
DISSERTATION

Fault-Tolerant Clock Synchronization
for Embedded Distributed

Multi-Cluster Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

O.Univ.-Prof. Dr.phil. Hermann Kopetz

Institut für Technische Informatik 182

eingereicht an der Technischen Universität Wien,
Fakultät für Technische Naturwissenschaften und Informatik

von

Michael Paulitsch

Matr.-Nr. 9326621

St. Martiner Weg 14, 9210 Pörtschach, Austria

Wien, im September 2002 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Fault-Tolerant Clock Synchronization
for Embedded Distributed

Multi-Cluster Systems

Embedded computer control systems become more and more common for dif-
ferent functional tasks in cars, airplanes, and factory automation systems. In
addition, systems for different functional tasks become interconnected and
system functions more integrated. As a consequence, these systems become
larger and more complex. Multi-cluster systems are a way to structure lar-
ge distributed systems to manage complexity and overcome communication
bandwidth limitations. A cluster is a system where nodes are tightly coupled
and are connected via direct communication links. Nodes of different clusters
are loosely coupled and are connected via special nodes that connect two
clusters, so-called gateway nodes.

In distributed control systems, a common notion of time of all nodes is
fundamental for control, because it allows a consistent system view of dy-
namic environments and supports meaningful exchange of time-related data
between clusters. This thesis presents a clock synchronization algorithm for
multi-cluster systems that is especially suited for embedded control systems.
The requirements of embedded systems are addressed by supporting increa-
sed dependability necessities and decreased computing resources of embedded
systems compared to desktop computer systems. Furthermore, the algorithm
assures the composability of the cluster time bases, that is the precision of
clusters is not worsened when several clusters are connected and synchronized.

By addressing systematic and stochastic errors of cluster times differently,
the influence of systematic errors is eliminated and the quality of synchro-
nization only depends on stochastic errors. Since systematic errors of cluster
times are usually an order of magnitude larger than stochastic errors for ty-
pical real-time embedded control systems, the presented algorithm achieves a
significant improvement to known synchronization algorithms.

An implementation of the proposed clock synchronization algorithm on top
of the Time-Triggered Architecture and experiments show that clock synchro-
nization of nodes of multi-cluster systems can be achieved with an accuracy
of less than one microsecond.

i

Fehlertolerante Uhrensynchronisation
für eingebettete verteilte
Multi-Cluster-Systeme

Eingebettete rechnergestützte Steuerungssysteme werden immer verbreiteter für
verschiedene Aufgaben in Autos, Flugzeugen oder Automatisierungssystemen
eingesetzt. Der Trend geht dahin, die unterschiedlichen Systeme zu vernetzen
und mehr Funktionen zu integrieren. Als Konsequenz werden solche Systeme auf-
wendiger und komplizierter. Multi-Cluster-Systeme sind ein Ansatz zur Struktu-
rierung von großen verteilten Systemen, um die Komplexität beherrschen und die
Bandbreitenlimitierung bewältigen zu können. Ein Cluster ist ein System, dessen
Rechenknoten eng gekoppelt und direkt kommunizieren können. Rechenknoten
von verschiedenen Clustern sind lose gekoppelt und können nur über sogenannte
Gateways miteinander kommunizieren. Gateways sind spezielle Rechenknoten,
die zwei Kommunikationssysteme miteinander verbinden.

Ein gemeinsamer Zeitbegriff ist für die koordinierte Steuerung in verteilten
Steuerungssystemen notwendig, weil ein gemeinsamer Zeitbegriff eine konsisten-
te Systemsicht erlaubt und den sinnvollen Datenaustausch von zeitabhängigen
Variablen ermöglicht. Diese Arbeit präsentiert einen Uhrensynchronisationsalgo-
rithmus für Multi-Cluster-Systeme, der für den Einsatz in eingebetteten Syste-
men geeignet ist. Die Anforderungen an eingebettete Systeme sind vor allem ho-
he Zuverlässigkeit und geringer Ressourcen-Gebrauch im Vergleich zu Desktop-
Computersystemen. Der vorgestellte Algorithmus erreicht die Integration von
Zeitbasen von Clustern, wobei die Präzision von Zeitbasen der Cluster durch die
Integration von mehreren Clustern nicht verschlechtert wird.

Systematische Uhrenfehler beeinflussen die Synchronisationsqualität nicht,
weil systematische und stochastische Uhrenfehler unterschiedlich behandelt wer-
den. Da systematische Uhrenfehler meist eine Zehnerpotenz größer als stochasti-
sche sind, erreicht der Algorithmus eine signifikante Verbesserung in der Synchro-
nisationsqualität verglichen mit bekannten Uhrensynchronisationsalgorithmen.

Eine Implementierung des Uhrensynchronisationsalgorithmus unter Verwen-
dung der Time-Triggered Architecture sowie Experimente zeigen, dass Uhren von
Rechenknoten verschiedener Cluster mit einer Präzisionsgenauigkeit, die kleiner
als eine Mikrosekunde ist, erreicht werden kann.

ii

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Structure of the Thesis . 2

2 Concept and Terms 5

2.1 Distributed Systems . 5

2.1.1 Dependability in Distributed Systems 10

2.1.2 Aspects of Distributed Systems 20

2.1.3 Types of Distributed Systems 22

2.2 Clocks, Time, and Clock Synchronization 26

2.2.1 Concepts of Clocks . 26

2.2.2 Clock Synchronization 29

2.2.3 Time Standards and Sources 35

2.2.4 Time Aspects from an Application-Specific View 37

2.3 Time-Triggered Architecture . 39

2.4 Summary . 42

3 Problem Statement and Objectives 45

3.1 Problem Statement . 45

3.2 Objectives . 46

3.3 Summary . 48

4 Framework and Assumptions 49

4.1 Framework . 49

4.1.1 Flow of Timing Information 51

4.2 Architecture of One Cluster . 53

4.3 Requirements . 54

iii

4.3.1 Communication System Requirements 54

4.3.2 Synchronization-Related Requirements 54

4.3.3 Tolerance to Faulty Relational Clock Times 55

4.3.4 Requirements Regarding the Drift Rate and Correction
of the Global Time of a Cluster 56

4.4 Summary . 57

5 Multi-Cluster Clock Synchronization 59

5.1 Principle of Operation . 60

5.2 Analysis of Synchronization . 64

5.2.1 Maximum Drift and Correction Rates 65

5.2.2 Compensation of Systematic Part of the Drift Rate . . . 65

5.3 Non-Interference . 68

5.3.1 Consistent Agreement on One Correction Value 68

5.3.2 Correction Does not Interfere with Precision 69

5.3.3 Remaining Influence Due to Imperfect Synchronization . 70

5.4 Self-Stabilization . 71

5.5 Resource Requirements . 73

5.6 Discussion of Algorithm Parameters 74

5.7 Summary . 74

6 Multi-Cluster Clock Synchronization in the Time-Triggered
Architecture 77

6.1 Goals . 78

6.2 Implementation . 78

6.3 Analysis of the Accuracy . 80

6.4 Analysis of the Influence of the Algorithm on the Precision . . 83

6.5 Analysis of Self-Stabilization 84

6.6 Summary . 85

7 Experimental Evaluation 87

7.1 Experimental Setup . 88

7.2 Prerequisites . 88

7.3 Long-Term Evaluation of Accuracy 91

7.4 Independence of the Accuracy from the Value of the Systematic
Part of the Drift Rate . 95

iv

7.5 Change of Systematic Drift Rate 97

7.6 Changing History Length . 99

7.7 Changing Measurement Parameters 103

7.8 Non-Interference . 106

7.9 Summary . 109

8 Conclusion 111

Bibliography 115

A Notation 131

B Measurement Data 133

Curriculum Vitae 143

v

vi

List of Figures

2.1 Dependability tree . 10

2.2 Failure classification . 12

2.3 Fault classification . 13

2.4 Fault-error-failure-model . 14

2.5 Concept of a virtual clock . 28

2.6 Optimal representation of time in real-time systems 37

2.7 Sparse time . 38

2.8 Time-Triggered Architecture system 39

2.9 TDMA round (four nodes) . 40

2.10 TTP/C cluster (star architecture) with four nodes and two
guardians . 41

4.1 Multi-cluster system . 50

4.2 Propagation of timing info in a multi-cluster system 52

4.3 Cluster with eight nodes, three of the nodes are time master nodes 53

5.1 Pseudo code describing the computation of the correction value 62

5.2 Pseudo code describing the time master operations 64

5.3 Pseudo code describing the integration 65

5.4 Deviation of global time of a cluster from a relational clock time
using different correction techniques 66

6.1 Implementation of a time master node with the Time Capturing
Unit (TPU) and a GPS Receiver as external time source using
a TTPNode . 79

7.1 Density distribution of the drift rate of a synchronized virtual
clock . 90

7.2 Deviation of virtual clock times from relational clock time with-
out calibrating . 91

vii

7.3 Deviation of virtual clock times from relational clock time after
calibrating . 92

7.4 External synchronization: deviation of virtual clock time from
relational clock time . 94

7.5 Inter-cluster synchronization: deviation of virtual clock time
from relational clock time . 95

7.6 External synchronization: deviation of virtual clock time from
relational clock time . 96

7.7 External Synchronization: deviation after a change in the set of
nodes used for internal clock synchronization 98

7.8 Inter-cluster synchronization: deviation of virtual cluster time
from relational clock time with changing history length 100

7.9 External synchronization: deviation of virtual clock time from
relational clock time with changing history length 101

7.10 External synchronization: standard deviations 102

7.11 Inter-cluster synchronization: standard deviation of deviation
values . 104

7.12 Inter-cluster synchronization: range of deviation values 105

7.13 Frequency of time difference values (external clock synchroniza-
tion running) . 107

7.14 Frequency of time difference values (external clock synchroniza-
tion not running) . 108

viii

List of Tables

7.1 Frequency of values representing the difference between expected
and actual arrival time of messages (in percent) (external clock
synchronization running) . 107

7.2 Frequency of values representing the difference between expected
and actual arrival time of messages (in percent) (external clock
synchronization not running) . 108

A.1 Overview of notation . 132

B.5 External Synchronization: deviation after a change in the set of
nodes used for internal clock synchronization 135

B.1 Frequency of measured clock drift rate values of global time . . 136

B.2 External synchronization: deviation of virtual clock time from
relational clock time . 137

B.3 Inter-cluster synchronization: deviation of virtual clock time
from relational clock time . 138

B.4 Frequency of deviation values 139

B.6 Inter-cluster synchronization: deviation of virtual cluster time
from relational clock time with changing history length 140

B.7 External synchronization: deviation of virtual clock time from
relational clock time with changing history length 141

B.8 External synchronization: standard deviations 142

B.9 Inter-cluster synchronization: standard deviation of deviation
values . 142

B.10 Inter-cluster synchronization: range of deviation values 142

ix

x

Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said, gravely,
“and go on till you come to the end: then stop.”

Alice’s Adventures in Wonderland, Lewis Carroll

Time-triggered system architectures, such as the Time-Triggered Ar-
chitecture (TTA) [KB02], SPIDER [Min00], SAFEbus [ARI93, HD93], or
Flexray [MHB+01], are used in embedded control systems for safety-critical
control applications in cars and airplanes. Currently, these embedded control
systems are small and all computing nodes are directly connected. As embed-
ded control systems become larger and more complex, computing nodes must
be grouped in clusters – so called multi-cluster systems – due to limited com-
munication bandwidth and complexity management. The coupling of nodes
within a cluster will be tight, while the coupling between clusters will be loose.

1.1 Motivation and Objectives

A precise time base in distributed control systems is fundamental for control,
as manifests in recent efforts of the instrumentation and measurement industry
to establish a common standard for synchronization [IEE02]. Consequently, in
embedded control systems, nodes of a cluster need a common fault-tolerant time
base, that is, nodes of a cluster must perform internal clock synchronization.
In order for different clusters to be able to collectively perform computational

1

1.2 Structure of the Thesis 1 Introduction

activities to control an object or a process, time bases of different clusters
must be put into relation to each other, that is, cluster time bases must be
synchronized with respect to each other. A common cluster-wide notion of
time allows a consistent system view of dynamic environments.

Moreover, when an alpha particle hits a chip1 with a feature size in the sub-
micron range, the whole chip may fail. This is in contrast to the experience of
chips with feature sizes in the micron range where only small units of a chip
fail due to transient faults, such as alpha particles. Current fault tolerance
approaches address transient faults at a chip level, because the effect of a
transient fault effects only a small part of the chip and can be handled at
locally within the effected area of the chip. With chips in the sub-micron range
current fault tolerance strategies do not work anymore and an approach with
replication at system level is needed, such as employment of distributed systems
with loosely coupled nodes. A system-wide common notion of time enables
the introduction of transparent fault tolerance [Bau01] and allows tolerance of
transient faults at the cluster or multi-cluster level.

This thesis extends existing clock synchronization concepts for single-cluster
systems to multi-cluster systems by developing and evaluating a fault-tolerant
clock synchronization algorithm for multi-cluster systems especially suited for
embedded control systems. Furthermore, it validates the approach by analysis
and measurement. The proposed approach is different from existing approaches
as embedded control systems are part of a larger system and are often intercon-
nected with other systems. They are distinct from desktop computer systems
as they have high dependability requirements due to greater autonomy needs
compared to desktop computers and limited hardware resources. These differ-
ences lead to specific requirements a synchronization algorithm must meet.

This thesis addresses problems of the overarching research themes pre-
dictability and manageability and inter-operability of embedded networks as
categorized by the U.S. National Research Council [BCE+01].

1.2 Structure of the Thesis

This thesis is organized as follows: In Chapter 2, we will demarcate the area of
distributed systems by defining and explaining the relevant terms and concepts
of this scientific field with emphasis on multi-cluster, embedded, and real-time
systems. We will also introduce different concepts of clocks and describe con-
cepts of clock synchronization and time standards. We will end the chapter

1We assume that a node consists of one major chip. As a consequence, an error of a chip
implies an error of a node.

2

1 Introduction 1.2 Structure of the Thesis

with a survey of the Time-Triggered Architecture, which is used as reference
implementation platform in this thesis.

Chapter 3 will address the problem this thesis tackles. We will give a precise
problem specification and present a requirements analysis of clock synchroniza-
tion algorithms for embedded control systems. Known clock synchronization
algorithms that are related to the presented research work are also discussed
in this chapter.

Any concept abstracts from irrelevant facts and bases on assumptions.
Chapter 4 will describe the framework of this thesis and the prerequisites of
the algorithm.

Chapter 5 will describe the principle of multi-cluster clock synchronization.
The presented algorithm is round-based and addresses the systematic and the
stochastic error differently. The common notion of time and atomic broadcast
will avoid interference between node-external parameters and the precision of
the cluster. We will also analyze the maximum drift and correction rates of
the synchronization and the non-interference and self-stabilization properties.
The chapter will also look into the resource requirements of the algorithm and
discuss algorithm parameters.

The presented concepts are validated using the Time-Triggered Architecture
as reference platform. Chapter 6 will describe this implementation. It will start
with a presentation of the goals of the implementation. We will then analyze
the achievable accuracy of the algorithm and the influence of the algorithm on
the precision of a cluster. Furthermore, we will look into self-stabilization of
the implementation.

In Chapter 7, we will evaluate the algorithm using measurements. We will
start with a brief description of the experimental setup and measurements that
validate that assumptions of a constant systematic clock error and a symmet-
rically distributed stochastic one hold. Based on these results, we will present
measurements of the accuracy in a long-term evaluation of the implementation.
Experiments that examine the elimination of the systematic part of the drift
rate and different algorithm-specific parameters will be presented. The chapter
will end with measurements concerning the influence of the algorithm on the
precision of a cluster.

Finally, this thesis ends with a conclusion in Chapter 8 summarizing the key
results of the presented work and presenting an outlook on the future research
in this area.

3

1.2 Structure of the Thesis 1 Introduction

4

Chapter 2

Concept and Terms

Ohne Zweifel war es einer der genialsten Gedanken des Menschen,
was der Inbegriff des Flüchtigen, was nicht zu sehen

und nicht unmittelbar zu begreifen ist, die Zeit.

Thomas Mann (1875-1955)

In the area of distributed computer systems and clock synchronization, the
semantics of used terms differs due to the different range of application and
purposes of distributed systems and clock synchronization. Introducing clear
concepts and a consistent notion with respect to terminology is inevitable for
a discussion about the concepts. This chapter introduces the necessary terms
and concepts.

This chapter first focuses on distributed systems and dependability of dis-
tributed systems. It, then, presents aspects and types of distributed sys-
tems. The second major part introduces the reader to concepts of clocks,
time standard and formats, and clock synchronization. The chapter ends with
an overview of the Time-Triggered Architecture.

2.1 Distributed Systems

Various definitions of the technical term “distributed system” have been given
in the literature. The following two definitions contain important aspects of
distributed systems:

5

2.1 Distributed Systems 2 Concept and Terms

For Schroeder, “a distributed system is several computers doing something
together. Thus, a distributed system has three primary characteristics: multi-
ple computers, interconnections, and shared state”[Sch93b].

Coulouris et alii “define a distributed system as a collection of autonomous
computers linked by a network, with software designed to produce an integrated
computing facility” [CDK94].

Nodes, Communication Systems, Software, and States. These defi-
nitions name the following basic elements: A distributed system consists of
multiple, autonomous computers, which we call nodes in this thesis. A net-
work interconnects these nodes. We call this network communication system.
The software is an algorithmic description that determines the behavior of the
system and coordinates activities towards a common goal. For this purpose,
the relevant parts of local states are exchanged via messages. These relevant
parts of the local states are the shared state of the distributed systems. At
a given instant, the state of a node is the values assigned to an internal data
structure of this node that synthesizes all cumulative effects of all received mes-
sages and input operations at all input interfaces between the startup of the
system and this given instant [JKK+01]. The state enables the determination
of a future output solely on the basis of the future input and the state the
system is in [MT89]. Software on its own does not have a state [Szy99]. Each
node of a distributed system and its software cooperate to maintain a shared
state. Put it another way, if the correct operation is described in terms of some
global invariants, then maintaining those invariants requires the correct and
coordinated operation of nodes and its software [Sch93b]. The global state of a
system is defined as the union of the local states of its components [Sch93a].

Components. We use the term component for referring to a constituent part
of a distributed system, that is to a node, the software running at this node, and
the node’s state. At a given level of abstraction, the term ‘system’ is equivalent
to the term ‘component’ with only one distinction: while a system can be
decomposed into subsystems, a component cannot be reasonably decomposed
for a given purpose of abstraction.

Characteristics for Employment. The following six characteristics are the
key reasons for the employment of distributed systems [CDK94]:

Resource sharing. Resource is an abstract term that characterizes hardware
components such as printers, disks, and I/O devices, and software-defined
entities, such as files and databases. Resources are physically located at

6

2 Concept and Terms 2.1 Distributed Systems

nodes. A software module, called the resource manager, enforces the
separate management policies and methods for resources or groups of re-
sources. It also provides common requirements for the shared exploitation
of resources, such as naming, access, and consistency management. De-
pending on the interaction style between resource managers and resource
users, one can distinguish two models: the client-server model [AP95]
and the object-based model [Weg84, Mye88]. In the client-server model,
all shared resources are held and managed by servers. Clients issue re-
quests to servers whenever they need to access one of their resources. In
the object-based model, each shared resource is viewed as an object. An
object has a fixed identity though it can move through the network. An
access of the resource occurs by sending a message containing the request
to the corresponding object.

Openness. The openness of a distributed system addresses the possible exten-
sibility of this system. That is the degree to which shared resources and
nodes can be added without disruption of service to the existing system.
A system can be open with respect to hardware (such as the augmentation
of a new node) or software (the introduction of a new service). Through
the specification and documentation of key interfaces, the openness of a
system can be achieved. To achieve this, each node and resource must
adhere to the published standard, which is also called the architectural
style of a system [JKK+01].

Concurrency. The execution of a program in an environment together with
at least one thread of control is called a process. If several processes exist
at the same time in a system, we say that they are executed concurrently.
The reasons of concurrency are for example the exploitation of logical par-
allelism or the concurrent use of resources by different users. With the
introduction of concurrency in systems, mechanisms for controlling con-
currency must be established in order to avoid problems associated with
concurrent execution. The design issues to be encompassed for concur-
rency include the communication among processes, sharing of and com-
peting for resources, synchronization of activities of multiple processes,
and allocation of processor time to processes [Sta01]. There are several
approaches to synchronizing concurrent accesses to shared resources, such
as semaphores [Dij68], non-blocking write [KR93], monitors [Ben90], and
message passing [Sta01].

Scalability. “A scalable distributed system is one that can easily cope with
addition of users and sites, and whose growth involves minimal expense,
performance degradation, and administrative complexity” [Sat93]. The
need for scalability is not just a problem of node, software, or commu-

7

2.1 Distributed Systems 2 Concept and Terms

nication system performance. According to Satyanarayanan [Sat88], the
effects of scale on a distributed system are manifold: considerations of
performance and operability dominate the design; security becomes a se-
rious concern; functionally specialized mechanisms rather than general-
purpose solutions become more attractive; and the system is likely to
be composed of diverse elements, rather than a single homogenous set
of elements. The demand for scalability in distributed systems has lead
to a design methodology in which no single resource is assumed to be
in restricted supply. As demand for a resource grows, it should be pos-
sible to extend the system to meet it. Yet, scalability does not cover
an arbitrary size of a system; the intended range of scale of the system
will be a fundamental influence on its design [Sat88]. For a scalable sys-
tem, its complexity plays a major role for its design. “The complexity
of a system relates to the number of parts, and the number and types of
interactions among the parts, that must be considered to understand a
particular function of a system. The effort required to understand any
particular function should remain constant, and independent of the sys-
tem size” [Kop97] in order to understand all functions of a system and
to enable a scalable system design.

Fault tolerance. Every computer system will eventually fail. Fault Tolerance
are the methods and techniques that aim at providing the intended system
behavior in spite of faults. In distributed systems, it is often appropriate
to define fault containment regions. That are sets of components that are
considered to fail as atomic units, and in a statistically independent way
with respect to other fault containment regions [JKK+01]. If a distributed
system can be designed in a way that a node is a fault containment re-
gion, nodes can be replicated to provide fault-tolerant system behavior.
This design approach is called hardware redundancy. The allocation of
redundant nodes that is required for fault tolerance can be designed so
that the hardware is exploited for non-critical activities when no faults
are present. This allocation and the replication of nodes, however, adds
complexity and costs even if no faults occur.
The second basic design approach to achieve fault tolerance is software
recovery. There are two types of recovery: forward and backward recov-
ery [Jal94]. For backward recovery, the state of a node or defined unit is
periodically saved to permanent storage. This is called a checkpoint. If
an error is detected, the system state is recovered from an earlier state
(or – in other words – “rolled back” to the last checkpoint). For forward
recovery, if an error in the state is detected, the system attempts to “go
forward” and try to make the state error-free by taking the necessary cor-
rective actions. This requires an accurate assessment to be made of the

8

2 Concept and Terms 2.1 Distributed Systems

damage to the state, assumptions are required about the nature of the
damage or error, and often redundant information in the state for the de-
tection of an error. Section 2.1.1 will cover fault tolerance in distributed
systems in more detail.

Transparency. Transparency is the concealment of components in a dis-
tributed system, so that the system is perceived as a whole rather than
as a collection of independent components. The ANSA Reference Man-
ual [ANS89] and the International Standards Organization’s Reference
Model for Open Distributed Processing [Int92, dM95] identify eight forms
of transparency. These reflect the different motivations and goals of dis-
tributed systems. The eight forms of transparency are:

• Access transparency enables local and remote information objects to
be accessed using identical operations.

• Location transparency enables information objects to be accessed
without knowledge of their location.

• Concurrency transparency enables several processes to operate con-
currently using shared information objects without any unwanted
effects between them.

• Replication transparency enables multiple instances of information
objects to be used to increase reliability and performance without
knowledge of the replicas by users or application programs.

• Failure transparency enables the concealment of faults, allowing
users and application programs to complete their tasks despite of
failure of hardware or software components.

• Migration transparency allows the movement of information objects
within a system without affecting the operation of users or applica-
tion programs.

• Performance transparency allows the system to be reconfigured to
improve performance as loads vary.

• Scaling transparency allows the system and applications to expand
in scale with change to the system structure or the application al-
gorithms.

In literature, there is often a confusion about the terms abstraction and
transparency. Abstraction allows not deal with details while transparency
does not deal with details. There is evidence [WWWK97] that true trans-
parency is not always a desired characteristic in distributed systems,
but should be replaced by respective abstraction [Bau01]. In [Kop00b],
Kopetz addresses this point when he categorizes component interfaces

9

2.1 Distributed Systems 2 Concept and Terms

of distributed real-time systems (see Section 2.1.3) from an application-
specific view. The three interfaces types are the real-time-service inter-
face, the diagnostic and management interface, and the configuration and
planning interface. An interface of the first type provides timely real-time
services to the component environment during the operation of the sys-
tem. The second and third type of interfaces are used for the purpose
of internal fault diagnosis and configuration of the distributed system.
For real-time service interfaces, transparency is demanded. For the other
two interfaces the abstraction and not the transparency of a distributed
system architecture is desired.

Distributed Versus Parallel Systems. According to Fischer [Fis90], the
uncertainty introduced by unreliable communication and the fact that some
nodes may be faulty is the main characteristics that enables the class of “dis-
tributed” systems to be distinguished from that of “parallel” systems [Pow94].

2.1.1 Dependability in Distributed Systems

According to Carter [Car82], “computer system dependability may be defined
as the trustworthiness and continuity of computer system service such that
reliance can justifiably be placed upon this service”. The service delivered by a
system is its behavior as it is perceived by its user(s); a user is another system
(human or physical) which interacts with the former [Lap92].

dependability

impairments

faults

errors

failures

means

procurement
fault prevention

fault tolerance

validation
fault removal

fault forecasting

attributes

availability

reliability

safety

security

Figure 2.1: Dependability tree [Lap95].

10

2 Concept and Terms 2.1 Distributed Systems

Figure 2.1 depicts the different viewpoints from which one can see depend-
ability. These viewpoints can be grouped into three classes [Lap95, Lap92]:

Impairments. The impairments to dependability are faults, errors, and fail-
ures. Impairments are undesired circumstances that lead to or result
from a service with missing reliance. Impairments are expected to occur
or to be part of any system, since no system can be designed or operated
perfectly.

Means. The means for dependability are methods and techniques enabling
one (a) to provide the ability to deliver a service on which reliance can
be placed, and (b) to reach confidence in this ability.

Attributes. The attributes of dependability (a) enable the properties that
are expected from the system to be expressed, and (b) allow the system
quality resulting from the impairments and means opposing to them to
be assessed.

The impairments to, the means for, and the attributes of dependability are
described in more detail in the next paragraphs, because a clear notion of these
concepts is necessary to correctly understand the concepts developed in this
thesis.

Impairments to Dependability

Failures, errors, and faults impair the dependability of systems.

Failure. A failure of a system is an event that denotes a deviation between
the actual service and the specified or intended service that is required by its
specification [Kop97, LA90]. That is, a system fails when it cannot provide
the specified service. If the service of a system meets its specification but
deviates from the user’s intended behavior, we speak of a specification fault.
Systems fail in different ways. These different ways of failing are called their
failure modes [Lap92]. The failures are classified according to their domain
(also called nature), their perception, their consequences (or effects), and their
oftenness. Figure 2.2 depicts the different failure modes.

With respect to failure domain, value and timing failures are distinguished.
A value failure means that the value of the delivered service does not comply
with its specification. If the timing of the service delivery does not comply
with its specification, this is a timing failure. Failures in the time domain are
also denoted as crash failures, if the delivery of service is delayed infinitely. A

11

2.1 Distributed Systems 2 Concept and Terms

failure

domain/nature
value failure
timing failure

perception
consistent failure
inconsistent failure

consequence/effect
benign failure
malign/catastrophic failure

oftenness
permanent failure
transient failure

Figure 2.2: Failure classification [Lap95, Kop97].

components exhibits an omission failure, if the service delivery to a request is
omitted [Cri91].

The perception of a failure can be different for different components in a
distributed system. If different components of a distributed system perceive
different (incorrect) results, this is called an inconsistent failure. If all com-
ponents perceive the same incorrect result, this is called a consistent failure.
An inconsistent failure is also called two-faced failure, malicious failure, asym-
metric failure, or Byzantine failure [LSP82]. A special consistent failure is a
fail-silent failure. That is a failure where the system component either de-
livers a correct service or none at all. For tolerating k component failures, a
minimum number of components is required. These are k + 1 components for
fail-silent components, 2k + 1 for fail-consistent components, and 3k + 1 for
Byzantine-failing components [PSL80].

The severity of the consequences (also called effects) of a failure are also
used to classify failures. A failure is called benign, if failure costs are in the same
order of magnitude as the service delivered. It is malign (or catastrophic), if
the consequences of failure jeopardize human life and/or are incommensurably
greater than the benefit provided by the service delivery in the absence of a
failure.

The oftenness of the occurrence of a single failure is used to classify failures.
A permanent failure occurs once and leads to a stop of service provision of a
system. A transient failure is a failure where the system continues service after
the occurrence of the failure. A frequently occurring transient failure is also
called intermittent failure [Kop97, p.121].

Error. An error is the manifestation of a fault [SS92]. It is that part of
the system state which is liable to lead to subsequent failure [Lap92]. This
part of the internal system state is considered as incorrect [Kop97]. If there
is an error in the system state, then there exists a sequence of actions that

12

2 Concept and Terms 2.1 Distributed Systems

can be executed by the system, which will lead to a system failure unless
some corrective measures are employed. Whether an error will cause a failure
depends on three main factors [Lap92]:

1. The system composition, and especially the nature of the existing (inten-
tional or unintentional) redundancy.

2. The system activity may cause an incorrect internal state to be overwrit-
ten with a correct state prior to causing a failure.

3. The definition of a failure from the user’s viewpoint.

Kopetz distinguishes two types of errors: transient and permanent er-
rors [Kop97]. A transient error exists only for a short interval of time and
disappears without an explicit repair action. A permanent error persists per-
manently until an explicit repair action removes it. Powell divides errors in two
types: value errors and timing errors [Pow92]. A value error is an error where
the value of service delivered by a system in terms of a sequence of service items
does not fall within the set of values specified. A timing error occurs whenever
a service item is delivered outside its specified set of durations. The ability
to detect errors depends either on regular behavior of nodes or on redundant
computation [Kop97].

