
DISSERTATION

COMPUTER-ASSISTED ANALYTIC METHODS
FOR DLSCRETE PROBLEMS

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung

von

Ao. Univ. Prof. Dipl.-Ing. Dr.techn. Michael Drmota,
104,

Institut für Diskrete Mathematik und Geometrie,

eingereicht an der Technischen Universität Wien,
Fakultät für Mathematik und Geoinformation,

von

THOMAS KLAUSNER,

Matr. Nr. 9325658,

Steinbachstraße 34-36, 3001 Mauerbach.

Wien, 17. Mai 2004 lJJ^w>r^cuD AUUXM^A^

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Ph. D. Thesis

COMPUTER-ASSISTED ANALYTIC METHODS
FOR DISCRETE PROBLEMS

written under the supervision of
Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Michael Drmota

at the Institute of Discrete Mathematics and Geometry (104),
Faculty of Mathematics and Geoinformation,
Vienna University of Technology, Austria,

by

THOMAS KLAUSNER,

9325658,

Steinbachstraße 34-36, 3001 Mauerbach, Austria.

Kurzfassung

Diese Doktorarbeit beschäftigt sich mit mathematischen Methoden, die es er-
lauben, mit Computer-Unterstützung diskrete mathematische Probleme asymp-
totisch zu behandeln. Konkret werden dabei zwei verschiedene Probleme behan-
delt.

Im ersten Teil der Arbeit werden Muster in (markierten) Bäumen untersucht.
Ein Muster ist ein bestimmter vorgegebener Baum. Wir sagen, dass ein Muster
auf einen bestimmten Teilbaum passt, wenn das Muster an dieser Stelle ein in-
duzierter Teilbaum ist, das heißt, die Knotengrade der Knoten und ihre Nach-
barschaftsrelationen im Baum mit denen der entsprechenden Knoten im Muster
übereinstimmen. Einzelne Knoten können von mehreren Instanzen eines Musters
verwendet werden, d.h. Überlappungen von Mustern im Baum sind erlaubt.

Wir nehmen alle Bäume einer bestimmten Größe n als gleich wahrschein-
lich an und untersuchen, wie oft das vorgegebene Muster im Durchschnitt vor-
kommt. Dazu bedienen wir uns erzeugender Funktionen auf dieselbe Art, in der
üblicherweise Bäume gezählt werden, führen aber eine zweite Variable ein, die
die Muster mitzählt. Damit wir das effektiv machen können, untersuchen und
zerlegen wir das Muster in einem ersten Schritt und erzeugen eine Art "Korre-
lationspolynom" (eigentlich ein System von Polynomen). Die dazu verwendeten
Algorithmen werden ausführlich beschrieben.

Durch allgemeine Aussagen über diese Polynome können wir zeigen, dass die
Anzahl der Muster einen zentralen Grenzwertsatz erfüllt. Im Speziellen kann für
jedes Muster auch durch Lösung eines zugehörigen polynomiellen Gleichungssys-
tems der Erwartungswert explizit berechnet werden. Dies wird anhand eines
Beispiels vorgeführt. Alle beschriebenen Algorithmen lassen sich in MAPLE für
beliebige Muster automatisch durchführen.

Wir besprechen weiters einige Möglichkeiten der Verallgemeinerung auf andere
Muster oder andere Graphen.

Dieser Teil der Dissertation basiert auf der gemeinsamen Arbeit "The Distri-
bution of Patterns in Random Trees" mit Frederic Chyzak und Michael Drmota.

Im zweiten Teil der Arbeit beschäftigen wir uns mit dem Begriff der "zuläs-
sigen" (auch Hayman-zulässig bzw. Hayman-admissible genannten) Funktionen,
den Hayman 1956 in [Hay56] eingeführt hat. Er bewies, dass geeignet normal-
isierte Koeffizienten von zulässigen Funktionen asymptotisch einer Normalver-

teilung folgen. Hayman präsentierte auch eine Liste von Basisfunktionen und
Abschlussbedingungen, unter denen aus Hayman-zulässigen Funktionen andere
Hayman-zulässige Funktionen erzeugt werden können. Seine Methode lässt sich
jedoch leider nicht direkt zum Zählen kombinatorischer Objekte verwenden.

Wir verallgemeinern Haymans Ergebnis auf Funktionen in zwei Variablen, um
damit einen weiteren Parameter untersuchen zu können. Das eine Ziel dabei ist
es, eine kombinatorische Interpretation der Koeffizienten erzeugender Funktionen
zuzulassen, das andere, ähnlich starke Abschlussbedingungen wie bei Hayman zur
Verfügung zu stellen. Wir präsentieren diese Verallgemeinerung und ein MAPLE-

Programm, das für eine beliebige gegebene Funktion automatisch testet, ob sie
zulässig ("extended admissible") ist.

Eine kommentierte Version des MAPLE-Quelltextes ist Teil der Arbeit, und
die darin verwendeten Algorithmen sind im Detail beschrieben.

Wir wenden das Konzept auch auf einige kombinatorische Beispiele an.
Dieser Teil der Dissertation basiert auf der gemeinsamen Arbeit "Extended

Admissible Functions and Gaussian Limiting Distributions" mit Michael Drmota
und Bernhard Gittenberger.

Abstract

The subject of this thesis is the application of Computer algebra Systems, M A P L E

in particular, to asymptotic problems Coming from discrete mathematics. Two
specific problems are examined.

The first is concerned with patterns in labeled trees. We count the average
number of times a particular pattern matches a tree of size n. Assuming that
every tree of size n is equally likely, it is shown that the limiting distribution of
the number of occurrences of the pattern is asymptotically normal, with mean
value ~ {in and variance ~ a2n with computable constants {i > 0 and a > 0. We
provide an algorithm to compute {i explicitly and a MAPLE program that does
most of the work. This part of the thesis is based on the paper "The Distribution
of Patterns in Random Trees" coauthored with Frederic Chyzak and Michael
Drmota.

In the second part of the thesis, we generalize a class of functions which were
introduced by Hayman and which we thus call Hayman-admissible. Hayman
proved that the suitably normalized coefficients of these functions asymptoti-
cally follow a Gaussian distribution. He also assembled a useful list of closure
properties, i.e., operations on Hayman-admissible functions that generate other
Hayman-admissible functions. We generalize Hayman's result to functions in two
dimensions, conserving many closure properties. We also present a M A P L E pro-
gram that tests if a given function belongs to this class. This part of the thesis
is based on the paper "Extended Admissible Functions and Gaussian Limiting
Distributions" coauthored with Michael Drmota and Bernhard Gittenberger.

Contents

Kurzfassung 1

Abstract 3

1 Patterns in Trees 6
1.1 Introduction 6
1.2 Definitions 7

1.2.1 Counting Stars in Trees 8
1.3 Counting Patterns in Trees 11

1.3.1 Patterns and Pattern Matching 11
1.3.2 Conversion Algorithms 14

1.4 Asymptotic Behavior 26
1.4.1 Asymptotics of Analytic Systems 26
1.4.2 Applying the Theorem 30

1.5 Extensions and Generalizations 33
1.5.1 Several Patterns 33
1.5.2 Filled and Empty Nodes 33
1.5.3 Pattern Containing Paths of Unspecified Length 34
1.5.4 Simply Generated Trees 34
1.5.5 Unlabeled Trees 35
1.5.6 Forests 36
1.5.7 Forbidden Patterns 36

1.6 MAPLE Source Code 36
1.6.1 Usage 37
1.6.2 Implementation 37

2 Extended Admissible Functions 51
2.1 Introduction 51
2.2 Extended Admissibility 53

2.2.1 Hayman-Admissibility 53
2.2.2 Extended Admissibility 53
2.2.3 Closure Conditions 57

2.3 Examples 64

CONTENTS 5

2.3.1 Stirling Numbers of the Second Kind 64
2.3.2 Permutations with Bounded Cycle Length 65
2.3.3 Paxtitions of a Set of Partitions 65
2.3.4 Partitions Counted by Singleton Blocks 66
2.3.5 Other Examples 66

2.4 MAPLE Source Code 67
2.4.1 Usage 67
2.4.2 Implementation 68

Bibliography 80

Acknowledgments 84

Lebenslauf 85

Chapter 1

Patterns in Trees

We take a particular (finite) tree M. and and the set of unrooted labeled trees
of size n Tn and count the number of occurrences of A4 as induced subtree in Tn

asymptotically as n —> oo.
Assuming that every tree of Tn is equally likely, it is shown that the limiting

distribution of the number of occurrences of A4 as an induced subtree is asymp-
totically normal with mean value ~ \in and variance ~ a2n with computable
constants ß > 0 and a > 0.

An algorithm is given that provides a System of equations, and its Implemen-
tation in MAPLE is presented. Solving this System, /z can be computed exactly.

1.1 Introduction

Pattern matching is currently a growing field, enjoying attention of researchers
from such diverse fields as molecular biology, information retrieval, pattern recog-
nition, compiling, and many other areas (see for example [Lon04]). Usually, the
task is to find combinatorial properties that enable one to find patterns more
quickly.

Pattern matching is done on various different structures, starting from words
to more complex data structures like trees and graphs or regulär expressions.

In particular, we restrict ourselves to labeled trees. Trees are connected graphs
without cycles. They are used in many areas, especially in Computer science; for
example, as data structures, in searching algorithms, for storing data, and for
optimizing expressions for Compilers (see e.g. [ASU86]).

Also, we do not concern ourselves with algorithms for pattern matching, but
rather try to get asymptotic results on the number of occurrences of a pattern in
trees. In particular, we count the occurrences of a pattern in all labeled trees of
size n. We then normalize the distributions of these counts by subtracting their
mean and dividing by the Square root of the variance. The resulting sequence (for
varying n) of distributions weakly converges to the Standard normal distribution

CHAPTER 1. PATTERNS IN TREES 7

for n —> oo, in other words, it follows a central limit theorem.
Some work has already been done on similar topics. The distribution of

stars (nodes of given degree) has been discussed in [DG99] for various classes of
trees. Some previous work for unlabeled trees is due to Robinson and Schwenk
[RS75]. Patterns in (rooted) trees have also been investigated by Dershowitz
and Zaks [DZ89]. However, they only consider patterns starting at the root.
There is also some work on patterns in random binary search trees by Flajolet,
Gourdon, and Martinez [FGM97]. They, too, obtain a central limit theorem.
Flajolet and Steyaert also analyzed algorithms for pattern matchings in trees
[FS80a, FS80b, SF83]. Further Rucihski [Ruc88] established conditions for when
the number of occurrences of a given subgraph in random graphs follow a normal
distribution.

Our aim was to prove the limit theorem stated above and to provide algo-
rithms and tools in M A P L E to help compute the mean value for any given pattern
automatically.

1.2 Definitions

We will concern ourselves with the following classes of trees:

Definition 1. A tree (or unlabeled tree) of size n is a connected graph with n
nodes without cycles, i.e., there is exactly one path from one node of the tree
to any other node of the tree. A labeled tree of size n is a tree where each
node has been assigned a unique number from 1 t o n . A (labeled or unlabeled)
rooted tree is a (labeled or unlabeled) tree where one node has been designated
as root. A (labeled or unlabeled) planted tree, or planted rooted tree, is a (labeled
or unlabeled) rooted tree where the root has been adjoined an additional node
which is not counted (in effect increasing the root node's degree by one).

In the following we will only regard labeled graphs if not specified otherwise.
A very useful construct are generating functions.

Definition 2. The ordinary generating function or just generating function of a
sequence an = ao, a^, a>2, . . . is the formal power series A{x) = ^

For combinatorial objects, a common approach is to let the n-th element an

of the sequence count the objects of size n; in other words, the coefficient an of
xn in A(x), in Symbols [xn]A(a;), denotes the number of objects of size n.

There is a wide ränge of combinatorial constructions that can be directly
translated into operations on generating functions. For labeled constructs, expo-
nential generating functions have better properties.

Definition 3. The exponential generating function of a sequence an is the formal
power series A(x) = £ ^

CHAPTER1. PATTERNS IN TREES 8

Usually, combinatorial constructions are converted to operations on the gen-
erating functions, then the generating functions are computed at least so far that
the coefficients in which one is interested can be read off again. These coefficients
then provide object counts.

For a detailed introduction into generating functions and combinatorial con-
structions refer to [FS02].

We will mostly be using two simple equivalences between combinatorial con-
structs and the corresponding generating functions which hold for both ordinary
and exponential generating functions:

• Union: A = B + C = > A(x) = B(x) + C{x)

• Product: A = B x C => A(x) = B(x) • C(x)

1.2.1 Counting Stars in Trees

We follow a three-step program to count the number of trees in the class of all
labeled trees of size n, Tn, and then use the same program to count the number
of occurrences of nodes of degree k in Tn.

For this purpose we make use of the sets TZn of rooted labeled trees of size n
and Vn of planted labeled trees of size n.

Obviously \Vn\ = |7£„|, since adding an edge in each tree doesn't change the
number of nodes. Also, \Tn\ = \7Zn\/n, since each unrooted tree can be rooted
at each of its n nodes, and we get a different rooted tree because we are only
regarding labeled trees. It is also well known that \7Zn\ = nn^1 and \Tn\ = nn~2,
see for example [HP73].

The three steps of the program are:

1. Determine the number of planted trees Vn.

2. Use Vn to count rooted trees 7?^.

3. Compute the number of unrooted trees Tn from TZn or T^-n and Vn.

We define three exponential generating functions

n=0 n=0 n=0

and proceed in the following way:

1. Planted Rooted Trees: A planted tree is a (planted) root node with zero,
one, two, . . . planted subtrees. The order of the subtrees does not matter.

P = o U (o x P) u (o x P x P) U (o x P x P x P) U . . .

CHAPTER 1. PATTERNS IN TREES 9

Converting this construction to a generating function yields:

/ \ v ^ xp(x)n
 n(x)

n=0

2. Rooted Trees: For rooted trees we get the same result, despite of the
planted root which is not present here: just a root with zero, one, two, . . .
planted subtrees.

P = O U (O X P) U (O X P X P) U (O X P X P X P) U . . .

This gives

n=0

3. Unrooted Trees: Finally, we have \Tn\ = \Hn\/n (as already mentioned).
However, we can also express t(x) in the following way:

Lemma 1.

t(x) = r(x) - \p{xf.

Proof. This relation follows from a natural bijection between rooted trees
on the one hand and unrooted trees and pairs of planted rooted trees on
the other hand.

The bijection is as follows: Consider the class of rooted (labeled) trees. If
the root is labeled by 1 then consider the tree as an unrooted tree. If the
root is not labeled by 1 then take the first edge of the path between the
root and 1 and cut the tree into two planted rooted tree at this edge.

The other direction of the bijection: If you have a Single unrooted tree, root
it at the node labeled with 1. If you have two planted rooted trees, connect
their planted edges and root the tree at the planted root of that tree that
does not contain the node labeled with 1. D

The functional equation for p{x) can either be used to extract the explicit
number \Vn\ = nn~1 via Lagrange inversion (e.g., see [HP73]) or to obtain the
radius of convergence and asymptotic expansions of the singular behavior of this
function. By direct application of the implicit function theorem, one can compute
that XQ = 1/e is the common radius of convergence of p{x), r(x), and t(x). By
subsequent application of iteration methods ("bootstrapping") (e.g., see [dB81]),
one finds the singularity at x = XQ is of square-root type:

9

p(x) = r(x) = 1 - \/2\/l - ex + -(1 - ex) -\ ,
o

CHAPTER 1. PATTERNS IN TREES 10

which is reflected by the asymptotic expansions of the numbers

In order to demonstrate the usefulness of the three-step procedure above
(which on the first glance might seem to be redundant) we repeat the same
steps for counting stars with k edges in trees, resp. the number of nodes of degree
k (where k > 1 is supposed to be a given fixed number). We introduce a second
variable, u, to keep count of the number of stars. Let pn,m denote the number of
planted trees of size n with exactly m nodes of degree k. Purthermore, let rnm

and tntm be the corresponding numbers for rooted and unrooted trees and set

p(x, u)= ^ Pn,m
n,m=O

oo

r(x,u)= J2 rn,m

xnum

n,m=0

oo n„,m^ x'-u
t(x,u) = >n,m=0

As above, we use the recursive construction of planted rooted trees as a root
with 0, 1, . . . planted rooted trees attached. However, for counting stars with k
nodes, we mark roots with exactly k nodes with u, and arrive at

p(x,u) = ^2 ~\ ' rk^_ JN;— = xeP{x'u) +

Similarly, we get for rooted trees:

r(x,u) = + x< +
n! fc! k\

n=0

For unrooted trees, we could choose the easy way out and take tntTn = rn^m/n,
which is sufncient for our purposes. However, (as above) it is also possible to
express t(x, u) (as above) in the following way:

t(x,u) = r(x,u) - -p(x,u)2.

