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ABSTRACT

Several construction methods for regular and irregular low-density parity-check

(LDPC) codes are investigated. The performance of these randomly and deter-

ministically constructed codes—in terms of the bit error rate—is compared, where

the block lengths of interest are between 103 and 104. These block lengths are

suitable for practical applications.

The convergence behavior of the decoding process using the iterative sum-

product algorithm is analyzed for these finite length LDPC codes. The decoding

process is visualized by animations of the evolution of the messages passed in the

decoder. With these visualizations, successful decoding as well as decoding errors

are investigated.

Decoding errors of this iterative system are classified into 3 error types and

their influence on the performance of the code is analyzed. In contrast to infinite

block lengths where the decoder is guaranteed to converge, for finite block lengths

it is possible that the decoder will not converge but become unstable.
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KURZFASSUNG

Unterschiedliche Konstruktionsmethoden regulärer und irregulärer Blockcodes mit

schwach besetzten Prüfmatrizen (low-density parity-check LDPC) werden unter-

sucht. Der erzielbare Codegewinn dieser sowohl zufällig als auch deterministisch

konstruierten Codes wird verglichen. Die behandelten Blocklängen sind im Bereich

zwischen 103 und 104, da diese Blocklängen für praktische Anwendungen geeignet

sind.

Das Konvergenzverhalten des iterativ arbeitenden Decoders wird für diese

endlichen Blocklängen untersucht. Der Decodierungsprozess wird graphisch durch

Animationen veranschaulicht. Mit diesen Animationen wird sowohl der Fall einer

erfolgreichen als auch der Fall einer fehlerhaften Decodierung untersucht.

Die bei fehlerhafter Decodierung auftretenden Fehler werden in 3 Klassen un-

terteilt und ihr Einfluss auf die Bitfehlerrate wird analysiert. Im Gegensatz zu

Codes mit unendlicher Blocklänge, wo die Konvergenz des Decoders garantiert

ist, kann bei endlichen Blocklängen ein instabiles Verhalten des Decoders beob-

achtet werden.
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Chapter 1

Introduction

Conventional channel coding techniques with limited decoding complexity are far

away from the theoretical limits for transmission rates for noisy channels shown

in [16]. Modern coding systems eliminate most of the limitations of decoding

complexity by using an iterative decoder which requires low computational com-

plexity. With this technique, it is possible to reduce the difference of required

signal to noise ratio between practical systems and theoretical limits to fractions

of decibels.

Iterative decoding techniques have a decoding complexity that is linear in the

block length. One family of codes that achieve this linear decoding complexity

are Turbo codes introduced in [3]. The long block length is achieved by using an

interleaver and the decoding complexity is kept small by using simple component

codes.

Another family of codes with linear decoding complexity are low-density parity-

check (LDPC) codes which were introduced in [10]. The key to the simple decoding

process of these codes is the use of sparse parity-check matrices.

The focus of this work is on LDPC codes with finite block lengths between 103

and 104. This limitation of the block lengths is usually due to delay constraints

of the application.

This chapter introduces the model of the communication system used in this

work and gives an overview of achievable transmission rates for noisy channels.

Chapter 2 introduces basics of binary linear block codes and derives the optimal

and a suboptimal decoding algorithm. Chapter 3 compares several construction

methods for LDPC codes and the performance of the resulting codes. The con-

vergence behavior of the iterative decoder is treated in chapter 4.
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1.1 Communication System

The communication system used in this work is shown in figure 1.1. It consists of

the following components:

• Source Encoder

The source encoder removes redundancy from the binary source data and

produces a binary vector u of length k (it is assumed that the length of this

vector is constant).

• Channel Encoder

The vector u from the source encoder is encoded to a binary codeword x

of length n (where n ≥ k) by adding known redundancy to the information

vector u.

• Modulator

The binary digits of the codeword are not suited for transmission over the

channel. The modulator converts the binary digits to symbols that can be

send over the channel.

• Channel

In this work, the channel is assumed to be memoryless with discrete input

alphabet A = {−1, 1}. The channel adds white Gaussian noise and therefore,

the output alphabet of the channel is the set of real numbers. This channel

is called a discrete input continuous output memoryless channel.

• Demodulator

The demodulator receives symbols from the channel and provides soft values

for every digit of the codeword for the following channel decoder.

• Channel Decoder

The task of the channel decoder is to use the knowledge of the added redun-

dancy from the channel encoder to remove transmission errors introduced

by the channel. The output of the channel decoder is an estimate of the

transmitted information vector.

• Source Decoder

The source decoder simply reverses the source encoding operation and pro-

duces the original data if no errors occurred.

Source coding is not considered in this work. Therefore, the source coder and

the source decoder will be included in the source and the sink respectively.



Chapter 1 - Introduction 3

u

û
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Figure 1.1: Communication system.

1.2 Channel Capacity

Channel capacity for the additive white Gaussian noise (AWGN) channel with

continuous input and continuous output can be written as

CAWGN =
d

2
· log2

(

1 +
Ps

Pz

)

[bits per channel use], (1.1)

where d is the number of signal dimensions and Ps and Pz are the signal and the

noise power respectively. Defining the two sided power spectral density of the

noise as σ2 = N0
2 and the required bandwidth as 2B, channel capacity is

CAWGN =
d

2
· log2

(

1 +
Es

T
N0
2 2B

)

, (1.2)

where T is the symbol duration and Es denotes the mean energy per symbol. The

required bandwidth 2B and the symbol duration are related as

2B · T = d, (1.3)

which leads to

CAWGN =
d

2
· log2

(

1 +
2Es

N0d

)

. (1.4)

For a fair comparison of codes, we are interested in channel capacity as a

function of Eb

N0
where Eb is the energy per information bit. Defining Rs as the

number of information bits contained in one symbol (Rs contains the rate of the

code and the mapping scheme), we can write

2Es

N0d
=

2RsEb

N0d
. (1.5)

Capacity is achieved if Rs = C and therefore,

CAWGN =
d

2
· log2

(

1 +
2CAWGN

d
· Eb

N0

)

, (1.6)



Chapter 1 - Introduction 4

which simplifies to

CAWGN =
1

2
· log2

(

1 + 2CAWGN · Eb

N0

)

(1.7)

in the case of one dimension.

If the input of the channel is restricted to two symbols {−A,A}, the channel

is called binary input AWGN (BIAWGN) channel. The capacity of this channel

is below the capacity for the continuous input AWGN channel and it is achieved

if and only if the two symbols are equally likely (P (−A) = P (A) = 0.5).

Channel capacity is defined as the maximum mutual information between the

input X and the output Y of the channel. For equally likely input symbols the

capacity of the BIAWGN channel is

CBIAWGN = h(Y ) − h(Y |X), (1.8)

where h() denotes differential entropy. The output Y conditioned on the input X

is Gaussian distributed and therefore

h(Y |X) =
1

2
log2

(
2πeσ2

)
. (1.9)

The probability function f(y) is the sum of two Gaussian functions

f(y) = P (−A) · 1√
2πσ2

e−
(y+A)2

2σ2 + P (A) · 1√
2πσ2

e−
(y−A)2

2σ2

=
1√

8πσ2

[

e−
(y+A)2

2σ2 + e−
(y−A)2

2σ2

]

. (1.10)

Capacity for the BIAWGN channel can be written as

CBIAWGN = −
∫ ∞

−∞
f(y) log2 f(y)dy − 1

2
log2

(
2πeσ2

)
. (1.11)

The capacities of these two channels are shown in figure 1.2. The figure includes

some codes with their spectral efficiency and their required Eb

N0
for achieving a bit

error rate of 10−5 when used for transmission over a BIAWGN channel (this figure

is intended to give an overview only).
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Chapter 2

Binary Linear Block Codes

Low-density parity-check codes are a subclass of the class of binary linear block

codes. This chapter introduces binary linear block codes and the optimal decoder

for these codes—the maximum a-posteriori (MAP) decoder. The term ’optimal’

refers to minimization of the bit error rate. We will see that the computational

complexity of this optimal decoder grows exponentially with the block length and

therefore, long block lengths can generally not be used in practical applications.

However, we will see that there exists a suboptimal decoding algorithm with linear

complexity that allows the use of long block codes.

The first section gives some definitions. In the second section, the optimal

decoder is derived and in the last section, we will consider the suboptimal decoding

algorithm.

2.1 Definitions

Definition 1 (Binary block code). A binary block code of length n is a set C
of 2k distinct vectors in GF (2)n, with 0 ≤ k ≤ n.

This definition is very general. In this work, only linear codes are considered.

Definition 2 (Linear Code). A code C is called linear if and only if all linear

combinations of codewords are also elements of the code.

Due to this definition, the all-zero word is always an element of the code.

Definition 3 (Rate of code). The rate R of a code is defined as R
def
= k

n
.

Definition 4 (Hamming weight). The Hamming weight wt(x) of a vector x =

x1, . . . , xn is defined as the number of non-zero components of x.
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Definition 5 (Hamming distance). The Hamming distance dist(x,y) between

two vectors x = x1, . . . , xn and y = y1, . . . , yn is defined as the number of compo-

nents where x and y differ.

The weight and the distance are related as

wt(x) = dist(x,0) (2.1)

dist(x,y) = dist(x − y,0) = wt(x − y), (2.2)

where all operations are carried out in GF (2)n.

Definition 6 (Minimum distance). The minimum distance of a code C is the

minimum distance between two distinct codewords:

d
def
= min

x,y ∈ C

x 6= y

dist(x,y). (2.3)

Theorem 1. The minimum distance of a linear code is equal to the minimum

weight of all nonzero codewords:

d = min
x ∈ C

x 6= 0

wt(x). (2.4)

Proof. Due to the definition of a linear code z = x − y is also an element of the

code. Using equation 2.2, we can write

d = min
x, y ∈ C

x 6= y

dist(x,y) = min
x,y ∈ C

x 6= y

dist(x − y,0) = min
z ∈ C

z 6= 0

wt(z). (2.5)

A binary linear code C is a subspace of dimension k in the vector space GF (2)n.

We can construct a basis for this subspace consisting of k linearly independent

vectors of length n. Every codeword can be represented as a linear combination

of these basis vectors.

Definition 7 (Generator matrix). A generator matrix is a matrix G whose

rows form a basis for a k-dimensional subspace S in the vector space GF (2)n.

Every codeword x of a linear code can be represented as a linear combination of

these basis vectors, i.e.,

x = u · G. (2.6)
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Instead of constructing a basis for the k-dimensional subspace of the vector

space GF (2)n, we can construct a basis for the orthogonal (n − k)-dimensional

subspace S⊥.