Fault. The cause of an error is a fault. The sources of faults are extremely
diverse and can be classified by different viewpoints as depicted in Figure 2.3.

fault

nature
accidental fault
intentional fault

phenomenological cause
physical fault
human-made fault

system boundaries
internal fault
external fault

phase of creation/origin
design fault
operational fault

persistence
permanent fault
temporary fault

Figure 2.3: Fault classification [Lap95, Kop97].

Using the nature of a fault for a classification, a fault can either be acci-
dental or intentional. An accidental fault appears or is created fortuitously.

13

2.1 Distributed Systems 2 Concept and Terms

An intentional fault is created deliberately. According to Avizienis [Avi78],
the phenomenological cause of a fault can either be physical – that is, a con-
sequence of some adverse physical phenomenon – or human-made – that is,
due to human imperfection. A classification using system boundaries leads to
internal faults and external faults. For internal faults, the cause is a deficiency
within the system, while for external faults, the cause is part of the (physical
or human) environment of a system. Another point of view for classification
of faults is the phase of creation (also called origin). A design fault has its
origin in the incorrect development of a system. An operational fault stems
from imperfect system operation. And finally, the persistence of a fault can
be used for a distinction. A fault can either be permanent, that is it persists
independently of internal or external conditions; or it can be temporary, that
is depending on certain conditions and present only for a limited amount of
time.

Fault Pathology. Due to the recursive definition of systems in terms of
components, a failure at a given level of decomposition may naturally be in-
terpreted as a fault at the next upper level of decomposition, thus leading to a
hierarchical causal chain.

As mentioned above, a fault may lead to an error, which is an incorrect state
of a part of a system. This incorrect part of the system state may result in a
failure of a system. Systems are composed of components. At a certain level
of abstraction, components themselves can be seen as systems. Consequently,
a failure can be interpreted as a fault in a larger system, and so on [Lap92]. A
similar fault pathology can be constructed for interdependent systems. These
fault pathologies lead to a recursive fault-error-failure-model as depicted in
Figure 2.4, where an arrow depicts a causal relationship, brackets and ‘II’
depict system boundaries or abstraction levels.

[fault - error - failure]
II

[fault - error - failure]

II
[fault - error - failure]

Figure 2.4: Fault-error-failure-model

Fault Hypothesis. For the design of fault-tolerant systems, assumptions
concerning all possible faults that may occur and their respective frequency of
occurrence must be made. These faults have to be tolerated as long as the

14

2 Concept and Terms 2.1 Distributed Systems

frequency of occurrence is not higher than the stated one. These assumptions
determine design decisions, such as the number of necessary replication of com-
ponents or the used algorithms. The statements about the assumptions that
relate to the type and the frequency of faults that the system is supposed to
handle are called the fault hypothesis [Kop97].

Fault Containment Region. For the design of a fault-tolerant distributed
system, assumptions about the consequences of a fault, which is the failing of
components, is of relevance. As defined in Section 2.1, a fault containment re-
gion is a “set of components that is considered to fail (a) as an atomic unit, and
(b) in a statistically independent way with respect to other fault containment
regions.” [JKK+01].

Error Confinement Domain. Similarly, an error confinement domain
(which is also called error containment region [KBJ00]) is a component (such
as a node or a subsystem of a computer system) that is encapsulated by error
detection interfaces in a way that the consequences of an error that can be
manifested within this component will not propagate outside this component
without being detected [SJ82].

The relationship between error confinement domains and fault containment
regions depends on parameters, such as the architecture of a distributed system,
the mechanisms for detecting errors and the fault hypothesis. For example, in a
subsystem of two connected and mutually checking nodes, where one node can
only communicate to other system nodes via the other node and each of the
two nodes forms a fault containment region, the two nodes together form an
error confinement domain. Similar to this example, Kopetz argues in [Kop02a]
that in the Time-Triggered Architecture (see Section 2.3) at least two fault
containment regions are necessary to build an error confinement domain for
timing failures. One of the two fault containment regions produces (possibly
erroneous) messages and one detects and isolates messages that fail in the time
domain.

Attributes of Dependability

The attributes of dependability are measures and enable the assessment of the
dependability of a system. In detail, the attributes are:

Availability. The availability of a system as a function of time is the prob-
ability that the system is operational at a given instant. Availability is
typically used as a measure in systems in which service can be delayed or
denied for short periods without serious consequences [SS92].

15

2.1 Distributed Systems 2 Concept and Terms

Reliability. The reliability of a system as a function of time is the conditional
probability that the system has survived the interval [0, t], given that the
system was operational at time t = 0. Reliability is used to describe
systems in which repair cannot take place (as in satellite computers) or
systems in which repair is prohibitively expensive [SS92].

Safety. The safety of a system is the probability that the system will not
exhibit a specific undesired behavior throughout a specific period. Safety
is a measure for the time to a catastrophic failure.

Security. The security of a system is the dependability with respect to the pre-
vention of unauthorized access and/or handling of information [Lap92].
Security can be defined as the provision of three characteristics: secrecy,
integrity, and availability. Secrecy means that the system is protected to
prevent unauthorized access and disclosure of state. Integrity of a sys-
tem means that unauthorized modification of the system and its state is
prevented.

Means for Dependability

As depicted in Figure 2.1, the means for dependability can be divided into the
two groups dependability validation and dependability procurement.

Dependability Validation. Means for dependability validation aim at reach-
ing confidence in the system’s ability to deliver a service complying with
the specification. Fault removal and fault forecasting are the two means
forming dependability validation. Fault removal encompasses methods
and techniques to reduce the presence, the number, and the seriousness
of faults. Fault forecasting encompasses methods and techniques to esti-
mate the present number, the future incidence, and the consequences of
faults.

Dependability Procurement. Means for dependability procurement aim at
providing the system with the ability to deliver a service complying with
the specification. Fault prevention and fault tolerance are the two means
forming dependability procurement. Fault prevention encompasses meth-
ods and techniques to prevent the occurrence or introduction of faults.
Fault tolerance accepts that an implemented system will not be perfect
and that measures are therefore required to enable the operational system
to cope with developing or present faults. To achieve this, methods and
techniques must be available that provide a service complying with the
specification in spite of faults.

16

2 Concept and Terms 2.1 Distributed Systems

Since this thesis presents a fault-tolerant algorithm, fault tolerance is de-
scribed in more detail in the next section.

Fault Tolerance

Lee and Anderson describe four phases for achieving fault tolerance in [LA90].
The first three phases together achieve fault tolerance by trying to remove
errors from the system state before failures occur. The fourth phase addresses
fault tolerance by attempting to eradicate faults from a system before faults
lead to errors.

1. Error detection aims at detecting an erroneous system state. That is
a state that could lead to a system failure, if corrective actions are not
performed.

2. Damage confinement and assessment. After the detection of an error,
the damage of a fault is confined and assessed, because a fault can lead
to several errors and errors can propagate before detection. That is,
all possible erroneous transitions are identified using known constraints.
This information is then used for an estimate of the actual extent of the
damage.

3. Error recovery aims at eliminating errors from the system state based on
the estimate of the first two phases. In this phase, the state that could
lead to a failure of the system is substituted by a correct state in order
to prevent the occurrence of failures.

4. Fault treatment and continued service. The aim of fault treatment is to
locate the causes of errors. After the location of a fault, the part of a
system that is considered to be faulty (often a component) is repaired or
removed from the system in order to prevent impingement of this part
on the future operation of the system.

Fault tolerance techniques do not necessarily have to implement all of these
phases. Laprie [Lap92] categorizes two primary techniques for achieving fault
tolerance. The first category of techniques, called error processing, implements
the first three of the above mentioned phases. The second category of tech-
niques focuses on the last of the above mentioned phases and is called fault
treatment.

Error processing can be carried out via three primitives. This is, first,
error detection, which is basically an implementation of the first of the above
mentioned phases. Secondly, damage assessment, which implements the second

17

2.1 Distributed Systems 2 Concept and Terms

phase preceded by error detection. And thirdly, error recovery, which is an
implementation of the first three phases of fault tolerance. The substitution of
the erroneous state by a correct state may take on three forms [PS01]:

Backward (or Pessimistic) Recovery [HLMR90]. The transformation of
the erroneous state consists of bringing the system back to a state already
occupied prior to error occurrence. To achieve this, the state of a system is
periodically saved in stable storage. This saved state is called a checkpoint
and is assumed to be without error. Upon detection of an error, the
system restores the current state by the saved state; the system is said to
“roll back” to the latest checkpoint and restarted using the system state
of this checkpoint.

Forward (or Optimistic) Recovery [PV94, LFA90]. The transforma-
tion of the erroneous state is performed by finding a new state, from
which the system can operate. For this checkpoints are not necessary.
The system is allowed to make progress with the guarantee that the
system will return to a consistent state. If arbitrary inconsistencies
are allowed, self-stabilization of the system is required for achieving a
consistent state after detection of inconsistencies. A detailed description
of self-stabilization will be provided below.

Compensation [PS01]. The transformation from an erroneous state into an
error-free state is possible, because the erroneous state contains enough
redundancy. Adding error detection mechanisms to the component’s com-
putational capabilities leads to the notion of self-checking component,
for the hardware [CS68] or software [YC75]. In a system composed of
nodes where each node defines an error confinement domain and compu-
tational tasks are replicated at different nodes, error recovery reduces to a
switchover of control from a failed node to a non-failed one. Fault mask-
ing can be provided by performing error compensation systematically by
replicating components and performing voting [BK00]. Then, error de-
tection is not necessarily needed to perform recovery. In order to avoid
an undetected decrease in the redundancy available during a component
failure, implementations of fault masking usually include error detection.
The level of replication for providing error compensation is determined
by the fault hypothesis.

According to Laprie [Lap92], the second major technique to achieve fault
tolerance is fault treatment. This must begin with fault diagnosis, that is the
determination of the causes of errors in terms of localization and nature. The
next step is the isolation of faults. Fault isolation is the prevention of faults

18

2 Concept and Terms 2.1 Distributed Systems

from being reactivated. This can be done by removing components deemed
faulty from the subsequent execution process. If the system service cannot be
uphold, a reconfiguration may be envisaged by modifying the system struc-
ture so that fault-free components provide an adequate, although degraded,
service [PS01].

Kulkarni and Arora [Kul99, AK98a, AK98b] classify fault tolerance into
the following three types using a safety and a liveness property: masking, non-
masking, and fail-safe. For fault tolerance using masking, the program satisfies
its safety and liveness property despite of faults (as long as the fault hypothesis
holds). In the case of non-masking, the program need not satisfy its safety
properties in case of faults. When faults stop occurring, the system eventually
resumes satisfying both its safety and liveness properties. For fault tolerance
that implements fail-safe behavior, the system satisfies its safety properties in
the presence of faults, but the liveness properties need not hold after faults
have occurred.

Self-Stabilization

The notion of self-stabilization was introduced by Dijkstra [Dij82, Dij74]. “An
algorithm is said to be self-stabilizing if it converges to a stable ‘good’ state
starting from an arbitrary initial state. Self-stabilization is a good model for
algorithms that recover automatically from transient faults – these are faults
that disturb operation of the system for some period, and then cease [Rus02].”
This stable ‘good’ state is also called ‘legitimate’ [Dij82, Gho93] or ‘safe’ [GM91]
state; a state that is not good is said to be ‘illegitimate’ or ‘unsafe’.

A formal definition of self-stabilization is given by Schneider [Sch93a].
Schneider defines self-stabilization of system S with respect to predicate P
and Q over its set of global states. P is intended to identify the correct exe-
cution. Q identifies the state from which S stabilizes. A system S where Q is
established self-stabilizes to predicate P , if it satisfies the following properties:

• Closure: P is closed under execution of S. That is, once P is established
in S, it cannot be falsified.

• Convergence: starting from a global state satisfying Q, S is guaranteed
to reach a global state satisfying P within a finite number of state tran-
sitions.

This definition shows that a system in general need not recover from any
state of the system. Certain preconditions must hold, otherwise the system will
not stabilize. A self-stabilizing system as an approach to fault tolerance has

19

2.1 Distributed Systems 2 Concept and Terms

two useful system properties: first, the system need not be initialized (as long
as Q is satisfied the system will startup), and, secondly, it can recover from
transient failures.

2.1.2 Aspects of Distributed Systems

This section describes several aspects of distributed systems, such as the time
aspects, aspects of system composition, and communication aspects.

Synchronous Versus Asynchronous Distributed Systems

Guarantees concerning the timing are used to classify distributed systems ei-
ther as synchronous or asynchronous. Asynchronous distributed systems do
not require any assumptions concerning the timing behavior of system com-
ponents for the system to operate correctly. Synchronous distributed systems,
on the other hand, require that assumptions concerning the timing behavior
of components are met by system components. In more detail, a distributed
system is said to be asynchronous if there is no fixed upper bound on how long
it takes for a message to be delivered or how much time elapses between con-
secutive steps of a processor [AW98]. In order to guarantee a certain behavior
of a distributed system in the time domain, system components must adhere
to certain timing rules. A distributed system is classified as synchronous if it
satisfies the following conditions [HT93]:

Bounded Message Transmission Delay. There is a known upper bound ε
on message delay. ε consists of the time it takes for sending, transporting,
and receiving a message over a communication medium.

Bounded Clock Drift. Every node n has a local clock Cn with known
bounded rate of drift ρ ≥ 0 with respect to physical time.

Bounded Processing Time. There are known upper and lower bounds on
the time required by a process to execute a processing step.

The asynchronous and the synchronous distributed system models are the
two extremes of possible models that are concerned about timing properties.
Other models are also studied in literature [DDS87, DLS88, CF99, CF98]. An
algorithm designed for an asynchronous distributed system can be used in any
other system, because it is independent of any particular timing parameters.
Algorithms built on top of synchronous systems can take advantage of assump-
tions about the timing and allow timeliness guarantees. Generally speaking,

20

2 Concept and Terms 2.1 Distributed Systems

algorithms are easier to implement on top of synchronous systems than on
top of asynchronous systems; some algorithms even cannot be implemented on
asynchronous systems [CHTC96, FLP85].

Composability

The design of dependable distributed systems requires means for complexity
reduction. Composability is such a means for complexity reduction, which
addresses the constructive design of large systems out of independently devel-
oped pre-validated components [Kop01b]. Composability is the ease of forming
a whole by combining parts, where “parts” are the components and the “whole”
is the distributed system. A distributed system is said to be composable with
respect to a specified property, if the integration of an additional component
will not invalidate this property once the property has been established at the
component level [Kop97, p.34]. For Kopetz, an architecture must adhere to the
following four principles, in order to be composable [Kop02b, KS02, Kop00a]:

Independent Development of Nodes. The development of a composable
architecture must follow a two-level design philosophy, where the archi-
tecture level is defined a priori to the node level. The architecture level
is concerned with the development of the precise interface descriptions in
the value and the time domain and with the conceptual interface model of
the node service. The node level of design then focuses on the interaction
with the environment and the development of the node software.

Stability of Prior Services. Services of a node that are validated and exist
prior to the integration of this node must not be refuted by the integration
of this node.

Performability of the Communication System. This principle is con-
cerned with the resource availability and timeliness of the communication
system. The integration of a new node must not disturb the communi-
cation patterns and must not lead to a disruption of the timeliness of
already integrated nodes.

Replica Determinism. A set of nodes is replica determinate [Pol94], if all
elements of this set have the same externally visible state and produce
the same output messages at points in time that are at least d time units
apart, where d is the duration necessary to replace a missing or erroneous
message by a correct message.

A common notion of time at different nodes is a requirement for the im-
plementation of the replica determinism and a guaranteed performability of

21

2.1 Distributed Systems 2 Concept and Terms

the communication system, because voting over replicas of a real-time object
measured at approximately the same time can be performed and accesses to
common resources can be coordinated using time.

The difference between the terms ‘scalable’ and ‘composable’ lies in the
focus of extension and its services. A system is said to be scalable, if it can be
extended. That is new nodes can be integrated, while the system service gets a
composite of all node services. A system is said to be composable, if after the
integration of nodes the services of all nodes are still available. Consequently, a
scalable system must be composable with respect to the properties of the node
services [Ste02a].

Broadcast Delivery of Messages

The two extreme types of connectivity of communication system architectures
can either be point-to-point or a single shared channel that connects all nodes,
such as a bus, a token ring, or a star network architecture with broadcast
delivery capability. For nodes, the actual architecture of the communication
system may be irrelevant, if the communication system provides a special net-
work surveillance protocol [Kim00] (also called membership protocol [BP00]) or
a guaranteed delivery type despite of failures, such as a fault-tolerant broadcast.

Hadzilacos and Toueg describe different fault-tolerant broadcast types
in [HT94]. The weakest type of fault-tolerant broadcast is reliable broadcast,
which guarantees three properties: first, all correct nodes agree on a set of
messages they deliver (agreement property); secondly, all message broadcasts
by correct nodes are delivered (validity property); and, thirdly, no spurious
messages are ever delivered (integrity property). Another type of fault-tolerant
broadcast is FIFO broadcast. FIFO broadcast exhibits all properties of reliable
broadcast and, in addition, messages are delivered in the order they are broad-
cast. If messages are also causally ordered, this is called causal broadcast. Yet,
if messages are not in causal relationship, the order of delivery may be different
for different nodes. Atomic broadcast guarantees the delivery of all messages in
the same order. Further combinations of the listed broadcast types are possible
and described in detail in [HT94].

2.1.3 Types of Distributed Systems

The following paragraphs describe different types of distributed systems,
namely real-time systems, multi-cluster systems, and embedded systems. While
some of these systems do not necessarily have to be designed in a distributed
manner, this thesis describes these system types in the context of distributed
systems, because the focus will be put on properties related to distribution.

22

2 Concept and Terms 2.1 Distributed Systems

Real-Time Systems

According to Kopetz [Kop97, p.2], “a real-time computer system is a computer
system in which the correctness of the system behavior depends not only on
the logical results of the computations, but also on the physical instant at
which these results are produced.” In this thesis, a real-time system comprises
a real-time computer system and an environment, which itself consists of a
controlled object and a human operator. While real-time computer systems are
not generally distributed systems, we consider only real-time computer systems
that have a distributed system architecture. A distributed solution has several
advantages over a central solution, such as dependability arguments, scalability,
and physical installation [Kop97]. In this thesis, the terms ‘real-time computer
system’ and ‘real-time system’ are used interchangeably.

This definition of real-time systems is in contrast to known other definitions
of real-time systems where systems do not have an awareness of time and where
computations do not take any time, as Lee states in [Lee99]: “Time has been
systematically removed from theories of computation, since it is an annoying
property that computations take time. Pure computation does not take time,
and has nothing to do with time. It is hard to overemphasize how deeply rooted
this is in our culture. So called real-time operating systems have so little to go
on that they often reduce the characterization of a component (a process) to
a single number, its priority.” Since real-time systems must be aware of the
progression of time, they can only be of synchronous and not asynchronous
nature.

The computation of a real-time computer system is activated by stimuli of
its environment. The latest instant at which the real-time computer system
can produce the result of the computation is called the deadline. A real-time
computer system that produces a result after a deadline is said to have missed
its deadline. If a result has (degraded) utility after its deadline, the deadline
is said to be soft, otherwise firm. If the miss of a firm deadline can result in a
catastrophe, this deadline is called more specifically hard deadline. A computer
system that must meet at least one hard deadline is called a hard real-time
computer system [SR88] or a safety-critical real-time computer system [Kop97].

Real-time systems can be classified according to the behavior of the system
in case of failures. If a fail-safe state can be reached in case of a system failure,
the real-time system is said to be fail-safe. In real-time systems, where a fail-
safe state does not exist (such as in a control system aboard of an airplane), the
real-time computer system must provide a minimum level of a service despite
of failure. Such a system is called fail-operational. It is important to realize
that the classification of a system as fail-safe or fail-operational is determined
by the environment and not the real-time computer system [Kop97, p.14].

23

2.1 Distributed Systems 2 Concept and Terms

Time-Triggered Systems. A special class of distributed real-time systems
are time-triggered systems. In “pure” time-triggered systems, the only stimulus
of system activities is the progression of time. These systems are efficient if reg-
ular patterns for communication and computational activities are required. The
activation patterns of activities are agreed and known to all nodes. Examples
for time-triggered systems are the Time-Triggered Architecture (TTA) [KB02],
SPIDER [Min00], SAFEbus [ARI93, HD93], or FlexRay [MHB+01].

Multi-Cluster Systems

The principle of Alexander [Ale64], “The ultimate object of design is form.”,
and the guideline of Vitruvius [Vit96], “Form follows function.”, guide the de-
sign of systems as multi-cluster systems. A cluster is a group of nodes that
directly communicate and pursue a common computational goal. Multi-cluster
systems consist of a number of clusters where nodes of the same cluster have
a high inner functional and temporal coupling. Clusters are, in turn, inter-
connected. The coupling between clusters is, however, much looser than the
coupling within the single clusters.

The reasons for designing systems in the form of multi-cluster systems are
manifold. Multi-cluster systems are one approach to complexity management of
large distributed systems and to solve limitations of communication bandwidth.
Multi-cluster systems can also result from the gradual development of systems.

Rechtin lists heuristics for partitioning of systems in [Rec91], which lead to
a well structured multi-cluster system:

• “Except for good and sufficient reasons, functional and physical structure
should match. [. . .]

• In partitioning, choose the elements so that they are as independent as
possible, that is, elements with low external complexity and high internal
complexity. [Ale64] [. . .]

• In partitioning a distributed system, choose a configuration in which local
activity is high speed and global activity is slow change. [Cou85] [. . .]

• In partitioning a system into subsystems, choose a configuration
with minimal communication between the subsystems. (For example,
aerospace, communication network, and software systems.) [. . .]

• Don’t partition by slicing through regions where high rates of information
exchange are required. (For example, computers.) [. . .]”

24

2 Concept and Terms 2.1 Distributed Systems

Embedded Systems

Embedded computer systems (for short embedded systems) are computer sys-
tems embedded in devices designed for control and monitoring application. The
term ‘embedded’ denotes that an embedded system is part of a larger system,
which is called an intelligent product [Kop97]. An intelligent product consists of
a mechanical subsystem, the controlling embedded computer, and, sometimes,
a man-machine interface. An embedded system is in close interaction with its
environment, which is often a physical or mechanical process.

Embedded systems and their system development process are characterized
by [Pas02, Kop97, BCE+01]

• a missing or sharply reduced importance of the user interface;

• direct interaction of the software with hardware peripherals, where multi-
ple inputs and outputs demand a high degree of concurrency;

• guaranteed response time due to close interaction with environment and
employment for control application;

• greater autonomy needs compared to desktop computers, which follows
from the first two above mentioned characteristics and the design of em-
bedded systems for stand-alone operation;

• a high degree of dependability due to its autonomy needs, the expectation
of longevity, the near impossibility to modify embedded system software
after release;

• a provision of an excellent diagnostic and maintenance interface if re-
quired;

• constraints in limited hardware resources determine design and imple-
mentation decisions (for example, power-aware processing due to battery
operation; software functionality determined by read-only memory size;
low computational power, small working memory compared to desktop
computers and communication bandwidth limitations; the need for ade-
quate heat dissipation);

• need for composable system components for networked embedded systems
structure, because inter-operability is a key concern;

• mass production and minimization of mechanical subsystems due to de-
ployment of embedded systems in large volume application.

25

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

2.2 Clocks, Time, and Clock Synchronization

This chapter introduces the reader to the concepts and terms used for clock
synchronization and available time standards. These concepts and terms have
been introduced in [KO87, FC97, Kop97, Sch88].

2.2.1 Concepts of Clocks

In distributed control systems, the order of occurrences of events can be es-
tablished, if a common notion of time is available. Time is established using
different clocks. This section describes the different types of clocks used in this
thesis.

Reference Clock. In this work the concept of a reference clock is introduced
due to the following reason. Real time can be depicted as time line (if relativistic
effects are disregarded) and events occur at points on this time line. Let T
denote the set of all real-time values and t the point in T of the occurrence of
an event. Real-time is a dense time base. That is, let t1 and t2 denote the time
of occurrences of event 1 and 2, respectively, then there can always be another
event occurring at t3, say event 3. t3 can be between t1 and t2, no matter how
close t1 and t2 are. Consequently, the granularity of real time is infinitesimal
and a model using real time must use real values and floating point operations
for modeling event occurrences and temporally ordering these events. This is
a resource-consuming approach.

Reference clock time, denoted RT , is a granular representation of real time,
where the granularity of RT , denoted gRT , is so small that digitalization errors
that occur when timestamping events can be neglected in the analysis of the
model. The reference clock time is defined by a sequence of ticks RT i, i ∈
{0, 1, 2, 3, . . . }, everywhere accessible, and is in perfect synchrony with real
time. That is RT i ∈ T and for any i and any point in real time t, RT i ≤
t < RT i+1 is valid. The occurrence of an event can be timestamped using
a clock. clock(event) denotes the timestamp generated by the use of clock
clock. Consequently, the use of the reference clock time to timestamp event e1

is denoted RT (e1).

The concept of a reference clock is closely related to the implementation
of clocks in computer systems. It allows the representation of time using inte-
ger numbers and for ordering of timestamped events simple integer arithmetic
suffices. The concept of the reference clock allows simple models and simple
definitions of clock parameters and, thus, alleviates implementation, formal
verification and validation of these models.

26

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

Hardware Clocks. A hardware clock typically consists of an oscillator and
a counting register that is periodically incremented by periodically generated
events of an oscillator. The periodic event is called the tick. The time of
a correct hardware clock, which is the contents of the counting register, will
monotonically increase as long as the counting register does not overflow. The
duration between two consecutive ticks is the granularity of the clock. This
granularity leads to a digitalization error in time measurement. The time of
hardware clock i is denoted HT i. Ticks are numbered using natural numbers.
HT i

k denotes tick number k of hardware clock i. Using this notion, the duration
of the granularity of tick k of hardware clock i equalsRT (HT i

k+1)−RT (HT i
k).

Drift Rate of a Clock. Real clocks are not perfect. That is, they drift with
respect to the reference clock. This drift is due to impressions of the oscillator,
changes in the abient temperature and other environmental conditions change,
and aging of the crystal. A measure for the imperfect behavior of a clock is the
drift rate of a clock. If nk denotes the nominal number of reference clock ticks
of clock tick k, the drift rate of clock i for tick k is defined as

ρi
k =

∣∣∣∣
RT (HT i

k+1)−RT (HT i
k)

nk

− 1

∣∣∣∣ (2.1)

The drift rate of clock i, denoted ρi, is the maximum drift value of ρi
k in

an interval of interest. The drift rate of a perfect clock equals 0. For specified
environmental parameters, the drift rate of a clock is bounded by the maximum
drift rate, denoted ρ̄i.

Schwabl observed in [Sch88] that the drift rate consists of a systematic and a
stochastic part. The categorization of the stochastic and the systematic error is
done from a viewpoint of the observation length and the changes in this period.
In a short observation period (seconds to minutes), the systematic error is
constant and the value of the stochastic error changes. Yet, for long observation
periods, the systematic error changes as does the stochastic error. In this
thesis, ρi

sys denotes the systematic part of the drift rate of clock i and ρi
stoch the

stochastic part. The systematic part of the maximum drift rate of clocks using
commercially available quartzes is in the order of 5 · 10−5 s

s
while the stochastic

part is in the order of 10−7 s
s
. Consequently, the systematic part is at least

an order of magnitude larger. The stochastic part of the drift rate originates
from changes in the environmental conditions and stochastic processes in the
quartz crystals. The systematic error from the nominal frequency stems from
the manufacturing process and slow aging of quartz crystals.

Virtual Clocks. The concept of virtual clocks is introduced for two reasons.
First, a virtual clock abstracts from hardware-dependent parameters, such as

27

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

the frequency of the oscillator. Secondly, for the synchronization of clock times,
the frequency of ticking and/or the contents of the counting register must
be changed. However, it is expensive to change the frequency of ticking of
hardware clocks by changing the frequency of the oscillator.

Virtual clocks work in the following way: an integer number of hardware
clock ticks comprise one virtual clock tick. For a correction of the clock fre-
quency (acceleration or deceleration) of a virtual clock, the number of hardware
clock ticks per virtual clock tick is changed using an adjustment value, denoted
H i(t). The initial clock state of a virtual clock can also be set using the adjust-
ment value. This adaption of the number of hardware clock ticks per virtual
clock tick can be used to synchronize the time of virtual clocks. Figure 2.5 de-
picts a simple concept of a virtual clock. In this figure, the value of the virtual
clock time is incremented every g hardware clock ticks, where g is the nominal
granularity of the virtual clock measured in hardware clock ticks. In Figure 2.5,
the register value of the hardware clock (depicted as rectangle labelled “hard-
ware clock”) is monotonically increasing due to an oscillator. Whenever the
hardware clock value modulo g equals zero, the virtual clock is increased by one
tick. In addition, an adjustment value can be added to the virtual clock time,
as depicted by the rectangle labelled H i (t). The adjustment value can change
over time. VT i denotes the time of virtual clock i, that is all ticks of this clock,
and VT i

k denotes tick k of this clock. The value of the virtual clock (which is
the contents of the register depicted as rectangle labelled “virtual clock”) can
be accessed and read.

adjustment value

hardware clock

virtual clock

+

Fi(t)Hi(t)virt.clock granularity Hi(t)Hi(t)+

a
mod b
=0?

a

b

1

Figure 2.5: Concept of a virtual clock, which comprises a hardware clock and
an adjustment value

The term “virtual” in the notation “virtual clock” stems from the synchro-
nization process of clocks. Instead of synchronizing hardware clock times, the
times of virtual clocks are synchronized (see Section 2.2.2). The term “vir-
tual” may mislead to the conclusion that the time of a virtual clock cannot

28

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

be directly accessed or read. Yet, the time of a virtual clock can be directly
accessed or read by a node. The term “global time” is used for referring to the
synchronized times of several virtual clocks (see Section 2.2.4 for details). The
global time of these clocks is an abstract notion and cannot be directly read
by nodes. Instead, a node can only access its virtual clock time that forms the
global time – together with other virtual clock times. Consequently, a node can
only obtain an approximation of the global time. This is why a virtual clock
time is also called an approximation of the global time at a node [KO87].

