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Abstract

In this thesis, we consider a strictly stationary univariate symmetric a-stable process {Xt, t € Z}
with 0 < a < 2. For Gaussian process (a = 2), the covariance function completely describes
the dependence structure over time for {Xt}. For a < 2, the second moments of the process are
infinite, and therefore the population covariance function is not defined. However, the (noncentral)
sample autocovaxiance and the sample autocorrelation function (SACF) are well defined random
variables. Davis and Resnick (1986) showed that for a class of linear models with infinite variance,
the SACF will converge, and when it is properly normalized, converges weakly to a limiting
distribution. Unfortunately, as a tool for modelling, the SACF of linear time series models with
infinite variance has some drawbacks (see Section 1.2).

Due to the drawbacks of the SACF, for processes having no population second moments, it is desir-
able to have a dependence measure which does not depend on the existence of (second) moments.
For this purpose, some generalizations of the autocovariance function as dependence measures of
stationary process with infinite variance have been proposed in literature, e.g., the autocovaria-
tion (Cambanis and Miller, 1981), the codifference function (Kokoszka and Taqqu, 1994) and the
dynamical function (Janicki and Weron, 1994&). In this thesis we study the codifference function
and also consider the normalized codifference function of causal stable ARMA process with sym-
metric a-stable noise, 0 < a < 2. We consider estimators of the codifference and the normalized
codifference function based on the empirical characteristic function. We further show the asymp-
totic properties of the proposed estimators. Finally, we discuss the application of the codifference
function for identifying and estimating moving average models and doing Portmanteau-type test.

This thesis is organized as follows. In the first part of this thesis, comprising Chapters 1-3, we
present some important concepts, which will be required for further understanding of the thesis.
In the introductory chapter, the background and motivations to the problem that we consider are
presented. Chapter 2 gives the reader an overview of stable distributions. Chapter 3 provides an
overview of results related to the a-stable ARMA modelling.

The second part, consisting of Chapters 4 - 6 , deals with the main results. Chapter 4 treats the
codifference function. Here we provide the definition of the function, and give a summary of the
asymptotic properties of the codifference function for causal stable ARMA case. Furthermore,
based on the empirical characteristic function, we propose estimators of the codifference and the
normalized codifference function. We show the consistency of the proposed estimators, where the
underlying model is causal stable ARMA with symmetric a-stable noise, 0 < a < 2. In addition,
we establish their limiting distributions.

Chapter 5 deals with the application of the results presented in Chapter 4. In the first section of
this chapter, we address some practical issues for the calculation of the sample codifference and
the normalized codifference function from time series data with finite size. In section two, we
describe an order identification and estimation method for moving average models which uses the
codifference function. In the last section, we discuss the application of the codifference function
for Portmanteau-type test, i.e., testing for independence against serial dependence alternatives.

In the last chapter, we provide a brief summary, draw conclusions from the results presented in
this thesis and outline possible further research directions.



Kurzfassung

In dieser Dissertation betrachten wir einen strikt stationären univariaten symmetrische a-stabilen
Prozeß {Xt,t 6 Z}, wobei 0 < a < 2. Für einen Gaußschen Prozeß (a = 2) beschreibt die
Kovarianzfunktion in eineindeutiger Weise die Abhängigkeitsstruktur von {Xt} über die Zeit hin-
weg. Für a < 2 existieren die zweiten Momente des Prozesses hingegen nicht, und daher ist auch
die Kovarianzfunktion nicht definiert. Die (nichtzentrierte) Sample-Autokovarianzfunktion und
die Sample-Autokorrelationsfunktion (ACF) sind hingegen wohldefinierte Zufalls variablen. Davis
and Resnick (1986) haben gezeigt, daß für eine Klasse von linearen Modellen mit unbeschränkter
Varianz die Sample-ACF konvergiert, und daß, bei geeigneter Normalisierung, schwache Konver-
genz gegen eine Grenzverteilung vorliegt. Leider hat die Sample-ACF als Modellierung-Tool bei
linearen Zeitreihenmodellen mit unbeschränkter Varianz einige Nachteile (siehe Abschnitt 1.2).

Wegen der oben angesprochenen Nachteile der Sample-ACF bei Prozessen mit unbeschränkten
zweiten Momenten ist es wünschenswert ein Abhängigkeitsmaß zu betrachten, welches nicht von
der Existenz (zweiter) Momente abhängt. Zu diesem Zweck wurden in der Literatur einige Ver-
allgemeinerungen der Autokovarianzfunktion als Abhängigkeitsmaß für stationäre Prozesse mit
unbeschränkter Varianz vorgeschlagen. Beispiele hierfür sind die Autokovariation (Cambanis and
Miller, 1981), die Kodifferenzfunktion (Kokoszka and Taqqu, 1994) und die dynamische Funktion
(Janicki and Weron, 19946). In dieser Dissertation betrachten wir die Kodifferenzfunktion und
die normalisierte Kodifferenzfunktion eines kausalen stabilen ARMA Prozeß mit symmetrischem
a-stabilen Rauschen, 0 < a < 2. Die Schätzer, welche wir für diese Funktionen definieren, basieren
auf der empirischen charakteristischen Funktion. Wir zeigen die asymptotischen Eigenschaften der
Schätzer und diskutieren die Anwendung der Kodifferenzfunktion bei statistischen Tests, die dem
Portmanteau Test sehr ähnlich sind und bei der Identifizierung und Schätzung von MA-Modellen.

Die Dissertation ist wie folgt gegliedert: Im ersten Teil, welcher aus den Kapiteln 1 - 3 besteht,
präsentieren wir wichtige Konzepte, die für das Verständnis der Arbeit vonnöten sind. In der
Einleitung wird der Hintergrund und die Motivation des betrachteten Problems beleuchtet. In
Kapitel 2 erhält der Leser eine Übersicht über stabile Verteilungen. Kapitel 3 bietet eine Übersicht
über bestehende Resultate zur a-stabilen ARMA-Modellierung.

Der zweite Teil der Arbeit besteht aus den Kapiteln 4 - 6 und beinhaltet die Hauptresultate.
Kapitel 4 beschäftigt sich mit der Kodifferenzfunktion. Wir geben eine Definition der besagten
Funktion und eine Zusammenfassung der asymptotischen Eigenschaften der Kodifferenzfunktion
im kausalen stabilen ARMA Prozeß. Weiters schlagen wir Schätzer der Kodifferenz- und norma-
lisierten Kodifferenzfunktion vor, die auf der empirischen charakteristischen Funktion basieren.
Wir zeigen die Konsistenz der Schätzer, wobei das zugrundeliegende Modell ein kausalen stabilen
ARMA-Modell mit symmetrischem a-stabilen Rauschen ist und 0 < a < 2. Zusätzlich leiten wir
die Grenzverteilungen ab.

Kapitel 5 behandelt Anwendungen der Resultate aus Kapitel 4. Im ersten Abschnitt dieses Kapi-
tels behandeln wir die praktische Berechnung der Sample-Kodifferenzfunktion und der norma-
lisierten Sample-Kodifferenzfunktion aus endlich vielen Zeitreihendaten. In den folgenden Ab-
schnitten beschreiben wir eine Methode zur Ordnungs- und Parameterschätzung für MA-Modelle,
welche die Kodifferenzfunktion verwendet. Im letzten Abschnitt diskutieren wir die Anwendung
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der Kodifferenzfunktion für Tests, die dem Portmanteau-Test ähnlich sind, d.h., wir testen Un-
abhängigkeit gegen serielle Abhängigkeit.

Das letzte Kapitel enthält eine kurze Zusammenfassung sowie Schlußfolgerungen aus den erzielten
Resultaten. Einige mögliche Richtungen für weitere Forschungsaktivitäten werden abschließend
genannt.
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Chapter

Introduction

1.1 Motivation and background

In many cases, the assumption of normality of the observations seems to be reasonable. On
the other hand, many large empirical data sets from diverse fields of studies, for instance from
telecommunications and network traffics (e.g., Resnick, 1997), physics (see, e.g., Janicki and Weron,
1994a, section 4), finance (e.g., Fama, 1965; Mandelbrot, 1963; Rachev and Mittnik, 2000; Mittnik
et al, 1998), signal processing (e.g., Nikias and Shao, 1995) and others (e.g., Zolotarev, 1986,
Chapter 1), are found to be leptokurtic (i.e., heavy-tailed and peaked around the center). It
means that data with large value relative to the sample median will occur more frequently and
can have a large spread compared to what the normal distribution can explain. Some distributions
have been considered to replace the normal distribution in this case, e.g., the student-t distribution,
the two-sided Weibull, the hyperbolic and the stable Paretian (stable non-Gaussian) distribution.

Among distributions that we mentioned above, an important and attractive class of distributions
for modelling heavy-tailed data is the stable distribution (e.g., Rachev and Mittnik, 2000). In this
respect, a crucial question arises: Even if we acknowledge that large data sets are heavy-tailed, is
it ever reasonable to use a stable model?.

It has been argued that the class of stable distributions have many advantages compared to the
numerous alternatives:

1. It contains the normal distribution as a special case, although the statistical analysis based
on stable Paretian distribution in many cases is completely different from the Gaussian
model, due to the nonexistence of the (second) moments and, except for a few cases, the
nonexistence of the probability distribution function in a closed-form.

2. The importance of the stable distributions is theoretically supported by the generalized
central limit theorem, which indicates that the stable distributions are the only possible non-
trivial limiting distributions for the normed sum of independent and identically distributed
random variables, either in the finite or in the infinite variance case.

3. In some applications, there are solid theoretical reasons for using non normal a-stable models,
for instance (Feller, 1971; Zolotarev, 1986)

• reflection of the radioactive emission on the screen yields the Cauchy distribution

• hitting time for a Brownian motion yields the Levy distribution, and

© the gravitational field of stars yields the Holtsmark distribution.

1
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On the other hand, there is skepticism concerning the usage of the stable distributions in statistical
modelling. For instance, from econometrics community, Campbell et al. (1997), p. 19 wrote

Although the stable distributions were popular in the 1960's and early 1970's, they
are less commonly used today. They have fallen out of favor partly because they make
modelling so difficult; standard finance theory almost always requires finite second
moments of returns, and often finite higher moments as well. The stable distributions
also have some counterfactual implications. First they imply that sample estimates of
the variance and higher moments of returns will tend to increase as the sample size
increases, whereas in practice these estimates seem to converge. Second, they imply
that long horizon returns will be just as non-normal as short horizon returns since long
horizon returns are sums of short horizon returns, and these distributions are stable
under addition. In practice, the evidence for non-normality is much weaker for long
horizon returns than for short horizon returns.

In particular, Campbell et al. (1997) presented an empirical kurtosis analysis of the daily and the
monthly returns data to support their conclusion that the stable hypothesis should be rejected.

In our opinion, the arguments of Campbell et al. (1997) above are only partially correct and the
analysis which is provided to support their conclusion has several weaknesses. In what follows,
we discuss this in detail. Although it is not our main interest to argue against Campbell et al.
(1997) or a similar opinion, we believe that it is important to discuss this here, to motivate the
application of the stable distribution.

The first argument given in Campbell et al. (1997) seems to be one of the main reasons often used
by practitioners against using stable models. In particular, it is often argued that since the stable
non-Gaussian distribution has infinite variance, it is inappropriate for real data that have bounded
range. However, note that it is a common procedure that we model (all) bounded data by some
distributions which have infinite support (e.g., the popular normal distribution). As argued in
Fofack and Nolan (1999), the reason behind this fitting procedure is mainly because the chosen
distribution is able to describe the shape of the data, although it is not appropriate in the tails
since the data always have bounded range 1. Thus, the same justification can be used for stable
non-Gaussian models. If the stable distribution can describe the shape and the other underlying
properties of the data accurately and parsimoniously, then we may accept it as an alternative
model for the data, although it (population) variance is infinite 2 3. Regarding the nonexistence
of the variance of stable models, we refer to an argument given in Fofack and Nolan (1999)

The variance is one measure of spread. The scale a in a stable model is another measure
can be used. Perhaps practitioners are so used to using the variance as the measure of
spread. That they automatically retreat from a model without a variance4. The scale
parameter a can play a similar role for stable models5. Of course, all four parameters
are necessary to completely describe the distribution.

Furthermore, to obtain a correct picture about the behavior of moments estimator of the process
with infinite variance, we should deeply explore the next argument of Campbell et al. (1997). We
recall it here

l\x\ some sense, it has a similar interpretation to the well-known saying "All models are wrong, but some are
useful"

2The modeler should remember the difference between the sample variance which is always finite for bounded
data, and the population variance which can be infinite.

3Alternatively, one could also consider a new class of distributions as proposed in Menn and Rachev (2004),
which has the "stability" property of the stable distributions and on the other side, has finite variance.

4 In Gaussian case, the distribution can be well described by only two parameters, the mean and the variance,
but for most of distributions, it does not

5For instance, the mean-variance analysis in finance theory can be replaced by mean-scale analysis (I < a < 2)
or location-scale analysis (0 < a < 1), see, e.g., Belkacem et al. (2000), Doganoglu and Mittnik (2003)
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Figure 1.1: Cumulative sample variance plots of the simulated SaS series

... First they imply that sample estimates of the variance and higher moments of
returns will tend to increase as the sample size increases, whereas in practice these
estimates seem to converge . . .

To investigate the claim of Campbell et al. (1997) above, let us consider the sample variance of
the process, i.e., we consider the so-called "converging variance" test6 (Granger and Orr, 1972).
We plot the sample variance s£ based on the first n observations, i.e., s£ = n"1 5Z"=1 (Xi - Xn)

2,
with Xn — n~l X ÎLi -^ti against n. If all Xt's are coming from the same distribution, when
the population variance of Xt is finite, the sample variance should converge to a finite value for
n —> oo. Otherwise, the sample variance s£ will diverge, and for finite sample size, typically there
is a clear pattern of large jumps and irregularity in the graph. As an illustration for this fact, in
Figure 1.1 we plot the sample variance of simulated standard a-stable (SaS) data for some index
of stability a and for the spread measure a = 1 against the sample size n. In this figure, when
a < 2, we can easily see the existence of large jumps when n is increased, however if the spread
measure a is small, the range of its values is not outrageous, especially for 1.5 < a < 27. This
simple counterexample shows that for moderate sample sizes, the argument of Campbell et al.
(1997) above can be quite misleading.

Herewith we shortly discuss the stability testing methods for empirical data. In Campbell et al.
(1997), it was argued that if the data were stable then the data of long horizon returns would be just
as non-normal as short horizon returns since long horizon returns are sum of short horizon returns,

6Note that the "converging variance" test was originally designed for i.i.d. data, but in the presence of de-
pendency in the data, Adler et al. (1998a) proposed to randomize the order of the series before applying the
test.

7Indeed, we believe in many empirical applications, the data have finite mean. Therefore, in this respect, the
range of 1 < a < 2 is empirically more important. Furthermore, in many empirical applications, it was often
reported that the value of a is in the range of [1.5,2), see, e.g., Adler et al. (19986), Rachev and Mittnik (2000),
Weron (2001)
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and their distributions are "stable" under addition. However, to support their conclusion, they
provide an empirical example under which the long horizon returns have smaller sample kurtosis
compared to the short horizon returns. Therefore, the stable hypothesis should be rejected, because
the data do not show "stability". In our opinion, their argument does not provide a convincing
approach for concluding non-"stability" of the data. Regarding this issue, we refer to Rachev and
Mittnik (2000), p. 4, which note

Kurtosis statistic reflects the peakedness of the center compared to that of the normal
distribution, so that a value near three would be indicative of normality. Although
formal tests could in principle be conducted, it should be kept in mind that under the
Paretian stable hypothesis, second and higher moments do not exist, rendering such
tests useless.

To check the stable (univariate) Paretian assumption (that is, a-stable distributed with index of
stability a < 2), in Section 2.3 we list several methods that have been suggested in literature, and
notice that none of the proposed methods uses the sample kurtosis as the basis for concluding the
summability of the data (i.e., the probability distribution of data is preserved under convolution).
As can be found in literature, kurtosis statistic (and the sample kurtosis) higher than 3 is an
indication that data are heavier than the normal distribution, and nothing can be said about the
effect of summation of kurtosis (and sample kurtosis) when the moments of order higher than or
equal to two is infinite (see a related discussion in Schmid and M.Trede, 2003).

It seems that the most prominent method for checking the summability of the data is done via
the estimates of the index of stability a. Instead of checking the "stability" of the sample kur-
tosis, hence one can check the stability of à for the data over different time horizons (e.g., over
daily, weekly and monthly horizons) (e.g., Paolella, 2001). This verification can confirm that the
(necessarily i.i.d.) data could have been generated from a stable law, because this property truly
characterizes the stability of the sum of any finite number of i.i.d. stable random variables. If the
true distribution of the data is a stable law, the estimated tail indexes of summed nonoverlapping
j - length segments of the data can be expected roughly constant as a function of j , j = 1,2,...,
while for non stable data, the estimates should tend to increase towards two as j increases.

Note that the stability test mentioned above is naturally a joint test of summability and i.i.d.-ness.
As noted in Paolella (2001), the summability test could well reject the stable hypothesis if the data
were generated from non-i.i.d. model driven by the stable Paretian innovations8. Moreover, this
approach will work only if we can assume that the index a is non-dynamic over time horizon, since
the invariability property of a under summation does not hold if we sum two a-stable distribution
with different index a 9.

Let us further note that in the past, many empirical results have been reported to serve as evidences
against the usage of the stable distributions. In some instances, the arguments provided are based
on the inference of tail index a, obtained from Hill's estimator (see Section 2.3). It was argued that
in certain stocks returns and foreign exchanges, the estimated indexes lie over two, and therefore
the stable Paretian distribution is not an appropriate class of distributions for modelling the data
(e.g., Gopikrishnan et al., 1998; Gopikrishnan et ai, 1999; Plerou et ai, 1999). Regarding this
matter, recently Paolella (2001) notices 10

Many authors use the popular Hill estimator to conduct inference on the tail index
and, as in most studies, are uncertain as to the choice of the required. cutoff value,
fc, which indicates at what threshold tail behavior begins. This is a serious problem
as the choice of k can dramatically influence the estimate of the tail index a. Many
suggestions for k have been proposed in literature, and are usually taken to be between

8In this respect, one can apply the considered stability testing to the fitted residual, after filtering data using
appropriate non-i.i.d. models

9Note that the sum of two a-stable random variables with different index a is not a-stable (Weron, 2001)
10A similar argument can be found in Weron (2001)
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one and ten percent of the sample size, T. We draw attention to the fact that with
stable Paretian data, the optimal k is often around 40% of N, i.e., quite far from the
tail, while use of k less than this value severely overestimates a.

Moreover, as noted by Rachev and Mittnik (2000), the analyses performed in many cases are
focused merely on i.i.d. case, excluding the richer class of models driven by stable processes
(as the innovation processes in the models). Thus, besides the heavy-tailedness, other common
stylized facts often observed in the empirical data, for instance, the temporal dependence, the
short or long range dependence, etc., can not be modelled by the considered model. Note that in
this dissertation, we restrict ourselves to the study of the classical model of temporal dependence,
i.e., the class of (univariate) linear homoscedastic models with heavy-tailed setting, in particular
the Autoregressive Moving Average (ARMA) with symmetric a-stable distributed noise (see also
Section 3.1).

Although the stable distributions provide an attractive class of distributions for data modelling,
unfortunately it suffers from several mathematical difficulties, see Section 1.2. In particular here
we focus on the consequence of nonexistence of second moments when a < 2, and therefore, the
population covariance function of stable stationary processes does not exist. However, the sample
autocovariance and the sample autocorrelation function (SACF) are well defined random variables.
Furthermore, for a class of linear models with infinite variance, the SACF will converge, and if
properly normalized, it will have a limit distribution (Davis and Resnick, 1986). However, as a tool
for modelling, the SACF of linear time series models with infinite variance has some drawbacks
(see Section 1.2).

Due to the drawbacks of the SACF in the heavy-tailed setting, for processes having no population
second moments, it is desirable to have a dependence measure which does not depend on the
existence of (second) moments of the process. For this purpose, some generalizations of the
autocovariance function as dependence measure of stationary processes with infinite variance have
been proposed in literature, e.g., the autocovariation (Cambanis and Miller, 1981), the codifference
function (Kokoszka and Taqqu, 1994) and the dynamical function (Janicki and Weron, 19946).
The dynamical function has a similar form to the codifference function and both of them do not
require the existence of moments of any order. The concept of autocovariation is introduced in
the probability literature (e.g., Samorodnitsky and Taqqu, 1994, Ch. 2) as a dependence measure
of symmetric a-stable process with finite first moments (i.e., it is defined only for 1 < a < 2).
Some properties of dependence measures mentioned above are summarized in Samorodnitsky and
Taqqu (1994) and Janicki and Weron (19946). Gallagher (1998) generalized the definition of
the autocovariation function to be valid for all stationary processes with finite first moments.
Furthermore, Gallagher (1998) defined the sample autocovariation function and used it as an
empirical dependence measure of some ARMA models, to replace the role played by the SACF.
In the same spirit as Gallagher (1998), in this dissertation we study the codifference function
and also consider the normalized codifference function as generalization of the autocovariance
and the autocorrelation function, respectively. We define estimators for the codifference and the
normalized codifference function via the empirical characteristic function. In addition, we show the
asymptotic properties of the proposed estimators for a class of symmetric a-stable linear models.
The application of the codifference function for inference is also discussed.

1.2 Some problems in heavy-tail modelling

In the following, we list several problems of statistical modelling under the stable distribution
framework.

1. Nonexistence of probability density function (pdf) in an explicit form except for a few cases.
This problem has been hindering the usability of prominent estimation methods which rely
on the existence of pdf, such as the Maximum Likelihood Estimation (MLE) procedure,
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and was probably one of the major difficulties for the practical application of the stable
distribution in the past. In this dissertation, we are not pursuing results in this direction,
however we refer the interested reader to the results, which are reviewed in Rachev and
Mittnik (2000), Section 3.7. and Calder and Davis (1998). Some recent results have been
reported for the numerical approximation of the stable pdf (and likelihood function), e.g., for
i.i.d. case in Doganoglu and Mittnik (1998), Mittnik et al. (1999) and for ARMA estimation
procedure in Calder and Davis (1998). Those results are of practical importance; because of
the availability of numerical routines for the approximation of stable Paretian densities, the
MLE becomes numerically feasible. Therefore, a quick and accurate estimation procedure
can be performed for the various statistical models, not only for i.i.d. model, but also for
richer classes of models, driven by the stably distributed process.

2. Nonexistence of the second moments for a-stable random variables with a < 2 implying that
the population covariance and the population correlation function do not exist. However, as
we already mentioned, the sample covariance and the sample correlation function are well
defined random variables. For cases when the population covariance function does not exist,
for strictly stationary process of the form

Xt = ^2°°- cJ€t~j'^2°°_ \J\\cj\5 < oo for some <5 € ( 0 , a ) n ( 0 , lj

where {et} is i.i.d. sequence of standard symmetric a stable (SaS) random variables, a
denotes the index of stability, 0 < a < 2, with the identical characteristic function

E(expisei) = exp(-cra|s|Q), s € M, a > 0

Davis and Resnick (1986) show the following: the noncentral SACF at lag k, namely

T- — K

converges in probability to

Note that when a < 2, p(k) can not be interpreted as the usual population correlation
function p{k). Additionally, for each m > 1, the following central limit theorem holds

( n / ln(n))l/a(p(l) - p ( l ) , • • • , p(m) - p { m ) ) ' ±(YU---, Ym)'

Here —> denotes convergence in distribution, and

Yk = jt Wk + 3) + P(k ~ J) - 2p(*:)p(j)] p - . * = 1. • • •. m

where, (Gj)j>i and Go are independent random variables, where Go is positive a/2-stable
with characteristic function

Eexp{isG0} = exp{-r(l - a/2) cos(7ra/4)|s|Q/2(l - i sign{s) tan(?ra/4))}

and (Gj)j>\ are i.i.d. SaS random variables with characteristic function

|/2) if a = 1

Here F(-) denotes the gamma function. For a > 1, the result above is still valid if p(-) is
replaced by the centralized version.
As a dependence measure of linear stationary processes, the SACF has some drawbacks when
the data are heavy-tailed (Gallagher, 2000),
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(a) There is a discontinuity in the quantile of the limit distribution and in the normalization
constant as a —» 2. Here, the discontinuity of the quantile of limiting distribution is
coming from the fact that the divisor Go is large with positive probability when a < 2,
but is unity when a = 2. As noted in Gallagher (2000), this result creates a problem
in applications. For instance, suppose that the unknown true a is equal to 2, but it
is estimated a little bit smaller than the true value, e.g., a = 1.98, then the constants
and the quantiles of the distribution which are used for inference will change drastically
(see Adler et al., 1998a, table 3).

(b) In several simulation studies, it has been shown that a sample size of one million is
required to obtain correct empirical levels of a statistical test (Adler et al, 1998a).
These simulation results indicate that the limiting distribution Yk of (p(-) — p(-)) in
(3.12) provides a very poor approximate distribution for moderate sample sizes.

These and related problems are investigated in this dissertation.

1.3 Thesis contribution

The overall objective of this dissertation is to study the class of (stable causal) Autoregressive
Moving Average (ARMA) with symmetric a-stable (SaS) distributed noise. In particular, we focus
on the analysis of the dependence structure of this model using a quantity, called the codifference
function. The main contribution of this dissertation can be summarized in the sequel:

1. In this dissertation, we study the asymptotic behavior of the codifference function of causal
stable ARMA process with SaS noise. We consider three classes of the roots of the respective
polynomial of the autoregressive part, namely real positive, real negative and complex, i.e.
we slightly extend the results presented in Kokoszka and Taqqu (1994).

See Section 4.1 and 4.2 for detailed discussion.

2. We consider the codifference and the normalized codifference function as dependence mea-
sures for stationary processes. Based on the empirical characteristic function, we propose
estimators of the codifference and the normalized codifference function. We show the consis-
tency of the proposed estimators, where the underlying model is stable causal ARMA with
symmetric a-stable noise, 0 < a < 2. In addition, we derive their limiting distribution.
Finally, we present a simulation study showing the dependence of the estimator on certain
design parameter.

These results are presented in Section 4.3 - 4.7 and 5.1.

3. In the traditional Box-Jenkins modelling, we use the sample autocorrelation function as a tool
for fitting the plausible models for empirical data. In this dissertation, we consider the sample
(normalized) codifference as a new tool for the preliminary order identification and estimation
of pure univariate SaS moving average process with finite order. The performance of the
proposed method is evaluated via simulation studies, and it is compared to the performance
of a method which is based on the sample covariance/the sample autocorrelation function.
Simulation results indicate that the method based on the codifference function works fairly
well for identification and estimation purposes.

See Section 5.2 for detailed discussion.

4. We consider a test for independence against serial dependence alternatives for symmetric a
stable random variables with the exponent 0 < a < 2, using Box-Pierce Q-statistic which
is defined using the codifference function. We obtain that unlike a similar test proposed in
Runde (1997), the asymptotic distribution of the proposed statistic is similar to the classical
case, that is asymptotically \2 distributed, both in the finite and the infinite variance cases.
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For 1 < a < 2, simulation studies are performed to obtain the small sample performance
of the proposed statistic. We found that the proposed statistic works fairly well for "small"
sample, in the sense that in the infinite variance case, its empirical levels are much closer to
the theoretical ones and its power is much better than Runde's statistic, and where in the
finite variance case, its empirical levels and its power are approximately the same as that
of Ljung Box's statistic (Ljung and Box, 1978). However, when the order of checked lag m
is relatively large compared to the sample size n, the Portmanteau statistic, which is based
on the codifference function, has been shown to have much closer empirical levels than the
alternatives.

These results are presented in Section 5.3.



Chapter 2

The a-stable distribution family

2.1 A short historical overview

The study of stable distributions can be dated back to the early 18th century, when the first and
most widely used Stable distribution, called the normal distribution, was discovered1. Although
it is known that Abraham de Moivre in 1733 was the first mathematician who introduced the
normal distribution in the context of approximating certain binomial distributions, the normal
distribution is often devoted to Carl Friedrich Gauss who in 1809 emphasized the importance of the
normal distribution in solving the least-squares regression problem within the field of astronomy2.
Following the development of the theory of characteristic functions as the Fourier transforms of
probability distributions, in 1810 Laplace used the characteristic function for the representation of
the probability of a sum of large numbers of mutually independent random variables and showed
that it is approximately normal distributed. Later on, Laplace's student, Augustin Louis Cauchy
extended Laplace's analysis and discovered Cauchy law. Cauchy discovered in 1853 that the
functions fa which satisfies

eiexfa(x)dx = e-c'c'W",a>O,e£R (2.1)
CO

have the convolution property

(Afa{))*(Bfa(-)) = Cfa(-)

for some C = C(A, B) and all A,B > 0. However, Cauchy can show that fa(x) > 0 only in the
cases a = 1 and a = 2.

In 1924, during his study regarding the limiting law of normed sums of independent and identically
distributed (i.i.d.) random variables, Paul Pierre Levy found that when the condition on the
finiteness of the variance of i.i.d. random variables is relaxed, the limit distribution follows a
stable law. Motivated by this result, Levy studied the Fourier transform of the class of stable
distributions. In this direction, in particular, Levy extended the work of Cauchy by showing the
positivity of fa in (2.1) for 0 < a < 2. The work of Levy originated the modern development of
the theory of the stable distributions.

Despite its long history of research, the stable non-Gaussian distributions attracted almost no
attention to applied researchers until the seminal work of Mandelbrot (1963) and Fama (1965). In
their papers, they showed that many stocks price changes, and fluctuations in speculative prices

1 Although the mathematical foundation of the normal distribution in general has a different history compared
to the other members of the stable distributions, we mention this fact for the sake of completeness

2The terminology Gaussian distribution is widely used to refer to the normal distribution

9
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and interest rates are poorly described by Gaussian distribution, but can be well described by a
non-Gaussian stable distribution. Until recently, many applied works have been published within
different fields of application such as signal processing, telecommunications, finance, physics and
chemistry. For an application oriented discussion, we refer the reader to the monographs by Janicki
and Weron (19946), Nikias and Shao (1995), Embrechts et al. (1997), Adler et al. (19986) and
Rachev and Mittnik (2000).

In this chapter, we present some basic facts about the stable distributions which will be necessary
for further understanding of the presentation. For discussion on the mathematical foundation
of the stable distributions, we refer interested readers to the monographs by Gnedenko and Kol-
mogorov (1954), Feller (1971), Ibragimov and Linnik (1971), Zolotarev (1986), Samorodnitsky and
Taqqu (1994), Janicki and Weron (19946) and Nikias and Shao (1995).

2.2 Basic facts

In what follows, we recall some basic results related to the stable law, which will be used in this
thesis. The subsequent discussion will follow closely the presentation in Samorodnitsky and Taqqu
(1994).

2.2.1 Univariate stable distribution

We start by presenting some equivalent definitions of the univariate stable distribution.

Definition 2.2.1. The random variable X is said to be stable if for any positive numbers A and
B, there is a positive number C and a real number D such that

AX1+BX2 = CX + D (2.2)

where X\ and X2 denote independent copies of X, and "=" denotes equality in distribution

This definition explains the "stability" property: the family of stable distributions is preserved
under the convolutions 3. Moreover, the stability definition above implies that there is a number
a e (0, 2] called the index of stability such that the number C in (2.2) satisfies (Samorodnitsky
and Taqqu (1994), Theorem 1.1.2 )

Ca = Aa + Ba

Another equivalent definition to Definition 2.2.1 is given below.