Definition 8 (Parity-check matrix). A parity check matrix is a matrix H

whose rows form a basis for a (n−k)-dimensional subspace S⊥ in the vector space

GF (2)n. A vector x is an element of the code C if and only if it is orthogonal to

this subspace

x ∈ C ⇐⇒ x · HT = 0. (2.7)

Because of the orthogonality of their underlying subspaces, the matrices G

and H are related as

G · HT = 0. (2.8)

2.2 Optimal Decoding

Let us consider the transmission system shown in figure 2.1. The source generates

a binary vector u of length k (the information block). This vector is uniquely

encoded to a binary codeword x of length n. The codeword is transmitted over

a memoryless channel with discrete input and continuous output with transition

probability density function p(y|x). The decoder receives the vector y and makes

a decision û for the transmitted information block. Because of the unique corre-

spondence between information block and codeword, the decoder can be split into

two parts. The first part calculates a decision x̂ for the transmitted codeword x

and the second part simply reverses the encoding operation. Reversing the encod-

ing operation can be simplified if systematic codes are used, i.e. the first (or the

last) k digits of the codeword x are equal to the information vector u.

y

u

û

x

Channel

Source Encoder

DecoderSink

Figure 2.1: Transmission system.

In this work, we understand optimal decoding to mean a decoding procedure

that minimizes the average bit error probability. The average probability of a bit

error is

PBiterror =
1

n

n∑

l=1

P (x̂l 6= xl|y) =
1

n

n∑

l=1

[1 − P (x̂l = xl|y)] , (2.9)
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where x1, . . . , xn are the digits of the codeword.

The quantities P (x̂l = xl|y) are called a-posteriori probabilities (APP) of xl

given the received vector y. Minimizing the bit error probability is equivalent to

maximizing the APPs over the symbol alphabet (A = {0, 1} in our case of binary

codes) for every digit of the codeword. Therefore, the decoder has to find the

values x̂l, (l = 1, . . . , n) that maximize these APPs. The APP for the digit xl is

P (x̂l = xl|y) =
P (x̂l = xl,y)

P (y)
=

∑

∼{xl}
P (x,y)

∣
∣
∣
xl=x̂l

P (y)
, (2.10)

where
∑

∼{xl}
denotes the summation over the symbol alphabet over all elements

of x except xl. This so called summary operator [12] is defined as

∑

∼{xl}

f(x)
def
=

∑

xi ∈ A

i 6= l

f(x). (2.11)

We can split up the joint probability as

P (x,y) = P (x)P (y|x) = P (x)

n∏

i=1

P (yi|xi), (2.12)

where we used the assumption that the channel is memoryless.

If we assume equally likely codewords, we can write the probability of the

transmitted vector x as

P (x) =

{
1
|C| , x ∈ C,

0, x /∈ C,
(2.13)

where |C| denotes the number of codewords. The vector x is an element of C if it

fulfills all parity-check equations. Let

fj(x) =

{

1, hj · xT = 0,

0, hj · xT 6= 0,
(2.14)

where hj is the jth row of the parity-check matrix H of dimension m × n with

m = n − k. Therefore,

P (x) =
1

|C|

m∏

j=1

fj(x). (2.15)

Inserting 2.12 in 2.10 and using 2.15 yields

P (x̂l = xl|y) =

∑

∼{xl}

(
1
|C|

∏m
j=1 fj(x) ·∏n

i=1 P (yi|xi)
)∣
∣
∣
xl=x̂l

P (y)
. (2.16)
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The factors 1
P (y) and 1

|C| do not influence the maximization with respect to xl

and can be omitted. Finally, the decision rule of the MAP decoder can be written

as

x̂l = argmax
xl∈A

∑

∼{xl}





m∏

j=1

fj(x) ·
n∏

i=1

P (yi|xi)



 . (2.17)

For a binary alphabet, it is convenient to use the logarithm of the ratio of the

two possible values

L(xl|y) = log
P (xl = 0|y)

P (xl = 1|y)
. (2.18)

These quantities are called Log-Likelihood ratios (LLR). The maximization of

these values over the alphabet values can be written as

x̂l =

{

0, L(xl|y) > 0,

1, L(xl|y) < 0.
(2.19)

2.2.1 Complexity

The optimal decoding procedure can be described in a closed form. Before we try

to implement this procedure, it may be worth taking a look at its computational

complexity. For every digit of the codeword, we have to calculate a (n − 1)-

fold sum leading to 2n−1 evaluations of the argument. Every argument consists of

m+n = (2−R)n factors. The complexity for this optimal decoding procedure rises

exponentially with the block length n. Therefore, the block length for practical

systems is limited. The next section will describe a suboptimal decoding algorithm

with a complexity that is linear in the block length.

2.3 Suboptimal Decoding

To be able to use long block codes, we need a decoding algorithm that can be

computed with linear complexity (with respect to the block length). The algorithm

described in this section works iteratively by passing messages on an associated

factor graph. The next subsection introduces factor graphs and the results will be

applied to our decoding problem.

2.3.1 Factor Graphs

Let us start with a simple graphical representation of a function. Consider a

function f(x), where x is a vector of independent variables x1, . . . , xn. If we draw

a circle for each variable and a square for the function f(x), we can represent the

dependence of f(x) with a simple graph. An example is shown in figure 2.2. Note
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that there is an edge in the graph if and only if the value of the function depends

on this variable. Since the value of our function depends on all variables, there

is an edge from every variable node to the function node. This graph does not

f

x2

x3

x4

x5

x6

x7

x1

Figure 2.2: Graphical representation of a function.

tell us very much about the function f , except that it depends on the variables

x1, . . . , x7.

Many functions can be factorized as a product of simpler functions that do not

depend on the whole vector x. Let us assume that we can factorize our function

f(x) in the following way.

f(x) = f1(x1, x4, x5) · f2(x2, x5, x6) · f3(x3, x6, x7) (2.20)

We can now represent every so called local function fj as a square and draw the

corresponding dependencies. This is shown in figure 2.3. The global function f(x)

is the product of all local functions.

2.3.2 Factor Graphs and Block Codes

We will use factor graphs to derive a decoding algorithm for block codes. In the

decision rule of the MAP decoder

x̂l = argmax
xl

∑

∼{xl}





m∏

j=1

fj(x) ·
n∏

i=1

P (yi|xi)




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f3

x2

x3

x4

x5

x6

x7

f1

f2

x1

Figure 2.3: Factorization.

we first calculate a function that can be factored. This function is the probability

mass function and it depends on the vectors x and y. Then, we calculate the

marginal probability mass function by applying the summary operator and maxi-

mize the result to get the decision for the digits of the codeword. The first step is

to represent the argument of the summary operator as a factor graph. The graph

consists of two parts—one part represents the channel with its transition probabil-

ity, and the other part represents the code. The following example demonstrates

this representation.

Example 1 (Factor Graph for Decoding). Let us assume a linear binary block

code C represented by its parity-check matrix

H =






1 0 0 1 1 0 0

0 1 0 0 1 1 0

0 0 1 0 0 1 1




 , (2.21)

C = {x ∈ GF (2)7|x · HT = 0}. (2.22)

The length of the codewords is n = 7 and the number m of parity-checks is equal

to 3. The argument of equation 2.17 can be written as

f(x,y) =

3∏

j=1

fj(x)

︸ ︷︷ ︸

code

·
7∏

i=1

P (yi|xi)

︸ ︷︷ ︸

channel

(2.23)
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and factorizes into two parts. The corresponding factor graph is shown in fig-

ure 2.4. The left part of the figure represents the channel and the right part repre-

sents the code, where every row of the parity-check matrix is drawn as a function

node.

y5

y7

x2

x3

x4

x5

x6

x7

f2

f3

P (y1|x1)

P (y2|x2)

P (y3|x3)

P (y4|x4)

P (y5|x5)

P (y6|x6)

P (y7|x7)

x1

f1

y1

y2

y3

y4

y6

Figure 2.4: Factor graph for code and channel.

With the assumption P (xl = 0) = P (xl = 1) = 0.5, we can write the received

LLR values as

L(xl|yl) = log
P (xl = 0|yl)

P (xl = 1|yl)

= log
P (yl|xl = 0)P (xl = 0)P (yl)

P (yl|xl = 1)P (xl = 1)P (yl)

= log
P (yl|xl = 0)

P (yl|xl = 1)
. (2.24)

With these quantities we can simplify the factor graph by removing the channel

and using only the LLR values. The simplified factor graph is shown in figure 2.5.

Every circle is called a variable node (it represents a digit of the codeword) and

every local function is called a check node (it represents a parity-check equation).

After this simplification, we can calculate a LLR value for every digit xl of

the codeword based on a single observation yl. However, the MAP decoding rule
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L(x7|y7)

f1

x2

x3

x4

x5

x6

x7

f2

f3

L(x1|y1)

L(x2|y2)

L(x3|y3)

L(x4|y4)

L(x5|y5)

L(x6|y6)

x1

Figure 2.5: Simplified factor graph.

requires the computation of the LLR value based on the complete observed vector

y.

Suppose we want to calculate the MAP decision for the digit x5 of the code-

word. The first step is to redraw our factor graph, so that the desired variable

node is the root of the graph. We assume that the graph can be drawn as a

tree, i.e. it does not contain cycles. This assumption will be discussed later. The

redrawn factor graph is shown in figure 2.6. All messages in the graph are trans-

mitted from the bottom to the top (to the node x5) and every node can send its

outgoing messages after it has received all incoming messages. Figure 2.7 shows

the messages that ’flow’ up to the root of the tree (the circled numbers indicate

the steps). On their way, they ’collect’ all information from the received vector

y. After the fourth step, the desired variable x5 has received all messages that

are necessary to calculate the desired value L(x5|y). To complete the description

of this algorithm, we have to investigate the calculations at the variable and the

check nodes.

Computation at a Variable Node

A variable node x receives messages of the form L(x|Yl), where Yl are sets of

received values. Any two sets are disjoint, because we assumed that the graph can
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L(x7|y7)

L(x5|y5)

L(x1|y1) L(x4|y4) L(x2|y2) L(x6|y6)

L(x3|y3)

x6

f1 f2

x1 x4

x5

x2

f3

x3 x7

Figure 2.6: Rooted tree.

be drawn as a tree. The output of a variable node can be written as

L(x|Y1 ∪ . . . ∪ Yk) = log
P (x = 0|Y1 ∪ . . . ∪ Yk)

P (x = 1|Y1 ∪ . . . ∪ Yk)
=

= log
P (Y1 ∪ . . . ∪ Yk|x = 0)

P (Y1 ∪ . . . ∪ Yk|x = 1)
=

= log

k∏

l=1

P (Yl|x = 0)

P (Yl|x = 1)
=

=
k∑

l=1

L(x|Yl), (2.25)

where in the first step we used the assumption that P (x = 0) = P (x = 1) and in

the second step the fact that the sets Yl are disjoint and therefore, statistically

independent given x. The variable node sums all incoming messages to calculate

a new LLR value for its associated digit of the codeword. The computation at a

variable node is illustrated in figure 2.8.

