
DISSERTATION

An agent-based model of reality in
a cadastre

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

Univ.-Prof. Dr. Andreas Frank
E127

Institut für Geoinformation und Landesvermessung

eingereicht an der Technischen Universität Wien
Fakultät für Technische Naturwissenschaften und Informatik

von

Steffen Bittner
Matrikelnummer 9726778

Institut für Geoinformation und Landesvermessung E127
Gusshausstaße 27-29

1040 Wien

Wien, August 2001 ..

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

An agent-based model of reality in
a cadastre

by

Steffen Bittner

A thesis submitted in partial fulfillment of the requirements
of the degree of

Doctor of Technical Sciences

submitted at the
Technical University Vienna

Faculty of Science and Technology

Advisory Committee:

Univ.-Prof. Dr. Andrew Frank
Institute for Geoinformation
Technical University Vienna

Univ.-Prof. Dr. Thomas Eiter
Knowledge-based Systems Group
Technical University Vienna

Vienna, August 2001 ..

Acknowledgements

This page is dedicated to all people who helped me with my thesis.

First of all I would like thank Prof. Frank for his guidance over the last two and a
half years. He was a good advisor for me and discussing my topic with him was always
very helpful and encouraging. I thank him for his patience and support. He found the
right words at the right moment and perhaps he is not completely aware about how
important it was for me.

I would like to thank my second advisor, Prof. Eiter, for his support in the end of
my thesis project.

I appreciate my colleagues at the Institute for Geoinformation for their input and
criticism and for the fruitful working environment at the department. Here I would like
to mention Annette von Wolff for many conversations, not only about science, Edith
Unterweger, without her nothing goes at the institute, and my roommates over the
last years: Peter Wenzl, Rudi Müller and Andreas Grünbacher. In particular I would
like to thank Mrs. Markwart who helped me to improve the quality of my English to
a (hopefully) reasonable quality.

This research was supported by the CHOROCHRONOS TMR network of the Eu-
ropean Union, by the REVIGIS project and by the FWF project on ontology of a
cadastre which gave the financial background for my thesis work.

My special thanks go to Katrin. Without her I am sure that I would not sit here
and write these lines. She kept me on the way when I was losing the direction, when
I was doubting, when I wanted to give up. She gave me the power to get my thesis
project managed. I thank her for her comfort in the bad hours and for the many happy
hours we had during the last years in Vienna.

Nicht vergessen moechte ich an dieser Stelle meine Eltern, die meinen Weg über so
viele Jahre unterstützt haben, sei es als ich laufen lernte, als ich in die Schule ging,
und auch später, als sie mich loslassen und meine eigenen Wege gehen lassen mußten.
An allem, was ich erreiche, habt Ihr einen Anteil, denn Ihr habt einen bedeutenen Teil
von mir geformt. Deshalb möchte ich Euch diese Arbeit widmen.

Abstract

This thesis investigates the institutional structure of social reality. In order to make
the analysis possible we focus on a specific domain, the domain of land management,
in particular the Austrian cadastre. Since the field of cadastre is highly determined
by laws we are able to investigate the structure of reality in a cadastre by the analysis
of the cadastral law. We investigate social processes and focus on appropriate case
studies, which are the transfer of ownership of a parcel between two persons and the
conflict regarding land use between two persons and its resolution by the organizations
of the state.

The thorough analysis of the institutional structures must rely on a sophisticated
theoretical foundation and this thesis applies Searle’s theory of institutional reality
as its major ontological background. Institutional reality can only be comprehen-
sively described by investigating its relationship and interaction to physical reality and
Searle’s theory gives the appropriate framework for the analysis. Differing from Searle
we assume that the institutional structure of society can be described in terms of the
individual knowledge and interaction of the actors in the society.

The basic approach of this thesis is the construction of a computational model
which can be evaluated by simulating social processes in the model. The correctness
of the model and thus of the analysis can be shown by assessing the correspondence
between the simulation and the real world process.

The model of institutional reality in a cadastre must include representations of the
individual knowledge, intentions and behaviour of the actors involved since they are
the central element determining its structure. We represent individuals in the model
by agents and use an agent-based approach as the general conceptual framework for
the model construction process.

We assume that aspects of the real world can be represented on an abstract level
in terms of algebra. This thesis applies an algebraic modeling approach for the rep-
resentation. We algebraically specify the essential properties of reality and construct
a computational model, which forms an algebra and includes the desired properties
specified. We use the functional programming language Haskell, which supports this
algebraic specification style of the model construction process.

The result of the model construction process is an agent-based simulation model,
which correctly represents the social processes under consideration. The simulation
model can be used to develop applications. We apply the model to show how to assess
transaction costs within the simulation and provide one foundation for the objective
comparison of cadastral systems.

This thesis has a theoretical and a practical dimension. One the theoretical side
we contribute to the improvement of our understanding about the structure of social
reality. On the practical side we show how to construct tools, which can support the
development of more efficient cadastral systems.

Contents

1 Introduction 12
1.1 Motivation . 12

1.1.1 Institutions . 12
1.1.2 Cadastre . 13
1.1.3 Computational models . 14

1.2 Research Question . 14
1.3 Hypothesis . 15
1.4 Approach . 15

1.4.1 Simulation models . 16
1.4.2 The three stages structure of the thesis 16
1.4.3 Characteristics of the approach 16

1.5 Foundations . 17
1.5.1 Cadastre . 18
1.5.2 The ontology of social reality 18
1.5.3 Multi-agent theory . 18
1.5.4 The simulation of social processes 19
1.5.5 Algebraic specifications and functional programming 19

1.6 Goal and scope of the thesis . 19
1.7 Expected achievements . 20
1.8 Structure of the thesis . 20

1.8.1 The first stage - the ontology 20
1.8.2 The second stage - the model 21
1.8.3 The third stage - the simulation 21

2 Cadastre 22
2.1 Introduction . 22
2.2 Systems of land registration . 23
2.3 Parts of a cadastre . 24
2.4 The monopoly of force . 24
2.5 The structure of the Austrian legal system 25
2.6 Principles of the Austrian land register 26
2.7 The subjects and objects of rights . 28

2.7.1 Subjects of rights . 28
2.7.2 Objects of rights . 28

2.8 Rights . 28
2.8.1 Subjective rights . 28
2.8.2 Absolute and relative rights . 29
2.8.3 Ownership . 29

5

CONTENTS 6

2.9 Legal transactions . 29
2.9.1 The transfer of ownership . 30

2.10 Documentation . 31
2.10.1 The purpose of documentation 31
2.10.2 Documentation of deeds and documentation of title 31
2.10.3 The realization of documentation 32

2.11 Processes to enforce rights . 32
2.11.1 Complaints . 32
2.11.2 The judgement execution . 33
2.11.3 Conflicts regarding land use . 33

2.12 Assumptions about the law . 33
2.13 Summary . 34

3 The ontology of institutional reality 35
3.1 Introduction . 35
3.2 Ontology and ontologies . 35
3.3 Five tiers of ontology . 37
3.4 Searle’s theory of institutional reality 38

3.4.1 Facts . 38
3.4.2 Physical and institutional reality 39
3.4.3 Status functions . 39
3.4.4 Collective intentionality . 40
3.4.5 Constitutive rules . 40
3.4.6 The creation of institutional facts 41
3.4.7 Status indicators . 42
3.4.8 Institutions . 42
3.4.9 Reality seen through Searle’s theory 43

3.5 The role of collective intentionality . 43
3.5.1 Preconditions for the imposition of collective intentionality . . . 44
3.5.2 The monopoly of force . 44
3.5.3 Collective intentionality and institutions 45
3.5.4 Collective intentionality as social phenomenon 45

3.6 Conventional power: Rights . 46
3.6.1 Searle’s concept of conventional power 46
3.6.2 Conventional power and physical capabilities 47
3.6.3 The concept of a right . 47
3.6.4 Relating the types of rights to the positive law 48
3.6.5 Relating conventional power to rights 49

3.7 The building blocks of institutional reality 49
3.8 The role of language . 51

3.8.1 Speech acts . 51
3.9 Summary . 53

4 The analysis of reality in a cadastre 54
4.1 Introduction . 54
4.2 What is reality in a cadastre? . 55
4.3 Cadastre as part of institutional reality 56
4.4 Parcels and land pieces . 56

4.4.1 Fiat and bona fide boundaries 56

CONTENTS 7

4.4.2 Parcel boundaries . 57
4.4.3 Parcels and rights . 57

4.5 Institutional facts and status indicators in a cadastre 58
4.6 Rights in a cadastre . 59
4.7 Social processes in a cadastre . 60

4.7.1 The transfer of ownership of a parcel 60
4.7.2 Conflicts regarding land use . 61

4.8 Ontological categories of phenomena in a cadastre 62
4.9 Levels of reality in a cadastre . 64
4.10 Facts vs. rules for their creation and existence 65
4.11 The structure of reality in a cadastre 67

4.11.1 The physical level of reality in a cadastre 67
4.11.2 The institutional level of reality in a cadastre 69

4.12 Assumptions about reality . 71
4.13 Summary . 71

5 The architecture of a multi-agent system 73
5.1 Introduction . 73
5.2 Overview of multi-agent theory . 74
5.3 Approaches to multi-agent theory . 74

5.3.1 Objectives to study multi-agent systems 74
5.3.2 Top-down vs. bottom up strategies 75
5.3.3 Backgrounds to study multi-agent systems 75
5.3.4 Agents as a concept . 76

5.4 Agent programming languages . 76
5.5 Applications . 77

5.5.1 Applications in distributed artificial intelligence 77
5.5.2 Applications in the field of program development 77
5.5.3 Multi-agent simulation . 78

5.6 What is an agent? . 80
5.6.1 The agent concept . 80
5.6.2 Reactive vs. deliberative agents 82
5.6.3 The agent definition . 83

5.7 The abstract architecture of a multi-agent system 84
5.7.1 The definition of a multi-agent system 84
5.7.2 The structural and the operational part of the architecture . . . 85
5.7.3 The Sense-Plan-Act paradigm 85
5.7.4 The basic operations of the multi-agent system 85

5.8 Communication between agents . 88
5.9 Summary . 88

6 Algebraic Specifications 90
6.1 Introduction . 90
6.2 Formal specifications . 91
6.3 Algebraic specifications . 92

6.3.1 Informal description . 92
6.3.2 Formal description . 93
6.3.3 Examples . 93

6.4 Computational models of reality in Haskell 94

CONTENTS 8

6.5 Specification, Representation and Implementation 95
6.6 Haskell . 96

6.6.1 Properties of Haskell . 96
6.6.2 An example . 96
6.6.3 The syntax of Haskell . 97

6.7 Summary . 100

7 The construction of the agent-based model 101
7.1 Introduction . 101
7.2 Assumptions about the model . 102
7.3 Documentation in the model . 103
7.4 The components of the model . 103
7.5 Facts and rules vs. data structures and operations 104
7.6 Agent interaction . 104
7.7 Goal generation based on rights . 104
7.8 The specification . 106

7.8.1 The specification of the agent level 106
7.8.2 The specification of the world level 108
7.8.3 The execution model . 109
7.8.4 The flow of operation in the specification 110

7.9 Representation . 110
7.9.1 Identifiers and world states . 110
7.9.2 Messages . 111
7.9.3 The internal state of the agent 113
7.9.4 The agent . 114
7.9.5 Land . 114
7.9.6 The environment . 115

7.10 Implementation . 115
7.10.1 Constitutive rules . 115
7.10.2 The implementation of the decision making process 117

7.11 Summary . 117

8 Agent-based simulation of social processes 119
8.1 Introduction . 119
8.2 Case study 1: The transfer of ownership of a parcel 120

8.2.1 The input of the simulation . 120
8.2.2 The output of the simulation 123

8.3 Case study 2: Conflicts regarding land use 126
8.3.1 The input of the simulation . 126
8.3.2 The output of the simulation 130

8.4 Assessment of the results . 135
8.5 Summary . 135

9 Application: Assessing costs 137
9.1 Introduction . 137
9.2 Transaction costs . 138
9.3 Transaction costs in a cadastre . 138
9.4 Perception costs, decision costs and

activity costs . 140

CONTENTS 9

9.5 Assumptions about the cost distribution 140
9.6 Counting costs . 141

9.6.1 Counting external costs . 143
9.6.2 Counting internal costs . 144

9.7 Assessing the results of the simulation 145
9.7.1 The transfer of ownership . 146

9.8 Summary . 146

10 Conclusions and future work 148
10.1 Summary . 148

10.1.1 Cadastre and legal background 149
10.1.2 The ontology of institutional reality 149
10.1.3 The analysis of reality in a cadastre 150
10.1.4 The abstract architecture of a multi-agent system 151
10.1.5 Algebraic specifications in Haskell 152
10.1.6 The construction of the agent-based model 152
10.1.7 Validation of the model by agent-based simulation 154
10.1.8 Agent-based simulation for the assessment of costs 155

10.2 Results . 155
10.3 Contributions . 157
10.4 Restrictions . 158
10.5 Future work . 159

A Listings of source code 168
A.1 Basic definitions . 168
A.2 The world . 169
A.3 The agent . 170
A.4 The internal state of the agent . 173
A.5 Percepts, Actions and Messages . 180
A.6 Land and physical activities . 183
A.7 The simulation interface . 184
A.8 Cost assessment . 186

B Program outputs 190
B.1 Output of the ownership transfer simulation 190
B.2 Output of the conflict simulation . 193

List of Tables

3.1 The five tiers of ontology . 37
3.2 Rights and the positive law . 48
3.3 Conventional power and rights . 49

4.1 Ontological categories on two levels of reality 64

9.1 The cost analysis of a cadastre . 139

10

List of Figures

3.1 Categorization of ontology . 36
3.2 Five tiers of ontology (adapted version) 38
3.3 Facts and reality vs. statements and language 39
3.4 Searle’s theory of institutional reality 42
3.5 The example of money . 43
3.6 The building blocks of institutional reality 50

4.1 The relationship between land, parcels and rights 58
4.2 The scenario of ownership transfer . 61
4.3 The individual activities during ownership transfer 61
4.4 The conflict scenario . 62
4.5 The activities during the conflict resolution process 63
4.6 Ontological categories of phenomena in a cadastre 64
4.7 Levels of reality in a cadastre . 65
4.8 Rules vs. facts in a cadastre . 66
4.9 The structure of reality in a cadastre 67

5.1 The idea of a simulation . 78
5.2 An agent embedded into its environment 80
5.3 Between purely deliberative and purely reactive approaches 83
5.4 The basic operations of a multi-agent system 86
5.5 Agents with internal state . 87
5.6 The communication model . 89

6.1 Concept, specification and programs 91
6.2 Computational models of reality in Haskell 95
6.3 Specification, representation and implementation 95
6.4 Class, data and instance . 99

7.1 From reality to the agent-based model 105
7.2 The execution model of the system . 110
7.3 The flow of operation in the specification 111

8.1 Constitutive rules for ownership transfer 121
8.2 Constitutive rules and status assigned during the conflict resolution . . 128

9.1 Internal and external costs in the agent-based model 141
9.2 Basic costs in the ownership transfer 142

11

Chapter 1

Introduction

1.1 Motivation

1.1.1 Institutions

”Institutions are the rules of the game in a society...” (North 1997, p.3)

How much of the real world around us can be explained without investigating institu-
tional rules? Any human social interaction relies on institutions. We can talk about
physics and chemistry without thinking of institutions; but even in the case of biology
we must distinguish biological and social phenomena in order to clarify what biology
is about. Social science, law, politics, economy, sociology, everything where social in-
teraction plays a role, needs the investigation of institutions. We cannot buy a cup of
coffee, cannot marry each other, cannot elect new presidents, cannot be employed with-
out the institutional structure defining the concepts and rules for buying, marrying,
electing and employing and explaining what a president is.

Much research has been done to understand physical and social reality around us.
There is only one reality and the question arises how both parts are connected. How
much can we say about the institutions without investigating the physical nature of
the objects involved and the activities they define and regulate? Not much. We cannot
talk about buying a cup of coffee without investigating the value of a cup of coffee,
which is determined by the physical properties of the coffee and my physical desire to
drink it. We cannot investigate this process without thinking of the physical activity of
boiling the coffee and of the physical activity of handing over a physical piece of paper
or metal, which has the corresponding value to the value of the cup of coffee. Similar
considerations hold for marrying, electing and employing and other social concepts.

This thesis is devoted to the task of analyzing the institutional structure of social
reality and its relationship to and embedding into the physical environment.

Society is a really complex matter and in order to enable the analysis of its gen-
eral structure we have to focus on some particular domain, which allows reducing the
complexity of the phenomena involved. It is the art of research to find the appro-
priate case studies that allow the investigation of phenomena with a minimal amount
of complexity involved (Frank 2001). The improvement of the understanding of the
small part of reality under consideration contributes to the understanding of reality in
general. In order to find these minimal case studies, which allow the investigation of
the institutional rules, we look at land management systems and in particular at the
cadastre.

12

CHAPTER 1. INTRODUCTION 13

1.1.2 Cadastre

”Land, after all, is the ultimate resource from which all wealth comes.”
(Dale & McLaughlin 1989, p.21)

Looking at land management we talk about one of the foundations of the human
existence: land. Without it human settlement and life would be impossible. Its value
and importance is therefore extremely high. Land cannot be increased, it is a limited
resource and an important factor of production. Much effort is invested into the man-
agement of land. Cadastral systems are developed all over the world for this purpose.
Consequently a major demand for effective and efficient organization of these systems
exists (Dale & McLaughlin 1989).

The foundation for efficient cadastral systems is the understanding of the reality
which the system should correctly represent. It is not sufficient to investigate only the
cadastral registry with its content and input and output operations. The registration
process in the cadastral registry captures only a part of reality. The complexity of
phenomena involved makes it necessary to widen the scope to the more general view
of reality in a cadastre that comprises the cadastral registry as well as people acting in
the real world. By reality in a cadastre we understand the part of the real world which
is influenced by the activities and the content of the cadastral registry. This allows
representing a more comprehensive view of the cadastral domain and the analysis of
its institutional structure.

The example of ownership transfer under Austrian law shows the characteristic
institutional and physical structure of reality in a cadastre. The ownership transfer of
a parcel is determined by the following steps: The owner of a parcel makes an offer
to another legal person. This legal person accepts the offer. Both will sign a sales
contract. For the seller this contract is connected to the duty to transfer the ownership
of the parcel. According to his duty the seller applies for the ownership transfer at the
cadastral registry. The ownership transfer occurs by the registration in the cadastre.
Ownership of a parcel means for the new owner the right to use the piece of land
described as parcel in the cadastral registry. It includes the right to exclude any other
person from using the land. It comprises the right to mobilize the physical power of
the state to prevail against any other person not respecting the right.

The example shows how reality in a cadastre is determined by a variety of physical
phenomena and institutional constructs. On one side there are physical phenomena,
for instance, land pieces and human beings acting on land. On the other side there
are social constructs, for instance, ownership, legal persons and rights. These social
constructs influence the behaviour of people in physical reality and thus play a crucial
role for the analysis.

Why is the cadastre the appropriate field to find the minimal case studies for the
analysis of institutions? First of all the example given has shown that reality in a
cadastre is determined by the institutional structure and its embedding into the phys-
ical environment. From this viewpoint the cadastre is appropriate for the analysis of
institutions. The second point is: Why is the cadastre appropriate to find minimal
case studies? First, it is a relatively separated part of reality with limited influences
from and to other parts of the real world. So most aspects of the real world outside
the field can be neglected and the complexity of the analysis reduced. Second, the
rules structuring social reality in a cadastre are known to a high degree and are rep-
resented in laws. Reality in a cadastre is mainly determined by these written rules

CHAPTER 1. INTRODUCTION 14

and unwritten rules, e.g., common laws or rules of conduct, do not play an essential
role. This reduces the research effort and makes the field open to the analysis. Third,
the institutional rules in the field of cadastre are relatively simple. The reason is that
economic efficiency is a major criterion for the construction of cadastral systems, which
enforces the construction of systems with rules as simple as possible.

Concluding we selected the field of cadastre for the analysis, because it has the
institutional structure we are interested in, its complexity is limited and it allows
the investigation with reasonable effort by the analysis of the cadastral law. From
the practical point of view, the analysis of reality is of high relevance because of the
importance of the resource it manages: the land.

1.1.3 Computational models

The construction of models is an approach to improve our understanding of reality,
which is widely used in science. We follow this approach by constructing a model that
represents the cadastral registry embedded into its environment and its interaction
with the environment, in particular the interaction with people acting in reality.

There are tools necessary that support and improve the model construction process.
Computational models are appropriate for this purpose, because they allow the check-
ing of the model by executing the program and the assessment of its behaviour. For
instance, a model representing reality in a cadastre, enables the execution of processes
according to the case studies selected for the analysis.

It is advantageous to use a formal tool for the model construction, i.e., a formal
specification language with clear semantics. This allows representing the domain in a
clear and unambiguous way and helps to avoid misunderstandings. The formal model
should be executable in order to enable the construction of computational models.
Computational models based on a formal executable specification have advantages
compared with models not based on a formal foundation. A model based on a formal
specification formally correct represents its specification, i.e., it does the right things
with respect to the specification. This simplifies the testing of the model with the case
studies and the assessment of its correspondence to the reality it represents.

1.2 Research Question

Assuming that our understanding of the reality around us can be improved by the
construction of computational models and that the field of cadastre is appropriate
to analyze essential aspects of this reality, the research question of this thesis is the
following: Is it possible to construct a computational model of reality in a cadastre?

Since we are interested in the institutional structure of reality and selected the
cadastre, because its essential property is its institutional structure, the central issue
for the model and this thesis is the representation of the relevant aspects of social
reality. The key issue for the analysis of reality in a cadastre is the understanding of
the social concepts involved.

Formal computational models have advantages compared with non formal ap-
proaches enabling the maintenance of the internal correctness of the model. The main
research question of this thesis is therefore:

Is it possible to construct a computational, formal model of social reality in
a cadastre?

CHAPTER 1. INTRODUCTION 15

In order to find sophisticated answers to the research question, the whole issue must
be divided into several sub-questions. We distinguish questions about reality from
questions about the structure of the model. The major question about reality is the
question about how it is structured. The major questions about the structure of the
model are the issues of the conceptual framework of the model, its transformation into
the computer program (the computational model) and the proof of the correctness of
the model. The sub-questions to be answered by the thesis are:

1. How is the structure of social reality in a cadastre characterized?

2. What is the conceptual framework for the model?

3. How can the conceptual framework be transferred into a computational model?

4. If such a model can be constructed can it be shown that it corresponds to the
reality it represents?

1.3 Hypothesis

The hypothesis is our answer to the research question, which we will prove in this
thesis. The general assumption about reality, which corresponds to our motivation
to select the cadastre for the analysis, is that reality in a cadastre is determined by
the institutional concepts (e.g., ownership, parcel,...) and their relationships to the
physical environment (e.g., land, human beings).

The philosophical foundation for the analysis of the institutional concepts involved,
is Searle’s theory of institutional reality (Searle 1995). It introduces an approach
dealing with institutional concepts and gives the theoretical background of this work.
Social reality in general and institutional reality in particular are determined by the
behaviour of human beings. Thus for the model a representation of human intentions
and behaviour is necessary. Multi-agent theory (O’Hare & Jennnings 1996, Ferber 1999,
Wooldridge & Jennings 1995) gives the conceptual framework for this task. It allows
formally representing human intentions and behaviour by agents, as far as necessary
for the model of reality in a cadastre.
The hypothesis of this thesis reads as follows:

A computational, formal model of institutional reality developed in an agent-
based framework represents the relevant aspects of reality in a cadastre.

This hypothesis positively answers the research question: Yes, we assume that we are
able to construct a computational model of reality in a cadastre.

1.4 Approach

According to the general idea of explaining things in terms of computational models,
the basic approach of this thesis is the construction of computational model of reality
in a cadastre. The correctness of the model will be verified by agent-based simulation
of appropriate case studies from the real world in the constructed model.

CHAPTER 1. INTRODUCTION 16

1.4.1 Simulation models

Simulation is a specific way of modelling. The simulation method comprises the fol-
lowing decision steps (Gilbert 1993):

1. No social phenomenon can be examined entirely. The first step is to select the
aspects which are of interest. This selection must be influenced by theoretical
preconceptions about which features are significant.

2. The modelling approach to be adopted must be chosen. A widely used simulation
method is, for instance, the simulation with differential equations. A newer
approach is agent-based simulation.

3. The decision about the appropriate level of abstraction: the appropriate level of
aggregation must be selected for the units of the simulation (people or organiza-
tions).

4. The representation form must be selected. It is typically a computational lan-
guage.

5. After making these decisions, the model can be constructed, the simulation run
and the output examined.

These design decisions determine the approach of this thesis: We apply an agent-based
simulation approach on the theoretical foundation of Searle’s theory to model reality
both on the level of organizations (such as the cadastral registry) and on the level of
people (such as owners) for the construction of a model represented in the functional
programming language Haskell.

1.4.2 The three stages structure of the thesis

From the basic approach follows a three stages structure of this thesis:

1. The analysis of reality in a cadastre.

2. The construction of the computational model.

3. Agent-based simulation.

The analysis of the domain in question (reality in a cadastre) is the foundation of the
model construction. The main task of this step is to identify the relevant features
of reality necessary for the representation and the investigation of the structure of
the domain. The first step can be characterized as ontological analysis. The result
is an ontology, i.e., a conceptualization of reality in a cadastre. We distinguish the
construction of the ontology from the representation of the ontology in the model in
the second step. The second step comprises the model construction itself, with the
claim to capture the relevant aspects of reality identified in step one. The task of the
third step is to check of the correctness of the model with respect to the domain in
question.

1.4.3 Characteristics of the approach

The following tasks characterize the approach of this thesis:

CHAPTER 1. INTRODUCTION 17

Start on a sophisticated philosophical foundation with an analysis of the
domain in question (reality in a cadastre). The idea is that the analysis must
be based on a solid theoretical foundation, in particular explaining the structure of the
institutional part of reality. The foundation on which this thesis is based is mainly
Searle’s theory of institutional reality.

Use of an agent-based model as conceptual framework to represent the
domain. We regard agent-based models as purely conceptual background for the
representation of the model. This distinguishes the approach of this thesis from others
which investigate agents as new technology. Our approach allows developing the con-
ceptual ideas independently from a particular formalism or representation mechanism.

Use of an algebraic specification as formal framework to represent the
domain. Focusing on the conceptual ideas, nevertheless this work needs a repre-
sentation framework. Algebraic specifications (Loeckx, Ehrlich & Wolf 1996, Ehrlich,
Gogolla & Lipeck 1989, Horebeek & Levi 1989) allow representing the domain in ques-
tion in terms of algebra. We regard algebras as appropriate way to model parts of the
real world. We assume that the mathematical structure of an algebra has similarities
to the structure of reality we want to represent. Algebras model reality on an abstract
level.

Implementation of the algebraic specification in the functional program-
ming language Haskell to achieve a computational model. A language is
necessary which is capable of expressing algebraic specifications and is additionally
executable. The functional programming language Haskell (Thompson 1996, Hudak,
Peterson & Fasel 1997, Bird & Wadler 1988) allows the construction of executable
algebraic specifications.

Validation of the model by agent-based simulation. We assume that it is
impossible to analytically prove the correctness of a nontrivial model of a part of
the real world. The validity of the model can be assessed by agent based simulation
comparing the output of the simulation with the situation in reality.

Restriction of the model to appropriate case studies. We restrict the model
to the simulation of expressive case studies, since, due to lack of space, it is impossible
to construct a comprehensive model of reality in a cadastre. We use case studies which
we regard as typical for reality in a cadastre.

Outline possible applications of the model. We assume that the model is ap-
plicable, i.e., that it is possible to provide solutions to practical problems. We will
outline the ideas of possible applications of the model.

1.5 Foundations

This thesis is interdisciplinary work. Hypothesis and approach determine its founda-
tions which we outline in this section. The thesis connects work from very different
fields:

CHAPTER 1. INTRODUCTION 18

• The legal domain: Cadastral systems and cadastral law

• Philosophy: Ontology of social reality

• Artificial Intelligence (Russell & Norvig 1995): Multi-agent theory and multi-
agent systems

• Social Science: Simulation of social processes

• Computer science: Algebraic specifications and functional programming.

1.5.1 Cadastre

The task of the cadastre is the administration of land. A cadastre is a parcel-based
land registration system, i.e., all data are grouped around the cadastral parcel. The
cadastre can serve different purposes, for instance, for the public authority to assess
taxes, or for private persons the management of rights private persons hold on land.

Ownership is the most comprehensive right a person can have on a parcel. It is
the right to use a piece of land and to exclude all other persons from using this land.
Ownership is the central element determining the work of the cadastral registry.

Cadastre is embedded into the private law. The private law regulates relationships
between private persons and their relationships to objects. The cadastre deals with a
specific class of objects, which are immovable things, i.e., parcels. Legal change in a
cadastre is caused by the transfer of rights on land.

An important task of the legal system is to maintain the peaceful living together of
people (the peace keeping function). For this purpose the state provides legal instru-
ments for persons to enforce their rights. These instruments are complaints, and after
the decision of a court the execution process which physically exerts force against a
person not recognizing the rights of others.

1.5.2 The ontology of social reality

Searle’s theory of institutional reality focuses on the part of reality determined by
institutions. It deals not with social reality in general. Searle distinguishes a physical
and an institutional level of reality. Physical reality exists independent of human
observers, institutional reality depends on human cognition. Institutional facts existing
within institutional reality are characterized by the fact that they assign some status
to a physical phenomenon, which cannot be performed only by the physical properties
of the object. For example, the function ’money’ of a piece of paper, its value, is not
derivable from the physical properties of paper. Money exists because we collectively
accept particular pieces of paper as medium of exchange and value.

1.5.3 Multi-agent theory

An agent is a entity that is capable of acting in its environment and capable of per-
ceiving its environment. A set of agents which are able to interact with each other and
with the objects in the environment form a multi-agent system. The key properties
of agents are autonomy and the embedding of the agents into the environment. Au-
tonomy means that the agent is capable of acting based on its percepts and individual

CHAPTER 1. INTRODUCTION 19

experiences. The agent must be embedded into the environment, i.e., it must be an
integral part of the environment.

Agents can be constructed according to different architectures. An agent with
internal state has an explicit representation of the environment whereas a reactive
agent simply reacts to the influences from the environment.

1.5.4 The simulation of social processes

The idea of a simulation is to construct a computational model of a part of the real
world, let the model execute and compare its output data with the observations from
reality. The model correctly simulates processes from reality if the output data from
the simulation and the observations from reality correspond.

Agent-based simulation provides a new solution to the simulation of social processes,
because it allows to include representations of individuals with individual capabilities
and preferences into the model.

1.5.5 Algebraic specifications and functional programming

An algebraic specification consists of a set of sorts and a set of operations between
these sorts. The properties of the operations are described by a set of axioms. An al-
gebraic specification describes a class of algebras, where each algebra is a mathematical
structure consisting of a number of sets and functions mapping elements of the sets to
each other. Algebras can be regarded as abstractions from the real world preserving
the structure of real world phenomena.

Algebraic specifications can be expressed in a functional programming language.
That means, functional languages support an algebraic specification style of program-
ming. In a functional language everything, i.e., every object, is a function. New
functions can be defined based on other functions. An important feature of functional
programs, which limits sources of errors, is that they do not produce side effects.

1.6 Goal and scope of the thesis

This section defines the goals we try to achieve in this thesis and defines its scope. The
general goal of this thesis is to improve the knowledge about the structure of reality in
a cadastre and about social reality in general. Its task is to develop a content theory
in opposition to a mechanism theory (Chandrasekaran, Josephson & Benjamins 1999).
The thesis is mostly interested in reality in the cadastral domain and not so much
in the representation mechanism. The focus is directed to the analysis of reality and
a conceptualization of the phenomena influencing reality. It does not investigate the
formal properties of a representation mechanism for agent-based simulation. It uses a
representation mechanism to apply the conceptual framework developed.

This thesis focuses on the Austrian cadastral system (Marent & Preisl 1994, Twaroch
2000) to achieve a more realistic model. It concentrates on the legal part of the cadas-
tre, omitting spatial issues because the issues raised by the research question are mainly
situated in this field. The goal is not to construct a comprehensive simulation model
of the whole complexity of reality in a cadastre. The goal is to construct the model
according to appropriate case studies.

CHAPTER 1. INTRODUCTION 20

The case studies we select for this thesis are intended to be expressive and minimal.
They are expressive in the sense that they show the institutional structure of the
domain we are interested in and minimal in the sense that they are as simple as the
issues under investigation allow. These case studies are the transfer of ownership of
a parcel and conflicts regarding the use of a piece of land between the owner, the
authorized user of the land, and the unauthorized user of the land. The conflict leads
to a legal action by the owner and a judgement execution to end the unauthorized land
use. The result of these case studies are simulations of social processes in a cadastre.

1.7 Expected achievements

The expected result of this thesis is that it is possible to construct a computational
model of reality in a cadastre, which can be successfully validated with the case studies.
The development of a computational model in an executable specification language
allows the validation by testing the specification. A realistic formalization will be
achieved by the orientation to the concrete Austrian system. It will be expected that
the analysis of reality in a cadastre leads to a general ontology of the cadastral domain
which is applicable to other legal systems. The agent-based framework to be developed
in this thesis will be extensible to larger parts of the Austrian cadastral law as well
as to other legal domains, possibly from other legal systems. From the choice of the
functional programming language we expect a clear and understandable representation
that helps to avoid mistakes and support the expression of the ideas of this thesis.

The scientific contribution of a computational model of reality in a cadastre has a
practical and a theoretical dimension. It improves the understanding of reality in a
cadastre and supports the construction of efficient cadastral systems on the practical
side as well as a more realistic view of the world around us on the theoretical side.

We expect that it is possible to apply the model to solve practical issues from
real-world cadastral systems. If the computational model of the thesis support this
assumption, we will outline the ideas of the application of the model.

1.8 The structure of the thesis

The structure of the thesis follows the three stages approach (see subsection 1.4.2).

1.8.1 The first stage - the ontology

The first stage, the ontological analysis of reality in a cadastre, comprises the chapters
2, 3 and 4.

In chapter 2 we introduce the cadastre. We present the general ideas and focus then
on the Austrian legal system. We discuss the embedding of the cadastral law into the
whole legal system. The chapter introduces characteristic processes from a cadastre,
focusing on the transfer of rights and the conflict resolution between persons.

Chapter 3 introduces the philosophical background of this thesis. It discusses the
structure of institutional reality mainly based on Searle’s theory of institutional reality.
It develops an ontology of institutional reality applying Searle’s theory. The chapter
relates the concepts to the corresponding terms from philosophy and the positive law,
introduced in chapter 2.

CHAPTER 1. INTRODUCTION 21

Chapter 4 investigates the structure of reality in a cadastre based on Searle’s theory
of institutional reality. The result is a comprehensive analysis of reality in a cadastre,
which is the essential foundation for the model construction.

1.8.2 The second stage - the model

The second stage, the construction of the computational model of reality in a cadastre,
comprises the chapters 5, 6 and 7.

Chapter 5 introduces multi-agent theory as the conceptional framework for the
model construction. It gives an overview of the concepts of multi-agent theory as a
very heterogeneous field of research. It has the goal to clarify the approach this thesis
follows, and to differentiate it from other viewpoints of the agent domain. The main
task of this chapter is the development of a general, abstract and domain independent
architecture of a multi-agent system applicable for the model of reality in a cadastre.

Chapter 6 discusses the formal framework for the model construction. It introduces
the algebraic specification style implemented in the functional language Haskell as
representation mechanism used for the construction of the agent-based model in this
thesis.

Chapter 7 describes the agent-based model of reality in a cadastre. It derives the
components of the model from the analysis of chapter 4 and discusses the construction
of the model based on the abstract agent architecture of chapter 5. It introduces the
basic ideas of the Haskell implementation of the model.

1.8.3 The third stage - the simulation

The third stage, the simulation of social processes in a cadastre, comprises the chapters
8 and 9.

In chapter 8 we discuss the agent-based simulation of ownership transfer and the
process to enforce rights within the legal system consisting of a legal action and the
judgement execution. We introduce the input and the output of the simulation in
detail. Based on the output we investigate the flow of operation during the simulation
and compare the results with the description of the processes given in chapter 2.

In chapter 9 we outline the idea of an application based on agent-based simulation.
We introduce a method for cost assessment for the parties involved in the process.

Chapter 10 gives a conclusion and describes the contributions of this work. It
discusses directions for future work.

Chapter 2

Cadastre

2.1 Introduction

This chapter introduces the legal background of the domain investigated in this thesis.
It discusses cadastral systems and the laws determining the work of the cadastral
registry. It gives an overview of the main concepts of a cadastre in general as well as
of the Austrian legal system, which is the foundation for the model constructed in this
thesis.

The chapter describes the concepts involved to the extent necessary for the purpose
of this thesis. The domain is influenced by many laws. Twaroch (Twaroch 2000) lists
more than 40 (Austrian) laws which directly influence real estate. This chapter does
not intend to be a comprehensive introduction into cadastral systems and cadastral
law. The model to be constructed in this thesis is mainly based on the legal norms
codified in two laws: the ABGB (Allgemeines bürgerliches Gesetzbuch (ABGB 1811))
and the GBG (Grundbuchsgesetz (GBG 1955)). Section 2.12 introduces and justifies
in detail the constraining assumptions we make about the law.

For the investigation of reality in a cadastre it is not sufficient only to discuss the
cadastral law itself. It is necessary to describe the embedding of the cadastral law into
the general legal system. For example, many rules relevant for a cadastre do not only
apply to parcels. They apply to legal objects in general and are therefore not directly
formulated in the cadastral law.

The legal status of land is determined by the question who holds rights on pieces of
land. This chapter emphasizes the discussion of rights and of the objects and subjects
of rights. It discusses change, i.e., legal transactions causing change in these rights.

The question of documentation of legal transactions and of the current legal status
of land is an important issue for a cadastre. Documentation is necessary to prove rights
as well as to constitute rights in a cadastre. This chapter introduces the main rules of
documentation in the Austrian cadastre.

The legal system allows people enforcing their rights with the help of the coercive
force of the state. How to use the force of the state for the enforcement of rights is an
important factor influencing reality in a cadastre. This chapter describes the processes
necessary to enforce rights. It discusses legal actions and the execution process in the
context of a cadastre.

The chapter starts with the discussion of the general principles of land registration
and of the main categories of systems existing in the world. It then focuses on the
Austrian law in particular and describes its main principles. Based on these main

22

CHAPTER 2. CADASTRE 23

principles it discusses rights, objects and subjects of rights and legal transactions.
Then follows the description of the system of documentation and the introduction of
the rules to enforce rights with the help of the state. The chapter concludes with the
discussion of the assumptions we make about the law in this thesis.

2.2 Systems of land registration

Land is the foundation of human settlement. It cannot be increased, it is a limited
resource. The purpose of land tenure systems is to manage this important resource. A
land registration system is a system of documentation that supports this social task.

Land is permanent by nature, but the rights associated to it and their extent
change. All over the world there exist many different systems to record legal change
on land pieces. Whereas the systems strongly differ in detail, there are two principal
approaches to land registration:

• the registry of deeds,

• the registration of title to land.

Deed recording systems are widely used, for instance, in the United States, title reg-
istration systems exist, for instance, in the countries of central Europe. In order to
prove who holds a right on a particular piece of land it is necessary to investigate the
title. The title is ”the evidence of a person’s right to property” (Dale & McLaughlin
1989, p.19).

A deed is a written and signed instrument that conveys some interest in property
(Garner 1996, p.172). In a deed registration system, copies of each deed, proving
the transfer of a right on a parcel, are stored in a public register. The basic unit
of registration is the legal document. These documents are the primary claim to
ownership of rights. To prove the ownership of a right a person has to establish the
‘chain of title’, i.e., the complete list of legal transactions represented by the deeds
stored in the registry that justify his title. The title of a person is based on the title
of his predecessor.

In a title registration system the basic unit of registration is the land parcel. The
rights that people hold on a parcel are recorded in the registry, i.e., the registry record is
the primary claim to ownership. The content of the registry is guaranteed to be correct
by the state. Damages caused by incorrect entries in the registry will be compensated
by the state.

A cadastre is a parcel-based land information system. That means that all data is
organized around the cadastral parcel. A parcel, in a general sense, is a proprietary land
unit, which has an own identity. It is a continuous area of land for which unique and
homogeneous interests are recognized (There are objects, which are treated similarly,
such as ships, mines and airplanes). The principal function of a cadastre is to provide
data concerning land ownership, land value and land use (Dale & McLaughlin 1989).
The goals of a land registration system can be categorized into three areas (Twaroch
2000):

1. Private and economical purposes: security of ownership and credits.

2. General economical and political purposes: real estate management, stimulation
of the real estate market.

CHAPTER 2. CADASTRE 24

3. Public purposes: tax assessment, inspection of the land market, landscape devel-
opment.

According to its primary purpose a cadastral system can be classified as (Dale &
McLaughlin 1989, p.13):

• Juridical cadastre,

• Fiscal cadastre.

A juridical cadastre is a legally recognized record of land tenure, i.e., it is primary
concerned with the legal aspect of land management. It deals with rights persons have
on pieces of land.

The main purpose of a fiscal cadastre is property valuation for taxation. It con-
tains information necessary for this purpose. It provides the necessary information to
determine the value of each parcel and the tax due to it.

The Austrian cadastral system is an instance of a title registration system. Its
primary purpose is to determine the legal situation of land parcels, therefore it is a
juridical cadastre.

2.3 Parts of a cadastre

A (juridical) cadastre usually consist of two parts (Dale & McLaughlin 1989, p.25):

1. The description of the parcels in form of either maps or survey measurements.

2. The record of the attributes associated with each parcel, in particular, the name
of the owner and the rights associated with the land.

The first part is called the descriptive part and the second part is called the attribute
part of the cadastre. The function of the cadastral map or description is to identify
the land piece in reality to which the attributes refer. The two parts of the cadastre
are cross referenced to maintain the correspondence of both parts.

The Austrian cadastre follows the partition into two parts. It consists of

1. the real estate register (Kataster 1)

2. the land register (Grundbuch)

The real estate register contains the descriptive part of the cadastre in form of cadastral
maps. The land register is the attribute part of the cadastre. It mainly contains
information about the legal status of the parcels, in particular information about the
owners of parcels and the rights associated with the parcel.

2.4 The monopoly of force

The monopoly of force is the foundation of most legal systems. The legal system is the
sum of all norms governing the living together of people which are enforceable by the
power of the state (Krejci 1995, p.1).

1Translations from (Dale & McLaughlin 1989)

CHAPTER 2. CADASTRE 25

The state claims the monopoly of force, i.e., the state claims to be the only one
who uses violence. The goal of the monopoly of force is to avoid that people enforce
their rights themselves. The state alone exerts force with the goal to achieve justice.
It includes a third neutral party into the exchange between people, which is able to
enforce arrangements.

The monopoly of force provides an economic benefit to the society. It regulates
the relationships between people. It reduces the uncertainty in the exchange between
human beings and supports in this way economic growth and increases the wealth of
the society (North 1997).

The monopoly of force has peace keeping function avoiding that everybody enforces
his interests by physical violence. This is a major foundation of the peaceful living
together of people.

The monopoly of force has a protection function. Weak persons should be able to
enforce their rights with the help of the state. The monopoly of force gives all humans
respecting the rules of the system equal chances to protect their interests.

The legal system gives people that act corresponding to its rules and norms the
possibility to use the force of the state to act according to their interests also against
other people. It gives everybody the same possibilities to use the power of the state to
maintain his rights.

2.5 The structure of the Austrian legal system

This section describes the structure of the Austrian legal system. Reality in a cadastre
is not only influenced by the cadastral law itself. Many legal concepts essential for
the description of reality in a cadastre are not directly defined in the cadastral law,
but inherited from other branches of law. This section describes the embedding of the
cadastral law into the whole legal system of Austria.

With the Austrian legal system we describe a part of the positive law, which is a
system of law implemented within a particular political community by political supe-
riors (Garner 1996, p.488). In general the legal system consists of two fields of law
(Krejci 1995, p.7):

• the material law (materielles Recht),

• the formal law (formelles Recht).

The material law defines the rules for the living together of humans. It regulates the
relations between people and the relations between people and things. Material law
norms regulate, for instance, the relationship between people and parcels, e.g., who
owns a parcel.

The formal law defines procedures to enforce legal norms. Rules of the formal law
define, for instance, how to sue another person.

The distinction of material law and formal law corresponds to the terms substantive
law and procedural law from the Anglo-American legal system. The procedural law
describes the rules that prescribe the steps for having a right or duty judicially enforced.
The substantive law defines the rights and duties themselves (Garner 1996, p.504).

The cadastral law belongs to the field of private law or civil law (Privatrecht). The
private law is the body of law dealing with private persons and their property and
relationships (Garner 1996, p.500). The private law gives the possibility for people to

CHAPTER 2. CADASTRE 26

regulate their relationships in a legally enforceable (i.e., with the help of the force of
the state) way (Krejci 1995). The private law gives the general legal conditions for
the autonomous organization of the human life. Autonomy (autonomy of the private
(Privatautonomie)) means that the people can freely arrange their life according to
the legal norms.

The cadastral law belongs to the object law or thing law (Sachenrecht), which is a
branch of the private law. The object law regulates the relationships between people
and things (or objects). The term ’object law’ corresponds to the term ’property law’,
used in the Anglo-american law tradition, which is ”the complex of jural relationships
between and among persons with respect to things” (Britannica.com 2001)2. The
object law regulates the immediate control over objects. An object in the legal sense
is anything different from a person to which rights can relate (Krejci 1995). Objects
are, for instance, cars and parcels.

Objects can be movable (personal things) or immovable (real things). Movable
are all objects which can be moved without loss in substance (e.g., cars). Immovable
objects are real estate. The cadastral law is a branch of the private law that regulates
the relationship between people and immovable things.

The private law defines the rights themselves. Additionally rules for the enforce-
ment of the rights are necessary in the case of conflicts. The procedural law (Ver-
fahrensrecht) describes the rules for the enforcement of the material private law. For
instance the procedural law defines the steps to mobilize the power of the state in the
case a person does not respect the ownership of another person of a parcel. It describes
how to sue the person and how to apply for the execution of the judgement.

2.6 Principles of the Austrian land register

The land register (Grundbuch) describes the legal status of parcels. The land register
is the public register which records the parcels and rights associated with the parcels
(Krejci 1995, p.174). In the context of the Austrian legal system we refine the general
definition of the term ’parcel’ given in section 2.2 by the following definition: A parcel
is a part of the earth which is registered in the real estate register and is identified
there by a unique identifier (Marent & Preisl 1994, Twaroch 2000). Parcels are the
smallest entities on which a person can hold rights, i.e., rights are always related to
parcels as a whole. In the land register rights are recorded referencing the number of
the parcel, i.e., only with reference to the identifier of the parcel, not with reference to
the parcel’s concrete spatial shape and boundaries. Thus change in the legal status of
parcels can be described without discussing spatial and boundary issues.

Exceptions from this general rules exist: Whereas the rights are always assigned to
the parcel as a whole they can be restricted, i.e., have only consequences to a part of
its whole area. A typical example is a right of way.

The Austrian land register (see section 2.3) consists of two parts: the first part
records the rights on parcels and the parcel owners (the Hauptbuch). Its entries serve
as the title to land. The second part records the deeds which were used to prove the
title (the Urkundensammlung).

We can distinguish legal and technical principles of the Austrian land register
(Twaroch 2000). We will introduce in the following six fundamental legal principles

2http://www.britannica.com/eb/article?eu=117332&tocid=28470

CHAPTER 2. CADASTRE 27

(Krejci 1995, p.176):

1. The publicity principle (das Publizitätsprinzip).

• The formal publicity principle. The land register is public. Everybody can
examine the content of the register in order to inform himself about the
legal status of parcels.

• The material publicity principle. A person is protected, who trusts the
content of the land register, in the case that the content of the register
deviates from the legal situation in reality. The damage arising from the
incorrectness of the register will be compensated by the state. A person
who comes in good faith can rely on the completeness and correctness of the
register. The material publicity principle is also known as principle of trust
or principle of the protection of good faith (Vertrauensprinzip) (Twaroch
2000).

2. The registration principle (das Eintragungsprinzip). Rights can only be consti-
tuted, changed and destroyed by the registration in the land register (there are
some exceptions from these general rules, e.g., adverse possession).

3. The application principle (das Antragsprinzip). Registration only takes place on
application. The land register does only change the content of the registry on
application.

4. The principle of the registered predecessor (das Prinzip des bücherlichen Vor-
mannes). Registration is only possible against a person registered as the owner
of a particular right.

5. The priority principle (das Prioritätsprinzip). The application which is first
received at the land register gets the priority.

6. The legality principle (das Legalitätsprinzip). Before registering the validity of
the registration must be checked by the land register. Another aspect of the
legality principle is that only a closed number of rights can be registered (closed
system of rights) (Twaroch 2000).

Technical principles of the land register comprise the following (Twaroch 2000):

1. The determination principle (das Bestimmtheitsprinzip). The object a right refers
to must be uniquely determined.

2. Completeness: All information about objects and rights must be completely reg-
istered and maintained.

3. Security of data: The data must be protected from unauthorized change and loss
of data due to hardware or software failures.

4. Quality and precision: The data must have sufficient quality and precision for
the purpose of land registration.

5. Documentation of changes: The decision making process of the registry and the
change in the data itself must be documented.

CHAPTER 2. CADASTRE 28

2.7 The subjects and objects of rights

2.7.1 Subjects of rights

A subject of rights (Rechtssubjekt) is every person who is able to hold rights (Krejci
1995, p.27). A subject of rights can be every legal person. A legal person is a natural
or artificial person possessing legal rights and duties (Garner 1996, p.370). The legal
person is the central element of the legal system. The legal system gives legal persons
the opportunity to act according to their own interests. The purpose of a land register
is to manage rights legal persons hold on parcels.

Natural legal persons are humans beings. The existence of a natural person begins
with the birth (nevertheless a natural person is holder of some (human) rights before
his birth). The existence of a natural legal person ends with the death of the human
being. A natural person does not have all rights from the beginning of his life. A
natural legal person attains complete legal rights with the age of majority or legal
age (Garner 1996, p.24). Complete legal rights especially are civil rights, such as the
capability of agreeing to a contract, and political rights, for example, the right to vote.
In the Austrian legal system a person attains complete rights (volle Geschäftsfähigkeit)
on completion of his 19th year of life.

The law permits that groups of legal persons join and act as a single (artificial)
legal person. An artificial legal person is an entity created by law and given the legal
rights and duties of a human being (Garner 1996, p.479). Artificial legal persons can
be organizations, such as corporations. They begin to exist by foundation and attain
full rights with the moment of their foundation. Artificial legal persons act by their
representatives, i.e., by natural legal persons representing the organization. In most
cases it is not necessary to distinguish artificial and natural legal persons because both
are able to hold the same rights and to perform the same activities.

2.7.2 Objects of rights

Objects of rights (Rechtsobjekte) are all objects to which rights can relate. The term
‘object’ describes anything different from human beings usable by human beings as
defined by the object law (see section 2.5). The field of cadastral law deals with a
special class of objects, with parcels, which are immovable objects.

2.8 Rights

Rights are the consequences or legal effects of legal norms. The norms of the legal
system (Rechtsnormen) describe typical situations (Tatbestände) in which particular
legal effects occur (Rechtsfolgen). These legal effects can be rights (or claims) and
duties. A situation can be ”A sells B a parcel C”. The legal effect of this situation is
(under Austrian law) the right of the buyer B to demand the transfer of ownership of
parcel C from A.

2.8.1 Subjective rights

A subjective right (ein subjektives Recht) is the authority given by the legal system to
enforce the behaviour defined by the legal system with the help of state power (Krejci

CHAPTER 2. CADASTRE 29

1995, p.26). It is an expectation or interest guaranteed by law (Garner 1996, p.550).
The subjective right gives the holder of the right the freedom to enforce his right, or
not to enforce his right, with the help of the state. According to the example of a
parcel sale, B has the right to enforce his right but not the duty.

For every right a person has, somebody else has a corresponding duty (Garner
1996, p.550). A right gives somebody the authority to perform an activity and at
the same time somebody else has a corresponding duty either to perform a particular
activity or to refrain from performing a particular activity. If A sells B the parcel C
corresponding to B’s right to demand the transfer of ownership, A has the duty to
perform this ownership transfer as well as the duty to refrain from selling the parcel
to anybody else.

2.8.2 Absolute and relative rights

The Austrian legal system distinguishes absolute rights (absolute Rechte) from relative
rights (relative Rechte). Absolute rights hold against everybody else. Parcel ownership
is an instance of an absolute right. It holds against everybody else and establishes for
everybody else the duty to respect the rights of the parcel owner. All property rights
belong to the class of absolute rights.

Relative rights are claims. A relative right only holds against particular other
persons. A contract, for instance, only establishes rights and duties for the contractors,
it defines mutual claims of the participating parties.

