attention and acceptance,

interactivity and performance have been lost within this movement [21]. These circumstances

bring up new challenges for software developers. Various vendors offer numerous frameworks

and tools for various platforms. The ulterior motive of these products is to enhance and

standardize the development of web applications. Addressing the user-interfaces of web

applications the acronym AJAX (Asynchronous JavaScript and XML) and some other proprietary

technologies like Adobe Flash have become increasingly popular. AJAX provides rich

capabilities to design professional, desktop-like user-interfaces. As AJAX requires a competent

knowledge of various technologies such as JavaScript, DOM, etc. the integration of those

technologies still remains a challenge for developers. This fact raises well known shortcomings

within software development like prolongation of the development of applications and additional

acquirement of knowledge. For this reason various vendors and Open Source communities offer

frameworks and toolkits which simplify the development of AJAX-enabled user-interfaces.

Nevertheless enhancing web applications by AJAX requires knowledge about AJAX and hands-

on experience on at least one AJAX-framework including its various libraries and functionalities.

This requires a certain effort and slows down the development process. For this reason this thesis

provides an approach which allows developers with less or no experience on AJAX to build

professional AJAX-enabled web applications.

10

 Nowadays software development at all is still an error-proneness, time-consuming and cost-

intensive process. Nevertheless building applications using 3GLs (3
rd

 Generation Languages) like

C# or Java programmatically is a typical approach for solving software development tasks. As the

lifecycle of modern software applications abbreviates new techniques need be used continually to

be competitive. For this reason software developers are forced to optimize their software

development process using innovative technologies, methods and techniques. Model-Driven

Development (MDD) is one promising paradigm within software development which has

recognized existing shortcomings and accepted this challenge. For this reason this thesis figures

out key aspects, capabilities, advantages and disadvantages of Model-Driven Development.

Based on the concepts of Model-driven Development this thesis provides a modern model-driven

approach for developing AJAX-enabled web applications to improve and ease the process of web

application development. A whole section is dedicated to the introduction of MAXAL (Model-

Driven AJAX Application Language), which is a code generation tool for ASP.NET based web

applications. This code generator is based on ASP.NET, the Microsoft DSL Tools and the

ASP.NET AJAX framework which enables developers to generate AJAX-enabled user-

interfaces. The fundamental idea of MAXAL is that developers specify models of their web

application within the MAXAL-Designer which provides a visual user-interface to create web

applications by specifying models and their relationships. For this reason developers build their

applications without writing code using a 3GL. Similar to approved user-interface-based tools for

designing relational databases, developing AJAX-enabled user-interfaces is realized Out-Of-The-

Box by Drag&Drop. The prototype implementation of MAXAL, which is discussed in detail in

this thesis, generates fully AJAX-enabled user-interfaces. Numerous AJAX-based extensions for

standard user-interface controls like the ASP.NET Calendar control, the ASP.NET Button control

or the ASP.NET Textbox control are integrated. Furthermore horizontal and vertical positioning

features and the ASP.NET AJAX AutoComplete Extender are supported and can be used to

customize websites. A sample application shows its rich capabilities. In addition this

development environment is designed to be programmatically extensible. Developers might

realize their own customized user-interface controls or modify existing user-interface

components for their purposes without accessing and modifying existing source code of the

prototype implementation of MAXAL. This specific feature enables developers to add additional

custom controls and functionalities to the prototype implementation of the MAXAL-Designer

with reasonable effort. Furthermore this code generation tool provides mechanisms to integrate

11

data-intensive user-interface controls. For this reason generated artifacts might be included into

existing web applications.

1.1 Organization of this thesis

Section 2 provides an introduction to AJAX. On the one hand this section describes its

evolutionary history, capabilities, advantages, disadvantages and innovative background ideas.

Classical web applications are faced with modern AJAX-enabled user-interfaces. On the other

hand this section focuses on implementation details. Numerous examples illustrate core

implementation techniques. Furthermore this section introduces some popular, current available

AJAX frameworks which simplifies developing AJAX-enabled user-interfaces. Another

subsection of Section 2 focuses on ASP.NET. Section 2.4.2 deals with the MS DSL Tools - a

toolkit for developing domain-specific languages on the .NET platform. Section 2.4 introduces

Model-Driven Development - a modern approach for developing software.

 Section 3 introduces MAXAL, its core features, design principles and capabilities.

Numerous examples illustrate implementation details. As MAXAL is based on the MS DSL

Tools some of the core features of this technology are discussed in detail. Section 3.1 presents a

meta-model for developing web applications. This model is used as basis for the development of

the source code generation tool MAXAL.

 Section 4 provides an evaluation of MAXAL. An implementation of a sample application

shows significant measured values to evaluate utilization and applicability of MAXAL.

 Finally Section 5 deals with existing approaches and compares these with MAXAL.

Advantages and disadvantages of MAXAL and other tools are highlighted.

 Section 6 concludes the key aspects of this thesis and provides an outlook for further

improvements of the current version of MAXAL.

Chapter 2

Review of the State of the Art

Developing dynamic web applications has become increasingly popular. Although modern web

development techniques provide a wide range of capabilities, web application development

underlies certain limitations. Web applications are based on the request-wait-response-wait

pattern [30], which exhibits problems like limited interactivity. After submitting a request the

user has to wait until the response arrives. [30]

Keith Smith [30] illustrates a key problem in classical web applications: A user visits an

online travel reservation system and edits a place of departure, the travel destination, preferred

dates and times and then submits a request to locate all available flights. After receiving the

server’s response the user notices that he typed the wrong airport code for the travel destination.

Consequently all received flight information is useless. The user enters the correct code and

submits the request again. Furthermore sorting the received flights would again cause a request.

In the above mentioned scenario we can see that by simply editing the wrong airport code – time,

network resources, server resources and bandwidth are wasted, which is not efficient. According

to this inefficient process there is a claim for developing more desktop-application-like web

applications. Now developers profit of AJAX.

2.1 AJAX

The acronym AJAX (Asynchronous JavaScript and XML) pictures a programming technique for

enhancing user’s experience on web applications. This technique is a set of technologies mostly

developed in the decade of the 1990s. Its component technologies have been improved and are

now ready for using within enterprise applications. Google
1
 and other companies have already

developed early AJAX-enabled web applications like Gmail, Google Maps or Google Groups
2

[25, 30]. The key advantage of AJAX-enabled applications is performing partial page updates

1
 http://www.google.com (28

th
 September 2007)

2
 AJAX-enabled features like a webmail, maps and a discussion platform offered by Google

12

13

instead of refreshing the whole page after each request. Classical web applications refresh the

whole page even for small changes. Within AJAX-enabled applications changes are made to

specific user interface components on a single webpage [21]. The fundamental advantages of this

approach are a reduced latency and an improved user-interactivity. Using AJAX web-

applications become more interactive and customizable and mature to rich and desktop-like

applications [25, 30]. By developing AJAX-enabled web applications the above mentioned

scenario can be improved and at the same time usability can be enhanced. The following

paragraph shows an AJAX-enabled solution.

As shown in Figure 1 during editing the airport code into the text field, the browser could

initiate a request to the server in the background to receive all airports matching the letters typed

in the text field and displays a list with all matching airport codes. Subsequently available letters

are completed to full words automatically. Consequently the user would immediately notice a

wrong input letter before submitting the request. Using this approach in web applications data

exchange between client and server is less verbose and no round-trip is necessary. Additionally

the browser has a full description of all received flight information, which allows sorting without

doing a request to the server. [30]

Figure 1: Completion of Matching Airport Codes

2.1.1 Components of AJAX

AJAX is based on a set of approved technologies. Its components are CSS (Cascading Style

Sheets), DOM (Document Object Model), XML (Extensible Markup Language), JS (JavaScript)

and DHTML (Dynamic Hypertext Markup Language). The following sections discuss each of

these technologies in detail.

14

Cascading Style Sheets (CSS)

CSS addresses the layout of web pages [25]. The basic idea of cascading style sheets is the

separation of layout and content within a web page. Within traditional web pages layout and

content was mixed with each other. The concept of cascading style sheets enables developers to

define styles for groups of user-interface controls. Consequently it is not necessary to define the

layout using HTML capabilities [33]. Cascading style sheets are a W3C standard since 1996 [9].

Within AJAX the technique of cascading style sheets provides powerful capabilities. CSS

combined with JavaScript and DHTML allows changing layout and position properties of special

elements inside the front-end of a web page. Using this combination of techniques visual effects

can be realized. For example a menu pops up while hovering with the mouse or a special

designed sandglass appears while a user is waiting for the answer of a submitted request.

Furthermore the use of cascading style sheets is not limited to HTML. Cascading style sheets can

also be applied to XML documents. As XML is a typical exchange format within AJAX,

developers have the capability to define the layout for XML documents. Consequently received

data can be displayed immediately using the desired layout properties without any additional

transformation process. [33]

Document Object Model (DOM)

The Document Object Model, a W3C standard since 1998 [10], defines a platform independent

programming interface for developers to create and modify HTML (Hypertext Markup

Language) or XML (Extended Markup Language) documents. Using DOM, HTML or XML,

documents are mapped as tree structures containing nodes and relationships between nodes.

Consequently developers have the capability to dynamically change the appearance of a webpage

by using DHTML (Dynamic Hypertext Markup Language), even if the page has already been

loaded. All elements within a user-interface are identified by unique identifiers. This concept

allows accessing and modifying elements at any time during the execution of a website. [25, 33]

15

Extensible Markup Language (XML)

XML is a platform independent markup language similar to HTML [34]. XML documents are

readable for both machine and man. An XML document consists of various blocks like elements,

attributes, processing instructions or comments. In contrast to HTML XML distinguishes

between the representation of data and the actual data. While HTML mixes both concerns, XML

documents are only responsible for the structuring of the data. [33]

Within AJAX data exchange between client and server is basically processed by using

XML communication between client and server asynchronously via HTTP (Hypertext Transfer

Protocol) requests. For instance, a request is firstly transformed to XML and subsequently the

transformed message is sent to the server via HTTP. Responses are received in the background

without interrupting users’ current actions on the webpage. [25]

JavaScript (JS)

JavaScript, released in 1995 by Netscape and Sun, is a scripting language which is often used for

client-side web development. JavaScript interacts with HTML code and makes web pages more

interactive [25]. JavaScript is a key technology when using AJAX. This scripting language is

used to call modified data within a webpage without refreshing the whole page. After loading

required data from a server DHTML is used to update the view of the webpage. All available

AJAX-based frameworks are based on JavaScript to realize AJAX-specific functionalities [33].

Java Script is used to glue all the used technologies – HTML, CSS, XML, DOM and DHTML

together. [25]

Dynamic Hypertext Markup Language (DHTML)

Dynamic HTML describes an extension of HTML to develop dynamic web pages that are more

animated than classical web pages using pure HTML. Its core technologies are HTML and

JavaScript. DHTML enables the development of web pages containing visual effects. For

instance while a user passes the cursor over a menu a submenu appears. [25] Shelly and Young

[29] provide an example including a form validation. The task is to display an appropriate error

16

message immediately near the element where the error occurred. Figure 2 shows its source code

and how DHTML modifies the web page by accessing and modifying the DOM of the web page.

Before executing the script the HTML code looks like in Figure 3.

After executing the script the HTML code looks like in Figure 4.

2.1.2 Advantages of AJAX

Paulson [25] shows that AJAX-enabled web applications generally show better performance

than web applications that are not using AJAX. On the one hand there are no interruptions

between submitting and receiving requests because of omitting the page-refresh, on the other

hand network traffic between client and server is minimized because only required data needs to

be transmitted. Furthermore web application developers generally have hands-on experience with

its component technologies.

Unlike Adobe Flash or other proprietary web application technologies, which enhance

user experience of web applications, AJAX does not require any additional plug-ins because

<label id="phoneLabel" for="phone">Telephone Number</label>

<input id="phone" type="text" />

<script type="text/javascript">

function validate()

{

//do validation

//return error

phoneLabel.innerText = "Telephone number must be 9 digits";

}

</script>

<label id="Label1" for="phone">Telephone number must be 9 digits</label>

<input id="Text1" type="text" value="999" />

Figure 4: HTML Code after Executing the Script

Figure 2: Form Validation using JavaScript

Figure 3: HTML Code before Executing the Script

17

JavaScript unlike Adobe Flash is supported out-of-the-box by various available browsers.

Furthermore recent browser versions of Internet Explorer, Mozilla’s Firefox, Netscape and Apple

Computer’s Safari work with HTTP requests containing XML-based data. However although

Adobe Flash requires an additional plug-in, it is no challenge even for laymen to download and

install the required plug-in. By the way recent versions of various browsers show an information

message if the Macromedia plug-in is required. Consequently a user only has to accept an offered

download by clicking on a button. As AJAX itself is not a new technology because of its

approved components, integration into classical web pages is no challenge. On the other hand

other technologies like Adobe Flash require additional knowledge about integration of written

source code.

Smith writes in her thesis [30] that AJAX-enabled web applications have characteristics

of distributed systems because the execution of tasks of a program is divided up to both server

and client. Within classical web applications web browsers are responsible for displaying results

retrieved by an application server, while using AJAX-enabled web applications a server makes

use of the client’s processing power. However using client side capabilities is not an AJAX-

specific feature. Since JavaScript has been available since client scripting and exploiting

Browsers’ capabilities are matters of public concern. For instance client-side input validation is

basically a typical JavaScript task and no AJAX-specific feature as mentioned in [31]. For

instance, validating if a user entered text into a required text field, can be implemented without a

request.

2.1.3 Disadvantages of AJAX

According to Paulson [25] AJAX is an immature technology which still needs toolkits and

frameworks. Smith claims in her thesis [30], published in May 2006, a lack of tool support,

especially for designing, developing and debugging AJAX-enabled web applications. In the

meantime numerous frameworks like ASP.NET AJAX
3
, Backbase

4
 or Echo2

5
 for various

platforms have been implemented. Furthermore some AJAX toolkits are available. For example

the Microsoft Corporation published the ASP.NET AJAX Control Toolkit, which is a set of

3
 http://asp.net/ajax (28

th
 September 2007)

4
 http://www.backbase.com (28

th
 September 2007)

5
 http://www.nextapp.com/platform/echo2/echo (28

th
 September 2007)

18

AJAX-enabled sample controls. Another Toolkit is provided by Google. The Google Web

Toolkit (GWT) makes writing AJAX-based web applications easy for developers.