Computation at a Check Node

A check node receives values of the form L(xl|Yl) and has to calculate the LLR

value of the variable x that is associated with its parent node, as shown in fig-

ure 2.9. As in the case of a variable node, any two sets Yl and Yi are disjoint.
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©1 L(x3|y3)

x3

f3

x2 x6x4x1

f2f1

x5
L(x5|y5)

©4 L(x5|y2, y3, y6, y7)

©3 L(x6|y3, y6, y7)

©2 L(x6|y3, y7)

©1 L(x7|y7)

©1 L(x4|y4)

©2 L(x5|y1, y4)

©1 L(x1|y1) ©1 L(x2|y2)
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Figure 2.7: Messages after steps 1 to 4.

L(x|Y1 ∪ . . . ∪ Yk) =
∑k

l=1 L(x|Yl)

L(x|Y1) L(x|Yk)

x

Figure 2.8: Computation at a variable node.

The check node uses the fact that the modulo sum of all connected variable nodes

has to be zero. To derive the calculation of a check node, we need the following

lemma (taken from [11]).

Lemma 1. Consider a vector x = x1, . . . , xk of independent binary digits, where

P = P1, . . . , Pk denotes the probability of the corresponding digits being a one.

The probability that an even number of digits are equal to one can be written as

1 +
∏k

l=1(1 − 2Pl)

2
. (2.26)

Let S denote the event that the parity-check equation is fulfilled and let x =

{x1, . . . , xk, x} be the digits that are involved in this parity-check equation. Given
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L(x|Y1 ∪ . . . ∪ Yk) = 2 tanh−1∏k
l=1 tanh

L(xl|Yl)
2

x2 xk

x

f

L(x1|Y1) L(xk|Yk)

x1

Figure 2.9: Computation at a check node.

that the digit x is zero, the number of ones in the remaining vector has to be

even to fulfill the parity-check equation. If x is one, the number of ones in the

remaining vector has to be uneven. Using lemma 1, we can write the ratio of these

two cases as

P (x = 0|S,P )

P (x = 1|S,P )
=

P (S|x = 0,P )

P (S|x = 1,P )
=

1 +
∏k

l=1(1 − 2Pl)

1 −∏k
l=1(1 − 2Pl)

, (2.27)

where P denotes the vector P1, . . . , Pk. After transforming this relation to the

LLR domain, we get the following result for the computation at a check node

tanh
L(x|Y1 ∪ . . . ∪ Yk)

2
=

k∏

l=1

tanh
L(xl|Yl)

2
. (2.28)

2.3.3 The Sum-Product Algorithm

The previous section showed how to calculate the MAP decoding rule for one digit

of the codeword by passing messages on the factor graph that is associated with the

parity-check matrix of the code. If we want to compute the MAP decoding rule for

every digit of the codeword, we can apply this algorithm for every digit. However,

this is very inefficient because many local functions are calculated twice or even

more. Before introducing the algorithm that avoids this multiple computation, we

will modify the message passing algorithm of the previous section.

In the example, every node was able to send out a message over an edge, when

it has received messages from all other edges. Therefore, the total number of

messages transmitted in the graph is equal to the number of edges. The resulting

LLR value is obtained when the root node has received all its messages. We can

modify the algorithm in the following way. The messages from check nodes to

variable nodes are initialized with LLR values of zero and every node sends a

messages at every step. The algorithm terminates if no message changes its value
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in the next iteration. It is obvious that the number of steps is equal to the original

algorithm and that the number of messages transmitted in the graph is the number

of edges times the number of iterations.

After this modification we can formulate the sum-product algorithm that al-

lows the parallel computation of all marginal probability mass functions. Instead

of redrawing the factor graph as a tree, we simple initialize the messages from the

check nodes to the variable nodes with zero. In the first part of the iteration, the

variable nodes send their messages over an edge based on the inputs of all other

edges to the check nodes. The second part of the iteration is the computation at

the check nodes. Every check node sends out a message over an edge by using

all messages received from the other edges. Again, the algorithm terminates if no

message changes and the desired LLR values are obtained by combining (summing

up) all the incoming messages at every variable node. The number of messages

transmitted is again equal to the number of edges times the number of iterations,

but the algorithm calculates all the marginal functions in parallel.

Every variable node has to send its associated value received from the channel

to every other variable node. The diameter of a graph is defined as the longest

path between two nodes. At every iteration, a message is sent over two edges

(from variable nodes to check nodes and back to the variable nodes). Therefore,

the required number of iterations is half the diameter of the graph.

2.3.4 Graphs with Cycles

In the derivation of the sum-product algorithm, we made the assumption that the

graph can be drawn as a tree, i.e. it is free of cycles. This assumption is used to

calculate the output of a variable node (equation 2.25). This calculation is valid

if and only if the sets Yl are disjoined.

In [7], the authors showed that the minimum distance d of a code, that can be

represented by a cycle-free graph, is bounded by

d ≤
⌊

n

k + 1

⌋

+

⌊
n + 1

k + 1

⌋

. (2.29)

This bound reduces to d ≤ 2 for R = k
n
≥ 0.5.

Given this result, it seems that the sum-product algorithm is not very useful,

because we can apply this algorithm only to very poor codes. However, in practice

we can apply the sum-product algorithm to codes with cycles, but the results will

not be equal to the results of the MAP decoder and therefore be suboptimal.

Cycles in the graph correspond to a feedback. The effect of this feedback is large

if the length of the cycles is small. The difficult task is to construct codes with a
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large minimum distance and only large cycles. One class of codes that can fulfill

these requirements for long block lengths are low-density parity-check codes that

are treated in the following chapter.



Chapter 3

Low-Density Parity-Check

Codes

In 1962 Robert G. Gallager introduced low-density parity-check (LDPC) codes

[10]. A more detailed description can be found in his dissertation [11]. LDPC

codes are binary linear block codes that can be described by a sparse parity-check

matrix, i.e. the density of ones in the matrix is very low—that is the reason why

they are called low-density. The advantage of LDPC codes is that they allow

the application of the sum-product algorithm introduced in the previous chapter

because the probability of cycles in the factor graph decreases with increasing block

length (The sum-product algorithm assumes a cycle free factor graph.). The fact

that the computational complexity of this algorithm grows linearly with respect

to the block length allows the application of long block codes that are able to

achieve transmission rates close to channel capacity.

For traditional codes like convolutional codes, the length of the code (or the

constraint length) is limited by the decoding complexity, because the computa-

tional complexity of the decoding process increases exponentially with the block

length. The block length of LDPC codes is not limited by the decoding complexity

but it is limited by the decoding delay that is tolerable for the application.

LDPC codes were rediscovered following the invention of turbo codes by Berrou

et al. in 1993 [3]. In a certain sense, turbo codes can be described as a special

case of LDPC codes with semi-infinite parity-check matrices [6].

3.1 Definitions

Consider binary linear block codes with block length n and rate R. The number

of information bits per codeword is denoted by k. LDPC codes are represented
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by a parity-check matrix H with dimension m× n, where m = n− k denotes the

number of parity-check equations. The rate of the code can be written as

R = 1 − rank(H)

n
. (3.1)

The design rate of the code is written as

Rd = 1 − m

n
. (3.2)

If the matrix has full rank, i.e. no linearly dependent rows, rate and design rate

are equal. If the matrix contains linearly dependent rows, the rank of the matrix

is smaller than m and the rate of the code is higher than the design rate.

The rows and columns of a parity-check matrix are denoted by the vectors rj

(j = 1, . . . ,m) and ci (i = 1, . . . , n) respectively. The row weight and column

weight is defined as the weight of the associated row and column vector. The

weight of the rows and the columns correspond to the degrees of check nodes

and variable nodes in the associated factor graph. Therefore, the terms dc(j) and

dv(i) are used for the degree of the check nodes and variable nodes (weight of the

rows and columns) respectively. For LDPC codes, the row and column weights

are small and independent of the block length. These properties lead to a sparse

parity-check matrix if the block length is large enough. A typical value for the

column weight is 3, i.e. every digit of the codeword is involved in 3 parity-check

equations.

The total number e of ones in the parity-check matrix can be written as

e =

n∑

i=1

dv(i) =

m∑

j=1

dc(j). (3.3)

If we assume a code where the row and column weight is constant, i.e. dc(j) =

dc and dv(i) = dv, this simplifies to

e = n · dv = m · dc (3.4)

and the design rate of this code can be written as

Rd = 1 − m

n
= 1 − dv

dc
. (3.5)

3.2 Decoding

LDPC codes are decoded by applying the sum-product algorithm to the associated

factor graph. As mentioned in the previous section, the complexity of the sum-

product algorithm grows linearly with the number of ones in the parity-check
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matrix (the number of edges in the associated factor graph). As noted above, the

number of ones in the parity-check matrix of a LDPC code grows linearly with

the block length (equation 3.4). Therefore, the computational complexity of the

sum-product algorithm for decoding LDPC codes grows linearly with the block

length.

3.2.1 Cyclefree Graphs and Infinite Block Length

For a cycle-free factor graph, the iterative sum-product algorithm is equivalent to

the MAP decoder and is therefore optimal. If the graph contains cycles, the algo-

rithm will be suboptimal. The number and the length of the cycles will determine

the gap between the optimal MAP decoder and the suboptimal iterative decoder.

Assuming a random construction method, the probability of a cycle is related to

the density (number of ones in comparison to number of elements in the matrix)

of the parity-check matrix. The density of ones in the matrix for the asymptotic

case of infinite block length can be written as

lim
n→∞

n · dc

n · m = lim
n→∞

n · dc

n · n · (1 − R)
= lim

n→∞

1

n
· dc

1 − R
= 0. (3.6)

When the block length tends to infinity, the density of ones in the matrix tends to

zero and the probability of a cycle tends to zero as well. Therefore, infinite block

length leads to optimal performance of the iterative decoding algorithm.

3.3 Encoding

The process of encoding is usually easier than the process of decoding, because the

encoding process has to deal with binary values only. However, the block lengths

used for LDPC codes are large (larger than 103) and therefore, we require the

encoding algorithm to also have a computational complexity that is linear with

respect to the block length. There are basically two possibilities of encoding a

block code and they will be presented in the next two sections.

3.3.1 Encoding with the Generator matrix

The encoding process can be formulated as

x = u · G, (3.7)

where G denotes the generator matrix of the code with dimension k × n. The

easiest way of calculating the generator matrix for a given parity-check matrix
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is to convert the parity-check matrix to a systematic form (using Gauss-Jordan

elimination) and to use the relation

H = [P In−k] ⇐⇒ G =
[
Ik P T

]
. (3.8)

The matrix I is the identity matrix of dimension (n − k) and k respectively and

the matrix P is of dimension k × (n − k).