Relational Clocks. Reference clocks are ideal representations of real time.
In reality, even clocks that are used as time reference will not ideally represent
real time. To accommodate this aspect in this thesis, the notion of a relational
clock is introduced. A relational clock is a clock used as reference for externally
synchronizing clocks (see Section 2.2.2 for an explantation of external clock
synchronization). A relational clock is a notion for a virtual clock that is used
as a reference. Relational clocks will not be in perfect synchrony with real
time. That is, a relational clock will have a maximum drift rate different from
0 and the offset between reference clock time and relational clock time will also
be different from 0. RCT j denotes the time of relational clock j and, similarly
to the use of notion of other clocks, RCT j(e1) denotes the timestamp of event
e1 using relational clock j.

Offset. The offset at a given time between two clocks is the difference between
the two clock times. Using the reference clock, the offset between the two virtual
clocks i and j with the same granularity for tick k at both clocks can be defined
as follows:

Oi,j
k =

∣∣RT (VT i
k)−RT (VT j

k)
∣∣ (2.2)

The offset between a virtual clock time j and a relational clock time j at
time t is denoted as Ωj

t .

2.2.2 Clock Synchronization

Since any clock drifts, the clock times of an ensemble of clocks will drift apart,
if they are not periodically re-synchronized with respect to each other1. Clock
synchronization is concerned with bringing the time of clocks in close relation
with respect to each other. A measure for the quality of synchronization is the
precision.

1“Re-synchronize clocks with respect to each other” means “to bring the different times
of the clocks closer together”.

29

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

Precision. Given an ensemble of clocks, the maximum offset between any
two clocks of this ensemble in an interval of interest is called the precision.
For an ensemble of virtual clocks with the same granularity, where the virtual
clocks are numbered from 1 to N , the precision at tick k is defined as

Πk = max
1≤i,j≤N

(Oi,j
k) (2.3)

The maximum of Πk over an interval of interest is called the precision of an
ensemble of clocks, denoted Π. This precision Π is expressed in the number of
ticks of the reference clock.

Internal Clock Synchronization. The process of mutual re-
synchronization of an ensemble of clocks to maintain a bounded precision is
called internal clock synchronization. Internal clock synchronization does not
necessarily mean synchronization to real time, as all clocks of an ensemble
can drift. Internal clock synchronization is defined optimal by Srikanth and
Toueg [ST87], if the drift rate of the synchronized clock time of an ensemble
of clocks (with respect to real time) is smaller than or equal to the drift rate
of the largest drift rate of the ensemble of clocks.

External Clock Synchronization. If an ensemble of clocks synchronizes
their clock times to distinguished clocks that are not part of this ensemble,
this is called external clock synchronization. A quality measure for this kind of
synchronization is the accuracy.

Accuracy. Given a clock, the accuracy of this clock with respect to a ref-
erence clock is the maximum offset between these two clocks in an interval of
interest. For virtual clock i, the accuracy with respect to the reference clock
time is defined as

αVT
i,RT = max

∀k

(∣∣RT (VT i
k)−RT l

∣∣)
(2.4)

where the reference clock tick l is the corresponding tick of the reference
clock time of tick k. The accuracy of an ensemble of clocks is defined as the
maximum value of the accuracy of all clocks of an ensemble. Please note that
this definition of accuracy is in contrast to other known definitions of accuracy
in the area of clock synchronization [Sch87, ST87]. In the cited papers, the
accuracy defines the maximum drift rate that any synchronizing clock has.

The accuracy of the reference clock time with respect to real time is not
zero. Due to the definition of the reference clock time, the accuracy of the

30

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

reference clock time with respect to real time, denoted αRT ,T , is

αRT ,T = gRT (2.5)

where gRT is the granularity of the reference clock.

The accuracy of virtual clock i with respect to relational clock j with the
same nominal granularity is defined as:

αVT
i,RCT j

= max
∀k

(∣∣RT (VT i
k)−RT (RCT j

k)
∣∣)

(2.6)

In this thesis, the accuracy of a virtual clock with respect to a relational clock
is defined, because it is a measure that enables the evaluation of the quality of
a clock synchronization algorithm using relational clocks as references.

External clock synchronization is seen as synchronization to one or more
clocks that are synchronized to real time with a synchronization quality (in
terms of accuracy values) that is at least by a factor of ten better than the
aimed synchronization quality of the externally synchronizing clock(s).

Multi-Cluster Clock Synchronization. This thesis focuses on the syn-
chronization of clocks of multi-cluster systems, which we call multi-cluster clock
synchronization. Multi-cluster clock synchronization can be seen as external
clock synchronization from a point of view of one cluster with the following
distinct differences compared to known external clock synchronization:

• The time of the relational clocks used as reference does not have to be
synchronized to real time.

• The drift rate of relational clocks is likely to be different from 0 and can
be in the order of the synchronizing clocks. This is in contrast to known
external clock synchronization algorithms where the drift rate of clocks
used as references is assumed to equal zero or is negligibly small compared
to the synchronization requirements [Pat94].

Clock Synchronization Versus Synchronization of Clock Rates.
Clock synchronization (i.e. synchronization of the times of clocks) is not the
same as clock rate synchronization [Lis91]. Clock synchronization does not
mean only synchronizing the rates of clocks, because synchronizing rates of
clocks leaves the initial state of a clock open. Synchronizing clock times, how-
ever, automatically implies synchronization of clock rates. Synchronizing rates
is computationally less intensive compared to synchronizing times and may
suffice for certain applications [Lis91].

31

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

State Correction Versus Rate Correction. In order to synchronize clock
times, the clock times must be corrected. As stated above, clock synchroniza-
tion uses virtual clock times. There are two different approaches to correcting
virtual clock times: state correction and rate correction. For state correction,
a node applies a computed correction value at once and immediately after cal-
culation. For rate correction, the rate of the clock is accelerated or decelerated
by changing the number of hardware clock ticks per virtual clock tick over an
interval. The sum of the number of hardware clock time changes in the interval
equals the computed correction value.

Table A.1 in Appendix A gives an overview of the most important terms of
this thesis.

Principle of Operation of Clock Synchronization

As defined above, the goal of clock synchronization is to bring or maintain the
clock times of the synchronizing clocks in close relation to each other or to the
time of relational clocks. In order to achieve this goal, each node cyclically
performs the following three phases:

Phase 1: Collection of clock time values. In phase 1, a node collects in-
formation about the clock time values of other clocks actively participat-
ing in the synchronization. This can either be the difference to its own
clock time or the actual clock time value.

Phase 2: Calculation of correction value. After performing phase 1, each
node computes a correction value using (some or all) of the collected
clock time values in phase 2. The computation is performed using the
convergence function, which should bring clock times closer together.

Phase 3: Clock correction. In phase 3, a node corrects its clock time using
the calculated correction value of phase 2. As described in Section 2.2.1,
all implemented clock synchronization algorithms use the concept of vir-
tual clocks. This allows the simple adaption of the clock times.

Schneider argues in [Sch87] that basically all internal clock synchronization
algorithms are solutions to the following three subproblems:

Re-synchronization. What is the event that causes the re-synchronization
of clocks?

Remote clock time readings. How does a clock obtain the clock time values
of other clocks?

32

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

Convergence function. How are the correction values of different clocks
computed in order to keep clocks synchronized within a bounded interval
(the precision) while preserving the monotonicity of the clock times and
keeping the drift of the clocks better than or equal to the hardware clock
drifts.

Schneider’s argument is also valid for external clock synchronization algo-
rithm.

Classifications of Clock Synchronization Algorithms

The following paragraphs classify clock synchronization algorithms

Internal and External Clock Synchronization Algorithms. Clock syn-
chronization algorithms can be classified by the clocks used as reference clocks.
If the clocks used as reference are not part of the synchronizing ensemble this
is commonly called external clock synchronization. Examples of external clock
synchronization algorithms are [CF95, MO83]. If the clocks used as refer-
ence are also synchronizing clocks, this is called internal clock synchronization.
There are a number of different internal clock synchronization algorithms pro-
tocols, which all basically differ by the different approaches to the three sub-
problems described by Schneider [Sch87]. Examples for internal clock synchro-
nization algorithms are [BD87, FC95, HSSD84, KO87, LM84, LM85, LL84a,
MS85, ST87, RSB90, WF00]. Fetzer and Cristian combined the internal and
external clock synchronization [FC97, CF95].

Deterministic, Probabilistic, and Statistical Clock Synchronization
Algorithms. Internal clock synchronization algorithms can further be clas-
sified by assumptions about the transmission delay of the communication sys-
tem in deterministic, probabilistic, and statistical clock synchronization algo-
rithms [AP97].

• Deterministic clock synchronization algorithms assume that an upper
bound on transmission delay exists. If this assumption holds, a certain
quality level of clock synchronization (in terms of a guaranteed precision)
can be guaranteed.

• Probabilistic and statistical clock synchronization algorithms do not as-
sume a strict upper bound on the transmission delay. Instead, statistical
clock synchronization algorithms assume that the first and second mo-
ment of the distribution of the transmission delay and – sometimes – that

33

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

the distribution is known. As a consequence, a node does not know the
precision of the clock synchronization at a given time. Probabilistic clock
synchronization algorithms make no assumption about the distribution
of the transmission delay. Instead it is assumed that with probability p,
p < 1, the transmission delay will be smaller than a guaranteed constant
maximum transmission delay. As a consequence all clocks know whether
they are synchronized or not at any time [Cri89].

A performance analysis of the different types of algorithms can be found
in [AP98].

Hardware Versus Software Implementation Clock synchronization al-
gorithms that are implemented in hardware and use specialized hardware com-
ponents, such as [KR87, KO87], achieve tight synchronization. On the other
side, implementations in software, such as [Cri89, FC95, HSSD84, ST87, LL84a,
LM85, MS85, PB95, VRC97], do not achieve synchronization as tight as hard-
ware algorithms, but use commercial-off-the-shelf components.

Related Work on Clock Synchronization Algorithms

Halpern et alii [HSSD84] present a fault-tolerant clock synchronization algo-
rithm that works in arbitrary networks. Approaches to clock synchroniza-
tion are refined for the employment in large distributed systems [Mar84, SS97,
Sch00, VRC97]. Rushby and von Henke have formally verified clock synchro-
nization algorithms [RvH89]. Schedl simulated several clock synchronization
algorithms [Sch96].

Most of the presented clock synchronization algorithms use replication as
fault tolerance strategy. Dolev, Welch, and Papatriantafilou present approaches
that achieve fault tolerance using self-stabilization [DW95, Dol97, PT94].
Analyses of self-stabilizing clock synchronization algorithms can be found
in [LZM90, CL94].

Measurement and control applications are increasingly using distributed
system technologies such as network communication, local computing, and dis-
tributed objects. As these measurement and control applications base on dis-
tributed embedded systems, clock synchronization has become an important
area for standardization. In 2001, the IEEE standard organization has started
a standardization process for clock synchronization in measurement and con-
trol applications. In 2002, the standardization committee has published a draft
standard [IEE02] for clock synchronization, called “Precision Time Protocol”
(IEEE P1588). This standard addresses the needs of measurement and control

34

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

systems: microsecond to sub-microsecond accuracy; administration free; and
most importantly, accessible for both high-end devices and low-cost, low-end
devices. This standard decouples the application and communication task by
introducing an application and a communication layer and an isolation layer
that isolates application activities from communication activities and provides
time provision services. The communication layer of the protocol requires all
communicating nodes to follow a time-division multiple access (TDMA) strat-
egy for the communication medium in order to achieve low latency jitter. The
TDMA strategy is achieved by implementing a master/slave protocol [Jen02].

2.2.3 Time Standards and Sources

Time standards are an agreed origin and representation of time. This section
describes the two time standards Internal Atomic Time and Universal Time
Coordinated. Clocks that are synchronized to time standards are potential
sources for references for external clock synchronization. That is, they can
be used as relational clocks. We call systems that provide clocks that are
synchronized to time standards time sources.

Time Standards

International Atomic Time. In 1967, the Bureau International de l’Heure
(BIH) specified the Temps Atomique International (TAI) in order to provide a
time standard that can be produced in a laboratory, but is in agreement with
the second derived from astronomical observations. The TAI defines the second
as the duration of 9192631770 periods of the radiation of a specified transition
of the cesium atom 133. The TAI is a strictly monotonic timescale (also called
a chronoscopic time scale). That is a timescale without any discontinuities.

Universal Time Coordinated. The Universal Time Coordinated (UTC) is
a time standard that is in close relation to the time derived from astronomic
observations of the rotation of the earth relative to the sun. UTC is a time
standard used for business relations and is a basis for widely used synchronized
clocks, such as wall clocks. There is an offset between TAI and UTC due to
the deceleration of the rotation speed of the earth, which is adjusted in second
intervals by the BIH whenever necessary. UTC time is always kept within
±0.9 seconds of the time derived from astronomic observations (including polar
wander effect corrections) by the insertion of an extra second (positive leap
second) as needed. While it is theoretically possible to have to remove an
extra second (negative leap second), it has not happened so far. From the last
statements it can be concluded that UTC is not free of discontinuities.

35

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

Time Sources

Global Positioning System. The U. S. Department of Defense funds, con-
trols, and operates the Global Positioning System (GPS). GPS is a dual-use,
satellite-based system that provides accurate location and timing data world-
wide. Provision is done via specially coded satellite signals that can be pro-
cessed in a GPS receiver, enabling the receiver to compute position, velocity,
and time. The time at GPS satellite is synchronized to UTC time with an
accuracy that is better than 15 ns (there is an offset between GPS time and
UTC to provide monotonicity). The accuracy of the timing information of
commercially available GPS receivers using special measurement methods is
about 50 ns. GPS is an accepted and widely used time source for military and
civil application [LAK99, HS97, Dan97].

Global Navigation Satellite System. The GLObal NAvigation Satellite
System (GLONASS) is – similar to GPS – a dual-use satellite-based navigation
system that enables global-wide positioning, velocity measuring, and timing
information. The GLONASS system is managed by the Russian Space Forces
for the Russian Federation Government. The GLONASS system provides two
types of navigation signals with different precision level. The time of GLONASS
satellites is synchronized to UTC (with a constant offset to provide chronoscopic
behavior) with approximately 15 ns [Leb98].

Galileo. Galileo is the planned European satellite navigation and time trans-
ferring system. The European Union launched the GALILEO project due to
the following concerns regarding GPS and to a degree GLONASS [Kha01]: both
systems are under the unilateral control of a foreign national defence authority,
the absence of guarantees of service, priority on military needs, intentionally
degraded use to civil needs, poor availability in urban areas, and unpredictable
gaps in coverage. Galileo should overcome these concerns and become fully
operational in 2008.

Radio-Controlled Clocks. In several regions of the world, time information
is broadcast via radio services with a UTC timecode modulation (examples are
DCF77, WWVH, WWV, and HBG). Timecode receivers enable the reception
of a time signal with an accuracy with respect to UTC in the order of 10 ms.
Receivers, however, are subject to occasional gross errors due to propagation
and equipment failures [LAK99, Sch88, Mil91]. Terrestrial radio stations allow
for accuracies of timing information in the range of 50 ms up to 10 µs [Lic97].

36

2 Concept and Terms 2.2 Clocks, Time, and Clock Synchronization

2.2.4 Time Aspects from an Application-Specific View

Time can serve different aspects for an application. For a real-time control
application, time must have properties such as chronoscopic behavior. For ap-
plications that use time as reference for users for synchronizing their wall clock
and watches, time must be synchronized to UTC and chronoscopic behavior is
thus impossible. This section describes different aspects of time.

Optimal Representation of Time for Real-Time Systems

For time in real-time systems, a representation should be chosen that has the
following properties:

• no overflow occurs in system life time

• the precision of the time is smaller than the granularity of the represen-
tation

• chronoscopic behavior

The time should be accessible via reliable sources world-wide and the jitter
at receivers with respect to the reference time should be low. The GPS time is
a continuous representation of time with high availability and low jitter. Yet,
GPS time overflows every 19.6 years because the GPS week is represented by a
10 bit value. This shortcoming of GPS is overcome by the time format [OMG02]
described in Figure 2.6. This representation guarantees no overflow during the
lifetime of the product (horizon of more than 10 000 years) and the full sec-
ond can be easily accessed due to binary representation of a second overflow.
The granularity of this time representation is 59.6 ns, which is in the order
of the accuracy of common GPS receivers. Using this time representation and
a satellite-based time provision system enables the above mentioned require-
ments.

...

239 seconds 20 seconds = 1 second 2-24 seconds

8 bytes

1 byte1 bit

Figure 2.6: Optimal representation of time in real-time systems [OMG02]

37

2.2 Clocks, Time, and Clock Synchronization 2 Concept and Terms

Global Time.

The set of time values of an ensemble of clocks that are synchronized to each
other with precision Π are called the global time of this ensemble. The global
time of an ensemble is represented by the local time of each clock at each
of the clocks. This local time of a clock is an approximation of the global
time [KO87]. The notion of global time is introduced, because it is impossible to
perfectly synchronize2 clocks [LL84b] due to uncertainties and properties of the
communication systems (such as the latency jitter and bounded transmission
speed of the communication system). This impossibility result has far-reaching
consequences, which will be explained in the next paragraphs.

Reasonable Time

A “global time is called reasonable, if all local implementations of the global
time satisfy the condition g > Π[,] the reasonableness condition for the global
granularity g” [Kop97, p.52].

Sparse Time

A model of time is called dense time, if time progresses along a dense timeline
and events can occur at any instant on this time. In a sparse-time model, the
time is partitioned into alternating durations of activity and silence as depicted
in Figure 2.7.

real time

a aas s
a ... duration of activity
s ... duration of silence

Figure 2.7: Sparse time [KO02]

In a distributed system it is impossible to order events consistently on the
basis of their timestamps – if these timestamps are based on a dense time – due
to the impossibility result [LL84b]. Timestamps of events based on a sparse
time can be ordered, if events with timestamps in the same activity interval
are considered to happen at the same time. Events can be totally ordered,
if events are timestamped using a sparse time with the following properties:
first, the interval of activity is smaller or equal to the precision of the clock
synchronization in a distributed system and, secondly, the duration of silence
is at least four times larger than the duration of activity [Kop97, KO02].

2Perfectly synchronizing clocks means synchronizing clocks with a precision equal to 0.

38

2 Concept and Terms 2.3 Time-Triggered Architecture

2.3 Time-Triggered Architecture

This section describes the Time-Triggered Architecture (TTA) [KB02] as an
example for a fault-tolerant embedded system architecture, because it is used
as evaluation architecture in this thesis. Other examples are SPIDER [Min00],
SAFEbus [ARI93, HD93], or FlexRay [MHB+01].

The Time-Triggered Architecture (TTA) is a computer architecture de-
signed to support the requirements of fault-tolerant real-time systems. The
TTA provides the following services to the application at the architecture
level [Kop02a]:

• A consistent distributed communication and computing platform with
prompt error detection if consistency is lost by a failure that can be
detected at the architecture level.

• A fault-tolerant global time base of known precision at all nodes that
support a sparse time base.

• mechanisms for the precise operational specification of the interfaces
among the nodes in the value and time domain.

• Error containment such that single arbitrary node failures can be toler-
ated.

• Mechanisms that support the transparent implementation of fault toler-
ance.

fieldbus
gateway

cluster
node

time source

Figure 2.8: Time-Triggered Architecture system

39

2.3 Time-Triggered Architecture 2 Concept and Terms

Figure 2.8 shows a TTA system with three clusters. Nodes in a TTA cluster
can directly communicate via broadcast messages via the time-triggered com-
munication protocol TTP/C [Kop97, Kop99]. Clusters may be connected via
gateway nodes to allow communication between nodes of different clusters, that
is inter-cluster communication. Nodes within a cluster are provided with a time
base of known precision, while the synchronization of global times of different
clusters is the topic of this thesis. Nodes may be connected to an external
time source, also an aspect of this thesis. Gateway nodes may also connect a
cluster with a fieldbus for exchanging input/ouput data from/to the environ-
ment. This can be a time-triggered sensor bus, such as TTP/A [KHE01]. In
order to achieve replica determinism [Pol94], nodes must perform an agreement
protocol on the input data.

TTP/C

The next paragraphs describe the communication protocol TTP/C of the TTA
in more detail. TTP/C is designed to tolerate arbitrary single faults. To
tolerate single failures of the communication medium, TTP/C provides a com-
munications medium consisting of two replicated channels. For a broadcast to
be correct, data transmission must be successful on at least one of the replicated
channels.

Internal Clock Synchronization and Media Access in TTP/C. Media
access in TTP/C is controlled by a conflict-free TDMA (time-division multiple-
access) strategy, which ensures a bounded communication delay. The TDMA
scheme divides time into slots of not necessarily equal length and assigns each
node a unique slot where only this node is allowed to send. After all nodes
have sent, the access pattern is repeated. A single repetition is referred to as
TDMA round (Figure 2.9).

12:00 3:00 5:00 9:00 12:00 3:00

assigned
to node0

assigned
to node1

assigned
to node2

assigned
to node3

assigned
to node0

TDMA round n

slot0 slot1 slot2 slot3 slot0

TDMA round
(n+1)

TDMA round
(n-1)

assigned
to node3

slot3

Figure 2.9: TDMA round (four nodes)

Communication media access is time-triggered. An internal clock synchro-
nization algorithm, the Fault-Tolerant Average (FTA) algorithm [Kop97, p.62],

40

2 Concept and Terms 2.3 Time-Triggered Architecture

builds the global cluster time. Each node computes its time representation us-
ing its own clock and the differences between the expected arrival times and the
actual arrival times of messages from other nodes. These differences represent
the differences of the clock values of other nodes VT i, 1 ≤ i ≤ N, i 6= k, and
the value of a node’s own clock VT k.

Atomic Broadcast in TTP/C. Special pieces of hardware (the guardians)
prevent nodes from sending outside the assigned slots and ensure that all receiv-
ing nodes have a consistent view of what has been sent. TTP/C autonomously
and deterministically exchanges state messages between Communication Net-
work Interfaces (CNIs) in the nodes of a distributed systems. State message
semantics [Kop97, p.33] means that only state values are transmitted and the
communication system itself performs control on when to exchange messages.
In contrast, event messages are messages that only contain the difference be-
tween two states. When event messages are transmitted, the order of these
messages can be recovered by timestamping messages and ensuring that event
messages are not overwritten in the CNI.

node 0
node 1

node 2
node 3

communication
medium

guardian 1guardian 0

Figure 2.10: TTP/C cluster (star architecture) with four nodes and two
guardians

The guardian design ensures the consistency of message data. The basic
idea of the guardian design – which is described in detail in [BS01, BKS02] –
is that replicated guardians decide about the correctness of a node and other
nodes accept this decision.

In detail: in the time domain, a guardian checks that communication of
other nodes starts and ends in the intervals starting one precision before the
assumed sending time and ending one precision afterwards, respectively. All
nodes accept any incoming traffic in the interval twice the amount of the preci-
sion around the assumed sending time, because the guardians and the sending

41

2.4 Summary 2 Concept and Terms

node can only be synchronized with Π. If a node does not obey to this rule, its
message is blocked and/or marked as incorrect. The guardians decide centrally
about the correctness of a node and other nodes accept this decision in order
to avoid inconsistencies among nodes.

In the value domain, a guardian performs signal reshaping in order to avoid
any inconsistencies between nodes. The principle for the value domain is similar
to the time domain: the tolerances of the guardians are much tighter than the
tolerances of the nodes. Consequently, when a guardian accepts a value of a
node on the communication medium all nodes will accept it.

Due to the design of the nodes, the replicated guardians, the fault-tolerant
internal clock synchronization, and the static access pattern, all correct nodes
will consistently receive all messages in the same order. Figure 2.10 depicts a
cluster with guardians. For a detailed discussion, please refer to [BKP01] for
the design and fault hypothesis of guardians and to [SP02, SB02] for startup
of the system.

Common-Mode-Drift Correction in TTP/C. TTP/C provides a mech-
anism to correct the common-mode drift of the global cluster time. For the
correction, a correction term is added to the correction value of the internal
clock synchronization, which is calculated by the FTA algorithm, every TDMA
round at each node. This resulting value is used for the correction of the vir-
tual clock times for the next TDMA round. This mechanism, which adjusts
the virtual clock time at the same clock tick instances at every node, can be
used as basic correction primitive for the external clock synchronization of a
cluster and for inter-cluster clock synchronization.

2.4 Summary

This chapter gave an overview of the concepts and terms that will be used
throughout this thesis. We started off by defining distributed systems in
general. Further, we introduced the notions of the impairments, the means,
and the attributes of dependability and put particular emphasis on how fault
tolerance can be achieved. Concerning fault tolerance, we described the two
main approaches to reach fault tolerance: replication of components and self-
stabilization. This chapter then introduced some aspects of distributed sys-
tems, such as synchrony, composability, and types of broadcast message de-
liveries. In the context of distributed systems, real-time, multi-cluster, and
embedded systems have been described.

The second major section described the concept of clocks and the principle
of clock synchronization and defined measures, such as drift rate, precision,

42

2 Concept and Terms 2.4 Summary

accuracy. It also classified clock synchronization algorithms and introduced
time standards and sources. Time standards are agreed notions of time. Time
sources can be used to access these time standards. We described aspects of
the use of time by applications, such as time representation, global, reasonable,
and sparse time. The chapter ended with an brief explanation of a fault-
tolerant embedded system architecture, the Time-Triggered Architecture with
its communication protocol TTP/C .

43

2.4 Summary 2 Concept and Terms

44

Chapter 3

Problem Statement and
Objectives

The real problem is what to do with the problem-solvers
after the problems are solved.

Gay Talese

Chapter 2 introduced the reader to the concepts and terms used in this
thesis, namely that of clocks, clock synchronization, distributed, embedded,
and multi-cluster systems. Starting from a precise notion, this chapter concisely
states the problem this thesis addresses. We also justify the research work by
discussing what known clock synchronization approaches have not yet dealt
with and what are the needs of a clock synchronization algorithm for embedded
systems.

3.1 Problem Statement

Typical large-scale distributed fault-tolerant real-time systems can be realized
as multi-cluster systems. Multi-cluster systems consist of a number of groups
of components with a high inner functional and temporal coupling, so-called
clusters. The clusters are, in turn, interconnected. The coupling between clus-
ters is, however, much looser than the coupling within the single clusters. To
meet the temporal requirements of a fault-tolerant real-time (control) applica-
tion the components of a cluster, which share the real-time workload, need a

45

3.2 Objectives 3 Problem Statement and Objectives

common fault-tolerant time base. Such a time base is established by performing
fault-tolerant internal clock synchronization.

The goal of this thesis is the clock synchronization of multi-cluster systems
used as embedded control systems. Multi-cluster clock synchronization can
be seen as external clock synchronization of individual clusters. While in the
traditional model of external clock synchronization the drift rate of relational
clocks is zero with respect to real time [CF95], the relational clocks in multi-
cluster synchronization are allowed to have a maximum drift rate. This thesis
shows that multi-cluster synchronization of internally synchronized clusters can
be achieved by developing an external clock synchronization algorithm that
allows relational clocks to have a bounded drift rate. This drift rate of relational
clocks can be as large as the drift rate of the global time of a cluster. As the
drift rate of relational clocks is regarded as non-zero, a number of additional
questions arise:

• Clock drift rate errors are characterized by a stochastic and a systematic
error [Sch88]. Clocks are the basis for the global time. Is the clock drift
rate of the global time also characterized by a stochastic and a systematic
part? If so, to what level can the systematic drift rate of the global time
be compensated by a multi-cluster clock synchronization algorithm?

• What level of accuracy (as a quality measure) can be achieved by a multi-
cluster clock synchronization algorithm?

• The global time of a cluster is represented by (not necessarily all) clocks of
a cluster. How does a change of a clock set effect the drift rate of the global
cluster time and, subsequently, the multi-cluster clock synchronization
algorithm?

• The analysis of current clock synchronization algorithms takes one er-
ror term (clock reading error; that comprises all errors, such as reading
of clock, jitter of communication system, digitalization errors) into ac-
count [FC97]. Does an analysis that differentiates between the different
error types lead to additional insights? How do architecture properties
influence the quality measures of a clock synchronization algorithm?

3.2 Objectives

The objective of this thesis is the development of a multi-cluster clock synchro-
nization algorithm for embedded control systems. This algorithm must have
the following properties in order to tackle the requirements of clock synchro-
nization in embedded control systems:

46

3 Problem Statement and Objectives 3.2 Objectives

Fault tolerance. A clock synchronization algorithm must be fault-tolerant in
order to be able to cope with the demanding dependability requirements
of embedded systems due to autonomy needs. From the described fault
tolerance techniques in Section 2.1.1, fault masking and fault recovery
are appropriate techniques for handling faults in a clock synchronization
algorithm.

Fault masking. Faults described in the fault hypothesis must be
masked for applications, because these can be frequently occurring
faults leading to system failures.

Fault recovery. As faults cannot always be predicted or be masked with
justifiable overhead, mechanism for tolerating rarely occurring faults
must be supported. These mechanisms aim at stabilizing the system
in a state from which correctly performing systems can start again.
Such a mechanism is, for example, self-stabilization.

Tight synchronization. The quality of synchronization between clocks of
nodes of the different clusters must be in the same order of magnitude as
the quality of synchronization of clocks of nodes of the same cluster, in
order to be able to collectively control the environment with high quality.
The maximum difference between any two clocks of a system determines
the quality of a system-wide image of the environment and, subsequently,
the quality of control of the whole system, because it is a limiting factor
of a sparse system-wide time base.

Non-interference. The precision is the maximum difference between any two
clocks of nodes of one cluster and determines time-specific parameters of
control applications. Multi-cluster synchronization influences the preci-
sion of a cluster as does external clock synchronization. This is inevitable
due to the impossibility of perfect clock synchronization [LL84b], which
leads to a different view of correction values of clock synchronization
algorithms. Yet, the influence of an external or a multi-cluster clock
synchronization algorithm on the precision of a cluster, first, should be
minimized and, secondly, should be negligible compared to influences of
other errors. Furthermore, the influence should only stem from node
properties, and not others – especially not parameters outside the con-
trol of a node – for two reasons. First, failures in the temporal domain
related to synchronization can be isolated. Secondly, composability of
cluster time bases is enabled.
We call a clock synchronization algorithm where the influence of clock
synchronization on the precision depends only on parameters of nodes
a non-interfering clock synchronization algorithm, because synchroniza-
tion does not interfere with properties building on the precision. Syn-

47

3.3 Summary 3 Problem Statement and Objectives

chronization algorithms where the influence on the precision of a cluster
stems from components not belonging to the cluster, such as the max-
imum deviation of external clock readings, are called interfering clock
synchronization algorithms. Non-interference ensures that applications
can build upon properties of a time base that will not change by the
composition and synchronization of several clusters.