Using JavaScript is advantageous because it is a cross-platform scripting language, but

differences in JavaScript implementations across different browsers cause problems. For example

some browsers do not support some AJAX-specific features. [25]

Paulson [25] points out that users must get accustomed to AJAX-enabled applications that

don’t perform like classical web applications. As AJAX is a promising approach to transform

web applications to desktop-like applications and users are familiar with classical desktop

applications, users expect a desktop-like behavior within web applications and for this reason

users will not have to get accustomed with next-generation user-interfaces.

Referring to Paulson [25] AJAX has also raised some security concerns. Although its

component technologies have been approved over the last years the combination of techniques

are now being used in unproven ways. Using approved security techniques like the Secure

Sockets Layer protocol (SSL) AJAX-enabled web applications become secure. [27] However

allocating tasks of the web application to the client-side leads to the situation that security is not

primarily a server issue anymore as in classical web applications but also a client issue. [31]

2.1.4 Implementing an AJAX-enabled Web Application

Stamey and Richardson present an example [32] showing an AJAX-enabled website based on the

LAMP (Linux, Apache, MySQL, and PHP) platform. The implementation focuses on validation

with JavaScript as well as processing of input items through the XMLHttpRequest object. As

shown in Figure 5 its homepage consists of six hyperlinks. Whenever a user clicks on a hyperlink

some text will be displayed on the website without refreshing the whole page. Tasks related to

the form submission also include a validation of a provided email address.

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=advantageous

19

Figure 5: AJAX-enabled Web Application

2.2 ASP.NET

ASP.NET is a key component of the Microsoft .NET framework which enables developers to

build high-performance web applications and web services. ASP.NET 1.0 was released in early

2002. When ASP.NET 1.1 was released in late 2003 the focus was not to bring up new features

but to tune-up performance, enhance security issues and remove minor bugs of existing

components within ASP.NET 1.0. The successor of ASP.NET 1.1 was ASP.NET 2.0 which

appeared in 2005. This version provides a comprehensive collection of new higher-level features

to the existing technology for web developers. The following sections describe facts,

characteristics and core capabilities of ASP.NET 2.0. [19]

20

Web developers are continuously confronted with a wide variety of browsers. As all of

the existing browsers differ in their support of HTML, the challenge is to develop web

applications that are supported inside all available environments. Using additionally JavaScript to

create more dynamic pages intensifies this problem. ASP.NET addresses this problem by offering

a rich collection of web server controls. These controls use clients’ capabilities to render their

HTML. For instance ASP.NET offers developers validation controls. Therefore ASP.NET uses

JavaScript and DHTML if the client supports it. [19]

One of the last steps when realizing a web application project is to deploy the completed

web application. This deployment requires the transfer of all web page files, databases and

components. Furthermore specific configuration settings are needed. ASP.NET addresses and

simplifies this process. Most ASP.NET settings are handled within the XML-based file

Web.Config. This file is part of each web application. It contains a hierarchical grouping of

application settings and can be modified at any time without recompiling the application. [19]

ASP.NET is XML-based

Developers design their web pages, controls and layouts using XML-based syntactical rules like

for instance elements and attributes. A typical definition of an ASP.NET control is shown in

Figure 7.

ASP.NET is Object-Oriented and Component-based

Developers using ASP.NET have full access to all objects of the .NET Framework. Furthermore

typical components and features of the OOP (Object-Oriented Programming) paradigm such as

reusable classes, interfaces or polymorphism can be used. [19] Modern imperative programming

languages use object-oriented techniques to build reusable components. Frankel [11] illustrates

the key advantage of component-based development.

“Componentization moves the production process away from reinventing the same

solution in different applications, thus improving productivity and decreasing the cost of

 production.”

21

Furthermore componentization improves quality because it isolates functionality which allows

tool builders to debug and upgrade a component in one place [11].

 As ASP.NET contains a comprehensive set of reusable server-based user-interface

components, ASP.NET is component-based. Typical front-end controls within ASP.NET are for

instance buttons or labels. Similar to JSF (Java Server Faces) on the Java platform this feature

enables developers to define the appearance and behavior of user-interface controls without

handling request objects and response objects for sending and receiving HTTP requests and

responses. Furthermore modifying low-level HTML code is not required.

2.2.1 The Code-Behind Coding Model

The typical encouraged coding model is the Code-Behind model. This model separates an

ASP.NET web page into two files. While the .aspx markup file contains HTML code and control

tags, a .cs file is used to insert source code for a page. This concept is shown in Figure 6. Its

major benefit is that the user interface and programming logic are strictly separated which allows

an enhanced organization of web applications. [19]

Figure 6: Transform a Web Form and a Code-Behind File to HTML

22

The example, shown in Figure 7 and Figure 8 illustrate the Code-Behind model. Using the Inline

model the complete source code, including both static and dynamic parts, would be mixed within

one single file.

The .aspx file contains the directive Page where developers specify the programming language

and the associated code file. The code file is a so called partial class. The purpose of partial

classes is to allow a class's definition to span across multiple files. [19] This feature is firstly

introduced in .NET 2.0. Furthermore Figure 7 and Figure 8 illustrate the fundamental

01 <%@ Page Language="C#" AutoEventWireup="true"

02 CodeFile="TestFormCodeBehind.aspx.cs" Inherits="TestFormCodeBehind" %>

03

04 <html xmlns="http://www.w3.org/1999/xhtml">

05 <head runat="server">

06 <title> Test Page </title>

07 </head>

08 <body>

09 <form id="form1" runat="server">

10 <div>

11 <asp:Label ID="Label1" runat="server" Text="Click Me!"></asp:Label>

12

13

14 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"

15 Text="Button" /></div>

16 </form>

17 </body>

18 </html>

01 using System;

02 using System.Data;

03 using System.Configuration;

04 using System.Web;

05 using System.Web.Security;

06 using System.Web.UI;

07 using System.Web.UI.WebControls;

08 using System.Web.UI.WebControls.WebParts;

09 using System.Web.UI.HtmlControls;

10

11 public partial class TestFromCodeBehind : System.Web.UI.Page

12 {

13 protected void Button1_Click(object sender, EventArgs e)

14 {

15 Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();

16 }

17 }

Figure 8: ASP.NET 2.0 Code-Behind Model - Code-Behind File

Figure 7: ASP.NET 2.0 Code-Behind Model - Web Form

23

programming technique to add an event handler to an ASP.NET Button control. [19] To add the

Click event to an ASP.NET Button the attribute OnClick with the name of the event handler has

to be added. Event handlers are accessible methods inside the Code-Behind file.

 Alternatively event handlers can be assigned to controls through code using delegates, a

.NET equivalent of function pointers. The following code fragment shows an example. [19]

2.2.2 AJAX-enabled web page using ASP.NET

Steyer and Fuchs show an AJAX-enabled web page based on ASP.NET and C#. [33] As shown

in Figure 10 the web application displays a dropdown menu. Whenever a user selects an item

from the list, a text related to the selection will be displayed without a full page refresh.

Figure 10: AJAX-enabled Web Page using ASP.NET

This example is based on the technologies C# and ASP.NET that are used for MAXAL described

in Section 3. The source code of the ASP.NET based example is shown in Figure 11.

cmd.Click += new EventHandler(txtName_Click)

Figure 9: Event Handlers & Delegates

24

Line 4 provides a reference to an external JavaScript file named coffee.js. Inside this file all

client-side AJAX-related tasks are implemented. So this file is the heart of the client-side AJAX

engine. From line 8 to line 16 a web form is implemented which is referable inside JavaScript by

using its name form. From line 11 to line 15 a drop-down menu is used to select various items.

Additionally the event handler onclick implemented. Each time the selection changes a JavaScript

function will be invoked. Line 18 provides a span-container which is used to display received

data after a request.

 Inside the external JavaScript file coffee.js a so called request-object is used to submit and

receive data. Before data will be displayed to the user inside the browser, received data will be

processed inside this request-object. Therefore the request-object provides methods and

properties that can be invoked via JavaScript.

01 var reqObject;

02 if (navigator.appName.search("Microsoft") > -1) {

03 reqObject = new ActiveXObject("Microsoft.XMLHTTP"); // IE

04 }

05 else {

06 reqObject = new XMLHttpRequest(); // Mozilla, Safari, etc.

07 }

01 <%@ Page Language="C#" AutoEventWireup="true"

02 CodeFile="coffee.aspx.cs" Inherits="_coffee" %>

03 <html>

04 <head runat="server">

05 <script language="JavaScript" src="coffee.js" />

06 </head>

07 <body>

08 <form runat="server" name="form">

09 Choose a coffee:

10

11 <select name="coffee" size="1" onclick="sndReq()">

12 <option> cup of coffee </option>

13 <option> espresso </option>

14 <option> cappuccino </option>

15 </select>

16 </form>

17

18

19 </body>

20 </html>

Figure 11: AJAX-enabled Web Page – Web Form

Figure 12: Instantiation of the Request Object

25

Dependent of the used browser either an ActiveXObject or an XMLHttpRequest object is

instantiated. [33]

As mentioned above the function sndReq() will be invoked each time the selection within the

drop-down menu changes. Inside a for-loop the selected item of the drop-down menu is

determined. If the selected item was found a HTTP connection to the web server will be

initialized by using resObject.open("get","coffee.aspx?what="+i,true). This method including

its parameters initializes an asynchronous request of the specified web page coffee.aspx. Once a

response arrives, the client-side AJAX engine invokes the function handleResponse(). [6]

In line 20 the state of data transmission is tested. If the request is completed the next step is to

display the received data on the webpage. This is done by modifying the span container named

hs. The attribute innerHTML allows accessing the content of the span container. The property

responseText of the request-object contains the server response. Retrieved data will be allocated

to the span container. [33]

18 function handleResponse() {

19 const complete = 4 // request completed

20 if(resObject.readyState == complete) {

21 document.getElementById("hs").innerHTML = // "hs"… name of -tag

22 resObject.responseText;

23 }

22}

08 function sndReq() {

09 for(int i = 1; i <= 3; i++) {

10 if(this.document.form.coffee.options[i-1].selected) {

11 resObject.open("get","coffee.aspx?what="+i,true);

12 resObject.onreadystatechange = handleResponse;

13 resObject.send(null);

14 break;

15 }

16 }

17 }

Figure 13: Submission of a Background Request

Figure 14: Update Content of an AJAX-enabled Web Page

26

2.2.3 Data Binding

Web applications typically provide data-intensive user-interface controls. Data Binding allows

updating the view’s data of a web application. Consider a simple example, such as the list of

music titles. While the list could be hard-coded into the text, a better solution is to store the data

external to the document within a database table or any other storage. If the music titles change,

only the data in the database needs to be modified. Once the modifications are made, the page

that displays that data will reflect the changes. For this reason ASP.NET 2.0 offers developers

numerous facilities to bind data to user interface controls. The following list shows typical data

binding components that simplify the development of ASP.NET web applications. [19]

 SqlDataSource

This feature allows accessing a relational database, e.g. a MS SQL or Oracle database.

 ObjectDataSource

 This component creates a connection to a business object or dataset.

 XmlDataSource

This control allows accessing a XML file.

 AccessDataSource

 This data binding mechanism allows accessing a MS Access database.

2.3 Frameworks for Developing AJAX-enabled Web Applications

Developers need advanced hands-on experience especially with JavaScript but also with other

web technologies to develop professional AJAX-enabled web applications. Consequently

developers have struggled with complexities of those techniques. Additionally developing

AJAX-enabled web applications requires much effort on testing. [21] For this reason various

AJAX frameworks have been developed to ease and accelerate the development process of

AJAX-enabled web applications. Those frameworks offer numerous libraries including various

functionalities. On the one hand working with those frameworks requires additional hands-on

experience. On the other hand developing efficient, stable web applications is supported. [33]

Nowadays various AJAX frameworks are available. One of those is ASP.NET AJAX

from Microsoft which is introduced in Section 2.3.4 in detail. Other important frameworks are

27

Echo2, Google Web Framework (GWT
6
) or Backbase which are described in the following

sections.

2.3.1 Echo2

Echo 2 is an open-source AJAX framework for developing web applications using Java. It

enables developers to implement web applications based on an object-oriented, component-based

and event-driven approach. Tasks like rendering a component or communication with the client

are assembled in a specific package called Web Rendering Engine. This engine consists of two

components – a server-side module written in Java and a client-side module written in JavaScript.

A key concept of Echo2 is the so called Update Manager. This feature is responsible for tracking

updates within the user-interface and for processing input received from the rendering agent. The

main task of the Client Engine, which is integrated within the client, is synchronizing the

client/server state when user operations are performed inside the user-interface. Furthermore

Echo2 uses the XML format for performing data exchange between server and client. Echo2

distinguishes between so called ClientMessages and ServerMessages. [21]

2.3.2 Google Web Framework (GWT)

GWT is another Java-based AJAX framework. GWT comes with a library of widgets that can be

used to develop user-interfaces. Using GWT developing user-interface controls for web

applications is similar to developing user-interface components using the Java AWT or Java

Swing libraries. Its key concept is the process for rendering those user-interface components.

GWT compiles Java code to JavaScript code. For this reason Java developers can use a subset of

the Java API to add needed functionality to their components on client-side. GWT uses a small

client-side engine. For this reason various functionalities are supported on client-side, which

minimizes round-trips to the server. Submitting a request to the server is only required when raw

data for user-interface components are needed. [21]

6
 http://code.google.com/webtoolkit/ (13

th
 October 2007)

28

2.3.3 Backbase

Backbase is one of the first commercial AJAX frameworks based on Java. It is still in continuous

development. The key element of Backbase is the Presentation Client, which is a client-side

AJAX engine written in JavaScript. This module supports a declarative programming language

called BXML. It consists of a library with various user-interface controls, a mechanism for event-

handling and a feature to connect to a web server asynchronously. Furthermore Backbase is based

on the Backbase Java Server (BJS). This server contains its own set of user-interface

components and extends the JSF (Java Server Faces) framework. Developers develop their web

applications by using those components declaratively. [21]

2.3.4 ASP.NET AJAX

ASP.NET AJAX, formerly ATLAS, is an AJAX framework developed by Microsoft. It is based

on the ASP.NET library which offers methods that can be used on client-side using JavaScript.