Definition 2.2.2. A random variable X is said to have a stable distribution if for any n > 2,
there is a positive number Cn and a real number Dn such that

X1+X2 + --- + Xn = CnX + Dn (2.3)

where Xi, X2, • • •, Xn are independent copies of X.

It can be shown by induction that Definition 2.2.1 implies Definition 2.2.2. The reverse implication
is also true ( Feller, 1971, section VI.1). Here, we have necessarily Cn = nxla ( Feller, 1971, Section
VI.l).

The third definition constitutes that only stable random variables have a domain of attraction.
This definition relates to generalized central limit theorems, i.e., it states that the stable distribution
is the only distribution that can be obtained as a limit of normed sums of i.i.d. random variables.

3Note that various "stability" definitions are available in literature, not only restricted to summability notion,
see, e.g., Rachev and Mittnik (2000)
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Definition 2.2.3. A random variable X is said to have a stable distribution if it has a domain of
attraction, i.e., there is a sequence of i.i.d. random variables {Yt,t = 0, ±1, ±2,. . .} and sequences
an > 0 and bn € R such that

a-'Sn + bn^X (2.4)

where Sn = Yi + Y2 + • • • + Yn

Definition 2.2.2 implies definition 2.2.3 , i.e., by taking Yi's to be independent and distributed
like X. The converse is shown in Gnedenko and Kolmogorov (1954), p.162. A random variable
Yi is said to be in the domain of normal attraction of stable law when an = n1/a. In general
an = n1/aL(n) for some slowly varying L(n) 4 as n —» oo.

The class of stable distributions is often characterized by its characteristic function. In literature,
several parameterizations are available for this class of distributions (see, e.g., Zolotarev, 1986;
Nolan, 1999, where some parameterizations are well suited for computational purposes). However,
the most often used parameterization is the following

Definition 2.2.4. A random variable X is said to have a stable distribution if there are parameters
0 < a < 2, a > 0, — 1 < /3 < 1 and f i e l , such that its characteristic function has the following
form (6 6 R)

/ exp(i^9aa\9\a(liß(signe)Un^f), %fa±\ , .
\e\), if a = 1 ( 2 '5 )

Here

{ 1 if d > 0

0 if 8 = 0
- 1 if9<0

It is not difficult to see that Definition 2.2.4 will imply Definition 2.2.2. If Xi,i = 1,. . . ,n are
i.i.d. Sa(o-,0,fi) then (2.3) holds, with Cn = nl/a and Dn = ß(n - n1/a) when a =£ 1 and
Dn = ^aßn\nn when a — 1. The proof for the converse is rather involving, and for detail, we
refer the interested reader to Gnedenko and Kolmogorov (1954), Section 34.
We often write X ~ Sa(cr, ß, ß) to indicate that X has (asymmetric) a-stable distribution Sa(a, ß, n)
The interpretation of the parameters a, a, ß, and fx can be explained from its properties. The pa-
rameter a is the characteristic exponent or the index of stability which defines the fatness of the
tails of distributions (where smaller values of a correspond to heavier tailed distribution). For
a e R, X + a is Sa(a,ß,/j, + a), thus ß is a shifting parameter. For a > 0 and a ̂  1 then aX is
Sa(\a\cr, sign(a)ß,a/ï), and when a = 1, aX is Sa(\a\cr,sign(a)/3, afi- |-a(ln \a\ aß)), thus a is simi-
lar to the scale parameter, although the name scale parameter for a is a misnomer when a = 1 and
ß ̂  0. Notice that when a = 1, multiplication by a constant yields a nonlinear transformation of
the shifting parameter ß. The nonstandard random variable X ~ Sa(a,ß,ß) can be standardized
by transformation

Z=^-^~Sa(<T=l,0,n = O) (2.6)
a

If ß = 0, the distribution of X is symmetric about ß, thus ß is the skewness parameter. The
distribution will be left or right skewed when ß > 0 or ß < 0, respectively. If ß = 0 and ß = 0,
then the distribution is called Symmetric a Stable (SaS) and has log characteristic function

log($(0)) = -o-a\e\a,d€R (2.7)

A SQS random variable is characterized by its scale parameter a and characteristic exponent a.
The value of a is often considered as 1, which we call the standard SaS.

4L(x) is a slowly varying function for i —» oo if for every constant c > O.liirix—oo L(cx)/L(x) = 1
5When a < 2. it is often denoted as the stable Paretian distribution
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Various Location Various Dispersion o

Various Skewness ß Various Exponent a

a=0.8
a=1.5
a=2

Figure 2.1: Plots of probability density function of Sa(a,ß,fj,) random variables for some values of the
parameters. The default values of the parameters used in the plot are a = 1.5, a = l/\/2, ß = 0, p. = 0

As described in literature, the characteristic exponent a can be considered as the most important
parameter of the stable distributions. Its importance comes from the fact that for every stable
law with characteristic exponent 0 < a < 2, all absolute moments of the order p > a are infinite
(see Appendix A.I). Therefore, the only stable distribution with finite variance is the Gaussian
distribution.

Stable random variables have continuous probability density functions (Zolotarev, 1986), however,
except for a few cases, it cannot be written in an explicit form. These exceptions are

1. 52(<r, 0,/x) denotes the Gaussian distribution N(ß,2a2), whose density is

2. 5i(cr, 0,ß) denotes the symmetric (about ß) Cauchy distribution (it is sometimes called the
Lorentz distribution), whose density is

,x e

3. So.5(a, 1, ß) denotes the Levy distribution, whose density is

4. Sa(0.0,/i) has a degenerate distribution. However, usually degenerate distributions will be
excluded from the analysis.
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For the other choices of parameters, the density can only be generated numerically (see, e.g.,
Rachev and Mittnik, 2000, Section 3.7). Plots of probability density functions of stable random
variables for several variations of the parameters are given in Figure 2.1.

Another important property of stable distributions is their unimodality (Yamazato, 1978). A
distribution function f(x) is called unimodal if there exists a E l , such that f(x) is monotonically
increasing for x < a and monotonically decreasing for x > a. One usually says that a is the mode
of f(x). For numerical results about the problem of locating the mode of a stable distribution,
see Fofack and Nolan (1999).

2.2.2 Multivariate stable distribution

In the following we present the definition of the multivariate stable distribution.

Definition 2.2.5. A random vector X = (Xi, X2, • • •, Xd) is said to be a stable random vector in
Rd 6 if for any positive numbers A and B, there is a positive number C and a vector D e l d such
that

AX1 +BX2 = CX + D (2.8)

where X1 and X2 are independent copies ofX.

Definition 2.2.6. The vector X is called symmetric stable if it is stable and in addition satisfies
the relation

for any Borel set A ofRd.

The following properties define the relation between vector X and its components.

Proposition 2.2.7 (Samorodnitsky and Taqqu (1994), Theorem 2.1.2). LetX = (Xu ..., Xd)
be a stable (respectively, symmetric stable) d-dimensional random vector. Then there is a constant
a € (0, 2] such that in (2.8), C = (Aa + Ba)l^a. Moreover, any linear combination of the com-
ponents of X of the type Y = (b,X) = £) fc=1 bkXk is one dimensional astable (respectively,
symmetric astable) random variable with the same index a for every b = (6j, 62,... , bk).

Proposition 2.2.8 (Samorodnitsky and Taqqu (1994), Theorem 2.1.5). Let X be a random
vector in M.d. Suppose that any linear combination Y = (b,X),b G R d ,b ^ 0 is one-dimensional
stable, e.g., (b,X) ~ Sa^)(a(b),ß(h),fj,(b)). Then there is one a that is the index of all linear
combinations, i.e., a(h) = a is constant. Ifa>l, then X is a stable random vector in Md. If Y
is symmetric stable, then X is a symmetric stable random vector in Rd.

As in the univariate case, the multivariate stable random variables are parameterized in the form
of their characteristic function. Let X = (Xi,..., X<j) be a-stable random vector in Rd, 0 < a < 2
and let

denote its joint characteristic function.

T h e o r e m 2 . 2 . 9 ( S a m o r o d n i t s k y a n d T a q q u ( 1 9 9 4 ) , T h e o r e m 2 . 3 . 1 ) . LetO <a<2. Then

X = (Xi, •. ., Xd) is an astable random vector in Md if and only if there exist a finite measure F
on the unit sphere Sd = {s= {si,..., sj} : ||s|| = 1} ofRd and the vector fi° in Rd such that

a. Ifaf 1

j £ ( ^ ) 0 J (2.9)
5We often say "A'i, X2,..., A',; are jointly stable", or "X has a stable distribution in Rrf", or "the distribution

of X is multivariate stable" to denote the same terminology
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b. Ifa = l

*a(0) = exp {- J \{6,s)\ (l + â sign ((0,s)) In |(0, s)|) F(ds) + i(0, //>)} (2.10)

T/ie pair (F , / J° ) is unique. The measure F is caZ/ed ifte spectral measure of the astable random
vector X.

To illustrate the relation between the measure F and the other parameters of stable distribution
(a,ß,fi), we consider the following examples from Samorodnitsky and Taqqu (1994).

Example 2.2.10 (Samorodnitsky and Taqqu (1994), Example 2.3.3). Let us consider the
univariate case. Notice that for the univariate stable case, the sphere Sa only consists of two
points { —1,1}- Let F(—1) and F(l) denote the probability masses in those points, then for a j= 1
(a similar result applies for a = 1), eq. (2.9) reduces to

* a(0) = exp{- |0 |° ( l -isign ( f l ) tan^

which coincides to the eq. (2.5) with

Here if the spectral measure F is symmetric, i.e., F(l) = F(—1), then X is also symmetric with
0 = 0.

E x a m p l e 2 . 2 . 1 1 ( S a m o r o d n i t s k y a n d T a q q u ( 1 9 9 4 ) , E x a m p l e 2 . 3 . 4 ) . L e i X = (Xx,.. .,Xd)
be jointly stable random variable in Rd. From Proposition 2.2.7 we know that any linear combi-
nation Y = (b,X) = 5Zfc=i bkXk is univariate stable, say

(b,X)~Sa(a(b),ß(b),ß(b))

Then from eq. (2.9) and (2.10), there are a finite measure F on Rd and a location parameter
ß° 6 Rd with

s ) (2.11)

bs) | a s^n(bs)F(ds)

Example 2.2.12 (Samorodnitsky and Taqqu (1994), Example 2.3.5). An a-stable ran-
dom vector X = {X\,... ,Xd) has independent components if and only if its spectral measure F
is discrete and concentrated on the intersection of the axes with the sphere Sd- For example,
suppose d = 2, and consider independent random variables Xi ~ Sa{oi,ßi,ßi),i = 1,2. Then T
concentrates on the points (1,0), (-1,0), (0,1), (0, -1) that is

F = OKS((1, 0)) + a26((-l, 0)) + a36((0,1)) + a46((0, -1))

where 6(SQ) assigns unit mass to the point So, and a,i,i = 1 , . . . , 4 are given as

ql+A ,1 - f t ql+fo ,1 - fe '
ai = o-i —^—>a2 = o-y — - — , a 3 = a2 — - — , o 4 = a2 — - —
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An a-stable random vector in Rd is symmetric if and only if t̂° = 0 and F is a symmetric measure
on Sd, i.e., T(A) = F( —A) for any Borel set A of Sd- From Theorem 2.2.9, we obtain the following.

Theorem 2.2.13 (Samorodnitsky and Taqqu (1994), Theorem 2.4.3). X = (XltX2, • •., Xd)
is a SaS random vector in Rd with 0 < a < 2 if and only if there exists a unique symmetric positive
finite measure F on the unit sphere Sd o/K such that

$(0) = Eexp(i(0,X)) = Eexp(iJ2ekXk) = exp J - f \(6,s)\a T(ds) \
k=l { I J

T is the spectral measure of the symmetric a-stable random vector X.

Example 2.2.14. If d = 1, we obtain Si = {-1,1}, F({1}) = F({-1}), and a SaS random
variable X is SQ(a, 0, 0) distributed with

a = {J\s\aT{ds)f'a = (2F({1}))1/Q

s,

Example 2.2.15. Let X = (X\,X2) be a symmetric a-stable random vector with independent
components. Then from Example 2.2.12. we obtain that Txi,Xi is symmetric and concentrates on
the points (1,0), (-1,0), (0,1), (0, -1 ) ,

F = a1(5((l, 0)) + a2<5((-l, 0)) + a3<5((0,1)) + a4o{(0, -1))

where a.j, i = 1 , . . . , 4 are given as

of a?
ax = a2 = — ,a3 = a4 = —-

2.2.3 Stable stochastic processes

In this part, we present the definition of stable stochastic process {Xt,t € T} where T is an
arbitrary set, although in this thesis we are only interested in T = Z, that is the discrete time
index.

Definition 2.2.16. A stochastic process {Xt,t £ T} is stable if all its finite dimensional distri-
butions are stable. It is symmetric stable if all its finite-dimensional distributions are symmetric
stable.

The finite-dimensional distributions {Xt, t e T } are the distributions of the vectors

), X{t2),..., X{td)), tu t2,..., td g T, d > 1

If the finite-dimensional distributions are stable then, by consistency they must all have the same
index of stability a. Using Property 2.2.7, we obtain the following properties of the stable process.

Proposition 2.2.17 (Samorodnitsky and Taqqu (1994), Theorem 3.1.2). Let {Xt,t € T}
be a stochastic process

(a) {Xt,t € T} is symmetric stable if and only if all linear combinations

d

Y, bkX(tk),tuti, ...,td€T,bub2,...,bdeR,d>l (2.14)
ft=i

are symmetric stable
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(b) Ifa> 1. then {Xt,t £ T} is a-stable if and only if all linear combinations (2.14) o,re a-stable.

The notion of (strictly) stationary a-stable process is often mentioned in this thesis. For the
univariate case, we have the following definition.

Definition 2.2.18. A stochastic process {Xt, t S Z} is called a strictly stationary a-stable process
if {Xt} is stable and for any d > 1, t\,..., id € Z, the finite-dimensional distribution of the vector
(Xtl+h, • • •, Xtd+h) does not depend on the choice of h e Z

2.3 Fitting data to the stable distributions

It has been shown in literature that many large empirical data sets from diverse fields of study
are more leptokurtic than the normal distribution. As we already mentioned, a flexible class of
distributions for modelling heavy-tailed data is a class of stable distributions. In this regard, when
we model the time series data, one important question will arise: how can we see from a given
(univariate) time series data, whether or not it is generated from an a-stable time series process?.

In literature, the methods that have been used for checking the plausibility of the (univariate)
stable distributions 7 can be classified into two main approaches, the heuristic methods (e.g., by
visual inspection via some graphical methods) and the inference procedures. Several graphical
methods have been proposed in literature, for instance, by graphing the series, plotting the his-
togram and using the "converging variance" method (Adler et ai, 1998a; Rosenfeld, 1976); using
kernel density plot and normal probability plot (i.e., pp and qq plots; see Nolan, 1999) and using
the plot of ratios between the maximum and partial sum (Embrechts et ai, 1997). A popular
method for detecting the heavy-tailedness of the data is by an inspection of the estimator à of
index a 8. Here, it is important to note that making a statement about the tail is indeed quite
different from making a statement about the entire distribution. The estimator of a only measures
the "thickness" of the tail, but because most of the heavy-tailed distributions are not stable, we
can not make a general statement regarding data. However, when à is significantly greater than
2, we can discard the possibility of using the stable distributions. A test for stability based on â
over different time horizons is described in Paolella (2001).

The methods for estimating a consist of the graphical and the nongraphical methods. The statisti-
cal properties of the nongraphical methods have been studied rather extensively (see Section 2.4),
and many methods will give consistent estimates for the true parameters. Using this consistency
property, as a preliminary checking for the stability assumption, Nolan (1999) suggests to compare
all the estimates of a obtained by the consistent methods. When the differences are substantial
for a relatively large sample size, the stable distributions are less likely.

Apparently, the inference can be done not only for a, but also for the other parameters of the
stable distributions (see Section 2.4). When all parameters have been estimated, one can use
statistical criteria to measure the "goodness of fit" of the stable distributions, compared to the
competing alternatives, e.g., by means of Kolmogorov distance (KD) statistic

KD = 100 x sup Fs(x) - F(x)

Here for given sample X\,X2, • •., Xn, F(x) denotes the cumulative distribution function of
the estimated (parametric) density and Fs(x) denotes the empirical distribution, i.e., Fs(x) =
n~l £™=i l(oo.x] Xl&>1 i where 1() denotes the indicator function. The other statistic is the

7For fitting the multivariate stable data, see, e.g., Nolan (1999)
8For instance, it is often noted that many economic data can be fitted by a-stable distribution on the range

1.5 < a < 2 (Fama, 1965; Weron, 2001). The conclusion is made merely on the base of à
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Anderson-Dahling statistic
F.{x)-F(x)

ADQ = sup
c)(l - F(x))

Furthermore, instead of looking at the maximum discrepancy, we also can look at the second
and third largest discrepancies, and define AD\ and AD2, analogously as ADQ (see Rachev and
Mittnik (2000)).

Note that most of the methods that have been proposed in literature are designed to recognize
the "heavy-tailedness" of i.i.d. data, i.e., they are not designed to see whether time series data
are coming from an, e.g., a-stable ARMA process. In this regard, one possibility is to apply the
considered method to the fitted residual, after filtering data using appropriate non i.i.d. models.
Another possibility is to apply the methods directly to non i.i.d. stationary data. In this case,
a common procedure is to firstly randomize the order of the data, in order to destroy serial
dependence in the data (Adler et ai, 1998a). Note that this preprocessing procedure is not
necessarily working well for the real data, e.g., when modelling financial time series, the dependency
may not be removed after a random shuffle of the data, due to the persistence of strong GARCH
effects (Paolella, 2001). However, the randomization should be working well in the ARMA (with
small order) case.

To end this section, in the following, we briefly review Hill's estimator (Hill, 1975), one of the popu-
lar graphical estimators for the index a, which are based on the order statistics, within the class of
heavy-tailed - not necessary stable - distributions 9. Given the order statistics Xi\n, X^,n,..., Xn,n
from sample X\. X2, • • •, Xn, Hill's estimator is defined as

with standard error SE{àhiii) = kâhui{k — l)~1(fc — 2)~1/2 and k = k(n) > 2 denotes the threshold
value where the tail area of the empirical distribution is "started". For k = 1, we only used the
most extreme value for the estimation. The choice of k needs a trade-off, because it must be
sufficiently small so Xn-k,n is in the tail of the distribution, but if it is too small, the estimate has
a precision problem. In literature, the value of k is commonly taken to be in between one and ten
percent of the sample size. However, to get a reliable estimate à of stable Paretian distributed data
with 1.5 < a < 1.95, the optimal value for k is about 0.42n (Paolella, 2001). Despite its popularity
in the stably distributed setting, Hill's estimator is severely biased even for a very large sample
size. Several improvements for more accurate estimation of à have been suggested, e.g., using Hill
intercept method (Paolella, 2001) or smoothed Hill estimator (Resnick and Starica, 1997).

To illustrate this method, we simulate several independent data of length n = 1000 from AR{2)
process Xt = 0.5Xt_i + 0.2Xt-2 + «t using the function arima.sim in R version 1.9.0 10, where
et is SaS distributed, for several values of a. The unit symmetric stable variâtes are generated
using the function r s t ab le in the extension package s table n . For the comparison's sake, we
also generate the process whose innovations are (0.5 Pareto(2,2)+ 0.5 (-Pareto(2,2)))12, thus it is
an infinite variance process but nonstably distributed. We also generate another AR(2) process
with standard Gaussian innovations, but it is randomly contaminated with the other N(20,10)

9The other alternatives are Pickand's estimator, deHaan k. Resnick's estimator (Mittnik and Rachev. 1996; Pictet
et ai, 1998; Rachev and Mittnik, 2000) and "the log-tail test" (e.g., Mandelbrot, 1963; Weron, 2001)

10Available on the Web at http://wuw.r-project.org (Ihaka and Gentleman, 1996; R Development Core Team,
2004). Note that most of numerical results in this thesis are obtained using R. All R-codes that I used in this thesis
are available upon request. See also http://dedirosadi.staff.ugm.ac.id

nAvailable on the Web at http://alpha.lue.ac.be/-jlindsey/rcode.html
12Recall that if X is Pareto(a, a) distributed , X > a, with scale parameter a > 0 and shape parameter a > 0,

then its distribution function is given by F(x) = 1 - (<r/x)a. Its mean is given by ("°u and its variance equal to
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data. The Hill's estimators for the data are plotted in Figure 2.2. Note that for Pareto i.i.d. data
(Figure 2.2.a), the index obtained is approximately equal to the true index a = 2 started from k
is about 5%. For the a-stable series, the true value of a is obtained using about 15% - 40% of the
extreme data, which follows the suggestion of Paolella (2001).

2.4 The estimation of the stable distribution parameters

In Section 2.3, we presented a quick and simple graphical method, called Hill's estimator, for
estimating the index of stability a. For more general methods (i.e., not only for obtaining Q,
but also for the estimator of the other parameters of i.i.d. a-stable distributions), the estimation
methods can be classified as follows: the sample quantité methods, i.e., Fama-Roll's method (Fama
and Roll, 1971) and its extension by McCulloch (1986); the empirical characteristic function
methods, i.e., methods of moments (Press, 1972), Koutrouvelis's regression method (Koutrouvelis,
19806; Kogon and Williams, 1998), the minimum distance method (see Yu, 2004, for a review);
and the maximum likelihood estimator (for a review, see Rachev and Mittnik, 2000, Section 3.7.).
Some new methods have been recently proposed, such as the extreme value method, the logarithmic
moments method, and the fractional lower order moments (Kuruoglu, 2001). The monte carlo or
bootstrap approach can also be used for estimating the parameters of heavy-tailed distributions,
see, e.g., Pictet et al. (1998), Tsionas (1999). A systematic study of the performance of the
estimation procedures based on Fama-Roll's method, McCulloch method, method of moments,
and the regression method, can be found in Weron (1995). Among the methods considered,
Weron (1995) suggests to implement the regression method as the most reliable estimator when
the range of a and a are unknown. It is important to know that although all of the methods
mentioned above are designated for i.i.d. process, in some cases of non i.i.d. data, we still can use
the quantile-based estimator for à (e.g., McCulloch's method). For instance, Adler et al. (1998a)
shows simulation examples that this method works well for small order MA and AR processes.

In what follows, we only present a short description of McCulloch's estimation method. This
estimation procedure will be used in this thesis.

Sample quantile methods

Probably one of the oldest estimation methods for the parameters of stable Paretian distributions
(i.e., the case with a < 2) is based on sample quantiles. Here we only present the McCulloch's
method. This method is computationally simple, and is shown to provide consistent estimates of
all four parameters. Define

#0.95 - £0.05
va —

£0.75 - £0.25
^0.95 + £0.05 - 2X0.50

Vß =
£0.95 - £0.05

where xp denotes the p-th quantile of x,. va and Vß do not depend on a and ß, and their values as
the functions of a and 0 are tabulated in McCulloch (1986) (reproduced in Table 2.1 and Table
2.2). Moreover va is a strictly decreasing function of a, where Vß is a strictly increasing function of
0. Let va and Vß denote the sample values (which are the consistent estimates, since p-th sample
quantile xp is consistent estimates of xp) of va and Vß, respectively. Since va and Vß are functions
i>i(a,ß) and -02 (a,/3) of a and 0, the parameters a and 0 are obtained as inversion of functions
•0i and -02,

<* = VlWa,Vß), ß = <P2(Va,Vß),

and the estimate of a and 0 can be obtained by substituting vQ and Vß into Table 2.1 and Table
2.2. Here the interpolation, and sometimes the truncation (i.e., when à or 0 out of its possible
range) are necessary to obtain the estimates.
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Data 1a Data 2a Data 3a

15 79 152 234 316 398 480

Order Statistics

Data 4a

15 81 156 241 326 411 496

Order Statistics

Data 5a

15 75 143 220 297 374 451

Order Statistics

Data 6a

15 79 153 236 319 402 485

Order Statistics

Data 1b

15 83 161 249 337 425 513

Order Statistics

Data 2b

15 68 129 197 265 333 401

Order Statistics

Data 3b

15 75 143 220 297 374 451

Order Statistics

Data 4b

15 83 160 247 334 421 508

Order Statistics

Data 5b

15 74 141 216 291 366 441

Order Statistics

Data 6b

15 80 154 238 322 406 490

Order Statistics

15 82 158 244 330 416 502

Order Statistics

15 64 120 183 246 309 372

Order Statistics

Figure 2.2: Hill's plots of AR(2) series (Figure lb-3b) with innovations are i.i.d. SaS series, where (la).
a = 1.9. (2a). a = 1.5, (3a). Cauchy, respectively. For the comparison's sake, in Figure (4b-6b) we also
present Hill's plots of AR(2) series with the innovations are assumed to be, respectively, (4a). Pareto
distributed, (5a). Standard Gaussian randomly contaminated by the other Gaussian process with larger
mean and larger variance, and also (6a). when the largest and the smallest 5 % of the Cauchy innovations
are truncated.
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Va

2.439
2.5
2.6
2.7
2.8
3

3.2
3.5
4
5
6
8
10
15
25

0
2

1.916
1.808
1.729
1.664
1.563
1.484
1.391
1.279
1.128
1.029
0.896
0.818
0.698
0.593

0.1
2

1.924
1.813
1.73
1.663
1.56
1.48
1.386
1.273
1.121
1.021
0.892
0.812
0.695
0.59

0.2
2

1.924
1.829
1.737
1.663
1.553
1.471
1.378
1.266
1.114
1.014
0.887
0.806
0.692
0.588

V0
0.3
2

1.924
1.829
1.745
1.668
1.548
1.46
1.364
1.25

1.101
1.004
0.883
0.801
0.689
0.586

0.5
2

1.924
1.829
1.745
1.676
1.547
1.448
1.337
1.21

1.067
0.974
0.855
0.78
0.676
0.579

0.7
2

1.924
1.829
1.745
1.676
1.547
1.438
1.318
1.184
1.027
0.935
0.823
0.756
0.656
0.563

1
2

1.924
1.829
1.745
1.676
1.547
1.438
1.318
1.15

0.973
0.874
0.769
0.691
0.595
0.513

Table 2.1: a = t = (p\(va, —

va

2.439
2.5
2.6
2.7
2.8
3

3.2
3.5
4
5
6
8
10
15
25

Ü

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.1
2.16
1.592
0.759
0.482
0.36
0.253
0.203
0.165
0.136
0.109
0.096
0.082
0.074
0.064
0.056

0.2
1

3.39
1.8

1.048
0.76
0.518
0.41

0.332
0.271
0.216
0.19

0.163
0.147
0.128
0.112

0.3
1
1
1

1.694
1.232
0.823
0.632
0.499
0.404
0.323
0.284
0.243
0.22
0.191
0.167

0.5
1
1
1
1

2.229
1.575
1.244
0.943
0.689
0.539
0.472
0.412
0.377
0.33

0.285

0.7
1
1
1
1
1
1

1.906
1.56
1.23

0.827
0.693
0.601
0.546
0.478
0.428

1
1
1
1
1
1
1
1
1

2.195
1.917
1.759
1.596
1.482
1.362
1.274

Table 2.2: ß = ^2(^0, VQ) = —<pi(ya, —vg)

To obtain the estimate of a, McCulloch (1986) tabulated the behavior of function

£0.75 — £0.25
Va =

a

as the function <£3(a, ß) (see Table 2.3). Then the consistent estimate of a can be calculated using
£0.75 - £0.25

In order to get a good estimate of the location parameter ß, we need to introduce a new parameter
77 defined as

; + ßa tan ^p for a ^ 1
u for a = 1»7 =

The parameter rj does not have immediate interpretation, and it was introduced in Zolotarev
(1986) as an alternative parameterization (which is referred to as Zolotarev's M parameterization)
of the stable distribution. Define the index
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a

2
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1

0.9
0.8
0.7
0.6
0.5

0
1.908
1.914
1.921
1.927
1.933
1.939
1.946
1.955
1.965
1.98

2
2.04

2.098
2.189
2.337
2.588

0.25
1.908
1.915
1.922
1.93
1.94

1.952
1.967
1.984
2.007
2.04

2.085
2.149
2.244
2.392
2.635
3.073

ß
0.5

1.908
1.916
1.927
1.943
1.962
1.988
2.022
2.067
2.125
2.205
2.311
2.461
2.676
3.004
3.542
4.534

0.75
1.908
1.918
1.936
1.961
1.997
2.045
2.106
2.188
2.294
2.435
2.624
2.886
3.265
3.844
4.808
6.636

1
1.908
1.921
1.947
1.987
2.043
2.116
2.211
2.333
2.491
2.696
2.973
3.356
3.912
4.775
6.247
9.144

Table 2.3: va = tp3(a,ß) = <p3(a, -ß)

which can be seen as the function tfn(a, ß) (see Table 2.4). Then, the consistent estimate of r\ can
be calculated from

rj = xo.5 + âil>i(â,J3)

and hence for a ^ 1,
jx = fj - 0â tan *£•

a
2

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1

0.9
0.8
0.7
0.6
0.5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.25
0

-0.017
-0.03

-0.043
-0.056
-0.066
-0.075
-0.084
-0.09

-0.095
-0.098
-0.099
-0.096
-0.89

-0.078
-0.061

ß
0.5
0

-0.032
-0.061
-0.088
-0.111
-0.134
-0.154
-0.173
-0.192
-0.208
-0.223
-0.237
-0.25
-0.262
-0.272
-0.279

0.75
0

-0.049
-0.092
-0.132
-0.17

-0.206
-0.241
-0.276
-0.31

-0.346
-0.383
-0.424
-0.469
-0.52

-0.581
-0.659

1
0

-0.064
-0.123
-0.179
-0.232
-0.283
-0.335
-0.39

-0.447
-0.508
-0.576
-0.652
-0.742
-0.853
-0.997
-1.198

Table 2.4: v„ = M<x,ß) =

2.5 Generating the stable random variâtes

In order to do the Monte Carlo simulation of (univariate) stably distributed process13, it is nec-
essary to have the generator of the a-stable variâtes. For Cauchy, Gaussian and Levy cases, the
analytic expressions for the inverse probability distribution function are available. Therefore, the
inverse transform method can be applied easily, and the generators are already implemented in

13A method for simulating bivariate stable vector is discussed in Modarres and Nolan (1994). It is implemented
in MVSTABLE.EXE. available at http://academic2.american.edu/~jpnolan/
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many standard statistical packages. However, as it is already known, the analytic expressions are
not available for the other choices of parameters. In this case, the standard method for simulating
stable random variâtes is based on the method presented in Chambers et al. (1976). We will
present it below (for the proof, refer to Chambers et ai, 1976; Weron, 1996).

In the symmetric case (ß = 0), to simulate a-stable random variable X ~ Sa(l, 0,0) for a € (0, 2],
we use the following steps:

1. Generate a random variable U uniformly distributed on (—TT/2, TT/2) and an exponential
random variable V with mean 1, independent of U

2. Compute

sin(at/) Y l ) /

X =
X = {co8{U)}1/a I V

From (2.6), using (2.15), we can generate Y ~ SQ(<r,0,/u) random variâtes as aX + ß.

