

Haptic System Architecture Modeling

carried out at the

Information Systems Institute

Distributed Systems Group

Vienna University of Technology

under the guidance of

Univ. Prof. Dr. Schahram Dustdar

by

Bakk. techn. Anton Weber

Matr.Nr. 0116234

Vienna, October 07

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TO MY PARENTS

Acknowledgments

I would like to thank my advisor Prof. Dr. Schahram Dustdar for his guidance, advice, and

patience during an exciting time of collaboration. His commitment inspired me for the whole

process of research.

There are a lot of friends who helped me finishing this thesis for which I am very grateful,

thank you.

Special thanks go to my girlfriend Susanne who has been a big support since we’ve met. She

was by my side during hard times and looked after me whenever I needed her.

I especially want to thank my parents. They gave me the possibility to study and supported me

from start on.

Abstract

Haptic System Architecture Modeling introduces a new haptic approach to create system

architectures. It can be used to develop, build, communicate, and file architectures. The idea is

to build a system’s architecture with the help of Lego. Each element in a system is represented

by a composition of Lego bricks. The working team can create the system’s architecture by

combining every single representation to one big building. In order to guarantee further

proceeding of the resulting architecture a tool is presented. With this tool the architects have

the possibility to read in the building using RFID, to configure it using the provided

functionalities, and to export it to ACME or CTB.

Zusammenfassung

„Haptic System Architecture Modeling” stellt eine neue haptische Herangehensweise eine

Systemarchitektur zu erstellen dar. Sie kann dazu verwendet werden um Architekturen zu

entwickeln, zu erstellen, zu kommunizieren und zu archivieren. Die Idee ist eine

Systemarchitektur mit Hilfe von Lego-Bausteinen zu modellieren. Jedes Element eines Systems

wird von einer Zusammenstellung von Bausteinen repräsentiert. Das bearbeitende Team

kreiert die Architektur eines Systems indem sie alle einzelnen Repräsentationen zu einem

Gebilde zusammen fügt. Um eine Weiterverarbeitung des Konstrukts zu garantieren wird ein

Programm vorgestellt. Dieses gibt den Architekten die Möglichkeit das Lego-Gebilde mittels

RFID einzulesen, es zu konfigurieren und es in ACME oder CTB zu exportieren.

i

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Problem ... 2

1.3 Outline ... 2

2 Software Architecture today ... 3

2.1 What is Software Architecture? .. 3

2.2 What is System Architecture? ... 4

2.3 Today’s Approach .. 5

2.3.1 The Proceeding .. 5

2.3.2 Instruments for Documentation ... 8

2.3.3 Weak Points .. 11

3 Introducing a new Approach ... 13

3.1 Overview ... 13

3.2 Used Technology ... 15

3.2.1 Lego ... 15

3.2.2 RFID ... 16

3.3 Walkthrough ... 18

3.3.1 Building an Architecture .. 18

3.3.2 Handle the Construction ... 21

3.4 Discussion .. 23

3.4.1 Advantages .. 23

3.4.2 Disadvantages ... 24

4 Implementation .. 25

4.1 Class Diagram .. 25

4.1.1 Class: Program ... 26

4.1.2 Class: Controller .. 27

4.1.3 Class: WinMain .. 32

4.1.4 Class: XMLHandler ... 32

4.1.5 Class: Export .. 32

ii

4.1.6 Class: RFID ... 33

4.1.7 Other Classes ... 33

4.2 XML-Format .. 35

4.2.1 Configuration-XML .. 35

4.2.2 Project-XML ... 37

4.3 Export-Format ... 39

4.4 Graphical User Interfaces .. 41

4.4.1 Main Window .. 42

4.4.2 Save As Composition ... 43

4.4.3 Edit Component .. 43

4.4.4 Edit Port / Add Port ... 44

4.4.5 Edit Connector ... 44

4.4.6 Add Component to Connector / Edit Role .. 45

4.4.7 Add / Edit Property ... 45

4.4.8 Edit Special Property ... 46

4.4.9 Add Component / Connector to Project ... 46

4.4.10 Add Composition to Project .. 47

4.4.11 Open Reader Connection .. 47

4.4.12 Refer Tag IDs ... 47

4.4.13 Read in Elements ... 48

4.4.14 Edit Project Properties .. 48

4.4.15 Configuration .. 49

5 Element Representations .. 50

5.1 Definitions ... 50

5.1.1 Lego-parts legend .. 50

5.1.2 Building instructions .. 51

5.1.3 RFID-Transponder integration .. 52

5.2 Catalogue of Elements .. 53

5.2.1 Networks ... 54

5.2.2 Client – Server ... 58

5.2.3 Publisher – Subscriber ... 61

5.2.4 Sender – Receiver .. 62

5.2.5 Master – Slaver ... 64

iii

5.2.6 Pipe – Filter ... 65

5.2.7 Database.. 66

5.2.8 Model – View – Controller .. 67

5.2.9 Protocols ... 68

5.2.10 Miscellaneous.. 71

5.2.11 Meta .. 74

6 Case Study ... 76

6.1 Introduction .. 76

6.2 Prerequisites ... 78

6.2.1 Building Element Representations .. 78

6.2.2 Integrating Transponders .. 79

6.3 Process HSAM ... 81

6.3.1 Architectural Elements .. 81

6.3.2 Shaping Elements .. 83

6.3.3 Tagging Elements .. 84

6.3.4 Building the Architecture .. 85

6.3.5 Read in the Architecture ... 87

6.3.6 Configuring the Elements .. 88

6.3.7 Exporting the Architecture .. 90

7 Conclusion ... 108

iv

List of Figures

FIGURE 2-1: AN EXAMPLE FOR AN UML-DIAGRAM ... 9

FIGURE 2-2: ADL CORE CONCEPT .. 10

FIGURE 3-1: WORKFLOW OF HSAM .. 14

FIGURE 3-2: REFER TAG IDS-DIALOGUE .. 20

FIGURE 3-3: POSSIBLE COUPLING ... 21

FIGURE 3-4: READ IN ELEMENTS-DIALOGUE .. 21

FIGURE 4-1: CLASS DIAGRAM – HSAM-TOOL ... 26

FIGURE 4-2: SEQUENCE DIAGRAM - FILLPROJECTCOMPONENTS() ... 28

FIGURE 4-3: SEQUENCE DIAGRAM - AFTERSELECTION() .. 29

FIGURE 4-4: SEQUENCE DIAGRAM – CREATETAGELEMENTREFERENCE() .. 30

FIGURE 4-5: SEQUENCE DIAGRAM - GETELEMENTFROMTAGID() ... 31

FIGURE 4-6: SCREENSHOT - MAIN WINDOW ... 42

FIGURE 4-7: SCREENSHOT - SAVE AS COMPOSITION .. 43

FIGURE 4-8: SCREENSHOT - EDIT COMPONENT... 43

FIGURE 4-9: SCREENSHOT - EDIT PORT ... 44

FIGURE 4-10: SCREENSHOT - EDIT CONNECTOR ... 44

FIGURE 4-11: SCREENSHOT - ADD COMPONENT TO CONNECTOR... 45

FIGURE 4-12: SCREENSHOT - ADD / EDIT PROPERTY ... 45

FIGURE 4-13: SCREENSHOT - EDIT SPECIAL PROPERTY ... 46

FIGURE 4-14: SCREENSHOT - ADD COMPONENT / CONNECTOR ... 46

FIGURE 4-15: SCREENSHOT - ADD COMPOSITION ... 47

FIGURE 4-16: SCREENSHOT - READER CONNECTION .. 47

FIGURE 4-17: SCREENSHOT - REFER TAG IDS ... 47

FIGURE 4-18: SCREENSHOT - READ IN ELEMENTS ... 48

FIGURE 4-19: SCREENSHOT - EDIT PROJECT PROPERTIES .. 48

FIGURE 4-20: SCREENSHOT - CONFIGURATION ... 49

FIGURE 5-1: CLASSIC 2X4 LEGO-BRICK.. 50

FIGURE 5-2: VALID LEGO-CONSTRUCTION ... 51

FIGURE 5-3: NONE VALID LEGO-CONSTRUCTION .. 51

FIGURE 5-4: NON NEIGHBORING LEGO-BRICKS ... 52

FIGURE 5-5: NEIGHBORING LEGO-BRICKS .. 52

FIGURE 5-6: CUSTOMIZED TRANSPONDER BRICKS .. 52

FIGURE 5-7: LOWER BRICK HOLDING TRANSPONDER .. 52

FIGURE 5-8: FULL TRANSPONDER INTEGRATION .. 52

FIGURE 5-9: VALID TRANSPONDER BRICK INTEGRATION .. 53

FIGURE 5-10: BACKBONE ... 54

FIGURE 5-11: INTERNET .. 54

FIGURE 5-12: INTRANET .. 54

FIGURE 5-13: LAN ... 55

FIGURE 5-14: MAN ... 55

FIGURE 5-15: WAN ... 56

FIGURE 5-16: SAN ... 56

v

FIGURE 5-17: FIREWALL .. 56

FIGURE 5-18: ROUTER .. 57

FIGURE 5-19: CLIENT .. 58

FIGURE 5-20: SERVER ... 58

FIGURE 5-21: BRIDGE ... 58

FIGURE 5-22: BROKER ... 59

FIGURE 5-23: DISPATCHER ... 59

FIGURE 5-24: LOAD BALANCER ... 59

FIGURE 5-25: PUBLISHER ... 61

FIGURE 5-26: SUBSCRIBER ... 61

FIGURE 5-27: SENDER ... 62

FIGURE 5-28: RECEIVER ... 62

FIGURE 5-29: REPEATER .. 62

FIGURE 5-30: CACHE .. 63

FIGURE 5-31: CANAL .. 63

FIGURE 5-32: MASTER .. 64

FIGURE 5-33: SLAVE ... 64

FIGURE 5-34: PIPE ... 65

FIGURE 5-35: FILTER ... 65

FIGURE 5-36: DATABASE ... 66

FIGURE 5-37: DBMS .. 66

FIGURE 5-38: MODEL ... 67

FIGURE 5-39: VIEW .. 67

FIGURE 5-40: CONTROLLER .. 67

FIGURE 5-41: FTP .. 68

FIGURE 5-42: HTTP ... 68

FIGURE 5-43: JDBC ... 68

FIGURE 5-44: SMTP .. 69

FIGURE 5-45: SOAP ... 69

FIGURE 5-46: TCP ... 69

FIGURE 5-47: UDP .. 69

FIGURE 5-48: XML .. 70

FIGURE 5-49: EVENT ... 71

FIGURE 5-50: INTERFACE ENGINE .. 71

FIGURE 5-51: LAYER BORDERS .. 71

FIGURE 5-52: OBSERVER ... 72

FIGURE 5-53: REPOSITORY ... 72

FIGURE 5-54: SERVICE... 72

FIGURE 5-55: DATASTREAM ... 73

FIGURE 5-56: UNIQUE ELEMENT ... 74

FIGURE 5-57: PACKAGE ... 74

FIGURE 5-58: STATICS ... 75

FIGURE 6-1: CLIENT .. 79

FIGURE 6-2: SERVER ... 79

FIGURE 6-3: FIREWALL .. 79

FIGURE 6-4: PUBLISHER ... 79

FIGURE 6-5: SUBSCRIBER ... 79

FIGURE 6-6: DATABASE ... 79

vi

FIGURE 6-7: INTERNET .. 79

FIGURE 6-8: LAN ... 79

FIGURE 6-9: INTRANET .. 79

FIGURE 6-10: INTEGRATED TRANSPONDER .. 80

FIGURE 6-11: TRANSPONDER BRICKS ... 80

FIGURE 6-12: CLOSED TRANSPONDER BRICKS .. 80

FIGURE 6-13: CLIENT WITH TRANSPONDER BRICKS ... 81

FIGURE 6-14: SERVER WITH TRANSPONDER BRICKS .. 81

FIGURE 6-15: FIREWALL WITH TRANSPONDER BRICKS ... 81

FIGURE 6-16: LOAD BALANCER WITH TRANSPONDER BRICKS ... 81

FIGURE 6-17: PUBLISHER / SUBSCRIBER WITH TRANSPONDER BRICKS ... 81

FIGURE 6-18: DATABASE WITH TRANSPONDER BRICKS .. 81

FIGURE 6-19: INTERNET WITH TRANSPONDER BRICKS .. 81

FIGURE 6-20: LAN WITH TRANSPONDER BRICKS .. 81

FIGURE 6-21: INTRANET WITH TRANSPONDER BRICKS ... 81

FIGURE 6-22: CASE STUDY - CLIENTS ... 83

FIGURE 6-23: CASE STUDY - SERVERS ... 83

FIGURE 6-24: CASE STUDY - FIREWALLS.. 83

FIGURE 6-25: CASE STUDY - DATABASE .. 83

FIGURE 6-26: CASE STUDY - LOAD BALANCER .. 84

FIGURE 6-27: CASE STUDY - PUBLISHER-SUBSCRIBER .. 84

FIGURE 6-28: CASE STUDY - INTERNET ... 84

FIGURE 6-29: CASE STUDY - LANS .. 84

FIGURE 6-30: CASE STUDY - INTRANETS ... 84

FIGURE 6-31: CONNECTING THE READER ... 84

FIGURE 6-33: TAG ELEMENT WITH READER .. 85

FIGURE 6-32: TAG AN ELEMENT .. 85

FIGURE 6-34: WRONG APPROACH TO DESIRED SYSTEM ARCHITECTURE ... 86

FIGURE 6-35: INTERMEDIATE RESULT - INTERNATIONAL LAN .. 86

FIGURE 6-36: INTERMEDIATE RESULT - WEB SERVER CONNECTION .. 86

FIGURE 6-37: THE RESULTING WEB SHOP SYSTEM BUILT WITH HSAM .. 87

FIGURE 6-38: READ IN AN ELEMENT ... 87

FIGURE 6-39: READ IN AN ELEMENT OF THE ARCHITECTURE .. 88

FIGURE 6-40: READ IN ARCHITECTURE .. 89

FIGURE 6-41: COMPONENT'S DETAILS .. 89

1 Introduction

1.1 Motivation

The professions of software & system architecture are very young and fast evolving subjects of

software development. Not long ago it has not been understood as an area of software

engineering. Now numerous experts engage themselves in developing general valid definitions

which provide a common understanding of what software architecture as a profession by its

own actually is.

For now understanding software architecture as a building plan for, an overview on and a way

of documentation for software, is sufficient. Experts have different opinions on how such an

architecture should be developed, built, communicated, and conserved. Many techniques have

been evolved to use them for dealing with software architecture such as UML-diagrams

(Unified Modeling Language) or numerous architectural description languages (ADL). Working

with such instruments often makes the assignment of an architect not open to teamwork.

Drawing diagrams or building architectures in front of one computer per se is not very efficient

to be done as a team. Even small barriers such as not enough space in front of the single

working place can inhibit the possibility of teamwork.

Complex drawings using defined diagrams like UML or outputs of ADLs can often not be

understood by non-experts such as the client who actually ordered the product. Explanatory

discussions are needed to be held between the architects and the various stakeholders who do

not share the understanding of the often sophisticated and abstract results created by the

developers.

This thesis introduces a new approach of dealing with the development and communication of

system architectures. It is meant to be settled right at the beginning of the process of software

& system design. With it, architects can use a more intuitive and haptic approach. In that

manner, in the process of architectural development, embedded engineers use pre-defined 3-

dimensional building block compositions to construct a first prototype of their desired

architecture.

Such an approach could be dealt with in a more intuitive way for both the experts and the

stakeholders. It provides the possibility of unrestricted teamwork. And because of its tangible,

concrete condition it is a constructive way to communicate the architecture behind the

composition to stakeholders who don’t share the expertise of the architects.

2

1.2 Problem

To provide an approach which offers the handling of 3-dimensional compositions such

constructions are defined in two ways. First the construction itself needs to be defined. I.e.,

questions arise such as: which material should the composition be built of? What dimensions

should the composition have? What kind of shape should the composition be of? Has the

composition to be single-colored? What color should the composition have at all? Then the

actual meaning behind the construction needs to be described and mapped to a real

definition. I.e. A specific composition has to represent a specific component in software

architecture.

Beneath the problem of the real-world compositions arises the problem of how a software

architecture built by real units can be processed by a computer so that a constructive

proceeding of the architecture itself can be guaranteed.

This thesis proposes a realization of the above mentioned approach and introduces solutions

to the problems which arise of such an approach.

1.3 Outline

Chapter 1 introduces the topic of the thesis, its motivation and the actual problem.

Chapter 2 examines state of the art definitions of software and system architecture and what

approach architects follow nowadays to solve their assignment.

Chapter 3 presents the actual new approach, its details, and the gains resulting through it. It

also provides various explanations for how the approach is realized.

Chapter 4 shows the documentation of the presented HSAM-Tool. It describes its graphical

user interfaces as well as their background operations and data handling.

Chapter 5 maps the real-world compositions to their actual meanings. The architectural

components are described and the real-world compositions are defined and illustrated.

Chapter 6 stages a case study. A fictitious system is build and realized using Haptic System

Architecture Modeling.

Chapter 7 concludes the thesis, presents some possible improvements of the introduced

system and shows possible enhancements.

The Addendum presents a user guide for the presented tool. It describes its main functions, its

buildup, and provides numerous screenshots along with descriptions.

2 Software Architecture today

There is no all-explaining and globally valid definition for either software architecture or

system architecture. Many experts have their own approach and way to define their field of

action. But all of them have at least one thing in common: They all think experience is a key

element for building software and/or system architectures.

In chapter 2.1 some possible definitions of software architecture and the ideas behind them

are pointed out. In 2.2 definitions of system architectures are defined and analyzed. After

defining those two areas nowadays common approaches to find architectures for software and

computer systems are shown in chapter 2.3.

2.1 What is Software Architecture?

Shaw & David define software architecture the following way:

“Structural issues include the organization of a system as a composition of

components; global control structures; the protocols for communication,

synchronization, and data access; the assignment of functionality to design elements;

the composition of design elements; physical distribution; scaling and performance,

dimensions of evolution; end selection among design alternatives. This is the software

architecture level of design.”
1

More abstract:

“The architecture of a software system defines that system in terms of computational

components and interactions among those components.”
2

In comparison to the definitions mentioned above Vogel has a more general approach to

define architecture for software. In his view architectures of any kind always strongly include

social and organizational emphases. So it is not only a pure technical discipline. Also an

architecture cannot bear any details of the system or software itself. Its intention has to be

building fundamental columns on which in a later process of constructing the software the

details can be evolved. It has to provide a manageable view over the complexity of the

problem.
3

1
 Shaw & David, 1996, p. 1

2
 Shaw & David, 1996, p. 3

3
 Cf. Vogel, et al., 2005

4

“Die Software-Architektur eines Systems beschreibt dessen Software-Struktur

respektive dessen –Strukturen, dessen Software-Bausteine sowie deren sichtbaren

Eigenschaften und Beziehungen zueinander.”
4

Another definition is provided by Bass:

“The software architecture of a program or computing system is the structure of

structures of the system, which comprise software components, the externally visible

properties of those components, and the relationships among them.”
5

Bass sees software architecture as a result of an ongoing cycle of technical, business and social

influences. In turn software architecture also affects the corresponding environments. They

call this during a design process existing situation the architecture business cycle (ABC). In this

cycle Bass sees the architect and its product to be influenced by a variety of stakeholders, the

technical environment and his own experience. Stakeholder would be customers, end users,

the developing organization’s management, marketing and the maintenance organization.

Each of them has other priorities to what the architecture has to feature. For example the

customer who has to pay for the product would like to be the costs as low as possible. He’d

even accept a loss of usability to lower the costs. This in turn is the opposite of what the end

user would like the product to be. He who actually uses the resulting program wants to work

with a product which provides a high level of usability.
6

2.2 What is System Architecture?

Vogel provides a definition for a system in a general aspect:

“Ein System ist eine Einheit, die aus miteinander interagierenden Software- und

Hardware-Bausteinen besteht sowie zur Erfüllung eines fachlichen Ziels existiert. Es

kommuniziert zur Erreichung seines Ziels mit seiner Umwelt und muss den durch die

Umwelt vorgegebenen Rahmenbedingungen Rechnung tragen.”
7

Consequently for Vogel a system is more than just components of software. Software

architecture is therefore just a part of the architecture of a whole system. However, they both

are connected very tight and therefore affect each other. The system is embedded in an

organizational environment with which it interacts.
8

4
 Vogel, et al., 2005, S. 46

5
 Bass, Clements, & Kazman, 1998

6
 Cf. Bass, Clements, & Kazman, 1998, pp. 6-10

7
 Vogel, et al., 2005, S. 44

8
 Vogel, et al., 2005, S. 44-45

5

2.3 Today’s Approach

In Vogel’s
9
 opinion architectural awareness is what makes an architect either successful or not.