Note that the use of the notion of planted trees is crucial in order to keep track
of the nodes of degree k.

In [DG99] this approach was used to show that the asymptotic distribution
of the number of nodes of degree k in trees of size n is normal, with expectation
and variance proportional to n.

CHAPTER1. PATTERNS IN TREES 11

1.3 Counting Patterns in Trees

1.3.1 Patterns and Pattern Matching

We will now define patterns and generalize the counting procedure from the
previous section to patterns.

Definition 4. A pattern is an unrooted unlabeled tree. A planted pattern is a
planted rooted unlabeled tree.

Definition 5. A planted pattern Mv matches a planted rooted tree Tn if Mp

occurs as an induced subtree starting at the planted root, that is, the branch
structure and node degrees (except for leaves in A4P) match.

For example, in figure 1.1 the planted pattern matches the planted tree a, but
not b.

In the more general case, we could mark up nodes in the pattern AAP as
filled and empty and only demand that the degree of filled nodes matches the
degree of the corresponding node in Tn, while unfilled nodes in A4P match nodes
of any degree in Tn. Depending on the resulting structure, this may make the
problem quite a bit more difncult; see section 1.5 for some examples. The default
case corresponds to the general case where all internal nodes are filled and the
leaves are empty. For stars, .M consists of a (filled) node with exactly k (empty)
connected nodes.

In the following, we will take the graph from figure 1.2 as example pattern A4.
Our basic idea for counting patterns is to create all trees of size n by creat-

ing them recursively from the bottom up and counting patterns when they first
appear. To do so, we have to consider all possibilities how they might appear.

The first step is to create all planted patterns from a pattern. We get all
planted patterns for a pattern by taking each leaf in turn and planting the pat-
tern on the edge from the leaf to the connected internal node. Multiple leaves
connecting to the same internal node only give one new planted pattern. If any
of the planted patterns we construct in this way matches at the root during
the recursive creation of all trees, the corresponding tree contains a new pattern
occurrence we need to count.

For the example pattern, we arrive at three planted patterns, see figure 1.3.
The next step follows from noticing that these planted patterns usually have

heights greater than 1, while the recursion creating the trees (attaching 0 , 1 , . . .
nodes to a node) is only one level deep. We adapt to this by Splitting the pattern
into subpatterns, each of height one, and matching those instead.

Another problem is that some of those subpatterns occur in multiple places,
so we have to identify and handle these cases appropriately. And of course, we
want all of this to be done automatically.

Let us begin by formulating the proposition describing the generating func-
tions for the subpatterns and their relation with the generating function of trees.

CHAPTER 1. PATTERNS IN TREES 12

a

Figure 1.1: Planted pattern matching: a matches the pattern, b does not

O

i

Figure 1.2: Example pattern

CHAPTER 1. PATTERNS IN TREES 13

Figure 1.3: Planted patterns for graph from figure 1.2

Let pn,m denote the number of planted rooted trees with n nodes and m
occurrences of the pattern A4 and

P = P{x, u) = ^2 pW|
xnum

n,m=0
n\

the corresponding generating function.
We also need the following definition of a dependency graph for a system of

equations:

Definition 6. For a System of equations aj = Qi(ai,..., an), i = 1 , . . . , n, where
each Qi(a,i,..., an) is a formal power series in a,, we define the following graph:
Create one node for each <2j. Draw a directed edge from a, to a,j if and only if

We call this graph the dependency (di)graph of the system of equations.

Proposition 1. (Planted Rooted Trees) Let A4 be a pattern. Then there
exist a certain number L of avxüiary functions a,j(x, u) (0 < j < L — 1) with

h-\

p{x,u) =
j=o

CHAPTER 1. PATTERNS IN TREES 14

and polynomials Pj(yi, • • • ,UL,U) (1 < j < L — 1) with non-negative coefficients
such that

ao(x,u) = xe
ao^)+-+-L-l(x,u) _XJ2 p^aoix,«),..., aL^(x,u), 1)

aL-i{x,u) = x- PL-i(ao(x,u),... ,aL-i(x,u),u). (1.1)

Furthermore,
L - l

where f <c g means that all Taylor coefficients of the left hand side are smaller
than or equal to the corresponding coefficients of the right hand side.

Moreover, the dependency graph of this System is strongly connected, that is,
there is a path from every node to every other node.

We will now describe algorithms to convert a given pattern to a System of
polynomial equations of this type.

1.3.2 Conversion Algorithms

The goal of the algorithms in this subsection is to derive a description for the for-
est of the planted subtrees induced by a given pattern in terms of disjoint unions
of classes of subtrees. These classes of subtrees themselves are recursively defined
as unions and Cartesian products of these classes. The resulting recursions then
describe the autocorrelation of the pattern. The original non-disjoint subtrees
can be expressed as unions of the disjoint classes of subtrees, and thus we can
use our knowledge about the disjoint classes to solve the original problem. We
proceed in two steps and introduce two algorithms below:

1. We convert a given pattern into a recursive description of the forest of
its planted subtrees. This calculation is reminiscent of the DAGification
process of Computer science (see for example [ASU86]), which aims at com-
pacting an expression tree by sharing repeated subexpressions. This con-
version results in recursive equations between the classes corresponding to
the planted subtrees of the original pattern. However, this description is
still ambiguous: the intersection of two classes need not be empty.

2. We disambiguate the recursive description by determining a partition of
the class p of all trees that is better adapted to the family of classes for our
pattern. In other words, we split the non-disjoint classes into smaller ones,

CHAPTER 1. PATTERNS IN TREES 15

so that no two new classes have a non-empty intersection; meanwhile, we
update the recursive descriptions of the original patterns in terms of these
disjoint classes.

In view of the algebraic nature of the recursive equations for classes of trees—
one could even speak of their "polynomial" nature—we introduce the notation
® i g / £j for the disjoint union of classes ti, {JieIU for the not necessarily disjoint
union of classes, and ® [= 1 U to mean the Cartesian product of classes U. All
three operations are commutative, <g> binds stronger than © or U, and ® is also
distributive over © and U. The products of classes of trees £; are thus, in a way,
commutative "monomials".

Additionally, let A to denote a generalized integer partition in the sense that a
part may be zero. The notation £(X) denotes the length of a generalized partition
(including any zeroes).

DAGiflcation of the Forest of Planted Subtrees of a Pattern

The DAGification algorithm needs to remember the sets of classes associated
with the children of each node it has dealt with, as well as the class that has
been assigned to earlier occurrences of such children classes. The way to do so
is by operating an associative table that assigns a class name U to products of
the form ® ,=i t\j • This table is called the "uniquification table" in the following
algorithm description.

Note that we give a description of the algorithm that takes the graph structure
of the pattern as its input, but we could equivalently start with some representa-
tion of any rooted covering tree of the pattern, from which we could first compute
the adjacency lists.

Input: graph structure of the pattern, given by adjacency lists

Output: a minimal recursive description of the forest of planted subtrees of the
pattern, of the form

for 1 < i < m

with the constraint X* < i for all i and j

Algorithm:

(Initiaüzation) Introduce the exceptional class to to denote the planted tree con-
sisting of a Single node (in other words, a leaf)

CHAPTER 1. PATTERNS IN TREES 16

11

Figure 1.4: Labeled example pattern

(Main loop) For all leaves £ of the pattern, that is, for all nodes whose adjacency
list consists of a Single element, perform a depth-first traversal of the tree,
starting from l; during this recursive calculation, at each node n:

1. if the node is a leaf, return the class t0

2. eise, recursively determine the class associated with each child of n

3. write the subtree rooted at n as a (commutative) product n = t\t <g>
• • • ®t\T of the classes obtained in the previous step

4. look this product up in the uniquification table to check whether it
has already been assigned a class ti

5. if not, create a new class ti, remember its definition ti = ir, and assign ti
to the product TT in the uniquincation table

6. return the class U, whether it was just created or found by lookup

(Conclusion) Return the sequence of definitions of the form ti = ir, for i —
1,2,...

This algorithm only identifies absolutely identical subtrees, it does not guar-
antee that any two resulting ij and tj have an empty intersection (and in general,
there will be non-empty intersections).

Starting from the example pattern of figure 1.2, we label the nodes from 1 to
11 as in figure 1.4. This numbering corresponds to a depth-first traversal starting
from the central node 1, which we arbitrarily chose as starting point, dealing
with its neighbors from right to left. As a consequence, the implicit rooting of

CHAPTER 1. PATTERNS IN TREES 17

the pattern is from the central-most node (Case b in figure 1.6). We thus have
the adjacency lists

1^(2 ,6 ,7} , 2 -{1 ,3 ,4 ,5} , 3 -> {2}, 4 - {2}, 5 ^ (2 } ,
7^(1,8,9,10,11}, 8 M { 7 } , 9 ^ (7 } , 10 - {7}, 11

where a node is mapped to its set of neighbors. We make the assumption that
leaves and adjacency lists are processed in increasing order of the node numbering.

We iterate over all leaves. The first leaf to consider is 3. By a depth-first
traversal from it, the bottom-up construction of planted subtrees first considers
the subtree planted at 8, corresponding to the Special class £o; the subtrees planted
at 9, 10, and 11 are recognized to be the same class. Next, a class £i = £®4 is
introduced to correspond to the subtree planted at 7, followed by a class £2 =
t\ <g> to for the subtree planted at 1, and by a class £3 = £2 ® ̂ f2 for the subtree
planted at 2.

The next leaves, 4 and 5, introduce no additional classes and return the same
class £3 as leaf 3.

Dealing with leaf 6, the depth-first traversal first considers the branch planted
at 2, and introduces a class £4 = £®3 for the subtree planted at 2, then a class £5 =
£4 ® £1 for the subtree planted at 1, after realizing that the branch planted at 7
has already been considered and assigned the class £1.

The last leaf to introduce new classes is 8, since leaves 9, 10, and 11 correspond
to isomorphic planted structures: the subtree planted at 2 has already been
considered and returns the class £4; the subtree planted at 1 now gives rise to a
class £6 = £4 <8> £o! the subtree planted at 7 finally introduces a class £7 = £ß <E> £®3-

Summing up, the algorithm returns:

£l — £0 1 £2 — £l <Ä> £0, £3 — £2 <&> £0) £4 — £0)

£5 = £4 ®tu U = U®to, £7 = t6 ® £®3.

Disambiguating the Autocorrelation of a Tree Pattern

The idea of the algorithm below is to consider each class £j of trees in turn,
introducing its defining equation

U =

into the calculation, while maintaining (and refining) a partition

i=0

CHAPTER 1. PATTERNS IN TREES 18

of the total class of plane trees. To be able to do so, it is crucial that the
recursive equation for U refers to classes t3- with j < i only, starting with the
Special class to = V-, the füll class of patterns.

At any stage in the algorithm, the class of r-ary trees is given as the disjoint
union of Cartesian products

r

aXj where A = { A : £(X) = r, 0 < X3,< n } .0 ® Xj
AeA j=l

In the process of the algorithm below, each class U gets represented in a "poly-
nomial" form like above, indexed by a subset A of the set of partitions of a
given length. Computing intersections and differences of classes means merely
Computing intersections and differences of the A in their representations.

In this setting, direct sums and tensor products behave like algebraic oper-
ations in a polynomial setting: in particular, a tensor product of direct sums
expands by distributivity as a direct sum of direct products.

Input:

• recursive descriptions of classes of trees of the form

A(i) for 1 < i <

with the constraint Â < i for all i and j

Output:

• an integer n implying a partition

i=0

a representation of each ij of the form

U = HJH a,j for 0 < i < m and /j C {0 , . . . , n}
jeh

a recursive description of the aj of the form

^ f o r l < « < n ,

a,Q being implicitly described as p \ ®"= 1 Oi

CHAPTER1. PATTERNS IN TREES 19

Algorithm:

(Initialization) Start with the trivial partition p — ao for n = 0, the Single
representation i0 = ßo, that is, IQ = {0}, and the trivial recursion ao = ao,
that is, Ao = {(0)}

(Main loop) For k from 1 to m do

1. replace each U in the definition of tk with its current representation
in terms of the aj, expand, and set s to the result, so as to get a
representation of tk of the form

s = © ® a*i for some

2. for i from 1 t o n while s ^ 0 do

(a) set 6 to ai fl s and An to Aj D A ^
(b) if 6 ^ 0, then do

i. set b' to di\s

ii. if V ^ 0, then

A. create a new a,j with description b': increment n before set-
ting an to b', that is, before setting An to Aj \ A(s)

B. split a,i into â © an in the descriptions of the aj, that is,
add n into each set Ij containing i

C. split a,i into aj ©an in the representations of the tj, b, and s,
that is, for each partition in each of the Aj, An, and A^s\
add n when the partition involves i

D. set a,i to b by setting A» to An

iii. set s to s\b, which is also s \ aj, and Update A^s^ by setting
it to A ^ \ Ai

3. if s ^ 0, then

(a) create a new aj with description s: increment n before setting an

to s, that is, before setting An to A^s^
(b) split ao into ao © an in the descriptions of the aj, that is, add n

into each set Ij containing 0

(c) split ao into ao©an
 m the representations of the tj, that is, for each

partition in each of the Aj, add n when the partition involves 0

4. represent tk as the union of all those a^s that have contributed a non-
empty b at step (2b) and of a„ if a new aj was created at step (3a),
that is, create the corresponding set Ik consisting of the contributing is,
together with n if relevant

CHARTER 1. PATTERNS IN TREES 20

(Final step) Return n, the representations of the £j for 1 < i < m, the descrip-
tions of the a* for 1 < i < n

For example, running the algorithm with input from the example of the pre-
vious section goes through the following stages (where we keep expressions in
factored form):

k = 1: from £i = a®4, we derive t\ = ax for a\ = (ai © ao)®4.

k = 2: from £2 = ai <8> («i © ao), we derive t\ = ai, £2 = a2 for a,\ = p®4,
a2 = ai <S> p, where p = a? © ai © ao-

A; = 3: from £3 = 02® (a2 © ai © a0)®2, we derive <i = ai , 2̂ = ^2, £3 = «3 for
ai = p®4, a2 = ai (gi p, 03 = a2 0 p®2, where p = a3 © a2 © a\ © a0.

/c = 4: from £4 = (03 ffi a2 © ai ffi ao)®3, we derive t\ = ai , t2 = 02, £3 = 03, £4 =
04 ©03 for ai = p®4, a2 = ai<g)p, a3 = a2<g)p®2, 04 = (a4©a3©ai©ao)® 3 ,
where p = a^ © a3 © a2 © ai ffi ao-

k = 5: from £5 = (04 ffi 03) ® a i , we derive £1 = ai , £2 = «5 ffi a2, £3 = 03,
£4 = ß4©O3, *5 = «2 for 01 = p®4, a2 = (a4ffia3)<g)ai, a3 = (a5ffia2)<g)p®2,
04 = (04 © 03 © ai © ao)®3, a,*, = (a5 © 0,2 © ai © ao) <8> ai , where p =
05 © 04 © 03 © 02 © ai © ao-

k = 6: from £6 = (04 © a$) ® (a5 ffi a4 © 03 © a2 © a± © a0) , we derive £1 = a i ,

£2 = &5 © «2, ^3 = «3, £4 = «4 © «3, *5 = ^2, *6 = «6 © a2 for Oi = p®4,
a2 = (a4 © a3) <g> ax, a3 = (a5 © a2) <8>p®2, a4 = (a6 ffi a4 ffi a3 ffi aY © a0)®3,
a5 = (a 6 ©a 5 f f ia 2 ©ai©ao)®a 1 , a6 =
where p = aß © a5 © 04 © a3 © a2 ffi a\

k = 7: from £7 = (a6©a2)<g>(a6©a5©a4ffia3ffia2©ai©ao)®3, we derive £1 =
£2 = 05 © 02, 3̂ = «3) £4 = 14 ffi 03, £5 = a2, £Ö = Ö6 © a2) *7 = Oi for
ax = (a6 © a2) ® p®3, a2 = (a4 © a3) (g) (a7 © ai) , a3 = (a5 © a2) <g) p®2,
a4 = (a7©a6ffia4©a3©ai©ao)®3 , a5 =
a6 = (a6©a5©a4ffia3ffia2ffiao)(gi(a4ffia3), a7 =
where p = 07 © a^ © a5 ffi 04 ffi 0,3 © 02 ffi a\ © a

CHAPTER 1. PATTERNS IN TREES 21

a

Figure 1.5: Possible planted roots in the pattern

Creating the Corresponding Polynomials

Let Ij(lo,... ,IL-I) be the indicator function of a term
- I) = 1 if there is a term Jö a*

JQ1 a'*
aj a nd

in a,j, that is,

• • •, h-i) = 0let /j (Zo, • •
otherwise.