To generate the skewed a-stable variâtes X ~ Sa(l,0,O) with a € (0,2] and ß 6 [—1,1], we can

proceed as follows:

1. Generate a random variable U uniformly distributed on (—7r/2,7r/2) and an exponential
random variable V with mean 1, independent of U

2. If a = 1, compute (see also Weron (1995))

If a 7̂  1, compute

sin(a(t/ + Ba,ß) /cos (U - a(U + Ba,ß))X = Sß {( ( ) ) { V
where

and

To generate Y ~ Sa(a,ß,n) random variâtes, for a € K+,/U € K, we can use (2.16) by calculating

aX + u for a =̂  1
Y ' " + lßa\oga + ß f o r a = l

The method presented above is implemented as FORTRAN routine rs tab in Chambers et al. (1976)
and its updated version in Samorodnitsky and Taqqu (1994). In the other programming languages,
it is available online as function rs tab in S/S+, in executable version of STABLE.EXE 14 or function
rs tab le in the extension package stable, implemented in R.

14available on the Web at. http://academic2.american.edu/"jpnolan/



Chapter 3

Review of heavy-tailed ARMA
modelling

In this chapter we present a short summary of the results related to the heavy-tailed linear time
series modelling, in particular, for the class of stable causal ARMA models with a-stable noise.
The summary is presented by following the traditional systematic procedure for fitting time series
models to data. This procedure is done in three stages: order selection, parameter estimation
and diagnostic checking. All results are given without proofs, therefore we refer the readers who
interested in mathematical details to literature. The purpose of this chapter is to present a unified
summary for the results which are closely related to our topic. For the sake of brevity, the
detailed presentation is given only for results which will be used in the subsequent discussion in
this thesis. More details and systematic reviews for some parts of this chapter can be found in,
e.g., Embrechts et al. (1997), Chapter 7 and Rachev and Mittnik (2000), Section 5.3. For practical
issues, we refer the reader to, e.g., Adler et al. (1998a). In some cases, for comparison's sake and
ease of reference, we start the presentation of results in the classical Gaussian model, and then
turn to the heavy-tailed model.

3.1 Heavy-tailed time series

In this thesis, we are only concerned with univariate, (strictly) stationary, causal-linear
processes, which are given as

oo

Xt = J2cjet-j,teZ (3.1)
j=o

with i.i.d. real-valued {et,t £ Z} and CQ = 1. Furthermore, we assume the following

(C l ) . The coefficients Cj's are real-valued and satisfying \CJ\ < CQ~i for some C > 0, Q > 1

(C2). et is i.i.d. SaS, 0 < a < 2 with a > 0

Recall from Section 2.2 that et has the characteristic function

£exp(isei) = exp(-aa\s\a),s £ R (3.2)

where 0 < a < 2 and a > 0. When a = 2, et is Gaussian with a\ = 2a2. When a < 2, et has
infinite variance, thus only the notion of strictly stationary is available. In this thesis, we call this
the stationary heavy-tailed case.

23
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Note that classically we assume that {et} has mean zero and finite variance a2. In the classical
setting, for fixed t, the series (3.1) converges a.s., provided that the real-valued coefficients Cj's
satisfy the conditions

oo

] C M <O°

and varpQ) = a2 Yl'jLo cj < °° (e-S-> Brockwell and Davis (1987), Proposition 3.1.1). The process
{Xt,t € Z} is strictly stationary, the finite dimensional distributions of the process are invariant
under time shift. In other words, the finite dimensional distributions for any instant of time
{̂ ii • • • ,td} £ Z are the same as for {ti + h, • • • , tj. + h} € Z for any h G Z. Every strictly
stationary process with finite second moments is also stationary in the wide sense, i.e., there
exists a constant ß such that E(Xt) = ß is a constant, and the covariance function EXtXs is only
a function of time distance \t — s\.

Under conditions Cl and C2, (3.1) is well defined in the sense of a.s. convergence (by virtue of
the 3-series theorem for a series of independent summands, see Appendix A.I). Moreover, under
assumption C2, the process {Xt} will be a (strictly) stationary SaS process with the same index of
stability a but the scale parameter ax = &t(Yl,'jLo \cj\a)l^a- The latter property can be obtained
by noting that

Eexp(isXt) = f ] exp(-<r? \cjS\
a) = exp(-<7? f ] \Cj\

a \s\a)

We write this "equality in law" as

3=0

To end this section, we deals with causal stable ARMA(p, q) processes with SaS noise. We write
the autoregressive moving average process of the order (p, q)

A{z)Xt = B(z)et (3.3)

for t G Z, where z denotes backward-shift operator (here z(Xt) = (Xt-i)) as well as the complex
variable, and where the polynomials A and B are

p

A{z) = 1 - aiz - a2z
2 apz

p = 1 - ^ a « ^ (3-4)
t=i

q

B{z) = b0 + blZ + b2z
2 + • • • + bqzi = Ylbizi • (3-5)

t=i

for fixed order (p, q). The coefficients a i ,a 2 , . . •,ap and bi,... ,bq are real-valued, and bo = 1. The
polynomials A and B are assumed have no common roots, and A{z) has no roots in the closed
unit disk. The sequence et fulfils the condition C2.

Theorem 3.1.1 (Kokoszka and Taqqu (1994), Proposition 2.1). The system (3.3) has
unique stationary solution of the form

oo

Xt — 2_,cjtt-j,t € Z, almost surely (a.s) (3.6)
j=o

where the Cj :s are real-valued, satisfy \CJ\ < CQ~J for some C > 0, Q > 1, if and only if A(z)
has no roots in the closed unit disk {z : \z\ < 1}. The sequence {Xt,t G Z} is then stationary and
SaS.

The Cj 's are the coefficients in the series expansion of B(z)/A(z), \z\ < 1
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As a side remark here, note that in literature, many results are derived under more general
condition on et than the condition C2 (e.g., Davis and Resnick, 1986). To ensure the absolute
convergence of series (3.1), it is required that

oo

Y ^ \ C J \ S <oo,0<S <a,ô <1 (3.7)
j=o

For {tt} is i.i.d. sequence with Pareto tail distributed, i.e., it satisfies

F{x) = P(|ei| > x) ~ kx~a,x -> oo

for some a > 0 and k > 0, the absolute convergence has been shown in, e.g., Resnick (2001), p.
228, or Brockwell and Davis (1987). However, to make a unified summary for the results, note
that throughout this thesis we only consider the causal model as in (3.1) with the condition C2
for {et} .

3.2 Order selection of ARMA models

Classically, the order selection stage of time series modelling is done via visual examination of plots
of time series, the sample autocorrelation function (SACF) and the sample partial autocorrelation
function (SPACF). In this section, we will present the theoretical properties of the SACF of heavy-
tailed linear time series models. In addition, we also present the properties of the autocovariation
function and its sample analog for stationary processes with finite mean (Gallagher, 1998).

It is also important to mention here that alternative order selection can be done via information
criterion. Under the finite variance assumption, a number of different criteria has been suggested
in literature, such as Akaike's information criterion (AIC) and Bayesian information criterion
(BIC). In the infinite variance setting, order determination of pure autoregressive or pure moving
average processes has been treated in Bhansali (1988) and (Knight, 1989). Note that to the best
of our knowledge, there is no theoretical result yet available for the heavy-tailed ARMA models.
For Gaussian AR process, it is known that the AIC criterion does not give a consistent estimate
for the true order, and in fact, it tends to overestimate the true order. However, for heavy-tailed
AR process, under some regularity conditions, Knight (1989) shows that AIC criterion will give
the consistent estimate of the true order of the process. This consistency property also obtained
for FPEs criterion (Bhansali, 1988).

3.2.1 Estimation of the autocorrelation function

From i.i.d.-ness of £j, for the linear process (3.1), when of < oo, we obtain its population covariance
function as

3=0

and therefore by definition, the ACF is

3=0 3=0

The estimators for y(k) and p(k) are given by the sample covariance 7(/c) and the SACF p(k)

- — p XiXt+\M,k € Z (3-8)
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n-|fc| n

p(k) = 7 ( * ) / 7 ( 0 ) = J2 X t X t + m / J 2 ^ l k e Z (3.9)
t=\ (=i

and 7(fc) = 0 and /5(fc) = 0 for |/c| > n. In the classical case, the sample functions y(k) and p(k)
are consistent estimators of the population functions and asymptotically normal distributed. The
limiting distribution property of the SACF in the classical case is summarized in the following
theorem (see, e.g., Brockwell and Davis, 1987, Theorem 7.2.1. and 7.2.2.).

Theorem 3.2.1. Let {Xt} be the mean zero linear process (S.I). Suppose that either

oo

^2\CJ\ < oo and Et\ < oo
j=o

or
oo oo

V^ \CJ\ < oo , Y^ c?j < oo and a2 < oo

Then for each m > 1,

Vn(p{k) - p(k))k=i,...,h

where
oo

and {Gj)j>\ are i.i.d. N(0,l) random variables.

In particular, for each fixed k > 1, from this theorem we obtain Bartlett's formula

/ \ 1 / 2

v^(/5(*) - p(k)) ± Y, W + i) + P(k - 3) ~ Mk)p(j)} C?i (3.10)

V^1 /
Now, under assumption C2, but a < 2, then aft = var(e() = oo, and therefore the population
autocovariance and autocorrelation do not exist. However, their sample version are well-defined
random variables. The asymptotic properties of the SACF in this case are already summarized in
Section 1.2, and for the ease of reference, we recall in the following theorem.

Theorem 3.2.2 (Davis and Resnick (1986)). Let {Xt} be the mean zero, strictly stationary
linear process (S.I) where the coefficients Cj 's satisfy the condition (3.7), and where {et} is i.i.d.
SaS process then when a < 2,

p{k) ^p(k),k>0 (3.11)

where A denotes convergence in probability. In addition, for each h > 1,

(n/Hn))l/°(p(l) - p(l),. . . , p(h) - p(h))' i (Ylt..., Yh)' (3.12)

where —* denotes convergence in distribution, p(k) = Y1%=Q cjcj+k/ Yl'jLo c j ana>-

oo ç,

Yk = T [p(k + j) + p(k - j) - 2p(k)p(j)} -±,k=l,...,h

U- °
Here. (Gj)j>i and Go are independent random variables, where Go is positive a/2-stable with
characteristic function

Eexp{isG0} = exp{-r(l - a/2)cos(7ra/4)|s|a/2(l - i sign(s) tan(7ra/4))} (3.13)
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and (Gj)j>i are i.i.d. SaS random variables with characteristic function

i _ / exp{-r(2-a)cos(7ra/2)|s|a if a ? 1
1} - | e x p { _ T ( s | / 2 } , / a = x (3.14)

Here F(-) denotes the gamma function. The marginal distribution of each Yk somewhat simpler,
and we have that

^ (3.15)

When a > 1, (3.12) is still valid if p{k), k — 1 , . . . , h is replaced by the centralized version.

Notice that the normalization constants and the limiting distributions are different in case of finite
and infinite variance.

3.2.2 Estimation of the autocovariation function

Gallagher (1998) introduces a linear dependence measure which is called the autocovariation func-
tion and is designated as the generalization of the auto correlation function for the stationary
processes with finite mean. We present a brief description of this measure as follows. In case
of stationary process {Xt} with finite second moments, we obtain the conditional expectation
property:

E(Xt\Xt-k) = p(k)Xt-k (3.16)

with p(k) denote the autocorrelation of the process at lag k. By law of iterated expectation
argument, we obtain

E(XtXt-k) = p{k)E\Xt-k\
2

Thus,
E{XtXt-.k)

which can be identified as the autocorrelation of the process at lag k. Now if we extend the
linearity property (3.16) into the stationary process with finite first absolute moments, namely

E{Xt\Xt-k) = \{k)Xt_k (3.17)

then using the iterated expectation argument, Gallagher (1998) defines the autocovariation func-
tion at lag k as

E{Xfi? (3.18)
where St = s\gn(Xt). Thus, for mean zero stationary processes with finite first absolute moments,
X(k) is a measure of linear dependence between Xt and Xt-k- When Xt has finite variance, the
autocovariation is an analog measure to the autocorrelation function.

The autocovariation function as in eq. (3.18) can be seen as the normalized version of the (non-
normalized) autocovariation function (AcovF) at lag k

6{k) = E{XtSt-k) for k = 0, ± 1 , ± 2 , . . .

Notes that in general 5(k) •£ ö( — k). The method of moments estimator of AcovF is defined in
Gallagher (1998) as

t=i
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where I = max(l, 1 + k) and r = min(n, n + k). The sample normalized autocovariation function
is defined as

t=i

The asymptotic properties of the sample autocovariation is studied in Gallagher (1998). We
present a summary below.

Theorem 3.2.3. If {Xt} is a stationary ergodic sequence with E\Xi\ < oo, then

Â(Jfc) ^-> \{k)

Applying this theorem, we obtain the following corollary.

Corollary 3.2.4. If {Xt} is a mean zero ARMA process where et is i.i.d. Sa S for some a > 1
(thus E\Xi\ < coj then

±* \(k)

The weak limit properties of the sample autocovariation function are summarized in the following
theorem

Theorem 3.2.5. // {Xt} satisfy

j=0 j=0

where {et} is a, mean zero i.i.d. sequence with E\et\ < oo and such that P(X\ = 0) = 0. For any
h, let

\h = (A(-/i), • • •, A(/i)) and Xh = (Â( - / i ) , . .Â

(i). / /S |e i | 2 < oo Men

where X denotes multivariate normal distribution

(ii). If {it} is i.i.d. SaS then

where Y denotes multivariate stable distribution.

In particular, Gallagher (2000) shows that for MA(q) process, Xt = Y^j=Qci^t-j, Co = 1. where
tt is i.i.d. SaS with a > 1 and \k\ > q,

: (3.19)

where X ~ •5la(2Wi-i/a) |Q| °)> ^ = (5o> • • • > ^ ) T anc^ c = (co> • • • • C?)T- N o t i c e t n a t t n e constant
in front of X reduces to 1 for i.i.d. process, since q = 0.

Note that for stationary symmetric a-stable processes, the autocovariation function is equivalent
to a dependence measure, called the covariation coefficient (Nikias and Shao, 1995). A summary
about the sample covariation coefficient can be found in Nikias and Shao (1995), Chapter 6 and 7.
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3.2.3 Notes on the graphical order identification procedures

In this part, we discuss the application of the results presented in the previous subsections for
identifying the order of MA{q) processes. In the classical case, the correlation function p(k) of
MA{q) process vanishes after lag q. Using this fact and the asymptotic distribution of the SACF
p(-), as the standard procedure in Box-Jenkins method, we attempt to identify the order q of
moving average processes by plotting the SACF at lags k = 1,2,... ,K and looking for the lag q
after which /?(•) is approximately zero. In the case of MA(q) process where et is i.i.d. mean zero
and variance a2 < oo, we obtain from Bartlett's formula (eq. 3.10) for k > q,

yfcpik) i (1 + 2 £ ' = o p(jffl2Z (3.20)

where Z is standard normal random variable. But in practice the values of p(j),j = 0 , 1 , . . . , q are
not known. Therefore, to identify the order q, the practitioners will plot the SACF together with
the bounds ± 1 . 9 6 / ^ , n denotes the sample size, and consider the SACF is approximately zero
if its values at certain lags are inside the interval. These bounds are obtained from the fact that
for i.i.d. process, the asymptotic distribution of p(k),k ^ 0 is a standard normal distribution.

This result motivates us to use similar order identification methods for moving average processes
in the infinite variance case, e.g., as considered in Adler et al. (1998a). For MA{q) process where
tt is i.i.d. SaS with a < 2 and k > q, from (3.15) we obtain

(n/ ln(n))1/Qp(fc) ^ (1 + 2 £ ' = Q p(j)a))1/QG1/G0 (3.21)

Thus, based on (3.19), (3.20), (3.21), we might consider the following identification strategies:

(i) The practitioner may be unaware that the data are coming from a process with heavy tails.
In such case, he might plot p{k) at various lags and compare to the quantiles 1.96/^/^ of
the normal distribution. This method is considered, e.g., in Rosenfeld (1976).

(ii) The practitioner might plot p*(k) = (n/log(n))1/Qp(/c) at various lags and compare to the
2.5% and 97.5% quantiles of the distribution Gi/G0, see Adler et al. (1998a).

(iii) The practitioner might plot A(fc) at various lags and compare to the 2.5% and 97.5% quantiles
of Xn ' 1 ' " ' " 1 (Gallagher, 2000). Quantiles for the stable distributions are tabulated in,
e.g., Samorodnitsky and Taqqu (1994), whereas a fast calculation of quantiles of the stable
distributions can be performed using function qstable in the package stable of R.

3.3 Parameter estimation of ARMA models

First we recall the notion of ARMA(p,q) process, which is a linear process given by a difference
equation

Xt - aiXt-x apXt-p = et + biet^i + ••• + bqet-q, t € Z (3.22)

for fixed order (p, q). Define the polynomials

p

A{z) = 1 - axz - a^z2 apz
p = 1 - ]T aiz

i (3.23)
i=l

1

B { z ) = b o + b l z + b 2 z 2 + ••• + b q z q = ^ b i z i (3.24)

We write the vector of coefficients as

ß= (ai,...,apibi,...,bq)
T
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and use symbol ß0 for the true but unknown parameter vector. The observed time series Xi..... Xn

is supposed to come from the model (3.22) with ß — /Jo-
in the heavy-tailed time series literature, compared to the other stages, it seems that this stage of
modelling has been studied rather extensively. In the following two subsections, we present some
results related to the estimation of parameters ßo, which will be used in the subsequent discussion
in this thesis. The other results are concisely summarized in the last subsection.

3.3.1 Yule-Walker and Generalized Yule-Walker Estimator

One of the well-known procedures for estimating the parameters of AR(p) model is Yule-Walker
(YW) method. YW estimator is defined as the solution of

âYw{n)=V-1p{n) (3.25)

where àyw — (a i , . . . ,âp) is the YW estimator of the coefficients of AR(p) part in (3.22 , pn =
(p(l) , . . . ,p(p)) is the vector of the sample autocorrelation function where p(k) is given as (3.9)

The asymptotic normality property of YW estimator in the classical case can be found in many
time-series textbooks, e.g., in Brockwell and Davis (1987), Theorem 8.1.1 and Theorem 8.1.2.
Because of its popularity, it is not surprising that the first method considered when estimating the
autoregressive model in the infinite variance setting is the generalized Yule-Walker method. It is
general in the sense it extends the relation (3.25) into the infinite variance model. The asymptotic
properties of the estimates in a-stable case can be derived using the result of Theorem 3.2.2. In
particular, since p -̂ + p and V -̂ > V then using mean value theorem, we obtain

(n/ ln(n))1/Q(â - a) i T>(YU ..., Yp)' (3.26)

where D denotes the derivative of the vector function tp(z) = Vp(z)~1z and the distributions of
the vector Yk, k = 1, . . . ,p are described in Theorem 3.2.2. Further discussion, and the simulation
studies can be found in Adler et al. (1998 a).

A similar generalized Yule-Walker estimator as (3.25) can be defined using the autocovariation
function. A discussion for the estimation of SaS autoregressive process using the covariation
function is presented in Gallagher (2001) and Nikias and Shao (1995), Section 7.2.1.

3.3.2 M-estimator

Suppose X\,...,Xn are the data which are generated from ARMA model in (3.22) with true
parameter vector ßo = (aoi, • • • ,aop,6oi, • • • <boq)'- We define a M-estimate (3M of ßo as any
parameter vector which minimizes

n

]Tr(ef(/?)) (3.27)

where r(-) is some suitably chosen loss function and {et(ß)} are estimates of the sequence {et}.
Estimates of tt can be calculated for any particular vector of parameters ß = ( a i , . . . , ap, 6 i , . . . , bq)'
via

= X2 - alX1 - ^iß)
(3.28)

= Xn - a\Xn-\ - • • • - avXn-.p - 6ien_i(/3) - • • • - bqen-q{ß)
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Thus the objective is a function of the parameters through {et(/?)}.

Several popular estimation procedures are the special cases of M-estimator. Least squares (LS)
estimation has r{x) = x2, and Least Absolute Deviation (LAD) has r(x) = |a;|. Maximum
likelihood Estimator (MLE) can be seen as a form of M-estimator with r(x) = — log p(x) where
p(-) denotes the probability function of the underlying innovations. In the following theorem,
we shortly present the asymptotic properties of M-estimator, as given in Davis (1996), following
closely the presentation in Calder and Davis (1998).

First, we define a centered and rescaled parameter vector,

u = an{0 - 0O)

where the scaling constants {on} are given by

an = inf{a;:P(|£1 | > x) ^n'1}

Then by substituting the vector u into (3.27) and centering, one obtains the process

Wn(u) = J2 (r(£'(& + an lu)) - r(et(0o)))
t=i

Minimizing Wn(u) with respect to u is equivalent to minimize the original objective function
(3.27) with respect to ß. The asymptotic property of the estimator is summarized in the following
theorem.

Theorem 3.3.1 (Davis (1996), Theorem 3.1.). Suppose that {Xt} is the ARMA(p,q) process
(3.2,2) such that {et} fulfils the condition C2. Assume that the loss function r(x) is convex where
its derivative TJJ(X) satisfying

(a). %p is Lipschitz of order r; i.e., \tp(x) — 4>{y)\ ^ C \x — y\T where r > max(a — 1,0) and C is
a constant

(b). E(ip(ei)) < oo if a < 1

(c). E{i}(ci)) — 0 and v a r ^ e i ) ) < oo if a ^ 1

then

n1/a(ßM -ß) = Un±u

where 0M is the M-estimate of 0. The limit random vector û is the minimizer of a stochastic
process, and typically has an intractable form.

In the following subsections, we present a short description of two special cases of the M-estimator.

Least square method

We start by presenting the result regarding the estimation of an autoregressive process. In pure
autoregressive case AR(p), the LS estimate is obtained by minimizing the objective function

1 + ... + ap*t_p))2

t=p
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Then we might see that the LS estimate of a = (ai, 02, • • •, av)
T is the solution of the following

equation (assuming C^s is invertible)

PLS (3.29)

where CLS = [Â(i, j")]t,i=i,.-.,p. PLS = [Hi)]i,j=i,...,P and

It can be shown that &LS is a strongly consistent estimator of the true coefficients. The order of
convergence is given in the following theorem.

Theorem 3.3.2. [Kanter and Steiger (1974), Yohai and Maronna (1977),Hannan and Kanter
(1977)] Let n be the number of observations used in computing the least squares estimates as in
(3.29). Then for any 6 > a,

lim n1/c5(ô, — a,) = 0 a.s. for j = 1, 2 , . . . ,p
N—>oo

For general ARMA model, one can expect to apply the result in Theorem 3.3.1 above. Unfortu-
nately, under assumption C2 for {et}, the conditions of Theorem 3.3.1 are not fulfilled. However
from Calder and Davis (1998), one obtains that

for some random vector r\.

Least absolute deviation method

In the heavy-tailed autoregressive case, the least absolute deviation (LAD) estimator has been
studied quite extensively, see, e.g., Bloomfield and Steiger (1983). In pure autoregressive case
AR(p), the LAD estimator of vector coefficients a = (01,02,... ,ap)

T is obtained by minimizing
the objective function

N

/ \Xt — (aiXt-i + • • • + avXt-p)\
t=P

In the infinite variance case, it can be shown that the LAD estimator is a consistent estimator.
Gross and Steiger (1979) show that if {et} is i.i-d. a-stable and has unique median zero, then
à-LAD{n) —> a almost surely as n —> 00. Moreover, An and Chen (1982) show that in case of
1 < a < 2 and 6 > a, nll6{hLAD - a) —» 0 in probability. Here the order of convergence of
LAD estimates is comparable with the LS estimates. However, simulation studies in Bloomfield
and Steiger (1983) and Gross and Steiger (1979) indicate that asymptotically LAD method will
dominate LS. This conjecture is proved in Davis et al. (1992), where it is shown that

-y- -^ 0 (3.30)

For general ARMA process, we expect to apply the result in Theorem 3.3.1 above. Unfortunately,
under assumption C2 for {et}, the conditions of Theorem 3.3.1 are not fulfilled here. However,
from Theorem 3.4. in Davis (1996), we obtain

Comparing the rate of convergence of PLAD to PLS, in the ARMA case, the same conclusion as
(3.30) can be obtained (Calder and Davis, 1998).
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3.3.3 Summary of the other results

Besides the results presented in the previous subsections, there are some other important estima-
tion methods for ARMA process with infinite variance that have been investigated in literature,
such as the Whittle estimator (Mikosch et a/., 1995), the Gauss-Newton estimator (Davis, 1996),
the empirical characteristic function (ECF) based estimator (Knight and Yu, 2002; Yu, 2004) and
the Bayesian estimation method (Qiou and Ravishanker, 1998).

For estimation of pure autoregressive models, an approach based on Kaiman filtering is considered
in Stuck (1978). For AR(1) with fixed parameter a where the noise follows SaS distribution
with 1 < a ^ 2, using the minimum dispersion error criteria, Thavaneswaran and Abraham
(1994) introduce a recursive type estimator for the parameter. This result is generalized by
Thavaneswaran and Peiris (1999), in which they consider the penalized dispersion estimator,
which is obtained by minimizing the absolute error between the estimator and the true values of
the parameters. Their recursive estimator for time varying parameter of AR(1) can be seen as a
generalization of the result in Stuck and Kleiner (1974). Kuruoglu et al. (1997) formulate Lp-norm
minimization problem for estimating the parameters of AR(p) model, and introduce reweighted
least square model as the solution. They show that this estimator is an efficient method especially
when short data length is available. Another related result for AR(p) is presented in Jian and
Pawitan (1994), in which they present the estimator for stable non causal AR(p) process, and
prove the consistency of the estimator in the heavy-tailed case. A linear programming approach
for estimating the parameters of AR(p) and also the asymptotic property of the estimator are
discussed in, e.g., Feigin et al. (1994), where {et} is assumed to follow a heavy-tailed distributed,
but their values are always positive, which has different spirit with the process considered in this
thesis. This type of process is often considered for modelling the teletraffic system.

Several estimation procedures have been developed for pure MA process with infinite variance.
See for instance, Goryainova (1996) which presents a robust sign estimator type for parameters
of MA model. Especially for non invertible MA(1) process with coefficient near or equal 1, Davis
and Mikosch (1998) show that the rate of convergence of likelihood ratio estimator is n1/2 .

3.4 Diagnostic checking

The last stage in modelling is doing the diagnostic checking. This stage is done by examining the
properties of the fitted residuals. When the estimated model fits the data, then the estimated
residuals should resemble the true residuals, i.e., approximately an independent and identically
symmetric a-stable distributed sequence. In the classical case, there are several diagnostic checking
procedures available in literature, see, e.g., Section 9.4 of Brockwell and Davis (1987). Under the
heavy-tailed setting, one can still apply the "heuristic" method to test the randomness of the
fitted residuals. For instance, a simple graphical independency checking is possible by graphing
the fitted residuals, although apparently as in the classical case, it is difficult to identify the
correlation structure of the fitted residuals only from its graph. For the inference procedure in
heavy-tailed setting, only limited results are available in literature, e.g., Krämer and Runde (2001).
For "goodness of fit" of the stable distribution to the fitted residual, one can apply the methods
presented in Section 2.3. In particular, here one may need to test the "stability" of à obtained
from the fitted residuals of different time horizons (e.g., Paolella, 2001).
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Chapter 4

The codifference function

Let {Xt,t € Z} be a strictly stationary symmetric a-stable process with 0 < a < 2. For Gaus-
sian process, i.e., when a — 2, the covariance function 7 ( ) completely describes the dependence
structure over time for {Xt}. For a < 2, the second moments of the process are infinite, and there-
fore, the population covariance function is not defined. In this chapter, we study the codifference
function, and further consider its normalization, as the extension of the covariance and the corre-
lation function, respectively. In Section 4.1, we present the definition of the codifference function,
and discuss some of its basic properties. Section 4.2 describes the asymptotic properties of the
codifference function of stable causal ARMA process. In Section 4.3 - 4.4, we propose estimators
of the codifference and the normalized codifference function, which are defined via the empirical
characteristic function. We show consistency of the proposed estimators, where the underlying
model is stable causal ARMA with symmetric a-stable noise, 0 < a < 2. In addition, we show
that the estimators are asymptotically normally distributed. The proofs of the asymptotic results
will be presented in Section 4.5 - 4.7.

4.1 Definition of the codifference function

At least two different definitions of the codifference function have been proposed in literature.
One way is by transforming the process {Xt} into sequence {e I sAt},s € R and defining a measure
of dependence at lag k, k € Z as r(k) = cov(exp(isXt+fc),exp(isA't)), the covariance between
exp(isXt+k) and exp(isXt). Simple algebra gives

r{k) = r(s, -s; k) = E(exp(is(Xt+k - Xt))) - E(exp(isXt+k))E(exp{-isXt)) (4.1)

An alternative definition of the codifference function is considered in Yang et al. (2001)

T(/C) =T(S , -S ; /C) = -\n{E(exp(is{Xt+k-Xt))))+\n{E(exp{isXt+k)))+ln(E{exp(-isXt))) (4.2)

where s € K and k Ç. Z. Both of the codifference function ((4.1) and (4.2)) require no moments
conditions for the original process {-^t}; they are zero if the variables are independent and k ̂  0.
Furthermore, note that if r(k) —> 0, when k —> oo then \r(k) + K(s,—s)r(k)\ for k —> oo,
i.e., r(k) and r(k) are asymptotically proportional. This relation can be obtain by noting that
r(k) = K(s, —s)(exp(—r(fc)) — 1) where K(s, —s) = E(exp(isXt+fc))E(exp(—isXt)) is independent
with k (Samorodnitsky and Taqqu, 1994).

In this thesis we only consider the codifference function as in (4.2). In the Gaussian case, the
codifference function is proportional to the covariance function, i.e., r(s, —s; k) = —s2y{k). where
7() denotes the covariance function of the stationary process {Xt}. Moreover, by defining the

35
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normalized codifference function I(k) as

w =r(k) -T(k)
r(0) - T ( 0 )

(4.3)

one directly obtains I(k) = p(k) in the Gaussian case.

Note that in general r(—k) = r(k)*, that is the conjugate of r(k). However, for symmetric
stationary process r(—k) = r(k) holds. In particular, under assumptions Cl and C2 (see Section
3.1 in p. 23), we obtain that the codifference function r(fc) of linear process (3.1) is of the form
(see Kokoszka and Taqqu (1994))

r(k) = - lnEe i s ( x '+ f c~x ' ) + lnEe" x ' + lnEe " i s X l

k— 1

\aCj

j = 0

3=0

3=0 j=0 3=0

\\Ct i I û ] OL \

-Cj)\ - \SCj + k\ SCj\ )

,fc > 0
j=0

(4.4)

Remark 4.1.1. One could define more general codifference function than (4.1) and (4.2), as given
in Hong (1999) and Kokoszka and Taqqu (1994), respectively. For u, v £ K, a general version of
(4.1) is

rG(u, v; k) = E(exp(i{uXt+k + vXt))) - E(exp(iuXt+k))E(exp(ivXt))

and where for (4.2) is

(4.5)

rG(u, v;k) = - \n{E(exp(i(uXt+k + vXt)))) + ln{E{eyip(iuXt+k))) + \n(E{exp(ivXt))) (4.6)

For our interest, definition (4.2) is more preferable. Note that under conditions Cl and C2, the
normalized codifference function (4.3), using the codifference function as in (4.2), is independent
of the choice of s (i.e., for given a, it is equal to 7(1, — 1; k) = T(1 , — l;fc)/r( —1, l;0) for any choice
of s), but a similar property can not be obtained using (4.6) except for a = 2. It is important
to note that for SaS process, r ( l , —1; k) coincides with the codifference function u(k) as given in
Samorodnitsky and Taqqu (1994), eq. (4.7.1). For given strictly stationary SaS process Xt, u(k)
is defined as

u(k) = 2(aXt)
a - (axl+k-xt) (4.7)

where az and ay-z denote the scale parameters of Z and Y — Z, respectively. Expression for
UY-Z of jointly stable random vector (Y,Z) can be obtained from eq. (2.11). See also Theorem
2.2.13.