2.8.3 Ownership

A person can own particular rights on an object or the complete object. The metaphor
usually used is a bundle of sticks (Dale & McLaughlin 1989, p.19). A person can own
particular sticks of the bundle or the whole bundle. Strictly speaking a person cannot
own an object itself, the person owns the exclusive right to use the object according
to his own interests (Dale & McLaughlin 1989, p.19).

The Austrian legal system distinguishes ownership, as the complete and most com-
prehensive right a person can have on an object (Vollrecht), from restricted rights
(beschränkte dingliche Rechte). Restricted rights a person can have on a parcel are,
for instance, mortgages and usufruct. Ownership under Austrian law is defined as the
right to dispose of an object and to exclude every other person from using this object
(ABGB 1811, §354). Ownership and other restricted rights are absolute rights (see
subsection 2.8.2) and are as such protected against anybody.

Ownership must be distinguished from possession. Ownership is the right to possess
a thing. Possession is the actual dominion over a thing. Possession of property is not
recognized by the legal system as a right. Possession normally does not create legally
recognized claims over a thing. An exceptional case is, for instance, adverse possession
where the possession over a long time creates the ownership right.

2.9 Legal transactions

Legal transactions or transfers (Rechtsgeschäfte) play an important role in the descrip-
tion of reality in a cadastre. Nearly all change in the legal status of parcels occurs by
legal transactions. The major effort in the maintenance of cadastral systems is invested

CHAPTER 2. CADASTRE 30

into the correct representation of legal transactions in the registry. The maintenance
of the correctness of the cadastral registry under occurring legal transaction is a crucial
issue for land registration systems.

In general, legal transactions (under the Austrian law) are declarations of will
(Willenserklärungen), given by legal persons, which the legal system recognizes as
cause for legal effects (Krejci 1995, p.38). Legal transactions are legally enforceable
declarations of will. Legally recognized declarations of will can be unilateral, e.g., a
testament, or multilateral, e.g., a contract. In particular a contract is an agreement
between two or more parties creating obligations that are enforceable by law (Garner
1996, p.134).

The conclusion of a (mutual) sales contract is usually performed by the following
two steps: If a person is interested in an object another person owns, he makes an offer
to the owner of the object. If the transferee accepts, his declaration of agreement with
the offer establishes the contract.

A legal transfer of an object under the Austrian law consist of two parts or two
sub-transactions. The first transaction establishes obligations to be fulfilled in the
future (das Verpflichtungsgeschäft), i.e it creates relative rights. The second part
directly influences the existing legal status of objects. It transfers, destroys and restricts
rights (das Verfügungsgeschäft), i.e., it changes absolute rights. The first transaction
establishes the obligation to perform the second transaction. The first part of the
transaction is typically a sales contract. Rights are transferred during the second step,
in the case of movable objects, usually by handing over the object. If a person A sells
his computer to person B, A and B sign a sales contract declaring their mutual will
and agreement to perform the transfer. In the second step ownership is transferred by
handing over the computer to the seller.

2.9.1 The transfer of ownership

In the Austrian legal system in order to transfer ownership two preconditions have to
be fulfilled. Ownership transfer needs a valid title (Titel, Rechtsgrund) and a valid
mode (Modus). The title is usually given by a contract. The mode stands for a valid
method of acquisition. Valid modes are the handing over of the object in the case
of movable objects and the registration in the land register in the case of immovable
objects. In some cases the legal system allows exceptions. Ownership transfer can
occur without valid mode, for instance, for parcels in the case of adverse possession.
In the case of adverse possession a person acquires ownership of a parcel without a
legally recognized transaction that creates his right.

According to the two parts of the transaction (Verpflichtungsgeschäft and
Verfügungsgeschäft), ownership of a parcel is transferred by performing the following
activities: In the first sub-transaction both parties conclude a contract, i.e., a sales
contract about the parcel concerned. The contract is a valid title for ownership transfer.
It establishes the obligation for the seller to transfer the ownership in the second step
to the buyer. For the buyer it establishes the obligation to pay the price for the parcel.
According to his obligation in the second step the owner (and seller) transfers the
ownership of the parcel to the buyer. In the case of immovable objects, i.e., parcels,
ownership is transferred by registration in the land register. The registration of the
ownership transfer is the valid mode for immovable objects. The buyer becomes the
new owner of the parcel.

CHAPTER 2. CADASTRE 31

The way ownership transfer on parcels occurs in the Austrian legal system is very
different from the Anglo-American system. In the American system ownership transfer
occurs by performing a land sales contract (Garner 1996, p.135). Ownership is directly
transferred by concluding the contract.

2.10 Documentation

2.10.1 The purpose of documentation

In the field of private law the Austrian legal system allows contracting without docu-
mentation, i.e., it is possible to conclude oral contracts without any written documents,
or to conclude contracts without oral communication at all (e.g.,: take an apple and
give some money to the seller and go away with the apple). If the state demands
documentation he pursues the following purposes (Krejci 1995, p.60):

• secure evidences,

• publicity,

• protection.

The first point has the goal to provide the possibility to prove later on, what has been
agreed. For instance, a contract must be written down in order to avoid conflicts about
its content. The second point has the purpose to make the legal situation visible for
every person. The third point has the purpose to protect innocent persons against
fraud by making apparent what has been agreed.

For the Austrian cadastral system all three points, the securing of evidences, public-
ity and protection, are central elements. Publicity is one of the major principles of the
Austrian cadastral system (see section 2.6). Documentation is essential for the land
register to make the legal situation of parcels apparent. To avoid conflicts between
people regarding rights on land, the complete and comprehensive documentation is
necessary to prevent mistakes and fraud and to represent the valid legal situation in
reality.

2.10.2 Documentation of deeds and documentation of title

We distinguish the documentation of contracts (deeds) and the documentation of title
(the registry). By the documentation of deeds the complete list of legal transactions
can be maintained and investigated, since each deed represents a single transaction.
By documenting the title the legal consequences of the single transactions are repre-
sented, i.e., the current legal situation. The combination of the documentation of the
transactions with the documentation of the legal consequences of these transactions
form the basis of the cadastral registry.

All interaction between the environment and the registry occurs in a documented
manner. The Austrian cadastral system follows the application principle (see section
2.6). Written applications are necessary to cause change in the rights. Every deed that
proves a title of a person to land is recorded in the cadastral registry with the goal
that no transaction can occur without documentation in the land register.

To achieve the correspondence between the legal situation in reality and its repre-
sentation in the registry the change of rights and the documentation are closely linked.

CHAPTER 2. CADASTRE 32

The act of documenting the change in the rights itself causes the legal change. The
registration of a right on a parcel establishes the transfer of the right. Neither the
application principle nor the closest possible connection of documentation and owner-
ship transfer enable the complete correspondence between content of the registry and
reality (Bittner 1998), for instance, in the case of inheritance and adverse possession.
Thus the documentation of the valid legal situation must remain incomplete and faulty.

2.10.3 The realization of documentation

The system of documentation can be realized in electronic form or in traditional (pa-
per based) way. The main way of documenting the legal status is the documentation
on paper. Documentation is not restricted to paper based systems. Electronic docu-
mentation is also possible in the case that the technical and organizational conditions
exist to guarantee the completeness and correctness of the data. For instance, the
Austrian cadastral system stores the information about the legal situation of parcels
in an electronic database (Grundstücksdatenbank).

2.11 Processes to enforce rights

This section discusses how a person enforces his rights, i.e., it investigates cases where
conflicts occur between people. It introduces procedural law, which provides the legal
instruments for a person to mobilize the power of the state in order to enforce his
rights.

2.11.1 Complaints

Conflicts between people are resolved according to fixed rules defined by the procedural
law. The rules are equally applied to all cases and all people. Conflicts are resolved by
the responsible court. The person, who thinks that his rights are violated, has to start
a legal action against the person who restricts his rights. Then the person suing is
called the plaintiff. His opponent is called the defendant. The complaint will be served
to the defendant. The defendant has now the opportunity to answer the complaint
and to explain his point of view. After that a hearing takes place in the court. After
assessing all arguments and evidences a judge decides the question. The result of this
assessment is then stated in a judgement.

The judgement becomes valid, if the defendant accepts the judgement, if it is con-
firmed by the final court or if it is not appealed after a particular period of time. If
the defendant does not accept the decision of the court he has the possibility to appeal
against the judgement. The appeal is the proceeding undertaken to reverse a decision
by a lower court by bringing it to a higher court. It is the submission of a lower court’s
decision to a higher court for review and possible reversal (Garner 1996, p.36). If the
court of last instance confirms the initial decision (the final judgement), i.e., the defen-
dant’s efforts to achieve a reversal of the judgment have failed, the judgement becomes
valid. The obligations stated in the judgement now hold for the parties. The final
judgement is the precondition for the mobilization of state force. A valid judgement
establishes the execution title which is required for the application of the judgement
execution.

CHAPTER 2. CADASTRE 33

2.11.2 The judgement execution

If the defendant after the final judgement does not voluntarily act according to the
obligations defined by the judgement, the plaintiff as possessor of the execution title has
the possibility to apply for judgement execution. The judgement execution is the final
process to enforce the rights of the plaintiff by using the physical force of the state. The
execution procedure defines the rules according to which the force of the state will be
applied. After checking the validity of the execution title the execution will be carried
out. A sheriff (under Austrian law a Vollstreckungsbeamter or Gerichtsvollzieher) takes
away the owed object or the owed amount of money. The valid legal situation is now
re-established. The plaintiff successfully enforced his right.

2.11.3 Conflicts regarding land use

In the case of conflicts regarding land parcels the Austrian legal system defines sev-
eral legal instruments to enforce rights, the most important are the complaint of the
not possessing owner for surrender of the parcel (Eigentumsklage) and the complaint
of the owner of a parcel against a person who does not recognize his rights (Eigen-
tumsfreiheitklage). For example, a person unauthorized uses a part of a parcel that
another person owns (e.g., uses it as field). Under Austrian law the land registry
(Grundbuchamt) is the responsible court. After the judgement becomes valid, and the
unauthorided user does not abandon the land, the judgement execution would end the
land use by the defendant (the defendant would be evicted) so that the owner can
again use his parcel according to his own interests which is the situation guaranteed
by his ownership right.

2.12 Assumptions about the law

This section describes the assumptions about the cadastral law we make in the re-
mainder this thesis with the goal to focus on the essential structure of reality in a
cadastre.

Focus on the land register. This thesis deals with the legal status of parcels. The
legal status of parcels as well as change in the legal status is recorded in the land
register. The records of the land register establish the title to land. In the following
it is sufficient to focus on the land registry and its embedding into the whole legal
system.

The detailed discussion of spatial issues will be omitted. Cadastral systems
deal with the description and representation of parcels, their shape and boundaries,
as well as with the legal status of parcels. This thesis is mainly interested in the legal
status of land, i.e., who holds rights on pieces of land. It omits the discussion of spatial
issues related to land and its representation in the cadastre, as the legal topics of this
thesis can be described without detailed reference to spatial issues.

Focus on ownership and ownership transfer. This thesis investigates the prin-
cipal structure of reality in a cadastre. For this purpose we focus on the the ownership
of a parcel which is the central element in the cadastral law. The rules for other rights

CHAPTER 2. CADASTRE 34

(restricted rights, such as mortgages) are quite similar. A further investigation of other
rights would not contribute to the results of this thesis as it is not intended to give a
complete description of the cadastral law.

The transfer of ownership of a parcel is the example of a legal transaction we will
focus on in the following. The transfer of ownership is the major cause of legal change
in a cadastre and thus an essential part of reality in a cadastre.

Focus on natural legal persons of legal age. For the discussion of change in
the legal status of parcels we focus on natural persons of legal age because only they
are capable of signing contracts, which is typically necessary to cause change in the
legal situation of parcels. Exceptions from this rule exist, for instance, in the case of
inheritance. In the remainder of this thesis we assume every legal person to be of legal
age to discuss typical cases of right changes.

No discussion of defects of will and defects of contracts. We omit the dis-
cussion of specific legal issues, such as defects of will and defects of contracts. For a
further discussion see (Krejci 1995, p.51) or (Bydlinski 1996)). We assume all contracts
concluded are valid and represent the intentions of the participants.

2.13 Summary

The purpose of this chapter was to introduce the rules of the legal system relevant for
the cadastre. We focused on a concrete system, namely the Austrian cadastral system.

The Austrian legal system is an instance of a title registration system. It cannot be
completely described without the discussion of the embedding of the cadastral system
into the legal system in general.

The objects of rights in a cadastre are parcels. The subjects of rights are legal
persons. The main important right is the ownership right as the most comprehensive
right one can have on a parcel. We focused on the discussion of the ownership right.

The main purpose of the legal system is to avoid the direct application of physical
power between persons to enforce their rights. The alternative possibilities for legal
persons to enforce their rights with the help of the power of the state regulate the living
together of people. These possibilities are a central element determining reality in a
cadastre. We introduced complaints and the execution process as the way to mobilize
the physical power of the state.

Chapter 3

The ontology of institutional reality

3.1 Introduction

This thesis describes reality in a cadastre, i.e., the part of the real world which is de-
termined by the activities of the cadastral registry, the cadastral law, and the people
interacting with the cadastral registry according to the rules given by the law. We
characterize this domain as part of social reality. This chapter introduces the philo-
sophical foundation of this thesis, namely a theory about how the institutional part of
social reality is structured and constructed.

Ontology is the description of what is, i.e., the study of reality and its structure.
This chapter gives the background for the discussion of ‘what is’ reality in a cadastre,
of the basic entities, rules and relations determining this domain. We discuss several
interpretations of the term ‘ontology’ with the goal to introduce a definition applicable
for this thesis. The chapter introduces an ontology of institutional reality mainly
based on the work of the philosopher John Searle in his book ”The construction of
social reality” (Searle 1995).

The basic elements of Searle’s theory are physical and institutional facts, status
functions, collective intentionality, constitutive rules and conventional power assigned
to institutional facts. Physical facts exist in physical reality, institutional facts exist
in institutional reality. Institutional facts are characterized by the assignment of some
status to physical phenomena by collective intentionality. Constitutive rules define the
conditions for the assignment of these status functions. Collective intentionality means
that the status is collectively recognized by the people in the domain in question.
We simplify Searle’s theory discussing the structure of institutional reality without
collective intentionality involved in the construction of institutional facts. Conventional
power is assigned to institutional facts, i.e., rights and duties. We will emphasize the
discussion of conventional power and its relationship to the corresponding concepts
from the legal domain and its relationships to physical activities.

Institutional reality does not exist independently of language. The chapter con-
cludes with a discussion of the role of language in institutional reality.

3.2 Ontology and ontologies

Traditionally ontology is a branch of philosophy. Recently ontologies are used in com-
puter science for the construction of information systems (Guarino 1998). This section

35

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 36

discusses the different notions of ontology relevant for this thesis. We distinguish on-
tology in the philosophical sense and ontologies in the computer science sense.

Ontology is the metaphysical study of being and existence (Fellbaum 1998). In
the philosophical sense ontology is the science of what is, the kinds and structures of
the objects, the properties and relations in every area of reality. In simpler terms it
provides a classification of entities (Smith to appear). An ontology in the philosophical
sense is language independent, i.e., independent from the language it is expressed in.

Ontologies in the computer science sense are engineering artifacts, constituted by a
specific vocabulary used to describe a certain domain and a set of explicit assumptions
about the intended meaning of the vocabulary (Guarino 1998). Thus they are language
dependent. Ontologies in the information science sense are constructed with a certain
use and a specific computing environment in mind. The main purpose of ontologies in
this sense is to provide information reusable for all parties in the given domain.

Ontology in the traditional, philosophical sense is not a science about how we con-
ceptualize the world, it describes the world itself (Peuquet, Smith & Brogaard 1999).
It assumes that there exists one world to be described. Ontology is distinguished from
epistemology, which is the philosophical theory of knowledge (Fellbaum 1998). Ontol-
ogy does not presuppose epistemology, it is completely independent of our knowledge of
the world. Strictly speaking, if there is one world there must be one ontology. Human
conceptualizations of this world are not ontologies in this sense (Frank to appear). Hu-
man conceptualizations can be described as e-ontologies (epistemological ontologies)
whereas an r-ontology (reality based ontology) is an ontology in the traditional sense
(Peuquet et al. 1999). Both e-ontologies and r-ontology are language independent,
the first describes parts of the world based on human knowledge, the second describes
what is independent of human knowledge. Figure 3.1 shows the different concepts of
ontology.

Ontology

Ontology in the philosophical

sense

Ontology in the computer

science sense

- language independent
 -language dependent domain

descriptions

r-Ontology
 e-Ontologies

- reality-based ontology

- What is true independent of

human observers?

- epistemological ontologies

- human conceptualizations of

reality

- dependent of human

observers

Figure 3.1: Categorization of ontology

According to the terminology used above we will first introduce, based on Searle’s
theory, an r-ontology of the structure of institutional reality, i.e., an ontology that
is intended to show the objective structure of institutional reality. Based on this r-
ontology about how institutional reality is constructed, we will develop an e-ontology
of the cadastral domain. The r-ontology of institutional reality explains how institu-

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 37

tional facts are constructed whereas the e-ontology of the cadastre discusses, which
institutional facts actually exist.

Since ontologies in the computer science sense are specifications of conceptualiza-
tions (Guarino 1998) the computational model of this thesis can be regarded as the
specification of the e-ontology of reality in a cadastre. The computational model itself
can be seen as ontology in the computer science sense.

3.3 Five tiers of ontology

Reality can be conceptualized by distinguishing the following five tiers (Frank to ap-
pear) of ontology. Table 3.1 shows the five tiers of ontology.

On the physical level (tier 0) there exists one single physical reality. It is determined
by properties at every point in space and time. Space and time are the fundamental
dimensions of this reality. Observable reality (tier 1) assumes that the properties of tier
0 are observable at each point in space. These observations are incomplete, imprecise
and approximate. The object world (tier 2) assumes that objects are constructed by
human cognition based on observations of uniform properties of regions in space and
time. Objects continue in time. Social reality (tier 3) is created by social rules. Social
rules create facts which are valid within a social context only. Cognitive agents (tier
4) use their knowledge to make decisions. These decisions are acquired gradually and
lag behind reality.

Frank’s ontological tier 0 can be characterized as r-ontology describing what exists
independent of human observers. All other levels correspond to e-ontologies focusing
on different conceptualizations of reality.

Ontological Tier 0: Physical Reality:

• the existence of a single physical reality,
• determined properties for every point in time and space,
• space and time as fundamental dimensions of this reality.

Ontological Tier 1: Observable Reality:

• properties are observable now at a point in space,
• real observations are incomplete, imprecise and approximate.

Ontological Tier 2: Object World:

• objects are defined by uniform properties for regions in space and time,
• objects continue in time.

Ontological Tier 3: Social Reality:

• social processes construct external names,
• social rules create facts and relationships between them,
• social facts are valid within the social context only.

Ontological Tier 4: Cognitive Agents:

• agents use their individual knowledge to derive other facts and make decisions,
• knowledge is acquired gradually and lags behind reality.

Table 3.1: The five tiers of ontology

We present here an adapted version of the five tier ontology that shows the tiers 2

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 38

and 3 as subsets of the individual beliefs of the agents (tier 4). We assume that there
exists a physical reality (tier 0). Human beings make observations from this reality
(tier 1) and derive individual beliefs from these observations (tier 4). These beliefs form
conceptualizations of physical reality in terms of objects (tier 2). Object world in this
sense is the human conceptualization of what exists independent of human observers
in physical reality. Applying social rules human beings derive individual knowledge
about social reality (tier 3). This knowledge depends on our concepts of the physical
world (tier 2) and represents human knowledge about phenomena which exist only in
relation to human observers.

This adapted version of the five tiered ontology allows conceptualizing social reality
in terms of individual beliefs and interaction of human beings, i.e., social facts exist
only in the human mind. Figure 3.2 shows the adapted version of the five tiered
ontology.

Physical reality (tier 0)

Observations (tier 1)

Individual beliefs of

cognitive agents (tier 4)

Social reality

(tier 3)

physical objects

world (tier 2)

Figure 3.2: Five tiers of ontology (adapted version)

3.4 Searle’s theory of institutional reality

This section gives a detailed description of Searle’s theory of institutional reality, which
is the major foundation for the view of reality we present in this chapter.

3.4.1 Facts

In his theory Searle talks about facts (physical and institutional), not about objects,
events or relations between objects. In the following we will discuss the concept ‘fact’.

Searle assumes that there exist facts in reality and statements in a language. State-
ments are attempts to describe things in the world existing independent from the state-
ments. Statements can be true or false. A statement is true if it corresponds to the
fact it states (Searle 1995, p.201) (this is called correspondence theory of truth). In
this sense the fact defines the conditions that make a statement true. For instance, the
statement ”There is snow on Mount Everest” is true only if there is snow on Mount
Everest. A fact is now anything in the world that makes a statement in a language
true. Sometimes the term ’fact’ is replaced by ‘situation’ or ‘state of affairs’. Facts are
sets of objects and their relationships. Figure 3.3 shows the correspondence between
facts in reality and statements in a language.

Fact is a very broad notion that can stand for any entity in external reality or
any systematic relation between entities. Facts can concern objects, for instance, the

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 39

Reality
 language

"There is snow on Mount

Everest"

facts
 statements

Correspondence

Figure 3.3: Facts and reality vs. statements and language

fact stated by the statement ”This is a car.” identifies an object. The term ’fact’ is a
more general notion then, for instance, the terms ’object’ or ’event’. If the statement
identifies a concept, such as an object, event or relations between objects and events,
we can identify the fact with the concept in question, i.e., we can talk about objects,
events and relations.

3.4.2 Physical and institutional reality

Searle distinguishes a physical and an institutional level of reality. Within physical
reality physical facts exist and within institutional reality institutional facts exist.
Physical facts exist independent of human observers in external reality, for instance,
there exist cars, snow on Mount Everest, pieces of land or pieces of paper. Institutional
facts are observer relative and exist only in the human mind, such as money, the owner
of a parcel or a driving license.

Institutional reality is based on physical reality. Institutional facts have always a
physical foundation, for instance, in the case of money, there are pieces of paper or data
stored in a database (realized in the physical structure, for instance, of a hard disk). In
a similar way any form of language needs some physical realization, such as air waves,
paper or data structures in a computer system. Physical reality is prior to institutional
reality. Its structure and properties determine institutional reality. Institutional facts
need physical facts for their creation and existence.

Institutional reality is context dependent (Frank to appear). Institutional facts
exist only in particular contexts, for instance, ”ownership” depends on a particular
legal context and dollar bills are only money in the context of the American monetary
system. Institutional facts exist only in the context of specific institutions.

3.4.3 Status functions

Human beings do not experience the world as material objects or as collection of
molecules. Human beings experience chairs, tables or cars, i.e., we experience the
world by assigning functions (Searle 1995, p.15). If we experience a chair, then we
experience something where we can sit on, in the case of a car, something we can drive
with.

Functions, humans assign to phenomena in external reality, are not intrinsic to the
physical properties of the phenomena. They are assigned from the outside by conscious

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 40

observers, i.e., they are observer relative. The function chair, for instance, does not
exist without a human being that can sit on it. The physical properties of a chair
say nothing about ’sitting on it’. This is a function that only exists relative to human
observers that can sit on the physical object.

A similar idea was developed in the field of ecological psychology by J.Gibson
(Gibson 1979). He introduces the concept of ”Affordances”, which are what an object,
an assembly of objects, or an environment offers people to do. While originally strongly
related to human perception, i.e., to physical affordances, the concept was recently
extended to include social-institutional affordances (Raubal 2001).

A specific class of functions are status functions (Searle 1995, p.41). They cannot
be performed only by the physical features of the phenomenon. A chair, for instance,
can perform its function by its physical properties. It has the form, the material and
the stability that allow people to sit on it. In opposition the function ’money’ cannot be
performed only based on the physical properties of a piece of paper. The piece of paper
does not have itself a value that allows functioning for the exchange of value. Status
functions are functions that are beyond the physical properties of the phenomena. A
piece of paper functions as medium of value exchange, because the status ’money’ of
the paper is recognized by the society.

3.4.4 Collective intentionality

Status functions are assigned to phenomena by collective intentionality. Searle defines
collective intentionality as the human capability to collectively share intentional states,
such as beliefs and intentions (Searle 1995, p.23). In particular this comprises the
capability to assign status functions.

Collective intentionality (such as ’We believe’) must be distinguished from singular
intentionality (such as ’I believe’). Collective intentionality cannot be reduced to sin-
gular intentionality (for instance, to the form: ’We believe = I believe that you believe
that I believe that...’). Searle assumes that collective intentionality is a biologically
primitive phenomenon that cannot be reduced to anything else (Searle 1995, p.24).
Singular intentionality is derived from collective intentionality a human being shares
with others. Collective intentionality is a capability Searle presupposes for his theory
(Smith & Searle 2001).

Searle defines all facts involving collective intentionality as social facts (Searle 1995,
p.26). Collective intentionality is necessary for the creation of institutional facts but
is not limited to. According to the definition, social facts form a much more compre-
hensive class, which includes institutional facts as a subclass.

3.4.5 Constitutive rules

Constitutive rules define the conditions under which a status function is assigned to a
phenomenon, i.e., the conditions for the creation of the institutional fact. For example:
Which conditions create the institutional fact ’money’? What are the conditions that
cause that we collectively accept pieces of paper as money? Constitutive rules play
this role.

Two kinds of rules exists: regulative rules and constitutive rules (Searle 1995, p.27).
Regulative rules define the rules for existing activities, for instance, the rule ’drive on
the right hand side of the street’ regulates an already existing activity: car driving. In
opposition constitutive rules create the possibility of activities. For instance, the rules

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 41

of chess playing create an new activity: chess playing, which did not exist before the
rules were defined. Constitutive rules define under which conditions status functions
are assigned to phenomena. Institutional facts only exist within systems of constitutive
rules. The system of rules creates the possibility of institutional facts.
Constitutive rules have the following characteristic form:

X counts as Y in C

X is a physical fact to which a status function should be assigned. Y is an in-
stitutional fact after assigning the new status function. C is a context in which the
assignment of function occurs. According to the example of money, the X fact is a
piece of paper, the Y fact is money, i.e., a piece of paper with the status function
’medium of value exchange’ assigned. The context in this case would be, for instance,
the legal system of the USA if the piece of paper is a dollar bill. The constitutive rule
for money is then ’This particular piece of paper counts as money in the USA’.

Constitutive rules can form hierarchies. Then the X term can be an institutional
fact on a lower level of institutional reality that is involved in the creation of the
institutional fact Y on a higher level of institutional reality. For example, in the rule
’The citizen A of the US counts as president of the US in some particular context C’
the X term, ’The citizen A of the US’ is itself an institutional fact.

Since social reality is context dependent (Frank to appear), the definition of the
context in the rules plays an important role. Contexts can be specific, such as, ’chess
playing’ in which moving of a piece of wood in a specific situation counts as beating
checkmate, or general, such as the legal system, in which particular activities count as
ownership transfer. Contexts can be hierarchically nested. For instance, a particular
activity (handing over of a piece of paper) performed at the cadastral registry (the
specific context) counts as application (which is only meaningful in the context of the
cadastral law embedded into the legal system in general).

3.4.6 The creation of institutional facts

For the creation of institutional facts three elements are necessary:

• status functions

• collective intentionality

• constitutive rules.

The three elements together allow the construction of institutional facts: Collective
intentionality assigns a new status to a phenomenon. The status has a function which
cannot be performed only by the physical features of the phenomenon. The assignment
creates a new fact, an institutional fact, a fact created by human agreement (Searle
1995, p.46). The assignment of the status occurs according to the constitutive rules for
the fact. The constitutive rules define the conditions for the creation and destruction
of institutional facts. Institutional facts are characterized by the assignment of con-
ventional power, i.e., rights to perform activities connected to the institutional fact.
Figure 3.4 illustrates the basic ideas of Searle’s theory. Figure 3.5 shows the elements
involved in the construction of the institutional fact ’money’.

In the simplest case institutional facts are created by assigning a status function
to a physical phenomenon. In this case, according to the rule X counts as Y in C,

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 42

facts

physical facts
 institutional facts

status

indicators

constitutive rules

X counts as Y in C

collective

intentionality

institutions

assignment of status

functions

conventional

power

Figure 3.4: Searle’s theory of institutional reality

the X term is a physical fact and the Y term is an institutional fact. If the rules are
hierarchically nested, the X term can be itself an institutional fact. On the bottom of
a hierarchy of constitutive rules must be always a fact which is not a matter of human
agreement, i.e., a physical fact. According to the example of presidency (see subsection
3.4.5), on the bottom of the hierarchy defining the rules for the creation of the fact
’president of the US’ must be a physical fact, i.e., a human being to which the status
is assigned.

3.4.7 Status indicators

Institutional facts are not derivable from the physical phenomenon to which the status
function is assigned. Their existence presupposes that people have knowledge about
these facts. Institutional facts require representations, i.e., physical objects which make
visible the status assigned. Such representations are called status indicators. Status
indicators are, for instance, weeding rings, written contracts or uniforms. Wedding
rings (physical objects made of metal) represent the institutional fact that the person
who carries the ring is a married adult. A written contract (a piece of paper) represents
the event of concluding a contract. A uniform has signs that show the position and
status the person holds, for instance, in an army.

Important is that status indicators do not create institutional facts. Their function
is only epistemic, i.e they transport knowledge about an assigned status.

3.4.8 Institutions

Institutional facts exists within institutions (Searle 1995, p.113). Institutions permit
the creation and destruction of institutional facts. Institutions consist of constitutive
rules of the form X counts as Y in C and specifications of the rights which are connected
to institutional facts. Institutions are just sets of constitutive rules and sets of rules
defining rights. These rules define the institutional facts possible within the institu-
tion. Institutions are a possibility to group constitutive rules existing in a community.
Strictly speaking institutions are just names for sets of rules.

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 43

Money =

medium

 of value

exchange

physical level

institutional level

paper

human

beings

collective

intentionality
 constitutive rule: "
This piece

of paper counts as money in

the US
"

status

function

Figure 3.5: The construction of institutional facts according to Searle: the example of
money

3.4.9 Reality seen through Searle’s theory

After the description of the main content of Searle’s theory we now can discuss the
properties of institutional reality as seen through his theory. Reality consists of two
parts, the physical part, existing independent of human beings and the institutional
part, existing by human agreement. Physical reality consists of physical phenomena,
such as objects and events, which stand in systematic relationships (Searle refers to all
situations constructed out of physical phenomena as physical facts). Searle presupposes
that there exists a specific class of these objects capable of collective intentionality
and with the capability to symbolize (Smith & Searle 2001), i.e., to create language.
These objects are human beings. Human beings assign status to phenomena. The
conditions for this assignment can be described by constitutive rules. Human beings are
capable of collectively sharing beliefs about assigned status functions. Status functions
assigned to physical phenomena, which are collectively recognized by the majority of
a community, Searle refers to as institutional facts. Conventional power is connected
to collective accepted status functions, i.e., the possibility to perform some activities
to which again status functions are assigned.

To summarize: There are human beings and other physical phenomena in external
physical reality. Institutional reality exists only in the mental state of these human
beings, i.e., institutional reality exists only as collectively shared beliefs in the mind of
human beings.

3.5 The role of collective intentionality

In Searle’s theory collective intentionality plays an important role. This section shows
how institutional facts can be constructed without collective intentionality involved.

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 44

3.5.1 Preconditions for the imposition of collective intention-
ality

Collective intentionality means that human beings are able to share particular in-
tentional states, such as beliefs and desires (see subsection 3.4.4). In the context of
institutional reality this means that people collectively accept and recognize the status
function assigned. In order to establish collective intentionality, four elements must be
involved:

1. Everybody must have knowledge about the institution.

2. Everybody must accept the institution.

3. Everybody must have knowledge about the status function assigned (within the
institution).

4. Everybody must accept the status function assigned.

In modern society (and in particular in a cadastre) it is impossible to establish institu-
tional facts by collective intentionality, i.e., by everybody knowing and accepting the
fact. Modern society is too complex. Nobody can gain enough knowledge necessary to
construct the complex structure of institutional facts, which nevertheless exists. Insti-
tutional facts must be constructed in a different way without collective intentionality
involved.

3.5.2 The monopoly of force

In modern, complex social reality collective intentionality is replaced by the monopoly
of force, i.e., by the fact that particular institutions have the power to create and
maintain the institutional structure of the society. The monopoly of force has three
aspects: the monopoly to assign status, the monopoly to define rules and the monopoly
of violence.

The monopoly to assign status

In modern society the authority to create, maintain and destroy institutional facts is
given to particular organizations. For instance, conventional power is assigned to the
cadastral registry to transfer ownership. In a similar way other organizations of the
society have the power to create money. We further assume that some organizations
have complete knowledge about the status functions assigned. For instance, in the field
of cadastre institutional facts are created, first, by our knowledge about the institution
(e.g., ownership), second, by our knowledge about the responsible organization (for
instance, the cadastral registry) which we can use to acquire the necessary knowledge
about the institutional status of particular objects (e.g., human beings with the sta-
tus owner, land pieces with the status parcel). Third, institutional facts are created,
because organizations have the conventional power to assign and destroy status func-
tions. The monopoly to assign status can be characterized as the monopoly to apply
the institutional rules.

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 45

The monopoly to define institutional rules

In modern society institutions are not created, because we collectively accept the rules,
the institution consists of. This is replaced by the authority of some organizations of the
state to define rules and to alter the institutions. The constitutional law, for instance,
defines the general rules of the living together of people in a country. The constitution
can be altered by particular decisions of the government of the concerning country.
The definition of the institutional rules defines the context in which institutional reality
exists. In the legal domain the most general context is the legal system.

The monopoly of violence

Searle claims that institutional facts acquire conventional power, because they are
collectively accepted. In modern society institutional facts acquire conventional power
because the rules of the institutions are enforced by the state. The humans in the
society recognize the authority of the state to use brute force according to the legal
rules. The monopoly exists as long as most people of the society accept the system
of institutions, regardless of single individuals violating it. Similarly the authority of
courts to decide in the case of conflicts between people is constructed. The monopoly
of violence is the monopoly to physically enforce institutional rules.

3.5.3 Collective intentionality and institutions

Collective intentionality is not involved in the assignment of status functions. The
several aspects of the monopoly of force replace collective intentionality in the con-
struction of institutional facts. Collective intentionality is related to institutions. The
institutional structure, i.e., the system of institutions comprising, for instance, the in-
stitution of the monopoly of force, the institution of ownership or the institution of
money exist by collective intentionality, i.e., by collective acceptance. The legal sys-
tem as the most general institution, comprising the other institutions, exists, because
the majority of the citizens accept the institution. This corresponds to the view of
the state as a social contract between its citizens, between the ruler and the ruled, as
introduced by Hobbes, Locke and Rousseau (Britannica.com 2001)1.

3.5.4 Collective intentionality as social phenomenon

Searle claims that collective intentionality is a biologically primitive phenomenon,
which cannot be explained in terms of anything else (see subsection 3.4.4). We ex-
plain collective intentionality as a social phenomenon based on the economic interests
of the individuals. Institutions exist because they improve the economic exchange
between human beings (North 1997). The individuals accept and recognize the in-
stitutions as long as they are economically advantageous for them. As long as the
institutions provide benefits to the majority of the individuals in a society they will
be accepted by the individuals. Collective intentionality is the result of the individual
acceptance of the institutions by the individuals.

1http://www.britannica.com/eb/article?eu=70216&tocid=0

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 46

3.6 Conventional power: Rights

This section discusses the effects of the assignment of status functions in reality. The
assignment of status functions creates conventional power, it assigns rights and obli-
gations related to activities.

These activities are not necessarily of physical nature. Institutional facts can create
the possibility of institutional activities. Institutional facts create the possibility of
activities that cause the imposition or destruction of status functions. The institutional
fact ’money’ creates the possibility of paying. The institutional fact ’ownership of an
object’ creates the possibility to transfer ownership. Institutional facts do not create
the possibility of physical activities: It is impossible by defining an institutional fact
to create for human beings the physical capability of flying.

Conventional power can be assigned to institutional activities (such as: paying)
or physical activities (such as: evicting). Nevertheless conventional power to perform
activities is always based on physical activities. The activity ’paying’, for instance, is
physically based on the handing over of pieces of paper. Ownership transfer can be
based on the handing over of the object.

As this thesis is interested in the cadastral domain which is determined by legal
concepts, we will relate Searle’s concept of conventional power to the concept of a right
from the philosophy of law (Kanger & Kanger 1966, Kanger 1981) and to the usage of
the term right from in the positive law (see chapter 2).

3.6.1 Searle’s concept of conventional power

Conventional power is connected to institutional facts. The creation of institutional
facts creates conventional power and the destruction of institutional facts destroys
conventional power. Conventional power can be directly assigned to a subject, as in
the case of the owner of an object, or indirect, where the status is assigned to an object,
e.g., dollar bills, as it is in the case of money.

Conventional power is always the power to do something or to constrain someone
else from doing something (Searle 1995, p.104). Here we introduce for clarification
active conventional power, the first case, and passive conventional power, the second
case.

Searle distinguishes positive and negative conventional power, i.e., enablements and
requirements (Searle 1995, p.104). In the case of enablements conventional power
grants power to a subject. For instance, the conventional power to buy objects up to
a value of one dollar is granted to the possessor of a dollar bill (strictly speaking, it
is the power to pay debts of one dollar). In the case of requirements the conventional
power of subjects is restricted. For instance, a park ticket creates the requirement for
a subject to pay an amount of money.

Combining the concepts of active and passive conventional powers with the concept
of positive and negative powers we can discuss four modes of conventional power.

1. Active, positive conventional power. This means the possibility of a subject to
perform an activity. For instance, the owner of a parcel has the power to sell his
parcel.

2. Passive, positive conventional power, i.e., the possibility of a person not to per-
form a particular activity. For instance the citizen of a country has the passive

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 47

conventional power to have privacy, i.e., he has the power not to give all private
information about himself.

3. Active, negative conventional power, i.e., the requirement for a subject to perform
a particular activity. For instance, the citizen of a country is required to pay
taxes.

4. Passive, negative conventional power, i.e., the requirement not to perform a par-
ticular activity. For instance, the seller of a parcel is required not to sell the
parcel twice.

3.6.2 Conventional power and physical capabilities

Searle does not explicitly discuss physical powers2. He does not distinguish between
physical powers and rights. When he talks about powers, he means rights (Smith &
Zaibert to appear). We assume that there must be a physical power or a physical
capability of a human being as foundation for the creation of rights. We distinguish
between physical capabilities and (institutional) rights.

Physical capabilities and rights cannot be defined as subclasses of each other. There
are situations where a person can have a right without physical capability or the
physical capability without a right (Zaibert 1999). For instance, one can have the
right to use a piece of land without having the capability (because of sickness or
age). Human beings often have capabilities without rights, e.g., one has the capability
trespass a parcel another person owns, without the right to act in this way. People
have the capability to injure other humans without the right to do so.

We do not draw the conclusion that physical capabilities and rights are independent
of each other. We assume that rights are only meaningful (and consequently exist) if,
in principle, there exists the possibility to act in a way that the right prescribes, e.g.,
that there are human beings with the physical capability to act in the described way.
There exist no rules defining or restricting the right to swim over the Atlantic ocean,
because no human being has the capability to show such kind of behaviour. We assume
that rights are always based on physical capabilities. Powers (physical capabilities) are
the most primitive relationship between human beings and land (Smith & Zaibert
to appear). All rights people can have on land parcels are based on these human
capabilities regarding land.

3.6.3 The concept of a right

In the philosophy of law the concept of conventional power corresponds to the concept
of a right. In general a right is a relation between two parties (subjects or organizations)
X and Y which concerns a given state of affairs S between X and Y (Kanger & Kanger
1966). It is a particular relation and often it is used in the way that one party’s claim
corresponds to another party’s duty (Kanger 1981). In general there are four basic
types of rights (Kanger & Kanger 1966): claim, immunity, power3 and freedom. We
will introduce these four basic types and give their interpretations (Kanger 1981):

2Here we use the term ’power’ synonymous with physical capabilities and the term ’right’ for
conventional power (in Searle’s sense). Both terms must be distinguished from ’power in a legal sense’
which designates a particular type of a right (see section 3.6.3).

3To be distinguished from Searle’s usage of the term ’conventional power’. If there is the danger
of confusion we refer to ’power in Searle’s sense’ and ’powers in the legal sense’

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 48

Rights (of X against Y concerning positive law
state of affairs S)

claim duty of some Y to establish S
power duty of all Y not to establish S

immunity duty of all Y not to destroy S
freedom no claims of other Y concerning S

Table 3.2: Rights and the positive law

X has against Y a claim with respect to the state of affairs S(X,Y) if Y has against
X a duty with respect to S. This means that it shall be the case that Y sees to it that
S is the case. Y has against X the duty to perform an activity that establishes the
state of affairs S.

X has against Y an immunity with respect to S means that it shall be the case that
Y does not see to it that not S. Y should not perform an activity that destroys the
state of affairs S.

X has against Y the power with respect to S means that it may be the case that X
sees to it that S. X has the possibility to perform an activity that establishes S.

X has against Y the freedom with respect to S means that it may be the case that
X does not see to it that not S. This means that X has not the duty against Y to
establish the state of affairs not S. X does not have the duty to abandon S.

3.6.4 Relating the types of rights to the positive law

The positive law is the system of law implemented and laid down within a particular
political community by political superiors (Garner 1996, p.488). The positive law is
the concrete realization in a particular legal system. We relate the concept of a right
from the positive law (see chapter 2) to the types of rights introduced above.

The concept of a right in the positive law is characterized by the correspondence of
rights and duties. For every right another person has a corresponding duty (see section
2.8). Personal (relative) and real (absolute) rights can be explained in terms of other
persons duties.

Personal rights find their correspondence in the type claim. A claim defines a duty
for another person. Claims and duties are most important for the positive law be-
cause they regulate concrete obligations between parties. The law is mainly concerned
with the question how to avoid and resolve conflicts between persons regarding these
obligations.

Real rights correspond to the types of rights immunity, freedom and power. They
can be defined by claims and duties a subject has against all other subjects of the
community. The type immunity of X with respect to a state of affairs S can be defined
in terms of the duty of all other subjects Y not to destroy S. The freedom of X against
Y concerning S is the absence of duties for X, i.e., can be described as the absence of
any claims of other subjects Y against X with respect to S. The power of X according
to S is the duty of all other persons Y not to establish the state of affairs S. Power
defines the possibility to establish S, which is equal to the duty of all others not to
block this possibility. Table 3.6.4 shows the relationships between the types of rights
and the concept of a right used in the positive law.

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 49

Conventional power Rights
active, positive power
active, negative duty
passive, positive freedom
passive, negative immunity of all others

Table 3.3: Conventional power and rights

3.6.5 Relating conventional power to rights

The phrase ’X sees to it that S’ is a synonym for the possibility of an activity. ’X sees
to it that S’ means that X performs an activity to establish the state of affairs S. This
allows relating conventional power (to perform activities) to rights. Table 3.6.5 shows
the relationships between conventional power and rights.

Active positive conventional powers are related to powers in the legal sense. They
define the possibility for a subject to perform a particular activity that establishes a
particular state of affairs.

Passive positive conventional powers are related to freedom. They define the possi-
bility not to perform a particular activity, i.e., the right to maintain a particular state
of affairs.

Active negative conventional powers are related to duties (and the corresponding
claim another person has). They define the obligation for a subject to perform an
activity that establishes a particular state of affairs.

Passive negative conventional power relates to immunity. Passive negative con-
ventional power of a subject X concerning an activity A is the immunity of all other
subjects Y against X with respect to a state of affairs be established by performing the
activity A. Passive conventional power is equivalent to the absence of any power of X
with respect to the state of affairs S.

3.7 The building blocks of institutional reality

From the analysis so far we are able to derive the building blocks of institutional reality.
According to subsection 3.4.9 the ontology of institutional reality consists of physical
facts corresponding to physical phenomena and institutional facts corresponding to
beliefs about status functions that are assigned to phenomena. We distinguish there-
fore: (physical) phenomena and status assigned, which are first two building blocks of
institutional reality.

The physical level of phenomena and the institutional level of status are connected
by constitutive rules. Constitutive rules define the conditions for the assignment of sta-
tus. Constitutive rules are the key element unifying the physical and the institutional
level of reality. They are the third building block of institutional reality.

For the description of reality, change plays a crucial role. Change in reality occurs
by events. Events are caused by human activities. Physical capabilities define the
possible activities for human beings on the physical level. Rights define possible human
activities on the institutional level according to the status assigned to phenomena (see
subsection 3.6.2). Rights are based on physical capabilities of human beings, i.e.,
there are no rights independent of physical capabilities. To explain change, physical

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 50

capabilities and rights of the human beings are essential aspects of institutional reality.
The building blocks necessary to explain the structure of institutional reality are

the following:

• (physical) phenomena

• (institutional) status

• constitutive rules

• (institutional) rights (connected to status) of human beings to perform activities

• (physical) capabilities of human beings to perform activities

This set of building blocks represents an external view of reality. The external view
characterizes the fact that it regards every component as independently existing in
reality. Physical phenomena are represented on the same level as status. In reality
there is a qualitative difference between both. Physical phenomena exist in external
reality whereas status as well as constitutive rules and rights exist only in the human
mind. To achieve a closer correspondence to reality we have to respect this difference.
This leads to an individual-based (internal) view of reality . With respect to the internal
view the building blocks of institutional reality are (see figure 3.6):

• (physical) phenomena

• beliefs in the humans minds (about constitutive rules, status and rights)

• (physical) capabilities of human beings

powers
 rights

Phenomena
 Status

Constitutive

rules

powers
 rights

Assignment

based on

physical reality
 the agents minds

Figure 3.6: The building blocks of institutional reality

Our ontology fits to the adapted version of the five tiered ontology (see figure 3.2).
The usage of the term ’phenomenon’ corresponds to the usage of the term ’object’
within the five tiered ontology. Our physical level is related to tier 2, the object world.
Object world presupposes collective human cognition which forms objects from uniform
properties of space and time. We conceptualize physical reality based on objects, or,
in our terms, based on different categories of phenomena.

According to Frank the object world is not an r-ontology, because human cognition
is involved in the object construction. We do not follow this argumentation since the

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 51

central question is not how we conceptualize some aspects of the real world, the central
question is: Do the phenomena we conceptualize in some way exist independent of our
conceptualization? For objects, such as, a bottle of water or a piece of land the answer is
yes, the phenomena we designate as bottle or piece of land exist in reality independent
of us. Therefore we regard our ontology of physical phenomena and physical capabilities
of human beings (to act in their environment, to assign some status to phenomena, to
define rules, to maintain representations about their environment) as an r-ontology.

The institutional level of reality corresponds to a subset of tier 3. Ownership, for
instance, does not exist independent of human conceptualization.

By the transition from the external to the individual-based view of reality we can
explain institutional reality (tier 3) in terms of the individual beliefs of the human be-
ings (tier 4) constructed by the interaction of the individuals. In particular there exist
no collective beliefs, human beings can have different beliefs about the institutional
structure. Institutional reality is a property of the whole system, not of the individual
human beings.

3.8 The role of language

Language assigns meaning to words people utter, write or in another way realize phys-
ically. Meaning is the capability of an object to represent something else, i.e., it is
a status function and its function is to represent something. Maps, for instance, can
represent a part of the surface of the earth. Language plays an important role for the
structure of social reality, for Searle it is one of the capabilities he presupposes for
his theory (Smith & Searle 2001). We distinguish the constitutive and the epistemic
function of language.

Language is necessary for the construction of all institutional facts. This is the
constitutive function of language. In order to have institutional facts at all, a society
must have a form of language. Language is therefore prior to other institutions (Searle
1995, p.60). Language is itself an institutional fact, the function of language is to
represent meaning, i.e., to represent or symbolize something beyond itself. Language,
i.e., speech acts do not need other institutional facts for their creation. Every other
kind of institutional fact needs language for its creation.

Language is not only necessary for the creation of institutional facts. Language
has an important epistemic function. It is very often a status indicator symbolically
representing institutional facts. In order to recognize institutional facts there must
be a symbolic representation, because the status function is not derivable from the
physical properties of phenomena. In order to recognize a piece of paper as dollar bill
there must be a symbolic representation saying that the value is one dollar.

3.8.1 Speech acts

Language can be described by speech acts. The concept of a speech act was mainly
developed by John Austin (Austin 1962) and John Searle (Searle 1969). The basic
idea of speech act theory is that utterances made by human beings in everyday life
situations essentially are actions analogous to physical actions. Speech acts are usually
performed by a speaker with some intention. Utterances do not change the physical
properties of objects in the same way as physical actions (e.g., dropping a stone) do.
They affect the mental state of other human beings (their beliefs and desires) and thus

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 52

change the state of the world in a way only similar to physical actions. This subsection
is based on the introduction to speech acts given by (Wooldridge 1992).
According to Austin by uttering a sentence a human being performs three types of
activities:

1. Locutionary acts. The locutionary act is performed by (physically) uttering
words.

2. Illocutionary acts. Illocutionary acts transport some illocutionary force, e.g.,
they inform about some state of affair or they intend to cause the hearer to
perform a particular activity. They transport the force to change the mental
state of another human being. Illocutionary acts are usually performed with
performative verbs, such as ’inform’, ’request’ or ’demand’.

3. Perlocutionary acts. Perlocutionary acts indicate the effect of the speech act,
e.g., requesting something (the illocutionary act) makes someone do something.

These three acts do not exist independently of each other, they are performed simul-
taneously. By uttering a sentence an illocutionary force is transported and a possible
effect is achieved. Only together the three acts form a complete speech act. They are
based on each other: an effect of a communication action needs the physical utterance
of words which transports some illocutionary force.

Searle formulated necessary and sufficient conditions for the successful completion
of speech acts, i.e the conditions for a speech act to have the desired effect. If the
speaker utters a sentence, which is a request for the hearer to perform a particular
action, such conditions are, for instance, that the hearer is able to hear and decode the
sentence or that the hearer is able to perform the desired action.

Searle observed that there are performative verbs with similar illocutionary force.
He gives the following characterization for speech acts according to their illocutionary
force.

1. Representatives. Representative acts commit the speaker to something is being
the case, i.e to the truth of the expressed proposition (for example, ’I assert...’).

2. Directives. A directive is an attempt by a speaker to get the hearer to do some-
thing (e.g., requests: ’Please give me the...’).

3. Commissives. Commissive acts commit the speaker to some future course of
action (e.g., ’I promise to return.’).

4. Expressives. An expressive act expresses some psychological state (e.g., ’I thank
you for...’, ’I am sorry to hear that.’).

5. Declarations. Declarations effect some change in an institutional state of affairs
(e.g., by performing the act of appointing a person as a chairman, then the person
is the chairman). Declarations create institutional facts.

Often the term ’speech act’ is synonymously used to illocutionary acts.
Speech acts can be analyzed according to the physical and institutional level of

reality. The locutionary act is the physical action of, for instance, pronouncing words
(causing waves expanding in the air) or writing on a piece of paper (putting ink on
paper). Meaning is a class of status functions assigned to perlocutionary acts. If a
speech act has declarative illocutionary force (e.g., ’I declare you husband and wife’)
the perlocutionary act creates new institutional facts (e.g., ’husband’ and ’wife’).

CHAPTER 3. THE ONTOLOGY OF INSTITUTIONAL REALITY 53

3.9 Summary

In this chapter we introduced the philosophical foundations of this thesis. The foun-
dation of this thesis can be characterized as ontology of institutional reality.

The ontology of institutional reality of this chapter is mainly based on Searle’s
theory of institutional reality. Searle’s theory describes reality as consisting of a phys-
ical part and an institutional part. Institutional facts existing in institutional reality
are characterized by status functions. These status functions are assigned to physical
facts. This assignment works according to constitutive rules of the form X counts as Y
in C. Status indicators make institutional facts apparent and visible. Language plays
an important role for the construction of institutional reality and can be described by
speech acts.

Searle assumes that collective intentionality is involved in the assignment of sta-
tus functions, i.e., institutional facts exist by human agreement or acceptance. We
replaced collective intentionality by the monopoly of force, which gives particular or-
ganizations of the society the authority to create and change institutional facts. Thus
collective intentionality is not involved in the creation of institutional facts. Collective
intentionality is only involved in the creation of institutions, which exist by collective
acceptance.

We simplified Searle’s theory and assume that collective intentionality can be ex-
plained without presupposing a biological capability. Collective intentionality can be
explained in terms of the single intentionality combined with a general economic prin-
ciple. Collective acceptance of institutions is created if there is some economic benefit
for the individuals, which causes the acceptance of the rules by the majority of the
human beings.

Constitutive rules can be codified and are often codified in particular in laws.
Searle’s theory gives an approach to the analysis of legal domains, to the law itself
and to reality determined by laws.

Legal domains are strongly influenced by rights. We emphasized the discussion of
rights based on research done in the philosophy of law. We related the concept of a
right from the legal domain to the concept of conventional power form Searle’s theory.
We found many similarities which allow the investigation of (legal) rights in terms of
Searle’s theory. Rights are strongly related to physical capabilities of human beings.
They only exist if there is the physical possibility for human beings to act in a way,
which is regulated by the rights.