The Client Script Library extends classical JavaScript. Concepts of the object-orientated

programming paradigm as types, namespaces, classes and interfaces are part of it, JavaScript

types are adapted to .NET types and JavaScript wrappers have been implemented to support

asynchronous server communication. [33] The Client Script Library of ASP.NET AJAX consists

of several JavaScript files: ASP.NET AJAX.js and ASP.NET AJAXRuntime.js scripts implement

the script core, base class library, component model, UI framework and most controls. The script

AJAXCompat.js is provided for compatibility issues with the Firefox browser and other Mozilla-

based browsers. Additionally the script ASP.NET AJAXCompat2.js allows compatibility with the

Apple Safari browser. [30] A key benefit of ASP.NET AJAX is that it supports both object-

orientated and declarative techniques.

Declarative elements of ASP.NET AJAX

When developing web applications developers usually use both declarative and imperative

languages. While HTML for instance is a declarative language, C# and Java are imperative

languages. ASP.NET AJAX provides both programming paradigms. For example, when using

ASP.NET AJAX the following declarative statement is required [33].

29

Server Controls

ASP.NET AJAX provides a set of AJAX-enabled server controls to simplify the development of

AJAX-enabled web applications for developers. The following sections describe the Timer-

Control and the UpdatePanel-Control in detail.

 Timer

The Timer-Control causes server-requests periodically. For instance, developers can take use of

this control to realize a Counter control. The code shown in Figure 16 illustrates the

implementation of a Counter control using the Timer-Control. [33]

The above mentioned code is not part of the HTML specification. This code will be rendered by

the ASP.NET AJAX server-engine. The output is HTML code containing JavaScript pieces. The

Code-Behind file requires the code fragment shown in Figure 17.

01 <form id="form1" runat="server">

02 <asp:ScriptManager id="ScriptManager1" runat="server" />

03 <div>

04 <asp:Label ID="Label1" runat="server" Text="Label">

05 </asp:Label>

06 </div>

07 <asp:TimerControl ID="Timer1" Enabled="true" Interval="1000"

08 runat="server" />

09 </form>

<asp:ScriptManager ID="ScriptManager1" runat="server" />

Figure 15: ASP.NET AJAX ScriptManager

Figure 16: ASP.NET AJAX Timer – Web Form

30

The basic idea of this implementation is that the current number of the Counter control is stored

within a session object that stores the current Counter value in a variable. As the server contains

the most recent value of the Counter a server request is indispensible. Each time the page is

requested the method Page-Load is executed and the Counter value will be incremented. After

the client obtains the server response the ASP.NET Label control will display the current number.

 UpdatePanel

The above shown sample causes a server-request each time the number of the counter is

incremented. Consequently the full page is refreshed after each request. This raises a lack of user

experience. To solve this problem ASP.NET AJAX offers the UpdatePanel control. Using this

control allows partial page updates. The key feature of this control is that only those user-

interface controls perform updates whose state has changed since the last request. As a

consequence there is no full page refresh and updates occur smoothly. To enhance the sample

shown in section above the form- section of the web form must be replaced with the following

code fragment. [33]

01 protected void Page_Load(object sender, EventArgs e)

02 {

03 int Counter = 0;

04 if (IsPostBack)

05 {

06 Counter = (int)Session["Counter"];

07 Counter++;

08 }

09 Session["Counter"] = Counter;

10 this.Label1.Text = Counter.ToString();

11 }

Figure 17: ASP.NET AJAX Timer – Code-Behind

31

The UpdatePanel control has a child-element ContentTemplate. All user-interface-components

inside the UpdatePanel control take the advantage of this control. The enhanced sample shown

above enables a counter without a full page refresh because the ASP.NET Label control und

ASP.NET AJAX Timer control are sub components of the UpdatePanel control. UpdatePanels are

refreshed after each server request by default. For this reason a web page with multiple

UpdatePanels causes refreshes on each single UpdatePanel even its content has not changed

since the last request. [33]

Control Toolkit
7

The Control Toolkit is a free available collection of AJAX-enabled controls. Developers take use

of these controls without implementing any JavaScript source code. The following table shows

available controls at the time of the creation of this thesis. [33]

Control Description

Accordion
Provides multiple expandable and collapsible Panels. One of them is displayed

at a time.

AlwaysVisibleControl
Fixes a specific control (e.g. a clock) to a specific position on screen. The

control remains at this position even when it is scrolled.

Animation Provides animation for existing controls (e.g. fade-in effect on a Button)

AutoComplete
Extends a TextBox. A popup panel displays words that begin with the prefix

typed into the TextBox.

Calendar Extends a TextBox. A client-side Calendar control is displayed.

7
 http://www.asp.net/ajax/control-toolkit/ (24

th
 August 2007)

01 <form id="form1" runat="server">

02 <asp:ScriptManager ID="ScriptManager1" runat="server" />

03 <div>

04 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

05 <ContentTemplate>

06 <asp:Label ID="Label1" runat="server"

07 Text="Label"></asp:Label>

08 <asp:Timer ID="Timer1" runat="server" Interval="1000">

09 </asp:Timer>

10 </ContentTemplate>

11 </asp:UpdatePanel>

12 </div>

13 </form>

Figure 18: Using the ASP.NET AJAX UpdatePanel

32

CascadingDropDown

Extends a set of DropDownLists. Each time a value of one of the

DropDownLists is selected, appropriate values for all other DropDownlists are

retrieved from a web service.

CollapsiblePanel Allows expanding and collapsing a Panel.

ConfirmButton
Extends a Button (or a derived instance of the class Button) and displays a

message when the Button is clicked.

DragPanel Allows user to drag a Panel to any space of the screen.

DropDown Provides a SharePoint-style drop-down menu to any control

DropShadow Adds a shadow to a Panel.

DynamicPopulate Allows updating the content of a control dynamically.

FilteredTextBox Prevents a user from entering invalid characters into a TextBox.

HoverMenu Associates any control with a popup panel do display additional content.

ListSearch Enables to search items within a ListBox or a DropDownList by typing.

MaskedEdit Extends a TextBox to restrict the kind of text that can be entered.

ModalPopup
Displays content to the user in a “modal” manner which prevents the user from

interacting with the rest of the page.

MutuallyExclusiveCheckbox Extends a CheckBox controls. A CheckBox gets a RadioButton-like behavior.

NoBot Provides a bot/spam prevention without requiring any user-interaction.

NumericUpDown
Extends a TextBox. Adds an “up” and “down” Button to increment and

decrement the value of the TextBox.

PagingBulletedList Extends a BulletedList and provides a client-side sorted paging.

PasswordStrength Extends a TextBox and shows the strength of a password

PopupControl
Can be attached to any control to open a popup window that displays additional

content.

Rating Enables users to select the number of stars that represents their rating.

ReorderList Allows user to reorder a list by drag & drop.

ResizableControl Can be attached to any control and allows modifying the size of the control.

RoundedCorners Applies rounded corners to existing elements.

Slider
Extends a TextBox. It allows the user to choose a numeric value from a finite

range.

SlideShow
Targets image controls. It provides Buttons to switch to the next and to the

previous image or to stop the show.

Tabs Creates a set of Tabs that can be used to organize page content.

TextBoxWatermaker
Extends a TextBox. When a watermarked TextBox is empty, it displays a

message to the user with a specific CSS style.

ToogleButton Enables the use of custom images to show the state of the CheckBox.

UpdatePanelAnimation
Allows playing animations both while an UpdatePanel is updating and after it

has finished updating.

ValidatorCallout Enhances the functionality of existing ASP.NET validators.

Table 1: ASP.NET AJAX Control Toolkit Controls

33

2.4 Model-Driven Development

Software engineers aim at developing innovative software development techniques with the goal

of simplifying and accelerating the software development process. The main problems in

building software systems are time, costs and error-proneness [28]. Frankel [11] describes typical

challenges within the software industry in detail. For instance software projects frequently exceed

their budget limit. Consequently the management stops these projects. Other systems prove to be

unstable or inflexible over time. Model-Driven Development (MDD) focuses on at least some of

these problems. Currently software development is moving towards a model-driven process with

its goal to design software at a higher level of abstraction. [16] One of the essential concepts

within Model-Driven Development is the term model. A model is a simplified, textual or

graphical description of an artifact. It should have concrete and non ambiguous semantics.

Models are used to represent complex systems. As a model is a simplification of an artifact it

helps designers to handle the complexity of real objects. [24]

The fundamental idea of Model-Driven Development is constructing models, specifying

transformation rules [18] and generating code and documentation automatically. The OMG’s
8

(Object Management Group) Model Driven Architecture (MDA
9
), which is a software design

approach within Model-Driven Development, defines the terms Platform-Independent Model

(PIM) and the Platform-Specific Model (PSM). The idea of the PIM is to investigate operations

and relationships inside a system while hiding details of a specific platform. The PSM takes the

PIM as initial point and uses platform-specific features to generate code. As mentioned in [2]

Model-Driven Development makes a distinction between the platform-independent model and

the platform-specific model. Developing software systems by modeling and transforming models

is a more advantageous approach than programming. The fundamental benefits of MDD are

portability, interoperability and reusability through architectural separation of concerns. Figure

19 illustrates the relationships between the PIM and PSM.

8
 http://www.omg.org/ (28

th
 September 2007)

9
 http://www.omg.org/mda/ (15

th
 November 2007)

34

Figure 19: The Relationship between the PIM and the PSM

As shown in Figure 19 developers might realize numerous platform-specific models (PSM) to a

corresponding independent model (PIM). This case shows two possible platform specific models:

A model based on Java and a model based on the .NET framework. Using platform specific

techniques (e.g. EJB on the Java platform) allows the transformation of a PIM into a ready-to-use

software system.

2.4.1 Domain Specific Development

Domain Specific Development is a promising approach for enhancing and simplifying the

development of applications within a specific domain. The basic idea of Domain Specific

Development is to develop a special-purpose language which enables developers to solve various

software development problems within a concrete domain. Cook et al. [8] provide a definition for

the term Domain Specific Language.

“A Domain-Specific Language is a custom language that targets a small problem domain,

which it describes and validates in terms native to the domain.”

The following example shows a specific domain and its specific language to solve typical

software development tasks within this domain. Finding every occurrence of a particular pattern

of characters within a file is a well-know domain for developers. For instance a typical task

within the domain is to filter all email addresses. Using the special-purpose textual language of

35

regular expressions, this problem can be solved. Instead of developing a complex algorithm

using a general-purpose language like Java, C# or UML to solve this problem, the practitioner

realizes a special language which allows solving a whole class of similar problems [8]. For

instance finding all occurrences of numbers within a file is a similar task. This problem can be

solved with little additional effort when using the special-purpose language of regular

expressions.

 A typical task when developing a new software system is the deployment of the developed

application. For this purpose developers frequently use so called installer applications. The

installation of software generally requires the execution of similar tasks like copying source files

or providing specific settings. Figure 20 displays typical installer concerns.

Figure 20: Software Installer Concerns

On the one hand installer applications usually handle similar tasks but on the other hand each

installer differs from each other to certain extent. For this reason the use of a DSL might be

promising for developing such installer applications. Having a DSL which allows the

development of customized installers would be advantageous and accelerate the deployment.

Each task within a domain covers a lot of aspects that are the same. Exactly these parts

can be realized once and (re)used for all problems. Each particular task in the future can be

solved by creating a model or an expression using the specific language as starting point.

Continuously the concrete model is integrated into a fixed part of the solution. The fixed part of

the solution is realized by writing code manually using a general purpose language. [8] Essential

36

concepts, components and their relationships within Domain Specific Development are illustrated

in 22.

A Domain Specific Language is also known as meta-model because it is itself a model

that defines all possible models that can be designed by developers. [2] The meta-model

represents the main elements of a specific domain.

Figure 21: Model Driven Development – Fundamentals

Referring to Cook et al. [8] Domain-Specific Development offers the following benefits. A DSL

enables developers to migrate a solution from one technology to another (e.g. from Java to C#).

In addition a DSL reduces error proneness which has its origin in writing code manually using

general purpose languages. Furthermore a DSL hides details about the implementation

technologies. For this reason the DSL’s models are accessible to people without experience on

these technologies. Another benefit of DSLs is that models offer immediate feedback and

37

suitability. A further key aspect is that the generated artifacts are not necessarily source code. A

suitable model can be used to generate any possible artifact like artifacts for the software

documentation. Furthermore a DSL can be used to generate artifacts for multiple technologies.

For instance generated artifacts are Java and C# classes. In addition a DSL allows building

models that can be used to generate other models.

As mentioned in [8] the benefit of using DSLs varies. DSLs basically can be seen as a

more abstract form of source code. A DSL is generally applicable to any software development

task. They can be used to configure applications and middleware as well as to initialize and

populate databases. In some cases the level of abstraction can be adequate. On the other hand

when mapping complex relationships the level of abstraction might be inadequate. A graphical

DSL and visual understanding to data addresses this shortcoming to a certain extent. [8]

2.4.2 Domain Specific Language Tools

The Microsoft Visual Studio DSL Tools enable developers to build customized modeling tools on

the .NET platform. This toolkit allows the definition and implementation of modeling languages.

For instance, developers use the DSL Tools to create a specialized language which describes a

business process or a user-interface. Consequently the defined language can be used to generate

executable source code by writing custom Text Templates. Text Templates typically use a created

model for the generation of source code and other artifacts. The DSL Tools contain the following

typical features. [8]

 A graphical designer for building domain models.

 A set of code generators that generates code based on a defined domain model and a

designer definition.

 A template-based generator that takes a concrete model, which is based on the defined

DSL, and customized Text Templates as input to generate artifacts.

Figure 22 shows typical issues when developing applications using the DSL Tools.

38

Figure 22: Development Process using the MS DSL Tools

Validation of Constraints

Referring to [8] constraints can be divided into two categories. Hard constraints are constraints

that the tool prevents the user ever violating. For example, the width field of a shape element

should allow only valid numbers. Soft constraints are constraints that the user is allowed to

violate during editing. For example, all elements in a model should have unique identifiers. [8]

 The MS DSL Tools allow the validation of soft constraints. Each constraint is defined as a

method within a partial class. The partial class is for the class of the domain model object that

should be validated. The constraint method uses the properties, the relationships, and the role

39

names that are defined in the domain model. The MS DSL Tools additionally support

customization of the validation of constraints. Developers can define how the validation is

launched and where messages are directed. [8]

Generating Artifacts

Referring to [8] a key task of Domain Specific Languages is to generate code and other artifacts.