Remark 4.1.2. Notice that if the SaS stationary process Xt is independent, then for k ^ 0,
u{k) — 0, or equivalently, -r(fc) are zero for all s. Conversely, if u(k) = 0, k / 0 and 0 < a < 1,
then Xt is independent. To obtain this property, we can use Example 2.2.15. From this example,
we obtain that if Xt is independent, then S1S2 = 0,Txi,x2

a-e-> where Fx^Xj is the spectral
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measure of (Xi, X2). Hence

/ \si-s2\
arXl+k,Xl(ds)

= / \si\arXi+k,x,(ds)+ f |s2rrA-l+fc.x.(ds) (sl87 = 0,TXl+k.Xt a.e.)
JS2 JSi

i.e., u(k) = 0.

Further, if 0 < a < 1, then |si - S2\a < |si | a + |s2 |Q with equality only when sxs2 = 0. This
can be obtained as follows. Since (\a + b\)a < (\a\ + \b\)a, we may suppose a > 0 and 6 > 0. If
0 < a < 1, then, for fixed b > 0 and for any a > 0, we have ^(o) = aa + ba - (a +b)a > 0 with
equality only at a = 0, because gb(0) = 0 and g'b{a) > 0 for a > 0.

From the preceding computation we obtain that if u(k) = 0, then S1S2 = 0, rx,+fe.A'( -a-e., and so
Xt+k and Xt are independent.

When 1 < a < 2, ît(/c) = 0 does not imply that Xt+k and Xt are independent. For instance,
choose Txt+k.Xt = <H(l,0)) + ^((-1.0)), then sis2 = 0,TXt+k,xt -a.e. but Xt+k and Xt are not
independent according to Example 2.2.15.

Remark 4.1.3. Using Property 2.10.5 in Samorodnitsky and Taqqu (1994), we obtain that u(k) of
SaS process has the following properties:

u(k)<2(aXl)
a

and
0 if 0 < a < 1

u{k) > -^ 2 ( l - 2 ° - 1 ) a ^ if 1 < a < 2

The upper bound is achieved at lag k = 0. For 0 < a < 1, the lower bound is achieved when

Xt is an independent process, and when Xt+k = —Xt if 1 < a < 2. From this relation, for the

normalized codifference I(k), we obtain

0</( fc) < 1 if 0 < a < 1 (4.8)

! -2a~l <I(k)< 1 if 1 < a < 2 (4.9)

When a = 2, (4.9) is equal to - 1 < p{k) < 1, where p(k) denotes the ACF.

Remark 4.1.4. Following Kokoszka and Taqqu (1994), we can consider the following interpretation
of the codifference function (4.2). Consider two stationary symmetric a-stable sequences {Xt} and
{Vf} with identical scaling parameters equal to crx, and suppose that for some k

-r{k)x < -r{k)Y (4.10)

If

I/* = - ln(E(exp(tS(yt+fc - Yt))))

then (4.10) becomes 2ax — Cf. < 2ax — Vk, or

a- > "k (4.11)

Since Ç^l(Xt+k — Xt) and v^l(Yt+k — Yt) have the same distribution, we get, for any c > 0.

t - Xt\ >c) = P ^ - 1 \Xt+k - Xt\ > Z^c)

ft - Yt\
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The inequality P(|Xt+fc - Xt\ > c) > Pflyj+jfc - Yt\ > c) means that Yt+k and Yt are less likely
to differ than Xt+k and Xt and so are "more dependent". Thus, the larger r, the "greater" the
dependence.

Remark 4.1.5. Another (generalized) dependence measure proposed in literature is called the
dynamical function. The dynamical function at lag k, DF(k), is defined as

DF(fc) = DF(Xfc, Xo) = E(exp(is{Xk - *„))), s ë R (4.12)

One also can define more general dynamical function (cf., Janicki and Weron (19946)) as

DF(n;0i,02) = E(exp(i(0iA"n +02A"o))),0i,02 € K (4.13)

Under assumptions Cl and C2, the dynamical function (4.12) is

fc-l oo

DF(fc) = E(exp(is(Xl+k - Xt))) = exp(-af ] T |SCj-|
a - a? £ \s(cj+k - Cj)\

a)
3 = 0 3=0

The following relation between the dynamical function (4.12) and the codifference function (4.2)
of the stationary process holds for every k £ Z

DF(fc) = exp(r(fc) - T(0) ) (4.14)

The relation (4.14) also holds for (4.13) and (4.6).

4.2 The asymptotic behavior of the codifference function

First we recall from Theorem 3.1.1 that the ARMA(p, q) process,

A(z)Xt = B(z)et (4.15)

has unique stationary solution of the form

oo

Xt = J2cj;et-j,t eZ, a.s. (4.16)
3=0

which fulfils conditions Cl and C2 if and only if the polynomial A(z) has no roots in the closed unit
disk {z : \z\ < 1}. The Cj's in (4.16) are the coefficients in the series expansion of B(z)/A(z), \z\ <
1. Here z denotes backward-shift operator (that is z(Xt) = (Xt-i)), as well as the complex
variable, and the polynomials A and B are

A(z) = 1 - axz - a2z
2 apz

p (4.17)

B(z) = b0 + hz + b2z
2 + • • • + bqz

q (4.18)

for fixed order (p, q).

In this section, the asymptotic behavior of the codifference function of ARMA processes (4.15)
will be summarized based on the results in Kokoszka and Taqqu (1994). We first show in Theorem
4.2.1 that the codifference function of linear processes (4.16), which satisfy conditions Cl and C2,
is bounded by an exponentially decaying function, like the covariance function. In other words, the
sequence {r(fc)} of every stable causal ARMA process tends to zero exponentially fast. We further
describe the exact asymptotic behavior of the codifference function by analyzing the coefficients
Cj's in (4.16), based on the properties of roots of A(z). Here we consider three classes of the roots:
real positive, real negative and complex, i.e., we slightly extend the analysis, which is carried out
in Kokoszka and Taqqu (1994). Note that Kokoszka and Taqqu (1994) consider the codifference
function as (4.6), which is more general than (4.2), but contained (4.2) as the special case (when
u = s, v = - s , s € K, see Remark 4.1.1).
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Remark 4.2.1. Since the relation (4.14) holds for every k G Z, the information about the asymp-
totic behavior of the dynamical function can be obtained from the asymptotic properties of the
codifference function.

Theorem 4.2.1 (Kokoszka and Taqqu (1994), Theorem 2.1.). Consider the linear process
(4-16), which fulfils the condition C2. If the coefficients Cj 's of linear process (4-16) satisfy the
condition Cl, then

lim sup Qak \r(k)\ < Kx \s\a for 0 < a < 1 (4.19)
k—*oo

and

limsup Qk \r(k)\ < K2 \s\ \s\a'1 for 1 < a < 2 (4.20)
fc->oo

where K\ and K2 are constants depending on a, Q and Cj 's but not on s. Q is as given in p. 23.

The proof of this theorem depends on the following lemma

Lemma 4.2.2. Consider the linear process (4-16), which fulfils the condition C"2, and define

Then

limsup ^ ^ < 2<ra \s\a for 0 < a < 1 (4.21)

and

l imsup^^- <aaai)^-1\s\\-s\a~l for 1 < a < 2 (4.22)
k—»00 Wk

Proof. From (4.4), we obtain

r(k) = aa £ ~ o (\s(cj+k - Cj)\
a - \sc3+k\

a - \-SCj\
a) (4.23)

Following Kokoszka and Taqqu (1994), we obtain the following inequalities which hold for any real
numbers a and b

lal" f o r O < a < l
| a | | 6 |a-i + ( a + 1 } | o |a f o r ! < a < 2 (4-24)

If 0 < a < 1, then after applying (4.24) to each term in (4.23), with a = scj+k, we get

\r(k)\<2aa\s\a^ (4.25)

If 1 < a < 2, then

OO

|r(fe)| < aa Y, {a lsci+fcl I-SCJ-I""1 + (a + 1) \scj+k\
a}

(
\ I/o / \ (a-l)/a

00 \ / 00 \ 00

E l c ^ ! a 5>' ï° +(a + l)ao|S|°^|Cj-+fc|
Q

(4.26)

by Holder Inequality. Relation (4.19) and (4.20) follow from (4.25) and (4.26) respectively. D
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Proof of Theorem ^.2.1. Suppose k is such that \CJ\ < Q~i for each j > k. Then

(
\ I/o / \ I/o

f > M <Qk\YtQ-ia\ =(1-Q-Q)-1/Q (4.27)
Applying Lemma 4.2.2, we obtain (4.20) and (4.19) with Kx = 2<rQ(l - Q'0)'1 and K2 =

In Kokoszka and Taqqu (1994), it was shown that the asymptotic behavior of the sequence {r(k)}
of the ARMA process depends on a and the roots of the polynomials A(z). In order to show this
result, first we will determine the exact form of the coefficient Cj. As the polynomial A(z) and
B(z) do not have common roots, i.e., the polynomial ^ i | | is reduced, we can write

where P(z) = p0 + Piz + • • • + pq-pz
q~v (the pi's real) if q > p and P = 0 if q < p. G(z) is the

polynomial of degree less than p. As in Kokoszka and Taqqu (1994), we assume here the different
roots of A(z) have different moduli. Since A(z) has no roots in the closed unit circle {2 : \z\ < 1},
each root of A(z) belongs to one of the following three classes (Nowicka, 1997):

1. The real positive roots:

exp(«i),... ,exp(Ks) 0 < KI < • • • < KS

with multiplicities l\,..., ls

2. The real negative roots:

— e x p ( ^ i ) , . . . , — exp( i / r ) 0 < t/\ < • • • < vr

with multiplicities gi, • • • ,gr

3. The remaining complex roots:

exp(Ax ± i / z 1 ) , . . . , e x p ( A t ± i / x t ) , 0 < Ai < ••• < \ulij € (0, 2TT) for j = l , . . . , f

with multiplicities m\,..., mj

Apparently, it is required that h + - • - + ls+gi + - • • + gr + 2(mi + - • •+m t ) = p. Since G(z)/A(z) is a
proper fraction, there are real numbers du,..., di^,..., dsX,..., d s j , , / n , . . . , figi, • • •, fri > • • •, frgr

and complex numbers e n , . . . , e i m i , . . . , e a , • • • ,e t m , such that

- 2

+ . + + . + + +
- z (-e"» - z)»i -e"-- - z {-e^ - z)9-

+ • • • + A . - fT- Vni + • • ' + A,-!" _ + • • • + A , - , e t n ^ m , (4 '29)
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For any natural number / and any complex number a, \a\ > 1

(a - zY

j + l 1 ' - - J ~ J ' (4.30)

Using (4.30), we obtain the coefficient ëj in the series expansion G(z)/A(z), \z\ < 1 which is given

by

where
Ji , / ,• a. ; _ 1 \

fc = l , . . . , s (4.31)

m=l
Note that here we use the relation

,/c = l , . . . , r (4.32)

j + m - 1 '

Denote the numbers K\ ,..., ns, vi,..., vT, A i , . . . , At as u\,..., w/v, N = s + r + t in such a way
N

that 0 < wi < • • • < oi/v- Thus Cj = J ] Hm{j) exp(—cjmj), where for m = 1 , . . . , JV
m=l

{ if o>m is l-th element of the /ts

(-l)jFi(j) if wm is /-th element of the i/s (4.34)
2Re(Ei{j)e-i^"i) if wm is /-th element of the As

Therefore, from (4.28), we can write coefficient c3 as,
N

Cj =pj+cj=pj+J2 Hm{j) exp(~ujmj) (4.35)
m=l

with understanding that p}•. = 0 if j > q — p.
Below, we note some remarks. First, set 7 = l\ if wi = K±, 7 = g\ if w\ = v\ and 7 = m\ if
wi = \\. From Kokoszka and Taqqu (1994), we have the following facts. For any natural numbers
/ and 7 satisfying 1 < / < 7, the following relation holds:

J - fc I J+k J /fcT-1 1 0 l f / < 7 V ^
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Vj>0V*>4 ( ' + * + J - 1 ) ï ± r < i (4.37)

The following formulation will be used in subsequent proofs. First we recall from (4.4) that

j=o

where
Vj(k) = \s(cj+k - c3)\

a - \scj+k\
a - I - SCj\

a (4.38)

We will rewrite Vj(k) in more convenient form. Assume k > p — q (and therefore Pj+k = 0 in
(4.35)) and let Yli stand for ]C;=i , N = s + r + t. Set also z<p> = |z|p~1f for any complex
number z and real number p. Then, as n —> oo,

+ o(ci+k) - \scj+k\
a (4.39)

Indeed, from (4.38)

yielding (4.39). By substituting (4.35) into (4.39), we obtain

Vj{k) = a(-s)<° 1 | 53 I

-w,(i + k))\ ~
J

Ü + A)exp(-W/(j

-wi(j + k)) (4.40)

The following theorem presents the asymptotic behavior of the codifference function for a < 1.
Its form is determined by the "smallest" root of A(z). If the "smallest" root is real and positive,
wi = KI, then r(fc) is asymptotically proportional to /c^'1~1'Qexp(—n\ak). When the "smallest"
root is not positive, i.e., u\ = V\ or wi = Ai, then r(fc) is oscillating, but |r(fc)| is asymptotically
bounded from above by a function proportional to A;'91"1'01 exp(—v\ak) or fct"1'!-1)« exp(—X\ak),
respectively.

Theorem 4.2.3. Suppose 0 < a < 1 and consider the ARMA sequence (4-15), then

(i). J/wi = K\ then

lim fc"(/l-1)aexp(KiaA;)T(A;) =
A:—»oo

sdUi -a"

(ii). If ui = v\ then

limsupfc~(9l-1)Qexp(i/ia/c)|T(/c)| <
A:--*oo

sflgi

(iii). If uii — Ai then

lim sup AT(r \r(k)\
(mi - 1)!

1 - exp(—nia)

1 — exp(—via)

2aa

- exp( —

(4.41)

(4.42)

(4.43)
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Proof. First, set 7 = l\ if u>\ = «1, 7 = g\ if wi = 1̂  and 7 = mi if w\ — X\. From (4.40)

A;) o ] T #<(j + *) exp(-wj(j

(4.44)

Since a < 1. wj - QUI > 0 and so the first two terms of (4.44) tend exponentially to zero as A" —» 00.
For the last term, only the first term of the sum, namely k~^~l^H\{j 4- k) exp(-uiij) does not
tend to zero. If wi = «1, then by (4.36),

lim
k—»00

= lim
k—»00

k)

(4.45)

If wi = MI, then limfc-»oo k ^9l l^Hi(j + k) does not exist, because using (4.36), there are two
subsequences that give two different limits, i.e.,

and

However.

lim i
k—»oo

lim

U + k) = _

ü + k) =
( - l ) 9 ' + J / i 9 1 e x p ( - , l g l )

(4.46)

(4.47)

j + k)\ = li
k—»00

O' + k)\

(4.48)

If oil = Ai and ̂ ii = £7r (for any 2:, y € K such that x, y > 0,x ^ t/ and x < 2y), then
oo k~i-mi~1^Hi(j + k) does not exist (Nowicka, 1997), because there are

gcd(x,2y)

separate subsequences of /c's that give different limits. However,

\ims\ipk
k—>oo

j + k)\ < li
k—00

O- + k)\

Therefore, if Wi = KI,

lim k-^'V* exp(ujiak)vj(k) =

= 2|e imi | exp(-Aim1){(mi - l ) !}" 1

sdi/,exp(-Ki/i)

k->oo

If LUI = v\, then

fc—oo

)Q exp{uiiak)\vj{k)\ =

( / i - l ) !

g/iglexp(-t/igi)

(51 - 1)!

(4.49)

(4.50)

(4.51)
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And if wi = Ai, then

(mi - 1)!
(4.52)

By (4.37), there is a constant -K"i depending only on the coefficients of polynomials A(z) and B(z)
and is independent of k and j such that

(4.53)

Therefore, using (4.24) in any case,

< \s\a2K? (4.54)

Thus, using the dominated convergence theorem when u>i = K\ and a modification of Fatou's
lemma if wi = v\ and u>\ = Ai, we obtain (4.41), (4.42) and (4.43). •

In the following theorem we focus on the case of 1 < a < 2. For this range of a, if the "smallest"
root is real and positive, tu\ = K\, then r(k) is asymptotically proportional to fc''1"1' exp(-Kik).
When the "smallest" root is not positive, i.e., wi = v\ or w\ = Ai, then r(k) is oscillating, but
|r(fc)| is asymptotically bounded from above by a function proportional to fc^1"1' exp(—v\k) or
£(mi-i) exp(—Aifc), respectively.

Theorem 4.2.4. Suppose 1 < a < 2 and consider the ARMA sequence (4-15), then

(i). If u)\ = K\ then

l i m I
&—+OO

exp(-/ti/x)

" I)-1
- / t u ) (4.55)

j=0

(ii). = v\ then

(iii). If' w\ = Ai then

(4.56)

limsup/c-(mi-1)exp(Aifc)|r(/fc)| <
a\ - s\a~l|2aaa\ - s i | exP ( -A 1mi)

(mi - 1)!
j=o

(4.57)

Recall that for any complex number z and real n u m b e r p , we denote z < p > = \ z \ p l z .
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Proof. For any fixed j and 7 as in the proof of Theorem 4.2.3, write

U + k) exp(-w/j) exp(-(w, -

(4.58)

The last two terms of (4.58) tend exponentially to zero as k —> 00. In the first term, only the first
term of the sum, namely

j + k) exp(-a-1 j)

does not tend to zero. Therefore, by (4.45), (4.48) and (4.49), if wi = K\,

lim i
k—*oo

d», exp(-K;1/1){(/1 - I ) !}" 1 exp(-wij) (4.59)

and

Q - l

(4.60)

if UJ\ = v\, and if w\ = \\,

fc->oo

x 2\elmi I exp(-Aim1){(mi - I ) !}" 1 exp(-wu) (4.61)

Formula (4.55), (4.56) and (4.57) will follow from (4.59), (4.60), (4.61), respectively, once we have
shown that the sequence {vj(k)}^L0 is dominated by a summable sequence. To show this result,
by (4.24) we write

a - l

(4.62)

Since linij_oo \cj\ — 0, there is K2 such that

<K2
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Therefore

u>1aj) (4.63)

where K\ is as given in (4.53) and

K3 = sup |jfc(ii/«)(7-i) e x p (- (l - ±

D

It remains to give the result for a = 1, which is discussed in the following theorem

Theorem 4.2.5. Suppose a = 1 an<f consider the ARMA sequence (4-15), then

(i). If OJ\ = K\ then

lim k-Vi-V eMKik)r(k) = ̂  ^ " ^ T((-s)Sign(Cj)dlh
fc^co (/! - 1)! e-jj

(4.64)

(ii). //a;i = ^

)^)! < ^ ' ^ ' ^ ^ (4-65)
t-oc (ffi -l)!{l-exp(-i/i)}

(iii). //wi = Ai i/ien

,. , _ ( m , _ i i / x , X | / , M ^ - 4crQ | s e i m i | e x p ( — A j m i ) , .

hmsupfc ( - « e x ^ * ) |r(*)| < ( m i _ 1 ) ! { 1 , e x p ( _ A l ) } (466)

Proof. The proof of Theorem 4.2.5 is similar to the proof of Theorem 4.2.4 above, the only dif-
ference is the last term of (4.58) does not tend to zero. Furthermore, instead of (4.62), we
can use simpler relation (4.54) to obtain a summable sequence which dominated the sequence

4.3 The estimator of the codifference function

As the codifference function is denned via characteristic functions (c/), it can be estimated by
empirical characteristic functions (ec/)(see, e.g., Yu, 2004, for a review on ecf). Given a sample
Xi, X2, • • •, Xn, an estimator for the codifference function at lag k € Z can be defined as (s € R)

T(S, - S ; k) = V(n - k)/n x [- ln(0(s, - s ; fc)) + ln(0(s, 0; fc)) + ln(<£(0, s ; k))} (4.67)

where for u, v G R

I l fc when fc ̂  ° f4 68)
K 0 (4-68)

Accordingly, /(s , —s; fc) = Tr'~^'.0| can be used as the estimator of the normalized codifference
I(k). Here we consider a discrete estimation procedure, i.e., we evaluate the codifference function
at r points si < S2 < • • • < sr. for Si € R,Si ^ 0, i = 1 , . . . . r. In what follows, we denote the
vectors s = {s i , . . . , s r },

f(s, k) = [ f(s i , -s r , fc), f(s2 , - s 2 ; fc),..., f ( s r , - s r ; fc)]T
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and
/(s, fc) = [/(si, - s i ; fc), / (s 2 , - s 2 ; fc),. -., / ( s r , - s r ;

Note that one can replace the factor y/(n — k)/n in (4.67) by unity, and also the divisor (n — fc)
in (4.68) by n without changing the asymptotic properties of the estimator, however, the choices
in (4.67) and (4.68) will give a better finite sample performance than the alternative. Under
assumptions Cl and C2, r(—fc) = r(k) such one can restrict the analysis to the case of fc > 0.
Notice that two similar estimators for the codifference function have recently been proposed in
Yang et al. (2001) and in Hong (1999).

4.4 The asymptotic properties of the estimator

The asymptotic properties of the estimator is summarized in the following theorems.

Theorem 4.4.1. Let Xt,t € Z be the stationary linear process (3.1) satisfying conditions Cl and
C2. For s £ R , s ^ 0 . its codifference estimator f(s, —s; k) and the sample normalized codifference
l(s, —s; fc) are (weakly) consistent estimators for r(fc), fc € {0,1,2,.. .} and I(k), respectively.

The proof is given in Section 4.5.

The asymptotic distribution of the sample codifference function (and the sample normalized cod-
ifference function) of the linear process (3.1) can be derived using the central limit theorem for
empirical characteristic function (Theorem A.4.1). For convenience, we split f into its real and
imaginary parts. We write

R e ( f ( s , fc)) = [Re(T(sx, - a i ; fc)), R e ( f ( a a , - s 2 ; * ) ) . - • • > R e ( f ( s r , - s r ; fc))]7

and
Im(f(s, fc)) = i, -si;fc)),Im(f(s2, ~s2;k)),... ,Im(f(sr, - s r ;

Here, Re(z) and Im(z), z € C denote the real and imaginary parts of z. As f(s, — s, 0) by definition
is a real function, we therefore obtain

Re(/(s, fc)) =

Re(f(si, -si ; k))/f(su -si;0)
Re(f(s2, - s 2 ; fc))/f(s2, - s 2 ; 0)

Re(f(sr, -sr;k))/f(sr,-sT;0)

, Im(/(s,fc)) =

Im(f(si, -si;fc))/f(si, -Si;0)
Im(f(s2, - s 2 ; k))/r(s2, - s 2 ; 0)

Im(f(s r, - s r ; k))/r(sT, -sT\ 0)
(4.69)

In the following theorem, a result regarding the asymptotic distribution of the sample normalized
codifference is given. The proof is given in Section 4.6.

Theorem 4.4.2. Let Xt,t € Z be the stationary linear process (3.1), satisfying conditions Cl and
C2. Then for he {1,2, . . .},

Re(/(s,2))

(4.70)

The matrix variance-covariance W is given in (4.96).

Applying this theorem, we obtain the following corollary. The proof is given in Section 4.7.
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Corollary 4.4.3. Let Xt,t 6 Z be an i.i.d. sequence satisfying the condition C2. Then for
fee {1,2,...}..

Re(/(s, k)) is AN&n^Wi) (4.71)

and
Im(/(s, k)) is AN(0,n"1 W2) (4.72)

where the (i,j)-th elements of matrix W ; and W2 are,

^ i ( i , j ) = — and W2(i,j)='-^ ,i,j = l,...,r (4.73)

9ij 9ij

with

f.. = e<7"(|s,-r+l*jl°-|*-Sjl") f le0
a(Ma +\Sj\° -\Si-'j\a) _

ana!

4.5 Proof of Theorem 4.4.1

To show consistency of the codifference estimator, the following two lemmas are necessary.

Lemma 4.5.1. Let Xt,t € Z be the stationary linear process (S.I), satisfying conditions Cl and
C2, and let $(s) = E(exp(isXt)) denote its first order characteristic function. For k £ {0,1, 2 ...}
and s £ l , s / 0

/ n-fc
ln(</>(s, k)) = In I (n - Â:)"1 ̂  exp(isXt)

V t=i
is a consistent estimator o/ln($(s)).

Proof. Let yt = exp(isXt). Apparently, the magnitude of yt is equal to one, and therefore it is a
second order stationary process. For the sake of simplicity, instead of working with 4>(s, k), we first
show consistency of (j)*(s,k) = n~l X^"=i exp(isA't). Here, (j>*(s,k) is an unbiased estimator for
3>(s) = E(yt). To show the weak consistency of this estimator, we show that yt is a mean ergodic
process. A sufficient condition for yt to be mean ergodic, i.e., </>*(s, k) —> E(yt) in the mean square
sense, is that its covariance function tends to zero as time lags tends to oo (see Theorem A.3.7).
The covariance function of yt at lag k can be expressed as

- - l) = !*(*) "

From Theorem 4.2.1, we see that c(k) —» 0 when k —* oo exponentially fast. As mean square
convergence entails convergence in probability, 4>*(s, k) ^> $(s)- Moreover, under assumptions Cl
and C2, we have $(s) = exp(- Y^jLoaa t-scj|Q), a real-valued function. Therefore we can conclude
Re(0-(s, k)) ̂  Re(*(s)) = $(s) and Im(^(s , fc) i Im($(s)) = 0.

By taking the principal value of ln(-) function in the complex domain, we obtain that ln(-) is a
continuous and well-defined function on C minus the negative real line. Because \CJ\ < CQ~i for
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some C > 0,<3 > 1, we conclude Re($(s)) always strictly greater than 0, which implies with the
probability converging to 0, Re(<£*(s, k)) will be less than or equal to 0. Therefore, without loss
of generality, we can restrict the definition of the real and imaginary parts of ln(<£*(s, k)) only on
the right half plane where Re(</»*(s, k)) > 0, and equal to 0 on the other case. From this consider-
ation, we obtain Re(lm>"(s, k))) = \ ln((Re(<£*(s,fc)))2 + (lm(4>*(s,k)))2) and Im(ln(0*(s,fc))) =
arctan(^|ff. j*'*jj ). From the continuity of the logarithm function in the considered domain, we can
deduce that Re(ln(0*(s,fc))) ^ Re(ln($(s))) = ln(*(s)) and Im(ln(<?V(s, k))) = arg(0*(s,fc)) ^> 0,
when n —» oo. In other words, we obtain ln(0*(s, k)) -^ ln($(s)). To complete our proof, it is
sufficient to show <p*(s,k) — 4>(s,k) •£» 0. By assumption of the model, Re(«3>(s)) > 0, thus
E\Re(<j>*{s,k))-Re(<p(s,k))\ < 2 ^ and E|lm(0*(s,fc)) - Im(0(s,fe))| < 2 ^ , and therefore
we can conclude 4>*(s, k) — 4>(s, k) — op(l). D

Lemma 4.5.2. Let Xt,t € Z be the stationary linear process (3.1), satisfying conditions Cl and
C2. and for k € {0,1,2,.. .} and s e M, s / 0, let $(s, - s ; k) = E(exp(is(Xt+k - Xt))) be its
second-order characteristic function evaluated at (s, —s). Then as n —> oo

s, -s ; k)) -^ ln($(s, -s ; k))

where 4>(s> —s',k) *s as given in (4-68).

Proof. For the proof, we proceed in a similar way as the previous lemma. For simplicity, instead of
working with <p(s, —s: k), we first show the consistency of 4>*{s, —s; k) = n~l 5Z™=1 exp(is(Xt+k —
Xt)). A sufficient condition for yt to be autocovariance ergodic (Proakis and Manolakis, 1996,
p.AlO), i.e., <£*(s, —s, k) —> $(s, —s; k), in the mean square sense is that

E(exp(is(Xt - Xt+k - Xt+l + Xt+i+k))) - Ma, -s; k)\2

as I —» oo where the index / denotes the lag of covariance among the sample autocovariance
function. Hence, we have

E(exp{is(Xt - Xt+k - Xt+i +

-M, rh)\2 V(eMis((Xt Xt+k) (Xt+i Xt+i+k)))) _ m M,a
E ( e x p ( i s ( X t - X t + k ) ) ) E ( e x p ( i s ( X t + i + k - X ) ) )

where

Ci = - ln(E(exp(iS((Xt - Xt+k) - (Xt+, -

+ \n(E{exp{is{Xt - Xt+k)))) + \n(E{exp(is(Xt+i+k -

To obtain a simple expression for Ci, we can write the elements of Cj as follows

- lnEexpis((X t - Xt+k) - (Xt+l - Xt+l+k))

j=o j=o j=o

/oo

inEexpis ^ ( ^ - cj+k - cj+i + cj+l+k)et-j
V=o

fc-l l-l l+k-l

a

j=0

j=0 j=0 j=0

E l IQ -L \~* I

I j I / - I



50 CHAPTER 4. THE CODIFFERENCE FUNCTION

and

\r\Eexpis(Xt - Xt+k) = lnEexpis

= a"
j=0 j=O

\nEexpis(Xt+i+k — Xt+i) = lnEexpts

I r—« «—-»

= lnEexpis >

>=o

\ j=o j=o

l+k-l /-I oo

j=o

3=0 j=0

Therefore C\ can be written as

> = 0

= a
oo

j=0

OO

3=0

kj - kJ+l)\
a - | - skJ+l\

a - \skj\a

(4.75)

(4.76)

where kj = Cj — - This expression is the codifference function TG(U,V;1) for coefficients k/'s
and parameters u = —s,v = s. Because \CJ\ < CQ~-) for some C > 0,Q > 1, then Ifcjl < C\Q~i
for some Ci = 2C > 0, Q > 1. As Theorem 4.2.1 also applies for rc(u, v ; ) , by (4.22) and
(4.21), we can conclude that exp(—Ci) will converge to 1 exponentially fast. In other words,
E(exp(is(X( — Xt+k — Xt+i + Xt+i+k))) —> \$(s,—s;k)\ for n —» oo, and we obtain the mean
square convergence of 4>*(s, — s; k) to $(s, —s; k) and therefore <f>*(s, —s; k) s, - s ; k). For the
rest of the proof, we can proceed similarly to the proof of previous lemma, as we have $(s, —s; k) =
exp(-<7a(£]*~Ô \scj\a - Yl'jLo \s(cj+k - Cj)|Q)) also a real-valued function, strictly greater than
0 •0.

Proof of Theorem 4-4-1- As for finite k and n - t oo we obtain y/1 — k/n
results in lemma 4.5.1 and lemma 4.5.2, we have as n —» oo, for i = 1 , . . . , r

D

-+ 1, then using the

i,-Si\k) (4.77)

a

4.6 Proof of Theorem 4.4.2

In this part, we will derive the asymptotic distribution of the sample codifference function of linear
processes. The proof will be given as a series of propositions, where the main results are presented
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in Theorem 4.6.4 and also the proof of Theorem 4.4.2 at the end of this part. The proof will follow
closely an approach for obtaining the limiting distribution of the SACF in the classical case, e.g.,
Theorem 7.2.1 in Brockwell and Davis (1987).

For notational simplicity, instead of working with f(sj, -s*; k), i = 1, . . . ,r, in the following first
we will consider the similar estimator f*(st, — Si\ k),

f'(Si, -st; k) = - \n(<P(si, -st; k)) + \n(4>m(si, 0; *)) + ln(0*(0, -Si; k)) (4.78)

where <f>*(u,v; k) = n~l Y^t=\ exp(i(uX i+fc + vXt)), u,v € R. The required result will be presented
in Theorem 4.6.4.