Chapter 4

The analysis of reality in a cadastre

4.1 Introduction

This chapter analyzes reality in a cadastre based on the discussion of the legal domain
(chapter 2) and of the ontology of institutional reality (chapter 3). The analysis cap-
tures the part of the real world necessary to understand the interaction of the cadastral
registry with its environment.

The ontology of reality in a cadastre is a conceptualization of the part of reality in
question, i.e., according the the characterization of ontologies given in section 3.2, it is
an epistemological ontology. It represents a part of reality based on human knowledge.
Reality in a cadastre cannot be described by an r-ontology (reality-based ontology)
because as part of institutional reality it depends necessarily on human knowledge.
Nevertheless it will be developed based on the ontology of institutional reality (chapter
3), which gives an account of the objective nature of how institutional facts are created,
but not which institutional facts actually exist.

The ontology is intended to be independent of concrete national systems. However
we discuss social processes from the Austrian legal system (see chapter 2). This is not
a limitation of the approach. It is used to achieve a more realistic discussion based on
a concrete system and it is intended as foundation for the computational model based
on the Austrian system we develop in chapter 7.

The starting point is the idea that it must be possible to construct ontologies for
certain legal domains, independent of the specific national legislation. The different
legislations resolve the same problems, thus the ontologies should be likely similar
(Frank 1997b). It should be possible to elicit the rational core of an ontology of real
estate that is independent of the rule sets and practices of a specific country (Stubkjaer
2000).

The chapter starts with an explanation of what we understand by the phrase ’reality
in a cadastre’. Next we justify our assumption that reality in a cadastre is a part of
institutional reality.

Smith and Zaibert identify the following building blocks of the ontology of a cadas-
tre (Smith & Zaibert to appear):

• sorts of things which can be objects of rights (immovable things),

• the issue of registration,

• different kinds of rights.

54

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 55

We discuss the objects of rights by investigating the relationship between parcels and
land pieces. The issue of registration we discuss in connection to the creation of
institutional facts and their representation. Then follows the description of the specific
properties of rights in a cadastre.

The main part of the chapter introduces the ontology of reality in a cadastre based
on three essential aspects and their interrelationships. These aspects we designate as
(Bittner, Wolff & Frank 2000):

• Ontological categories of phenomena.

• Levels of reality in a cadastre.

• The distinction between facts and rules for their creation and existence.

The ontology is based on the connection of these three aspects which cannot be reduced
in terms of each other.

The chapter concludes with a detailed discussion of the parts of the ontology in
order to provide the necessary foundation for the computational model of reality in a
cadastre.

4.2 What is reality in a cadastre?

Real estate is a complex historical product of interaction between human beings, legal
and economic institutions, and the environment (Smith & Zaibert to appear). Usually
models of the cadastre describe the cadastral registry as database and discuss its in-
ternal formal rules (see, for instance, (Frank 1996, Navratil 2001)). By investigating
the cadastral registry and its input and output operations, it is not possible to discuss
all relevant aspects influencing the work of the cadastral registry.

For example, in the Austrian and German law exists the concept of ’incorrectness
of a cadastre’, which is the non-correspondence between the content of the cadastral
registry and the legal situation in reality. The maintenance of the correctness is not
achievable in general because the cadastral registry is not a complete representation
of the situation in reality (Bittner 1998). We made the discussion of the issue of
correctness possible by adding a model of legal reality to the model of the cadastral
registry, which allows the investigation of the differences between both parts of the
model (Bittner & Frank to appear).

By reality in a cadastre we understand the part of the real world, which is influenced
by the activities and the content of the cadastral registry. It comprises the informa-
tion system cadastral registry fully embedded into its environment. The environment
consists of human beings and organizations, and their interaction with each other and
with objects, mainly land parcels, i.e., real estate. Persons act according to or violating
the rules of the legal system. Reality in a cadastre is characterized by the activities
of human beings and organizations where the cadastral registry is only one active en-
tity influencing the state of the real world. Reality in a cadastre is influenced by the
activities of autonomous individuals of the society embedded into the legal system of
a country. This comprises the interaction with the cadastral registry, as well as with
courts in the case of conflicts. An important factor is the physical force of the state a
person can mobilize to enforce the rules according to his own interests.

Change is generally caused by human activities. This excludes change caused by
other, natural events, such as floods and earth quakes or changing riverbeds causing

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 56

change in parcel boundaries. We regard natural events as separate cases and do not
include them into the discussion here.

4.3 Cadastre as part of institutional reality

Now we justify our claim that reality in a cadastre is part of institutional reality.
Real property covers a section of the surface of the earth, but the essence of real

property is the relation between the owner and the land. Without a society a person
would hold land in possession, rather than own it (Stubkjaer 2001), because rights are
only created within the legal system of a society. The foundation of real estate lies
much more in the different kinds of rights over land as it does in the physical dimension
of the land itself (Smith & Zaibert to appear). Reality in a cadastre is determined by
rights, which are institutional concepts.

Rights (e.g., ownership) are legal concepts which are regulated and introduced by
the legal system and for the case of landed property codified in the cadastral law. Laws
represent the codified rules of institutional reality. Rights and the relationship between
owners and land are clearly part of institutional reality.

Real estate is a product of the deliberative or intentional activity of human beings
(Smith & Zaibert to appear). Property rights on land differ insofar from other forms
of property rights that they not only capture the institutional aspects of rights. Ad-
ditionally the objects of the rights, i.e., the parcels, are themselves institutional. The
existence of a parcel is a matter of human institutions, without human institutions it
is only raw land (Zaibert 1999).

The objects the cadastral registry deals with, the parcels, and the relations between
owners and parcels, the rights, are institutional. Reality in a cadastre does not only
comprise parcels and owners of rights. Reality in a cadastre also comprises courts,
the cadastral registry itself, and sheriffs enforcing the power of the state. But these
elements of reality exist only in the context of the legal system and are therefore also
part of institutional reality.

Institutional reality in a cadastre is always based on physical reality, i.e., insti-
tutional reality does not exist independent of physical reality. The phenomena, the
cadastral registry deals with, are of institutional nature, which is grounded in physical
reality.

4.4 Parcels and land pieces

In this section we will investigate the relationship between land pieces, which are
physical facts existing in external reality and parcels, which are institutional facts.

4.4.1 Fiat and bona fide boundaries

Smith introduced the distinction between fiat and bona fide boundaries (Smith 1994,
Smith 1995). Bona fide boundaries are boundaries in the objects themselves. They
exist independent of human cognitive acts. They are discontinuities in the underly-
ing reality (Smith 1995). In our terminology they are physical facts determining the
boundaries of physical objects. Coast lines and rivers are typical examples of bona fide
boundaries. Fiat boundaries owe their existence to acts of human decision or related

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 57

human cognitive phenomena (Smith 1995). In our terminology they are institutional
facts, i.e., status functions assigned to the boundaries of physical objects in external
reality. The boundary between the eastern and western hemisphere or the boundary
between the Atlantic and the Indian Ocean are examples of fiat boundaries.

Fiat boundaries are created based on bona fide boundaries or without the existence
of bona fide boundaries. Fiat boundaries can exist before bona fide boundaries (e.g by
defining the boundary on a map). After the creation of the fiat boundary a bona fide
boundary can be constructed, for instance, by boundary markers, such as, fences.

The distinction of fiat and bona fide boundaries is helpful for the discussion of real
estate. It is assumed that the spatial dimension of real estate is appropriately described
by the fiat – bona fide dichtonomy (Stubkjaer 2000).

4.4.2 Parcel boundaries

Strictly speaking there are no parcel boundaries on raw land. The existence of parcels
of real estate is a matter of human institutions, without human institutions there is
only raw land. The existence of land parcels is ontologically dependent on a highly
complex system of cognitive acts, beliefs and expectations of human beings (Smith &
Zaibert to appear). Also bona fide parcel boundaries are only boundaries if someone
regards the concerning discontinuity on the earth surface as a boundary (Zaibert 1999).

To characterize parcel boundaries we need to introduce the concept of a legal bound-
ary. Legal boundaries are always fiat boundaries. Perhaps they can be related to bona
fide boundaries, as it is the case for coast lines, but they need not. Legal boundaries
are characterized by the fact that they are secured and enforced via state power (Smith
& Zaibert to appear).

What an owner owns is not raw land, what an owner owns is a parcel. A parcel is
based on representations of reality in a cadastral map. Parcels are represented by their
legal boundaries in the map. Parcels are created by registration in the cadastral map,
for example, in the case of the foundation of a new cadastral registry or in the case
that a parcel is divided and a new parcel is created by the registration of the divided
part of the parcel.

4.4.3 Parcels and rights

Parcels are characterized by their identifiers. The spatial extension of a parcel is
determined by its legal boundary, its identifier not. If the parcel boundary changes,
the identifier of the parcel remains unchanged. The identifier of a parcel is described by
a name or a number. For instance, the name ’Margaretengürtel 14’ uniquely identifies
the parcel, where the building is erected, which is the place where I live.

Rights on parcels are related to parcels as a whole. That means the rights are
related to the identifier of a parcel and not to its spatial extension. Strictly speaking
the space of land ownership is not the earth surface, it is a space of parcel names which
identify a parcel on a map, which is characterized by its legal boundaries. These legal
boundaries themselves are fiat boundaries. The maintenance of the correspondence of
legal boundaries and bona fide boundaries is an important task for a cadastre, but it
does not affect the legal situation of the parcel itself.

Figure 4.1 shows the connection between land, parcels and rights (ownership). To
summarize: Parcels are constructed based on raw land by introducing legal boundaries,

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 58

which are represented on a cadastral map. Parcels are characterized by their legal
boundaries (which are always fiat boundaries) and their identifier. Rights are always
related to the parcel as a whole, i.e., to the parcel identifier.

"Margaretenguertel"
ownership

(rights)

parcel

land

name

(identifier)

map

(representation)

reality

Figure 4.1: The relationship between land, parcels and rights

4.5 Institutional facts and status indicators in a

cadastre

For the understanding of the system of documentation with the cadastral registry as its
central part, the investigation of the relationship between the creation of institutional
facts and the creation of status indicators is the key element. We argue in this section
that the cadastral registry is a system of status indicators for events changing the
institutional status. The core point is that the act of creation of the status indicator
and the act of changing the status are identical.

In reality in a cadastre institutional facts are usually created by communication
actions, i.e., by declarative speech acts (see subsection 3.8.1). These institutional facts
are not derivable from the physical properties of the phenomenon to which the status
is assigned (see section 3.4.3). Neither the physical properties of a human being allow
to derive the status ’owner of a parcel’, nor the physical properties of a piece of land
are sufficient to derive the status ’parcel’.

Humans perceive events by their effects. Communication events creating institu-
tional facts, do not necessary create physical effects after they have finished, in par-
ticular in the case of oral communication. In this case not only the status itself is not
visible, also the phenomenon, which created the status, is not visible. This is a critical
source of mistakes, fraud and errors in the field of cadastre.

Status indicators (see section 3.4.7) represent institutional status. The system of
documentation in the context of the cadastral law (see section 2.10) serves as status
indicators for the existing institutional facts regarding landed property. Contracts are
an example of status indicators. The central element in the system of documentation
is the cadastral registry representing and indicating the legal status of land pieces and
the status of human beings regarding land.

A major issue for the system of status indicators, i.e., for the cadastral registry,
is to maintain the correspondence between the status they indicate and the actually
existing institutional facts. The solution to this issue is the combination or at least
the association of the act of representing the fact (the creation of the status indicator)

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 59

with the act of creating the institutional fact. If two persons sign a contract, this
event, which represents the creation of the contract, itself creates the contract. In
the cadastral registry (in a title registration system) the act of transferring a right is
identical with the act of registration. The right will be transferred by registering, i.e.,
representing this event in the cadastral registry.

Not in all cases the connection is so strict. In a deed recording system the act of
transferring a right is not identical with its registration, but closely linked. The transfer
of status takes place by signing the deed. In this case the creation of institutional facts
depends on the content of the registry, i.e., a particular status can only be proved
based on the content of the registry, which stores the deeds.

The system of documentation is imperfect, since there are events possible that
change the institutional status, which are not registered in the registry. For instance,
the death of a person changes the institutional status of a parcel the person owns,
without creation of the status indicator in the registry.

The system of documentation in a cadastre has an epistemic and an ontological
effect. The registration of lands affects landed property as an aid to knowledge. For
instance, it gives information about who owns a parcel and where a parcel begins and
ends. The ontological effect of registration alters the institution of land itself, its status
and structure (Smith & Zaibert to appear).

4.6 Rights in a cadastre

In section 2.8.3 we described ownership with the metaphor ’bundle of sticks’. Own-
ership of a parcel is different from other property rights. If one gives away all sticks
from the bundle the ownership right itself remains unaffected. A person remains owner
of a parcel even though he perhaps gave away all rights connected to the ownership.
Perhaps he gave away the right to use the land he owns or the right to sell the land.
He remains owner. Speaking in Searle’s terminology the ownership right is the insti-
tutional fact and the individual rights are conventional powers assigned to the insti-
tutional fact. The institutional fact remains unaffected even though no conventional
power is assigned.

Different types of conventional power in Searle’s sense can be expressed by different
types of rights (see section 3.6.5). Rights relevant for the cadastre can be characterized
by the two basic types of rights duty and power (in the legal sense). Duties describe
obligations between persons, whereas powers in the legal sense define possible activities
of autonomous individuals.

The legal system defines the general rules for persons to act according to their own
interests. It gives persons the power (in the legal sense) to enforce their interests with
the help of the state. Persons may act or not according to the powers (in the legal
sense). For instance, if the ownership right of a person is not recognized by another
person, the owner has the power (in the legal sense) to enforce his right, i.e., he may
enforce his right or not. If a person acts according to his power (in the legal sense)
it is possible to create claims which can be described by the corresponding duties (a
person has to abandon illegal land use, a person has to to transfer ownership, a person
has to pay an amount of money).

Two kinds of activities need to be investigated in the analysis of a cadastre: activ-
ities of persons according to the powers (in the legal sense) they enjoy and activities
of persons according to duties they have. Institutional change in a cadastre can be

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 60

described by investigating these two basic types of rights.

4.7 Social processes in a cadastre

Change plays a major role for the cadastre (Al-Taha 1992). Reality in a cadastre is
determined by social processes causing change. Since it is impossible to investigate the
whole variety of social processes characterizing social reality in the field of cadastre in
one thesis, we focus on processes we regard as characteristic for the cadastre.
In the field of cadastre we distinguish two kinds of processes:

1. Processes where human beings act according to the legal system.

2. Processes where conflicts occur, i.e., processes where human beings violate legal
rules, and where the organizations of the legal system resolve the conflicts.

Social processes according to the legal rules mostly deal with legal change of parcels,
which are the objects of rights in a cadastre (see chapter 2). Ownership of a parcel
is the central element determining the legal status of a parcel. Here we discuss the
transfer of ownership of a parcel between two persons under Austrian law (see section
2.9) as characteristic case of processes of the first category.

Conflicts between persons arise if persons act violating legal rules, i.e., if their phys-
ical activities do not correspond to their rights (see section 3.6.2 for a discussion of
physical capabilities and rights). A central function of the legal system is to resolve
conflicts between persons, which is the foundation for the peaceful living together of
people (see section 2.4). Processes of the second category comprise a physical compo-
nent (i.e., physical activities and the physical force of the state) and an institutional
component (i.e., the process to resolve the conflict and to mobilize the force of the
state). As characteristic case of a process of the second category we simulate the
complaint of an owner against a person unauthorized using a parcel he owns and the
following execution process to mobilize the force of the state (see section 2.11).
The case studies we discuss in this thesis consist of the following two processes:

1. The transfer of ownership of a parcel between two persons.

2. The conflict between to persons regarding the use of a piece of land consisting of
two sub-processes:

(a) The complaint of the owner of a parcel against an unauthorized user of his
parcel.

(b) The judgement execution against the unauthorized land user.

4.7.1 The transfer of ownership of a parcel

In the scenario of the ownership transfer the following actors are involved:

• A, the owner of a parcel, who wants to sell a parcel,

• B, a legal person, who wants to buy a parcel,

• the cadastral registry, which maintains the system of documentation and changes
the institutional status.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 61

parcel

Cadastral

registry

legal person

owner

A
 legal person

B

documantation

Figure 4.2: The scenario of ownership transfer

Figure 4.2 shows the scenario and the actors involved.
The owner A of a parcel offers his parcel to another legal person B for sale. B

checks the ownership of A by asking the cadastral registry. If the registry confirms the
ownership of A, B accepts the offer. Accepting the offer counts as contract. According
to the contract A applies for ownership transfer at the cadastral registry. The cadastral
registry transfers ownership and B becomes the new owner. Figure 4.3 shows the
individual activities during the process.

Cadastral

Registry

A
 B

offer(1)

accept offer(4)

ac
ce

pt
 a

pp
lic

at
io

n(
6)

ap
pl

ic
at

io
n(

5)

answ
er query(3)

Q
uery(2)

accept application(6)

reject application(6)
re
je

ct
 a

pp
lic

at
io

n(
6)

reject offer(4)

Figure 4.3: The individual activities during ownership transfer

4.7.2 Conflicts regarding land use

The scenario consists of two sub-processes, the complaint and the judgement execution.
We assume in the scenario that there is an activity ’land use’ covering the variety of
possible physical activities of human beings regarding land. For the simplification of
the discussion we regard land use as exclusive, i.e., a piece of land one person uses,
cannot be used by another person.
In the scenario the following actors are involved:

• A, the owner of a parcel, who wants to use his parcel,

• B, a legal person unauthorized using the parcel of A,

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 62

• the cadastral registry maintaining the system of documentation that proves the
ownership of A,

• the court, responsible for the resolution of the conflict between A and B

• the sheriff, who is responsible for the enforcement of the legal rules

Figure 4.4 shows the scenario and the actors involved.

parcel

Court

legal person

owner

A

legal person

B

documentation

Sheriff

Cadastral registry

Figure 4.4: The conflict scenario

The owner of a parcel A tries to use his parcel and observes that a person B
already unauthorized uses his parcel. A, i.e., the authorized user of the parcel, sues
the unauthorized user B. In order to achieve success of his complaint the authorized
user has to prove his ownership at the court, by providing a copy from the content of
the cadastral registry. The court decides the case and pronounces the judgement. For
the unauthorized user B the judgement creates the obligation to abandon the land use.
For the plaintiff A it creates the execution title.

If B does not abandon the land use after the judgement, the execution title em-
powers A to mobilize the power of the state to enforce his right, i.e., the execution
title enables the application of the judgement execution. If A can prove the execution
title, the sheriff responsible for the execution evicts the land. The legal situation is
re-established and A can use his piece of land according to his interests. Figure 4.5
shows the individual activities of the actors during the conflict resolution process.

4.8 Ontological categories of phenomena in a cadas-

tre

According to Searle status functions can be imposed on different ontological categories
of phenomena (Searle 1995, p.97):

• People,

• Objects and

• Events.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 63

Court
Sheriff

A
 B

accept application(0)

Use

 la
nd

(1
)
Use land(2)

se
rv

e

co
m

pl
ai

nt
(3

)
 answ
er

com
plaint(4)

Ju
dgement(5

)
 Judgem
ent(5)
leg

al
ac

tio
n(

2)

ab
an

do
n

lan
d(

6)

us
e

la
nd

(7
)

use land(8)

A
pply

execution(8)

A
ccept

execution(9)

land

evict land(9)

re
ject

co
mplaint(5

)

R

eject

com

plaint(5)

reject

execution(9)

Cadastral

registry

Figure 4.5: The activities during the conflict resolution process

We apply this categorization to the phenomena found in a cadastre. Figure 4.6 shows
the categories according to the example.

We regard the term ’object’ only in a restricted sense. We exclude events from the
category of objects. Events are ontologically different from objects. Their existence
depends on the existence of basic objects on which the event occurs. For instance, the
event ’falling of a stone’ depends on the existence of the object that falls and perhaps
on the existence of a human being that caused the event. Events endure a limited
time, whereas objects can be regarded as static in time. Events change the properties
of objects. We only discuss events caused by human activities, i.e., we exclude external
events, such as earthquakes from the discussion. We distinguish two kinds of human
activities: communication actions causing communication events and physical actions
causing physical events.

We distinguish subjects from objects. We use the term ’subject’ instead of people
to include organizations into this category. Strictly speaking subjects are a subclass
of objects, which are the active entities in the world. Subjects inherit all proper-
ties from objects and have additionally the capability to perform actions. By their
activities subjects cause events and change in this way other objects and subjects.
Subjects are the central category in the ontology of reality in a cadastre because they
cause all change in the real world. Subjects can hold rights on objects and are able
to assign status functions to phenomena. They are involved in the construction of
all institutional facts. The differentiation between the ontological categories ’object’
and ’subject’ corresponds to the distinction made in the law (see section 2.7) which
distinguishes subjects of rights from the objects of rights.

According to the process of ownership transfer, the category of subjects comprises
legal persons. Legal persons are the subjects of rights. A specific person is the owner
of the parcel which has some rights to perform activities concerning the parcel.

The category of objects comprises parcels and the system of documentation. Parcels
are the objects of property rights whereas legal documents represent change in a cadas-

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 64

transfer of ownership

parcel

document

legal person
 legal person

owner

Events
Subjects
 Objects

Figure 4.6: Ontological categories of phenomena in a cadastre

Physical reality Institutional reality
(phenomena) (status)

Objects land pieces, documentation parcels

Subjects human beings owner, legal person

Events human action transfer of ownership
(writing on paper)

Table 4.1: Ontological categories on two levels of reality

tre, they are status indicators. Parcels belong to the specific category of immovable
things.

The category of events comprises the transfer of ownership. The event is caused
by an activity of the subjects involved in the event. In this case the event is caused
by a communication action, i.e., a speech act, which is physically realized by a written
document. Figure 4.6 shows the different categories of phenomena involved in the
transfer of ownership of a parcel.

4.9 Levels of reality in a cadastre

The distinction between the physical and institutional level of reality has to be con-
sidered in the analysis of reality in a cadastre. On the physical level as well as on the
institutional level there are facts of the three ontological categories.

Objects, subjects and events exist only on the physical level of reality. We concep-
tualize the physical level as consisting of phenomena of these categories. Nevertheless
the categorization applies to the institutional level as well. There are status functions
which we can distinguish according to the kind of phenomenon they are assigned to.
We differentiate between status assigned to objects, to subjects and to events. In
general we designate entities on the physical level as phenomena and entities on the
institutional level as status (see section 3.7) . Table 4.9 shows the facts on the two
levels of reality with regard to the process of ownership transfer.

Within the category of subjects on the physical level there are human beings. These
human beings count on the institutional level as legal persons and owners. Within the
category of objects we can distinguish parcels on the institutional level and pieces of

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 65

land on the physical level. In the category of objects the system of documentation
exists, which is physically realized in some way. The system of documentation has the
property that it represents and makes apparent institutional status assigned to events.
Events on the physical level are human activities. In the case of ownership transfer it is
a speech act (see subsection 3.8.1) where the locutionary act, the physical foundation
of the speech act, is, for instance, the action of a human being who writes on a piece
of paper. The event ’writing on paper’ counts on the institutional level as transfer of
ownership which is represented on paper in the registry. Figure 4.7 shows the example
of ownership transfer separating the physical and institutional level.

The

institutional

level

The physical

level

owner
 transfer of

ownership
 parcel

legal person
 legal person

human being
 human being

paper

land

write

Figure 4.7: Levels of reality in a cadastre

The e-ontology of reality in a cadastre, which we develop based on the distinction
of the physical level of objects, subjects and events and of the institutional level of
status, can be regarded as subset of the five tiered ontology (section 3.3). It focuses
on the object world tier and on the social reality tier.

4.10 Facts vs. rules for their creation and existence

Searle’s theory distinguishes between institutional facts and institutions. Institutions
consist of sets of constitutive rules and define the conditions for the creation and
existence of facts (see section 3.4.8). The distinction between rules for the creation
and existence of facts and the actually existing facts is a fundamental property of
reality which does not only apply to institutional facts. It is also a property of physical
reality. In the following we write rules and facts when we talk about this distinction.

The idea is comparable to the following metaphor: Given a theatre performance.
The script defines the rules for the play of the actors. The stage and the actors and
the activities they perform are phenomena actually existing in reality, are facts. The
script describes what kinds of facts possibly will be created. This must be distinguished
from the actual play of the actors, i.e from the actually evolving situation in reality.
Nevertheless the actual situation in reality depends on the rules defined in the script.

Facts describe what actually is in the world and rules describe how the world can
evolve. Rules describe how facts can possibly be created and destroyed. Facts represent
a state of the world (current, former oder future state), whereas rules represent how
the world can change between these states.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 66

The distinction between facts and rules applies on the institutional level. Consti-
tutive rules define the rules for the creation and existence of institutional facts. For
example, constitutive rules describe under which conditions a human being counts as
owner. This must be distinguished from actually existing owners in reality. Figure 4.8
illustrates the situation with regard to this example.

owner

human

being

institutional

level

physical level

constitutive rule defining the

conditions for the creation of the

instituional fact owner

actually existing facts on the

physical and institutional level:

human being, owner

Figure 4.8: Rules vs. facts in a cadastre

The distinction between facts and rules applies on the physical level. Rules (the
rules of physics) define the conditions for the creation of objects, subjects and events
as well as their properties when they exist. The physical, in particular geophysical
laws describe how pieces of land are created as well as their properties when they come
into existence. The physical laws must be separated from the actually existing objects.
Since we are interested in the change of status of objects and not in the change of the
objects themselves, we can regard objects as static, i.e., we can assume that objects do
not change. Consequently the rules for the creation of objects do not play a central role.
Rules are much more important in the discussion of events describing the conditions
causing an event and its possible effects. We discuss this issue now in connection with
human actions, physical capabilities and rights.

In section 3.6.2 we introduced the distinction between (physical) capabilities and
rights. Capabilities define possibilities for activities of human beings on the physical
level. Rights define possibilities for activities that assign a specific status to a phe-
nomenon. Capabilities and rights can be regarded as rules defining the conditions for
human activities. The human activities, actions performed by persons, must be distin-
guished from the rules that describe their possibility. Capabilities define, for instance,
the physical ability of a human being to write on a piece of paper. This ability enables
the possibility to perform an action of this type. A human being can write a specific
moment in time on a piece of paper. Rights, for instance, define the possibility of an
owner to transfer ownership. This possibility must be distinguished from the actually
occurring event ’ownership transfer’ that a person causes by an action.

Rules on the institutional level are always grounded in physical reality. This applies
to constitutive rules as well as to rights. On the bottom of a hierarchy of constitutive
rules is always a physical fact, rights are always based on physical capabilities of human
beings.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 67

4.11 The structure of reality in a cadastre

We introduced three essential aspects in the analysis of reality in a cadastre: ontological
categories of phenomena, levels of reality and the distinction between facts and the
rules for the creation and existence of facts. The three aspects cannot be expressed in
terms of each other. They represent different views on the issues involved in reality in
a cadastre, none of them can be omitted. The idea is that every combination of the
aspects is meaningful and expresses an element of the structure of reality. For instance,
there are facts on the physical level within the category of subjects: human beings.
There exist rules on the institutional level within the category of events: constitutive
rules for an ownership transfer.

The discussion of all these combinations of the essential aspects forms a compre-
hensive view of reality in a cadastre. The analysis can be expressed in terms of these
aspects and their interrelationships. Figure 4.9 shows the structure of reality in a
cadastre.

physical

institutional

rules for subjects

rules for events

rules for objects
 object facts

event facts

subject facts

owner

legal

person

human

being

tra
nsfer

of

ownership

write

parcel

land

documen-

tation

institutional

reality

physical reality

rules of

institutional

reality

rules of physical

reality

rules
 facts

subjects

events

objects

levels of reality

facts vs. rules

for their creation

and existence

ontological

categories

Figure 4.9: The structure of reality in a cadastre

The representation in the cube allows distinguishing 12 sub-classes in the whole
structure of reality in a cadastre (corresponding to the sub-cubes). In the following we
discuss these subclasses.

4.11.1 The physical level of reality in a cadastre

The discussion starts with the physical level of reality in a cadastre, which corresponds
to the lower part of the representation (figure 4.9). We investigate the phenomena
involved according to the ontological categories of phenomena.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 68

Physical objects

Facts. The central element in reality in a cadastre is the land. Reality in a cadastre
is grouped around the management of this resource (see section 2.2). Rights are not
directly assigned to raw land pieces but rights concern land (see section 4.4).

Reality in a cadastre needs a system of documentation (see section 2.10). Physical
foundation for the system of documentation is usually paper. Modern systems support
an electronic based system of documentation (see section 4.5 for the discussion of the
role of documentation).

We identify two classes of physical objects which are important for the cadastre:
a system of documentation and land pieces. We leave open the concrete physical
manifestation of the system of documentation.

Rules. According to the two classes of objects relevant for reality in a cadastre we
now discuss rules for land and the system of documentation.

The rules for land describe what qualifies as land pieces which human beings would
accept as parcels. Land is part of the surface of the earth. Its evolution is described
by geophysical laws. The main important property of land is its spatial extension,
in particular its two-dimensional extension. Land must be usable by human beings,
for instance, for agriculture or to erect buildings on it. The term ’land’ usually means
parts of the solid earth surface and cadastral systems mostly deal with solid land pieces.
Land in a broader sense can also comprise water-covered parts of the earth surface,
which offers different possibilities of usage for human beings.

The rules for the system of documentation represent the requirements for physical
objects to be used for the representation and, in particular, for the registration of
ownership rights concerning land. To be used for documentation the physical objects
must be durable to maintain the information they contain over a long period. Physical
objects must be manageable for human beings in order to use them for documentation.
This means that the spatial extension, its weight and form must be in a way that it
can be used for maintaining information. Physical objects must be changeable in a
way that they can bear the data by some aspects of its physical properties. The
physical manifestation of the system of documentation is not the crucial question for
the cadastre. Important is the fact that it serves its purpose as system of status
indicators (see section 4.5).

Physical subjects

Facts. Physical subject facts are the most important entities determining change in
reality in a cadastre. Physical subject facts are human beings. We do not distinguish
between groups of individuals forming organizations and single individuals. Both can
be legal persons and thus be holder of the same rights and duties (see section 2.7).
Organizations of individuals are represented by single individuals acting for the whole
group. Human beings are the active entities in reality, because they are capable of
acting in their environment, i.e., to perform actions.

Rules. Physical subject rules concern in the first place physical capabilities of human
beings to perform activities and their effects (see section 3.6.2). Physical capabilities
relevant for reality in a cadastre are all kinds of land use, communication actions and

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 69

physical violence against other human beings. The effects of human activities are
events that change the physical environment.

Physical events

Facts. Events relevant for reality in a cadastre are caused by physical subjects, i.e.,
human beings. We distinguish physical and communication events for clarification,
not because there is a fundamental difference. Communication events are physically
determined by air waves in their oral form or physical changes of objects, which we
can interpret as writing.

Events can be identified with the effects of human actions since we do only investi-
gate change caused by human communication actions. Nevertheless human activities
are not the only source of change in a cadastre. Events not under consideration here
are, for instance, floods and earthquakes, and the death of a human being.

Rules. Physical event rules describe the possible effects of events. Events can affect
human beings or objects. Events affect human beings by changing their mental state in
the case of communication events, or physically by violating. Events can affect physical
objects, in the case of reality in a cadastre pieces of land or the physical manifestation
of the system of documentation.

4.11.2 The institutional level of reality in a cadastre

This subsection discusses the institutional level of reality in a cadastre, which corre-
sponds to the upper part of the representation (see figure 4.9). We investigate the
institutional status involved according to the three ontological categories. We do not
use the terms ’institutional object’, ’institutional subject’ or ’institutional event’. No
objects, subjects and events exist on the institutional level of reality, there are only
status functions (for short status) assigned to phenomena. Therefore we talk about
status and facts (see section 3.4.9).

Status assigned to objects

Facts. Status is assigned to land pieces. The assignment of status to land pieces
creates new institutional facts of the type parcel. Rights concerning land pieces are
defined in the cadastre with regard to parcels, not the physical land itself (see section
4.4).

The system of documentation is itself not an institutional fact, it is in the first
place a status indicator for events that changed the legal status of parcels (see section
4.5).

Rules. Parcels are created by an act of foundation by the state or by dividing existing
parcels. The creation of a parcel means the registration of the legal boundaries and of
a unique name for the parcel (see section 4.4).

There are no rules for the system of documentation because it is not an institutional
fact. We regard the function of the system of documentation as purely epistemic, i.e.,
it provides knowledge about the institutional status of subjects objects and events.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 70

Status assigned to subjects

Facts. Reality in a cadastre is determined by activities of legal persons and by ac-
tivities of the state. The state acts through its organizations or representatives. The
organizations and representatives relevant for the cadastre are the cadastral registry,
responsible for the registration of legal transactions between legal persons concerning
land, the court responsible for resolving conflicts between legal persons and the sher-
iff, who represents the physical power of the state to enforce rights of legal persons.
A specific class of legal persons are owners of parcels who hold an exclusive right on
parcels.

Rules. Institutional subject facts are created according to the legal rules by assigning
status to human beings. The status of the representatives of the state is created by an
act of foundation by the state. Reality in a cadastre is concerned with change within
the legal system, not with the change of the legal system itself. The institutional status
of the representatives of the state can be regarded as static and given. The cadastral
registry, courts and sheriffs do not change their status, thus it is not necessary to
include constitutive rules for their creation into the discussion.

Rules on the institutional level comprise rights which are connected to status as-
signed. We assume that the following rights are important for reality in a cadastre: A
legal person can have the right to physically use a piece of land a parcel refers to (the
content of the ownership right (see subsection 2.8.3)). A person can have the right to
transfer the ownership right to another legal person (see subsection 2.9.1). A person
can have the right to perform physical power against legal persons. The state reserves
this right for some of its representatives, the sheriffs (see section 2.4). Persons have
the right to conclude contracts. Persons have the right to sue other persons if they
believe that their rights are restricted (see section 2.11). Subjects have the possibility
to perform activities according to these kinds of rights.

Status assigned to events

Facts. Institutional change occurs by assigning status to physical events. In reality in
a cadastre institutional change occurs by communication actions between persons, i.e.,
we need only to investigate communication events. Communication events are speech
acts of different categories (see subsection 3.8.1 for the discussion of speech acts).
Declarative speech acts are performed by representatives of the state, namely by the
cadastral registry in registering ownership transfer (in the Austrian system, see section
2.9.1) or by the court pronouncing a judgement (see subsection 2.11.1). A person
can exchange knowledge by performing representative speech acts (e.g., inform). In
particular the cadastral registry informs other persons about the legal status of parcels.
Persons can perform commissive speech acts, i.e they can promise to perform particular
activities (such as: an offer).

Rules. Institutional event rules define the possible effects of events on the institu-
tional level. The effects relevant for the cadastre is change in the institutional status
of persons or parcels. In particular the effects of declarative speech acts performed by
the cadastral registry are ownership transfers concerning parcels (under Austrian law,
see section 2.9.1). Speech acts can also increase the knowledge of persons (speech acts
transport information) or they can create duties (e.g., in the case of promises).

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 71

4.12 Assumptions about reality

The analysis so far allows to make some assumptions about reality in a cadastre, which
are sufficient for the cadastral domain and allow the simplification of the general theory.

In reality in a cadastre the hierarchy of constitutive rules is confined to two levels.
On the lower level there are rules that assign status directly to events. For instance,
in the case that an agent accepts an offer to buy a parcel, the status ”contracting” is
directly assigned to this event. On the higher level status is assigned to subjects and
objects that participate in this event. In the case of contracting the status ”buyer”
and ”seller” is assigned to the participating agents. These two levels are sufficient to
explain all aspects of reality captured by the analysis.

We can assume the existence of statically existing physical objects and subjects.
The analysis works with a predefined set of human beings, respectively particular
groups of human beings (the cadastral registry, the court, a buyer of a parcel), and
land pieces, which are the main important elements on the physical level of reality (see
subsection 4.11.1). Accordingly no rules for the creation of these physical objects need
to be given. For example, if we do not investigate the death of human beings, we do
not need to analyze the rules for such event occurrences. We will not discuss legal
change caused by the death of persons.

We distinguish status that can be changed by events (regarded as dynamic) and
status that remains static. For instance, it is assumed that land pieces do not change
their institutional status. Further we assume that the legal persons in the system do
not change, i.e, for instance, the death of a person is not represented. Additionally
the representatives of the state, i.e., the cadastral registry, courts and sheriffs, do not
change their institutional state. Static beliefs do not correctly represent reality, they
are a restriction of the analysis that does not investigate change in these beliefs.

The argument justifying the assumption of static objects and status functions is
that, first, some aspects of reality are outside the scope of the analysis, which can be
held as constant. Second, some aspects change much slower than the phenomena under
consideration that they can be regarded as static.

Short term status beliefs and long term status beliefs can be distinguished. Short
term beliefs have only conventional power during the events that created them. That
means that they are only connected to rights during the event itself. For instance, to
the status ”seller of a parcel”, rights are only connected during the process of selling.
After the parcel is sold the function of the belief is purely epistemic, i.e., it represents
the knowledge about the fact that there occurred the sale of a parcel at some moment
in time in the past. Long term status beliefs keep their conventional power if the
constituting event is finished. For instance, to the the status owner of a parcel, rights
are connected as long as no change in the ownership of the parcel occurs. All the time
there exists the right to use the parcel and to exclude every other person from the land
use (see subsection 2.8.3).

4.13 Summary

In this chapter we developed an e-ontology of reality in a cadastre. By the term ’reality
in a cadastre’, we understand the cadastral registry embedded into its environment
and its interaction with the human beings acting in this environment. We justified the
assumption that reality in a cadastre is a part of institutional reality.

CHAPTER 4. THE ANALYSIS OF REALITY IN A CADASTRE 72

The chapter investigated the relationship between physical pieces of land, parcels
and connected rights. We introduced the concept ’legal boundary’, which is always a
fiat boundary and can be related to a bona fide boundary. Rights are connected to
parcels as a whole, i.e., to their identifies, and not to their spatial properties (e.g., legal
boundaries). The change in the legal status of parcels is not affected by simple change
of the boundary.

The creation of status indicators and the creation of institutional facts is closely
linked. If possible, the process of the creation of the fact is connected to the process
of the creation of the status indicator in order to achieve the most complete corre-
spondence between the system of status indicators in the cadastral registry and the
institutional status in reality.

We developed an ontology of reality in a cadastre based on the distinction of three
aspects of the analysis:

• Ontological categories of phenomena,

• Levels of reality,

• The distinction of facts and rules for their creation and existence.

These aspects are related and we discussed each combination of the three aspects.
The analysis of this chapter is independent of national cadastral systems, whereas

the social processes we used as case studies are from the Austrian legal system. We
presented a comprehensive view of the cadastral registry embedded in its environment
based on the ontology of institutional reality presented in chapter 3.

The analysis of reality in a cadastre concludes the first part of this thesis. Its
major goal was to develop the foundations for the construction of the computational
model later in this thesis. We grounded the analysis on a solid philosophical foundation
and identified the relevant aspects of reality necessary for the computational model.
We achieved a comprehensive categorization of the issues involved which allows the
construction of a minimal model only based on the essential aspects determining reality
in a cadastre.

Chapter 5

The architecture of a multi-agent
system

5.1 Introduction

For the construction of a model of (institutional) reality in a cadastre, the representa-
tion of human beings and their individual capabilities, decisions and actions is the core
element, since institutional reality exists only in relation to human beings and their
individual beliefs and activities (see chapter 3). We represent human beings and their
capabilities in terms of agents and model reality in a cadastre in a multi-agent model.

This chapter introduces the conceptual background for the construction of the
agent-based model of reality in a cadastre. It discusses multi-agent theory as the
scientific discipline researching on agent-based models. It describes the main concepts
of the field and focuses on developing an abstract agent architecture, which can be
applied to the task of modelling reality in a cadastre.

The chapter starts with an introduction into the theoretical background of multi-
agent theory. We introduce multi-agent theory without discussing representation mech-
anisms. This thesis regards an agent-based approach as purely conceptual framework.
Representation issues will be discussed in chapter 6. Chapter 6 introduces algebraic
specifications, which are implemented in the functional language Haskell, as represen-
tation mechanism for the agent-based model. Following the subdivision of the field of
multi-agent theory into research on

• agent theories1,

• agent architectures and

• agent languages (Wooldridge & Jennings 1995),

this chapter focuses on agent theories and and architectures and chapter 6 emphasizes
the discussion of an agent language suitable for this thesis. Agent theories deal with
questions, such as, what an agent is and what the general properties of agents are.
Agent architectures discuss the types of agents and the structure of concrete agent ar-
chitectures. Agent languages investigate languages for programming and implementing
agents for experimentation and applications.

1to be distinguished from the term multi-agent theory describing the whole body of research

73

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 74

5.2 Overview of multi-agent theory

”A new field is only defined by its problems, not its methods/technics”
(Nwana & Ndumu 1999, p.8).

”Intelligent agent technology is a rapidly developing area of research. How-
ever, in reality, there is a truly heterogeneous body of work carried out
under the ’agent’ banner.” (Nwana & Ndumu 1996, p.3)

”Es gibt sicher so viele Definitionen des Gebietes, wie es Forscher gibt, die
darin arbeiten.” (Schröder 1993, p.10)

Multi-agent theory is a young scientific field without common paradigms. Different
people from different domains working in the field have different understandings of
the concepts. There is much literature about the topic (e.g., (Ferber 1999, Weiss
1999, O’Hare & Jennnings 1996, Russell & Norvig 1995, Schröder 1993, Bond & Gasser
1988b)). Because of the heterogeneity of the field we give a comprehensive overview of
the domain, which allows relating our approach to the whole body of research. We focus
on the different viewpoints of the field, which are the core elements in understanding
the different approaches to multi-agent theory2.

Multi-agent theory is regarded as important new contribution to several areas of
research. First, it is an important new way to conceptualize and implement software
applications (Wooldridge 1999). Agent technology is expected to be one of the key com-
puting paradigms over the next 10 years (Gilbert, Aparicio, Atkinson, Brady, Ciccarino,
Grosof, O’Connor, Osisek, Pritko, Spagna & Wilson 1995). Second, it introduces the
concept of collective intelligence and emergence of structures by interaction (Minsky
1985) into the field of artificial intelligence. Third, in the field of social simulation it
offers the promise to allow the modelling of autonomous individuals and interaction
between them (Gilbert & Troitzsch 1999). Multi-agent theory has the potential to
stimulate and contribute to a broad variety of scientific fields.

5.3 Approaches to multi-agent theory

There are several approaches to multi-agent theory, according to different backgrounds,
goals, viewpoints of the researchers involved. All capture different aspects of the field.
This section discusses these viewpoints and characterizes the approach of this thesis in
relationship to them.

5.3.1 Objectives to study multi-agent systems

There are three classes of objectives to study multi-agent theory (Bond & Gasser
1988a):

• a natural systems approach,

• an engineering-science perspective,

• a person-machine coordination approach.

2Much stimulation for this chapter came from the course by Paolo Petta ”Software Agents” at the
University Vienna in summer semester 2000 (Petta 2000).

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 75

The natural systems approach studies strategies and representations people use to coor-
dinate their activities. It understands the field as a way to improve the understanding
of human behaviour. Subject of research are people as social beings. An engineering-
science perspective studies multi-agent theory with the goal to construct automated
problem solvers for specific applications. Subjects of research are computer programs
and machines and their application in the software developing and engineering pro-
cess. A person-machine coordination approach brings these two perspectives together
by studying the working together of people and machines. It analyzes collections of
people and machines that work together in a coordinated way. Subjects of research
are human beings and machines/programs as well as their interaction.

This thesis focuses on a natural systems approach. It regards agent-based models
as a way to improve our understanding of some aspects of social reality, which is
determined by the interaction of human beings.

5.3.2 Top-down vs. bottom up strategies

Bond and Gasser (Bond & Gasser 1988a) distinguish from a DAI viewpoint two sub-
fields of multi-agent theory: research in distributed problem solving and research in
mulit-agent systems. The first field considers how a single problem can be divided into
sub-problems and distributed among a number of agents to develop a solution to the
whole problem. Research in multi-agent systems investigates how autonomous agents
can coordinate their knowledge and behaviour to solve problems. The distinction of
these two sub-fields represents different philosophies in the construction of agent-based
systems. Distributed problem solving is a top-down approach to the field starting on
the macro level refining and dividing the whole problem into smaller pieces. Research
in multi-agent systems represents a bottom-up strategy to the system design. It starts
on the individual level with the definition and construction of single agents.

Following the analysis of chapter 3, which explains the structure of institutional
reality in terms of the individual activities of human beings, we use a bottom-up
strategy for the construction of the agent-based model. The core part of the model are
the agents and their interaction with the environment, which together form the whole
system.

5.3.3 Backgrounds to study multi-agent systems

Multi-agent theory is mainly influenced by two scientific fields, by distributed artificial
intelligence (DAI) and mainstream computer science. The DAI perspective in general
has the goal to construct systems which are intelligent. Intelligent in this context
(there is no general agreement about what intelligence is) means that the system can
solve particular problems at least as good as human beings (Barr & Feigenbaum 1981).
Distributed artificial intelligence investigates systems of distributed agents which to-
gether can solve problems. It studies how a loosely coupled network of problem solvers
can solve problems that are beyond the capabilities of the nodes individually (Durfee,
Lesser & Corkill 1992).

Research influenced by mainstream computer science focuses on a software engi-
neering perspective. This approach in general has the goal to design more efficient
software systems. It does not investigate the intelligence of the system. It creates sys-
tems that interconnect separately developed agents, enabling the ensemble to function
beyond the capabilities of any singular agent in the setup (Nwana & Ndumu 1999).

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 76

Both approaches emphasize the capabilities of the whole system beyond the capa-
bilities of its parts, but they use different methods and focus on different applications.
For instance, in the software engineering case object-oriented programing methods will
be used to construct information agents. In the DAI case logical deduction methods
will be used in the field of distributed problem solving.

5.3.4 Agents as a concept

Neglecting the focus on particular methods and applications, the core element of multi-
agent theory is the agent concept. Much confusion arises from the fact that the term
’agent’ is used both as technology and metaphor (Nwana & Ndumu 1996). The ap-
proach of this thesis is characterized by the focus on the agent concept. In this thesis
we call this the agent-based conceptualization approach to multi-agent theory.

This approach does not focus on the technical methods, it does not focus on repre-
sentation and reasoning mechanisms. It uses the term ’agent’ as design model (Gilbert
et al. 1995). It applies the agent concept as a metaphor for the description of the active
entities in some domain. Agent-based models are regarded as conceptual framework
for the representation of a domain of interest. The conceptualization will be expressed
in a computational language. The language must be expressible and understandable
enough to allow the representation of the agent framework. These are all requirements
to the agent representation language. To summarize: The agent-based conceptualiza-
tion approach uses agents interacting in a multi-agent model as basic concept for the
description and representation of a domain.

5.4 Agent programming languages

An agent language allows programming hardware or software computer systems in
terms of the agent concept (Wooldridge & Jennings 1995). It allows developing pro-
grams for experimentation with agent-based models. It enables the construction of
applications based on multi-agent theory. Agent programming languages are the tool
for implementing agent concepts and specifications. We distinguish special purpose
languages for programming agents from general purpose programming languages, which
can be applied for the implementation of agent-based models.

Special purpose languages have at least special constructs for the construction
of agents. An example of this kind of languages is the Agent0 programming lan-
guage applying the agent oriented programming paradigm (Shoham 1993). The idea
is to directly program agents based on mentalistic and intentional notions (such as
beliefs, desires). Another attempt to construct an agent programming language is
the GOLOG/CONGOLOG language (Levesque, Reiter, Lesperance, Lin & Scherl
1996, Shapiro, Lesperance & Levesque 1997). Based on the formal foundation of a
modern version of the situation calculus (McCarthy & Hayes 1969) by Raymond Re-
iter (Reiter 1991) the language is defined in the logic programming language Prolog
(Clocksin & Mellish 1981). The core idea of this approach is that many issues in ar-
tificial intelligence and program development can be avoided by providing a language
based on a formal foundation. The agent programs defined in Prolog syntax have
formal semantics with respect to a situation calculus theory.

General purpose programming languages are applicable to the implementation and
representation of agent based models. Object oriented programming languages (Meyer

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 77

1988) provide a possible foundation for this task, because objects and agents have some
common properties (as well as differences: see section 5.6), such as an encapsulated
internal state and communication by message exchange.

This thesis uses a general purpose language for the implementation of agents al-
lowing the representation of the model without the necessity to adopt the assumptions
about the agent concept made in a special purpose language. We use the functional
programming language Haskell for implementing agents. Chapter 6 discusses this issue
in detail.

5.5 Applications

There are at least three broad areas of application for multi-agent theory. The bound-
aries between these areas are not sharp. Sometimes the same area of application is
investigated just from different viewpoints. The three areas are:

• Artificial intelligence

• Program development

• Simulation

5.5.1 Applications in distributed artificial intelligence

In the field of artificial intelligence the agent concept can be applied in Cooperative
problem solving, in the construction of interface agents and information agents. Re-
search in cooperative problem solving (Durfee et al. 1992) investigates how groups of
agents can cooperate to efficiently solve problems. The goal is to overcome complexity
issues, to deal with the distribution of problems and to coordinate work. Interface
agents can be used to improve the interaction between humans and machines. The
metaphor is a personal assistant which cooperates with a user. The user delegates a
range of tasks to personalized agents that can act on the user’s behalf (Maes 1994).
Information agents are WWW-based autonomous software agents that collect and sup-
ply information to humans and other computational agents (Decker, Pannu, Sycara &
Williamson 1997). They are able to incorporate information from different sources to
support its user. Agent theory can be applied to construct artificial worlds (Ferber
1999). The goal is to provide software environments to test and evaluate agent the-
ories. Such software environments are called distributed artificial intelligence testbeds
(Decker 1996). Testbeds are not applications in a narrow sense. They can be used as
connecting element between theory and applications.

5.5.2 Applications in the field of program development

Several applications exist in the field of program development (see (Gilbert et al. 1995)):
In systems and network management agent technology is used to manage the complex-
ity of systems by distributing the administration task among a set of agents. They
can automatically perform simple functions and filter the activities to be performed
by the administrators. There is a high demand for improving messaging software by
adding more ”intelligence” to the system. Agents are applied to filter, sort, distribute,
prioritize and organize messages for the user both in electronic and conventional mail
systems.

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 78

5.5.3 Multi-agent simulation

Multi-agent simulation is the third application of multi-agent theory which is mostly
relevant for the topics of this thesis.

The idea of simulation

A powerful way of explaining things, widely used in science, is in terms of models
(Gilbert 1995). Computer simulation is a particular type of modelling. A model is
a simplification of some structure or system, which is smaller, less detailed and less
complex. The important point about a model is that it must be designed to be similar
to the target domain in structure and behaviour (Gilbert 1993). The model is usually
expressed in terms of a mathematical or logical description.

The idea of a simulation can be expressed as follows: Set up the model which
embodies some plausible assumptions and see what happens. Afterwards compare
the behaviour of the program (the simulation) with the observed behaviour in reality
(Gilbert & Troitzsch 1999). Simulations have inputs and outputs. If the model is a
computer program, the simulation consists of running the program with some specified
input and observing the progress and output.

Simulations help to check models and theories in complex domains where analytical
proofs of correctness are impossible or difficult to achieve. The formal proof is replaced
by comparing the results of the simulation with the situation found in the real word.
Figure 5.1 shows the idea of a simulation.

Modell

Target

domain

(reality)

simulation

data

observation

data

Abstraction
 Similarity

Observation

Simulation

Figure 5.1: The idea of a simulation (after (Gilbert & Troitzsch 1999))

The methodology to construct simulations consists of the following two steps:

1. Specification of the model by abstraction from processes in the real world.

2. Use of the model to generate some output values which are compared to the
actual data.

Simulations can be used for different purposes (Gilbert & Troitzsch 1999): The main
important use of a simulation is to obtain a better understanding of some features of
the real world. Here simulation is a way of explaining things, of explaining how some
features of the real world evolve. Another classic use of simulation is for prediction. If
we can construct a model which successfully reproduces some behaviour observed in
the past, we can simulate the passing of time and predict the behaviour of the system
in the future. A third use of simulations is to develop new tools to substitute for human

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 79

capabilities. For example, expert systems have been developed to simulate the problem
solving expertise of some professionals, e.g., of doctors. Simulations have been used for
training purposes. Flight simulators are a typical example of this type of simulation.
A related area of application for simulations is entertainment. Flight simulators, for
instance, can be used in computer games too. Simulations can assist in discovery and
formalization. Researchers can build simple models and can discover the consequences
of their theories by running the simulation.

The process of formalization is a valuable discipline in its own right (Gilbert &
Troitzsch 1999). In order to do a simulation, the ideas, conventionally expressed in
textual form, have to be formalized into a specification which can be programmed in a
computer. This process of formalization involves being precise about what the theory
means. It includes ensuring that the theory is complete and coherent. This is an
valuable process for the development of the theory.
There exist various approaches to simulation. We mention here:

• simulations based on differential equations,

• micro-analytical simulations,

• simulations based on cellular automata,

• agent-based simulations.