The architect has to decide a lot of decisions during the process of design. However, the

fundamentals of those decisions are very dynamical. New demands and specification

expressed by the stakeholders, arriving of new technology, or even new experiences of the

architect himself can influence the making of decisions and so also the development of the

architecture.

2.3.1 The Proceeding

Further on Vogel states in order to prevent any unpredictable events the architectural

awareness should work like a letter case. With its help the architect can deposit experiences

and acquired knowledge into mental boxes and also fetch them whenever he needs them. This

letter case is spanning a regulation framework within which the architect creates and develops

system architecture.

Within this regulation framework Vogel defines six main dimensions
10

:

− What – architectures and disciplines in architecture

− Where – perspectives on architecture

− Why – specifications for architecture

− Wherewith – instruments in architecture

− Who – organizations and individuals

− How – approach to architecture

Those dimensions provide the rough fundamentals for the letter case. They assure a

meaningful breakup between each other so that they can be expanded independently and still

they are extensive enough so that all different approaches to architecture can be

conceptualized. With the help of such a regulation framework, in Vogel’s opinion, the architect

can attend to fundamental questions and therefore systematically orientate himself in

practical cases.

The following section presents the fundamental dimensions of the regulation framework how

Vogel defines them:
11

− What

The architect should be capable of defining, describing and comparing architecture to other

architectures even of different subjects and/or professions. Furthermore due to the high

requirements of software architecture distinct disciplines of architecture established

themselves. Vogel lists the following disciplines: software architecture, data architecture,

9
 Cf. Vogel, et al., 2005, S. 24-30

10
 Cf. Vogel, et al., 2005, S. 26-27

11
 Cf. Vogel, et al., 2005, S. 30-38

6

architecture of integration, network architecture, security architecture, system management

architecture, enterprise architecture. The architect often has to decide which kind of

architecture he wants to realize.

− Where

Architectures of any kind are very complex and often unmanageable as one piece. Therefore

the architect needs to reduce its complexity by only examine and handle manageable parts of

the ensemble. To do so he works on so called architecture layers or levels always knowing

what kind of connection the layer has to and how the layer fits to the rest of the architecture.

On different layers the architect can use different instruments. He can even adopt different

views to the layer. Views should lower the complexity for the architect and should make a

systematically approach to the architecture possible.

− Why

Software architectures have numerous specifications to fulfill. Those specifications in turn can

be classified by their kinds. For Vogel such classes are: Specifications by an organization, by a

system, by a component, by the time of development, by the runtime and organizational

conditions. An architect needs to be aware of the different kinds of specifications in order to

design a goal-oriented IT-system.

− Wherewith

Every architect gets to know a huge variety of instruments which can be used to create

architecture during his professional life. He keeps a classification system for all these

instruments regarding their relevance to the architect in mind. Such instruments can range

from conceptual principles to concrete technologies. Principles are approved instruments of

architectural design. Fundamental concepts use such principles to enable the architect to use

them in his architecture. Architectural styles and patterns, again, rely on such concepts and

principles. Styles and patterns are successful and approved solutions for a thriving

architecture. Patterns often also are used to document the structure of architecture. When a

specific solution for an architecture was outstanding the architect can use the whole structure

of it as a reference to which he can rely in the future. Because it is important to not only create

architecture but also vulgarize it to all involved stakeholders, developers and other individuals

the architect also needs a collection of documentary instruments. Moreover, the practice of

creating architecture for software and IT-systems generated specific architectural structures

which provide basic technologies to build such approved structures. And last but not least the

architect needs to be aware of updates of such instruments to in turn update his collection so

that he can provide the most proven solution for his clients.

− Who

As Vogel mentioned before an architect needs to vulgarize all the working steps, the

proceeding and the architecture itself to an amount of individuals. In order to do so most

effectually and successfully he needs to possess expertise in social contact.

7

− How

The goal of an architectural design is to provide a fundamental structure onto which a system

can be build. The architect can access a collection of instruments, interchange information

with others and take different views on to his work in order to reach the optimal architecture

to fulfill all the requirements and specifications. In Vogel’s opinion, for an architect to

distinguish himself as a successful architect he needs to be capable of working systematically.

So he needs to work iteratively through the procedure model provided by Vogel: creating a

business case, understanding the specifications, designing the architecture, vulgarizing the

architecture, implementing the architecture.

The whole process of development is done through an iterative-incremental process. In those

iterations the architect’s tasks consist of a combination of above mentioned five actions.

Whereas in the beginning of the process the tasks envelop rather the actions of creating a

business case and understanding the specification and in the further preceding of the process

the tasks consist of communicating the architecture and implementing it.
12

The following will show the architect’s role during the elaboration of the main actions:
13

− Creating a business case: During this action the characterization of the task and the

goal takes place. The architect has the role of a technical adviser to ensure the

technical feasibility.

− Understanding the specifications: The architect finds and analyzes the specification

and tries to solve inconsistent requirements.

− Designing the architecture: This is the actual task where the architect designs the

architecture. To do so he has a variety of instruments as mentioned above.

Subsequent those instruments get described more detailed.

− Vulgarizing the architecture: It is of great interest to the architect that all the

stakeholders have a good understanding of the architecture. It influences their further

work and ability of success. So in this task the architect makes sure that all

stakeholders understand the architecture.

− Implementing the architecture: In order to make sure the implementation of the

system is conforming to the architecture the architect verifies this during this task.

So far the today’s approach was roughly outlined. In the next step the architect’s instruments

get described more detailed.

It was mentioned above that an architect makes use of a variety of instruments. With the help

of such resources he designs, concepts, communicates and documents his architectures. Those

are:
14

12
 Cf. Vogel, et al., 2005, S. 274

13
 Cf. Vogel, et al., 2005, S. 275

14
 Cf. Vogel, et al., 2005, S. 112-194

8

− Architectural principles: There is a big number of architectural principles, such as

modularity, information hiding, abstraction, separation of concerns, etc, which have

proven themselves to be useful and constructive. It doesn’t depend on the use of such

principles whether the out coming architecture is a good or a bad one. But the lack of

fundamental principles within an architecture is a strong sign that it can be a weak

model of a specific architecture. There are possibilities that one principle is conflicting

with another and thus the two can’t be combined in a single architecture but this

should always be deliberate and the consciously omitting of an appropriate principle

should always be well documented.

− Architectural concepts: There are fundamental concepts for how to build an

architecture which the architect can access. Those are widely used and highly

approved. Such concepts would be procedural approaches, object orientation,

component orientation, etc.

− Architectural styles: A less abstract instrument for the architect would be architectural

styles. Such styles developed from the experience that they have already repeatedly

been useful to solve a specific problem in an architecture. They are solutions to

recurrent occurring and well known problems. The architectural style of a system

describes the founding structure of the system itself and allows categorizing it and

comparing it to other systems. Such styles
15

 would be pipes and filters, hierarchical

layers, rule-based systems, event systems, etc.

− Architectural patterns: Patterns are like styles a more concrete support for the

architect. They again are a solution possibility for a series of specific problems.

Moreover, patterns provide a concrete method of resolution to solve a precise

problem. Such patterns are proxies, broker etc.

− Architecture as reference: When an architect uses a whole architecture as a reference

he has got a complete solution for a certain problem area. Such a solution combines

general architectural knowledge and expertise with specific requirements. The

architect can use such a reference whenever he encounters an architectural problem

which has been solved similar before.

2.3.2 Instruments for Documentation

So far actions that are taken by the architects have been listed. However, it is not the only

problem for them to actually create an architecture but also to write it down and document it.

The right choice of instrument to document the built architecture is very important to

communicate it to all the stakeholders. It is a great influence to how easy the various

stakeholders can understand the architecture. Different instruments can provide a different

sort of view onto the architecture which in turn can be more practical in communicating the

architecture to a specific stakeholder. I.e. the end user who actually has to work with the

system at the end has a different approach to the whole system than a programmer who will

implement the system. Different views provide different types of information about the

15
 Cf. Shaw & David, 1996, p. 20

9

architecture. So the architecture needs to be presented to each stakeholder as clear and as

understandable as possible in order to let them be as most constructive as possible. To do so

the architects have a variety of documentation instruments. The following will shortly present

the instruments UML (Unified Modeling Language), ADL (Architecture Description Language),

DSL (Domain Specific Language) and Acme (an ADL).

− UML
16

: The Unified Modeling Language is the result of the merging of a lot of

sublanguages. In its evolution it combines and adapts more and more other languages

to result as a single valid one. Today UML is available as version 2.1.1
17

 and still

evolving. The positive part about UML is that it provides a lot of different views onto

one architecture at the same time. But because it is a relative young standard it does

not include all kinds of components so that an architect may use another element to

substitute the missing one. To provide those views UML comes with a variety of

16
 Cf. Vogel, et al., 2005, S. 197

17
 OMG - Object Management Group

Darstellung

Webbenutzer Webserver

Bestell

Anwendung
<<uses>> <<uses>>

ModellFassade

ModellFassade

BestellProzess Bestellung Kunde

<<uses>> RMI

<<delegates>> <<delegates>>

<<delegates>>

<<uses>>

Persistenz

Datenbank DatenbankZugriff <<uses>>

HTTP

JDBC

<<uses>> RMI <<uses>> RMI

Figure 2-1: An example for an UML-diagram
19

10

different diagrams. Vogel contrasts the different view onto an architecture with the

accordingly UML diagrams
18

.

− ADL
19

: In Architecture Description Languages a component features a very central role.

ADLs approve the precise design of architectures before they are implemented. That

makes it possible for the architect to determine whether the architecture has any

errors or problems and whether it complies with the requirements which should from

it. Moreover, the attributes of the architecture can by analyzed. So an ADL has a good

qualification to design, analyze and simulate an architecture before its implementation

as a system. Additionally they feature the following:
20

> Formal representation of architecture using textual and graphic notations at a

very high level of abstraction

> Readability for human and machine

> Possibility for analysis various architectural aspects like completeness,

consistency, performance etc.

> Partly featuring of automated code generation

As mentioned before ADLs concentrate in building an architecture out of components.

For those components it describes its data and data integrity as well as their interfaces

of any kind. In order to let the components interact among each other ADLs

inaugurate connectors. They connect components to each other and determine the

rules under which the components can interact. Last but not least ADLs define a

architectural configuration which defines the architectural structure by determining

which components are connected through which connectors.

21

− DSL
22

: DSLs are description languages specific for according domains. The concepts

behind it are well formed for the appropriate problem and therefore advantageous

over normal ADLs.

− Acme
23

: It was developed out of the need to provide interoperability between varieties

of other instruments for architectural design. Acme provides three essential

capabilities:

18
 Vogel, et al., 2005, S. 199-200

19
 Cf. Vogel, et al., 2005, S. 201

20
 Vogel, et al., 2005, S. 202

21
 Vogel, et al., 2005, S. 204

22
 Cf. Vogel, et al., 2005, S. 206

23
 ABLE - Architecture Based Languages and Environments, 2007

Konnektor

Komponente

Komponente

Komponente

Konfiguration

Figure 2-2: ADL core concept
22

11

> Architectural interchange: Architects who don’t use Acme are capacitated to

use their ADL with Acme so that they have a greater choice of what design

tools they want to use in order to analyze their architecture. On the other side

Acme users can incorporate with other ADLs.

> Extensible foundation for new architecture design and analysis tools: Because

of its fundamental and common approach to architectural design Acme can be

used as basis for other more specialized languages still providing the

interchangeability. This is reducing costs and time for development of the new

language.

> Architecture description: Actually developed as an interchange tool it evolved

as a standalone description language including architectural styles, types,

structures plus properties for all elements with which easily software

architectures can be created.

2.3.3 Weak Points

Nonetheless above mentioned architect’s instruments do have their weak points. As Vogel
24

states in a list of handicaps of ADLs their first weak point is that it is not yet clarified which

aspects of system architecture an ADL should even cover. There is no distinct determination

of what needs to be documented by an ADL. This is so far going that it is not even specified

what ADL should be called on what problem. So if an architect needs to document a system

architecture of a specific domain he still is spoilt for choice of what kind of ADL he should even

use.

That is because there is no single ADL which excels itself as the one standard ADL. They are all

specialized to be used for specific domains. And still there is no single ADL for each domain.

Each of it is strongly specialized in its own way. Because of their specialization there is no

uniform structure amongst the ADLs. Each structure is adapted to their need in the particular

domain. The more sophisticated structure supports an ADL’s ability to analyze and simulate an

architecture of a specific domain.

Hence, a problem of more practical origin arises. Notations of the ADLs also vary due to

different structures. But what makes them alike is that their notations are more or less difficult

to process and until now there is no support for them by commercial tools.

Another more practical difference between ADLs is the targeted user of an ADL. Some of them

support a direct code framework conversion of the created architecture. Those kinds of ADL

address architects who are more into the actual implementation of their system whereas

other ADLs which do not support such a conversion offer more freedom in the choice of how

an architect wishes the architecture to be implemented. It is more of a problem to the actual

programmer. ADLs of the second kind keep code away from the architecture and thus make

the project more modular.

24
 Vogel, et al., 2005, S. 202

12

Moreover, ADLs are still a matter of research. They are often developed by research projects

at universities and therefore not really established as a tool for commercial use due to

constant development and alteration.

Although ADLs still undergo ambitious and concrete development there is no clear delimitation

to other kinds of instruments. E.g. they still use a broad spectrum of UML-diagrams in order to

illustrate the architecture. Whereas it is of interest to use existing technology it is still a

problem of independence. So ADLs which rely too much on other instruments are more

dependent than ADLs which try to realize the whole architecture with their own methods. On

the other hand ADLs which support known technology can be more understandable and more

open to others for further development of architectures and development of the ADL itself.

Over all in Vogel’s opinion it can be said that ADLs are less general than other instruments. This

as a result does not award them with a qualification for the use to describe general aspects of

architecture. They can simply not be used for that matter. So ADLs are more and more

developed for the needs of a specific domain and therefore become more and more

specialized for their area of interest which on the other side deprives them as a candidate to

describe more general architectural aspects.

In contrast to ADLs UML as the de-facto standard is more concentrated on classes and objects.

Whereas for ADLs components and the connectors between the components are in focus of

processing for UML it is more the composition of classes and objects. ADLs do have a more

precise syntax adapted for the domain the ADL is in use. They focus on interfaces of the

components and the connectors as a central concept. In comparison UML is not specialized in

any way.

This enables a user to operate with it in a greater variety for documentation. But this causes

the constricted possibilities to analyze and simulate the problem for which it was pulled up.

Moreover, it can lead to a misunderstanding by stakeholders due to unclear semantics of

notation. To partially avoid this problem UML can be extended with concepts of any kind (like

ADL-concepts). This makes it more precise and accurate to a specific problem but again

withdraws general aspects of UML.

3 Introducing a new Approach

In this chapter a new approach called Haptic System Architecture Modeling (HSAM) for

developing system architectures is presented. It is intended to support the architect in

designing, creating, communicating, and documenting system architecture.

3.1 Overview

The innovative aspects for designing and handling system architectures with the help of HSAM

derive from its intuitive and haptic ways of approaching architectural problems.

This is because the main idea of HSAM is to create a desired architecture of a system by using

Lego
25

 bricks. Hence the designing process becomes literally a modeling one. The architect

does not operate with any diagrams, tables, or likewise instruments. Instead he creates

representations of the system elements he wants to include in his project and combines them

to form a construction which illustrates his system architecture.

Physical bricks surely require some sort of further handling to provide some sort of more

sophisticated treatment of the architectures. For that a tool called the HSAM-Tool will be

introduced. It provides functionalities to translate the physical building into a machine-

readable format. With this tool the architect can read in the project using radio frequency

technology, configure the system architecture by assigning properties to each element, and

alter their default attributes; and in order to provide further processing of the building, he can

export it to some more commonly used formats.

The chain to build an architecture using HSAM can be split into the following tasks:

− Decide what elements are needed

− Integrate RFID transponders to elements

− Vary assembly of elements of same kind

− Build architecture

− Verify correctness of system

− Read in the architecture to the HSAM-Tool

− Configure information for each element

− Save project

− Export project

25
 LEGO Group, 2007

14

However, the sequence of the tasks is not mandatory as the whole process is an iterative

procedure which necessitates the architect to consider and evaluate the outcomes of each

step. Figure 3-1 shows an illustration of the workflow of HSAM and the connectivity of the

tasks to each other. Still the tasks can be split into two domains which are:

− building an architecture (first five tasks of above shown list) &

− handling an architecture (last four tasks of above shown list)

Figure 3-1: Workflow of HSAM

15

3.2 Used Technology

The kind of approach HSAM follows requires special technology of both uncommon and more

common use.

Frequent technology in this case would be radio frequency identification (RFID). It includes

numerous standards which are used to be implemented in the domains of security and

authentication, safety, convenience, and process efficiency.
26

For software aspects rather uncommon technology would be the use of Lego bricks. Those are

normally used as some kind of toy by children who can stack them to versatile buildings.

3.2.1 Lego

The LEGO group was founded 75 years ago with its head office located in Billund, Denmark. It

is a traditional family business and is still headed by a descendant of the founder. As its vision

it declares “to inspire children to explore and challenge their own creative potential”.
27

For this thesis the most important product of the LEGO group is their Lego-brick:

“The brick in its present form was launched in 1958. The interlocking principle with its

tubes makes it unique, and offers unlimited building possibilities.”
28

Using those bricks with their numerous differing appearances gives the architect the great

potential to uniquely define a broad variety of elements. As listed in chapter 5 the bricks are

used to standardize and define the look and feel of system architecture elements. Because of

the unlimited alternatives of stacking the bricks onto each other a broad range of elements can

be covered.

This also allows the creation of groupings which contain related system architecture elements.

Such groups in each case enfold elements which are related in some kind in order to unite

them by building them in either similar or contrary shape. E.g. a client and a server have a

similar shape but are still built distinctly enough to notice their mannerism. The same is valid

for publisher and subscriber which feature contrary shapes. To elements which are not from

the same group they clearly differ in shape, size, and color so that it is obvious that they are

not familiar.

Other reasons why Lego bricks were preferred over other sectional technologies are that they

provide a broad variety of brick shapes and colors and the fact that it is so simple to combine

and rearrange them. The contingent of different bricks by its own allows a nearly unlimited

number for definitions of system architecture elements. Then the different kinds of colors

26
 Bhuptani & Moradpour, 2005

27
 LEGO Group, 2007

28
 LEGO Group, 2007

16

again multiply this amount of possibilities. At last its simplicity lets the user work very

efficiently, freely, and rapidly.

Chapter 5.2 will introduce how Lego bricks are used to represent system architecture

elements.

3.2.2 RFID

There is a need for a technology which enables the further processing of the Lego

constructions. Lego by itself features no possibilities to transfer its buildings to machine-

readable languages. So RFID is the choice of what technology is used to bear this task.

RFID stands for Radio Frequency Identification and names an automated identification system.

“In a typical RFID system […] objects are tagged with tiny radio transponders that carry

certain data about the objects. The transponders (tags) transmit this data, through

radio waves, to nearby readers, which collect and process the data accordingly.”
29

Because of its general applicability, RFID experiences a fast development and deployment in all

kinds of domains. The most common areas of application are:
30

− Security and authentication,

− Safety,

− Convenience, and

− Process efficiency;

Security and authentication was one of the first domains to use RFID technology. It provides

very simple possibilities to uniquely identify objects, persons, and/or animals. For safety

aspects RFID systems are often used to create safer environments for employees and

customers by sensing and monitoring the areas the users move in. RFID-enabled services can

provide greater conveniences by loosening the bond between the system and the user. This

often comes hand in hand with a more efficient process. Clearly, the industry is interested in

improving their processes. Manufacturers often use RFID systems to monitor, track, and trace

objects in order to enhance their business processes.