Proposition 4.6.1. Let Xt,t e Z be the stationary linear process (3.1), satisfying conditions Cl
and C2. Then if p > 0 and q>Q,

Re(f (s, Re(T*(s,9))l i m n c o v i i T / - * / \ \ I . I T / - * / w
n-*oo \ \ Im(r*(s,p)) J \ Im(r*(s,g))

where the matrices A ^ j . / c = p,q and ~Vpq are given in (4-80), (4-87) and (4-89) below. Here
cov(X, Y) denotes the covariance between X and Y.

Proof. To obtain a complete variance-covariance structure of the estimator, we consider the fol-
lowing representation of T*(S, k)

\

Re(f(s,fc)) \ _

Re(f*(s2,-s2,fc))

Re(f*(sr,-sriifc))
lm(fr(si,-si,k))

\ Im(f*(sr,-sr,fc))

= A
Y
X

where

A =
0

0 I r <g» Ai

= ( 1 1 - 1 )

and

Y =
Re(ln(r2

fc))

\

,X =

Im(ln(yife))

V Im(ln(Kr
fc)) jRe(ln(rr*))

Here I r denotes the matrix identity of size r, where we denote

/ 4>'(0,-ai;k) \ ( <t>i(si,k)

\ <l>*(si,-Si;k) ) \ 4>z{si,k)

and the logarithm function is defined componentwise, i.e., we have

( ( ^ ( ) ) )
Rein Yt

k = Re(ln(</>2(si,fc)))
V

(4.79)

(4.80)
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and similarly for the imaginary part. Let us denote

Notice that $(u,v;k) = E(expi(uXt-t-k + vXt)), u,v € R. Using mean value theorem, we can
expand the codifference function into

Re(f*(s,, fc7fc (4.81)

where

with

Re(Lf) =

Re(Lf)
Im(Lf)

Re(ln(E(y1
fc)))

Im(Z*)

V Re(ln(E(Fr'
:))) V Re(E(Yr

k))

and similarly for the imaginary parts, and where and L2 = ((fe)t.j=i....,6 denotes Jacobian of
(4.79), which is evaluated at c ( ||c — V'nl < |Vn ~ V'nll)- From assumption C2, we obtain

k-l oo

^,/c) = $(S i ) -Sl;fc) = exp(-
j = 0 j = 0

and ), i.e.,

(4.83)

From identities (4.82)-(4.83) and further applying assumption Cl, we obtain that the elements
of Re(V>£) are always strictly greater than 0. Therefore, with a probability convergent to 0, the
elements of Re((p£) will be less than or equal to 0. Hence, without changing the limiting distri-
bution of the estimator, we can restrict the definition of the real and the imaginary components

/ \/ Y \
of I Y ) in (4.79) only in the right half plane where the elements of Re(y?£) > 0, and equal to

V A /
0 in the other case. Thus, we can conclude that the Jacobian matrix L2 is well defined here. By
Theorem 4.4.1, L2 will converge in probability to L2, where

Here Vg denotes the Jacobian of g. From (4.82), (4.83), we have the following identities

Re(*(Si, - * ; k)) = E(cos(Si(Xt+k - Xt))) = $(S i , -s<, k) (4.84)

Re(*(si, 0; k)) = E(cos(SiX(+fc)) = $(S<) 0, k)

Re($(0, - S i ; fc)) = E(cos(-s îX t)) = $(0, -sit k)

(4.85)

(4.86)
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and Im ($ (s;, - s, ;fc)) = E(sm{si{Xt+k ~ Xt))) = 0, Im($(si,0;fc)) = E(sm(siXt+k)) = 0 and
Im($(0, -Si;k)) = E(sin(-s i^'t)) = 0. Using these identities, after some algebra we directly
obtain

flrd
k 0
0 I d * ) ( 4 8 7 )

where (dfc)T = [df, d£,. •., d£], and the elements of d^,i = 1, . . . , r are

and equal to 0, otherwise. The asymptotic variance-covariance matrix is obtained from (4.81) as

lim r, rnv/Y Re( f(S> ~S'P)) \ ( Re(f*(s,-S; ?)) \ \ _ A T P V T ,AT /, oox
l i m n COV I I T / ~ . / \N I i I T /•-* c w l — AJuo V J J L I J A ( 4 . o o )

rwoo VV Im(T*(s,-s;p)) y \ IIÏI(T*(S,-s;ç)) yy 2 P9 2

where

v _ f V^ Vg \ _P? 5 cov(Im(Zj;),Im(Z«))

The matrix Vpq can be obtained by applying Theorem A.4.1. Its elements can be derived in a
similar way as obtaining variance-covariance matrix in Theorem A.4.1. This is possible, because it
can be shown that all elements of Vpq (in the form of sum of the absolute components) are finite.
Therefore, one can apply the property of the sample mean of ergodic processes (Theorem A.3.7).
Notice that here in particular, we obtain all elements of Vpq with respect to cov(Re(Z£), Im(Z£))
and cov(Im(ZP),Re(Z£)) are zeros. The elements of Vp? with respect to cov(Re(Z£), Re(Z«))
and cov(Im(Z£),Im(Z£)) can be shown to be finite using identities (4.82)-(4.83) and applying
a similar approach as obtaining eq. (4.74) and (4.76), and further applying Theorem 4.2.1, or
sometimes, eq.(4.24) together with the similar steps as the proof of Theorem 4.2.1. However, we
omit details. D

Proposition 4.6.2. Let X%,t £ Z be the moving average process of order m, Xt = ]Cjlo cjet-j,
satisfying conditions Cl and C2. Then for h e {1,2, . . .}, s £ l , s ^ 0

where M is the covariance matrix

M=[AL£Vp,L«A%,?=0 h

and the matrices A.L^, k = p,q and VP9 are as given in Proposition 4-6.1 above.

Proof. To show this relation, define vectors {Yf} by

Y ( = (Z t, Z t + i , . . . ,

where
/ xi \

\Xr I
where for j = 1 , . . . , r

( exp(-iSjXt)
exp(iSjXt+k)

exp{isj(Xl+k - Xt))
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By definition. {Zt+k} is m+fc-dependent sequence and therefore {Yt} is m+/i-dependent sequence.
Next define

here
_ / Re(ln(n-1 £?=1

{ 1 ^
and

p n i -Re(ln(n

V Re(ln(n - 1

where Z = 1, . . . , r

Re(ln(n -1 Xf )) =
Re(ln(n -1

(similarly for the imaginary part. Note that the summation and the principal value of ln(-) are
defined componentwise), then we have

Re(f (s,0)) \ / Re(f*(s,/i))
I m ( f ( s , 0 ) ) ) ' • • • ' [ I m ( f ' ( s , / i ) )

(4.90)

for all vectors a = (ao, • • •, a/i)T € R'1"1"1 such that aTMa > 0. For any such a, the sequence
{aT(ACDr} ' s ( m + /i)-dependent and since by Proposition 4.6.1

where A is as given in (4.80). We therefore need to show that when n —* oo

lim n var(aT(A[Ç t,^(+1,... ,6+h])T) = a T M a > 0
n—»oo

where M is the covariance matrix

and the vectors A, Lj , L2, matrix VPQ are as given in Proposition 4.6.1 above. We can conclude that
{3LT(X^T)T} satisfies the conditions of central limit theorems for m-dependent processes (Theorem
A.2.15), and therefore by this theorem, for n —» oo, we obtain the required result (4.90). The
relation Im(r(s, j)) = 0, j = 0 , 1 , . . . , h can be obtained directly from identities (4.82)-(4.83). D

Proposition 4.6.3. Proposition 1^.6.2 remains true for Xt,t € Z being a stationary linear process
(3.1). satisfying conditions Cl and C2.

Proof. For the proof, we will apply the result of Proposition 4.6.2 to the truncated sequence
Xtm = E"Lo cjet-j a n d then derive the result for Xt by letting m —> oo. For 0 < p < h, we define

where

, -s;p) = - s, -a;p))

= n"1 E"= n E"=iexP(i(u^'(«+p)'n +

f^(s,0)) - Re(rm(s,0))
f^(s, 0)) - Im(rm(s, 0))

(s,0;p)) + ln(^(0, -a;p))

)- Then by Proposition 4.6.2

^(s,/i)) - Re(rm(s,/i))
^(s, h)) - Im(rm(s, h))

(4.91)
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where Ym ~ N(0, Mm). Here M m is the covariance matrix

where A is defined as (4.80) and the Jacobian matrix L*(m) and matrix V™ are defined for Xt

as in (4.87) and (4.89), respectively. Now, a s m - » oo,

where M is defined like M m by replacing Xtm by Xt. Hence

Ym =4> Y where Y ~ 7V(0, M)

The proof now can be completed by applying Theorem A.2.7 provided we can show that

lim limsupP(n1/2 |Re(f^(s,p)) - Re(rm(s,p)) - Re(f'(s,p)) + Re(r(s,p))| > e) = 0 (4.92)
m—>o° n—oc

for p = 0 , 1 , . . . , h (and similarly for the imaginary part). The probability in (4.92) is bounded by

€"2n var(Re(f^(s,p)) - Re(f (s,p)))

= £ - 2 [n var(Re(f^(s,p))) +n var(Re(f*(s,p))) - 2ncov(Re(f4(s,p)), Re(f*(s,p)

From the calculation of Proposition 4.6.1 and further noting that Theorem A.4.1 can be applied
for the finite moving average process by setting some of the coefficients Cj's to be zero, we obtain

lim lim n var(Re(f^(s,p))) = lim n var(Re(f*(s,p))) = m*

where mj^ denotes the covariance between the real elements in (p, q)- block of covariance matrix
M. Moreover, using the same steps to that given in the proof of Proposition 4.6.1, it can be shown
that

lim lim ncov(Re(f^(s,p)),Re(f*(s,p))) = mfLH

m—*oon—>oo HH

Thus
lim limsup£~2n var(Re(f£,(s,p)) - Re(f*(s,p))) = 0

m—*oo n if^

Similar results can be obtained for the imaginary part. This established (4.92). D

Theorem 4.6.4. Let Xt,t G Z be the stationary linear process (3.1), satisfying conditions Cl and
C2. Then for h G {1, 2,...}, s G K, s ^ 0

Re(f(s,0)) \ / Re(f(s,/i)) \1 (\( r(s,0) \ ( r(s,h) \ l ,.
lm(f{s,0)) )'•'•'\lm{f(s, h)) ) \ \ [ \ 0 J ' " ' \ 0 ) \ ' n '

where M is as given in Proposition 4-6-Z above.

Proof. To show the convergence of the estimator Re(f(s,j)) and Im(f(s, j)) to the same limit as
Re(f*(s, j)) and Im(f*(s, j)), respectively, with 0 < j < h, it suffices to show that as n —> oo

f / Re{P{sk,-sk;j)) \ ( Re(<f>{sk,-sk;j)) \ )
n 1 / 2 ^A 2 ( Re(<t>'(sk,0;j)) \ - A2 Re(4>{sk,0;j)) \ \ = op{\)

0,-skJ)) J \ Re(<(>{0,-sk;j)) I)

(and similarly for the imaginary part), where 0*(w, v; j) = n~l 5Z"=i exvi'*'(uXt+i+'vXl)). <p(u,v,j) =

(n — j)""1 Yl't-i exp(i(ttXt+J- + vXt)) and A2 = [ — 1 1 1 ]. The required result then follows
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from Slutzky's theorem (see p. 92).
Simple algebra gives, for 0 < j < h,

^ £ E?=i ™s(iskXt+j) - ^ Er=n- i+i ™s(iskXt+J)A2

The required result is obtained from 3j{n — j)"1^2 —» 0 and n/(n - j) —» 1 as n —• oo. Using the
same arguments, similar results can be obtained for the imaginary part. The conclusion of the
theorem then follows from Proposition 4.6.3 above. D

Proof of Theorem 44.2. Let g(-) be the function from R2rx( / l+1) to R2rxh defined by

f(s,0) \ / Re(f(s,l)) A ( Re(f(s,/l))
0 ) \ Im(f (s, 1)) J •

Re(/(s,2))

where for 0 < j < h and f(0) ^ 0, we have Re(/(Si, -s«; j)) = "ffi^'I^f" and ^ ( / ( s , , - s t ; j)) =
imjT(s^-sijj)) ^ for j = 1 ; r By applying delta method and Theorem 4.6.4 above, we can show

Re(/(s,l)) \ / Re(/(s,2))

that

is asymptotically normal distributed with mean

r(s,0)
0 0g

and variance n 1 D M D T . Here the matrix M is as given in Proposition 4.6.2 and D is the
Jacobian matrix of g( ) . To obtain the elements of matrix D. we proceed as follows. First, note
that the codifference function at lag 0 is a real-valued function. Therefore, for 0 < j < h, and
r(0) ^ 0, we obtain Re(/(j)) = ^ p = /(j) and Im(/(j)) = lm

T
([0

(j>)) = 0. It is straightforward
to obtain the Jacobian matrix D as

D =

Du Du 0
D21 0

0 0 D.

where

0 r

0r

0 r

(4.93)

(4.94)
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and r

Or 1
(4.95)

for I = 1 , . . . ,h, where

Dn=Ir r - w -/(o _ -/(o r
(1 r [ r ( s i , —Si;0) 'r(s2, —S2;0) ' ' r ( s r , - s r ; 0)

and

Let's denote it;^, for i,j = l , . . . , / i , the ( i , j )- th block element of D M D T and rriij, for i,j
0 , 1 , . . ., h, the ( i , i ) - th block element of M. We find that

cov(Re(/ (s > t ) ) ,Re( / (s , i ) ) ) cov(Re(/(s,t)),
cov( Im( / ( s ,0 ) ,Re( / ( s , i ) ) ) cov(lm(/(s, %)),

(4.96)

Here myR and m{J denote the partitions of mjj which correspond to the real and the imaginary
components, respectively. •

4.7 Proof of Corollary 4.4.3

Proof of Corollary 4-4.3. As MA(0) is a special case of the linear process (3.1), by applying
Theorem 4.4.2, one can conclude the asymptotic normality of

Re(/(s,2)) \ / Re(/(s, h)) f
/ ) lm(î(s,h))

for /i € {1,2, . . .}. The true codifference function of i.i.d. process Xt is

T(S, - S ; k) = - \n{E(exp(is(Xt+k - Xt)))) + ln(E(exp(isXt+k))) -

-2aa \s\a for k = 0
0 for fc > 0

which enables us to conclude that the real and the imaginary parts of /(fc) = 0 whenever k > 0.

From (4.96), we obtain that wpq,p,q > 0 for p, q = 1 , . . . ,h, the (p, q)-th block element of D M D T

is reduced to
wPq = Dp(p+i)mpqDq(q+i) (4.97)

where matrix Dk^+i)>^ = p,g is as given in (4.95), with

,n - r i i

and where _
(4.98)
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with A is as given in (4.80), and the elements of the matrix Ljj, k = p, q and the covariance matrix
Vpq will be given below.

Let us denote

and

as the (i,j)-th block elements of V p ^ and Vp^, respectively. Using identities (4.84)-(4.86) (and
the identities for the imaginary part afterwards) in p.52, we can obtain their components, as
follows

= cov(cos(-SiXt),cos(-SjXt))

= cov(Re(</>2(sj,p)), Re(0i(sj, <?))) = cov(Re(cpi(sj,p)), Re(<pi{s}.. q)))

cov(Re(^2(si,p)),Re(02(sj,?))) = cov(Re((/>i(si,p))1 Re(<£i(sj,g)))

cov(Re(<p1(si,p)),Re(03(sj,g)))

= cov(cos(-Si^i).cos( si(^(+9 ~ Xt))) + cov(cos(-SiXt+q),cos(sj(Xt+q - Xt)))

cov(Re(<p3(si,p)),Re(<pi(sj,Q)))
= cov{cos{-sjXt),cos{si{Xt+p -

= cov(cos(siX i+9),cos(sj(X t+î - Xt))) + cov(cos(siXt+p),cos(sj(Xt+p+q - Xt+p)))

= e-a"(isjr+i*.—*ji°) + e-ff
Q(i*jr+i**+*jio) _ 2e-^"(iS'i"+i2svi")

cov(Re(<A3(si, *)), Re(tefo> *)))
os(5i(Xt+fc - X t))) + cov(cos(sjXt+k),cos(si(Xt+2k - Xt+k)))

sJ, q)))

= cov(cos(si(Xt+p - Xt)),cos(sj(X t+, - X t))) + cov(cos(sj(Xt+p+î -

+ cov(cos(si(Xt+P - X t)), cos(sj(X t + + p + , - Xt+P))) + c^e

where
f 0

c^e = < cov(cos( Si{Xt+q - X t+ ,_p)),cos(sj(Xt+, - Xt))) if q > p
{ co\(cos(si(Xt+p-Xt)),cos(sj{Xt+p-Xt+p-q))) ifp X?

yielding for p = q



4.7. PROOF OF COROLLARY 4.4.3 59

and for p ̂  q

sj, q))) =

= cov(sin(si(A"t+p - Xt)),s\n{sj(Xt+q - Xt))) + cov(sin(si(Xt+p+q - Xt+q)),sm(sj(Xt+q - Xt)))

+ cov(sm(si(Xt+p+q - Xt+p)),sm(sj{Xt+p - Xt))) + cf*,

where
f 0 i f p = g

tfm=\ cov{sin(Si(Xt+q - Xt+q-p)),sin(sj(Xt+q - Xt))) iîq>.p
[ cov(sin( Si(Xt+p - Xt)),sin(sj{Xt+p - Xt+p-q))) iip>q

yielding for p = q

and cov(Im(<£>3(si, A;)), Im(^>3(sj, A;))) = 0 for p ̂  g. The other elements are all 0. The elements of
L12, k — p, q are as given in (4.87), where the elements of d£, i = 1 , . . . , r are

d?(l, 1) = (Re($(0, -Si;

dt
fc(2,2) = ( R e ^ ^ .

d?(3,3) = ( R e ^ S i .

As from (4.98) we obtain

m£* = cov(Re(f (s,p)), Re(f(s, q))) = (Ir ®

and
m £ = cav(Im(f(8,p)),Im(f(s,9))) = (Ir<8>

then the (ij)-th element of m^ f i and m ^ is obtained from

and

m^(z,j) =

which therefore after a simple algebra, we obtain for p = q = k

jia-i*(+*jia) _ i \

_ A

and for p ^ q, rripq
R(i,j) = 0 and mp'q{i,j) = 0. The required result follows directly from

(4.97). D
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Chapter 5

Application

In the previous chapter, we considered estimators of the codifference and the normalized codif-
ference function and established the asymptotic properties of the proposed estimators, where the
underlying process was strictly stationary heavy-tailed linear process. This chapter deals with
more practical problems related to the results presented in Section 4.4. In the first section of this
chapter, we address some problems for the calculation of the sample codifference and the sample
normalized codifference function for time series data with finite size. In Section 5.2, we present
simulation studies for the application of the sample normalized codifference for identifying the
order and estimating the coefficients of pure moving average processes. In the last section, we
discuss the application of the codifference function for Portmanteau-type test of randomness, i.e.,
testing for independence against serial dependence alternatives.

5.1 Practical considerations

5.1.1 The choice of s

Before we proceed, we make a remark about the sample and the population codifference function.
From (4.4) and the fact that all c /s are real, we have that the codifference function of the models
we consider here is a real-valued function but the estimator (4.67) is complex. Therefore, one
possibility is to use only the real part of the estimator. Because in practice we are working with a
finite sample, the imaginary part of the estimator is still present, but will vanish asymptotically.

In what follows, we are only working with the estimator of the normalized codifference î{k).
Hence, we note that unlike the true normalized codifference (4.3), from (4.67) and Corollary 4.4.3,
one can see that the sample normalized codifference function and its limiting variance depend on
s = { s j , . . . . s r}. Apparently /(•) is defined for all s > 0, and from Theorem 4.4.1, we know that
it is a consistent estimator. However, in a finite sample, the accuracy of the estimates to the
population values depends on the choice of s. Therefore, for estimation, s is a design parameter
which has to be chosen appropriately. In other words, /(•) should be calculated from those values
of s which gives the most accurate estimates of the true function /(•).

To be more precise, in practice the number of grid points r and more importantly, the location of
s\,..., sr, have to be chosen. As the normalized codifference function is defined based on the ecf,
we can apply here the known results for ecf. For a fixed r, Koutrouvelis (1980a) and Kogon and
Williams (1998) show that for calculating ecf, the location of the grid points s i , . . . , s r , should be
chosen close, but not equal to zero. It has been shown in this case, the ecf will most accurately
estimate the characteristic function. This particular choice of grid points seems to be reasonable
for calculating /(•), as for instance, can be shown in Figure 5.2. To determine the location of s;'s.
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we suggest to plot Re î(k) within the interval 0.01 < s < 2, for some values of lag k > 0. These
graphs will show the interval of s around zero which has relatively small bias, as the best location
for evaluating the estimator. The best choice for the interval of s clearly depends on the data
itself and in general also on the lag k. However, we suggest to use sa = 0.01 as the left bound of
the interval, where the best choice for the right bound can be determined from the graphs, i.e.,
as the threshold point Sb where the graphs Rel(k), for some lag k, are still relatively flat. The
individual choices for Sj's can be chosen in one of two ways:

1. If we wish to use equal spacing of Si's, we can set s = {s\ = 0.01,0.01 + is^~|" ,Sb},i =
1, . . . , r — 2. To obtain r, we can minimize the determinant of covariance matrix in (4.70).
Unfortunately, the covariance matrix in (4.70) depends on the unknown parameters c/s,
a, a and the distance between s^'s. One possibility is to replace (4.70) with its consistent
estimate. However, here we consider a different approach for choosing the s,'s. i.e., with
the help of the trajectories of the estimator, for instance, as given in Figure 5.2. Figure
5.2 indicates that these trajectories depend on the sample size n and, more strongly, on a.
From our numerical studies, we observe that for given a, the behavior of these trajectories
is typical for arbitrary lag k. For a = 2, I(k) is relatively smooth, where for a < 2, I{k)
has an erratic behavior, and this behavior will be stronger when a goes farther away from
2. This result suggests that when a = 2, there is no benefit by choosing the S;'s very close
to each other, and conversely for a < 2. This conjecture can be checked in i.i.d. case using
the determinant of the covariance matrix (4.71). Here, we propose to use Si's with distance
d = 0.01 for a < 1, 0.01 < d < 0.05 for 1 < a < 1.5, 0.05 < d < 0.1 for 1.5 < a < 2 and
d = 0.1 or larger for a = 2. Especially in i.i.d. case we can show that these choices are
sufficient, in the sense that for given a, choosing a smaller distance between grid points will
not significantly decrease the determinant of the covariance matrix (4.71). Notice that in
practice it is not necessary to know a. As the erratic behavior of the estimator is typical for
given a, we can observe this property using the plot of Re I(k) within an interval near zero,
for some values of lag k > 0.

2. If equal spacing is not considered, when r has been fixed, the Sj's can be chosen using the
determinant of covariance matrix in (4.70). Here, we can use a similar consideration as
above, i.e., we choose the s,'s sufficiently close, depending on the erratic behavior of the
estimates R e / ( ) .

The last thing to consider is the number of points r. For r > 1, the final estimate î(k) can
be defined as the weighted sum of the estimates at the grid points si,...,sr, i.e., we define
/(/c) = YA=I

 wiHsi> ~si'< k) w ' th Y^=i wi = 1- For instance, we can use a simple average with
xui = 1/r or a negative exponentially weighted average with iUi = exp(—s?)/53J=1 exp(—s|). In
i.i.d. case, we obtain that by averaging the estimates at different points, the asymptotic variance
of the estimator will be smaller or equal to the variance of the estimator obtained at single point,
which can be seen directly from Figure 5.1. Figure 5.1 shows that for a = 2, there is no difference
in terms of the asymptotic variance between estimating /(•) either at a single point or at more
points, whereas for a < 2, the difference is significant, especially when a is small. Furthermore,
Figure 5.1 also shows that the smaller a is, the smaller the covariance between the grid points. In
the finite sample case, this fact agrees with the typical erratic behavior of the plot of Re /(•), both
for the i.i.d. and non i.i.d samples, for instance, as shown in Figure 5.2 and Figure 5.3. Based
on these results and from our numerical studies, in the finite sample case we suggest the choice
of the number of grid points r as follows. For a = 2 (i.e., for smooth graphs of Re î(k), k > 0),
we observe that r = 1 is sufficient, whereas for a < 2 (i.e., for erratic graphs of Reï(k), k > 0),
at least two points should be chosen, and more points are required when a is farther away from 2
(i.e., for more erratic graphs of Re/(fc), k > 0). It is important to note that from our simulation
experience, the accuracy of the estimator is more sensitive to the location of grid points than to
the number of points r.
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Figure 5.1: Plots of Wi(i,j) as given in (4.73), for Si,6j e [0.01,1], and some a's.

In the following subsection, we will investigate the choice of grids points through monte carlo
simulations.

5.1.2 Simulation results

To investigate the proposed choice of s and also the finite sample behavior of the estimator,
we run several monte-carlo simulations using R version 1.9.0, where we use function r s t ab le in
the extension package stable, to generate the unit symmetric a stable innovations and function
arima. sim in the package s t a t s to generate Xt — et + Ciet-i + C2€t-2 processes where (ci, C2) are

7.(2,1.111) 7/. (-1,0.5) 777.(0.55,0.05) IV. (-0.4,0.7) (5.1)

and from now on we refer to these as experiment I - experiment IV, respectively.

In Gaussian framework, models in experiments I, II and III were examined in Bhansali (1983).
The roots of the polynomial 1 + c\z + c^z1 = 0 are as follows. In experiment I, the roots are
-0.9±0.3i, close to the invertibility region. In experiment II and IV, the roots are 0.5±0.5i, and
-0.2857 ± 0.247i, so the absolute values of the roots are 0.71, and 0.378, respectively. In these
experiments, the models have similar roots properties which are neither too close to 1 nor to 0.
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(1b). n=10000

0.05 0.30 0.55 0.80 1.05 1.30 1.55 0.05 0.30 0.S5 O.B 1.30 1.55

(2a). n=100 (2b). n=10000

0.05 0.30 0.55 O.BO 1.05 1.30 1.55 0.05 0.30 0.55 0.80 1.05

(3a). n=100 (3b). n= 10000

0.05 0.30 0.55 0.80 1.05 1.30 1.55 O.OS 0.30 0.55 0.80 1.05 1.30 1.55

(4a). n=100 (4b). n= 10000

| 0 . 3 -

0.05 0.30 0.55 O.BO 1.0S 1.30 1.55 0.O5 0.30 0.55 0.80 1.05 1.30 1 5S

Figure 5.2: Plots of Re/(1) for several simulation runs where (la — 16).a = 2. (2a — 2b).a — 1.5,
(3a — 36).a = 1 and (4a — 46).a = 0.5 and a = 1, s € [0.01,1.55]. The data are generated from experiment
I. that is MA(2) process with co = 1. c\ = 2 and ci = 1.111. The straight lines denote the true values of
1(1).
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(1b). n=10000

= 0.0

f

0.05 O.3O 0.SS 0.80 1.05 1.30 1.55 0.05 0.30 0.55 0.60 1.05 1.30 1.55

(2a). n=100 (2b). n= 10000

0.05 0.30 0.55 O.BO 1.05 1.30 1.5S 0.05 0.30 0.55 0.80 1 OS 1 30 I 55

(3a). n=100 (3b). n=10000

,2 -0.01 •

0.05 0.30 0.55 0.80 1.05 1.30 1.55 0.05 0.30 0.55 O.8O 1.05 1.30 1.55

(4a). n=100 (4b). n=iOOOO

0.05 0.30 0.55 0.60 1.05 1-30 1.55 0.05 0.30 0.55 0 80 1.05 1.30 1.55

Figure 5.3: Plots of Re /(I) for several simulation runs where (la - 16).a = 2. (2a - 26).a = 1.5.
(3a - 36).a = 1 and (4a - 46).a = 0.5 and a = 1. s € (0.01,1.55). The data are generated from i.i.d. SaS
processes. The straight lines denote the true values of /(I) = 0.
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In experiment III, the roots are real-valued, equal to -0.435 and -0.115, one close to 0.5 and the
other close to 0.

For a = 2, the true values of the normalized codifference (equal to the correlation function) at
lag Jfc , (/(I), 7(2)) = (p(l),p(2)) in experiment I-IV are:

(/). (0.677,0.178), ( / /) . (-0.667, 0.222), ( / / / ) . (0.443,0.038), (IV). (-0.412,0.424)

In experiment I and II, the values of I(k) are closer to 1 at lag 1 and not too close to 0 at lag 2
while for experiment III, at lag 1 close to 0.5 but almost 0 at lag 2. For the last experiment, at
lag 1 it is negative but it is positive at lag 2, with absolute values near 0.5.

In order to see the performance of the estimator, we simulate the time series in experiment I -
IV for several different values of a with a = 1 and two sample sizes, the "small" one is n = 100
and the "large" one is n = 1000. All experiments are replicated T = 1000 times. The estimates
of the normalized codifference are calculated for lags 1 till lag 10. Figure 5.2 suggests that in
the interval 0.01 < s < 0.5, Re/(-) is relatively less biased, although the best interval of s de-
pends on the index a. For checking the best location of s and also the choice of grid points, we
choose several different sets of s, = {si,..., sr},i = 1, 2,. . . , 28. Here we consider the equidistant
and non equidistant grid points. The complete listing of the choices is as follows : Si = {0.01},
s2 = {0.1}, s3 = {0.2}, s4 = {0.3}, s5 = {0.5}, s6 = {1}, s7 = {0.01,0.1}, s8 = {0.01,0.2}, s9 =
{0.01,0.5}, s10 = {0.01,1}, su = {0.1,0.2}, si2 = {0.1,0.5}, s13 = {0.1,1}, s14 = {0.5,1}, si5 =
{0.01,0.1,0.2}, sie = {0.01,0.1,0.5}, si7 = {0.01,0.1,1}, s18 = {0.1,0.2,0.3}, s19 = {0.1,0.3,0.5},
s20 = {0.01,0.5,1}, S2i = {0.1,0.5,1}, S22 = {0.1,0.2,0.3,0.4,0.5}, s23 = {0.1,0.2,..., 1},
s24 = {0.01,0.06,0.11,0.16,0.21}, s25 = {0.01,0.02,.. .,0.2}, s26 = {0.01,0.02,.. .,0.1}, s27 =
{0.11,0.12,... ,0.2} and s28 = {0.5,0.55,..., 1}. For each choice of Sj in run h, the final esti-
mate is calculated as the weighted average of estimates among the choices of grid points Sij,j =
1,. . . ,Ti, denoted by Re/(-)ih = Y^=i wij Re7(sf,, —Sy, -)/i> where Re/(sj j , —s^, •)/, denotes the
real part of the estimates of the normalized codifference in run h at certain lags, calculated at
Sij,j = 1, • • • ,Ti- Here we consider two methods for weighting the estimates, first we use a simple
average of the estimates (which is denoted by method Avg.) and the second, we use a negative
exponential weighted average (which is denoted by method Exp.). Results of simulation studies
are summarized in Table 5.1.1 - 5.1.4. In the tables, we also record the best choices of s, which are
defined as the values of grid points, which minimize the sum of mean absolute deviation (MAD)
of estimates at lag 1 and lag 2, among all considered choices of grid points above. Here, MAD
at lag k and for grid s, is defined as MADik = ^ Ylh=i |Re/(fc) ih - I{k)\, k = 1,2. For the
comparison's sake, when a = 2 we also record the estimates of sample (central) ACF.