For this purpose the MS DSL Tools offer a parameterized template-based approach to generate

artifacts. Writing Text Templates can be done by writing code using C# or Visual Basic.

Figure 23 shows a typical Text Template.

From line 1 to line 8 so called Built-in Directives are included. Built-in Directives provide

instructions to the Text Template transformation engine. Lines 1 and 2 specify which class should

be used as the base class for the generated transformation class. To access a model from a Text

Template, developers must call the generated directive processor which is provided in line 3 and

4. Calling the generated directive processor makes the classes in a model available to the Text

01 <#@ template inherits="Microsoft.VisualStudio.TextTemplating.VSHost.

02 ModelingTextTransformation" #>

03 <#@ ClassDiagramSample processor="ClassDiagramSampleDirectiveProcessor"

04 requires="fileName='Sample.mod'" #>

05 <#@ import namespace = "System.Text.RegularExpressions" #>

06 <#@ include file = "C:\Helper.txt"#>

07 <#@ output extension=".txt" #>

08 <#@ assembly name="…\CustomAssembly.dll" #>

09 <#

10 foreach(ModelType type in this.ModelRoot.Types)

11 {

12 #>

13 <#= type.Name#>

14 <#

15 }

16 #>

17 <#+

18 private static string CreateValidName(string typeName)

29 {

20 Regex.Replace(typeName,"[^a-zA-Z]","");

21 return fixedName;

22 }

23 #>

24 . . .

Figure 23: A Typical Text Template

40

Template code. By using the import built-in directive as shown in line 5, developers can refer to

.NET types in a text template without providing a fully qualified name. By specifying the include

built-in directive as shown in line 6, external resources can be used within the Text Template.

This feature allows splitting up the content of a Text Template into multiple source files. Line 7

specifies the file name extension of the generated output. Additionally Text Templates allow

including custom assemblies by specifying the assembly built-in directive as shown in line 8.

Between line 9 and line 16 a so called statement block is provided. Statement blocks allow

developers to structure Text Templates to generate code fragments conditionally, or to iterate over

data to create code fragments repeatedly. Statement blocks typically contain control markers (<#

and #>) to add structure and dynamic behavior [8]. While code outside of the control markers is

rendered directly to the output, code between those markers is evaluated [8]. This feature is used

within various web development programming techniques like Active Server Pages (ASP), Java

Server Pages (JSP) or Hypertext Preprocessor (PHP). Furthermore Text Templates provide

Helper Functions to encapsulate specific code fragments. For instance a Helper Function is

shown between line 17 and 23.

41

Chapter 3

MAXAL – A Domain Specific Language for

Building Web Applications

MAXAL (Model-Driven Ajax Application Language) is a tool for both modeling of web

applications and the generation of source code of internet applications, based on C#, ASP.NET

2.0 and ASP.NET AJAX. Developers can build their web applications using the MAXAL-

Designer. Developing web applications using MAXAL is based on the model-driven approach.

For this reason the major part of web application development is done by specifying models and

their relationships. The designer’s backbone is the meta-model shown in Figure 24.

3.1 The Meta-Model

This section introduces a common applicable meta-model for building web applications. The

meta-model shown in Figure 24 enables developers designing concrete models of their web

applications. Defining an unlimited amount of single web pages is supported. Concrete instances

of the classes Page, HorizontalLayout, VerticalLayout and Control allow allocating user-defined

attributes. The definition of an instance of the class Layout, which is a container for user-interface

components, is obligatory for each single page. Therefore the DSL offers two different types –

HorizontalLayout and VerticalLayout. The abstract class Layout encapsulates properties for the

use within concrete instances of its subtypes. This concept allows individual extensions to the

meta-model if necessary without causing conflicts with existing layouts. Each concrete instance

of the class Layout requires the definition of at least one instance of the class Control.

Furthermore the assignment of instances of the class Event to instances of the class Control is

supported.

42

Figure 24: A Meta-Model for Developing Web Applications

An example of a concrete model based on the meta-model in Figure 24 is shown in Figure 25.

The shown model of a web application contains one page with two user-interface controls.

Basically the web page displays a label and a textbox horizontally. Figure 26 shows the web page

after transforming this concrete model into source code, rendering it on a web server and showing

it in a browser. The web page’s HTML code is rendered automatically after the client receives the

response from the server. The Figures 27 – 32 illustrate typical rendered HTML code.

Figure 25: The Model of a Simple Web Page

43

Figure 26: The Browser View of the Simple Web Page

WebsiteModel

The element WebsiteModel specifies the root of the meta-model. All other elements within the

meta-model are child components and belong to the element WebsiteModel.

Page

The element Page specifies a web page. An instance of the element Page is a single web page

which is identified by its attribute Name. The predefined attribute Title describes the title of a

web page. After generating the web application the specified title will be inserted as child

element of the HTML head tag of the web page. Furthermore additional attributes can be

optionally assigned to an instance of a Page. Figure 27 shows a possible example of a Page

element.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <title> Page </title>

 </head>

 <body>

 </body>

</html>

Figure 27: DSL – A Typical Page Implementation

44

Attribute

Attribute specifies a property value for various instances within a model. Instances of the class

Attribute can be assigned to instances of the classes Page, HorizontalLayout, VerticalLayout and

Control. Some classes within the meta-model contain predefined, compulsory attributes, which

do not belong to this class. By using instances of the class Attribute instances of the classes Page,

HorizontalLayout and VerticalLayout are extensible to a certain extent. Figure 28 shows Figure

27 with three instances of the class Attribute. The example contains three additional HTML tags.

Control

Control specifies a user-interface component. Instances of this class are for example input fields,

labels, tables etc. For this reason an instance of the class Control is basically only a container of a

specific user-interface component. An instance of the class Control is identified by its attribute

Id. The attribute Type defines the actual desired user-interface component. The attribute Position

allows developers to define the position of the control within an instance of the class Layout. The

following example shown in Figure 29 illustrates an instance of the class Control.

<select>

 <option>Pizza</option>

 <option>Lasagne</option>

 <option>Tortellini</option>

 <option>Spaghetti</option>

</select>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15">

 <meta name="Author" content="Hannes Etl"

 <meta name="Description" content="A DSL for Building Web Applications">

 <title> Page </title>

 </head>

 <body>

 </body>

</html>

Figure 28: DSL – A Typical Attribute Implementation

Figure 29: DSL – A Typical Control Implementation

45

Event

Event specifies an event for instances of the class Control. Instances of this class are for example

onclick, onchange or onsubmit. Figure 30 shows an example with a dropdown menu with an

onchange event. In this case JavaScript is used to handle the event. Each time the selection in the

menu changes the specified function BrowserSelection() within the JavaScript code fragment is

invoked to display the updated selection within an input field.

Layout

The abstract class Layout specifies a class of layout types. It defines the attributes Name,

HorizontalPosition, VerticalPosition and Type which are available for instances of subtypes of

the class Layout. The attributes HorizontalPosition and VerticalPosition allow developers of web

applications to define the absolute position of a concrete layout on the screen. The attribute Type

enables developers to define whether the layout should be an instance of the class

HorizontalLayout, VerticalLayout or CompositeLayout.

<html>

<head>

<script type="text/javascript">

function BrowserSelection()

{

 var List=document.getElementById("List")

 document.getElementById("Browser").value=

 List.options[List.selectedIndex].text

}

</script>

</head>

<body>

 <form>

 <select id="List" onchange="BrowserSelection()">

 <option>Internet Explorer</option>

 <option>Netscape</option>

 </select>

 <p>Selected Browser: <input type="text" id="Browser"></p>

 </form>

</body>

</html>

Figure 30: A Typical Event Implementation

46

HorizontalLayout

The HorizontalLayout inherits from the abstract type Layout. An instance of the class

HorizontalLayout enables developers of web applications to position instances of the class

Control on a single web page horizontally. The generated code of a HorizontalLayout might be

realized using a HTML table combined with CSS. Figure 31 shows an example with three

buttons which are positioned horizontally. Furthermore in this case the absolute position of the

layout on the screen is set using CSS.

VerticalLayout

The VerticalLayout inherits from the abstract type Layout. An instance of the class

VerticalLayout enables developers of web applications to position instances of the class Control

on a single web page vertically. The generated code of a VerticalLayout might be realized using a

HTML table combined with CSS. Figure 32 shows an example with three buttons which are

positioned vertically.

. . .

<table style="position: absolute; left: 100px; top= 100px">

 <tr>

 <td> <input type="button" name="ButtonTop" /></td>

 </tr>

 <tr>

 <td> <input type="button" name="ButtonCenter" /></td>

 </tr>

 <tr>

 <td> <input type="button" name="ButtonBottom" /></td>

 </tr>

</table>

. . .

. . .

<table style="position: absolute; left: 100px; top= 100px">

 <tr>

 <td> <input type="button" name="ButtonLeft" /></td>

 <td> <input type="button" name="ButtonMiddle" /></td>

 <td> <input type="button" name="ButtonRight" /></td>

 </tr>

</table>

. . .

Figure 31: A Typical HorizontalLayout Implementation

Figure 32: A Typical VerticalLayout Implementation

47

CompositeLayout

A CompositeLayout allows nesting of layouts and subsequently of its controls. It is based on the

Composite
10

 design pattern. Other layouts like the previous introduced layouts HorizontalLayout

and VerticalLayout might be assigned to an instance of the CompositeLayout. The content of all

encapsulated layouts belong to the same update context. For the reason only the embedded

content of a CompositeLayout is refreshed after a server request. User-interface controls which

are not assigned to the CompositeLayout remain unchanged.

3.2 A Prototype Implementation of MAXAL

As the MS Visual Studio DSL Tools
11

 are especially designed for developing DSLs and DSL-

related applications on the .NET platform, this tool is a fundamental component for developing

the prototype implementation.

 As already mentioned in Section 2.4.1 a core feature of DSLs is that developers have the

opportunity to choose any platform for realizing an implementation of a DSL. At the same time

the generation of artifacts is not restricted to one platform. For this reason the .NET platform is

not the only option. Developers might decide developing their DSLs and generating artifacts

using Java or any other destination platform. For instance when developing on the Java platform,

openArchitecureWare
12

 is a promising framework for realizing Eclipse-based DSLs [7]. Java

Server Pages (JSP) and Java Server Faces (JSF) based web applications might be generated.

 Figure 33 shows basic steps for developing web applications using MAXAL. The first

task is to build a concrete model of the web application within the MAXAL-Designer (see

Section 3.2.1). For this purpose developers typically create numerous instances of web

application components such as Pages, Layouts and Controls. A further task is to assign instances

of Attributes and Events. Step 4 in Figure 33 illustrates how an abstract instance of the class

Control becomes a specific user-interface control. As MAXAL provides a listbox for this

mapping, developers need to choose the appropriate control from the list.

10

 http://www.dofactory.com/patterns/PatternComposite.aspx (8.November 2007)
11

 http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx (28
th

 August 2007)
12

 http://www.openarchitectureware.org/ (28
th

 August 2007)

48

Figure 33: MAXAL Essentials

The following sections introduce the designer’s characteristics, components, features and

capabilities.

3.2.1 The MAXAL-Designer

The MAXAL-Designer is a visual development environment (see Figure 34) for developing

AJAX-enabled web pages. Developers create their web applications using the MAXAL-Designer

by specifying a model of their web application. A model contains instances of pages, controls and

layouts. The MAXAL-Designer enables developers defining relationships between those

49

instances and assigning properties and events to controls and layouts. The following sections

cover features, subcomponents and characteristics of the MAXAL-Designer.

Figure 34: The MAXAL-Designer – A Visual Development Environment

3.2.2 Features

 Model-Driven Development

This feature is a core feature of MAXAL. A good portion of the web application

development can be done by specifying models and their relationships. These models are

even accessible for people who are not familiar with the underlying technology. It offers a

wide range of advantages for web application developers as mentioned in Section 2.4.1.

50

 Approved user-interface controls

MAXAL provides a set of user-interface components that can be used by web application

developers. The prototype implementation offers typical ASP.NET controls and

ASP.NET AJAX components with their basic functionalities.

 AJAX

This feature is also a core feature of MAXAL and a fundamental design concept. The

basic idea is that all user-interface controls are AJAX-enabled. Developers of new user-

interface controls do not have to pay attention on AJAX. This feature is integrated within

MAXAL. When generating applications for ASP.NET all user-interface controls are

embedded in instances of ASP.NET AJAX UpdatePanels. For this reason developers get

rich AJAX-enabled user-interfaces without additional effort.

 Positioning

This feature enables developers to build rich user-interfaces. It allows developers to

define the position of their user-interface controls on the screen.

 Extensibility

Extensibility is a fundamental design concept of MAXAL. Developers have the

opportunity to implement their own user-interface controls and add those to MAXAL.

Additionally MAXAL contains predefined layouts to simplify developing user-interfaces.

These predefined layouts - the HorizontalLayout and the VerticalLayout - can be modified

and adapted to developers requirements at any time with reasonable effort. For this

purposes Section 3.2.11 introduces a mechanism for extending MAXAL with new user-

interface components.

 Data Binding

Most user-interface controls like an ASP.NET TextBox or an ASP.NET GridView are

typically used to display data to the user or to retrieve data from the user. For this reason

MAXAL supports two different mechanisms for binding data to user-interface controls.

Details on these mechanisms are described in Section 3.2.5.

51

3.2.3 Built-In Controls

The prototype implementation of MAXAL provides a set of ASP.NET and ASP.NET AJAX

based user-interface components with their basic functionalities that can be used, adapted and

modified by developers for their own web applications. The following list shows all built-in

controls. Most of them are typical ASP.NET controls. The available ASP.NET AJAX

AutoComplete user-interface component is part of the ASP.NET AJAX Control Toolkit.

 ASP.NET TextBox

This control allows users to input and read text. Binding data to this control is fully

supported.

 ASP.NET GridView

The ASP.NET GridView is typically used to display comprehensive data volumes that are

retrieved from any data sources (e.g. a database). Binding data to this control is supported.

 ASP.NET Calendar

The ASP.NET Calendar is a typical server-side control to allow a user to choose a date.

This control is enhanced insofar as it is AJAX-enabled. After selecting a date no page

interruption occurs.

