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Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit grundlagentheoretischen und an-
wendungsorientierten Aspekten von computerunterstützter Materialwissenschaft.
Die Entwicklung verlässlicher Modelle sowie das exponentielle Wachstum der
Rechenleistung haben dazu geführt, dass Computersimulationen, gleichberechtigt
mit Experimenten und analytischer Theorie, die Basis moderner Forschung
bilden.

Der erste Teil dieser Arbeit gibt einen Überblick über die grundlegenden Konzepte
von Modellbildung und Simulation im Bereich der Festkörperphysik. Der Schwer-
punkt wird dabei auf jene Aspekte gelegt, die im Rahmen zweier durchgeführter
Projekte benötigt werden.

Das erste Projekt beschäftigt sich mit dem Aufwachsen von Strontiumtitanat
auf Silizium. Eine weitere Beschleunigung, also Verkleinerung von Halbleiterbau-
elementen macht es notwendig, das bisher als Isolatormaterial in Transistoren
verwendete Siliziumdioxid durch Übergangsmetalloxide zu ersetzen. Auf der
Basis von ab-initio Molekulardynamiksimulationen konnte erstmals die Grenz-
fläche zwischen Silizium und einem solchen Oxid anhand von Strontiumtitanat
aufgeklärt werden. Die Simulationen sind mit experimentellen Ergebnissen kom-
patibel, resultieren jedoch in einem neuen Wachstumsprinzip von Oxiden auf
Halbleitern. Aus dem Verständnis der Grenzflächenchemie konnte weiterhin eine
Methode vorgeschlagen werden, um den Bandkantenabstand, eine wesentliche
elektrische Eigenschaft, gezielt zu beeinflussen.

Das zweite Projekt befasst sich mit der Berechnung von atomaren Fragment-
ladungsdichten. Die Einführung eines neuen atomaren Basissatzes von knoten-
losen Wellenfunktionen ermöglicht es erstmals, die Pauli-Repulsion von Atomen
durch ab-initio Potentialterme zu beschreiben. Dadurch lässt sich die Verfor-
mung eines freien Atoms in einem Molekül- oder Kristallverband berechnen. Die
resultierenden deformierten Orbitale bilden einen an die Geometrie angepassten,
lokalisierten Basissatz, der für viele Anwendungen wie Analyse der Elektronen-
struktur, tight-binding Verfahren oder order-N Methoden geeignet ist.



Abstract

This thesis deals with theoretical and practical aspects of computational materials
science. The development of reliable models as well as the exponential growth
of microprocessor performance has led to a situation where simulation, next to
experiment and analytical theory, constitutes a third field of modern research.

The first part of this thesis gives an overview of the basic concepts of atomistic
modeling and simulation for condensed matter applications. Emphasis is given
to those aspects needed for the two projects pursued in the course of this thesis.

The first project deals with the growth of strontium titanate on silicon. Further
miniaturization of semiconductor devices, necessary to produce faster micropro-
cessors, requires the replacement of silicon dioxide as the insulating material in
transistors by transition metal oxides. Based on ab-initio molecular dynamics
simulations, the interface structure and chemistry between silicon and such an
oxide could be unraveled for strontium titanate. While the simulations are com-
patible with experimental results, they provide a new picture of the chemical
binding between silicon and oxides. From the understanding of the interface
chemistry we can propose a method of how the band offsets, a crucial parameter
for device applications, can be engineered.

The second project is concerned with the calculation of atomic fragment orbitals.
The introduction of a novel atomic basis-set composed of nodeless wave-functions
enables us to describe the Pauli-repulsion of atoms by ab-initio potentials. This
allows us to compute the deformation of an isolated atom upon transfer into
a molecule or solid. The resulting orbitals consitute a geometry-adapted and
localized basis which is suitable for many applications including the analysis of
the electronic structure as well as tight-binding calculations or order-N methods.
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Chapter 1

Introduction: Materials science
at the nanoscale

Nanotechnology, nanoengineering, nanocrystals, nanowires, . . . - "nano" (greek
for "very small") is, besides "bio" and "quantum", the buzzword which charac-
terizes interesting and novel research and is frequently used to "sex up" proposals,
reports or publications these days.

A nanometer corresponds to 10~9 meter or around 1/10000 of the diameter of a
human hair. More importantly, one nanometer gives the order of magnitude of
atom-atom distances in solids and molecules, where typical bond lengths are in
the range of 0.2-0.3 nanometers. Nanotechnology is a branch of engineering that
deals with objects smaller than 100 nanometers or around 500 nearest neigh-
bor atomic distances. It therefore involves the manipulation of matter on the
atomic scale. Due to the small dimensions of the components, aspects that are
of secondary importance in many fields of traditional engineering, as for exam-
ple surface and interface properties, decisively influence device functionality and
performance.

The following sections give a brief overview of the experimental and theoreti-
cal approaches in nano-technology that are relevant to my work and motivate
the two projects pursued in the course of this thesis. The examples given are
mainly taken from the field of semiconductor physics with a focus on the growth
of heterostructures. While nanotechnology is used in many fields of engineering,
microelectronics is probably the most important sector motivating its develop-
ment.
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Mechanical Pump

Figure 1.1: Schematic drawing of an MBE reaction chamber (picture taken from [1]).
The effusion cells are visualized on the bottom. Behind the wafer holder there is the
vacuum pump and a so-called cryo-panel which condenses the flux that has passed by
the sample.

1.1 Experimental status

In the last decades, a series of new experimental techniques has allowed scientists
to gain atomic control during device manufacturing. Physical and chemical vapor
deposition methods enable experimentalists to control the amount of matter de-
posited on a substrate to sub-monolayer accuracy. A monolayer (ML) is thereby
characterized by the number of atoms in the surface layer of the substrate.

The most precise technique is Molecular Beam Epitaxy (MBE, compare figure 1.1
and reference [2] for a review article). During MBE, different types of material can
be evaporated from so called effusion cells or sources. When the shutters are open,
the atomic or molecular beam can reach the substrate. The amount of matter
deposited can be measured for example by an oscillating quartz membrane. Basic
in-situ analysis is mainly done via Reflection High Energy Electron Diffraction
(RHEED).



1.1 Experimental status

The deposition process is performed in an ultra-high vacuum (UHV) chamber to
prevent a contamination of the sample. UHV corresponds to partial pressures
below 10~u bar. These are the lowest pressures achievable today. It is, however,
important to realize that even at a low pressure of 10~n bar, there is still a
density of around 108 particles per cubic centimeter in the chamber which means
that around 1012 particles per square centimeter hit a surface per second at a
temperature of 300 K. This corresponds to approximately one monolayer every
hundred seconds. These numbers scale approximately linearly with pressure.

A milestone in the context of growing semiconductor-oxide heterostructures has
been the work by McKee and co-workers at the Oak Ridge National Labora-
tory [3]. Using MBE they were able to demonstrate for the first time, that an
atomically well denned interface between silicon and a transition metal oxide can
be grown (compare figure 1.2b and chapter 5 for the technological background).
Another prominent example demonstrating the power of experimental techniques
comes from Bell Laboratories [4]. There scientists grew heterostructures in which
a well defined number of a few lanthanum titanate layers is sandwiched between
strontium titanate. They found interesting phenomena due to the interplay of
valence discontinuities at the interfaces.

A series of other examples exists in literature demonstrating the sub-monolayer
control of the matter deposited. Unfortunately, the experimental means to ana-
lyze the atomic processes occurring at a surface in the course of a growth process
turn out to be much less accurate. As long as the deposition process is not affected
by competing reactions, this does not constitute a serious problem. However, the
initial growth steps of transition metal oxides on silicon, the central issue of part II
of this thesis, is plagued by a series of competing reactions including suicide for-
mation and metal desorption. While McKee et. al. have managed to prove an
epitaxial relationship [3], our simulations indicate that they have misinterpreted
the silicon and strontium content at the interface by up to 1/2 ML.

The experimental analysis techniques can be grouped by their information con-
tent. A first group gives real-space information. Here, the most prominent ex-
amples are scanning tunneling microscopy (STM) or atomic force microscopy
(AFM) for analyzing surfaces as well as transmission electron microscopy (TEM)
and Z-contrast imaging for bulk and interfacial properties. Figure 1.2 shows an
STM and a Z-contrast image which are related to the simulations performed in
the context of this thesis (compare chapters 5 and 6). Despite the fact that those
images are usually very clear, there is still some ambiguity in the interpretation.

Figure 1.2a shows an STM image of a silicon surface after the deposition of
1/2 ML of Ba [5]. A model of buckled Ba dimers has been devised to explain the
recorded image. Alternatively, our simulations show (publication 2, section 6.2),
that this image corresponds to a coverage of 1/4 ML. The discrepancy can be
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(a) STM image of a Sr-covered silicon
surface[5]. Experimentally, this picture
has been attributed to 1/2 monolayer
coverage. Our simulations show that
this is at a coverage of 1/4 monolayer.

(b) Z-contrast image of the Si-SrTiO3
interface as published by McKee et
al. [3] Only atom columns are visible,
the silicon atoms near the interface can-
not be resolved.

Figure 1.2: Typical experimental results in the context of metal adsorption (a) and
oxide growth on silicon (b).

explained by Sr desorption at the deposition temperature. In the course of the
deposition of 1/2 ML, a full 1/4 ML has apparently been desorbed. This example
nicely shows that a competing reaction, in this example desorption, can lead to
a significant decrease of control over the deposition process. Also another recent
publication highlights the necessity for computer simulations to back up results
from STM images in the context of hydrogen adsorption on rhodium [6]. The
Z-contrast image of the interface between silicon and SrTiOß of figure 1.2b shows
that light elements in the oxide and near the interface, such as silicon, oxygen or
hydrogen, cannot be resolved due to the presence of the heavy Sr atoms. It is
thus not possible to determine the interface stoichiometry and geometry, which
is, however, probably the most important piece of information.

The second group of analysis methods is based on diffraction patterns of an
incident beam which usually consists of photons (X-ray), electrons (RHEED,
LEED) or neutrons. The diffraction patterns give information about two- or
three-dimensional periodicities of the sample, information corresponding to re-
ciprocal space.

Finally, spectroscopy gives us information about the electronic and vibrational
structure of the sample. Photons of different energy can be used to excite core
electrons (X-ray), valence electrons (UV, visible) and vibrational modes (IR).



1.2 Analytical theory

This allows to extract information about the chemical environment and the
atomic species involved.

Despite the wealth of analysis techniques available, it is probably fair to use
the following picture of an experimentalist trying to analyze his results: a person
who tries to get all the information about complex developments in a big room by
looking through one or several keyholes. Even worse, in many cases it is not even
clear if the available "keyholes" correspond to the same room, since many of the
analysis techniques destroy the sample and thus different samples must be used.
This scenario of the experimental situation calls for theoretical approaches since
experimental analysis techniques do not keep up with the progress in deposition
and growth techniques.