From the simulation results, as expected, we observe that the estimation accuracy will be improved
when the sample size is increased. Furthermore, throughout the simulation studies, the results
indicate that the accuracy of the estimates of the normalized codifference function depends on the
choice of grid points s, where the optimal choice of grids depends on the index a and the sample
size n. When a = 2, surprisingly that under suitable choices of grid points, we find in some cases,
the sample normalized codifference can provide a better estimate (in terms of total MAD for the
first two lags) to the true values (of the normalized codifference, which is equal to ACF) than the
estimates given by the S ACF. When a < 2, it seems that there is a great benefit by evaluating
R e / ( ) at several points of s, that is r > 1, where under the appropriate choice of grid points s,
the performance of the weighting methods (the simple average and the exponential weight) are
approximately the same. For MA(2) models, in all cases we consider here, we also find that the
estimation accuracies are significantly better if we choose the grids point s < 0.5 than s > 0.5. In
general, there is a benefit in terms of the estimation accuracy to include a point close to zero. We
further observe that when a < 1.5, the choice of equidistant grids with a distance between 0.01 and
0.05 seems to be adequate. For a > 1.5, a distance 0.1 seems to be adequate, because a smaller
grid distance does not really improve the accuracy of the estimates. As a general conclusion, from
this simulation studies, we may conclude that the optimal choice of grid points s will follow the
lines of our proposed choice of grids points s as in Section 5.1.1.
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Using the findings in Section 5.1.1 and simulation studies in this section, in the practical situation,
to obtain the estimates of the normalized codifference with a good accuracy for the real data, first
we suggest to plot Re/(/c) within the interval s € [0.01,2], for some values of lag k > 0. These
graphs will show two important things. First, these graphs suggest the interval of s near zero
which has relatively small bias (i.e., the region 0.01 < s < st, Sb denotes the threshold point of s
where the graphs Re/(fc), for some k, are still relatively flat), as the best location for evaluating
/(•). Secondly, it reveals the erratic behavior of the estimates. When the graphs are smooth, the
choice of one point s = 0.01 is sufficient for estimating ReI(k). If the graphs are erratic, at least
two points are required and more points are better for more erratic graphs. If the equidistant
points s\,. • •, sr are considered, when the graphs are highly erratic, we can use a small distance
between points, e.g., d = 0.01, where for less erratic graphs, we can use a bigger distance, such
as d = 0.05 or d — 0.1. If the non equidistant points are used, we should include one point close
to zero in the choice of Si's and the chosen points are sufficiently close to each other. Finally, we
define the final estimate as the weighted average of the estimates on s i , . . . , sr.

Remark 5.1.1. Notice that in this thesis we have considered a method for calculating the codiffer-
ence and the normalized codifference function directly from the data. As an obvious alternative,
once one knows the estimated parameters and the orders of the estimated models, one could es-
timate the codifference and the normalized codifference using equation (4.4). The methods for
estimating the parameters of stable ARMA models have been reviewed in Section 3.3. Notice that
for small order MA and AR processes, the tail index a can be well estimated using a quantile based
estimator (i.e., McCulloch's method, see Section 2.4), see, e.g., Adler et al. (1998a) for simulation
evidences. In our opinion, for inference purpose, such as a hypothesis testing of independence (e.g.
Section 5.3), the "direct" estimation method is more preferable than estimating the codifference
function via estimated parameters.

To illustrate this method, we consider AR(2) processes with the roots: (rj,r2) = (2,5) and also
( n ^ ) = | (1 i i\/3), for some as. The à is estimated using McCulloch method, where the
coefficients of AR(2) processes are estimated using the following methods (see Section 3.3 for
description of each methods): Least Absolute Deviation (LAD), Least Square (LS), Generalized
Yule Walker via Autocorrelation function (ACF) and Gallagher's autocovariation function (Acov).
The estimator of the normalized codifference function is calculated using (4.4), approximated until
the order j = 200. For the direct estimation procedure, the normalized codifference is evaluated
at s = {0.01,0.02,... ,0.05}, and the final estimate is defined as the average of the estimates at
these points. The sample size used is n = 1000 and 1000 independent replication of the data were
generated. The results of estimation are summarized in Table 5.2. The findings indicate that
the estimation result obtained using the "direct" and the other methods approximately have the
same order of efficiency when a is closer to 2. However, for small a, the differences are significant.
Clearly the order of efficiency depends on the choice of the methods used for estimating the
parameters of the models.
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N

100

1000

Q

2

1.8

1.5

1.3

1

0.8

0.5

2

1.8

1.5

1.3

1

0.8

0.5

Table 5.1.1 Experiment I:co = 1, Ci = 2
Method | s
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

{0.01}
{0.01,0.1,1}

{0.01,0.2}
{0.01,0.1,1}
{0.01,0.1,0.2}
{0.01,0.1,1}
{0.01,0.06,...,0.21}
{0.01,0.1,1}
{0.01,0.02,. ..,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02,. ..,0.1}
{0.01,0.02, . . . ,0.1}
{0.01}
{0.01}

{0.01,0.06, ...,0.21}
{0.01,0.06,. ..,0.21}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02,. ..,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02,... ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02,. ..,0.1}
{0.01,0.02, . . . ,0.1}

/(I)

0.67722

0.64700

0.59903

0.56554

0.51350

0.47792

0.42379

0.67722

0.64700

0.59903

0.56554

0.51350

0.47792

0.42379

Avg. 1(1)

0.66180
0.63195
0.65848
0.64938
0.62509
0.60826
0.59728
0.57235

0.50708
0.50717
0.47274
0.47276
0.40713
0.40715
0.67577
0.67577
0.67544
0.65059
0.65067
0.60204
0.60209
0.56751
0.56754
0.51396
0.51396
0.47742
0.47742
0.42239
0.42239

and C2 = 1
MADi
0.04600
0.05732
0.04644
0.04415
0.04760
0.04839
0.04888
0.05032
0.05548
0.04745
0.04739
0.04357
0.04355
0.04463
0.04459
0.01335
0.01335
0.01336
0.01645
0.01649
0.01815
0.01822
0.01640
0.01644
0.01521
0.01521
0.01383
0.01382
0.01296
0.01295

.111
/(2)

0.17821

0.19237

0.21343

0.22665

0.24325

0.25014

0.24809

0.17821

0.19237

0.21343

0.22665

0.24325

0.25014

0.24809

Avg. 1(2)

0.14647
0.19387
0.14500
0.15860
0.20409
0.17158
0.21062
0.19017
0.22380
0.21576
0.21577
0.22644
0.22643
0.22776
0.22776
0.17495
0.17495
0.17477
0.18859
0.18854
0.20879
0.20878
0.22312
0.22310
0.24105
0.24105
0.24811
0.24811
0.24548
0.24548

MAD2

0.10186
0.09025
0.10115
0.09297
0.08011
0.07927
0.06729
0.06974
0.06105
0.06049
0.06036
0.05599
0.05597
0.06033
0.06028
0.03096
0.03096
0.03094
0.02708
0.02708
0.02155
0.02154
0.01996
0.01992
0.01577
0.01576
0.01511
0.01510
0.01852
0.01851

Table 5.1.2 Experiment II:co = 1, ci = 1 and ci — 0.5

N | a

100

1000

2

1.8

1.5

1.3

1

0.8

0.5

2

1.8

1.5

1.3

1

0.8

0.5

Method
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

s

{0.01}
{0.01,0.1,1}

{0.01,0.2}
{0.01,0.1,1}
{0.01,0.2}
{0.01,0.1,1}
{0.01,0.1,0.2}
{0.01,0.1,1}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02,...,0.1}
{0.01,0.02,. ..,0.1}
{0.1,0.2}
{0.1,0.2}

{0.01,0.1,0.5}
{0.01,0.1,0.5}
{0.01,0.06,...,0.21}
{0.01,0.06, ...,0.21}
{0.01,0.02,. ..,0.2}
{0.01,0.02, . . . ,0.2}
{0.01,0.02, . . . ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02, . . . ,0.1}
{0.01,0.02,...,0.1}
{0.01,0.02, . . . ,0.1}

/(I)

0.66667

0.65583

0.63733

0.62341

0.60000

0.58267

0.55410

0.66667

0.65583

0.63733

0.62341

0.60000

0.58267

0.55410

Avg. / ( I )

0.64691
0.64133
0.64366
0.64535
0.63840
0.63720
0.62975
0.62514
0.61851
0.59356
0.59360
0.57785
0.57787
0.54519
0.54519
0.66604
0.66604
0.66572
0.65722
0.65756
0.64032
0.64037
0.62333
0.62335
0.60056
0.60056
0.58252
0.58252
0.55377
0.55377

MAD!
0.04695
0.04873
0.04758
0.04312
0.04468
0.03920
0.03935
0.03750
0.04002
0.03491
0.03488
0.03498
0.03497
0.03263
0.03262
0.01361
0.01361
0.01361
0.01294
0.01307
0.01386
0.01391
0.01201
0.01203
0.01132
0.01132
0.00975
0.00975
0.00934
0.00933

1(2)

0.22222

0.21861

0.21244

0.20780

0.20000

0.19422

0.18470

0.22222

0.21861

0.21244

0.20780

0.20000

0.19422

0.18470

Avg. 1(2)

0.18651
0.21072
0.18463
0.19124
0.21643
0.19092
0.21746
0.18555
0.21564
0.17702
0.17704
0.17540
0.17540
0.15929
0.15929
0.22077
0.22078
0.22064
0.21590
0.21614
0.21069
0.21071
0.20601
0.20601
0.19934
0.19934
0.19249
0.19249
0.18384
0.18384

MAD2

0.09944
0.09010
0.09894
0.08987
0.08259
0.07168
0.06720
0.06558
0.06279
0.05580
0.05566
0.05315
0.05312
0.06053
0.06048
0.03038
0.03038
0.03042
0.02585
0.02572
0.02150
0.02147
0.01802
0.01800
0.01535
0.01534
0.01592
0.01591
0.01769
0.01767
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N

100

1000

a

2

1.8

1.5

1.3

1

0.8

0.5

2

1.8

1.5

1.3

1

0.8

0.5

Method
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

Table 5.1.3 Experiment III:
s

{0.01}
{0.01}

{0.01,0.1,0.5}
{0.01,0.1,1}
{0.01,0.1,0.5}
{0.01,0.1,1}
{0.01,0.06, . . . ,0 .21}
{0.01,0.1,1}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .1}
{0.01,0.02, . . . ,0 .1}
{0.01,0.02, . . . ,0 .1}
{0.01.0.02, . . . ,0 .1}
{0.1}
{0.1}

{0.01,0.1,0.5}
{0.01,0.1,0.5}
{0.01,0.06, . . . ,0 .21}
{0.01,0.06, . . . ,0.21}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .1}
{0.01,0.02,...,0.1}
{0.01,0.02,...,0.1}
{0.01,0.02, . . . ,0 .1}

0.44253

0.43169

0.41278

0.39846

0.37500

0.35902

0.33811

0.44253

0.43169

0.41278

0.39846

0.37500

0.35902

0.33811

Co = 1, c\ = 0.55 and C2
Avg. / ( I )

0.42368
0.42368
0.42155
0.42068
0.42031
0.41010
0.41229
0.39796
0.40088
0.36673
0.36678
0.35297
0.35298
0.32857
0.32858
0.44077
0.44077
0.44055
0.43345
0.43367
0.41579
0.41585
0.39945
0.39946
0.37510
0.37510
0.35776
0.35776
0.33742
0.33742

MADx
0.06336
0.06336
0.06344
0.05635
0.05682
0.05133
0.05317
0.04819
0.05031
0.04107
0.04103
0.03780
0.03779
0.03734
0.03731
0.01913
0.01913
0.01913
0.01781
0.01800
0.01720
0.01724
0.01594
0.01596
0.01208
0.01206
0.01188
0.01187
0.01128
0.01127

= 0.05
1(2)

0.03831

0.03447

0.03003

0.02867

0.03125

0.03835

0.06333

0.03831

0.03447

0.03003

0.02867

0.03125

0.03835

0.06333

Avg. 1(2)

0.01561
0.01561
0.01545
0.01666
0.03082
0.01142
0.03426
0.01133
0.03278
0.00991
0.00994
0.01411
0.01411
0.04037
0.04037
0.03536
0.03536
0.03533
0.03410
0.03410
0.02911
0.02912
0.02699
0.02700
0.03062
0.03062
0.03579
0.03579
0.06230
0.06230

MAD2

0.09345
0.09345
0.09258
0.08108
0.08003
0.07324
0.06992
0.06354
0.06038
0.05910
0.05900
0.05902
0.05900
0.06664
0.06660
0.02851
0.02851
0.02849
0.02470
0.02471
0.02030
0.02028
0.01911
0.01909
0.01726
0. 01722
0.01772
0.01772
0.01995
0.01994

Table 5.1.4 Experiment IV: CQ = 1, ci — -0 .4 and C2 = 0.7

N

100

1000

a

2

1.8

1.5

1.3

1

0.8

0.5

2

1.8

1.5

1.3

1

0.8

0.5

Method
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
ACF
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

s

{0.01}
{0.01}

{0.01,0.2}
{0.01,0.1,1}
{0.01,0.1,1}
{0.01,1}
{0.01,0.1,1}
{0.1,0.2, . . . , 1}
{0.01,0.02, . . . ,0 .2}
{0.1,0.2, . . . , 1}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .1}
{0.01,0.02, . . . ,0 .1}
{0.01}
{0.01}

{0.1,0.2,0.3,0.4,0.5}
{0.1,0.2,0.3,0.4,0.5}
{0.1,0.2,0.3,0.4,0.5}
{0.1,0.2,0.3,0.4,0.5}
{0.1,0.2,0.3,0.4,0.5}
{0.1,0.2,0.3,0.4,0.5}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .2}
{0.01,0.02, . . . ,0 .1}
{0.01,0.02, . . . ,0 .1}

-0.41212

-0.32268

-0.19541

-0.11483

0.00000

0.07269

0.17608

-0.41212

-0.32268

-0.19541

-0.11483

0.00000

0.07269

0.17608

Avg. / ( I )

-0.40620
-0.40620
-0.40415
-0.39110
-0.30549
-0.13719
-0.22875
-0.09366
-0.07723
-0.06593
0.04434
0.02966
0.02952
0.14997
0.14998
-0.41207
-0.41207
-0.41187
-0.32889
-0.32893
-0.20161
-0.20160
-0.12088
-0.12074
-0.00656
-0.00658
0.06921
0.06920
0.17218
0.17218

MADx
0.09564
0.09564
0.09516
0.10727
0.08134
0.10087
0.07796
0.09876
0.10007
0.10727
0.08885
0.08416
0.08411
0.06301
0.06297
0.02860
0.02860
0.02859
0.04062
0.04054
0.03743
0.03708
0.03527
0.03462
0.02912
0.02913
0.02193
0.02188
0.01904
0.01902

1(2)

0.42424

0.41077

0.38652

0.36731

0.33333

0.30689

0.26101

0.42424

0.41077

0.38652

0.36731

0.33333

0.30689

0.26101

Avg. /(2)

0.40349
0.40349
0.39943
0.40732
0.40839
0.39666
0.40537
0.38476
0.36050
0.33612
0.32922
0.30179
0.30183
0.24732
0.24733
0.42400
0.42400
0.42358
0.40963
0.40969
0.38506
0.38514
0.36613
0.36617
0.33350
0.33351
0.30576
0.30576
0.26032
0.26032

MAD2

0.07117
0.07117
0.07129
0.06488
0.06508
0.06615
0.06349
0.06611
0.06427
0.05201
0.06823
0.04934
0.04924
0.05198
0.05195
0.02344
0.02344
0.02342
0.02131
0.02130
0.01929
0.01922
0.01859
0.01842
0.01588
0.01587
0.01499
0.01496
0.01669
0.01668

Table 5.1: The true values I(k) and the estimates /(fc), fc = 1,2, from the experiment I. II, III and IV.
Here, Avg.î{i) = ^ £ j = 1 Re/(i)j and MADt = ± £j=i | Re/(i)j - / ( i ) | . i = 1,2, where Reî(i), denotes
the estimates at lag i in run j .
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Table 5.2.1 (n,r2) = (2,5)

a
2

1

Method
True
Value
Direct

LAD

ACF

Acov

LS

True
Value
Direct

LAD

ACF

LS

Lag
1 2 3 4
0.636364 0.345455 0.178182 0.090182

0.633064 0.340991 0.174688 0.088034
(0.023159) (0.036088) (0.042819) (0.045835)
0.634643 0.341823 0.174841 0.088739
(0.02917) (0.047376) (0.049192) (0.04004)
0.632878 0.339119 0.172188 0.086296
(0.023372) (0.036808) (0.038036) (0.030742)
0.633642 0.341632 0.174671 0.088436
(0.028739) (0.044088) (0.047058) (0.039068)
0.634886 0.342267 0.175165 0.088565
(0.023104) (0.036403) (0.037789) (0.030739)
0.6 0.32 0.164 0.0828

0.583056 0.301945 0.15055 0.072238
(0.028827) (0.028664) (0.033636) (0.033552)
0.599262 0.320318 0.164786 0.083639
(0.006503) (0.003539) (0.005316) (0.004993)
0.598132 0.319343 0.164344 0.0838
(0.018823) (0.026193) (0.025184) (0.019365)
0.598409 0.319634 0.164579 0.083966
(0.018614) (0.026097) (0.025118) (0.019323)

a
1.5

0.8

Lag
1 2 3 4
0.627956 0.326052 0.159521 0.076885

0.627273 0.326535 0.160179 0.075819
(0.028948) (0.032112) (0.037686) (0.037622)
0.628016 0.32678 0.160402 0.077703
(0.012123) (0.018715) (0.01809) (0.013881)
0.627453 0.326115 0.160148 0.078028
(0.022968) (0.036906) (0.034713) (0.025964)
0.622925 0.331062 0.164549 0.088052
(0.084035) (0.114694) (0.131799) (0.147884)
0.627979 0.326619 0.160491 0.078234
(0.022655) (0.036861) (0.034729) (0.025998)
0.581821 0.325878 0.179734 0.098848

0.539047 0.286876 0.152552 0.081048
(0.047267) (0.043538) (0.037518) (0.033493)
0.580963 0.326673 0.181262 0.100512
(0.007152) (0.003882) (0.008368) (0.008752)
0.580139 0.326082 0.181208 0.101083
(0.022024) (0.029021) (0.029181) (0.024535)
0.580397 0.326403 0.181502 0.101314
(0.021878) (0.028892) (0.029088) (0.024477)

Table 5.2.2 (ri,r2) = Ul±iVs)
1

a
2

1

Methoc
True
Value
Direct

LAD

ACF

Acov

LS

True
Value
Direct

LAD

ACF

LS

Lag
1 2 3 4
0.48 -0.2025 -0.42188 -0.2025

0.478959 -0.20191 -0.42173 -0.20423
(0.014609) (0.028524) (0.03338) (0.037368)
0.478643 -0.19238 -0.40061 -0.1917
(0.018696) (0.038095) (0.049369) (0.032947)
0.478025 -0.1929 -0.39998 -0.1908
(0.014821) (0.031146) (0.044035) (0.027903)
0.478188 -0.19151 -0.39868 -0.19078
(0.018864) (0.037538) (0.05252) (0.034997)
0.478904 -0.19238 -0.40088 -0.19229
(0.014742) (0.03139 (0.043642) (0.027378)
0.428571 0 0 0

0.406268 -0.00759 -0.01066 -0.00551
(0.032393) (0.03944) (0.06732) (0.036994)
0.429389 0.000658 -0.00155 0.000454
(0.006875) (0.016476) (0.032407) (0.015618)
0.433901 0.010279 -0.0014 0.00806
(0.015944) (0.02523) (0.032321) (0.021746)
0.434339 0.010017 -0.00152 0.007851
(0.014675) (0.025108) (0.03257) (0.021786)

a
1.5

0.8

Lag
1 2 3 4
0.46211 -0.10459 -0.21073 -0.10076

0.465392 -0.13468 -0.2721 -0.13153
(0.023329) (0.072476) (0.141504) (0.071686)
0.4635 -0.10488 -0.21572 -0.10203
(0.008206) (0.018354) (0.03527) (0.01751)
0.464044 -0.10205 -0.2146 -0.09979
(0.013339) (0.022223) (0.035282) (0.019445)
0.467123 -0.09135 -0.21576 -0.09291
(0.038756) (0.046058) (0.048479) (0.042662)
0.464223 -0.10216 -0.21494 -0.1
(0.013387) (0.022243) (0.035401) (0.019505)
0.408082 0.044719 0.088067 0.042438

0.358947 0.030405 0.063201 0.028815
(0.053965) (0.031479) (0.048142) (0.030758)
0.409662 0.043983 0.084085 0.041647
(0.008139) (0.015958) (0.031378) (0.015179)
0.417289 0.057225 0.084156 0.052389
(0.018461) (0.027143) (0.031495) (0.023165)
0.417371 0.057034 0.084186 0.052307
(0.018528) (0.027048) (0.031485) (0.023169)

Table 5.2: Comparison between the "direct" estimation method and the estimation via estimated pa-
rameters using eq. (4.4) for AR(2) process with the roots (ri,r2). We generated T = 1000 independent
samples with the size of each sample n = 1000. The direct estimation method here is denoted by "Direct"
in the column "Method", and it is evaluated at s = {0.01, 0.02,. . . . 0.05}. The other methods considered
here are named via the method used for estimating the coefficients of AR(2) process, where a is estimated
using McCulloch quantile estimation method. Here, we record the average and the root of mean square
error (in the brackets) of î(k) for lag fc = 1 , . . . , 4.
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5.2 Order identification and estimation of a-stable moving
averages

5.2.1 Introduction

In Section 3.2.3, we presented a guide for graphical order identification methods of pure moving
average processes of finite order using some dependence measures. In this part, we present the
application of the normalized codifference estimator to attempt to identify the order of pure moving
average process (of finite order). If the order of the process is already known, we also discuss how
to estimate the coefficients of the model using the method of moments estimator.

Notice that for MA(q) process, Xt = 5^J=oci£*-J' w n e r e et fulfils the condition C2, by a similar
method as for obtaining (4.4), we obtain for k < q,

q-k

£
J=O

(5.2)

and r(k) vanishes after lag k> q.

5.2.2 Fitting moving average process

Using the fact that r(k) vanishes after lag k > q, we can use T(-) for a preliminary attempt of
identifying the order of the underlying moving average process. By mimicking the traditional
identification procedure using the SACF, we will use the results in Section 4.4 to identify the
order of MA{q) process.

Applying Theorem 4.4.2, we can obtain for MA{q) process (similarly as the proof of Corollary
4.4.3), and k > q,

> (Wx)
l'2Z, v/n(Im/(fc)) => (W2)

l/2Z (5.3)

where Z denotes standard normal random variable, and

Here we have (T(0)) = f 5D'_0 2 |sCj|aJ and mkk, m2
k can be obtained from (4.98) in a similar

way as derivation of results in Section 4.7 (set r = 1). Unfortunately, from the form of r(0),
m\k an<^ m22' o n e c a n s e e that Wi a n d W2 depend on the unknown parameters Cj, j = 1 , . . . ,q.
Therefore, we propose to use the same strategy as when using the correlation function, an order
identification method using the bounds of i.i.d. sequence. For this simple model, from Corollary
4.4.3 (consider r — 1), we obtain for k > 0, W\ and W2 are

Wl = {ia2a \s\2a}-1 [e2""^" [\e2°"^a - l} + e^(2|.la-l2'r) jie*
o(2W-l2*n - l} + l]

(5.4)
and

W2 = {4a2a H 2 0 } - 1 [e2CT°W" { i e
a ' a M a - l } + e°"^a-^ {l - le»"«2!*!0"!2'!0)}] (5.5)

which are independent with Cj's. Like the SACF, we plot the real and imaginary parts of î(k)
together with the bounds ±1.96\/VKi/v/n, and ±1.96\/W2/\/n, respectively, where n denotes the
sample size. We consider that the real and imaginary parts of I(k) are approximately zero if their
values at certain lags k are inside the bounds. However, here we only use Re/(fc) for the order
identification purpose.
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If the order q of the process is already known, given the estimates of the codifference function
r(k) for some lags k > 0, one can use (5.2) to find the estimates of the coefficients c/s. For
given order <j, the closed form expressions for c/s, j = 1 , . . . , q in the form of f(k), k = 0 , . . . , q
are obtained only for a = 2. For the process with infinite second moments, the estimate of
the coefficients can be found by finding the solution of a set of appropriate nonlinear equations
(considering only the equations for lag A; ̂  0). Note that from consistency of f ()(Theorem 4.4.1),
this method should also be consistent.

Remark 5.2.1. Note that in case of Gaussian (or generally for the process with finite second
moments), the identification of stationary process using the ACF has a solid theoretical reason, i.e.,
the characterization theorem of the autocovariance function (see Theorem A.3.6). Unfortunately,
for the covariation and the codifference function, or the ACF in case of infinite variance process
(where the population ACF indeed does not exist), similar results are not available. Therefore,
the methods of order identification presented in Section 3.2.3 and the method proposed in this
section should not be interpreted in the same way as the result obtained in the classical case.

5.2.3 Simulation results

Identification of moving average models

In this part, we present simulation studies for the order identification of several MA(2) processes
that we consider in Section 5.1.2, which we call as the experiments I-IV. For a = 2, the true
values of the normalized codifference and the correlation at lag k , (/(l),/(2)) = (p(l),p(2)) in
experiment. I-IV are:

(/). (0.677,0.178), (//) . 0.667,0.222), ( / / / ) . (0.443,0.038), (IV). (-0.412,0.424)

In experiment I and II, the values of I(k) are close to 1 at lag 1 and not too close to 0 at lag 2
while for experiment III, at lag 1, it is close to 0.5 but almost 0 at lag 2. Hence, it can be expected
that the probability of underidentified will be high in the experiment III. For the last experiment,
it is negative at lag 1 but positive at lag 2, with the absolute values near 0.5.

To investigate the performance of the proposed method, we simulate 1000 time series in ex-
periment I - I V for several different values of a S (0,2], each series is having sample size
n = 1000. From the experience of simulation studies in Section 5.1.2, we obtain that the op-
timal choice for grids s lies on an interval around zero. Thus for the comparison's sake, we
consider the following sets of { s i , . . . , s r } : Si = {0.001}, s2 = {0.01}, s3 = {0.1}, s4 = {0.2},
s5 = {0.3}, s6 = {0.5}, s7 = {1}, s8 = {0.001,0.01}, s9 = {0.001,0.1}, s10 = {0.001,0.2},
su = {0.001,0.5}, si2 = {0.001,1}, s « = {0.01,0.1}, s14 = {0.01,0.2}, s15 = {0.01,0.3},
sie = {0.01,0.5}, SIT = {0.01,1}, sis = {0.01,0.1,0.2}, s19 = {0.01,0.1,0.5}, s20 = {0.01,0.1,1},
S2i = {0.1,0.2,0.5}, s22 = {0.1,0.2,1}, s23 = {0.01,0.06,... ,0.21}, s24 = {0.01,0.02,... ,0.1},
S25 = {0.1,0.11,..., 0.2}, s26 = {0.01, 0.02,..., 0.2}. When r > 1, the estimator /(•) and the
bound (5.3) will be calculated as their weighted average of the estimates in the considered grid
points. We consider two weighting methods, similarly as the calculation in Section 5.1.2, namely
the simple average and the negative exponential weighted average. Here we calculate the sample
normalized codifference I(k) and the SACF (the centralized ACF when a = 2, and the non-
centralized ACF when a < 2), and consider the identification strategy as presented in Section
3.2.3, and Section 5.2.2 above. We count the number of times the order of the model is success-
fully identified, i.e., the case when statistic R e / ( ) is outside the bounds at lag 2, and within the
bounds for each lag 3 , . . . , 10. The results are presented in Table 5.3 - 5.4.

Notice that throughout the simulation studies in this part, we consider only standard SaS for
e(, where we assume that the value of a is known. For practical application, we suggest to use
McCulloch's estimator for obtaining à (see Section 2.4). For small order MA and AR processes,
Adler et al. (1998a) give simulation evidences that McCulloch's method performs well.
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From the simulation results, we obtain that when 1 < a < 2, the performance of the identification
procedure, which uses the sample normalized codifference /(•), in most cases will be similar to
the performance of the procedure, which uses the SACF and normal bounds (i.e., as if we are
unaware that the data are coming from the stable process). When a is getting closer to zero, the
performance of /(•) will be the worst compare to the other considered methods. When a = 2,
the performance of the procedure which uses /(•) is very much similar to the performance of the
standard identification procedure using the SACP. If the sample size is increased, in any case we
find that the performance of /(•) is improved. Furthermore, it is quite interesting to see the result
of experiment III, where with a high probability the correct order of the model is underidentified,
the performance of the other methods is outperformed by identification procedure which uses /(•)
in many choices of a.

In the table, for identification method using /(•), we record the best choices of s for each a, which
are defined as the sets of grid points which maximize the number of successful identification (i.e.,
the true order is correctly identified) among all considered choices of sets of grid points above.
Throughout the simulation studies, the results indicate that the number of successful identification
depends on the choice of grid points s, where the optimal choice of grids depends on the index a
and the sample size n. However, it seems that there is a benefit by evaluating /(-) at several points
of s, that is r > 1, where under the appropriate choices of s, the performance of the weighting
methods (the simple average and the exponential weighted average) are approximately the same.
We can see that throughout the simulation studies, the performance of the identification procedure
which uses /(•) will be improved by including a point very close to 0. However, it seems that the
choice s = {0.01} is adequate for the order identification purpose, since the performance of the
identification procedure will be tapered off at this point.

Furthermore, the findings in Table 5.3 - 5.4 suggest that the boundary of independent sequence
(MA(0)) is possibly less appropriate for the identification of MA{q) model, q > 0, using any
of graphical method. In identification using the SACF, instead of using stringent boundaries

using the estimate of the right hand side of (3.20), we often use bounds ±1.96(1 +
^2 identify the order of MA{q) process (by first fixing the order q). How-

ever, for the sample normalized codifference, it is not clear how to attack the problem using a
similar approach, as the limiting distribution of the sample normalized codifference depends on
the unknown parameters Cj,j = l,...,q.

Estimation of moving averages models

In this part, we present a simulation study to illustrate the usage of the sample codifference
function for estimating the coefficients of moving average models with finite order. Here we only
consider MA(2) process as in the experiment I - IV. Note that the codifference of MA(2) process
is

T(0) = - 2 a a | S | a ( l + |Cl |
Q + \c2\

a) (5.6)

T ( 1 ) - aa\s\a(\(Cl - l ) \ a + \(c2 - C l ) \ a - 2 \ C l \ a - \ c 2 \ a - 1 ) (5.7)

l ) | a - | c 2 | a - l ) (5.8)

and equal to 0 for the other lags.

We generate 1000 independent series using function arima. sim in the package s t a t s of R version
1.9.0 and function r s t ab l e in the extension package s table , to generate the unit symmetric a
stable innovations. In the simulation, we consider two sample sizes, the small one is n = 100, and
the large one is n = 1000. We use the following sets of {s i , . . . , s r } : sx = {0.0001}, s2 = {0.001},
s3 = {0.01}, s4 = {0.1}, s5 = {0.2}, s6 = {0.0001, 0.1}, s7 = {0.0001,0.2}, s8 = {0.0001,0.3}, s9 =
{0.01,0.1}, sio = {0.01,0.2}, s n = {0.01,0.3}, s12 = {0.01,0.1,0.2}, s13 = {0.01,0.02,... ,0.1},
si4 = {0.1,0.11,...,0.2}, sis = {0.01,0.02,...,0.2}. When r > 1, the estimator J Ï ) will be
calculated as the weighted average of the estimates in the considered grid points. We consider two
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weighting methods as in Section 5.1.2, namely the simple average (which we call as method Avg.)
and the negative exponential weighted average (which we call as method Exp.).