Bhuptani
31

 outlines the history of RFID as follows and sees an auspicious future for the

technology:

“As with radio, television, the transistor, and the computer, RFID saw only modest use

for the first thirty years after its inception. Then, after an extended incubation period, a

groundswell occurred, which culminated in the full-blown commercialization of RFID

and a corresponding change to the lives of millions of people around the globe. RFID is

29
 Bhuptani & Moradpour, 2005, p. 4

30
 Bhuptani & Moradpour, 2005

31
 Bhuptani & Moradpour, 2005, p. 32

17

now at the precipice of another major evolution that will change and improve the lives

of businesses and individuals everywhere.”

A basic RFID system consists of a tag (transponder), a reader (interrogator), and antennae

(coupling devices) which need to be located at both sides of the system. Typically, the reader is

connected to a computer which again is mostly part of a larger network of computers. The

main feature of RFID systems is the contactless exchange of information. This is done by

connecting (coupling) the tag and the reader through their antennae. There are a lot of

different standards for the coupling operation. It can be accomplished either in an

electromagnetic (backscatter) or in a magnetic (inductive) way. Both of the methods have their

advantages and disadvantages which need to be balanced accordingly to the use of the

system, the allowed costs, its size, speed, reading range, and accuracy. Another selection

criterion is the frequency in which the RFID system is intended to be operating. The frequency

affects speed and accuracy and is often chosen based on environmental conditions and/or

standards and regulations.
32

The RFID system used for this thesis features the following specifications:

− Reader-model: TAGmobi USB - Mifare
33

− Tag-model: Smart Control Label - Mifare 1k
34

− Radiofrequency: 13,56 MHz

− Communication standard: ISO 14443 A Mifare

− Range: up to 100 mm (short range RFID)

The reader is connected to a computer via USB (universal serial bus) and through its driver

addressed like a standard serial port. It operates at the Mifare standard at a frequency of

13.56 MHz. The transponders only support Mifare 1k ISO 14443.

Mifare is a trademark of NXP Semiconductors. Mifare 1k was first introduced in the year 1994

as a standard for contactless communication technology. Already two years later, it was used

for its first deployment at a major transport project where it replaced the old ticketing system.

Mifare 1k ISO 14443 A as used in this thesis features the following attributes:
35

− Contactless transmission of data and supply energy (no battery needed)

− Operating distance: Up to 100 mm (depending on antenna geometry)

− Operating frequency: 13.56 MHz

− Fast data transfer: 106 kbit/s

− High data integrity: 16 bit CRC, parity bit coding, bit counting

− True anticollision

− Typical ticketing transaction: < 100 ms (including backup management)

32
 Cf. Bhuptani & Moradpour, 2005

33
 TAGnology RFID Ltd., 2006

34
 TAGnology RFID Ltd., 2006

35
 NXP, 2007

18

The anti-collision algorithm would provide the feature to work with more than one tag in the

field of operation at the same time. It assures that each tag is selected separately and that the

data transaction is executed correctly. But in the case of this thesis, there will only be one

single transponder in range for the reader to operate with due to the following two reasons.

The first reason is the size of the transponders which is chosen very small to make them fit

inside of a Lego brick but which also affects the range dramatically. As second reason is to

mention that the Lego constructions used to represent a system’s element require a certain

size which means that there will not be room for two or more such compositions within the

range of operation of the reader.

The reason why to use RFID as associational technology between Lego bricks and software is

that it appeared to be the simplest and most efficient approach to be implemented. The tags

can be easily attached inside of the bricks not affecting their ability to be stacked. The coupling

overbears the thin plastic walls so that the exchange of information is guaranteed. On the

other side of the RFID system the reader can be attached and installed to a computer. Also

there are numerous libraries for using the reader in a program so that one does not have to do

the implementation of all the functionalities concerning the reader over again.

Moreover, RFID won’t constrict the freedom of buildings using Lego bricks. As Lego bricks were

chosen because of their variety of building possibilities, the technology which provides further

processing should not withdraw this feature. E. g. a graphical recognition system would have

made problems finding elements which are hidden behind other elements. Using RFID this

problem will not occur.

Chapter 3.3.1.2 will introduce how the RFID transponders are integrated into the Lego

representations of system architecture elements.

3.3 Walkthrough

This chapter deals with a detailed description on how to create a system architecture using

Lego bricks and how to handle the building process using our program called the HSAM-Tool. It

is split into two subchapters. The first outlines the tasks of HSAM which mainly deal with Lego.

It represents the instructions for how to actually build an architecture using Lego bricks. The

second part shows how further processing of the Lego construction is provided. It introduces

the HSAM-Tool and illustrates its main functionalities.

For instructions on how to access the introduced functionalities see chapter 4.4.

3.3.1 Building an Architecture

The following will introduce the tasks of HSAM which mainly operate with Lego bricks. Only

the task Tag Elements (3.3.1.5) will make use of the HSAM-Tool. The sequence of how the

tasks are listed does not imply the sequence of their execution. Of course all the other tasks

need to be completed before the actual architecture can be built but the tasks before Build

Architecture can be done in any order.

19

3.3.1.1 Define Elements

Defining the elements needed to design a system’s architecture is the task to begin with. Of

course it occurs that an architect needs to add additional elements to the system during the

designing process, but he still wants to define some fundamental elements to build the

architecture’s main structure.

The architect then either selects the representation of each element out of a pool which holds

prebuilt Lego compositions, or assembles each representation from a pool of loose Lego bricks

based on the catalogue presented in chapter 5.2.

3.3.1.2 Integrate RFID

In order to offer a machine readable approach, RFID transponders need to be integrated into

certain Lego bricks which then are staked to each element in the task Integrate Transponder-

Bricks (3.3.1.3).

Those defined bricks are orange 2x4-bricks. Two of them attached on top of each other are

needed to house one transponder.

Refer to chapter 5.1.3.1 for instructions on how to integrate the chips into the Lego bricks.

3.3.1.3 Integrate Transponder-Bricks

This task is the second task to provide a machine readable approach. The special transponder

equipped bricks need to be integrated into each element representation.

Depending on the size of a composition, it can be easy to assimilate the orange bricks.

Generally, the transponder-bricks should be placed within the element in a way that it is

obvious that the orange bricks tag the element.

The simplest way to do so is to fully surround the transponder-bricks with the bricks used to

represent the element still assuring the access to the transponder for the RFID-reader. If this is

not possible and the only way to attach the bricks is to stick them onto the element

somewhere at the outside, then a spot where no other representation interferes the

association should be chosen.

Refer to chapter 5.1.3.2 for more directives on how to integrate the transponder-bricks.

3.3.1.4 Vary Shapes

Varying the shapes and sizes of elements of the same kind can be very useful. It enables the

architect to immediately differentiate elements among each other and spot specific elements.

He can assign special information to them like importance or attributes specific for the kind of

element. Moreover, such variations are very handy for stakeholders who do not possess the

backgrounds of a system architect because it makes it easier for them to understand the

meaning of certain coherencies.

Such assignments should be documented separately and handed together with the finished

end product so that following verifications and analyses of the architecture can work with the

same information.

20

3.3.1.5 Tag Elements

Each transponder integrated into an element’s representation needs to be referenced to the

kind of element which houses its transponder-bricks in order to later correctly read in the

architecture. This is done by using the HSAM-Tool.

First the user needs to make sure that a RFID-reader is connected to the computer and opened

for use through the tool (see chapter 4.4.11). When the prerequisites are fulfilled the user

opens the Refer Tag IDs-Dialogue shown in Figure 3-2.

For each type of element the architect now chooses the right

name in the upper combobox where it says “< Choose Element >”.

Then each element representation corresponding to the chosen

element name is placed right in front of the reader so that

coupling between reader and transponder is possible (refer to

3.3.2.1). For each element the architect hits the button “Tag” to

issue the command to associate the transponder in range to the

chosen element type.

For additional information on background operations of the

dialogue see chapter 4.4.12.

3.3.1.6 Build Architecture

Building an architecture doesn’t require the transponders to be referred to their elements; but

if they are not, the later read in will be complicated. This is because when the elements are

combined to describe an architecture it might not be as easy and effective to tag them

anymore because they are attached in a quirky way and hard for the reader to reach. This

problem already occurs for the task Read in the Architecture (3.3.2.1) so it should be avoided

to be handled twice.

But just this problem has to be kept in mind when accomplishing this task and the task

Integrate Transponder-Bricks (3.3.1.3). It is important to situate the transponder-brick within

the elements in a reachable way for the reader. The same is valid for the situation within the

building of an architecture. The reader needs to be able to reach the transponders in order to

successfully read in the project.

However, generally the architect uses already associated elements to create a system’s

architecture. To do so, elements need to be attached onto each other, whereas components

always need to be connected to connectors. It will not be possible to directly link a component

to another component (see chapter 5.2 for allocation of elements into components and

connectors) due to the read in process.

The attachment of elements to each other should always be chosen in a way that it is clear

that the elements are connected. This is easily accomplished when the element

representations are built big enough.

Figure 3-2: Refer Tag IDs-Dialogue

Due to the mere infinity of possibilities to attach the element representations to each other

there are innumerable ways to construct a system. Although this

to the architect, it also offers free

compiled.

See chapter 6 for an example of a built architecture.

3.3.1.7 Verify Architecture

The last task and controlling task for building an architecture is to verify and validate the built

construction by comparing it to the real system. If the building represents a system which

about to be realized then it should be validated

fulfill.

It is more effective is to continuously verify the architecture during the actual building process.

This obviates errors which

the designing process as a whole.

3.3.2 Handle the Construction

The following will list tasks

guarantee further processing of the built Lego construction only

Architecture and Export the A

3.3.2.1 Read in the

In order to correctly read in an architecture

transponder integrated into an element’s representation

needs to be referenced to the kind of element which houses

its transponder-bricks (see

Before using RFID functionalities of the HSAM

needs to be connected (see

are fulfilled, a correct read in is possible and

the Read in Elements-Dialogue shown in

Generally, when using the reader at a transponder which is

embedded in transponder

with its front end very close to the side of the bricks where the

transponder is situated. Otherwise coupling will no

due to the shorter range of the small tags (see

The read in of an architecture requires the

first read in a connecting element and then the components

connected through that element.

Tool which otherwise could not establish the connection

Due to the mere infinity of possibilities to attach the element representations to each other

there are innumerable ways to construct a system. Although this may be cause for discussion

offers free thinking about the possibilities of how the system can be

for an example of a built architecture.

chitecture

The last task and controlling task for building an architecture is to verify and validate the built

construction by comparing it to the real system. If the building represents a system which

to be realized then it should be validated by comparing it to the requirements it should

ore effective is to continuously verify the architecture during the actual building process.

This obviates errors which could pervade the whole system and thus improve the system and

process as a whole.

Construction

The following will list tasks that introduce various functionalities of the HSAM

guarantee further processing of the built Lego construction only the

the Architecture need to be accomplished.

in the Architecture

In order to correctly read in an architecture, each

transponder integrated into an element’s representation

needs to be referenced to the kind of element which houses

bricks (see 3.3.1.5).

using RFID functionalities of the HSAM-Tool, a reader

needs to be connected (see 4.4.11). When both prerequisites

a correct read in is possible and the user opens

Dialogue shown in Figure 3-4.

Generally, when using the reader at a transponder which is

embedded in transponder-bricks, the reader should be placed

with its front end very close to the side of the bricks where the

ituated. Otherwise coupling will not be possible

due to the shorter range of the small tags (see Figure 3-3).

The read in of an architecture requires the architect to always

first read in a connecting element and then the components

connected through that element. This is because of the HSAM-

se could not establish the connection

Figure 3-4: Read in Elements

Figure

21

Due to the mere infinity of possibilities to attach the element representations to each other,

may be cause for discussion

how the system can be

The last task and controlling task for building an architecture is to verify and validate the built

construction by comparing it to the real system. If the building represents a system which is

to the requirements it should

ore effective is to continuously verify the architecture during the actual building process.

pervade the whole system and thus improve the system and

introduce various functionalities of the HSAM-Tool. In order to

the tasks Read in the

Read in Elements-Dialogue

Figure 3-3: Possible coupling

22

between the components. If accidently a component of one connector was left out while

another connector was selected, simply reselect the first connector to assign the missed

component to it. The connector will not be created twice.

So after reading in a connector, read in its connecting components and move on to the next

connector and its components until all elements of the architecture are handled.

The data structure of the read in architecture is in the style of the ACME-ADL. This means that

the main entities are components and connectors. As a component holds ports as sub-entities

a connector holds roles. Each of those entities and sub-entities additionally can hold various

properties and default attributes such as name, type, etc.

The actual connection between a connector and a component is recorded as a value of an

attribute of a role. This value represents the reference to a component’s port so that all

components can be reached through the connector which holds the appropriate roles.

Refer to chapter 4.2 for additional information on the inner data management.

3.3.2.2 Configure the Architecture

The HSAM-Tool provides functionalities to configure the read in architecture. Configuration

means that it is possible to add, delete, and edit properties of each data entity and to edit their

default properties. Moreover, properties for the whole project can be defined, edited, and

deleted.

Configuring the elements of an architecture enables the architect to enrich the construction

with additional information. This in turn allows the architect to differentiate between

elements of the same kind which are equipped with only default values for their attributes and

default properties. Moreover, the information adapted through the HSAM-Tool will later be

critical information for the exportation process which takes advantage of the attributes and

properties to generate a particularly meaningful output file.

As shown in chapter 4.4, all elements and their sub-entities are listed somehow in either a list

or a tree. To access the corresponding configuration window simply double-click on the

element.

Refer to the appropriate sub-chapter of chapter 4.4 for additional information on the user

interfaces.

3.3.2.3 Store the Architecture

This and the following task are not essential anymore for the actual designing process. The

HSAM-Tool provides storing functionalities. A project can either be saved as a XML-file, as a

composition which can be added to later projects, or both.

For information on a saved project refer to chapter 4.2 and for the composition savings refer

to chapter 4.4.2 and 4.4.10.

23

3.3.2.4 Export the Architecture

To offer further processing of the outcomes of Haptic System Architecture Modeling the

HSAM-Tool provides functionalities to export a project to the ADL ACME or as a CTB-file which

is used by the Component Toolbox introduced by Hofstetter
36

.

3.4 Discussion

This chapter deals with the advantages and disadvantages of the Haptic System Architecture

Modeling approach. First, the advantages are listed and fortified. Then some disadvantages are

shown and improvements suggested.

3.4.1 Advantages

The first advantage Haptic System Architecture Modeling reveals is its intuitivism. Once the

user gets clear about the implied meanings of each element, he will have no further problems

to easily construct a system’s architecture. To know if the result is valid demands indeed some

background knowledge of the system the user wants to create but still the user is capable of

building it. There is no learning of complicated syntax needed. This makes the approach

accessible for everyone.

Due to its straightforwardness the approach is excellent applicable to communicate and

present an architecture to its various stakeholders. Even to such stakeholders who are not in

possession of the knowledge a system architect usually has. All a viewer needs is a mapping of

each Lego composition to its meaning in the real world. No further information is needed to

understand the underlying structure of an architecture. Additional descriptive information is

provided by the HSAM-Tool with which each element can be investigated.

As the whole structure of a complex architecture can be seen and captured at just one glance,

it is easier for stakeholders who were not included in the building process to understand its

assembly and the meanings resulting from it. This is because the Lego construction provides an

excellent overview on the project.

On account of its haptic nature, Haptic System Architecture Modeling supports teamwork. All

architects involved in the building process can build the system together at the same time. This

boosts the exchange of information between the architects at an early stage of development.

This in turn eliminates misunderstandings before they possibly arise. They can even learn from

each other while they are in action and provide feedback while the building process still

persists.

Due to the design of the HSAM-Tool, it is very simple to extend Haptic System Architecture

Modeling with additional elements, information on elements, and their mappings. In order to

do so, there is a definition of the Lego composition of the element required. To integrate it

36
 Hofstetter, 2007

24

into the tool the configuration xml-file needs to be adapted. The new element has to be

defined in the same structure as the already existing ones have. There is no additional task to

do to successfully integrate a new element.

As mentioned before, Hofstetter
37

 introduces a tool called Component Toolbox. As HSAM-Tool

provides a function to export a system architecture to the format required by Component

Toolbox, the possibility of further processing of the architecture is guaranteed. With this tool

the architect has an instrument to create a software architecture which is based on the system

architecture provided by HSAM. So there is no overhead of documentation needed, no

numerous diagrams. It gets easier for the architects to communicate the actual outcome

because they don’t need to spend resources to define what the product should be based on.

3.4.2 Disadvantages

Unfortunately, the use of Lego bricks can also be seen as a barrier. The element

representations are not self-explanatory. There is still mapping information required which

uniquely assigns a representation to its meaning. However, the compositions could be built in

a way so that the actual element can be deduced by its shape and looks. Also consuetude and

constant practice help to keep the meanings of the representations in mind.

Building an architecture using HSAM demands from the architects to follow the

recommendations of the representations catalogue presented in chapter 5.2. Representations

can easily lose their shapes because of inaccurate building habits. There is no possibility to

constrict the constructions due to the fact that Lego bricks can be attached to each other in

multiple ways. This is because the architect needs to work consistently.

Of course the catalogue of element representations is by far not completed. Several elements

of various domains could be added and defined, as well as domains per se based on the model

of families in ACME could be established. Besides, the shape of each representation needs to

be validated precisely. Due to the fact that not all elements are part of the case study in

chapter 6 the shapes of the unused ones did not need to prove themselves.

The HSAM-Tool is a prototype and by far not well enough implemented to claim perfect

operation. Of course this could be improved. Additional features could be provided like a

better visualization of an architecture. Maybe the chain of actions can be enhanced. Also a

diversity of exportation formats could be realized to gain more possibilities to work with

HSAM.

37
 Hofstetter, 2007

4 Implementation

This chapter introduces the details on the implementation of the HSAM-Tool. First, a class

diagram is presented. After that, the most important classes will be handled to explain special

behaviors. Then the internal data management of the tool will be explicated. In the following

part, the interface to further programs is shown in form of the exporting formats. And at last

the graphical user interfaces are pictured and explained and their most important underlying

operations are identified.

The HSAM-Tool is as important for the modeling process as the Lego bricks. It provides the

functionalities to read in the architecture, to represent the architecture, to configure its

elements, and to export the architecture to other languages like ACME and CTB-XML, as well

as the creation of a whole project without using the RFID functionalities.

4.1 Class Diagram

The class diagram shown in Figure 4-1 illustrates all classes used in the HSAM-Tool but only

lists their most important functions and properties. For a detailed listing see the Addendum for

instructions on how to reach the detailed documentation.

In the following , the classes and their most important functions are explained in more detail.

26

Figure 4-1: Class Diagram – HSAM-Tool

4.1.1 Class: Program

The class Program provides the main entry point for the HSAM-Tool by featuring the main()-

function. In its only operation it initializes a new instance of the WinMain-class which will then

overtake the user-interface-interaction.

27

4.1.2 Class: Controller

The Controller-class is one of the most important classes for the HSAM-Tool. It provides

numerous functions for the other classes to either access the user interfaces or vice versa the

operating classes like XMLHandler or Rfid.

As its properties it holds amongst others instances of the classes WinMain, XMLHandler, Rfid,

and Export.

4.1.2.1 Graphical-User-Interface Interaction

− fillProjcectComponents()

> Calling instance: Controller, WinMain

> Functionality: Determines all components, connectors, and compositions of

the project and lists them in the treeview-section of the WinMain-instance.

− fillComponentDetails()

> Calling instance: WinMain

> Functionality: Determines all parameters of a component which was selected

in the WinMain’s treeview-section, lists them in the listview-section, and calls

for its visualization.

− fillConnectorDetails()

> Calling instance: WinMain

> Functionality: Determines all parameters of a connector which was selected in

the WinMain’s treeview-section, lists them in the listview-section, and calls for

its visualization.

− fillCompositionDetails()

> Calling instance: WinMain

> Functionality: Determines all parameters of a composition which was selected

in the WinMain’s treeview-section and lists them in the listview-section.