1.2 Analytical theory

Besides experiment, analytical theory is the second traditional pillar of materials
science. The complex character of the processes happening at the atomic scale,
however, makes it impossible to find reliable and at the same time simple and thus
exactly solvable models. Typical examples for analytical models are the ideal gas
or the Einstein solid. While analytical theory is a valuable tool to obtain esti-
mates, it is forced to introduce idealizations, which require severe approximations
whose implications on the results cannot be foreseen in many cases.

1.3 Simulation as the missing link

Simulations close the gap between analytical theory as well as experiment and
constitute a third field of modern materials research. They allow to explore
models which cannot be solved analytically and therefore contain fewer approx-
imations than analytical theory. Atomistic simulations, which will be the focus
of this thesis, give information about the position and momentum of individ-
ual atoms in molecules, on surfaces or in bulk materials and allow to calculate
the electronic structure. Computational materials scientists can furthermore per-
form computer experiments under any imaginable condition or stoichiometry,
which enables them to explore situations that are not accessible experimentally.
For example it is possible to explore transition states which, due to their short
life-times, are not easily detectable via experiment. Knowledge about transition
states, however, is crucial for the understanding of chemical processes.

Computational simulation is a rather new and novel field in materials science.
The first approaches towards simulation were done during World War II in the
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context of the Manhattan project. It then took several decades until computer
simulations became "everyday's business", which was mainly due to the limited
computer capabilities in previous decades, but also to the non-availability of
reliable models and efficient numerical techniques.

Nowadays computer simulations span a wide range of approaches and method-
ologies and have entered almost all fields of science - from nuclear physics to
crash simulations in the automobile industry or simulations of the genesis of our
universe to all aspects of materials science. Nevertheless, simulations are only a
complement to experiment, having their strengths where the experimental tech-
niques encounter problems and vice versa.

1.4 Outlook

This thesis covers theoretical and practical aspects of computational materials
science. Part I introduces the basic concepts of modeling and simulation with an
emphasis on the approaches needed in part II. The second part deals with an
application project, namely the growth of so-called high-k oxides on silicon. This
topic is of uppermost importance for the semiconductor industry. In this context,
our simulations have lead to a new picture of oxide-semiconductor interfaces.
Part III introduces a novel concept of atomic fragments. Potentials are derived,
which mimic the Pauli repulsion of neighboring atoms and allow to calculate
geometry adapted, localized orbitals. They can be used for analysis purposes,
tight-binding models and non-selfconsistent DFT calculations.



Part I

Concepts — Computational
Materials Science



Chapter 2

Modeling

The basis of every simulation is a reliable model, that is a simplified description
of the system. Since nanotechnology corresponds to dealing with atomic scale
structures, appropriate models will have to describe the interactions between
individual atoms. Such models provide us with energies as a function of atomic
configurations, and maybe also other parameters such as volume, temperature or
electronic structure, as indicated by the dots:

Etot = EXat[Ri,...]. (2.1)

For a given set of atoms, the thermodynamically stable configuration is defined
as the one yielding the minimum (free) energy. Therefore, a good model should
correctly predict total energies and, upon minimization with respect to the atomic
positions, yield the equilibrium geometries as a function of the other parameters
entering the model (compare equation 2.1).

2.1 Parametrized energy functionals

The most intuitive way to think of a total energy functional is probably in terms
of short-ranged atomic interactions. Such an approach is closely related to our
chemical picture of solids and molecules being composed of "balls" and "sticks".
The so-called empirical energy functionals define the total energy as a sum of con-
tributions expressed in terms of deviations from the equilibrium bond distances,
bond angles, torsional angles, and other suitable geometrical parameters as well
as of non-bonding interactions such as Coulomb or Van der Waals interactions
(figure 2.1):

•ßtot = -E'bond + -Wangle + -^torsion + . . . + -Enon-bonded •
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bond stretching:
I—-i

£b„nd = £ cr(r -
 r°)2 + °( r - r°)3

bonds

angle bending:

Wangle = £ Ca(a - a0)2 + O(a - On)3

angles

non-bonding interactions:

•^Coulomb - 1 7 Z \

der Waar, = h-r,-|" In-r,-!«
Lennard-Jones potential

Figure 2.1: Typical functional representation of selected contributions to an empirical
total energy functional. Higher order terms can of course be included in the expansions
at the price of increased computational effort.

Each of these contributions is expanded in a functional form. In many cases
these are Taylor or Fourier expansions. Such an expansion, however, requires the
introduction of parameters. In the example of figure 2.1, these are the equilib-
rium bond lengths r0 or bond angles ao on the one side, but also parameters
characterizing the energy dependence upon deviation, Cr and Ca. For the non-
bonding interactions we need to parametrize the atomic charges qi as well as the
parameters of the Lennard-Jones potential, Aij and Cy.

Unfortunately, these parameters are not only element-specific, but also depend
on the chemical environment. This results in a trade-off between accuracy and
reliability on the one hand and the need to fit the parameters for every new system
on the other hand. The parameters are usually fitted to reproduce experimental
or higher-level theoretical results.

This type of methods has the advantage to be computationally easy to evaluate
and thus allows to treat system sizes up to billions of atoms. However, when
the behavior of new materials should be studied, for which experimental data is
rare, this approach does not have sufficient predictive power. Even for seemingly
"easy going" elements like silicon, severe limitations have been encountered [7]: A
fairly general three-body potential has been fitted to a large number of different
silicon structures. However, as soon as these fitted potentials were used to study
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defects with a local atomic arrangement which differs from those included in the
database, the results turned out to be unreliable and inaccurate. This illustrates
that the transferability of the parameters is limited.

So far we have considered the positions of the nuclei entering the total energy
functional as continuous variables. A second class of parametrized energy func-
tionals can be applied, wherever it is possible to map the processes in the system
onto some kind of grid. This is most straightforward in applications related to
crystalline bulk systems, surface adsorption or epitaxial growth. The energy of a
particle is evaluated as a function of the occupancies of lattice sites in the vicin-
ity. These approaches are called lattice-gas Hamiltonians, Ising models or cluster
expansions. Due to the discrete character of these total energy functionals, a
more efficient and reliable parametrization, also via quantum mechanical calcu-
lations, is possible. An concise introduction together with an overview of recent
research in this field is found in reference [8]. A parametrized energy functional
has been used for Monte-Carlo simulations in the context of Sr adsorption on
silicon (compare section 5.3.3).

2.2 Density functional theory

The proper physical framework in microscopic systems is quantum mechanics.
So-called ab-initio or first principles models are purely based on the theorems of
quantum mechanics and do not require any experimental input parameters ex-
cept the chemical composition and charge state of the system. In principle, a full
quantum mechanical treatment would require solving the Schrödinger equation
for all particles involved - nuclei and electrons. However, with a few exceptions
such as hydrogen, helium or lithium, the nuclei can be treated as classical par-
ticles, since they have vanishing tunneling probabilities due to their masses. In
addition one employs the so-called Born-Oppenheimer approximation, which as-
sumes that the electronic degrees of freedom adapt instantaneously to any change
in nuclear geometry. Since protons and neutrons are heavier than electrons by
roughly a factor of 1800, this approximation does not introduce significant errors
in most cases. The resulting Hamiltonian for the iV electrons in the presence of
Nat nuclei with atomic charge Zi is therefore given by (in Hartree atomic units,
see appendix A.I)

-. N N Nat 7 N N

4 ^ ^„=i

where rn and B4 denote the coordinates of the corresponding electrons and nu-
clei. The first two terms represent the kinetic energy of the electrons and their
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Coulomb interaction with the nuclei assuming a frozen geometry in the context
of the Born-Oppenheimer approximation. Both terms are straightforward to
evaluate. The last term, however, the electrostatic interaction between pairs of
electrons constitutes a so-called many-body problem already known from classical
mechanics.

Historically the many-body problem arose in connection with the trajectories of
planets, which experience a gravitational attraction not only from the sun but
also from other planets. The single particle problem (one particle in a constant
field) is straightforward to solve. The two-particle problem (two particles exerting
forces on each other) was solved by Isaac Newton in his well known Principia. For
more than two particles, however, no analytical solutions can be found, except
for special cases.

Quantum mechanics adds additional complexity to the problem since electrons,
being fermions, must obey Pauli's exclusion principle. It is often quoted in the
form that it is not possible for two fermions to exist at the same point in space
with the same set of quantum numbers. This requirement which has no classical
analogue, originates from the many-body wave-function, which must be anti-
symmetric under permutation of two particle coordinates (ri,rj):

ip = ip(ri, r2,...,ri,...,rj,..., rN) = -ip(n,r2,..., r j ? . . . , rh ..., rN).

For N electrons, the many-body wave-function is 3iV-dimensional, neglecting
spin degrees of freedom. Imagine a system with iV electrons and suppose we
want to represent the many-body wave-function on a regular grid with, say, 10
grid points for each dimension. For the 3iV-dimensional wave-function we thus
need 103Ar grid points. Using double precision (that is eight bytes for a floating
point number) this requires 8 • 103JV bytes of memory. A compact disc can store
approximately 8 • 108 bytes and we therefore fill 103iV~8 CDs storing the data.
We can furthermore assume that a CD is about 1 mm thick, which results in a
pile of CDs of 103Ar~n meters. Performing a calculation on the nitrogen molecule
N2 we have to deal with 10 valence electrons and the pile of CDs needed to
save the many-body wave-function is 1019 meters high. This corresponds to the
unbelievable number of roughly 66 million times the distance from earth to the
sun.

While this example is of course highly overemphasized since efficient numerical
methods have been developed that dramatically reduce the effort involved, it nev-
ertheless gives a feeling of what is required when dealing with many-body wave-
functions. So called wave-function approaches (refer to references [9] and [10] for
an overview) are still heavily used but are restricted to atomic systems and small
molecules.
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In 1964, Hohenberg and Kohn [11] proved that the full many-body ground-state
energy and thus also the many-body wave-function is fully determined by the
electron density p(r). The density only depends on the three spatial coordinates,
independent of the number of electrons involved:

p(r) = •• ^*(ri,...,rN) • ip(ru... ,rN)

where ip* denotes the complex conjugate of ip.

In the wave-function approaches, the external potential vexi(r), that is - in the
most simple case - the attractive electrostatic potential exerted by the positive
nuclei, as well as the number of electrons, N, determine the Hamiltonian and thus
the many-body wave-function (compare equation 2.2). Hohenberg and Kohn [11]
and later, in a more general way, Levy [12] proved that the density p(r) determines
not only the number of electrons via the simple integration

N = / p(r)dr,

but also exhibits a one-to-one correspondence to the external potential vext(r)
within an additive constant. Thus, the density fully determines the Hamiltonian
and therefore also the many-body wave-function and the ground state energy.