Further, let fc(d, Zo> • • • > IL-I) denote the number of occurrences of the pattern
M. at a node of degree d with U subtrees of type a*.

We compute k(d,lo, • • •, / L - I) iteratively. The combinations introducing a
new occurrence of the pattern are identified by looking at the original pattern
and rooting it in all nodes next to leaves. We do not have to root in nodes that
have no neighboring leaves, because they cannot cause new patterns (there is no
place for the additional edge to the planted root). We identify the subtrees that
have to meet to form this pattern and express those subtrees with the help of the
üi from above in the following form:

• If all of dt! , . . . , ain are necessary (duplicate indices allowed) for one occur-
rence, we write a^ <g) • • • <8> aim = (££)"= i Q-?*'•

• Multiple alternate ways to get new patterns (e.g., because two or more
nodes have the same degree) are combined with U.

The corresponding summand for k is created according to the following rules:

• xl)y *-> x + y

For our example in figure 1.3 we have three possible rootings which we can
see in figure 1.5. These correspond to the classes £3, £5, and tj, which correspond
to the disjoint classes 0,3, 0,2, and ai (in general this will be more involved).

CHAPTER 1. PATTERNS IN TREES 22

• ai: Each tß-subpattern attached to a node of degree 5 produces a new
pattern. The corresponding a-term is a2Ua&, and this results in the addition
of the term l2 + k to A;(5, lo, ..., l7).

• a2: Each pair of t\ and £4 attached to a node of degree 3 produces a new
pattern. (Please note that in the case of planted roots, there is only space
for one pair, since the third edge is needed to connect the planted root.)
The a-term in this case is {a,\ U a7) <g> (a3 U a4), and l\l^ + l\U + hh + Uh
gets added to k(3, lo, • • • , h)-

• a^: Each t^ attached to a node of degree 4 produces a new pattern. The
a-term is a<i U a5, and we thus add l<i + 1$ to fc(4, Zo, • • • > h)-

Thus k(d, lo, • •., £7) is only non-zero for d equal to 3, 4, or 5, with values as
specified above.

The next step is to convert the ÜJ descriptions, which we got as the result of
the uniquification algorithm 1.3.2, to polynomials.

Convert to a polynomial using the following rule:

L - l

7 m i !i=o 7=0 m i !

Note: Please observe in particular that 1 gets added to the node's degree
(in the first argument of k) for the edge planting the root, which can not be
used to create patterns but counts towards the total degree. Compare also with
equation (1.5) below.

Now set

— 71 iJL-\i U>) — 7

for 1 < j < L — 1. All subpatterns that are part of a match are handled in the
Pj-, 1 < 3' < L — 1, since Po only covers the tree types not occurring as subtrees
in the pattern, and thus

L - l

j=\

does not depend on u.
Finally, let a j ; n m denote the number of planted rooted trees of type a,j with

n nodes and m occurrences of the pattern A4 and set

aj(x,u) = ^2 ar,n,
xnum

m 1n!
n,m=O

CHAPTER 1. PATTERNS IN TREES 23

By this definition it is clear that

a,j(x,u) = x- Pj(ao(x,u),... ,aL-i(x,u),u).

Hence, we obtain the proposed structure of the System of functional equations
(1.1).

In our example, after converting the descriptions from above into functions,
we arrive at the following System of equations for the a,i(x, u):

7 1 °° 1 V
ao(x,u) = a0 = x + x^2ai + 9X(ao + 02 + 5̂ + a^f + xV] —

,u) = a1 = x(xrM4(a2 + a6)4

3(

*=0 n=5n- \i=0

M(a2 + a6)3 (a0 + ax + a3 + a4 + a5 + a7)

D

-u2(a2 + a6)2 (a0 + ax + a3 + a4 + a5 + a7)2

1 \
-M(a2 + a6) (o0 + ai + a3 + a4 + a5 + a7) 1

a2(x, u) = a2 = Mi(a3 + a4)(ai + a7)

a3(x,«) = a3 = s

+ -M2(a2 + a5)
2(a0 + ai + a3 + a4 + a6 + a7)

+ -u(a2 + a5)(a0 + ai + a3 + a4 + a6 + a7)2

a4(x, u) = a4 = -x(a0 + ai + a3 + a4 + a6 + a7)3

o

a5(x,u) = a5 = x (-(ai + a7)2 + (ax + a7)(a0 + a2 + ab + a6)

a6(x,u) = a6 = x(- (a 3 + a4)2 + (a3 + a4)(a0 + a2 + a5 + a6) J

a7(x, u) = a7 = — x (a0 + ai + a3 + a4 + a5 + a7) .

In order to complete the proof of proposition 1 we just have to show that
the dependency graph is strongly connected. By construction, a0 depends on
all functions a^. Thus, it is sufficient to prove that every a* (1 < i < L) also
depends on a0. For this purpose consider the subtree of A4 that was labeled by
^ and consider a path from the root to an empty node. Each edge of this path
corresponds to another subtree of A4, say aj2, ai3,..., air. Then, by construction
of the system of functional equations above, a* depends on a^, aj2 depends on

CHAPTER 1. PATTERNS IN TREES 24

ai3 etc. Finally the root of air is adjacent to an empty node and thus (the
corresponding generating function) depends on ao- This completes the proof of
proposition 1.

The next step is to find equations for the exponential generating function of
rooted trees (where occurrences of the pattern are marked with u). We set

,m~~
^ x'-u

r(x,u)= ^ r„, n]

n,m=O

where rn^m denotes the number of rooted trees of size n with exactly m occurrences
of the pattern .M.

Proposition 2. (Rooted Trees^ Let A4 be a pattern and let

ao(x,u),...,aL-i(x,u)

denote the auxiliary functions introduced in proposition 1. Then there exists a
polynomial Q(yo, • • •, VL-U U) with non-negative coefficients and Q(yo, • • •, yL-i, 1)

L~1 such that

r(x,u) = G(s,M,ao(x,u),...)aL_i(x,u)), (1.3)

where

G(x,u,yo,-.-,l/L-i) = xQ(yo,...,yL^,u) + x (e^=°yi - Q(y0,... ,yL-i, 1)) •
(1.4)

In principle, the proof directly continues the proof of proposition 1. We recall
that a rooted tree is just a root with zero, one, two, . . . planted subtrees, i.e., it
can be described as a disjoint union of rooted trees of the form a^ <g> • • • <g) üjd.
Further, set

Qd(y0,...,yL-l,u)= V Id(lo,...JL-i)ukWo-l^ff-). (1.5)

Then by construction

r{x, u) = x^2 Qd(ao{x, u),..., aL_i(x, u), u).
d>0

Note that Y^d>o Qd{yo, •••, VL-I, 1) = eVo+'"+VL-1. Let D denote the set of degrees
of the internal (filled) nodes of the pattern; then Qd(yo, • • • ,VL-I,U) does not
depend on u if d is different from all degrees in D. With

QiVo, • • • » V L - I , U) ••=
d&D

CHAPTER 1. PATTERNS IN TREES 25

a o

b ? c 0

Figure 1.6: Possible roots in the pattern

we obtain (1.3) and (1.4).
Again, please note the difference of the first argument of k(d, /o, • • •, IL-I) of

equation (1.5) to equation (1.2) above. There, 1 was added to the first argument
for the edge to the planted root, which is not needed here.

We illustrate the proof with our example. For convenience, let ro = TQ{X,U)

denote the function

where p = ÜQ + • • • + a-j. TQ might be also interpreted as a catch-all function
for the "uninteresting" subtrees - just a root x with an unspecified number of
planted trees attached, except the ones we handle differently, namely the cases
d e D = {3,4,5}. The generating function r = r(x, u) for rooted trees is then
given by

r = r(x, u) =r0 + x

m.i>0

x - - - - - • - •

ll°i
I x u

7714+7717 .

compare also with figure 1.6.

As above we have tn>Tn = rnjTn/n, where tnm denotes the number of unrooted
trees with n nodes and exactly m occurrences of the pattern .M. This relation
is sufficient for our purposes. It is easy to express the corresponding generating

CHAPTER 1. PATTERNS IN TREES 26

function t(x, u) by

t(x,u) = r(x,u)- ~p{x,u)2

u — 1
((i(x,u) + a7(x,u))(a2(x,u) + a6(x,u)

+ (a2(x,u) + a5(x,u))(a3(x,u) + a4(x,u))).

The correction term comes from pairs of planted rooted trees that produce an
additional pattern A4 when the planted roots are grafted together - (ii ,^) a n d

only two pairs of trees where an additional pattern appears.

1.4 Asymptotic Behavior

Since we are not interested in the actual number of occurrences of the pattern,
but only in the asymptotic behavior, we do not have to compute explicit formulae
from the System of equations, but instead will apply a slightly adapted result from
[Drm97], see section 1.4.1.

The theorem we want to prove in this section is:

Theorem 1. Let M. be a given finite tree. Then the limiting distribution of the
number of occurrences of M. (as induced subtrees) in a tree ofTn is asymptotically
normal with mean ~ fin and variance ~ a2n, where ß > 0 and a > 0 depend on
the pattern A4.

1.4.1 Asymptotics of Analytic Systems
The following theorem is a slightly modified Version of the main theorem from
[Drm97]. Let F(x, y, u) = (Fi(x,y, u) , . . . , FN(x, y, u))' be a vector of func-
tions Fj(x, y,u), 1 < j < N, with complex variables x, u = (z\,... ,Zk)', y =
(yi, • • •, VN)' which are analytic around 0 and satisfy Fj(0, 0, 0) = 0, 1 < j < N.
We will be interested in the analytic solution y = y(x, u) = (yi(x, u) , . . . , yjv(x, u))'
of the functional equation

y = F(z,y,u) (1.6)

with y(0, 0) = 0, i.e., the (unknown) functions Vj — yj(x, u), 1 < j < N, satisfy
the System of functional equations

t/2 = F2(x,y1,y2,...,yN,u),

VN = FN(x, yi, y2, • • •, yN, u).

CHAPTER 1. PATTERNS IN TREES 27

If the functions Fj (x, y, u) have non-negative Taylor coefficients then it is easy
to see that the Solutions yj(x, u) have the same property. (You only have to solve
the System iteratively by setting yo(x,u) = 0 and yj+i(x, u) = F(x,yj(x, u),u)
for i > 0. The limit y(x,u) = linij_ooyj(:r, u) is the (unique) solution of the
System above.)

Now suppose that G(x, y, u) is another analytic function with non-negative
Taylor coefficients. Then G(x, y(x, u), u) has a power series expansion

with non-negative coefficients c^m. In fact, we will assume that for every n > no
there exists m such that cTlim > 0.

Let Xn (n > no) denote an iV-dimensional discrete random vector with

Pr[Xn = m] := ^ , (1.7)

where

are the coefficients of

n > 0

The following theorem shows that (under suitable analyticity conditions) Xn has
a Gaussian limiting distribution.

Theorem 2. LetF(x,y, u) = (Fi(x, y, u) , . . . , FN(x,y, u))' be analytic functions
around x = 0, u = (ti1 ; . . . , UN)' = 0, y = (yi,..., J/AT)' = 0 such that all Taylor
coefficients are non-negative, that F(0,u, y) = 0, that F(x,u, 0) ^ 0, and that
there exists j with F%%.(x,y,u) ^ 0. Furthermore assume that the region of
convergence of F is large enough such that there exists a non-negative solution
x = x0, y = yo of the System of equations

O = de t (I -F y (x ,y , l)) ,

inside it. Let
y = y(x, u) = (yi(x, u) , . . . , yN(x, u))'

denote the analytic Solutions of the system

y = F(x,y,u) (1.8)

and assume that Cnj > 0 (1 < j < N) for n > n0, where yj(x, 1) = Sn>0
cnj2 ; n-

Moreover, let G(x, y, u) denote an analytic function with non-negative Taylor

CHAPTER 1. PATTERNS IN TREES 28

coefficients such that the point {xo,y(xo, 1), 1) is contained in the region of con-
vergence. Finally, let the random vector Xn (n > no) be defined by (1.7).

If the dependency graph Gp = (V, E) of the system (1.8) in the unknown
functions y\(x, u) , . . . , yjv(x, u) is strongly connected then the sequence ofrandom
vectors Xn admits a Gaussian Umiting distribution with mean value

(n->oo)

and covariance matrix

Cov(Xn,Xn) = En + 0(l) (ra->oo).

The vector fi is given by

and the matrix E by

where x = x(u) (and y = y(u) = y(x(u),u)^ is £/ie solution of the (extended)
system

y = F(x,y,u), (1.9)
O = det(I-F y(x,y,u)) . (1.10)

The proof of theorem 2 is exactly the same as that given in [Drm97]. The
main observation is that the assumptions above show that the Solutions yj(x,u)
admit a local representation of the form

yj(x, u) = g^x, u) - hj(x, u)Jl -

(where u is close to 1 and x close to XQ — x(l)). The assumption that the de-
pendency graph is strongly connected ensures that the location of the singularity
of all functions yj(x,u) is determined by the common function z(u). Thus, we
get the same property for G(x,y(x,u),\i):

G(x, y(x, u), u) = g(x, u) - h(x, u)Jl--^- (1.11)
V xu)

It is then well known (see [BR83a], [Drm94a]) that a square-root singularity
(plus some minor conditions; note, for example, that the assumption Cnj > 0 for
n > n0 ensures that XQ = x(l) is the only singularity on the radius of conver-
gence of G(x, y(x, 1), 1) and that c„ >' 0 for sufficiently large n implies asymp-
totic normality of the coefficients (in the sense introduced above) with mean and
covariance expressed in terms of derivatives of a;(u).

CHAPTER 1. PATTERNS IN TREES 29

In what follows we comment on the evaluation of fi and E. The problem is to
extract the derivatives of z(u), which is the solution of the System (1.9), (1.10)
and is exactly the location of the singularity of the mapping x i—• y(x,u) when
u is fixed (and is close to 1).

Let x(u) and y(u) = y(z(u),u) denote the Solutions of (1.9), (1.10). Then
we have

y(u) = F(x(u),j/(u),u). (1.12)

Taking derivatives with respect to u we get

yu(u) = Fx(x(u), y(u), u)xu(u)+Fy(a;(u), y(u), u)yu(u)+Fu(z(u), y(u), u):ru(u).
(1.13)

In particular, for u = 1 we have x(l) = XQ and y(l) = yo and, of course

det(I-Fy(zo,yo,l)) = 0.

Since Fy is a non-negative matrix and the dependency graph is strongly connected
there is a unique positive eigenvalue of multiplicity 1 which equals 1. Thus, I — F y

has rank N — \ and has (up to scaling) a unique (left) eigenvector b':

b ' (l -F y (z o ,yo , i)) = O.

From (1.13) we obtain

(I - Fy(x0, y0, l))yu(l) = Fx(x0, y0, l)xu(l) + Fu(x0, y0,1).

By multiplying b' from the left we thus get

Xu[1)~ b'Fx(xo>yo,l)

and consequently
jLb'FM(xo,yo,l)
x b T ^ x y l) '

The derivation of E is much more involved. We have to derivate (1.12) twice
to get some information for xu u(l) . However, we also have to know y u(l) ; which
can be calculated from the first derivative of (1.12) and from the derivative of

de t (I -F y (x (u) ,y (u) , l)=0 .

This is very messy. Even if the System of equations consists just of one equa-
tion and u = u is one-dimensional we get a rather involved formula, compare
with [Drm94a].

CHAPTER 1. PATTERNS IN TREES 30

1.4.2 Applying the Theorem

It is immediately clear that theorem 2 applies to the kind of problem we are
interested in. The assertions of propositions 1 and 2 by construction exactly fit
the assumptions of theorem 2.

The only missing point is the existence of xo, ao of the System

a = F(x,a,l), (1.15)
0 = det (I -F a (x ,a , l)) . (1.16)

Since the sum of all unknown functions p(x, u) is known for u = 1:

p(x, 1) = p(x) = V n71"1^- = 1 - W l - ex + • • • ,
n

it is not unexpected that XQ = 1/e.

Proposition 3. Let a = F(x, a, u) be the System offunctional equations ofpropo-
sition 1. Then XQ, ao uniquely exist and XQ = 1/e.