For calculating the estimators c\ and C2, we plug-in the values of f (1) and f (2) into the equation
(5.7) and (5.8). Notice that (5.7) and (5.8) have a closed-form solution in terms of c\ and C2 only
when a = 2. When a < 2, these equations are nonlinear in ci and C2 and only numerical solution
can be obtained, i.e., by finding the zeros of (5.7) and (5.8). These solutions can be searched for
instance, using function uniroot in R. Unfortunately, here we have numerical difficulties when
working with the function uniroot, especially when a < 1. For this reason, we only consider two
values of a in simulation, which are equal to 1.5 and 2. Note that in the calculation of estimate c\
and C2 using equation (5.7) and (5.8), we assume that the values of a are known. The simulation
results in this part are summarized in Table 5.5. In the table, when a = 2, we compare the
performance of the estimation procedures using the sample codifFerence function and using the
sample covariance function y(-). When we use the sample codifFerence function, we record the sets
of grid points s, which minimize the sum of mean absolute deviation (MAD) of the estimators
c\ and C2- In the table we denote this minimization method as method Avg. (when / ( ) ' s are
obtained using the simple average of the estimates on the considered points) and method Exp.
(when the negative exponential weighted average is used for obtaining /(-)'s).

Throughout of simulation studies, the findings show that the performance of the estimation pro-
cedure which uses the sample codifFerence function is fairly well. As it can be expected from
consistency of the codifFerence estimator, the performance of the estimators c\ and C2 improves
when the sample size is increased. The optimum performance of weighting method (the average
and the negative exponential weight) seems to be approximately the same here. The choice of
optimal grids point also agrees to the procedure that we propose in Section 5.1.1. Furthermore
from the table, we found that when a — 2, the performance of the estimation procedure which uses
the sample codifFerence function is approximately the same as the similar estimation procedure,
which is based on the sample covariance 7(-).
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True Normalized Codlfferonce Reft) at s=O.O1 Re(l) at s=O.1

Re(i) at s=O.5 ACF estimator

1
...

1 1 i l É r i Illl

O 5 10 15 20

Figure 5.4: Plot of I(k) and the real part of its estimator, Re/(fe), at lag 0,..., 20 for one simulation run
of experiment IV with co = 1, c\ — —0.4, ci = 0.7 at some choices of s, where a = 2, and the sample size
n = 1000. We also plot the SACF to graphically compare the performance of Re/(fc).

True Normalized Codlfference Avg. of Re(î) al s, Exp weighted of Re( I ) at s,

Avg of Re(î) at s2 Exp weighted ot Re( I ) at s2

• :_•_•_:• ]

10 15 2O

Lag

ACF estimator

Figure 5.5: Similar to Figure 5.4, but different sets of grid points. Here si = {0.01,1} and S2 =
{0.01. 0.02,..., 0.2}. The estimates and the bounds are calculated either as the average or as the negative
exponential weighted average of the estimates and the bounds on the considered grids.
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Table

1 «
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

Table
a

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

5.3.1

method

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

5.3.3

method

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

s

S8

S8

S8

S8

S8

S8

S8

ss

ss
S8

S13

S13

S13

S13

S13

S13

S9

S9

S8

S8

S8

S8

S8

S8

S13

S13

S24

S24

SI

Si

S9

S9

S15

S15

S10> Sl4

S2.S8, Sio

I(k)
318
318
652
652
828
828
850
850
748
748
654
654
575
575
510
508
432
433

I(k)

531
531
548
548
303
303
204
204
182
183
177
177
166
167
151
154
134
133

p{k)

970
970
932
932
915
915
851
851
796
796
721
721
629
629
555
555
453
453

ACF
5
5
8
8
16
16
36
36
49
49
82
82
117
117
146
146
136
136

P(fc)c

881
881
893
893
917
917
901
901
885
885
840
840
764
764
516
516
86
86

ACF^
894
894
860
860
16
16
14
14
8
8
29
29
70
70
146
146
73
73

Table 5.3.2
a

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

method| s

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

S8

S8

S8

S8

S8

S8

S8

Sg

S9

S9

S13

S13

Si4

Si4

Sl4

S19

S10, Sl4

S14

/(fc)
416
416
677
677
832
832
809
809
757
758
697
698
603
602
559
561
447
446

ACF
966
966
942
942
888
888
830
830
807
807
716
716
632
632
581
581
454
454

ACFa
884
884
900
900
889
889
879
879
895
895
830
830
760
760
540
540
111
111

Table 5.3.4.
a

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

method) s

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

Sl4

Sl4

S19

S19

S19

S19

S15

S15

I(k)

445
445
744
744
828
828
834
836
799
799
728
726
662
676
567
569
514
513

ACF
972
972
945
945
905
905
857
857
814
814
756
756
690
690
583
583
538
538

ACF4
904
904
903
903
906
906
895
895
891
891
865
865
800
800
530
530
101
101

Table 5.3: Number of simulated data sets out of 1000 for experiments I-IV that were correctly identified
as coming from MA(2) processes, for some Q < 2 and sample size n = 1000. The parameters of models
are : ci = 2, c2 = 1.111 (Table 5.3.1), ci = 1, c2 = 0.5 (Table 5.3.2), a - 0.55, c2 = 0.05 (Table 5.3.3)
and c\ = -0.4, c2 = 0.7 (Table 5.3.4), respectively. Here, we only listed the grids s, which give the best
performance, where Si = {0.001}, s2 = {0.01},s8 = {0.001,0.01}, s9 = {0.001,0.1}, sio = {0.001.0.2},
sis = {0.01, 0.1}, s u = {0.01, 0.2}, sis = {0.01,0.3}, s i 9 = {0.01,0.1,0.5}, s24 = {0.01, 0.02,..., 0.1}.
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Table
N

100

500

1000

5000

Table
N

100

500

1000

5000

5.4.1
method
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

5.4.3
method
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

s

Slo,Sl4,S23

S20

S18.S23

S18.S23

S25

S2S

S23

S18.S23

s

S25

S15.S25
S4

S4

S25

S25

S20

S20

I{k)
164
233
438
438
429
429
430
429

I(k)

37
37
89
89
132
132
400
408

p(k)

175
175
432
432
427
427
424
424

p(k)

37
37
85
85
131
131
396
396

Table
N

100

500

1000

5000

Table
N

100

500

1000

5000

5.4.2
method

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

5.4.4
method

Avg.
Exp.
Avg.
Exp.
Avg.
Exp.
Avg.
Exp.

Sl,S2,S4,S8
S20
S8.S13.S24
S8.S13.S24
Sn.Sie
Sii,Si6
Sl.S2.Ss
Sl.S2.Ss

Sl.S2.Ss
S20
S10.S14.S18.S23
S20
S25
S25
S20
S9.S17

I(k)

223
245
436
436
413
413
456
456

/(fc)
504
529
498
508
507
507
468
486

p{k)

231
231
439
439
410
410
457
457

p(fc)

541
541
502
502
506
506
465
465

Table 5.4: Number of simulated data sets out of 1000 for experiment I-IV that were correctly identified as
coming from MA(2) processes, for a = 2 and some sample size n. The parameters of models are : ci = 2,
C2 = 1.111 (Table 5.4.1), ci = 1, c2 = 0.5 (Table 5.4.2), ci = 0.55, c2 = 0.05 (Table 5.4.3) and ci = -0.4,
C2 = 0.7 (Table 5.4.4), respectively. Here, we only listed the grid s, which gives the best performance,
where si = {0.001}, s2 = {0.01},s4 = {0.2}, s8 = {0.001,0.01}, s9 = {0.001,0.1}, sio = {0.001,0.2},
s u = {0.001, 0.5}, s « = {0.01, 0.1}, S14 = {0.01, 0.2}, sis = {0.01, 0.3}, s16 = {0.01, 0.5}, s i 7 = {0.01, 1},
sis = {0.01,0.1,0.2}, S20 = {0.01,0.1,1}, S23 = {0.01,0.06, . . . ,0 .21}, s24 = {0.01,0.02,..., 0.1}, and
S25 = {0.1,0.11,..., 0.2}
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Table
a

2

1.5

5.5.1:
n

100

1000

100

1000

a = 2 , C2 = l . i l l
Method| s

Avg.
Exp.
7(0
Avg.
Exp.
7(0
Avg.
Exp.
Avg.
Exp.

{le-04,0.1}
{le -04,0.1}

{0.0001}
{0.0001}

{0.1}
{0.1}
{0.01,0.02,... ,0.2}
{0.01,0.02,... ,0.2}

med ci

2.106618
2.107266
2.103775
2.005643
2.005643
2.005664
1.856800
1.856800
1.989153
1.990065

MADi
0.979001
0.979825
1.051022
0.145549
0.145549
0.145463
1.353239
1.353239
0.280088
0.279532

med c2

0.819056
0.819090
0.804442
1.104687
1.104687
1.103581
0.864860
0.864860
1.166471
1.166951

MAD2

0.675340
0.675329
0.670264
0.220927
0.220927
0.220717
1.100492
1.100492
0.369550
0.371309

Table 5.5.2 : a = 1, c2 = 0.5

a

2

1.5

n

100

1000

100

1000

Method] s
Avg.
Exp.
7(0
Avg.
Exp.
7(0
Avg.
Exp.
Avg.
Exp.

{0.0001}
{0.0001}

{0.0001}
{0.0001}

{0.2}
{0.2}
{0.2}
{0.2}

med ci

0.987103
0.987103
0.985827
1.000157
1.000157
1.000040
0.982443
0.982443
0.994395
0.994395

MAD\ | med c2

0.138540
0.138540
0.138118
0.037844
0.037844
0.037835
0.353930
0.353930
0.090274
0.090274

0.413601
0.413601
0.409585
0.494991
0.494991
0.494495
0.427296
0.427296
0.487849
0.487849

MAD2

0.254906
0.254906
0.253441
0.084040
0.084040
0.083988
0.271203
0.271203
0.070800
0.070800

Table 5.5.1: Ci = 0.55, c2 = 0.05

a

2

1.5

n

100

1000

100

1000

Method] s

Avg.
Exp.
7(0
Avg.
Exp.
7(0
Avg.
Exp.
Avg.
Exp.

{0.0001}
{0.0001}

{0.001}
{0.001}

{0.2}
{0.2}
{0.2}
{0-2}

med ci

0.525610
0.525610
0.522891
0.548176
0.548176
0.547908
0.518537
0.518537
0.549811
0.549811

MADi

0.105586
0.105586
0.105573
0.031573
0.031573
0.031569
0.359696
0.359696
0.045314
0.045314

med c2

0.018763
0.018763
0.018502
0.045342
0.045342
0.045296
0.004775
0.004775
0.041396
0.041396

MAD2

0.121484
0.121484
0.120367
0.039548
0.039548
0.039513
0.157516
0.157516
0.041955
0.041955

Table 5.5.2: a = -0.4, c2 = 0.7

a

2

1.5

n

100

1000

100

1000

Method| s
Avg.
Exp.
7(0
Avg.
Exp.
7(0
Avg.
Exp.
Avg.
Exp.

{0.001}
{0.001}

{0.001}
{0.001}

{0.2}
{0.2}
{0.2}
{0.2}

med ci

-0.412268
-0.412268
-0.411937
-0.401349
-0.401349
-0.401311
-0.479764
-0.479764
-0.422774
-0.422774

MAD!

0.105113
0.105113
0.105076
0.033203
0.033203
0.033202
0.319835
0.319835
0.102640
0.102640

med C2
0.653730
0.653730
0.647112
0.696237
0.696237
0.695540
0.670749
0.670749
0.690173
0.690173

MAD2

0.183803
0.183803
0.183078
0.055984
0.055984
0.055971
0.249772
0.249772
0.068098
0.068098

Table 5.5: Median and maximum absolute deviation of the estimates of the coefficients MA(2) processes

in the experiments I-IV, for some a and sample sizes n.
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5.3 Testing for independence in heavy-tailed time series

5.3.1 Introduction

Let X\, X2, • • • be a sequence of identically distributed random variables and consider the problem
of testing the hypothesis,

Ho : p(l) = p(2) = • • • = p{rn) = 0, m < n (5.9)

against serial dependence alternatives,

H\ : p(k) ̂  0 at least for one k, with k = 1,. .., m

where p(-) denotes the autocorrelation function.

If Xi's are i.i.d. with E(Xf) < 00, then this hypothesis can be tested with a Portmanteau statistic,
such as Box-Pierce's Q-statistic (Box and Pierce, 1970)

J2 (5.10)

or its finite sample correction, Ljung-Box's Q-statistic (Ljung and Box, 1978)

m

^ 1 2 (5.11)
fc=l

where

p(k) = ^ t = f c + i i n ' ~ _ j*)2 ~ ,k=l,...,m (5.12)

The statistic Qn,m and Qn.m are asymptotically Xm distributed when n —> oo.

Let's now assume that Xj's are i.i.d. SaS random variables with 1 < a < 2 (thus the variance
is infinite but E(Xi) < oo). Under this condition, for testing the hypothesis (5.9), Runde (1997)
considers the statistic

(5.13)
k=\

where the autocorrelation function p(-) in the hypothesis (5.9) is replaced by the pseudo-correlogram
p(k), see Theorem 3.2.2. It was shown that under Ho

Qn,m -^ Qm(a) as Tl -+ CO

where Qm(a) is distributed as

-^(Gj-i hG^) (5.14)

and Go,G\,... are as given in Theorem 3.2.2. The critical values of Qm(a) and the empirical
levels of the test for selected a and m can be found in Runde (1997), Table 1 and 2, respectively.

Gallagher (2000) lists several drawbacks of the SACF for heavy-tailed modelling. Since the Runde's
statistic is based on the SACF, it has similar shortcomings, as follows:

1. Here, it is unclear what is exactly tested in the hypothesis proposed in Runde (1997), because
p(k) (when a < 2) is not as easy interpreted as the population correlation function p(k) (when
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2. There is discontinuity in the quantiles of the limiting distribution and in the constant of
statistics used for the test as a —> 2. Note that when a < 2, for <3£m we use constant
(n/lnn)2/ lQ but when a = 2, for Qn,m we use constant n. Here, the quantile of Qm(a) is
discontinuous, as the divisor Go can be large with positive probability when a < 2, but it
becomes unity when a = 2. As analogously noted in Gallagher (2000), these discontinuities
cause problems in application, as for instance, if the true a = 2, but is estimated a little
bit smaller than the true value, e.g., a = 1.98, then the constant and the quantiles of the
distribution, which are used for the test will change drastically.

3. Due to the nonexistence of the limiting distribution Qm(a) in a closed form, the critical
values of the limiting distribution are relatively difficult to obtain, although it can be found
using computer-intensive numerical approximations (see Runde (1997)). Moreover, simula-
tion results in Runde (1997), Table 2, indicate that Qm(a) provides a poor approximation
distribution for small sample sizes. It was confirmed as from simulation studies (see Sec-
tion 5.3.3), using the same parameters as in Table 2 in Runde (1997), we find that most of
the empirical rejection probabilities are significantly different from the theoretical ones even
when the sample size n is taken to be 1000 (it seems that the simulation results in Table
2 of Runde (1997) are incorrect). This flaw is probably due to the slow convergence of the
sample correlation function to its asymptotic distribution in the infinite variance case (Adler
et al., 1998a), where it was reported in some cases, the sample size of one million is necessary
to get the correct empirical level test 5%.

5.3.2 A Portmanteau-type test using the codifference function

Motivated by the above problems, let us consider the hypothesis of zero codifference up to order m,
m < n, i.e.,

ffo:/(l) = /(2) = --- = /(ro) = O (5.15)

against

H\ : I(k) ^ 0 at least for one k, k = 1, . . . ,m

Note that for Gaussian process, the hypothesis (5.15) is equivalent to the hypothesis (5.9).

To test the hypothesis (5.15), we propose to use the statistic

^ ( ) • (5.16)

here

Here Re I(j) denotes the real part of the sample normalized codifference I{k), and S2 is given in the
Theorem 5.3.1 below. The asymptotic property of QGC under the null hypothesis is summarized
below.

Theorem 5.3.1. Let X\,X2, • • • be a sequence ofi.i.d. symmetric a-stable with the characteristic
function Eexp(isXi) = exp(-<rQ|s|Q), s € R, where a £ (0,2] and a > 0, then as n —» oo (m £ N)

m

Qcc=n]T(Re/(j))

where Re/(j) is as given in (5.17) andx^ denotes a chi-square random variable with m degrees of
freedom and where S2 denotes a consistent estimate of the asymptotic variance of Re I(k), k > 0,
i.e.,

S2 = (2aa|.s|tt)-2 [e2""!'!" { f e 2 ^ ^ - 1} + e°"W'\a-\**n {ie»"(2W-l2*n ~ l} + l] (5.18)
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Remark 5.3.1. Note that under the alternative hypothesis that the process is a stationary linear
process Xt = YITLo cj€t w n e r e conditions Cl and C2 hold, a similar statistic to QGC can be shown
to be asymptotically chi-square distributed using Theorem 4.4.2.

Theorem 5.3.1 is obtained directly via continuous mapping theorem (see Section A.3 in the Ap-
pendix) using the result of the following proposition.

Proposition 5.3.2. Let X i , ^2 , • • • be a sequence of i.i.d. SaS with the characteristic function
^ e x p ( i s X i ) = e x p ( - < r ° | s | Q ) , s € K, where a £ (0,2] and a > 0. Then for h£N

[ R e / ( l ) , R e / ( 2 ) , . . . J R e / ( / i ) l is AN ( O . n ^ S 2 / ^ )

where Ih denotes the identity matrix with size h and S2 is as given in (5.18).

Proof. This result follows directly using the result in Section 4.7, by setting r = 1. •

5.3.3 Simulation results

The choice of s

Note that from (4.68) and (5.16), one can see that the sample normalized codifference function
Re/(-) and therefore, statistic QGC, depend on s. For our purpose, the statistic QGC should be
calculated from the values of s, which give the best empirical levels for the test. This can be
achieved by choosing the grids s, which will give the most accurate estimates for Re/(-). For each
lag k = 1, . . . ,m, here we consider a discrete estimation procedure for Re/(fc), i.e., we evaluate
Re/(fc) at some points S i , . . . , sT, r > 1. As the asymptotic variances in (5.18) has different values
for different choices of grid points Si,i = 1, . . . ,r, here we calculate Rel(si, k) for all considered
points Si,i = 1, • • • ,r. The final estimate of Rel(k) is calculated as the weighted value of the
estimates among the choices of grid points, i.e., Re/(fc) = $ ^ = 1 Wj Reî(sj, k), 5 ^ = 1 Wj = 1. In
this part, we consider the weights as the simple average of the estimates with Wj = 1/r, (we called
method avg.) or the negative exponential weighted average, with Wj = exp(—s2)/ ]T)i=i exp(—s2)
(we called method exp.). Using this approach, we do not take into account the covariance between
R e / ( s * ; k) a n d R e l ( s j - , k ) , i ^ j , i , j = l , . . . , r , k = l , . . . , m \ n t h e d e f i n i t i o n o f QGC-

The empirical levels of QGC

Although the asymptotic distribution of the Portmanteau statistic that we consider in (5.16) is
chi-square, the usage of quantiles of the chi-square distribution in the finite-sample case is still
an open question. In this regard, we will investigate whether the finite-sample distribution of
the statistic (5.16) is well approximated by the chi-square distribution, and furthermore how it
compares to the performance of the other "standard" statistic.

The simulation study in this part consists of two parts, the case with the infinite variance and
with the finite variance. For the first part, we generate independent samples with "small" sample
size n = 20 and 50 and "large" sample size n = 1000 using R, where we use function r s t ab le
in the extension package stable to generate the unit symmetric a stable process. To be able to
compare it with the result in Runde (1997), for the infinite variance case, we only consider the
case of a > 1. Here we consider some different values of a to generate the data. For calculating
the statistic QGC — QGC(&, cr), we use both the true values and the estimators, where à and à are
obtained using McCulloch's method (see Section 2.4). For "small" sample size, i.e., when n = 20
and 50, we generate T = 10000 independent realizations of the process (and for n = 1000 we
take T = 4000), where we calculated the statistic (5.16) for several values of m. To compare the
performance of QGC with Q{J m (see (5.13)), here we only consider lag m = 2 and m = 5, since the
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a
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

0.9

15.6
14.29
13.41
12.09
11.12
10.27
9.31
8.87
8.11

m = 2
1 - 0

0.95
17.94
16.74
15.83
14.47
13.53
12.37
11.52
10.87
10.05

0.99
22.07
20.82
19.68
18.54

17.138
16.2

15.03
13.92
13.04

0.9

21.75
20.57
19.42
18.23
17.2
16.11
15.09
14.28
13.7

771 = 5

i - e
0.95
24.87
23.16
21.73
20.43
19.17
18.24
17.14
15.92
15.08

0.99
26.31
25.14
24.08
22.95
21.89
21.06
19.97
19.04
18.18

Table 5.6: Critical values of the limiting distribution Qm(a)

limiting distribution Qm(a) of the statistic Q°m as in (5.14) are available only for limited values
of m (i.e., only for m = 2, 3, 4, 5, see Table 1 in Runde (1997)). The critical values of Q r a(a) for
considered values of the parameters used in the test above are reproduced in Table 5.6 above).
To appreciate the accuracy of x2 approximation, the nominal levels of test are chosen as 9 = 0.01
and 0.05.

From the experience of simulation studies in Section 5.1, we know that the location of grid points
s i , . . . , sr is of critical importance for the estimation accuracy of /(•), and therefore also for QGC-
In Section 5.1.1, it was discussed that for a fixed choice of r, the Sj,j = l,...,r have to be
chosen within an interval near zero, since at this interval, we can accurately estimate /(•) and at
the other choices of grid points, the value of /(•) will be highly biased. The sets of grid points
s = {si , . . . , s r} which are considered in the simulation study in this part are listed as follows:
S! = {0.01,0.2}, s2 = {0.01,0.3}, S3 = {0.01,0.5}, s4 = {0.01,0.1,0.2,0.3}, s5 = {0.1,0.2,0.3},
s6 = {0.01,0.06, . . . ,0.26}, s7 = {0.01,0.02,..., 0.3}, s8 = {0.1, 0.11,.. . ,0.3}. When a = 1.1
and a = 1.9, in addition to these sets of grid points, we also consider the following sets: sg =
{0.01,0.05}, sio = {0.01,0.1}, s n = {0.1,0.2,...,0.5}, s i 2 = {0.1, 0.2,. . . , 1}. For n = 1000,
we additionally consider the other sets of grid points, as follows: S13 = {0.01}, S14 = {0.05},
s« = {0.1}, s16 = {0.2}, s17 = {0.3},s18 = {0.4}, s19 = {0.5}, s20 = {0.01,0.05},s21 = {0.01,1}.

Results of the simulation in the first part are summarized in Table 5.7 and 5.8. In Table 5.7,
we also record two sets of grid points s among all considered grid points above, which give the
closest empirical levels to the theoretical ones using both of the weighting methods, based on
the performance of the statistic Qcc(a,a)- The findings show that the optimal choices of grid
s depend on sample size n, the maximum lag m, the level 9, and also the index a. The results
in this table indicate that throughout the whole experiments, the small sample performance of
the statistic QGC is relatively poor, as its empirical levels are in many cases higher than the
theoretical ones, although its performance clearly depends on the choice of s. However, it is very
interesting to note that the small sample performance of QGC in terms of its empirical levels is
much better than the performance of statistic Q " m (which turns out to be completely different
from the simulation results reported in Runde (1997)). Note that our results regarding statistic
Q" m in Table 5.8 are similar to the finite sample property of a similar statistic reported in Krämer
and Runde (2001), namely the limiting distribution for Q £ m provides a very poor approximation
for finite sample distribution. Indeed, as similarly reported in Krämer and Runde (2001), we find
that the discrepancies are still persistent even for the sample size as large as n = 1000.

In the second part, to asses the small sample properties of the proposed statistic in case of the
finite variance, we conducted a simulation study where it was generated three "small" samples of
N(0,l) sequences with sample size n = 20,50 and 100. We use function rnorm in R to generate
T = 10000 independent realization of standard Gaussian white noise. Here we use a = 2 and a
in (5.18) is estimated as à = y\sj[/\/2 , where s^ denotes the sample variance. We calculated
the statistic (5.16) for several values of m. To appreciate the accuracy of x2 approximation, the
nominal levels of test are chosen as 9 = 1, 5,10 and 20 percent. In simulation, the following sets



Level

0.01

0.05

Q

1.1

1.3

1.5

1.7

1.9

1.1

1.3

1.5

1.7

1.9

Weighting
Method

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

Avg.

Exp.

s

S2
SlO

SlO

Si
S8
Si

S8
S5
S8
S5
S8
S5
S8
S3
S8
38
S12
S3
S5
SlO
Si
SlO
Si
Si

S7
Si

S7
Si

S6
Si

S3
S2
S5
S5
S8

S7
S8
S3
S12

n - 20

m
2

0.73
1.69
0.74
1.69
1.75
1.25
1.78
1.24
1.47
1.48
1.5
1.49
1.48
1.49
1.43
1.49
0.97
0.26
1.24
0.96
6.91
4.77
6.93
4.84
6.27
5.09
6.32
5.13
7.74
7.33
7.76
5.14
6.26
6.24
6.26
6.34
5.14
5.23
5.1
2.83

y a)

5

1.56
3.57
1.61
3.59
3.44
2.39
3.45
2.39
3.32
3.33
3.33
3.35
3.01
3.04
2.99
3.05
2.19
0.38
2.45
2.18
9.16
6.39
9.21
6.45
9.66
7.92
9.71
8
11.49
10.77
11.55
7.46
9.34
9.32

9.45

7.09
7.19
3.17

Orr<
m

2

0.58
1.23
0.59
1.24
1.08
0.78
1.08
0.79
1.01
1.01
1.02
1.01
1.09
1.08
1.05
1.08
1.46
0.65
1.48
1.48
5.14
3.65
5.15
3.69
4.01
3.39
4.05
3.4
5.26
4.94
5.31
3.64
5.14
5.09
5.09
5.15
6.16
6.05
6.04
3.62

y fr)

5

1.07
2.36
1.04
2.36
2.19
1.58
2.21
1.59
2.1
2.13
2.11
2.13
2.05
2.02
2.01
2.02
2.88
0.96
2.77
2.86
6.77
4.94
6.77
4.96
6.11
5.17
6.12
5.21
7.36
6.96
7.39
5.16
7.23
7.08
7.1
7.17
8.82
8.67
8.59
4.48

s

Si
SlO

Si

SlO
S6
S7

S6
S7
S4

S5
S4

S5
S3
S8

S5
S8

S3
S12

S3
S12
S9
SlO
sg
SlO
Si
S6
Si

S6
Si

S6
Si

S7

S5
S6
S6
S7

S3
Sl l

S3
Sll

n - 50

QCC(*,CT)

m
2

0.8
1.67
0.81
1.67
1.34
1.08
1.37
1.1
1.34
1.17
1.37
1.18
0.86
1.24
1.22
1.25
0.94
0.68
0.96
0.72
7.6
5.04
7.6
5.07
4.92
4.19
4.99
4.21
6.35
5.77
6.43
5.35
5.42
6.16
6.16
5.92
4.51
4.68
4.64
4.73

5

1.13
2.2
1.16
2.2
1.58
1.29
1.61
1.32
2.18
1.71
2.26
1.77
1.51
2.48
2.45
2.49
1.39
0.74
1.34
1.04
10.65
6.78
10.65
6.78
6.43
5.35
6.49
5.42
8.46
7.58
8.51
6.85
6.43
7.52
7.56
7.17
5.23
5.53
5.33
5.5

Qac{à,à)
m

2

0.77
1.47
0.77
1.49
1.04
0.83
1.06
0.87
1.07
0.88
1.1
0.88
0.74
1.01
1.02
1.01
1.15
0.74
1.17
0.82
6.95
4.72
6.95
4.72
4.11
3.45
4.19
3.48
4.96
4.42
5.06
4.15
4.33
5.1
5.1
4.83
5.14
5.24
5.31
5.29

5

0.95
1.92
1
1.92
1.25
1.01
1.31
1.04
1.62
1.36
1.67
1.37
1.2
1.92
1.92
1.97
1.88
1.14
1.91
1.27
9.73
6.07
9.74
6.08
5.3
4.51
5.37
4.53
6.29
5.53
6.35
5.04
5.3
6.31
6.35
5.88
6.02
6.23
6.14
6.31

s

SlO

S3
S2
S3
SlO
S21
Si

S3
SlO
Si

SlO
S2

S16
Si

S16
Si

Si

S2

S16
Si

S15

314
S15

S15
S16

S15
S16

Sl4

S20

S2O

S14
SlO
S i 4

S15
SlO

S15

n - 1000

Qcc(a,<?)
m

2

0.925
0.85
0.925
1.025
1.15
0.85
0.975
1
1.175
0.825
1.175
0.875
1.125
0.975
1.125
1.025
1
0.85
1.05
0.975
5.4
5.325
5.4
5.325
5.125
5.475
5.125
5.475
5.55
4.825
5.55
4.825
5.975
4.775
5.975
4.8
5.35
5.65
5.35
5.65

5

1.375
1.075
1.275
1.55
1.45
1.075
1.275
1.425
1.475
1.025
1.5
1.025
0.75
1.125
0.75
1.125
1.075
0.9
1.1
1.075
5.675
5.2
5.675
5.2
5.425
5.525
5.425
5.525
7.6
7.2
7.6
7.2
7.55
5.75
7.55
5.775
5.275
5.625
5.275
5.625

QGC{
m

2

0.925
0.825
0.875
1.025
1.15
0.825
1
1
1.075
0.825
1.15
0.85
1
0.85
1
0.9
1
0.875
1.1
1
5.425
5.3
5.425
5.3
5.15
5.525
5.15
5.525
5.35
4.725
5.35
4.725
5.85
4.65
5.85
4.65
5.175
5.475
5.175
5.475

â,â)

5

1.375
1.05
1.25
1.575
1.475
1.025
1.275
1.425
1.475
1.025
1.475
1.025
0.75
1
0.75
1.05
1.2
1.075
1.225
1.2
5.65
5.225
5.65
5.225
5.45
5.475
5.45
5.475
7.65
6.925
7.65
6.925
7.15
5.575
7.15
5.6
5.225
5.85
5.225
5.875

CO
H

I
1
I

H

co
ta

I

OO
CO

Table 5.7: Empirical levels (in %) of the statistic Qcc for some sample size n. Under Ho, the process is assumed SaS distributed.