We will not discuss the approaches (see (Gilbert & Troitzsch 1999) for a comprehensive
discussion) and focus on agent-based simulation.

The approach of agent-based simulation

Conventional simulations have two key disadvantages (Gilbert 1993):

• The behaviour of the simulated individuals is not justified in terms of individual
preferences, decisions and plans.

• There is no interaction with other individuals.

Multi-agent simulation brings a radically new solution to the very concept of simula-
tion (Ferber 1999, p.36). The development of multi-agent models offers the possibility
of simulating autonomous individuals and their interaction. These models involving
interacting autonomous agents, can be applied to the simulation of human societies.
The goal of social simulation (Gilbert & Doran 1994, Gilbert & Troitzsch 1999) is to
reach a better understanding of some features of the social world. Computer simula-
tions in the social sciences is a rather new idea, but with enormous potential. This is
because simulation is an excellent way of modelling and understanding social processes
(Gilbert & Troitzsch 1999). Explicit models of social phenomena have not been so
common, but with the development of powerful computers, computer models of social
systems became possible. These models are designed to be run as processes within a
computer, simulating processes that exist in the social world.
The following citation describes the agent-based simulation approach (Gilbert 1993):

”The simulation works by cycling through each agent in turn, collecting
messages sent from other agents, updating the agent’s internal state by
checking for any applicable rules, deciding on an action for the agent to

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 80

take and finally communicating the messages and the effects of the action
to the environment, which responds appropriately. This is repeated for
each agent and these cycles continue ... until the the simulation is stopped
...”

The main criterion determining the architecture we develop in this chapter is that it
allows the development of agent-based simulation models. That means that it supports
the agent-based simulation approach.

5.6 What is an agent?

This section introduces the concept ’agent’ as we understand it in this thesis. We first
introduce the concept and then discuss key properties of agents. We demarcate the
agent concept from other concepts used in computer science and artificial intelligence.

5.6.1 The agent concept

According to the heterogeneity of the field there is no common agreement about a def-
inition of the term ’agent’. This thesis follows the definition by Russell and Norvig re-
garding an agent as ”anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors” (Russell & Norvig 1995,
p.31). Figure 5.2 shows the principal ideas. The environment provides percepts to the
agent, which the agent perceives through its sensors. The agent uses the percepts to
select actions, which it performs in its environment through its effectors.

Environment

actions

percepts
Agent

Sensors

effectors

Figure 5.2: An agent embedded into its environment

This general definition allows the application of the agent concept to very different
fields. The following examples demonstrate the usefulness of the agent definition and
of the agent concept:

• human beings : Agents can be human beings that perceive their environment, the
external world, through eyes and ears and act in in this environment with their
arms and legs.

• software processes : If we regard an agent as a software process that encapsulates
some state and communicates with other agents via message passing (Agha,

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 81

Wegner & Yonezawa 1993), then the agent is a program that acts and perceives
by message exchange in its artificial software environment.

• thermostats : This definition is also applicable, for instance, to thermostats
(Wooldridge 1999). The sensor of the agent detects (perceives) the temperature
in its environment, a room. If the temperature is too low, the thermostat agent
acts in its environment and switches the heating on.

Agents are situated in some environment and capable of autonomous action
(Wooldridge 1999). Autonomy and its embedding into the environment are the two
key properties of an agent. We will now discuss the role of autonomy and of the
environment.

Autonomy

There is common agreement in the field that autonomy is a required property of agents
(Wooldridge 1999). The agent should be able to act autonomously in its environment.
Autonomy means that the agent can act based on its own knowledge and perception.
A system lacks autonomy if its behaviour is completely determined by its built-in
knowledge so that it need not perceive its environment to decide about its activities.
A system is completely autonomous if its behaviour is determined by its own experience
(Russell & Norvig 1995, p.35). Autonomous agents have control over their actions and
internal state. They cannot be directly manipulated from the outside. Influences on
the agent are only possible by performing activities that the agent can perceive.

The role of the environment

A fundamental critique of artificial intelligence is that systems constructed according
to its methods are disembodied (Dreyfus 1997), i.e., that they are not objects (bodies)
embedded in their environment. Their decision making process is independent of their
environment, i.e, without interaction with the environment. Multi-agent theory avoids
this mistake by regarding the environment as integral part of the framework. Often
two classes of environments are distinguished: artificial and real environments (Russell
& Norvig 1995, p.36). Artificial and real environments have different properties that
enforce different kinds of agents with different sensors and effectors. Common to all
environments is that they provide percepts to the agent and the agent performs actions
in them. Agents that are programs and exist in (artificial) software environments are
called software agents.
There are several properties to categorize environments (Russell & Norvig 1995):

• Accessible vs. inaccessible. An environment is accessible if the agent’s sensors
can detect its complete state with all relevant information to choose actions.

• Deterministic vs. nondeterministic. The environment is deterministic if its next
state is completely determined by the current state.

• Episodic vs. nonepisodic. An environment is episodic if the result of an action
does only depend on the current perception-action cycle of an agent. An agent’s
action does not affect subsequent perception-action cycles.

• Static vs. dynamic. An environment is dynamic if it can change during the
deliberation process of the agent.

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 82

• Discrete vs. continuous. An environment is discrete if there exist a fixed number
of possible actions and percepts.

Since in this thesis we construct a computational model, we deal with software
agents. The special property of a computational model is that the artificial software
environment and the real environment it represents share common properties in the way
that the software environment represents some essential features of the real environ-
ment. The computational model is a simplification of the nondeterministic, dynamic
and continuous real environment, which is deterministic, discrete and static (in the
sense stated above).

What is not an agent?

The two key properties of agents allow clarifying the agent concept. They allow distin-
guishing the agent concept from other approaches in artificial intelligence and computer
science.

Objects are not agents (Wooldridge 1999). Agents have some common properties
with objects as defined in object-oriented programming (Meyer 1988). Objects have
methods by which they are able to act in their environment. Object communicate
with other objects by message passing. Objects do not fulfill one key property of
agents: autonomy. An object has no control over its own behaviour. Other objects
can invoke methods of it, and the object itself has no control whether or not the method
is executed or not. Nevertheless, agent architecture can be implemented using object
oriented technics.

Expert systems are not agents (Wooldridge 1999). Expert systems are capable of
solving problems in some domain based on the knowledge represented in the system
(Puppe 1991). But expert systems do not directly interact with their environment.
They do not fulfill the second key property of agents: Expert systems are not embedded
into their environment.

5.6.2 Reactive vs. deliberative agents

The main criteria distinguishing agent architectures is the question how much inter-
nal representation of the world the agents should have. Reactive agents have less
or no internal representations whereas agents constructed according to the delibera-
tive approach have only symbolic representations. Figure 5.3 shows both approaches.
An agent constructed after a reactive approach purely reacts to its current percepts
following condition-action rules. An example of this paradigm is the subsumption ar-
chitecture (Brooks 1986). Deliberative architectures follow the classical AI approach
(the Sense-Plan-Act paradigm (Gat 1997)). The agent plans its actions based on its
percepts and knowledge. Both approaches can be combined in hybrid architectures.
Hybrid architectures combine reactive and deliberative behaviour in different layers
(Gat 1997).

We focus on a deliberative approach, since the activities of the agents based on
their internal knowledge are the key elements in understanding reality in a cadastre.
The institutional phenomena we need to represent exist only based on the individual
beliefs and knowledge of human beings (see chapter 3).

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 83

purely deliberative

agents

purely reactive

agents

symbolic

representation

only

no

representations

non symbolic

representations

symbolic and

numerical

representations

Figure 5.3: Between purely deliberative and purely reactive approaches (after (Ferber
1999))

5.6.3 The agent definition

Adapting the general agent concept, the agent is characterized by its percepts and its
actions in the environment. Additionally an internal representation of the environment
is necessary, the internal state, which contains the agent’s knowledge and beliefs about
the world. The state of an agent can be characterized by the percepts its sensors
provide, by its internal state and by the actions the agent undertakes. An agent Ag is
a tuple of the following form:

Ag = (P, I, A) (5.1)

where P is a set of percepts, I is the internal state and A is the set of actions. If the
internal state is empty (I = ∅), the agent is called purely reactive agent, otherwise it
is called agent with internal state.

To allow higher level internal capabilities of the agents, such as, planning, goal
directed behaviour and collection of experiences, a kind of internal representation of
the world is necessary and not possible without internal state. We focus on agents with
internal state, since this class of agents is required to realize a deliberative approach.

A goal-based agent

In general, agents with internal state collect information about their percepts and
actions and include them into their future decision making process. Goal-based agents
additionally have explicit representations about desired situations (Russell & Norvig
1995, p.42) which the agent tries to achieve. For a goal-based agent the internal state
of the agent I has the following structure:

I = B ∪G (5.2)

The internal state of the goal-based agent I consists of a set of beliefs about the current
and former situations B and a set of goals G, a representation of desired situations
which the agent tries to achieve.

Human beings acting in reality in a cadastre have goals and intentions. For the
representation goal-based agents are necessary.

Subclasses of goal-based agents

The class of goal-based agents can be further subdivided into:

• Utility-based agents

• Rational agents

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 84

Utility-based agents are goal-based agents with a performance measure (Russell &
Norvig 1995, p.44). Goals only distinguish desired from undesired situations. A utility
function or a performance measure refines this simple distinction. It represents the
agent’s degree of satisfaction with the achieved situation. If an utility-based agent
in every situation does the right thing, i.e., selects always the ”best” action with the
highest utility, it is called a rational agent (Russell & Norvig 1995, p.33). We will
not discuss these classes of agents, because a goal-based agent with internal state is
sufficient for the representation of the model.

5.7 The abstract architecture of a multi-agent sys-

tem

In this section we present an abstract, i.e., domain independent, architecture of a
multi-agent system which is suitable for the construction of the model of a cadastre
in this thesis. We present an operational view of a multi-agent system, characterizing
the architecture according to its operations. The abstract agent architecture of this
section combines ideas from (Russell & Norvig 1995), (Ferber 1999) and (Wooldridge
1999).

5.7.1 The definition of a multi-agent system

From the discussion so far follows that a multi-agent system consists of at least two
parts: the agent and the environment. There are two possibilities in the definition of
the multi-agent system: First the agents can be regarded as part of the environment,
or, second, the agent can be defined separated from the environment. We emphasize
the embedding of the agent into the environment and consequently assume that the
agent is part of the environment.

A multi-agent system is a system that consists of a set of agents that are part of
some environment. This notion includes the single-agent scenario as specific case where
the environment contains only one agent. Adapting the definition of Ferber (Ferber
1999, p.11) the term ’multi-agent system’ refers to a system consisting of the following
parts:

• The environment E with the following elements:

– A set of objects O. Objects can be perceived, created, destroyed and modified
by agents.

– A set of agents Ag (see equation 5.1). Agents are a subset of objects (Ag ⊆
O) capable of performing actions - the active entities of the system.

• An assembly of relations R which link objects and thus agents to each other.

• A set of operations Op enabling the possibility for agents to perceive, manipulate,
create, destroy objects of O.

• A set of operations U with the task of representing the application of the oper-
ations from Op and the reactions of the world to this attempt of modification.
The operators from U are called the laws of the universe.

The environment E is the set of all objects existing in the system. R defines the static
relations between the objects and Op and U define the behaviour of the system.

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 85

5.7.2 The structural and the operational part of the architec-
ture

Russell and Norvig distinguish agent architecture and agent program as the main com-
ponents of an agent (Russell & Norvig 1995, p.35). The agent program is the function
that maps the percept to the actions. The agent architecture is the computing device
on which the program runs. The architecture describes the structural aspects (the
components) of the agent, whereas the agent program represents operational aspects,
the agents behaviour. This section does not follow this distinction. We refer to both
elements as the agent architecture because it captures both the operations and the
components of the whole architecture. The mapping of the percepts to the actions
cannot be described independently from the components of the agents. The compo-
nents of the agent depend on the realization of the mapping function. According to the
definition of a multi-agent system, the components of the architecture are represented
by the objects of the environment O. The operational aspects of the architecture are
represented by the operations of the sets Op and U .

5.7.3 The Sense-Plan-Act paradigm

The classic view of the control system of an agent is, that it should be decomposed
into three elements: the sensing system, the planning system and the execution system.
This is called the Sense-Plan-Act paradigm (Gat 1997). The control flow between the
three components is unidirectional from the sensor to the effector. The execution in
such a system is comparable to a computer program. The planner generates a sequence
of elementary actions which the system executes.

In this thesis the Sense-Plan-Act paradigm is regarded as the basic concept for the
execution model of the multi-agent system. It is an easy and clear concept and it is
representable on a computer system without essential problems.

Several issues are known, which are not relevant for the topics of this thesis: The
world can change during the planning process so that the plan is not longer applicable
if it is generated. Effects of the agent’s actions are not completely predictable. So an
agent’s action can cause the violation of the preconditions for the next action in the
plan. The plan can become unexecutable.

This thesis investigates computational models, i.e., artificial agents in artificial soft-
ware environments, which are deterministic, discrete and static (in the sense introduced
in 5.6.1). The issues stated above do not apply for these kinds of environments. The
critique applies for artificial systems, which should be embedded into a real environ-
ment, which is undeterministic, dynamic and continuous.

5.7.4 The basic operations of the multi-agent system

In the simplest case the multi-agent system consists of at least one agent in the set
of objects O. Operations from the set Op that represent the agents activities, must
exist. The rules of the universe U must define the reaction of the environment to the
agent’s actions. The interaction between the agents and the environment determine
the dynamics of the multi-agent system, i.e., its behaviour. The essential parts of
the architecture are defined by the working together of the agent (operations from
the set Op) and reactions of the environment represented by the laws of the universe

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 86

(operations from the set U). Figure 5.4 shows the basic operations of a multi-agent
system. It consist of two parts:

• The activities of the agent (operations from Op).

• The reaction of the environment representing the laws of the universe U .

perceive
 decision

runEnv

Agent

Environment
 MAS

act

Figure 5.4: The basic operations of a multi-agent system

Following the Sense-Plan-Act paradigm, the activity process of the agent can be
divided into three components: the perception subprocess, the decision making sub-
process and the action subprocess. An agent can be described by a function perceive,
a function decision and a function act.

The perception process

perceive : E → P (5.3)

The function perceive represents the perception process of the agent. It maps the
environment E to the set of percepts P of the agent. The realization of the function
decision representing the decision making process of the agent depends on the selected
agent architecture, i.e., it is different for purely reactive agents and agents with internal
state.

The decision process of a purely reactive agent

A purely reactive agent is characterized by the fact that it directly maps input to
output, i.e., percepts to actions. The function decision of the reactive agent is a
function of the following type:

decision : P → A (5.4)

It transforms a set of percepts P into actions A. A thermostat, for instance, can be
modelled by a reactive agent where the decision function has the following form:

decision(t) =

{
HeaterOn if t < 18
HeaterOFF if t > 22

If the temperature is below 18 degree, the heater will be switched on and above 22
degree it will be switched off.

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 87

The decision process of an agent with internal state

For agents with internal state the decision function has a more complex form. It
includes the built in knowledge and former experiences of the agent into the decision
making process.

decision : P × I → A (5.5)

The decision function maps a set of percepts P and the current internal state I of the
agent into a set of actions A. The decision function consist of three steps. The first
step (the function updStatePercepts) updates the internal state of the agent based on
its percepts.

updStatePercepts : P × I → I (5.6)

The second step (function selActs) selects actions based on the updated internal state.

selActs : I → A (5.7)

If the agent should improve its knowledge based on its own selected actions, the internal
state of the agent will be again updated afterwards based on the agent’s selected actions
(the third step).

updStateActions : A× I → I (5.8)

The function updStateActions maps the agent’s actions and the internal state of the
agent to a new version of the internal state. Including the update of the internal state
based on the agent’s actions, the decision making process has the following form:

decision : P × I → (A, I) (5.9)

Figure 5.5 shows the decision making process of an agent with internal state.

perceive

Agent

MAS

runEnv

Environment

act

decision

update

stateP

selActs

update

stateA

Internal state
I
Percepts
P
 Actions
A

flow of operation

flow of information

Figure 5.5: Agents with internal state

The action process

The function act represents the performance of the actions by the agents. It conveys
the agent’s actions to the environment.

act : E × A → E (5.10)

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 88

The reaction of the environment

The function runEnv represents the reaction of the environment, i.e., the laws of the
universe.

runEnv : E → E (5.11)

It maps the environment based on the actions performed by the agents to a new state
of the environment. This mapping function realizes the changes on objects (including
agents) caused by the agents’ actions.

5.8 Communication between agents

Agents can interact through explicit linguistic actions (communication) or by nonlin-
guistic (physical) actions modifying the world in which they act (Moulin & Chaib-Draa
1996). Communication allows the agents to exchange information and to coordinate
their activities. The fundamental requirement for agents to be able to interact on
a high level is communication. Communication is required to form a group out of
the single agents. Communication protocols and languages are necessary to construct
multi-agent systems.

General purpose communication languages have been developed, for instance, the
knowledge query and manipulation language (KQML) and the knowledge interchange
format (KIF) which are related (Finin, Labrou & Mayfield 1997). They are not directly
based on speech act theory (see subsection 3.8.1) but are influenced by the idea of
regarding communication as action. They provide the possibility to realize high level
communication between agents.

Agents can communicate by exchanging information following two major strategies.
Agents can directly exchange messages or exchange messages over a data repository
shared by all agents of the system. Direct message exchange is called message pass-
ing. Indirect communication architectures are designated as blackboard architectures,
because the common data repository for indirect communication is called a blackboard
(Ferber 1999, p.129). Most agent communication protocols are based on speech acts
(Wooldridge & Jennings 1995). Speech act theory provides the foundation for high
level communication. Speech acts can be represented and exchanged between agents
with a message exchange architecture.

In this thesis we focus on (direct) message exchange, respectively message passing,
which we select as communication method for the model. The message exchange
architecture is based on the classical theory of communication by Shannon and Weaver
(Shannon & Weaver 1948). In this model the communication act consist of the sending
of some information from a sender to a receiver. On the sender side the information
is encoded using a language and decoded on the receiver side. The information is sent
through a medium, called the channel. Figure 5.6 shows the communication model.

In this thesis we select a communication method based on speech act theory which
is realized by a message exchange architecture.

5.9 Summary

In this chapter we discussed multi-agent theory as the framework for representing
reality in a cadastre. We introduced the main concepts and approaches of the field.

CHAPTER 5. THE ARCHITECTURE OF A MULTI-AGENT SYSTEM 89

sender
 receiver

message (in some

language)

channel/medium

Figure 5.6: The communication model (after (Shannon & Weaver 1948))

We gave a general overview of the field but focused on the topics important for this
thesis.

The approach used in this thesis we called the agent-based conceptualization ap-
proach. This approach regards the agent paradigm as purely conceptual framework,
independent of representation and implementation issues and not as technology.

For the programming of multi-agent systems we distinguished specific agent pro-
gramming languages from general purpose languages which can be applied to the de-
velopment of agent-based systems.

The chapter gave definitions for the terms ’agent’ and ’multi-agent system’ suitable
for the task of this thesis. An abstract agent architecture was introduced as foundation
for modelling reality in a cadastre. We discussed communication between agents and
introduced the message exchange model as the basic paradigm for communication
between agents in this thesis.

The chapter introduced the basic ideas of simulation and in particular the approach
of agent-based simulation. Major contribution of this chapter is that it provides the
conceptual framework for the construction of the simulation model. It introduced
the agent concept as the central element in the model representing human intentions
and behaviour. We developed a general framework that allows the development of an
agent-based simulation model of reality in a cadastre in the chapters 7 and 8.

Chapter 6

Algebraic specifications in the
functional language Haskell

6.1 Introduction

According to the division of multi-agent research into agent theories, agent architec-
tures and agent languages (Wooldridge & Jennings 1995), this chapter discusses the
third point. It discusses the agent programming language used in this thesis. It
introduces an algebraic specification methodology represented in the functional pro-
gramming language Haskell for this purpose. The key idea is that we assume that
reality can be modeled in terms of algebras. Haskell provides the tools to algebraically
specify and implement the computational model.

The starting point is the idea that the process of developing a multi-agent system
can be regarded as a software engineering enterprise (Wooldridge 1997). A multi-agent
system can be regarded as a specific software. Methods from the software specification
field can be applied to agent-based systems. The software specification framework
must be capable of capturing at least the following aspects of an agent-based system
(Wooldridge 1997):

• the beliefs agents have,

• the ongoing interaction agents have with their environment,

• the goals the agent will try to achieve,

• the actions that agents perform and the effects of these actions.

Chapter 7 shows that the algebraic specification framework can be successfully applied
to the construction of the agent-based model of reality in a cadastre that it is capable
of representing the four aspects. This chapter introduces the conceptual and formal
background necessary to understand the specification of the model.

The use of functional specifications is new to the field of multi-agent theory. Only
Frank (Frank 2000, Frank, Bittner & Raubal to appear) recently used a functional
framework for the specification of an agent-based model.

This chapter starts with the discussion of the advantages of formal specification
methods for the construction of computational models. It introduces algebraic spec-
ifications on both the formal and the intuitive level and shows how to represent an
algebraic specification in a functional language. Section 6.4 gives the core argument

90

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 91

of this chapter answering the question why algebraic specifications implemented in the
functional language Haskell are appropriate for the construction of agent-based models
of some aspects of the real world. The chapter ends with an overview of the syntax of
the functional programming language Haskell.

6.2 Formal specifications

Software development is the process of looking for a process that establishes that
a program correctly implements a concept that exists in someone’s mind (Liskov &
Zilles 1978). The program that correctly implements the concept can be regarded as
a computational model of that concept. If the concept represents some part of reality,
the process of developing the program is the construction of a computational model of
this part of reality. We regard the construction of an agent-based computational model
as a software development process and argue in this section that formal specifications
are advantageous for this purpose.

Concept
 Concept

P1
 Pn
 Q1
 Qm
...
 ...

Specification

A concept and all programs

which implement the concept

correctly

A concept, its formal

specification, and all

programms which can be

proved equivalent to the

specification

Figure 6.1: Concept, specification and programs (after (Liskov & Zilles 1978))

A concept can usually be implemented by many programs. Formal specifications
are established between the informal concept and the program (see figure 6.1). They
provide a mathematical description of the concept to be implemented. The key ad-
vantage is that the correctness of a program can be proved with respect to the formal
specification, i.e., is can be proved that a class of programs satisfies the formal specifi-
cation. The formal description of the concept in the formal specification provides the
advantage that it is easier to understand than the program. The specification written
in a formal language with mathematically defined semantics allows a clearer and more
exact description of the concept.

The methodology can fail in two ways (Liskov & Zilles 1978): First, the proof
itself can be incorrect, i.e., it can state a program as correct with respect to the
specification, which is in fact not. Second, the specification can be incorrect with
respect to the concept, i.e., the specification does not correctly express the meaning
of the concept. The first issue can be solved by better proof methods. The second
issue inherently remains because there is no formal way to prove that a specification
correctly represents a concept that exists in someone’s mind, respectively that the
specification correctly represents some part of reality.

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 92

Frank and Kuhn (Frank & Kuhn 1995) formulate requirements for formal specifi-
cation languages, which hold for computational models on a formal foundation too:

• expressing semantics. The specification language must be able to express complex
real world situations in terms with exact defined semantics. The semantics, i.e.,
the meaning of the specification, must provide a clear mathematical description
of the concepts to be represented.

• ease of understanding. In order to communicate the concepts to be represented,
i.e., to serve as a communication medium, a specification must be easy to read
and to write. It should support mastering real world situations and provide
abstraction mechanisms which are easy to understand.

• rapid prototyping. A specification language with a rapid prototyping capability
allows the construction of executable specifications. This allows observing the
behaviour of the specification and to detect deviations form the intended be-
haviour. The correspondence of the specification with the intended real world
concepts cannot be formally proven. A rapid prototyping capability of the spec-
ification is the way to deal with this issue.

Rapid prototyping is the key property making formal specifications applicable for the
construction of computational models.

6.3 Algebraic specifications

This section introduces algebraic specifications (Guttag, Horowitz & Musser 1978,
Liskov & Zilles 1978, Loeckx et al. 1996, Breu 1991, Horebeek & Levi 1989, Ehrlich
et al. 1989, Sannella 1997) as methodology for writing formal specifications. Roughly
speaking an algebra is a collection of carrier sets and operations between theses sets.
Algebraic specifications allow specifying algebras. Strictly speaking algebraic specifica-
tions are language independent. But they require a formal language which is capable of
expressing algebraic style specifications. Algebraic specifications are a style to provide
a mathematical description of concepts representing ideas in someone’s mind or parts
of the real world in a abstract manner.

This thesis uses the algebraic specification style for the representation of the agent-
based model. We assume that algebras and the real world have structural similarities.
Algebraic models are therefore relevant for the construction of models of reality.

6.3.1 Informal description

There are two fundamental design strategies in the software design process (Guttag et
al. 1978): A top-down strategy is the transformation of a software design by a step-by-
step refinement process into an executable program. The design of data types is the
complementary design strategy. It treats operations that primarily execute on a single
data type as unit. A data type specification (Abstract Data Type) is a representation
independent formal definition of each operation of a data type (Guttag et al. 1978). An
Abstract Data Type is a class of data structures described by its available operations
and their properties (Horebeek & Levi 1989).

An algebra is an abstract mathematical structure consisting of a family of sets
of objects (the sorts) and a number of functions. A function is a mapping from a

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 93

cross product of values (the domain of the function) to a single value (the range of the
function) (Liskov & Guttag 1986). Domain and range have values from the set of sorts.
If an algebra contains more than one sort, it is called many sorted or heterogeneous.
Algebras with only one sort are named single sorted or homogeneous. A function
of arity 0 is named a constant. There exist two kinds of functions: observers and
constructors. Constructors return values of the sort being specified, observers map
values of that sort onto other sorts (Liskov & Guttag 1986). Constructors construct
or change objects whereas observers report the state of an object.

An algebraic specification is a mathematical description of an Abstract Data Type
where Abstract Data Types are modeled by means of algebra. It is the description
(notation) of a many sorted algebra (Horebeek & Levi 1989). An algebraic specification
consist of a syntactic and a semantic part. The syntactic part contains the set S of
sorts, the set O of operations applicable to elements of S. The semantic part comprises
the set E of axioms defining the behaviour of the operations from the set O (Ehrlich
et al. 1989).

6.3.2 Formal description

A signature of an algebraic specification consists of the set of sorts of the participating
data and the set of operators declared on the sorts. A signature is a pair

Σ = (S, O)

with S the set of sorts and O the set of operators. Each o ∈ O has the form:

o : s1 × . . .× sn → s

with s1, . . . sn, s ∈ S. In the case n = 0, o is called a constant.
An algebraic specification is a triple D = (Σ, X, E) where Σ is a signature, X is a

set of variables and E is a set of axioms. We omit in the notation the set of variables
assuming that it contains exactly the variables of E. We make the signature explicit
and write:

D = (S, O, E)

An algebraic specification is a triple consisting of the set S of sorts, the set O of
operators and the set E of axioms.

The models of algebraic specifications are heterogeneous algebras with the given
signature Σ, which fulfill the given axioms E. Algebras are interpretations of signa-
tures, which assign to each sort S of Σ a carrier set and to each o ∈ O a function on
the given carrier set. Algebraic specifications specify classes of algebras.

6.3.3 Examples

We give two examples for algebraic specifications, the specification of a stack and the
specification of a two-dimensional vector.

A stack contains elements of a particular type. It implements the ’last in first out’
principle, i.e., an element can be pushed on top of the stack and only the element on
top of the stack is removable by the ’pop’ operation. The element which comes last
into the stack comes first out of the stack. The operation ’top’ returns the top element
of the stack. The following specification represents a stack:

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 94

sorts: Stack, Nat
operations: empty : -> Stack

zero : -> Nat
push : Nat x Stack -> Stack
pop : Stack -> Stack
top : Stack -> Nat

axioms: top(push n s) = n (1)
pop(push n s) = s (2)
top(empty) = zero (3)
pop(empty) = empty (4)

According to the formal notion of the previous subsection this defines an algebraic
specification D = (S, O, E) with S = {Stack,Nat}, O = {empty, zero, pop, push} and
E is the set of the equations (1)-(4).

A two-dimensional vector is a tuple of two elements. On a vector the following
operations are defined: make constructs a vector out of two single elements. getX
gives the first component of a vector and getY returns the second element of a vector.
add and sub represent vector addition and subtraction.

sorts: Vec,Float
operations: make : Float x Float -> Vec

getX : Vec -> Float
getY : Vec -> Float
add : Vec x Vec -> Vec
sub : Vec x Vec -> Vec

axioms: add a, b = make (getX a + getX b) (getY a + getY b) (1)
sub a, b = make (getX a - getX b) (getY a - getY b) (2)

The algebraic specification is defined by D = (S, O, E) with S = {V ec, F loat},O =
{make, getX, getY, add, sub} and E consist of the equations (1) and (2).

6.4 Computational models of reality in Haskell

Haskell (Thompson 1996, Bird & Wadler 1988) is a functional programming language
that supports an algebraic specification style. We can construct algebraic specifica-
tions and, since Haskell is a formal language, a Haskell program correctly implements
the algebra specified, i.e., is an algebraic model. This means that the computational
model constructed has the properties of the algebraic specification, which is intended
to represent some aspects of the real world.

The key point is that we assume that algebras represent the structure of the real
world on an abstract level. An algebraic specification expresses the structural proper-
ties of some part of the real world in question and the Haskell programming language
allows constructing programs out of the specification, which form algebras that have
the structural properties specified, i.e., are similar to the real world. Figure 6.2 shows
the relationship between reality, algebraic specifications and computational models
analogous to the connection between concepts, specifications and programs given in
section 6.2.

The Haskell program can be tested, i.e., its correspondence to the part of reality it
represents can be checked. This is exactly the approach of simulation that compares the
output of programs, i.e., simulations, with data observed in reality. If both correspond,
the model, respectively the program, is correct.

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 95

Real world

Algebra

1

Algebra

N

...

Algebraic

Specification

computational models

= Haskell programs

Figure 6.2: Computational models of reality in Haskell

For the special case of agent-based models algebraic specifications support the
bottom-up strategy (see subsection 6.3.1), which is characteristic for multi-agent sys-
tems (see subsection 5.3.2). Algebraic specifications regard the operations on the ob-
ject level as primary. They allow the construction of models in terms of the individual
objects (the agents) and their operations.

6.5 Specification, Representation and Implementa-

tion

A computational model in Haskell consists of three parts: the specification, the rep-
resentation and the implementation. Specifications define the signatures of operations
and representation independent properties of these operations, i.e., they are the realiza-
tion of algebraic specifications in Haskell. The representation describes the particular
carrier sets on which the operations specified are carried out, i.e., it assigns carrier sets
to the sorts of the algebraic specification. Implementations define the functions that
correspond to the operations defined by the algebraic specification. They are carried
out on a particular data type, i.e., on a particular representation.

Real world

Representation
1

+

implementation
1

...

Haskell

Specification

Representation
N

+

implementation
N

Figure 6.3: Specification, representation and implementation

The three concepts together describe how to connect specifications and computa-
tional models. The specification part defines an algebraic specification, and represen-
tation and implementation represent a particular algebra (or program) that is correct

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 96

with respect to the specification (see figure 6.3). The model construction process in
Haskell can be described as a three-stage process: first construct the algebraic spec-
ification of some part of reality, then define representations and implementations to
realize a computational model that corresponds to the specification.

6.6 Haskell

This section introduces the main concepts as well as the syntax of Haskell (Thompson
1996, Bird & Wadler 1988) as far as necessary to understand the computational model
of this thesis.

6.6.1 Properties of Haskell

In a functional programming language everything is a function that returns a value.
Programming in a functional language consists of building function definitions and
using the computer to evaluate the expressions (Bird & Wadler 1988). The basic con-
trol structure in a functional program is recursion. One distinguishes pure functional
languages from others. Pure functional languages allow no side effects, i.e., the only
effect of a function onto the whole program is its result.

If arguments in a functional programming language are only evaluated if their value
is needed than this language is said to be lazy. Otherwise it is called strict. Haskell is
a lazy functional language.

Referential transparency is an important property of Haskell. It means that an
expression always describes the same value. The value of an expression is independent
of any context. Expressions denoting the same value can be replaced by each other.
This allows mathematical reasoning based on substitution. Haskell supports a strong
type system. In a strongly typed language every expression has a particular type. The
compiler checks that only expressions of the correct type are applied to an object.
Types need not always be provided by the programmer. Functional languages support
a type inference system that derives the type of an expression if no or little type
information is given explicitly (for instance, from the expression x = 1 + 1 the type
inference mechanism can deduce that x is of type Int). The strong type system and
referential transparency simplify the writing of programs avoiding sources of mistakes
due to type conflicts and side effects.

The most obvious disadvantage is that functional specifications restrict the axioms
to a constructive form. General properties, such as transitivity cannot be expressed
by constructive axioms. Constructive axioms restrict the left hand side of an axiom
to be a simple expression or an expression containing only constructor operations.
Nevertheless, functional languages have high expressive power for the application to a
broad variety of problems. The restriction to constructive axioms is the precondition
to reach the executability of the specification, i.e., it is the price which must be paid
in order to enable the construction of computational models.

6.6.2 An example

Algebraic specifications can be translated into Haskell (Frank 1997a). The example
shows the functional specification corresponding to the algebraic specification of a two
dimensional vector presented in subsection 6.3.3.

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 97

class Vector vec where
make :: Float → Float → vec
getX, getY :: vec → Float
add, sub :: vec → vec → vec

add a b = make (getX a + getX b) (getY a + getY b)
sub a b = make (getX a − getX b) (getY a − getY b)

The specification provides a representation independent description of the properties
of the sort vec representing the two dimensional vector. The algebraic specification
corresponds to a class in Haskell.

6.6.3 The syntax of Haskell

In this thesis a specific implementation of the Haskell standard is used: Hugs (Jones
& Peterson 1999). This subsection introduces the basics of the Haskell syntax which
are necessary to understand the specification done in this thesis.

Functions

The syntax of functions in Haskell deviates from the usual mathematical syntax. An
expression of the form

f :: a → b → c

describes a function with the signature:

f : a → (b → c) (6.1)

which does not correspond to the definition of a function we used earlier in this chapter
(see subsection 6.3.1) with the following signature:

f : (a× b) → c (6.2)

The process of transforming a function with a structured argument list into a sequence
of functions with a single argument is known as currying (Bird & Wadler 1988). Both
styles of definitions have their advantages. In Haskell typically the curryed style of
definition is used (as in equation 6.1). The following example shows the curryed and
the uncurryed version of the function min:

min x y = if x ≤ y the x else y −−curryed version
min (x,y) = if x ≤ y the x else y −−uncurryed version

Expressions defining functions must start with a lower case letter. New functions can
be designed by conditional equations or by pattern matching as the following examples
of the factorial function (equation 6.3) shows:

fac n = if n=0 then 1 else n∗fac(n−1)

fac 0 = 1
fac n = n∗fac(n−1)

Both definitions are equivalent. They define the following function:

fac(n) =

{
1 if n = 0
n× fac(n− 1) otherwise

(6.3)

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 98

Using pattern matching the compiler always applies the first matching equation for
the evaluation of an expression. The pattern matching style allows writing in a more
mathematical and clearer style.

Higher order functions

A source of the expressive power of a functional language is the possibility of higher
order functions. The arguments of a function can be themselves functions, and func-
tions can be the result of other functions. Higher order functions provide a powerful
representation mechanism allowing that functions are handled in the same way as other
values.

Important examples of higher order functions are the functions map, filter and
foldl:

map :: (a→b) → [a] → [b]
map sqrt [1,4,9] = [1,2,3]

The function map applies a function of type (a → b) to a list of values of type a. The
result is a list containing values of type b, the results of applying the function to the
elements of the input list.

filter :: (a→Bool) → [a] → [a]
filter (even) [1,2,3,4] = [2,4]

The function filter applies a boolean function of type (a → b) to a list of values of
type a. The result is a list of values of type a which contains only the values from the
input list, which evaluate the input function to True.

foldl :: (a→b→a) → a → [b] → a
foldl (+) 1 [1,1,1] = 4

The operation foldl applies the operation (a → b → a) to the elements of the list [b]
from the left hand side. The second argument is the result of the application of the
operation to the previous value of the list. The computation starts with the initial
value given by argument a. A similar operation foldr works starting with the most
right element of the list.

Data types and data type constructors

Haskell supports the basic data types: integer (Int,Integer), boolean (Bool), floating
point numbers (Float,Double) and character (Char). The expression [a] denotes a list
of values of type a. The data type String is defined as list of characters ([Char]).
A product type (tuple) is written by a comma separated series of types enclosed in
parenthesis. The expression (Int, Bool) defines a tuple consisting of a value of type
integer and a value of type boolean. The keyword type defines a type synonym, i.e.,
an alias for an existing data type (e.g.: type ID = Int). User defined data types are
declared by the keyword data together with a type constructor. A type constructor is
a function that constructs new data types out of existing data types. For example, the
expression

data Book = B String String

defines a new data type Book with the constructor function B applied to two string
values (denoting title and author). Constructors are written in capital letters. A sum
type is represented by a ’|’ separated series of values:

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 99

data Week = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Classes, instances, and data representations

Polymorphism is the capability of an operation to be applied to arguments of varying
types. This allows the translation of algebraic specifications into classes in a func-
tional language. Classes are the counterpart of algebraic specifications in a functional
language.

A class consists of a list of operations applied to arguments of specific types. The
class definition consists of the signatures of the operations and of the axioms con-
straining the behaviour of the operations. Classes are parameterized with the types
they define. A class is a collection of types over which the operations are defined. An
example of a class definition was presented in subsection 6.6.2.

Each member data type of a class is called an instance of that class. An instance
combines a class with a data type. It provides the definition of the operations of the
signature of the class. An instance defines the operations for one particular data type.
For the vector example of subsection 6.6.2 we define the instance for the type Coord:

data Coord = Coord Float Float

instance Vec Coord where
make x y = Coord x y
getX (Coord x y) = x
getY (Coord x y) = y

Class, data and instance correspond to the concepts of specification, representation
and implementation as introduced in section 6.5. Figure 6.4 shows the ideas in corre-
spondence to figure 6.3.

Real world

data
1
 + instance
1
 ...

class

data
N
 + instance
N

Figure 6.4: Class, data and instance

The lifting of functions

The lifting of functions transfers an operation working with one data type into an
operation working with different data types.

type Time = Int
data Times f = Timing f Time deriving Show
op :: Int → Int
op a = a∗a

CHAPTER 6. ALGEBRAIC SPECIFICATIONS 100

lift :: (t → t) → (Times t → Times t)
lift f (Timing x t) = Timing (f x) (t+1)
myop a = lift (op) a

For instance, we can define an operation op which works with integer values. We can
lift (function lift) the operation to work on the data type Times without changing
the operation itself. We define the operation myop working on the lifted data type
using the operation op. In the example the intended interpretation is to add a time
the operation takes into the result, to evaluate the time the operation takes.

6.7 Summary

This chapter dealt with the agent programming language used in this thesis. We
introduced the language and the methodology to represent the agent-based model
of this thesis. The construction of a multi-agent model can be seen as a software
development process. A widely used technique for the software design is algebraic
specification which we described as methodology for specifying the agent-based model
of this thesis. As representation language we introduced the functional programming
language Haskell which supports an algebraic specification style.

The core idea is that an algebraic specification style expressed in a functional lan-
guage provides a sophisticated specification framework for agent-based models. An
algebraic specification describes algebras. We assume that algebras capture real world
structures on an abstract level, which makes them suitable for models of reality.

We introduced the model construction process as a three stages process consisting
of specification, representation and implementation. Specifications correspond to class
definitions, representations to data type definitions and implementations correspond
to instance definitions.

This chapter introduced the formal background necessary for the representation of
the agent-based model of reality in a cadastre. In the next chapter we construct the
model using the representation mechanism introduced here.

Chapter 7

The construction of the agent-based
model

7.1 Introduction

Chapter 4 analyzed the structure of reality in a cadastre and developed an ontology
of the domain. In this chapter a computational model of reality in a cadastre will be
constructed based on the ideas introduced in chapter 5 and 6. Reality in a cadastre is
mainly influenced by institutional concepts. People act according to theses institutional
concepts. The main issue for the task of this chapter is the representation of human
intentions and behaviour because institutional reality does not exist independent of
human beings and their minds. We use agents for the representation of human beings
and their minds.

The chapter emphasizes the description of the conceptual ideas. It follows the
agent-based conceptualization approach as basic assumption (see section 5.2). It does
not focus on the technical issues of the representation mechanism, it focuses on the
conceptual framework. It uses a formal language, Haskell, to express the conceptual
ideas in an algebraic specification style (see chapter 6). For the development of the
model we follow the three stages process (see section 6.5) and introduce the specifica-
tions, the representations and implementation details as far as necessary. We introduce
the operations and data structures necessary for the simulation in chapter 8.

The model of this chapter can be regarded as ontology in the computer science sense
(see section 3.2), which is a language (Haskell) dependent conceptualization of the do-
main cadastre. The model construction process is based on the following architectural
assumptions with the goal to achieve a most simple framework:

1. The architecture can be characterized as an instance of the Sense-Plan-Act ap-
proach (see subsection 5.7.3). We do not focus on the most human like reasoning
process. We use this approach as it is sufficient to represent reality in a cadastre.

2. We apply an agent-based framework to represent human beliefs about assigned
status functions in the internal state of the agent. According to the general agent
architectures described in section 5.7 we use a goal-based agent architecture with
internal state.

To apply the abstract architecture (see section 5.7) to the model construction pro-
cess, we have to perform two tasks:

101

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 102

1. Find realizations for the operations from Op and U .

2. Identify the data structures representing the elements of the environment E.

The operations from the set Op implement rules on the individual level, in particular
the decision making process of the agents including constitutive rules. Operations from
the laws of the universe U represent rules on the world level that correspond to change
which is caused by the whole set of agents, i.e., by the combination of all activities of
the agents.

Data structures have to be found for agents (we regard the agent’s actions and
beliefs as part of the agent) and land pieces, which represent the elements of the
environment E.

We start with the discussion of the assumptions about the model we make without
loss of generality. We discuss the conceptual ideas of the model, which are: the real-
ization of documentation, the realization of facts and rules in terms of data structures
and operations, the agent interaction model based on message exchange and the goal
generation process, which determines the dynamics of the model. Next we introduce
the model following the three stages structure of the model construction process. We
define sorts for the elements of the environement E and specify the operations on these
sort (from Op and U). Then we introduce the representations (i.e., data structures cor-
responding to the sorts) for E and third discuss the implementations of the operations
from Op and U .

7.2 Assumptions about the model

This section discusses the basic assumptions we make about the model. These as-
sumptions restrict the complexity of the domain without loss of generality. We make
these assumptions to achieve a minimal complexity of the model. We claim that these
assumptions do not influence the core of reality in a cadastre that we want to represent.
There is no obstacle and limitation of the model that avoids the extension of the model
to a more comprehensive part of reality.

We regard communication actions as primitives. Strictly speaking communica-
tion actions are speech acts which are themselves institutional facts (see subsection
3.8.1). According to Searle, speech acts are the most basic facts that are essentially
constitutive for every other institutional fact. For the purpose of the model strictly
speaking communication actions have to be represented capturing their physical and
institutional part. We regard communication actions as primitives in the same way as
physical actions. This does not affect the structure of institutional facts in cadastral
reality because this structure is based on the common foundation of language. The
institutional facts discussed here are on a higher level of institutional reality. Without
loss of generality communication actions can be described as actions on the physical
level, on which the structure of institutional reality is grounded in a cadastre.

According to the abstract architecture the agent is characterized by the perception
decision and action process (see equations 5.3, 5.9 and 5.10). We assume that accord-
ing to the laws of the universe the environment provides the percepts to the agent.
Consequently be do not have an explicit perception operation. We do not distinguish
between the decision about the actions and the execution of the actions. Thus there
is no explicit action function.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 103

7.3 Documentation in the model

The documentation in the cadastral registry plays an important role for the cadastral
system because it permanently represents the events that change the institutional
status of objects and subjects (see section 4.5). We distinguish documentation of the
legal situation from the documentation of transactions. Documentation is represented
in the model by the knowledge of agents, i.e., the documentation of the legal situation
and of the transactions is completely realized within the internal state of the agents.

Since we assume the agent representing the cadastral registry has complete knowl-
edge of the institutional situation (see section 3.5), the current knowledge of the registry
agent represents the currently existing institutional facts, i.e., the current legal status
of land pieces or human beings which count as parcels or owners of parcels. Status
beliefs refer to the actions that created the beliefs, and thus store information about
legal transactions.

In reality the cadastral registry maintains the set of legal transactions and their
legal consequences. The legal transactions are caused by communication actions, i.e.,
by speech acts. Thus in the model we can represent the cadastral registry by a set of
speech acts and by the institutional status, which is assigned to the speech acts. The
agent representing the cadastral registry maintains beliefs, which consist of speech acts
(represented by messages) and status assigned to the speech acts.

For agents who do not have complete knowledge about the current legal situation,
copies from the cadastral registry, i.e., messages from the registry agent, count as proofs
of events, i.e., of legal transactions. For instance, an owner has to prove his ownership
if he wants to sue another person constraining his right. The court responsible for the
complaint does not have complete knowledge about owners. In this case a message
from the cadastral registry proofs the right of the owner.

7.4 The components of the model

Applying the ontology of reality in a cadastre (see section 4.11), the structure of the
system corresponds to physical phenomena, i.e., to the categories of physical phenom-
ena that exist in the domain in question. According to the ontological categories of
phenomena (see subsection 4.8), within the category of events there are communica-
tion events and physical events (caused by physical and communication actions of the
agents). Within the category of objects there are land pieces and the system of docu-
mentation and within the category of subjects there are agents. Since we assume that
the system of documentation is realized within the internal state of one registry agent,
no explicit representation of documentation is necessary.

The structure of the agent-based model for representing reality in a cadastre is
determined by the following elements:

• Agents

• Communication actions between agents

• Physical actions of agents

• Land

The agents’ internal state represents the building blocks of institutional reality, i.e.,
status beliefs, rights and constitutive rules.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 104

7.5 Facts and rules vs. data structures and opera-

tions

According to the distinction of facts and rules for their creation and existence (see
subsection 4.10), facts describe what is in the real world and rules describe how the
world possibly evolves. Rules describe how facts can be created and destroyed. Facts
represent a state of the world (current, former or future state) whereas rules represent
how the world can change between these states. With respect to the two levels of reality
the world changes on the physical and on the institutional level. Physical change affects
the existence and properties of physical phenomena, institutional change affects only a
particular property of human beings, their mind. For the model we distinguish general
change of the world state from internal change of the agents minds. Strictly speaking
the change affecting the mind of the agent is a specific kind of physical change. For
the model there is no qualitative difference between both.

Facts, i.e., phenomena and beliefs in the agent’s minds determine the state of the
world. In the model we represent the state of the world by data structures. Data
structures comprise agents, beliefs of the agents, actions and land pieces.

In the model we represent the rules for the change of the world state by operations.
We distinguish rules that define possible change on the individual level from rules
that define possible change on the world level. Rules on the individual level change
individuals whereas rules on the world level affect the whole world. The class of rules
of the first class, we are especially interested in, are constitutive rules. We implement
constitutive rules as operations updating the internal state of the agent.

7.6 Agent interaction

In reality of a cadastre persons perform physical and communication actions. In this
thesis an agent interaction model based on a (direct) message exchange (see section 5.8)
is selected. Interaction between agents is realized in this approach by the exchange of
information pieces codified in specific formats. These information pieces are messages.
We distinguish two kinds of messages: communication messages and physical messages.
Figure 7.1 shows the transition from reality into the framework of the message exchange
model. In reality there are human beings performing and perceiving actions. In the
model there are agents which exchange messages with each other and with other parts
of the environment.

Accordingly agents can perceive communication and physical events, i.e., they can
receive communication messages and physical perception messages. We assume that
physical and communication actions as well as physical and communication percepts
realized in a message exchange approach represent all aspects of agent interaction in
the model.

7.7 Goal generation based on rights

A goal-based agent performs actions to reach its goals. The generation of these goals in
general is a two stages process. First the agent needs to investigate all its possibilities
to act. From these possibilities the agent selects the situations it tries to achieve, i.e.,
its goals. Based on these goals the agent selects its activities. The possibilities of the

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 105

reality

human being
 human being

model

of

reality

communication messages

Agent
 Agent

communication

physical actions
 physical percepts

action

messages

percept

messages

land object

piece

of land

Figure 7.1: From reality to the agent-based model

agent are determined by its physical capabilities and its rights. This does not mean
that the agent must select goals corresponding to its rights, in principle it can also
decide to violate its rights.

Rights describe the conventional power connected to status functions. They give
rules for possible activities on the institutional level (see section 3.6). In section 4.6 we
identified two types of rights relevant for the model of a cadastre: duties and powers
(in the legal sense). Powers (in the legal sense) define which activities are allowed.
Duties define what activities are required. For instance, the power (in the legal sense)
to use the land is connected to ownership, as well as the duty to pay taxes. In general
the agent is able to freely choose activities according to its powers (in the legal sense).
In opposition duties define the obligation to perform particular activities.

The execution of activities according to powers (in the legal sense) creates duties
(see section 4.6). After an agent decides to perform a particular activity according to
its powers (in the legal sense) the resulting social processes in a cadastre are highly
determined by the duties of the participants. For instance, if an owner offers his parcel
and another person accepts his offer, the owner afterwards has the duty to transfer
ownership of the parcel to the buyer, i.e., the duty to apply the ownership transfer
at the cadastral registry. The judge at the registry has now the duty to perform the
ownership transfer.

Duties can be modeled as a specific class of goals, because they represent situations
the agent tries to achieve. To describe social processes in a cadastre the modelling of
goal generation based on duties is a core element.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 106

Agents generate goals based on powers (in the legal sense). The agent chooses a
particular activity from the set of possible activities defined by its legal powers. These
selected activities can be represented as goals too, because they also describe situations
which the agent tries to achieve. We call these kinds of goals objectives. In this sense
objectives are powers (in the legal sense) to perform activities, selected for execution.

Duties and objectives are two classes of goals, which, from the representational
point of view, do not differ. Both represent situations the agent tries to achieve.
Their meaning is different, one represents goals the agents is enforced to select by its
obligations, the other represents goals the agent selects based on its own decision. For
this reason in the model we will separate duties from objectives. We treat duties and
objectives as different data structures.

For the model it is sufficient to work with predefined objectives to represent the
social processes we are interested in. Consequently no complete goal generation mech-
anism is necessary. It is sufficient to generate only duties during the execution. Re-
spectively, no explicit representation of powers (in the legal sense) is required, which
would be necessary to generate objectives of the agents.

7.8 The specification

This section gives the specification of the agent-based model1 directly applying the
abstract architecture of the model (see chapter 5). We introduce the agent level of
the specification (corresponding to the set of agent operations Op) and the world level
of the specification (corresponding to the laws of the universe U). We combine both
parts in the execution model of the system.

7.8.1 The specification of the agent level

The specification of the agent consists of the specification of the agent as a whole and
of the specification of its internal structure. We assume a state-based model, i.e., the
model changes through discrete states called world states (ws).

The abstract agent

The class AbsAgent (see code listing 7.1) defines the general properties of an agent.
An agent a is determined by its unique identifier (its name) aid and by the current
state of the world ws. The agent is characterized by two operations: the operations
newAgt creates a new agent a with the identifier aid. The operation doAgt represents
the activity cycle of one agent a in the world state ws.

Listing 7.1: Specification of an abstract agent

class AbsAgent a aid ws | a → ws, a → aid where
newAgt :: aid → a
doAgt :: ws → a → a

1In this chapter we describe the most important parts of the model. For the complete listing of
the code see appendix A

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 107

The internal operations of the agent

The specification of the internal operations of the agent consists of a domain inde-
pendent part, directly transforming the abstract agent architecture into a specifica-
tion (operations from the class AgentInternals) , and of a domain dependent, model
specific part (operations from the classes MyAgentInternals, UpdStateInMsgs and
UpdStateOutMsgs).

The domain independent part of the specification. The domain independent
internal operations of the agent are specified by the class AgentInternals (see code
listing 7.2), which defines the general activity cycle of the agent.

Listing 7.2: The specification of the internal operations of the agent

class MyAgentInternals aid ws p i a ⇒ AgentInternals aid ws p i a where
updStatePercepts :: aid → ws → [p] → i → i
selActs :: aid → ws → i → [a]
updStateActions :: ws → [a] → i → i
decision :: aid → ws → [p] → i → ([a], i)

decision aid ws p i =
(selActs aid ws (updStatePercepts aid ws p i),

updStateActions ws (selActs aid ws (updStatePercepts aid ws p i))
(updStatePercepts aid ws p i))

updStatePercepts aid ws p = updStateInMessages aid ws p. updStatePhy aid ws p
selActs aid ws i = (actDuties aid ws i) ++ (actObjectives aid ws i)
updStateActions = updStateOutMessages

The activity cycle of the agent is determined by its decision making process, since we do
not explicitly represent the perception and action process (see section 7.2). An agent
is characterized by its percepts p, its internal state i and its actions a (see equation
5.1). The decision making process of the agent creates a set of actions and an updated
version of the internal state based on the agent’s percepts and its internal state (see
equation 5.9). It is specified by the operation decision, which maps for an agent aid in
world state ws a set of percepts p and the internal state i to a tuple ([a], i) consisting
of the agent’s actions and of the updated version of the internal state.