Proof. Set u = 1 and consider the solution a(x, 1) = {ao(x, 1),. . . ,a£_i(x, 1)).
Since the dependency graph is strongly connected it follows that all functions
ÜJ(X, 1) have the same radius of convergence which has to be XQ = 1/e, and all
functions are singular at x = XQ. Since a,j(x, 1) < p(x, 1) for 0 < x < XQ it
also follows that a,j(xo, 1) is finite, and we have a(xo, 1) = F(xo,a(a;o, 1), 1). If
det(I — Fa(a;o,a(2;o, 1), 1)) ^ 0 then the implicit function theorem would imply
that there is an analytic continuation for a,j(x, 1) around x = XQ which is, of
course, a contradiction. Thus, the System above has a (unique) solution. D

Consequently, it follows that the numbers rn^m have a Gaussian limiting distri-
bution with mean and variance which are proportional to n. Since tn,m = rn>m/n
we get exactly the same law for unrooted trees. This proves theorem 1.

Before we demonstrate this kind of technique with our example we State a
formula for the mean value ß.

Proposition 4. Let XQ = 1/e and ao be given by proposition 3 and let Pj(y,u)
(1 < j < L — l) be the polynomials of proposition 1. Then ß (of theorem 1) is
given by

i=\

CHAPTER 1. PATTERNS IN TREES 31

Proof. Formula (1.17) follows from (1.14). Since

F(x,a,u) =

we get

Fa = x

\-aL-i _ y»£-l p.

•M.,00

\

xP2(a,u)

pa0-\ hai,-i _ y»£-l p. \

•* l,OL_i

Since ao(xo, 1) + - • •+az,_1(x0,1) = p(x0,1) = 1 we have Xoe«o(a;o,i)+-ai_1(xo,i) = 1#

Consequently the sum of all rows of F a equals (1 , 1 , . . . , 1) for x = xo = 1/e. Thus,
the vector b ' = (1 , 1 , . . . , 1) is the (up to scaling) unique left eigenvector of I —Fa.

It is now easy to check that

and that

This completes the proof of proposition 4.

,«(ao, 1).

D

We now come back to our example and explicitly calculate the mean value
/i. In a first step we have to evaluate our generating functions at XQ = 1/e and
u = 1, which involves solving a System of equations.

25

24e 24e2 1152e3 '

1 2 e - l

72e3

1 2 e - l

3! V 72e3

2!2! V 72e3
11 72e3 +

+ X7
3! V 72e3 1 -

1 2 e - 1

72e3

CHAPTER 1. PATTERNS IN TREES 32

2 ! . ' ^ l l l -

Furt her more, we have

^o,n(ao, 1) = 0,

~ 432e3 '
P2,u(ao, 1) = 0,
^3,n(ao, 1) = 0,

48e-l\

\ (7

a6)4 + —(a2 + a6)3 f a0 + a : + a4

1 /
—(a2 + a6)2 f ao + a i + a4

\ (7

^y(fl2 + a6) f a0 + a i + a4

V »=5
12e - 1

P5,u(ao, 1) = 0,

()3 + (02 + aö)2(ao + ai + a3 + a4 + a6 + a7)

, 1) = 0.

N9 4 8 e - la3 + a4 + a6 + a7y =

CHAPTER 1. PATTERNS IN TREES 33

Thus we get:

384e - 19 = 0-002715601434...

j=0

It is interesting to observe that (in this example) ß can be written as a rational
polynomial in 1/e. It is not obvious whether such a property remains true in
general. Nevertheless, we can say that ß is algebraic in 1/e since the System
(1.15) and (1.16) is an algebraic one.

1.5 Extensions and Generalizations

In what follows we list some obvious and some less obvious extensions.

1.5.1 Several Patterns
Let JAi, . . . , .Mfc be k different patterns. Then the problem is to determine
the Joint (limiting) distribution of the number of occurrences of .Mi, . . . , M.k
in trees of size n. Using the same techniques as above (splitting the patterns
into planted subpatterns; see the algorithm in section 1.3.2) we again obtain a
System of functional equations. The only difference is that we now have to count
occurrences of M\, . . . , M.^ with different variables ui,...,Uk, which can however
be done in the same fashion as for a Single u. In view of theorem 2 multiple us
make no difference and we obtain a multivariate Gaussian limiting distribution.

1.5.2 FiUed and Empty Nodes
In our model we have distinguished between internal (nlled) and external (empty)
nodes of the pattern Ai , where the degrees of the internal (filled) nodes have to
match exactly. It is also possible to consider the following more general matching
problem: Let M. again be a finite tree where this time arbitrarily chosen nodes
are filled and the remaining ones are empty. Now we say that A4 matches if it
occurs as a subtree such that the corresponding degrees of the filled nodes are
equal whereas the degrees of the empty nodes might be different. The counting
procedure above can be adapted to cover this case, too, however, it is a little bit
more involved. For example, if leaves of the pattern are filled nodes then these
nodes have to be leaves wherever the pattern occurs. These kinds of situations
also lead to Systems of functional equations for which the dependency graph
will not be strictly connected. More precisely, some of the functions a,j(x,u)
are explicitly given in the System. Nevertheless, by substituting these explicit
expressions one gets a smaller System with a strongly connected dependency
graph.

CHAPTER 1. PATTERNS IN TREES 34

1.5.3 Pattern Containing Paths of Unspecified Length

It might also be interesting to consider patterns where specific edges can be
replaced by paths of arbitrary length. It turns out that this case in particular is
more involved since a natural partition of all planted rooted trees is now infinite
- we are confronted with an infinite System of equations for the corresponding
generating functions. In such a case theorem 2 cannot be applied any more.

Nevertheless, it seems that the approach of Lalley [LalO2] that is applicable
for infinite Systems of functional equations in one variable can be generalized to
a corresponding generalization of theorem 2 to proper infinite Systems. Thus, we
can expect a Gaussian limit law even in this case.

1.5.4 Simply Generated Trees
Simply generated trees have been introduced by Meir and Moon [MM78] and are
proper generalizations of several types of rooted trees. Let

(p(x) = <po + <pix + (p2x
2 -\

be a power series with non-negative coefficients; in particular we assume that
<PQ > 0 and tpj > 0 for some j > 2. We then define the weight UJ(T) of a finite
rooted tree T by

where Dj(T) denotes the number of nodes in T with j successors. If we set

\T\=n

then the generating function

satisfies the functional equation

y(x) = xip(y(x)).

In this context yn denotes a weighted number of trees is size n. For example, if
(Pj = 1 for all j > 0 (that is, <p(x) = 1/(1 — x)) then all rooted trees have weight
UJ{T) = 1 and yn = pn is the number of planted plane trees. If tpj = \/j\ (that
is, (p(x) = ex) then we formally get labeled rooted trees etc.

We can proceed in the same way as above and obtain a system of functional
equations that counts occurrences of a specific pattern in simply generated trees,
and (under suitable conditions on the growth of tpj) we finally obtain a Gaussian
limiting distribution.

CHAPTER1. PATTERNS IN TREES 35

1.5.5 Unlabeled Trees

Let pn denote the number of unlabeled planted rooted trees and in the number
of unlabeled unrooted trees. The generating functions are denoted by

p(x) = ̂ 2pnx
n and i(x) = ^inx

n.
n>\ n>\

The structure of these trees is much more difficult than that of labeled trees.
It turns out that one has to apply Pölya's theory of counting and an amazing
observation (1.18) by Otter [Ott48]. The generating functions p(x) and i(x)
satisfy the functional equations

p(x) = x"£z(Sk;p(x),p(x2),...,p(xk))
k>0

= x e x p (p(x) + - p (x 2) + - p (x 3) + • • •)

a n d

i(x)=p(x)-±p(x)2 + ±p(x2), (1.18)

where Z{Sk\ Xi,..., xk) denotes the cycle index of the Symmetrie groüp Sk- These
functions have a common radius of convergence p ~ 0.338219 and local expansions
of the form

p(x) = l-b(p- xf'2 + c(p -x) + d(p - z)3 / 2 + O((p- x)2))

and

i(x) _ l±Ml + iLufg. (p _ ,) + Hp _ xfn + O((P- «)»)),
where b ~ 2.6811266 and c = 62/3 ~ 2.3961466, and x = p is the only singularity
on the circle of convergence \x\ = p. Thus, they behave similarly as p(x) and
t(x). We also get

and

Furthermore, it is possible to count the number of nodes of specific degree with
help of bivariate generating functions (compare with [DG99]). Thus, with help of
Pölya's theory of counting we can also obtain a System of functional equations for
bivariate generating functions that count the number of occurrences of a specific
pattern. The major difference to the procedure above is that this System will
also contain terms of the form a,j(xk, uk) for k > 2. Fortunately these terms can
be considered as known functions when x varies around the singularity p and u
varies around 1 (compare again with [DG99]). Hence, theorem 2 applies again
and we can proeeed as above.

CHAPTER 1. PATTERNS IN TREES 36

1.5.6 Forests
First, let us consider the case of labeled trees with generating function t(x, u).
Then the generating function f(x,u) of unlabeled forests is given by

Thus, the Singular behavior of f(x, u) is the same as that of t(x, u) (compare
with [DG99]) and consequently we again obtain a Gaussian limiting distribution
for the number of occurrences of a specific pattern in labeled forests.

The case of unlabeled forests is similar. Here we have

f{x, u) = exp (t(x, u) + -t(x2, u2) + ̂ t(x3, u3) + • • • J .

Of course, we can consider other classes of trees or forests of a given number
of trees.

1.5.7 Forbidden Patterns
It is also interesting to count the number £n0 of trees of size n without a given
pattern. The generating function of these numbers is just p(x, 0) resp. t(x, 0).
One can show that there exists an 77 > 0 such that

-,-rjn

The only thing we have to check is that the radius of convergence of t(x, 0) is
larger than the radius of convergence of t(x, 1). However, this is obvious since
the radius of convergence of t(x, u) (which is the same as that of p(x, u)) is given
by x(u) (for u around 1) and x'(l) < 0.

1.6 MAPLE Source Code

We provide a MAPLE program of an algorithm that generates the corresponding
System of equations for a given pattern tree. When this System is solved, [i can
be computed easily.

The implementation provides a MAPLE module named treepattem with a
single user entry points: TreeToEquations.

TreeToEquations(tree) returns the corresponding system of equations for the
tree pattern given by tree, which is expected in the grammar described by comb-
structfspecificationj from the algolib combstruct package (see http: / /algo. inr ia .
fr/encyclopedia/help.html#specification or the MAPLE online help after
instalhng algolib).

The MAPLE code included below is a modified and extended version of code
originally by Frederic Chyzak.

CHAPTER 1. PATTERNS IN TREES 37

1.6.1 Usage
A sample Session testing the example from figure 1.2 might run as follows:

maple8
IWI Maple 8 (IBM INTEL LINUX)

• _l\l l/L. Copyright (c) 2002 by Waterloo Maple Inc.
\ MAPLE / All rights reserved. Maple is a registered trademark of
< > Waterloo Maple Inc.

I Type ? for help.
> with(treepattern);

[TreeToEquations]

> tree:=Prod(Z[l],Set(
> Prod(Z[2],Set(Prod(Z[i],Epsilon)$i=3..5)),
> Prod(Z[6]»Epsilon),
> Prod(Z[7],Set(Prod(Z[i],Epsilon)$i=8. .11))
>)) ;

tree :=Prod(Z[l], Set(Prod(Z[2], Set(Prod(Z[3], Epsilon),

Prod(Z[4], Epsilon), Prod(Z[5], Epsilon))),

Prod(Z[6], Epsilon), Prod(Z[7], Set(Prod(Z[8], Epsilon),

Prod(Z[9], Epsilon), Prod(Z[10], Epsilon),

Prod(Z[ll], Epsilon)))))

> eqnew:=TreeToEquations(tree):
bytes used=4000192, alloc=3669344, time=0.44
>

The resulting System of equations is not included here by purpose, since it
would fill 11 pages; it does, however, give the same System that we computed
earlier on page 23.

Additional informational and debugging messages can be enabled by setting
infolevelftreepatternj to a value from 1 to 5, where a higher number means more
debugging Output.

1.6.2 Implementation

TreeToEquations (tree) returns the corresponding System of equations for the tree
given in the tree argument.

CHAPTER1. PATTERNS IN TREES 38

The function is split up in many smaller internal functions for better test-
ing and understanding. TreeToEquations itself initializes some module-specific
variables and then calls the following functions in order:

• TreeToPatterns takes a tree as input and labeis it recursively by using
the RecursiveLabeling function, which also fills in the adjacencyTable. The
result is normalized, that is, each unique subtree gets a name t[i]. Addi-
tionally, it creates a list newPatterns which contains all possible ways the
pattern can appear during the recursive creation of all trees.

• PattemsToPartition converts the adjacencyTable into a recursive descrip-
tion of t[i]s by other t[j]s.

• PartitionToSystem implements the algorithm described in section 1.3.2,
that is, it creates a partition a[i] of all trees that is a fine enough to describe
all t[i]s. It calls Summary to report information about the work it does at
infolevel 2.

• NewPatternsToList converts newPatterns into the form used by System-
ToEquations.

• SystemToEquations creates the function k described in section 1.3.2 and
uses it to create the System of equations.

The remaining helper functions and internal variables are commented in the
MAPLE code itself:

-*- maple -*-
#
$Id: treepattern.maple,v 1.20 2004/05/14 22:24:48 wiz Exp $
#
#
Functions are explained where they are defined.
#

Variable explanations:
adjacencyTable: table of list of neighbor nodes
assocTable: table mapping t [i] to list of neighbor nodes
aPartition: table containing descriptions of a and t in a
newPatterns: list of normalized trees causing new pattern
emergence; form: [t[i_l], t[i_n]]
newPattersList: one-level expanded version of newPatterns;
form: [[a_ll, a_12, . ..] , . .., [a_nl, a_n2, ...]]
patternNumber: number of t-patterns
tPartition: table containing descriptions of t in t
visitedTable: for recursive labeling; mark visited nodes

CHAPTER 1. PATTERNS IN TREES 39

treepattern:=module()
export

TreeToEquations;

local
adj acencyTable,

assocTable,
aPartition,

newPatterns,
newPatternsList,
patternNumber,
tPartition,
visitedTable,
AddNewA,
AddNewT,
AddToAssocTable,
ExpandTree,
ExpandTreeOneLevel,
FindlnAssocTable,
NewPatternsToList,

NormalizeTree,
OriginalTToTensorsOfA,
PartitionSetListProduct,
PartitionSetProduct,
PartitionToSystem,
PatternsToPartition,
RecursiveLabeling,
SplitSomeA,
Summary,
SystemToEquations,
TraverseAndNormalize,
TreeCompare,
TreeToPatterns,
NONE,
NOT_IN_TABLE;

Option package;

Create a new a[n] with value v and return n.
AddNewA:=proc(v)

local n;

n:=aPartition["a", "si

CHAPTER 1. PATTERNS IN TREES 40

userinfo(2, treepattern, "created a["I |n| |"]");
aPartition["a", n]:=v;
aPartition["a", "size"]:=n

end proc:

Create a new t[n] with value v and return n.
AddNewT:=proc(v)

local n;

n:=aPartition["t","size"]+l;
userinfo(2, treepattern, "created t["I|n|I"]");
aPartition["t",n]:=v;
aPartition["tM,"size"]:=n

end proc:

Look up tree in assocTable; return its name if found,
or create a new name for it. tree has to be normalized.
AddToAssocTable:=proc(tree)

local found, s;

look tree up in existing names and return if found
found:=FindInAssocTable(tree);
if found <> NOT_IN_TABLE then

return found

end if;

create new name
s:=patternNumber;
assocTable[s]:=tree;
patternNumber:=s+l;

return new name
t[s]

end proc;

Replace t[i] with assocTable[i] .
ExpandTreeOneLevel:=proc(tree)

local i;

i:=op(tree);
if i >= patternNumber then

userinfo(5, treepattern,
11 i: "Hill", patternNumber: "

CHAPTER 1. PATTERNS IN TREES 41

I|patternNumber);
errorC'bug!")

end if;
assocTable[i]

end proc;

Recursively expand tree with ExpandTreeOneLevel.
ExpandTree:=proc(tree)

Option remember;

map(procname, ExpandTreeOneLevel(tree))

end pfbc;

Look up a tree in assocTable and return the corresponding
tree, or NOT_IN_TABLE.