Low computational complexity. Embedded control systems have only low
computational power compared to other computer systems, such as desk-
top PCs, and stringent memory restrictions as elaborated in Section 2.1.3.
Thus, an algorithm designed for deployment in embedded systems must
be able to deal with the stringent resource conditions and have low com-
putational complexity.

Work on clock synchronization has been discussed and classified in Sec-
tion 2.2. None of the presented algorithms explicitly takes drifts of relational
clocks into account. Related to multi-cluster clock synchronization is the work
of Fetzer and Cristian [FC97, CF95]. They present a fault-tolerant external
clock synchronization algorithm where the influence of external clock synchro-
nization on the precision depends not only on node-specific parameters, such as
the maximum deviation between external clock readings. This influence stems
from the fact that nodes can have an inconsistent view of an external clock
reading value. Fetzer and Cristian bound the influence of the external clock
synchronization algorithm on the precision by restricting the maximum correc-
tion to the maximum drift of nodes and by assuming initial synchronization.
Kopetz et alii [KHK+96, KKMS95] address the problem of how to integrate
external and internal clock synchronization in the context of synchronizing
multi-cluster real-time systems. They consider only one relational clock and,
thus, cannot achieve fault-tolerant synchronization. Harper et alii [HLD88] ad-
dress the problem of clock synchronization of clusters in parallel systems. As
addressed in Chapter 2, the difference between parallel and distributed systems
is the unreliable communication of distributed systems.

3.3 Summary

This chapter addressed the problem this thesis tackles by giving a precise prob-
lem specification and presenting a requirements analysis of clock synchroniza-
tion algorithms for embedded control systems. Known clock synchronization
algorithms that are related to the presented research work were discussed.

48

Chapter 4

Framework and Assumptions

Omnia, Lucili, aliena sunt, tempus tantum nostrum est.

Seneca, Epistulae morales 1,3

Any concept is a matter of abstraction. Its goal is to explicitly distinguish
relevant from irrelevant facts and properties. This chapter describes the under-
lying concepts of the research work of this thesis. This is done by presenting
the framework of multi-cluster clock synchronization and the underlying as-
sumptions of the multi-cluster clock synchronization algorithm.

4.1 Framework

Multi-cluster synchronization is achieved by performing external clock synchro-
nization of global times of individual clusters using relational clocks as refer-
ences. As described in Section 2.2.1, relational clocks are not ideal representa-
tions of real time and, thus, have a bounded drift rate different from 0 and an
accuracy with respect to real time that is different from 0. A relational clock
is a virtual clock that is used as a reference. Relational clocks can either be
synchronized to a time source or not1. A node that can read the time of a
relational clock in addition to its virtual clock time is called time master node.
A time master node can calculate the difference between its virtual clock time

1A time source is also called external time source, since – from a cluster-point-of-view –
a time source provides time information to a cluster that is outside the control of a cluster.

49

4.1 Framework 4 Framework and Assumptions

and the relational clock time. This difference is also called offset and is denoted
Ωj

t for time master node j at time t. Figure 4.1 depicts a multi-cluster system
with three clusters.

C
L
U
S
T
E
R
1

C
L
U
S
T
E
R
2

timing information
node

legend:

time
master
node

:: :: gateway

CLUSTER 3

time
master
node

time
master
node

time
master
node

time
master
node

external time source

time
master
node

time
master
node

time
master
node

time
master
node

time
master
node

Figure 4.1: Multi-cluster system

External and Inter-Cluster Synchronization. In this thesis, we differ-
entiate between synchronization to relational clocks that are synchronized to
a time standard and to relational clocks that are not synchronized to a time
standard, because if relational clocks are synchronized to a time standard con-
clusions about the synchronization quality to real time can be drawn. If a
relational clock that is synchronized to an external time source is used as rela-
tional clock, we call this external synchronization. If a relational clock is not
synchronized to a time standard, we call this inter-cluster synchronization. For
inter-cluster synchronization, virtual clocks of other clusters are used as refer-
ences. Since virtual clocks build global cluster times (see Section 2.2.4), we say

50

4 Framework and Assumptions 4.1 Framework

for short that inter-cluster synchronization is concerned with synchronizing a
global cluster time to other global cluster times.

For inter-cluster synchronization, timing information is conveyed from one
cluster to another cluster via dedicated components, called gateways. A gate-
way consists of two nodes. One node is a participant of one cluster with a virtual
clock time that is internally synchronized to the other virtual clock times of
this cluster. The other node is participant of the other cluster and also has a
virtual clock time, which is internally synchronized to the virtual clock times of
the other cluster. The virtual clock time of each node is a representation of a
global cluster time (see Section 2.2.4). For external synchronization, relational
clocks synchronized to time standards provide timing information to nodes of
a cluster. These external time sources (also called time servers [KKMS95])
consist of a virtual clock time that is synchronized to a time standard, such as
GPS time.

If synchronization to an external time source is necessary, we assume that
all relational clock times are in relation to real time as indicated in Figure 4.1,
because relational clock times are directly or indirectly synchronized with an
external time source that is synchronized with real time. Direct access to
external time sources enables the smallest achievable accuracy with respect to
real time. The relational clock times of cluster 1 in Figure 4.1 have direct
access to external time sources. For clusters where the relational clock times
are not directly externally synchronized, the accuracy with respect to real time
increases by the precision of the clusters in-between the relational clock times
and the external time sources. For example, the smallest accuracy that can
be achieved by a relational clock time of cluster 3, is the sum of the accuracy
of the relational clock times of cluster 1 or 2 and the precision of cluster 1 or
cluster 2, respectively.

Synchronization in Multi-Cluster Systems

The following sections focus on a description of fault-tolerant external clock
synchronization of one cluster using relational clock times as timing informa-
tion. Fault tolerance is achieved by replication of relational clock times, which
are accessible via time master nodes. As described above, multi-cluster clock
synchronization is achieved by synchronizing the global time of a cluster to
relational clock times.

4.1.1 Flow of Timing Information

The following requirement at a multi-cluster level enables synchronization of
clocks in multi-cluster systems when the algorithm described in Chapter 5 is

51

4.1 Framework 4 Framework and Assumptions

used:

Requirement 1. (Avoidance of Circular Dependencies between Clus-
ter Times in Clock Synchronization) In a multi-cluster system with M
clusters (M ≥ 1), if global time VTm, 1 ≤ m ≤ M , synchronizes using re-
lational clock time RCT j, RCT j must not use VTm directly or indirectly as
synchronization reference. In other words: when synchronizing, circular mu-
tual dependencies of cluster times (as indicated in Figure 4.2) are avoided.

Requirement 1 ensures the stability of cluster times, because it avoids feed-
back loops and associated control problems. Referring to Figure 4.2, the global
cluster time of the upper-most cluster(s) is first synchronized, then the next
level achieves the targeted accuracy value and so on, because the global cluster
times synchronize towards their relational clock times.

CLUSTER

CLUSTER

CLUSTERCLUSTER

CLUSTER

CLUSTER

timing informationlegend:
external time source

Figure 4.2: Propagation of timing info in a multi-cluster system

All relational clocks provide the timing information in a format as described
in Section 2.2.4. This uniform representation of time in a multi-cluster system
avoids misinterpretations. If the synchronization of the multi-cluster system to
real time is not required, no external time sources have to be used as relational
clocks. The time of the first cluster in the synchronization network is then the
reference time for all other clusters (this is the uppermost cluster in Figure 4.2).
This is a restriction of the flow of timing information, which leads to a solution
of multi-cluster synchronization that does not have to address discrete control
problems at multi-cluster level. A PhD thesis that addresses especially the
problem of conveying timing information in a cyclic manner is currently under
development at our institute (Institut für Technische Informatik, Technische
Universität Wien, Vienna Austria).

52

4 Framework and Assumptions 4.2 Architecture of One Cluster

In the latter of this thesis, we focus on the evaluation of clock synchroniza-
tion either of two adjacent cluster (directly connected by gateway nodes) or
of clock synchronization of one cluster to an external time source. Clock syn-
chronization of multiple clusters is achieved by synchronizing several adjacent
clusters and/or by synchronizing to external time sources as described in the
next section.

4.2 Architecture of One Cluster

A cluster consists of N nodes. Nodes are considered to be fault containment
regions. M of these nodes serve as time master nodes. Without restriction
of generality, time master nodes are numbered from 1 to M and other nodes
from M + 1 to N . Time master node j has access to the relational clock time
RCT j, 1 ≤ j ≤ M . A time master node j measures the difference between its
virtual clock time VT j (depicted as small digital clock on the lower end of the
circle in Figure 4.3) and its relational clock time RCT j (large digital clocks in
Figure 4.3) at time t. This difference is called offset, denoted Ωj

t . This offset
of a time master node is sent to all nodes via the communication system as
shown in Figure 4.3 and described in detail in Section 2.2.2.

communication system

node

4

node

7

node

8

time
master
node

1

node

5

node

6

time
master
node

3

time
master
node

2

12:01

12:00

11:59

12:00

1
2

3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

12:01

11:59
12:00

12:00

12:02
11:50

11:59

1 2

1 3

2 3

Figure 4.3: Cluster with eight nodes, three of the nodes are time master nodes
(N = 8,M = 3)

53

4.3 Requirements 4 Framework and Assumptions

4.3 Requirements

For the fault-tolerant clock synchronization, it is assumed that the following
requirements are satisfied for each cluster.

4.3.1 Communication System Requirements

Requirement 2 (Atomic Broadcast). The communication system provides
atomic broadcast [HT94] despite of F arbitrary faults of links or nodes. Link
failures are mapped as node failures.

Requirement 3 (Λ-Timeliness). There is a known constant Λ such that if
a message is broadcast at t all correct nodes will receive this message at latest
at t + Λ [HT94].

Since Requirement 2 asserts that the communication system handles up to
F arbitrary failures without loss of service, a faulty node will not be able to
keep correct nodes from sending as long as there are no more than F failures.
Requirement 3 assures that all correct nodes receive the same set of messages
within a bounded duration. As each time master node sends the difference
between its virtual clock time and relational clock time (its offset) in a broadcast
message, all correct nodes of a cluster have the same set of offset values.

4.3.2 Synchronization-Related Requirements

Requirement 4 (Relational Clock Times). All M relational clock times
of a cluster, RCT i, 1 ≤ i ≤ M , are synchronized within ∆.

Please note, if a cluster uses relational clock times that are virtual clock
times of different clusters, these relational clock times can be “far apart” at
the beginning of external clock synchronization, because these relational clock
times are not initially synchronized. Still, Requirement 4 is satisfied and the
difference between relational clock times is bounded, although the value of ∆
may be large.

Requirement 5 (Fault-Tolerant Internal Clock Synchronization). The
internal clock synchronization algorithm tolerates up to F arbitrary faults of
nodes or links.

54

4 Framework and Assumptions 4.3 Requirements

Requirement 5 ensures that a faulty node does not effect properties of the
internal clock synchronization, such as the precision of a cluster, as long as
there are at most F faulty nodes2.

Requirement 6 (Common Notion of Time). All correct nodes of a cluster
have a common notion of time.

A common notion of time means that the virtual clock times of nodes of a
cluster are internally synchronized to each other with precision Π (as long as
Requirement 5 is satisfied).

4.3.3 Tolerance to Faulty Relational Clock Times

A time master node is considered to be faulty, if either it performs incorrect
operations or its relational clock time is faulty, that is not synchronized with
other relational clock times. Faulty relational clock times are tolerated by
replication of time master nodes. As one time master node has access to exactly
one (distinct) relational clock time, replication of time master nodes implies
replication of relational clock times.

Requirement 7. (Number of Time Master Nodes) For correct external
synchronization at least 2 · F + 1 time master nodes are present to tolerate F
arbitrarily faulty time master nodes.

2 · F + 1 (and not 3 · F + 1) is the minimum number of time master nodes
needed to tolerate F arbitrarily faulty time master nodes, because a node can
take advantage of the information that all correct external relational clock times
are synchronized within an interval of duration ∆ (Requirement 4).

The following considerations prove that Requirement 7 assures that with
2 ·F +1 time master nodes and at most F faulty time master nodes or commu-
nication system failures, the median of all offset values is a correct offset value
or one that can be considered as correct. A detailed proof why 2 · F + 1 is the
minimum requirement for fault-tolerant external clock synchronization can be
found in [FC97].

Relational clock times are at most ∆ apart, because relational clock times
are either hierarchically dependent on each other (as described in Section 4.1.1)
or synchronized to a time standard. Furthermore, the virtual clock times of
time master nodes of one cluster are synchronized within Π. Consequently, all

2Please note that the precision of a cluster is the maximum deviation between any two
correct nodes. As these deviations can be influenced and the values of the deviations increased
by faulty nodes, the precision – as a maximum value – comprises the influence of faulty nodes.

55

4.3 Requirements 4 Framework and Assumptions

correct offset values differ by at most ∆+Π. If there are at least 2 ·F +1 time
master nodes, there are at most F faulty offset values and at least F +1 correct
offset values. If all offset values are sorted by value, the median of the offset
values is either a correct value or one that “lies” between correct values, which
can be considered as correct. As correct values are the interval ∆ + Π, the
median is also within this interval. Consequently, 2 · F + 1 time master nodes
suffice to choose a “correct” offset value, which can be used for synchronization.

4.3.4 Requirements Regarding the Drift Rate and Cor-
rection of the Global Time of a Cluster

Requirement 8. (Systematic Part of Global Cluster Time Drift Rate)
The systematic part of the drift rate of the global cluster time, denoted ρVT

sys , is
approximately constant over a given period of time.

Requirement 9. (Stochastic Part of Global Cluster Time Drift Rate)
The stochastic part of the drift rate of the global cluster time, denoted ρVT

stoch,
approximately follows a symmetric distribution function in a given period of
time.

Requirements 8 and 9 enable the estimation of the systematic part of the
drift rate of the global time of a cluster in a given period of time. This can be
accomplished by measuring the drift offset of the global cluster time at points
in time (with equidistant intervals in-between) and calculating the drift rate
by using the average of the measurements in the observation period. In the
observation period, a representative number of measurements is collected.

Requirement 10 (Correction of Global Cluster Time). All nodes of a
cluster must be able to correct their virtual clock times with a correction rate
that is larger than the sum of the maximum drift rate of the global cluster time
and the maximum drift rate of the relational clock times.

Requirement 10 enables the synchronization of the global cluster time even
if the global cluster time and the relational clock times drift maximally and the
global cluster time is not synchronized initially. This requirement is fundamen-
tal for being able to initially start nodes non-synchronized. Interestingly, some
clock synchronization algorithms assume initial synchronization and bound the
maximal possible correction to the maximum drift rate, such as [FC97, CF95].
This assumption alleviates analysis of the algorithm.

56

4 Framework and Assumptions 4.4 Summary

4.4 Summary

This chapter briefly explained the framework and the assumptions of multi-
cluster clock synchronization. Synchronization of multiple clusters is achieved
by individually externally synchronizing a cluster using the global cluster time
of other clusters or external time sources as reference. We require that circular
mutual dependencies between global times of clusters are avoided. Since we aim
at deployment of the algorithm in fault-tolerant real-time systems, time and
broadcast constraints concerning the communications systems have been made
and that a cluster has already established a common notion of time. In order
to be able to differentiate between stochastic and systematic errors of clocks,
the systematic error must be constant and the stochastic one must follow a
symmetric distribution. At last, assumptions about the possible correction
rate were made.

57

4.4 Summary 4 Framework and Assumptions

58

Chapter 5

Multi-Cluster Clock
Synchronization

A person with one watch knows what time it is;
a person with two watches is never sure.

Proverb

In Chapter 4, we have presented the framework for the multi-cluster clock
synchronization. That is, multi-cluster clock synchronization is performed by
an external clock synchronization of one cluster that can use relational clocks as
reference. In this chapter, we present the principle of operation of this external
clock synchronization algorithm and analyze it.

The developed external clock synchronization algorithm is round-based and
addresses the systematic and the stochastic part of drift rates differently. While
the systematic part of the drift rate of the global time of a cluster, denoted
ρVT

sys , is measured over a longer period and then corrected, the stochastic part,
denoted ρVT

stoch, is immediately corrected.

The basic idea of the presented external clock synchronization algorithm is
the following: Since all nodes of a cluster have a common notion of time due
to internal clock synchronization (including time master nodes), all time mas-
ter nodes measure the deviations between their virtual clock times and their
relational clock times (these differences are called offsets) at predefined points
in time. Due to the common notion of time nodes perform the measurements
at about the same time. Nodes send these offsets to all nodes. Since (due to

59

5.1 Principle of Operation 5 Multi-Cluster Clock Synchronization

atomic broadcast) all correct nodes receive the same set of offset values, they
deterministically choose the same correction value. Due to the common notion
of time, nodes correct their virtual clock times with the same amount at pre-
defined points in time, again at about the same point in time. This ensures
that the influence on the precision of the cluster will not depend on parame-
ters other than the nodes’ parameters. The following paragraphs describe the
algorithm in more detail and analyze it.

5.1 Principle of Operation

The external clock synchronization algorithm is round-based, each round is
executed in four phases; all nodes are in the same phase at about the same
time. After finishing the last phase, all nodes begin again with the first phase.

Measurement of Offset Values

In the first phase, all M time master nodes measure the differences between
their virtual clock times and their relational clock times at a predefined point
in time, denoted tdef,n where n is the number of the current execution round.
Formally, at tdef,n, time master node j measures the offset Ωj

tdef,n
, which equals

VT j(tdef,n) − RCT j(tdef,n). The duration between succeeding measurement
points (tdef,n and tdef,n+1) is called measurement interval, denoted Rmeasure, is
equidistant, and equals tdef,n+1 − tdef,n.

Time master nodes meet the following three properties: First, time master
nodes use their virtual clock times to determine the predefined points in time;
secondly, virtual clock times are internally synchronized within Π; and, thirdly,
all relational clock times of a cluster deviate by at most ∆. Consequently, all
correct offset values differ by at most ∆ + Π.

Sending of Offset Values

In the second phase (after the measurement), time master nodes send their
offset values to all cluster nodes. Due to the atomic broadcast (Requirement 2),
all correct nodes receive the values of time master nodes and obtain a consistent
view of the offset values. That is, in execution round n all nodes receive at least
Ω1

tdef ,n, Ω2
tdef ,n, . . . , ΩK

tdef ,n, where K is the number of received offset values1.

1All nodes receive at least M − F values and at most M values depending on the actual
number of faulty time master nodes that do not send offset values and the communication
system failures; M − F ≤ K ≤ M , where M is the number of time master nodes and F the
maximum number of faulty time master nodes.

60

5 Multi-Cluster Clock Synchronization 5.1 Principle of Operation

Requirement 3 puts an upper bound on the broadcast time of the offset values.

Agreement and Calculation of Correction Value

In the third phase, all nodes sort all received offsets by value and choose the
median as basis for the calculation of the correction value. As each correct
node has the same set of offset values, each correct node calculates the same
median value. In measurement interval n + 1, each node uses the calculated
correction value of measurement interval n to correct its virtual clock time.

The calculated correction value in measurement interval n (which is used
for correction in measurement interval n + 1) is the sum of the median value
and the estimated amount of the drift offset due to the systematic part of
the drift rate2 of the global time in measurement interval n. The estimate of
ρVT

sys is initially zero. Every H th measurement interval, each node calculates
the average of the last H median values. The sum of the current estimate of
ρVT

sys and the calculated average reflect the estimate of ρVT
sys used for calculation

of the correction in the next H measurement intervals. We call the interval
between two consecutive calculations of an estimate of ρVT

sys the external clock
synchronization interval, denoted Rext.CS. H is the called the history of the

algorithm (H =
Rext.CS

Rmeasure
).

The above described algorithm is refined in order to assure a bounded drift
rate of the global cluster time. To achieve a bounded drift rate, nodes bound
the correction value. As a consequence, ρVT

sys is only estimated and corrected
if the correction value is below a threshold value. For a proper operation of
the estimation of ρVT

sys , the threshold value must be at least as large as the
largest possible drift offset in a measurement interval. The upper bound of the
threshold value determines the maximum drift and correction rate of the global
time and is discussed in Section 5.2.1

Figure 5.1 depicts the computation of the correction value (nCorrTerm)
in each measurement interval. nSysDriftOffset denotes the estimate of the
amount of the drift offset due to the systematic part of the drift rate of the
global cluster time in a measurement interval.

2The difference between the drift rate and the drift offset of a clock is subtle. The drift
rate equals the drift offset, if the period in which the offset is measured equals a normed
interval, which is usually one second. In this thesis, we prefer the term drift rate when we
compare two or more clocks. However, it is clear that one can only directly measure the drift
offset of a clock time in an interval and calculate the drift rate of this clock afterwards. If
the measurement interval equals the normed interval, the computation of the drift rate can
be skipped and the value of the drift offset equals the value of the drift rate.

61

5.1 Principle of Operation 5 Multi-Cluster Clock Synchronization

proc Initialize
empty history buffer
nSysDriftOffset = 0

.
proc upon reception of new offset values

calculate median of offset values
if value smaller than specified bound then

add value to history buffer
fi
if history buffer full then

compute average of history buffer values
empty history buffer
nSysDriftOffset += average

fi
nCorrTerm = median of offset values + nSysDriftOffset
bound nCorrTerm

.
Figure 5.1: Pseudo code describing the computation of the correction value

Correction

In the fourth phase, all correct nodes use rate correction (see Section 2.2.2)
for correcting their virtual clock times. A node performs rate correction by
correcting the amount C at predefined points in time. C is the correction term
per correction interval and is calculated as shown in Equation 5.1 for offset
values measured at tdef,n.

C =
(
median1≤j≤K

(
Ωj

tdef,n

)
+ ρ̃VT,m

sys

)
· Rcorr

Rmeasure

(5.1)

where Rcorr denotes the interval between succeeding corrections, K the
number of received offset values3, and ρ̃VT,m

sys the estimate of the systematic
part of the drift rate of the global time of the cluster in measurement interval
n, which is part of the external clock synchronization interval m. The function
median() calculates the median of the offset values.

Nodes use their virtual clock times to determine the predefined instants at
which the virtual cluster time is corrected. Rcorr is much smaller than Rmeasure.

3Please note that K is the same for all nodes due to Requirement 2.

62

5 Multi-Cluster Clock Synchronization 5.1 Principle of Operation

Startup and Reintegration

The following paragraphs describe an extension to the algorithm that allows a
node to integrate and startup without initialization of data structures. This ex-
tension also enables the self-stabilization of the algorithm, because data struc-
tures of self-stabilizing algorithms do not have to be initialized [Sch93a].

A time master node sends an offset value instead of its relational clock
time (which could then be used at each node for calculation of the difference
between the relational clock time and the virtual clock time of a node) for
three reasons: first, the amount of data needed to send the offset, which is
the difference between two time values, is smaller than a time value, because
the integer value that represents the difference is usually much smaller than
the integer value that represents the time of a relational clock. Secondly, the
offset value of a time master node is consistent at all correct nodes, while the
difference between a relational clock and the virtual clock of a node is not
consistent due to the impossibility of perfect synchronization of virtual clock
times. The offset value is consistent at all correct nodes due to Requirement 2
and the availability of a common notion of time at all correct nodes. Thirdly,
performing the calculation of the difference only at time master nodes is – from
a cluster’s point-of-view – less computation-intensive compared to a solution
where each node calculates the differences between its virtual clock time and
the relational clock times.

In order to assure that recovering or starting up nodes can integrate and
get a value of the current estimate of the systematic part of the drift rate of
the global time of a cluster, each time master node periodically broadcasts its
current estimate of the systematic part of the drift rate of the global time (in
addition to the offset value) in the second phase (Phase Sending and Agree-
ment). In addition, each node performs a majority vote on the received current
estimates of the systematic part of the drift rate of the global time of time mas-
ter nodes and updates the local current estimate of the systematic part of the
drift rate of the global time with the outcome of the majority vote. Voting and
updating is only performed when at least F +1 time master nodes have sent an
estimate of the systematic part, where F is the maximum number of faulty time
master nodes. This avoids that faulty time master nodes can disturb external
clock synchronization, because at least F + 1 (= 2 · F + 1− F = F + 1) of the
2 · F + 1 received values will be correct. As the correct values are a majority,
the majority vote will provide a correct estimate of the systematic drift rate of
the global time.

We call the interval between two consecutive broadcasts of the estimates
of the systematic part of the drift rate of the global time of a cluster the in-
tegration interval. Integration intervals are integer multiples of external clock

63

5.2 Analysis of Synchronization 5 Multi-Cluster Clock Synchronization

synchronization intervals and nodes a priori agree, when the integration inter-
val starts, that is when time master nodes must send the current estimate of
the systematic part of the drift rate of the global time. Examples of agreed
instants for sending are every full minute or every full second. Integration and
external clock synchronization intervals are phase-synchronous, that is when
the integration interval starts, the external clock synchronization interval must
start.

As described above, time master nodes empty the history buffer, when
it is full. As the external clock synchronization and the integration interval
are phase-synchronous, correct nodes (in synchronous operation) empty their
history buffers at the beginning of an external clock synchronization interval. If
a node encounters that its buffer is not empty at the beginning of an integration
interval, it empties its history buffer. This ensures that (correct) nodes start
an integration interval at approximately the same time and that the history
buffers of different (correct) nodes contain the same number of elements and
can be consistently filled up again.

Emptying all buffers and updating the estimate of the systematic part of
the drift rate of the global time ensures that – after at most one integration
interval – the computation of the estimate is done at all nodes at approximately
the same time and uses the same offset values.

Figure 5.2 depicts a pseudo code describing the time master operations and
Figure 5.3 describes the integration code.

proc upon reaching the defined time for an offset calculation
if time master node then

offset = virtual clock time - relational clock time
send offset
if begin of integration interval then

send estimate of systematic part of drift rate of global time
fi

fi
.

Figure 5.2: Pseudo code describing the time master operations

5.2 Analysis of Synchronization

In this section the external clock synchronization algorithm is analyzed with
respect to its correction rate, the compensation of the systematic part of the
drift rate of the global time, non-interference, and self-stabilization.

64

5 Multi-Cluster Clock Synchronization 5.2 Analysis of Synchronization

proc upon reception of new estimates of the systematic part of drift rate
if number of received estimates >= (F+1) then

perform majority vote on estimates
if no majority then

set estimate (nSysDriftOffset) to 0
else

set estimate (nSysDriftOffset) to majority vote result
fi

fi
.

Figure 5.3: Pseudo code describing the integration code; F denotes the maxi-
mum number of faulty time master nodes)

5.2.1 Maximum Drift and Correction Rates

This section discusses the maximum drift and correction rates of the global
time of a cluster. Since real-time control applications rely and depend on a
time base with a bounded drift rate, it is reasonable to limit the correction term
per correction interval, denoted C, to a maximum, denoted C̄. The maximum
correction rate, denoted ρ̄corr, is the rate at which the external clock synchro-
nization algorithm can maximally correct the global cluster time. Equation 5.2
depicts the relation between C̄ and ρ̄corr.

ρ̄corr =

∣∣∣∣
C̄ + Rcorr

Rcorr

− 1

∣∣∣∣ (5.2)

Let ρ̄VT denote the maximum drift of the global cluster time not considering
external clock synchronization and assume that there is no initial external
synchronization of the cluster. In order to be able to compensate for ρ̄VT and
to synchronize the global cluster time, ρ̄corr must be larger than ρ̄VT . ρ̄corr

determines the threshold value of the described algorithm.

If external clock synchronization is running, the global cluster time drifts at
most ρ̄VT + ρ̄corr. There is a tradeoff between the time it takes to synchronize
a cluster (if it is not initially synchronized) and the maximum drift rate ρ̄VT +
ρ̄corr.

5.2.2 Compensation of Systematic Part of the Drift
Rate

This section argues that all virtual clock times of a cluster are synchronized
towards the relational clock times using the median of the offset values while

65

5.2 Analysis of Synchronization 5 Multi-Cluster Clock Synchronization

eliminating the influence of the systematic part of the drift rate of the global
cluster time (denoted ρVT

sys).

reference time

12:00 1:00 2:00 3:00 4:00 5:00 6:00

measurement points

...

de
vi

at
io

n
of

gl

ob
al

 c
lu

st
er

 ti
m

e

offset n+
2

offset n+
3

...

measure-
ment

interval
(n)

measure-
ment

interval
(n+1)

......

offset n+
1

offset
n

...

measure-
ment

interval
(n+2)

(a) No correction

reference time

12:00 1:00 2:00 3:00 4:00 5:00 6:00de
vi

at
io

n
of

gl

ob
al

 c
l.

tim
e

(b) Correction of median of offset values (agreed offset value)

reference time

12:00 1:00 2:00 3:00 4:00 5:00 6:00de
vi

at
io

n
of

gl

ob
al

 c
l.

tim
e

ext. CS interval (m) ext. CS interval (m+1)

calculation of systematic part of drift rate

(c) Correction of median and estimate of systematic part of drift rate

Figure 5.4: Deviation of global time of a cluster from a relational clock time
using different correction techniques

66

5 Multi-Cluster Clock Synchronization 5.2 Analysis of Synchronization

Figure 5.4(a) depicts measurements of offsets if no correction is performed.
If each node corrects an amount equal to the agreed offset value (which is the
median value of all offset values) measured at the predefined time in execution
round n (denoted Ωtdef,n

) shortly after the measurement, the next measured
and agreed offset value (Ωtdef,n+1

) indicates the global cluster time drift ρVT

during Rn+1
measure. Figure 5.4(b) depicts the deviation of the global cluster time

from a relational clock time, if nodes correct just the agreed offset values.

If each node corrects the agreed offset value in the next measurement in-
terval, the mean value of a sufficient number of agreed offset values (Ωtdef,n

,
Ωtdef,n+1

, ...) will reflect a good estimate of the systematic part of the drift rate
of the global cluster time (ρVT

sys) due to Requirements 8 and 9. ρ̃VT,m
sys denotes

the estimate of ρVT
sys in Rm

ext.CS. If all nodes correct this estimate in addition
to Ωtdef,n

, Ωm
tdef,n+1

the next measurement will be close to zero. Figure 5.4(c)
shows the deviation of global cluster time from a relational clock time where the
history is 4 (H = 4); nodes also correct ρ̃VT,m+1

sys in the measurement intervals

of the external clock synchronization interval (m + 1) (Rm+1
ext.CS).