 ASP.NET AJAX AutoComplete

The ASP.NET AJAX AutoComplete control extends an ASP.NET TextBox. A popup

panel displays words that begin with the prefix typed into the ASP.NET TextBox. This

control retrieves its data from an ASP.NET Web Service. For this purpose the control

provides appropriate properties to configure the URL to the ASP.NET Web Service.

 ASP.NET Label

The ASP.NET Label control is typically used to display specific data for descriptions.

Binding data to this control is fully supported.

52

 ASP.NET Button

The ASP.NET Button control is used to display a push button to submit a request. As the

ASP.NET Button is usually not used to display data, binding data to this control is not

supported.

 ASP.NET LinkButton

The ASP.NET LinkButton control looks like a HyperLink control but has the same

functionality as the ASP.NET Button control. As the ASP.NET LinkButton is usually not

used to display data, binding data to this control is not supported.

3.2.4 The Generation Process of Artifacts

For generating artifacts Text Templates are typically used. MAXAL contains initial invocations

of methods for the generation process – within MAXAL the code generation is initiated within

the file Maxal.tt. The actual code generation implementation of MAXAL is encapsulated within

various .NET assemblies. The core of the Text Template Maxal.tt is shown in Figure 35. Within

this code fragment an instance of the class PageFactory is created and the generation of the

modeled web application is initialized by invoking two methods. While the first method is

responsible for generating the web form, the second method initializes the generation of the

Code-Behind file.

 A set of custom classes is responsible for the code generation process. These classes are

integrated within the implementation of MAXAL. User-interface components provide the only

exception. User-interface controls and layouts are loaded into the MAXAL-Designer during the

execution of the code generation process. Controls and layouts are encapsulated within separate

assemblies.

. . .

// loop over all pages within the model of the web application

foreach (Page page in this.WebsiteModel.Pages)

{

 PageFactory Factory = new PageFactory(MyDestinationDirectory, this);

 Factory.RenderASPX(page, this);

 Factory.RenderCS(page, this);

}

. . .

Figure 35: The Text Template Maxal.tt

53

The original approach when using the MS DSL Tools for generating code is that each Text

Template generates exactly one artifact. As MAXAL uses only one Text Template it differs from

the original approach. The MAXAL-Designer offers developers to create their web applications

with an unlimited amount of single web pages. MAXAL generates executable Web Forms and

Code-Behind files for each single instance of the class Page within the designed model of the

web application. For this reason the generated artifacts are stored in a specified location.

3.2.5 Bind Data to User-Interface Controls

Web applications typically contain data-centric user-interface controls like for example a drop

down menu or a table. For this purpose the .NET platform as other technologies provides a

mechanism to dynamically display and modify the data of a web application – the Data-Binding.

 Within MAXAL each Web Form contains exactly one Code-Behind files which typically

contains numerous method stubs and variables. Within the Code-Behind file developers return a

data source with a method stub for specific user-interface controls which support

SimpleDataBinding. For controls that support ComplexDataBinding a separate Object class is

auto-generated. Within this class the method stub CreateDataSource is auto-generated.

Developers use this method stub to return a data source.

 As most user-interface controls display or retrieve data from the user MAXAL supports

two different facilities to bind data to user-interface controls. The following sections describe

both mechanisms with its characteristics and the utilization when implementing a custom control.

 SimpleDataBinding

The basic idea of SimpleDataBinding, described in Section 3.2.5, is to bind data to simple

user-interface controls like ASP.NET TextBoxes, ASP.NET Labels or ASP.NET

DropDownLists. Microsoft offers the custom control wwDataBinder
13

 to simplify data

binding. This control is used within MAXAL to realize the SimpleDataBinding mechanism.

Figure 36 and Figure 37 show how to bind data to the property Text of an ASP.NET TextBox

using the wwDataBinder control. Figure 37 is a code fragment of the corresponding Code-

Behind file to the Web Form shown in Figure 36.

13

 http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/Default.aspx?loc=en (30
th

 August 2007)

54

Developers who intend to build their own user-interface controls using the SimpleDataBinding

mechanism may address the following coding guidelines.

 To simplify the development of custom controls the complete source code within the

Code-Behind file is generated automatically by MAXAL. For this purpose MAXAL

provides unique identifiers and variables. Details about this facility are described in

Section 3.2.7.

. . .

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<ww:wwDataBinder ID="DataBinder1" runat="server">

 <DataBindingItems>

 <ww:wwDataBindingItem runat="server"

 BindingMode="OneWay"

 BindingSource="BindingSource1.Current"

 BindingSourceMember="Text"

 ControlId="TextBox1"

 BindingProperty="Text">

 </ww:wwDataBindingItem>

 </DataBindingItems>

</ww:wwDataBinder>

. . .

. . .

public partial class Page1 : System.Web.UI.Page

{

 BindingSource BindingSource1 = new BindingSource();

 protected void Page_Load(object sender, EventArgs e)

 {

 // Assign datasource & datasource index(default: 0)

 this.BindingSource1.DataSource = CreateBindingSource1();

 this.BindingSource1.Position = 0;

 this.DataBinder1.DataBind();

 }

 private object CreateBindingSource1()

 {

 // TODO: Implement a DataSource

 return new NotImplementedException();

 }

. . .

Figure 36: The Implementation of SimpleDataBinding – Web Form

Figure 37: The Implementation of SimpleDataBinding – Code-Behind Class

55

 To inform MAXAL about the control’s implementation of the SimpleDataBinding

mechanism, the method IsSimpleDataBindingSupported may return the value true. Note:

The method IsSimpleDataBindingSupported is defined within the interface IControl. For

this reason this method may be implemented within a custom control.

 Developers may provide the wwDataBinder elements with its sub-elements within the

.aspx file for each property of the user-interface control that should retrieve data from a

data source. For this purpose developers of web applications define within the MAXAL-

Designer when building the model of the web application which properties should retrieve

their data from data sources. All required attributes like the BindingSource,

BindingSourceMember, ContolId, BindingProperty and the ID of the wwDataBinder

control are provided by the model of the web application during the generation process.

 ComplexDataBinding

The basic idea of ComplexDataBinding is to provide data for data-centric user-interface

controls like the ASP.NET GridView control. The ComplexDataBinding mechanism is based

on the ASP.NET ObjectDataSource component. This mechanism provides a specific object

with a method where developers specify their data source. MAXAL creates the object

including its methods and member variables. For this purpose MAXAL generates unique

identifiers for the object’s methods and member variables and stores those into the model of

the web application. During the execution of the generation process MAXAL retrieves all data

of the model including the generated identifiers and creates appropriate artifacts. Details about

generating unique identifiers and variables are described in Section 3.2.7. For user-interface

controls that support ComplexDataBinding, MAXAL generates one additional file, which

contains the implementation of the data object and a specific method stub for specifying a

custom data source. Developers return a data source with this stub. Figure 38 and Figure 39

show the implementation of the ASP.NET GridView control with the ComplexDataBinding

mechanism.

56

The ASP.NET GridView control provides the property DataSourceID. The value of this property

references the provided ASP.NET ObjectDataSource. The declaration of the ASP.NET

ObjectDataSource provides the property SelectMethod which points to the method

CreateDataSource which provides the actual data source.

 Developers who intend to build their own user-interface controls using the

ComplexDataBinding mechanism may address the following coding guidelines.

 To simplify the development of custom controls the complete source code for the

ComplexDataBinding mechanism is generated automatically by MAXAL. For this

purpose MAXAL provides unique identifiers and member variables. Details about this

facility are described in Section 3.2.7.

public class GridViewData

{

 // default constructor

 public GridViewData() { }

 // method stub

 public object CreateDataSource()

 {

 // TODO: provide a data source

 throw new NotImplementedException();

 }

}

. . .

<asp:ObjectDataSource ID="ObjectDataSource1"

 runat="server"

 SelectMethod="CreateDataSource"

 TypeName="GridViewData"

 DataObjectTypeName="GridViewData">

</asp:ObjectDataSource>

 . . .

<asp:GridView ID="GridView1"

 runat="server"

 DataSourceID="ObjectDataSource1">

</asp:GridView>

. . .

Figure 39: The Implementation of ComplexDataBinding - Object

Figure 38: The Implementation of ComplexDataBinding – Web Form

57

 To inform MAXAL about the control’s implementation of the ComplexDataBinding

mechanism, the custom control returns the value true when MAXAL invokes the method

IsComplexDataBindingSupported.

3.2.6 Generated Artifacts

Figure 40 shows all components and their relationships for all generated artifacts.

Figure 40: A UML Diagram of Generated Artifacts and Components

3.2.7 Generating unique Identifiers

Figure 40 shows that generally each Code-Behind file contains numerous variables and method

stubs. For this purpose MAXAL has to generate unique identifiers for all variables and method

stubs. This facility is realized by accessing the model of the web application programmatically to

store all generated unique identifiers. Accessing the model requires modifying the DSL Tools In-

Memory Store. This is generally done by initializing a transaction within a partial class. The DSL

Tools In-Memory Store is a set of APIs which provides a set of basic facilities to access a DSL

like creation, manipulation and deletion of model elements and links [8]. Figure 41 illustrates

how MAXAL implements this functionality to add generated unique identifiers to the model. The

custom class ValidationHelper provides methods that generate these unique identifiers.

58

3.2.8 Displaying Custom Attributes

As mentioned in at the beginning of Section 3.2 developers need to map abstract user-interface

controls to specific user-interface controls. Within the MAXAL-Designer developers perform the

assignment of specific user-interface controls by setting the attribute Type which is a predefined

property of the class Control. Figure 42 illustrates this mapping.

using Microsoft.VisualStudio.Modeling;

using System.Collections.ObjectModel;

using Microsoft.VisualStudio.Modeling.Validation;

namespace WebDesigner.Maxal

{

 public partial class Control

 {

 private void CreateIdentifier(ValidationContext context)

 {

 using (Transaction GenerateIdentifier =

 Store.TransactionManager.BeginTransaction("Create unique identifiers"))

 {

 // create instance of helper class, which generates unique IDs

 ValidationHelper Helper = ValidationHelper.GetInstance();

 // assign unique IDs to properties of the model

 this.Store.DomainDataDirectory.FindDomainProperty(

 Control.BindingSourceIdDomainPropertyId).SetValue(this,

 Helper.GetUniqueBindingSourceId(this.WebsiteModel.Controls.Count));

 this.Store.DomainDataDirectory.FindDomainProperty(

 Control.DataBinderIdDomainPropertyId).SetValue(this,

 Helper.GetUniqueDataBinderId(this. WebsiteModel.Controls.Count));

 // assign unique ID to property ObjectDataSourceId

 this.Store.DomainDataDirectory.FindDomainProperty(

 Control.ObjectDataSourceIdDomainPropertyId).SetValue(this,

 string.Format("{0}{1}", "ObjectDataSource", this.ControlId);

 // Commit the transaction and store modifications in the model

 GenerateIdentifier.Commit();

 }

 }

}

Figure 41: Generate Identifiers for Variables and Method Stubs

59

Figure 42: Mapping an Abstract Instance of the Class Control to a Specific UI Control

To enhance user-acceptance the MAXAL-Designer displays a list with all available user-interface

controls. Front-end controls typically contain a comprehensive set of properties and events to

enable developers to define their appearance and behavior. To simplify the assignment of

properties and events MAXAL supports a selection of all properties and events that are available

for a specific user-interface control. The implementation of this feature is for instance realized

within the source file PropertyControlTypeNameEditor.cs. This class inherits from the class

UITypeEditor and allows accessing the user-interface of the MAXAL-Designer. Its source code

is shown in Appendix B.

3.2.9 Rendering

The last step within the development process of web applications using MAXAL is to generate

source code which is specified by the developer’s model within the MAXAL-Designer. For this

purpose MAXAL initializes numerous processes for generating the required code files. As the

focus is primarily on ASP.NET Web Forms and Code-Behind files are generated. Figure 43 and

the following sections describe the rendering of both steps in detail. The following list describes

step by step each stage of the generation process of the Web Form (.aspx file). The generation of

the Code Behind file (.cs file) uses the same principle.

60

Figure 43: The MAXAL Rendering Process

 An instance of the class PageFactory is created within the Text Template Maxal.tt and its

method RenderASPX is invoked. In the background the class PageFactory loads all

available layouts (HorizontalLayout, VerticalLayout) into the memory.

 By using the .NET Reflection API and the interface ILayout, which is introduced in

Section 3.2.11, the method Render of a specific layout is invoked.

 An instance of the class ControlFactory is created. In the background all available user-

interface controls are loaded into the memory.

 By using the .NET Reflection API and the interface IControl, which is introduced in

Section 3.2.11, the method RenderControl of a specific user-interface control is invoked.

Within this method the actual code generation of the control is performed.

61

 The generated code is written to a specific file.

In addition to get a valid executable Web Form, between each stage specific parts of the

generated file like the Header, the Footer, etc. are written to the destination file.

3.2.10 Validation of Models

MAXAL implements a comprehensive set of validation methods to prevent the user to build

invalid models of their web applications. MAXAL provides constraints on instances of the

classes Page, VerticalLayout, HorizontalLayout, Attribute, Event and Control. Furthermore the

class ValidationHelper.cs is part of the validation mechanism. As all validation methods basically

do not consider overlapping relationships between various instances of the model, the class

ValidationHelper.cs is available. This class is based on the Singleton Pattern
14

 and provides

methods for constraint validation especially between various instances of all model shapes.

Table 2 shows all implemented constraints.

Constraint Component Description of the Constraint

UniqueId Page
All instances that are assigned to an instance of the class Page

must have unique identifiers.

PageLayout Page
Each instance of the class Page must have at least one instance

of the class Layout. (HorizontalLayout or VerticalLayout)

ControlAttribute Control
Instances of the class Attribute that are assigned to an instance

of the class Control must have unique identifiers.

ControlEvent Control
Instances of the class Event that are assigned to an instance of

the class Control must have unique identifiers.

ControlMap Control

Each instance of the class Control has to be mapped to a

specific user-interface control by setting the predefined

attribute Type.

Table 2: Constraints of MAXAL Components

Figure 44 and Figure 45 illustrates the pseudo code of constraints implementations on instances

of the class Control. All other constrains have similar implementations. Figure 44 validates the

name of each instance of the class Control within the model.

14

 http://msdn2.microsoft.com/en-us/library/ms954629.aspx (1
st
 September 2007)

62

Figure 45 shows how to check that each instance of the class Attribute is identified by its Name.