The encoding process requires k · (n− k) = R · (1−R) · n2 operations and has

a computational complexity that is quadratic in the block length. The sparseness

of the parity-check matrix can not be exploited because after the conversion to

systematic form, the sparseness of the matrix is lost in general and therefore the

generator matrix is not sparse either. Therefore, this method is not suited for

encoding LDPC codes.

3.3.2 Encoding with the Parity-Check Matrix

The relation

x · HT = 0

provides another possibility for encoding. This relation is a system of linear equa-

tions. If we assume a systematic encoder, the number of unknown variables (parity

digits) is m = n − k and the number of equations is equal to m 1. Therefore, the

codeword can be calculated by solving this system of equations. The easiest way

is to convert the matrix to triangular form (using Gauss-Jordan elimination) and

to calculate the unknown variables recursively. This is shown in figure 3.1 where

pi and ui denotes parity and information digits respectively. The left lower part

of the matrix contains only zeros.

As in the previous case, the sparseness of the triangular matrix is lost in

general. The parity digit pi is a linear combination of u1, . . . , uk and p1, . . . , pi−1. If

we assume that every element of the parity-check matrix can be 1 with probability

0.5, these linear combinations contain k
2 + m

4 elements on average. Therefore, the

computation of m parity digits is of the order O(n2).

If we restrict the parity-check matrix to triangular form at construction time,

we can exploit the sparseness of this matrix. Every row of the matrix contains dc

ones. Therefore, the computation of m parity digits is of the order O(m · dc) =

O(n). This method is the preferred method for the encoding process.

1Assuming that the matrix H has full rank.
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H =














1 0 0 1 · · · 0 1 0 · · · 0 0 1

1 1 0 · · · 0 0 1 · · · 0 1 0

1 0 · · · 1 1 0 · · · 0 0 0

1 · · · 0 0 0 · · · 1 0 0
. . .

...
...

... · · · ...
...

...

1 0 1 · · · 1 1 0














x =
[

pm · · · · · · · · · · · · p1 uk · · · · · · · · · · · · u1

]

Figure 3.1: Encoding with parity-check matrix.

3.4 Regular and Irregular Codes

If the degrees of the variable and the check nodes are constant, i.e. dc(j) = dc

and dv(i) = dv, the resulting LDPC code is called regular. If we allow nodes with

higher or lower degree, the resulting code is called irregular. Irregular codes have

a better asymptotic performance and can practically reach channel capacity as

shown in [14].

The construction of irregular codes is motivated by the following ideas:

• From the point of view of a variable node, it is best if its degree is high,

because every edge delivers useful extrinsic information to the variable node.

From the point of view of a check node, the probability that the check

function is fulfilled decreases with increasing degree. Therefore, for a check

node, it is best if the degree is low. These two types of nodes have to agree

to a number of edges that is determined by equation 3.3. By allowing a

mixture of higher and lower degrees, these requirements can be fulfilled in a

more flexible manner.

• The variable nodes with higher degree receive many messages carrying ex-

trinsic information after a few iterations and converge faster to their conver-

gence point. These nodes, sometimes called elite nodes, can provide reliable

information in further iterations and help the lower degree nodes to converge.

• With tools like Extrinsic Information Transfer (EXIT) charts, codes can

be designed to approach channel capacity. This design is only possible if

the column weight distribution is irregular. Design of LDPC codes is not

considered in this work. Further details can be found in [1] and in [14] where

density evolution is used for optimization of the code.
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Regular codes are specified by their variable and check node degrees. For

irregular codes we have to specify degree distributions. A degree distribution can

be written as a polynomial, e.g.

γ(x)
def
=
∑

i≥1

γix
i−1 (3.9)

satisfying the condition γ(1) = 1 and γi ≥ 0. The coefficients γi represent the

fraction of edges emanating from a node of degree i.

If we denote the maximum degree of a variable node as dv,max and the maxi-

mum degree of a check node as dc,max we can write the degree distribution poly-

nomial λ(x) for the variable nodes and ρ(x) for the check nodes as

λ(x)
def
=

dv,max∑

i=1

λix
i−1 (3.10)

ρ(x)
def
=

dc,max∑

i=2

ρix
i−1, (3.11)

where the summation for the check node distribution starts at i = 2 because check

nodes with degree one would correspond to a parity-check equation with only one

digit and are therefore not used.

Note that the coefficients λi and ρi of the degree distributions do not represent

the fraction of nodes of degree i, but the fraction of edges emanating from a node

of degree i. The fraction of variable and check nodes of degree i (V (i) and C(i)

respectively) can be calculated as

V (i) =
λi

i
∑

j≥1
λj

j

(3.12)

C(i) =
ρi

i
∑

j≥2
ρj

j

(3.13)

If we assume constant check node degree, the code can be interpreted as a

combination of codes with different rates. Variable nodes with lower degree corre-

spond to codes with higher rate and variable nodes with higher degree correspond

to codes with lower rate (see equation 3.5). Lower rate implies higher error pro-

tection. Therefore, the systematic part of the codeword should be mapped to the

better protected nodes, i.e. the nodes with a higher degree.

3.5 Basic Construction of LDPC Codes

This section is intended to provide an overview of the construction methods for

LDPC codes. After introducing the methods, simulation results for the bit error
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rate when using binary phase shift keying (BPSK) over a channel with additive

white Gaussian noise (AWGN) are presented. The simulations will use one code

with rate 0.5 and one high rate code with rate about 0.9. The decoder uses the

sum-product algorithm with a maximum number of 100 iterations.

3.5.1 Random Codes

One way of constructing LDPC codes is to use a random construction method.

The ones in the parity-check matrix are placed randomly with respect to the

constraints, e.g. constant number of ones per row and per column for a regular

code. By specifying the row and column weights, we do not specify a specific code

but a whole ensemble of codes. It is possible to provide analytical expressions

(bounds for the bit error rate, minimum distance, ...) for these ensembles, but

in practical systems and in simulations, a specific instance of the ensemble is

implemented. The concentration theorem [15] states that quantities such as the

bit error probability concentrate around the ensemble average if the block length

is large enough. In other words, the performance of instances of the ensemble is

nearly equal to the average performance over the ensemble if the block length is

sufficiently large. However, for the short block lengths (n < 1000) of interest in

this work significant differences between instances of the ensemble can be observed.

Random Edge Interleaver

The easiest way of constructing random LDPC codes is to use an edge interleaver.

The basic idea is illustrated in figure 3.2. The total number of edges e is given

by equation 3.3. By using a random interleaver of size e, the bipartite graph and

therefore the parity-check matrix of the associated LDPC code can be constructed.

The following example illustrates this construction method:

Example 2 (Construction with Random Edge Interleaver). We wish to

construct a regular LDPC code with block length 8, rate 0.5 and variable node

degree 2 using a random edge interleaver. The number of edges in the factor graph

is 8 · 2 = 16. Therefore, a random edge interleaver is needed that rearranges

the numbers from 1 to 16. The variable nodes are connected to one side of the

interleaver and the check nodes to the other side, as shown in figure 3.3. The

parity-check matrix is constructed by placing a one in the matrix for every two

nodes that are connected through the interleaver. For this example, the parity-
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Figure 3.2: Construction with edge interleaver.

check matrix can be written as

H =









0 0 0 1 0 1 1 1

0 1 1 0 ©1 0 0 1

1 0 0 1 1 0 1 0

1 1 1 0 0 1 0 0









, (3.14)

where the highlighted 1 corresponds to the connection displayed in figure 3.3.

This construction method does not ensure that there are no parallel connec-

tions between two nodes. Therefore, the number of ones in the parity-check matrix

could be smaller than desired. However, for increasing block lengths, the proba-

bility of parallel connections decreases.

The disadvantage of this construction method is that additional constraints,

like avoiding short cycles, can not be taken in account.

This method can be used for the construction of regular and irregular codes.

Constructing the Matrix by Adding Columns

This method starts with an empty parity-check matrix. A column is constructed

by randomly inserting ones into it until the desired column weight is attained. The

random number generator used is uniformly distributed over the rows (1, . . . ,m).

This procedure is repeated for every column until the complete parity-check matrix

is constructed. This method leads to the desired column weights, but the row

weights can not be controlled. For increasing block lengths, the row weights tend

to become more and more equal.
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Figure 3.3: Example for construction with edge interleaver.
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If we want to force the matrix to have a specific row weight for small block

lengths or if we want to construct codes with irregular row weights, the construc-

tion method can be improved as follows: given the block length and the column

weights, the number of ones e can be calculated as shown in equation 3.3. We

construct a vector u of size e, that acts as the supply. The elements of u contain

the row number where the corresponding one can be placed. For example, if we

want to put 5 ones in the first row, u contains a one (corresponding to the first

row) 5 times. Instead of selecting a row with the random generator directly, we

select an element u of u randomly and put a one in the row number u (if there

is already a one, we select another element from the supply). After placing the

one in the parity-check matrix, we delete the selected element u from the vector

u resulting in a new supply vector u of length e − 1. The basic principle of this

construction method is shown in figure 3.4. This method guarantees the desired

row and column weights. For very short block lengths, it may not be possible

to construct the last columns with the desired weights, but this effect can be

neglected.

This method is illustrated by the following example:

Example 3 (Construction by adding columns). We wish to construct a

regular LDPC code with block length 8, rate 0.5 and variable node degree 2 with

the proposed method. The number of edges in the factor graph is 8 · 2 = 16. These

edges have to be distributed uniformly over the rows, i.e. every row contains 4

ones. The vector u contains the row numbers where the ones have to be placed

u =
[

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
]

. (3.15)

We start with the first column and pick an element from u at random, for example

the 10th element. The value of u10 is 3 and therefore, we place a one in our current

column (column number 1) and in row number 3. We now delete the element u10.

u now contains elements for the remaining 15 ones to be placed

u =
[

1 1 1 1 2 2 2 2 3 3 3 4 4 4 4
]

. (3.16)

The column weight of the current column is equal to 1 and therefore, we have to

place another one in this column to reach the desired column weight of 2. We

randomly pick element number 13 from u and place a one in column number 1

and row number 4 (u13 = 4). After deleting the element from the vector u, we

reach the desired column weight of the first column and continue with the second

column. This procedure is repeated until all columns are constructed and the vector

u is empty.
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Figure 3.4: Random construction of parity-check matrix.
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The advantage of this method in comparison to the edge interleaver is that it

can easily be improved by adding more constraints. For example, before placing

a one in the matrix, we could check whether it creates a cycle2 of length 4. In

that case, we can simply select another element from the supply. This method

was used in the rest of this work when randomly constructed codes were required.