The ground state total energy can be written as the sum of a universal functional
F[p], which is independent of the external potential, as well as the interaction of
the charge density with the external potential:

EDFT[p(r)] = F[p(r)] + Jvext(r)p(r)dr, (2.3)

where F[p] contains the energy contributions due to the kinetic energy and the
many-body electron-electron interaction (compare equation 2.2). Hohenberg and
Kohn furthermore established a variational principle: Minimization of EDFT[p]
with respect to the density yields the ground state energy:

EQ = min |*V(r)] + Jvext{r)p{r)dr - p^Jp(r)dr - N^j] , (2.4)

where the last term ensures that the number of electrons is preserved during the
minimization and \x is the associated Lagrange multiplier.
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The first implementation of density functional theory (DFT) had already been
introduced almost forty years earlier by Thomas and Fermi [13, 14]. Without the-
oretical justification they had also introduced a universal functional F[p], which
turns out to be an approximation to the Hohenberg-Kohn functional of equa-
tion 2.3:

\ Jf
The first term approximates the kinetic energy based on the assumption of a uni-
form, non-interacting electron gas. The second term is the classical expression
for the Coulomb interaction of a charge density. Dirac later included the ex-
change energy, resulting from Pauli's exclusion principle, for a uniform electron
gas (Thomas-Fermi-Dirac formalism) [15].

The Thomas-Fermi-Dirac theory, however, never made it beyond a simple model.
It does not predict chemical binding and also the accuracy for single atoms was
below that of other methods. The reason is the error made by approximating the
kinetic energy of the many-body wave-function by the non-interacting electron
gas.

On the basis of the Hohenberg-Kohn theorems, Kohn and Sham [16] introduced
orbitals to improve the approximation of the kinetic energy compared to the
Thomas-Fermi approach. The orbitals correspond to a reference system of non-
interacting quasi-particles (electrons) {</>n(r)} in an effective potential veg(r):

n(r) = 0, (2.5)

where veg(r) is constructed in such a form that the {4>n(r)} yield the same density
as the true many-body wave-function:

N ~\ N

p(r) = f • • • f W • \ I ] ö(rn - r ) \ d n - - ' d r N = ^2 f (t>*n{r)(f>n{r)dr. (2.6)
J J I n=i J n=rn=i J n=

The kinetic energy of this non-interacting reference system Ts [{</>„}] =
~^ En=i / C W ^ V n W ^ is already a good approximation to the many-body
kinetic energy T[tp]. The difference is due to many-body effects of exchange and
correlation. Heine provided an intuitive picture for these effects:

On a ship people tend to take a walk after dinner. If they all walk
in one direction around the ship, they never meet. If they walk in op-
posite directions they meet everybody twice. This increases Coulomb
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repulsion for the uncorrelated motion and favors the correlated mo-
tion.

Electronic correlation decreases the electron-electron interaction energy but in-
creases the kinetic energy. The kinetic as well as electron-electron interaction
energy contributions due to exchange and correlation are transferred into a term
called exchange and correlation energy Exc. The total energy in the Hohenberg-
Kohn-Sham (HKS) scheme is thus given by

n = l

f vext(r)p(r)dr + Exc[p(r)]. (2.7)

This energy expression, at the same time, defines the exchange and correlation
energy Exc[p] as

- the difference between the kinetic energy of the non-interacting system Ts[p]
and that of the many-body wave-function as well as

- the difference between the classical coulomb interaction of the density
(EH[p{f)]) and the true many-body electron-electron interaction including
exchange and correlation.

The three terms Ts[p], Exc[p] and the so-called Hartree energy En (second term)
define the universal functional F[p] of equations 2.3 and 2.4.

The effective potential vef[(r) of equation 2.5 is obtained by applying the varia-
tional principle proven by Hohenberg and Kohn. Inserting the HKS total energy
functional (equation 2.7) into equation 2.4 and minimizing with respect to p(r)
yields

5Ts[p(r)]
5p(r) 5p(r)

vn(r) vxc(r)

(2.8)

introducing the Hartree as well as the exchange and correlation potentials vn(r)
and vxc(r), respectively.

Equating the minimum condition of equation 2.8 with the same expression for
electrons in an effective potential:
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^non-interacting ^ r ) ] STs[P(r)]

6p(r) 6p(r)

defines veff(r) of equation 2.5 as

+ «eff(r)

= vext(r) + vu{r) + vxc(r). (2.9)

Since the effective potential entering the Hamiltonian of equation 2.5 depends on
the density, the Kohn-Sham equations have to be solved iteratively.

The re-introduction of wave-functions adds again a degree of complexity to the
DFT formalism. The decisive difference between the Kohn-Sham and the many-
body approach, however, is that in the Kohn-Sham scheme the effort is reduced
to dealing with JV single-particle wave-functions which is a clear advantage over
handling a single iV-body wave-function. Instead of 103Ar we only have to store
and manipulate N • 103 data points. In the example of the nitrogen molecule this
corresponds to 80 kB or 10~4 CDs.

It is important to note that the HKS scheme produces the exact many-body
ground state, provided that the exact exchange and correlation energy Exc is
known. In practical calculations the exchange and correlation energy Exc must
be approximated by a local or semi-local functional of the density and its first
derivative. Details about approximations to the exchange and correlation func-
tional as well as more extensive reviews of the development of density functional
theory can be found in references [17, 18, 19, 20].

The reliability of an electronic structure method for chemical and physical ap-
plications is determined by its error bars relative to the "chemical accuracy",
defined as lkcal/mol or 0.04eV/atom. For DFT, Becke has performed a broad
screening of atomization energies for small molecules and obtained an average
error of between 3.9 and 5.7kcal/mol [21, 22]. While this is decisively above the
chemical accuracy, it is important to realize that in practical application we are
mostly interested in energy differences of rather similar structures as for example
different adsorption sites on a surface. In that case we calculate the energy per
bond and not per molecule and the errors are correspondingly smaller. As a rule
of thumb, relative energies are said to be reliable to within 0.05 eV. Bond lengths
are predicted to within 1-3 %.

Systems with up to a few hundred atoms can be treated on modern computer
architectures using density functional theory. The numerical effort scales between
N2 and N3, where N denotes the number of atoms. The exact scaling behavior
depends on the algorithm used (see for example reference [23]).
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An important issue in electronic structure calculations is the choice of basis set to
represent the wave-functions and densities. An overview over current approaches
with an emphasis on the Projector Augmented Wave (PAW) method [24] used
for the calculations in part II is given in our publication 5 (section 6.5). Density
functional theory has been the model used for the simulations of metal adsorption
and oxide growth described in part II.

2.3 Beyond Kohn-Sham density functional
theory

From today's point of view, density functional theory is a very well explored tool
to calculate total energies. A series of commercial and free software packages exist
(CP-PAW [25], Wien2k [26], Vasp [27], ABINIT [28], SFHIngX [29], Castep [30],
SIESTA [31] . . . ) which can almost be used as a "black box". Active research
in terms of improving the available electronic structure methods focuses on three
domains

- improvements of existing (semi-) local exchange-correlation functionals;

- domains where the (semi-) local approximations of the exchange and cor-
relation energy fail.

- non-ground-state calculations;

The only approximation in terms of ground state energies in Density Functional
theory is the exchange and correlation functional. It is implemented as a func-
tional depending only on the local value of the density (local density approxi-
mation, LDA) or on the local value and the first derivative (generalized gradient
approximation, GGA). For a homogeneous electron gas, LDA is an exact choice.
Given a slowly varying electron density, the error introduced is still very small.
Errors, however, become large, that is clearly above the chemical accuracy, for
highly localized and therefore non-uniform electron densities as well as for elec-
tron densities decaying into the vacuum. In the latter case the exchange and
correlation potential decreases exponentially whereas the true behavior should
be 1/r. For that reason, the use of gradient corrected functionals is mandatory
for calculations on atoms, molecules or surfaces, since the inclusion of the gradient
improves the description in these cases.

The error in the exchange and correlation energy can easily be seen by analyz-
ing one-electron systems such as for example hydrogen. Since there is only one
electron, the exchange and correlation energy must exactly cancel the Coulomb
energy. In LDA, these terms differ by up to 0.6 eV, whereas GGA reduces the
error to about 0.05 eV [32].
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Another central issue for materials science is the field of so-called "highly corre-
lated materials", transition metal compounds with partially filled d and / shells.
Especially the 3 d and 4 / shells are highly localized around the nucleus. They
are the first shell of their symmetry and the Coulomb singularity of the nucleus is
thus not screened as effectively as for the lower angular momenta. A prominent
example of a failure of DFT in this respect is the prediction of late transition
metal oxides being metallic. A partially filled band within DFT may split into
so-called lower and upper Hubbard bands if orbital information is included in
the exchange and correlation energy [33]. In standard DFT, such a multiplet
formation is averaged out.

Approaches like self interaction correction (SIC) [34, 35], LDA+U [36] and dy-
namical mean field theory (DMFT) [37, 38] , where potentials are applied to se-
lected orbitals, as well as exact exchange are used to augment the DFT exchange
and correlation functional with non-local, that is orbital-dependent, effects. Ex-
act exchange calculates the exact exchange energy in terms of the KS orbitals,
whereas SIC only uses this Hartree-Fock like approach for selected localized or-
bitals. A brief introduction into these approaches is given in reference [39].

The proof of the Hohenberg-Kohn theorem as well as the construction of the
Kohn-Sham total energy functional is restricted to so-called ground-state prop-
erties. However, in many applications, such as defects or photochemistry, it
is important to have access to excitation energies. Strictly speaking however,
the problem starts already when plotting band-structures, since the Kohn-Sham
eigenvalues (compare equation 2.5) do not have a clear physical meaning. Janack's
theorem [40] only connects the eigenvalues to the partial derivative of the DFT
total energy with respect to the occupation number of the corresponding KS
orbital:

Si = .

dfi

The only eigenvalue with a physical meaning is the one corresponding to the high-
est occupied eigenstate which is identical to the negative ionization energy [41].
Therefore it is in principle invalid to identify the Kohn-Sham eigenvalues with
excitation energies, which, however, is widely done and proves to be useful from
a pragmatic point of view. Kohn himself refers to the DFT-eigenvalues as "ille-
gitimate children" of DFT [42].

Green's Function theory provides means to calculate quasi-particle energies [39]:

(2.10)
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where vu(r) is the Hartree potential (compare equation 2.8) and J^(r, r ' ;^) is
the so-called self-energy, a non-local and energy-dependent operator for exchange
and correlation. It can be shown, that the different single-particle approaches to
the many-body problem are approximations to the self-energy operator [39]. The
GW method [43] is an extended Hartree-Fock approximation with a dynamically
screened exchange. It is computationally demanding but still the most simple
working approximation beyond Hartree-Fock [39].

Recently, there have been also attempts to combine DFT and wave-function cal-
culations (configuration interaction, CI [9]) to obtain the excitation spectrum of
a defect [44].

The well known inability of density functional theory to reproduce experimental
band gaps is, however, not due to limitations regarding excitation energies. The
band gap can be expressed in terms of ground state energies of the system with
N, N - 1 and N+l electrons

Eg = (#HKS(iV + 1) - £HKS(iV)) - (EBKS(N) - EnKS(N - 1))

(2.11)

Recall that the eigenvalue of the highest occupied state is equal to the nega-
tive ionization energy / [41]. This allows us to equate the Kohn-Sham eigen-
values eN+i(N + 1) and epf(N) to the energy differences E(N + 1) - E(N) and
E(N) — E(N — 1). The band gap obtained when analyzing the Kohn-Sham
bandstructure is, however, given by EN+I{N) — EN(N), that is the difference in
eigenvalues between the lowest unoccupied and highest occupied state of the N-
electron system.