.FindlnAssocTable:=proc(tree)

local i;

for i from 0 to patternNumber do

if assocTable[i] = tree then
return t [i]

end if
end do;
NOT_IN_TABLE

end proc;

Convert newPatterns in the form {t[a_i],...t[a_l]} to

list of neighbours in the form [[a_i_l, a_i_2, . . .] ,
[a_l_l, a_l_2, ...]]
NewPatternsToList:=proc 0

local i, j;

newPatternsList:=[
seq([seq(op([j,l], [op(assocTable[op([i,1],

newPatterns)])]),
j=l..nops(assocTable[op([i,1],

newPatterns)]))],

i=l..nops(newPatterns))];

userinfo(5, treepattern, newPatternsList);

end proc;

Normalize tree by sorting its children by size, using

CHAPTER 1. PATTERNS IN TREES 42

TreeCompare; adds normalized tree to assocTable by calling
AddToAssocTable. Takes children as input.
NormalizeTree:=proc()

Option remember;

AddToAssocTable(Tree(op(sort([args],TreeCompare))))

end proc;

Express t[n+l] in terms of a set of lists of a[l..n].
Example:
If tPartition[3] is [2, 0, 0] and aPartition["t", 2]
is {2, 5}, then OriginalTToTensorsOfA gives
{[2, 0, 0], [5, 0, 0]}.
OriginalTToTensorsOfA:=proc()

local n , i ;

n:=aPartition["t","size"];
PartitionSetListProduct(subs(aPartition["t", 0]

={seq(i, i=0..n)},
map(i->aPartition["tM, i],

tPartition[n+l])))
end proc:

Takes a list of sets of partitions, returns their product.
PartitionSetListProduct:=proc(L)

local 1, r;

for 1 in L do

r:=PartitionSetProduct(1,r)
end do;
r

end proc:

Takes two input sets of decreasingly sorted lists

(partitions), returns the set of sorted two-by-two
concatenations of lists.
PartitionSetProduct:=proc(Sl, S2)

local sl, s2;

{seq(seq(sort([op(sl), op(s2)], '>'), sl=Sl), s2=S2)}
end proc:

CHAPTER 1. PATTERNS IN TREES 43

Takes an input patterns set and creates tPartition from it
which describes the underlying tree.
PatternsToPartition:=proc()

local i, j;

tPartition:=table();
tPartition["size"]:=patternNumber-l;
for i from 1 to tPartition["size"] do

tPartition[i]:=[
seq(op(l,j),

j=op(l..-1, ExpandTreeOneLevel(t[i])))];
end do

end proc;

Translate tPartition to aPartition
PartitionToSystem:=proc 0

local newT, n, i, j, k, b, bb, iSet;

For all t that haven't been handled yet
for n from aPartition["t", "size"]+l

to tPartition["size"] do
userinfod, treepattern, "—> n=" | Inl I " < — ") ;

convert to as

newT:=0riginalTToTensorsOfA();

iSet:=O;
compute intersection with all existing as; skip a_0
for i to aPartition["a", "size"] while newT <> O do

create a new a if necessary
b:=aPartition["a", i] intersect newT;
if b <> {} then

bb:=aPartition["a", i] minus newT;
if bb <> O then

j:=AddNewA(bb);
b, newT:=SplitSomeA(i, j, b, newT);
aPartition["a", i] :=b

end if;
iSet:=iSet union {i};
newT:=newT minus b

end if
end do;

if there is a remainder after intersecting with

CHAPTER 1. PATTERNS IN TREES 44

all a's, create a new a for it.
if newT <> {} then

k:=AddNewA(newT);

Ignore return values.

SplitSomeACO, k, O , O) ;
iSet:=iSet union {k};

end if;
AddNewT(iSet);
print a summary after each step
SummaryO

end do
end proc:

Recursively label the tree, and fill in the adjacencyTable

structure.

RecursiveLabeling:=proc(tree, parentArg)
local here, childrenSet, child, parent;
global Epsilon;

do not label leaves
if tree = Epsilon then

return

end if;

get current node and children
here:=op([1,1], tree);
childrenSet:=op(2, tree);

parent:='if'(parentArg=N0NE, NULL, parentArg);

if there are children, add them all to the
adjacency table for the current node; also
add the parent node

if childrenSet <> Epsilon then
adj acencyTable[here]: = [parent,

op(map2(op, [1, 1],
childrenSet))]

eise

adj acencyTable[here]: = [parent]
end if;

recursively label all children
for child in childrenSet do

CHAPTER 1. PATTERNS IN TREES 45

procname(child, here)

end do

end proc;

Handle replacement of a[old] by a[old]+a[new] in b and t,

and return updated b and t.
SplitSomeA:=proc(old, new, b, t)

local split, i;

split:=proc(s)
map(op@PartitionSetListProduct,

subs({[old]}={[old], [new]},
map2(map,x->{[x]},s)))

end proc;

userinfo(l, treepattern,

"Splitting "IIoldII" in "||old||"+"IInew);
for i to aPartition["a", "size"] do

aPartition["a", i]:=split(aPartition["a", i])
end do;
for i to aPartition["t","size"] do

aPartition["t", i]:=subs(old=(old, new),

aPartition["t", i])
end do;

split(b), split(t)
end proc:

Print out a summary showing the t and a structures.
Summary:=pro c()

local i;

userinfo(2, treepattern, "Show t-structures:");
userinfo(2, treepattern, t [0]={$0..aPartition["a" ,

"size"]});
for i to aPartition["t","size"] do

userinfo(2, treepattern, t[i]=aPartition["tM, i])
end do;
userinfo(2, treepattern, "Show a-structures:");
for i to aPartition["a", "size"] do

userinfo(2, treepattern, a[i]=aPartition["a", i])
end do

end proc:

CHAPTER 1. PATTERNS IN TREES 46

SystemToEquations:=proc 0
local aisize, alist, d, degrees, equations, factors, i,

j, k, 1, m, kterm, kfun, summands, tenn;

userinfod, treepattern,
t[0]=add(a[i], i=0. .aPartition["a", "size"]));

for i to aPartition["t","size"] do
userinfod, treepattern,

t[i]=add(a[j] , j=aPartition["t" , i]))
end do;

expect set of lists of type [int, int, ...]

create k-Function tenn for determining powers of u

kterm:=0;
for i to nops(newPatternsList) do

term:=newPatternsList[i] ;
userinfo(4, treepattern,

cat("creating k-term for ", tenn));
aPartition["tM, 0]:=0;
summands:=convert(expand(mul(add(a[k],

k=aPartition["t", j]),
j=term)),

list);
a_0 will by definition never be part of a pattern
degrees:=[seq([seq(degree(summands[1], a[j]),

j=l..aPartition["a", "size"])],
1=1..nops(summands))];

factors:=add(mul(binomial(L||d, op([l, d], degrees)),
d=l..aPartition["a", "size"]),

1=1..nops(degrees));

userinfo(4, treepattern, nops(term));
userinfo(4, treepattern, factors);
kterm:=kterm+piecewise(x=l+nops(term), factors, 0);

end do;

kfun:=unapply(kterm, x);

userinfo(3, treepattern, kfun(x));

equations:={a[0]=l-add(a[i],i=l..aPartition["a",
"size"])};

a_0 already handled, so Start from 1

CHAPTER 1. PATTERNS IN TREES 47

for i to aPartition["a", "size"] do

number of summands in expansion(rhs) of a_i
aisize:=nops(aPartition["a", i]);
list of summands of a_i (each a product of a_j)
summands:=[seq(mul(a[j], j=op(l, aPartition["a", i])),

1=1..aisize)] ;

l is t of [list of exponents of a_j in lth summand]
degrees: = [seq([seqCdegree(summands[1], a[j]),

j=0. .aPartition["a\ "size"])] ,
1=1..aisize)] ;

l is t of [product of m_j!]
factors:=[seq(mul(d!,d=op(l, degrees)), 1=1..aisize)];
sum of [product of L[j] over m_j]
conversion formula to polynomial
alist[i] : =

x*add(op(l, summands)/op(l, factors)
*u~eval(kfun(l+add(m, m=op(l, degrees))),

[seq(L||m=op([l,m+l], degrees),
m=l..aPartition["a",

"size"])]),
1=1..aisize);

equations:=equations union {a[i]=alist[i]};
end do;
equations

end proc:

Recursively visit all nodes and normalize them.
Uses adjacencyTable (initialized) and fills visitedTable.
TraverseAndNormalize:=proc(origin, dest)

local i, T;

check if we already visited node dest

if visitedTable[dest] then

return NULL

end if;

visit it

visitedTable[dest]:=true;

recursive call on all neighbours

for i in adjacencyTable[dest] do
T[i]:=procname(dest, i)

end do;

CHAPTER 1. PATTERNS IN TREES 48

return normalized list of all neighbours
NormalizeTree(seq(T[i] , i=adjacencyTable[dest]))

end proc;

Compare two trees, returns true if first tree is larger

than second one. Arguments sl and s2 are some t [i]
and t[j] .
TreeCompare:=proc(sl, s2)

local tl, t2, i, nl, n2;
Option remember;

expand tree one level

tl:=ExpandTreeOneLevel(sl);
t2:=ExpandTree0neLevel(s2);
nl:=nops(tl);
n2:=nops(t2);

compare number of children
if nl<n2 then

return false
end if;
if nl>n2 then

return true
end if;

equal size - compare all children
for i to min(nl,n2) do

need both cases because of possible equality
if procname(op(i,tl), op(i,t2)) then

return true
elif procname(op(i,t2), op(i, tl)) then

return false
end if

end do;

equal
return false

end proc;

Takes an input tree, returns a new module structure that
describes the associated pattern set.
TreeToPatterns:=proc(tree)

local i, j, treeSize;

CHAPTER 1. PATTERNS IN TREES 49

label the tree
RecursiveLabelingCtree, NONE);
treeSize:=nops([indices(adjacencyTable)]);

visitedTable:=table();
newPatterns:={};
for i to treeSize do

Select only internal nodes so as to plant on a leaf.

(At this stage, "empty" nodes may only be leaves.)
if nopsCadjacencyTable[i])<>1 then

next
end if;
for j to treeSize do

visitedTable[j]:=false

end do;
j:=op(adj acencyTable [i]);
visitedTable[i]:=true;
newPatterns:=newPatterns

union {TraverseAndNormalize(i,j)}
end do

end proc;

User entry point: Convert tree to equations.
TreeToEquations:=proc(tree)

initialize
aPartition:=table([

("t\"size")=0,

adj acencyTable:=table();
assocTable:=table();
assocTable[0]:=Tree();
patternNumber:=1;

initialize "option remember" functions
forget(ExpandTree);
forget(NormalizeTree);
forget(TreeCompare);

initialize 'option remember' table for t[0]
NormalizeTreeO :=t [0] ;

CHAPTER 1. PATTERNS IN TREES 50

TreeToPatterns(tree);
PatternsToPartitionO;
PartitionToSystemO;
NewPatternsToListO;
SystemToEquationsO;

end proc;
end module:

savelib('treepattern');

quit

Chapter 2

Extended Admissible Functions

In [Hay56], Hayman introduced the notion of an admissible function, which we
call Hayman-admissible functions, and proved that the suitably normalized co-
efficients of admissible functions asymptotically follow a Gaussian distribution.
He also assembled a useful list of closure properties, i.e., operations on Hayman-
admissible functions that generate other Hayman-admissible functions. However,
his result is not directly applicable to counting combinatorial objects.

Our aim was to find a suitable generalization of Hayman's result to two di-
mensions that warrants a combinatorial interpretation for the coefficients of gen-
erating functions, but still provides similar closure properties. We also wanted to
make it possible to test membership to this group of functions with MAPLE.

2.1 Introduction

When counting objects with two characteristics (e.g., size n and another param-
eter k: ank) one usually expects that there exists the limiting distribution of the
random variables Xn defined by

P[Xn = k} = °^
an

(where an = Ylank)- In many cases this limiting distribution is Gaussian. More
k

precisely, there exist sequences \in and an (with on —> oo) with

(x) + o(an)

as n —* oo, where

"X e~t2'2dt.

51

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 52

The purpose of this paper is to present a concept that allows to decide this
question directly by looking at the corresponding generating function

kf(z,u) = y ankZnu'
n,k

There are good reasons for considering generating functions. First of all, there
are lots of (combinatorial) examples where the corresponding (bivariate) gener-
ating function is easy to establish. For example the coefficients of the generating
function

are the Stirling numbers of the second kind Snk that count the number of parti-
tions of a set of size n into exactly k subsets.

It is also not unrealistic to expect this to work, since the generating function
f(z,u) encodes certain characteristics of Xn in a proper way. Expected value
E Xn and variance Var Xn are given by

and
_ [zn]fuu(z, 1) + fu(z, 1) - {fu{z, l))2

where fu denotes the derivative of / with respect to u. Furthermore, the moment
generating function mn(t) = EetXn is given by

m t)

There are already numerous results on Gaussian limiting distributions related
to the shape of generating functions. For instance, if the coefficients [zn]f(z, u)
behave like a power of a function in u, there are results by Bender and Rich-
mond [BR83b] and Gao and Richmond [GR92]. Extensions are due to Drmota
[Drm94b], Gardy [Gar95] (powers of functions), and Hwang [Hwa96, Hwa98]
(so-called quasi-powers). Generating functions related to components of combi-
natorial constructions have been investigated by Flajolet and Soria [FS90, FS93].

We will examine a different approach: For example, if f(z, 1), fu(z, 1) and
fuu(z, 1) are all Hayman-admissible functions (see [Hay56]) for which the asymp-
totic expansion of the coefficients is known, then it is possible to get an asymptotic
relation of an = [zn]f(z, 1) and consequently of E l n and VarX n . One advan-
tage of the class of Hayman-admissible functions is the presence of strong closure
properties which are easy to test with MAPLE. The closure properties say that
from a basic set of admissible functions (for which one has to verify the condi-
tions for Hayman-admissibility manually) one automatically gets a large class of
composite functions which are Hayman-admissible as well.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 53

There have been attempts to extend Hayman's concept: One is due to Harris
and Schoenfeld [HS68] in order to get füll expansions for the coefficients. Ben-
der and Richmond [BR86, BR96] defined admissibility for functions in several
variables and obtained a multidimensional normal law for the coefficients.

However, in order to prove a central limit theorem for the random variables
defined above and to establish sumciently strong closure properties for automat-
ical treatment as well, we need a different concept.

2.2 Extended Admissibility

2.2.1 Hayman-Admissibility
Let us present Hayman's definition of admissibility.

Definition 7. Suppose that f(z) = ^^° anz
n is regulär in \z\ < R, where 0 <

R < oo and that for some Ro < R we have f(r) > 0, Ro < r < R. Let

a(r) _ rIM _ d(\ogf(r))
a[r) Tf(r) d(logr) '

{)~ {)~ f(r)+r f(r) [f(r)J '
and b(r) satisfy

b(r) —* +oo, as r —> R.

Suppose further that f(z) satisfies

f(reie) ~ /(r) exp (i8a(r) - -62b(r)\ , as r -> R

uniformly for \6\ < S(r), while uniformly for 5(r) < \6\ < TT,

with some function ö(r), where 0 < 5(r) < ir. Then f(z) will be said to be
Hayman-admissible in \z\ < R. We write: f(z) G TCR.

2.2.2 Extended Admissibility
The basic definition of extended admissibility is quite similar. The aim is to follow
Hayman [Hay56] as closely as possible, which will imply f(z, 1) to be Hayman-
admissible, and to require as little as possible for the behavior of / with respect
to the second argument. This results in the following definition.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 54

Definition 8. A function f(z,u) = ^2njk>ocinkZnuk is called extended admissible
or e- admissible if there exists 0 < R < oo such that the following conditions are
satisfied:

1. f(z,u) is analytic in AR^ := {(z, u) : \z\ < R, \u\ < 1 + C}> where £ > 0,
and for some RQ < R we have

/(r, 1) > 0, Ro<r<R.

2. Set

fz(z,u) _. fu(z,u)
a(zu) = z } (, a(z,u)=u-/(*,«)' ^~>~' " / (* ,«) '

fzz(z,u) 2ffz(z,u)
f z2 f (b{z, u) = zaz(z, u) = z— ^ + zl— f - z f (

b(z, u) = uäu(z, u), c(z, u) = uau(z, u),

2

and

where K > 0 is an arbitrary constant. Then, for each choice of K > 0 there
exists a function 8(r) : (Ro, R) —> (0, ?r) such that for RQ < r < R we have

/ ß2 \
/ (re10, u) ~ /(r, u) exp I i6a(r, u) ——b(r, u) I , as r —> R,

V 2 /
uniformly for \6\ < S(r) and u £ [1 — e(r), 1 + e(r)].