If ρVT
sys in Rm

ext.CS deviates from ρ̃VT,m
sys , then the mean of the H measured

and agreed offset values will differ from zero and ρ̃VT,m+1
sys has to be updated to

include the mean of the offset values as depicted in Equation 5.3.

ρ̃VT,m+1
sys =

∑H
n=1 Ωtdef,n

H
+ ρ̃VT,m

sys (5.3)

This update is necessary after the external clock synchronization algorithm
parameters are initialized after starting the algorithm or when the value of
systematic part of the drift rate of the global time changes.

In Figure 5.4, state correction is used instead of rate correction to alleviate
the understanding of the algorithm (this does not effect the behavior of the
algorithm). Furthermore, the stochastic part of the drift rate of the global
time (ρVT

stoch) is orders of magnitude smaller than systematic part (ρVT
sys). For the

correction, rate correction should be used in order to ensure that applications
can rely on a time without discontinuities.

Requirement 10 ensures that the algorithm can compensate the maximum
drift of global cluster time and relational clock times and synchronize the global
cluster time if it is not synchronized. Besides the fact that the Requirements 1
to 9 must hold, the threshold value for an agreed offset value to be used for
estimation of the systematic part of the drift rate of the global time (ρVT

sys) must
be greater than (

ρ̄VT + max
1≤i≤M

(
ρ̄RCT

i
))

·Rn
measure

This allows the correct estimation of ρVT
sys .

67

5.3 Non-Interference 5 Multi-Cluster Clock Synchronization

In order to assure that interferences between internal clock synchronization
and external clock synchronization are minimized, the same corrections of vir-
tual clock times must be performed at the same ticks of virtual clock times.
This is discussed in more detail in the next section.

5.3 Non-Interference

In this section, we analyze the non-interference of the external clock synchro-
nization algorithm for F arbitrarily faulty nodes or communication links as-
suming the requirements of Section 4.3 are satisfied. Non-interference claims
that the precision of the internal clock synchronization is not influenced by pa-
rameters that are not in the control of a node. We perform the analysis in two
steps. At first, we prove that all correct nodes of a cluster consistently agree on
one value for correction. Then, we show that the external clock synchroniza-
tion influences the precision of a cluster only due to imperfect synchronization
of virtual clock times, which results in a different view of the correction values
at different nodes.

5.3.1 Consistent Agreement on One Correction Value

Property 1. Only a faulty time master node does not send its offset value.

Proof: Property 1 directly follows from Requirements 2 and 3. ¤
Please note, however, that a faulty time master node may send an incorrect

offset value.

Property 2. Correct nodes receive at least K offset values, where M − F ≤
K ≤ M .

Proof: K denotes the number of offset values correct nodes receive. The proof
of Property 2 is straight forward, since the fault hypothesis states that at most
F time master nodes may be faulty. K equals M − F , if F faulty time master
nodes do not send an offset. K equals M , if all time master nodes send values
and due to the atomic broadcast (Requirement 2) all correct nodes consistently
receive the same K (= M) offset values. ¤

M−K is the number of time master nodes that have not sent an offset value
and are, thus, considered faulty. Please note that M −K may be smaller than
the actual number of faulty time master nodes, because up to F − (M − K)
nodes of the K time master nodes may have sent wrong offset values (it cannot
be more than F − (M − K) due to the fault hypothesis). A wrong offset

68

5 Multi-Cluster Clock Synchronization 5.3 Non-Interference

value cannot be detected by the communication system, thus, all correct nodes
receive these values.

Property 3. If there are at least 2·F +1 time master nodes (i.e., M ≥ 2·F +1),
the median is either a correct value (or calculated from two correct values, if K
is even) or there exist at least one correct value that is larger and at least one
correct value that is smaller than the median.

Proof by contradiction: Say the median is a faulty value (or calculated using
at least a faulty value) and the median does not lie between two correct values.
Then, at least dK

2
e out of the K received offset values must be faulty. Since

the M −K time master nodes that have not sent a value are also known to be
faulty, overall there are at least dK

2
e+ M −K faulty time master nodes.

Let Equation 5.4 define the function of faulty time master nodes of the
system with respect to K:

F(K) =

⌈
K

2

⌉
+ M −K (5.4)

Property 2 gives the possible range of K, (M − F) ≤ K ≤ M . Since F(K)
is monotonically decreasing, the minimum number of faulty time master nodes
can be calculated by substituting K for M (Please note, this is the maximum
influence of faulty time master nodes of the calculation on the median). This
leads to a minimum number of faulty time master nodes: F(K) = dM

2
e+ M −

M = dM
2
e. There is a contradiction between the minimum number of faulty

time master nodes, which equals dM
2
e, and Requirement 7 that allows at most

bM−1
2
c time master nodes to be faulty. Consequently, Property 3 is valid. ¤

If there exists at least one correct offset value that is larger and at least
one that is smaller than a faulty offset value, using this faulty offset value as
reference for external synchronization will perform a successful external clock
synchronization. From this observation, Property 3, and Requirement 7, we
conclude the following: all nodes can take the median as a basis for the calcu-
lation of the correction term C and will externally synchronize. Since all nodes
receive the same K offset values, all correct nodes compute the same median
and take this median as basis for external clock synchronization.

5.3.2 Correction Does not Interfere with Precision

As described in Section 2.2.2, the internal clock synchronization uses the oc-
currence of virtual clock ticks as basis for correction.

For the external clock synchronization, all nodes correct their virtual clock
times by the same amount at the same virtual clock tick due to the common

69

5.3 Non-Interference 5 Multi-Cluster Clock Synchronization

notion of time (Requirement 6). The correction amount is the same for all
nodes (since all correct nodes choose the same offset value as shown in Sec-
tion 5.3.1). The correction of the virtual clock times is performed by correcting
the number of hardware ticks per virtual clock tick (as done in the internal
clock synchronization). If a faulty node corrects a different amount than all
correct nodes do, this can lead to a virtual clock time at this faulty node that is
not internally synchronized anymore. Requirement 5 request that the internal
clock synchronization algorithm must be able to tolerate up to F faulty nodes.
Thus, if no more than F nodes are faulty, the external clock synchronization
will not interfere with the precision of the internal clock synchronization and
all correct nodes will externally and internally synchronize.

Please note: the different digitization errors that occur when digitizing the
correction value at different nodes due to different hardware clock frequencies
influence the amount of the actual correction. However, these errors do not
influence the precision, because these hardware-dependent errors must already
have been accounted for in the precision of the internal clock synchronization.

The only influence of the external clock synchronization on the precision
is the error introduced due to the different views of the correction amount by
different clocks, which is described in the next section.

5.3.3 Remaining Influence Due to Imperfect Synchro-
nization

Distributed clocks cannot be perfectly synchronized [LL84b]. Different nodes
will have a different view of the common correction value. E.g., say the cor-
rection term for all nodes is 5 µs, then for a clock that is 10 % faster than a
perfect one, these 5 µs will be 4.5 µs (= 5 · 100−10

100
µs) measured by a perfect

clock; for a clock that is 10 % slower than a perfect one, these 5 µs will actually
equal 5.5 µs. The different views of the correction amount result in different
corrections at different nodes and, thus, influences the precision of the cluster.
This influence on the precision is proportional to the maximum drift between
two virtual clocks, which may be as high as two times the maximum drift of
hardware clocks (2 · ρ̄HT). Let ε̄ denote the maximum influence of the exter-
nal clock synchronization on the precision. Equation 5.5 depicts the relation
between ε̄ and ρ̄HT .

ε̄ = C̄ · 2 · ρ̄HT (5.5)

Since ρ̄HT is given, the minimum of ε̄ can be achieved by minimizing C̄. If,
in Equation 5.2, ρ̄corr is held constant (since it is given by application require-
ments), minimization of C̄ requires minimization of Rcorr. The (theoretical)

70

5 Multi-Cluster Clock Synchronization 5.4 Self-Stabilization

lower bound for Rcorr is the granularity of the VT, because the duration be-
tween two virtual clock ticks can be shortened or lengthened by hardware clock
ticks due to the model of virtual clock time (see Section 2.2.1).

From this we conclude that in order to achieve a minimum influence of
external clock synchronization on the precision of a cluster, an external clock
synchronization algorithm must correct small correction amounts very often.

5.4 Self-Stabilization

As described in Section 2.1.1, self-stabilization is a way to provide fault-tolerant
behavior of an algorithm in case of transient failures. These failures may have
put the system into an illegitimate state and Requirements 2 to 10 may have
been temporarily violated4. After a transient failure, we assume that Require-
ments 2 to 10 hold again.

In the described algorithm, illegitimate states are all states where the buffers
of correct nodes are filled with different offset values, contain a different number
of values, or where correct nodes have different estimates of the systematic part
of the drift rate of the global time. A legitimate state is when all node buffers
for the offset values contain the same number of offset values, node buffers
contain the same offset values, and all nodes have the same estimate of the
systematic part of the drift rate of the global time of a cluster. A legitimate
state will eventually lead to a synchronized multi-cluster system, because all
nodes equally correct the same amount in each measurement interval.

The following paragraphs argue that if nodes are in an illegitimate state
after a transient failure, they will transit into a legitimate state after at least
one integration interval and one external clock synchronization interval after
Requirements 2 to 10 become valid again.

Property 4. A correctly performing node that contributes to an illegitimate
system state corrects its local state within at most one integration interval and
one external clock synchronization interval and enables a system-wide legitimate
state.

Proof: A correctly performing node is a node that correctly executes the ex-
ternal clock synchronization algorithm, but may have a local state that is the

4This section does not analyze a violation of Requirement 1 for two reasons. First, this
cannot happen temporarily, as the structure of the multi-cluster systems cannot be altered
dynamically. Secondly, it is impossible to detect a circular dependance of cluster times, as
the effects of a circular dependance are similar to the ones from one or more faulty time
master nodes. As a consequence, self-stabilization is not an appropriate means for tolerating
violations of Requirement 1.

71

5.4 Self-Stabilization 5 Multi-Cluster Clock Synchronization

“cause” of an illegitimate state. In order to prove Property 4, the three causes
of an illegitimate state must be addressed. As described above, these three
causes are: first, buffers contain a different number of offset values, secondly,
buffers are filled with incorrect offset values; and, thirdly, different estimates of
the systematic part of the drift rate of the global time exist at different nodes.
Property 5, 6, and 7 argue that the described external clock synchronization
algorithm enables a transition from an illegitimate system state to legitimate
one. We will first prove these three properties before continuing the proof of
Property 4

Property 5. All correct nodes have equally filled buffers, that is, buffers have
the same number of elements, within at most one integration interval.

Proof: Buffers are emptied at the beginning of an external clock synchro-
nization interval and each node adds one value in each execution round. As
integration intervals and external clock synchronization intervals are phase-
synchronous, it suffices to show that integration intervals of correct time master
nodes start at approximately the same time at each node within one integration
interval.

All nodes have a priori agreed on the start of an integration interval. All
nodes check the actual beginning of the start of an integration interval and
empty their buffers at the beginning. Consequently, all correct nodes have
the same number of elements from the time on when node buffers have been
emptied. ¤

Property 6. All correct nodes have buffers with a consistent set of offset values
within at most one external clock synchronization interval.

Proof: Because all values in a node’s buffer are overwritten by new median
values (which must be correct due to Requirements 2 to 7) in one external clock
synchronization interval and because an integration interval is larger than or
equal to an external clock synchronization interval, all buffers contain correct
values within one external clock synchronization interval after Requirements 2
to 10 hold again. ¤

Property 7. All correct nodes have the same estimate of the systematic part
of the drift rate of the global time within at most one integration interval.

Proof: As argued in proof of Property 5, integration intervals of correct time
master nodes start at approximately the same time at each node within one
integration interval. Correct time master nodes send their estimates of the
systematic part of the drift rate of the global time at the next integration
interval start and nodes perform a majority vote on the estimates. Nodes

72

5 Multi-Cluster Clock Synchronization 5.5 Resource Requirements

update their estimate of the systematic part of the drift rate of the global time,
if there is a majority; otherwise, they set it to zero. Consequently, all correct
nodes have the same estimate after one integration interval. ¤

Continuation of proof of Property 4:

As the update of the estimate of the systematic part of the drift rate of the
global time with a correct estimate and the update of the buffer offset values
occurs in parallel, it suffices to choose the longest one of the two tasks. The
longest task determines the time when a legitimate state is reached. It takes
at most one integration interval until all correct nodes have an update of the
systematic part of the drift rate of the global time (Property 7). Yet, it takes at
most one integration interval until all nodes have the same number of elements
(Property 5). From the point in time when buffers have the same number of
elements, it takes one additional external clock synchronization interval until
all nodes have the same correct offset values in their buffers (Property 6).
Consequently, it takes at most one integration interval and one external clock
synchronization interval until all nodes have the same estimate of the systematic
part of the drift rate of the global time, the same number of offset values,
and the same (correct) offset values in their buffer and, thus, have reached a
legitimate state. ¤

5.5 Resource Requirements

As the described algorithm is to be used in embedded control systems, which
are restricted in resources (see Section 2.1.3), this section addresses the resource
requirements of the computation-intensive parts of the described algorithm and
compares the computational overhead and memory requirements with alterna-
tive solutions.

The calculation of the systematic part of the clock drift can be seen as find-
ing a linear approximation of the drift rate using median values in an external
clock synchronization interval. For this problem, linear regression analysis can
be used. The memory requirements for the linear regression approach and the
described algorithm are in the same order of magnitude. However, the run-
ning times differ largely for large history length. An evaluation of the growth
of the running times as a function of the history length described using the
O-notation [CLR90] yields the following results: using linear regression for the
calculation of the systematic part of the drift rate of the global time is bound
by O(h2) while the described external clock synchronization algorithm is bound
by O(h), where h is the history length. The difference in necessary computa-
tional overhead becomes important for large history lengths. The next section
discusses the influence of different algorithm parameters.

73

5.6 Discussion of Parameters 5 Multi-Cluster Clock Synchronization

The improvement of the external clock synchronization in computation time
over the regression analysis comes with a slightly increased synchronization
time, if clusters are not initially synchronized (one additional external clock
synchronization interval) and the restriction that the interval between two offset
measurements must be constant for the external clock synchronization while it
can be variable when the regression analysis is used for the calculation of the
systematic part of the drift rate.

5.6 Discussion of Algorithm Parameters

This section discusses the influence of parameters of the algorithm.

History length H. There is a trade-off between quick adaption after a change
of the systematic part of the drift rate of the global time (ρVT

sys) and
a precise estimate of ρVT

sys . A small H allows quick synchronization at
startup and quick adaption after a change of ρVT

sys . A large value for H
enables a precise estimate of ρVT

sys , because sufficient values represent the
symmetric distribution of ρVT . H is always an integer number and should
be a power of two to be able to implement the algorithm using (fast) shift
operations instead of (slow) division operations.

Measurement interval Rmeasure. A small Rmeasure allows synchronization
with a small accuracy due to frequent re-synchronizations. Frequent mea-
surements and increasing computations, on the other side, increase the
required computational power necessary for the external clock synchro-
nization algorithm.

Integration interval. The integration interval determines the duration an
integrating node has to wait until it receives an update of the current
global time of a cluster. In the worst case, this duration can be as large as
the integration interval. The longer the interval the longer is the waiting
duration in the worst case. The integration interval also determines how
much data is sent using the communication system for integration or
startup purposes. The longer the interval the less data has to be sent.
There is a trade-off between quick integration and small data amounts to
be transferred.

5.7 Summary

This chapter describes the principle of operation. The multi-cluster clock syn-
chronization algorithm operates as follows: each time master node measures

74

5 Multi-Cluster Clock Synchronization 5.7 Summary

the difference of its virtual clock time and its relational clock time, sends it
to all nodes. A node calculates a correction value. Due to the requirements,
all nodes correct the same value. This chapter analyzed the drift and correc-
tion rates and the compensation of systematic clock errors. We showed that
the algorithm is non-interfering, that is, the precision of a cluster is not in-
fluenced by external parameters. We also showed that remaining influence of
the synchronization is negligible. Furthermore, the self-stabilization and re-
source requirements of the algorithm were analyzed. The chapter ended with
a discussion on the algorithm parameters.

75

5.7 Summary 5 Multi-Cluster Clock Synchronization

76

Chapter 6

Multi-Cluster Clock
Synchronization in the
Time-Triggered Architecture

It is impossible to mediate on time
and the mystery of the creative process of nature

without an overwhelming emotion at the limitations of human intelligence.

A.N. Whitehead

The previous chapter introduced the multi-cluster clock synchronization
algorithm and argued that the algorithm is fault-tolerant by using replication
and by its self-stabilizing design. Furthermore, the algorithm achieves tight
synchronization by eliminating effects of the systematic part of the drift rate on
the accuracy while keeping the necessary computational overhead low, that is
the required computational power is increasing linearly with the history length
of the algorithm. Non-interference of the algorithm enables composability and
is achieved by providing a consistent set of offset values to all nodes of a cluster.

This chapter describes a case study, an implementation of the multi-cluster
clock synchronization algorithm using the Time-Triggered Architecture (TTA)
and its communication protocol TTP/C.

77

6.1 Goals 6 Multi-Cluster Clock Synchronization in TTA

6.1 Goals

The goals of this case study are:

• The validation of the presented concepts by presenting an implementation
of the multi-cluster clock synchronization algorithm on a system designed
for embedded control applications using commercially available hardware.

• The verification that a constant systematic part of the drift rate of the
global cluster time can be compensated by the external clock synchro-
nization algorithm, if Requirements 8 and 9 hold.

• Examination of the external clock synchronization algorithm behavior if
the systematic drift rate changes, as happens when the set of nodes that
builds the global cluster time changes.

• Examination of the validity of Requirement 8 for the used architecture.

• Identification of parameters that influence the accuracy and investigation
of changes of these parameters.

This chapter addresses these goals by first describing the implementation.

6.2 Implementation

As target hardware for the implementation, the Time-Triggered Architecture
(TTA) has been chosen. TTP/C [Kop99], the time-triggered communications
system of the TTA, provides atomic broadcast and internal clock synchroniza-
tion services that meet Requirements 2, 3, 5, and 6 stated in Section 4.2.

The external clock synchronization algorithm has been implemented on two
different TTP/C hardware boards – the TTPnode evaluation board and the
TTPpowernode evaluation board. Both boards use the commercially available
TTP/C controller in silicon, TTP/C C1 [Kop98], but different host processors –
a Motorola MC68376 and Motorola PowerPC MPC555. A detailed description
of the hardware details can be found in [TTT01].

Measurement of Offset Values

Both of the above mentioned Motorola processors are equipped with a Motorola
Time Processor Unit (TPU). The TPU has been programmed to calculate the
offset, that is the difference of a relational clock time and the virtual clock time

78

6 Multi-Cluster Clock Synchronization in TTA 6.2 Implementation

at a time master node. The granularity of the measurement unit (gmeasure) –
one TPU tick – is either a multiple of 190.7 ns on the Motorola MC68376 or of
50 ns on the Motorola PowerPC MPC555. The measurements are initiated by
distinct events, such as the overflow of the TTP/C global time of a time master
node (which occurs about every 1

16
s in a cluster with a macro-tick length of

about 1 µs) or the overflow of a full second. A time master node can configure
the event that should initiate the offset measurements. Each of the time master
nodes is configured to use the same initiating event. Figure 6.1 depicts a time
master node with the time flow. A detailed description of the time master node
implementation and the offset calculation can be found in [PB00].

GPS receiver

antenna

data bus (TAI time)

GPS PPS signal

TTP/C Chip MC68360 (host) MC68376 (I/O CPU)
C
N
I

C
N
I

TTP/C
comm. system

QSM
module

TPU
module

macrotick overflow

deviation between macrotick
overflow and relational cl.time

deviation
between
macrotick

overflow and
relational cl. time

relational cl. time
(TAI time)

relational cl. time
(TAI time)

Figure 6.1: Implementation of a time master node with the Time Capturing
Unit (TPU) and a GPS Receiver as external time source using a TTPNode

Sending of Offset Values, Agreement, and Calculation of Offset Value

Time master nodes send their offset values and relational clock values in their
sending slots to all other nodes1. The TDMA round equals 1 ms in all imple-

1In the implementation using the TTA, time master nodes sends the relational clock
time values to other nodes in each measurement interval, because the time representation
used in the internal clock synchronization of TTP/C overflows at least once a second and
the computational power of the TPU unit is low. As a consequence, it is more efficient to
implement that nodes send the offset value of the TPU unit and the relational clock time

79

6.3 Analysis of Accuracy 6 Multi-Cluster Clock Synchronization in TTA

mentations. All nodes collect the values and perform the tasks described in
Section 5.1.

Correction

Each node uses the common mode correction capability of TTP/C (see Sec-
tion 2.3). Upon calculation of a new correction value (see Figure 5.1 and
Section 5.1), each node divides the correction value of one measurement in-
terval by the number of clock synchronization flags per measurement interval,
denoted Nsyf . The number of clock synchronization flags per measurement in-
terval equals the number of TDMA rounds per measurement interval as one
synchronization is performed per TDMA round. In order to avoid time consum-
ing floating-point arithmetic, the division is performed using integer arithmetic
resulting in an integer part and a fractional part. The fractional part is the
remainder of an integer division. At the beginning of a TDMA round, each
node adds the fractional part to a help variable, which is set to zero upon
reception of a new correction value. When this adding produces an overflow,
the node writes the integer part plus one into the common-mode-drift correc-
tion field otherwise it writes only the integer part in the common-mode-drift
correction field. TTP/C uses the value of the common-mode-drift correction
field for rate correction in the next TDMA round. The described mechanism
is similar to the macrotick generation logic of TTP/C , which is described
in [KHK+96, KKMS95], and allows the approximation of the correction of
a fractional number each TDMA round by actually correcting a dynamically
changing integer number.

6.3 Analysis of the Accuracy in the Time-

Triggered Architecture

This section presents an analytical estimate of the accuracy of the external
clock synchronization algorithm in the TTA in order to be able to interpret the
measurements of the accuracy.

The accuracy of the global cluster time – using the described algorithm
for external clock synchronization, the FTA algorithm [Kop97] for the internal
clock synchronization, and external time sources as relational clock times –
can be seen as a function of several parameters. The following list describes
these parameters and presents values of implementations of the external clock
synchronization using the TTA:

compared to an implementation where the TPU calculates and provides the offset value in a
format where no overflows occur during the system’s lifetime.

80

6 Multi-Cluster Clock Synchronization in TTA 6.3 Analysis of Accuracy

• The stochastic part of the drift rate of the global cluster time
ρVT
stoch. This drift rate originates in the environmental conditions and

stochastic processes in the quartz crystals and digitalization errors and is
typically approximately 5 · 10−6 s

s
or better.

• The systematic part of the drift rate of the global cluster time
ρVT
sys . This systematic error from the nominal frequency stems from the

manufacturing process and aging of quartz crystals. ρVT
sys can be in the

range of 10−7 to 1.86 ·10−4 s
s

[Kop01a], but is typically better than 10−4 s
s
.

• The maximum drift rate of the relational clock times ρ̄RCT .
If GPS is used as relational clock time the drift rate is less than
10−11 s

s
[LAK99]. If another global cluster time is used as a relational

clock time, the maximum drift rate is typically less than 10−4 s
s
.

• The accuracy of the relational clock times αRCT ,T . The accuracy
of the GPS time is better than 5 ns with respect to the physical time
standards TAI or UTC [LAK99]. The accuracy of other relational clocks
depends on the synchronization quality of this relational clock to the
reference clock time.

• The reading error while obtaining the time of the relational
clock times eRCT . The reading error for good commercially available
GPS receivers is in the range of 50 ns to 100 ns [HS97]. The reading
error when global times of other clusters work as relational clock times is
considered to be 0.

• The length of the offset measurement interval Rmeasure. The max-
imum possible rate of new clock values provided by relational clock times
determines the length. It is in the range of 2−4 s to 1 s. Ideally, this
should be a power of 2 of a full second, because then the external time
can be measured at the same instant at different time master nodes as the
least common multiple is always the rate with the largest value. Another
reason for using a power of 2 is that the length of the interval can be rep-
resented in a computer system without introducing additional conversion
errors.

• The length of the external clock synchronization interval Rext.CS.
This can range from 2−1 s to 26 s and depends on Rmeasure. A typical value
is 1 s if Rmeasure equals 2−4 s. The history length H is a multiple of the
length of the time difference measurement interval that equals the length
of the external clock synchronization interval, i.e., Rext.CS = H ·Rmeasure;
H ≥ 1. Due to memory requirements, the history interval can be at most
256 for the presented implementation.

81

6.3 Analysis of Accuracy 6 Multi-Cluster Clock Synchronization in TTA

• The granularity of the offset measuring unit gmeasure. The granu-
larity depends on the used hardware and introduces a digitalization error.
The smallest and best granularity of the used offset measuring unit is
50 ns.

• The granularity of the microtick gµT. In TTP/C , a microtick is
an integer multiply of a hardware tick. Microticks are used to build the
virtual clocks. The granularity of the microtick is 50 ns in the current
prototype version of the TTP/C controller [Kop98].

• The time between the measurement of offset values and use of
these values ddelay. It takes at most two TDMA rounds for sending the
offset values to all other nodes. One TDMA round accounts for sending
of all time master nodes of offset values and one for the time a node
has to wait for its sending slot. A typical TDMA round length is 1 ms,
consequently, ddelay = 2 ms.

• The precision of the internal clock synchronization algorithm Π.
The precision depends on many parameters; this is described in detail
in [Kop99]. It is typically better than 0.5 µs.

Assuming that measurement and digitalization errors accumulate, Require-
ments 8 to 10 are satisfied, and the whole correction value can be corrected2 in
one Rmeasure, the analytical estimate of the accuracy of the global cluster time
to reference time (αVT,T) is as follows:

αVT,T = αRCT ,T + Π + gµT +(
ρVT

stoch + 2 · ρ̄RCT + 2 · gmeasure + gµT + eRCT

Rmeasure

)
· (6.1)

(Rmeasure + ddelay)

The first row of the right side of Equation 6.1 accounts for the inaccuracy of
the external time source, the difference of the local node view of VT (precision
Π) and a digitalization error of this view. The second and third row comprehend
the drift rate of the relational clock times, the stochastic part of the drift rate
and an additional drift rate due to errors in measurement and digitalization of
the correction of ρVT

stoch and ρVT
sys . In detail: ρVT

stoch · (Rmeasure + ddelay) accounts
for the drift offset due to the stochastic part of the drift rate of the global time
in the period of measuring and sending the values to other nodes; 2 · ρ̄RCT ·

2There is just one case where a node cannot correct its whole correction value. This is
when a node is re-synchronizing after a failure or after startup. In this case the accuracy
value is not meaningful, as the system is not in synchronous operation.

82

6 Multi-Cluster Clock Synchronization in TTA 6.4 Analysis of Influence

(Rmeasure + ddelay) considers maximum drift rate changes and wrong estimates

of the relational clock times; and
(
2 · gmeasure+gµT +eRCT

Rmeasure

)
· (Rmeasure + ddelay)

accounts for the digitalization errors of measurements, the global cluster time,
and the relational clock times that are wrongly corrected and/or estimated in
the period of measuring and sending the values to other nodes.

Equation 6.1 only contains the interval Rmeasure and not Rext.CS, because a
significant deviation of ρ̃VT,m

sys (which is the estimate of ρVT
sys) from ρVT

sys in the
measurement interval of execution round n is considered as ρVT

stoch in the mea-
surement interval of execution round n. ρVT

stoch is corrected in the measurement
interval of execution round n+1. ρVT

sys does not influence the accuracy, because
it is assumed that the average of the offset measurements of the external clock
synchronization algorithm reflects only ρVT

sys and not ρVT
stoch.

ρVT
sys can change, however, if the set of nodes used in the internal clock

synchronization changes. The maximum amount of this change ρ∆nodes can be
calculated using Equation 6.2.

ρ∆nodes = abs
(
max1≤i≤N

(
ρVT

i

sys

)
−min1≤j≤N

(
ρVT

j

sys

))
, (6.2)

where VT i and VT j, 1 ≤ i, j ≤ N and i 6= j, are used for building the global
time of a cluster, abs() calculates the absolute value of a number, min() and
max() returns the minimum and maximum value of a set of values, respectively,
N is the number of nodes. In systems with the same quartzes, ρ∆nodes equals
at most 2 · ρVT

sys .

If the drift rate can change by at most ρ∆nodes , the resulting analytical
estimate of the accuracy of the global cluster time αVT,T

ρVT
sys changes

is as follows:

αVT,T
ρVT

sys changes
= αVT,T + ρ∆nodes · (Rmeasure + ddelay) (6.3)

Example: Using typical parameters – as listed above – and a ρ∆nodes of
2 · 10−4 s

s
results in an the following estimates for external synchronization:

αVT,T = 1.35 µs and αVT,T
ρVT

sys changes
= 14.3 µs.

6.4 Analysis of the Influence of the Algorithm

on the Precision in the Time-Triggered Ar-

chitecture

The following equations show the calculation of the influence of the external
clock synchronization on the precision for the implementation. It is assumed

83

6.5 Self-Stabilization Analysis 6 Multi-Cluster Clock Synchronization in TTA

that the TDMA round duration (τTDMA round), which determines Rcorr, equals
approximately 1 ms and the hardware clock time drift rate (ρ̄HT) is at most
10−4 s

s
:

C̄ = ρ̄corr ·Rcorr (6.4)

Since ρ̄corr > ρ̄HT (Section 5.1):

C̄ > ρ̄HT · τTDMA round

≈ 10−4 · 10−3 = 10−7 = 100 ns

The correction term C must be a multiple of 50 ns, since the (nominal)
hardware clock time frequency equals 20 MHz . The maximum correction term
(C̄) is at least 150 ns, because this is next multiple of 50 ns that is greater
than 100 ns.