This method can also be used to construct irregular codes. In principle, when

constructing irregular codes, the construction could start either with the columns

with the highest degree, or with the columns with the lowest degree. At the end of

the construction, the algorithm may not be able to avoid short cycles, i.e. cycles

of length 4. The influence of a short cycle on a node of lower degree is much higher

than on a node with higher degree. For example, the worst case is a cycle of length

4 involving two variable nodes of degree 2. This case is shown in figure 3.5 and it

is obvious that the minimum distance of this code is 2 (independent of the block

length). Therefore, the construction must start with the lower degree nodes to

avoid such cycles.

Figure 3.5: Cycle of length 4 involving variable nodes of degree 2.

Simulation Results

Figure 3.6 shows the performance of randomly constructed regular codes with rate

0.5. These codes have a column weight of 3 and a row weight of 6. The simulations

show the performance in terms of bit error rate for block lengths ranging from 102

to 105. With increasing block length, the performance approaches the capacity of

the binary input AWGN (BIAWGN) channel. Note that the required computation

per digit does not increase with the block length, but the decoding delay increases

with the block length. The results show that LPDC codes become attractive for

block lengths larger than 103.

Figure 3.7 shows the same results for a code of rate 0.9. This code also has a

column weight of 3, but a row weight of 30.

2A cycle of length 4 occurs if any two columns (or rows) have more than one overlapping ones

and is therefore easy to detect.
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Figure 3.6: Regular random codes with rate 0.5.
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Figure 3.7: Regular random codes with rate 0.9.
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For irregular codes, we need to specify degree distributions. These distributions

are taken from [14]. The process of calculating these distributions used in [14] can

be summarized as follows: first, a check node degree is fixed and the degrees of

the variable nodes are optimized. Then the optimized variable node degrees are

used and the check nodes are optimized. Therefore, the degrees of the check nodes

are approximately constant in comparison to the degrees of the variable nodes. It

should be noted that the block lengths must be larger than 106 to implement these

optimized distributions. For shorter block lengths, the resulting distributions will

differ from the optimized distributions due to rounding effects.

For the code with rate 0.5, maximum variable node degrees of 11, 20 and 50 are

used for the block lengths 103, 104 and 105 respectively. The degree distributions

for these codes are given in tables 3.1 to 3.3.

After converting these distributions from the edge perspective to the node

perspective using equations 3.12 and 3.13, the degree profiles for the variable

nodes as shown in figures 3.8 to 3.10 can be drawn. For the codes of rate 0.9, a

maximum variable node degree of 11 with the degree distribution given in table 3.4

is used and the corresponding profile is shown in figure 3.11.

λ2 0.27684

λ3 0.28342

λ9 0.43974

ρ6 0.01568

ρ7 0.85244

ρ8 0.13188

Table 3.1: Degree distribution 9.
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Figure 3.8: Degree profile with maximum degree of 9.
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λ2 0.21991

λ3 0.23328

λ4 0.02058

λ6 0.08543

λ7 0.06540

λ8 0.04767

λ9 0.01912

λ19 0.08064

λ20 0.22798

ρ8 0.64854

ρ9 0.34747

ρ10 0.00399

Table 3.2: Degree distribution 20.

λ2 0.17120

λ3 0.21053

λ4 0.00273

λ7 0.00009

λ8 0.15269

λ9 0.09227

λ10 0.02802

λ15 0.01206

λ30 0.07212

λ50 0.25830

ρ9 0.33620

ρ10 0.08883

ρ11 0.57497

Table 3.3: Degree distribution 50.

λ2 0.23882

λ3 0.29515

λ4 0.03216

λ11 0.43342

ρ7 0.43011

ρ8 0.56989

Table 3.4: Degree distribution 11.
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Figure 3.9: Degree profile with maximum degree of 20.
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Figure 3.10: Degree profile with maximum degree of 50.
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Figure 3.11: Degree profile with maximum degree of 11.
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The simulation results in figure 3.12 and 3.13 show that the performance of

irregular codes is better than the performance for regular codes. For comparison

the figures also contain the results of the regular codes. The difference in required

signal to noise ratio (SNR) can be up to 0.6dB in the case of a code with rate 0.5

and block length 105. However, although the computational complexity is linear in

the block length, it is proportional to the number of messages passed in the graph

and therefore increases with growing node degrees. Therefore, the computation

time for irregular codes is higher than for regular codes.

In the simulations of regular codes, it was not possible to observe error floors

at bit error rates (BER) larger than 10−7. However, irregular codes have error

floors at BER of approximately 10−5. This indicates a small minimum distance of

irregular codes in comparison to regular codes. Therefore, irregular codes should

be combined with an outer code (for example a Reed-Solomon code) to remove

the error floor.
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Figure 3.12: Irregular random codes with rate 0.5.

As mentioned in section 3.4, the higher degree nodes are more protected than

the lower degree nodes. The following simulation uses the same irregular code with

rate 0.5 and block length 103 used above. The bit error rate for every variable

node degree (2, 3 and 9) is shown in figure 3.14. This simulation confirms the



Chapter 3 - Low-Density Parity-Check Codes 37

3 3.5 4 4.5 5 5.5 6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

BIAWGN−Bound
irregular n=103

irregular n=104

irregular n=105

regular n=103

regular n=104

regular n=105

PSfrag replacements

Eb/N0 [dB]

B
E

R

Figure 3.13: Irregular random codes with rate 0.9.

intuitive idea that irregular code provide unequal error protection. The difference

in terms of required SNR is approximately 1dB between the variable nodes of

degree 2 and degree 9 at a BER of 10−5.

3.5.2 Deterministic Codes

A disadvantage of randomly constructed codes is that they can not be described

in a simple manner. The only way of describing them is to provide the complete

parity-check matrix, which could be a disadvantage for inclusion in a standard.

Also, the encoder and the decoder have to store the complete matrix in mem-

ory which enlarges the memory requirements of the system. In contrast, codes

constructed in a deterministic way can be described by a few parameters and

the corresponding construction method. They are well suited for standardization

and the encoder and the decoder can exploit the deterministic structure to avoid

storing the complete matrix in memory.

Codes Based on Array Codes

This method has been proposed in [8] where a description of array codes can be

found. The resulting construction method is based on building the parity-check
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Figure 3.14: Bit error rates of code bits with different variable node degrees.

matrix by combining powers of a single cyclic shift matrix α of dimension p × p,

p being a prime, in the following way:

H =












I I I · · · I

I α α2 · · · αp−1

I α2 α4 · · · α2(p−1)

I
...

...
. . .

...

I αj−1 α2(j−1) · · · α(j−1)(p−1)












, (3.17)

where the number j is smaller than p. The corresponding factor graph is free of

cycles of length 4 (see [8]). The single cyclic shift matrix α with for example p = 5

is

α =











0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0











or α =











0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0











. (3.18)

The parameters of the code are related in the following way:

n = p · p (3.19)
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m = p · j (3.20)

R = 1 − m

n
= 1 − j

p
= 1 − j√

n
(3.21)

From equation 3.21, it is clear that it is not possible to choose the rate, the block

length and the column weight independently. If the rate is fixed, the column

weight increases with the square root of the block length. This is in contradiction

to the basic property of LDPC codes (the column weight is independent of the

block length). In order to fulfill this property, the column weight has to be fixed,

and the rate is an increasing function of the block length.

This construction method can be modified by shortening the code, i.e., reduc-

ing the number of horizontal repetitions, and using the following scheme:

H =












I I I · · · I

I α α2 · · · αk−1

I α2 α4 · · · α2(k−1)

I
...

...
. . .

...

I αj−1 α2(j−1) · · · α(j−1)(k−1)












, (3.22)

where k and j are smaller than p. The parameters of this shortened code are:

n = p · k (3.23)

m = p · j (3.24)

R = 1 − m

n
= 1 − j

k
(3.25)

This additional degree of freedom allows an independent choice of the rate, the

block length and the column weight. However, if the original code is shortened

by a lot, i.e., if k is much smaller than p, the performance of the resulting code

deteriorates. This is the reason why this construction method is suited only for

high rate codes at the block lengths of practical interest. Of course, this shortened

matrix is also free of cycles of length 4.

Simulation Results

Figure 3.15 shows the performance of codes constructed with the method described

without shortening. For comparison, regular randomly constructed codes of the

same block length and rate are also included in the figures. The simulations

show that the difference of the performance between deterministic and randomly

constructed codes is small (the required SNR for a given BER differs only in

fractions of dB). The parameters for the deterministic codes are given in table 3.5.
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Figure 3.15: Regular deterministic codes with rate 0.9.

Code 1 Code 2

p 37 67

j 3 5

k 37 67

n 1369 4489

Rd 0.9189 0.9254

R 0.9204 0.9263

Table 3.5: Parameters of the deterministic codes.
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3.6 Extended Construction of LDPC

In the previous section, basic construction methods for LDPC codes were intro-

duced. All these methods generate parity-check matrices with the desired column

and row weights. In addition, the randomized construction method tried to avoid

cycles of length 4 and the deterministic construction method avoids cycles of length

4 by definition. In this section, two additional construction methods will be intro-

duced. The first method is based on maximizing the cycle lengths to get better

performance of the iterative decoder. The second method creates parity-check

matrices that are suited for encoding with linear complexity.

3.6.1 Construction based on Large Girth

In the derivation of the sum-product algorithm, we saw that this decoding algo-

rithm is equivalent to the optimal MAP decoder if and only if the underlying graph

is free of cycles. The gap between the iterative decoder and the MAP decoder de-

pends on the number and on the lengths of the cycles in the graph. Therefore,

the number of cycles should be made as small as possible and the length of the

cycles should be as large as possible.

Large Girth at Construction Time

One way of constructing a parity-check matrix of a LDPC code is to build the

matrix column by column and only place ones in the matrix where the influence on

the girth is small. This algorithm—known as bit-filling-algorithm—was proposed

by Campello. In [4], the authors showed simulation results for the constructed

codes. They perform slightly better than the codes constructed in the previous

section and there is no error floor for irregular codes.

Heuristic Search for Good Codes

The concentration of specific instances around the ensemble average described in

[15] is weak for short block lengths. Therefore, it is possible to find codes that are

significantly better than the ensemble average. We can make a heuristic search

to find those codes by using a simple performance criterion [13]. To define this

criterion we need the following definitions:

Definition 9 (Local Girth). The local girth with respect to a node is the shortest

cycle in which the node is involved. If the node is not involved in a cycle, the local

girth is defined as 0.
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Definition 10 (Local Girth Average). The local girth average is the local girth

averaged over all variable nodes with local girth larger than 0.

In [13], the authors showed simulation results for codes with rate 1
3 and block

lengths of 3480 and 1268. The selected codes with the largest local girth average

performed significantly better than a randomly chosen code, especially for high

signal to noise ratio.