− listGeneralAttributes()

> Calling instance: Controller

> Functionality: Determines all general attributes of the element which was

selected in the WinMain’s treeview-section and lists them in the listview-

section.

− visualizeComponent()

> Calling instance: Controller

> Functionality: Determines the picture of the selected component and paints it

at a given point in the visualization-section of the WinMain-instance.

− visualizeConnector()

> Calling instance: Controller

> Functionality: Determines the picture of the selected connector, paints it at

the middle of the visualization-section of the WinMain-instance, and calls for

the visualization of the connector lines and of its components around its

illustration.

28

Figure 4-2: Sequence diagram - fillProjectComponents()

Figure 4-2 shows a sequence diagram for calling the fillProjectComponents()-function in the

Controller-class. This function is called whenever a project is created or opened, or when a

component, connector, or composition is added to the current project.

It determines all components, connectors, and compositions of the current project. For each of

the elements from those categories the function finds its information through the XMLHandler

and writes it into the listview-section of the WinMain-instance.

Figure 4-3 shows a sequence diagram for the actions taken whenever an element in the

treeview-section of the WinMain-instance is selected.

Depending on what kind of element was selected a different function in the controller is called.

If the selected element is a component, the fillComponentDetails()-function gets called. It

determines the attributes and properties of the component, writes them into the listview-

section of the WinMain-instance, and calls the visualizeComponent()-function in the WinMain-

class to let the component be painted in the middle of the visualization-section.

In case of a connector as the selected element, the fillConnectorDetails()-functions gets

executed. It determines the attributes of the connector and writes them into the listview-

section of the WinMain-instance. After that it calls the visualizeConnector()-function to paint

the illustration of the connector in the middle of the visualization-section, surrounded by

connection lines. Then it calls the visualizeComponent()-function for each component

connected through the selected connector to paint it at the end of a connection line.

If the selected element in the treeview is a composition, the fillCompositionDetails()-function is

called. It simply determines the attributes and included elements of the composition and lists

them in the listview-section of the WinMain-instance.

29

Figure 4-3: Sequence diagram - afterSelection()

4.1.2.2 RFID Interaction

− connectRFIDReader()

> Calling instance: WinRfidConnection

> Functionality: Determines baud-rate and protocol for RFID-reader and calls to

open a connection to it.

− disconnectRFIDReader()

> Calling instance: WinRfidConnection, Controller

> Functionality: Determines if connection to RFID-reader exists and, if so, calls

appropriate functions to disconnect it.

30

− readSingleTransponder()

> Calling instance: Controller, WinRfidReadIn, WinRfidTagID, WinConfiguration

> Functionality: Calls for the ID of a single transponder in range of the RFID-

reader if a reader is connected.

− getElementFromTagID()

> Calling instance: WinRfidReadIn

> Functionality: Determines the referred element of a tag which was read in and

creates the corresponding connector or component.

− createTagElementReference()

> Calling instance: WinRfidTagID

> Functionality: Creates a reference from a specific RFID-tag to an element-type.

Figure 4-4: Sequence diagram – createTagElementReference()

Figure 4-4 shows a sequence diagram which illustrates the creation of the tag-element

reference when the Lego element representations are tagged.

The class WinRFIDTagID which provides the graphical user interface to reference an element

to a tag calls the Controller-function readSingleTransponder(). This in turn lets the Controller

call the readSingleTransponder()-function from the Rfid-class. It returns the ID of a

transponder placed directly in front of the reader and so the createTagElementReference()-

function can be called. Through this function the Controller-class causes the XMLHandler-class

to establish the reference by calling some provided operations.

In Figure 4-5, the sequence diagram of calling the getElementFromTagID()-function of the

Controller-instance is illustrated.

To do so, again the ID of a transponder is read and given to the Controller-function which

determines its representing type with the help of the XMLHandler-class. If the type represents

a connector, a new connector from this type is created if it does not already exist and the

treeview-section in the WinMain-instance is updated. If the type is a component, first the

controller needs to find out if the component was already created and if it is already

connected to the current connector. If not, the new component is created and connected.

31

Figure 4-5: Sequence diagram - getElementFromTagID()

32

4.1.3 Class: WinMain

The class WinMain provides the most important graphical user interface which is the main

window. In it the project’s components are listed, their attributes are shown, and

visualizations of components and connectors are painted. Moreover it is the class which

creates, destructs, and delegates the other interfaces.

It provides functions of the Controller-instance to the other interfaces by holding it as a

property. The second important property is of the kind WinUserInteraction.

− tvProjectsComponents_AfterSelect()

> Calling instance: WinMain

> Functionality: Handles the event which occurs when the selection in the

treeview-section is altered.

− visualizeComponent()

> Calling instance: Controller

> Functionality: Visualizes an image of the selected element in the treeview-

section in the middle or at a specific location within the visualization-section.

− visualizeConnectorLines()

> Calling instance: Controller

> Functionality: Visualizes the connecting lines of a connector-element selected

in the treeview-section shaped like a star surrounding the center of the

visualization-section.

4.1.4 Class: XMLHandler

The XMLHandler-class provides functionality to interact with the configuration and project

xml-files. Those include creation of various nodes, editing of the node’s content, providing the

node’s content, and deleting nodes.

The only important property to mention is the XMLValidation-instance.

4.1.5 Class: Export

An instance of the Export-class provides all functionalities to export a project to the ADL ACME

or to CTB.

To gain access to xml-functionalities it holds an instance of the XMLHandler-class as a

property.

− exportProjectToACME()

> Calling instance: Controller

> Functionality: Creates an acme-file and writes the converted project into it.

− exportProjectToCTB()

> Calling instance: Controller

> Functionality: Creates a ctb-file and writes the converted project into it.

33

4.1.6 Class: RFID

The RFID-class provides the functionality to gain access to a RFID-reader and to read the ID

from a single transponder which is held directly in front of the reader. In order to correctly

operate the reader, it wraps some functions provided by the library of ACG
38

.

It holds the variable isConnected as a property to provide the status of a connection to a RFID-

reader to other classes.

− readSingleTransponder()

> Calling instance: Controller

> Functionality: Determines the ID of a RFID-transponder in range of the reader.

4.1.7 Other Classes

The following lists the rest of the defined classes which are shown in the class diagram and

provides a brief description of them.

− WinUserInteraction

Provides various inquiry call functions

− WinAbout

Provides an information window about the HSAM-Tool

− WinRfidTagId

Provides GUI to reference transponder-IDs to elements

− WinRfidReadIn

Provides GUI to read in transponder-IDs

− WinRfidConnection

Provides GUI to establish and dissolve connection to RFID-reader

− WinSaveComposition

Provides GUI to save current project as a composition into the configuration-xml

− WinCreateComponent

Provides GUI to add a component to the current project

− WinCreateConnector

Provides GUI to add a connector to the current project

38
 ACG ID

34

− WinAddComposition

Provides GUI to add a composition of the configuration-xml to the current project

− WinEditComponent

Provides GUI to edit a component

− WinEditPort

Provides GUI to edit a port of a component

− WinEditConnector

Provides GUI to edit a connector

− WinEditRole

Provides GUI to edit a role of a connector

− WinAddComponent

Provides GUI to add a component to a connector

− WinEditProperty

Provides GUI to edit a property

− WinConfiguration

Provides GUI to configure the HSAM-Tool

− XMLValidator

Provides functionalities to validate the project and configuration-xmls (not used)

35

4.2 XML-Format

There are two kinds of XML-files relevant for the HSAM-Tool. First, there is the Configuration-

XML. It provides a lot of relevant information which can be altered without rebuilding the

program.

Second, there are the project-XMLs. They are generated and expanded whenever a project is

created and edited and their file is stored when the project is saved.

4.2.1 Configuration-XML

The configuration-XML consists of a root node called Config. It provides the main information

on the project as attributes. The attribute value HSAM-Config.xsd references to scheme

with which the configuration-XML can be validated.

<Config xml-version="1.0" xsi:noNamespaceSchemaLocation="HSAM-Config.xsd">

The Config-node only holds the children Components, Compositions, and Program.

Components holds a list of all Component-nodes which later can be created in the HSAM-

Tool. The Compositions-node features a list of all Composition-nodes which are created

over the time. The Program-node holds some properties relevant to the program itself and to

some margin values.

The following is an example for a Component-node:

<Component name="Client" description="it's a client" connector="false">

 <Properties>

 <Property name="picPath" type="string" value="client.gif"

 required="false" />

 <Property name="physicalComponent" type="string" value="unspecified"

 required="true" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" required="true" />

 <Property name="application" type="string" value="unspecified"

 required="true" />

 <Property name="CPU" type="integer" value="" required="true" />

 <Property name="RAM" type="integer" value="" required="true" />

 <Property name="HD" type="integer" value="" required="true" />

 <Property name="OS" type="string" value="" required="true" />

 <Property name="Constraint" type="OCL" value="" required="true" />

 </Properties>

</Component>

As attributes it features the components name, description, and the flag connector which

describes the component as a connecting component or not. This is relevant for the

construction of the system because non-connecting components can only be connected to

connecting components and vice versa. Each Component-node needs to hold a Properties-

node which again needs to hold a Property-node with an attribute name whose value is

picPath. This is because else there will be no visualization of the component for the project.

Its attribute required flags the property if it will be added to the element when it is created

36

and added to a project. In addition any other Property-node added to the element will be a

potential default property for the element depending on its required attribute. For the

example above, the element will receive the properties CPU, RAM, HD, OS, and Constraint

whenever it is created.

physical-

component

execution-

environment

application network property-

types

unspecified unspecified Unspecified unspecified String

MobileDevice MidletContainer Database Internet Integer

Workstation ApplicationContainer DirectoryService Intranet Float

OfficeServer ServletContainer MessagingSystem LAN Boolean

Mainframe ApplicationServer EventBroker OCL

ExternalSystem GenericContainer GroupwareServer undefined

GenericDevice PortletContainer DirectoryServer

 LightweightContainer ObjectRequestBroker

 AppletContainer WebServer

 CDCContainer MailServer

 PortalServer

 PresentationServer

 EnterpriseServiceBus

 DistributedTransaction

-Management

 Cache

 LoadBalancer

 UDDIServer

 RuleBasedEngine

 PushSystem

 WebBrowser

 MailClient

 Firewall

The Composition-node is actually made up like a project. So see the next subchapter for

explanation. The only additional information is an id to be able to properly identify the

composition.

The Program-node features some Property-nodes to provide some variables for the

program. If changed in the XML, they surly influence the program. It also holds a

VariableValues-node. This node again holds the nodes PhysicalComponent,

ExecutionEnvironment, Application, Network, and PropertyTypes. They each

feature a list of children whose node-names define the approved values for the variables called

like their node name. They can be either defined to provide a smooth export-import to the

Component Toolbox or to provide a range of values a variable can be assigned to. Predefined

values are listed in the above table.

37

<Program>

 <Properties>

 <Property name="lineColor" value="Blue" description="Color of Connector-

 Lines; Have to be named as described in C# Color-Class specification" />

 <Property name="lineLength" value="285" description="Length of

 Connector-Lines; If blank forth of width of window is used" />

 <Property name="lineThickness" value="3" description="Thickness of

 Connector-Lines" />

 <Property name="picPath" value="/data/" description="Path to Component-

 Visualizations; relative to Path of Program">

 </Property>

 <Property name="baudRate" value="9600" description="Baud Rate for RFID-

 Reader" />

 <Property name="protocol" value="0" description="Protocol for RFID-

 Reader" />

 </Properties>

 <VariableValues>

 <physicalcomponent />

 <executionenvironment />

 <application />

 <network />

 <PropertyTypes />

 </VariableValues>

</Program>

4.2.2 Project-XML

A project-XML always consists of a root node called Project. It provides the main information

on the project as attributes. The attribute value HSAM.xsd references to the scheme with

which the project-XML can be validated.

<Project xml-version="1.0" name="ClientServer" author="Tony" date="09.10.2007

 14:15:35" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="HSAM.xsd">

The only child nodes it holds are Properties, Components, Connectors, Compositions,

and TransponderIDs, each of which holds Property-, Component-, Connector-,

Composition-, or TransponderID- child nodes. The child nodes of Properties holds

properties defined for the whole project. However, their layout and designation fits the

Property-nodes shown in the next example. A typical Component node looks like this:

<Component name="client1" type="client" description="" id="client1">

 <Properties>

 <Property name="physicalComponent" type="string" value="unspecified"

 meta="invisible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

38

 <Ports>

 <Port name="defaultPort" description="Default Port" id="client1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

</Component>

It contains a Properties-node which holds all Property-nodes of the component. They

always feature the attributes name, type, value, and meta. The meta-attribute defines if the

property will be exported to CTB when the project is exported. This is useful to differ between

such properties which are specific for HSAM and such properties which are needed for

importing the project to CTB. Moreover, the Component holds a list of all Ports which again

features some main attributes, as well as a list of relevant Properties.

A typical Connector-node looks like the following:

<Connector name="con1" type="internet" description="" id="con1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="string" value=""

 meta="invisible" />

 <Property name="Max_Bandwidth_mb" type="integer" value=""

 meta="invisible" />

 </Properties>

 <Roles>

 <Role name="defaultRole" description="" port_ref="server1_port1"

 id="con1_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="defaultRole" description="" port_ref="client1_port1"

 id="con1_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

</Connector>

Also the Connector holds a Properties-node which follows the same rules as the ones in

the Component-node. Instead of Ports, the Connector-node features a Roles-node which

holds the Role-nodes. Notice that a Role-node references to a Port-node through the

attribute port_ref. This is how connections between components are defined.

At last, there is a typical Composition-node. It only features an attribute which references to

a Composition-node in the configuration-XML:

<Composition composition_ref="composition1"/>

A typical TranspnderID-node looks like the following:

39

<TransponderID elementType="client" transponderID="F639E6B8"

 elementID="client1" />

It provides the reference between a specific transponder and a type of element. The attribute

elementType holds the type of element, trasponderID refers to the ID of the transponder,

and elementID holds a key of an element when a reference was established.

4.3 Export-Format

The HSAM-Tool provides two formats to export a project to. How the export functions are

reached is shown in chapter 4.4.

The first export format is the code of the ADL ACME. A file is generated when exporting the

project into ACME which holds the definitions of each component and their connection to

each other. Refer to the ABLE
39

 homepage for further information on the ACME code.

The second exportation format is more important due to the fact that its importing program

was developed specifically for it. The outcome is of the format ctb-xml, which refers to the

name of the importing program, namely “Component Toolbox”, and which was introduced by

Hofstetter
40

.

This program provides full compatibility to the exported projects and features a modeling tool

to design software architecture based on the imported system structure.

The following example shows a simple client-server-connection through the internet.

<?xml version="1.0" encoding="UTF-8"?>

<ctb:Diagram xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ctb="http://ctb.com">

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="unspecified" />

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="unspecified" />

 <networks />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.0" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.1" />

</ctb:Diagram>

The root element is ctb:Diagram with its attributes of version and namespaces of xmi, xsi,

and ctb. It can hold three different child-nodes which are physicalComponents, networks,

and networkConnections.

The nodes physicalComponents represent the components in the HSAM-Tool. In order for

the tool to correctly interact with the Component Toolbox it adds default child-nodes

executionEnvironments and runtimeComponents to a component when exported to

39
 ABLE - Architecture Based Languages and Environments, 2007

40
 Hofstetter, 2007

40

CTB. In the HSAM-Tool the values of their attribute Typ can be chosen from a defined pool

shown in chapter 4.2.1.

The nodes networks define the connectors of a system architecture. They do not feature any

attributes due to incompatibility.

The last type of child-nodes is networkConnections. These nodes define the actual

connection of a component to a connector provided by ports and roles in the HSAM-Tool. They

feature two attributes which are targetNetwork and sourceComponent. As the names of

the attributes already reveal, a component is always connected to a connector, but not to

another component neither is a connector directly connected to another connector.

Other properties of elements defined in the HSAM-Tool are not exported to CTB due to

incompatibility of the unknown property-types.

41

4.4 Graphical User Interfaces

The following list shows how to reach various functions in the HSAM-Tool:

Command Result Accessibility

Create project

Creates a new project File → New Project

Open project

Opens an existing project File → Open Project

Save project

Saves an opened project at

its location
File → Save Project

Save project as
Saves an opened project

under a new filename
File → Save Project as

Save as composition

Saves an opened project as a

composition into the config-

xml

File → Save as Composition

Close project Closes an opened project File → Close Project

Read in architecture

Opens GUI to read in an

architecture

Project → Read in

architecture

Tag architecture

elements

Opens GUI to reference

transponders to elements

Project → Tag architecture

elements

Connect RFID

Reader

Opens GUI to connect and

disconnect to RFID reader

Project → Connect RFID

Reader

Export to ACME
Exports an opened project to

ACME code
Project → Export to ACME

Export to CTB
Exports an opened project to

CTB-XML
Project → Export to CTB

Project Properties
Opens a dialog to configure

the project’s properties
Project → Project Properties

Create Component

Adds a new component to

the opened project (in component section of the

tool strip)
Delete Component

Deletes a component from

the opened project

Create Connector

Adds a new connector to the

opened project (in connector section of the

tool strip)
Delete Connector

Deletes a connector from

the opened project

Create Composition

Adds a new composition to

the opened project (in composition section of

the tool strip)
Delete Composition

Deletes a composition from

the opened project

Options

Opens the options dialog Extras → Options

Exit program Exits the program File → Exit

42

4.4.1 Main Window

Figure 4-6: Screenshot - main window

The main window is presented right at the start of the HSAM-Tool. It is the center of the tool

presenting all of a project’s contents.

On the top of the window the menu-bar is situated. It provides access to most of the functions

the tool offers as shown in the list above. Beneath is a breakdown of three areas. The first one

on the left holds a tree-view which shows all components, connectors, and compositions of an

opened project. In the middle there is a list which provides information on an element when it

is selected on the left. And on the right there is room for the visualization of the selected

element. Hovering the mouse over one of the pictures lets appear information about its

element.

In order to reach the RFID- and project-specific-functionalities, like exportation, a project

needs to be opened or created first. In addition to the RFID-operations, first a reader needs to

be connected to the tool using the appropriate commands.

To reach the editing windows of components and connectors a double-click on the according

element in the left section is required.

43

4.4.2 Save As Composition

Saving a project as composition enables its elements to be

imported as a whole later on to other projects. It will be saved

in the configuration-xml at its compositions-section.

To reach the dialogue a project needs to be opened, and to

save it as a composition a name is required to identify it later

on. Optionally, a description can be added which later helps the

user to decide which composition to import.

4.4.3 Edit Component

To edit a component a

double-click on it in the

treeview-section of the main

window is required.

In the upper section of the

window there are editing

controls for the main

attributes of the component.

Mandatory to be set is its

name and its type.

Everything else is optional

for alteration.

Right under the attributes is

a list of properties held by

the component. Double-

clicking on one of them

opens the window to edit the

selected property. On the

right side are buttons to add a new property or to delete the selected one.

Under the component properties there is the port-section. First, all the ports which are held by

the component are listed. Double-clicking on one of them opens the editing window for ports.

On the right side, again, are buttons to add or delete a port.

Depending on what port is selected above the list on the bottom shows the appropriate

properties. And again, double-clicking or using the buttons on the right side has the same

effect as doing the same action in the list of properties for the component.

Figure 4-7: Screenshot - Save as

Composition

Figure 4-8: Screenshot - Edit Component

44

4.4.4 Edit Port / Add Port

To edit a port first the editing window of a component has to

be opened to then double-click on a port listed in its ports-

section.

The name and description of a port can be altered whereas a

value for the name is mandatory in order to save the

alterations.

4.4.5 Edit Connector

Opening the connector

editing window is done by

double-clicking on a

connector in the treeview-

section of the main window.

As for the component

editing window, the

connector editing window

first provides controls to

alter its name, type, and

description. Again, as for

the component, name and

type are mandatory to save

the connector.

Beneath is the list of held

properties. Double-clicking

on one of them opens the

property editing window.

On the right side there are

buttons to add or delete a

property.

Under the properties is the listing of the connection to components featured by the connector.

It shows the component’s name, type, description, and the port the connector is connecting

to. Double-clicking on one of the components opens its editing window. The buttons on the

right allow deleting or adding a connection to the connector.