Perdew and Levy as well as Sham and Schlüter have shown independently [45, 46],
that the exchange and correlation potential vxc(r) (compare equation 2.8) exhibits
a discontinuity at an integer number of electrons. The eigenvalue en+i(N + 1)
is thus given as EN+I(N) + Axc, where Axc denotes the discontinuity which is
not accessible within the standard Kohn-Sham scheme. The true gap is therefore
given by the gap of the Kohn-Sham bandstructure plus the discontinuity Axc.
Perdew and Levy [45] argued that only an energy-dependent approximation to
the self-energy operator can cure this problem.

The developments mentioned so far can be summarized by a trend which has
already been started by Kohn and Sham [16], namely to increase the extent of
non-locality in order to enhance accuracy. Hohenberg and Kohn [11] have proven
that there exists an exact ground state energy functional depending entirely on the
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density. Because of the large error introduced in the kinetic energy by Thomas-
Fermi-like functionals, Kohn and Sham introduced orbitals, that is non-locality,
in the kinetic energy functional. Consequently, the resulting Hohenberg-Kohn-
Sham approach provides sufficient accuracy for a wide range of applications in
materials science. Aiming at going beyond that accuracy, the new schemes partly
incorporate non-locality and energy dependence in the exchange and correlation
part of the energy and thus move applied DFT again closer to the wave-function
approaches.

Time-dependent density-functional-theory was constructed to study the response
of a system to a time-dependent potential, such as for example laser pulses. The
basis is the Runge-Gross theorem [47], an analogue to the Hohenberg-Kohn the-
orem, which establishes a one-to-one mapping between time-dependent densities
and potentials via the so-called density response function.



Chapter 3

Atomistic Simulation

Choosing an appropriate model for the system of interest is only the first, but
nevertheless crucial step. After this choice we have to deal with a high (3iV)-
dimensional space if we only consider the degrees of freedom of the N nuclei
in the system. The high dimensionality, however, is only one of the problems.
It is even more cumbersome that for a given position in this space, the only
information we can extract with a reasonable numerical effort is the total energy
and the gradient thereof, at least in ab-initio models [48, 49].

Since analytic solutions to the models of interest are not available, the only way to
obtain information about the system, such as for example equilibrium geometries
or finite temperature behavior, is via the use of numerical minimization and sim-
ulation techniques which will be introduced in this chapter. In-depth information
about all flavors of simulation techniques can be found in references [50, 51, 52].

3.1 Gradient based minimization schemes

Several methods use the negative gradients gi of the total energy with respect to
the atomic position Ri,

dE
tot

to find the ground-state atomic configuration. Probably the most intuitive ap-
proach is the so-called "steepest descent" method [53]. The gradient of an initial
configuration, that is the direction where the energy increases most rapidly, is cal-
culated and the energy is minimized along the direction of the negative gradient
(search direction). At the minimum the next gradient is computed and another
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Figure 3.1: Minimization path of the steepest descent approach in a simple, two-
dimensional potential. Only the first seven iterations are drawn.

Figure 3.2: Conjugate gradient versus steepest descent (compare figure 3.1). The
conjugate gradient algorithm reaches the minimum of the two-dimensional harmonic
potential after two iterations. The steepest descent path is indicated by the dotted
lines.
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minimization along the negative gradient is performed as illustrated in figure 3.1.
The gradient at the minimum of a line-search, however, is - by definition - or-
thogonal to the search direction. This implies that the search direction changes
by 90° in each time-step which usually is not the optimum choice, since this leads
to a zig-zag path approaching the minimum. Furthermore, the convergence speed
slows down considerably upon approaching the minimum. For a general starting
point the minimum will not be reached in a finite number of iterations.

Conjugate gradient methods [54, 55, 23, 56] circumvent this problem by mixing
a fraction of the old into the new gradient. The mixing factor is defined as the
ratio of the lengths squared of the new and old gradient. For an iV-dimensional
harmonic potential

the conjugate gradient method finds the minimum in N steps. Each conjugate
gradient step minimizes along one degree of freedom. In practical calculations,
reasonable convergence is usually achieved much earlier. An in-depth discussion of
the conjugate gradient scheme can be found in appendix C. A conjugate gradient
minimizer has been developed and employed in the context of the calculation of
atomic fragment Orbitals introduced in part III.

In the case of anharmonic potentials with several local minima, gradient mini-
mization schemes converge to the next local minimum. This behavior constitutes
a major drawback which is partly cured in molecular dynamics approaches intro-
duced in the next section.

3.2 Molecular dynamics

In contrast to the purely mathematical interpretation of the gradient in the last
section, molecular dynamics (MD) provides a more physical approach and iden-
tifies the negative gradient of the total energy with the force acting on an atom.
The force is then related to the acceleration via Newton's second law:

miRi = Fi =-

where Ri and R\ denote the position and acceleration of the atom with index
i. The remaining difficulty is to translate the knowledge of the acceleration into
the path of the atom, the so-called trajectory. The most intuitive approach is
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the so called Verlet algorithm [57]. The acceleration, the second derivative of
the position with respect to time, is replaced by the second difference quotient in
Newton's second law:

- 2Rj{0) + Rj()
, (3.1)Fi = rrii R i ^ r r i i ,

where Ri(+), Ri(0) and Ri(-) correspond to the positions at three consecutive
time-steps, namely the next, this and the last time-step, respectively. A is the
time-step chosen and enters the simulation as a parameter. Equation 3.1 can
be reformulated to yield the position for the next time-step as a function of the
position at this and the last time-step as well as of the force at this time-step:

Ri(+) = 2Ri{0) ~ Ri(-) + A 2 ^ . (3.2)

Equation 3.2 results in an energy conserving molecular dynamics simulation. The
inclusion of a friction term in this equation - proportional to the velocity of atom
i - can be used to damp the motion and "cool" the atomic configuration towards
the minimum energy configuration. Negative friction terms are used to heat up
the system. So-called thermostats can be coupled to the system and control
the temperature via the friction by accelerating or damping the motion of the
nuclei [58, 59].

For infinitesimal short time-steps (limA->o)> the Verlet algorithm is exact. Prac-
tical calculations, however, require finite time-steps A and are a compromise
between numerical accuracy (difference quotient) and efficiency (number of time-
steps). In order to sample a simple sinus wave with a period of T, the time-step
must be smaller than T/TT [60]. Realistic trajectories in more general potentials
usually require time-steps in the order of T/10 to get a reliable sampling. In this
case the error in the frequencies is in the region of 1 %.

Typical vibrational frequencies in solids are in the order of 10 to lOOtera-Hertz
(THz = 1012 Hz) which corresponds to a period between 10 and lOOfemto-seconds
(fs = 10~15 seconds). This would result in a typical time-step in the order of one
to ten femto-seconds. In the so-called Car-Parrinello approach [61] one also has
to sample the dynamical evolution of the electronic degrees of freedom, which,
however, is offset by a reduced numerical effort per time-step. A typical time-step
for Car-Parrinello simulations is 0.25 fs.

Irrespective of these details, the maximum simulation length for ab-initio molec-
ular dynamics simulations is in the order of hundred pico-seconds for systems
of, say, hundred atoms. Using parametrized energy functionals, the numerical
effort for the energy and force evaluations is dramatically reduced. At the same
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time, the systems usually studied are significantly larger. Simulation lengths up
to one nano-second are typically seen as an upper bound. These estimates are of
course highly dependent on the system size and should just give a feeling of the
time-scales involved.

The maximum simulation length below one nano-second is probably the most
severe limitation of molecular dynamics simulations since many important events,
for example diffusion, happen on a longer time-scale and thus cannot be studied
by MD. Whether or not an event is suitable for MD simulations can be decided by
estimating the waiting time r, that is the average time between two such events,
using

AE
r = TOekBT,

where r0 is the attempt period, that is one over the attempt frequency, and AE
the energy barrier. An energy barrier of 0.5eV is typical for diffusion processes on
moderately corrugated surfaces. Taking the above estimate for TQ of 100 femto-
seconds and a temperature of 1000 K, the time-frame is about 33 pico-seconds
(10~12 seconds). In this example, a single hop of an ad-atom on a surface can be
observed at the given temperature using a molecular dynamics run.

However, the simulation of ad-atom diffusion on surfaces phases involving millions
of such hops, or the simulation of growth is far beyond the capabilities of molecular
dynamics. In the course of this thesis, molecular dynamics has been used for
geometry relaxations as well as finite temperature simulations in the context of
metal adsorption and oxide growth on silicon.

3.3 (Kinetic) Monte Carlo

The main limitation of molecular dynamics simulations are the short time-steps
that have to be used in order to properly integrate the atomic motion (compare
equation 3.2). In Monte Carlo simulations this problem is circumvented by not
considering the trajectories of individual atoms but by sampling events, like for
example a hop from one surface adsorption site to another. One Monte Carlo
step, and thus one energy evaluation, corresponds to an event which might have
taken several thousand molecular dynamics time-steps.

Historically, kinetic Monte Carlo simulations were the first atomistic simulations
performed. During World War II a group of scientists around Nicholas Metropolis
used the first electronic computer (ENIAC) for their simulations in the context
of the Manhattan project to develop the atomic bomb [62].
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In order to study phenomena mentioned above, such as surface ordering or phase
transitions, large simulation cells are needed to minimize the effects from periodic
boundary conditions which are usually applied to study extended systems. In
praxis, Monte Carlo methods are often used with parametrized Hamiltonians to
allow for a larger system size as discussed in section 2.1.

The aim of equilibrium Monte Carlo simulations is to calculate expectation values

(A(T)) = Jp(X,T)A(X)dX, (3.3)

where X refers to an atomic configuration, P(X,T) is the probability that this
configuration is observed at a given temperature T and A(X) is the eigenvalue of
some operator A for that configuration. The use of a regular "grid" of configu-
rations to compute the integral of equation 3.3 would be prohibitively expensive
due to the high dimensionality of phase space and the large variation of P(X)
which would require fine grids. So-called "importance sampling" schemes like the
famous Metropolis algorithm [63] concentrate on the "relevant" parts of phase
space where P(X) has finite values:

1. it starts from an initial configuration Xi with an energy Ef,

2. an event is chosen at random which leads to the structure Xi+i (e.g., an
atom A hops from one adsorption site to another);

3. the new total energy Ei+i is evaluated;

4. if Ei+\ < Ei the event is accepted, if Ei+\ > Ei the event is only accepted
with a probability

0

In the case of a rejection, the initial configuration Xi is restored;

5. continue with step 2.

The Metropolis algorithm is designed to fulfill the key criterion for importance
sampling schemes, namely the detailed balance [63]:

P{XuT)P{Xi -> Xj,T) = PiXj^PiXj -> XUT).