We constructed regular codes with rate 0.5, block length 1000 and column

weight 3 and calculated the local girth average. The histogram of the local girth

average is shown in figure 3.16. The performance of the code with the largest

and lowest local girth average is shown in figure 3.17. In contrast to [13], our

measurements show no significant difference in the performance of these two codes.
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Figure 3.16: Girth average for block length 1000.

If the block length is increased, the variance of the local girth average decreases

and the performance of different instances of the ensemble concentrates. Therefore,

this heuristic search is only useful for short block lengths (< 104).

3.6.2 Triangular Parity-Check Matrix

As mentioned in section 3.3.2, a parity-check matrix that is forced to have trian-

gular form by design allows encoding with linear complexity.
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Figure 3.17: Comparison of codes with different girth average.

It is easy to construct random codes with a triangular low-density parity-check

matrix. As mentioned in section 3.5.1, the randomized construction algorithm

can be constrained to fulfill specific restrictions on the positions of the ones in the

matrix. The restriction in this case is simply to avoid placing a one in the lower

triangular part of the parity-check matrix. This restriction can be written as

H ij = 0 for j < i. (3.26)

One way of constructing deterministic codes with a triangular parity-check

matrix is proposed in [5]. The parity-check matrix H is a shifted version of the

matrix shown in equation 3.22

H =












I I I · · · I I · · · I

0 I α · · · α(j−2) α(j−1) · · · α(k−2)

0 0 I · · · α2(j−3) α2(j−2) · · · α2(k−1)

...
...

...
. . .

...
... · · · ...

0 0 · · · 0 I α(j−1) · · · α(j−1)(k−j)












, (3.27)

where the parameters have the same meaning as in section 3.5.2.

Our simulation results show that the performance of these modified randomly

and deterministic constructed codes is nearly equal to the performance of the
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non-triangular codes. The influence of the lower triangular part of the matrix is

negligible, especially if the rate of the code is high.

3.7 Comparison of LDPC Codes with Turbo Codes

Besides LDPC codes, there is another popular family of codes that can be decoded

iteratively—turbo codes. Turbo codes are parallel concatenated, recursive system-

atic convolutional (RSC) codes that were introduced in [3]. The encoder of a turbo

code is shown in figure 3.18. The parity digits p1 and p2 are calculated using the

original information vector u and an interleaved version ũ respectively. In this

configuration the turbo code has a rate of 1
3 . The rate of the code can be increased

by puncturing but this is not considered in this work. Therefore, all codes used

in this comparison are of rate 1
3 . The decoder shown in figure 3.19 consists of

two MAP decoders (implemented using the BCJR algorithm [2]) and the required

deinterleaving and interleaving. The extrinsic output of one component decoder

is interleaved and fed into the other component decoder as a-priori information.

After a fixed number of iterations, the decoder calculates a hard decision of the

estimated information vector. One iteration of the decoder requires two uses of

the BCJR algorithm in the component decoders.

It is hard to make a fair comparison between the computational complexity

of a turbo decoder and a LDPC decoder. Several simplified algorithms for the

BCJR decoder and for the LDPC decoder have been proposed. These algorithms

have very different computational complexity. For a fair comparison, system pa-

rameters like BER at given SNR and maximum delay have to be considered. The

computation of one bit in the BCJR algorithm requires the calculation of the

transition probabilities and the values of the forward and backward recursion. In

comparison, the calculation at a variable node of the LDPC decoder requires only

the summation of the incoming messages and the computation at the check nodes

can be implemented efficiently too.

The difference in the performance between LDPC codes and turbo codes is

very small. For short block lengths, turbo codes perform slightly better but with

increasing block lengths, LDPC codes have a better performance. The simulation

results shown in figure 3.20 show a turbo code with two RSC encoders as shown

in figure 3.21 with a random interleaver and irregular LDPC codes. The turbo

decoder uses a maximum of 10 iterations.
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Figure 3.18: Turbo encoder.
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Figure 3.19: Turbo decoder.
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Figure 3.20: Comparison of Turbo codes and LDPC codes.
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Figure 3.21: RSC encoder.
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3.8 Conclusion

As a criterion for comparing codes, the gap of the bit error rate compared to

channel capacity was used at a bit error rate of 10−5. The results for the codes of

rate 0.5 are shown in table 3.6. These for the codes of rate about 0.9 are shown

in table 3.7.

n random regular random irregular

102 5

103 2.4 2.7

104 1.3 1.1

105 1 0.4

Table 3.6: Gap to capacity in dB for LDPC codes with rate 0.5.

n random regular random irregular deterministic regular

102 4.1

103 1.7 1.7 1.6 (n = 1369)

104 0.9 0.8

105 0.6 0.4

Table 3.7: Gap to capacity in dB for LDPC codes with rate 0.9.

These results show that LDPC codes are useful if the block length is larger

than or equal to 103. Although irregular codes have an asymptotically better

performance than regular codes, they exhibit error floors at block lengths smaller

than 104. Therefore, they have to be combined with outer codes to remove the

error floors. The higher computational complexity of irregular codes should also

be taken into account when comparing these codes.

Deterministically constructed codes are of practical interest if the rate of the

code is high. Shortening the code results in a worse performance. However, for

applications that require high rates, codes constructed with a deterministic algo-

rithm have remarkable advantages (standardization, lower memory requirements)

in comparison with randomly constructed codes.



Chapter 4

Convergence of the Decoding

Process

This chapter deals with the convergence of the sum-product algorithm. The first

section introduces a tool developed in [17] for analyzing the asymptotic case of

infinite block lengths. This tool allows the prediction of the convergence in a

graphical way by observing extrinsic information. It is called extrinsic information

transfer (EXIT) chart.

After the case of infinite block lengths, the convergence behavior of the sum-

product algorithm for finite block lengths is investigated. For this case, an analysis

method based on animations was developed within this project. The method

allows to identify errors of three types, only one of which is specific to codes of

finite block length.

The last part of this chapter deals with the required number of iterations.

4.1 Iterative Decoding of Concatenated Codes

For simplification, the focus will be laid on concatenated systems with two com-

ponent decoders. Of course, the principle can be extended to more than two

component decoders. Figure 4.1 shows the block diagram of this system. The

vector y is the received signal given by

y = x + z, (4.1)

where x is the transmitted signal (the codeword in our case) and z is a noise

vector. The received signal is fed to both decoders1, where the path to the second

decoder is usually interleaved. The output of the first decoder v is also interleaved

1The first decoder could be replaced by a detector to achieve iterative detection and decoding.
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and connected to the second decoder2. To continue the iterative process, the

deinterleaved output of the second decoder w is fed back to the first decoder.

Every decoder has two inputs: one for the signals coming from the channel and the

other one for the messages coming from previous used decoders carrying some new

a-priori information. Every decoder combines these two sources of information to

calculate output messages. These messages are fed into the other decoder.

I(2)
e

Deinter-

v

w

ṽ

w̃

Decoder 1 Interleaver Decoder 2

leaver

y Interleaver ỹ

Iy

I(1)
a I(1)

e I(2)
a

Figure 4.1: General structure of an iterative decoder.

The evolution of the vector valued quantities v, w and y would be too com-

plicated to compute. Therefore, we simplify this problem by observing scalar

quantities that are derived from these vectors. These scalar quantities are the

averaged mutual information between the elements of the vectors v, w and y and

the transmitted vector x calculated as:

I(1)
a = I(2)

e =
I(x;w)

n
, (4.2)

I(1)
e = I(2)

a =
I(x;v)

n
, (4.3)

Iy =
I(x;y)

n
, (4.4)

where n is the length of the vectors. The subscripts indicate extrinsic information,

a-priori information and channel values and the superscripts indicate the decoder.

The mutual information between the output of a decoder and the transmitted

codeword is equal to the mutual information between the input of the other de-

coder and the transmitted codeword because rearranging the components of the

vectors in the interleavers does not change the mutual information.

With this simplification to the scalar case, each decoder can be described by

the function

Ie = f(Ia, Iy). (4.5)

2The interleaved quantities are denoted by ṽ, w̃ and ỹ.
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An example of this function is shown in figure 4.2. A binary alphabet is assumed

and therefore, the mutual information is at most one. If we do not provide any a-

priori information (Ia = 0), the decoder calculates extrinsic information based on

the received vector from the channel. Therefore, the left point of the curve changes

according to Iy. With increasing a-priori information the extrinsic information

increases. If the decoder has perfect a-priori information Ia = 1, the output of the

decoder will also contain no uncertainty about the transmitted codeword.

Iy

1

1

Ie

Ia

Figure 4.2: Performance of one decoder.

Such a function can be calculated and be drawn for every decoder. In our

iterative system, the output of the first decoder is fed to the second decoder

and vice versa. Therefore, we can combine these two performance functions and

plot them in one figure, where the input/output axes are swapped for the second

decoder (the output of one decoder is the input of the other decoder). This

representation (EXIT-chart) is depicted in figure 4.3, where two identical decoders

are assumed. This assumption leads to curves that are symmetrical with respect

to the diagonal line.

Figure 4.3 can be used to illustrate the iterative decoding process. In the first

iteration, the first decoder has no a-priori information from the second decoder

(I
(1)
a = 0) and its output messages v carry the information received from the

channel (I
(1)
e = Iy). The messages v are interleaved and passed to the input of the

second decoder. The second decoder uses the information provided by ṽ (I
(2)
a ) as

a-priori information and calculates output messages w̃ carrying information I
(2)
e .

These messages are deinterleaved and fed back to the input of the first decoder,

where the iterative process starts again. The trajectories of this iterative process

are shown in figure 4.4, where the blue steps are performed by the first decoder and
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Iy

1

1

I(1)
e = f(I(1)

a , Iy)

I(2)
e = f(I(2)

a , Iy)

I(1)
e

I(1)
a

I(2)
a

I(2)
e

Iy

Figure 4.3: EXIT chart.

the red steps by the second decoder. From this analysis, we can observe that the

iterative decoding process converges to the point in the top right corner and this

point of convergence is the desired point where we have no remaining uncertainty

about the transmitted codeword.

convergence point

1

1

I(1)
e

I(1)
a

I(2)
a

I(2)
e

Iy

Iy

Figure 4.4: Trajectories of an iterative system.

If we use the same decoders as in the previous case but we decrease the in-

formation that is received by the channel (by increasing the noise level of the

channel), the two curves will eventually intersect. In this case, the decoder also
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converges, but this convergence point is not the top right corner. This case is

shown in figure 4.5.

convergence point

I(1)
e

I(1)
a

I(2)
a

I(2)
e

1

1

Iy

Iy

Figure 4.5: Convergence to an undesired point.

If the extrinsic information of each decoder is a monotone increasing function of

its a-priori information, it is evident that the iterative system always converges. If

the two curves do not intersect, the point of convergence is the top right corner and

the decoder is able to successively recover the transmitted codeword. In the case

of intersecting curves, the decoder is not able to decode the transmitted codeword

and there will be uncertainty left after the decoding process has converged.