The decision making process first updates the internal state of the agent based on
its percepts (see equation 5.8) represented by the operation updStatePercepts, second
it generates the actions of the agent based on the updated internal state (see equation
5.7) represented by the operation selActs and third updates the internal state of the
agent based on the agent’s actions (see equation 5.8), which is represented by the
operation updStateActions.

The domain dependent part of the specification. The axioms of the spec-
ification AgentInternals (see listing 7.2) define the operations of the abstract agent
architecture in terms of model specific operations. The model specific properties, which
are relevant here, are the action selection based on different types of goals (duties and
objectives) and the update of the internal state based on physical and communication
percepts and actions. The specification 7.3 defines the domain specific operations.

Listing 7.3: The domain dependent part of the specification

class (UpdStateInMsgs aid ws p i, UpdStateOutMsgs ws a i) ⇒

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 108

MyAgentInternals aid ws p i a | i→ aid , i→ws, i → p , i → a
where

actDuties :: aid → ws → i → [a]
actObjectives :: aid → ws → i → [a]
updStatePhy :: aid → ws → [p] → i → i
updStateInMessages :: aid → ws → [p] → i → i
updStateOutMessages :: ws → [a] → i → i

updStateInMessages aid ws p = updSubjObjInMsgs aid ws p. updEvtInMsgs aid ws p.
updRegMsgs aid ws p

updStateOutMessages ws a = updSubjObjOutMsgs ws a . updEvtOutMsgs ws a

The actualization operation of the internal state based on the percepts of the
agent (operation updStatePercepts) updates the internal state based on the physi-
cal percepts (operation updStatePhy) and of the communication percepts (operation
updStateInMessages) of the agent. The update of the state according to the actions
(operation updStateActions) takes place in terms of the agent’s selected communica-
tion actions (by the operation updStateOutMessages). The action selection opera-
tion (operation selActs selects activities based on the duties of the agent (operation
actDuties) and based on the agent’s objectives (operation actObjectives).

The update operations of the internal state represent the realization of constitu-
tive rules in the model. The internal state of the agent aid is updated based on its
communication percepts p by operations of the specification UpdStateInMsgs (see
listing 7.4) and based on its communications activities a by the operations of class
UpdStateOutMsgs (see listing 7.5)

Listing 7.4: Update of the internal states based on the agent’s percepts

class UpdStateInMsgs aid ws p i where
updRegMsgs :: aid → ws → [p] → i → i
updEvtInMsgs :: aid → ws → [p] → i → i
updSubjObjInMsgs :: aid → ws → [p] → i → i

Listing 7.5: Update of the internal states based on the agent’s actions

class UpdStateOutMsgs ws a i where
updEvtOutMsgs :: ws → [a] → i → i
updSubjObjOutMsgs :: ws → [a] → i → i

The operation updRegMsgs updates the internal state of the agent by information
from the registry agent, which has, by definition, complete and correct knowledge
about the legal situation. The operations updEvt∗ and updSubjObj∗ represent the
two levels of constitutive rules (see section 4.12), i.e., status assignment to events and
to subjects and objects.

7.8.2 The specification of the world level

Following a state based approach for the execution model of the system, the world,
i.e., the system, changes from one discrete state to the other. A state represents the
world at one moment in time. There is one initial state, the state in the beginning
where no change has occurred. In the model world states are represented by integer
values starting with zero. A world state is characterized by one execution cycle of the
model.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 109

The class Worlds specifies the operations on the world level (see listing 7.6). The
operation doWorld represents one simulation run and creates a world history. In each
cycle of the simulation doWorld calls the operation runEnv.

Listing 7.6: The specification of the world

class Worlds w where
incWS :: w → w
performActs :: w → w
sendEnvReacts :: w → w
sendMsgs :: w → w
doAgts :: w → w
runEnv :: w → w
doWorld :: [w] → Int → [w]

doWorld whist count = if (count > 0) then
doWorld (whist++[w’]) (count−1) else whist where
w’= runEnv (last whist)

runEnv = incWS. doAgts. performActs. sendEnvReacts. sendMsgs

An execution cycle on the world level of the model corresponds to the operation
runEnv (see also equation 5.11 of the abstract architecture), which we characterized as
the reaction of the environment to the agents activities. The operation runEnv maps
the world w to a new state of the world. It first sends all messages from each agent to
the receivers (operation sendMsgs), second, it sends the reactions of the environment
if physical actions fail (operation sendEnvReacts), third, it performs the successful
physical actions (operation performActs). Fourth, it calls the activity function of
each agent (operation doAgts). Last it increments the world state (operation incWS).

7.8.3 The execution model

We distinguish the world level and the agent level of the execution model. The agent
level consists of the execution cycles of each agent representing its decision making
process (operations form Op) and the world level comprises the execution cycle repre-
senting the reaction of the environment (operations from U).

The action cycle of the agents consists of the following three steps corresponding
to the decision making process of the agent:

1. update the beliefs and duties of the agent based on its percepts,

2. decision about communication and physical actions to be performed,

3. update of the beliefs of the agent based on the actions of the agent.

The execution cycle on the world level consists of three steps, the first two steps
correspond to the reaction of the environment, the third step starts the activity cycle
of each agent:

1. Send all messages from all agents from the previous world state to the intended
addressees.

2. Perform all physical actions of all agents on the objects, i.e., on land in the model.
Generate environment reactions, i.e., physical percepts for the agents if activities
fail.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 110

1. send all

messages from

all agents to the

receivers

2. perform all

physical actions of

all agents and

generate reaction

messages if

actions fail

3. call the activity

function for each

agent

a

b

c

a. update the

beliefs of the agent

based on its

percepts

b. decision about

actions to be

performed

c. update the

beliefs of the agent

based on its

actions

World(1..3)

Agent(a..c)

1

2

3

Figure 7.2: The execution model of the system

3. Call the activity function of each agent.

Figure 7.2 shows the execution model of the system.

7.8.4 The flow of operation in the specification

This subsection shows the flow of operation (see figure 7.3) according to the execution
model discussed in subsection 7.8.3.

The execution starts with the empty world data structure. The functions
initWorldOT and initWorldU (see chapter 8) initialize the world data according to the
case studies, i.e., the intended simulation. Then the main execution function doWorld
is called and the simulation evolves according to the specification. The execution of
the model ends with the operation showWorld displaying the results of the simulation
on the screen.

7.9 Representation

In this section we present the data structures for the computational model. We distin-
guish data structures for the message exchange, i.e., messages and data structures for
the components of the environment E, comprising the agents and their internal state
as well as pieces of land.

7.9.1 Identifiers and world states

It has to be possible to uniquely identify entities in the model. For this purpose the
model implements identifiers. Data types are defined for identifiers as follows:

type AgentID = String
type LandID = String

These two kinds of identifiers represent unique names for Agents and pieces of land.
Identifiers are implemented as strings. The concrete representation is not important,
crucial is the uniqueness property.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 111

startWorld

initWorldOT

initWorldU

doWorld
 showWorld

sendMsgs
 performActs
 doAgts

runEnv

sendEnvReacts

doAgt

doAgt

doAgt

updStatePercepts
 actAgt
 updStateActions

updStateActions

updEvtOutMsgs
 updSubjObjOutMsgs

updStatePercepts

updRegMsgs
 updEvtInMsgs
 updSubjObjInMsgs

actAgents

actObjectives
 actDuties

...

Figure 7.3: The flow of operation in the specification

The state of the world is represented by an integer value.

type WorldState = Int

7.9.2 Messages

The basic element in message exchange is the structure of the messages to be trans-
ferred. We distinguish messages that transport activities (Act) from messages that
transport percepts (Percept). We further distinguish communication messages from
physical messages. Messages are data structures of the following form:

data Act = PAct Action | CAct Message
data Percept = PPercept PhyPercept | CPercept Message

The data type Act describes actions as either physical actions oder communication
action. The data type Percept describes percepts as either physical percepts or com-
munication percepts.

Communication messages

A communication message can be the content of an agent’s communication action or
a communication percept. In the model is a data structure of the following form:

data Message = Message AgentID AgentID Content MessageType Message

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 112

The first parameter is an agent identifier identifying the sender of the message by
its name or address. The second parameter determines the address of the receiver of
the message. The message transports information encoded in the third argument, the
message content. The content of a message can be the sale of a parcel, the query about
the owner of a parcel or a complaint against another person:

data Content = Sell AgentID AgentID LandID
| Query Owner AgentID LandID
| Complaint AgentID AgentID LandID

Messages are typed with the fourth argument. The type defines the purpose of the
message. Valid message types are, for instance (not a complete list):

data MessageType = Offer | Query | Answer Query |
Application | Judgement

A message can be an offer to sell a parcel. It can be a query regarding the ownership of
a parcel or the answer to such a query. A message can be the application of ownership
transfer or it can be a judgement deciding a complaint.

Communication actions are speech acts (see subsection 3.8.1). They have the pur-
pose to achieve some effects on the addressee. They affect and change the beliefs of the
addressee. In general communication actions can be defined as operations that change
the internal state of the other agents. Messages can be categorized according to the
speech act types given in subsection 3.8.1. An offer is a commissive speech act. The
offeror promises to do something in the future (e.g., apply for ownership transfer) if the
transferee accepts the offer. A query and an application are directive speech acts. An
agent asks another agent to give some information or to act in a particular way with
respect to the content of the application. The answer to a query is a representative
speech act. An agent informs another agent about some state of affairs. The judgement
is an example of a declarative speech act explicitly creating a new institutional fact.

The last parameter in the message data type is another message. It plays an
important role since it realizes the proof of a status. For instance, an owner suing has
to prove his ownership at the court. In his complaint messages he provides the proof of
his ownership as a message. This message is the speech act that created his ownership
right, i.e., the message he originally received by the registry agent, which caused the
transfer of ownership to him.

Physical action messages

Physical action messages are conveyed by the agents to the environment, which reacts
to these actions. Physical actions are represented by data structures of the following
form:

data Action = ActUseLand LandID AgentID
| ActAbandonLand LandID
| ActEvictLand LandID

The data type represents three activities regarding land use. An agent can start to use
a piece of land determined by a land identifier and the agent can abandon the land
use. An agent can use physical power against another agent: An agent can evict land
from another agent.

Physical activities of persons have effects on physical objects and subjects. We
investigate physical actions concerning land use. Physical actions represented by land
use have effects on one category of objects, on land pieces. Additionally they can affect
subjects, i.e the user of a land by evicting the land.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 113

Physical percept messages

Physical percept messages represent the case that actions of agents fail. In this case the
environment does not realize the actions of the agents, it generates reaction messages
(of type EnvReaction) which are conveyed to the acting agents. For instance, an agent
tries to use a piece of land another agent already uses. The environment generates a
physical percept message showing the agent that his action failed, i.e., environment
reactions are synonymous with physical percepts. Physical percept messages are data
structures of the following form:

data PhyPercept = LandUse AgentID AgentID LandID
type EnvReaction = PhyPercept

The physical percept LandUse shows an agent that the land he tries to use, is already
used by another agent. The reaction messages of the reactions of the environment are
of type PhyPercept, i.e., the environment reacts by providing physical percepts to the
agents.

7.9.3 The internal state of the agent

According to the components of the model analyzed in subsection 7.4, the internal state
must provide representations of status beliefs and rights. Since we apply a goal-based
agent (see subsection 5.6.3), the agent’s internal state consists of knowledge about
the current situation and former situations (B), which are the status beliefs, and of
knowledge about situations the agent tries to achieve (G), which are the goals of the
agent (see equation 5.2). The goals of the agent comprise duties and objectives (see
section 7.7).
The internal state of the agent is represented by a data structure of the following form:

data IntState = IntState [Status] [Duty] [Objective]

Status beliefs

Status beliefs represent the agent’s knowledge about the institutional status of physical
phenomena, i.e., beliefs about assigned status functions. The model represents status
beliefs as data structures of the following form (incomplete list):

data Status = Owner AgentID LandID Message WorldState
| Legal person AgentID WorldState
| Parcel LandID WorldState
| Buyer AgentID Message WorldState
| Seller AgentID Message WorldState
| Contracting Message WorldState
| Transferring Message WorldState

An agent can have beliefs about who owns a piece of land. He can know legal persons.
Agents can believe that a particular piece of land is a parcel. In the case that two
persons enter into a sales contract the agent can believe that one of the persons is
the seller and the other person is the buyer. An agent can have beliefs about the
institutional status of events, e.g., that an event counts as contraction or as ownership
transfer.

The beliefs of the agent change over time. They depend on the state of the world.
Every status belief has a reference to the world state (parameter WorldState) in which

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 114

it was created, i.e., to the moment in time in which the event occurred that constituted
the institutional fact.

Events create status beliefs. Every dynamic status belief needs a reference to the
event that created it. Respectively dynamic status beliefs contain the messages that
caused these beliefs. This captures the fact that physical and institutional reality are
connected. The message is the physical foundation for the status belief. The message
has the property that it has a particular institutional meaning, i.e., a status function
assigned.

Goals

Duties are data structures of the following form (incomplete list):

data Duty = AnswerApplication Message WorldState
| DoApplication Message WorldState

In a specific world state an agent representing the cadastral registry can have the duty
to answer an application to transfer ownership. An owner of a parcel, who sold his
parcel, has the duty to apply for the ownership transfer. A duty refers to the event,
i.e., to the message which created it. It is valid and enforces activities in the world
state identified by WorldState.
Objectives are data structures of the following form (incomplete list):

data Objective = SellParcel LandID AgentID WorldState
| UseLand LandID WorldState

An agent can have the objective to sell a parcel to another agent or an agent can
have the objective to use a piece of land. Objectives refer to a world state, i.e., to the
moment in time they are valid.

7.9.4 The agent

The state of an agent is characterized by its percepts, its actions and its internal
state (see equation 5.1). Since in the message exchange architecture of this model
percepts and actions are messages, the general structure of the agent can be described
as consisting of an inbox, an internal state, and of an outbox.

Agent =< inbox > < internal state of the agent >< outbox >

This gives the following data structure for the agent:

data Agent = Agent AgentID [Percept] IntState [Act]

An agent has a unique identifier allowing its identification in the environment. The
inbox of the agent consists of a list of percepts, the outbox consists of a list of activities.
The inbox contains all messages sent to an agent in the current world state. The outbox
contains the actions the agents selected for execution in the current world state.

7.9.5 Land

It is sufficient to represent land pieces by a unique land identifier. Further in order to
capture physical activities in the case of land use, land has to include the reference to
the current user of the land as an agent identifier (see section 7.9.1). A piece of land
is a data structure that comprises the following elements:

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 115

data Land = Land LandID AgentID

The first parameter of type LandID is the unique identifier of the land. The second
parameter of type AgentID represents the agent currently using the land.

7.9.6 The environment

It is now possible to specify the components, i.e., the data structures of the envi-
ronment, that are capable of representing reality in a cadastre. The environment is
represented by the following data structure World:

data World = World [Agent] [Land]WorldState

The world consists of agents and land pieces. The current state of the world is repre-
sented by the WorldState.

7.10 Implementation

The implementation combines the algebraic specifications with representations and
realizes the functions on the representations. This section discusses implementation
issues to the extent necessary to understand the model. We assume that for the
understanding of the model it is sufficient to focus on the implementation of constitutive
rules, which are a core part of the model, and on the implementation of the decision
making process.

7.10.1 Constitutive rules

We describe the translation of constitutive rules into operations and show how to
implement the operations.

Transforming constitutive rules into operations

According to Searle’s theory the assignment of status functions to phenomena can be
described by constitutive rules of the following form (see section 3.4.5):

X counts as Y in C.

The (perhaps) physical fact X counts at the institutional level as Y in a context C.
These rules can be hierarchically nested. In the model we use operations to represent
these rules:

r : X × C −→ Y

These operations form a recursive structure. For instance, there are two rules (with
empty context C1 and C2 for simplicity reasons):

A human being (X1) counts as legal person (Y1).
r1(X1, C1) = Y1

A legal person (Y1) counts as owner (Y2).
r2(Y1, C2) = Y2

The following non recursive structure replaces the second definition:

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 116

A human being (X1) who is a legal person (C
′
2) counts as owner.

r(X1, C
′
2) = Y2 with C

′
2 = C1 ∪ Y1

Operations representing constitutive rules have as parameter a physical fact (always
an event represented by a message) and as second parameter the context that com-
prises other status functions that are assigned to the physical fact. The non recursive
structure of constitutive rules can be introduced for all status functions assigned in the
model of a cadastre with the goal to simplify the formalization.

The implementation of constitutive rules

According to the two levels of constitutive rules (see section 4.12) in the specifi-
cation there are two operations for the update of the internal state based on the
percepts (see listing 7.4) and of the actions (see listing 7.5) each. The operations
updEvtInMsgs and updEvtOutMsgs create status beliefs for events and the opera-
tions updSubjObjInMsgs and updSubjObjOutMsgs create status beliefs for objects
and subjects. The events that cause the creation of status beliefs are always com-
munication actions, i.e., messages. These operations call for each message following
operations, which are the realization of constitutive rules:

updStateEvtMsg :: ws → [s] → m → s
updSubjObjMsg :: ws → [s] → Bool → m → ([s],[d],[o])

The operation updStateEvtMsg takes the current world state ws, the set of current
status beliefs of the agent [s], a message m and creates a new status belief s. The
operation updSubjObjMsg takes the same input parameter and an additional boolean
parameter, which determines whether the function is called with a message from the
percepts or actions. The result of the operation is a tuple consisting of a set of status
beliefs, a set of duties and a set of objectives. In the case that it is called with a
message from the percepts the operation creates status beliefs, duties and objectives
for the agent. In the case that the message is an action, the operation only creates the
knowledge of the agent according to its own activities.

An example

The following example shows the construction of status beliefs in the case that a person
applies for ownership transfer of a parcel. The physical phenomenon that causes the
assignment of status is the message with the content saying ”this is the application
to transfer ownership of a parcel from the seller to the buyer”. If the receiver of the
message is the agent representing the cadastral registry and the sending person is a
legal person than this message counts as application, otherwise no status is assigned.

updStateEvtMsg ws sl (Message s z (Sell s b l) Application rmsg) =
if ((isRegAgent sl z) && (isLegalPerson sl s)) then

(Applying (Message s z (Sell s b l) Application rmsg) ws)
else NoStatus

If a message has the status assigned that it is an application of ownership transfer, then
the sender of the message counts as ’applicant’ and the receiver of the message, who
is the registry agent, is the application receiver. To the status ’application receiver’
the duty to decide the application is connected; it means the duty either to accept the
application and transfer the ownership or to reject the application.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 117

updSubjObjMsg ws sl inflag (Message s z (Sell s b l) Application rmsg) =
if (isApplying sl (Message s z (Sell s b l) Application rmsg)) then sdlist

else([NoStatus],[NoDuty], [NoObjective])
where

sdlist = ([(Applicant s (Message s z (Sell s b l) Accept Offer rmsg) ws),
(Application receiver z (Message s z (Sell s b l) Accept Offer rmsg) ws)],
duty , [NoObjective])

duty = if (inflag==True) then
[AnswerApplication (Message s z (Sell s b l) Application rmsg) ws] else [NoDuty]

7.10.2 The implementation of the decision making process

We connect the specification of the internal operations of the agent (see code listings
7.2 and 7.3), with the representations by the definition of instances.

instance AgentInternals AgentID WorldState Percept IntState Act
instance MyAgentInternals AgentID WorldState Percept IntState Act where ...

We get the following functions that implement the operations from the specification:

updStatePercepts :: AgentID → WorldState → [Percept] → IntState → IntState
selActs :: AgentID → WorldState → IntState → [Act]
updStateActions :: WorldState → [Act] → IntState → IntState
decision :: AgentID → WorldState → [Percept] → IntState → ([Act], IntState)

The functions apply for an agent with the identifier AgentID in some world state
WorldState. The function updStatePercepts takes a set of communication and phys-
ical messages and the current state of the agent consisting of status belief, duties and
objectives and creates new status beliefs, duties and objectives. The function selActs
takes status beliefs, duties and objectives and creates physical and communication ac-
tions. The function updStateActions maps a set of action messages and updates the
internal state. The decision function connects the three functions and maps a set of
percept messages and the internal state to a new version of the internal state and a
set of action messages.

7.11 Summary

In this chapter we developed the agent-based model of reality in a cadastre. We
constructed a multi-agent system for the simulation of social processes in a cadastre.
We introduced the specifications, the representations and some important aspects of
the implementation. The communication mechanism used in the system is message
exchange. We applied the abstract agent architecture developed in section 5.7 to the
construction of the model.

According to the simulation approach (see figure 5.1) in this chapter we constructed
the simulation model based on the theoretical basis developed in the previous chapters.
The major result of this chapter is a computational model, which allows the execution
of simulations of social processes in a cadastre. The model combines the results from
the analysis of reality in a cadastre (chapter 4) with an agent-based framework (chap-
ter 5) and an algebraic specification approach (chapter 6) for the model construction
process. We have shown that it is possible to construct a computational agent-based
model based on the ontological assumptions we made about reality in a cadastre. The
remaining task for this thesis is the validation of the model with appropriate case
studies.

CHAPTER 7. THE CONSTRUCTION OF THE AGENT-BASED MODEL 118

This chapter concluded the second part of this thesis, the construction of the agent-
based model. The next chapters discuss the third part, agent-based simulation, with
the intention to prove the correctness of the model.

Chapter 8

Agent-based simulation of social
processes in a cadastre

8.1 Introduction

In chapter 7 we developed the computational model of reality in a cadastre. We gave
the specifications, introduced representations and discussed implementation aspects.
This chapter tests the validity of the model by agent-based simulation. That means to
let the program run with appropriate input data. After the simulation ends the output
of the model can be compared with the situation in reality.

The chapter focuses on the two characteristic processes, which we introduced in
section 4.7:

1. The transfer of ownership of a parcel between two persons.

2. The conflict between two persons regarding the use of a piece of land.

We assume that together these processes represent an essential part of reality in a
cadastre as ownership and ownership transfer are the central elements influencing the
legal status of parcels. The transfer of ownership represents the normal flow of oper-
ation where all people act according to the legal rules. We simulate conflicting cases
where a person does not recognize the legal rules by the example of land use: The
owner of a parcel sues a person that unauthorized uses his parcel to mobilize the power
of the state (in the execution process) to enforce his rights.

We discuss social processes based on the Austrian legal system. On the level of
the simulation it is necessary to focus on a specific legal system to achieve a realistic
model. The results of the simulation have to correspond to reality regulated by the
Austrian law. We have to check the validity of the model and its correctness with
respect to the Austrian cadastral system we introduced in chapter 2.

The simulation has inputs and outputs. The input consists of the initial world state
and the specification of the constitutive rules (see subsection 7.10.1). The initial world
state comprises the representation of the subjects and objects existing in the model.
Subjects and objects in the model are land pieces and agents. Main important element
in the initial world state is the specification of the beliefs of the agents representing
their objectives and the initially existing institutional facts.

The output of the simulation is the set of all world states executed during the
simulation. This chapter has for each case study of the following structure:

119

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 120

1. Definition of the input data

2. Discussion of the output

The chapter concludes with the assessment of the results of the simulation, i.e., with
the discussion to which extent the model correctly represents reality in a cadastre.

8.2 Case study 1: The transfer of ownership of a

parcel

This section discusses the input and output of the ownership transfer simulation. We
present only parts of the output of the simulation here. For the complete output see
appendix B. For the presentation of the initial world state we use the output of the
simulation with 0 cycles, i.e., where no action occurred yet. All elements of the output
correspond to data structures defined in the model.

8.2.1 The input of the simulation

Objects and subjects: land pieces and agents

Within the category of subjects there are three agents, the registry agent ”RegAg”
representing the cadastral registry, the agent ”A” who wants (has the objective) to
sell his parcel and the agent ”B” who wants to buy the parcel. The agents know each
other and the parcel ”P”.

Agent(AID=RegAg
INBOX=[]
PHYPERCEPS=[]
STATUS=(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0)
(Legal_person "A" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

Agent(AID=A
INBOX=[]
PHYPERCEPS=[]
STATUS=(Legal_person "B" 0) (Legal_person "A" 0) (Owner "A" "P" <m> 0)
(RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[SellParcel "P" "B" 0]
ACTIONS=[]
OUTBOX=[])

Agent(AID=B
INBOX=[]
PHYPERCEPS=[]
STATUS=(Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 121

The registry agent ”RegAg” and the owner of the parcel ”A” both have the belief (Owner
"A" "P" <m> 0) meaning that both believe that ”A” is the owner of parcel ”P”. The
belief was created in world state 0 and <m> is the message that caused the construction
of this belief. We do not include the message <m> into the output of the program for
clearness reasons. Agent ”A” has the objective SellParcel "P" "B" 0 meaning that ”A”
wants to sell his parcel ”P” in the first world state 0 to ”B”.

For the simulation of ownership transfer is sufficient to have one piece of land with
the name ”P” and currently no land user.

Land "P" ""

The constitutive rules

Within constitutive rules we distinguish event rules (rules directly assigned to events)
and subject/object rules (rules assigned to subjects and objects participating in an
event). See subsection 4.12 for a discussion. Figure 8.1 shows the hierarchy of consti-
tutive rules necessary to represent this case study.

subjects
 objects
 events

agent

RegAg

Legal person

Offeror

Transferee

Buyer

Seller

Applicant

Query sender

Query receiver

Application receiver

Owner

Parcel

land

Offering

Querying

Contracting

Applying

Transferring

sending a

message

...

...

static status

dynamic status

phenomena

assignment of status

constitutive rules

status assigned to objects/subjects
 status assigned to events

Figure 8.1: Constitutive rules and status assigned for ownership transfer

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 122

Event rules. Event rules necessary for the representation of an ownership transfer
are the following:

updStateEvtMsg ws sl (Message s z (Sell s b l) Offer rmsg) =
if ((isLegalPerson sl s) && (isLegalPerson sl b) && (isParcel sl l))

then (Offering (Message s z (Sell s b l) Offer rmsg) ws) else NoStatus

A message counts as offering, if its content is an offer, if it is sent from one legal person
to another legal person and if the concerning piece of land is a parcel.

updStateEvtMsg ws sl (Message s z (Query Owner aid l) Query rmsg) =
if ((isRegAgent sl z) && (isLegalPerson sl s)) then

(Querying (Message s z (Query Owner aid l) Query rmsg) ws) else NoStatus

A message counts as querying, if its content is a query, if the receiver of the message
is the registry agent and the sender is a legal person.

updStateEvtMsg ws sl (Message s z (Sell s b l) Accept Offer rmsg) =
if ((isOfferor sl z) && (isTransferee sl s)) then

(Contracting (Message s z (Sell s b l) Accept Offer rmsg) ws)
else NoStatus

A message counts as contracting, if the receiver is an offeror and the sender is a
transferee and the content of the message is the acceptance of an offer.

updStateEvtMsg ws sl (Message s z (Sell s b l) Application rmsg) =
if ((isRegAgent sl z) && (isLegalPerson sl s)) then

(Applying (Message s z (Sell s b l) Application rmsg) ws)
else NoStatus

A message counts as applying (of ownership transfer), if its content is an application,
if the receiver is the registry agent and the sender is a legal person.

updStateEvtMsg ws sl
(Message s z (Sell s b l) Accept Application rmsg) =

if ((isRegAgent sl s) && (isLegalPerson sl z)) then
(Transferring (Message s z (Sell s b l) Accept Application rmsg) ws)
else NoStatus

A message counts as transferring (of ownership of a parcel) if the content of the message
is the acceptance of an application, if the sender is the registry agent and the receiver
is a legal person.

Subject/object rules. Subject/object rules necessary for the representation of an
ownership transfer are the following:

updSubjObjMsg ws sl inflag (Message s z (Sell s b l) Offer rmsg) =
if (isOffering sl (Message s z (Sell s b l) Offer rmsg)) then sdlist

else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Offeror s (Message s z (Sell s b l) Offer rmsg) ws)] ++
[(Transferee b (Message s z (Sell s b l) Offer rmsg) ws)], duty , objective)

duty = if (inflag==True) then
[(AskRegAgent (Message s z (Sell s b l) Offer rmsg) ws)] else [NoDuty]

objective = if (inflag==True) then
[(AnswerOffer (Message s z (Sell s b l) Offer rmsg) (ws+2))] else

[NoObjective]

A message makes the sender of a message to an offeror and the receiver of the message
to a transferee if the message counts as offering. It creates for the receiver in the current
world state the duty to ask the registry agent whether the sender of the message is the

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 123

owner of the parcel. In the second next world state the receiver has the objective to
answer to the offer.
updSubjObjMsg ws sl inflag (Message s z (Query Owner aid l) Query rmsg) =

if (isQuerying sl (Message s z (Query Owner aid l) Query rmsg)) then sdlist
else ([NoStatus],[NoDuty],[NoObjective])

where
sdlist = ([(Query sender s (Message s z (Query Owner aid l) Query rmsg) ws)] ++

[(Query receiver z (Message s z (Query Owner aid l) Query rmsg) ws)],
duty , [NoObjective])

duty = if (inflag==True)
then [AnswerQuery (Message s z (Query Owner aid l) Query rmsg) ws] else [NoDuty]

A message assigns the status query sender to the sender of the message and the status
query receiver to the receiver of the message if the message counts as querying. It
creates for the receiver the duty to answer the query.

updSubjObjMsg ws sl inflag (Message s z (Sell s b l) Accept Offer rmsg) =
if (isContracting sl (Message s z (Sell s b l) Accept Offer rmsg)) then sdlist

else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Seller s (Message s z (Sell s b l) Accept Offer rmsg) ws),
(Buyer b (Message s z (Sell s b l) Accept Offer rmsg) ws)], duty , [NoObjective])

duty = if (inflag==True) then
[DoApplication (Message s z (Sell s b l) Accept Offer rmsg) ws] else [NoDuty]

A message assigns the status seller to the agent which is mentioned in the message
content as seller and assigns the status buyer to the agent mentioned in the message as
buyer if the message counts as contracting. It creates for the seller the duty to apply
for ownership transfer of the concerning parcel.

updSubjObjMsg ws sl inflag (Message s z (Sell s b l) Application rmsg) =
if (isApplying sl (Message s z (Sell s b l) Application rmsg)) then sdlist

else([NoStatus],[NoDuty], [NoObjective])
where

sdlist = ([(Applicant s (Message s z (Sell s b l) Accept Offer rmsg) ws),
(Application receiver z (Message s z (Sell s b l) Accept Offer rmsg) ws)],
duty , [NoObjective])

duty = if (inflag==True) then
[AnswerApplication (Message s z (Sell s b l) Application rmsg) ws] else [NoDuty]

A message that counts as applying assigns the status applicant (of ownership transfer)
to the sender and the status application receiver to the receiver. It creates for the
receiver the duty to answer to the application, i.e., to grant the application or reject
the application.

updSubjObjMsg ws sl inflag (Message s z (Sell s b l) Accept Application rmsg) =
if (isTransferring sl (Message s z (Sell s b l) Accept Application rmsg)) then sdlist

else ([NoStatus],[NoDuty], [NoObjective])
where

sdlist = ([(Owner b l (Message s z (Sell s b l) Accept Application rmsg) ws)],
[NoDuty], [NoObjective])

If a message counts as transferring (ownership of a parcel), then it creates the status
owner of the parcel for the agent mentioned as buyer in the message.

8.2.2 The output of the simulation

The output of the simulation is the list of all phenomena existing and occurring during
the simulation in the model, i.e., the land piece, the registry agent, the agent ”A” and

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 124

the agent ”B”. In the following we present only the parts of the output which change,
i.e., the state of agents that construct new beliefs, generate new goals or act in some
way.

World state 0

Agent(AID=A
INBOX=[]
PHYPERCEPS=[]
STATUS=(Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0)
(Legal_person "B" 0) (Legal_person "A" 0) (Owner "A" "P" <m> 0)
(RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[SellParcel "P" "B" 0]
ACTIONS=[]
OUTBOX=[Message "A" "B" (Sell "A" "B" "P") Offer NoMessage])

In world state 0 the agent ”A” has the objective to sell the parcel. He decides to send
a message containing an offer to the agent ”B”. He updates his internal state, which
creates his knowledge about this activity and the assigned status.

World state 1

Agent(AID=B
INBOX=[Message "A" "B" (Sell "A" "B" "P") Offer NoMessage]
PHYPERCEPS=[]
STATUS=(Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1) (Querying <m> 1)
(Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0)
(Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[AskRegAgent (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 1]
OBJECTIVES=[AnswerOffer (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 3]
ACTIONS=[]
OUTBOX=[Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage])

Agent ”B” receives the offer in world state 1 and updates his internal state with
knowledge about the offer. If he wants to accept the offer, ”B” generates the objective
to answer to the offer. ”B” needs to know whether the offeror is the legal owner of the
parcel, and generates the duty to ask the registry agent. According to his duty ”B”
sends a message with a query to the registry agent. He updates his internal state with
the knowledge that he is asking (querying) the registry agent.

World state 2

Agent(AID=RegAg
INBOX=[Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage]
PHYPERCEPS=[]
STATUS=(Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2)
(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0)
(Legal_person "A" 0)
DUTIES=[AnswerQuery (Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage) 2]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "RegAg" "B" (Query_Owner "A" "P") Answer_Query NoMessage])

In world state 2 the registry agent receives the query and updates his internal state
based on the message. He knows the owner of the concerning parcel and sends this
information to the asking agent ”B”.

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 125

World state 3

Agent(AID=B
INBOX=[Message "RegAg" "B" (Query_Owner "A" "P") Answer_Query NoMessage]
PHYPERCEPS=[]
STATUS=(Seller "A" <m> 3) (Buyer "B" <m> 3) (Contracting <m> 3)
(Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1) (Querying <m> 1)
(Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0)
(Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)
DUTIES=[]
OBJECTIVES=[AnswerOffer (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 3]
ACTIONS=[]
OUTBOX=[Message "B" "A" (Sell "A" "B" "P") Accept_Offer NoMessage])

Agent ”B” receives this message in world state 3. He updates his internal state and
knows now that the offering agent is the legal owner of the parcel. According to his
objective he decides to accept the offer and sends a message with the acceptance of
the offer to the agent ”A”. ”B” updates his internal state and knows now that he
concluded a contract with the seller.

World state 4

Agent(AID=A
INBOX=[Message "B" "A" (Sell "A" "B" "P") Accept_Offer NoMessage]
PHYPERCEPS=[]
STATUS=(Applicant "A" <m> 4) (Application_receiver "RegAg" <m> 4) (Applying <m> 4)
(Seller "A" <m> 4) (Buyer "B" <m> 4) (Contracting <m> 4) (Offeror "A" <m> 0)
(Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0)
(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[DoApplication (Message "B" "A" (Sell "A" "B" "P")Accept_Offer NoMessage)4]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "A" "RegAg" (Sell "A" "B" "P") Application NoMessage])

Agent ”A” gets the acceptance of the offer in world state 4. He updates his internal
state and generates the duty to apply for ownership transfer. According to his duty
arising from the contract he sends a message to the registry agent containing an ap-
plication of ownership transfer. He updates his internal state now knowing that he is
the applicant (of the ownership transfer).

World state 5

Agent(AID=RegAg
INBOX=[Message "A" "RegAg" (Sell "A" "B" "P") Application NoMessage]
PHYPERCEPS=[]
STATUS=(Owner "B" "P" <m> 5) (Transferring <m> 5) (Transferring <m> 5)
(Applicant "A" <m> 5) (Application_receiver "RegAg" <m> 5) (Applying <m> 5)
(Query_sender "B" <m> 2)
(Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m> 0)
(RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)
DUTIES=[AnswerApplication (Message "A" "RegAg" (Sell "A" "B" "P")
Application NoMessage) 5]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "RegAg" "A" (Sell "A" "B" "P") Accept_Application NoMessage,
Message "RegAg" "B" (Sell "A" "B" "P") Accept_Application NoMessage])

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 126

The registry agent receives the application message in world state 5. He generates
the duty to answer the application. He knows that the sender of the message is the
owner of the parcel and decides to accept the application. He sends messages with this
information to ”A” and ”B”. He updates his internal state now knowing that ”B” is
the new owner of the parcel.

World state 6

Agent(AID=A
INBOX=[Message "RegAg" "A" (Sell "A" "B" "P") Accept_Application NoMessage]
PHYPERCEPS=[]
STATUS=(Owner "B" "P" <m> 6) (Transferring <m> 6) (Applicant "A" <m> 4)
(Application_receiver "RegAg" <m> 4) (Applying <m> 4) (Seller "A" <m> 4)
(Buyer "B" <m> 4) (Contracting <m> 4) (Offeror "A" <m> 0)
(Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0)
(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

Agent(AID=B
INBOX=[Message "RegAg" "B" (Sell "A" "B" "P") Accept_Application NoMessage]
PHYPERCEPS=[]
STATUS=(Owner "B" "P" <m> 6) (Transferring <m> 6) (Seller "A" <m> 3)
(Buyer "B" <m> 3) (Contracting <m> 3) (Query_sender "B" <m> 1)
(Query_receiver "RegAg" <m> 1) (Querying <m> 1) (Offeror "A" <m> 1)
(Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0)
(RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

”A” and ”B” receive the acceptance of the ownership transfer in world state 6. They
update their internal state with the knowledge that the buyer is now the new owner.
The simulation ends.

8.3 Case study 2: Conflicts regarding land use

This section discusses the input and output of the conflict resolution simulation.

8.3.1 The input of the simulation

Subjects and objects: land pieces and agents

Within the category of subjects there are four agents, the court agent representing the
court responsible for the complaint, the sheriff responsible for the judgement execu-
tion, Agent ”A” who wants (has the objective) to use his parcel and agent ”B” who
unauthorized uses the parcel.

Agent(AID=CourtAg
INBOX=[]
PHYPERCEPS=[]

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 127

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0)
(Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

Agent(AID=A
INBOX=[]
PHYPERCEPS=[]
STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0)
(Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]
ACTIONS=[]
OUTBOX=[])

Agent(AID=B
INBOX=[]
PHYPERCEPS=[]
STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0)
(Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 6,UseLand "P" 0]
ACTIONS=[]
OUTBOX=[])

Agent(AID=SheriffAg
INBOX=[]
PHYPERCEPS=[]
STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0)
(Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[])

Agent(AID=RegAg
INBOX=[]
PHYPERCEPS=[]
STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0)
(RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)
DUTIES=[]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage])

All agents have knowledge about each other and about the parcel ”P”. In the initial
world state the registry agent sends a message to ”A” creating ”A”’s ownership of
parcel ”P”. ”B” has in world state 0 the objective to use the parcel and ”A” has
in world state 1 the same objective. This constellation causes the complaint of the
authorized user. In world state 6 and 7 there is the analogous situation. Again ”B”
avoids land use by the owner ”A” . The difference to world state 1 is that the owner
in world state 7 is holder of an execution title (after the judgement), which allows the
start of the execution process and thus the second sub-process of the simulation starts.

As in the first case study, for the simulation it is sufficient to have one piece of land
with no land user in the beginning.

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 128

Land "P" ""

The constitutive rules

Again we distinguish between event and subject/object rules. Figure 8.2 shows the
hierarchy of constitutive rules necessary to represent this case study.

subjects
 objects
 events

agent

Court agent

Legal person

Sheriff agent

Plaintiff

Loser complaint

Execution title

Applicant execution

Judge

Defendant

Judgement executor

Parcel

land

Suing

serving

complaint

Pronouncing

judgement

Executing

judgement

sending a

message

...

...

static status

dynamic status

phenomena

assignment of status

constitutive rules

status assigned to objects/subjects
 status assigned to events

Figure 8.2: Constitutive rules and status assigned during the conflict resolution

Event rules. Event rules necessary for the representation of conflicts regarding land
use are the following:

updStateEvtMsg ws sl (Message s z (Complaint p d l) Legal Action proofmsg) =
if ((isCourtAgent sl z) && (isLegalPerson sl s) && (s==plaintiff)) then

(Suing (Message s z (Complaint p d l) Legal Action proofmsg) ws)
else NoStatus

A message counts as suing if its content is a complaint, if the sender is a legal person
and the receiver is the court agent. The sender of the message must be mentioned as
plaintiff in its content.

updStateEvtMsg ws sl (Message s z (Complaint p d l) Serve Complaint proofmsg) =
if ((isCourtAgent sl s) && (isLegalPerson sl z) && (z==d)) then

(ServingComplaint (Message s z (Complaint p d l) Serve Complaint proofmsg) ws)
else NoStatus

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 129

A message counts as serving a complaint if its content is a complaint, if the sender is
the court agent and if the receiver is a legal person. The receiver must be mentioned
as defendant in the content of the message.

updStateEvtMsg ws sl (Message s z (Complaint p d l) Judgement proofmsg) =
if ((isCourtAgent sl s) && (isLegalPerson sl z) &&

((isPlaintiff sl z) || (isDefendant sl z))) then
(PronouncingJudgement (Message s z (Complaint p d l) Judgement proofmsg) ws)

else NoStatus

A message counts as pronouncing a judgement if the sender is the court agent and the
receiver is a legal person and if the receiver of the message is either the plaintiff or the
defendant.

updStateEvtMsg ws sl (Message s z (Complaint p d l) Apply Execution proofmsg) =
if ((isSheriffAgent sl z) && (isLegalPerson sl s) && (s==p)) then

(ExecutingJudgement (Message s z (Complaint p d l) Apply Execution proofmsg) ws)
else NoStatus

A message counts as starting of a judgement execution if the receiver of the message
is the sheriff agent, the sender is a legal person, which is mentioned in the message as
plaintiff.

Subject/object rules necessary for the representation of conflicts regarding land use
are the following:

updSubjObjMsg ws sl inflag (Message s z (Complaint p d l) Legal Action proofmsg) =
if (isSuing sl (Message s z (Complaint p d l) Legal Action proofmsg)) then sdlist

else ([NoStatus],[NoDuty], [NoObjective])
where

sdlist = ([(Defendant d (Message s z (Complaint p d l) Legal Action proofmsg) ws),
(Plaintiff p (Message s z (Complaint p d l) Legal Action proofmsg) ws),
(Judge z (Message s z (Complaint p d l) Legal Action proofmsg) ws)], duty,
[NoObjective])

duty = if (inflag==True) then
[(DoServeComplaint (Message s z (Complaint p d l) Legal Action proofmsg) ws),
(DoJudgement (Message s z (Complaint p d l) Legal Action proofmsg) (ws+2))] else
[NoDuty]

If a message counts as suing, it assigns the status defendant to the person mentioned
as defendant in its content and the status plaintiff to the person mentioned as plaintiff
in its content. Additionally it assigns the status judge (in this legal action) to the
receiver of the message. For the receiver it creates the duty to serve the complaint to
the defendant in this world state and to pronounce a judgement in the second next
world state.

updSubjObjMsg ws sl inflag (Message s z (Complaint p d l) Serve Complaint proofmsg) =
if (isServingComplaint sl (Message s z (Complaint p d l) Serve Complaint proofmsg)) then

sdlist else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = if (inflag==True) then
([(Defendant d (Message s z (Complaint p d l) Serve Complaint proofmsg) ws),
(Plaintiff p (Message s z (Complaint p d l) Serve Complaint proofmsg) ws),
(Judge s (Message s z (Complaint p d l) Serve Complaint proofmsg) ws)],
[(DoAnswerComplaint (Message s z (Complaint p d l) Serve Complaint proofmsg) ws)],
[NoObjective])
else

([NoStatus],[NoDuty],[NoObjective])

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 130

A message that counts as serving the complaint creates the beliefs that the person
mentioned as plaintiff in its content, is the plaintiff and that the person mentioned as
defendant in its content, is the defendant. The sender of the message counts as the
judge. For the receiver of the message it creates the duty to answer the complaint.

updSubjObjMsg ws sl inflag (Message s z (Complaint p d l) Judgement proofmsg) =
if (isPronouncingJudgement sl (Message s z (Complaint p d l) Judgement proofmsg)) then

sdlist else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Loser Complaint d (Message s z (Complaint p d l) Judgement proofmsg) ws),
(Execution Title p d land (Message s z (Complaint p d l) Judgement proofmsg) ws)],
duty ,[NoObjective])

duty = if ((isDefendant sl z) && (inflag==True)) then
[(DoAbandonLand (Message s z (Complaint p d l) Judgement proofmsg) ws)] else
[NoDuty]

A message counting as pronouncing a judgement, creates the belief that the person
mentioned in the messages as defendant, is the loser of the legal action. The person
mentioned as plaintiff in the message is the winner of the legal action, which creates
the execution title against the loser. If the receiver of the message is the defendant, it
creates the duty to abandon the illegal land use.

updSubjObjMsg ws sl inflag (Message s z (Complaint p d l) Apply Execution proofmsg) =
if (isExecutingJudgement sl (Message s z (Complaint p d l) Apply Execution proofmsg)) then

sdlist else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Applicant Execution s (Message s z (Complaint p d l)
Apply Execution proofmsg) ws), (JudgementExecutor z (Message s z (Complaint p d l)
Apply Execution proofmsg) ws)], duty ,[NoObjective])

duty = if (inflag==True) then [DoExecution (Message s z (Complaint p d l)
Apply Execution proofmsg) ws] else [NoDuty]

If a message counts as starting of a judgement execution, then it assigns the status
applicant of the execution to the sender of the message and the status judgement
executor (in this case) to the receiver of the message. For the receiver it creates the
duty to perform the judgement execution.

8.3.2 The output of the simulation

The output of the simulation is the list of all phenomena existing and occurring during
the simulation in the model, i.e., the land piece, the registry agent, the agent ”A” and
the agent ”B”, the court agent and the sheriff agent.

Again we present only the parts of the output which change, i.e., the state of agents
that construct new beliefs, generate new goals or act in some way.

World state 0

Agent(AID=A
INBOX=[Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage]
PHYPERCEPS=[]
STATUS=(Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0)
(RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]
ACTIONS=[]

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 131

OUTBOX=[])

Agent(AID=B
INBOX=[]
PHYPERCEPS=[]
STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0)
(Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 6,UseLand "P" 0]
ACTIONS=[ActUseLand "P" "B"]
OUTBOX=[])

In world state 0 ”A” receives the message from the registry agent that creates his
ownership right of parcel ”P”. Agent ”B” has the objective to use the parcel and
generates a physical action starting the land use

World state 1

Agent(AID=A
INBOX=[]
PHYPERCEPS=[]
STATUS=(Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0)
(RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]
ACTIONS=[ActUseLand "P" "A"]
OUTBOX=[])

Land "P" "B"

In world state 1 ”A” has the objective to use the piece of land ”P” and generates the
action to start the land use. The land piece ”P” is already used by ”B”.

World state 2

Agent(AID=A
INBOX=[]
PHYPERCEPS=[LandUse "A" "B" "P"]
STATUS=(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2)
(Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0)
(RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7,DoComplaint "P" "B" 2]
ACTIONS=[]
OUTBOX=[Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action
(Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage)])

In world state 2 agent ”A” receives the physical percept that ”P” is already used by
”P”. He generates the objective to sue ”B” and generates the complaint message to
the court. With the complaint he conveys the proof of his ownership right as second
message, which originally created his right.

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 132

World state 3

Agent(AID=CourtAg
INBOX=[Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action
(Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage)]
PHYPERCEPS=[]
STATUS=(ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3)
(Judge "CourtAg" <m> 3) (Suing <m> 3) (CourtAg "CourtAg" 0)
(SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0)
(Legal_person "B" 0)
DUTIES=[DoServeComplaint <m> 3,DoJudgement <m> 5]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Serve_Complaint NoMessage])

In world state 3 the court agent receives the complaint and he updates his internal
state accordingly. He generates the duty to serve the complaint to the plaintiff and
to pronounce a judgement in the second next world state. He generates the message
serving the complaint to ”B”.

World state 4

Agent(AID=B
INBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Serve_Complaint NoMessage]
PHYPERCEPS=[]
STATUS=(Defendant "B" <m> 4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4)
(ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0)
(Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[DoAnswerComplaint (Message "CourtAg" "B" (Complaint "A" "B" "P")
Serve_Complaint NoMessage) 4]
OBJECTIVES=[UseLand "P" 6]
ACTIONS=[]
OUTBOX=[Message "B" "CourtAg" (Complaint "A" "B" "P") Answer_Complaint NoMessage])

In world state 4 the agent ”B” receives the message informing about the complaint. It
generates the duty to answer to the complaint. According to this duty ”B” generates
a message to the court agent with his answer to the complaint.

World state 5

Agent(AID=CourtAg
INBOX=[Message "B" "CourtAg" (Complaint "A" "B" "P") Answer_Complaint NoMessage]
PHYPERCEPS=[]
STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5)
(PronouncingJudgement <m> 5) (PronouncingJudgement <m> 5) (ServingComplaint <m> 3)
(Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3)
(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0)
(Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)
DUTIES=[DoJudgement <m> 5]
OBJECTIVES=[]
ACTIONS=[]
OUTBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Judgement NoMessage,
Message "CourtAg" "A" (Complaint "A" "B" "P") Judgement NoMessage])

In world state 5 the court agent receives the answer to the complaint from ”B”. Since
the court agent has the duty to perform a judgement and ”B” cannot justify his be-
haviour, he accepts the complaint and generates two messages pronouncing the judge-
ment to ”A” and ”B”.

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 133

World state 6

Agent(AID=A
INBOX=[Message "CourtAg" "A" (Complaint "A" "B" "P") Judgement NoMessage]
PHYPERCEPS=[]
STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6)
(PronouncingJudgement <m> 6) (Defendant "B" <m> 2) (Plaintiff "A" <m> 2)
(Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0)
(CourtAg "Cour tAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7]
ACTIONS=[]
OUTBOX=[])

Agent(AID=B
INBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Judgement NoMessage]
PHYPERCEPS=[]
STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6)
(PronouncingJudgement <m> 6) (Defendant "B" <m> 4) (Plaintiff "A" <m> 4)
(Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0)
(RegAg "RegAg" 0) (Legal _person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[DoAbandonLand (Message "CourtAg" "B" (Complaint "A" "B" "P")
Judgement NoMessage) 6]
OBJECTIVES=[UseLand "P" 6]
ACTIONS=[ActAbandonLand "P",ActUseLand "P" "B"]
OUTBOX=[])

In world state 6 ”A” and ”B” receive the judgement message. ”A” knows now that
he has now an execution title against ”B”. For the loser of the complaint the message
creates the duty to abandon the land. ”B” physically acts and abandons the land ”P”.

To simulate the execution process agent ”B” gets in world state 6 again the objective
to use the parcel. ”B” acts according to his objective and performs the action starting
again the land use.

World state 7

Agent(AID=A
INBOX=[]
PHYPERCEPS=[]
STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6)
(PronouncingJudgement <m> 6) (Defendant "B" <m> 2) (Plaintiff "A" <m> 2)
(Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0)
(CourtAg "CourtAg" 0)(RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[UseLand "P" 7]
ACTIONS=[ActUseLand "P" "A"]
OUTBOX=[])

In world state 7 the ”A” again has the objective to use his parcel ”P” and generates a
physical action to use the land.

World state 8

Agent(AID=A

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 134

INBOX=[]
PHYPERCEPS=[LandUse "A" "B" "P"]
STATUS=(Applicant_Execution "A" <m> 8) (JudgementExecutor "SheriffAg" <m> 8)
(ExecutingJudgement <m> 8) (Loser_Complaint "B" <m> 6)
(Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6)
(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2)
(Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0)
(CourtAg "CourtAg" 0) (RegAg "RegAg" 0)(Legal_person "A" 0)
(Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[ApplyExecution "P" "B" 8]
ACTIONS=[]
OUTBOX=[Message "A" "SheriffAg" (Complaint "A" "B" "P") Apply_Execution
(Message "CourtAg" "A" (Complaint "A" "B" "P") Judgement NoMessage)])

In world state 8 ”A” preceives that ”B” uses parcel ”P”. Since ”A” has the execution
title against ”B” he decides to send a message to the sheriff agent containing the
application of the judgement execution. The message contains the message that created
his execution title as proof of his right to apply for judgement execution. ”A” updates
his internal state with the knowledge about the application.

World state 9

Agent(AID=SheriffAg
INBOX=[Message "A" "SheriffAg" (Complaint "A" "B" "P") Apply_Execution
(Message "CourtAg" "A" (Complaint "A" "B" "P") Judgement NoMessage)]
PHYPERCEPS=[]
STATUS=(Applicant_Execution "A" <m> 9) (JudgementExecutor "SheriffAg" <m> 9)
(ExecutingJudgement <m> 9) (CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0)
(RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)
DUTIES=[DoExecution <m> 9]
OBJECTIVES=[]
ACTIONS=[ActEvictLand "P"]
OUTBOX=[Message "SheriffAg" "A" (Complaint "A" "B" "P") Accept_Execution
NoMessage])

In world state 9 the sheriff agent receives the message containing the application
He updates his internal state and generates the duty to do the judgement execution.
He performs the physical action ’evict land’. Additionally he sends a message to the
authorized user with the information that he accepts the application and evicted the
land from the unauthorized user.