Firstly each instance of the class Attribute may provide the attribute Name. Secondly the shown

method verifies if duplicates are defined within the model.

ControlNameConstraint(CONTEXT context)

{

 if (Name IS EMPTY)

 {

 context.PRINT "Name is not specified.";

 }

}

ControlAttributeConstraint(CONTEXT context)

{

 foreach (ATTRIBUTE Attribute in AttributeList)

 {

 if (Attribute.Name IS EMPTY)

 {

 context.PRINT "Name is not specified.";

 }

 }

 DICTIONARY Errors;

 foreach (ATTRIBUTE AttributeCompared in AttributeList)

 {

 foreach (ATTRIBUTE CurrentAttribute in AttributeList)

 {

 if (CurrentAttribute != AttributeCompared AND

 CurrentAttribute.Name == AttributeCompared.Name)

 {

 Errors.ADD(CurrentAttribute.Name, CurrentControl.Name);

 }

 }

 }

 foreach (ERROR Error in Errors)

 {

 context.PRINT Error.Attribute + "is not unique in" + Error.Control;

 }

}

Figure 45: The Constraint Validation of the Control Attribute

Figure 44: The Constraint Validation of the Control Name

63

3.2.11 Extensibility

This section deals with MAXAL and its extensibility. As already mentioned in previous sections

extensibility is a key design concept of MAXAL. The idea is to allow developers to build their

own user-interface controls and add those to the MAXAL-Designer without modifying the

existing implementation of MAXAL. For this purpose MAXAL uses the .NET Reflection API to

load assemblies which contain the implementations of user-interface components. Therefore

MAXAL retrieves all assemblies from a source directory which has been configured before.

 All user-interface controls that implement the interface IControl are treated as MAXAL-

compatible controls and will be available within the MAXAL-Designer when developers build

their models of their web applications. Section 3.2.11 deals with details of the interface IControl.

Figure 46 shows pseudo code of the class ControlFactory. The pseudo code illustrates how

available user-interface controls are loaded into the MAXAL-Designer.

 The basic idea of the interfaces IControl and ILayout is that custom controls which are built

by developers, implement so called renderers. Renderers are methods within custom classes that

a responsible for the code generation of the actual user-interface components. Renderers specify

the appearance and behavior of the available controls. When transforming the model of the web

application to source code, MAXAL invokes these renderers using the .NET reflection API.

 As already mentioned in previous sections MAXAL provides two different layouts – the

HorizontalLayout and VerticalLayout. The implementations of both layouts are encapsulated

within the assembly WebDesigner.Maxal.LayoutFactory.dll which has to be placed within a

specific directory which contains all required assemblies. As all user-interface controls both

layouts are loaded into MAXAL using the .NET Reflection API. For this purpose MAXAL

provides the interface ILayout which is described in Section 3.2.11 in detail. ILayout basically

defines a set of methods that are invoked by MAXAL during the development of a model of a

web application and during the code generation process.

 Both user-interface controls and layouts are external components of MAXAL. Insofar

developers have the opportunity to modify existing controls and layouts and add at least new

user-interface controls to MAXAL without modifying source code of MAXAL.

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=extensibility

64

Interface ILayout

MAXAL provides layouts to simplify positioning of user-interface controls on the screen. For

this reason MAXAL defines the interface ILayout as shown in Figure 47. Each valid MAXAL

layout has to implement ILayout. It consists of two methods – Render and GetLayoutProperties.

 Method Render

The method Render generates code of a specific layout within a web form. The signature of

Render contains three parameters. The first parameter contains an instance of the class Layout

defined inside the MAXAL-Designer with its controls. This parameter is used to get all required

LIST Renderers;

foreach (File in All_Files_In_Directory)

{

 if File is ASSEMBLY

 {

 TYPE [] Types = LOAD_ASSEMBLIES(File)

 foreach Type in Types

 {

 if Type IMPLEMENTS_INTERFACE IControl

 {

 Renderers.ADD(CREATE_INSTANCE(Type))

 }

 }

 }

}

using System.IO;

using WebDesigner.Maxal;

using Microsoft.VisualStudio.TextTemplating;

namespace WebDesigner.Maxal

{

 public interface ILayout

 {

 void Render(Layout l, StreamWriter s, TextTransformation t);

 object[] GetLayoutProperties();

 }

}

Figure 47: Definition of the Interface ILayout

Figure 46: Loading Controls using the .NET Reflection API

65

information of a specific layout to generate the desired output. The second parameter is a stream

to a specific file. This is the output file where the generated code will be appended. For this

reason the method’s return value is void. The third parameter TextTransformation is used to print

errors or warnings to the error pane of the hosting environment in case of invalid model

specifications in the MAXAL-Designer.

 Method GetLayoutProperties

The MAXAL-Designer invokes the method GetLayoutProperties to retrieve all available

properties of a specific layout. This method allows users to choose supported properties of used

layouts from a Listbox control. Currently neither HorizontalLayout nor VerticalLayout provide

properties. The motive of this method is extensibility. If developers need additional features for

existing layouts, properties can optionally be added to change the layouts’ appearance.

Interface IControl

IControl defines a specific interface for valid MAXAL controls. Its implementation is shown in

Figure 48. Each control used by MAXAL has to implement the interface IControl. It consists of

six methods – RenderASPX, RenderCS, GetControlProperties, GetControlEvents,

IsSimpleDataBindingSupported and IsComplexDataBindingSupported. During the development

of a web application and the source code generation process MAXAL invokes these methods to

perform both retrieving available attributes, events and supported data binding mechanisms as

well as rendering the control. The following sections deal with each method in detail.

66

 Method RenderASPX

The method RenderASPX generates code of a specific user-interface control within a Web Form

(.aspx file). The first parameter Control contains an instance of the class Control defined inside

the MAXAL-Designer with its attributes and events. This parameter is used to get all required

information of the control to generate the desired output. The second parameter StreamWriter is a

stream to a specific file. This is the output file where the generated code will be appended. For

this reason the method’s return value is void. The third parameter TextTransformation is used to

print errors or warnings to the error pane of the hosting environment in case of invalid model

specifications of the control in the MAXAL-Designer.

 Method RenderCS

The method RenderCS generates code of a specific user-interface control within the Code-

Behind-File. The signature of RenderASPX contains three parameters. The first parameter

Control contains an instance of class Control defined inside the MAXAL- Designer with its

attributes and events. Especially the control’s events are required to realize the method’s stubs for

events of the control. The second parameter StreamWriter contains the path to the output file. The

generated code will be appended to this file. For this reason the method’s return value is void.

The third parameter TextTransformation is used to print errors or warnings to the error pane of

using System.IO;

using WebDesigner.Maxal;

using Microsoft.VisualStudio.TextTemplating;

namespace WebDesigner.Maxal

{

 public interface IControl

 {

 void RenderASPX(Control c, StreamWriter s, TextTransformation t);

 void RenderCS(Control c, StreamWriter s, TextTransformation t);

 bool IsSimpleDataBindingSupported();

 bool IsComplexDataBindingSupported();

 object[] GetControlProperties();

 object[] GetControlEvents();

 }

}

Figure 48: Definition of the Interface IControl

67

the hosting environment in case of invalid model specifications of the control in the MAXAL-

Designer.

 Method IsSimpleDataBindingSupported

The MAXAL-Designer invokes the method IsSimpleDataBindingSupported to get information

about the control’s DataBinding mechanisms. This method indicates whether DataBinding via

wwDataBinder-Control is implemented or not. If this feature is part of the control the MAXAL-

Designer appends required code inside the Code-Behind-File automatically. For this reason

developers decide on their own if their controls support DataBinding via wwDataBinder-Control.

 Method IsComplexDataBindingSupported

The MAXAL-Designer invokes the method IsComplexDataBindingSupported to get information

about the control’s DataBinding mechanisms. This method indicates whether DataBinding via

ASP.NET ObjectDataSource-Control is implemented or not. If this feature is part of the control

the MAXAL-Designer appends required code inside the code-behind class automatically. For this

reason developers decide on their own if their controls support DataBinding via ASP.NET

ObjectDataSource-Control.

 Method GetControlProperties

The MAXAL-Designer invokes the method GetControlProperties to retrieve all available

properties of a specific control. Developers of controls have to provide an array with all

supported properties. This method allows user of MAXAL-Designer to choose supported

properties of used controls from a selection.

 Method GetControlEvents

The MAXAL-Designer invokes the method GetControlEvents to retrieve all available events of a

specific control. Developers of controls have to provide an array with all supported events. This

68

method allows user of MAXAL-Designer to choose supported events of used controls from a

selection.

3.3 Setting up a Demo Application

Before developing a new web application using the generated artifacts of MAXAL some essential

configuration settings are required. Appendix D and Appendix E deal with two possible

alternatives for setting up the environment. While the Standard Setup, shown in Appendix D,

allows developers with little experience in ASP.NET to setup the environment, the Advanced

Setup, shown in Appendix E, requires some coding. The key benefit of the Advanced Setup is to

add generated artifacts of MAXAL to existing projects.

69

Chapter 4

Evaluation and Future Work

This section provides an evaluation of the prototype implementation of MAXAL. The basic idea

is to illustrate the opportunities MAXAL provides for web application developers. The

introduced sample retrieves data from a database by specifying special search criteria. The

database stores data about students, courses, lectures and their relationships. The main task when

using the application is to retrieve data by editing the registration date, the title or number of a

course or the lecturer who is responsible for a special course. After the user defines special search

criteria and pushes a command button a search-operation is executed and the result is displayed

within a HTML table.

 For this purpose a Microsoft SQL Server 2005 Express Edition serves as data storage. A

simple database schema is designed. The database consists of three entities – Student, Course and

Lecturer. Each of these entities contains a minimal set of columns. The database is filled with a

small set of data. The schema including its relationships is shown in the EER diagram shown in

Figure 49.

 As MAXAL provides a set of user-interface controls these components are used to realize

the user-interface of the web application. All currently available implementations of user-

interface components like the VerticalLayout, the HorizontalLayout, the command button, the

label, the link button, the HTML table and the control for performing auto-completion are

included within the sample application to evaluate its applicability and utilization.

70

Figure 49: The Database Schema of the Sample Application

Figure 50 shows the model of the web application. It consists of a single web page named

Search. Additionally 7 layouts and 11 user-interface components are used. Each instance of the

class Layout is connected to the provided instance of the class Page. Each instance of the class

Control is associated with a specific instance of the class Layout. Instances of the classes Layout

and Control contain detailed information about their appearance, position on the screen and

behavior within their attributes. All used instances of the class Control are mapped to specific

available user-interface controls. Based on this model MAXAL generates three different artifacts

to the specified destination directory. These artifacts are Search.aspx, Search.aspx.cs and

grdStudentData.cs.

71

Figure 50: Model of the Sample Application
15

After setting up the environment for a web application the generated artifacts have to be copied

into appropriate directories within a web application. Details on the setup of the web application

are described in detail in Appendix D and Appendix E. Before executing the application,

generated stub methods may be implemented manually. MAXAL creates stub methods for

controls’ events and for binding data to specific controls. In the introduced web application two

stub methods may be completed. Firstly the click-event has to be handled when a user pushes the

Search-Button and secondly the connection for retrieving data from the database has to be

completed manually. Generally the concrete implementation of both stub methods varies and can

be adapted individually. The sample application for instance invokes a Stored Procedure to

15

 lay…Layout, lbl…Label, txt…Textbox, grd…GridView, cal…Calendar, btn…Button

72

perform the search-operation on the database. Furthermore the sample provides an ASP.NET

Textbox with the AutoComplete functionality. A Web Service is implemented manually to

receive available data. The URL of the Web Service and the invoked method are specified within

the model of the web application shown in Figure 50. Figure 51 shows a screenshot of the web

application.

Figure 51: The Browser View of the Sample Application

73

Table 3 shows an evaluation of the code generation process using MAXAL. A major part of the

application is generated by MAXAL. If the Web Service is not taken into account the percentage

of generated lines increases to a high level. Detailed data are shown in Table 3.

File (Source Code) Generated LOC
16

/

Total LOC

Description

Search.aspx 149/149 Web Form

Search.aspx.cs 147/160 Code-Behind File

grdStudentData.cs 25/84
Object for the ASP.NET ObjectDataSource.

(ComplexDataBinding)

ParameterHelper.cs 0/62
Custom class to pass parameters retrieved from the user-

interface for executing the SQL query.

Stored Procedure 0/11 SQL query to retrieve data from the database

Table 3: Evaluation of the Sample

Advantages

Designing web applications using MAXAL give developers a basic overview and understanding

of the web application. The graphical model allows developers and laymen to communicate about

a web application without technical knowledge. It allows developers to build a skeletal structure

of the application. Small optical modifications within the interface might be easier and faster to

adapt within the Visual Studio IDE.

 As MAXAL is a prototype implementation it consists of only a small set of available user-

interface components which prevents developers to build rich user-interfaces, but as MAXAL is

extensible and provides developers mechanisms to include custom controls MAXAL provides an

appropriate solution for this task.

 Additionally a GUI (Graphical User-Interface) generator should provide rich user-interface

components with pre-defined styles. It is for example not appropriate to force a developer to set

all possible properties of the ASP.NET GridView control. For this reason MAXAL provides for

example the ASP.NET GridView control with a predefined style. It might be advantageous to

offer a set of various different styles.

16

 LOC…Lines Of Code

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=skeletal
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=structure

74

 MAXAL allows developers to simplify and accelerate the backup process of a web

application including all configuration files similar to Ruby
17

. As the web application can be

generated at any time, invalid modifications have no problematic effects.

Disadvantages

Insufficient techniques for layouts make developing pretty user-interfaces difficult. As MAXAL

currently does not support nested layouts and relative positioning the appearance of the user-

interface of web application is problematic to a certain extent. Developers have to verify the

output of the generator within the actual web application project.

 Figure 50 illustrates that the model of a single web page reaches a complex level rapidly.

Generally developing the whole web application with all its single web pages within one model

becomes problematic, but MAXAL offers a solution for this problem. For this purpose MAXAL

allows developers to build complex custom user-interface controls. For example having a control

consisting of a configurable amount of textboxes and labels would reduce the complexity of the

model to a high extent.

4.1 Future Work

Although the prototype implementation of MAXAL provides a powerful skeletal structure, there

are still numerous subjects for further improvements. The list below provides desirable features

which are not implemented yet.