Using Equation 5.5, leads to the following influence of the external clock
synchronization on the precision; ε̄ denotes this influence:

ε̄ = C̄ · 2 · ρ̄HT
ε̄ = 150 · 10−9 · 2 · 10−4 = 3 · 10−11s = 0.03 ns

Since the precision is in the order of 250 ns to 1 µs for TTP/C clusters,
we conclude that the influence of the external clock synchronization on the
precision of the global cluster time is negligible.

6.5 Analysis of Self-Stabilization in the Time-

Triggered Architecture

In Section 5.4, we have argued that the multi-cluster clock synchronization
algorithm is self-stabilizing. If the algorithm is based on the Time-Triggered
Architecture (TTA), the TTA must be self-stabilizing in order that Require-
ments 2 to 10 can hold again after a transient fault effected the operation of
the TTA.

In the TTA, two mechanisms exist upon which the multi-cluster clock syn-
chronization base. These are the startup algorithm and the group membership
algorithm. The startup algorithm brings a cluster from asynchronous to syn-
chronous operation [SP02] and ensures that Requirements 2, 3, and 5 to 10 are
guaranteed after a transient failure. Requirement 4 is outside the control of
the TTA if relational clock times are external time sources. If the relational
clock times are virtual clock times of nodes of other clusters, Requirement 4 is
ensured by the startup and group membership algorithm.

84

6 Multi-Cluster Clock Synchronization in TTA 6.6 Summary

The startup algorithm is self-stabilizing, because it follows the never-give-
up (NGU) strategy and states of nodes do not have to be initialized [Ste02b].
In [Rus02], Rushby formally verifies that the TTA group membership algorithm
ensures the consistency of participating nodes and that the group membership
algorithm is proven to be self-stabilizing. As the startup and the group mem-
bership algorithm are self-stabilizing, Requirements 2 to 10 hold after a tran-
sient fault and the multi-cluster clock synchronization is also self-stabilizing as
argued in Section 5.4.

6.6 Summary

This chapter described an implementation of the algorithm using the Time-
Triggered Architecture. We first presented the goals of the implementation.
Then, we analyzed the algorithm with respect to the achievable performance,
in order to be able to draw conclusions of the influence of the parameters on
the measured accuracy. We also analyzed the influence of the algorithm on
the precision. The chapter concluded with an analysis of the fault-tolerant
behavior of the algorithm.

85

6.6 Summary 6 Multi-Cluster Clock Synchronization in TTA

86

Chapter 7

Experimental Evaluation

Experiments don’t spring like Athena fully formed on the brow of Zeus.
They are painstaking[,] constructed by mortals

who usually get it wrong first time,
who require lengthy periods of exploration

before formulating a precise experimental question.

Paul Cohen

This chapter describes the different experiments that have been performed
using the implementation of the algorithm on top of the Time-Triggered Ar-
chitecture (TTA). This implementation has been described and analyzed in
Chapter 5. Validation of the multi-cluster clock synchronization is performed
by measurements of different cluster configurations. All experiments base on
Requirements 8 and 9, that is the systematic part of the drift rate of the
global time of a cluster is constant and the stochastic part is symmetrically
distributed. This chapter first validates that Requirements 8 and 9 hold for
the global time built by the internal clock synchronization algorithm used in
the Time-Triggered Architecture, which is the Fault-Tolerant Average algo-
rithm (see Section 2.3). As the global time is an abstract notion used for all
synchronized virtual clock times of a cluster, the drift rate of the global time
cannot be directly measured. Instead, the drift rate of one virtual clock time
VT i, denoted ρVT

i
, that is synchronized with all other virtual clock times of

the cluster is measured. Similarly, when evaluating the performance of the
multi-cluster algorithm (in terms of accuracy), one virtual clock time of the
global time of a cluster is taken as a representative for the global time of a

87

7.1 Experimental Setup 7 Experimental Evaluation

cluster. We use this approach and take the worst-case precision into account
when analyzing the results. This worst-case precision has been measured and
is also shown in one of the experiments.

7.1 Experimental Setup

All experiments use a cluster with 5 nodes and a TDMA round length of 1 ms.
The cluster is configured to perform clock synchronization once in each TDMA
round (in the 5th slot). As described in Section 4.1, we distinguish between
external and inter-cluster synchronization. In case of external synchronization,
relational clock times are directly synchronized to a time standard. In case of
an inter-cluster synchronization, relational clock times are not directly synchro-
nized to a time standard. For the experiments, GPS is used as time standard,
because it is commonly available, precise (the accuracy of receivers with re-
spect to real time is approximately 50 ns), and GPS receivers are commercially
available and, thus, cheap. For the evaluation of external synchronization, Re-
quirement 7 is waived, because only one GPS receiver has been available for the
experiments. Waiving Requirement 7 effects non-interference. This cannot be
shown with only one time master node. In order to evaluate non-interference,
the validation of non-interference has been subject of a different experiment
and experimental setup, which is described in Section 7.8.

7.2 Prerequisites

The validity of Requirements 8 and 9 is a prerequisite that the multi-cluster
clock synchronization algorithm can take advantage of the regularities of the
drift rate of the global time of a cluster. These regularities can lead to the
improvement of the accuracy of the clock synchronization compared to known
clock synchronization techniques. This section evaluates the validity of Re-
quirements 8 and 9 for TTP/C by measuring the drift rate of a global time of
a cluster, denoted ρVT .

Virtual clocks base on hardware clocks, whose drift rates comprise a sys-
tematic and a stochastic part. The systematic part of hardware clocks is ap-
proximately constant and approximately 100 times larger than the stochastic
part [Sch88]. The systematic part of the drift rate of hardware and virtual
clocks can be eliminated, we say these clocks are calibrated. This section eval-
uates the drift rates of the virtual clock times before and after calibrating the
virtual clocks using a reference clock.

88

7 Experimental Evaluation 7.2 Prerequisites

Calibration of the virtual clocks has two advantages: First, the precision
of a cluster is improved, as the drift rate of virtual clocks gets smaller and,
subsequently, the drift offset gets smaller1. Secondly, as TTP/C uses only a
subset of the virtual clocks of a cluster to build the global time of a cluster
and the drift rates of different virtual clocks are different, the drift rate of the
global time of a cluster changes when the set of nodes used for internal clock
synchronization changes. Calibration decreases the change of the drift rate of
the global time, when the set of nodes building the global time changes, as
it decreases the amount of the differences between the drift rates of different
virtual clocks.

Drift Rate of Global Time

Figure 7.1 shows a measured density distribution of the drift rate of virtual
clock time i, denoted ρVT

i
, (over a period of approximately 8 hours) while

virtual clock i is synchronized to other virtual clocks of a cluster; node i is one
of the cluster nodes. This is a good indication for drift rate of the global time
of the cluster, denoted ρVT . From these measurements, which are depicted in
detail in Table B.1 in Appendix B, it can be concluded that ρVT

sys ≈ 4.2 · 10−5 s
s
,

ρVT
stoch / 6 · 10−6 s

s
. The distribution is approximately symmetrical and, thus,

provides evidence that Requirements 8 and 9 hold for the TTA.

Calibrated Clocks

Identifying situations for TTP/C where the systematic part of the drift rate
of the global time of a cluster, denoted ρVT

sys , changes and where these changes
can be controlled enables the measurements of the consequences of a change of
the systematic part of the drift rate of the global time. This section describes
how the the systematic part of the drift rate of the global time can be changed
by calibrating the hardware clocks of nodes.

In TTP/C , the set of nodes whose virtual clock times are used for internal
clock synchronization can change. This can happen due to several reasons, such
as a node encounters a failure or a node decides to stop computational activities.
In TTP/C , the drift rate of virtual clock times can be adjusted. This enables
the minimization of the differences between the drift rates of different virtual
clocks of a clusters. Calibration of virtual clock times leads to a minimization
of the changes of the systematic part of the drift rate of the global time, if the
set of nodes used for internal clock synchronization changes.

1Please note that the precision is only improved, if virtual clocks are not nearly perfect
before calibration and, thus, can be improved by calibration, as is the case in a realistic
setup.

89

7.2 Prerequisites 7 Experimental Evaluation

0

5

10

15

20

25

36 37 38 39 40 41 42 43 44 45 46 47 48

measured clock drift rate values of global time / 10e-6 s/s

fr
eq

u
en

cy
 o

f
d

ri
ft

 r
at

e
va

lu
es

 /

p
er

ce
n

t

Figure 7.1: Density distribution of the drift rate of a virtual clock synchronized
with all virtual clocks of a cluster, which is a good approximation of the density
distribution of the drift rate of the global time of the cluster

In order to adjust the systematic part of the drift rate of virtual clus-
ter times, the actual systematic part of the drift rate of each node has been
measured with respect to a relational clock time (RCT), which is closely syn-
chronized to real time (GPS Time). Then, the systematic part of the drift
rate of each node is set to the minimum drift rate that TTP/C allows. This
minimum systematic part of the drift rate after calibration depends on several
parameters, is due to finite representations of scaling factors, and is explained
in more detail in [KKMS95]. Minimizing the systematic part of the drift rate
of the virtual times of a cluster with respect to RCT minimizes the systematic
part of the drift rate of the global time by the same amount. For the hardware
under test (which are TTP/C clusters), the maximum systematic part of the
drift rate of the global time after the calibration is 800 ·10−9 s

s
. We call a cluster

where the systematic part of the drift rate of its nodes has been calibrated w.r.t.
an accurate external time source a calibrated cluster otherwise not calibrated
cluster. Figure 7.2 and 7.3 depict the deviation of the virtual cluster times
of nodes w.r.t. the relational clock time (RCT) without and with calibrating,
respectively (please, note the different scales). As the systematic part of the
drift rate of the global time of a cluster is smaller than the largest value of
the drift rate of any of the virtual clocks of a cluster, the systematic part of
the drift rate of the global time of the calibrated cluster, denoted ρVT, calibrated

sys ,
is at most 0.44 · 10−6 s

s
, while the drift rate of the global time of the not cali-

90

7 Experimental Evaluation 7.3 Long-Term Evaluation of Accuracy

brated cluster, denoted ρVT, not calibrated
sys , is at most 16 · 10−6 s

s
for the measured

configurations.

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

real time (GPS time) / sd
ev

ia
ti

o
n

 f
ro

m
 r

ea
l t

im
e/

u
s

Node 8 Node 7 Node 6 Node 5 Node 4 Node 3 Node 2 Node 1

Figure 7.2: Deviation of virtual clock times from relational clock time (this is
closely synchronized to real time, that is GPS time), without calibrating (i.e.,
with nominal) drift rate of the virtual clocks (of the nodes). The nodes do not
perform any synchronization.

The next sections describe the different experiments. Each section is divided
into four distinct parts. The first part describes the goal of the experiment
and specialities of the setup. The second part discusses the expected outcome
or describes the hypothesis of the experiment. The third part presents the
measurements and results. The last part discusses the results and compares
them with the expected outcome. Unless otherwise defined, each experiment
uses the configurations described at the beginning of this chapter.

7.3 Long-Term Evaluation of Accuracy

This experiment evaluates the accuracy and long-term stability of the external
clock synchronization algorithm for inter-cluster and external synchronization.
For the whole measurement period, ρVT

sys is not changed.

The deviation values of the external clock synchronization algorithm are
measured. The deviation values are the differences between different virtual
clocks times and relational clock times before the correction and, thus, before
convergence of the different virtual clock times starts. Consequently, these
deviation values are the maximum difference between the virtual clock times

91

7.3 Long-Term Evaluation of Accuracy 7 Experimental Evaluation

-50

-40

-30

-20

-10

0

10

20

30

40

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

 real time (GPS time) / s

 d
ev

ia
ti

o
n

 f
ro

m
 r

ea
l t

im
e/

u
s

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8

Figure 7.3: Deviation of virtual clock times from relational clock time (this is
closely synchronized to real time (GPS time), after calibration of the drift rate.
The nodes do not perform any synchronization.

and the relational clock times. As the period between the measurement of
the deviation values and the start of the correction is much smaller2 than
the measurement interval, the drift offset in this period is negligible and not
taken into account, although it could slightly increase (that is worsen) the
accuracy. This experiment uses the TTPpowernode evaluation board for time
master nodes. For the TTPpowernode evaluation board, the deviation values
are multiples of 50 ns due to the hardware configuration and the frequency of
the clock generator of the measurement unit.

Expected Outcome and Hypotheses

For inter-cluster and external synchronization, the frequency diagram of the
measured deviation values should approximately form a symmetrical distri-
bution around mean 0 s. For external synchronization, the maximum of the
absolute amount of the measured deviation values should be less than 6.37 µs,
because the worst-case estimate of the accuracy αVT,T is 6.97 µs according to

2The measurement interval is in the order of 1 second, while the period is in the order
of 2 ms, which comprises the time for sending the values and calculation of the correction
value.

92

7 Experimental Evaluation 7.3 Long-Term Evaluation of Accuracy

Equation 6.1 and the following parameter values are assumed: Π = 0.5 µs,
αRCT ,T = 5 ns, and eRCT = 100 ns. The precision of the cluster is subtracted
from the estimate, because the deviation values are only measured at one time
master node and all nodes of a cluster are synchronized to each other within
the precision. The substraction of the other two parameters accounts for the
synchronization inaccuracy of the relational clock time to the reference clock
time (and, consequently, real time) and digitalization errors introduced by the
acquisition of representation of a time standard.

Similarly, the maximum deviation values of inter-cluster synchronization
should not exceed 850 ns. The worst-case estimate of the accuracy is 1.35 µs
according to Equation 6.1. The following parameters are assumed for inter-
cluster synchronization: Π = 0.5 µs, αRCT ,T = 0 ns, and eRCT = 0 ns. As
the relational clock time is not synchronized to real time and inter-cluster
synchronization is not concerned with direct synchronization to real time, the
accuracy with respect to real time is of no concern and αRCT ,T and eRCT are
set to 0. Again, the precision of the cluster is subtracted from the estimate,
because the deviation values are only measured at one time master node and
the virtual clock times of all nodes (and consequently the virtual clock times of
time master nodes) of a cluster can be at most the value of the precision apart.

Experiment Results

Figure 7.4 depicts the measured deviation values of external synchronization
to a relational clock time, denoted RCT , which is synchronized to GPS time.
The results represent the measurements over a period of 28 hours. Evaluation
of the data, which is depicted in detail in Table B.2 in Appendix B, shows
a maximum deviation3of850 ns, leading to αVT,T = 1.45 µs (assuming Π =
0.5 µs, αRCT ,T = 5 ns, and eRCT = 100 ns).

Figure 7.5 depicts the measured deviation values of inter-cluster synchro-
nization over a period of 2 hours, which equals an measurement period of ap-
proximately 105 measured values. As can be seen in Table B.3 in Appendix B,
the maximum deviation4 during this period is 450 ns, which equals an accuracy
αVT,RCT of 950 ns (assuming Π = 0.5 µs).

3850 ns correspond to 17 TPU ticks, each of length 50 ns. 17 TPU ticks is the largest
measured deviation value as can be seen in Table B.2 in Appendix B.

4450 ns correspond to 9 TPU ticks, each of length 50 ns. 9 TPU ticks is the largest
measured deviation value in Table B.3 in Appendix B.

93

7.3 Long-Term Evaluation of Accuracy 7 Experimental Evaluation

0

2

4

6

8

10

12

14

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

deviation / TPU ticks (1 TPU tick = 50ns)

fr
eq

u
en

cy
 o

f
d

ev
ia

ti
o

n
 v

al
u

es
 /

p

er
ce

n
t

Figure 7.4: External synchronization: deviation of virtual clock time from
relational clock time (Rext.CS = 16 s, Rmeasure = 1 s, gmeasure = 1 TPU tick
length = 50 ns)

Discussion of Results

For external synchronization, the worst-case estimate of the accuracy is 6.97 µs,
while the measured accuracy equals 1.45 µs. Thus, the measured accuracy value
is only 21 % of the worst-case estimate or 5.52 µs smaller than the estimated
value. For inter-cluster synchronization, the worst-case estimate of the accuracy
equals 1.35 µs and the measured accuracy is 950 ns. The measured accuracy
value is 70 % of the worst-case estimate of the accuracy or 400 ns smaller than
the estimated value.

The experiments of this section show that the algorithm performs as ex-
pected, because, first, the measured deviation values approximately form a
symmetrical distribution around a mean of 0 s, and, secondly, the maximum
amount of the measured deviation values are smaller than the estimated worst-
case accuracy values. The cluster that is used for the experiments is not cal-
ibrated and the systematic part of the drift rate is approximately 16 · 10−6 s

s

(see Section 7.2). If the systematic part of the drift rate of the global time were
not corrected, the mean of the distribution would be approximately 1.6 µs for
the external synchronization and approximately 0.1 µs for inter-cluster syn-
chronization, because the measurement interval is 1 s and 1

16
s, respectively.

94

7 Experimental Evaluation 7.4 Accuracy Independence from Syst. Drift Rate

0

5

10

15

20

25

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

deviation / TPU ticks(1 TPU tick = 50ns)

fr
eq

u
en

cy
 o

f
d

ev
ia

ti
o

n
 v

al
u

es
 /

p

er
ce

n
t

Figure 7.5: Inter-cluster synchronization: deviation of virtual clock time from
relational clock time (Rext.CS = 1 s, Rmeasure = 1

16
s, gmeasure = 50 ns)

7.4 Independence of the Accuracy from the

Value of the Systematic Part of the Drift

Rate

This experiment yields at showing the independence of the achieved accuracy
from the value of the systematic part of the drift rate of the global time, denoted
ρVT

sys . For this, the deviation values of a calibrated and a not calibrated cluster
are measured.

The values of the systematic part of the drift rate of the global time are
significantly different for a calibrated and a not calibrated cluster. The sys-
tematic part of the drift rate is approximately 0.44 · 10−6 s

s
for the calibrated

cluster and approximately 16 · 10−6 s
s

for the not calibrated cluster, as shown in
Section 7.2. This experiment uses the property of different systematic parts of
the drift rates for the calibrated and not calibrated clusters to evaluate whether
the value of the systematic part of the drift rate has an effect on the perfor-
mance of the multi-cluster clock synchronization algorithm or not. Time master
nodes are implemented using the TTPnode evaluation boards. Consequently,
the deviation values are integer multiples of 190.7 ns.

95

7.4 Accuracy Independence from Syst. Drift Rate 7 Experimental Evaluation

Expected Outcome and Hypotheses

As discussed in Section 6.3 and manifests in Equation 6.1, the systematic part
of the drift rate does not have an effect on the achieved accuracy. Consequently,
we expect the deviation values of the calibrated and not calibrated cluster to
be in the same range. The frequency diagrams of both configurations should
follow the same symmetrical distribution function around a mean of 0 s.

Experiment Results

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

5

10

15

20

25

30

fr
eq

ue
nc

y
of

 d
ev

ia
tio

n

va
lu

es
 /

pe
r

ce
nt

deviation / TPU ticks (1 TPU tick = 190.7 ns)

calibrated not calibrated

Figure 7.6: External Synchronization: deviation of virtual clock time from
relational clock time (Rext.CS = 16 s, Rmeasure = 1 s, gmeasure = 190.7 ns)

Figure 7.6 shows the frequency diagrams of the deviation values of the
calibrated and not calibrated cluster.

Discussion of Results

Figure 7.6 and Table B.4 in Appendix B show that the distribution of the
deviation values of the not calibrated cluster does not deviate significantly from
the distribution of the deviation values of the calibrated cluster. As described
above, the systematic part of the drift rate of the global time is approximately
0.44 · 10−6 s

s
for the calibrated cluster and approximately 16 · 10−6 s

s
for the not

96

7 Experimental Evaluation 7.5 Change of Systematic Drift Rate

calibrated cluster. Since the values of the systematic parts of the drift rates of
both cluster configurations are different, but the achieved accuracy is the same
and follows approximately the same distribution with a mean of approximately
0 s, we conclude that the used algorithm can correct a systematic part of the
drift rate well. As the value of the systematic part of the drift rate of the not
calibrated cluster is approximately 36 times larger than the systematic part of
the drift rate of the calibrated cluster, we conclude that the actual value of the
systematic part of the drift rate does not effect the quality of synchronization.

7.5 Change of the Systematic Part of the Drift

Rate of the Global Time

This experiment aims at observing the effects of a change of the drift rate of
the global time, denoted ρVT

sys . For this experiment, ρVT
sys is changed at a certain

point in time. The deviation values are measured before and after the change.

As described in Section 7.2, the values of the systematic part of the drift
rate of the global time are significantly different for a calibrated and a not cali-
brated cluster. Moreover, the drift rate of the global time stays nearly the same
when the set of nodes used for internal clock synchronization changes, because
the differences between the virtual clock times of a calibrated cluster are nearly
the same. For a not calibrated cluster, the drift rate can change by an amount
of up to ρ∆nodes (see Section 6.3). These properties of the calibrated and not
calibrated clusters are used to evaluate whether a change of the systematic
part of the drift rate of the global time can have an effect. Please note, that
the constant systematic part of the drift rate in a specified period of time (Re-
quirement 8) is valid before and after the change. This experiment is performed
using the TTPnode evaluation boards for time master nodes. For TTPnode
evaluation boards, the deviation values are integer multiples of 190.7 ns.

Expected Outcome and Hypotheses

Using Equation 6.2 and the measured values depicted in Figure 7.2 and 7.3,
leads to the following values of the change ρ∆nodes

not calibrated = 19 · 10−6 s
s

and

ρ∆nodes
calibrated = 0.72 · 10−6 s

s
. Using Equation 6.3, the measured ρ∆nodes , and the

parameters Rmeasure = 1 s, Rext.CS = 32 s, gmeasure = 190.7 ns, Π = 0.5 µs,5

αRCT ,T = 5 ns, and eRCT = 100 ns for this external synchronization to calculate
the estimate, gives the following results: αVT,T

ρVT
sys changes

= 7.97 µs and a maximum

5Here, we disregard the effect that the calibration can improve the precision of a cluster.

97

7.5 Change of Systematic Drift Rate 7 Experimental Evaluation

deviation value of 7.37 µs for the calibrated cluster and αVT,T
ρVT

sys changes
= 26.3 µs

and a maximum deviation value of 25.7 µs for the not calibrated cluster.

The diagram depicting the deviation values with a changing value of ρVT
sys

should show that – if ρVT
sys changes at t – at latest at t+2 ·Rext.CS the deviation

values should be again in the value range in which they were before t.

Experiment Results

-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

time / s

de
vi

at
io

n
/ u

s

not calibrated calibrated

ext. CS sync. interval (n+1)ext. CS sync. interval (n)

history length = 32

Figure 7.7: External Synchronization: deviation after a change in the set of
nodes used for internal clock synchronization (Rext.CS = 32 s, Rmeasure = 1 s,
gmeasure = 190.7 ns)

Figure 7.7 depicts the effect of a change in the set of nodes used for internal
clock synchronization that results in a change of ρVT . In this case at time 24,
ρVT

sys changes. Analysis of the measured data, which is shown in Table B.5 in
Appendix B, shows that the deviation is at most 800 ns (αVT,T = 1.3 µs) at
the calibrated cluster. At the not calibrated cluster, the deviation is at most
12 µs (αVT,T = 12.6 µs).

Discussion of Results

When a cluster is calibrated the systematic part of the drift rate of the global
time (ρVT

sys) does not significantly change (see Section 7.2), when the set of nodes
used for internal clock synchronization changes. In contrasts, ρVT

sys changes
significantly, when a cluster is not calibrated. This effect is used to evaluate

98

7 Experimental Evaluation 7.6 Changing History Length

the effect of a change of ρVT
sys . Figure 7.7 and Table B.5 in Appendix B depict

the deviation values of a calibrated and a not calibrated cluster where the set
of nodes used for internal clock synchronization changes at time 24.

As one can see in the figures and tables, a change in the set of nodes
used in the internal clock synchronization does not significantly affect ρVT

sys

and, consequently, the measured deviation values and αVT,T do not change
significantly. At the not calibrated cluster, ρVT

sys is significantly changed and,
consequently, the deviation values significantly change for a period that is at
most 2 ·Rext.CS long.

Figure 7.7 shows that the external clock synchronization algorithm uses the
calculated average of all medians of the set of deviation values of external clock
synchronization interval n, denoted Rn

ext.CS, for the correction in Rn+1
ext.CS. It

also shows that it takes at most 2 · Rext.CS until the global time of the cluster
(VT) is synchronized again to a level where one cannot realize the change in
ρVT

sys anymore. One duration Rext.CS stems from the abrupt change of ρVT
sys , the

other one from the fact that the average of the measured deviations of one
external clock synchronization interval is used for the next one.

We conclude from these observations and analysis of the algorithm that – if
the set of nodes used for internal clock synchronization may change – calibrating
the local drift rates of the nodes results in a significant improvement of the
accuracy of the global time αVT,T

ρVT
sys changes

compared to the accuracy of a cluster

whose nodes have not been calibrated. This improvement is proportional to
the maximum change of ρVT

sys if different sets of nodes are used in internal clock
synchronization.

7.6 Changing History Length

This experiment aims at measuring the effects of different values for H or, in
other words, the effects of a varying external clock synchronization interval
(Rext.CS) for a given measurement interval (Rmeasure). The deviation values for
different values of H are measured.

This experiment is performed on a cluster that uses TTPnode evaluation
boards as time master nodes. Thus, the deviation values are integer multiples
of 50 ns.

Expected Outcome and Hypotheses

The maximum deviation values are expected to get smaller for larger values
of H, because the approximation of ρVT

sys will be more precise for larger values

99

7.6 Changing History Length 7 Experimental Evaluation

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1

4

16
64

2560

5

10

15

20

25

fr
eq

u
en

cy
 o

f
d

ev
ia

ti
o

n
 v

al
u

es
 /

p

er
ce

n
t

deviation / TPU ticks (1 TPU tick = 50 ns)

history length /
measurement

intervals (1
meas.int.=1/16 s)

1 2 4 8 16 32 64 128 256

Figure 7.8: Inter-cluster synchronization: deviation of virtual cluster time
from relational clock time with changing history length (Rmeasure = 1/16 s,
gmeasure = 50 ns)

of H and the external clock synchronization cannot “distinguish” between the
effects of ρVT

sys and ρVT
stoch for small values of H. Once the value of H is sufficiently

large for a precise approximation of the systematic part of the drift rate, the
accuracy value will not get much better. The values of H that are “sufficiently
large” depend on the density distribution of the stochastic part of the drift rate
of the global time.

Experiment Results

Figure 7.8 and Table B.6 in Appendix B depict the measured deviations of
inter-cluster synchronization. Figure 7.9 and Table B.7 in Appendix B show
the measured deviations of external synchronization. In Figures 7.8 and 7.9, one
color depicts the distribution of the frequency of the measured deviation values
for a constant history length. The distribution with the shortest history length
(H = 1) can be seen in the front, the distribution with longest history length
(H = 256) is in back, other distributions are in between with distributions for

100

7 Experimental Evaluation 7.6 Changing History Length

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
1

8
64

0

2

4

6

8

10

12

14

16

18

20

fr
eq

u
en

cy
 o

f
d

ev
ia

ti
o

n
 v

al
u

es
 /

p

er
ce

n
ta

g
e

deviation / TPU ticks (1 TPU tick = 50 ns)

history length /

measurement int.

(1 meas.i. = 1 s)

1 2 4 8 16 32 64 128 256

Figure 7.9: External synchronization: deviation of virtual clock time from
relational clock time with changing history length (Rmeasure = 1 s, gmeasure =
50 ns)

longer history lengths being “behind” shorter ones.

Analysis of the data shows that the best deviation values for the inter-
cluster synchronization range from 300 to 500 ns depending on the history
length. Assuming Π = 0.5 µs, this corresponds to an accuracy of 800 ns to
1 µs. The best values for the external synchronization range from 500 ns to
1.2 µs, which equals an accuracy of 1.1 to 1.8 µs.

As can be seen in Tables B.6 and B.7 in Appendix B, the accuracy values get
smaller (that is better) for increasing history lengths up to a certain bound.
From this bound on, which equals 256 for the presented configurations, the
accuracy values get significantly worse.

Discussion of Results

For external synchronization, the distribution of the deviation values where the
history length equals 128 is not as regular as other distributions, as can be seen
when comparing the second column from the right (H = 128) of Table B.7 in
Appendix B with other columns of the same table. The spikes in the frequency

101

7.6 Changing History Length 7 Experimental Evaluation

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 256

history length / measurement intervals
(1 meas.int. =1 s)

st
an

d
ar

d
 d

ev
ia

ti
o

n
 /

T
P

U

ti
ck

s
(1

 T
P

U
 t

ic
k

=
50

 n
s)

Figure 7.10: External synchronization: standard deviations of results presented
in Figure 7.9.

diagram of the external synchronization (Figure 7.9) also depict this irregular-
ity. These irregularities are due to the values gmeasure and gµT that represent
the estimate of the systematic part of the drift rate of the global time. In this
case, the estimate of the systematic part is “at the border” between two digital
representations and, thus, the digitalization error has a major effect on the dis-
tribution. In order to provide evidence for this explanation, an analysis of the
standard deviations of the data for the different history lengths is performed
and presented in Figure 7.10 and Table B.8 in Appendix B. An analysis of the
standard deviations shows that the standard deviation of the deviation values
measured with external synchronization with history length 128 is even better
than the ones measured with other history lengths. Consequently, the above
explanation is a valid.

Moreover, Figure 7.10 shows that the standard deviation of synchronization
with small history lengths (1 to 4) is significantly higher than the ones measured
with history lengths ranging from 16 to 128. Interestingly, for inter-cluster and
external synchronization the accuracy is best, when the history length is in
the middle of the variations (4 to 32). We expected the deviation values to
get smaller or at least remain equal for larger values of H. The accuracy
gets worse for large values of H due to two reasons: First, digitization errors
that approximate ρVT

sys have more influence if H is larger. Secondly, if the
history length is long (64 to 256), the assumption of an approximately constant
systematic part of the drift rate (Requirement 8) may not be an adequate
assumption anymore and the linear approximation of the long-term drift rate
of the algorithm is not optimal anymore.

102

7 Experimental Evaluation 7.7 Changing Measurement Parameters

While we can say that the optimal history lengths for these cluster config-
urations range from 16 to 128, generally, the optimal length depends on the
properties of the nodes and the cluster configurations. The value of the history
length should be small, because then the required space in memory necessary
for storing the measured offset values is also small. Yet, the history length
should be as large as necessary for being able to “well estimate” the systematic
part of the drift rate. The algorithm “well estimates” the systematic part of
the drift rate, if the error that can be made when calculating the average of
the H offset values is smaller than the digitalization error.