World state 10

Agent(AID=A
INBOX=[Message "SheriffAg" "A" (Complaint "A" "B" "P") Accept_Execution NoMessage]
PHYPERCEPS=[]
STATUS=(Applicant_Execution "A" <m> 8) (JudgementExecutor "SheriffAg" <m> 8)
(ExecutingJudgement <m> 8) (Loser_Complaint "B" <m> 6)
(Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6)
(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2)
(Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0)
(RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0)
(SheriffAg "SheriffAg" 0) (Parcel "P" 0)
DUTIES=[]
OBJECTIVES=[]

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 135

ACTIONS=[]
OUTBOX=[])

Land "P" ""

In world state 10 the execution applicant ”A” receives the information that the judge-
ment was executed. The piece of land ”P” is again unused. The simulation ends.

8.4 Assessment of the results

The flow of operation in the simulations captures the social processes we introduced in
section 4.7. We represented social processes in reality, the interaction between human
beings and their relation to parcels, in terms of the interaction between agents and the
change in the internal states of the agents.

The model correctly represents the social processes in reality (with respect to the
two case studies). Based on the simulation we can asses that the model we constructed
in chapter 7 and tested by agent-based simulation in this chapter is valid with respect
to the two case studies we used: the transfer of ownership of a parcel between two
persons and the conflict between to persons regarding land use and its resolution by
the organizations of the state.

By comparing the flow of operation in the simulation with the situation in reality
represented by the two scenarios we can asses that the simulation corresponds to the
processes in reality with respect to the two case studies. Because we selected char-
acteristic and typical case studies capturing a broad variety of processes and assume
that other processes are quite similar to the two we presented, we conclude that the
computational agent-based model based on the ontology institutional reality developed
in chapter 3 correctly and successfully represents reality in a cadastre.

8.5 Summary

The goal of this chapter was the validation the agent-based model we constructed
in chapter 7 with respect to the reality of the Austrian legal system we discussed in
chapter 2.

We selected two characteristic social processes from reality, namely the transfer of
ownership of a parcel between two persons, and conflicts and their resolution in the
case of land use. We discussed both simulations in detail. We presented the input and
the output of the simulation. The input of the simulation consists of

• representations of subjects, objects and events: land pieces, agents and messages
they exchange.

• representations of the initial institutional situation, by the initial beliefs of the
agents.

• representations of constitutive rules as operations in the agents’ decision making
process.

The output of the simulation consists of a complete history of the world states the
simulation produced. Based on the input and the output we described the flow of
operation during the simulation.

CHAPTER 8. AGENT-BASED SIMULATION OF SOCIAL PROCESSES 136

The chapter has two major results: First it has shown the correctness of the model
with respect to the two case studies we investigated. From this fact we derive the
second, more general result: We conclude that the ontology of institutional reality we
developed in this thesis is correct for the field of cadastre. Reality in a cadastre can
be analyzed based on the following three basic assumptions:

• Institutional reality can be explained in terms of the individual knowledge and
interaction of the participating actors.

• Searle’s concepts of institutional and physical facts characterizing status func-
tions assigned by constitutive rules to physical phenomena (subjects, objects,
events) are the core element determining the knowledge and the interaction of
these actors.

• The monopoly of force determines the structure of institutional reality in a cadas-
tre. It explains how particular actors in the society define institutional rules,
apply these rules and enforce the consequences of these rules.

Chapter 9

Application of agent-based
simulation: Assessing costs

9.1 Introduction

In this chapter we outline the ideas of the application of agent-based simulation. Sim-
ulations can be used to assess costs of processes. It is possible to count the individual
costs related to the activities of each agent within the simulation of these processes.
Counting the costs of each agent allows investigating the distribution of the costs be-
tween the participating agents.

For the cadastre the cost assessment is one foundation for comparing different
systems. If it is possible to analyze costs of similar processes in different systems, the
comparison of the systems can be done on an objective basis. The cost assessment
allows investigating the internal distribution of the costs, in particular between the
private parties acting (the legal persons performing legal transactions) and the public
authority managing the activities (in particular the cadastral registry).

Costs arising in the interaction between the cadastral registry, legal persons and
other actors are mainly transaction costs (North 1997). The approach of this chapter
is the analysis of transaction costs in the field of cadastre.

Within the agent-based simulation model the cost analysis is based on the distinc-
tion of the following three sorts of costs:

1. decision costs, which are internal costs,

2. activity costs, which are external costs,

3. perception costs, which are external costs.

Decision costs are related to the decision making process of each agent about activities
to perform. In this sense they are internal to each agent and represent the costs of its
internal activities. Activity costs and perception costs are related to the activities of
the agent in reality. In this sense they are external to the agents.

The chapter starts with the investigation transaction costs in the field of cadastre.
It continues with the discussion of perception, decision and activity costs. In the
following sections we integrate the cost assessment into the model. We implement the
cost assessment based on two different technical solutions. Next we apply the ideas
to the simulation of the case studies from chapter 8. A short summary concludes the
chapter.

137

CHAPTER 9. APPLICATION: ASSESSING COSTS 138

9.2 Transaction costs

North observes that it is costly to interact and that traditional (micro-) economic
theories do not deal with these costs (North 1997). He discusses that institutions exist
in order to reduce the costs of transactions. The main criterion for the measurement
of the efficiency of institutions is the question how they effectively reduce the cost of
transacting in relation to the cost of the maintenance of the institutions themselves.

North distinguishes two sorts of transaction costs: measurement costs and enforce-
ment costs. First it is costly to measure the valuable attributes of what is being
exchanged. The costs to acquire this necessary information are called measurement
costs. The second sort of transaction costs is related to the enforcement of agreements.
Efficient exchange of commodities (or exchange at all) can only happen, if individu-
als do not cheat. In modern society a third party is involved in the exchange, which
enforces individual agreements, the state.

Institutions reduce uncertainty in the exchange by limiting the choices people have.
The support of measurement reduces the uncertainty about the properties of com-
modities. The enforcement reduces the uncertainty about the behaviour of the people
involved in the exchange.

Third party enforcement means the development of the state as a coercive force
able to monitor property rights and enforce contracts. The monitoring of property
rights, which is necessary for the enforcement, is a third source of transaction costs.
We identify three sorts of transaction costs:

• measurement costs,

• monitoring costs,

• enforcement costs.

In oder to analyze the transaction costs of a system it is necessary to discuss both, the
costs of the institutions, of their maintenance and transactions, and the cost arising
for the individuals and their interactions. We perform the analysis by distinguishing
the public costs (of the state) from the private costs (of the individuals).

9.3 Transaction costs in a cadastre

The efficiency of a cadastral system as the system of institutions dealing with the ex-
change of real estate, can be assessed by the analysis of transaction costs occurring
between the actors within the system. The overall costs of the system consist of costs
independent of transactions and transaction dependent costs. Transaction independent
are the costs of the definition of the property rights and the creation and maintenance
of the organizations according to the institutions. Transaction independent costs are
transferred to the individuals and organizations of the society by taxes. Transaction
dependent costs are related to the activities of the actors, such as, ownership transfer
and conflict resolution. Transaction independent costs are beyond the scope of this
analysis. We focus on transaction dependent costs. We discuss transaction dependent
costs related to the two case studies under consideration: ownership transfer and con-
flict resolution. In the following we investigate public cost for the representatives of the

CHAPTER 9. APPLICATION: ASSESSING COSTS 139

private costs public costs

creation and maintenance
of the institutions

(transaction independent costs)
ownership exchange costs
transfer measurement measurement

(queries) (answer queries)
monitoring monitoring

(application of (registration)
ownership transfer)

conflict enforcement enforcement
resolution (complaint, application of (judgement,

judgement execution) execution process)

Table 9.1: The cost analysis of a cadastre

state, i.e., the cadastral registry, courts and sheriffs and the private costs for individu-
als, i.e., legal persons. Transaction dependent costs are transferred to the individuals
by charging the participants of the transactions.

Analyzing costs in the interaction of actors in the cadastre we must distinguish
exchange costs from transaction costs. Exchange costs are related to the exchange itself,
not to acquiring information, monitoring and enforcement. In the case of ownership
transfer, exchange costs occur by the contracting of private persons consisting of the
making of an offer and the acceptance of this offer.

The registration process in the registry is related to monitoring costs, i.e., to the
monitoring of the legal situation by the state. These costs have a private and a public
part. The private person applying for the ownership transfer is charged by the cadastral
registry. For the cadastral registry costs arise from the checking of the validity of the
transfer, from the changing of the registry and from the delivering of its decisions to
the legal persons involved.

Measurement costs in the field of cadastre are mainly connected to the determi-
nation of the legal properties of a parcel, in particular, its legal status. Measurement
costs are related to the queries and answers of the registry according to ownership of a
parcel. These costs are distributed between the registry and private legal persons. For
the cadastral registry costs arise from the processing of the query and the generation
of the answers to the query. For a private person costs arise from the query for which
he is charged by the cadastral registry.

Enforcement costs are related to the conflict resolution. The private costs consist
of the complaint and of the judgement application by the suing person. The public
costs are distributed between the court for the legal proceeding and the sheriff for the
judgement execution. Table 9.3 shows cost analysis of the cadastre according to the
two case studies.

CHAPTER 9. APPLICATION: ASSESSING COSTS 140

9.4 Perception costs, decision costs and

activity costs

For the simulation of the cost distribution in the cadastre we introduce perception,
decision and activity costs. The idea is to express and represent the different transac-
tion costs occurring during the simulation in terms of these three sorts of costs. These
costs can be positive, i.e., they takes resources or negative if they provide resources.

Agents perform physical activities in their environment to which we can assign costs.
Their physical activities take time and perhaps an amount of money, for instance, if
the person is employed and must be paid. Additionally costs can be assigned to
the communication actions between the participants. which are time-consuming and
involve other costs, such as mail costs. These costs are always related to the activities
of agents. They can be characterized as activity costs.

In the cadastre activity costs of legal persons can be, for instance, the costs of a
person sending an offer to another person or the cost to perform an application at
the cadastral registry. The costs of the state in this situation are, for instance, the
performance of ownership transfer, i.e., the registration of the transfer in the registry.
Costs can be assigned, for instance, to the physical enforcement of rights by activities
of the sheriff.

Costs can also be assigned to the percepts of agents. For instance, if an agent sends
a query to the registry agent, this is a positive cost for the sender, who has to pay
for the query. For the registry agent, who receives the payment, the cost is negative.
These costs we designate as perception costs.

Common to these activities is that they are external to the human being in the
sense that they change the environment external to the agents or provide external
influences to the agents. We designate these costs as external costs.

Costs can be assigned to the decision making process of persons and, to a much
larger extent, to the decision making process of organizations. These costs are different
to the external costs in the sense that they are internal to the human being or to the
organization. They do not affect the environment. We designate this kind of cost as
internal costs. Internal costs are related to the decision making process of the human
being or organization. They can be characterized as decision costs.

Internal costs are of particular importance for the cadastre because the decision
making process of the registry as well as its efforts to maintain the rights in the registry
can be characterized (and represented) as internal costs. Also the process of the court
to decide a complaint can be characterized by internal costs. Figure 9.1 shows the
conceptual ideas.

9.5 Assumptions about the cost distribution

In order to simulate the cost distribution in the model we have to make assumptions
about the individual costs occurring during the interaction of the agents. The detailed
economical analysis of these costs in reality is beyond the scope of the thesis. Our
scope is to show how to simulate and assess costs based on these basic assumptions.
Here we make assumptions about the costs, which are not economically justified.

We discuss the simulation of the cost distribution according to the case study
of ownership transfer. We assume that costs correspond to the time actors need to
make their decisions and to perform activities. Thus we give the amount of working

CHAPTER 9. APPLICATION: ASSESSING COSTS 141

Agent

Environment

act

external

costs

decision
 internal

costs

perceive

Figure 9.1: Internal and external costs in the agent-based model

hours needed. We assume writing and processing of communication messages, which
are usually letters in the field of cadastre, takes two working hours, so we assign the
cost 2 to a communication action. Physical activities, where persons act somewhere
outside are more costly than communication activities. We assign the cost 5 to physical
activities. Physical and communication percepts are cost less. We assign the cost 1 to
the decision making process of each agent. Exceptions from these general assumptions
are the application of ownership transfer and a query concerning the ownership of a
parcel. The action ’application of ownership transfer’ costs 10, the action ’query’ costs
4. Accordingly the perception of an application or query provides costs of −10 and
−4, i.e., it provides resources to the registry agent which correspond to the cost of 10
and respectively 4 working hours.

We assume that the organizations of the state make no profit. That means that
the amount of money they charge for their activities are exactly the costs arising by
performing these activities. We assume that, if assigned to an application, the cost is
of 10 for the applicant, so the cost for registering this ownership transfer is also 10, i.e.,
that the process of registering ownership transfer costs 10 working hours. Figure 9.2
shows the cost distribution based on these basic assumptions according to the example
of ownership transfer.

9.6 Counting costs

This section discusses the realization and implementation of the different types of costs.
In the model of reality in a cadastre (see chapter 7) activities of the agents are realized
according to the message exchange model. That means actions and percepts are mes-
sages, i.e., data structures. Communication actions and percepts are represented by
data structures of type Message and physical actions are represented by data struc-
tures of type Action (see subsection 7.9.2). Physical percepts are realized by data
structures of type PhyPercept.

We assign costs to each of these data structures. This allows the assignment of
costs to each type of activity. Consequently we assume that costs correspond to the
type of the messages.

To calculate the internal costs, the approach of assigning costs to data structures
is not usable. The decision costs are related to the decision operations. It is necessary

CHAPTER 9. APPLICATION: ASSESSING COSTS 142

A

R

B

accept offer

offer

ap
pl

ic
at

io
n

ac
ce

pt
 a

pp
lic

at
io

n
 answ
er query

query

decision

about the

application

decision

about

the offer

decision

about the

query

decision

about

acceptance

of the offer

decision

about

acceptance

of the

application

decision

about the

answer

of the

query

6
 2

1

1
1

1

10

0

2

0

0

2

0
 4

-4

2
2

-10

accept application
 0

2

exchange costs

measurement

costs
monitoring

costs

Figure 9.2: Basic costs in the ownership transfer based on the cost assumptions

to assign costs to operations. We choose the following solution: We lift each decision
operation corresponding to a duty or objective and assign a cost as part of the lifted
function result (see subsection 6.6.3 for the description of the lifting operation).

In each world state we calculate the costs for each agent and store it as part of the
agent data structure. After the simulation ends we collect and summarize the costs
from the world history and present it as part of the output of the simulation.

The costs are represented in the model as integer values. Costs can be positive or
negative. The following data structure represents costs in the model:

type Cost = Int

According to the analysis in each world state for each agent we can identify exchange
costs, monitoring costs, measurement costs and enforcement costs. These sorts of costs
are represented by the following data structure:

data CostData = CostData Cost Cost Cost Cost

In each world state we summarize the sorts of costs and store them as part of the
agent data structure in order to enable the analysis of the cost distribution based on
the information stored in the output of the simulation, the world history. The agent
extended by the cost data is a data structure of the following form:

data Agent = Agent AgentID [Percept] IntState [Act] CostData

After the end of the simulation we can analyze the cost distribution for the different
costs for each agent by the following operation:

getAbsAgentCosts :: [World] → [(AgentID, CostData)]

The operation calculates the individual costs for each agent based on the output of the
simulation. In the next two subsections we investigate how to calculate the individual
costs for each agent during the simulation.

CHAPTER 9. APPLICATION: ASSESSING COSTS 143

9.6.1 Counting external costs

Agents put their activities into the outbox after each activity cycle. In each world
state the percepts are provided to the agents in their inboxes. The approach we use
here is to collect all percepts and activities that occurred during one simulation cycle
from the agent data structure and assign costs to each activity.

This is implemented in the model in the following way: The class ExtCosts (listing
9.1) defines operations that assign costs c to each activity or percept e and count the
four sorts of costs based on a list of activities or percepts.

Listing 9.1: Specification of external cost assessment

class Num c ⇒ ExtCosts e c | e → c where
cost :: e → c
gesCost :: [e] → c
isExchangeCost :: e → Bool
isMonitoringCost :: e → Bool
isMeasurementCost :: e → Bool
isEnforcementCost :: e → Bool
genExchangeCosts :: [e] → c
genMonitoringCosts :: [e] → c
genMeasurementCosts :: [e] → c
genEnforcementCosts :: [e] → c

gesCost [] = 0
gesCost e = foldl (+) 0 (map cost e)
genExchangeCosts = gesCost. (filter isExchangeCost)
genMeasurementCosts = gesCost. (filter isMeasurementCost)
genMonitoringCosts = gesCost. (filter isMonitoringCost)
genEnforcementCosts = gesCost. (filter isEnforcementCost)

In order to assign costs to particular physical and communication messages we define
instances for percepts and actions. These instances define the basic perception and
activity costs. The implementations 9.2 and 9.3 are both incompletely presented to
express the ideas. For the complete code see appendix A.

According to the assumptions made in section 9.5 we assign the cost 5 to the
physical activity ActUseLand. We assign the cost 2 to the communication action
Offer and assume that an application (of ownership transfer) costs 10 and a query
to the cadastral registry costs 4. The action ActUseLand belongs to exchange costs
as well as the offer. The application action is a monitoring cost and the query action
belongs to measurement costs. The listing 9.2 shows the implementation.

Listing 9.2: Implementation of external costs for activities

instance ExtCosts Act Cost where
cost (PAct (ActUseLand)) = 5
cost (CAct (Message aid aid’ content Offer rid)) = 2
cost (CAct (Message aid aid’ content Application rid)) = 10
cost (CAct (Message aid aid’ content Query rid)) = 4
isExchangeCost (PAct (ActUseLand)) = True
isExchangeCost (CAct (Message aid aid’ content Offer rid)) = True
isExchangeCost = False
isMonitoringCost (CAct (Message aid aid’ content Application rid)) = True
isMonitoringCost = False
isMeasurementCost (CAct (Message aid aid’ content Query rid)) = True
isMeasurementCost = False

CHAPTER 9. APPLICATION: ASSESSING COSTS 144

Assuming that in general no costs are assigned to percepts of agents the perception
of a land use has the cost 0. Receiving an application or a query causes a negative
cost of −10 or −4. Applications belong to monitoring costs and queries belong to
measurement costs. The listing 9.3 shows the implementation.

Listing 9.3: Implementation of external costs for percepts

instance ExtCosts Percept Cost where
cost (PPercept (LandUse)) = 0
cost (CPercept (Message aid aid’ content Application rid)) = −10
cost (CPercept (Message aid aid’ content Query rid)) = −4

isExchangeCost = False
isMonitoringCost (CPercept (Message aid aid’ content Application rid)) = True
isMonitoringCost = False
isMeasurementCost (CPercept (Message aid aid’ content Query rid)) = True
isMeasurementCost = False
isEnforcementCost = False

For an agent it is now possible to calculate exchange, monitoring, measurement and
enforcement costs with the operation genExtCosts (listing 9.4) which summarizes the
different costs for percepts and actions.

Listing 9.4: Generation of external costs

genExtCosts :: Agent → Agent
genExtCosts (Agent aid percepts intstate actions (CostData ex mon mea enf)) =

(Agent aid percepts intstate actions (CostData ex’ mon’ mea’ enf’)) where
ex ’ = ex + (genExchangeCosts percepts) + (genExchangeCosts actions)
mon’ = mon + (genMonitoringCosts percepts) + (genMonitoringCosts actions)
mea’ = mea + (genMeasurementCosts percepts) + (genMeasurementCosts actions)
enf ’ = enf + (genEnforcementCosts percepts) + (genEnforcementCosts actions)

9.6.2 Counting internal costs

Internal costs can be calculated by assigning costs to the decision making process of
each agent. Applying the idea of lifting to this issue we change the decision operation
of the agents in a way that it includes cost information about the operation. We define
the parameterized data type OpCosts that adds cost data to a parameter f :

data OpCosts f = OpC f CostData

The task is now to lift operations that work with parameters f to operations that work
with the data type OpCosts f. We define the lifting operation in the following way:

liftCost :: f → CostData → OpCosts f
liftCost f cost = (OpC f cost)

It takes an argument f and a cost data structure CostData and lifts it to the data type
OpCost f, i.e., it wraps the cost data around the parameter f . According to the lift
operation introduced in subsection 6.6.3, this is the lifting operation of an operation
of arity 0, i.e., the lifting of a constant (here f). We are able to use this simplified
version of the lifting operation, since we assume that the cost of the operation does
not depend on its parameters, i.e., no costs are assigned to these parameters. This is
a limitation of the realization here, not of the lifting approach.

We assign the costs to operations that represent the agents’ decision making pro-
cess. The lifted version of the decision operation decision (see listing 9.5 and compare

CHAPTER 9. APPLICATION: ASSESSING COSTS 145

to listing 7.2) has as result sets of activities (the activities the agent decided to per-
form) and cost information assigned ([(OpCosts[a])]). The decision making operation
is defined in terms of the selActsL operation, which combines the decision making
operation according to duties actDutiesL and objectives actObjectivesL. For each
duty and objective these operations call the function doDutyL and doObjectiveL.

Listing 9.5: Specification of the decision operation including cost data

class (MyAgentInternalsL aid ws p i a, AgentInternals aid ws p i a) ⇒
AgentInternalsL aid ws p i a where

selActsL :: aid → ws → i → [(OpCosts [a])]
decisionL :: aid → ws → [p] → i → ([(OpCosts [a])], i)

class (UpdStateInMsgs aid ws p i, UpdStateOutMsgs ws a i) ⇒
MyAgentInternalsL aid ws p i a | i→ aid , i→ws, i → p , i → a where

actDutiesL :: aid → ws → i → [(OpCosts [a])]
actObjectivesL :: aid → ws → i → [(OpCosts [a])]

class ActdutiesL s d aid ws a | a → d , a → s , a → aid where
doDutyL :: [s] → aid → ws → d → (OpCosts [a])

class ActobjectivesL s o aid ws a where
doObjectiveL :: [s] → aid → ws → o → (OpCosts [a])

We assign internal (operation) costs to the lifted versions of the functions doDuty
(see listing 9.6) and doObjective (see listing 9.7). For both operations we only give
examples, the complete instance definition can be found in appendix A. The following
part of the implementation of the doDutyL operation assigns the measurement cost 2
to the decision operation of an agent to answer a query and the monitoring cost of 1
to the decision operation of an agent to apply ownership transfer.

Listing 9.6: Lifted version of the doDuty operation

instance ActdutiesL Status Duty AgentID WorldState Act where
doDutyL sl aid ws (AnswerQuery mid ws’) =

liftCost (answerQuery sl aid ws mid) (CostData 0 0 2 0)
doDutyL sl aid ws (DoApplication mid ws’) =

liftCost (doApplication sl aid ws mid) (CostData 0 1 0 0)

The following part of the implementation of the doObjectiveL operation assigns the
exchange cost 1 to the decision operation of an agent to make an offer.

Listing 9.7: Lifted version of the doObjective operation

instance ActobjectivesL Status Objective AgentID WorldState Act where
doObjectiveL sl aid ws (SellParcel land aid ’ ws ’) = erg where

erg = if (ws==ws’) then liftCost (doOffer sl aid aid ’ land ws) (CostData 1 0 0 0) else
(OpC [] (CostData 0 0 0 0))

9.7 Assessing the results of the simulation

We are able to simulate the cost distribution by assigning basic costs to percepts,
decisions and actions of the agents. The approach we described gives a powerful tool
for the analysis of transaction costs occurring in social processes of a cadastre. We
focused on the description of the core ideas and made idealized assumptions about

CHAPTER 9. APPLICATION: ASSESSING COSTS 146

the basic costs. We used the transfer of ownership as example to simulate the cost
distribution.

9.7.1 The transfer of ownership

Applying the mechanism introduced above we get the following results for the simula-
tion of ownership transfer:

********Costs*******
["(RegAg,Exchange=0,Monitoring=0,Measurement=0,Enforcement=0)",
"(A,Exchange=3,Monitoring=11,Measurement=0,Enforcement=0) ",
"(B,Exchange=3,Monitoring=0,Measurement=5,Enforcement=0) "]

Sim>

Since we assume that the registry charges applications and queries to the extent of its
costs, the overall costs for the registry agent are 0. These costs are transferred to the
private persons involved in the exchange. A has exchange costs of 3 consisting of the
decision cost to make an offer 1 and of the activity cost of sending this offer 2. Its
monitoring costs consist of the decision to apply for ownership transfer 1 and of the
activity of applying ownership transfer 10. B has the exchange costs of 3 consisting of
the decision to accept the application 1 and of the activity of accepting the application
2. It has the measurement cost 5 consisting of the decision to query the registry agent
1 and of the activity of querying 4.

9.8 Summary

In this chapter we outlined the ideas how two apply agent-based simulations to the as-
sessment of costs. Costs arising in social processes in a cadastre are transaction costs.
The basic idea of this chapter is to assess costs based on the individual interaction of
the actors involved, i.e., to assign costs to the individual interaction. We identified dif-
ferent types of costs: transaction independent costs of the institutions and transaction
dependent costs consisting of exchange costs, monitoring costs, measurement costs and
enforcement costs.

In oder to simulate these costs in the model we distinguish internal costs and
external costs of the agents. With these kinds of costs it is possible to independently
discuss the cost of the decision making process of the agents and the costs of the
agent’s activities and percepts. With this approach we are able to simulate and assess
costs occurring during transactions. The approach does not address the transaction
independent costs of the system of institutions.

The degree of correspondence to the processes in reality relies on the assumptions
about the basic costs assigned to atomic agents decisions, percepts and actions. We
made artificial assumptions since the economical analysis of these costs is beyond the
scope of this thesis.

We presented the principal idea of the application and assume that the model is
extensible to the point that it is possible to discuss realistic systems. The evaluation of
a cadastral system is one foundation for comparing systems regarding their costs and
efficiency.

An important point is the distribution of the cost between private persons and pub-
lic organizations. Both have to be assessed to evaluate the overall costs of a system.

CHAPTER 9. APPLICATION: ASSESSING COSTS 147

The model developed allows the assignment of costs to all individual agents participat-
ing in the processes simulated. In this chapter we made the assumption that all costs
arising in the institutions are charged to customers, i.e., to the private persons acting
according to the institutional rules.

Chapter 10

Conclusions and future work

In this chapter we discuss the results and contributions of this thesis. We start with
the summary of the content of the thesis. Then we discuss its major results and derive
from them the contributions to different research fields. Additionally we discuss the
restrictions of this thesis and conclude with an outlook on fields of future work.

10.1 Summary

This thesis is interdisciplinary work and has foundations in different scientific fields.
These foundations are:

• Cadastre and legal background,

• Searle’s theory of institutional reality,

• Multi-agent theory and Multi-agent systems,

• Algebraic specifications,

• The functional programming language Haskell.

Based on this background we developed the main content of this thesis, which we
discussed distinguishing three stages of work:

1. The ontological analysis of reality in a cadastre. We introduced the legal back-
ground of the Austrian cadastre (chapter 2) and developed an ontology of institu-
tional reality (chapter 3). We applied the results of both chapters to the analysis
of reality in a cadastre (chapter 4).

2. The construction of a computational model of reality in a cadastre. We discussed
the relevant aspects of multi-agent theory and multi-agent simulation and intro-
duced an abstract architecture of a multi-agent system (chapter 5). As approach
for the construction of the agent-based model and as agent programming language
we introduced algebraic specifications and the functional programming language
Haskell (chapter 6). We applied the abstract architecture to the construction of
model model in Haskell (chapter 7).

3. Agent-based simulation. We performed the validation of the model with appro-
priate case studies by agent-based simulation (chapter 8). We discussed how
simulations can be applied to the analysis and assessment of costs occurring in
a cadastre (chapter 9).

148

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 149

We will discuss the three stages in the following.

10.1.1 Cadastre and legal background

We introduced the legal background of this thesis: the cadastre, i.e., the part of reality
determined by the rules of the legal system relevant for the cadastre. We focused on a
concrete system, namely the Austrian cadastral system. The Austrian legal system is
an instance of a title registration system. Because it cannot be completely described
without the discussion of the relationship between the cadastral system and the legal
system in general we focused on the embedding of the cadastre into the general legal
system.

10.1.2 The ontology of institutional reality

The ontology of institutional reality is mainly based on Searle’s theory of institutional
reality. Searle’s theory describes reality as consisting of a physical part and an institu-
tional part. The physical part is characterized by physical facts which correspond to
subjects, objects, events and their relationships. The institutional part is characterized
by institutional facts, which are constructed by the assignment of status functions to
these physical phenomena. The building blocks necessary to explain the structure of
institutional reality are the following:

• (physical) phenomena

• (institutional) status

• constitutive rules (defining under which conditions status is assigned to phenom-
ena)

• (institutional) rights (connected to status) of agents to perform activities

• (physical) powers of agents to perform activities

We assume that the building blocks of institutional reality do not exist in external
reality in the same way physical phenomena exist. Status, constitutive rules and rights
exist only in the human mind. This leads to the following (individual-based) view of
reality, where the building blocks of institutional reality are:

• (physical) phenomena

• beliefs of the individuals

• (physical) powers of the individuals

Searle assumes that collective intentionality is involved in the assignment of sta-
tus functions, i.e institutional facts exists by human agreement or acceptance. We
replaced collective intentionality by the monopoly of force, which gives particular or-
ganizations of the society the authority to create and change institutional facts. Thus
collective intentionality is not involved in the creation of institutional facts. Collective
intentionality is only involved in the creation of institutions, which exist by collective
acceptance.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 150

We simplified Searle’s theory and assume that collective intentionality can be ex-
plained without presupposing a biological capability. Collective intentionality can be
explained in terms of the single intentionality combined with a general economic prin-
ciple. Collective acceptance of institutions is created if there is some economic benefit
for the individuals, which causes the acceptance of the rules by the majority of the
human beings.

The ontology of institutional reality developed in this thesis is characterized by the
following three assumptions:

• Institutional reality can be explained in terms of the individual knowledge and
interaction of the participating actors.

• Searle’s concepts of institutional and physical facts characterizing status func-
tions assigned by constitutive rules to physical phenomena (subjects, objects,
events) are the core element determining the knowledge and the interaction of
these actors.

• The monopoly of force determines the structure of institutional reality. It ex-
plains how particular actors in the society define institutional rules, apply these
rules end enforce the consequences of these rules.

10.1.3 The analysis of reality in a cadastre

Reality in a cadastre

Starting the analysis of reality in a cadastre we defined what we understand by this
term: By reality in a cadastre we understand the part of the real world, which is
influenced by the activities and the content of the cadastral registry. It comprises
the information system cadastral registry fully embedded into its environment. The
environment consists of human beings and organizations and their interaction with
each other and with objects, mainly land parcels, i.e., real estate.

Social processes in a cadastre

In the analysis we focused on two specific social processes in cadastral reality: the
transfer of ownership of a parcel between two persons and the conflict between two
persons and its resolution by the organizations of the state. The first process represents
the normal flow of operation in the cadastre where people act according to the legal
rules. The second process represents a conflicting case where people violate the legal
rules.

Transfers of rights on parcels are the central element in the work of a cadastre.
The first case study represents the ownership transfer of a parcel between two persons
as the most important case of right changes. The second case study models conflicts,
i.e., if a person does not respect the legal rules of the cadastre. It introduces an
abstract notion of land use that can stand for a broad variety of activities the owner
can perform on his parcel. The owner tries to use his parcel. A conflict occurs because
an unauthorized person already uses the parcel. The owner sues against the persons
and after the judgement he starts an execution to mobilize the power of the state to
realize his right.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 151

Three aspects in the analysis and their interrelationships

We analyzed reality in a cadastre based on the ontology of institutional reality. It was
found that there are three essential aspects in the analysis of reality in a cadastre:

• Ontological categories of phenomena

• Levels of reality

• Facts and rules for their creation and existence

According of the ontology there exist three categories of phenomena in a cadastre:
subjects, objects and events. Subjects are the active entities in the world that are able
to perform actions. Actions cause events. Events are always based on the participating
objects and subjects. Events change, create and destroy objects and subjects. Objects
are passive entities in the world changed by events.

According to Searle’s theory we distinguished two levels of reality: the physical and
the institutional level. Facts at the physical level exist independent of human observers
in external reality whereas facts at the institutional level are observer relative. Both
levels are closely linked. Facts on the institutional level are always based on facts on
the physical level.

We distinguished facts and rules for their creation and existence. Rules define
the conditions for the creation and existence of facts. The possibility of facts must be
distinguished from actually existing facts. Facts describe how the world is, i.e., a world
state, whereas rules describe how the world can evolve, i.e., how it can change between
world states. But both are part of reality and must therefore be part of the system.

The three aspects in the analysis of reality in a cadastre are interrelated. None of
the aspects can be omitted. They represent different views on the issues in the cadastral
domain. Every combination of the three aspects is meaningful. Objects, subjects and
events exist on the physical level as well as the corresponding status functions on the
institutional level. There are rules and facts for all categories on both levels of reality.
In chapter 4 these interrelationships are represented in a systematic way.

Objects and subjects relevant for the cadastre

From the analysis follows that the phenomena relevant for the representation of re-
ality in a cadastre are human beings, land pieces and the system of documentation.
Status functions are assigned to these phenomena. We assume that the system of
documentation only indicates status, i.e., no status is assigned to the documentation.

10.1.4 The abstract architecture of a multi-agent system

We presented an abstract, i.e., domain independent, architecture of a multi-agent sys-
tem intended to be applicable to the representation of the cadastral domain. We
started with definitions of the terms ’agent’ and ’multi-agent system’ suitable for our
task. We regard the agents as part of the environment, i.e., the environment is defined
as the set of all objects and agents in the system.

As an agent we regard an entity which is capable of acting in its environment and
perceiving its environment. A multi-agent system consists of four components. The
first component is the environment consisting of a set of objects. A subset of the
objects are agents. The second part is a set of relations between objects. The third

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 152

part is a set of operations enabling activities of the agents’, in particular the agents’
actions and decision operations. The fourth part of the system is called laws of the
universe which represent the reaction of the environment to the agents activities.

We presented the agent architecture from an operational point of view, i.e., we
characterized it based on the structure of the operations the agent performs. According
to the structure of the decision making process we distinguished agents without internal
state from agents with internal state. Agents without internal state just map percepts
to actions based on condition-action rules. An agent with internal state has explicit
representations of the environment in its current state and of former states. We assume
that the decision making process of an agent with internal state follows the Sense-Plan-
Act paradigm. It consists of three steps:

1. update the internal state based on the percepts of the agent,

2. decision based on the internal state which action to perform,

3. update the internal state with the knowledge about the action performed.

A specific class of agents with internal state are goal-based agents. The internal
state of the goal-based agent contains additionally to the representations of the current
and former world states, representations about desired world states, i.e., world states
the agent tries to achieve.

10.1.5 Algebraic specifications in Haskell

The fundamental assumption of this thesis is that the real world can be described in
terms of algebras, i.e., by sets and operations between sets. These algebras can be
described on an abstract level by algebraic formal specifications. On the level of the
specification we can determine the desired properties of the algebras, which are the
models of the real world. The algebraic specifications embody our assumptions about
the real world.

Expressing algebraic specifications in the functional programming language Haskell
has the advantage that we are able to construct computational models, which form
algebras that have the desired properties of the corresponding algebraic specifications.
This means that the computational model, which is formally correct with respect to
the specification, embodies our assumptions about the properties of the real world.

Haskell provides support for the development of computational models of algebraic
specifications by the concepts of specification, representation and implementation. The
specification is the realization of algebraic specifications in Haskell and is expressed by
classes. Representations, i.e., data structures, define the carrier sets of the algebras.
Implementations define the functions between these carrier sets and are realized in
Haskell by instances.

10.1.6 The construction of the agent-based model

The construction of the model follows the agent-based conceptualization approach. It
uses an agent-based model as conceptual framework not as paradigm for the construc-
tion of more efficient software systems or of intelligent artificial systems.

For the realization a state based model was selected. The world changes from one
state to another starting with the initial state 0.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 153

The model construction process follows the algebraic approach and defines specifi-
cations of the models and gives representations and implementations for the operations
of the specification.

Specification

The specification part translates the abstract agent architecture into a Haskell specifi-
cation and defines the execution model of the system. We distinguish the agent level
and the world level of the execution model. Both together form the execution cycle of
the system in each world state.

The agent level corresponds to the operations defining the activities of the agents,
i.e., to the operations of the agents to modify their environment, in particular to
interact with each other. The agent level defines the activity cycle of each agent in one
world state. It implements the three step structure of the decision making process of
the agent.

The world level corresponds to the reaction of the environment to the agents’ ac-
tivities and implements the laws of the universe. The operations on the world level
consist of three steps:

1. Perform the (physical) activities of each agent, i.e., realize physical events based
on the agent’s activities. If activities fail, generate percepts to the acting agents
providing the information that its action failed.

2. Send the messages of each agent to the addressees, i.e perform communication
events based on the agent’s activities.

3. Call the activity function of each agent.

Representations

Applying the analysis of reality in a cadastre, the model has to contain representations
of the agents and of the objects, which together form the environment. Additionally the
representation of the system of documentation is necessary. We assume that documen-
tation is sufficiently modeled by constructing one particular agent, which represents the
cadastral registry and maintains the system of documentation by its internal beliefs.

The agents. The state of an agent is characterized by its percepts, its internal
state and its actions. We assume that the basic model of interaction in the model is
message exchange. Consequently we assume that percepts and actions of the agents
are (different types of) messages. Since we distinguish physical and communication
activities we distinguish physical and communication messages.

This interaction model motivates a structure of the agents consisting of an inbox,
an internal state and an outbox. The inbox contains the percepts of the agent in the
current world state, its outbox contains all activities the agent decided to perform in
the current world state.

The agent’s internal state. Since we assume that a goal-based agent architecture
is necessary to represent agents capable of acting in reality in a cadastre, the agent’s
internal state consists of representations of its beliefs about the current state of the
world and of goals. The representation of the current state of the world comprises the

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 154

agent’s beliefs about subjects and objects existing in the world and events occurring
as well as of the institutional status assigned to these phenomena. Goals are related
to rights, which are connected to institutional status. We distinguish between goals
the agent tries to achieve based on its own possibilities given by its rights and goals
the agent tries to achieve based on its obligations. These types of goals we designate
as objectives and duties.

We have shown that duties and predefined objectives are sufficient to represent the
social processes under consideration. Positive rights and the free decision of activities
under these rights, i.e., goal generation, has not been implemented. A set of predefined
objectives were sufficient for the model.

The environment Following the analysis, the category of objects relevant for the
cadastre are pieces of land. The model has to comprise representations of pieces of land
and of agents. We model pieces of land by their identifiers. We model the environment
by a data structure world, which consists of a set of agents and a list of land pieces.

Implementation

The implementation provides the realization of the operations from the specification
on the specific representations. The aspect of the implementation, which is of central
relevance for the model of reality in a cadastre, is the transformation of constitutive
rules into the model. We implement constitutive rules as operations updating the
internal state of the agents. These operations map some phenomenon represented in
the model and a specific context to status beliefs and duties assigned. Status beliefs
are created by communication actions between agents, i.e., assigned to communication
messages the agent receives.

10.1.7 Validation of the model by agent-based simulation

According to the two case studies the validation of the model means to define the
input of the simulation and to assess its output. The input comprises the agents,
their internal states and the realization of the constitutive rules. The output of the
simulation is the set of all world states, i.e., the world history.
The simulation of the two case studies has to comprise the following agents as input:

• the registry agent

• the court agent

• the sheriff agent

• the seller and the buyer of a parcel

• the authorized user and the unauthorized user of a parcel

The registry agent represents the cadastral registry and its behaviour. The court agent
models the work of the court during the legal action. The sheriff agent represents the
power of the state with its monopoly of force. Seller, buyer, authorized user and
unauthorized user are representations of legal persons acting in reality.

The assessment of the results of the simulations allows the following conclusions:
First, the correctness of the model has been shown with respect to the two case studies

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 155

we investigated. From this fact we derive the second, more general result: We conclude
that the ontology of institutional reality we developed in this thesis is correct for the
field of cadastre.

10.1.8 Agent-based simulation for the assessment of costs

We applied the simulation model to the assessment of costs in the cadastre. We assume
that the costs occurring in the cadastre are mainly transaction costs. The basic idea
of the approach is to assess transaction costs based on the individual interaction of the
actors involved, i.e., to assign costs to the individual interaction. We identified differ-
ent types of costs: transaction independent costs of the institutions and transaction
dependent costs consisting of exchange costs, monitoring costs, measurement costs and
enforcement costs.

In oder to simulate these costs in the model we distinguish internal costs and
external costs of the agents. With these kinds of costs it is possible to independently
discuss the cost of the decision making process of the agents and the costs of the
agent’s activities and percepts. With this approach we are able to simulate and assess
costs occurring during transactions. The approach does not address the transaction
independent costs of the system of institutions.

10.2 Results

It is possible to explain social reality in a cadastre in terms of the individ-
ual interaction of the human and organizational actors. We applied Searle’s
theory of institutional reality to the field of cadastre, but differed from his theory in
one crucial point: We are able to explain the structure of reality in a cadastre without
presupposing collective intentionality as biological property of human beings. Insofar
we made less assumptions than Searle’s theory only presupposing the individual capa-
bilities of human beings to assign status to phenomena, to define institutional rules and
to negotiate these rules. Social reality is a property of the whole system that emerges
from the interaction of the individuals in the society.

It is possible to construct a computational model of a cadastre based on
the ontology of institutional reality. Combined with the first point, this is the
main result of this thesis. It has three aspects. First the ontology of institutional
reality based on Searle’s theory allows computational model construction. Second the
ontology is sufficient and powerful enough to represent a complex part of reality, a
cadastre. Third the fact that we successfully constructed and validated the model
allows the conclusion that a theory of the institutional part of social reality is sufficient
to explain the structure of reality in a cadastre.

It is possible to represent social processes of a cadastre. We developed a
framework for the simulation of social processes of reality in the model and tested it
by representing two non-trivial cases of processes from cadastral reality.

The extension of the scope from the cadastral registry to reality in a cadas-
tre is helpful for the analysis of the cadastral domain. We have seen that this

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 156

view on the cadastral domain allows the discussion of a broader variety of issues, be-
cause they often occur outside the registry, but nevertheless with strong impact to the
cadastral system.

It was necessary to model social reality in an agent-based framework. The
model construction based on Searle’s theory was only possible with an appropriate
representation of human intentions and behaviour. Agents were the architecture used
for this purpose. The agent-based approach is useful to construct models of parts of
the real world. This shows the potential of agent-based models for the investigation of
social reality.

The agent-based conceptualization approach has been successfully applied.
We have shown the usefulness of an agent-based approach as a purely conceptual
framework independent of the formalization and implementation of the model. Using
a formal language we focused on models of the real world, not on the formal properties
of the framework. We called this the agent-based conceptualization approach.

The algebraic approach has been successfully applied. The assumption that
it is possible to model the real world in terms of algebra was an essential foundation of
the model construction process. It allows the conclusion that the algebraic approach
captures important aspects of reality.

The analysis of reality in a cadastre has shown its correspondence to reality.
The analysis based on the distinction of the three essential aspects of reality was the
foundation for the construction of the model. We have shown the usefulness of the
analysis by its application to the model, which correctly represents processes in reality.
This allows the conclusion that for the cadastral domain the analysis performed here
corresponds to the reality it describes.

Functional specifications lead to a clear and understandable representation.
We have shown the applicability of functional specifications to agent-based models.
Functional languages are operation oriented and therefore in particular suited for the
description of change. An agent-based approach focuses on the activities of agents.
Thus the description of change plays a crucial role. The suitability for representing
change makes functional languages to an appropriate tool for agent-based models.

A method for cost assessment has been implemented. We outlined the idea of
the application of simulations to assess costs and cost distribution between the agents.
We implemented an example application based on the case studies of this thesis for
the assessment of transaction costs in a cadastre.

The foundation of a simulation environment for the evaluation of real-world
cadastral systems has been developed. The model presented here is extensible to
more comprehensive parts of the cadastral law, which can be expressed in the proposed
framework. A possible application of this environment is the evaluation of cadastral
systems regarding their stability to fraud and mistakes by agent-based simulation of
critical cases. By agents it is possible to simulate the behaviour of people making
mistakes or cheating.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 157

10.3 Contributions

There are contributions to several scientific fields and we will discuss them for each field.
A general contribution is the union of work from very different scientific fields. This
shows the connections of these fields and the importance and power of interdisciplinary
work.

Contributions to philosophy. The successful application of our ontology of insti-
tutional reality based on Searle’s theory to the construction of a computational model
of the cadastral domain contributes to research in the ontology of social reality. It has
been shown that a (computational) model generation based on this theory is possi-
ble. The successful validation of the model by simulating processes from a real world
cadastre supports the conclusion that our ontology correctly expresses the structure
of institutional reality. Thus Searle’s theory is an important approach to improve our
understanding of the world around us. We improved his theory by making less assump-
tions about the real world. We omitted the presupposition of collective intentionality
as biological capability of human beings.

We have seen the practical dimension of Searle’s theory because it was the crucial
foundation for the application in the cadastral domain. This work shows the usefulness
and importance of doing ”practical” ontology. Ontologies of specific domains, such as
the cadastre, can improve the design process of information systems. Domain ontolo-
gies contribute to solve specific tasks and we have demonstrated this in the cadastral
domain.

Contributions to social science. Cadastral systems are a separated part of reality
but nevertheless belong to social reality. We contributed to social science by the
successful simulation of social processes in a cadastre. This shows the applicability
and importance of agent-based social simulation to the investigation of social reality.
We analyzed the cadastre as part of social reality on a sophisticated formal foundation.
We have seen the relevance of computational and formal model construction as a useful
tool to validate theories about social concepts. This supports the assumption that it
is helpful and possible to investigate a broader variety of phenomena in social reality
on a formal foundation based on computer simulations.

Contributions to multi-agent theory. We contributed to multi-agent theory by
the development of an abstract architecture of a multi-agent system and by the applica-
tion of the agent-based approach to the model of a cadastre. The power of agent-based
models for the representation of social reality, as well as the solution of practical tasks
has been shown. Agents were the key element in the representation of human in-
tentions and behaviour. We introduced the agent-based conceptualization approach.
The key idea is the understanding of agent-based approaches as domain independent
conceptual framework for the description of phenomena in reality. It carefully sepa-
rates the conceptual model from the formalization and possible application in software
development.

Contributions to the legal domain and the cadastre. The contribution to the
legal domain in general and the cadastral domain in particular has a theoretical and a
practical dimension. First we investigated the cadastre embedded into its environment

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 158

and developed a framework for the computational representation of the cadastral law
based on Searle’s theory. This framework is extensible to larger parts of the cadastral
law and perhaps to other legal domains. Second we developed the foundations of a sim-
ulation environment for the evaluation of cadastral systems. Based on the evaluation
the efficiency of a real world cadastre can be further improved.

Contributions to the algebraic specification and functional programming
domain. At the Institute for Geoinformation the use of functional specification for
the model and information system design has been proposed. The benefits of this
approach have been shown in several domains. This thesis supports this view because
it applied a functional specification for the construction of an agent-based model based
on a philosophical theory and for social simulation.

10.4 Restrictions

Due to the lack of space and time and the complexity of the domain this thesis con-
strains its focus in several respects.

The model only represents Austrian law. We decided to use a concrete system
to reach a more realistic model. Neither the structure of the ontology of reality in a
cadastre nor the agent-based model are affected by this constraint. Only the input of
the simulation, the objects and agents with their status beliefs and constitutive rules
have to be adapted to the specific domain. This has no effects on the general structure
of the approach and is therefore no constraint on its generality.

The thesis omits the discussion of spatial problems. This thesis is mainly in-
terested in the change of the legal status in the cadastral domain. This can be described
without regarding spatial change of parcels. Nevertheless there are interesting issues
connected to the physical shape of boundaries and their institutional status. These
issues have a strong impact on the cadastral system. They are excluded here from the
discussions and left to future work.

The thesis assumes a static system of institutions. We investigated change
and processes within the institutions, not the change of the institutions themselves.
Topic of this theses was to model how people interact according or violating the legal
rules of a cadastre. The cadastre is an existing system of institutions, which can be
modelled assuming that the institutional rules do not change.

The thesis assumes that a functioning system of institutions exists. This
assumption does not hold in any case. Countries of the third world do not always have
a working land registration system, i.e., a system of land exchange, which is determined
by a functioning legal system. In such a case not all aspects determining reality can
be derived from the legal rules, so the analysis of the cadastral law, as it was the
foundation for the model construction process in this thesis, is not sufficient.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 159

The model represents only a small part of the legal rules of the cadastre.
This is not a principal limitation of the approach. In another Ph.D thesis at the Insti-
tute for Geoinformation (Navratil 2001), which focuses directly on the formalization
of law texts, a more comprehensive part of the Austrian cadastral law is represented.
The integration of this work into the framework of this thesis is possible without fun-
damental problems.

The validity of the model is only checked with two case studies. It is a
principal problem that the correctness of the model regarding reality cannot be formally
proven. The solution to this issue is the testing of the specification with appropriate
test cases. We selected characteristic non-trivial and expressible case studies for this
purpose. Due to the lack of space and time we restricted the presentation here to two
case studies.

The agent-based model is incomplete. The model works with predefined objec-
tives, which are a specific kind of goals. The goal generation of the agent based on its
own beliefs is a difficult problem in multi-agent theory and not essentially necessary
for the representation of the processes discussed here. We only implemented an incom-
plete method for the generation of duties and objectives. It would be necessary for the
development of a complete simulation tool for the evaluation of cadastral systems to
realize a more general goal generation approach. Such an approach must be based on
a sophisticated theory of human decision making. The completion of the agent-based
model is left to future work.

10.5 Future work

According to the restrictions discussed in the last section there are several areas of
future work.

The extension of the approach to spatial issues. The distinction of bona fide
and fiat boundaries matches Searle’s distinction of physical and institutional facts.
The addition of spatial representations, of (bona fide) boundaries and beliefs about
(fiat) boundaries in the agents’ minds would improve the model. It allows the discus-
sion of several phenomena, in particular the examination of conflicts regarding parcel
boundaries between people when they have different beliefs about the boundaries.

The investigation of the applicability of the approach to other legal domains.
There seems to be no principal obstacle to apply the agent-based framework of this
thesis to other domains. The question is whether Searle’s theory and the here proposed
model are sufficient to describe legal domains in general. The idea is to achieve a general
computational framework for the representation in the legal domain.

The completion of the agent model. The main obstacle on the way to a simula-
tion environment for reality in a cadastre is the lack of a goal generation mechanism
to make the model independent from external defined goals, i.e., objectives. The goal
is to provide a mechanism that independently generates the goals that determine the

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 160

behaviour of the agent based on the rights the agent has, according to his beliefs about
the status of phenomena.

The representation of a more comprehensive part of the cadastral law. This
task can be solved by the embedding of the work of Gerhard Navratil in his thesis
(Navratil 2001) into the framework of this thesis.

The representation of different legal systems. It is interesting to model other
cadastral systems in this framework, especially an instance of a deed recording sys-
tem in contrast to the Austrian system as an instance of a title registration system.
This gives the possibility for the comparison of the very different philosophies of these
systems on a common foundation.

The development of an evaluation software for cadastral systems. Based on
several previously introduced topics for future work the goal is to provide a practical
tool for the evaluation of real world cadastral systems. This can help to find the weak
points of the system and can improve the efficiency of the system. Therefore it can
support the improvement of a real world cadastre.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 161

Bibliography

ABGB (1811), Allgemeines Bürgerliches Gesetzbuch, JGS 946/1811.

Agha, G., Wegner, P. & Yonezawa, A., eds (1993), Research Directions in Concurrent
Object-Oriented Programming, MIT Press.

Al-Taha, K. (1992), Temporal Reasoning in Cadastral Systems, Ph.d. thesis,
University of Maine.

Austin, J. (1962), How to do things with words, Oxford University Press, Oxford.

Barr, A. & Feigenbaum, E. A. (1981), The Handbook of Artificial Intelligence,
William Kaufmann Inc.

Bird, R. & Wadler, P. (1988), Introduction to Functional Programming, Prentice Hall
International.

Bittner, S. (1998), Die Modellierung eines Grundbuchsystems im Situationskalkül,
Diploma thesis, University of Leipzig.

Bittner, S. & Frank, A. U. (to appear), ‘A formal model of correctness in a cadastre’,
International Journal on Computers Environment and Urban Systems (CEUS),
second special issue on Cadastral Systems.

Bittner, S., Wolff, A. v. & Frank, A. U. (2000), The structure of reality in a cadaster,
in B. Brogaard, ed., ‘23rd International Wittgenstein Symposium’, Kirchberg am
Wechsel, pp. 88–96.