 Relative Positioning of Layouts

The prototype implementation of MAXAL supports absolute positioning of instances of

the HorizonalLayout and VerticalLayout. Relative Positioning is not implemented yet.

This feature would enhance the user-interface to a high degree.

 Comprehensive set of User-Interface Controls

Developing professional user-interfaces requires the availability of a comprehensive set of

user-interface controls. Currently MAXAL consists of only a small set of components

17

 http://www.ruby-lang.org/en/ (13
th

 October 2007)

75

which allows only a limited development of web applications. Additionally it is

advantageous to provide complex custom user-interface components with a set of

predefined properties to reduce the complexity of the model of the web application and

simplify the development. For instance, a custom control with a configurable amount of

ASP.NET Textboxes and (or) ASP.NET Labels is useful in some cases. On the one hand

this approach limits the flexibility and configurability of user-interface controls but on the

other hand developers do not have to worry about specific concerns like style concerns.

 Complete Data-Binding Mechanisms

The prototype implementation of MAXAL provides stub methods for binding data to

user-interface controls. For this reason developers need to write a certain extent of source

code manually to get a fully functional web application. A desirable feature is to enable

binding data to user-interface controls through the model of the web application. The idea

is to specify specific database parameters within the model and the MAXAL-Designer

generates the source code.

 Caching and dynamic Loading of new Versions

MAXAL currently provides a mechanism to load available user-interface controls into

memory. A desirable feature is to cache loaded user-interface controls to enhance the

performance of the generation process and to refresh the cache if a newer version of a

specific user-interface control is deployed.

76

Chapter 5

Related Work

This section deals with alternative approaches for building and generating web applications,

especially user-interfaces, using the model-driven design principle. As MAXAL all below

mentioned approaches use source code generation facilities for the development process.

 Andrade et al. [1] present a document-based prototype to generate web applications called

wView. This tool is based on various XML-related techniques like XML documents, the XMI

(XML Metadata Interchange) format, XML Schema, XSLT and the web publishing framework

Cocoon
18

. Basically the code generator consists of a set of XML and XSLT documents which

allow defining the content of web applications and the transformation rules to generate the web

application. Firstly a XMI-based representation of the web application is created. For this

purpose a UML (Unified Modeling Language) class diagram of the web application is designed

and afterwards transformed to the XMI format. Based on this representation numerous

transformation steps, which are based on XSLT and Cocoon, generate a deployable web

application. Referring to the authors of this approach this tool is generally extensible by adding or

modifying XML and XSLT documents. Furthermore the output is basically adaptable to other

web technologies such as JSP, other publishing frameworks, storage types (XML databases) or

presentation formats. On the other hand the authors encountered problems using XSLT.

 Referring to MAXAL the prototype implementation for generating web applications

introduced above differs in numerous aspects. Although the authors of the document-based

approach argue that their implementation is generally extensible, interventions and extended

features might cause fatal negative effects. As the authors use Cocoon for all transformation steps

and Cocoon provides a pipeline mechanism for this purpose, an invalid modification like an

additional feature might cause a crash of the complete transformation process. Further wView

provides no specific environment to simplify the definition of models.

Nunes and Schwabe [24] introduce the HyperDe environment which can be used to build

complete web applications based on Domain Specific Languages. A web application is designed

18

 http://cocoon.apache.org/ (14th September 2007)

http://cocoon.apache.org/

77

using the SHDM (Semantic Hypermedia Design Method) method which consists of five steps –

Requirements Gathering, Conceptual Design, Navigational Design, Abstract Interface Design and

Implementation. Furthermore SHDM provides a meta-model which allows developing concrete

models of web applications. The tool which consists of meta-models, defined navigational

models, as well as application instance data is completely stored as RDF (Resource Description

Framework) data. Additionally HyperDe uses extended HTML templates to define the

appearance of the front-end of the web application.

 SHDM .NET, introduced by Ricci and Schwabe [26], is another model-driven approach for

developing web applications based on the SHDM method. Analog to MAXAL this code

generation tool is based on Visual Studio 2005 and the MS DSL Tools for developing meta

models. Although SHDM .NET and MAXAL are based on the same technology SHDM .NET

differs in some fundamental aspects. While MAXAL provides one DSL, SHDM .NET consists of

a set of meta-models. SHDM .NET distinguishes between Navigational context diagram meta-

models, abstract and concrete interface diagram meta-models. Secondly SHDM .NET focuses

explicitly on the navigational context of the web application. For this reason SHDM .NET

generates classes. As MAXAL SHDM .NET uses a late binding option to allow assigning

concrete user-interface components like Buttons, Labels, etc. to abstract instances of front-end

components. Furthermore SHDM .NET generates ASP.NET based web applications using VB

(Visual Basic).

As MAXAL the HyperDe environment is a model-driven approach using DSLs. Within

HyperDe data are stored within RDF databases. MAXAL basically generates user-interfaces but

provides method stubs to enable developers to add data sources. At the same time MAXAL does

not restrict the type of the data source used. Developers might bind data for example from a

relational database (MS SQL, MS Access, etc.) or from an XML database. Developers using

HyperDe are forced to use a RDF database. Addressing the front-end, both approaches use

similar techniques to generate user-interfaces. While MAXAL uses Microsoft-specific Text

Templates, HyperDe uses extended HTML templates. Both techniques provide similar syntactical

rules.

 Milosavljevid et al. [22] introduce a simple approach for generating database-oriented web

applications. This tool uses Java and Java-related techniques like JavaBeans, Servlets and JSP

(Java Server Pages) to build web applications. Their approach assumes that the web application

retrieves its data from a database. The first step is to map the database schema to an XML

78

document. Based on the XML document appropriate classes, JavaBeans, Servlets and JSP pages

are generated using XSLT. The generation of the front-end is based on a set of predefined web

pages. Basically the concept of this tool is similar to the code generator introduced in [1].

MAXAL generally follows a different approach. As MAXAL provides a visual environment for

specifying models and their relationships, the development of web applications is accessible on a

more conceptional layer. The XML-based representation of web applications requires expert

knowledge. Furthermore using the approach in [22] designing user-interfaces is limited to a set of

predefined templates.

 Molina [23] presents the ONME (OlivaNova Model Execution System) for generating user-

interfaces for various platforms. ONME consists of a tool suite which contains a component for

defining specifications of a software system within a visual editor. Furthermore it provides

facilities to define abstract user-interface specifications and mappings from abstract user-

interface specifications to concrete implementations not only for web applications but also for

any device. Unlike ONME, MAXAL is designed to generate ASP.NET based web applications

and MAXAL offers developers facilities to bind data to user-interface components.

 WARP (Web Application Rapid Prototyping) [3] offers a set of tools for building web

applications using model-driven techniques. This approach is based on HDM2000, which is a

notation for the specification of the structure navigation and presentation semantics. WARP

supports the whole development cycle beginning with the analysis of requirements until the

deployment of the complete system. Designing the presentation layer is done within the tool

WPD (Warp Presentation Designer). Furthermore WARP contains tools like WFeeder which

allows managing the content of the prototype of the web application, WEngine and Generator to

publish the generated artifacts of the generation process. Data exchange between those tools is

realized with XML-based files. The current version of WARP is implemented using MS Visual

Studio and the MS SQL DBMS (Database Management System). The online environment is

realized with VB.NET (Visual Basic) and JavaScript.

 Compared to MAXAL the generation tool of Bochicchio and Fiore [3] addresses the whole

development cycle. While MAXAL supports the generation of especially front-end artifacts,

WARP considers for example aspects like requirements and deployment. WARP generally

supports all steps within the development process. On the one hand WARP offers a wide range of

tools with rich capabilities but on the other hand a comprehensive knowledge of all included

79

tools is required to build web applications. Both MAXAL and WARP are based on the .NET

framework and ASP.NET.

 Another CASE tool for modeling and generating web applications is introduced in [6]. This

tool allows the specification and deployment of web applications and web services. The code

generator is implemented using the CASE tool WebRatio
19

 which enables developers to visually

specifying web interfaces and web service interfaces. WebRatio is based on WebML [12, 5]

which extends UML with web application facilities. The generator deploys the specified model in

the J2EE platform. WebRatio provides rich capabilities like for example data design, hypertext

design, data mapping, presentation design, code generation. Essential tasks within WebRatio like

conceptual modeling and code generation are discussed [4]. The code generation process allows

generating running web applications for Java2EE, Struts and the .NET platform. Furthermore

WebRatio checks semantic correctness, automatic production of project documentation, project

version management and database direct and reverse engineering. WebRatio additionally offers a

plug-in architecture which allows developers to extend the tool by XML descriptors and XSL

rules.

 Both WebRatio and MAXAL provide rich capabilities such as extensibility. While

WebRatio therefore uses XML documents MAXAL offers developers to write their own features

using C#. While controls within MAXAL are generally AJAX-enabled, WebRatio has not

integrated this feature as default. WebRatio provides the plug-in WebRatio AJAX Extension for

building RIAs (Rich Internet Application).

 WAgen is a web application generator toolkit introduced in [13] which allows the

development of complete and ready-to-use internet applications. Similar to the above mentioned

tool WebRatio WAgen distinguishes between a Content Model, a Composition & Navigational

Model and a Presentation Model. These terms are explained in [4]. WAgen introduces one

additional model – the Operational Model [14]. The idea of this model is to express complex

operations that access or modify the content of web applications. Referring to the authors of

WAgen the J2EE platform and ZOPE are two possible implementation environments. WAgen

uses three main generator components which use XML definitions as input. The Presentation

Model is used to determine the front-end of web applications. This model uses CSS to allow

positioning of elements within the user-interface that are specified within the Navigational

Model.

19

 http://www.webratio.com (20
th

 September 2007)

http://www.webratio.com/

80

 Compared to MAXAL the above mentioned approach differs in some cases. WAgen

provides no environment for the definition of its models. Although the authors mention that the

usage of CASE tools supports the development of models and eliminates these limitations,

developing web applications still remains as task for experts. Furthermore WAgen is not

extensible. Extensions or modifications require the adaption of the used code generators.

 In summary, a multitude of generation tools are currently available with more or less

features. Nearly all approaches are based on XML and XML-related techniques. Although a

certain portion of presented tools are extensible, MAXAL is the only prototype that offers

developers to build their own features using a popular imperative programming language like C#.

Furthermore AJAX is a main feature within MAXAL and insofar all generated web applications

are AJAX-enabled as default. This characteristic is unique and not supported by any other

introduced generation tool.

 Maximilien et al. [20] introduce the Swashup platform which is a programming model that

facilitates and accelerates the development and deployment of mashups
20

 of diverse services. It is

implemented using Ruby and the RoR (Ruby on Rails) framework. Additionally the platform

provides a DSL to unify the most common service models.

 Similar to MAXAL Swashup is based on a DSL for the development of web applications.

While the Swashup platform typically retrieves its data from various services, MAXAL does not

restrict its data sources. Data might be stored within relational databases, web services or any

other store. Although Swashup focuses on services it does not offer advantageous capabilities

compared to MAXAL. Furthermore Swashup enables developers to create concrete models of the

DSL only text-based. MAXAL however provides a visual development environment for this task.

Another advantage of MAXAL is that the front end is completely generated. Using Swashup the

generation of web pages is limited. For this reason views need to be customized by the user. Both

approaches MAXAL and Swashup enable the development of AJAX-enabled user-interfaces.

20

 A mashup is a web application that aggregates multiple services to achieve a new purpose. [20]

81

Chapter 6

Summary and Conclusion

This thesis introduced a model-driven approach for building AJAX-enabled web applications.

The recent version of the prototype implementation, named MAXAL (Model-Driven Ajax

Application Language), allows developing AJAX-enabled web applications by specifying models

and their relationships within a visual development environment.

 Both AJAX and Model-Driven Development are promising techniques for building rich

internet applications. On the one hand this thesis has highlighted the background of AJAX, its

key components, capabilities, advantages and disadvantages. Furthermore this thesis introduced

basic implementation details for developing AJAX-enabled web applications generally as well as

approved AJAX frameworks like for example MS ASP.NET AJAX. Additionally this thesis

focused on Model-Driven Development. As current existing techniques for building professional

web applications through 3GLs are generally error-prone, cost intensive and time-consuming,

model-driven development provides promising capabilities to handle these problematic aspects

[15]. For this reason this thesis discussed main ideas of the model-driven approach with its

benefits and shortcomings.

The introduced prototype implementation of MAXAL offers developers a set of

components to design concrete models of web applications Out-Of-The-Box with less effort.

Furthermore MAXAL enables the generation of various artifacts of web applications. The tool

itself was developed within the .NET platform. As the core of MAXAL is a DSL (Domain

Specific Language), a meta-model for building internet applications platform-independently was

presented. Its structure, elements, characteristics and capabilities were highlighted in detail. The

DSL was designed using the MS Visual Studio DSL Tools. Furthermore a set of approved

ASP.NET based user-interface controls is provided to build professional web applications

rapidly. The integrated, template-based source code generator allows the generation and

deployment of numerous artifacts like for instance web forms.

The main features of the introduced approach are extensibility through its plug-in

architecture, a set of AJAX-enabled user-interface components, the development of custom user-

82

interface controls, the visual development environment and mechanisms for binding data to front-

end components. The plug-in architecture allows modifying and extending the recent version of

MAXAL without accessing its source code. Developers might use existing front-end components

or develop their own controls. Provided data binding mechanisms offers developers rich

capabilities to bind data sources to user-interface components with a reasonable effort.

 Further studies in evaluating the utilization and applicability of the prototype

implementation are required. An empirical analysis might illustrate the quality of the generation

process. Furthermore implementations of the meta-model and the web design environment on

different platforms are indispensible. The quantity of available user-interface components and

automatically generated connections to data sources, e.g. to a relational database, through the

model are subject for further research.