84 CHAPTER 5. APPLICATION

level
0.01

0.05

a

1.1
1.3
1.5
1.7
1.9
1.1
1.3
1.5
1.7
1.9

n

2
0.13

0
0
0
0

0.69
0
0
0
0

= 20
m

5
0.26
0.02

0
0
0

1.21
0.01

0
0
0

n

2
2.29
0.04

0
0
0

4.5
0.18

0
0
0

= 50
m

5
4.29
0.07

0
0
0

7.63
0.26

0
0
0

n =

2
10.3
2.9

0.675
0.05

0
12.475
3.75
0.65
0.075

0

1000
m

5
22.05
6.8
1.1

0.075
0

25.5
7.95
1.2

0.125
0

Table 5.8: Empirical levels (in %) of the statistic Q°,m, for some sample sizes. Under Ho, the process is
assumed SaS distributed.

of grid points ŝ  = {si,... ,sri},i = 1,2,. . . ,4 are considered: si = {0.01}, S2 = {0.01,0.5},
s3 = {0.01,0.1,1}, S4 = {0.1,0.2,..., 1}. Furthermore, to compare the accuracy of the statistic
QGC, we also recorded the nominal levels of the statistic Qn,m as in (5.11). It was shown in Ljung
and Box (1978) that this statistic has better empirical sizes than the alternative statistic Qn.m as
in (5.10).

Results of the experiments are summarized in Table 5.9. The findings indicate that in many cases,
under the suitable choices of grid points s, the empirical levels of QGC are closer to the theoretical
ones than Ljung-Box statistic Qn.m- This result will be more apparent when the lag m is large
with respect to the sample size n, in which case the difference between the empirical and the
theoretical levels of Ljung-Box statistic Qn ,m can be significantly large. The optimal choice of
grids s in general depends on the maximum lag m, the nominal level 6 and the sample size n.
However, for its practical application, the choice of s as above seems to be sufficient, at least for
the considered sample size.

The empirical power of QGC

To examine the power of the test, we consider simulation studies using the alternative hypothesis
that the process is autoregressive process of order 1, AR(1). For each sample size, the function
arima. sim in R is used to generate AR(1) processes Xt = <f>Xt-i + it, with the parameters <j> = 0.3
and 0 = 0.8. The sample sizes considered are n = 50 and 200.

In this part, we consider two simulation sets. For the case of infinite variance, we consider et is
i.i.d. SaS for some different values of a and a is assumed to be 1, where we generated 10000
independent realization of the process. In the finite variance case, we generated 4000 independent
realization of the process with the normal standard (N(0,l)) innovations, thus a = l/ \ /2 in
(5.18). The statistic QGC is evaluated using the true values of a and a, using the following
sets of grid points: Si = {0.01,0.1}, s2 = {0.01,0.2}, s3 = {0.01,0.3}, s4 = {0.01,0.5}, s5 =
{0.01,1}, s6 = {0.01,0.1,0.3},s7 = {0.01,0.1,0.5}, s8 = {0.1,0.2,0.3}, s9 = {0.1,0.2, 0.5}, s10 =
{0.1,0.2,1}, su = {0.01,0.02,...,0.1}, si2 = {0.1,0.11,...,0.2}, s13 = {0.2,0.21,... ,0.3}, s14 =
{0.01,0.02,... ,0.3}. Here we only use the simple average as the weighting methods. In case of
infinite variance process, we compare the power of the statistic QGC with the statistic Q° m as in
(5.13), whereas for the finite variance we compare the power of the statistic QGC with the statistic
Qn.m as in (5.11). Under the same consideration as in the previous subsection, here we consider
lags m = 2 and m = 5 in the infinite variance case. On the other hand, for finite variance case,
the choice of m is more flexible since both of QGC and Qn,m are asymptotically Xm distributed
and therefore, the quantiles of the limiting distribution can be obtained easily for any choice of
m. For the simulation, the level is chosen to be 5%. The results of simulation are summarized in
table 5.10 and table 5.11 for the infinite and the finite variance cases, respectively.



% level
1

5

10

20

method
QGCAvg.

QaCExp.

Qn,m
QGCAvg.

QacExp.

Qn,m
WGCAvg

QacExp.

Qn.m
QGCAvg.

QcCExp.

Qn,m

grids
•si

S 2

S 3

•S4

•Si

S 2

«3

•S4

-

•Si

•S2

S3

S4

•Si

S2

S3

S4

-

5 1

S 2

S 3

S 4

S i

«2
S3

54
-

S i

S 2

S 3

•S4

Si

S2

S3

S4

-

n

1
0.5
0.7
1.04
1.24
0.5
0.67
0.64
1.09
0.83
4.47
4.97
4.73
5.46
4.47
4.96
4.21
5.08
5.67
9.06
9.69
8.59
9.93
9.06
9.58
8.85
9.98
10.68
18.98
19.54
17.45
19.31
18.98
19.49
18.14
19.47
21.02

= 20
771

3

0.75
0.99
1.22
1.49
0.75
0.91
0.81
1.25
1.2

3.77
4.55
4.56
5.69
3.77
4.4
3.77
5.2
5.5
7.52
8.51
7.89
9.77
7.52
8.35
7.03
9.17
10.04
16.65
18.01
15.89
18.84
16.65
17.75
15.89
18.32
20.68

5
1.24
1.48
1.66
2.19
1.24
1.45
1.2
1.88
1.75
4.57
5.33
5.03
6.55
4.57
5.22
4.44
5.97
6.3
8.41
9.38
8.51
10.66
8.41
9.3
7.86
10.11
11.21
16.42
18.17
15.93
19.45
16.42
17.87
15.52
18.74
20.65

10

1.73
2.29
2.17
2.93
1.73
2.18
1.66
2.68
2.74
5.41
6.49
5.62
7.37
5.41
6.35
4.95
7.01
8.12
9.21
10.57
8.8
11.67
9.21
10.3
8.25
11.06
13.36
16.9
18.49
15.58
19.2
16.9
18.34
15.25
18.72
22.64

1
0.88
0.88
0.94
1.1
0.88
0.89
0.77
0.97
1.03
4.61
4.73
4.17
4.72
4.61
4.77
4.24
4.78
5.03
9 95
9.41
8.57
9.44
9.25
9.39
8 65
9.29
9.93
19.58
19.74
18.11
19.45
19.58
19.65
18.68
19.37
20.59

3
0.86
0.96
1.01
1.19
0.86
0.95
0.78
1.06
1.04
4.17
4.32
3.82
4.51
4.17
4.28
3.72
4.31
4.77
9.26
9.59
8.33
9.65
9.26
9.58
8 56
9.39
10.27
18.54
19
16.77
19.05
18.54
18.85
17.09
18.83
20.39

n =
771

5
1.18
1.22
1
1.32
1.18
1.22
0.94
1.13
1.39
4.49
4.57
4
4.77
4.49
4.47
3.88
4.53
5.26
9.36
9.82
8.62
9.95
9.36
9.7
8 49
9.71
10.61
18.34
19.01
16.21
18.87
18.34
18.85
16.76
18.44
20.27

50

10

1.8
2.01
1.74
2.15
1.8
1.97
1.69
2.03
2.23
5.78
6.12
4.98
6.42
5.78
6
5.03
6.11
6.73
10.25
10.78
9.28
10.93
10.25
10.65
9 1
10.46
11.78
18.41
19.3
16.48
19.55
18.41
19.13
16.58
19.1
21.05

15
2.48
2.62
2.33
2.95
2.48
2.61
2.07
2.64
2.91
6.48
6.93
5.66
7.16
6.48
6.93
5.65
6.85
7.95
10.98
11.65
9.57
11.86
10.98
11.57
9 55
11.62
12.86
19.11
19.96
16.66
19.85
19.11
19.71
16.9
19.57
21.88

25
2.96
3.33
2.83
3.75
2.96
3.24
2.64
3.5
3.74
7.51
7.94
6.37
8.08
7.51
7.84
6.21
7.79
9.3

11.99
12.67
9.95
12.65
11.99
12.51
10 23
12.38
14.61
19.29
20.19
15.89
19.63
19.29
19.96
16.18
19.17
22.85

1

0.78
0.76
0.68
0.78
0.78
0.76
0.65
0.8
0.83
4.74
4.79
3.93
4.53
4.74
4.79
4.24
4.57
5.01
9.63
9.76
8.58
9.52
9.63
9.72
8 95
9.47
9.92
20.38
20.39
18.03
19.46
20.38
20.38
19.16
19.48
20.86

3
0.98
1.02
0.76
0.99
0.98
1.01
0.77
0.97
1.06
4.96
4.86
3.85
4.73
4.96
4.87
4.16
4.77
5.25
9.73
9.58
7.89
9.26
9.73
9.57
8 37
9.42
10.19
19.63
19.5
16.7
18.51
19.63
19.48
17.49
18.69
20.38

n

5

1.3
1.29
0.95
1.19
1.3
1.28
1.03
1.18
1.45
5.12
5.03
3.63
4.56
5.12
5.04
4.12
4.68
5.61
9.87
9.82
7.79
9.18
9.87
9.8
8 42
9.33
10.47
19.59
19.67
15.86
18.08
19.59
19.55
17.19
18.36
20.38

= IOC
771

10
1.62
1.57
1.02
1.37
1.62
1.55
1.06
1.35
1.79
5.54
5.68
3.95
5.11
5.54
5.65
4.44
5.27
6.03
10 14
10.32
7.51
9.44
10.14
10.28
8 28
9.39
11.16
19.35
19.24
14.54
17.76
19.35
19.26
16.28
17.92
20.68

15
2.05
2.04
1.3
1.74
2.05
2.04
1.49
1.77
2.25
6.35
6.39
4.38
5.68
6.35
6.35
5.02
5.82
6.95
10.73
10.93
7.93
9.97
10.73
10.9
8 58
9.92
11.7
19.66
19.66
14.82
18.08
19.66
19.49
16.32
18.3
21.15

25
2.81
2.92
1.8
2.45
2.81
2.9
1.95
2.53
3.14
7.45
7.57
5.09
7.02
7.45
7.54
5.88
6.92
8.42
12 13
12.15
8.48
10.98
12.13
12.16
<t 47
11.02
13.38
20.5
20.95
14.96
18.96
20.5
20.71
16.6
19.22
22.44

50
3.88
4.04
2.3
3.39
3.88
3.98
2.73
3.43
4.56
8.95
9.11
5.71
7.97
8.95
9.07
6.51
7.92
10.17
11 33
13.71
8.66
12.27
13.33
13.63
10.3
12.22
15.21
21.97
22.07
15.03
19.85
21.97
22.03
17.16
20.12
24.47

i

I

to

I
5

Table 5.9: Empirical levels (in %) of test based on QGC and Qn,m at some nominal significance level (in %) . Under hypothesis Ho, process is assumed /V(0, 1)

distributed. Here Si = {0.01}, s2 = {0.01, 0.5}, s 3 = {0.01, 0.1, 1} and s4 = {0.1, 0 . 2 , . . . , 1}. oo
Ü1



86 CHAPTER 5. APPLICATION

<t>
0.3

0.8

n

50

200

50

200

QGC

a

1.1
1.3
1.5
1.7
1.9
1.1
1.3
1.5
1.7
1.9
1.1
1.3
1.5
1.7
1.9
1.1
1.3
1.5
1.7
1.9

s

Si

Si

Si

s i

Si

S2

S2
Si

s i

Si

S2

S2

S2

S2

S2
ait
ail
ail
ail
ail

m

2 5
62.875 49.125
59.3 48.375
57 46.925

48.1 40.375
40.3 33.2

99.925 99.825
99.875 99.725
99.825 99.7
99.625 98.975
97.8 94.375
99.99 99.97
99.97 99.95
99.97 99.91
99.92 99.77
99.79 99.48
100 100
100 100
100 100
100 100
100 100

Wn.m
m

2 5
33.27 29.48
4.98 3.51
0.15 0.06

0 0.01
0 0

99.1 98.99
95.12 90.7
33.11 15.7
1.26 0.34

0 0
99.18 99.16
97.95 96.61
88.49 80.06
50.2 42.85
5.82 12.13

99.94 99.94
99.97 99.97
99.94 99.94
99.94 99.94
99.94 99.94

Table 5.10: Empirical power (in %) of test based on QGC and Q°.m at nominal significance level 5%
where the assumed model is i.i.d. SQS, a < 2, but the true model is AR(1), Xt = 4>Xt-i + et, et is SaS
process, a < 2. Here, we only record the grid points which maximize the power, however, when 0 = 0.3
and n = 200 or 4> = 0.8 and n — 50, the powers of all considered grid points are approximately the same.

Throughout the experiments, we found that in infinite variance case, the test based on QGC n a s

better power than the alternative Q* m (which turns out have a poor power). However, in case
of finite variance, the performance of QGC is slightly lower than the alternative statistic. Thus
in general, we may conclude that the Pormanteau statistic, which is based on the codifference
function, is a powerful statistic for detecting serial dependence in AR(1) form.

0.3

0.8

n

50
200
50
200

s

Si
Si
Si
all

5
25.475

91.8
99.1
100

QGC
m
15

23.65
77.475
97.575

100

30

23.725
66.725
96.45
100

5

27.6
91.95

99.225
100

Qn.m
m
15

25.825
77.975
97.875

100

30

28.175
67.775

97.4
100

Table 5.11: Empirical power (in %) of test based on QGC and Q„:7n at nominal significance level 5%
where the assumed model is i.i.d. N(0,l), but the true model is AR(l), Xt = 4>^t-\ + U, U is N(0,l).
Here, we only record the grid points which maximize the power, however, when 4> = 0.3 and n = 200 or
<p = 0.8 and n — 50, the powers of all considered grid points are approximately the same.



Chapter 6

The central discussion throughout, this thesis is on a dependence measure of univariate strictly sta-
tionary time series processes, which is called the codifference function. This measure is designated
for generalization of the covariance function, and it does not require the existence of moments of
the process of any order. We in particular focus our study on the properties of the population
codifference function and its estimator for the particular class of heavy-tailed linear time series
model, which we call causal stable ARMA with symmetric a-stable noise, 0 < a < 2. Some neces-
sary information on the a-stable distributions were reviewed in Chapter 2, where a quick overview
of the available results in literature about the a-stable ARMA modelling was summarized in
Chapter 3.

The main contribution of this thesis is given in Chapter 4. We proposed estimators for the
codifference and the normalized codifference function, defined via the ecf, where for linear processes
with geometrically bounded coefficients and SaS noise, we established the asymptotic properties
of the proposed estimators. The results in Chapter 4 solve some problems of the SACF that we
posed in Section 1.2. Here we see that unlike the ACF estimator, there is no discontinuity in either
the normalization or the limiting distribution of the proposed estimators of the codifference and
the normalized codifference when a —> 2. Moreover, when a < 2 we note that unlike the SACF,
which has an unfamiliar limiting distribution and is relatively difficult to obtain the quantiles
of the limiting distribution, the estimators of the codifference and the normalized codifference is
asymptotically normally distributed at the same rate as the SACF in the classical case (that is
n" 1 / 2 ) , although the asymptotic variance is different.

In Chapter 5, we consider some inference problems using the results, which are presented in
Chapter 4. In Section 5.1, we presented simulation studies for investigating the small sample
properties of the normalized codifference estimator. In particular, we address some practical issues
in the calculation of the codifference estimator. A short guideline for calculating the codifference
function is discussed in Section 5.1.1.

In Section 5.2, we discussed a new method for fitting pure moving averages models to dependent
heavy-tailed data, which was based on the codifference function. The performance of the proposed
method is evaluated via simulation studies. Simulation results indicate that the method based on
the codifference function works fairly well for identification and estimation purposes.

Further application of the sample codifference function was discussed in Section 5.3. Here we
consider a Portmanteau-type test of randomness, i.e., the test for independence against serial
dependence alternatives, for symmetric a stable random variables with the exponent 0 < a < 2,
using Box-Pierce Q-statistic which is defined using the codifference function. We obtain that,
unlike a similar test proposed in Runde (1997), the asymptotic distribution of the proposed statistic
is similar to the classical case, that is asymptotically x2 distributed, both in the finite and the
infinite variance cases. Simulation studies are performed to obtain the small sample performance

87
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of the proposed statistic. We found that the proposed statistic works fairly well for small sample,
although it introduces the problem of choosing the appropriate sets of grid points s. In the infinite
variance case, its empirical levels are much closer to the theoretical ones and its power is much
better than Runde's statistic. In the finite variance case, its empirical level and its power are
approximately the same as that of Ljung Box's statistic (Ljung and Box, 1978). This result will
be more apparent if the order of checked lag is relatively large with respect to the sample size.
However, when the order of checked lag m is relatively large compared to the sample size n, the
Portmanteau statistic, which is based on the codifference function, has been shown to have much
closer empirical levels than the alternatives.

Notice that throughout this thesis, we have restricted ourselves with ARMA models. To the
best of our knowledge, in literature the theoretical properties of the codifference function have
been already studied for several time series models, for instance, for the class of Fractional Au-
toregressive Integrated Moving Averages (FARIMA) models (Kokoszka and Taqqu, 1995) and
Randomized Generalized Autoregressive Conditionally Heteroscedastic (R-GARCH) (Nowicka and
Weron. 2001). It is an interesting topic for further research to investigate the properties of the
sample codifference function for those model classes.



Appendix A

Appendix

A.I Some concepts related to the stable law

Theorem A.I.I (Samorodnitsky and Taqqu (1994), Theorem 1.2.15). Let X ~ Sa(a,ß,fj.)
with 0 < a < 2. Then,

lim x°P{X > x) = Ca±±ë-oa

x—»oo '

and
lim z a P ( X < -re) = Ca

w/iere
\ — 1

=1 r(2-a)cos(W2) l ' û 5 t l

i 2/TT i/a=l

Property A.I.2 (Fractional Lower Order Moment). Let X ~ Sa(a,ß,fi) with 0 < a < 2.
Then

E \X\V < oo /or any 0 <p < a

and
E\X\P = oo for any p ^ a

Proof. Let / denote the density function of a nonnegative random variable A". By changing the
order of integration, according to Fubini's theorem, we obtain

/•OO rOO / rOO \

/ P(X > X)d\ = / / f(x)dx ) d\
Jo Jo \Jx /

= f (f f(x)d\\dx

Therefore,

/ xf(x)dx =
o

E(\X\P) = / P(\X\P > t)dt
Jo

/>OC

psP^PQXl > s)ds (A.I)
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Applying Theorem A. 1.1 above, one can see that

sp~1P(\X\ >s) = Ois"-1) as s -* 0

and
sp~lP{\X\ > s) = Ois?-«-1) as s -> oo

Thus, one can conclude (A.I) is finite if and only if 0 < p < a D

Theorem A.1.3 (Kolmogorov's three series theorem). (See, e.g.. Resnick, 2001, Theorem
7.6.1 and Remark 7.6.1.) Let {Xn,n > 1} be an independent sequence of random variables. In
order for Y^n^n to converge a.s., it is necessary and sufficient that there exist c > 0 such that

n ( \ \ ) converges

If Yin Xn converges a.s., then (i), (ii), (Hi) hold for any c > 0. Thus if the three series converge for
one value of c > 0, they converge for all c > 0. If {Xn,n > 1} are independent and nonnegative,
it is only necessary to check convergence of (i) and (in).

Proposition A.1.4. Suppose we have time series, defined by

oo

X„ = ^c ,e n_. , , t t = 0,1,. ..

Under the conditions

Cl. \cj\ < CQ-3, for some C > 0 and Q > 1

C2. et is iid SaS

then by virtue of Kolmogorov three series theorem

2_] \cjej\ < °°i almost surely
j=i

Proof. By Kolmogorov's three series theorem, we need to verify that conditions Cl and C2 imply
convergence of the two series

X> ]T ( co (A.2)

where
m(t)

Note that from Theorem A. 1.1, we obtain

P(|ei| >x) = F(a;)~ ^aax~a,x^oo (A.4)

where Ca denotes constant which depends on a. Thus, we have here as j —> oo
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Then from assumption Cl

which verifies (A.2). To verify (A.3), we observe that by Fubini's theorem

ft ft / fX \
m{t) = / xdF(x) = / I / du) dF(x)

JO Jx=0 \Ju-0 /

= f ( [ dF(x)) du= f F{u)du - tF(t)
Ju-0 \Jxau / JO

< [ F(u)du (A.5)

From (A.4), given 9 > 0, there exists XQ such that x > xo implies

F{x) < (1 + 0)S?crax~a := fcl3;-
a

thus from (A.5)
/ • X o /•< / • *

m(t) < / + / < c + / c i / M~adu,t>a;o (A.6)

For a > 1, £7(|et|) < oo: so that

^ ^(l^^lldc,,,^!)) < ^ |cj|S(|ei|) < oo

For Q = 1, from (A.6) we find that

m(i) < c +k2\og(t),t > xQ

for positive constant c', k.2- From (A.3) we obtain for another constant c"

Finally, for a < 1, i > XQ
m(t) < ci + fcji1

Thus

D

A.2 Stochastic processes

In this part, we recall a few basic concepts from probability theory

Definition A.2.1 (Random Variable). A scalar random variable X is a mapping attaching
each element u in some probability space (0, A, P) to a real number X(uS), which is B measurable.
Here A denotes a a-algebra on Cl and P a probability measure on (f2, A), and B denotes the Borel
a-algebra on R.
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Here we often deal with the sequence of random variables which often denoted in our context as
the stochastic process. We will always assume that all random variables are defined on the same
probability space.

Definition A.2.2. A stochastic process is a family of random variables {Xt,t € T) all defined
on the same probability space (Cl.,A, P).

Note that in time series analysis, we interested with the index set T as a set of time points. In
this thesis, we only consider T = Z = 0, ±1 , ±2, . . . .

In the following, we recall several concepts from the asymptotic theory.

Definition A.2.3 (Convergence in probability). A sequence Xn of scalar random variables
is said to converge in probability to a random variable Xo (in symbols Xn -̂ > XQ or Xn = op(l)),
if for every £ > 0, P(\Xn - Xo\ > e) -> 0 for n -+ oo.

Definition A.2.4 (Convergence in r-th mean, r > 0). A sequence Xn of scalar random
variables is said to converge in r-th mean to XQ , written Xn -̂> XQ if E(\Xn - Xo\T) —• 0
for n —» oo. An important order here is r = 2, that is the mean-square convergence, written
l.i.m.Xn = Xo-

Definition A.2.5 (Almost sure convergence). A sequence Xn of scalar random variables is
said to converge almost sure to a random variable Xo (in symbols limXn = Xo a.s.), if P(UJ 6 fl :
Xn(uj) — XO(OJ)\) = 1 for n —> oo

Definition A.2.6 (Convergence in distribution). A sequence Xn of scalar random variables

is said to converge almost sure to a random variable XQ (in symbols Xn —> XQ), if for every
continuity point x of cdfFQ of XQ, it holds that the real sequence of values Fn(x). where Fn denote
the cdf of Xn, converges to FQ{X), i.e. Fn(x) —• FQ(X)

The following laws are useful to analyze the behavior of a given random sequence.

» l.i.m.Xn = Xo =>• Xn —> Xo

® (Slutzky's Theorem) Let Xn € E m for some integer m and let X be a vector constant.
Further let the function g : Rm —> Rk be continuous mapping. Then Xn -^ X => g(Xn) ^
gÇX). The statement holds with a.s. convergence replacing convergence in probability

e (Continuous mapping theorem) Let g be as above. Then Xn —» XQ => g(Xn) —» g(pXo).

e (Cramer's theorem) Let Xn e Km and Yn € Rm. If Xn -^ Xo and Yn -^ a where a constant

vector, then (i) (Xn + Yn) - i Xo + a, (ii) Y^Xn - i a'X0

o (The Cramer-Wold Device) Let Xn G Km be a sequence of random ra-vectors. Then Xn —+ X

if and only if \TXn - i \TX for all A = (Ai,... , A m ) r € Rm.

The following theorem will be very useful for establishing the asymptotic distribution of some
function of random variables.

T h e o r e m A . 2 . 7 ( B r o c k w e l l a n d D a v i s ( 1 9 8 7 ) , T h e o r e m 6 . 3 . 9 ) . Let { X n } , n = 1 , 2 , . . . and

{Ynj},n = 1,2,... ,j = 1, 2 , . .. , n = 1 , 2 , . . . be a sequence of random k-vectors such that

1. Ynj —» Yj as n —> oo for each j = 1 ,2 , . . .

2. Yj —> Y as j —> oc. and



A.2. STOCHASTIC PROCESSES 93

3. limj_,oo limsupn_oo P(|X„ - Ynj-| > e) = 0 for every e > 0

then
X —» Y as n —* oo

Theorem A.2.8 (Delta Method). Let yt € Kp be a (vector valued) random sequence, such

that \f~N{yt — yo) —» Z, where yo is a constant and Z is a multivariate normal random variable
with mean zero and variance V . Let g : Rp —> Mm denote a mapping, which is continuously
differentiable at yo • Then

^N(g(yt) - g(y0)) ^ V(g)Z
where V(g) denotes the Jacobian of g evaluated at yo-

The following results shows the situation when we can safely interchange expectation and limits.
The proofs can be found in, e.g., Resnick (2001)

Theorem A.2.9 (Monotone Convergence Theorem (MCT)) . // 0 < Xn T X then 0 <
E(Xn) Î E(X)

Theorem A.2.10 (Series Version of MCT) . If Xn > 0 are non negative random variables for
n > 1 then

Vl = l / n=l

Theorem A.2.11 (Fatou Lemma). If Xn > 0 then

J9(liminf A„) < liminf E(Xn)

More generally, if there exists Z G L\ and Xn > Z then

E(\\mmîXn) < \im\niE(Xn)
n—*oo n—+oo

Theorem A.2.12 (Modified Fatou Lemma). If Xn < Z where Z € Ly, then

Theorem A.2.13 (Dominated Convergence Theorem). If Xn —» X and there exists a
dominating random variable Z € L\ such that \Xn\ < Z

E(Xn) - E(X)

In this thesis, we need for a central limit theorem which applies to sums of dependent random
variables. It will be sufficient here to have a theorem which applies to ra-dependent strictly
stationary sequences, defined as follow

Definition A.2.14 (m-Dependence). A strictly stationary sequence of random variables {Xt}
is said to be m-dependent (where m is a non-negative integer) if for each t, the two sets of random
variables {Xj,j < i] and {Xj,j > t + m + 1} are independent.

The property of m-dependence generalizes that of independence in a natural way. Observations
of an m-dependent process are independent provided they are separated in time by more than m
time units. In the special case when m = 0, m-dependence reduces to independence.

The following central limit theorem extend the classical central limit theorem of iid sequence to
m-dependent sequences. See, e.g, Theorem 6.4.2 in Brockwell and Davis (1987) for the proof.

Theorem A.2.15 (The Central Limit Theorem for Strictly Stationary m-Dependent
Sequences). If {Xt} is a strictly stationary m-dependent sequence of random variables with mean
zero and autocovariance function j(-), and if vm = 7(0) + 2 J^jLi 7Ü) ^ 0>

S. XN is AN(0,vm/N)
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A.3 The autocovariance function

Definition A.3.1 (Autocovariance function). / / {Xt, t 6 T} is a process such that var(Xt) <
oo for each t € T, then the autocovariance function jx('> 0 of {Xt} is defined by

7 x ( r , s ) = cov(Xr,Xs) = E[(Xr - EXr)(Xs - EX,)], r,s€T

Definition A.3.2 (Weak Stationarity). The time series {Xt,t 6 Z} is said to be weak station-
arity if

(i) E\Xt\
2 <oo for all t e l

(ii) EXt = m for all t & Z and

(iii) -rx(h) = fx(h,0) = cov(Xt+h,Xt)

Definition A.3.3 (Strict Stationarity). The time series {Xt,t € Z} is said to be strict sta-
tionarity if the joint distribution of {Xtl, • • •, Xtk )

T and (Xtl+It,. . . , Xtk+h ) T are the same for all
positive integers k and for all t\,... ,tk,h G Z.

In fact, the requirement of finite second moments in the definition weak stationary process exclude
the stable Paretian process (for a < 2). Therefore in that case, the term stationary is always
referred to the strict stationary definition.

The following properties makes the importance of the autocovariance function in time series anal-
ysis (see, e.g.,. Brockwell and Davis (1987), Section 1.5.)

Proper ty A.3.4. Ifj(-) is the autocovariance function of a (weak) stationary process {Xt,t € Z}.
then

(i) 7(0) > 0

(ii) -y(h) < 7(0) for all h € Z and

(iii) 7(/i) = 7(-/i) for all h e Z

Definition A.3.5 (Non-negative Definiteness). A real-valued function on the integers, f :
Z —> K is said to be non-negative definite if and only if

for all positive integers n and for all vectors a = (ai,..., an)
T e l " and t = (t\,..., tn)

T 6 Z n .

Theorem A.3.6 (Characterization of Autocovariance function). A real-valued even func-
tion defined on the set Z of all integers is non-negative definite if and only if it is the autocovariance
function of a stationary time series

The following theorem defines the mean ergodicity property of stationary process.

Theorem A.3.7 (Mean Ergodicity). Let {Xt} is stationary with mean fi and autocovariance
function f(-). then as n —» oo,

var(^n) = E(Xn - M ) 2 - 0 if 7(n) -» 0

and
oo oo

nE(Xn - »f -, Yl ^ ) */ E W l̂ < °°
h—~oo h=~oo

See. e.g., Theorem 7.1.1. in Brockwell and Davis (1987) for the proof.
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A.4 The central limit theorem for ECF of linear processes

Suppose that the distribution function of X is F(x). The characteristic function of random variable
X is defined as,

$ ( s ) = E e x p ( i s X ) = ! e x p ( i s X ) d F ( x ) , s e M (A.7)

For a given iid random sample X\,..., Xn, the empirical characteristic function (ECF) is defined
as

1 " f
$ n ( s ) = - V]exp(zsX,) = / exp(isX)dFn(x),s € R (A.8)

71 i=i J

where Fn(x) is the empirical distribution function (EDF).
Theorem A.4.1 (Hesse (1990), Theorem 1 and Remark 2.6). Let Xt = Y,f=ocjtt-j be a
linear process satisfying the conditions

(C l ) . The coefficients Cj satisfied \CJ\ < cp> ,0 < p < l ,c > 0

(C2). The distribution F of Xt has bounded density

(C3). et are independent and identically distributed random variables

in addition, let the sums in (A.9), (A. 10), (A.11) be finite. Then the real and imaginary parts of

S É E , converge to a normal distribution with zero mean and variance-covariance structure given
by

lim var(Re 0„(s)) = - (1 + Re $(2s)) - (Re $(s))2 + 2 V^ cov(cos sA^, cos sXi+j) (A.9)

Jim var(Im<£„(s)) = ^(1 - Re$(2s)) - (Im$(s))2 + 2 ̂ cov(s insA' 1 , sinsXi+j) (A.10)

lim cov(Re4>n(s),lm<l>N(s))

n—*oo

= - Im $(2s) — Re $(s) Im $(s) + 2^(cov(cos sXit sin sXi+j) + cov(sin sXii cos sXi+j))

(A.ll)

//ere Re(i) and Im(a;) denote, respectively, the real and imaginary parts of x, and cov(X, Y)
denotes the covariance between X and Y.

A.5 The complex logarithmic function

If z is a complex number then any solution w of ew = z(z ^ 0) is called a logarithmic of z. Notice
that unlike real variable, the complex exponential is not 1 — 1, it is periodic with period 2TTÎ, and
so does not have a well-defined inverse. Because of periodicity all solutions will differ from one
another by an integer multiple of 2m.

If we write the complex number z = \z\ exp(iargz), then we have w = In z = In \z\ + i arg z. Now
there is a choice of arguments, reflecting the periodicity discussed above. So unless we specify an
interval in which the arguments must lie we have not defined w as a function of z.
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Definition A.5.1. If we choose the principal argument, satisfying ~n < arg z <ir, this defines
the principal value of the logarithm, denoted by Log z

Definition A.5.2. / / we choose the interval a — TT < argaz < a + n, this defines the branch of
logarithmic function, given by logQ z = ln\z\ + iargaz

Now In \z\ is continuous for all non-zero z, but argQz is discontinuous for argaz — a + TT.
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