Bond, A. & Gasser, L. (1988a), An analysis of problems and research in DAI, in
A. Bond & L. Gasser, eds, ‘Readings in Distributed Artificial Intelligence’,
Morgan Kaufmann.

Bond, A. & Gasser, L. (1988b), Readings in Distributed Artificial Intelligence,
Morgan Kaufmann.

Breu, R. (1991), Algebraic Specification Techniques in Object Oriented Programming
Environments, Vol. 562 of Lecture Notes in Computer Science, Springer-Verlag.

Britannica.com (2001), ‘The encyclopædia britannica online’.
http://www.britannica.com.

Brooks, R. (1986), ‘A robust layered control system for a mobile robot’, IEEE
Journal of Robotics and Automation 2(1), 14–23.

Bydlinski, F. (1996), System und Prinzipien des Privatrechtes, Springer.

162

BIBLIOGRAPHY 163

Chandrasekaran, B., Josephson, J. & Benjamins, V. R. (1999), ‘What are ontologies,
and why do we need them?’, IEEE Intelligent Systems 14(1), 20–26.

Clocksin, W. & Mellish, C. (1981), Programming in Prolog, Springer.

Dale, P. F. & McLaughlin, J. D. (1989), Land Information Management, An
introduction with special reference to cadastral systems in third world countries,
Oxford University Press, Oxford.

Decker, K., Pannu, A., Sycara, K. & Williamson, M. (1997), Designing behaviors for
information agents, in L. Johnson & B. Hayes-Roth, eds, ‘Proceedings of the
First International Conference on Autonomous Agents (Agents’97)’, ACM Press,
New York, pp. 404–412.

Decker, K. S. (1996), Distributed artificial intelligence testbeds, in G. O’Hare &
N. Jennnings, eds, ‘Foundations of Distributed Artificial Intelligence’, John
Wiley and Sons, Inc.

Dreyfus, H. L. (1997), What computer still can’t do: a critique of artificial reason,
The MIT Press.

Durfee, E., Lesser, V. & Corkill, D. (1992), Distributed problem solving, in
C. Shapiro, ed., ‘Encyclopedia of Artificial Intelligence’, 2 edn, John Wiley,
pp. 379–388.

Ehrlich, H.-D., Gogolla, M. & Lipeck, U. W. (1989), Algebraische Spezifikation
abstrakter Datentypen, B.G.Teubner, Stuttgart.

Fellbaum, C., ed. (1998), WordNet: An Electronic Lexical Database, Language,
Speech, and Communication, The MIT Press, Cambridge, Mass.

Ferber, J. (1999), Multi-Agent Systems. An introduction to Distributed Artificial
Intelligence, Addison-Wesley.

Finin, T., Labrou, Y. & Mayfield, J. (1997), KQML as an agent communication
language, in J. Bradshaw, ed., ‘Software Agents’, MIT Press.

Frank, A. (1996), An object-oriented, formal approach to the design of cadastral
systems, in M. Kraak & M. Molenaar, eds, ‘Spatial Data Handling’, Taylor &
Francis, Delft, The Netherlands.

Frank, A. (2000), Communication with maps: A formalized model, in C. Freksa,
W. Brauer, C. Habel & K. F. Wender, eds, ‘Spatial Cognition II (International
Workshop on Maps and Diagrammatical Representations of the Environment,
Hamburg, August 1999)’, Vol. 1849 of Lecture Notes in Artificial Intelligence,
Springer-Verlag, Berlin Heidelberg, pp. 80–99.

Frank, A. U. (1997a), How to write specifications in class based functional
programming, in ‘Gopher as used at Geoinfo-TU Vienna’, Vol. 12, Department
of Geoinformation, Vienna, pp. 199–212.

Frank, A. U. (1997b), Spatial ontology: A geographical information point of view, in
O. Stock, ed., ‘Spatial and Temporal Reasoning’, Kluwer Academic Publishers,
Dordrecht, pp. 135–153.

BIBLIOGRAPHY 164

Frank, A. U. (2001), ‘Personal communication’.

Frank, A. U. (to appear), Ontology for spatio-temporal databases, in T. Sellis, ed.,
‘Spatiotemporal Databases: The Chorochronos Approach’.

Frank, A. U. & Kuhn, W. (1995), Specifying Open GIS with functional languages, in
M. Egenhofer & J. Hering, eds, ‘Advances in Spatial Databases’, Vol. 951 of
Lecture Notes in Computer Science, Springer, pp. 184–195.

Frank, A. U., Bittner, S. & Raubal, M. (to appear), Spatial and cognitive simulation
with multi-agent systems, in ‘Conference on Spatial Information Theory
(COSIT’01)’, Morro Bay.

Garner, B. A. (1996), BLACK’S Law Dictionary, West Publishing.

Gat, E. (1997), On three-layer architectures, in D. Kortenkamp, R. P. Bonnasso &
R. Murphy, eds, ‘Artificial Intelligence and Mobile Robots’, AAAI Press.

GBG (1955), Grundbuchsgesetz, BGBI 1955/39.

Gibson, J. (1979), The ecological approach to visual perception, Erlbaum, Hillsdale,
NJ.

Gilbert, D., Aparicio, M., Atkinson, B., Brady, S., Ciccarino, J., Grosof, B.,
O’Connor, P., Osisek, D., Pritko, S., Spagna, R. & Wilson, L. (1995), The role of
intelligent agents in the information infrastructure, IBM report.

Gilbert, N. (1993), ‘Computer simulation of social processes’, Social research update.

Gilbert, N. (1995), ‘Simulation: an emergent perspective’.
http://www.soc.surrey.ac.uk/research/simsoc/tutorial.html.

Gilbert, N. & Doran, J. (1994), The computer simulation of social phenomena, UCL
Press.

Gilbert, N. & Troitzsch, K. G. (1999), Simulation for the social scientist, Open
University Press.

Guarino, N. (1998), Formal ontology and information systems, in N. Guarino, ed.,
‘Formal Ontology in Information Systems (Proceedings of FOIS’98, Trento,
Italy, 6-8 June, 1998)’, IOS Press, Amsterdam, pp. 3–15.

Guttag, J., Horowitz, E. & Musser, D. (1978), The design of data type specifications,
in R. Yeh, ed., ‘Current Trends in Programming Methodology’, Vol. vol. 4: Data
Structuring, Prentice Hall, pp. 60–79.

Horebeek, I. V. & Levi, J. (1989), Algebraic Specification in Software Engineering,
Springer-Verlag.

Hudak, P., Peterson, J. & Fasel, J. H. (1997), ‘A gentle introduction to Haskell’.

Jones, M. P. & Peterson, J. C. (1999), ‘Hugs 98: A functional programming system
based on haskell 98, users manual’.

BIBLIOGRAPHY 165

Kanger, H. (1981), Human rights and their realization, Technical Report 1981:1,
Department of Philosphy Uppsala.

Kanger, S. & Kanger, H. (1966), ‘Rights and parliamentarism’, Theoria 32, 85–115.

Krejci, H. (1995), Privatrecht, 3. edn, Manzsche Verlags- und
Universiätsbuchhandlung, Vienna.

Levesque, H., Reiter, R., Lesperance, Y., Lin, F. & Scherl, R. (1996), ‘GOLOG: A
logic programming language for dynamic domains’, Journal of Logic
Programming, Special Issue on Reasoning about Action and Change.

Liskov, B. & Guttag, J. (1986), Abstraction and Specification in Program
Development, The MIT Electrical Engineering and Computer Science Series,
The MIT Press, Cambridge, Mass.

Liskov, B. & Zilles, S. (1978), An introduction to formal specifications of data
abstractions, in R. Yeh, ed., ‘Current Trends in Programming Methodology’,
Vol. I, Prentice-Hall, Englewood Cliffs, N.J., pp. 1 – 33.

Loeckx, J., Ehrlich, H.-D. & Wolf, M. (1996), Specification of Abstract Data Types,
John Wiley and Sons, B.G. Teubner, Chichester, New York, Brisbane, Toronto,
Singapore, Stuttgart, Leipzig.

Maes, P. (1994), ‘Agents that reduce work and information overload’,
Communications of the ACM 37(7), 30–40.

Marent, K.-H. & Preisl, G. (1994), Grundbuchsrecht, Linde Verlag, Wien.

McCarthy, J. & Hayes, P. J. (1969), Some philosophical problems from the
standpoint of artificial intelligence, in B. Melzer & D. Michie, eds, ‘Machine
Intelligence 4’, Edinburg University Press, Edinburgh, pp. 463–502.

Meyer, B. (1988), Object-oriented Software Construction, Prentice Hall International.

Minsky, M. (1985), The Society of Mind, Simon & Schuster, New York.

Moulin, B. & Chaib-Draa, B. (1996), An overview of distributed artificial intelligence,
in G. O’Hare & N. Jennings, eds, ‘Foundations of Distributed Artificial
Intelligence’, John Wiley and Sons.

Navratil, G. (2001), Die Formalisierung von Gesetzen, Ph.D thesis, Technical
University Vienna.

North, D. C. (1997), Institutions, Institutional Change and Economic Performance,
The Political Economy of Institutions and Decisions, Cambridge University
Press, Cambridge.

Nwana, H. & Ndumu, D. (1996), ‘An introduction to agent technology’, BT
Technology Journal.

Nwana, H. S. & Ndumu, D. T. (1999), ‘A perspective on software agents research’,
The Knowledge Engineering Review.

BIBLIOGRAPHY 166

O’Hare, G. & Jennnings, N., eds (1996), Foundations of Distributed Artificial
Intelligence, Sixth-Generation Computer Technology Series, John Wiley and
Sons, Inc.

Petta, P. (2000), ‘Software agents’.
http://www.ai.univie.ac.at/ paolo/lva/vu-sa2000/.

Peuquet, D., Smith, B. & Brogaard, B. (1999), The ontology of fields: Report of the
specialist meeting held under the auspices of the Varenius project, Technical
report, NCGIA.

Puppe, F. (1991), Einführung in Expertensysteme, Springer-Verlag.

Raubal, M. (2001), Agent-Based Simulation of Human Wayfinding in Buildings,
Ph.D. thesis, Technical University Vienna.

Reiter, R. (1991), The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression, in V. Lifschitz, ed.,
‘Artificial Intelligence and Mathematical Theory of Computation: Papers in
Honor of John McCarthy’, Academic Press, San Diego, pp. 359–380.

Russell, S. & Norvig, P. (1995), Artificial Intelligence- A modern Approach, Prentice
Hall International, Inc.

Sannella, D. (1997), ‘Essential concepts of algebraic specification and program
development’, Formal Aspects of Computing 9, 229–269.

Schröder, J. (1993), Verteilte künstliche Intelligenz, Methoden und Anwendungen, BI
Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zrich.

Searle, J. (1995), The Construction of Social Reality, The Free Press, New York.

Searle, J. R. (1969), Speech Acts: An Essay in the Philosophy of Language,
Cambridge University Press, Cambridge.

Shannon, C. & Weaver, W. (1948), The mathematical theory of communication,
University of Illinois Press.

Shapiro, S., Lesperance, Y. & Levesque, H. (1997), Specifying communicative
multi-agent systems with congolog, in ‘Working Notes of the AAAI Fall 1997
Symposium on Communicative Action in Humans and Machines’, AAAI Press,
pp. 75–82.

Shoham, Y. (1993), ‘Agent-oriented programming’, Journal of Artificial Intelligence
60(1), 51–92.

Smith, B. (1994), Fiat objects, in N. Guarino, L. Vieu & S. Pribbenow, eds, ‘Parts
and Wholes: Conceptual Part-Whole Relations and Formal Mereology, 11th
European Conference on Artificial Intelligence’, Amsterdam.

Smith, B. (1995), On drawing lines on a map, in A. Frank & W. Kuhn, eds, ‘Spatial
Information Theory-A Theoretical Basis for GIS’, Vol. 988 of Lecture Notes in
Computer Science, Springer, Berlin-Heidelberg-New York, pp. 475–484.

BIBLIOGRAPHY 167

Smith, B. (to appear), Ontology: Philosophical and computational, in L. Floridi, ed.,
‘The Blackwell Guide to the Philosophy of Computing and Information’,
Blackwell, Oxford.

Smith, B. & Searle, J. (2001), ‘The construction of social reality: An exchange’,
American Journal of Economics and Sociology.

Smith, B. & Zaibert, L. (to appear), ‘The metaphysics of real estate’, Topoi.

Stubkjaer, E. (2000), Information communities: A case study in the ontology on real
estate, in B. Brogaard, ed., ‘23rd International Wittgenstein Symposium’,
Vol. 8, Austrian L. Wittgenstein Society, Kirchberg am Wechsel, pp. 159–166.

Stubkjaer, E. (2001), Spatial-socio-economic units and societal needs - danish
experiences in a theoretical context, in A. U. Frank, J. Raper & J.-P. Cheylan,
eds, ‘Life and Motion of Socio-Economic Units’, Taylor & Francis, London.

Thompson, S. (1996), The Craft of Functional Programming, Addison-Wesley.

Twaroch, C. (2000), Organisation des Katasters: Ziele, Grundsätze und Praxis,
Vol. 14 of GeoInfo Series, Department of Geoinformation, Vienna.

Weiss, G. (1999), Multiagent Systems, A Modern Approach to Distributed Artificial
Intelligence, The MIT Press.

Wooldridge, M. (1992), The logical modelling of computational multi-agent systems,
Ph.D thesis, University of Manchester.

Wooldridge, M. (1997), ‘Agent-based software engineering’, IEEE Proceedings on
Software Engineering 144(1), 26–37.

Wooldridge, M. (1999), Intelligent agents, in G. Weiss, ed., ‘Multiagent Systems, A
Modern Approach to Distributed Artificial Intelligence’, The MIT Press.

Wooldridge, M. & Jennings, N. R. (1995), ‘Intelligent agents: Theory and practice’,
Knowledge Engineering Review.

Zaibert, L. (1999), ‘Real estate as institutional fact: A philosophy of everyday
objects’, American Journal of Sociology and Economics 58, 273–284.

Appendix A

Listings of source code

A.1 Basic definitions
−−−
−− basics.hs
−− basic types and functions
−− Steffen Bittner / 28.09.00
−−−

module Basics where

type AgentID = String
type LandID = String
type MessageID = String
type WorldState = Int

type OpTime = Int

nodub :: Eq t ⇒ [t] → [t]
nodub [] = []
nodub (a:x) = a: nodub (filter (a/=) x)

−−exchange costs, monitoring costs , measurement c, enforcement c.
type Cost = Int
data CostData = CostData Cost Cost Cost Cost deriving (Show,Eq)

fst3 :: (a,b,c) → a
fst3 (a,b,c) = a
snd3 :: (a,b,c) → b
snd3 (a,b,c) = b
thrd :: (a,b,c) → c
thrd (a,b,c) = c

−−−
−− IDs.hs
−− operations for objects identifiers
−−
−− Steffen Bittner / 14.02.01
−−−

module IDs where

import Worlddata
import Agentdata
import Landdata
import Statusdata
import Message
import Basics

class MyIDs myid obj where
equalsID :: myid → obj → Bool
nequalsID :: myid → obj → Bool
existsObj :: myid → [obj] → Bool
getObjbyID :: [obj] → myid → obj
getObjID :: obj → myid

nequalsID i o = not (equalsID i o)
existsObj i ilist = not (null (filter (equalsID i) ilist))

getObjbyID ol i = ob where
olist = filter (equalsID i) ol
ob = if (length olist > 0) then (head olist) else error ”Obj not found in getObjbyID”

instance MyIDs AgentID Agent where
equalsID aid (Agent aid ’ p i a t) = aid == aid’
getObjID (Agent aid p i a t) = aid

instance MyIDs LandID Land where
equalsID lid (Land lid ’ user) = lid == lid’
getObjID (Land lid user) = lid

168

APPENDIX A. LISTINGS OF SOURCE CODE 169

instance MyIDs AgentID PhyPercept where
equalsID aid (LandUse aid1 aid2 lid) = aid == aid1

A.2 The world
−−−
−− worlddata.hs
−− the world data
−− Steffen Bittner / 19.10.00

−−−

module Worlddata where

import Basics
import Agentdata
import Landdata
import Message

data World = World [Agent] [Land] WorldState deriving (Show)

−−−
−− world.hs
−− operations on world data
−− Steffen Bittner / 28.09.00
−−−

module World where

import Basics
import Worlddata
import Worldtech
import Agent
import Agentdata
import Agenttech
import Land
import Message
import Extcosts
import Intcosts

−−−

class Worlds w where
incWS :: w → w
performActs :: w → w
sendEnvReacts :: w → w
sendMsgs :: w → w
doAgts :: w → w
runEnv :: w → w
doWorld :: [w] → Int → [w]

doWorld whist count = if (count > 0) then
doWorld (whist++[w’]) (count−1) else whist where
w’= runEnv (last whist)

runEnv = incWS. doAgts. performActs. sendEnvReacts. sendMsgs

instance Worlds World where

sendMsgs (World agents lands ws) = (World agents’ lands ws) where
agents ’ = fillInboxes agents msgs
msgs = concat msgs’ where

msgs’ = map getActionMsgs agents

performActs (World agents lands ws) = (World agents’ lands ’ ws) where

agents ’ = emptyActions agents
lands ’ = updateLandsByActions alist lands
alist = concat alistlist
alistlist = map getActionActs agents

sendEnvReacts (World agents lands ws) = (World agents’ lands ws) where
agents ’ = sendReactions agents reactions
reactions = genReactions lands alist
alist = concat alistlist
alistlist = map getActionActs agents

doAgts (World agents lands ws) = (World agents’ lands ws) where
agents ’ = map genExtCosts agents2
agents2 = map (doAgtL ws) agents1
agents1 = map (initAgentCost) agents

incWS (World agents lands ws) = (World agents lands (ws+1))

−−−
−− worldtech.hs
−− technical operations on worlddata
−− Steffen Bittner / 19.10.00
−− history:
−−
−−−

APPENDIX A. LISTINGS OF SOURCE CODE 170

module Worldtech where

import Basics
import Worlddata
import Agent
import Agentdata
import Agenttech
import Landdata
import Message
import IDs

−−−

class Worldtech w ag l | w → ag, w → l where

startWorld :: w
getAgents :: w → [ag]
addAgent :: w → ag → w
addLand :: w → l → w

instance Worldtech World Agent Land where

startWorld = World [] [] 0

getAgents (World a l ws) = a

addAgent (World agents l ws) (Agent aid percepts intstate actions t)
| existsObj aid agents = error ”Agent already exists”
| otherwise = (World agents’ l ws)
where

agents ’ = (Agent aid percepts intstate actions t): agents

addLand (World a lands ws) (Land lid aid)
| existsObj lid lands = error ”Land already exists”
| otherwise = (World a lands’ ws)
where

lands ’ = (Land lid aid): lands

A.3 The agent
−−−
−− agentdata.hs
−− the agent data
−− Steffen Bittner / 19.10.00
−−−

module Agentdata where

import Basics
import Statusdata
import Message
import Landdata
−−−

data Agent = Agent AgentID [Percept] IntState [Act] CostData
deriving (Eq,Show)

data PhyPercept = LandUse AgentID AgentID LandID | NoPhyPercept
deriving (Eq,Show)

type EnvReaction = PhyPercept −− physical reactions of the environment are provided as percepts to the agents

data IntState = IntState [Status] [Duty] [Objective] deriving (Eq,Show)

−− percepts can be physical percepts or communication percepts (messages)
data Percept = PPercept PhyPercept | CPercept Message deriving (Eq,Show)

−− actions can be physical or communication actions
data Act = PAct Action | CAct Message deriving (Eq,Show)

−−−
−−−
−− agent.hs
−− operations on agent data
−− Steffen Bittner / 28.09.00
−−−

module Agent where

import Basics
import Agentdata
import Actpercepts

import Statusdata
import Statustech
import Construles

APPENDIX A. LISTINGS OF SOURCE CODE 171

import Actduties
import Actobjectives
import Message
import Landdata
import Phypercepts

class UpdStateInMsgs aid ws p i where
updRegMsgs :: aid → ws → [p] → i → i
updEvtInMsgs :: aid → ws → [p] → i → i
updSubjObjInMsgs :: aid → ws → [p] → i → i

instance UpdStateInMsgs AgentID WorldState Percept IntState where

updRegMsgs aid ws percepts (IntState slist d o) =
if (regAgName == aid) then (IntState slist d o) else (IntState slist ’ d o) where

−− the registry agents does not evalutate info from itself
regAgName = getRegAgName slist

−− collect all messages from the registry agent
slist ’ = nodub status1
status1 = slist ++ sl’
sl ’ = filter (NoStatus /=) sl1
sl1 = map (createStatusMsg ws) inbox’

inbox ’ = fst inboxlistlist
inboxlistlist = span (isRegAgInfo regAgName) inbox

inbox = getMessagesfromPercepts percepts
isRegAgInfo rname (Message startid z c mtype rmessage) =

(rname==startid && mtype==Answer Query)

updEvtInMsgs aid ws percepts (IntState slist d o) = (IntState slist ’ d o) where

slist ’ = filterdubBeliefs slist3
slist3 = slist1 ++ slist
slist1 = filter (NoStatus /=) slist2
slist2 = map (updStateEvtMsg ws slist) inbox’

inbox ’ = snd inboxlistlist
inboxlistlist = span (isRegAgInfo regAgName) inbox

inbox = getMessagesfromPercepts percepts
isRegAgInfo rname (Message startid z c mtype rmessage) =

(rname==startid && mtype==Answer Query)
regAgName = getRegAgName slist

updSubjObjInMsgs aid ws percepts (IntState slist duty objectives) = (IntState slist ’ duty ’ objectives ’) where

slist ’ = filterdubBeliefs slist4
slist4 = slist1 ++ slist
duty ’ = duty ++ duty2
slist1 = filter (NoStatus /=) slist2
slist2 = concat (map fst3 slist3)
objectives ’ = objectives ++ objective2
objective2 = filter (NoObjective /=) objective1
objective1 = concat (map thrd slist3)

duty2 = filter (NoDuty /=) duty1
duty1 = concat (map snd3 slist3)
slist3 = map (updSubjObjMsg ws slist True) inbox’
inbox ’ = snd inboxlistlist
inboxlistlist = span (isRegAgInfo regAgName) inbox

inbox = getMessagesfromPercepts percepts
isRegAgInfo rname (Message startid z c mtype rmessage) =

(rname==startid && mtype==Answer Query)
regAgName = getRegAgName slist

class UpdStateOutMsgs ws a i where
updEvtOutMsgs :: ws → [a] → i → i
updSubjObjOutMsgs :: ws → [a] → i → i

instance UpdStateOutMsgs WorldState Act IntState where

updEvtOutMsgs ws actions (IntState slist d o) = (IntState slist ’ d o) where

slist ’ = filterdubBeliefs slist3
slist3 = slist1 ++ slist
slist1 = filter (NoStatus /=) slist2
slist2 = map (updStateEvtMsg ws slist) outbox

outbox = getMessagesfromActions actions

updSubjObjOutMsgs ws actions (IntState slist d o) = (IntState slist ’ d o) where

slist ’ = filterdubBeliefs slist4
slist4 = slist1 ++ slist
slist1 = filter (NoStatus /=) slist2
slist2 = concat (map fst3 slist3)

slist3 = map (updSubjObjMsg ws slist False) outbox
outbox = getMessagesfromActions actions

class (UpdStateInMsgs aid ws p i , UpdStateOutMsgs ws a i) ⇒ MyAgentInternals aid ws p i a | i→ aid , i→ws, i → p , i → a where

APPENDIX A. LISTINGS OF SOURCE CODE 172

filterState :: i → ws → i
actDuties :: aid → ws → i → [a]
actObjectives :: aid → ws → i → [a]

updStatePhy :: aid → ws → [p] → i → i
updStateInMessages :: aid → ws → [p] → i → i
updStateOutMessages :: ws → [a] → i → i

updStateInMessages aid ws p = updSubjObjInMsgs aid ws p. updEvtInMsgs aid ws p. updRegMsgs aid ws p

updStateOutMessages ws a = updSubjObjOutMsgs ws a . updEvtOutMsgs ws a

instance MyAgentInternals AgentID WorldState Percept IntState Act where

filterState (IntState slist duties objectives) ws = (IntState slist duties ’ objectives ’) where
duties ’ = filter (isCurrentDuty ws) d1
d1 = filter (NoDuty /=) duties
objectives ’ = filter (isCurrentObjective ws) objectives1
objectives1 = filter (NoObjective /=) objectives

actDuties aid ws (IntState slist duties objectives) = erglist where
erglist = concat (map (doCurrentDuty slist aid ws) duties)

actObjectives aid ws (IntState slist duties objectives) = erglist where
erglist = concat (map (doObjective slist aid ws) objectives)

updStatePhy aid ws percepts (IntState slist duties objectives) = (IntState slist duties objectives ’) where
objectives ’ = objectives ++ updStatePhyPercepts slist aid ws percepts ’
percepts ’ = map getPhyPercept (filter isPhyPercept percepts)

class MyAgentInternals aid ws p i a ⇒ AgentInternals aid ws p i a where

updStatePercepts :: aid → ws → [p] → i → i

selActs :: aid → ws → i → [a]

updStateActions :: ws → [a] → i → i

decision :: aid → ws → [p] → i → ([a], i)

decision aid ws p i =
(selActs aid ws (updStatePercepts aid ws p i),

updStateActions ws (selActs aid ws (updStatePercepts aid ws p i)) (updStatePercepts aid ws p i))

updStatePercepts aid ws p = updStateInMessages aid ws p. updStatePhy aid ws p

selActs aid ws i = (actDuties aid ws i) ++ (actObjectives aid ws i)
updStateActions = updStateOutMessages

instance AgentInternals AgentID WorldState Percept IntState Act

class AbsAgent a aid ws | a → ws, a → aid where
newAgt :: aid → a
doAgt :: ws → a → a

instance AbsAgent Agent AgentID WorldState where
newAgt aid = Agent aid [] (IntState [] [] []) [] (CostData 0 0 0 0)

doAgt ws (Agent aid percepts intstate actions cost) = (Agent aid percepts intstate ’ actions ’ cost) where
(actions ’, intstate ’) = decision aid ws percepts intstate2
intstate2 = filterState intstate ws

−−−
−− agenttech.hs
−− technical operations on the agent data
−− Steffen Bittner / 19.10.00
−−−

module Agenttech where

import Basics
import Agentdata
import Actpercepts
import Statusdata
import Message
import Landdata
import IDs
−−−

class Agenttech a where
setInbox :: a → [Message] → a

setActions :: a → [Act] → a
getActionMsgs :: a → [Message]
getActionActs :: a → [Action]

APPENDIX A. LISTINGS OF SOURCE CODE 173

fillInboxes :: [a] → [Message] → [a]
emptyActions :: [a] → [a]

addMessageActions :: a → Message → a
addBelief :: a → Status → a
addObjective :: a → Objective → a
initAgentCost :: a → a
sendReactions :: [a] → [EnvReaction] → [a]
sendReaction :: [EnvReaction] → a → a

instance Agenttech Agent where

setInbox (Agent aid percepts intstate actions t) msgs =
(Agent aid percepts ’ intstate actions t) where

percepts ’ = genCPercepts mymsgs
mymsgs = getMessagesByReceiverID aid msgs

getActionMsgs (Agent aid percepts intstate actions t) = actmsgs where
actmsgs = getMessagesfromActions actions

getActionActs (Agent aid percepts intstate actions t) = actacts where
actacts = getActionsfromActs actions

setActions (Agent aid percepts intstate actions t) actions ’ =
(Agent aid percepts intstate actions ’ t)

fillInboxes agents msgs = map (flip setInbox msgs) agents

emptyActions agents = map (flip setActions []) agents

addMessageActions (Agent aid percepts intstate actions t) m =
(Agent aid percepts intstate (actions++[(CAct m)]) t)

addBelief (Agent aid percepts (IntState st duty objectives) actions t) bel =
(Agent aid percepts (IntState (bel : st) duty objectives) actions t)

addObjective (Agent aid percepts (IntState st duty objectives) actions t) objective =
(Agent aid percepts (IntState st duty (objective : objectives)) actions t)

initAgentCost (Agent aid percepts intstate actions t) =
(Agent aid percepts intstate actions (CostData 0 0 0 0))

sendReactions agents reactions = map (sendReaction reactions) agents

sendReaction reactions (Agent aid percepts intstate actions t) =
(Agent aid percepts ’ intstate actions t) where

percepts ’ = percepts ++ genPPercepts (filter (equalsID aid) reactions)

A.4 The internal state of the agent
−−−
−− statusdata.hs
−− datatypes for status , goals , duties
−−
−− Steffen Bittner / 18.10.00
−−−

module Statusdata where

import Basics
import Message

data Duty = AskRegAgent Message WorldState
| AnswerQuery Message WorldState
| AnswerApplication Message WorldState
| DoApplication Message WorldState
| DoJudgement Message WorldState
| DoServeComplaint Message WorldState
| DoAnswerComplaint Message WorldState
| DoAbandonLand Message WorldState
| DoExecution Message WorldState
| NoDuty deriving (Show,Eq)

data Objective = SellParcel LandID AgentID WorldState
| AnswerOffer Message WorldState
| UseLand LandID WorldState
| DoComplaint LandID AgentID WorldState
| ApplyExecution LandID AgentID WorldState
| NoObjective deriving (Eq,Show)

data Status = Owner AgentID LandID Message WorldState
| Legal person AgentID WorldState
| Parcel LandID WorldState
| RegAg AgentID WorldState
| CourtAg AgentID WorldState
| SheriffAg AgentID WorldState
| Offeror AgentID Message WorldState
| Transferee AgentID Message WorldState
| Buyer AgentID Message WorldState
| Seller AgentID Message WorldState
| Applicant AgentID Message WorldState
| Application receiver AgentID Message WorldState
| Query sender AgentID Message WorldState

APPENDIX A. LISTINGS OF SOURCE CODE 174

| Query receiver AgentID Message WorldState
| Plaintiff AgentID Message WorldState
| Defendant AgentID Message WorldState
| Judge AgentID Message WorldState
| Loser Complaint AgentID Message WorldState
| JudgementExecutor AgentID Message WorldState
| Applicant Execution AgentID Message WorldState
| Querying Message WorldState
| Offering Message WorldState
| Contracting Message WorldState
| Applying Message WorldState
| Transferring Message WorldState
| Suing Message WorldState
| ServingComplaint Message WorldState
| PronouncingJudgement Message WorldState
| ExecutingJudgement Message WorldState
| Execution Title AgentID AgentID LandID Message WorldState
| NoStatus deriving (Show, Eq)

−−−
−− construles.hs
−− implementation of constitutive rules
−−
−− Steffen Bittner / 01.03.01
−−−

module Construles where

import Basics
import Statusdata
import Statustech
import Message
import Landdata
import IDs

class Construles ws m s d o | ws → m, ws → s , ws → d , ws → o where
createStatusMsg :: ws → m → s
updStateEvtMsg :: ws → [s] → m → s
updSubjObjMsg :: ws → [s] → Bool → m → ([s],[d],[o])

instance Construles WorldState Message Status Duty Objective where

createStatusMsg ws (Message s z (Query Owner aID lID) Answer Query rmsg) =
(Owner aID lID NoMessage ws)

createStatusMsg ws = NoStatus

−− constitutive rules for events
updStateEvtMsg ws sl (Message s z (Sell seller buyer land) Offer rmsg) =

if ((isLegalPerson sl seller) && (isLegalPerson sl buyer) && (isParcel sl land))
then (Offering (Message s z (Sell seller buyer land) Offer rmsg) ws) else NoStatus

updStateEvtMsg ws sl (Message s z (Query Owner aid land) Query rmsg) =
if ((isRegAgent sl z) && (isLegalPerson sl s)) then

(Querying (Message s z (Query Owner aid land) Query rmsg) ws) else NoStatus

updStateEvtMsg ws sl (Message s z (Query Owner aid land) Answer Query rmsg) =
NoStatus

updStateEvtMsg ws sl (Message s z (Sell seller buyer land) Accept Offer rmsg) =
if ((isOfferor sl z) && (isTransferee sl s)) then

(Contracting (Message s z (Sell seller buyer land) Accept Offer rmsg) ws)
else NoStatus

updStateEvtMsg ws sl (Message s z (Sell seller buyer land) Reject Offer rmsg) =
NoStatus

updStateEvtMsg ws sl (Message s z (Sell seller buyer land) Application rmsg) =
if ((isRegAgent sl z) && (isLegalPerson sl s)) then

(Applying (Message s z (Sell seller buyer land) Application rmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Sell seller buyer land) Accept Application rmsg) =

if ((isRegAgent sl s) && (isLegalPerson sl z)) then
(Transferring (Message s z (Sell seller buyer land) Accept Application rmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Sell seller buyer land) Reject Application rmsg) = NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) =

if ((isCourtAgent sl z) && (isLegalPerson sl s) && (s==plaintiff)) then
(Suing (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) =

if ((isCourtAgent sl s) && (isLegalPerson sl z) && (z==defendant)) then
(ServingComplaint (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Answer Complaint proofmsg) =

NoStatus

APPENDIX A. LISTINGS OF SOURCE CODE 175

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Judgement proofmsg) =

if ((isCourtAgent sl s) && (isLegalPerson sl z) &&
((isPlaintiff sl z) || (isDefendant sl z))) then

(PronouncingJudgement (Message s z (Complaint plaintiff defendant land) Judgement proofmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Reject Complaint proofmsg) =

NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) =

if ((isSheriffAgent sl z) && (isLegalPerson sl s) && (s==plaintiff)) then
(ExecutingJudgement (Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) ws)
else NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Accept Execution proofmsg) =

NoStatus

updStateEvtMsg ws sl
(Message s z (Complaint plaintiff defendant land) Reject Execution proofmsg) =

NoStatus

updStateEvtMsg = error ”No constitutive rule found in updStateEvtMsg”

−− constitutive rules for subjects /objects
updSubjObjMsg ws sl inflag

(Message s z (Sell seller buyer land) Offer rmsg) =
if (isOffering sl (Message s z (Sell seller buyer land) Offer rmsg)) then sdlist

else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Offeror seller (Message s z (Sell seller buyer land) Offer rmsg) ws)] ++
[(Transferee buyer (Message s z (Sell seller buyer land) Offer rmsg) ws)], duty , objective)

duty = if (inflag==True) then [(AskRegAgent (Message s z (Sell seller buyer land) Offer rmsg) ws)] else
[NoDuty]

objective = if (inflag==True) then [(AnswerOffer (Message s z (Sell seller buyer land) Offer rmsg) (ws+2))] else
[NoObjective]

updSubjObjMsg ws sl inflag
(Message s z (Query Owner aid land) Query rmsg) =
if (isQuerying sl (Message s z (Query Owner aid land) Query rmsg)) then sdlist

else ([NoStatus],[NoDuty],[NoObjective])
where

sdlist = ([(Query sender s (Message s z (Query Owner aid land) Query rmsg) ws)] ++
[(Query receiver z (Message s z (Query Owner aid land) Query rmsg) ws)],

duty , [NoObjective])
duty = if (inflag==True)

then [AnswerQuery (Message s z (Query Owner aid land) Query rmsg) ws] else [NoDuty]

updSubjObjMsg ws sl inflag
(Message s z (Query Owner aid land) Answer Query rmsg) =

([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Sell seller buyer land) Accept Offer rmsg) =

if (isContracting sl (Message s z (Sell seller buyer land) Accept Offer rmsg)) then sdlist
else ([NoStatus],[NoDuty],[NoObjective])

where sdlist = ([(Seller seller (Message s z (Sell seller buyer land) Accept Offer rmsg) ws),
(Buyer buyer (Message s z (Sell seller buyer land) Accept Offer rmsg) ws)],duty , [NoObjective])

duty = if (inflag==True) then
[DoApplication (Message s z (Sell seller buyer land) Accept Offer rmsg) ws] else [NoDuty]

updSubjObjMsg ws sl inflag
(Message s z (Sell seller buyer land) Reject Offer rmsg) =

([NoStatus],[NoDuty], [NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Sell seller buyer land) Application rmsg) =

if (isApplying sl (Message s z (Sell seller buyer land) Application rmsg)) then sdlist
else([NoStatus],[NoDuty], [NoObjective])

where sdlist = ([(Applicant s (Message s z (Sell seller buyer land) Accept Offer rmsg) ws),
(Application receiver z (Message s z (Sell seller buyer land) Accept Offer rmsg) ws)],duty , [NoObjective])

duty = if (inflag==True) then
[AnswerApplication (Message s z (Sell seller buyer land) Application rmsg) ws] else [NoDuty]

updSubjObjMsg ws sl inflag
(Message s z (Sell seller buyer land) Accept Application rmsg) =

if (isTransferring sl (Message s z (Sell seller buyer land) Accept Application rmsg)) then sdlist
else ([NoStatus],[NoDuty], [NoObjective])

where sdlist = ([(Owner buyer land (Message s z (Sell seller buyer land) Accept Application rmsg) ws)],
[NoDuty], [NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Sell seller buyer land) Reject Application rmsg) =

([NoStatus],[NoDuty], [NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) =

if (isSuing sl (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg)) then sdlist
else ([NoStatus],[NoDuty], [NoObjective])

where sdlist = ([(Defendant defendant (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) ws),
(Plaintiff plaintiff (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) ws),

(Judge z (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) ws)], duty , [NoObjective])
duty = if (inflag==True) then

[(DoServeComplaint (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) ws),
(DoJudgement (Message s z (Complaint plaintiff defendant land) Legal Action proofmsg) (ws+2))] else [NoDuty]

updSubjObjMsg ws sl inflag

APPENDIX A. LISTINGS OF SOURCE CODE 176

(Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) =
if (isServingComplaint sl (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg)) then sdlist

else ([NoStatus],[NoDuty],[NoObjective])
where sdlist = if (inflag==True) then

([(Defendant defendant (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) ws),
(Plaintiff plaintiff (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) ws),

(Judge s (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) ws)],
[(DoAnswerComplaint (Message s z (Complaint plaintiff defendant land) Serve Complaint proofmsg) ws)],[NoObjective])
else

([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Answer Complaint proofmsg) =
([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Judgement proofmsg) =

if (isPronouncingJudgement sl (Message s z (Complaint plaintiff defendant land) Judgement proofmsg)) then sdlist
else ([NoStatus],[NoDuty],[NoObjective])

where sdlist = ([(Loser Complaint defendant (Message s z (Complaint plaintiff defendant land) Judgement proofmsg) ws),
(Execution Title plaintiff defendant land (Message s z (Complaint plaintiff defendant land) Judgement proofmsg)
ws)], duty ,[NoObjective])

duty = if ((isDefendant sl z) && (inflag==True)) then
[(DoAbandonLand (Message s z (Complaint plaintiff defendant land) Judgement proofmsg) ws)] else [NoDuty]

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Reject Complaint proofmsg) =

([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) =

if (isExecutingJudgement sl (Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg)) then sdlist
else ([NoStatus],[NoDuty],[NoObjective])

where sdlist = ([(Applicant Execution s (Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) ws),
(JudgementExecutor z (Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) ws)],

duty ,[NoObjective])
duty = if (inflag==True) then [DoExecution (Message s z (Complaint plaintiff defendant land) Apply Execution proofmsg) ws]

else [NoDuty]

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Accept Execution proofmsg) =

([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg ws sl inflag
(Message s z (Complaint plaintiff defendant land) Reject Execution proofmsg) =

([NoStatus],[NoDuty],[NoObjective])

updSubjObjMsg =
error ”No constitutive rule found in updSubjObjMsg”

−−−
−− actduties.hs
−− activities of the agent according to its duties
−−
−− Steffen Bittner / 01.03.01
−−−

module Actduties where

import Basics
import Statusdata
import Statustech
import Message
import Landdata
import IDs
import Agentdata

class Actduties s d aid ws m a | a → d , a → m, a → s , a → aid where

answerQuery :: [s] → aid → ws → m → [a]
askRegAgent :: [s] → aid → ws → m → [a]
doApplication :: [s] → aid → ws → m → [a]
answerApplication :: [s] → aid → ws → m → [a]
serveComplaint :: [s] → aid → ws → m → [a]
doJudgement :: [s] → aid → ws → m → [a]
answerComplaint :: [s] → aid → ws → m → [a]
abandonLand :: ws → m → [a]
doExecution :: [s] → aid → ws → m → [a]

doCurrentDuty :: [s] → aid → ws → d → [a]
doDuty :: [s] → aid → ws → d → [a]

instance Actduties Status Duty AgentID WorldState Message Act where

answerQuery slist aid ws msg = [(CAct answer)] where
answer = (Message aid goal (Query Owner ownerid land) Answer Query NoMessage)
goal = getSender msg
ownerid = getLastOwner slist land
land = getLandIDfromContent content
content = getContent msg

askRegAgent slist aid ws msg = [(CAct answer)] where
answer = (Message aid regag (Query Owner ””land) Query NoMessage)
land = getLandIDfromContent c
regag = getRegAgName slist
(Message seller g c t rmsg) = msg

APPENDIX A. LISTINGS OF SOURCE CODE 177

doApplication slist aid ws msg = [(CAct answer)] where
answer = (Message aid regag content Application NoMessage)
content = getContent msg
regag = getRegAgName slist

answerApplication slist aid ws msg = [(CAct answer1),(CAct answer2)] where
answer1 = (Message aid seller content msgtype NoMessage)
answer2 = (Message aid buyer content msgtype NoMessage)
msgtype = if (ownerid == seller) then Accept Application else Reject Application
ownerid = getLastOwner slist land
land = getLandIDfromContent content
buyer = getBuyerIDfromContent content
seller = getSellerIDfromContent content
content = getContent msg

serveComplaint slist aid ws msg = [(CAct erg)] where
erg = (Message aid defendant content Serve Complaint NoMessage)
defendant = getDefendantIDfromContent content
(Message plaintiff courtag content msgtype rmsg) = msg

doJudgement slist aid ws msg = [(CAct erg1),(CAct erg2)] where
erg1 = if (isOwnershipTransfer proofmessage plaintiff land) then

(Message aid defendant content Judgement NoMessage) else
(Message aid defendant content Reject Complaint NoMessage)

erg2 = if (isOwnershipTransfer proofmessage plaintiff land) then
(Message aid plaintiff content Judgement NoMessage) else

(Message aid plaintiff content Reject Complaint NoMessage)
defendant = getDefendantIDfromContent content
land = getLandIDfromContent content

(Message plaintiff courtag content msgtype proofmessage) = msg

answerComplaint slist aid ws msg = [(CAct erg)] where
erg = (Message aid courtag content Answer Complaint NoMessage)
courtag = getCourtAgName slist
content = getContent msg

abandonLand ws msg = [(PAct erg)] where
erg = (ActAbandonLand land)
land = getLandIDfromContent content
content = getContent msg

doExecution slist aid ws msg = [(CAct msg’),(PAct act)] where
act = if (isExecutionTitle proofmsg plain def land) then (ActEvictLand land) else NoAction
msg’ = if (isExecutionTitle proofmsg plain def land) then msg1 else msg2
msg1 = (Message aid applicant content Accept Execution NoMessage)
msg2 = (Message aid applicant content Reject Execution NoMessage)
def = getDefendantIDfromContent content
plain = getPlaintiffIDfromContent content
land = getLandIDfromContent content
(Message applicant sheriff content msgtype proofmsg) = msg

doCurrentDuty sl aid ws duty =
if (ws == (getDutyWS duty)) then doDuty sl aid ws duty else []

doDuty sl aid ws (AnswerQuery mid ws’) = (answerQuery sl aid ws mid)
−− doDuty sl hist aid ws (AnswerOffer mid ws’) = (answerOffer sl hist aid ws mid)

doDuty sl aid ws (AskRegAgent mid ws’) = (askRegAgent sl aid ws mid)
doDuty sl aid ws (DoApplication mid ws’) = (doApplication sl aid ws mid)
doDuty sl aid ws (AnswerApplication mid ws’) = (answerApplication sl aid ws mid)
doDuty sl aid ws (DoServeComplaint mid ws’) = (serveComplaint sl aid ws mid)
doDuty sl aid ws (DoJudgement mid ws’) = (doJudgement sl aid ws mid)
doDuty sl aid ws (DoAnswerComplaint mid ws’) = (answerComplaint sl aid ws mid)
doDuty sl aid ws (DoAbandonLand mid ws’) = (abandonLand ws mid)
doDuty sl aid ws (DoExecution mid ws’) = (doExecution sl aid ws mid)
doDuty NoDuty = error ”NoDuty in doDuty”
doDuty = error ”No case found in doDuty”

−−−
−− actobjectives .hs
−− activities of the agent according to its objectives
−−
−− Steffen Bittner / 01.03.01

module Actobjectives where

import Basics
import Statusdata
import Statustech
import Message
import Landdata
import Land
import IDs
import Agentdata

class Actobjectives s o aid lid ws m a | s → m, s → lid , s → o , s → ws where

doOffer :: [s] → aid → aid → lid → ws → [a]
answerOffer :: [s] → aid → ws → m → [a]

doComplaint :: [s] → aid → aid → ws → lid → [a]
doApplyExecution :: [s] → aid → aid → ws → lid → [a]
doActUseLand :: [s] → lid → aid → [a]
doObjective :: [s] → aid → ws → o → [a]

instance Actobjectives Status Objective AgentID LandID WorldState Message Act where

doOffer sl aid buyer land ws = [(CAct msg)] where

APPENDIX A. LISTINGS OF SOURCE CODE 178

msg = (Message aid buyer (Sell aid buyer land) Offer NoMessage)

answerOffer slist aid ws msg = [(CAct answer)] where
answer = if (ownerid == seller) then (Message aid seller c Accept Offer NoMessage) else

(Message aid seller c Reject Offer NoMessage)
ownerid = getOwnerNow slist land ws
land = getLandIDfromContent c
regag = getRegAgName slist
(Message seller g c t rmsg) = msg

doComplaint sl aid aid ’ ws land = [(CAct msg)] where
msg = (Message aid court (Complaint aid aid ’ land) Legal Action proof ’)
court = getCourtAgName sl
proof ’ = if (ai == aid) then proof else NoMessage −−reference to the proofmessage of ownership
(Owner ai li proof w) = getLastOwnerStatus sl land

doApplyExecution sl aid aid ’ ws land = [(CAct msg)] where
msg = (Message aid sheriff (Complaint aid aid ’ land) Apply Execution proof)
sheriff = getSheriffAgName sl
proof = getJudgementID sl aid aid ’ land −−reference to the proofmessage of the

−−execution title

doActUseLand slist land aid = [(PAct (ActUseLand land aid))]

doObjective sl aid ws (SellParcel land aid ’ ws ’) = erg where
erg = if (ws==ws’) then (doOffer sl aid aid’ land ws) else []

doObjective sl aid ws (AnswerOffer mid ws’) = erg where
erg = if (ws==ws’) then (answerOffer sl aid ws mid) else []

doObjective sl aid ws (DoComplaint land aid’ ws’) = erg where
erg = if (ws==ws’) then (doComplaint sl aid aid’ ws land) else []

doObjective sl aid ws (ApplyExecution land aid ’ ws ’) = erg where
erg = if (ws==ws’) then (doApplyExecution sl aid aid’ ws land) else []

doObjective sl aid ws (UseLand land ws’) = erg where
erg = if (ws /= ws’) then [] else doActUseLand sl land aid

doObjective NoObjective = error ”NoObjective in doObjective”
doObjective = error ”No case found in doObjective”

−−−
−− statustech.hs
−− contains ”technical” operations on status , objectives , duties ,
−−
−− Steffen Bittner / 18.10.00
−−−

module Statustech where

import Basics
import Statusdata
import IDs
import Message

class Statustech s where
equStatus :: s → s → Bool
filterdubBeliefs :: [s] → [s]

getRegAgName :: [s] → AgentID
getCourtAgName :: [s] → AgentID
getSheriffAgName :: [s] → AgentID
equAIDRegAg :: AgentID → s → Bool
equAIDLegalPerson :: AgentID → s → Bool
equLIDParcel :: LandID → s → Bool
equMIDOffering :: Message → s → Bool
equMIDQuerying :: Message → s → Bool
equAIDOfferor :: AgentID → s → Bool
equAIDTransferee :: AgentID → s → Bool
equAIDPlaintiff :: AgentID → s → Bool
equAIDDefendant :: AgentID → s → Bool
equMIDContracting :: Message → s → Bool
equMIDApplying :: Message → s → Bool
equMIDTransferring :: Message → s → Bool
equAIDCourtAg :: AgentID → s → Bool
equMIDSuing :: Message → s → Bool
equMIDServingComplaint :: Message → s → Bool
equMIDPronouncingJudgement :: Message → s → Bool
equAIDSheriffAg :: AgentID → s → Bool
equMIDExecutingJudgement :: Message → s → Bool
isRegAgent :: [s] → AgentID → Bool
isLegalPerson :: [s] → AgentID → Bool
isParcel :: [s] → LandID → Bool
isOffering :: [s] → Message → Bool
isQuerying :: [s] → Message → Bool
isOfferor :: [s] → AgentID → Bool
isTransferee :: [s] → AgentID → Bool
isPlaintiff :: [s] → AgentID → Bool

isDefendant :: [s] → AgentID → Bool
isContracting :: [s] → Message → Bool
isApplying :: [s] → Message → Bool
isTransferring :: [s] → Message → Bool
isCourtAgent :: [s] → AgentID → Bool
isSuing :: [s] → Message → Bool
isServingComplaint :: [s] → Message → Bool
isPronouncingJudgement :: [s] → Message → Bool

APPENDIX A. LISTINGS OF SOURCE CODE 179

isSheriffAgent :: [s] → AgentID → Bool
isExecutingJudgement :: [s] → Message → Bool
getLastOwner :: [s] → LandID → AgentID
getLastOwnerStatus :: [s] → LandID → s
getOwnerNow :: [s] → LandID → WorldState → AgentID
getJudgementID :: [s] → AgentID → AgentID → LandID → Message
hasExecutionTitle :: [s] → AgentID → AgentID → LandID → Bool

instance Statustech Status where

equStatus (Owner aid lid mid ws) (Owner aid’ lid ’ mid’ ws ’) =
((aid == aid’) && (lid == lid’) && (ws == ws’))

equStatus (Loser Complaint aid mid ws) (Loser Complaint aid’ mid’ ws ’) =
((aid == aid’) && (ws == ws’))

equStatus (Execution Title aid aid2 lid mid ws)
(Execution Title aid ’ aid2 ’ lid ’ mid’ ws ’) =

((aid == aid’) && (aid2 == aid2’) && (lid == lid’) && (ws == ws’))
equStatus = False

filterdubBeliefs [] = []
filterdubBeliefs (a:x) = a: (filterdubBeliefs (filter (nequStatus a) x))

where nequStatus x y = not (equStatus x y)

getRegAgName ((RegAg aid ws):rest) = aid
getRegAgName [] = error ”registry agent unknown to agent”
getRegAgName (:rest) = getRegAgName rest

getCourtAgName ((CourtAg aid ws):rest) = aid
getCourtAgName [] = error ”court agent unknown to agent”
getCourtAgName (:rest) = getCourtAgName rest

getSheriffAgName ((SheriffAg aid ws): rest) = aid
getSheriffAgName [] = error ”sheriff agent unknown to agent”
getSheriffAgName (: rest) = getSheriffAgName rest

equAIDRegAg aid’ (RegAg aid ws) = (aid == aid’)
equAIDRegAg = False

equAIDLegalPerson aid’ (Legal person aid ws) = (aid == aid’)
equAIDLegalPerson = False

equLIDParcel lid ’ (Parcel lid ws) = (lid == lid’)
equLIDParcel = False

equMIDOffering mid’ (Offering mid ws) = (mid == mid’)
equMIDOffering = False

equMIDQuerying mid’ (Querying mid ws) = (mid == mid’)
equMIDQuerying = False

equAIDOfferor aid’ (Offeror aid mid ws) = (aid == aid’)
equAIDOfferor = False

equAIDTransferee aid’ (Transferee aid mid ws) = (aid == aid’)
equAIDTransferee = False

equAIDPlaintiff aid ’ (Plaintiff aid mid ws) = (aid == aid’)
equAIDPlaintiff = False

equAIDDefendant aid’ (Defendant aid mid ws) = (aid == aid’)
equAIDDefendant = False

equMIDContracting mid’ (Contracting mid ws) = (mid == mid’)
equMIDContracting = False

equMIDApplying mid’ (Applying mid ws) = (mid == mid’)
equMIDApplying = False

equMIDTransferring mid’ (Transferring mid ws) = (mid == mid’)
equMIDTransferring = False

equAIDCourtAg aid’ (CourtAg aid ws) = (aid == aid’)
equAIDCourtAg = False

equMIDSuing mid’ (Suing mid ws) = (mid == mid’)
equMIDSuing = False

equMIDServingComplaint mid’ (ServingComplaint mid ws) = (mid == mid’)
equMIDServingComplaint = False

equMIDPronouncingJudgement mid’ (PronouncingJudgement mid ws) = (mid == mid’)
equMIDPronouncingJudgement = False

equAIDSheriffAg aid ’ (SheriffAg aid ws) = (aid == aid’)
equAIDSheriffAg = False

equMIDExecutingJudgement mid’ (ExecutingJudgement mid ws) = (mid == mid’)
equMIDExecutingJudgement = False

isRegAgent sl aid ’ = not (null (filter (equAIDRegAg aid’) sl))
isLegalPerson sl aid ’ = not (null (filter (equAIDLegalPerson aid’) sl))
isParcel sl lid ’ = not (null (filter (equLIDParcel lid ’) sl))
isOffering sl mid’ = not (null (filter (equMIDOffering mid’) sl))
isQuerying sl mid’ = not (null (filter (equMIDQuerying mid’) sl))
isOfferor sl aid ’ = not (null (filter (equAIDOfferor aid’) sl))
isTransferee sl aid ’ = not (null (filter (equAIDTransferee aid’) sl))
isPlaintiff sl aid ’ = not (null (filter (equAIDPlaintiff aid ’) sl))

isDefendant sl aid ’ = not (null (filter (equAIDDefendant aid’) sl))