83

Appendix

Appendix A

84

85

86

Appendix B

using System;

using System.ComponentModel;

using System.ComponentModel.Design;

using System.Diagnostics;

using System.Drawing.Design;

using System.Windows.Forms;

using System.Windows.Forms.Design;

using Microsoft.VisualStudio.Modeling.Design;

namespace WebDesigner.Maxal

{

 public class PropertyControlTypeNameEditor : UITypeEditor

 {

 private IWindowsFormsEditorService FormEditorService;

 public override UITypeEditorEditStyle GetEditStyle(ITypeDescriptorContext context)

 {

 if (context == null)

 {

 return base.GetEditStyle(context);

 }

 return UITypeEditorEditStyle.DropDown;

 }

 protected void List_Click(object pSender, EventArgs pArgs)

 {

 if (FormEditorService != null)

 {

 FormEditorService.CloseDropDown();

 }

 }

 public override object EditValue(ITypeDescriptorContext context,

 IServiceProvider provider, object value)

 {

 if ((context == null) || (provider == null) || (context.PropertyDescriptor == null))

 {

 return base.EditValue(context, provider, value);

 }

 FormEditorService =

 (IWindowsFormsEditorService)provider.GetService(typeof(IWindowsFormsEditorService));

 ListBox lbxAvailableControlType = new ListBox();

 lbxAvailableControlType.Click += new EventHandler(List_Click);

 ControlFactory ControlFactory = new ControlFactory();

 lbxAvailableControlType.Items.AddRange(ControlFactory.GetControlTypes());

 FormEditorService.DropDownControl(lbxAvailableControlType);

 return lbxAvailableControlType.SelectedItem;

 }

 private DialogResult ShowForm(IServiceProvider provider, Form form)

 {

 IUIService service = (IUIService)provider.GetService(typeof(IUIService));

 if (service != null)

 {

 return service.ShowDialog(form);

 }

 return form.ShowDialog();

 }

 }

}

87

Appendix C

<?xml version="1.0"?>

<configuration>

<configSections>

 <sectionGroup name="system.web.extensions"

 type="System.Web.Configuration.SystemWebExtensionsSectionGroup,

 System.Web.Extensions, Version=1.0.61025.0”>

 <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral">

 <section name="scriptResourceHandler"

 type="System.Web.Configuration.ScriptingScriptResourceHandlerSection,

 System.Web.Extensions, Version=1.0.61025.0" allowDefinition="MachineToApplication"/>

 <sectionGroup name="webServices"

 type="System.Web.Configuration.ScriptingWebServicesSectionGroup,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral">

 <section name="jsonSerialization"

 type="System.Web.Configuration.ScriptingJsonSerializationSection,

 System.Web.Extensions, Version=1.0.61025.0" allowDefinition="Everywhere"/>

 <section name="profileService"

 type="System.Web.Configuration.ScriptingProfileServiceSection,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral"

 allowDefinition="MachineToApplication"/>

 <section name="authenticationService"

 type="System.Web.Configuration.ScriptingAuthenticationServiceSection,

 System.Web.Extensions, Version=1.0.61025.0" allowDefinition="MachineToApplication"/>

 </sectionGroup>

 </sectionGroup>

 </sectionGroup>

 </configSections>

<appSettings/>

<connectionStrings/>

<system.web>

 <pages>

 <controls>

 <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions,

 Version=1.0.61025.0"/>

 <add namespace="AjaxControlToolkit" assembly="AjaxControlToolkit"

 tagPrefix="ajaxToolkit"/>

 </controls>

 </pages>

<compilation debug="true">

 <assemblies>

 <add assembly="System.Web.Extensions, Version=1.0.61025.0"/>

 <add assembly="System.Design, Version=2.0.0.0"/>

 <add assembly="System.Windows.Forms, Version=2.0.0.0"/></assemblies>

 </compilation>

<httpHandlers>

 <remove verb="*" path="*.asmx"/>

 <add verb="*" path="*.asmx" validate="false"

 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,

 Version=1.0.61025.0"/>

 <add verb="*" path="*_AppService.axd" validate="false"

 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,

 Version=1.0.61025.0"/>

 <add verb="GET,HEAD" path="ScriptResource.axd"

 type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,

 Version=1.0.61025.0" validate="false"/>

</httpHandlers>

88

Appendix D (Standard Setup)

a) Download & Installation of ASP.NET 2.0 AJAX Extensions v1.0
21

This download installs Microsoft’s framework for developing and running AJAX-enabled

web applications with either server-centric or client-centric development models.

b) Download & Installation of ASP.NET AJAX Control Toolkit
21

The ASP.NET AJAX Control Toolkit is a shared-source community project. It contains a

collection of samples and components to simplify the work with AJAX-enabled controls

and extenders. Additionally this toolkit provides a Software Development Toolkit (SDK) to

develop custom ASP.NET AJAX controls. As MAXAL generates artifacts which are based

on the ASP.NET AJAX Control Toolkit

 this component may be installed.

c) Create a new Web Site using the Visual Studio template ASP.NET AJAX Control Project

After installing the ASP.NET AJAX Control Toolkit

 Visual Studio offers a specific project

template called ASP.NET AJAX Control Project to develop AJAX-enabled web

21

 http://asp.net/ajax/downloads (13
th

 August 2007)

<httpModules>

 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=1.0.61025.0 "/>

</httpModules>

<authentication mode="Windows"/>

</system.web>

<system.webServer>

<validation validateIntegratedModeConfiguration="false"/>

<modules>

<add name="ScriptModule" preCondition="integratedMode"

 type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=1.0.61025.0"/>

</modules>

<handlers>

 <remove name="WebServiceHandlerFactory-Integrated"/>

 <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode"

 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,

 Version=1.0.61025.0”/>

 <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd"

 preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory,

 System.Web.Extensions, Version=1.0.61025.0"/>

 <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD"

 path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler,

 System.Web.Extensions, Version=1.0.61025.0"/>

</handlers>

</system.webServer>

</configuration>

89

applications with controls of the ASP.NET AJAX Control Toolkit (Figure 52). Using this

predefined template all required entries within the XML-based configuration file

Web.Config are generated automatically. Developers who decide to setup the environment

following the Advanced Setup have to add those entries manually.

 Figure 52: ASP.NET AJAX Control Toolkit Template

d) Add references to the project

The MAXAL-Designer generates controls with specific data binding mechanisms if

controls provide a support. For this reason the following two assemblies have to be added

to the project.

 wwDataBinder.dll
22

 System.Windows.Forms.dll (built-in assembly of the .NET Framework 2.0)

e) Copy generated artifacts into the project

The last step before executing the web application is to copy all generated artifacts into

the appropriate folder(s) of the web application.

22

 http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx?loc=en (13
th

 August 2007)

90

APPENDIX E (Advanced Setup)

a) Create a new Project Web Site or use an existing Project

The first step is creating a new project using the built-in template Web Site…

Alternatively an existing project can be used.

Figure 53: Advanced Setup

b) Add references to the project

The MAXAL-Designer generates AJAX-enabled controls with data binding mechanisms.

For this reason the following assemblies have to be added to the project.

 wwDataBinder.dll
23

 System.Windows.Forms.dll (built-in assembly of the .NET Framework 2.0)

 System.Web.Extensions.dll

 AjaxControlToolkit.dll

23

 http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx?loc=en (13
th

 August 2007)

91

c) Adapt Web.Config

 The above included references require some additional configuration settings. For this

reason the XML-based file Web.Config which is generated by Microsoft Visual Studio

2005 IDE automatically has to be modified. Appendix C shows a ready-to use

Web.Config. All required sections within the Web.Config are highlighted.

d) Copy generated artifacts into the project

The last step before executing the web application is to copy all generated artifacts into

the appropriate folder(s) of the web application.

92

References

[1] Andrea R. de Andrade, Ethan V. Munson et al. A Document based Approach to the

 Generation of Web Applications, Proceedings of the 2004 ACM symposium on Document

 Engineering, Pages: 45 – 47, ACM, Oct. 2004, ACM

[2] Krishnakumar Balasubramanian, Aniruddha Gokhale et al. Developing Applications

 Using Model-Driven Design Environments, Computer, Volume 39, Issue 2, Feb. 2006,

 Pages: 33 – 40, IEEE

[3] Mario Bochicchio, Nicola Fiore. WARP: Web Application Rapid Prototyping,

 Proceedings of the 2004 ACM symposium on Applied computing, Pages: 1670 – 1676,

 Mar. 2004, ACM

[4] Allessandro Bozzon, Sara Comai et al. Conceptual Modeling and Code Generation for

 Rich Internet Applications, Proceedings of the 6th international conference on Web

 engineering, Pages: 353 - 360, July 2006, ACM

[5] Marco Brambilla. Generation of WebML web application models from business process

 specifications, Proceedings of the 6th international conference on Web engineering,

 Pages: 85 – 86, Jul. 2006, ACM

[6] Marco Brambilla, Stefano Ceri et al. A CASE tool for modeling and automatically

 generating web service-enabled applications, International Journal of Web Engineering

 and Technology 2006 - Vol. 2, No.4, Pages: 354 – 372, (http://www.webml.org/)

[7] R.Ian Bull. Integrating dynamic Views Using Model Driven Development, IBM Centre for

 Advanced Studies Conference, Proceedings of the 2006 conference of the Center for

 Advanced Studies on Collaborative research, Article No. 17, Oct. 2006, ACM

[8] Steve Cook, Gareth Jones, et al. Domain Specific Development with Visual Studio DSL

 Tools, June 2007, Addison-Wesley

[9] CSS Specification. http://www.w3.org/TR/REC-CSS1 (June 28
th

, 2007)

[10] DOM Specification. http://www.w3.org/TR/REC-DOM-Level-1 (June 28
th

, 2007)

[11] Davis S. Frankel. Model Driven Architecture – Applying MDA to Enterprise Computing,

 Jan. 2003, Wiley

[12] S. Comai, P. Fraternali. A Semantic Model for Specifying Data-Intensive Web

 Applications Using WebML, Semantic Web Workshop, Stanford, USA, Jul. 2001,

 (http://www.webml.org/)

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/tocresult.jsp?&isnumber=33586
http://www.webml.org/

93

[13] Mihály Jakob, Holger Schwarz et al. Modeling and generating application logic for

 data- intensive web applications, Proceedings of the 6th international conference on Web

 engineering, Pages: 77 – 84, Jul. 2006, ACM

[14] Mihály Jakob, Holger Schwarz et al. Towards an operation model for generated web

 applications, Workshop proceedings of the sixth international conference on Web

 engineering, Article No. 7, Jul. 2006, ACM

[15] Nora Koch. Transformation Techniques in the Model-Driven Development Process of

 UWE ACM International Conference Proceeding Series; Vol. 155, Workshop proceedings

 of the 6th international conference on Web engineering, Article No. 3, 2006, ACM

[16] Nora Koch, Gefei Zhang et al. Model Transformation from Requirements to Web System

 Design, ACM International Conference Proceeding Series, Proceedings of the 6th

 international conference on Web engineering, Pages: 281 – 288, 2006, ACM

[17] Guido Krüger. Handbuch der Java Programmierung, 4.Auflage, 2006, Addison-Wesley

[18] Ivan Kurtev, Jeadn Bezivin et al. Model-based DSL Frameworks, Conference on Object

 Oriented Programming Systems Languages and Applications, Pages: 602 – 616, Oct. 2006,

 ACM

[19] Matthew MacDonald, Mario Szpuszta. Pro ASP.NET 2.0 in C# 2005 - Create next-

 generation web applications with the latest version of Microsoft’s revolutionary

 technology, Sept. 2005, Apress

[20] E. Michael Maximilien et al. A Domain-Specific Language for Web APIs and Services

 Mashups, ICSOC 2007, Springer

[21] Ali Mesbah and Arie van Deursen. An Architectural Style for AJAX, Proceedings of the

 6th Working IEEE/IFIP Conference on Software Architecture, Jan. 2007, Page(s): 9 – 9,

 IEEE

[22] Branko Milosavljevid, Milan Vidakovid et al. Automatic Code Generation for Database-

 oriented Web Applications, ACM International Conference Proceeding Series; Vol. 25,

 Pages: 59 – 64, Jun. 2002, ACM

[23] Pedro J. Molina. User Interface Generation with OlivaNova Model Execution System,

 Proceedings of the 9th international conference on Intelligent user interfaces,

 Pages: 358 – 359, Jan. 2004, ACM

[24] Dementrius Arraes Nunes, Daniel Schwabe. Rapid Prototyping of Web Applications

 Combining Domain Specific Languages and Model Driven Design, Proceedings of the 6th

 international conference on Web engineering ICWE '06, Jul. 2006, Pages: 153 – 160,

 ACM

[25] Linda Dailey Paulson. Building Rich Web Applications with AJAX, Computer,

 Volume 38, Issue 10, Oct. 2005, Pages: 14 – 17, IEEE

http://ieeexplore.ieee.org/xpl/tocresult.jsp?&isnumber=32474

94

[26] Luiz A. Ricci and Daniel Schwabe. An Authoring Environment for Mode-Driven Web

 Applications, ACM International Conference Proceeding Series; Vol. 192, Proceedings of

 the 12th Brazilian symposium on Multimedia and the web, Pages: 11 – 19, Oct. 2006,

 ACM

[27] James F. Ryan and Blair L. Reid. Usable Encryption Enabled by AJAX, Proceedings of

 the International conference on Networking and Services ICN’06, Page(s):116 – 116, IEEE

[28] Jan Schulz-Hofen, Silvan Golega. Generating Web Applications from Process Models,

 ACM International Conference Proceeding Series; Vol. 155, Workshop proceedings of the

 sixth international conference on Web engineering, Article No. 6, Jul. 2006, ACM

[29] Cynthia C. Shelly, Georg Young. Accessibility for Simple to Moderate-Complexity

 DHTML Web Sites, ACM International Conference Proceeding Series; Vol. 225,

 Proceedings of the 2007 international cross-disciplinary conference on Web accessibility

 (W4A), Pages: 65 – 73, May 2007, ACM

[30] Keith Smith. Simplifying AJAX-Style Web Development, Computer, Volume 39, Issue 5,

 May 2006, Pages: 98 – 101, IEEE

[31] Michael Sonntag. AJAX Security in Groupware, Proceedings of the 32nd EUROMICRO

 Conference on Software Engineering and Advanced Applications EUROMICRO '06, Aug.

 2006, Pages: 472 – 479, IEEE

[32] John Stamey and Trent Richardson. Middleware Development with AJAX,

 Journal of Computing Sciences in Colleges, Volume 22, Issue 2, Dec. 2006,

 Pages: 281 -287, ACM

[33] Ralph Steyer and Joachim Fuchs. AJAX mit ASP.NET und ATLAS -Der Einstieg in die

 hochperformante Webentwicklung, Sept. 2006, Addison-Wesley

[34] XML Specification. http://www.w3.org/TR/REC-xml (June 28
th

, 2007)