7.7 Changing Measurement Parameters

This experiment examines the influence of the granularity of the offset measur-
ing unit, denoted gmeasure, and the length of the measurement interval, denoted
Rmeasure, on the accuracy. The deviation values are measured for different mea-
surement parameters.

This experiment is performed on a cluster that uses TTPpowernode eval-
uation boards as time master nodes. Thus, the deviation values are integer
multiples of 50 ns.

Expected Outcome and Hypotheses

We expect the accuracy to be directly proportional to Rmeasure, because – given
a constant ρVT

sys (Requirement 8) – the drift offset of the global time will be less
in a shorter period. The smaller the measuring granularity, the better ρVT

sys can
be measured and estimated, and the better will the accuracy be. At a certain
point, decreasing the measurement granularity will not lead to an improvement
of the achieved accuracy, because stochastic effects will dominate the accuracy.

Experiment Results

Figure 7.11 and Table B.9 in Appendix B show the standard deviations of
the deviation values at different configurations. Figure 7.12 and Table B.10
in Appendix B depict the range of the different configurations. The range is
the difference between the maximum and minimum deviation value and is an
indicator of the accuracy (αVT,RCT ≈ range

2
+Π). Different colors in Figures 7.11

and 7.12 represent different value intervals.

103

7.7 Changing Measurement Parameters 7 Experimental Evaluation

50

100

200

400

800

1600

2e-4
2e-3

2e-2
2e-1

0

200

400

600

800

1000

1200

st
an

d
ar

d
 d

ev
ia

ti
o

n
 o

f
d

ev
ia

ti
o

n

va
lu

es
 /

n
s

measuring

granularity /
ns

measurement
interval / s

0-200 200-400 400-600 600-800 800-1000 1000-1200

Figure 7.11: Inter-cluster synchronization: standard deviation of deviation val-
ues. Rmeasure and gmeasure varying, H = 16.

Discussion of Results

As can be seen in Figures 7.11 and 7.12 and in Tables B.9 and B.10 in Ap-
pendix B and as expected, the standard deviations and ranges are increasing
with increasing granularity of the offset measuring unit (digitalization error),
denoted gmeasure.

For measuring granularities (gmeasure) smaller than or equal to 400 ns, the

104

7 Experimental Evaluation 7.7 Changing Measurement Parameters

50

100

200

400

800

1600

2e-4
2e-3

2e-2
2e-1

0

1000

2000

3000

4000

5000

6000

7000

ra
n

g
e

o
f

d
ev

ia
ti

o
n

 v
al

u
es

 /

n
s

measuring

granularity /
ns

measurement
interval / s

0-1000 1000-2000 2000-3000 3000-4000
4000-5000 5000-6000 6000-7000

Figure 7.12: Inter-cluster synchronization: range of deviation values. Rmeasure

and gmeasure varying, H = 16.

standard deviation values and the accuracy values increase (that is worsen) for
increasing measurement intervals. This increase of deviation and accuracy val-
ues is due to larger drift offset values. For measuring granularities greater than
400 ns, there is no monotonically increasing relation between the accuracy and
the measurement interval, because digitalization errors dominate the outcome
of the external clock synchronization algorithm and, thus, the achieved accu-
racy and stochastic effects play a major role in the achieved accuracy. This
effect leads to the “cones” that can be seen in Figure 7.11 and 7.12

105

7.8 Non-Interference 7 Experimental Evaluation

7.8 Non-Interference

This experiment aims at measuring the influence of the external clock synchro-
nization algorithm on the precision of a cluster. For this, the precision of a
cluster is measured once when the external clock synchronization algorithm is
running and once when it is not running.

As TTP/C hardware, we use TTPnode and TTPpowernode evaluation
boards. At each node, we measure the time differences between the expected
and actual arrival of communication messages from other nodes in terms of
local clock readings. The TTP/C controller that is used on the evaluation
boards supports the measurement of these differences. We assume that errors
in measurements due to hardware clock drift rates are negligible. We know
from Section 2.3 that these differences represent the differences of the clock
values at different nodes. The maximum of these time differences is, thus, a
good estimate for the precision. The (oscillator) frequencies of the measure-
ment clocks of the time difference are 20 MHz . Therefore, the time difference
values can only be obtained with a granularity of 50 ns. The measurement unit
delivers the value x for time differences that fall into the interval [x · 50 ns,
(x + 1) · 50 ns (, for example, the value 2 represents the interval 100 to 150 ns.

Expected Outcome and Hypotheses

As analyzed in the Section 6.4, the maximum influence of the external clock
synchronization algorithm on the precision of a cluster is 0.03 ns for typical
cluster configuration, such as the experimental setup is. This value is much
smaller than can be measured with the available measuring equipment and
also by a factor of 104 smaller than the precision, which is typically 250 ns
to 1 µs. Consequently, we expect the precision values to be the same for the
configuration where the algorithm is running and for the configuration where
it is not running.

Experiment Results

Figure 7.13 shows a frequency diagram and Table 7.1 shows the frequencies of
the measured values at each node (in percent) over a period of 10.24 seconds,
which equals 10240 TDMA rounds.

The results show that the precision of an externally synchronized cluster
is approximately 250 ns, because the maximum measured time difference is
250 ns. In additional measurements with a duration of 12 hours, where we only
recorded the maximum time difference (and not all time difference values), the
maximum time difference is also 250 ns.

106

7 Experimental Evaluation 7.8 Non-Interference

0-50 50-100100-150150-200 200-250250-300
node 0

node 1

node 2

node 3

node 4

0

10

20

30

40

50

60

70

fr
eq

u
en

cy
 o

f
ti

m
e

d
if

fe
re

n
ce

 v
al

u
es

 /
p

er
ce

n
t

time difference / ns

Figure 7.13: Frequency of time difference values (external clock synchronization
running)

value node 0 node 1 node 2 node 3 node 4
(in 50 ns steps) (%) (%) (%) (%) (%)

0 (0-50 ns) 1.22 0.17 1.26 2.01 12.54
1 (50-100 ns) 53.17 37.37 46.26 46.66 62.49
2 (100-150 ns) 41.90 52.60 45.77 45.53 23.97
3 (150-200 ns) 3.69 9.56 6.57 5.67 1.00
4 (200-250 ns) 0.01 0.30 0.14 0.13 0.00
5 (250-300 ns) 0.00 0.00 0.00 0.00 0.00

Table 7.1: Frequency of values representing the difference between expected
and actual arrival time of messages (in percent) (external clock synchronization
running)

Figure 7.14 and Table 7.2 present the measurements of the time differences
over a period of 10.240 seconds (10240 TDMA rounds) without externally syn-

107

7.8 Non-Interference 7 Experimental Evaluation

chronizing the cluster. Due to the results, the estimate of the precision of the
cluster is 250 ns. Here again, the long-term test (12 hours) has shown the same
maximum time difference value.

0-50 50-100100-150150-200200-250250-300
node 0

node 1

node 2

node 3

node 4

0

10

20

30

40

50

60

70

fr
eq

u
en

cy
 o

f
ti

m
e

d
if

fe
re

n
ce

 v
al

u
es

 /
p

er
ce

n
t

time difference / ns
Figure 7.14: Frequency of time difference values (external clock synchronization
not running)

value node 0 node 1 node 2 node 3 node 4
(in 50 ns steps) (%) (%) (%) (%) (%)

0 (0-50 ns) 1.46 0.30 2.30 0.96 5.39
1 (50-100 ns) 50.44 36.36 40.00 47.22 55.41
2 (100-150 ns) 41.41 53.16 45.57 44.99 37.01
3 (150-200 ns) 6.61 9.88 11.92 6.62 2.19
4 (200-250 ns) 0.08 0.29 0.21 0.21 0.00
5 (250-300 ns) 0.00 0.00 0.00 0.00 0.00

Table 7.2: Frequency of values representing the difference between expected and
actual arrival time of messages (in percent) (external clock synchronization not
running)

108

7 Experimental Evaluation 7.9 Summary

Discussion of Results

We know that the measuring equipment is too imprecise to directly measure
the remaining influence calculated in Section 2.3. However, when looking at
the different distributions of time difference values when the external clock syn-
chronization algorithm is running and when not, one might be able to observe a
small right shift of the distribution, which equals an increased precision value,
when the external clock synchronization algorithm is running.

Table 7.1 and 7.2 indicate an influence of digitization errors of the TTP/C
hardware on the measured time difference values. This can be seen from the
different percentages values when looking at the same positions at the two
tables. These percentages are off by as much as 13 % (compare values of node
4, value 2). Thus, from a difference in the distribution of the time difference
values, one cannot observe an influence (as calculated in Section 2.3) of the
external clock synchronization on the precision that is much smaller than the
influence of the digitalization errors (even if the measuring equipment would be
more precise than the existing one). We could also not measure the remaining
influence, because again the digitalization errors of the TTP/C hardware are
larger than the calculated estimate of Section 2.3. The long-term measurements
have lead to an estimate of the precision of the cluster of 250 ns irrespectively
of whether the external clock synchronization is running or not. Since there is
a difference in different relational clock time values provided at the same time
(which is in the order of the precision of a cluster), but we could not measure
a difference in the precision, we conclude that external clock synchronization
does not interfere the precision of the internal clock synchronization.

7.9 Summary

In this chapter, we presented the experiments that validate the properties of
the multi-cluster clock synchronization. The chapter started with a brief de-
scription of the experimental setup. The first presented measurements affirm
the assumptions of a constant systematic clock error and a symmetrically dis-
tributed stochastic one. Based on these results, we investigated the achieved
accuracy in a long-term test, examined the elimination of the systematic part
of the drift rate and different algorithm-specific parameters, such as the history
length. The chapter ends with measurements concerning the influence of the
algorithm on the precision of a cluster. The measurements showed that syn-
chronization between multi-cluster systems can be achieved with an accuracy
that is better than 1 µs and that non-interference is achieved.

109

7.9 Summary 7 Experimental Evaluation

110

Chapter 8

Conclusion

Nihil est enim simul et inventum et perfectum.

Cicero, Brutus 71

The main contribution of the thesis is the development of a clock syn-
chronization algorithm for multi-cluster systems that is especially suited for
embedded distributed control systems. Multi-cluster clock synchronization is
achieved by externally synchronizing the global time of individual clusters to
relational clock times and assuming that global cluster times are not mutually
dependent on each other. This work is based on known clock synchronization
principles. In contrast to known external clock synchronization algorithms,
relational clock times (which are the reference of synchronization) for the ex-
ternal clock synchronization algorithm can have a drift rate different from 0.
Thus, relational clock times can either be the global times of other clusters or
clocks synchronized to a time standard, such as GPS time.

This multi-cluster clock synchronization strategy is well suited for the needs
of embedded distributed control systems, because it addresses the following
requirements of embedded distributed control systems:

Tight Synchronization. We define tight synchronization of multi-cluster
systems as clock synchronization where the quality of synchronization
between clocks of nodes of the different clusters is in the same order of
magnitude as the quality of synchronization of clocks of nodes of the
same cluster. The presented algorithm achieves tight synchronization of

111

8 Conclusion

multi-cluster systems by eliminating systematic errors of clocks and time
bases. Due to the design of the algorithm, only stochastic errors of clocks
influence the accuracy of a cluster. Since systematic errors of clocks are
an order of magnitude larger than stochastic errors in typical distributed
control systems, the algorithm achieves a significantly higher quality of
synchronization than known algorithms.

Composability. When systems are composed of several systems, composabil-
ity is a desired property. The multi-cluster clock synchronization pro-
vides composability of the time bases, that is, it guarantees that syn-
chronization of the global times of several clusters without changing the
precision of the individual clusters despite of arbitrary node faults. We
call this property of non-influencing the precision non-interference. Non-
interference of the algorithm is achieved by providing all nodes with a
consistent view of relational clock time values (used as reference) and by
exploiting the common notion of time at cluster level.

Dependability. Embedded control systems have increased dependability re-
quirements due to greater autonomy needs compared to desktop com-
puters, which follows from design of embedded systems for stand-alone
operation and the expectation of longevity. The presented algorithm can
tolerate arbitrarily faulty relational clock times that are used as refer-
ence. This is achieved by replication. Furthermore, an analysis of the
algorithm has proven that the algorithm is also self-stabilizing. Conse-
quently, synchronization can be maintained despite of arbitrary transient
faults.

Low computational complexity. As embedded systems have only low com-
putational power, achieving tight synchronization of cluster time bases us-
ing known techniques such as regression analysis of drift offset does not
work due to the required computational complexity of regression analysis.
The presented algorithm achieves a good approximation of the system-
atic part of the drift rate of the global time by gradually approximating
the systematic part using the average of the drift offset. This approach
is very efficient compared to the computation of the regression analysis
and needs only one additional measurement round to stabilize.

The presented algorithm has been implemented on top of the Time-
Triggered Architecture on two different platforms. Measurements and analysis
of the implementation show that the drift rate of the global time of clusters
have systematic errors that are approximately ten times larger than stochas-
tic errors. The presented implementation validated that the systematic errors
can be eliminated and that tight synchronization can be achieved with low

112

8 Conclusion

computational overhead. Measurements show that synchronization between
multi-cluster systems can be achieved with an accuracy (measured between the
times of the cluster nodes), which is better than 1 µs. If a cluster has access to
an accurate external time source that provides exact timing information each
full second (such as commercially available GPS receivers), the accuracy of the
time at the cluster nodes is better than 1.5 µs.

Furthermore, an analytical model for an estimate of the accuracy in worst-
case scenarios has been developed, in which we assume that the errors due
to different implementation-specific parameters accumulate. We present these
estimates. Briefly described, this accuracy estimate is between 1 and 7 µs
for optimally configured clusters. The worst-case estimate is larger than the
measured values due to the assumption of accumulating errors originating in
different parameters. Errors do not accumulate under normal conditions and in
typical specifications. However, the estimate is useful for the analysis of achiev-
able accuracy for real-time systems used in safety-critical and/or dependable
systems.

Outlook

The current approach builds on the premise that timing information is only
allowed to be transported non-cyclically1 in multi-cluster systems in order to
reach a stable system-wide synchronization. For the presented algorithm, this
limitation can be waived if the systematic part of the drift rate does not have to
be eliminated. Then, the algorithm will synchronize multi-cluster systems. Yet,
a more general approach to extending multi-cluster clock synchronization al-
lowing cyclical transportation of timing information and, thus, feed-back loops
is currently subject of another PhD thesis at our institute.

The algorithm has been implemented for validation purposes using the
Time-Triggered Architecture. In order to employ the presented concepts in
“real-world” applications, implementations on different hardware platforms
would be advantageous and another proof-of-concept. The fault tolerance con-
cepts of this algorithm have been analyzed. In addition, fault-injection exper-
iments aiming at testing the fault tolerance concepts could provide additional
confidence for deployment of the presented algorithm in highly safety-critical
systems.

1That is, if cluster A uses the global time of cluster B as reference, cluster B is not allowed
to use the global time of cluster A, neither directly nor indirectly.

113

8 Conclusion

114

Bibliography

[AK98a] A. Arora and S.S. Kulkarni. Component based design of multitol-
erance. IEEE Transactions on Software Engineering, 24(1):63–78,
1998.

[AK98b] A. Arora and S.S. Kulkarni. Detectors and correctors: A the-
ory of fault-tolerance components. In Proceedings of the 18th In-
ternational Conference on Distributed Computing Systems, pages
436–443, Amsterdam, The Netherlands, 1998. IEEE Computer
Society.

[Ale64] C. Alexander. Notes on the Synthesis of Form. Harvard Univer-
sity Press, Cambridge, MA, USA, and London, England, United
Kingdom, 1964.

[ANS89] The Advanced Network Systems Architecture (ANSA) Refer-
ence Model. Technical report, Architecture Projects Management
Ltd., Castle Hill, Cambridge, England, 1989.

[AP95] T.K. Apostolopoulos and K.C. Pramataris. A client-server archi-
tecture for distributed problem solving. In Proceedings of IEEE
International Conference on Information Engineering, pages 513–
517, Singapore, 1995.

[AP97] E. Anceaume and I. Puaut. A taxonomy of clock synchronization
algorithms. Research Report 1103, Institut National de Recherche
en Informatique et Systèmes Aléatoires (IRISA), Rennes, France,
July 1997.

[AP98] E. Anceaume and I. Puaut. Performance evaluation of clock syn-
chronization algorithms. Research Report 3526, Institut National
de Recherche en Informatique et Systèmes Aléatoires (IRISA),
Rennes, France, October 1998.

115

BIBLIOGRAPHY BIBLIOGRAPHY

[ARI93] ARINC Specification 659: Backplane Data Bus. Aeronautical
Radio, Inc., Annapolis, MD, USA, December 1993. Prepared by
the Airlines Electronic Committee.

[Avi78] A. Avizienis. Fault tolerance, the survival attribute of digital
systems. Proceedings of IEEE, 66(10):1109–1125, October 1978.

[AW98] H. Attiya and J. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. McGraw-Hill Publishing Com-
pany, Berkshire, England, 1998.

[Bau01] G. Bauer. Transparent Fault Tolerance in a Time-Triggered
Architecture. Doctoral thesis, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, May 2001.

[BCE+01] G. Borriello, R.P. Colwell, D.L. Estrin, J. Fiddler, M. Horowitz,
W.J. Kaiser, N.G. Leveson, B.H. Liskov, P. Lucas, D.P. Maher,
P. Mankiewich, R. Taylor, and J. Waldo. Embedded, Everywhere:
A Research Agenda for Networked Systems of Embedded Comput-
ers. National Academy Press, 2001. Publication of the Committee
on Networked Systems of Embedded Computers, Computer Sci-
ence and Telecommunications Board, National Research Council.

[BD87] O. Babaoglue and R. Drummond. (Almost) no cost clock syn-
chronization. In Proceedings of the 7th International Symposium
on Fault-Tolerant Computing, pages 42–47, Pittsburgh, PE, USA,
July 1987. IEEE Computer Society Press.

[Ben90] M. Ben-Ari. Principles of Concurrent and Distributed Program-
ming. Prentice Hall international series in computer science,
C.A.R. Hoare, series editor. Prentice Hall International (UK) Ltd,
Hertfordshire, United Kingdom, 1990.

[BK00] G. Bauer and H. Kopetz. Transparent redundancy in the Time-
Triggered Architecture. In Proceedings of the International Con-
ference on Dependable Systems and Networks, pages 5–13. IEEE
Computer Society Press, June 2000.

[BKP01] G. Bauer, H. Kopetz, and P. Puschner. Assumption coverage
under different failure modes in the Time-Triggered Architecture.
In Proceedings of the IEEE Conference on Emerging Technologies
in Factory Automation, Antibes Juan les Pins, France, October
2001.

116

BIBLIOGRAPHY BIBLIOGRAPHY

[BKS02] G. Bauer, H. Kopetz, and W. Steiner. The central guardian ap-
proach to enforce fault isolation in a time-triggered system. Re-
search Report 20/2002, Institut für Technische Informatik, Tech-
nische Universität Wien, Treitlstr. 1-3/182-1, 1040 Vienna, Aus-
tria, 2002.

[BP00] G. Bauer and M. Paulitsch. An investigation of membership and
clique avoidance in TTP/C. In Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems, 2000, pages 118–124,
Nuremberg, Germany, October 2000. IEEE Press.

[BS01] G. Bauer and W. Steiner. Smart bus guardian design guide-
lines. Research Report 20/2001, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, 2001.

[Car82] W.C. Carter. A time for reflection. In Proceedings of the 12th

International Symposium on Fault-Tolerant Computing, page 41,
Santa Monica, CA, USA, June 1982. IEEE Computer Society
Press.

[CDK94] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Sys-
tems: Concept and Design. Addison-Wesley Publishing Ltd., 2nd

edition, 1994.

[CF95] F. Cristian and C. Fetzer. Fault-tolerant external clock synchro-
nization. In Proceedings of the 15th International Conference on
Distributed Computing Systems, pages 70–77, Los Alamitos, CA,
USA, May 30–June 2 1995. IEEE.

[CF98] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. In Proceedings of the 28th International Sympo-
sium on Fault-Tolerant Computing, Munich, Germany, June 1998.

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Transactions on Parallel and Distributed
Systems, 10(6):642–657, June 1999.

[CHTC96] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On
the impossibility of group membership. In Proceedings of the 15th

ACM Symposium on Principles of Distributed Computing, pages
322–330, Philadelphia, PA, USA, May 1996.

[CL94] G. Ciardo and C. Lindemann. Comments on ”analysis of self-
stabilizing clock synchronization by means of stochastic petri

117

BIBLIOGRAPHY BIBLIOGRAPHY

nets”. IEEE Transactions on Computers, 43(12):1453–1456,
1994.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms. The MIT Press / McCraw-Hill Book Company, Cam-
bridge, MA, USA / New York, NY, USA, 1st edition, 1990.

[Cou85] P.-J. Courtois. On time and space decomposition of complex
structures. Communications of the ACM, 28(6):590–603, 1985.

[Cri89] F. Cristian. Probabilistic clock synchronization. Distributed Com-
puting, 3:146–158, 1989.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[CS68] W.C. Carter and P.R. Schneider. Design of dynamically checked
computers. In IFIP’68 Congress, pages 878–883, Amsterdam,
The Netherlands, 1968.

[Dan97] P.H. Dana. Global Posinitioning System (GPS) time dissemina-
tion for real-time applications. Real-Time Systems, 12(1):9–40,
January 1997.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the ACM
(JACM), 34(1):77–97, 1987.

[Dij68] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages, pages 43–112, NY, USA, 1968.
Academic Press.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):643–644, 1974.

[Dij82] E.W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Selected Writings on Computing: A Personal Perspective,
pages 41–46, 1982. Springer Verlag, Berlin. Originally published
in 1973.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[dM95] J. de Meer. The ISO Reference Model for Open Distributed Pro-
cessing. Computer Networks and ISDN Systems, 27(8):1211–1214,
July 1995.

118

BIBLIOGRAPHY BIBLIOGRAPHY

[Dol97] S. Dolev. Possible and impossible self-stabilizing digital clock
synchronization in general graphs. Real-Time Systems, 12(1):95–
107, January 1997.

[DW95] S. Dolev and J.L. Welch. Self-stabilizing clock synchronization
with byzantine faults. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, page 256. ACM Press,
1995.

[FC95] C. Fetzer and F. Cristian. An optimal internal clock synchroniza-
tion algorithm. In Proceedings of the 10th Conference on Com-
puter Assurance, pages 187–196, Gaithersburg, MD, USA, June
1995. IEEE.

[FC97] C. Fetzer and F. Cristian. Integrating external and internal clock
synchronization. Real-Time Systems, 12:123–171, March 1997.

[Fis90] M. Fischer. A theoreticians view of fault tolerant distributed
computing. In B. Simons and A. Spector, editors, Fault-Tolerant
Distributed Computing, volume 448 of Lecture Notes in Computer
Sciences, pages 1–9. Springer-Verlag, Berlin, Germany, 1990.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[Gho93] S. Ghosh. An alternative solution to a problem on self-
stabilization. ACM Transactions on Programming Languages and
Systems, 15(4):735–742, 1993.

[GM91] M.G. Gouda and N.J. Multari. Stabilizing communication pro-
tocols. IEEE Transactions on Computers, 40(4):448–458, April
1991.

[HD93] K. Hoyme and K. Driscoll. Safebus (tm). IEEE Aerospace and
Electronics Systems Magazine, 8(3):34–39, March 1993.

[HLD88] R.E. Harper, J.H. Lala, and J.J. Deyst. Fault tolerant parallel
processor architecture overview. In Proceedings of the 18th In-
ternational Symposium on Fault-Tolerant Computing, pages 252–
257. IEEE Computer Society Press, June 1988.

[HLMR90] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B. Randell. A
program structure for error detection and recovery. In E. Gelenbe

119

BIBLIOGRAPHY BIBLIOGRAPHY

and C. Kaiser, editors, Proceedings of an International Sympo-
sium held at Rocquencourt, volume 16 of Lecture Notes in Com-
puter Sciences, pages 171–187. Springer-Verlag, Berlin, Germany,
1990.

[HS97] D. Höchtl and U. Schmid. Long-term evaluation of GPS timing
receiver failures. In Proceedings of the 29th Precise Time and
Time Interval Systems and Applications Meeting, Long Beach,
USA, December 1997.

[HSSD84] J.Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant
clock synchronization. In Proceedings of the 3rd ACM Symposium
on Principles of Distributed Computing, pages 89–102, 1984.

[HT93] V. Hadzilacos and S. Toueg. Distributed Systems. Addison-
Wesley, 1993.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR94-1425,
Department of Computer Science, Cornell University, Ithaca, NY,
USA, May 1994.

[IEE02] Draft Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems (V0.19.13). IEEE
Press, New York, NY, USA, May 2002. IEEE Standard No.
P1588; Product No. DS5905-TBR.

[Int92] International Standards Organization. Basic Reference Model of
Open Distributed Processes, Part 1: Overview and guide to use.
Technical Report ISO/IEC JTC1/SC212/WG7 CD 10746-1, In-
ternational Standards Organization, 1992.

[Jal94] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall,
Inc., Englewood Cliffs, NJ, USA, 1994.

[Jen02] S. Jennings. Hier ticken alle Uhren gleich: IEEE1588 – die Syn-
chronisation über Ethernet. IEE Automatisierung + Datentech-
nik, 47(7):52–55, July 2002.

[JKK+01] C. Jones, M.-O. Killijian, H. Kopetz, E. Marsden, N. Mof-
fat, M. Paulitsch, D. Powell, B. Randell, A. Romanovsky, and
R. Stroud. Revised version of DSoS conceptual model. Project
Deliverable IC1 for Project ”Dependable Systems of Systems”
(DSoS) / Research Report 35/2001, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, 2001.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[KB02] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Pro-
ceedings of the IEEE, 90(10), October 2002. Special issue on
Modeling and Design of Embedded Software.

[KBJ00] L.M. Kaufman, S. Bhide, and B.W. Johnson. Modeling of
common-mode failures in digital embedded systems. In Proceed-
ings of the Annual Reliability and Maintainability Symposium,
pages 350–357, Los Angeles, CA, USA, January 2000. IEEE,
IEEE Press.

[Kha01] M.S. Khan. Political and economic dimensions of Global Nav-
igation Satellite System (GNSS). In IEEE Proceedings of the
Aerospace Conference, volume 3, pages 3/1271 – 3/1276. IEEE,
2001.

[KHE01] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart
transducer interface: TTP/A. International Journal of Computer
System, Science & Engineering, 16(2), March 2001.

[KHK+96] H. Kopetz, R. Hexel, A. Krüger, D. Millinger, and A. Schedl.
A synchronization strategy for a TTP/C controller. In Society
of Automotive Engineers International Congress and Exposition,
Detroit, MI, USA, February 1996. SAE International.

[Kim00] K.H. Kim. Issues insufficiently resolved in century 20 in the fault-
tolerant distributed computing field. In IEEE Symposium on Re-
liable and Distributed Systems, pages 106–115, Nuremberg, Ger-
many, October 2000. IEEE Computer Society Press.

[KKMS95] H. Kopetz, A. Krüger, D. Millinger, and A. Schedl. A synchro-
nization strategy for a time-triggered multicluster real-time sys-
tem. In Symposium on Reliable Distributed Systems, pages 154–
161, Los Alamitos, CA, USA, September 1995. IEEE Computer
Society Press.

[KO87] H. Kopetz and W. Ochsenreiter. Clock synchronization in dis-
tributed real time systems. IEEE Transactions on Computers,
36(8), August 1987.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability. IEE
Computing & Control Engineering Journal, 13(8), August 2002.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[Kop98] H. Kopetz et al. Specification of the TTP/C protocol – chip
version 0.1. Technical Report 27/1998, Institut für Technische
Informatik, Technische Universität Wien, Treitlstr. 1-3/3/182-1,
Vienna, Austria, December 1998.

[Kop99] H. Kopetz. TTP/C Protocol. TTTech, Vienna, Austria, July
1999. Available at http://www.ttpforum.org/.

[Kop00a] H. Kopetz. Composability in the Time-Triggered Architecture.
In Society of Automotive Engineers World Congress, Detroit, MI,
USA, March 2000. Society of Automotive Engineers, Interna-
tional. Paper No. 2000-01-1382.

[Kop00b] H. Kopetz. Software engineering for real-time: A roadmap. In
A. Finkelstein, editor, Proceedings of the 22nd International Con-
ference on the Future of Software Engineering, pages 201–211,
Limerick, Ireland, June 2000. ACM Press.

[Kop01a] H. Kopetz. Note on the drift of the global time in a TTP
cluster. Research Report 1/2001, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, January 2001.

[Kop01b] H. Kopetz. The temporal specification of interfaces in distributed
real-time systems. In C.M. Kirsch T.A. Henzinger, editor, Em-
bedded Software, Proceedings of 1st International Workshop on
Embedded Software, volume 2211 of Lecture Notes in Computer
Science, pages 223–236. Springer-Verlag Berlin Heidelberg, Ger-
many, Lake Tahoe, CA, USA, October 2001.

[Kop02a] H. Kopetz. Fault containment und error detection in the Time-
Triggered Architecture. Research Report 39/2002, Institut für
Technische Informatik, Technische Universität Wien, Treitlstr. 1-
3/3/182-1, Vienna, Austria, 2002.

[Kop02b] H. Kopetz. Time-triggered real-time computing. In Proceedings
of the IFAC World Congress on Automatic Control, Barcelona,
Spain, July 2002. IFAC Press.

[KR87] Shin K.G. and Ramanathan R. Clock synchronization of large
multiprocessor system in the presence of malicious faults. IEEE
Transactions on Computers, 36(1):2–12, 1987.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[KR93] H. Kopetz and J. Reisinger. The non-blocking write protocol
NBW: A solution to a real-time synchronization problem. In Pro-
ceedings of the 14th Real-Time Systems Symposium, pages 131–
137, Raleigh-Durham, NC, USA, December 1993.

[KS02] H. Kopetz and N. Suri. Compositional design of real-time sys-
tems: A conceptual basis for the specification of linking inter-
faces. Research Report 8/2002, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, 2002.

[Kul99] S.S. Kulkarni. Component-Based Design of Fault Tolerance. PhD
thesis, The Ohio State University, Columbus, OH, USA, June
1999.