APPENDIX A. LISTINGS OF SOURCE CODE 180

isContracting sl mid’ = not (null (filter (equMIDContracting mid’) sl))
isApplying sl mid’ = not (null (filter (equMIDApplying mid’) sl))
isTransferring sl mid’ = not (null (filter (equMIDTransferring mid’) sl))
isCourtAgent sl aid ’ = not (null (filter (equAIDCourtAg aid’) sl))
isSuing sl mid’ = not (null (filter (equMIDSuing mid’) sl))
isServingComplaint sl mid’ = not (null (filter (equMIDServingComplaint mid’) sl))
isPronouncingJudgement sl mid’ = not (null (filter (equMIDPronouncingJudgement mid’) sl))
isSheriffAgent sl aid ’ = not (null (filter (equAIDSheriffAg aid ’) sl))
isExecutingJudgement sl mid’ = not (null (filter (equMIDExecutingJudgement mid’) sl))

getLastOwnerStatus slist land = if (length slist3 <1) then
error ”Owner unknown in getLastOwnerStatus”else erg where
erg = last slist3
slist3 = qsortOwner slist2
slist2 = filter (isOwner land) slist
isOwner l (Owner aid lid rmsg ws) = lid == l
isOwner = False
−− quicksort for the last owner
qsortOwner [] = []
qsortOwner [(Owner aid lid rmsg ws)] = [(Owner aid lid rmsg ws)]
qsortOwner ((Owner aid lid rmsg ws): list) =

(qsortOwner left) ++ [(Owner aid lid rmsg ws)] ++ (qsortOwner right) where
left = filter (gr ws) list
right = filter (klgl ws) list
gr ws (Owner aid’ lid ’ rmsg’ ws ’) = ws > ws’
klgl ws (Owner aid1 lid2 rmsg2 ws3) = ws ≤ ws3

qsortOwner = error ”wrong status in qsortOwner”

getLastOwner slist land = name where
name = getO lowner
lowner = getLastOwnerStatus slist land
getO (Owner aid lid rmsg ws) = aid

getOwnerNow ((Owner aid lid rmsg ws):rest) land ws’ = if (lid == land && ws == ws’) then aid
else getOwnerNow rest land ws’

getOwnerNow [] land ws’ = ””
getOwnerNow (:rest) land ws’ = getOwnerNow rest land ws’

getJudgementID [] = NoMessage
getJudgementID ((Execution Title aid ’ luser ’ lid ’ msgid ws): rest) aid luser lid =

if (lid==lid’ && aid==aid’ && luser==luser’) then msgid
else (getJudgementID rest aid luser lid)

getJudgementID (:rest) aid luser lid = getJudgementID rest aid luser lid

hasExecutionTitle [] = False
hasExecutionTitle ((Execution Title aid ’ luser ’ lid ’ msgid ws): rest) aid luser lid =

if (lid==lid’ && aid==aid’ && luser==luser’) then True
else (hasExecutionTitle rest aid luser lid)

hasExecutionTitle (: rest) aid luser lid = hasExecutionTitle rest aid luser lid

class Dutytech d where
getDutyWS :: d → WorldState
isCurrentDuty :: WorldState → d → Bool

instance Dutytech Duty where

getDutyWS (AskRegAgent mid ws) = ws
getDutyWS (AnswerQuery mid ws) = ws
getDutyWS (AnswerApplication mid ws) = ws
getDutyWS (DoApplication mid ws) = ws
getDutyWS (DoServeComplaint mid ws) = ws
getDutyWS (DoJudgement mid ws) = ws
getDutyWS (DoAnswerComplaint mid ws) = ws
getDutyWS (DoAbandonLand mid ws) = ws
getDutyWS (DoExecution mid ws) = ws
getDutyWS NoDuty = error ”getDutyWS: No worldstate in NoDuty”
getDutyWS = error ”no case in getDutyWS”

isCurrentDuty ws1 duty = (getDutyWS duty) ≥ws1

class Objectivetech g where
getObjectiveWS :: g → WorldState
isCurrentObjective :: WorldState → g → Bool

instance Objectivetech Objective where
getObjectiveWS (AnswerOffer mid ws) = ws
getObjectiveWS (SellParcel l ai ws) = ws
getObjectiveWS (UseLand l ws) = ws
getObjectiveWS (ApplyExecution lid aid ws) = ws
getObjectiveWS (DoComplaint lid aid ws) = ws

getObjectiveWS NoObjective = error ”getObjectiveWS: No worldstate in NoObjective”
getObjectiveWS = error ”no case in getObjectiveWS”

isCurrentObjective ws1 objective = (getObjectiveWS objective) ≥ws1

A.5 Percepts, actions and messages
−−−
−− actpercepts.hs
−− operations on percepts and acts
−− Steffen Bittner / 19.10.00
−−−

module Actpercepts where

APPENDIX A. LISTINGS OF SOURCE CODE 181

import Agentdata

−−import Basics−
−−import Statusdata
import Message
import Landdata
−−−

class MyPercepts p msg phy | p → msg, p → phy where

isMessagePercept :: p → Bool
getMessagePercept :: p → msg
getMessagesfromPercepts :: [p] → [msg]
getPhyPerceptsfromPercepts :: [p] → [phy]
isPhyPercept :: p → Bool
getPhyPerceptPercept :: p → phy
getPhyPercept :: p → phy
genCPercept :: msg → p
genCPercepts :: [msg] → [p]
genPPercept :: phy → p
genPPercepts :: [phy] → [p]

instance MyPercepts Percept Message PhyPercept where

isMessagePercept (CPercept) = True
isMessagePercept = False

getMessagePercept (CPercept p) = p

getMessagesfromPercepts percepts = map (getMessagePercept) (filter isMessagePercept percepts)

isPhyPercept (PPercept) = True
isPhyPercept = False

getPhyPerceptPercept (PPercept p) = p

getPhyPerceptsfromPercepts percepts = map (getPhyPerceptPercept) (filter isPhyPercept percepts)

getPhyPercept (PPercept p) = p

genCPercept m = CPercept m

genCPercepts msgs = map genCPercept msgs

genPPercept m = PPercept m

genPPercepts perc = map genPPercept perc

class Acts a msg act | a → msg, a → act where
isMessageAction :: a → Bool
getMessageAction :: a → msg
getMessagesfromActions :: [a] → [msg]
isActAction :: a → Bool
getActAction :: a → act
getActionsfromActs :: [a] → [act]

instance Acts Act Message Action where
isMessageAction (CAct) = True
isMessageAction = False

getMessageAction (CAct p) = p

getMessagesfromActions actions = map (getMessageAction) (filter isMessageAction actions)

isActAction (PAct) = True
isActAction = False

getActAction (PAct p) = p

getActionsfromActs actions = map (getActAction) (filter isActAction actions)

−−−
−−−
−− update of the internal state based on the physical percepts
−−
−−
−− Steffen Bittner / 15.05.01
−−−

module Phypercepts where

import Basics
import Statusdata
import Agentdata
import Statustech
import Message

class Phypercepts s p where

APPENDIX A. LISTINGS OF SOURCE CODE 182

updStatePhyPercept :: [s] → AgentID → WorldState → p → Objective
updStatePhyPercepts :: [s] → AgentID → WorldState → [p] → [Objective]

instance Phypercepts Status PhyPercept where

updStatePhyPercept slist aid ws (LandUse aid’ luser land) =
if (hasExecutionTitle slist aid luser land) then

(ApplyExecution land luser ws) else
(DoComplaint land luser ws)

updStatePhyPercept NoPhyPercept = error ”NoPhyAction in updStatePhyPercept”
updStatePhyPercept = error ”no case found in updStatePhyPercept”

updStatePhyPercepts slist aid ws percepts = map (updStatePhyPercept slist aid ws) percepts

−−−
−− message.hs
−− message, content and message exchange
−− Steffen Bittner / 28.09.00
−−−

module Message where

import Basics

−−−

data MessageType = Offer
| Reject Offer
| Accept Offer
| Application
| Accept Application
| Reject Application
| Query
| Answer Query
| Legal Action
| Serve Complaint
| Answer Complaint
| Judgement
| Reject Complaint
| Apply Execution
| Accept Execution
| Reject Execution deriving (Eq,Show)

data Content = Sell AgentID AgentID LandID
| Query Owner AgentID LandID
| Complaint AgentID AgentID LandID
| NoContent deriving (Show, Eq)

class Contents c where
getLandIDfromContent :: c → LandID
getSellerIDfromContent :: c → AgentID
getBuyerIDfromContent :: c → AgentID
getDefendantIDfromContent :: c → AgentID
getPlaintiffIDfromContent :: c → AgentID

instance Contents Content where

getLandIDfromContent (Query Owner aid lid) = lid
getLandIDfromContent (Sell sid bid lid) = lid
getLandIDfromContent (Complaint pid die lid) = lid
getLandIDfromContent = error ”wrong content in getLandIDfromContent”

getSellerIDfromContent (Sell seller buyer lid) = seller
getSellerIDfromContent = error ”wrong content in getSellerIDfromContent”

getBuyerIDfromContent (Sell seller buyer lid) = buyer
getBuyerIDfromContent = error ”wrong content in getBuyerIDfromContent”

getDefendantIDfromContent (Complaint plaintiff defendant landid) = defendant
getDefendantIDfromContent = error ”wrong content in getDefendantIDfromContent”

getPlaintiffIDfromContent (Complaint plaintiff defendant landid) = plaintiff
getPlaintiffIDfromContent = error ”wrong content in getPlaintiffIDfromContent”

data Message = Message AgentID AgentID Content MessageType Message
| NoMessage deriving (Eq,Show)

class Messages m where
isReceiver :: AgentID → m → Bool
getMessagesByReceiverID :: AgentID → [m] → [m]
newMessage :: AgentID → AgentID → Content → MessageType → m
getContent :: m → Content
getReceiver :: m → AgentID
getSender :: m → AgentID
isMessagefrom :: AgentID → m → Bool
isOwnershipTransfer :: m → AgentID → LandID → Bool
isExecutionTitle :: m → AgentID → AgentID → LandID → Bool

instance Messages Message where

isReceiver aid (Message start ziel c t rmsg) = ziel == aid

getMessagesByReceiverID aid msgs = msgs’ where
msgs’ = filter (isReceiver aid) msgs

newMessage startid goalid cont mtype = (Message startid goalid cont mtype NoMessage)

getContent (Message s z c t rmsg) = c

APPENDIX A. LISTINGS OF SOURCE CODE 183

getReceiver (Message s z c t rmsg) = z
getSender (Message s z c t rmsg) = s
isMessagefrom from’ (Message from to c t rmsg) = from == from’

isOwnershipTransfer
(Message from to (Sell seller buyer land) Accept Application rmsg) aid lid =

((buyer == aid) && (lid == land))
isOwnershipTransfer = False

isExecutionTitle
(Message from to (Complaint plaintiff defendant land) Judgement rmsg) pid did lid =

((plaintiff == pid) && (lid == land) && defendant==did)
isExecutionTitle = False

A.6 Land and physical activities
−−−
−− landdata.hs
−− data type land
−− Steffen Bittner / 14.02.01
−−−

module Landdata where

import Basics

−−−

data Land = Land LandID AgentID deriving (Eq,Show)

data Action = ActUseLand LandID AgentID
| ActAbandonLand LandID
| ActEvictLand LandID
| NoAction deriving (Eq,Show)

−−−
−− land.hs
−− operations on land
−− Steffen Bittner / 28.09.00
−−−

module Land where

import Basics
import Landdata
import IDs
import Agentdata

class Lands l where
getLID :: l → LandID
getLUser :: l → AgentID
newLand :: LandID → l
existLand :: LandID → [l] → Bool
replaceLand :: LandID → AgentID → [l] → [l]

updateLandsByAction :: Action → [l] → [l]

updateLandsByActions :: [Action] → [l] → [l]

canUseLand :: LandID → AgentID → [l] → Bool
getLandUser :: LandID → [l] → AgentID

genReactions :: [l] → [Action] → [EnvReaction]
genReaction :: [l] → Action → EnvReaction

instance Lands Land where

getLUser (Land lID aid) = aid

newLand lid = (Land lid ””)

replaceLand lid aid llist = (myland: llist ’) where
llist ’ = filter (nequalsID lid) llist
myland = (Land lid aid)

updateLandsByAction (ActUseLand lid aid) llist = if (canUseLand lid aid llist) then
replaceLand lid aid llist else llist

updateLandsByAction (ActAbandonLand lid) llist = replaceLand lid (””) llist

updateLandsByAction (ActEvictLand lid) llist = replaceLand lid (””) llist

updateLandsByAction = error ”no valid action in updateLandsByAction”

updateLandsByActions alist lands = foldl (flip (updateLandsByAction)) lands alist

canUseLand lid aid lands = erg where
uname = getLandUser lid lands
erg = ((uname == aid) || (uname == ””))

getLandUser lid lands = uname where
land = getObjbyID lands lid
uname = getLUser land

genReaction lands (ActUseLand lid aid) = if (not(canUseLand lid aid lands)) then

APPENDIX A. LISTINGS OF SOURCE CODE 184

(LandUse aid (getLandUser lid lands) lid) else NoPhyPercept

genReaction = NoPhyPercept −−no reaction, phypercepts = env reactions

genReactions lands actions = erg where
erg = filter (NoPhyPercept /=) erg’
erg ’ = map (genReaction lands) actions

A.7 The simulation interface
−−−
−− sim.hs
−− simulation of behaviour of agents in realtiy :
−− exapmples: transfer of ownership, complaints , execution
−− Steffen Bittner / 28.09.00
−−−

module Sim where

import World
import Worlddata
import Worldtech
import Agent
import Agentdata
import Agenttech
import Actpercepts
import Land
import Landdata
import Statusdata
import Message
import Extcosts

import Statustech
import Basics
import Construles
import IDs

−− Simulation of ownership transfer

initWorldOT :: World → World
initWorldOT w = w’ where

w’ = addAgent w1 regAg
w1 = addAgent w2 seller
w2 = addAgent w3 buyer
w3 = addLand w mguertel
mguertel = newLand ”P”
seller = createSellerAgent
buyer = createBuyerAgent
regAg = createRegAgOT

createRegAgOT :: Agent
createRegAgOT = regAg’ where

regAg ’ = addBelief regAg1 (Owner ”A””P”NoMessage 0)
regAg1 = addBelief regAg2 (RegAg ”RegAg”0)
regAg2 = addBelief regAg4 (Parcel ”P” 0)
regAg4 = addBelief regAg5 (Legal person ”B”0)
regAg5 = addBelief regAg (Legal person ”A”0)
regAg = newAgt ”RegAg”::Agent

createBuyerAgent :: Agent
createBuyerAgent = buyer’ where

buyer ’ = addBelief buyer3 (Legal person ”B”0)
buyer3 = addBelief buyer2 (Legal person ”A”0)
buyer2 = addBelief buyer1 (RegAg ”RegAg”0)
buyer1 = addBelief buyer (Parcel ”P” 0)
buyer = newAgt ”B”::Agent

createSellerAgent :: Agent
createSellerAgent = seller ’ where

seller ’ = addBelief seller5 (Legal person ”B”0)
seller5 = addBelief seller4 (Legal person ”A”0)
seller4 = addBelief seller3 (Owner ”A””P”NoMessage 0)
seller3 = addBelief seller2 (RegAg ”RegAg”0)
seller2 = addBelief seller1 (Parcel ”P” 0)
seller1 = addObjective seller objective
objective = (SellParcel ”P” ”B”0)
seller = newAgt ”A”::Agent

simOT n = output where
output = putStrLn (concat (map showWorld wlist) ++ showWorldCosts wlist)
wlist = doWorld [w2] n
w2 = initWorldOT w3
w3 = startWorld

−− Simulation of conflicts regarding land use:

initWorldU :: World → World
initWorldU w = w’ where

w’ = addAgent w1 courtAg
w1 = addAgent w2 auser
w2 = addAgent w3 uuser
w3 = addAgent w4 sheriff
w4 = addLand w5 mguertel
w5 = addAgent w regAg
mguertel = newLand ”P”
courtAg = createCourtAgent
uuser = createUnauthorizedUser
auser = createAuthorizedUser

APPENDIX A. LISTINGS OF SOURCE CODE 185

sheriff = createSheriffAg
regAg = createRegAgU

createSheriffAg :: Agent
createSheriffAg = sAg’ where

sAg’ = addBelief sAg1 (CourtAg ”CourtAg”0)
sAg1 = addBelief sAg2 (SheriffAg ”SheriffAg” 0)
sAg2 = addBelief sAg3 (RegAg ”RegAg”0)
sAg3 = addBelief sAg4 (Parcel ”P” 0)
sAg4 = addBelief sAg5 (Legal person ”A”0)
sAg5 = addBelief sAg (Legal person ”B”0)
sAg = newAgt ”SheriffAg”::Agent

createRegAgU :: Agent
createRegAgU = regAg’ where

regAg ’ = addBelief regAg0 (CourtAg ”CourtAg”0)
regAg0 = addBelief regAg1 (Owner ”A””P”NoMessage 0)
regAg1 = addBelief regAg2 (SheriffAg ”SheriffAg” 0)
regAg2 = addBelief regAg3 (RegAg ”RegAg”0)
regAg3 = addBelief regAg4 (Parcel ”P” 0)
regAg4 = addBelief regAg5 (Legal person ”A”0)
regAg5 = addBelief regAg6 (Legal person ”B”0)
regAg6 = addMessageActions regAg (Message ”RegAg””A”(Sell ”X””A””P”) Accept Application NoMessage)
regAg = newAgt ”RegAg”::Agent

createCourtAgent :: Agent
createCourtAgent = courtAg’ where

courtAg’ = addBelief courtAg1 (CourtAg ”CourtAg”0)
courtAg1 = addBelief courtAg2 (SheriffAg ”SeriffAg” 0)
courtAg2 = addBelief courtAg3 (RegAg ”RegAg”0)
courtAg3 = addBelief courtAg4 (Parcel ”P” 0)
courtAg4 = addBelief courtAg5 (Legal person ”A”0)
courtAg5 = addBelief courtAg (Legal person ”B”0)
courtAg = newAgt ”CourtAg”::Agent

createUnauthorizedUser :: Agent
createUnauthorizedUser = uuser’ where

uuser ’ = addBelief uuser7 (CourtAg ”CourtAg”0)
uuser7 = addBelief uuser6 (RegAg ”RegAg”0)
uuser6 = addBelief uuser5 (Legal person ”A”0)
uuser5 = addBelief uuser3 (Legal person ”B”0)
uuser3 = addBelief uuser2 (SheriffAg ”SheriffAg” 0)
uuser2 = addBelief uuser1 (Parcel ”P” 0)
uuser1 = addObjective uuser0 objective2
uuser0 = addObjective uuser objective1
objective1 = (UseLand ”P”0)
objective2 = (UseLand ”P”6)
uuser = newAgt ”B”::Agent

createAuthorizedUser :: Agent
createAuthorizedUser = auser’ where

auser ’ = addBelief auser7 (CourtAg ”CourtAg”0)
auser7 = addBelief auser6 (RegAg ”RegAg”0)
auser6 = addBelief auser5 (Legal person ”A”0)
auser5 = addBelief auser3 (Legal person ”B”0)

auser3 = addBelief auser2 (SheriffAg ”SheriffAg” 0)
auser2 = addBelief auser1 (Parcel ”P” 0)
auser1 = addObjective auser0 objective2
auser0 = addObjective auser objective1
objective2 = (UseLand ”P”7)
objective1 = (UseLand ”P”1)
auser = newAgt ”A”::Agent

simU :: Int → IO()
simU n = output where

output = putStrLn (concat (map showWorld wlist) ++ showWorldCosts wlist)

wlist = doWorld [w2] n
w2 = initWorldU w3
w3 = startWorld

showAgent :: Agent → String
showAgent (Agent aid percepts (IntState status duties objectives) actions cost) = ”\nAgent(AID=”++ aid

++ ”\n INBOX=”++ show (getMessagesfromPercepts percepts) ++ ”\n PHYPERCEPS=”
++ show (getPhyPerceptsfromPercepts percepts)
++ ”\n STATUS=”++ (showStatusList status) ++ ”\n DUTIES=”++ show duties ++ ”\n OBJECTIVES=”++ show objectives
++ ”\n ACTIONS=”++ show (getActionsfromActs actions) ++ ”\n OUTBOX=”++ show (getMessagesfromActions actions)

−− ++ ”\n COSTS= ” ++ show cost
++ ”)”

showAgents :: [Agent] → String
showAgents (a: alist) = showAgent a ++ ”\n”++ showAgents alist
showAgents [] = []

showLands :: [Land] → String
showLands (a: alist) = show a ++ ”\n”++ showLands alist
showLands [] = []

showWorld (World agents lands ws) = ”\n −−−−−−−−−−−−− WorldState: ”
++ myws ++ ”−−−−−−−−−−−−−\n”
++ showAgents agents ++ ”\n”++ showLands lands
where myws = if (ws == 0) then ”initial worldstate”else show (ws −1)

showStatusList :: [Status] → String
showStatusList sl = concat (map showStatus sl)

APPENDIX A. LISTINGS OF SOURCE CODE 186

showStatus :: Status → String
showStatus (Owner aid lid msg ws) = ”(Owner ”++ show aid ++ ” ”++ show lid ++ ” <m> ”++show ws ++”) ”
showStatus (Legal person aid ws) = ”(Legal person ”++ show aid ++ ” ”++show ws ++”) ”
showStatus (Parcel lid ws) = ”(Parcel ”++ show lid ++ ” ”++show ws ++”) ”
showStatus (RegAg aid ws) = ”(RegAg ”++ show aid ++ ” ”++show ws ++”) ”
showStatus (CourtAg aid ws) = ”(CourtAg ”++ show aid ++ ” ”++show ws ++”) ”
showStatus (SheriffAg aid ws) = ”(SheriffAg ”++ show aid ++ ” ”++show ws ++”) ”
showStatus (Offeror aid msg ws) = ”(Offeror ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Transferee aid msg ws) = ”(Transferee ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Buyer aid msg ws) = ”(Buyer ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Seller aid msg ws) = ”(Seller ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Applicant aid msg ws) = ”(Applicant ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Application receiver aid msg ws) = ”(Application receiver ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Query sender aid msg ws) = ”(Query sender ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Query receiver aid msg ws) = ”(Query receiver ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Plaintiff aid msg ws) = ”(Plaintiff ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Defendant aid msg ws) = ”(Defendant ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Judge aid msg ws) = ”(Judge ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Loser Complaint aid msg ws) = ”(Loser Complaint ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (JudgementExecutor aid msg ws) = ”(JudgementExecutor ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Applicant Execution aid msg ws) = ”(Applicant Execution ”++ show aid ++ ” <m> ”++show ws ++”) ”
showStatus (Querying msg ws) = ”(Querying”++ ” <m> ”++show ws ++”) ”
showStatus (Offering msg ws) = ”(Offering”++ ” <m> ”++show ws ++”) ”
showStatus (Contracting msg ws) = ”(Contracting”++ ” <m> ”++show ws ++”) ”
showStatus (Applying msg ws) = ”(Applying”++ ” <m> ”++show ws ++”) ”
showStatus (Transferring msg ws) = ”(Transferring”++ ” <m> ”++show ws ++”) ”
showStatus (Suing msg ws) = ”(Suing”++ ” <m> ”++show ws ++”) ”
showStatus (ServingComplaint msg ws) = ”(ServingComplaint”++ ” <m> ”++show ws ++”) ”
showStatus (PronouncingJudgement msg ws) = ”(PronouncingJudgement”++ ” <m> ”++show ws ++”) ”
showStatus (ExecutingJudgement msg ws) = ”(ExecutingJudgement”++ ” <m> ”++show ws ++”) ”
showStatus (Execution Title aid aid ’ lid msg ws) = ”(Execution Title ”++ show aid ++ ” ”++ show aid’ ++ ” ”

++ show lid ++ ” <m> ”++show ws ++”) ”
showStatus (NoStatus) = ”(NoStatus) ”
showStatus = error ”no case found in showStatus”

A.8 Cost assessment
−−−
−− extcosts.hs
−− external costs in the simulation
−− Steffen Bittner / 28.09.00
−−
−−−

−− counting of costs based on the actions and percepts of the agents

module Extcosts where

import Landdata
import Message
import Agentdata
import Worlddata
import Basics
import IDs

class Num c ⇒ ExtCosts e c | e → c where
cost :: e → c
gesCost :: [e] → c

isExchangeCost :: e → Bool
isMonitoringCost :: e → Bool
isMeasurementCost :: e → Bool
isEnforcementCost :: e → Bool

genExchangeCosts :: [e] → c
genMonitoringCosts :: [e] → c
genMeasurementCosts :: [e] → c
genEnforcementCosts :: [e] → c

gesCost [] = 0
gesCost e = foldl (+) 0 (map cost e)

genExchangeCosts = gesCost. (filter isExchangeCost)
genMeasurementCosts = gesCost. (filter isMeasurementCost)
genMonitoringCosts = gesCost. (filter isMonitoringCost)
genEnforcementCosts = gesCost. (filter isEnforcementCost)

instance ExtCosts Act Cost where

cost (PAct (ActUseLand)) = 5
cost (PAct (ActAbandonLand)) = 5
cost (PAct (ActEvictLand)) = 5

cost (CAct (Message aid aid’ content Offer rid)) = 2
cost (CAct (Message aid aid’ content Reject Offer rid)) = 2
cost (CAct (Message aid aid’ content Accept Offer rid)) = 2
cost (CAct (Message aid aid’ content Application rid)) = 10 −− application costs
cost (CAct (Message aid aid’ content Accept Application rid)) = 2
cost (CAct (Message aid aid’ content Reject Application rid)) = 2
cost (CAct (Message aid aid’ content Query rid)) = 4 −−query costs
cost (CAct (Message aid aid’ content Answer Query rid)) = 2

APPENDIX A. LISTINGS OF SOURCE CODE 187

cost (CAct (Message aid aid’ content Legal Action rid)) = 2
cost (CAct (Message aid aid’ content Serve Complaint rid)) = 2
cost (CAct (Message aid aid’ content Answer Complaint rid)) = 2
cost (CAct (Message aid aid’ content Judgement rid)) = 2
cost (CAct (Message aid aid’ content Apply Execution rid)) = 2
cost (CAct (Message aid aid’ content Accept Execution rid)) = 2
cost (CAct (Message aid aid’ content Reject Execution rid)) = 2
cost = error ”Cost not defined in ExtCosts CAct ExtCost:cost”

isExchangeCost (PAct (ActUseLand)) = True

isExchangeCost (CAct (Message aid aid’ content Offer rid)) = True
isExchangeCost (CAct (Message aid aid’ content Reject Offer rid)) = True
isExchangeCost (CAct (Message aid aid’ content Accept Offer rid)) = True
isExchangeCost = False

isMonitoringCost (CAct (Message aid aid’ content Application rid)) = True
isMonitoringCost (CAct (Message aid aid’ content Accept Application rid)) = True
isMonitoringCost (CAct (Message aid aid’ content Reject Application rid)) = True
isMonitoringCost = False

isMeasurementCost (CAct (Message aid aid’ content Query rid)) = True
isMeasurementCost (CAct (Message aid aid’ content Answer Query rid)) = True
isMeasurementCost = False

isEnforcementCost (PAct (ActAbandonLand)) = True
isEnforcementCost (PAct (ActEvictLand)) = True

isEnforcementCost (CAct (Message aid aid’ content Legal Action rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Serve Complaint rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Answer Complaint rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Judgement rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Apply Execution rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Accept Execution rid)) = True
isEnforcementCost (CAct (Message aid aid’ content Reject Execution rid)) = True
isEnforcementCost = False

instance ExtCosts Percept Cost where

cost (PPercept (LandUse)) = 0

cost (CPercept (Message aid aid ’ content Offer rid)) = 0
cost (CPercept (Message aid aid ’ content Reject Offer rid)) = 0
cost (CPercept (Message aid aid ’ content Accept Offer rid)) = 0
cost (CPercept (Message aid aid ’ content Application rid)) = −10 −− receiving an application brings money
cost (CPercept (Message aid aid ’ content Accept Application rid)) = 0
cost (CPercept (Message aid aid ’ content Reject Application rid)) = 0
cost (CPercept (Message aid aid ’ content Query rid)) = −4 −−receiving a query brings money
cost (CPercept (Message aid aid ’ content Answer Query rid)) = 0

cost (CPercept (Message aid aid ’ content Legal Action rid)) = 0
cost (CPercept (Message aid aid ’ content Serve Complaint rid)) = 0
cost (CPercept (Message aid aid ’ content Answer Complaint rid)) = 0
cost (CPercept (Message aid aid ’ content Judgement rid)) = 0
cost (CPercept (Message aid aid ’ content Apply Execution rid)) = 0
cost (CPercept (Message aid aid ’ content Accept Execution rid)) = 0
cost (CPercept (Message aid aid ’ content Reject Execution rid)) = 0
cost = error ”Cost not defined in ExtCosts CPerept ExtCost:cost”

isExchangeCost = False

isMonitoringCost (CPercept (Message aid aid ’ content Application rid)) = True
isMonitoringCost = False

isMeasurementCost (CPercept (Message aid aid’ content Query rid)) = True
isMeasurementCost = False

isEnforcementCost = False

genExtCosts :: Agent → Agent
genExtCosts (Agent aid percepts intstate actions (CostData ex mon mea enf)) =

(Agent aid percepts intstate actions (CostData ex’ mon’ mea’ enf ’)) where
ex ’ = ex + (genExchangeCosts percepts) + (genExchangeCosts actions)
mon’ = mon + (genMonitoringCosts percepts) + (genMonitoringCosts actions)
mea’ = mea + (genMeasurementCosts percepts) + (genMeasurementCosts actions)
enf ’ = enf + (genEnforcementCosts percepts) + (genEnforcementCosts actions)

sumCosts :: CostData → CostData → CostData
sumCosts (CostData ex mo me en) (CostData ex’ mo’ me’ en’) = (CostData (ex+ex’) (mo+mo’) (me+me’) (en+en’))

getAgentCost :: Agent → (AgentID,CostData)
getAgentCost (Agent aid p i a c) = (aid,c)

getAgentCosts :: World → [(AgentID,CostData)]
getAgentCosts (World a l ws) = (map getAgentCost a)

getCostbyID :: (AgentID,CostData) → [(AgentID,CostData)] → CostData
getCostbyID a blist = snd (head(filter (equAID a) blist))

APPENDIX A. LISTINGS OF SOURCE CODE 188

equAID :: (AgentID,CostData) → (AgentID,CostData) → Bool
equAID a b = fst a == fst b

addCost :: (AgentID,CostData) → [(AgentID,CostData)] → (AgentID,CostData)
addCost (a,c) blist = (a, (sumCosts c c ’)) where

c ’ = getCostbyID (a,c) blist

addCosts :: [(AgentID,CostData)] → [(AgentID,CostData)] → [(AgentID,CostData)]
addCosts alist blist = map (flip addCost alist) blist

getAbsAgentCosts :: [World] → [(AgentID, CostData)]
getAbsAgentCosts worlds = costlist where

costlist = foldl addCosts start rest
(start : rest) = map getAgentCosts worlds

showAbsAgentCost :: (AgentID, CostData) → String
showAbsAgentCost (aid, (CostData ex mo me en)) = ”(”++ aid ++ ”,Exchange=”++ show ex ++”,Monitoring=” ++

show mo ++”,Measurement=” ++ show me ++”,Enforcement=” ++ show en ++ ”) ”

showAbsAgentCosts :: [World] → String
showAbsAgentCosts wl = show (map showAbsAgentCost (getAbsAgentCosts wl))

showWorldCosts :: [World] → String
showWorldCosts worlds = ”\n∗∗∗∗∗∗∗∗Costs∗∗∗∗∗∗∗\n”++ showAbsAgentCosts worlds

−−−
−− Intcosts.hs
−− internal costs in the simulation
−− Steffen Bittner / 16.02.01
−−−

−−counting of costs based on lifted operations

module Intcosts where

import Statusdata
import Basics
import Message
import Landdata
import Actduties
import Actobjectives
import Statustech
import Agentdata
import Land
import Agent
import Extcosts

data OpCosts f = OpC f CostData deriving Show

getOpCosts :: (OpCosts f) → CostData
getOpCosts (OpC f t) = t

getOp :: (OpCosts f) → f
getOp (OpC f t) = f

setOpCosts :: (OpCosts f) → CostData → (OpCosts f)
setOpCosts (OpC f c) cost = (OpC f cost)

liftCost :: f → CostData → OpCosts f
liftCost f cost = (OpC f cost)

class ActdutiesL s d aid ws a | a → d , a → s , a → aid where
doDutyL :: [s] → aid → ws → d → (OpCosts [a])
doCurrentDutyL :: [s] → aid → ws → d → (OpCosts [a])

instance ActdutiesL Status Duty AgentID WorldState Act where
doDutyL sl aid ws (AnswerQuery mid ws’) = liftCost (answerQuery sl aid ws mid) (CostData 0 0 2 0)
doDutyL sl aid ws (AskRegAgent mid ws’) = liftCost (askRegAgent sl aid ws mid) (CostData 0 0 1 0)
doDutyL sl aid ws (DoApplication mid ws’) = liftCost (doApplication sl aid ws mid) (CostData 0 1 0 0)
doDutyL sl aid ws (AnswerApplication mid ws’) = liftCost (answerApplication sl aid ws mid) (CostData 0 6 0 0)
doDutyL sl aid ws (DoServeComplaint mid ws’) = liftCost (serveComplaint sl aid ws mid) (CostData 0 0 0 1)
doDutyL sl aid ws (DoJudgement mid ws’) = liftCost (doJudgement sl aid ws mid) (CostData 0 0 0 1)
doDutyL sl aid ws (DoAnswerComplaint mid ws’) = liftCost (answerComplaint sl aid ws mid) (CostData 0 0 0 1)
doDutyL sl aid ws (DoAbandonLand mid ws’) = liftCost (abandonLand ws mid) (CostData 0 0 0 1)
doDutyL sl aid ws (DoExecution mid ws’) = liftCost (doExecution sl aid ws mid) (CostData 0 0 0 1)
doDutyL NoDuty = error ”NoDuty in doDutyL”
doDutyL = error ”No case found in doDutyL”

doCurrentDutyL sl aid ws duty =
if (ws == (getDutyWS duty)) then doDutyL sl aid ws duty else (OpC [] (CostData 0 0 0 0))

class ActobjectivesL s o aid ws a where

doObjectiveL :: [s] → aid → ws → o → (OpCosts [a])

instance ActobjectivesL Status Objective AgentID WorldState Act where
doObjectiveL sl aid ws (SellParcel land aid ’ ws ’) = erg where

erg = if (ws==ws’) then liftCost (doOffer sl aid aid ’ land ws) (CostData 1 0 0 0) else (OpC [] (CostData 0 0 0 0))

doObjectiveL sl aid ws (AnswerOffer mid ws’) = erg where
erg = if (ws==ws’) then liftCost (answerOffer sl aid ws mid) (CostData 1 0 0 0) else (OpC [] (CostData 0 0 0 0))

doObjectiveL sl aid ws (DoComplaint land aid’ ws’) = erg where
erg = if (ws==ws’) then liftCost (doComplaint sl aid aid ’ ws land) (CostData 0 0 0 1) else (OpC [] (CostData 0 0 0 0))

APPENDIX A. LISTINGS OF SOURCE CODE 189

doObjectiveL sl aid ws (ApplyExecution land aid ’ ws ’) = erg where
erg = if (ws==ws’) then liftCost (doApplyExecution sl aid aid ’ ws land) (CostData 0 0 0 1) else (OpC [] (CostData 0 0 0 0))

doObjectiveL sl aid ws (UseLand land ws’) = erg where
erg = if (ws /= ws’) then (OpC [] (CostData 0 0 0 0)) else liftCost (doActUseLand sl land aid) (CostData 1 0 0 0)

doObjectiveL NoObjective = error ”NoObjective in doObjectiveL”
doObjectiveL = error ”No case found in doObjectiveL”

class (UpdStateInMsgs aid ws p i , UpdStateOutMsgs ws a i) ⇒ MyAgentInternalsL aid ws p i a | i→ aid , i→ws, i → p , i → a where

actDutiesL :: aid → ws → i → [(OpCosts [a])]
actObjectivesL :: aid → ws → i → [(OpCosts [a])]

instance MyAgentInternalsL AgentID WorldState Percept IntState Act where

actDutiesL aid ws (IntState slist duties objectives) = erglist where
erglist = (map (doCurrentDutyL slist aid ws) duties)

actObjectivesL aid ws (IntState slist duties objectives) = erglist where
erglist = (map (doObjectiveL slist aid ws) objectives)

class (MyAgentInternalsL aid ws p i a , AgentInternals aid ws p i a) ⇒ AgentInternalsL aid ws p i a where

selActsL :: aid → ws → i → [(OpCosts [a])]
decisionL :: aid → ws → [p] → i → ([(OpCosts [a])], i)

selActsL aid ws i = (actDutiesL aid ws i) ++ (actObjectivesL aid ws i)

decisionL aid ws p i =
(selActsL aid ws (updStatePercepts aid ws p i),

updStateActions ws (concat(map getOp (selActsL aid ws (updStatePercepts aid ws p i)))) (updStatePercepts aid ws p i))

instance AgentInternalsL AgentID WorldState Percept IntState Act

class (AgentInternalsL aid ws p i act) ⇒ AbsAgentL a ws i p aid act | ws → i , ws → p , ws → aid , ws → act where

doAgtL :: ws → a → a

instance AbsAgentL Agent WorldState IntState Percept AgentID Act where

doAgtL ws (Agent aid percepts intstate actions cost) = (Agent aid percepts intstate ’ actions ’ cost ’) where

cost ’ = foldl sumCosts cost costlist
costlist = map getOpCosts actions1
actions ’ = concat (map getOp actions1)
(actions1 , intstate ’) = decisionL aid ws percepts intstate2
intstate2 = filterState intstate ws

Appendix B

Program outputs

B.1 Output of the ownership transfer simulation

Sim> simOT 7

------------- WorldState: initial worldstate-------------

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Legal_person "B" 0) (Legal_person "A" 0) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[SellParcel "P" "B" 0]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 0-------------

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0) (Owner "A"

"P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[SellParcel "P" "B" 0]

ACTIONS=[]

OUTBOX=[Message "A" "B" (Sell "A" "B" "P") Offer NoMessage])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 1-------------

Agent(AID=RegAg

190

APPENDIX B. PROGRAM OUTPUTS 191

INBOX=[]

PHYPERCEPS=[]

STATUS=(Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0) (Owner "A"

"P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[Message "A" "B" (Sell "A" "B" "P") Offer NoMessage]

PHYPERCEPS=[]

STATUS=(Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1) (Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m>

1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[AskRegAgent (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 1]

OBJECTIVES=[AnswerOffer (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 3]

ACTIONS=[]

OUTBOX=[Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage])

Land "P" ""

------------- WorldState: 2-------------

Agent(AID=RegAg

INBOX=[Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage]

PHYPERCEPS=[]

STATUS=(Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0)

(Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[AnswerQuery (Message "B" "RegAg" (Query_Owner "" "P") Query NoMessage) 2]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "RegAg" "B" (Query_Owner "A" "P") Answer_Query NoMessage])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0) (Owner "A"

"P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1) (Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m>

1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[AnswerOffer (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 3]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 3-------------

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0)

(Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A" 0) (Owner "A"

"P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[Message "RegAg" "B" (Query_Owner "A" "P") Answer_Query NoMessage]

PHYPERCEPS=[]

STATUS=(Seller "A" <m> 3) (Buyer "B" <m> 3) (Contracting <m> 3) (Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1)

(Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0)

(RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)

DUTIES=[]

OBJECTIVES=[AnswerOffer (Message "A" "B" (Sell "A" "B" "P") Offer NoMessage) 3]

ACTIONS=[]

OUTBOX=[Message "B" "A" (Sell "A" "B" "P") Accept_Offer NoMessage])

Land "P" ""

------------- WorldState: 4-------------

APPENDIX B. PROGRAM OUTPUTS 192

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0)

(Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[Message "B" "A" (Sell "A" "B" "P") Accept_Offer NoMessage]

PHYPERCEPS=[]

STATUS=(Applicant "A" <m> 4) (Application_receiver "RegAg" <m> 4) (Applying <m> 4) (Seller "A" <m> 4) (Buyer "B" <m> 4)

(Contracting <m> 4) (Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A"

0) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[DoApplication (Message "B" "A" (Sell "A" "B" "P") Accept_Offer NoMessage) 4]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "A" "RegAg" (Sell "A" "B" "P") Application NoMessage])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Seller "A" <m> 3) (Buyer "B" <m> 3) (Contracting <m> 3) (Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1)

(Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0)

(RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 5-------------

Agent(AID=RegAg

INBOX=[Message "A" "RegAg" (Sell "A" "B" "P") Application NoMessage]

PHYPERCEPS=[]

STATUS=(Owner "B" "P" <m> 5) (Transferring <m> 5) (Transferring <m> 5) (Applicant "A" <m> 5) (Application_receiver "Reg

Ag" <m> 5) (Applying <m> 5) (Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m>

0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[AnswerApplication (Message "A" "RegAg" (Sell "A" "B" "P") Application NoMessage) 5]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "RegAg" "A" (Sell "A" "B" "P") Accept_Application NoMessage,Message "RegAg" "B" (Sell "A" "B" "P") Acce

pt_Application NoMessage])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Applicant "A" <m> 4) (Application_receiver "RegAg" <m> 4) (Applying <m> 4) (Seller "A" <m> 4) (Buyer "B" <m> 4)

(Contracting <m> 4) (Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m> 0) (Legal_person "B" 0) (Legal_person "A"

0) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Seller "A" <m> 3) (Buyer "B" <m> 3) (Contracting <m> 3) (Query_sender "B" <m> 1) (Query_receiver "RegAg" <m> 1)

(Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1) (Legal_person "B" 0) (Legal_person "A" 0)

(RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 6-------------

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Owner "B" "P" <m> 5) (Transferring <m> 5) (Transferring <m> 5) (Applicant "A" <m> 5) (Application_receiver "Reg

Ag" <m> 5) (Applying <m> 5) (Query_sender "B" <m> 2) (Query_receiver "RegAg" <m> 2) (Querying <m> 2) (Owner "A" "P" <m>

0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "B" 0) (Legal_person "A" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[Message "RegAg" "A" (Sell "A" "B" "P") Accept_Application NoMessage]

PHYPERCEPS=[]

STATUS=(Owner "B" "P" <m> 6) (Transferring <m> 6) (Applicant "A" <m> 4) (Application_receiver "RegAg" <m> 4) (Applying

<m> 4) (Seller "A" <m> 4) (Buyer "B" <m> 4) (Contracting <m> 4) (Offeror "A" <m> 0) (Transferee "B" <m> 0) (Offering <m>

0) (Legal_person "B" 0) (Legal_person "A" 0) (Owner "A" "P" <m> 0) (RegAg "RegAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[Message "RegAg" "B" (Sell "A" "B" "P") Accept_Application NoMessage]

PHYPERCEPS=[]

APPENDIX B. PROGRAM OUTPUTS 193

STATUS=(Owner "B" "P" <m> 6) (Transferring <m> 6) (Seller "A" <m> 3) (Buyer "B" <m> 3) (Contracting <m> 3) (Query_sende

r "B" <m> 1) (Query_receiver "RegAg" <m> 1) (Querying <m> 1) (Offeror "A" <m> 1) (Transferee "B" <m> 1) (Offering <m> 1)

(Legal_person "B" 0) (Legal_person "A" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Owner "A" "P" <m> 3)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

********Costs*******

["(RegAg,Exchange=0,Monitoring=0,Measurement=0,Enforcement=0) ","(A,Exchange=3,Monitoring=11,Measurement=0,Enforcement=0

) ","(B,Exchange=3,Monitoring=0,Measurement=5,Enforcement=0) "]

Sim>

B.2 Output of the conflict simulation

Sim> simU 11

------------- WorldState: initial worldstate-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_pers

on "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6,UseLand "P" 0]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage])

Land "P" ""

------------- WorldState: 0-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_pers

on "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[Message "RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage]

PHYPERCEPS=[]

STATUS=(Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_p

erson "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]

APPENDIX B. PROGRAM OUTPUTS 194

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6,UseLand "P" 0]

ACTIONS=[ActUseLand "P" "B"]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

------------- WorldState: 1-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_pers

on "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_p

erson "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7,UseLand "P" 1]

ACTIONS=[ActUseLand "P" "A"]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 2-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_pers

on "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

APPENDIX B. PROGRAM OUTPUTS 195

Agent(AID=A

INBOX=[]

PHYPERCEPS=[LandUse "A" "B" "P"]

STATUS=(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transfe

rring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0)

(Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7,DoComplaint "P" "B" 2]

ACTIONS=[]

OUTBOX=[Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message "RegAg" "A" (Sell "X" "A" "P") Accept_Appli

cation NoMessage)])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 3-------------

Agent(AID=CourtAg

INBOX=[Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message "RegAg" "A" (Sell "X" "A" "P") Accept_Applic

ation NoMessage)]

PHYPERCEPS=[]

STATUS=(ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Cour

tAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[DoServeComplaint (Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message "RegAg" "A" (Sell "X" "A"

"P") Accept_Application NoMessage)) 3,DoJudgement (Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message

"RegAg" "A" (Sell "X" "A" "P") Accept_Application NoMessage)) 5]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Serve_Complaint NoMessage])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transfe

rring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0)

(Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Par

cel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

APPENDIX B. PROGRAM OUTPUTS 196

Land "P" "B"

------------- WorldState: 4-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Cour

tAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[DoJudgement (Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message "RegAg" "A" (Sell "X" "A" "P")

Accept_Application NoMessage)) 5]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transfe

rring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0)

(Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Serve_Complaint NoMessage]

PHYPERCEPS=[]

STATUS=(Defendant "B" <m> 4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg"

0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[DoAnswerComplaint (Message "CourtAg" "B" (Complaint "A" "B" "P") Serve_Complaint NoMessage) 4]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[]

OUTBOX=[Message "B" "CourtAg" (Complaint "A" "B" "P") Answer_Complaint NoMessage])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 5-------------

Agent(AID=CourtAg

INBOX=[Message "B" "CourtAg" (Complaint "A" "B" "P") Answer_Complaint NoMessage]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[DoJudgement (Message "A" "CourtAg" (Complaint "A" "B" "P") Legal_Action (Message "RegAg" "A" (Sell "X" "A" "P")

Accept_Application NoMessage)) 5]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Judgement NoMessage,Message "CourtAg" "A" (Complaint "A" "B" "P")

Judgement NoMessage])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Defendant "B" <m> 2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transfe

rring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0)

(Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Defendant "B" <m> 4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg"

0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

APPENDIX B. PROGRAM OUTPUTS 197

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 6-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[Message "CourtAg" "A" (Complaint "A" "B" "P") Judgement NoMessage]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "Cour

tAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[Message "CourtAg" "B" (Complaint "A" "B" "P") Judgement NoMessage]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal

_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[DoAbandonLand (Message "CourtAg" "B" (Complaint "A" "B" "P") Judgement NoMessage) 6]

OBJECTIVES=[UseLand "P" 6]

ACTIONS=[ActAbandonLand "P",ActUseLand "P" "B"]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 7-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

2) (Plaintiff "A" <m> 2) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "Cour

tAg" 0) (RegAg "RegAg" 0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[UseLand "P" 7]

ACTIONS=[ActUseLand "P" "A"]

OUTBOX=[])

Agent(AID=B

INBOX=[]

APPENDIX B. PROGRAM OUTPUTS 198

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal

_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 8-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[LandUse "A" "B" "P"]

STATUS=(Applicant_Execution "A" <m> 8) (JudgementExecutor "SheriffAg" <m> 8) (ExecutingJudgement <m> 8) (Loser_Complain

t "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m> 2) (Plaintiff "A" <m> 2

) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg"

0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[ApplyExecution "P" "B" 8]

ACTIONS=[]

OUTBOX=[Message "A" "SheriffAg" (Complaint "A" "B" "P") Apply_Execution (Message "CourtAg" "A" (Complaint "A" "B" "P")

Judgement NoMessage)])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal

_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_per

son "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 9-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

APPENDIX B. PROGRAM OUTPUTS 199

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[]

PHYPERCEPS=[]

STATUS=(Applicant_Execution "A" <m> 8) (JudgementExecutor "SheriffAg" <m> 8) (ExecutingJudgement <m> 8) (Loser_Complain

t "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m> 2) (Plaintiff "A" <m> 2

) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg"

0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal

_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[Message "A" "SheriffAg" (Complaint "A" "B" "P") Apply_Execution (Message "CourtAg" "A" (Complaint "A" "B" "P") J

udgement NoMessage)]

PHYPERCEPS=[]

STATUS=(Applicant_Execution "A" <m> 9) (JudgementExecutor "SheriffAg" <m> 9) (ExecutingJudgement <m> 9) (CourtAg "Court

Ag" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[DoExecution (Message "A" "SheriffAg" (Complaint "A" "B" "P") Apply_Execution (Message "CourtAg" "A" (Complaint

"A" "B" "P") Judgement NoMessage)) 9]

OBJECTIVES=[]

ACTIONS=[ActEvictLand "P"]

OUTBOX=[Message "SheriffAg" "A" (Complaint "A" "B" "P") Accept_Execution NoMessage])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" "B"

------------- WorldState: 10-------------

Agent(AID=CourtAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 5) (Execution_Title "A" "B" "P" <m> 5) (PronouncingJudgement <m> 5) (PronouncingJudgeme

nt <m> 5) (ServingComplaint <m> 3) (Defendant "B" <m> 3) (Plaintiff "A" <m> 3) (Judge "CourtAg" <m> 3) (Suing <m> 3) (Co

urtAg "CourtAg" 0) (SheriffAg "SeriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=A

INBOX=[Message "SheriffAg" "A" (Complaint "A" "B" "P") Accept_Execution NoMessage]

PHYPERCEPS=[]

STATUS=(Applicant_Execution "A" <m> 8) (JudgementExecutor "SheriffAg" <m> 8) (ExecutingJudgement <m> 8) (Loser_Complain

t "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m> 2) (Plaintiff "A" <m> 2

) (Judge "CourtAg" <m> 2) (Suing <m> 2) (Owner "A" "P" <m> 0) (Transferring <m> 0) (CourtAg "CourtAg" 0) (RegAg "RegAg"

0) (Legal_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=B

INBOX=[]

PHYPERCEPS=[]

STATUS=(Loser_Complaint "B" <m> 6) (Execution_Title "A" "B" "P" <m> 6) (PronouncingJudgement <m> 6) (Defendant "B" <m>

4) (Plaintiff "A" <m> 4) (Judge "CourtAg" <m> 4) (ServingComplaint <m> 4) (CourtAg "CourtAg" 0) (RegAg "RegAg" 0) (Legal

_person "A" 0) (Legal_person "B" 0) (SheriffAg "SheriffAg" 0) (Parcel "P" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=SheriffAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(Applicant_Execution "A" <m> 9) (JudgementExecutor "SheriffAg" <m> 9) (ExecutingJudgement <m> 9) (CourtAg "Court

Ag" 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_person "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Agent(AID=RegAg

INBOX=[]

PHYPERCEPS=[]

STATUS=(CourtAg "CourtAg" 0) (Owner "A" "P" <m> 0) (SheriffAg "SheriffAg" 0) (RegAg "RegAg" 0) (Parcel "P" 0) (Legal_pe

APPENDIX B. PROGRAM OUTPUTS 200

rson "A" 0) (Legal_person "B" 0)

DUTIES=[]

OBJECTIVES=[]

ACTIONS=[]

OUTBOX=[])

Land "P" ""

********Costs*******

["(CourtAg,Exchange=0,Monitoring=0,Measurement=0,Enforcement=8) ","(A,Exchange=12,Monitoring=0,Measurement=0,Enforcement

=6) ","(B,Exchange=12,Monitoring=0,Measurement=0,Enforcement=9) ","(SheriffAg,Exchange=0,Monitoring=0,Measurement=0,Enfo

rcement=8) ","(RegAg,Exchange=0,Monitoring=0,Measurement=0,Enforcement=0) "]

Sim>