The next section is the list of roles the connector holds by providing connections to

components. They can be edited by double-clicking on one of them, added by adding a new

Figure 4-9: Screenshot - Edit Port

Figure 4-10: Screenshot - Edit Connector

45

component to the connector, and deleted by deleting the appropriate component which also

deletes the connection between the component and the connector.

The lowest section holds the list of role properties according to the selected role above. As for

the other property listings, double-clicking opens the editing window and using the buttons on

the right adds or deletes a property to or of the selected role.

4.4.6 Add Component to Connector / Edit Role

To add a component to a connector

means to establish a connection

between them and to create a role

for the connector which references

to a port of the component.

This window can be reached by

pressing the add-button on the right

side of the components-list or by

double-clicking on one of the roles

in the roles-section in the connector

editing window.

First, the dialogue shows controls for the name and description of the role the connector holds

or is about to if adding a connection. Under those there are two comboboxes. The one on the

left provides a listing of all components included in the project. The second holds the ports

which are featured by the component selected in the first combobox.

Depending on how the window was reached values may be entered in the provided controls.

However, a name for the role, a component, and the component’s port are mandatory to save

the alterations.

If a new role was created and saved correctly, then also a connection between the connector

and the selected component was created using the selected port. The connector holds this

new role which possesses a reference to this port as a node in the project xml-file.

4.4.7 Add / Edit Property

There are two ways of reaching this dialogue. First the add-

buttons on the right side of any properties listing opens it with

no values assigned to the controls. The second way is to double-

click to a general property in such a listing, whereby now the

controls feature the values of the property which are name,

type, value, and visibility.

Altering or choosing the type of the property means to alter the

type of value the property holds. However, the correctness of

Figure 4-11: Screenshot - Add Component to Connector

Figure 4-12: Screenshot - Add /

Edit Property

46

the value according to its type is not guaranteed by the HSAM-Tool.

The visibility attribute of the property is responsible to decide whether the property will be

considered when the project is exported or not.

All controls need to be filled with a value to save the property successfully.

4.4.8 Edit Special Property

Special properties are those which feature a single type of

value and only a defined range of values which can be

assigned to the property.

This dialogue opens after double-clicking on a special

property is performed.

The only way to add a special property to an element is to

add it as a default property by appending it to the

appropriate parent-node in the configuration xml- file.

Then the range of values needs to be defined in the

variables-section of the configuration xml.

Again, all controls need to hold values in order to save the alterations.

4.4.9 Add Component / Connector to Project

This window appears when clicking on the buttons to add

a component or connector located in the menustrip of

the main window.

For both elements the dialogue looks the same but the

outcome is a different one. Depending on which button

was pressed the dialogue creates the according element

for the current project when saved successfully.

To do so a name and type of the element needs to be

provided. The description is optional.

Figure 4-13: Screenshot - Edit Special

Property

Figure 4-14: Screenshot - Add Component

/ Connector

47

4.4.10 Add Composition to Project

To reach this dialogue a click on the appropriate button

located in the menustrip of the main window is required.

It allows the user to add a whole composition to the

current project. This composition needs to be saved into

the configuration xml-file prior to the importation to the

current project.

Selecting an existing composition is necessary to save the

alteration. To help the user decide, the lower text labels

hold additional information on the composition selected in

the upper combobox.

When a composition is imported, all its components,

connectors, and compositions are added to the current project.

4.4.11 Open Reader Connection

This window is reached by clicking on the right button in the

menustrip of the main window.

It allows the user to establish a connection to a RFID-reader or to

dissolve an existing one.

In order to connect to a reader if no connection exists, the right

COM-port needs to be chosen. In the next step, it can be tried to

establish the connection by clicking on the open reader-button. If the connection process is

successful, information on the connected reader is shown. Otherwise, the user gets prompted

to choose the right port.

If the dialogue is opened while a connection to a reader exists, the user can close the

connection by clicking on the close reader-button.

4.4.12 Refer Tag IDs

The dialogue to reference transponder IDs to specific element types

can only be accessed when a connection to a RFID-reader exists.

In order to establish such a reference, the user is asked to choose a

type of element that he wants to be referenced by the tag. Then he

places a transponder right in front of the reader as shown in Figure 3-3

to then hit the tag-button. If the establishing process is successful,

appropriate information will be shown in the information-section of

the window.

Figure 4-15: Screenshot - Add

Composition

Figure 4-16: Screenshot -

Reader Connection

Figure 4-17: Screenshot -

Refer Tag IDs

48

Referring a tag to multiple types of elements only stores the last executed one. The reference

itself will be stored in the project xml-file. Refer to chapter 4.2.2 for more information.

4.4.13 Read in Elements

As for the refer tag IDs-dialogue, there needs to be an

established connection to a RFID-reader before opening the

read in elements-dialogue.

If a connection exists, a tag which is placed directly in front of

the RFID-reader as shown in Figure 3-3 can be read in. There

will be feedback for the user according to the status of the

read in process. This feedback includes information on

whether a tag is found and a reference using this tag exists, or

a tag is found and no reference for this tag exists, or the tag is

not found at all.

However, there is one constraint the user has to follow in order to read in an architecture

successfully. Due to the way the HSAM-Tool handles the connections between components

and connectors, there always needs to be a connector to be read in before reading in

components. This is because otherwise a connection from a component to a connector could

not be generated automatically. Refer to chapter 3.3.2.1 for detailed information.

When reading in a referenced tag, the appropriate element will be created in the background

for the current project and, if the element is a component, connected to the prior read in

connector.

4.4.14 Edit Project Properties

This window can only be accessed

when a project is opened.

It lists the properties of the current

project which can be edited by

double-clicking on one of them.

Adding or deleting a property is

done by clicking on the according

button on the right side of the list.

Figure 4-18: Screenshot - Read in

Elements

Figure 4-19: Screenshot - Edit Project Properties

49

4.4.15 Configuration

This window provides controls to configure general

attributes of the HSAM-Tool.

It is split into two major domains. The first one holds

attributes for the visualization of a project’s

elements. The second one is for establishing a

connection to a RFID-reader.

Most of the attributes can only be assigned to a

defined range of values. However, the path for the

element visualizations is, as well as the settings for

the RFID-reader, set to operate in the used

environment.

Saving the alterations edits the values in the

configuration xml-file.

Figure 4-20: Screenshot - Configuration

5 Element Representations

In the following a list of fundamental elements needed to build a system architecture using

HSAM is presented. The list does not claim completeness and can be expanded as desired. The

basic elements were extracted from Dustdar
41

 and Birkhölzer
42

.

5.1 Definitions

In this part the various Lego bricks and the way they will be referred to in the further

document will be illustrated and described.

5.1.1 Lego-parts legend

Lego-parts are always described by three parameters. Those are height, length and width. In

general the default height is the one of the classic Lego-brick as shown in Figure 5-1. The

height will be described by the terms “brick” and “plate”. Table 5-1 shows the difference

between those expressions. If a brick’s height varies from these defaults it is mentioned

explicitly.

The length and width of a brick is categorized by the number of studs on top of the brick. In

case of the brick shown in Figure 5-1 it is therefore called a 2x4-brick. The smaller number of

both parameters is always placed first. Generally this is the width of the brick.

Figure 5-1: Classic 2x4 Lego-brick

The following table shows most relevant bricks and plates. However, the table does not list the

complete compendium of Lego-elements. Lego provides much more parts variable in size,

color and shape. Of course such extra parts can also be used to define individual elements.

41
 Dustdar, Gall, & Hauswirth, 2003

42
 Birkhölzer & Vaupel, 2003

51

1x1-brick

1x1-plate

1x2-brick

1x2-plate

1x4-brick

1x4-plate

2x4-brick

2x4-plate

8x12-plate

Table 5-1: Most important Lego-elements

5.1.2 Building instructions

Lego-elements have to be stacked in their predetermined way. Different elements can be

stacked on to each other to combine them. It is not allowed to misapply their studs or any

other parts to balance them so that the result is an unstable construction. See Figure 5-2 as

example for a valid construction and Figure 5-3 for a non valid construction example.

Figure 5-2: Valid Lego-Construction

Figure 5-3: None valid Lego-Construction

Two different Lego-parts are called “neighbors” when they are stacked to a pile or when they

are right next to each other so that the Lego-building is still a valid construction.

52

Figure 5-4: Non neighboring Lego-bricks

Figure 5-5: Neighboring Lego-bricks

When assembling various Lego-parts to a valid construction neighboring parts of the same

color (see Figure 5-4 and Figure 5-5) are understood to be of the same basic building element

as listed further below in this document. One exception is going to be the bricks holding the

RFID-transponders. See chapter 5.1.3 for further explanation.

Which Lego-bricks are used to build an element out of this catalogue is up to the constructor.

It is not compulsory to use the bricks described for each element. However, the constraints for

each element have to be followed.

5.1.3 RFID-Transponder integration

Because the used RFID-transponders are not self-adhesive they need to be integrated into

some Lego-bricks. Therefore some customization needs to take place.

5.1.3.1 Customize

The appointed bricks for holding the transponders are orange 2x4-bricks. Each transponder

needs to be embedded into two such bricks. To do so cut open the top of the first and the

bottom of the second brick (for this thesis a slotted screwdriver and a hammer was used) and

carefully stick the transponder into the brick with the opened top. The result will be the

bottom of the transponder-brick-construction. Then carefully attach the second brick with the

opened bottom on top of the first brick making sure that the transponder slides into its

opening so that the whole transponder will disappear in the center of those two bricks. The

following array of illustrations will visualize the process of customization.

Figure 5-6: Customized transponder

bricks

Figure 5-7: Lower brick holding

transponder

Figure 5-8: Full transponder

integration

5.1.3.2 Integrate

To integrate the transponder-bricks into the basic building elements simply attach the

transponder-bricks to the bricks used for the elements. Because the transponder-bricks

feature a unique color it is recommended to fully embed the bricks into the construction of the

element so that it is surrounded at least at two sides. If that is not possible, then the

construction of the element should be chosen in such a way that the attached transponder-

bricks intuitively appear to belong to the element. However, in such a case the transponder-

53

bricks are understood to belong and represent the element to which they are attached to. I.e.

an attached transponder-brick which is only connected to its element on one side can feature

another Lego-brick of the same color as the element requests at the opposite side and still

appears to represent one single element. Figure 5-9 illustrates such an element. The

transponder bricks are understood to be part of the whole element.

Figure 5-9: Valid transponder brick integration

5.2 Catalogue of Elements

The basic elements are separated by classification of matter into the categories Networks,

Client-Server, Publisher-Subscriber, Sender-Receiver, Master-Slave, Pipe-Filter, Database,

Model-View-Controller, Protocols, Miscellaneous, and Meta elements.

Each element is described by an introduction including its characterization, a construction plan

explaining how the element is built, and a value for being a connecting element or not. For

those elements used in the case study later on a guideline of principles defining how the

element can be applied, what meaning results of the way of its application, and what

variations in building the element are allowed. However, the application principles are only

valid for the case study presented in chapter 6 but of course can also be adapted for further

projects.

− General variations

For constructing reasons the shapes and sizes of all elements can differ from those shown in

the following list. Often transparency is higher when elements of the same type differ in size,

shape, location, and orientation.

More important elements can be built bigger or broader to indicate their importance.

Variation in size can emphasize differences between elements of the same kind, e.g. a web

server could be shaped differently than a mail server. Still both elements are servers and thus

they need to obey the main idea of their shape. I.e. no matter how the elements can be

altered and diversified in their appearance they still need to fulfill the requirements given by

this catalogue.

Due to the neighboring rule elements are also allowed to feature special variations which first

seem to violate the catalogues rules. E.g. a column can be added in order to guarantee the

integration of the element into the rest of the construction (see case study in chapter 6 for an

example). Therefore such special variations need to be limited enough so that the element can

still be interpreted as an element of its kind.

54

5.2.1 Networks

Elements in this group mostly represent a whole network. There are only router and firewall to

which this does not apply. If elements of this group occur in the same project the Lego

compositions of larger networks should be built larger than the ones of smaller networks. This

is because the size can already indicate the type of network the representation stands for.

5.2.1.1 Backbone

Backbones connect autonomous lower-level networks so that they

can exchange information.
43

5.2.1.1.1 Construction

− Color: Grey

− Layout: The backbone-element is built like a ring with the

height of at least two Lego-bricks. The length of the ring

has to include at least four Lego-bricks.

− Kind: Connector

5.2.1.2 Internet

The internet is the well known combination of so many sub-

networks distributed all over the world. It is decentralized and

therefore not subdued to any specific instance.
44

& 45

5.2.1.2.1 Construction

− Color: Black

− Layout: The internet-element is built like a ring with the

height of at least two Lego-bricks. The length of the ring

has to include at least four Lego-bricks.

− Kind: Connector

5.2.1.2.2 Principles of application

The size of the constructions indicates the size of the actual network. Therefore the internet

should be built the biggest of all networking elements.

5.2.1.3 Intranet

The big difference between Internet and Intranet is that within

the Intranet all attached components can be trusted. Therefore

Intranets are only operated by companies or other corporate

bodies.
46

43
 Broy & Spaniol, 1999

44
 Broy & Spaniol, 1999

45
 Klußmann, 2000

46
 Broy & Spaniol, 1999

Figure 5-10: Backbone

Figure 5-11: Internet

Figure 5-12: Intranet

55

5.2.1.3.1 Construction

− Color: Blue

− Layout: The Intranet-element is built like a ring with the height of at least two Lego-

bricks. The length of the ring has to include at least four Lego-bricks.

− Kind: Connector

5.2.1.3.2 Principles of application

The intranet is only used for simple connections between other elements. Therefore no special

variation is needed. It is built the smallest way to indicate no special meanings. However, in

the case study it features a special variation. Two 2x2 bricks are attached on top of the

intranet in order to provide a solid construction.

5.2.1.4 Local Area Network (LAN)

The LAN-element represents networks within the range of 10

kilometers. Mostly they are spread within buildings or

organizations.
47

5.2.1.4.1 Construction

− Color: White

− Layout: The LAN-element is built like a ring with the height

of at least two Lego-bricks. The circumference of the ring has to include at least four

Lego-bricks.

− Kind: Connector

5.2.1.4.2 Principles of application

Its circumference is an indication for how many elements can be connected to the LAN. Longer

circumferences therefore indicate a bigger LAN.

5.2.1.5 Metropolitan Area Network (MAN)

The MAN-element represents networks within the range of 20

kilometers. Its characteristics are its situation in an urban area and

its range of high data rates.
48

5.2.1.5.1 Construction

− Color: Red

− Layout: The MAN-element is built like a ring with the height

of at least two Lego-bricks. The length of the ring has to

include at least four Lego-bricks.

− Kind: Connector

47
 Klußmann, 2000

48
 Klußmann, 2000

Figure 5-13: LAN

Figure 5-14: MAN

56

5.2.1.6 Wide Area Network (WAN)

The WAN-element represents networks with a range of more than

10 kilometers. Often it provides backbone-like functionality.
49

5.2.1.6.1 Construction

− Color: Yellow

− Layout: The WAN-element is built like a ring with the height

of at least two Lego-bricks. The length of the ring has to

include at least four Lego-bricks.

− Kind: Connector

5.2.1.7 Storage Area Network (SAN)

According to Tate a SAN is a type of network which main eligibility is

to transfer data between computing elements and storing elements.

“A SAN can also be a storage system consisting of storage

elements, storage devices, computer systems, and/or

appliances, plus all control software, communicating over a

network.”
50

5.2.1.7.1 Construction

− Color: Black

− Layout: The shape for the element for SAN is a cross, whereat the length of each arm

of the cross has to be at least 2 studs.

− Kind: Connector

5.2.1.8 Firewall

 Generally firewalls are situated between a local network and the

internet. They provide a security concept for distributed systems. To do

that the user decides with the help of rules which connection to the other

side of the firewall can be trusted.
51

5.2.1.8.1 Construction

− Color: Yellow

− Layout: The element is built by stacking a 1x6 bridging brick on to a 1x6 brick.

− Kind: Component

5.2.1.8.2 Principles of application

The bend of the firewall’s arch is indicating its strictness. A higher arch stands for a greater

selection and thus for a stricter firewall.

49
 Klußmann, 2000

50
 Tate, Lucchese, & Moore, 2006

51
 Dustdar, Gall, & Hauswirth, 2003

Figure 5-15: WAN

Figure 5-16: SAN

Figure 5-17: Firewall

57

5.2.1.9 Router

The router is a switching component within a network. It makes sure

that any data traffic is forwarded to its destination.
52

5.2.1.9.1 Construction

− Color: Blue

− Layout: A router should be built like a pyramid. So use at

least two 2x4 bricks with a 2x2 brick on top.

− Kind: Component

52
 Klußmann, 2000

Figure 5-18: Router

58

5.2.2 Client – Server

Elements in this group are somehow related to the client-server pattern.

5.2.2.1 Client

A client is understood to be an entity which requests and receives

services. Those services are provided by any kind of server.
53

5.2.2.1.1 Construction

− Color: White

− Layout: Two beveled 2x2 bricks with the tops next to each other

on one 2x4 plate.

− Kind: Component

5.2.2.1.2 Principles of application

Clients of bigger size are of greater importance. The case study includes two clients each used

to maintain the LANs. Those are built bigger than the ones which only access the LAN in a using

manner. Further they are attached to the network in a more confirmative way. They contact

the LAN with the whole bottom of the client-construction whereas the other clients are

arranged normal to the LAN’s construction and thus only contact the LAN with a subarea at

their bottom.

5.2.2.2 Server

A server is a unit providing a special service. Those services which are used

by clients can be of any kind.
54

5.2.2.2.1 Construction

− Color: Black

− Layout: One 2x4 plate on two beveled 2x2 bricks with the tops

next to each other.

− Kind: Component

5.2.2.2.2 Principles of application

The size of the server indicates its meaning. In the case study the bigger servers represent the

application servers needed for the system. The smaller ones represent servers which are only

used by the system. However, they are not defined by it.

5.2.2.3 Bridge

The bridge-element is part of the Broker pattern in software

architecture. Its task is to guarantee the opportunity for a broker-

element to inter-operate with another broker-element.
55

53
 Broy & Spaniol, 1999

54
 Klußmann, 2000

55
 Lévy, Losavio, & Matteo, 1998, p. 2

Figure 5-19: Client

Figure 5-20: Server

Figure 5-21: Bridge

59

5.2.2.3.1 Construction

− Color: Black

− Layout: The element is built by stacking a 1x6 bridging brick on to a 1x6 plate.

− Kind: Component

5.2.2.4 Broker

In Lévy
56

 a broker-element is described to be: “… a messenger that

decouples clients and servers, registers and locates servers, locates

clients, forwards requests to servers, transmits results and exceptions

back to clients. Moreover, it offers an API (…) to clients and servers that

include operations for registering servers and for invoking server

methods.”

5.2.2.4.1 Construction

− Color: Black

− Layout: Two beveled 2x2 bricks with the tops next to each other on one 2x4 plate on

another two beveled 2x2 bricks with the tops next to each other.

− Kind: Component

5.2.2.5 Dispatcher

The dispatcher-element is part of the Client-Dispatcher-Server pattern.

It dissolves the direct connection of client and server to hide the details

about the connection from client and server and add a locally

transparency.
57

5.2.2.5.1 Construction

− Color: White

− Layout: Two beveled 2x2 bricks with the tops next to each other on one 2x4 plate on

another two beveled 2x2 bricks with the tops next to each other.

− Kind: Component

5.2.2.6 Load balancer

Wikipedia defines a load balancer the following way:

“…load balancing is a technique (usually performed by load

balancers) to spread work between many computers,

processes, hard disks or other resources in order to get

optimal resource utilization and decrease computing time.”
58

56
 Lévy, Losavio, & Matteo, 1998, p. 2

57
 Dustdar, Gall, & Hauswirth, 2003, S. 100

58
 Wikipedia, 2007

Figure 5-22: Broker

Figure 5-23: Dispatcher

Figure 5-24: Load balancer

60

5.2.2.6.1 Construction

− Color: Red

− Layout: Two 2x4 bricks are placed parallel but shifted next to each other. To connect

them another 2x4 brick is used which is stuck to both of them.