4.2 EXIT charts for LDPC codes

This section uses EXIT charts to describe the convergence of LDPC codes. The

iterative LDPC decoder (sum-product algorithm) can be represented as the system

shown in figure 4.6. The first decoder represents the operations performed at the

variable nodes and the second decoder represents the operations performed at the

check nodes3. Note that the check node decoder is not connected to the channel.

Therefore, the extrinsic information of the second decoder depends only on its

a-priori information and not on the received vector from the channel.

In the case of the iterative decoder for LDPC codes, the two component de-

coders (variable and check node decoder) are not identical. Therefore, the two

curves are not symmetrical with respect to the diagonal line. An example of an

3Compare this with the construction method using the edge interleaver in section 3.5.1
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leaver

v

w

ṽ

w̃

y

Iy

I(1)
a I(1)

e I(2)
a I(2)

e

node
check

node Interleaver

Deinter-

Decoder Decoder

variable

Figure 4.6: Iterative LDPC decoder.

EXIT-chart for a LDPC decoder is shown in figure 4.7. For the binary erasure

channel, these two functions can be calculated in closed form. For other chan-

nels like the AWGN channel, the functions have to be calculated numerically. A

description of calculating these functions can be found for example in [18]. In

this work, EXIT charts are only used to illustrate the convergence behavior and

therefore, the calculation of EXIT charts will not be treated.

Iy

1

1

I(1)
e

I(1)
a

I(2)
a

I(2)
e

variable node decoder

check node decoder

Figure 4.7: EXIT-chart for a LDPC decoder.

The curve for the check node decoder (red) starts at the origin. The check node

decoder is not able to provide extrinsic information if no a-priori information is

provided. This is because it is not connected to the channel output and therefore,

the a-priori messages are the only sources of information for the check node de-

coder. The curve of the check node decoder is below the diagonal (note that the

axes are swapped for this decoder), meaning that the mutual information between

the outgoing messages and the transmitted codeword is smaller than the mutual

information between the incoming messages and the transmitted codeword. This
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is in fact a bad decoder, but its performance is sufficient for the iterative process.

The performance curves depend on the type of channel, the mutual information

between the received vector and the transmitted codeword and on the decoding

algorithm used. For a given type of channel and decoding algorithm, the curve

of the variable node decoder varies with the mutual information Iy (the variable

node decoder is connected to the channel) but the curve for the check node decoder

remains unchanged because this decoder is independent of the channel output. If

Iy is decreased (for example by increasing the noise on an AWGN channel), the

left point of the variable node decoder curve shifts down and the space between

the two curves becomes smaller. If the two curves intersect, the iterative decoding

process stops at the crossover point as shown in figure 4.8.

Iy

1

1

I(1)
e

I(1)
a

I(2)
a

I(2)
e

Figure 4.8: EXIT-chart for a LDPC decoder with intersecting curves.

It should be noted that EXIT charts can be used to design the degree distribu-

tions for irregular LDPC codes. The trick is to shape the variable node curve to

closest match the check node curve for a given channel. This topic is not treated

in this work. Details on the design can be found in [1].

The results of this section can be summarized as follows:

• The iterative decoding process is guaranteed to converge to the intersection

point of the two transfer curves in the EXIT chart (which could be the at

the top right corner of the EXIT chart).

• If the curves of the decoder do not intersect, no uncertainty about the trans-

mitted codeword is left at the convergence point.
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• The number of required iterations to reach the convergence point is high if

the curves are very close.

• If the curves intersect, the decoder is not able to remove all uncertainty.

These results are only valid for the case of cycle free graphs. The reason for

this is that the variable node decoder only calculates true extrinsic information

if the the factor graph can be drawn as a tree. The case of a cycle free graph is

equivalent with infinite block lengths as the probability of a cycle decreases with

increasing block length. The following section treats the case of codes with finite

block length, i.e. a corresponding factor graph that contains cycles.

4.3 Visualization of the Decoding Process

In contrast to the previous section, where the behavior of LDPC codes for infinite

block length is analyzed, in this section the decoding process of instances of finite

length LDPC codes is investigated. The block lengths used in this work are in

the order of 103 to 104, which are suitable for practical applications like digital

subscriber lines.

The analysis should not only provide an insight into the behavior of the iter-

ative decoder, but it should also help to investigate errors that occur in iterative

decoding. With these results, it should be possible to define additional guide-

lines for code construction and to further improve LDPC codes and the decoding

algorithm.

The iterative decoder works by passing messages between variable nodes and

check nodes of the factor graph that is associated with the LDPC code. After

every iteration, a current estimate of the LLR values for every variable node can

be calculated. These estimates are plotted and merged into a computer animation.

The components of this visualization are shown in figure 4.9. The main lower plot

shows the LLR values of every digit of the codeword (every variable node). After

every iteration, new values are drawn in this diagram. This allows the observation

of every digit of the codeword. The upper left plot shows the magnitude of the

LLR values averaged over the digits of the codeword which corresponds to the

average reliability of the decisions. In addition, the upper right plot shows the

number of bit errors over the number of iterations.

The all-zero codeword is always transmitted. This is justifiable if the following

properties are fulfilled:

• The code is linear and therefore, every codeword has the same properties.
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• The channel is output symmetric.

• The decoder is symmetric.

The first two requirements are fulfilled by LDPC codes and an AWGN channel

with binary input. The last requirement is fulfilled by the sum-product algorithm.

Since we always transmit the all-zero codeword, a positive LLR value corresponds

to a correct decision and a negative LLR value indicates a bit error.
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Figure 4.9: Visualization of the decoding process.

In this report screenshots of the animations are provided. The animations are

available on the web (http://ldpc.gottfriedlechner.com).

4.3.1 Regular Codes

The first codes that we analyzed are regular codes. Because of the constant

variable node degree, it is expected that the behavior is equal for every digit

of the codeword. If we ignore the influence of cycles, we would expect that the

LLR values converge to the true a-posteriori LLRs. The parameters of the code

used for the simulation are shown in table 4.1 and the screenshots of the animation

are shown in figure 4.10.

In the last figure, we see that the LLR values of the digits tend to infinity

(the ceiling in the figure is caused by numerical limitations of the simulation

environment). It is evident that these values can not be the true a-posteriori
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Figure 4.10: Visualization of successful decoding of a regular code.
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parameter value

N 1,000

M 500

R 0.5

dv 3

dc 6

Table 4.1: Parameters for regular code.

LLRs (in the presence of noise, the MAP decoder will always provide finite LLR

values). The reason for this behavior is the presence of cycles in the graph. They

cause incoming messages to the variable nodes to be correlated. This violates the

assumption of the sum-product algorithm and leads to infinite LLR values. The

fact that every variable node tends to infinity leads to the conclusion that every

node is involved in a cycle.

In practice, we are only interested in the sign of the LLR values and therefore,

this effect does not influence the performance of the decoder.

4.3.2 Irregular Codes

One idea of allowing irregular column weight distributions is that higher degree

nodes should converge faster (because they receive many messages from the check

nodes carrying extrinsic information). These nodes can provide reliable informa-

tion for the lower degree nodes. This intuitive idea is verified by observing the

decoding process of an irregular LDPC code. An irregular code with parame-

ters shown in table 4.2 and a degree profile shown in figure 4.11 is simulated.

Screenshots of the animation are provided in figure 4.12.

parameter value

N 1,000

M 500

R 0.5

dv 2 . . . 9

dc 6

Table 4.2: Parameters for irregular code.

The animation confirms the intuitive considerations. The higher degree nodes

(on the right side of the codeword) converge much faster than the lower degree
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Figure 4.11: Degree profile of the irregular code.

nodes. Note that the degree profile can be recognized in the last screenshot. As

in the case of regular LDPC codes, the LLR values tend to infinity if the number

of iterations is increased.

4.3.3 Decoding Errors

In the previous sections, successful decoding of regular and irregular codes was

simulated. However, the major application of the visualization is the analysis of

decoding errors. The observed errors can be separated into three different types:

• Error Type I—Convergence to a vector that is not a codeword

This decoding error is shown in figure 4.13. After approximately 50 itera-

tions, the LLR values do not change and therefore, the decoder converges.

If a hard decision of the LLR values is made, the resulting vector is not a

codeword. The number of bit errors is high. This corresponds to intersecting

decoder curves in EXIT charts. This type of error can easily be detected by

calculating the syndrome.

• Error Type II—Oscillation of the decoder

The oscillation of the decoder is shown in figure 4.14. The decoder is able

to correct most of the bit errors, but is not able to converge to a codeword.

Instead, the decoder starts to oscillate and the number of bit errors increases

again. This oscillation does not stop. By observing the averaged magnitudes

of the LLR values, this type of error can be detected. The observation of

the averaged magnitudes can further be used to define a stopping criterion.

This enables the decoder to minimize the number of bit errors for this type

of error. This behavior can not be explained with EXIT charts.
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Figure 4.12: Visualization of successful decoding of an irregular code.
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• Error Type III—Convergence to a wrong codeword

This error is shown in figure 4.15. The probability for this type of error is

high if the minimum distance of the code is small. From the decoder’s point

of view, the decoding process was successful, but the decoded codeword is

not equal to the transmitted one. In most cases the decoded codeword was

in fact the most likely codeword. This is a weakness of the code—improving

the decoding procedure can not avoid this type of error. In the EXIT chart,

this would correspond to non-intersecting curves. This case is similar to the

case of successful decoding. The decoder is not able to detect this type of

error.

Simulations showed that one type of errors dominates in different SNR re-

gions. At low SNR values, the convergence to a vector that is no codeword is the

dominating type. At high SNR values, the convergence to a wrong codeword is

the error that was observed in general (most of the times, the decoder worked

successfully of course). Between these two regions—in the so called ’waterfall’

region—the oscillation of the decoder is the dominating type of error.

The optimal MAP decoder has only two types of error. Either the MAP

solution corresponds to a codeword (although it could be different from the trans-

mitted one) or it corresponds to a vector that is not a codeword. Therefore, the

additional type of error observed for the iterative decoder (oscillations) determines

the gap between the performance of iterative decoding and MAP decoding.

Figure 4.16 shows the block error rate for a regular LDPC code of rate 0.5

and block length 100 (the block length is very short to demonstrate the effects.).

This block error rate is decomposed into the three types of error4. Also shown in

the figure is the Gallager bound on the block error rate. It is very close to the

convergence to a vector that is no codeword. This confirms the assumption that

the gap between optimal MAP decoding and iterative decoding is determined by

the oscillations of the decoder. Increasing the block length leads to a larger mini-

mum distance and therefore, the probability of convergence to a wrong codeword

decreases. Furthermore, the performance of the code (in terms of gap to capacity)

increases, i.e. the curves get steeper. This is shown in figure 4.17 where the block

length is increased to 500. We were not able to observe errors of type III for this

block length. The performance of the code in the waterfall region is dominated

by the oscillations of the decoder.