The probability that configuration Xi is observed (oc exp(Ei/kßT)) times the
probability for a transition from Xi to Xj must be equal to the probability that
Xj is observed times the probability for a transition from Xj to Xi. This condi-
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tion guarantees that, in the limit of a large number of steps N, the equilibrium
probability of an atomic configuration Xi is given by

pMetropolis/1 v" rr\ ^ ' \ ) limw-»oo ^equilibrium/ v r-p\

where nx{ denotes the number of times structure Xi occurred in the series of
. The expectation value (A) can now be computed to be

= f PequilibTiurn(X,T)A(X)dX
•* i

Via equation 3.4, there is an explicit temperature dependence of the probabilities
P(X, T) and the expectation value.

In the importance sampling schemes, the events are chosen at random. This has
the advantage, that one does not have to determine the actual rates which would
involve the knowledge about the transition barrier and the attempt frequency.
On the negative side one looses the dynamical information. These schemes are
therefore only applicable in equilibrium situations, such as for example a surface
in contact with a gas of constant pressure (see also discussion in chapter 4). In
the context of this thesis, an equilibrium Monte Carlo simulation code based
on a simple empirical energy functional has been used to simulate adsorption
structures of Sr on silicon as described in section 5.3.3.

For non-equilibrium processes, such as for example the growth of a material, the
actual rates of various processes like ad-atom deposition or diffusion are important
and have to be taken into account. So-called kinetic Monte Carlo schemes do not
only choose events at random but also weigh the occurrence of events according
to their rates. In that way a correspondence between a kinetic Monte Carlo step
and real-time can be established [64].

3.4 Finding transition states

This section brings us again back to the beginning of this chapter and the picture
of the highly-dimensional configuration space. Transition state theory is probably
the most focused way of exploring the energy landscape around a (local) minimum
or between two minima.

The knowledge of the position of transition states as well as their energetics
is crucial to understand reaction mechanisms and their kinetics. Reliable and
accurate transition state energies are furthermore necessary as input parameters
to kinetic Monte Carlo simulations.
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The most widely used approach to calculate transition states is the so-called
"drag"-method. Given an initial and a final state, we can determine a one-
dimensional connection in configuration space. The system is then forced to move
in a 3iV — 1 dimensional hyperplane which is orthogonal to the one-dimensional
connection and is itself "dragged" from the initial to the final state along that
connection. The highest energy position along that path is identified with the
transition state. This method can only be applied for simple cases since it can
give wrong results when several paths are available [65].

The nudged elastic band scheme [66, 65] and variations thereof [67] are more
versatile. A string of equispaced images is spanned between two minima. The
individual images are connected by "springs" and are relaxed including the forces
from the "springs". In the limit of a large number of images they mark the
lowest energy path between the two minima. The highest point along that path
corresponds to the transition state.

A recent and more flexible approach is the so-called dimer method introduced by
Henkelman and Jonsson [68]. Two images of the system, a so-called dimer, are
constrained to have a fixed distance in configuration space. Inversion of the force
on each image along the connection vector makes the dimer ascend along the
softest accessible mode. Depending on the starting orientation this leads to one
of the first order saddle points, that is transition states, surrounding a minimum.
The dimer method is currently being reformulated to be used in connection with
Car-Parrinello [61] molecular dynamics by A. Poddey and P.E. Blöchl [69].



Chapter 4

Total energies in a chemical
environment

Density functional theory provides us with the total energy as a function of the
number of atoms {iV;} of each species i, the unit cell volume V, the charge state
q and other parameters:

min
{Rn},{\<f>m)i

From now on we will assume that the electronic {|<̂ >m)} a nd ionic {R%} degrees
of freedom have been minimized, by one of the simulation techniques introduced
in the previous chapter.

This chapter deals with questions of the type:

- Is diamond or graphite the ground state configuration of carbon?

- Is SrSi2 or SrSi lower in energy?

- What is the charge state of an oxygen vacancy in SrTiO3?

Questions of this kind arose frequently in the course of the simulations performed
in part II. They cannot be answered by simply comparing DFT energies, since
this would imply to relate total energies of systems, which differ in the number
of atoms, the volume or the number of electrons. In order to create an absolute
energy scale we have to introduce the concept of reservoirs.
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4.1 Reservoirs

Thermodynamics teaches us to distinguish between extensive and intensive vari-
ables. Extensive variables, such as for example the energy, the particle number or
the volume scale with the system size. Intensive variables such as temperature,
the chemical potential or pressure are independent thereof.

We can identify pairs of intensive and extensive variables, the product of which
are energies:

extensive variable
volume (V)

particle number
entropy (S)

magnetization (M)

intensive variable
negative pressure (— p)
chemical potential (/ij)

temperature (T)
magnetic field (H)

A reservoir is fully characterized by an intensive variable. Consider for example
a volume reservoir (VR), for which the corresponding intensive variable is the
negative pressure and the energy of the reservoir is given as

For a given reservoir, there is thus a linear dependence of the energy on the
extensive quantity, in this example the volume. A reservoir is considered to be
large compared to the system we are studying, so that effects from the system
do not change its properties, that is the intensive variable. An example for a
volume reservoir is our atmosphere. The pressure will not change noticeably if
we perform a laboratory experiment which results in a change of volume.

Analogously, the energy of a particle reservoir (PR) is given by //fRiVj. Again
the value of //fR is considered to be independent of the number of particles we
add to or remove from the reservoir in the course of studying our system. A heat
bath (HB) is defined by its temperature THB, the energy is given by T H B 5 .

4.2 Free energy of formation

Consider now the following thought experiment illustrated in figure 4.1: At a
given point in time, where our system of interest does not yet exist, we imagine
having a series of reservoirs at our disposal. Amongst others, we have a heat bath
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Figure 4.1: Formation of a system (shaded region) out of a set of reservoirs. The
reservoirs must not necessarily be in thermodynamic equilibrium.

(e.g. a bath of silicone oil), particle reservoirs (in most cases a gas or a solid) and
a volume reservoir (e.g. our atmosphere). The reservoirs must not necessarily
be in equilibrium with each other. We furthermore assume that the extensive
variables of the set of reservoirs cannot be exchanged with the environment. In
our case this corresponds to an isochor, closed and adiabatically decoupled set of
reservoirs. It is, however, possible to exchange work between the set of reservoirs
and the environment.

The total energy at this point of time, labeled "before", is given by

pbefore I?HB . pPR's , nVR

V RV t o t- oVRV

5 t o t , iVj*ot and Vtot denote the total entropy, the total number of particles and the
total volume available in the reservoirs, respectively. Since the whole arrangement
is isochor, closed and adiabatically decoupled, all these quantities are conserved.

Having access to all reservoirs, we are now free to collect the building blocks for
our system. In the example of figure 4.1 these are atoms, volume and heat. We
assume that we can control the amount of extensive variables exchanged. After
our system is assembled, the total energy is given by the internal energy of the
system U(S, V, {Ni}), a function of the extensive variables, and the initial energy
of reservoirs minus the amount of volume, particles and heat we have extracted:

_ y)
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We will later see that the internal energy U at zero Kelvin can be related to
the total energy of density functional theory. In the energy difference between
"before" and "after", which is identified with the free energy of formation F, the
extensive variables characterizing the initial extent of the reservoirs drop out:

AE =
= U(StV,{Ni})-TmS-'£itf

1iNi+p™V. (4.1)

The free energy of formation F now depends on the intensive of the reservoirs
and the extensive variables of our system. The intensive and extensive variables
are independent. Knowing F allows us to explore AE, the energy gain or cost to
assemble an arbitrary system out of a given set of reservoirs.

Equation 4.1 furthermore allows us to compare the free energy of formation of
two different systems a and b assembled from the same set of reservoirs:

AF{TnB,pYR,{t4R};AS,AV,{ANi}) = Fa - Fb

= AU(AS,AV,{ANi}) (4.2)

-T H B AS - Y, /̂ fRAiVi + pYRAV,

where AU, AS, ANt and AV denote the difference in internal energies, entropies,
particle numbers and volumes of systems a and b, respectively.

Which of the two systems is more stable, depends apparently not only on the
difference in internal energies, but also on the difference in extensive variables
weighted by the intensive variables of the reservoirs. Thermodynamic stability is
thus only defined in the context of a series of reservoirs. Different structures or
stoichiometries can be stable at different conditions, that is coupled to different
reservoirs. This dependence of the thermodynamic stability on the environment
is captured in the form of phase-diagrams as will be discussed in sections 4.4
and 4.5. The above expressions can of course be extended to include any possible
reservoir.

We can now, as a special case, assume thermodynamic equilibrium between our
system and some or all of the reservoirs. Thermodynamic equilibrium corresponds
to a steady state, that is a coexistence of the reservoir and the system without a
driving force to exchange extensive quantities. This translates into the condition
that F is minimized with respect to the corresponding extensive quantity and
gives us the equilibrium conditions for our three reservoirs:
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At thermodynamic equilibrium between the system and one or more reservoirs,
the corresponding intensive quantities must be identical.

4.3 Relation to thermodynamic potentials

In the last section, we have used the concept of reservoirs and intensive variables
to create an absolute energy scale, which allows us to compare internal energies
(the relation to DFT energies will be established later in this chapter) with dif-
ferent values of the extensive variables (compare equation 4.2). Experimentalists
experience quite similar problems when analyzing measured energetics. This has
led to the introduction of the well-known thermodynamic potentials such as the
enthalpy, the Helmholtz free energy and the Gibb's free energy:

- The enthalpy is used whenever it does not make sense or it is simply not
possible to keep the volume fixed. Alternatively one measures the free en-
ergy of formation in connection with a volume reservoir, that is at constant
pressure, which yields the enthalpy:

YR {Ni}) = FEnthalPy = U(S V {Ni})+pYRH(S,pYR, {Ni}) = FEnthalPy = U(S, V, {Ni})+pYRV.

Going back to equation 4.1, the enthalpy thus only contains the energy
difference due to adding or removing atoms and heat to or from the sys-
tem. The volume dependence of U has been transformed into a pressure
dependence of H:

= F(THB, pVR, {rfR}; 5, V, {Ni}) + THB5

Following the above picture, the Helmholtz free energy is the appropriate
potential for comparing the free energy of formation, where the entropy
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content cannot be compared. In this case one constrains the temperature
to be constant by connecting to a heat bath:

F(THB, V, {Ni}) = F M m M t z = U(S, V, {Ni}) - TnBS.

- Finally, the Gibbs free energy is suited for conditions, where entropy and
volume changes cannot be controlled:

G(THB,pVR, {Ni}) = FGibhs = U(S, V, {Ni}) - THBS + P
VRV.

4.4 Zero-Kelvin phase diagrams

Using equation 4.2 we now have a tool to compare energies of systems with a
different number of atoms, a different volume or a different charge state. The
internal energy U at T = 0 K is directly related to the DFT total energy by

U(0 K, V, {Ni}) = EDFT{V, {Ni}) + zero point vibrations.