− Kind: Component

5.2.2.6.2 Principles of application

Because there is only one load balancer integrated to the system of the case study there are

no explicit variations.

61

5.2.3 Publisher – Subscriber

Elements in this group are related to the publisher-subscriber pattern.

5.2.3.1 Publisher

The publisher-element is part of the Publisher-Subscriber pattern. It is

likely that the status of the publisher changes. To inform the dependent

components of the software it provides notifications about its changes.
59

5.2.3.1.1 Construction

− Color: Yellow

− Layout: Two beveled 2x2 bricks with the highest sides next to

each other on one 2x4 plate on another two beveled 2x2 bricks with the highest sides

next to each other.

− Kind: Component

5.2.3.1.2 Principles of application

There is only one publisher integrated into the system of the case study. Therefore no

noteworthy variation is occurs.

5.2.3.2 Subscriber

The subscriber-element is part of the Publisher-Subscriber pattern. The

subscriber components of software need to be informed about changes

in the publisher component. Therefore they register at the publisher to

get notified in case of changes.
60

5.2.3.2.1 Construction

− Color: Yellow

− Layout: Two beveled 2x2 bricks with the highest sides next to each other on one 2x2

plate on another two beveled 2x2 bricks with the highest sides next to each other so

that the shape is a cross.

− Kind: Component

5.2.3.2.2 Principles of application

There is only one subscriber integrated into the system of the case study. Therefore no

noteworthy variation occurs.

59
 Dustdar, Gall, & Hauswirth, 2003, S. 103

60
 Dustdar, Gall, & Hauswirth, 2003, S. 103

Figure 5-25: Publisher

Figure 5-26: Subscriber

62

5.2.4 Sender – Receiver

Elements in this group are somehow related to the sender-receiver pattern.

5.2.4.1 Sender

The sender-element is part of communication oriented architectures. It

provides canals through which it sends information to prior subscribed

receivers.
61

5.2.4.1.1 Construction

− Color: Blue

− Layout: Two beveled 2x2 bricks with the highest sides next to each

other on one 2x4 plate on another two beveled 2x2 bricks with the highest sides next

to each other.

− Kind: Component

5.2.4.2 Receiver

The receiver-element is part of communication oriented architectures. It

is connected through canals to at least one sender. The sender feeds

information to the one end of a canal which provides this information to

the other end where the receiver can receipt it.
62

5.2.4.2.1 Construction

− Color: Blue

− Layout: Two beveled 2x2 bricks with the tops next to each other

on one 2x2 plate on another two beveled 2x2 bricks with the tops next to each other

so the result is cross-shaped.

− Kind: Component

5.2.4.3 Repeater

The repeater-element is part of communication oriented architectures in

which it is primarily responsible for the scaling of the system. Repeaters

receive information from senders or other repeaters to spread it out to

other repeaters or receivers.
63

5.2.4.3.1 Construction

− Color: Blue

− Layout: Four 1x2 beveled bricks are combined with the highest side to each other so

that from above the shape is a “X”. At least one 2x4 plate is used as bonding element.

− Kind: Component

61
 Dustdar, Gall, & Hauswirth, 2003, S. 234

62
 Dustdar, Gall, & Hauswirth, 2003, S. 234

63
 Dustdar, Gall, & Hauswirth, 2003, S. 232

Figure 5-28: Receiver

Figure 5-27: Sender

Figure 5-29: Repeater

63

5.2.4.4 Cache

The cache-element can be part of communication oriented architectures in

which a receiver loads its contents whenever it wants to.
64

 More generally it

works like a buffer.
65

5.2.4.4.1 Construction

− Color: Blue

− Layout: Build a construction shaped like a cross with the height of

two bricks.

− Kind: Component

5.2.4.5 Canal

Canals find their use in communication oriented architectures in which

they connect information providers to information consumers. Those

processors utilize canals to send or respectively receive information.
66

5.2.4.5.1 Construction

− Color: Green

− Layout: 2xN plates to combine existing elements

− Kind: Connector

64
 Dustdar, Gall, & Hauswirth, 2003, S. 235

65
 Klußmann, 2000

66
 Dustdar, Gall, & Hauswirth, 2003, S. 232

Figure 5-30: Cache

Figure 5-31: Canal

64

5.2.5 Master – Slaver

Elements in this group are related to the slave-master pattern.

5.2.5.1 Master

The master-element is part of the Master-Slave pattern. It divides the

main computation into several smaller tasks which it imposes on an

adequate amount of slaves so that it then can gather their

achievements to combine them to the main result.
67

5.2.5.1.1 Construction

− Color: Red

− Layout: Two beveled 2x2 bricks with the highest sides next to each other on one 2x4

plate on another two beveled 2x2 bricks with the highest sides next to each other.

− Kind: Component

5.2.5.2 Slave

The slave-element is part of the Master-Slave pattern. It receives tasks

from the master which it computes to return the result back to its

master.
68

5.2.5.2.1 Construction

− Color: Red

− Layout: Two beveled 2x2 bricks with the highest sides next to each

other on one 2x2 plate on another two beveled 2x2 bricks with the highest sides next

to each other so that the shape is a cross.

− Kind: Component

67
 Dustdar, Gall, & Hauswirth, 2003, S. 97

68
 Dustdar, Gall, & Hauswirth, 2003, S. 97

Figure 5-32: Master

Figure 5-33: Slave

65

5.2.6 Pipe – Filter

Elements in this group are related to the pipe-filter pattern.

5.2.6.1 Pipe

Pipes are the transporting part of the Pipe & Filter pattern. They provide

data to various filters so that they can compute it and return it back to a

pipe. This results in a dataflow which is processed in an array of

transformations done by the filter- and advanced by the pipe-elements.
69

5.2.6.1.1 Construction

− Color: Grey

− Layout: Two beveled 2x2 bricks with the highest sides next to each other on another

two beveled 2x2 bricks with the highest sides next to each other so that the shape is

skewed.

− Kind: Connector

5.2.6.2 Filter

Filters are the computing part of the Pipe & Filter pattern. They receive

data from a pipe which they transform and manipulate through local

rules of transformation so that they can return it back to a pipe.
70

&

71

5.2.6.2.1 Construction

− Color: Black

− Layout: Two beveled 2x2 bricks with the highest sides next to

each other on another two beveled 2x2 bricks with the highest sides next to each

other so that the shape is skewed.

− Kind: Component

69
 Dustdar, Gall, & Hauswirth, 2003, S. 77

70
 Dustdar, Gall, & Hauswirth, 2003, S. 77

71
 Birkhölzer & Vaupel, 2003, S. 87

Figure 5-35: Filter

Figure 5-34: Pipe

66

5.2.7 Database

Elements in this group are somehow related to the database pattern.

5.2.7.1 Database

As described in Broy
72

 databases are “structured collections of persistent data

which represents information.” The explicit illustration of its database

management system (DBMS) is not required.

5.2.7.1.1 Construction

− Color: Yellow

− Layout: Databases should be shaped like the letter “L”. In that manner there is a need

for at least one brick on top of another whereby the one beneath is longer than the

one on top. Both bricks must have the width and length of at least 2 studs.

− Kind: Component

5.2.7.1.2 Principles of application

There is only one database integrated into the system of the case study. Therefore no

noteworthy variation is occurred.

5.2.7.2 Database management system (DBMS)

DBMS-elements provide access to data and information stored on a

database. This element is only required when there is an explicit illustration

of the DBMS of a database needed.
73

5.2.7.2.1 Construction

− Color: Green

− Layout: NxM plates to combine existing elements

− Kind: Connector

72
 Broy & Spaniol, 1999

73
 Broy & Spaniol, 1999

Figure 5-36: Database

Figure 5-37: DBMS

67

5.2.8 Model – View – Controller

Elements in this group are related to the model-view-controller pattern.

5.2.8.1 Model

The model-element is part of the Model-View-Controller (MVC)

pattern. It is responsible for the main functionality and the data

management.
74

5.2.8.1.1 Construction

− Color: Black

− Layout: Models are composed by two plates at least 4x4 of size

which are used as ground and top respectively and at least two times two 1x4-bricks

stacked as the sides of the entity.

− Kind: Component

5.2.8.2 View

The view-element is part of the Model-View-Controller (MVC) pattern. It

is responsible for providing the information to the user.
75

5.2.8.2.1 Construction

− Color: Red

− Layout: Views are composed by two plates at least 4x4 of size

which are used as ground and top respectively and at least two

times two 1x4-bricks stacked as the sides of the entity.

− Kind: Component

5.2.8.3 Controller

The controller-element is part of the Model-View-Controller (MVC)

pattern. It is responsible to compute the user inputs, controlling-,

and coordination-procedures.
76

&

77

5.2.8.3.1 Construction

− Color: White

− Layout: Controllers are composed by two plates at least 4x4

of size which are used as ground and top respectively and

at least two times two 1x4-bricks stacked as the sides of the entity.

− Kind: Component

74
 Dustdar, Gall, & Hauswirth, 2003, S. 105

75
 Dustdar, Gall, & Hauswirth, 2003, S. 105

76
 Dustdar, Gall, & Hauswirth, 2003, S. 105

77
 Birkhölzer & Vaupel, 2003, S. 85

Figure 5-40: Controller

Figure 5-38: Model

Figure 5-39: View

68

5.2.9 Protocols

Protocols are always built with the help of Lego-plates. When they are used to only visualize

the interface to another element (like JDBC to a database) it’s sufficient to place an

appropriate plate on to the element to illustrate that interface. But when the goal is to

connect elements through a protocol (like HTTP in a network) 1xN plates should be used to

combine them. Therefore it is allowed to stack them but not to use bricks or plates with

different color.

5.2.9.1 File Transfer Protocol (FTP)

The Network Working Group specifies the goals of FTP as follows:

“The objectives of FTP are 1) to promote sharing of files (…), 2) to

encourage indirect or implicit (…) use of remote computers, 3) to

shield a user from variations in file storage systems among hosts,

and 4) to transfer data reliably and efficiently.”
78

5.2.9.1.1 Construction

− Color: Blue

− Layout: NxM plates to combine existing elements

− Kind: Connector

5.2.9.2 Hypertext Transfer Protocol (HTTP)

In RFC2616 of the Network Working Group HTTP is described as “an

application-level protocol for distributed, collaborative, hypermedia

information systems.”
79

5.2.9.2.1 Construction

− Color: Red

− Layout NxM plates to combine existing elements

− Kind: Connector

5.2.9.3 Java Database Connectivity (JDBC)

JDBC provides a standard to connect programs which are created with the

help of the programming language Java to a wide range of databases.
80

5.2.9.3.1 Construction

− Color: White

− Layout: NxM plates to combine existing elements

− Kind: Connector

78
 Postel & Reynolds, File Transfer Protocol (FTP), October 1985, p. 1

79
 Fielding, et al., June 1999, p. 7

80
 Sun Developer Network

Figure 5-41: FTP

Figure 5-42: HTTP

Figure 5-43: JDBC

69

5.2.9.4 Simple Mail Transfer Protocol (SMTP)

As specified in Klensin
81

 “the objective of (…) SMTP is to transfer mail reliably and

efficiently.” And its characteristic is to be “independent of the particular

transmission subsystem” and to “require only a reliable ordered data stream

channel.”

5.2.9.4.1 Construction

− Color: White

− Layout: NxM plates to combine existing elements

− Kind: Connector

5.2.9.5 Simple Object Access Protocol (SOAP)

In Gudgin
82

 SOAP is described as “a lightweight protocol intended for

exchanging structured information in a decentralized, distributed

environment.”

5.2.9.5.1 Construction

− Color: Pink

− Layout: NxM plates to combine existing elements

− Kind: Connector

5.2.9.6 Transmission Control Protocol (TCP)

RFC793 specifies TCP as followed:

„The Transmission Control Protocol (TCP) is intended for use as a highly

reliable host-to-host protocol between hosts in packet-switched computer

communication networks, and in interconnected systems of such

networks.“
83

5.2.9.6.1 Construction

− Color: Black

− Layout: NxM plates to combine existing elements

− Kind: Connector

5.2.9.7 User Datagram Protocol (UDP)

UDP, as defined in Postel
84

, “is defined to make available a datagram mode of

packed-switched computer communication in the environment of an interconnected

set of computer networks. (…) This protocol provides a procedure for application

programs to send messages to other programs with a minimum of protocol

mechanism.”

81
 Klensin, April 2001, p. 4

82
 Gudgin, Hadley, Mendelsohn, Moreau, & Frystyk Nielsen, 2003

83
 Information Science Institute, University of Southern California, September 1981

84
 Postel, User Datagram Protocol, August 1980

Figure 5-44: SMTP

Figure 5-45: SOAP

Figure 5-46: TCP

Figure 5-47: UDP

70

5.2.9.7.1 Construction

− Color: Black

− Layout: NxM plates to combine existing elements

− Kind: Connector

5.2.9.8 Extensible Markup Language (XML)

As defined in Bray
85

 XML “describes a class of data objects called XML

documents and partially describes the behavior of computer programs

which process them. (…) XML documents are made up of storage units

called entities.”

5.2.9.8.1 Construction

− Color: Orange

− Layout: NxM plates to combine existing elements

− Kind: Connector

85
 Bray, Paoli, Sperberg, Maler, & Yergeau, 2006

Figure 5-48: XML

71

5.2.10 Miscellaneous

Elements in this group are of miscellaneous nature.

5.2.10.1 Event

Events are part of event-based systems. Event-generators deliver their events

to an infrastructure which provides them to interested components.
86

5.2.10.1.1 Construction

− Color: Pink

− Layout: 2x2 brick

− Kind: Connector

5.2.10.2 Interface Engine

The Interface Engine is part of the Interface-Engine pattern. Its field of

application is to manage the data streams between independent

components. For that it is translating and adjusting the interfaces or

protocols of the involved components.
87

5.2.10.2.1 Construction

− Color: Grey

− Layout: Two beveled 2x2 bricks with the tops next to each

other on one 2x4 plate on another two beveled 2x2 bricks with the tops next to each

other.

− Kind: Component

5.2.10.3 Layer Borders

Layers divide software into a vertical hierarchy. They are like

packages which combine parts of a software so that their services

are provided to the next level of the hierarchy. On the other side

contents of a layer can access the services which are provided from

the lower level as well as of course the ones which are provided from

the software-parts within the same layer.
88

5.2.10.3.1 Construction

− Color: Yellow

− Layout: NxM plates to distinct existing elements

− Kind: Connector

86
 Dustdar, Gall, & Hauswirth, 2003, S. 241

87
 Birkhölzer & Vaupel, 2003, S. 83

88
 Zdun & Avgeriou, 2005, p. 6

Figure 5-49: Event

Figure 5-50: Interface Engine

Figure 5-51: Layer Borders

72

5.2.10.3.2 Principles of application

Contents of one layer can only access services provided by other software of the same layer or

by software contained in the underlying layer. Therefore a layer border shall always clearly

single out the range of a layer.

5.2.10.4 Observer

The observer-element is part of the Observer pattern. The observing

components of software need to be informed about changes in the

observed component. Therefore they register at the component of

interest to get notified in case of changes.
89

5.2.10.4.1 Construction

− Color: Blue

− Layout: Observers are composed by two plates at least 4x4 of size which are used as

ground and top respectively and at least two times two 1x4-bricks stacked as the sides

of the entity.

− Kind: Component

5.2.10.5 Repository

The repository-element combines equivalent components of systems to a

subsystem. It provides shared interfaces to all of those systems.
90

5.2.10.5.1 Construction

− Color: Red

− Layout: Repositories should be “L”-shaped. Therefore there is a

need for at least one brick on top of another whereby the one

beneath is longer than the one on top. Both bricks must have the width and length of

at least 2 studs.

− Kind: Component

5.2.10.6 Service

A service is some sort of functionality which is provided by a component so that

other components can access that functionality.
91

5.2.10.6.1 Construction

− Color: Green

− Layout: 2x2 plates to combine existing elements.

− Kind: Connector

89
 Naumovich, 2002

90
 Birkhölzer & Vaupel, 2003, S. 81

91
 Broy & Spaniol, 1999

Figure 5-52: Observer

Figure 5-53: Repository

Figure 5-54: Service

73

5.2.10.7 DataStream

The DataStream-element symbolizes like a canal the connection between

two or more components. The data the stream is transporting is sequentially

provided and often handled in real-time.
92

5.2.10.7.1 Construction

− Color: Blue

− Layout: 2xN plates to combine existing elements

− Kind: Connector

92
 Broy & Spaniol, 1999

Figure 5-55: DataStream

74

5.2.11 Meta

Meta-Elements are those kind of elements which are either not important for the architecture

itself but for the statics of the build Lego-construct or very special of their kind and so relevant

to the current project only. They are called meta-elements because they are only needed as

placeholder for special software classes or for arrangement purposes.

5.2.11.1 Unique Elements

Unique elements are elements which are only relevant to the current

project. They are too specifically to be used in other architectures. Such

elements might be classes and objects deliberately designed for the

software addressed by the current architecture.

5.2.11.1.1 Construction

− Color: Green

− Layout: Special elements can have any kind of layout due to

individual appliance

− Kind: Component

5.2.11.1.2 Principles of application

Unique elements need to be applied so that their meaning for the software is not changed or

lost. Appearance, layout and application of these elements are subdued to those of the other

elements. In that matter they have to be adjusted in a way so that they do not disturb any

other elements in their way to be built or applied.

5.2.11.2 Package

Package-elements are components, different to the ones listed above,

which need an explicit annotation. They fulfill all the criteria for

components (modularization, information hiding, data encapsulation,

abstraction) but are too specific to allow the usage of an element

above.
93

5.2.11.2.1 Construction

− Color: Grey

− Layout: Packages are composed by two grey plates at least 4x4 of size which are used

as ground and top respectively and at least two times two 1x4-bricks stacked as the

sides of the entity.

− Kind: Component

5.2.11.2.2 Principles of application

Packages symbolize a self-contained area within the software architecture. To address its

contents the appropriate Lego-bricks should be placed either on top or beneath the entity

depending on its wished meaning. They are especially used to realize compositions.

93
 Dustdar, Gall, & Hauswirth, 2003, S. 54

Figure 5-56: Unique Element

Figure 5-57: Package

75

If the elements within a package provide defined and dedicated services to address

their content all contained elements should be covered by a unique element which

represents those services before the package is closed.

A package can be placed within the whole architecture so that there is no possible way

to address it from outside. That means another component can only reach the content

of such a package through the surrounding environment.

5.2.11.3 Lego-Statics

Lego-static-elements are only used to guarantee for the statics of the

Lego-construction. The only application of these elements is to make sure

that the construct does not fall apart and is compact enough so that its

stability is assured.

5.2.11.3.1 Construction

− Color: Transparent

− Layout: Lego-Statics can have any kind of layout

− Kind: Special, due to no transponder integration

5.2.11.3.2 Principles of application

Appearance, layout and application of Lego-Statics are subdued to those of the other

elements. In that matter they have to be adjusted in a way so that they do not disturb any

other elements in their way to be built or applied.

Figure 5-58: Statics

6 Case Study

This case study describes how a hypothetical example becomes an expressive and versatile

guideline to generally handle a system which is meant to be implemented. The example uses

Haptic System Architecture Modeling to construct the rough architecture of a system which

then will be exported to Component Toolbox
94

 to model the software architecture upon this

system.

6.1 Introduction

− Commercial background

The marketing strategists of a big pharmaceutical company have perceived that direct sales of

over-the-counter drugs could enable a huge price advantage over the company’s competitors.

By doing so the company could obtain the European market leadership within a short range of

time and the production facilities could be utilized up to full capacity.

The perfect distribution channel therefore seems to be an online-shop. This strategy allows

rounding out the company’s incomplete product line-up with supplementing products of

selected partners. In order to anticipate eventual imitators the company wants to start the

online-shop simultaneously in all countries relevant for the market.

The company’s IT-department does possess neither knowledge, resources nor know-how to

successfully implement the aspired system. So the CTO (Chief technology officer) decides to

outsource the project.

Nevertheless he and his team are willing to roughly circumscribe the system’s core

architecture, to ensure that it is smoothly integrated into the existing IT landscape.

− Functional description

Customers should have the possibility to browse the product catalog using their Web- or WAP-

browser (for mobile devices), to order their desired products, and to pay for them with their

credit card.