[LA90] P.A. Lee and T. Anderson. Fault Tolerance. Springer Verlag,
Vienna, Austria, 2nd edition, 1990. Dependable Computing and
Fault-Tolerant Systems. Vol. 3. A. Avižienis, H. Kopetz, and J.-
C. Laprie (editors), IFIP WG 10.4 Dependable Computing and
Fault Tolerance.

[LAK99] W. Lewandowski, J. Azoubib, and W.J. Klepczynski. GPS: Pri-
mary tool for time transfer. Proceedings of the IEEE, 87(1):163–
172, January 1999.

[Lap92] J.-C. Laprie. Dependability: Basic Concepts and Terminology.
Springer Verlag, Vienna, Austria, 1992. Dependable Computing
and Fault-Tolerant Systems. Vol. 5. A. Avižienis, H. Kopetz, and
J.-C. Laprie (editors), IFIP WG 10.4 Dependable Computing and
Fault Tolerance.

[Lap95] J.-C. Laprie. Dependability – its attributes, impairments, and
means. In B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood,
editors, Predictably Dependable Computing Systems, pages 3–24,
Heidelberg, Germany, 1995. Springer Verlag.

[Leb98] M. Lebedev. GLONASS as instrument for precise UTC transfer.
In Proceedings of the 12th European Frequency and Time Forum,
Warsaw, Poland, March 1998.

[Lee99] E. A. Lee. Embedded software – an agenda for research. ERL
Technical Report UCB/ERL No. M99/63 M99/63, University of
California, Berkeley, CA, USA, December 1999.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[LFA90] J. Long, W.K. Fuchs, and J.A. Abraham. Forward recovery using
checkpointing in parallel systems. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages 272–275, August
1990.

[Lic97] R. Lichtenecker. Terrestrial time signal dissemination. Real-Time
Systems, 12(1):41–61, January 1997.

[Lis91] B. Liskov. Practical use of synchronized clocks in distributed sys-
tems. In Proceedings of 10th ACM Symposium on the Principles
of Distributed Computing, pages 1–9. ACM Press, 1991.

[LL84a] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for
clock synchronization. In Proceedings of the 3rd annual ACM
symposium on Principles of Distributed Computing, pages 75–88.
ACM, 1984.

[LL84b] J. Lundelius and N. Lynch. An upper and lower bound for clock
synchronization. Information and Control, 62:190–204, 1984.

[LM84] L. Lamport and P.M. Melliar-Smith. Byzantine clock synchro-
nization. In Proceedings of the 3rd ACM Symposium on Principles
of Distributed Computing, pages 68–74, 1984.

[LM85] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in
the presence of faults. Journal of the ACM, 32(1):52–78, January
1985.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[LZM90] M. Lu, D. Zhang, and T. Murata. Analysis of self-stabilizing
clock synchronization by means of stochastic petri nets. IEEE
Transactions on Computers, 39(5):597–604, 1990.

[Mar84] K.A. Marzullo. Maintaining the Time in a Distributed System:
An Example of a Loosely Coupled Distributed Service. PhD the-
sis, Department of Electrical Engineering, Stanford University,
Stanford, CA, USA, February 1984.

[MHB+01] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner,
S. Fluhrer, E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger,
P. Lohrmann, D. Millinger, M. Peller, J. Ruh, A. Schedl, and

124

BIBLIOGRAPHY BIBLIOGRAPHY

M. Sprachmann. FlexRay – the communication system for ad-
vanced automotive control systems. In Society of Automotive
Engineers World Congress, Detroit, MI, USA, March 2001. SAE
International. Document No 2001-01-0676.

[Mil91] D.L. Mills. Internet time synchronization: the network time pro-
tocol. IEEE Transactions on Communications, 39(10):1482–1493,
October 1991.

[Min00] P.S. Miner. Analysis of the SPIDER fault-tolerance protocols. In
LFM 2000: 5th NASA Langley Formal Methods Workshop, NASA
Langley Research Center, Hampton, VA, June 2000. C. Michael
Holloway, editor. Slides available at http://shemesh.larc.

nasa.gov/fm/Lfm2000/Presentations/lfm2000-spider/.

[MO83] K. Marzullo and S. Owicki. Maintaining the time in a distributed
system. In Proceedings of the 2nd ACM Symposium on Principles
of Distributed Computing, pages 295–305, 1983.

[MS85] S.R. Mahaney and F.B. Schneider. Inexact agreement: accuracy,
precision, and graceful degradation. In Proceedings of the 4th

ACM Symposium on Principles of Distributed Computing, pages
237–249. ACM Press, 1985.

[MT89] M.D. Mesarovic and Y. Takahara. Abstract Systems Theory, vol-
ume 116 of Lecture Notes in Control and Information Sciences.
Springer-Verlag Berlin, Heidelberg, Germany, 1989.

[Mye88] B. Myer. Object-Oriented Software Construction. Prentice Hall,
New York, NY, USA, 1988.

[OMG02] Smart transducers interface. Specification ptc/2002-05-01, Object
Management Group, May 2002. Available at http://www.omg.

org/.

[Pas02] A. Pasetti. Software Frameworks and Embedded Control Systems,
volume 2231 of Lecture Notes in Computer Science. Springer-
Verlag Berling Heidelberg, Germany, ETH-Zentrum, Zurich,
Switzerland, 2002.

[Pat94] B. Patt. A Theory of Clock Synchronization. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Mas-
sachusetts Institut of Technology, Cambridge, MA, USA, October
1994.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[PB95] M. Pfluegl and D. Blough. A new and improved algorithm for
fault-tolerant clock synchronization. Journal of Parallel and Dis-
tributed Computing, 27:1–14, 1995.

[PB00] M. Paulitsch and G. Bauer. External clock synchronization in the
Time-Triggered Architecture (TTA). Research Report 3/2000,
Institut für Technische Informatik, Technische Universität Wien,
Treitlstr. 1-3/3/182-1, Vienna, Austria, April 2000.

[Pol94] S. Poledna. Replica determinism in distributed real-time systems:
A brief survey. Real-Time Systems, 6:289–316, 1994.

[Pow92] D. Powell. Failure mode assumptions and assumption coverage.
In Proceedings of the 22th International Symposium on Fault-
Tolerant Computing, pages 386–395, Boston, MA, USA, July
1992. IEEE Computer Society Press. Revised version in pre-
dictably dependable computing systems, Eds. B. Randell, J.-C.
Laprie, H. Kopetz, B. Littlewood, Springer Verlag, NISBN 3-540-
59334-9, 1995, pp.123–140.

[Pow94] D. Powell. Distributed Fault Tolerance – Lessons Learnt from
Delta-4. In M. Banatre and P.A. Lee, editors, Hardware and Soft-
ware Architectures for Fault Tolerance: Experiences and Perspec-
tives, volume 774 of Lecture Notes in Computer Sciences, pages
199–217. Springer-Verlag, Berlin, Germany, 1994. Also published
as LAAS research report No. 93192. Workshop on Fault-Tolerant
Architectures, Mont Saint Michel, France, June, 1993.

[PS01] D. Powell and R. Stroud (editors). Conceptual model and archi-
tecture. Project deliverable D2 for project MAFTIA (Malicious-
and Accidental-Fault Tolerance for Internet Applications) Tech-
nical Report CS-TR-749, University of Newcastle upon Tyne,
Technical Report DI/FCUL TR-01-10, Universidade de Lisboa,
LAAS-CNRS Report No. 01426, Research Report RZ 3377, IBM
Research, Zurich Research Laboratory, LAAS-CNRS / University
of Newcastle upon Tyne, Toulouse, France / Newcaste, England,
United Kingdom, November 2001.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. Journal of the ACM, 27(2):228–234, April
1980.

[PT94] M. Papatriantafilou and P. Tsigas. Self-stabilizing wait-free clock
synchronization. In Proceedings of the 4th Scandinavian Work-

126

BIBLIOGRAPHY BIBLIOGRAPHY

shop on Algorithm Theory, volume 824 of Lecture Notes in Com-
puter Science, pages 267–277. Springer-Verlag Berlin Heidelberg,
Germany, July 1994.

[PV94] D.K. Pradhan and N.H. Vaidya. Roll-forward checkpointing
scheme: A novel fault-tolerant architecture. IEEE Transactions
on Computers, 43(10):1163–1174, 1994.

[Rec91] E. Rechtin. System Architecting: Creating and Building Complex
Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1991.

[RSB90] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant
clock synchronization in distributed systems. IEEE Computer,
23(10):33–42, October 1990.

[Rus02] J. Rushby. Self-stabilization of the TTA group membership algo-
rithm. CSL Technical Report 24b, Computer Science Laboratory,
SRI International, Menlo Park, CA, USA, February 2002.

[RvH89] J. Rushby and F. von Henke. Formal verification of the inter-
active convergence clock synchronization algorithm. Technical
Report CSL-89-3R, Computer Science Laboratory, SRI Interna-
tional, CA, USA, February 1989.

[Sat88] M. Satyanarayanan. On the influence of scale in a distributed
system. In Proceedings of the 10th International Conference on
Software Engineering, pages 10–18, Singapore, 1988. IEEE Press.

[Sat93] M. Satyanarayanan. Distributed file system. In S. Mullender, ed-
itor, Distributed Systems, pages 353–383. Addison-Wesley Long-
man, Inc., ACM Press, 1993.

[SB02] W. Steiner and G. Bauer. Using a central guardian for a fault-
tolerant system startup of TTP/C. Research Report 16/2002,
Institut für Technische Informatik, Technische Universität Wien,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2002.

[Sch87] F.B. Schneider. Understanding protocols for byzantine clock syn-
chronization. Research Report 87-859, Department of Computer
Science, Cornell University, Ithaca, NY, USA, August 1987.

[Sch88] W. Schwabl. Der Einfluss zufälliger und systematischer Fehler auf
die Uhrensynchronisation in verteilten Echtzeitsystemen. Doc-
toral thesis, Institut für Technische Informatik, Technische Uni-
versität Wien, Treitlstr. 1-3/3/182-1, Vienna, Austria, October
1988.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[Sch93a] M. Schneider. Self-stabilization. ACM Computing Surveys,
25(1):45–67, 1993.

[Sch93b] M.D. Schroeder. A state-of-the-art distributed system: Comput-
ing with BOB. In S. Mullender, editor, Distributed Systems, pages
1–16. Addison-Wesley Longman, Inc., ACM Press, 1993.

[Sch96] A. Schedl. Design and Simulation of Clock Synchronization in
Distributed Systems. Doctoral thesis, Institut für Technische In-
formatik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, April 1996.

[Sch00] U. Schmid. Orthogonal accuracy clock synchronization. Chicago
Journal of Technical Computer Science, 2000(3):3–77, August
2000.

[SJ82] D.P. Siewiorek and D. Johnson. A design methodology for high
reliability systems: The Intel 432. In D.P. Siewiorek and R.S.
Swarz, editors, The Theory and Practice of Reliable System De-
sign, pages 621–636. Digital Press, 1982.

[SP02] W. Steiner and M. Paulitsch. The transition from asynchronous
to synchronous system operation: An approach for distributed
fault-tolerant systems. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, Vienna, Austria,
July 2002. IEEE Press.

[SR88] J.A. Stankovic and K. Ramamritham. Hard real-time systems:
Tutorial. IEEE Computer Society Press, Washington, D.C., USA,
1988.

[SS92] D.P. Siewiorek and R.S. Swarz. Reliable Computer Systems: De-
sign and Evaluation. Digital Press, Bedford, MA, USA, 2nd edi-
tion, 1992.

[SS97] U. Schmid and K. Schossmaier. Interval-based clock synchroniza-
tion. Real-Time Systems, 12:173–228, March 1997.

[ST87] T.K. Srikanth and S. Toueg. Optimal clock synchronization. Jour-
nal of the ACM, 34(3):626–645, 1987.

[Sta01] W. Stallings. Operating Systems. Prentice-Hall, Inc., Englewood
Cliffs, NJ, USA, 4th edition, 2001.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[Ste02a] W. Steiner. Investigating information systems. Research Report
38/2002, Institut für Technische Informatik, Technische Univer-
sität Wien, Treitlstr. 1-3/3/182-1, Vienna, Austria, 2002.

[Ste02b] W. Steiner. Self-stabilizing in the TTA despite permanent fail-
ures. Research Report 21/2002, Institut für Technische Infor-
matik, Technische Universität Wien, Treitlstr. 1-3/3/182-1, Vi-
enna, Austria, 2002.

[Szy99] C. Szyperski. Component Software: Beyond Object-oriented Pro-
gramming. ACM Press, London, Great Britain, 1st edition, 1999.

[TTT01] TTTech Computertechnik AG. Technical documentation of TTP-
node and TTPpowernode. Available at http://www.tttech.

com/, 2001.

[Vit96] Vitruvius. De architectura libri decem / Zehn Bücher über Ar-
chitektur. Primus Verlag, Darmstadt, Germany, 5th edition, orig-
inally around 23 B.C. / 1996. Translated and commented by C.
Fensterbusch.

[VRC97] P. Veŕıssimo, L. Rodrigues, and A. Casimiro. CesiumSpray: A
precise and accurate global time service for large-scale systems.
Real-Time Systems, 12(3):243–294, May 1997.

[Weg84] P. Wegner. Capital-intensive software technology. IEEE Software,
1(3), 1984.

[WF00] H.F. Wedde and W. Freund. Harmonious internal clock synchro-
nization. In 12th Euromicro Conference on Real-Time Systems,
pages 175–182, Informatik III, Dortmund University, Dortmund,
Germany, June 2000. IEEE Press.

[WWWK97] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on
Distributed Computing. In J. Vitek and C. Tschudin, editors,
Mobile Object Systems: Towards the Programmable Internet, vol-
ume 1222 of Lecture Notes in Computer Science, pages 49–64.
Springer Verlag, Heidelberg, Germany, April 1997. Also pub-
lished as Sun Microsystems Laboratories Technical Report SMLI
TR-94-29.

[YC75] S.S. Yau and R.C. Cheung. Design of self-checking software. In
1st International Conference on Reliable Software, pages 450–457,
Los Angeles, CA, USA, 1975.

129

BIBLIOGRAPHY BIBLIOGRAPHY

130

Appendix A

Notation

Table A.1 provides an overview of the most important terms that are used in
this thesis.

Symbol Description
t point in real time
T set of all real-time values, the granularity of real time is infinites-

imal
RT reference clock time is a granular representation of T ; that is, in

perfect synchrony with T
RT (e) timestamp of occurrence of event e using RT
HT i hardware clock time of clock i given by physical oscillator
VT i virtual clock time i is an abstraction of HT i and can be adjusted

by adding a correction term (H i(t)) to stay in synchrony with
other virtual clock times

VT i(t) clock reading of virtual clock i at t
VT i

r clock tick r of VT i

M number of time master nodes in a cluster; time master nodes
have access to relational clock times

RCT j relational clock time (also called external time source if synchro-
nized to a time standard); time master node j, 1 ≤ j ≤ M , has
access to RCT j

RCT j
r clock tick r of RCT j

RCT j(t) clock reading of RCT j at t
∆ maximum deviation between all RCT of a cluster;

∆ = max1≤i,j≤M,∀k(
∣∣RT (RCT i

k)−RT (RCT j
k)

∣∣)

Oi,j
k the offset between VT i and VT j for tick k;

Oi,j
k =

∣∣RT (VT i
k)−RT (VT j

k)
∣∣)

131

A Notation

Symbol Description

Ωj
t offset between virtual clock time and relational clock time at t as

can be read by time master node j; Ωj
t =

∣∣VT j(t)−RCT j(t)
∣∣

N number of synchronizing nodes in a cluster (including time mas-
ter nodes);

Π precision of a cluster; Π = max1≤i,j≤N,interval of interest(O
i,j
k)

VT global cluster time VT is an abstraction of all VT i, 1 ≤ i ≤ N ,
that are synchronized to each other with precision Π

Rn
measure measurement interval n

Rm
ext.CS external clock synchronization interval m

ρi drift rate of clock i ρi =
∣∣∣RT (VT i

r+1)−RT (VT i
r)

nr
− 1

∣∣∣ , where nr is

the nominal number of reference clock ticks of clock tick r
ρ̄i maximum drift rate of clock i
ρi
stoch stochastic part of drift rate of clock i

ρi
sys systematic part of drift rate of clock i

ρ̃i,d
sys estimated systematic part of drift rate of clock i in interval d

αVT
j,RCT j

accuracy of VT j with respect to RCT j;

αVT
i,T accuracy of VT i with respect to T

Table A.1: Overview of notation

132

Appendix B

Measurement Data

This section presents the measurement data that is discussed in Section 7 and
depicted in Figures 7.1, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12 in tables.

time deviation
of cali-
brated
cluster

deviation
of not
cali-
brated
cluster

(s) (ns) (ns)

1 190.7 190.7
2 190.7 0.0
3 190.7 0.0
4 -190.7 0.0
5 -190.7 190.7
6 -190.7 0.0
7 0.0 -190.7
8 -190.7 0.0
9 -190.7 -190.7
10 381.4 190.7
11 190.7 -190.7
12 0.0 190.7
13 0.0 -190.7
14 -190.7 0.0
15 0.0 190.7
16 190.7 -190.7
17 0.0 190.7
18 190.7 190.7
19 572.1 381.4

133

B Measurement Data

time deviation
of cali-
brated
cluster

deviation
of not
cali-
brated
cluster

20 381.4 190.7
21 190.7 0.0
22 381.4 190.7
23 0.0 -190.7
24 -11442.0 190.7
25 -11823.4 -381.4
26 -11251.3 572.1
27 -11632.7 0.0
28 -11251.3 190.7
29 -11251.3 190.7
30 -11442.0 0.0
31 -10869.9 0.0
32 -11060.6 381.4
33 -11251.3 190.7
34 -11251.3 190.7
35 -11632.7 -190.7
36 -11632.7 -190.7
37 -11251.3 190.7
38 -11442.0 0.0
39 5148.9 190.7
40 4767.5 190.7
41 5530.3 -190.7
42 4767.5 0.0
43 4767.5 0.0
44 4958.2 190.7
45 4767.5 0.0
46 5339.6 0.0
47 5148.9 190.7
48 5339.6 -190.7
49 4958.2 0.0
50 5339.6 -190.7
51 4767.5 190.7
52 5148.9 -190.7
53 5721.0 381.4
54 5148.9 -190.7
55 5339.6 0.0

134

B Measurement Data

time deviation
of cali-
brated
cluster

deviation
of not
cali-
brated
cluster

56 5339.6 0.0
57 4958.2 0.0
58 4958.2 190.7
59 5339.6 381.4
60 5721.0 190.7
61 5148.9 0.0
62 5530.3 190.7
63 5148.9 190.7
64 4576.8 0.0
65 5339.6 190.7
66 5148.9 -190.7
67 5148.9 190.7
68 5148.9 0.0
69 5530.3 -190.7
70 4958.2 190.7
71 0.0 0.0
72 0.0 -190.7
73 190.7 -190.7
74 0.0 -190.7
75 0.0 0.0
76 190.7 190.7
77 190.7 -572.1
78 381.4 190.7
79 0.0 572.1
80 -381.4 -190.7
81 -381.4 -190.7

Table B.5: External Synchronization: deviation after a
change in the set of nodes used for internal clock syn-
chronization at time 24 (Rext.CS = 32 s, Rmeasure = 1 s,
gmeasure = 190.7 ns). Values to Figure 7.7.

135

B Measurement Data

drift frequency
rate absolute relative

(10−6 s
s
) (%)

36.0 0 0
36.5 94 0.14
37.0 96 0.15
37.5 348 0.53
38.0 447 0.68
38.5 436 0.67
39.0 856 1.31
39.5 1128 1.72
40.0 1573 2.40
40.5 3898 5.95
41.0 7234 11.04
41.5 8611 13.15
42.0 13889 21.20
42.5 10806 16.50
43.0 6052 9.24
43.5 3870 5.91
44.0 2072 3.16
44.5 1410 2.15
45.0 1233 1.88
45.5 496 0.76
46.0 392 0.60
46.5 219 0.33
47.0 100 0.15
47.5 137 0.21
48.0 40 0.06
48.5 0 0

Table B.1: Frequency of measured clock drift rate values of global time. Values
to Figure 7.1.

136

B Measurement Data

deviation (TPU ticks, frequency of de-
1 TPU tick = 50 ns) viation values (%)

-18 0
-17 0.003
-16 0.004
-15 0.009
-14 0.008
-13 0.019
-12 0.039
-11 0.068
-10 0.151
-9 0.339
-8 0.612
-7 1.186
-6 2.153
-5 3.633
-4 5.511
-3 7.798
-2 10.061
-1 11.777
0 12.476
1 11.843
2 10.077
3 8.089
4 5.824
5 3.598
6 2.267
7 1.206
8 0.638
9 0.304
10 0.155
11 0.070
12 0.045
13 0.017
14 0.008
15 0.007
16 0.005
17 0.002
18 0

Table B.2: External synchronization: deviation of virtual clock time from rela-
tional clock time (Rext.CS = 16 s, Rmeasure = 1 s, gmeasure = 1 TPU tick length
= 50 ns). Values to Figure 7.4.

137

B Measurement Data

deviation frequency of
(TPU ticks, deviation
1 TPU tick values
= 50 ns) (%)

-10 0
-9 0.001
-8 0.001
-7 0.005
-6 0.032
-5 0.277
-4 1.222
-3 4.299
-2 10.309
-1 18.072
0 23.207
1 20.665
2 13.387
3 6.012
4 1.940
5 0.445
6 0.097
7 0.025
8 0.004
9 0.001
10 0

Table B.3: Inter-cluster synchronization: deviation of virtual clock time from
relational clock time (Rext.CS = 1 s, Rmeasure = 1

16
s, gmeasure = 50 ns). Values

to Figure 7.5.

138

B Measurement Data

deviation frequency of deviation values of
(TPU ticks, calibrated not calibrated
1 TPU tick cluster cluster
= 190.7 ns) (%) (%)

-8 0 0
-7 0.000 0
-6 0.016 0.005
-5 0.211 0.049
-4 1.404 0.421
-3 5.437 2.463
-2 13.524 9.926
-1 22.986 29.310
0 25.201 22.283
1 18.497 9.898
2 8.984 2.646
3 2.935 0.449
4 0.681 0.066
5 0.099 0.018
6 0.021 0.005
7 0.003 0
8 0 0

Table B.4: Frequency of deviation values. Values to Figure 7.6.

139

B Measurement Data

deviation frequency of deviation values
(TPU ticks, (%)
1 TPU tick history length
= 50 ns) 1 2 4 8 16 32 64 128 256

-11 0 0 0 0 0 0 0 0 0
-10 0 0 0 0 0 0 0 0 0.001
-9 0.053 0 0 0 0 0 0 0 0.001
-8 0.099 0.030 0 0 0 0 0 0 0
-7 0.397 0.046 0 0 0.015 0 0.008 0 0
-6 1.007 0.183 0.023 0.046 0.084 0 0.030 0.023 0.023
-5 2.120 0.935 0.297 0.243 0.754 0.213 0.152 0.091 0.244
-4 4.217 2.738 1.529 1.369 2.720 1.255 1.110 0.730 1.623
-3 7.420 6.304 5.072 4.806 6.789 4.563 4.046 3.179 4.572
-2 11.599 12.251 11.878 10.973 12.716 11.240 10.395 8.760 10.272
-1 14.749 17.224 19.544 17.992 18.789 19.422 18.289 15.947 18.670
0 16.533 19.817 23.270 22.274 20.381 23.909 23.004 21.985 23.752
1 14.619 18.030 19.141 19.924 16.701 20.327 21.278 21.589 20.407
2 11.355 12.274 12.008 13.255 11.177 12.122 13.460 15.825 12.863
3 7.840 6.532 5.407 6.373 5.524 5.209 6.350 8.152 5.631
4 4.713 2.639 1.544 2.183 2.598 1.445 1.506 2.882 1.547
5 2.120 0.791 0.251 0.525 1.135 0.266 0.327 0.730 0.328
6 0.839 0.175 0.038 0.030 0.373 0.030 0.046 0.099 0.053
7 0.198 0.015 0 0 0.198 0 0 0.008 0
8 0.099 0.008 0 0 0.030 0 0 0 0
9 0.008 0.008 0 0 0.008 0 0 0 0
10 0.015 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0

Table B.6: Inter-cluster synchronization: deviation of virtual cluster time
from relational clock time with changing history length (Rmeasure = 1/16 s,
gmeasure = 50 ns). Values to Figure 7.8.

140

B Measurement Data

deviation frequency of deviation values (%)
(TPU ticks, history length
1 tick = 50 ns) 1 2 4 8 16 32 64 128 256

-18 0.045 0 0 0 0 0 0 0 0
-17 0 0 0 0 0 0 0 0 0
-16 0.022 0.022 0 0 0 0 0 0 0
-15 0.112 0.022 0.022 0 0 0 0 0 0
-14 0.090 0.022 0.157 0 0 0 0 0 0.045
-13 0.270 0.157 0.067 0 0 0 0 0 0.045
-12 0.472 0.067 0.135 0 0.022 0 0.022 0 0.247
-11 0.944 0.315 0.202 0.135 0 0.045 0.067 0 0.315
-10 1.236 0.270 0.427 0.157 0.090 0.157 0.180 0.017 0.831
-9 1.798 0.584 0.449 0.404 0.270 0.292 0.517 0.028 1.101
-8 2.225 1.416 1.056 0.787 0.719 0.517 0.674 0.083 1.753
-7 3.213 2.112 1.978 1.551 1.236 1.079 1.303 0.155 3.056
-6 3.573 2.629 2.854 2.382 2.022 2.000 2.517 0.316 4.562
-5 4.787 4.427 4.202 5.056 3.393 3.820 3.618 0.870 6.247
-4 5.910 6.022 5.551 6.022 5.438 5.236 6.090 2.771 8.112
-3 6.427 8.112 8.315 7.933 7.888 8.292 8.157 5.742 10.989
-2 7.124 8.697 8.742 9.483 9.820 10.629 9.101 10.298 11.191
-1 7.079 9.169 11.258 10.562 12.022 12.202 11.124 16.462 11.371
0 8.315 10.135 10.517 11.640 12.629 12.921 12.337 12.100 11.146
1 7.775 10.360 10.337 10.494 11.910 11.056 12.022 18.801 8.315
2 6.966 9.618 8.202 9.416 10.494 10.315 10.225 14.134 7.371
3 6.135 7.865 7.753 7.573 8.135 7.775 8.360 8.785 4.831
4 5.955 5.416 6.045 6.270 6.067 5.865 6.315 4.767 2.921
5 5.348 5.213 4.157 4.315 3.708 3.551 3.843 2.228 1.910
6 4.067 2.899 2.809 3.079 2.225 2.090 1.730 1.352 1.303
7 3.663 1.618 1.596 1.371 1.213 0.966 0.944 0.715 0.742
8 2.247 1.281 1.169 0.674 0.404 0.764 0.494 0.216 0.517
9 1.573 0.719 0.831 0.494 0.202 0.315 0.225 0.105 0.292
10 0.854 0.292 0.404 0.180 0.067 0.090 0.090 0.028 0.225
11 0.966 0.292 0.225 0 0.022 0.022 0.022 0.022 0.135
12 0.360 0.180 0.157 0.022 0 0 0.022 0.006 0.157
13 0.202 0.022 0.180 0 0 0 0 0 0.090
14 0.112 0.022 0.090 0 0 0 0 0 0.090
15 0.090 0.022 0.045 0 0 0 0 0 0.067
16 0.022 0 0.067 0 0 0 0 0 0
17 0.022 0 0 0 0 0 0 0 0.022
18 0 0 0 0 0 0 0 0 0

Table B.7: External synchronization: deviation of virtual clock time from re-
lational clock time with changing history length (Rmeasure = 1 s, gmeasure =
50 ns). Values to Figure 7.9. 141

B Measurement Data

history standard deviation
length (TPU ticks; 1 TPU tick = 50 ns)

1 2.494
2 1.992
4 1.713
8 1.768
16 2.010
32 1.665
64 1.679
128 1.729
256 1.707

Table B.8: External synchronization: standard deviations of results presented
in Figure 7.9. Values to Figure 7.10.

measurement standard deviation of deviation values
interval (ns)

(s) time difference measurement
granularity (ns)

50 100 200 400 800 1600

2−4 149.10 113.24 149.36 221.29 345.43 1107.03
2−3 134.07 186.99 171.78 246.44 467.53 740.27
2−2 170.04 172.77 222.54 251.84 349.91 1128.26
2−1 235.90 246.11 205.96 309.53 409.15 597.55

Table B.9: Inter-cluster synchronization: range of deviation values (H = 16).
Values to Figure 7.11.

measurement range of deviation values
interval (ns)

(s) time difference measurement
granularity (ns)

50 100 200 400 800 1600

2−4 900 1100 1200 1200 2400 3200
2−3 950 1300 1200 1600 2400 4800
2−2 1650 1400 1400 1600 3200 3200
2−1 1700 2300 1600 2400 3200 6400

Table B.10: Inter-cluster synchronization: range of deviation values (H = 16).
Values to Figure 7.12.

142

Curriculum Vitae

Michael Paulitsch

February 21, 1974 Born in Klagenfurt, Austria

September 1980 – Elementary School in
July 1984 Pörtschach, Austria

September 1984 – High School
July 1988 Bundesrealgymnasium Lerchenfeld, Klagenfurt, Austria

September 1988 – State School of Engineering
June 1993 HTBLA Mössingerstraße 25, Klagenfurt, Austria

October 1993 – Studies of Computer Science at the
January 1999 Technische Universität Wien, Vienna, Austria

Graduation Computer Science with distinction

October 1993 – Studies of Management Information Systems at the
June 1999 Technische Universität Wien, Vienna, Austria

Graduation Management Information Systems

September 1996 – Exchange and Undergraduate Student in Computer Science
May 1997 University of Illinois, Urbana-Champaign, IL, USA

September 1996 – Research Assistant
August 1997 Center for Reliable and High-Performance Computing,

University of Illinois, Urbana-Champaign, IL, USA

May 1997 – Graduate Student in Computer Science
May 1998 University of Illinois, Urbana-Champaign, IL, USA

February 1999 – Research and Teaching Assistant
date Institut für Technische Informatik,

Technische Universität Wien, Vienna, Austria

March 1999 – Doctoral Studies in Technical Sciences
date Technische Universität Wien, Vienna, Austria

143