4It should be noted that the error types I and II are usually mixed and the classification

depends on a decision threshold. Changing this threshold results only in a shift of the curves.
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Figure 4.13: Convergence to a vector that is not a codeword.
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Figure 4.14: Oscillation of the decoder.
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Figure 4.15: Convergence to a wrong codeword.
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Figure 4.16: Error types at different SNR values for n=100.
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Figure 4.17: Error types at different SNR values for n=500.
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4.4 Number of Required Iterations

In practical applications where the maximum decoding delay is an important pa-

rameter, the maximum number of iterations of the iterative decoder is limited.

Figure 4.18 shows histograms of the required number of iterations when the de-

coder was able to decode the transmitted codeword. In this simulation, the de-

coder stops if it detected a valid codeword, i.e. the decoder has to calculate the

syndrome after every iteration. The code used for this simulation was a regular

LDPC code with block length n = 1000, rate R = 0.5 and a variable node degree

of 3.
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Figure 4.18: Number of iterations for successful decoding.

The mean of the required number of iterations decreases with increasing SNR

and the variance of the distribution decreases too. Figure 4.19 shows the aver-

age number of required iterations (fur successful decoding) for varying SNR and

varying maximum number of iterations.

This simulation and the histograms of the required number of iterations could

lead one to conclude that reducing the number of maximum iterations should not

influence the performance at high SNR because the histogram is concentrated at

a low number of iterations. To test this assumption, the BER and the block error

rate of this code for different numbers of maximum iterations were simulated.
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The BER of this simulation is shown in figure 4.20 and the block error rate in

figure 4.21.
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Figure 4.19: Mean value of required iterations.

This simulation showed that contradictionary to the assumption made from

observing the histograms, the bit and block error rates increase at high SNR if

the number of maximum iterations is reduced. There is a significant difference

between the simulation results—the required SNR for a BER of 10−5 increases by

0.5dB if the maximum number of iterations is reduced from 100 to 10. Although

the majority of blocks is successfully decoded after a few iterations, there are a

lot of blocks that require a high number of iterations for successful decoding.

The required average computation time at high SNR does not increase if the

maximum number of iterations is increased (at 3dB the average number of itera-

tions is approximately 5 and independent of the maximum number of iterations

as shown in figure 4.19). However, while the average computation time is not

increased, some blocks utilize the high maximum number of iterations and need

much more computation time. This results in a large delay jitter. Whether this

jitter can be tolerated depends on the application.
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Figure 4.20: BER for different number of maximum iterations.
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Figure 4.21: Block error rate for different number of maximum iterations.
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4.5 Conclusion

In this section, the convergence behavior of the sum-product algorithm for LDPC

codes with infinite and finite block lengths was analyzed. The results can be

summarized as follows:

• For infinite block lengths, EXIT charts are a useful tool to predict the be-

havior of the iterative decoder and to determine the number of required

iterations.

• For finite block lengths, EXIT charts can be used to determine the averaged

convergence behavior, but a specific decoding process can differ from the

average behavior.

• An additional type or error—oscillations of the decoder—was discovered for

short block lengths that determines the performance of the system in the

waterfall area. This type of error can not be explained by EXIT charts.

• This additional type of error can be detected by the decoder by observing the

averaged magnitudes of the LLR values—a quantity that can be calculated at

a negligible computational cost. Further work should be invested to exploit

this knowledge at the decoder to improve the performance of the system.

• If the application allows a delay jitter, the maximum allowed number of it-

erations can be made large, resulting in an improved performance. If the

decoder checks for a codeword after every iteration (by calculating the syn-

drome) the increased computational complexity is small because the aver-

aged number of iterations is nearly independent of the maximum number of

iterations if the SNR is sufficiently large.
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Conclusion

Several construction methods for LDPC codes were investigated. The focus was

on codes with block lengths in the order of 103 to 104 which are suitable for

many applications. Simulations of randomly constructed codes showed that the

performance of LDPC codes—in terms of required SNR for a desired bit error

rate—is attractive if the block length of the code is larger than 103.

For block lengths larger than 104, the required SNR can further be reduced

by using irregular codes. However, for irregular codes an error floor was observed

that has to be eliminated by concatenating these codes for example with an outer

Reed Solomon code.

Codes constructed in a deterministic way were compared with randomly con-

structed codes. They perform as well as randomly constructed codes if the rate

of the code is high. The advantage of deterministically constructed codes is that

they can be described by few parameters and are therefore well suited for stan-

dardization. In addition, the structure of the deterministically constructed codes

can be exploited by the encoder and the decoder to reduce the required memory

when implementing these codes.

It was shown that encoding can also be performed with computational com-

plexity that is linear in the block length if a further constraint—a parity-check

matrix in triangular form—is introduced. The influence of this constraint on the

performance of the code is small.

A comparison of LDPC codes with Turbo codes with the same block lengths

showed that the coding gains of these two families are comparable. The advantage

of LDPC codes is that they can be designed more flexibly, i.e. they can be con-

structed for any block length and any rate and they can be optimized for systems

that work iteratively over the detection and decoding process.

We presented EXIT charts, which are well suited to predict the convergence
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of the iterative LDPC decoder if the block length is sufficiently large. We further

analyzed the convergence behavior of the LDPC decoder when decoding LDPC

codes with finite block lengths. The decoding process for finite block lengths

was visualized by computer animations and we identified three different types of

errors. Two types of errors were already known and appear also in the case of

infinite block lengths. For finite block lengths, we observed an additional type of

error that determines the performance of the code in the waterfall region. Further

work is planned to analyze this type of error and to improve code design and the

decoding algorithm for finite length LDPC codes.

Finally, the required number of iterations was investigated. It was shown

that in most cases, the decoder converges to the transmitted codeword after a few

iterations if the SNR is sufficiently large. However, the required SNR for achieving

a given bit error rate can be reduced significantly if the number of iterations is

increased. The average computation time can be kept small by introducing a

stopping criterion (calculation of the syndrome) but the application has to tolerate

a large delay jitter.



Appendix A

Calculation of the Gallager

Bound

The Gallager bound used in chapter 4 claims the existence of a block code with

block length n and rate R = k
n

with a block error probability

Pblockerror < 2−n·Er(R), (A.1)

where Er(R) is the error exponent which is determined by the rate and by the

channel only. For a channel with discrete input and continuous output, the error

exponent can be written as [9]

Er(R) = max
0≤s≤1

max
Px



−sR − log2

∫

Aout




∑

x∈Ain

P (x) · P (y|x)
1

1+s





1+s

dy



 . (A.2)

For symmetric channels with discrete input, it is known that the input distribution

Px that maximizes the error exponent is the uniform distribution. The distribution

for the AWGN channel with binary input that maximizes equation A.2 is therefore

P (0) = P (1) =
1

2
. (A.3)

The output alphabet for this channel is Aout =
�

. Inserting the input distribution,

the output alphabet and the Gaussian probability density function in equation A.2

leads to

Er(R) = max
0≤s≤1

[

−sR − log2

∫ ∞

−∞

1√
2πσ2

· e−
y2+1

2σ2 ·
(

cosh
y

σ2(1 + s)

)1+s

dy

]

,

(A.4)

where σ2 is the noise variance of the channel and an input alphabet Ain =

{+1,−1} is assumed.



Chapter A - Calculation of the Gallager Bound 73

This equation can be evaluated by numerical integration. An example for

σ2 = 0.5 is shown in figure A.1. The capacity of this channel can be calculated as

C = 0.72. For rates larger than the capacity, the error exponent is zero as shown

in the figure.
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Figure A.1: Error exponent for a binary input AWGN channel with σ2 = 0.5.

For a given rate R and block length n, the Gallager bound can be calculated

using equation A.1 and equation A.4.



Bibliography

[1] A. Ashikhmin, G. Kramer, and S. ten Brink. Extrinsic information transfer

functions: a model and two properties. In Proc. 2002 Conference Information

Sciences and Systems, Princeton, USA, 2002.

[2] L. R. Bahl, F. Jelinek, J. Cocke, and J. Raviv. Optimal decoding of linear

codes for minimizing symbol error rate. IEEE Transactions on Information

Theory, pages 284–287, March 1974.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo-codes. In Proc. 1993 IEEE Inter-

national Conference on Communications, Geneva, Switzerland, pages 1064–

1070, 1993.

[4] J. Campello and D.S. Modha. Extended bit-filling and LDPC code design.

In Proc. 2001 IEEE Globecom Conference, 2001.

[5] E. Eleftheriou and S. Olcer. Low-density parity-check codes for digital sub-

scriber lines. In Proc. 2002 IEEE International Conference on Communica-

tions, pages 1752–1757, 2002.

[6] K. Engdahl. Analysis of some convolutional coding constructions. PhD thesis,

Dept. of Information Technology, Lund University, June 2002.

[7] T. Etzion, A. Trachtenberg, and A. Vardy. Which codes have cycle-free

tanner graphs? IEEE Transactions on Information Theory, 45(6):2173–2180,

September 1999.

[8] J.L. Fan. Array codes as low-density parity-check codes. In 2nd International

Symposium on Turbo Codes and Related Topics, Brest, France, 2000.

[9] Bernd Friedrichs. Kanalcodierung. Springer, 1995.

[10] R.G. Gallager. Low density parity check codes. IRE Transactions on Infor-

mation Theory, IT-8:21–28, Jan 1962.



BIBLIOGRAPHY 75

[11] R.G. Gallager. Low Density Parity Check Codes. Number 21 in Research

monograph series. MIT Press, Cambridge, Mass., 1963.

[12] F. R. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498–

519, 2001.

[13] Y. Mao and A.H. Banihashemi. A heuristic search for good low-density parity-

check codes as short block lengths. In Proc. 2001 IEEE International Con-

ference on Communications, pages 41–44, 2001.

[14] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-

approaching irregular low-density parity-check codes. IEEE Transactions on

Information Theory, 47:619–637, Feb 2001.

[15] T. Richardson and R. Urbanke. The capacity of low-density parity-check

codes under message-passing decoding. IEEE Transactions on Information

Theory, 47, 2001.

[16] C.E. Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 27:379–423 and 623–656, July and October 1948.

[17] S. ten Brink. Convergence of iterative decoding. Electronic Letters,

35(10):806–808, May 1999.

[18] S. ten Brink, G. Kramer, and A. Ashikhmin. Design of low-density parity-

check codes for multi-input multi-output channels. In Proc. 2002 Conference

on Communication, Control and Computation, Allerton, USA, 2002.