Behind the scenes the orders are handled by the European central where they are processed

and then forwarded to the concerning national distribution center which takes care of the

actual shipping.

Assignments of the European central are:

94
 Hofstetter, 2007

77

− Providing the web shop with the own and the partners’ products

− Preprocessing the orders

− Checking the credit card information

− Booking the sales (in the central accounting system)

− Forwarding the order to the national distribution center

− Using existing and collecting new customer information to provide customer specific

offerings

− Forwarding of orders to the concerning distribution center

Assignments of the distribution centers are:

− Printing of delivery documents (bill, receipt, address, etc.)

− Prepackaging customers order

− Forwarding the package to the national delivery service

Due to expectations about the remarkable increased amount of orders based on the online

offering, the supply chain management needs to be improved. The inventory of the national

distribution centers and the European center need to be observed permanently. A purchase or

delivery order is activated automatically whenever the stock falls below a certain level. To

make sure the suppliers are prepared for the orders, so they on their side do not run into

problems with their subcontractors, the information about the current inventory state should

be made accessible to them.

So additionally to the assignments above, the European central has to provide:

− Observation of central warehouse

− Processing the orders of the national distribution centers

− Automatic order of products which stock falls under certain specific level in the

central store

− Providing up-to-date information about the distribution centers’ and its own inventory

to the suppliers

The national distribution centers have to fulfill the following tasks:

− Observation of national storage

− Keeping the European central and the suppliers up-to-date about their inventory

− Automated ordering of products which stocks fall under their critical level

− The company’s approach

The IT-department of the pharmaceutical company decides to use HSAM to model the current

status of the company’s system due to its straightforward and uncomplicated approach.

Due to the fact that neither the company’s IT-officer or his team ever used HSAM to design a

system they haven’t got a stock of prebuilt Lego compositions to represent specific elements.

So the officer calls in the element catalogue to find out how to build up each representation

78

for the elements they will define for the system in order to fulfill the prerequisites claimed by

HSAM.

Knowing how to build the Lego compositions the IT-officer assigns most participants to

construct basic representations, as shown in the first prerequisite. Simultaneously he orders a

small team to prepare Lego bricks so that they are capable of holding the RFID-transponders

and to integrate the tags into them, as described in the second prerequisite.

6.2 Prerequisites

At first the common prerequisites for successfully completing the HASM approach are

explained. Those are, to actually build representations of the different architectural elements

and the integration of the RFID transponders into those representations.

Both of the required prearrangements need to be done only once and their outcomes can be

reused for later projects.

6.2.1 Building Element Representations

Each system architecture requires a set of elements integrated, combined, and inter-

connected to each other. In order to realize an architecture using HSAM such elements need

to be represented by predefined Lego-compositions in order to be handled.

So, depending on how often a specific element is used in a system’s architecture, the

appropriate number of its instances needs to be built.

For the web shop system those elements are shown in the following table of illustrations. The

pictures below show the smallest possible realization of an element’s representation as

introduced by the catalogue of element representations. Of course the actual built ones differ

from those below.

79

Figure 6-1: Client

Figure 6-2: Server

Figure 6-3: Firewall

Figure 6-4: Publisher

Figure 6-5: Subscriber

Figure 6-6: Database

Figure 6-7: Internet

Figure 6-8: LAN

Figure 6-9: Intranet

6.2.2 Integrating Transponders

Integrating the RFID transponders to each element’s representation is the second prerequisite

to successfully execute HSAM.

In order to do so there is some customization of dedicated Lego bricks required. Orange 2x4-

bricks are chosen to be those transponder-holding-bricks.

There are always two such bricks needed to hold a single RFID transponder. One of them is

going to be the top of a simple construction in which both orange bricks are stuck on top of

each other so that all studs of the lower brick are covered by the one above.

Consequently, in the bottom of the upper brick a slot needs to be made so that later on a

transponder can be inserted. The same is required for the lower brick for which a slot is

required on its top side. Then a transponder can be stuck into one of the slots so that when

plugging the bricks to each other the transponder disappears into the slot of the second brick.

The following sequence of illustrations demonstrates this subject.

80

Figure 6-10: Integrated

Transponder

Figure 6-11: Transponder Bricks

Figure 6-12: Closed Transponder

Bricks

When the transponders are integrated to the transponder bricks, the last necessary step is to

build in those bricks into the element representations.

Due to the short range of the RFID reader, the transponder bricks need to be located at the

outside of the representations. I.e. they should not be fully surrounded by the bricks used to

build the representation.

However, the distinct orange bricks should be added to a Lego composition in such a way, that

it is obvious that the transponder bricks belong to the representation which references to the

kind of element the transponder is tagged to. I.e. as far as possible the bricks should not be

able to touch any other representation than the one they are added to.

If for any reason an obvious integration is not possible, e.g. for protocols, then the transponder

bricks should be located in a way that at least no other representation within the architecture

gets in touch with those orange bricks.

The following illustrations show the element representations holding each a transponder brick

and used for the web shop system later on.

81

Figure 6-13: Client with Transponder

Bricks

Figure 6-14: Server with

Transponder Bricks

Figure 6-15: Firewall with

Transponder Bricks

Figure 6-16: Load balancer with

Transponder Bricks

Figure 6-17: Publisher / Subscriber

with Transponder Bricks

Figure 6-18: Database with

Transponder Bricks

Figure 6-19: Internet with Transponder

Bricks

Figure 6-20: LAN with Transponder

Bricks

Figure 6-21: Intranet with

Transponder Bricks

6.3 Process HSAM

This section describes how the company’s IT-officer and his team complete the recurring

actions in order to correctly process HSAM. Those actions are the following:

− Find all architectural elements

− Shape those elements

− Tag those elements

− Build the architecture

− Read in the architecture

− Configure its elements

− Export the architecture

6.3.1 Architectural Elements

The IT-officer arranges a meeting with specialists from the sub-departments to conduct the

process specified by this new approach.

Together they gather around a table to, first, brainstorm for elements which are in use for the

current system. For that, some of the coworkers brought files which contain detailed

82

information about parts of the system, like the configurations of the workstations or how the

local and international networks are built up.

The IT-officer defines, as the first step for the working team to do, to find distinct elements of

the system which would be relevant to a web-shop-system based on the information all the

participants brought along. The following listing is the result of the analysis for each the

international as well as the national network:

− International network:

> Admin client

> Firewall

> Database

> Stock-server

> Accounting-server

> Application-server

− National network:

> Admin client

> Firewall

> Application-server

Of course they notice that the existing parts of the system which would be useful for a web

shop are not sufficient. So the IT-officer orders to brainstorm for additional elements such a

targeted system would require. They all agree that the following list of additional elements is

required:

− Customer PC: The web-shop needs to consider possible customers, who visit the shop

using a conventional browser,

− Customer Mobile: The company would like to also make the shop available for mobile

devices,

− Load balancer: Because of the predicted impact of the new way of sale the IT-officer

wants to make sure no delay for visiting the shop should occur,

− Web-server: All the participants agree that the shop should run on dedicated servers,

− Firewall: Due to security reasons firewalls should be installed between the load

balancer and the internet and between the web server and the international network,

− Publisher: The team wants to provide a publisher at the international network in order

enable the company’s headquarter to inform the national networks about important

incidents,

− Subscriber: On the other side the national network needs a subscriber to be able to get

informed through the publisher,

− Stock-server: Because the national office takes over the shipping of the articles which

can be ordered through the web shop it needs to feature a warehouse. The stock

server provides the system about its condition,

− Print-server: The national distribution center should be in charge to provide the

accompanying papers of a purchase to the customers,

83

− Billing server: The team knows that another company is already providing a billing

server which now should be used by the web shop system,

− Content server: An external content server seems to be handy to scale the web-shop

functionality,

− Supplier server: The new system should offer suppliers the possibility to autonomous

service their products. The updates for the web shop should be gotten through a

provided server;

6.3.2 Shaping Elements

After double-checking the list of system elements they need for the shop system the team-

leader reads through the next step of the instructions noticing that varying the shapes of the

Lego composition facilitates the distinction of elements of the same kind. So he orders the

element-building-group to alter the shapes of some elements to assign special attributes to

them.

After combining the two team’s work so that they now have variable shaped element

representations with integrated transponder bricks the outcome looks like the following:

− Clients:

The team identified four clients whereas the two

broader ones represent the administration clients for

the national and the international network. The other

two are for possible customers using a browser or

WAP-access.

Figure 6-22: Case Study - Clients

− Servers:

Multiple servers are needed to represent both external

servers as well as servers defined by the new system.

The broader shaped elements stand for either

application servers or a web server.

Figure 6-23: Case Study - Servers

− Firewalls:

Because the web server should obtain an own access to

the internet another two firewalls are needed. The

ones which consist of a higher arch represent firewalls

which are located between the internet and the

system. The other one should be located between the

international network and the web server.

Figure 6-24: Case Study - Firewalls

− Database:

There is need for only one database so that there was

no alteration of its shape required.

Figure 6-25: Case Study - Database

84

− Load balancer:

As for the database, only one load balancer is needed

to build up the system’s architecture.

Figure 6-26: Case Study - Load balancer

− Publisher - Subscriber:

Publisher and subscriber are only appearing once in the

system. Nevertheless, the IT-officer wants them to be

of same size.

Figure 6-27: Case Study - Publisher-

Subscriber

− Internet:

A single Lego composition is needed to represent the

internet. But because in reality it is the biggest network

the team also builds it the biggest network in the

system.

Figure 6-28: Case Study - Internet

− LANs:

There are two representations required for LAN. The

smaller ring should stand for the national and the

bigger one for the international LAN.

Figure 6-29: Case Study - LANs

− Intranets:

Because the IT-officer learned that a component can

only be connected to a connecting element they add

some intranet elements to be capable of connecting

the appropriate elements.

Figure 6-30: Case Study - Intranets

6.3.3 Tagging Elements

The IT-officer now follows the next step of the HSAM-instructions to tag each element with its

appropriate type using the HSAM-Tool. To do so, he previously told the proper department of

the company to purchase the same RFID-reader as used in the instructions to guarantee its

successful execution as well as installed the tool as mentioned in the user guide.

In order to successfully tag each Lego composition the IT-officer

first needs to connect the reader to the HSAM-Tool. As he had

found out earlier the reader will be connected through COM-

port 3. So he selects the appropriate port in the list and

establishes the connection to it.

After the tool has detected the RFID-reader and created the

Figure 6-31: Connecting the reader

connection, it provides some information to the user so that the reader can be identified as

the one which is needed for the tagging process.

When the reader is connected to the HSAM

opens the dialogue to tag each element. He takes one element

representation after each other to place it right in front of the

reader (see Figure 6-33), chooses the right kind of element in the

list of the tagging dialogue (

appropriate button so that the tool references the tag

selected kind of element.

He repeats this step for each of the elements he and his team

have decided to add to the web shop system.

Figure 6-33: Tag element with reader

After the references from

established the IT-officer disconnects the RFID reader from the tool as it will not be needed

anymore for some time.

6.3.4 Building the Architecture

Now that all is set to construct

different ways to attach the elements to each other

the possible outcomes until they have the

construction.

The following illustration

architecture, and, at last, the resulting Lego

connection, it provides some information to the user so that the reader can be identified as

the one which is needed for the tagging process.

When the reader is connected to the HSAM-Tool the IT-officer

opens the dialogue to tag each element. He takes one element

representation after each other to place it right in front of the

chooses the right kind of element in the

list of the tagging dialogue (see Figure 6-32), and hits the

appropriate button so that the tool references the tag-id to the

He repeats this step for each of the elements he and his team

have decided to add to the web shop system.

: Tag element with reader

After the references from all representations to their appropriate kind of element are

officer disconnects the RFID reader from the tool as it will not be needed

Building the Architecture

Now that all is set to construct the architecture using the Lego compositions

different ways to attach the elements to each other interchanging ideas and thoughts about

until they have the same opinion about the cor

The following illustrations show some intermediate results, an attempts for the whole

the resulting Lego-construction of their work.

Figure

85

connection, it provides some information to the user so that the reader can be identified as

representations to their appropriate kind of element are

officer disconnects the RFID reader from the tool as it will not be needed

architecture using the Lego compositions, the team tries

interchanging ideas and thoughts about

same opinion about the correctness of their

attempts for the whole

Figure 6-32: Tag an element

86

Figure 6-34: Wrong approach to desired system architecture

Figure 6-34 shows an example of the whole architecture but some of the team members

wanted to discard this result because they had concerns about the security of the whole

system. They insisted on adding firewalls between the internet and the load balancer and

between the international LAN and the web server. Furthermore, they thought that an extra

connection between the international LAN and the internet would be advantageous. The team

members wanted to provide a direct connection to the internet for the application server

within the international LAN.

Figure 6-35: Intermediate result - international LAN

Figure 6-36: Intermediate result - web server

connection

Figure 6-35 shows the intermediate result for the international LAN. It already connects all the

relevant components but still misses the connections to the other parts of the architecture,

like the internet or the web server.

Figure 6-36 illustrates the structure for the web server. It provides a firewall on both ends to

be connected to the international LAN as well as the internet. The web server and the load

balancer are connected through intranet elements.

87

Figure 6-37: The resulting web shop system built with HSAM

However, Figure 6-37 shows the result of the web shop’s system architecture the IT-officer and

all his team members are satisfied with.

After the successful construction of the company’s current system architecture the IT-officer

supervises the validation process of the system done by his team. Because the working group

already performed validation tests during the construction process, as can be seen comparing

Figure 6-35 and Figure 6-36 to Figure 6-34, no alterations of the Lego building are needed so

that the final test is only necessary for a final check.

6.3.5 Read in the Architecture

Now that the construction part of HSAM is done the IT-

officer uses the HSAM-Tool to, once again, connect the

RFID reader to the HSAM-Tool. Then he opens the

appropriate dialogue to read in each element (see

Figure 6-38).

To do so the IT-officer places the reader in front of

each element so that the head of the reader points

directly to the transponder bricks of the representation

(see Figure 6-39).

He performs the read in process in the following

sequence: First the IT-officer reads in a connecting

element to then read in all the components it is connecting. He consequently repeats this step

for each connector in order to already establish the right connections between components

and connectors as he reads in the architecture.

Figure 6-38: Read in an element

The read in process opens the opportunity to configure an element while it’s still obvious what

element just was handled. Because there is no possibility for the too

values for the properties of an element

turn makes it harder for the team to provide the proper values to the appropriate properties in

case of configuration after the whole read

6.3.6 Configuring the Elements

So the IT-officer decides that after each successful read in the element should be provided

with the appropriate values for its properties based on the numerous papers the participants

brought along.

By double-clicking on an element listed in the HSAM

reaches the element’s details

configure all attributes and properties provided as default by the HSAM

additional information as properties to the element.

Figure 6-39: Read in an element of the architecture

The read in process opens the opportunity to configure an element while it’s still obvious what

element just was handled. Because there is no possibility for the tool to identify the exact

values for the properties of an element, it adds default values to the read in one

makes it harder for the team to provide the proper values to the appropriate properties in

case of configuration after the whole read in process.

Configuring the Elements

officer decides that after each successful read in the element should be provided

with the appropriate values for its properties based on the numerous papers the participants

g on an element listed in the HSAM-Tool on the left side

details (see Figure 6-41). With the help of the appearing dialogue he can

configure all attributes and properties provided as default by the HSAM

additional information as properties to the element.

88

The read in process opens the opportunity to configure an element while it’s still obvious what

l to identify the exact

it adds default values to the read in ones, which in

makes it harder for the team to provide the proper values to the appropriate properties in

officer decides that after each successful read in the element should be provided

with the appropriate values for its properties based on the numerous papers the participants

Tool on the left side (see Figure 6-40) he

With the help of the appearing dialogue he can

configure all attributes and properties provided as default by the HSAM-Tool as well as add

89

Figure 6-40: Read in architecture

Figure 6-41: Component's details

90

More attention is to turn to the default properties provided by the program for each element

relevant to export the project to Component Toolbox. Some properties which are provided by

the HSAM-Tool define fundamental attributes for the system in Component Toolbox. Those

attributes are now matter of interest for the workgroup. Through them the team around the

IT-officer defines at what stage of implementation each element needs to be realized.

Those stages of implementation are the physical component itself, the execution environment

and the kind of application. Physical component defines in what physical way the component

is realized in the real world. Execution environment specifies the kind of operating system the

following applications are based on. And application defines what kind of application

corresponds to the component.

So for each component the team chooses its physical character as value of the parameter

physical component. E.g. for servers which only provide services for the web shop but cannot

be affected by the system, like the supplier-server, they define externalSystem for its value.

As the team can configure the physical component they can choose the character for the

execution environment and the application.

Of course the team specifies more parameters and their values for each element based on the

information they extract out of their documents. All the entered values can be seen in the

project xml provided by the next step.

6.3.7 Exporting the Architecture

The actual building and handling part of the HSAM approach is now done. The IT-officer has to

decide how to proceed with the architecture from now on.

At first he saves the project which now consists of all elements they have read in plus their

specifications they have extracted out of their papers. He orders a team member to file it for

archive purposes. The saved project looks like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>

<Project xml-version="1.0" name="CaseStudy" author="IT-officer"

 date="16.09.2007 14:18:20" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

 instance" xsi:noNamespaceSchemaLocation="HSAM.xsd">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Components>

 <Component name="CustomerPc" type="client" description="Customer PC"

 id="client1">

 <Properties>

 <Property name="physicalComponent" type="string" value="WorkStation"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="String" value="variable" meta="invisible"/>

91

 <Property name="RAM" type="String" value="variable" meta="invisible"/>

 <Property name="HD" type="String" value="variable" meta="invisible" />

 <Property name="OS" type="String" value="variable" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="client1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="CustomerMobile" type="client" description="Customer

 Mobile" id="client2">

 <Properties>

 <Property name="physicalComponent" type="string" value="MobileDevice"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="MidletContainer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="String" value="variable" meta="invisible"/>

 <Property name="RAM" type="String" value="variable" meta="invisible"/>

 <Property name="HD" type="String" value="variable" meta="invisible" />

 <Property name="OS" type="String" value="variable" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="client2_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="AdminNational" type="client" description="National Admin"

 id="client3">

 <Properties>

 <Property name="physicalComponent" type="string" value="WorkStation"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="Integer" value="2400" meta="visible" />

 <Property name="RAM" type="Integer" value="2048" meta="visible" />

 <Property name="HD" type="Integer" value="80" meta="visible" />

 <Property name="OS" type="String" value="WinXP" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="client3_port1">

 <Properties>

92

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="AdminInternational" type="client"

 description="International Client" id="client4">

 <Properties>

 <Property name="physicalComponent" type="string" value="WorkStation"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="Integer" value="2400" meta="visible" />

 <Property name="RAM" type="Integer" value="2048" meta="visible" />

 <Property name="HD" type="Integer" value="80" meta="visible" />

 <Property name="OS" type="String" value="WinXP" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="client4_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="FirewallNational" type="firewall" description="National

 Firewall" id="firewall1">

 <Properties>

 <Property name="physicalComponent" type="string" value="GenericDevice"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="Firewall"

 meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="firewall1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="FireInternational" type="firewall" description="Firewall

 for international AppServer" id="firewall2">

 <Properties>

 <Property name="physicalComponent" type="string" value="GenericDevice"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="Firewall"

93

 meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="firewall2_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="FirewallWebServer" type="firewall" description="Firewall

 for WebServers" id="firewall3">

 <Properties>

 <Property name="physicalComponent" type="string" value="GenericDevice"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="Firewall"

 meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="firewall3_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="FirewallIntLan" type="firewall" description="Firewall for

 international Lan" id="firewall4">

 <Properties>

 <Property name="physicalComponent" type="string" value="GenericDevice"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="Firewall"

 meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="firewall4_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="Loadbalancer" type="loadbalancer"

 description="Loabbalancer for WebServers" id="loadbalancer1">

 <Properties>

 <Property name="physicalComponent" type="string" value="GenericDevice"

 meta="visible" />

94

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="LoadBalancer"

 meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="loadbalancer1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="Database" type="database" description="Database for