Since all common simulations schemes treat the nuclei classically (Born-
Oppenheimer approximation), the ground-state energy does not include the zero
point vibrations which are quantum-mechanical effects consistent with Heisen-
berg's uncertainty principle. For a typical vibrational frequency of an atom in a
solid of lOTHz, the zero point vibrational energy (3/2 • hu) amounts to 0.06 eV
per atom. This is the error range of density functional theory.

Furthermore, the difference in vibrational frequency for a given atomic species in
two compounds is usually small. This further reduces the error when comparing
total energies of systems that have the same number of atoms. In most cases,
zero point vibrational energies are not considered.

Figure 4.2 shows as an example the phase diagram for oxygen at the interface
between silicon and SrTiO3. The lines correspond to the free energy of formation
at T = 0 K as a function of the oxygen chemical potential for interface structures
between SrTiOß and Si(001) with different oxygen content. The free energies are
plotted relative to a reference system, the unoxidized interface (compare equa-
tion 4.2).

The unoxidized interface does not contain oxygen at the interface and thus the
free energy does not show a dependence on the oxygen chemical potential. The
other lines in figure 4.2 correspond to oxygen contents at the interface of 0.25,
0.75, 1.0, 1.25 and 1.50 monolayers. The lower envelope of the free energy lines
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Figure 4.2: Zero Kelvin phase diagram for oxygen at the interface between SrTiC>3
and Si(OOl). Depending on the oxygen chemical potential, different interface structures
are thermodynamically stable. For details see our publication 1, in chapter 6.1.

defines the thermodynamically stable phases as a function of the oxygen chemical
potential. A crossing of two free energy lines corresponds to a phase boundary.
The phase boundaries of the three stoichiometric interface structures (compare
our publication 1) have been marked by vertical lines, the corresponding stability
regions are shaded. In the publication we left out the energy information and
arrived at the one-dimensional phase-diagram which can be seen in Figure 2
of publication 1. The pV-tevm of the free energy has been neglected since the
introduction of oxygen to the interface has negligible effects on the volume of the
sample.

4.5 Finite temperatures

At finite temperatures we additionally have to consider a series of internal energy
and entropy contributions from

- translational,

- vibrational,

- rotational and

- electronic
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degrees of freedom. Configurational degrees of freedom only contribute to the
entropy which is calculated by Boltzmann's formula

5 = -JfcBlnfi,

where £1 is the number of microstates, that are different atomic configurations
yielding the same total energy. A typical example are vacancies in a solid. In the
independent vacancy approximation there are

n = M!

N\(M-N)\

ways to arrange iV vacancies on M lattice sites. Especially for vacancies, the
configurational entropy has sizable effects, whereas it is small for ordered surface
structures.

The standard way to access finite temperature effects is to take 0 K DFT total en-
ergies and then use approaches from statistical mechanics to calculate the internal
energy and entropy contributions. The internal energy at a given temperature T
is thus written asis thus written as

£DFT

Analytical expressions for the contributions to AU(T) can be found in most
textbooks on statistical mechanics [70, 71, 72, 73]. Note that the zero-point
vibrational energy has to be subtracted from U(0 K,...) when using classical
expressions for the vibrational free energy.

4.6 Relating chemical potentials to experimen-
tal parameters

While the phase diagram of figure 4.2 provides valuable insight into the thermo-
dynamic stability, it does not directly give us practical information in terms of
experimental parameters.

Sticking to the example of the oxygen content at the interface between SrTiO3

and Si (001), the interesting parameter would be the oxygen partial pressure cor-
responding to a given chemical potential. Within the ideal gas approximation,
however, it is straightforward to relate a chemical potential to a partial pressure
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and temperature for simple molecules. Similarly, chemical potentials can also be
related to bulk particle reservoirs [70, 71, 72, 73].

4.7 Summary

The concepts introduced in the last sections allow us to answer the questions
raised at the beginning of this chapter. All of them were related to comparing
the energetics of systems with different values of the extensive variables such as
particle number (SrSi vs. SrSi2), volume (graphite vs. diamond) or charge state
(vacancy in SrTiOa). Using reservoirs we are able to place the DFT energies
on an absolute energy scale. Depending on the chemical environment, that is
intensive variables defined by the reservoirs, it is now possible to compare the
energetics.



Part II

Application — Growth of High-K
Oxides



Chapter 5

Interfacing silicon with high-k
oxides

Microelectronics is probably the most important field of engineering which
has driven us into nanotechnology. Today, microprocessors with an unbeliev-
able number of forty million transistors on an area of 214 square millimeters
(14.6x14.6 mm) are mass-produced. Aiming at ever faster processor generations,
the industry keeps pushing the limits of engineering and, lately, also physics.

This chapter focuses on the industry's biggest problem at the moment which
is the replacement of silicon dioxide as the insulating material in transistors.
Simulations of the growth of alternative oxides on silicon in the course of this
thesis have led to a new binding principle at silicon-oxide interfaces.

5.1 A short review of 50 years microelectronics

Transistors are switches for electric current with an "on" or "1" state, where
current can flow, and a non-conducting "off" or "0" state. The first transistor, a
so-called bipolar transistor, was built by the group of William Shockley of Bell
Laboratories in 1947 marking the onset of microelectronics. In 1958, Jack Kilby
of Texas Instruments was able to produce all circuit elements such as diodes,
resistors, capacitors and transistors of the same material which allowed him to
put them on a single chip. Both inventions were awarded with the Nobel prize
in physics.

In 1965, Gordon Moore, a scientist from Intel, summarized the young history
of component densities in integrated circuit devices in a graph which became
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Figure 5.1: The five data points Gordon Moore used to extrapolate microprocessor
performance and formulate his famous law. Picture taken from [74]. For continuation
see figure 5.2.

famous (compare figure 5.1). Based on five data-points available at that time, he
predicted that

the number of components per integrated circuit doubles every year.

Now, almost forty years later, this exponential growth as predicted by Moore
still takes place as is evident from figure 5.2 which shows as an example the
development of the familiar processor generations from Intel. There is only a
small deviation from the initial prediction in that the doubling of the component
density only occurs every eighteen and not every twelve months.

The first MOSFET (Metal Oxide Semiconductor - Field Effect Transistor), the
type of transistor employed in today's devices, was fabricated in 1960 at Bell
Laboratories. It was, however, not before 1970 when the bipolar transistors
were in the course of being replaced by the new technology mainly due to cost
factors [75].

The functionality of a MOSFET transistor is visualized in figure 5.3. Each junc-
tion between two semiconductor regions with different doping constitutes a diode.
Therefore, no current can flow between the two contacts, source and drain ter-
minal, in the arrangement shown due to the two opposing diodes. If, however,
a positive voltage is applied to the gate terminal, one attracts electrons into the
channel region. This effect is called inversion as electrons become the majority
charge carriers. As a result there are no diodes anymore and current can flow
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Figure 5.2: Transistors per chip for the processor generations of Intel since 1970. Data
taken from www.intel.com.

between the two contacts, provided a voltage is applied. Central to the function-
ality of a MOSFET is a thin, insulating layer, the gate oxide. It separates the
gate electrode from the silicon substrate.

The final breakthrough for the MOSFET technology came with the discovery of
the scaling law for MOSFET's by Bob Dennard of IBM in 1972 [76]: If all dimen-
sions and voltages are scaled down by a given factor and the substrate doping
is increased by the same factor, all performance parameters improve while the
device dimensions decrease. Scaling a 65 nm gate length transistor (production
year 2003) to 45 nm (production year 2005) corresponds to a factor of roughly 1.4.
This will reduce the required operating voltage and the circuit delay by a factor
of 1.4 and also results in a correspondingly larger operating frequency. So 3 GHz
at a gate length of 65 nm are scaled up to 4.3 GHz at 45 nm. At the same time,
the space per transistor is reduced by the factor squared. A 45 nm transistor is
thus roughly 2 times smaller which allows to double the number of transistors
per chip. For bipolar transistors there is no analogue to this scaling law.

5.2 The need for high-k

Following Dennard's scaling law, the channel length has been reduced from 10/im
to 65 nm since 1970 and, at the same rate, also the gate oxide thickness from
200 nm to between 1 and 2nm [75, 77]. Over the years on has observed a constant
factor of about 45 between channel length and gate oxide thickness [75]. So far,
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Figure 5.3: Schematic drawing of an (NMOS) MOSFET transistor. The substrate is
p-doped silicon. Two contacts, called "source" and "drain" are implanted as highly
n-doped regions. The substrate between these contacts is called "channel". Above the
channel there is a thin, insulating layer, the "gate oxide" and a metallic electrode, the
"gate". Picture taken from http://www.icknowledge.com/.

the gate oxide (compare figure 5.3) consists of silicon dioxide (SiC^) or silicon
oxynitride (SiOxNy). SiO2 is actually one of the main reasons that silicon is
today's semiconductor of choice. Other candidates such as for example gallium
arsenide do not have a "native" oxide with, as in case of SiO2, almost perfect
properties in terms of growth as well as interface and bulk properties.

The process of gradually reducing the S1O2 film thickness (following Dennard's
scaling law) is now approaching unsurmountable physical barriers ("red brick
wall" in the language of the semiconductor engineers [77]) as the gate oxide
thickness approaches atomic dimensions. Two nanometers correspond to only a
few layers of oxide and one nanometer is considered to be the thickness below
which quantum mechanical leakage currents from the channel to the gate electrode
will become intolerable.

A solution to the problem is in principle easily found when analyzing the physics
of MOSFET transistors. The main reason behind the required downscaling of
the gate oxide thickness is the resulting increase of the capacitance per unit area
of the capacitor formed by the metal gate, the gate oxide and the semiconducting
substrate (MOS-capacitor, compare figure 5.3):

C e

I"?

where e is the dielectric constant of the oxide and t its thickness. An increased
capacitance per unit area increases the drain current which improves the switching
time of the device. The dielectric constant e (3.9 for SiO2) is a materials property.
Therefore the route taken so far to increase C/A was to decrease t according to
Dennard's scaling law. Having reached the limits using this approach, one now
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Figure 5.4: The high-k materials map in mid-2004. The leakage current per area is
plotted versus the capacitance per unit area (bottom) and the corresponding SiC>2 film
thickness (top). The exponential dependence of the gate current on the film thickness
for SiC>2 nicely fits with a quantum mechanical leakage current. Figure courtesy of
Athanasis Dimoulas, Demokritos, Athens.

has to increase e which, however, translates into introducing a new oxide. In this
context, oxides with a larger dielectric constant compared to silicon are called
"high-k oxides".

An inability to replace SiC>2 is considered to be a showstopper for device scaling
and therefore also the further exponential increase in computer performance. A
deviation from Moore's law, however, will inevitably affect the economic success
not only of the semiconductor industry but also of related branches such as the
software industry.