3. For RQ <r < Rwe have

= , asr

uniformly for 5(r) < \9\ < TT and w € [1 — e(r), 1 + e(r)].

4. For r —> i? we have 6(r, 1) —> oo.

5. 6(r, u) ~ 6(r, 1) for r -* R, uniformly for u E [1 — e(r), 1 + s(r)].

6. a(r,ti) = a(r, 1) + c(r, l)(u - 1) + ö (c(r, l)(u - l)2) for r G (iüo, Ä) and

7. ä(r, H) = O(ö(r, 1)) and b(r, u) = ö (b(r, 1)) for all u in an arbitrary but
fixed complex neighborhood of 1 and all r.

8- Kr>!) - 7&$ ̂ °° as r ^ i?.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 55

9. e(r)3b(r, 1) -> 0 for r -> Ä.

10. 6(r, 1) = O (ä(r, l)2) and ä(r, 1) = O (/(r, l)77) for every 77 > 0.

We write: f(z) G £Ä.

Note that this definition implies that functions f(z,u) which are e-admissible
in some A ^ are Hayman-admissible in the first variable, i.e.,

f(z,u)eSR => f(z,i)enR.

This follows from the fact that assumptions (l)-(5) actually define Hayman-ad-
missibility uniformly in u. In particular, this means that the analog of (10) for a
and b is true by [Hay56, Lemma 2]. In the bivariate version, this lemma is:

Lemma 2. Suppose that f(z, 1) G HR. Then if n > 0

l^lJ- _> +oo, as r -> R,
rpXt

b(r,l) = o(a(r,l)2) (2.1)

and given r\ > 0, we have

a(r, l) = ö (/(r, 1)") and b(r, 1) = O (/(r, 1)").

Purthermore, Hayman's result applies for f(z, 1) and because of uniformity
in u it carries over to u 6 [1 — £(?~), 1 + £(f)]- We get

Theorem 3. Let f(z,u) G ER. Then as r —> R we have

(a (r ;) 7) 2
M / f c «) = ; ; (exP (2 ; 7

rny/2nb(r,u) \ \ 2b(r,u)

uniformly in n and u £ [1 — e(r), 1 + e(r)].
Proof. To prove this theorem Hayman's proof can be used without any change.
The idea is to write the coefficient as

2-K-Ö / 6 2ix-6^

1 £f i6 \ —ind j / i

-<5 \ - < 5 <5

27T-Ö / Ö 27T-.

r» • [z"]/(z,«) = ^ | /(reie,M)e-i"ödö = i - | | + |

and to use the expansions (2) and (3) of the definition of admissibility to the two
integrals of the right-hand side. Since (2) and (3) are uniform in u, the resulting
expansion is uniform in u as well. D

As a consequence of this theorem we can prove

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 56

Theorem 4. Let f(z, u) 6 ER such that for sufficiently large n all coefficients
are nonnegative. Xn denotes a sequence of random variables satisfying

P[Xn = k} = ^ .

Then the following central limit theorem holds:

Xn - 5(rw, 1) = ^
V|5(rBll) |/6(rB ,l)

where rn is the positive solution of a(r, 1) = n and \B\ is the determinant of B
with

v ' \ c(r,u) b(r,u) J

Furthermore we have, as n —> oo,

EXn = ä(rn, 1) + o (\B(rn, l)\/b(rn, 1)) (2.3)

and
Vcir Xn ~ -—. . . (2.4)

Note that (2.2), (2.3), and (2.4) also show that

Xn — E Xn

Proof. In order to prove the theorem, we have to show that the moment gener-
ating function of Xn,

m (t) ~ Ee«- - [zn]f^et)

satisfies

y/b(r,l)-c(r,iy/b(r,l)

for all t € [-K, K] with some X > 0. [Hay56, Lemma 4] teils us that, if \b(r, u)\ <
b(r, 1) for \u — 1| < 2r] (which is true by (7)), then

/(r, ef) = f(r, 1) exp (tä(r, 1) + ^6(r, 1) + ö (b{r, I)t3)\ , as r -» Ä,

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 57

uniformly for |t| < e(r). Thus by (6) we obtain

x exp

Since c(r, l)2 < b(r, l)b(r, 1) by (8) an application of (9) finally establishes the
central limit theorem (2.2).

The proof of (2.3) and (2.4) is Standard. We can even show that all moments
of the normalized random variable converge to the corresponding moments of the
Gaussian distribution. Convergence of the moment generating function and Cher-
nov's inequality provide exponential tail estimates for the distribution functions.
Thus, it is sufficient to consider finite intervals for proving convergence of mo-
ments. However, on finite intervals monomials are bounded and, thus, (uniform)
convergence of distribution functions implies convergence of bounded functionals.
This completes the proof. D

2.2.3 Closure Conditions
The proofs of theorems 3 and 4 do not require all parts of the definition of e-
admissibility. For theorem 3 assumptions (l)-(4) are sufficient. The assertion of
theorem 4 follows from assumptions (l)-(6), (8), and (9). However, all assump-
tions are needed to establish the closure properties for e-admissible functions.
Those assumptions are usually satisfied for reasonably constructed functions, com-
pare with Theorems 5 and 6.

Theorem 5. The following two classes of functions are extended admissible:

• Let P(z, u) be a polynomial in z and u with real coefficients written in the
form P(z,u) = ^2npnz

knuln by choosing an arbitrary order of the monomi-
als. Furthermore, let P(z, 1) = ^m&mZm , i.e., bm = X)nfe =mPn- Finally,
set

{ (k • l
K := max E with E = < k; + fc, : det [. l /

and I := {(i,j) : h + kj = K}. Then ep(z'u^ € £oo if and onM) if the
following conditions are satisfied:

(a) For every d > 1 there exists an m ^ 0 mod d such that bm ^ 0.
Moreover, for nid = max{m ^ 0 mod d : bm ^ 0} we have bmd > 0.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 58

(b) E is not empty and

(c) max{fcj : Pj ^ 0} < 3K/5

If f{z) G HR, g(u) is analytic for \u\ < 1 + £ and satisfies g(l) > 0 as well

as g'{\) + g"(l) - ^gf > 0, ften e»<«>/M G £R.

Proof.
Part 1
Let P(z,u) = ^n = iPn2 f e nu i n be a polynomial satisfying the assumptions of

the theorem. Since P(r,u) ~ P(r, 1), uniformly in u, and the Statement of
the theorem is true for Hayman-admissibility and polynomials in one variable
(see [Hay56, Theorem X]) satisfying condition (a), we immediately get (2) and
(3) with a(r,u) = ^2npnkn

rknuln a n d b(r,u) = ^2npnknrknuln if we choose 5
such that 8{r) = o (r~fc/3), where k = maxkn. Furthermore, (a) implies that the
leading coemcient in b(z, 1) is positive which implies (4). Now (5) and (6) are
obviously satisfied with c(r,u) = ^2npnknin

rknuln. Since ä(r, u) = YlnPn^nrknuln

and b(r,u) = YlnP^nrknuln w e immediately get (7). To show (8) let B as in
Theorem 4 denote the matrix of the second logarithmic derivatives of P(z,u).
Then by the multilinearity of the determinant we get

L L , /u t 2

det B(r l1) - W ^ vuvrkh+ki I det I h h

Then by condition (b) the order of magnitude of B is B = 6 (rK) and the
leading term is positive which implies (8). From b(r, 1) = 0 (rk) we obtain
e = 0 (r^~fc)/2) and by condition (c) this proves (9). Finally, note that / grows
exponentially while ä and b do not. Moreover, a and b have the same order of
magnitude and thus we have (10).

On the other hand, if the first condition is violated, then ep^z^ will not be
Hayman-admissible and hence ep^ZyU^ $ E. (8) and (9) are equivalent to (b) and
(c), respectively. Therefore the three conditions in the theorem are necessary and
sufficient for admissibility.

Part 2
Let F(z, u) = e9(u)/(z) with / G HR and g(u) as in the Statement of the

theorem. By [Hay56, Lemma 5] we have uniformly for \6\ < a^)"1

f(reie) = f(r) + idrf'(r) - 9^(rf'(r) + r2f" (r)) + O (e3f(r)a(rf) . (2.5)

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 59

We can directly compute

a(r, u) = rg(u)f(r), ä(r, u) = ug'(u)f(r),
b(r,u) = (rf'(r) + r2f"(r))g(u), b(r,u) = (ug'(u) + ug"(u))f(r), and
c(r,u) =rug'(u)f'(r).

With these formulas the validity of (4)-(7) is easily seen. For (8) note that by
[Hay56, Th. III] we have

~ /(r)

and thus we get

V (1) + </'(l) - ^) /(r) - oo.

Consequently, e(r)3b(r, 1) x / (r , l) " 1 / 2 —» 0, as required in (9). As to the expo-
nential growth of / , (10) is obvious.

Finally, following Hayman [Hay56], we set 8(r) = f(r)~2^5 and (2.5) directly
yields (2). By [Hay56, Lemma 6] we have

\f(reid)\<f(r)-f(ry/7

and hence

Now applying [Hay56, Th. III and Lemma 2] gives B(r, u) — ö (g(u)f(r)1+e) and
(3) follows. D

Note that for functions of the form ep^z>u^ the concept of e-admissibility is too
strict. In fact, there are many cases where a normal limit law occurs though the
corresponding generating function is not e-admissible (compare with the examples
presented in section 2.3). The reason lies in condition (c) which is related to (9)
of the definition. Since P(z, u) are nice functions not only for u close to one, this
condition can be avoided and a multivariate normal limit law can be proved. A
characterization of these cases is the topic of work in progress.

Theorem 6. Suppose that f(z,u) e ER and g(z,u) G SR) P(z,u) a polynomial
with positive coefficients, and h(z) G HR. Then the following functions are in
ER, too:

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 60

• h(z)-f(z,u)

• P(z,u)- f(z,u),

. e/(*,«)

• ep(z>u^h(z\ if P(z,u) is not independent ofu.

• ep^z^+h^z\ if R = oo and P(z,u) is not independent of u.

• f(z,u) + Q(z,u), where Q(z,u) is an arbitrary polynomial.

Proof.

• Product of admissible functions

Let / i , f2 G ER. Clearly, the logarithmic derivatives of / = f\f2 satisfy

a = a\-\- a2 b = b\ + 62 c = Ci + C2

ä = äi + Ö2 6 = &i + 62

Thus (5), (6), and (4) are fulfilled for u G [1 — 77,1 +77] with 77 = min^!, £2).
The validity of (7) is easy to check as well. To prove (8) observe that

2 2 2C >-bl-<± + -b2-
Cl

0 0\ O2

•

^=> 2clc2blb2 < c\b\ + c\b\

which is obviously true and implies (8). Another consequence is that e =
l/y/b — c2/b < 77, hence the domain of validity for (5), (6), and (4) is large
enough. Purthermore, this implies (9). (2) and (3) can be proven in the
same way as [Hay56, Th. VII] and (10) is obvious. D

Multiplication by a Hayman-admissible function

If /1 € TCR and /2 6 ^ , then the same argument as in the previous section
applies. Of course, here we have C\ = äi = bi = 0 and e = e2- •

Multiplication by a polynomial

Let f(z,u) G ER with some positive R < 00 and P(z, u) a polynomial with
positive coefficients. Due to uniformity in u the proof of [Hay56, Th. VIII]

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 61

can be used without change to prove (2) and (3). Let A, B, C, Ä, B denote
the logarithmic derivatives corresponding to P(z,u)f(z,u) then we have

A(r, u) = a(r, u) + r

Ä(r, u) = ä(r,u) +u

B(r, u) = b(r, u) + r p ; J ^ + r

7-2 (n r * i / l — n (T" 7 / 1 -J-s l / ^ U/1 — V ' /

P(r,u)
Pu(r,u)
P(r,u)

\z{r,u) Pz(r,u)'<
P{r,u) V P(r,u) P(r,u)2

Puu(r,u) Pu{r,u
P(r,u) V P(r,u) P(r,u)2

Pzu(ryu) Pz(r,u)Pu(r,uY
C(r, u) = c(r, u)+ru .

\ P(r,u) P(r,u)2

Since the rational terms in the equations above remain bounded when r —>
R, contrary to a, ä, b, and b, they do not affect the validity of (4)-(10). D

Exponential of admissible functions

Let F(z, u) = ef(-z>u\ The logarithmic derivatives of / are denoted as usual
by a, ä, b, b, and c, the ones of F by the corresponding capital letters.

Since extended admissible functions satisfy all the conditions imposed on
Hayman-admissible functions even uniformly in u, Lemmas 1-6 of Hay-
man [Hay56] are true for extended admissible functions, too. The proofs
there can be used without any change except replacing f(z) by f(z, u) and
derivatives by partial derivatives with respect to z, and the results hold
uniformly in u. Since with the help of these lemmas Hayman proved that
the exponential of an Hayman-admissible function is Hayman-admissible as
well, we can adopt his proof of (2) and (3). Moreover, we get

B(r, 1) -> oo. (2.6)

Note that

A(r, u) = rfz(r,u) = a(r,u)f(r,u)

Ä(r, u) = ufu(r, u) = ö(r, u)f(r, u) (2.7)
B(z, u) = rfz(r, u) + r2fzz(r, u) = (b(r, u) + a2(r, u))f(r, u)
B(z, u) = ufu(r, u) + u2fuu(r, u) = (b(r, u) + Ö2(r, u))f{r, u) (2.8)
C(z, u) = zufzu(r, u) = (c(r, u) + a(r, u)ä(r, u))f(r, u)

With these formula we see that (10) is valid, since for every 7,7/ > 0 we
have äf = O (/1+^) = O (e"') and (6 + ö2)/ = o (ä2/2). Moreover, we get

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 62

where the inequality is obtained by expanding the terms, using c = o (aä)
which is a consequence of (8), (2.1), and (10), and performing some elemen-
tary estimates. The limit follows from (8) and (2). Furthermore, observe

that since |it — 1| < \/b + a2 / J (bb — c2) / we obtain by (10) and (2)

| (u-i)a|< fVFT^ ->o,
V_(bb-c2)f (2.io)

Hence we immediately get (9):

£3ß = (b + a)(& + a) , 0 (2.11)

Turning to (5) observe

B(r, u) _ b(r, u) + a(r, u)
=

2

6(r,l)+o(r,l)2
b(r,l)+o(b(r,l))+a(r,l)2

b(r,l)+a(r,l)2

ö (2a(r, l)c(r, l)(u - 1) + (a(r, l)c(r, 1).+ c(r, l)2)(u - l)2)

where the last equation follows from application of (10) and (2): we have

irT^fr-1)^ 7.- . = by(2.9)

/()

by (10) along with c < vbb and then (10) together with (2), and

ac + c2, , . , avbb + bb

by (2.9) together with (10) and (10) together with (2). This implies (5)
and in conjunction with (2.6) we get (4). Next we prove (6). Set u = et.

CHAPTER 2. EXTENDED ADMISSIBLE FUNCTIONS 63

Then we have

A(r,u)-A(r,l)
C(r, l)(u - 1)

^ a (r , - u) - a(r,

{c(r, 1) + a(r,

Q l)t2)

aa)

= 1 + O(t)

where the last two lines follow from (2.11) and (2.10). Finally, (7) is obvious
in view of (2.7) and (2.8). D

The class exp(P(z, u)h(z))

Since e-admissible functions are closed under multiplication, it is sufficient
to consider the case where P(z, u) is a monomial. Then use the fact that
the product of an Hayman-admissible function with a polynomial is again
Hayman-admissible and combine this with the second part of Theorem 5
to get the result.

The class exp(P(z,u) + h(z))

Here we have

a(z, u) — z(Pz(z, u) + h'(z))
b(z, u) = z(Pz(z, u) + ti(z)) + z2(Pzz(z, u)
b(z, u) = uPu(z, u) + u2Puu(z, u)

and hence
7 p -L. 71 p 77/ P
&rz ^r £ rzz &u,rzu

n,p -\-V
2P

U/J. 11 n^ Ui ± 1111

\B(z,u)\ =
zuPz

a(z,u) = uPu(z,u)

c(z, u) = zuPzu(z, u)

zti + z2h" zuPzu

0 uPu + u2Pu

D2(z,u).