 Customers & Products" id="database1">

 <Properties>

 <Property name="physicalComponent" type="string" value="MainFrame"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="Database"

 meta="visible" />

 <Property name="CPU" type="Integer" value="3000" meta="visible" />

 <Property name="RAM" type="Integer" value="8192" meta="visible" />

 <Property name="HD" type="Integer" value="160" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="database1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="Publisher" type="publisher" description="Publisher in

 international Lan" id="publisher1">

 <Properties>

 <Property name="physicalComponent" type="string" value="MainFrame"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="MessagingSystem"

 meta="visible" />

 <Property name="CPU" type="Integer" value="2400" meta="visible" />

 <Property name="RAM" type="Integer" value="8192" meta="visible" />

 <Property name="HD" type="Integer" value="160" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="publisher1_port1">

95

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="Subscriber" type="subscriber" description="Subscriber for

 national Lan" id="subscriber1">

 <Properties>

 <Property name="physicalComponent" type="string" value="MainFrame"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="MessagingSystem"

 meta="visible" />

 <Property name="CPU" type="Integer" value="2400" meta="visible" />

 <Property name="RAM" type="Integer" value="8192" meta="visible" />

 <Property name="HD" type="Integer" value="120" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="subscriber1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="BillingServer" type="server" description="external

 billing server" id="server1">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server1_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="SupplierServer" type="server" description="external

 SupplierServer" id="server2">

 <Properties>

96

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server2_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="ContentServer" type="server" description="external

 ContentServer" id="server3">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server3_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="StockServerNational" type="server" description="external

 StockServer for national Lan" id="server4">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

97

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server4_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="StockServerInternational" type="server"

 description="external StockServer for international Lan" id="server5">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server5_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="PrintServer" type="server" description="external

 PrintServer for international Lan" id="server6">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server6_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

98

 </Port>

 </Ports>

 </Component>

 <Component name="AccountinServer" type="server" description="external

 AccountingServer for international Lan" id="server7">

 <Properties>

 <Property name="physicalComponent" type="string"

 value="ExternalSystem" meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="unspecified" meta="invisible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="integer" value="" meta="invisible" />

 <Property name="RAM" type="integer" value="" meta="invisible" />

 <Property name="HD" type="integer" value="" meta="invisible" />

 <Property name="OS" type="string" value="" meta="invisible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server7_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="ApplicationServerNational" type="server"

 description="ApplicationServer for national Lan" id="server8">

 <Properties>

 <Property name="physicalComponent" type="string" value="OfficeServer"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="ApplicationServer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="Integer" value="2000" meta="visible" />

 <Property name="RAM" type="Integer" value="16384" meta="visible" />

 <Property name="HD" type="Integer" value="100" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server8_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="ApplicationServerInternational" type="server"

 description="ApplicationServer for international Lan" id="server9">

 <Properties>

 <Property name="physicalComponent" type="string" value="OfficeServer"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

99

 value="ApplicationServer" meta="visible" />

 <Property name="application" type="string" value="unspecified"

 meta="invisible" />

 <Property name="CPU" type="Integer" value="2000" meta="visible" />

 <Property name="RAM" type="Integer" value="16384" meta="visible" />

 <Property name="HD" type="Integer" value="100" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server9_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 <Component name="WebServer" type="server" description="WebServers"

 id="server10">

 <Properties>

 <Property name="physicalComponent" type="string" value="MainFrame"

 meta="visible" />

 <Property name="executionEnvironment" type="string"

 value="GenericContainer" meta="visible" />

 <Property name="application" type="string" value="WebServer"

 meta="visible" />

 <Property name="CPU" type="Integer" value="2000" meta="visible" />

 <Property name="RAM" type="Integer" value="16384" meta="visible" />

 <Property name="HD" type="Integer" value="100" meta="visible" />

 <Property name="OS" type="String" value="SUSE" meta="visible" />

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 </Properties>

 <Ports>

 <Port name="defaultPort" description="Default Port"

 id="server10_port1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Port>

 </Ports>

 </Component>

 </Components>

 <Connectors>

 <Connector name="Internet" type="internet"

 description="Internetconnection" id="con1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="1000"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="customerPCRole" description="" port_ref="client1_port1"

 id="con1_role1">

 <Properties>

100

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="customerMobileRole" description=""

 port_ref="client2_port1" id="con1_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="firewallNational" description=""

 port_ref="firewall1_port1" id="con1_role3">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="firewallInternational" description=""

 port_ref="firewall2_port1" id="con1_role4">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="firewallLoad" description="" port_ref="firewall3_port1"

 id="con1_role5">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="billing" description="" port_ref="server1_port1"

 id="con1_role6">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="supplier" description="" port_ref="server2_port1"

 id="con1_role7">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="content" description="" port_ref="server3_port1"

 id="con1_role8">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="NationalLan" type="lan" description="national Lan"

 id="con2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

101

 <Role name="adminRole" description="" port_ref="client3_port1"

 id="con2_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="subscriber" description="" port_ref="subscriber1_port1"

 id="con2_role3">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="stock" description="" port_ref="server4_port1"

 id="con2_role4">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="print" description="" port_ref="server6_port1"

 id="con2_role5">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="appserver" description="" port_ref="server8_port1"

 id="con2_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="InternationalLan" type="lan" description="International

 Lan" id="con3">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="firewall" description="" port_ref="firewall4_port1"

 id="con3_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="database" description="" port_ref="database1_port1"

 id="con3_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="admin" description="" port_ref="client4_port1"

 id="con3_role3">

 <Properties>

102

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="publisher" description="" port_ref="publisher1_port1"

 id="con3_role4">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="appserver" description="" port_ref="server9_port1"

 id="con3_role5">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="accounting" description="" port_ref="server7_port1"

 id="con3_role6">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="stock" description="" port_ref="server5_port1"

 id="con3_role7">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="Web2Load" type="intranet" description="Intranet between

 webserver and loadbalancer" id="con5">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="web" description="" port_ref="server10_port1"

 id="con5_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="load" description="" port_ref="loadbalancer1_port1"

 id="con5_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="Load2Firewall" type="intranet" description="Intranet

 between Loadbalancer and firewall" id="con6">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

103

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="fire" description="" port_ref="firewall3_port1"

 id="con6_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="load" description="" port_ref="loadbalancer1_port1"

 id="con6_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="Fire2Web" type="intranet"

 description="Firewall2WebServer" id="con7">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="fire" description="" port_ref="firewall4_port1"

 id="con7_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="web" description="" port_ref="server10_port1"

 id="con7_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="NatApp2Fire" type="intranet" description="Connection

 between national AppServer & Firewall" id="con8">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="fire" description="" port_ref="firewall1_port1"

 id="con8_role1">

 <Properties>

104

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="appserver" description="" port_ref="server8_port1"

 id="con8_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 <Connector name="IntApp2Fire" type="intranet" description="Connection

 between international AppServer & Firewall" id="con4">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="invisible" />

 <Property name="TransportProtocol" type="String" value="TCP/IP"

 meta="visible" />

 <Property name="Max_Bandwidth_mb" type="Integer" value="2048"

 meta="visible" />

 </Properties>

 <Roles>

 <Role name="firewall" description="" port_ref="firewall2_port1"

 id="con4_role1">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 <Role name="appserver" description="" port_ref="server9_port1"

 id="con4_role2">

 <Properties>

 <Property name="Constraint" type="OCL" value="" meta="" />

 </Properties>

 </Role>

 </Roles>

 </Connector>

 </Connectors>

 <Compositions />

 <TransponderIDs />

</Project>

Because the original intention was to let another company deal with the implementation of

the software upon the built system the IT-officer needs to export the project to some kind of

further usable format.

The decision falls to the ctb-format because the company already found a consignee which

uses the Component Toolbox for creating software architectures. So he executes the

exportation function of the HSAM-Tool which generates the following ctb-file:

<?xml version="1.0" encoding="UTF-8"?>

<ctb:Diagram xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ctb="http://ctb.com">

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="WorkStation">

 <executionEnvironments Typ="GenericContainer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="MobileDevice">

105

 <executionEnvironments Typ="MidletContainer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="WorkStation"

 CPU="2400" RAM="2048" HD="80" OS="WinXP">

 <executionEnvironments Typ="GenericContainer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="WorkStation"

 CPU="2400" RAM="2048" HD="80" OS="WinXP">

 <executionEnvironments Typ="GenericContainer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="GenericDevice">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="Firewall" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="GenericDevice">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="Firewall" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="GenericDevice">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="Firewall" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="GenericDevice">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="Firewall" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="GenericDevice">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="LoadBalancer" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="MainFrame"

 CPU="3000" RAM="8192" HD="160" OS="SUSE">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="Database" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="MainFrame"

 CPU="2400" RAM="8192" HD="160" OS="SUSE">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="MessagingSystem" />

 </executionEnvironments>

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="MainFrame"

 CPU="2400" RAM="8192" HD="120" OS="SUSE">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="MessagingSystem" />

 </executionEnvironments>

 </physicalComponents>

 <externalSystems Functionality="BillingServer" />

 <externalSystems Functionality="SupplierServer" />

 <externalSystems Functionality="ContentServer" />

 <externalSystems Functionality="StockServerNational" />

106

 <externalSystems Functionality="StockServerInternational" />

 <externalSystems Functionality="PrintServer" />

 <externalSystems Functionality="AccountinServer" />

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="OfficeServer"

 CPU="2000" RAM="16384" HD="100" OS="SUSE">

 <executionEnvironments Typ="ApplicationServer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="OfficeServer"

 CPU="2000" RAM="16384" HD="100" OS="SUSE">

 <executionEnvironments Typ="ApplicationServer" />

 </physicalComponents>

 <physicalComponents xsi:type="ctb:PhysicalComponent" Typ="MainFrame"

 CPU="2000" RAM="16384" HD="100" OS="SUSE">

 <executionEnvironments Typ="GenericContainer">

 <applications Typ="WebServer" />

 </executionEnvironments>

 </physicalComponents>

 <networks NetworkTyp="internet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="1000" />

 <networks NetworkTyp="lan" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="lan" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="intranet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="intranet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="intranet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="intranet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networks NetworkTyp="intranet" TransportProtocol="TCP/IP"

 Max_Bandwidth_mb="2048" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.0" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.1" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.4" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.5" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@physicalComponents.6" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@externalSystems.0" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@externalSystems.1" />

 <networkConnections targetNetwork="//@networks.0"

 sourceComponent="//@externalSystems.2" />

 <networkConnections targetNetwork="//@networks.1"

 sourceComponent="//@physicalComponents.2" />

 <networkConnections targetNetwork="//@networks.1"

 sourceComponent="//@physicalComponents.11" />

 <networkConnections targetNetwork="//@networks.1"

 sourceComponent="//@externalSystems.3" />

 <networkConnections targetNetwork="//@networks.1"

 sourceComponent="//@externalSystems.5" />

107

 <networkConnections targetNetwork="//@networks.1"

 sourceComponent="//@physicalComponents.12" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@physicalComponents.7" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@physicalComponents.9" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@physicalComponents.3" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@physicalComponents.10" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@physicalComponents.13" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@externalSystems.6" />

 <networkConnections targetNetwork="//@networks.2"

 sourceComponent="//@externalSystems.4" />

 <networkConnections targetNetwork="//@networks.3"

 sourceComponent="//@physicalComponents.14" />

 <networkConnections targetNetwork="//@networks.3"

 sourceComponent="//@physicalComponents.8" />

 <networkConnections targetNetwork="//@networks.4"

 sourceComponent="//@physicalComponents.6" />

 <networkConnections targetNetwork="//@networks.4"

 sourceComponent="//@physicalComponents.8" />

 <networkConnections targetNetwork="//@networks.5"

 sourceComponent="//@physicalComponents.7" />

 <networkConnections targetNetwork="//@networks.5"

 sourceComponent="//@physicalComponents.14" />

 <networkConnections targetNetwork="//@networks.6"

 sourceComponent="//@physicalComponents.4" />

 <networkConnections targetNetwork="//@networks.6"

 sourceComponent="//@physicalComponents.12" />

 <networkConnections targetNetwork="//@networks.7"

 sourceComponent="//@physicalComponents.5" />

 <networkConnections targetNetwork="//@networks.7"

 sourceComponent="//@physicalComponents.13" />

</ctb:Diagram>

This file is now the interface to be provided for the consignee who is willing to implement the

software architecture upon the company’s system. Together with the functional description of

the web shop the IT-officer hands this exportation over to the implementing company and

with that finishes the process of HSAM.

7 Conclusion

This thesis introduced a new haptic approach to create system architectures. It can be used to

develop, build, communicate, and file such architectures.

In the beginning, there was a discussion about the state of the art. Today, software and system

architects need to fulfill widespread requirements which start at being a technical advisor and

end as communicator of the architecture to all kinds of stakeholders. As systems and software

become more complex these days, the role of the architects becomes more and more

important. Still there is no defined standard for them to use. Most of the instruments, they

have access to, are highly sophisticated and specialized for a specific intention.

The new approach shows a haptic and very intuitive way for how system architecture can be

created, documented, configured, communicated, and filed. The idea is to build an

architecture with the help of Lego. Each element in a system is represented by a composition

of Lego bricks which are listed in a catalogue. The working team can create the system’s

architecture by combining every single representation to one big building. In order to

guarantee further proceeding of the resulting architecture, a tool is presented. With the help

of this tool the architects have the possibility to read in the building using RFID-technology, to

configure the architecture using the provided functionalities, and to export the system to

ACME or CTB.

This new kind of approach to create a system’s architecture has a lot of advantages over the

existing ones. At the first place, there is its intuitive way of the actual building process.

Everybody has an idea of how to handle Lego bricks. There are no real constraints for building

the system. The next thing is that this approach invites the architects to work at the same time

at the same project. So it highly supports teamwork and consequently the feedback and

communication between the architects during the actual working process. Because of its

intuitive way and the fact that one can overlook the whole architecture with one glance, the

approach is very suited to support the communication of the underlying system to

stakeholders, who do not have the background to understand a system’s architecture all by

themselves. Moreover, with the Component Toolbox there is a tool which supports the

exporting file format ctb. With the help of Component Toolbox the architects have the

possibility to build a software architecture on top of the system which exactly fits the

underlying architecture. Because of the flexibility of Lego bricks and the fact that the HSAM-

Tool is based on XML-files the whole approach is very extensible and thus adaptable.

Further studies could include the exact definition for additional system architectural elements.

Consequently a representation in Lego needs to be found for those new elements. Validation

of existing element Lego representations as well as of the new ones is also required through

109

testing the compositions in more practical case studies. Default properties for each element

are also subject to further research.

For the HSAM-Tool the process of user interaction should be analyzed and improved and the

whole program of course could be revised and adapted for special needs. Currently the

program is set to handle the presented case study with no problems. There might be minor

programming issues for additional projects which need to be taken care of to guarantee a

smooth operation.

Bibliography

ABLE - Architecture Based Languages and Environments. (2007, March 21). Retrieved July 4,

2007, from The Acme ADL: http://www.cs.cmu.edu/~acme/

ACG ID. (n.d.). ACG ID. Retrieved October 4, 2007, from http://acg-id.aaitg.com/index.php

Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice. USA: Addison

Wesley Longman, Inc.

Bhuptani, M., & Moradpour, S. (2005). RFID Field Guide - Deploying Radio Frequency

Identification Systems. Upper Saddle River: Prentice Hall Professional Technical Reference.

Birkhölzer, T., & Vaupel, J. (2003). IT-Architekturen: Planung, Integration, Wartung. Berlin: VDE

Verlag GMBH.

Bray, T., Paoli, J., Sperberg, C., Maler, E., & Yergeau, F. (2006, September 29). (W3C) Retrieved

Jänner 23, 2007, from Extensible Markup Language (XML) 1.0 (Fourth Edition):

http://www.w3.org/TR/2006/REC-xml-20060816/

Broy, M., & Spaniol, O. (1999). VDI-Lexikon Informatik und Kommunikationstechnik. Berlin:

Springer.

Dustdar, S., Gall, H., & Hauswirth, M. (2003). Software-Architekturen für verteilte Systeme.

Berlin: Springer Verlag.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (June 1999).

Hypertext Transport Protocol -- HTTP/1.1. RFC2616 .

Finkenzeller, K. (2002). RFID-Handbuch. München: Carl Hanser Verlag.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., & Frystyk Nielsen, H. (2003, June 24).

(W3C) Retrieved Jänner 23, 2007, from SOAP Version 1.2 Part 1: Messaging Framework:

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

Hofstetter, U. (2007). Component Toolbox – A toolbox for architectural design. Zürich:

University of Zurich, Software Evolution and Architecture Lab.

Information Science Institute, University of Southern California. (September 1981).

Transmission Control Protocol. RFC793 .

Klensin, J. (April 2001). Simple Mail Transfer Protocol. RFC2821 .

Klußmann, N. (2000). Lexikon der Kommunikations- und Informationstechnik. Heidelberg:

Hüthig.

LEGO Group. (2007). The official Website of Lego. Retrieved September 28, 2007, from

http://www.lego.com/en-US/default.aspx

Lévy, N., Losavio, F., & Matteo, A. (1998). Comparing Architectural Styles: Broker Specializes

Mediatior. ACM .

Naumovich, G. (2002). Using the Observer Design Pattern for Implementation of Data Flow

Analyses. ACM .

NXP. (2007). NXP Semiconductors. Retrieved September 29, 2007, from MIFARE Classic:

http://www.nxp.com/acrobat_download/other/identification/m001052.pdf

OMG - Object Management Group. (n.d.). Unified Modeling Language. Retrieved July 3, 2007,

from http://www.omg.org/technology/documents/formal/uml.htm

Postel, J. (August 1980). User Datagram Protocol. RFC768 .

Postel, J., & Reynolds, J. (October 1985). File Transfer Protocol (FTP). RFC959 .

Shaw, M., & David, G. (1996). Software Architecture - Perspectives on an emerging discipline.

Upper Saddle River, New Jersey, USA: Simon & Schuster.

Sun Developer Network. (n.d.). (Sun Developer Network (SDN)) Retrieved Jänner 23, 2007,

from Java Database Connectivity (JDBC):

http://java.sun.com/javase/technologies/database/index.jsp

TAGnology RFID Ltd. (2006). RFIDwebshop. Retrieved September 19, 2007, from

http://www.rfid-webshop.com/shop/product_info.php/info/p603_TAGmobi-USB---

MIFARE.html

TAGnology RFID Ltd. (2006). RFIDwebshop. Retrieved September 19, 2007, from

http://www.rfid-webshop.com/shop/product_info.php/info/p488_Smart-Control-Label-

25x9mm--MIFARE-1k--self-adhesive.html

Tate, J., Lucchese, F., & Moore, R. (2006). Introduction to Storage Area Networks.

ibm.com/redbooks.

Vogel, O., Arnold, I., Chughtai, A., Ihler, E., Mehlig, U., Neumann, T., et al. (2005). Software-

Architektur: Grundlagen - Konzepte - Praxis. München: Elsevier Gmbh.

Wikipedia. (2007, September 13.). Wikipedia, the free encyclopedia. Retrieved September 14.,

2007, from http://en.wikipedia.org/wiki/Load_balancing_%28computing%29

Zdun, U., & Avgeriou, P. (2005). Modelling architectural Patterns using architectural Primitives.

ACM .

Addendum

Content of CD

Directories

− Program

− Source

− Thesis

ReadMe

Content

The folder program holds the built HSAM-Tool, which project is located in the source folder

and all relevant files in order to run it.

The source folder holds the Microsoft Visual C# 2005 Express project. It contains the source

code of the HSAM-Tool.

The thesis folder holds this thesis as pdf-file and the poster provided for an event at the TU

Vienna.

Installation

Prerequisites are:

− Microsoft .NET Framework 3.0

[https://www.microsoft.com/downloads/details.aspx?FamilyID=10cc340b-f857-4a14-83f5-

25634c3bf043&DisplayLang=en]

− Driver for RFID-Reader

[http://acg-id.aaitg.com/index.php?id=156]

− Optional:

To run the Microsoft Visual C# 2005 project the Microsoft Visual C# Express Edition

2005 is required

[http://msdn2.microsoft.com/en-us/express/aa700756.aspx]

Copy the content of the program-folder to a local folder or start the HSAM-Tool directly from

the CD.

Documentation

The code documentation can be found in the source-folder. In there is a folder called html

which contains an index.html. Open it to reach the documentation.