Figure 5.4 introduces the main contenders for replacing SiC>2 within the next
years. All candidates contain transition metals which have a high tendency to
form metallic suicides in contact with silicon. A first generation of high-k oxides
around ZrC>2 and HfC>2 will therefore still have a very thin SiC>2 layer to separate
the transition metal from the substrate. These oxides will be grown by chemical
vapor deposition.
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As the required capacitances per unit area are further increased, this interfacial
SiC>2 layer will no more be tolerable since the smallest capacitance dominates in a
series of capacitances (SiC>2 and high-k oxide). In a second step, around 2010 to
2015, industry will then require oxides with an atomically well denned interface
with silicon. So far, such a heteroepitaxial relationship has only been proven for
oxides around SrTiOß and SrO [3, 78] using molecular beam epitaxy (compare
section 1.1) which is, however, a more expensive method with only moderate
throughput at the moment.

5.3 Results

Despite the experimental evidence of an atomically well defined interface, the
interfacial stoichiometry and structure remained elusive. Decisive process param-
eters as well as the electronic properties at the interface are still under debate.
Using ab-initio molecular dynamics simulations we could unravel the growth pro-
cess of SrTiOa on Si(001). In the following sections the main results obtained,
starting with metal deposition on the clean silicon surface, are briefly reviewed.
Detailed information is found in our publications in chapter 6. Additional infor-
mation about computational procedures is given in appendix B.

5.3.1 The substrate: Si(OOl)

Prior to considering oxide growth we must understand the substrate, namely
the technologically relevant (001) oriented surface of silicon. Silicon crystallizes
in the diamond structure. Each atom is tetrahedrally coordinated and forms
four covalent bonds. Cleaving the crystal along a (001) plane initially creates a
surface with a quadratic ( l x l ) array of silicon atoms (compare figure 5.5a). On
the surface, each atom is now lacking the two "upper" bonding partners. Only
the two covalent bonds to the silicon atoms in the lower plane remain. As a result
there are two singly occupied dangling bonds per atom pointing out of the surface.
This situation is energetically highly unfavorable and leads to the probably most
famous surface reconstruction: the (4 x 2) buckled dimer row reconstruction of
the silicon (001) surface.

In a first step, two neighboring silicon atoms approach each other and form the so-
called dimer bond which is parallel to the surface. The result is the (2 x 1) dimer
row reconstructed silicon surface (compare figure 5.5b). This first reconstruction
step still leaves one singly occupied orbital per surface silicon atom. The bonding
and anti-bonding states of the dimer bonds move out of the center of the gap and
approach the bulk silicon band edges.
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c)

Figure 5.5: The reconstruction of the Si(OOl) surface. Panel a: the unreconstructed
( l x l ) surface; panel b: the (2x1) reconstruction; panel c: the (4 x 2) reconstruction.
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Figure 5.6: Schematic evolution of the atomic energy levels of silicon as a result of sp,
sp2 and sp3 hybridization. The average energy is identical in all four cases.

The half-filled dangling bond band is then, in a second step, split into two sub-
bands, one fully occupied, the other empty. The reason for this lift in degeneracy
is a geometrical distortion, namely the tilt of the dimer bond. One silicon atom
moves up and adopts a quasi-tetrahedral, sp3-like bonding arrangement, the other
one moves down and ends up in a planar, sp2-like bonding environment. This
process is called "buckling". Along a row, the dimer buckling is strongly corre-
lated in an anti-parallel manner. Across the rows, the correlation is comparably
weak. This second step results in the final c(4 x 2) reconstruction of the silicon
surface (compare figure 5.5c).

The pz orbital of an sp2 hybridization is higher in energy compared to an sp3

orbital (compare figure 5.6). The half filled dangling bond band of the (2 x 1)
reconstruction therefore splits into a fully occupied band formed from the sp3-
orbitals of the upper silicon atoms and an empty band with pz character from
the lower silicon atoms. The upper silicon atoms are thus formally "1—" and the
lower silicon atoms "1+" charged.

It is important to note that despite this reconstruction processes, the silicon
surface is still considered to be a highly reactive surface. The presence of oxygen
or transition metals leads to oxidation and silicidation even at ambient conditions.
A widely used approach to passivate the surface is by saturation via a monolayer of
hydrogen. The dangling bond states are then saturated by Si-H bonds. Hydrogen
saturation again removes the dimer buckling since all surface silicon atoms are
then tetrahedrally coordinated.
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5.3.2 Metal adsorption on Si(OOl)

The main problem in the context of growing high-k oxides on silicon is suicide
and silicate formation as soon as transition metals get in contact with the sub-
strate. Controlled growth should, however, start with metal deposition to at least
some extent, since introducing oxygen too early leads to the similarly unwanted
formation of silicon dioxide. Therefore, we have investigated the deposition of
metal ions out of the three most relevant groups in the context of high-k oxides.
These are the divalent earth-alkali metals and the three- and the four-valent tran-
sition metals at the examples of strontium (Sr), lanthanum (La) and zirconium
(Zr). The detailed results can be found in our publications 2, 3 and 4 in the
corresponding sections of chapter 6.

Figure 5.7 summarizes the main results for Sr and La. It shows the energy per
( l x l ) surface unit cell versus coverage. Each point corresponds to a surface
reconstruction. The reconstructions connected by line segments are the thermo-
dynamically stable phases and the slope of the line segments gives the chemical
potential at which the phases coexist. A detailed discussion of these graphs is
given in appendix B.I. The energies and thus also the chemical potentials are
plotted relative to the corresponding lowest energy suicide. A positive chemi-
cal potential, that is a positive slope, thus implies that the corresponding phase
transition is thermodynamically unstable with respect to bulk suicide formation.

While in case of Sr (figure 5.7(a) and our publication 2, section 6.2) coverages up
to 2/3 monolayer (ML) are thermodynamically stable, we observe that La surface
reconstructions are only stable up to the coverage of 1/3 ML (figure 5.7(b) and
our publication 3, section 6.3). In case of Zr (our publication 4, section 6.4) and
also Hf, all surface reconstructions are unstable with respect to suicide formation
which excludes the possibility of metal pre-deposition. Zr-silicide formation has
also been observed experimentally [79].

The surface reconstructions found for Sr and La are driven by the atomic and
electronic topology of the Si(OOl) surface. The basic principle will be shortly
summarized at the example of Sr. La behaves conceptually similar at low cover-
ages and, due to a change in oxidation state from 3+ to 2+ above 1/3 ML, even
identical to Sr at high coverages (for details refer to our publication 3, section 6.3).

The chemistry of Si and Sr is probably best understood in terms of bulk Sr
suicides. These structures can be explained by a very simple scheme, the so-called
Zintl-Klemm concept, which was initially formulated in 1939 [80, 81, 82]. At the
rise of solid state chemistry, scientists started to investigate the correspondence
between structure and stoichiometry. They discovered that they can explain a
wide range of compounds between electronegative elements, essentially groups
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Figure 5.7: Surface energy versus coverage for Sr and La. The open diamonds repre-
sent thermodynamically accessible structures, the triangles correspond to metastable
structures. Mind that the coverage-axes are scaled differently.
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(a) The bulk SrSi2 structure. (b) The bulk SrSi structure.

Figure 5.8: Two typical bulk Sr suicides (Si: small spheres connected by sticks; Sr:
big spheres).

IV to VII, and electropositive elements, mainly groups I and II, in a simple ionic
picture.

The electropositive element, we will take Sr as an example from now on, donates
all its valence electrons to the electronegative element, silicon in our context.
Upon accepting an electron, silicon saturates one of its four valences. Silicon in
the oxidation states of Si~, Si2~, Si3~ and Si4" is thus able to form 3, 2, 1 and 0
covalent bonds, respectively. Furthermore it turned out that, from a structural
point of view, the acceptance of one electron results in a quasi-shift of silicon one
position to the right in the periodic table of elements. Si~, Si2", Si3~ and Si4~
are thus found to be isosteric to P, S, Cl and Ar.

This stunningly simple concept can easily be demonstrated right at the example of
two bulk Sr suicides shown in figure 5.8. In panel (a) we observe that each Si atom
forms three covalent bonds. This leaves one valency per Si atom which has to be
saturated via electron donation from Sr. Since Sr donates two valence electrons,
the final stoichiometry, according to Zintl-Klemm, must be SrSi2 (Sr2+Si^"), which
is indeed correct. In the example of figure 5.8(b), each Si atom forms two covalent
bonds which corresponds to two valences that need to be saturated via electron
donation or, in other words, formal Si2~ ions. The stoichiometry is indeed SrSi
(Sr2+Si2~). SrSi with its chain structures is furthermore a nice example showing
that Si2~ is isosteric to sulfur which is known for forming chain structures. This
simple principle of relating the number of covalent bonds per Si atom to its charge
state and furthermore to the stoichiometry works reliably for all experimentally
known Sr suicide structures.

Translated to the silicon (001) surface, the two valence electrons from one Sr will
saturate the dangling bonds of a dimer. A saturated dimer looses its buckling,
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cd
Figure 5.9: Schematic representation of the isolated Sr ad-atom at the preferred ad-
sorption site position. The filled circle represents the Sr ad-atom, the rectangle repre-
sents a filled and therefore unbuckled Si dimer. The triangles represent buckled dimers.
The flat side of a buckled dimer indicates the upper Si atom with a filled dangling bond,
whereas the pointed side indicates the lower Si atom with the empty dangling bond.
The charge transfer from the Sr ad-atom to one of the surrounding dimers is indicated
by the arrow, the preferred adsorption site in the neighboring valley by the open circle.

since all dangling bonds are filled and both Si atoms prefer the tetrahedral sp3

configuration (compare figure 5.6). The atomic structure around a singe ad-
atom is visualized in figure 5.9. The preferred adsorption site is in the center of
four dimers. One of the neighboring Si dimers is unbuckled due to the electron
donation from the ad-atom. The other three dimers are orientated such that
the upper, and thus negatively charged Si atom points towards the Sr2+ ion.
Reversing the buckling of one dimer and thus placing a positively charged Si
atom next to Sr results in an energy penalty of roughly 0.4 eV.

The filled dimer offers a preferred adsorption site in the next valley as indicated
by the open circle in figure 5.9. As a result, diagonal and zig-zag chain structures
turn out to be the thermodynamically stable reconstructions at dilute coverages.
At 1/6 ML these chains condense (figure 5.10(a)). It is not possible to stack them
closer since that would mean that a lower and thus positively charged Si atom
points towards a Sr ion which involves a large energy penalty as indicated above.
The next phase are therefore double chains at 1/4 ML shown in figure 5.10(b)
(compare also figure 1.2a and corresponding text).

At one half monolayer the Sr ad-atoms occupy all favorable positions in the center
of four dimers. We labeled this coverage as the "canonical coverage" since all the
dangling bond states are saturated and we do not observe any surface states
deep in the gap of silicon anymore. This surface is isoelectronic to a hydrogen
terminated silicon surface and is thus expected to be chemically comparably inert.
Above 1/2 ML, the electrons from Sr enter the dimer anti-bonds leading to a
partial breakup of the dimer bonds. At 2/3 ML we observe a (3 x 1) reconstruction
with alternating rows of Si dimers and isolated Si atoms.



52 Interfacing silicon with high-k oxides

[>

(a) Condensed diagonal chains of
Sr at a coverage at 1/6 ML.

(b) Diagonal double chains of Sr
at a coverage of 1/4 ML.