The growth properties of Hayman-admissible functions and their derivatives
are well studied (see [Hay56]). Therefore we know the order of magnitude
of £>i(r, 1) and D2(r, 1): We have D2(r, 1) = e(r2h%r)(Pu(r, 1) + Puu(r, 1))
and Di = o(D2), as r —> oo. Moreover, since b(r, 1) and c(r, 1) grows
polynomially and b(r, 1) ~ r2h"(r) we get (8). The polynomial growth of ä
and b along with their equal order of magnitude immediately implies (10).
Since e ~ b~xl2, we have on one hand (9) and on the other hand e —> 0
which implies (2) and (4)-(7). Finally, since

exp (P (reie, u)) = O (ep(r'ü)) and eh (reiö) = o

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 64

we get (3). D

• Addition of Polynomials

Since every e-admissible function f(z,u) grows at least exponentially, poly-
nomials are negligibly small in comparison to f(z,u) and thus f(z,u) +
P(z, u) is obviously e-admissible, too.

D

For ep(z '")+/ l^ the positivity condition for P(z, u) can be relaxed. For such a
function to be e-admissible it is sufficient that lim^oo Pu(z, 1) + Puu(z, 1) = oo.

With help of Theorems 4-6 it is also possible to check automatically (with
MAPLE) if a given function f(z, u) is in ER and in most cases one obtains a central
limit theorem for the coefncients as well.

Theorem 4 provides asymptotic expansions for expected value and variance
in terms of the derivatives of f(z, u) (evaluated at z = rn and u = 1), too. Thus,
it is also of interest to obtain these asymptotic expansions automatically. For
this purpose one has to solve two problems, first an asymptotic expansion for rn

(that is, an asymptotic inversion of the function r i—> a(r, 1) = rfz(r, l) / / (r , 1))
and, second, an asymptotic insertion of rn into ä(r, 1) and into \B(r, l)\/b(r, 1).
For example, if / is an exp-log function (that is, it is built by fmitely many
compositions of rational functions as well as e2 and log z) then we can apply the
results and implementations for multiseries inversion and Substitution by Salvy
and Shackell [SS99] (cf. also Richardson et al. [RSSVdH96]) in order to automat-
ically compute an asymptotic expression for rn and consequently for mean and
variance, if they exist. (The problem is that not every exp-log function has an
inverse which is asymptotically equal to an exp-log function, see Shackell [Sha93]).

2.3 Examples

In this section we present some combinatorial applications for e-admissibility.
Note that many generating functions occurring in the foUowing examples more
than satisfy the conditions for being e-admissible. For instance, examples 2.3.1,
2.3.3, and 2.3.5-3 are admissible in the sense of Bender and Richmond [BR96]
as well. However, there are combinatorial problems whose generating function is
not Bender-Richmond-admissible, see example 2.3.4.

2.3.1 Stirling Numbers of the Second Kind
The generating function for the Stirling numbers of the second kind is f(z,u) =
eu(ez-i) Since e2 — 1 is Hayman-admissible, f(z,u) is e-admissible by the second
part of Theorem 5. We get

a(z, u) = uzez, ä(z, u) = u (e2 — 1),

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 65

and
. . (u (z + z2) ez uzez \

B(z,u) = - , , iA .v ' \ uze u(e — 1) J

The solution of a(r, 1) = rer = n is rn <~ log n — log log n. Hence we get a normal
limit law with asymptotic mean ä(rn, 1) ~ •{£— and asymptotic variance

detß(rn , 1) _ rn _ _ (rne
Tn)2 eTn n

b{rn,l) (r2+rn)e r" rn log2n

which has already been shown by Harper [Har67].

2.3.2 Permutations with Bounded Cycle Length
Permutations with cycle length less than or equal t can be described by the
generating function f(z,u) = eue^z\ where ee(z) =]T)i=i if- Since the exponent
is a polynomial, we have to check the conditions of Theorem 5 and it turns out
that f(z, u) is e-admissible if and only if £ > 3. So in this case Theorem 4 implies
a central limit law. To get asymptotic mean and variance compute

a(z,u)=uz , ä(z, u) = wVj —, c(z, u) = a(z, u),

b(z,u) = uz , b(z,u) = a(z,u).
l1 "~ z)

a(r, 1) = n implies rn ~ n1^ and consequently asymptotic mean and variance are
given by

. n , detß(r„,l)

~<r^~i and —^- i)

respectively.

Remark. Though for £ < 3 the function is not e-admissible any more (e would be
too large in this cases), it can be shown (see [GM04]) that the central limit law
with asymptotic mean and variance as given above is true for £ > 2. In the case
£ = 1 the distribution degenerates. (The same holds for the first two examples
in section 2.3.5.)

2.3.3 Partitions of a Set of Partitions
These objects are the partition of the set of subsets of a given partition. One
gets the generating function f(z, u) = eu^exp z 1~1K Again, one can compute the

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 66

logarithmic derivatives and an asymptotic expression for rn, mean, and variance.
This has been done by Salvy and Shackell [SS99] and they get

n detß(rn, 1) n
a(r 1) ~ a n d

' logn log logn b(rn,l) log2 n log log n'

Since ee*~x — 1 is Hayman-admissible and thus f(z,u) e-admissible, Theorem 4
implies that moreover a central limit theorem holds.

2.3.4 Partitions Counted by Singleton Blocks
When counting the number of partitions of an n-element set having k singleton
blocks, we get the generating function f(z,u) = e

eZ-1~z+zu_ The exponent is the
sum of a polynomial and ez — 1 — z, an Hayman-admissible function. Thus by
Theorem 6 f(z, u) is e-admissible and therefore a central limit theorem holds.
We get

a(z, u) = zez — z + uz, ä(z, u) — uz

and

Thus by a(r, 1) = rer = n we have as before rn ~ logn — log log n and therefore
the asymptotic mean and variance are given by ä(rn, 1) ~ logn and

Krn, 1) rn{rn + l)e r"

respectively.

2.3.5 Other Examples
1. Set partitions with bounded block size

The generating function is exp (u^2i=1 4f j which is obviously e-admissible

if and only if £ > 3.

Of course, different kinds of restrictions on the block size may be investi-
gated by our method as well, since they differ from the present case only
in the sum in the exponent. The same applies to restrictions of the cycle
length in permutations (cf. Examples 2.3.2).

2. Number of cycles of maximal allowed length in restricted permutations

Here the generating function is exp l^j- + S»=i if) which is e-admissible
for l > 3.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 67

3. Covering complete graphs with bipartite graphs

The generating function is exp (u(ez - l)2/2) (see [GJ83, BR96]) which is
obviously e-admissible.

2.4 MAPLE Source Code

We provide a MAPLE program of an algorithm that checks if a function in two
variables is e-admissible by using the closure properties from theorems 5 and 6.

The implementation provides a M A P L E module named extadm with two user
entry points: extadmtest and ea-addfunc.

extadmtest(fct::algebraic, varlr.name, var2::name) tests if a given function is
extended admissible in varl around var2 = 1 and returns true, false, or an error
if it cannot decide.

A user can teach extadmtest about additional classes of functions with the
ea-addfunc function.

The algolib library available at ht tp : / /a lgo. inr ia . f r / l ibra j r ies / has to
be installed before using the code below, since it is used for Hayman-admissibility
tests.

2.4.1 Usage

A sample Session testing the example from section 2.3.2 (where e-admissibility is
only true for Z > 3) might run as follows:

maple8
IWI Maple 8 (IBM INTEL LINUX)

•_l\l l/l_. Copyright (c) 2002 by Waterloo Maple Inc.
\ MAPLE / All rights reserved. Maple is a registered trademark of
< > Waterloo Maple Inc.

I Type ? for help.
> with(extadm);

[ea_addfunc, extadmtest]

> el2:=(z,l)->add(z~i/i,i=l..1);
i
2

el2 := (z, 1) -> add(, i = 1 .. 1)
i

> extadmtest(exp(u*el2(z,2)),z,u);
false

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 68

> extadmtest(exp(u*el2(z,3)),z,u);
f alse

> extadmtest(exp(u*el2(z,4)),z,u);
true

> extadmtest(exp(u*el2(z,10)),z,u);
true

Additional Information will be printed when the variable infolevelfextadmj is
set to at least 3.

A user can teach extadmtest about additional classes of functions. For this,
the user has to provide a function impl which takes three arguments fct, varl,
and var2, like extadmtest itself, and returns true, false, or error depending on
the e-admissibility of the tested function. This function impl is then added to
extadmtest's function table by calling ea^addfunc (fname::symbol, impl). After a
function handler for fname has been added in this way, whenever fname appears
in a test, extadmtest calls impl(fct, varl, var2) on the subfunction.

For example: ea^addfunc('sinh', easinh) would add the user-provided func-
tion easinh as decision function for any hyperbolic sine (sub-)functions.

2.4.2 Implementation
extadmtest(fct::algebraic, varlr.name, var2::name) recursively splits the given
function fct into its components and uses the closure properties from theorems 5
and 6 to determine if the function is e-admissible.

The source code is split up in two files, polcheck.maple and extadm.maple.
polcheck.maple contains ea-polcheck, a function that tests if a polynomial

has the form described in theorem 5 and returns true if it has and false if it has
not. In detail, it does the following:

• Check if input is a polynomial.

• Create a list of the bm.

• Create a list of all pairs of exponents (kn, ln) and the corresponding coeffi-
cients.

• Verify that the greatest common divisor of the indizes m of bm ^ 0 is not
1. (This is equivalent to the first part of condition (a) of theorem 5.)

• Verify that the second part of condition (a) is fulfilled.

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 69

• Compute E and verify it is non-empty.

• Compute K.

• Compute I.

• Verify that the product from condition (b) is greater than zero.

• Verify condition (c).

Here is the MAPLE code for polcheck.maple:

-*- maple -*-
#
$Id: polcheck.maple,v 1.20 2004/05/13 22:28:39 wiz Exp $
#
Input: polynomial in two variables with positive coefficients
fet ... polynomial in varl and var2 = sum p_n z~k_n u~l_n
varl .. z
var2 .. u
#

Output: true if e~pol is extended admissible, false if not
#
Algorithm:
1. Check input validity
2. Create list of all pairs (k_n, l_n) of exponents
3. Create list of b_m = sum_{k_n=m} p_n
4. (a) Verify ged (degrees of b_m z"m) = 1
5. (a) For all d>l,
m_d = max {m not congruent 0 mod d: b_m <> 0}
exists and b_{m_d} > 0
6. (b) Find E = { k_i+k_j | det (k_i l_i \ k_j l_j) <> 0} and

verify it's non-empty
7. K = max E
8. Compute I = { (i,j) | k_i+k_j = K }
9. (b) Verify
sum_{(i,j) in 1} p_i p_j det(k_i l_i \ k_j l_j)"2 > 0
10. (c) Verify max { k_j I p_j <> 0 } < 3K/5
User interface; does step 1, 2
ea_polcheck := proc(f et: :algebraic, varl^name, var2: :name)

local all_coeffs, monomials, bm_coeffs, bm_monomials;

check if input is a polynomial
if not type(fet, polynom(anything, {varl, var2}))
then

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 70

error "not a polynomial: °/ol", fct

end if;

3. Create list of b_m = sum_{k_n=m} p_n

bm_coeffs := coeffs(combine(expand(subs(var2=l,fct))),

[varl], 'bm_monomials');

Step 2
all_coeffs := coeffs(expand(fet), [varl,var2], 'monomials');
check_condition([all_coeffs], map(degree, [monomials], varl),

map(degree, [monomials], var2),
[bm_coeffs] , map(degree, [bm_monomials] , varl));

end proc; -

check_condition:=proc(all_coeffs, degl, deg2, bm_coeffs, bm_degl)
local comparelist, d, i, isum, j, K, maximum, msubd,

msubdeoeff, msubdpos, n, n_bm, nonzerolist;

4. (a) Verify ged (degress of b_m z"m) = 1
if only one power > 1, test 5 will fail anyway, since it
will have factors
if (igcd(op(bm_degl)) <> 1)
then

return false
end if;

n := nops(all_coeffs);
n_bm := nops(bm_coeffs);
maximum := max(op(bm_degl));

5. (a) For all d>l,
m_d = max {m not congruent 0 mod d: b_m <> 0}
exists and b_{m_d} > 0

for d from 2 to maximum do
comparelist := select(proc(x,d) modp(x, d) <> 0 end,

bm_degl, d);
if (nops(comparelist) = 0)
then

return false
end if;
XXX: should only be one entry in comparelist,
but to be on the safe side...
msubd := max(op(comparelist));
msubdpos := select(proc(x,uu,max) uu[x]=max end,

[$l..n_bm], bm.degl, msubd);

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 71

msubdcoeff := seq(bm_coeffs[i], i=msubdpos);

if (min(op(msubdcoeff)) <= 0)
then

return false
end if

end do;

6. (b) Find E = { k_i+k_j I det (k_i l_i \ k_j l_j) <> 0} and
verify it's non-empty
7. K = max E

K := -1;
for i from 1 to n do

only compare with ones that might raise the maximum
comparelist := select(proc(x,uu,min) uu[x]>min end,

[$l..n], degl, K-degl[i]);
for j in comparelist do

if (degl [i]*deg2[j] -degl [j]*deg2 [i] <> 0)
then

previous j might have raised K
if (deglCi] + degl[j] > K)
then

K := deglCi] + degl[j]
end if

end if
end do

end do;
if (K = -1)
then

return false
end if;

8. Find I = { (i,j) I k_i+k_j = K }
isum := 0;
for i from 1 to n do

comparelist := select(proc(x,uu,max) uu[x]=max end,
[$i+l..n], degl, K-degl[i]);

9. (b) Verify
sum_{(i,j) in 1} p_i p_j det(k_i l_i \ k_j l_j)"2 > 0

for j in comparelist do
isum := isum + all_coeffs[i] * all_coeffs[j]

* (degl[i]*deg2[j]-degl[j]*deg2[i])"2
end do

end do;

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 72

if (ismn <= 0)
then

return false
end if;

10. (c) Verify max { k_j I p_j <> 0 } < 3K/5
nonzerolist := select(proc(x,uu) uu[x] <> 0 end, [$l..n],

all_coeffs);
maximum := -1;
for i in nonzerolist do

if (degl[i] > maximum)
then

maximum := degl[i]

end if
end do;
if (maximum >= 3*K/5)
then

return false

end if;

true
end proc;

extadm.maple contains the main routine, extadmtest. extadmtest splits an
input function into components according to the functions structure and calls
itself recursively on the components. In detail:

• Check if input is bivariate.

• Check if input tends to infinity for varl —> oo and var2 = 1.

• Exclude polynomials and rational polynomials.

• If the input is a product, check each of its factors; if it contains a factor
that is neither a polynomial, Hayman-admissible, nor extended admissible,
or if none of the factors is extended admissible, report that the input is not
extended admissible, otherwise say it is.

• If the input is a power of a constant, return false if the base is less than or
equal to 0, equal to 1, or equal to infinity; otherwise, call extadmtest on a
corresponding exp-function. If the base is not constant, report an error.

• If the input is a function, try to look it up in the function table, which is by
default only populated with a test for exp, ea.exp, but can be expanded by
the user with ea-addfunc. Call that function if it exists, or return an error.

CHAPTER 2. EXTENDED ADMISSIBLE FUNCTIONS 73

• Return true if the input is a sum of polynomials and an extended admissible
function. If there is any other kind of summand, return an error. Also
return an error if two or more extended admissible functions are added
together.

• Report an error, since the structure of this function is not supported.

The ea-exp function does the following:

• If the argument of exp is a polynomial, run ea-polcheck from polcheck. maple
on it.

• If the argument is a sum, split it in two summands, one with all the sum-
mands that contain var2, and the rest. If the summand without var2 is
Hayman-admissible, and the other summand is a polynomial that tends to
infinity for varl —> oo and var2 = 1, the return true, otherwise continue.

• If the argument is a product, split it in three parts, one part for factors only
containing varl, one for those only containing var2, and one for the rest.
If the varl -factor is not Hayman-admissible, skip the rest of this item. If
the other factors are 1, return false. If the other factors are polynomials in
varl and var2, return true. If there is no term with both varl and var2,
and the term with var2 satisfies the second condition of theorem 5, return
true. Otherwise, continue.

• Test if the argument is an extended admissible function.

There are also some smaller helper functions:

• haymanadm(fct, var) tests if a function is Hayman-admissible by using an
internal function of equivalent from the algolib library (see [Sal91]).

• isanalytic(fct, var) tests for analyticity by trying to compute the Taylor
series expansion around 1.

• tendstoinfinity(fct, varl, var2) tries to determine if fct tends to infinity
for varl —> oo and var2 = 1 by interpreting the Output of MAPLE'S limit
function.

Here's the corresponding MAPLE code:

-*- maple -*-
#
$Id: extadm.maple,v 1.35 2004/05/13 22:33:20 wiz Exp $
#

extadm := moduleO

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 74

description "extended admissibility tests";

local check_condition, ea_functab, ea_exp, ea_polcheck,
haymanadm, isanalytic, tendstoinfinity;

export extadmtest, ea_addfunc;
Option package;

ea_addfunc := proc(fname::symbol, impl)
ea_functab[fname] := impl

end proc;

Input: Function in varl and var2
Output: true if extended admissible, false if not
#
Algorithm:

Separate into smaller pieces according to structure, and
call recursively; use separate deciding functions like
ea_polcheck in some cases.
extadmtest := proc(fet::algebraic, varl::name, var2::name)

local found_extadm, subfet, e, infeheck;

if (not has(fct, varl) or not has(fct, var2)) then
userinfo(3, extadm, "function is univariate or "

"constant", fet);
return false

end if;

infeheck := tendstoinfinity(fet, varl, var2);
if (infeheck = false) then

for central limit theorem, fet(varl, 1) must tend
to infinity
userinfo(3, extadm, "does not tend to +infinity: ",

fet);
false

elif type(fet, polynom(anything, {varl, var2})) then
no chance for a central limit theorem if there's a
limited number of coefficients
userinfo(3, extadm, "polynomial");
false

elif type(fet, ratpoly(anything, {varl, var2})) then
userinfo(3, extadm, "rational polynomial");
false

elif type(fet, '*') then
found_extadm := false;

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 75

for subfet in fet do
if type(subfet, polynom(anything, {varl, var2}))
then

>
elif extadmtest(subfet, varl, var2) then

found_extadm := true
elif haymanadm(subfet, varl) then

]

eise

produet contains a factor that is neither
extended admissible, nor Hayman admissible,
nor a polynomial -> cannot deeide
error "produet contains factor that is "

"neither ext-adm, hayman-adm, nor "
"polynomial"

end if;
end do;
if not found.extadm then

userinfo(3, extadm, "produet contains only "
"hayman-admissible factors and "
"polynomials");

false
eise

true
end if

elif type(fet, "") then

realconstant ~ funetion
if (type(op(l, fet), realcons)) then

if (op(l, fet) <= 0 or op(l, fet) = 1
or op(l, fet) = infinity) then
userinfo(3, extadm, "base less than 0, or "

"equal to 0, 1, or infinity",
op(l, fet));

false
elif (op(l, fet) < 1) then

extadmtest(exp(-op(2, fet)), varl, var2)
eise

extadmtest(exp(op(2, fet)), varl, var2)
end if

eise

error "Not implemented: extadm of "
"not-real-constanf~anything", fet

end if

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 76

elif type(fet, 'funetion') then
e := op(0, fet);
if assigned (ea_fnnctab[e]) then

try
ea_fnnctab[e](fet, varl, var2)

catch:
error "o/„l(7o2, °/„3, °/,4) failed: 7.5",

ea_funetab[e],
fet, varl, var2, lasterror;

end try
eise

error "Not implemented: extadm of 7,1", e
end if

elif type(fet, '+') then
found_extadm := false;
for subfet in fet do

if type(subfet, polynom(anything, {varl, var2}))
then

>
elif extadmtest(subfet, varl, var2) then

if not found_extadm then
found_extadm := true

eise
error "sum contains two or more ext-adm "

"funetions", fet
end if

eise
sum contains a factor that is neither
extended admissible nor a polynomial
-> cannot deeide
error "sum contains summand that is neither "

"ext-adm nor polynomial", fet
end if;

end do;
if found_extadm then

userinfo(3, extadm,
"sum of polynomial and ext-adm")

eise
XXX: shouldn't happen
userinfo(3, extadm, "polynomial")

end if;
found_extadm

eise

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 77

error "Invalid expression 7O1", fct
end if

end proc:

ea_exp := proc(fct, varl, var2)
local arg, fac, summand, varlf, var2f, varsf;

ASSERT(op(0, fct) = exp, "invalid call");

arg := op(l, fct);
if type(arg, polynom(anything, {varl, var2})) then

check if polynomial conditions are fulfilled
userinfo(3, extadm, "testing polynomial in exponent");
return ea_polcheck(arg, varl, var2)

elif type(arg, '+') then
split in parts belonging to varl, var2, and both
varlf := 0;
varsf := 0;
for summand in arg do

if not has(summand, var2) then
varlf := varlf + summand

eise
varsf := varsf + summand

end if
end do;
if (varlf <> 0 and haymanadm(varlf, varl)

and varsf <> 0
and type(varsf, polynom(anything, {varl, var2}))
and Iimit(subs(var2=l,

diff(varsf, var2)+diff(varsf, var2$2)),
varl=infinity) = infinity) then

userinfo(3, extadm, "exp(hayman(varl)+"
"positivepolynomiaKvarl, var2))") ;

return true
end if

end if;

if type(arg, '*') then
split in parts belonging to varl, var2, and both
varlf := 1;

var2f := 1;
varsf := 1;

CHAPTER 2. EXTENDED ADMISSIBLE FUNCTIONS 78

for fac in arg do
if has(fac, varl) and not has(fac, var2) then

varlf := varlf * fac
elif not has(fac, varl) and has(fac, var2) then

var2f := var2f * fac
eise

varsf := varsf * fac
end if

end do;
if (varlf <> 1 and haymanadm(varlf, varl)) then

if (var2f*varsf =1) then
only one variable, really
userinfo(3, extadm, "exp(hayman(varl))");
return false

elif type(var2f*varsf, polynom(anythingJ
{varl, var2})) then

userinfo(3, extadm,
"exp(hayman(varl)*poly(varl, var2))");

return true
elif (varsf = 1 and isanalytic(var2f, var2)

and subs(var2=l, var2f) > 0
and subs(var2=l, diff(var2f, var2)

+diff(diff(var2f, var2), var2)
- diff(var2f, var2)"2/var2f) > 0) then

userinfo(3, extadm,
"exp(hayman(varl)*g(var2)) "
"with g(var2) analytic at 1 and "
"additional properties");

return true
end if

end if
end if;

extadmtest(arg, varl, var2)

end proc:

ea_addfunc('exp', ea_exp);

haymanadm := proc(fet, var)
member('equivalent/saddlepoint/H_HS'(fet, var),{'H','HS'})

end proc:

Input: Function in var

CHAPTER2. EXTENDED ADMISSIBLE FUNCTIONS 79

Output: true if analytic near 1
#
Algorithm: expand into series around 1 and check if it's a
Taylor series

isanalytic:=proc(fct, var)
try

type(series(fet,var=l),taylor)
catch:

f alse
end try
end:

Input: Function in varl and var2
Output: true if limit of var2=l,
varl->infinity is +infinity;
false if not, or nothing if undeeided.
Algorithm: run limit and parse its Output

tendstoinfinity:=proc(fet, varl, var2)
local res;
try

res:=limit(subs(var2=l, fet), varl=infinity);
if (type(res, realcons) and res <> infinity) then

return false
elif (res = infinity) then

return true
end if

catch :
end try
end:

$include "polcheck.maple";

end module:

savelibCextadm');
quit

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples, techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., 1986.

[BR83a] Edward A. Bender and L. Bruce Richmond. Central and local limit
theorems applied to asymptotic enumeration. II. Multivariate gen-
erating functions. J. Combin. Theory Ser. A, 34(3):255-265, 1983.

[BR83b] Edward A. Bender and L. Bruce Richmond. Central and local limit
theorems applied to asymptotic enumeration. II. Multivariate gen-
erating functions. J. Combin. Theory Ser. A, 34(3):255-265, 1983.

[BR86] Edward A. Bender and L. Bruce Richmond. A generalisation of
Canfield's formula. J. Combin. Theory Ser. A, 41(l):50-60, 1986.

[BR96] Edward A. Bender and L. Bruce Richmond: Admissible functions
and asymptotics for labelled structures by number of components.
Electron. J. Combin., 3(l):Research Paper 34, approx. 23 pp. (elec-
tronic), 1996.

[dB81] N. G. de Bruijn. Asymptotic methods in analysis. Dover Publica-
tions Inc., New York, third edition, 1981.

[DG99] Michael Drmota and Bernhard Gittenberger. The distribution of
nodes of given degree in random trees. J. Graph Theory, 31(3):227-
253, 1999.

[Drm94a] Michael Drmota. Asymptotic distributions and a multivariate Dar-
boux method in enumeration problems. J. Combin. Theory Ser. A,
67(2):169-184, 1994.

[Drm94b] Michael Drmota. A bivariate asymptotic expansion of coefficients
of powers of generating functions. European J. Combin., 15(2):139-
152, 1994.

80

BIBLIOGRAPHY 81

[Drm97] Michael Drmota. Systems of functional equations. Random Struc-
tures Algorithms, 10(1-2): 103-124, 1997. Average-case analysis of
algorithms (Dagstuhl, 1995).

[DZ89] Nachum Dershowitz and Shmuel Zaks. Patterns in trees. Discrete
Appl. Math., 25(3):241-255, 1989. "

[FGM97] Philippe Flajolet, Xavier Gourdon, and Conrado Martmez. Pat-
terns in random binary search trees. Random Structures Algorithms,
ll(3):223-244, 1997.

[FS80a] Philippe Flajolet and Jean-Marc Steyaert. On the analysis of
tree-matching algorithms. In Automata, languages and program-
ming (Proc. Seventh Internat. Colloq., Noordwijkerhout, 1980), vol-
ume 85 of Lecture Notes in Comput. Sei., pages 208-219. Springer,
Berlin, 1980.

[FS80b] Philippe Flajolet and Jean-Marc Steyaert. On the analysis of tree-
matching algorithms. In Trees in algebra and programming (Proc.
5th Lille Colloq., Lille, 1980), pages 22-40. Univ. Lille I, Lille, 1980.

[FS90] Philippe Flajolet and Michele Soria. Gaussian limiting distribu-
tions for the number of components in combinatorial structures. J.
Combin. Theory Ser. A, 53(2):165-182, 1990.

[FS93] Philippe Flajolet and Michele Soria. General combinatorial
Schemas: Gaussian limit distributions and exponential tails. Dis-
crete Math., 114(l-3):159-180, 1993. Combinatorics and algorithms
(Jerusalem, 1988).

[FS02] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics -
symbolic combinatorics. Manuscript, pages 186+viii, May 2002.
Available as h t tp : / / a lgo . in r i a . f r / f l a jo le t /Pub l i ca t ions /
FlSeO2.ps.gz.

[Gar95] Daniele Gardy. Some results on the asymptotic behaviour of coef-
ficients of large powers of funetions. Discrete Math., 139(1-3):189-
217, 1995. Formal power series and algebraic combinatorics (Mon-
treal, PQ, 1992).

[GJ83] I. P. Goulden and D. M. Jackson. Combinatorial enumeration. A
Wiley-Interscience Publication. John Wiley & Sons Inc., New York,
1983. With a foreword by Gian-Carlo Rota, Wiley-Interscience Se-
ries in Discrete Mathematics.

BIBLIOGRAPHY 82

[GM04] Bernhard Gittenberger and Johannes Mandlburger. Hayman-ad-
missible functions in several variables. Manuscript, 2004.

[GR92] Zhicheng Gao and L. Bruce Richmond. Central and local limit
theorems applied to asymptotic enumeration. IV. Multivariate gen-
erating functions. J. Comput. Appl. Math., 41(1-2):177-186, 1992.
Asymptotic methods in analysis and combinatorics.

[Har67] L. H. Harper. Stirling behavior is asymptotically normal. Ann.
Math. Statist, 38:410-414, 1967.

[Hay56] W. K. Hayman. A generalisation of Stirling's formula. J. Reine
Angew. Math., 196:67-95, 1956.

[HP73] Frank Harary and Edgar M. Palmer. Graphical enumeration. Aca-
demic Press, New York, 1973.

[HS68] Bernard Harris and Lowell Schoenfeld. Asymptotic expansions for
the coefficients of analytic functions. Illinois J. Math., 12:264-277,
1968.

[Hwa96] Hsien-Kuei Hwang. Large deviations for combinatorial distribu-
tions. I. Central limit theorems. Ann. Appl. Probab., 6(1):297-319,
1996.

[Hwa98] Hsien-Kuei Hwang. On convergence rates in the central limit theo-
rems for combinatorial structures. European J. Combin., 19(3):329-
343, 1998.

[LalO2] S. Lalley. Random walks on infinite free products and infinite alge-
braic Systems of generating functions. Manuscript, August 2002.
Available as h t t p : //www. s ta t .uch icago . edu/~la l ley/Papers /
RWFP.pdf.

[Lon04] Stefano Lonardi. Pattern matching pointers. Internet, 2004. h t t p :
/ /www.es.ucr .edu/~stelo/pat tern.html.

[MM78] A. Meir and J. W. Moon. On the altitude of nodes in random trees.
Canad. J. Math., 30(5):997-1015, 1978.

[Ott48] Richard Otter. The number of trees. Ann. of Math. (2), 49:583-599,
1948.

[RS75] R. W. Robinson and A. J. Schwenk. The distribution of degrees in
a large random tree. Discr. Math., 12:359-372, 1975.

BIBLIOGRAPHY 83

[RSSVdH96] Dan Richardson, Bruno Salvy, John Shackell, and Joris Van der
Hoeven. Asymptotic expansions of exp-log functions. In Y. N.
Lakshman, editor, ISSAC'96, pages 309-313. ACM Press, 1996.
Proceedings of the 1996 International Symposium on Symbolic and
Algebraic Computation. July 24-26, 1996. Zürich, Switzerland.

[Ruc88] Andrzej Rucinski. When are small subgraphs of a random graph
normally distributed? Probab. Theory Related Fields, 78(l):l-10,
1988.

[Sal91] B. Salvy. Examples of automatic asymptotic expansions. SIGSAM
Bulletin, 25(2):4-17, April 1991.

[SF83] Jean-Marc Steyaert and Philippe Flajolet. Patterns and pattern-
matching in trees: an analysis. Inform. and Control, 58(l-3):19-58,
1983.

[Sha93] John Shackell. Inverses of Hardy L-functions. Bull. London Math.
Soc, 25(2):150-156, 1993.

[SS99] Bruno Salvy and John Shackell. Symbolic asymptotics: multiseries
of inverse functions. J. Symbolic Comput., 27(6):543-563, 1999.

Acknowledgments

First of all, I would like to thank my thesis Supervisor Michael Drmota for
supporting me to work on mathematics, for opening the opportunity to stay at
INRIA, for providing useful advice, and for supervising my thesis. I would also
like to thank Bernhard Gittenberger for many interesting conversations starting
from simple questions and usually ending in complex subjects.

I am thankful for being invited to stay at the Algorithms Project at INRIA
Rocquencourt, where Frederic Chyzak, Virginie Collette, Philippe Flajolet, Bruno
Salvy, and other members of the Algorithms Project made me feel very welcome
and both explicitly and implicitly taught me quite a lot.

I am grateful to the Austrian Science Foundation FWF for giving financial
support during my thesis (via grants S8302-MAT and P16053-N05).

Very Special thanks go to my family (including Merlin) and my friend Ute for
their constant support.

84

Lebenslauf

Ich wurde am 18. August 1975 als Sohn von Ilse Klausner, geb. Moser, und Her-
bert Klausner in Wien geboren. Von 1981 bis 1985 besuchte ich die Volksschule
Mauerbach, von 1985 bis 1993 dann das Schottengymnasium, Wien 1, an dem
ich im Juni 1993 mit Auszeichnung maturierte.

Im September 1993 immatrikulierte ich an der Technischen Universität Wien das
Studium Technischen Mathematik. Ich schloss das Diplomstudium Technische
Mathematik im Juni 2000 mit ausgezeichnetem Erfolg ab.

In den Jahren 1994 bis 2003 war ich am Institut für Angewandte und Numerische
Mathematik der Technischen Universität Wien als Studienassistent tätig. Von
Oktober 2000 bis November 2002 war ich Forschungsassistent im FWF-Schwer-
punktsprojekt "Statistical Properties of Number Systems" unter der Leitung von
Prof. Michael Drmota. Seit Dezember 2002 bin ich im FWF-Forschungsprojekt
"Automatische Entwicklung erzeugender Funktionen" von Prof. Bernhard Git-
tenberger angestellt, unterbrochen von meinem Zivildienst, den ich von Februar
2003 bis Jänner 2004 am Bundesministerium für Inneres ableistete.

Wien, Mai 2004 Thomas Klausner

85