Figure 5.10: Chain structures of Sr ad-atoms at low coverages. The symbols axe
explained in figure 5.9. The surface unit cells axe outlined.

Our studies on Sr adsorption have led to a unified picture of the processes and
has helped to interpret a series of experimental results. The phase diagram we
propose on the basis of the surface energies is compatible with recent experimental
results [83]. Unlike most experimental papers, however, we clearly identify a
phase at 1/2 ML. This "canonical" surface reconstruction plays a crucial role as
a template for oxide growth.

5.3.3 Monte Carlo simulations of low-coverage surface or-
dering

In the course of our ab-initio study on Sr adsorption on Si(OOl) we have screened
a large variety of possible surface reconstructions. This not only allowed us to
identify the thermodynamically stable phases but also to quantify energy penal-
ties for deviations from the ideal structural principles derived. These principles
are:

1. Each Sr atom is electrostatically stabilized by four negatively charged silicon
atoms located next to it. Negative silicon atoms have two electrons in their
dangling bond and are in a raised, sp3-like bonding configuration (compare
figure 5.9 and 5.10).

Violation of this rule raises the energy by roughly 0.4 eV per positively
charged Si atom next to a Sr ion. At this level of abstraction we do not
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distinguish between a negatively charged Si atom of a buckled and an un-
buckled dimer.

2. There are no reversals of the dimer buckling in the Sr-free regions of the
surface. Such a reversal would result in two neighboring dimers buckled in
the same direction. The energy penalty for this has been calculated to be
about 0.1 eV. This is a consequence of the anti-correlated coupling of the
dimer buckling within one row (see section 5.3.1).

3. Sr atoms on neighboring adsorption sites within one valley, that is between
two dimer rows, experience a mutual electrostatic repulsion. This is the
reason why we do not observe patches or islands of Sr ad-atoms but sepa-
rated chain structures. As a result of this repulsion, the adsorption energies,
which are nearly constant below 1/6 ML, increase by 0.23 eV per atom when
increasing the coverage to 1/2 ML, where all adsorption sites are filled. The
energy penalty as a function of the number of neighboring Sr atoms along
a valley has been parametrized.

Analysis of these three basic rules reveals, that rules 1 and 2 are almost auto-
matically fulfilled by considering Sr "double-vacancies". In the chain structures
of figure 5.10 we see that the Sr chains are separated by two empty adsorption
sites, a "double-vacancy". This guarantees that rule 1 is fulfilled, except for the
case of two double vacancies at the same position in neighboring valleys. This
configuration leads to a positive Si atom neighboring a Sr. We have thus devised
an energy functional which checks whether

- double-vacancies are on the same position in neighboring valleys (energy
penalty of 0.38 eV), and

- Sr ad-atoms occupy neighboring sites within one valley (energy penalty
between 0.06 and 0.23 eV depending on the number of neighboring atoms)

According to this model, the alternative surface reconstruction at 1/4 ML of
figure 5.11 would be isoenergetic to figure 5.10b since all rules are fulfilled in
both cases. Our ab-initio calculations show that the structure of figure 5.10b is
more stable by 0.04 eV. This value is close to the DFT error bar as well as to kßT
at room temperature. In the standard implementation, our model does therefore
not include this energy penalty for interrupting double-vacancy chain structures.
We have, however, performed some tests to check the influence of such a penalty
on the resulting structure.

Based on this simple parametrized model, I have developed an equilibrium Monte
Carlo simulation code (refer to section 3.3 for the basic principle) in order to
cross-check whether we have missed any surface reconstructions in the small-
scale ab-initio screening. For this purpose, the crude nature of our model is even
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Figure 5.11: Alternative structure at 1/4 ML (compare figure 5.10b). The energy
difference is just 0.04 eV. The surface unit cell is outlined.

Figure 5.12: Typical ad-atom geometry at a coverage of 0.4 ML as a result of the
Monte Carlo simulation. The simulation cell consists of 16x16 silicon dimers.
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Figure 5.13: Typical ad-atom geometry at a coverage of 1/4 ML as a result of the
Monte Carlo simulation. The simulation cell consists of 30x30 silicon dimers.

an advantage since it only includes the unambiguous, "hard" rules. "Soft" rules
easily introduce hidden assumptions and can thus bias the results.

At coverages close to 1/2 ML we observe, as also expected from the ab-initio
results, an array of randomly distributed double vacancies as visualized in fig-
ure 5.12. Interestingly, a simulation of 1/4 ML, however, shows a relatively well
ordered reconstruction based on double chain structures. Figure 5.13 shows a
typical adsorbate structure at 1/4 ML in a 30x30 dimers simulation cell. This
simulated reconstruction pattern exhibits a rather close resemblance to an STM
image taken at the same coverage (figure 1.2a). Inclusion of the 0.04 eV energy
penalty for deviations from chain structures as mentioned above, results in per-
fect double chains across the unit cell even at 500 K. Figure 5.14 shows a typical
atomic arrangement at 1/8 ML as an example for dilute coverages. We observe
chain structures as anticipated from the ab-initio results.

The Monte Carlo simulations have thus not lead to the discovery of relevant sur-
face reconstructions which had not already been identified in the course of the
ab-initio calculations. Due to the very coarse model, including only a small num-
ber of unambiguous rules, we are thus confident to fully understand Sr adsorption
on Si(001). The close resemblance of our simulated reconstruction at 1/4 ML with
available STM images furthermore indicates that the simple model employed is
sufficient to describe the essential physics. These results are unpublished.
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Figure 5.14: Typical ad-atom geometry at a coverage of 1/8 ML as a result of the
Monte Carlo simulation. The simulation cell consists of 16x16 silicon dimers.

5.3.4 Growth of SrTiO3 on Si(OOl)

With the Sr adsorption on Si(OOl) understood, we can now turn to oxide growth.
The main problem is connected to the fact that the chemical bonding in silicon
and SrTiOs is fundamentally different. While silicon is a covalently bonded ma-
terial, SrTiC>3 is an ionic crystal with some covalent character in the Ti-0 bonds.
More specifically, SrTiOß crystallizes in the perovskite structure with Ti being
octahedrally coordinated by oxygen and Sr placed in a cubic oxygen cage. The
(001) planes of SrTiO3 are alternating SrO and TiC>2 planes and therefore elec-
tronically saturated, that is unable to form covalent bonds. The SrO terminated
surface does not exhibit states in the band gap.

In order to make an electronically saturated Si-SrTiOß stack we need to create
an interfacial layer with the ability to form covalent bonds in one direction to
saturate the valences of the silicon surface and, on the other hand, provide an
ionic template compatible with SrTiO3.

Based on the understanding of the Sr surface reconstructions we have identified
the canonical 1/2 ML covered silicon surface as the only surface reconstruction
which fulfills these requirements. It is the only one which saturates all silicon
dangling bonds. The quasi-ionic interaction of Sr with Si furthermore prepares an,
ionic template with a formal charge distribution as visualized in figure 5.16. The
resulting two-dimensional ionic layer is compatible with the NaCl-type charge
pattern of a SrO-terminated SrTiC>3 crystal.

Using molecular dynamics we simulated the "deposition" of SrTiC>3 on top of this
template. While the first SrO layer still reconstructs significantly, we observe a
recrystallization if we deposit two more SrTiO3 layers. The resulting structure,
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Figure 5.15: The two relevant interface structures between silicon and SrTi(>3 taken
from publication 1.
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Figure 5.16: Charge pattern of the silicon surface covered by 1/2 ML of Sr. The
Sr ions have a formal charge of 2+, Si of 1— due to the filled dangling bond. The
empty rectangles denote the dimer bonds to ease comparison with the lower left panel
of figure 5.15.

0.2 eV = 1.3 eV
Silicon

(a) Interface A (b) Interface B

Figure 5.17: Schematic band-gap evolution at the interface for interfaces A and B as
shown in figure 5.15.

visualized in two modifications in figure 5.15, has proved to be stable during
molecular dynamics simulations at 800 Kelvin.

Unfortunately, a good interface structure does not yet make a good high-k oxide.
Many promising candidates for example fail because they do not have sufficiently
large band-offsets relative to silicon. For device applications, the conduction and
valence band offsets have to be in the region of 1 eV. This is necessary to prevent
electrons and holes from entering the oxide. For the interface just introduced
(left panel of figure 5.15), the conduction band offset is, however, just 0.2eV
as visualized in figure 5.17. This excludes the use of this interface in device
application - at least for n-doped substrates.

The stability analysis of the interface with respect to oxidation, however, re-
vealed, that oxygen first attacks the filled dangling bonds of the dimer silicon
atoms. Exactly one monolayer of oxygen can be selectively introduced at the
interface this way which leads to the interface structure shown in the right panel
of figure 5.15. This introduction of oxygen, possible without running the risk of
creating interfacial silicon dioxide (for details see our publication 1, section 6.1),
results in a major charge redistribution at the interface. While we had formal
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interface A
interface B

SrO
[001] direction

Figure 5.18: Layer-averaged electrostatic potential (plane-wave part, compare our
publication 5) in planes parallel to the interface for the unoxidized (A) and oxidized
(B) interface. The potential curve of the silicon substrate is on the right hand side
(sinusoidal behavior), SrTiO3 on the left hand side. The potential exhibits minima at
the positions of atomic planes, maxima in the interstitial. In the SrTiO3 region, the
TiC>2 layers produce a deeper potential. At the interface both potential curves start to
deviate. The important difference is the shift of the potential of interface B towards
higher values by 1.1 V in the oxide region. This shift can be clearly observed at the
extrema.

Si ions in the case of the initial interface, we now have formal Si+ and O2 ions
which corresponds to creating an interfacial dipole relative to the initial interface.
This dipole causes a shift of the electrostatic potential in the oxide to higher val-
ues by around 1.1 eV as seen in figure 5.18. As a result, also the band-structure of
the oxide is shifted upwards and the oxidized interface therefore has a conduction
band offset of 1.3 (= 0.2+1.1) eV, which is well within the technologically required
range. A detailed description on how to obtain band offsets of hetero-junctions
within DFT is given in appendix B.2.

In summary we succeeded in understanding metal deposition of groups II to IVa
on silicon. In the case of Sr this has directly led to an understanding of the
interface between silicon and SrTiC>3, a very promising candidate to replace SiO2
as a gate dielectric. To the best of our knowledge, this is the first interface
between silicon and a high-k oxide which has been unraveled. The interface
between silicon and SrTiOß furthermore constitutes a new class of interfaces. It
combines a covalently and an ionically bonded crystal and is thus conceptually
different from the well-known Si-SiC>2 interface which consists of Si-O-Si bridges.
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- Section 6.3:
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"Heteroepitaxial growth of high-k gate oxides on silicon: insights from first-
principles calculations on Zr on Si(001)",
Comp. Mat. Sei. 27, 70 (2003);
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"Electronic structure methods: Augmented Waves, Pseudopotentials and
the Projector Augmented Wave Method",
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Models, Sidney Yip (Ed.); Kluwer Academic Publishers.
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6.1 Nature 427, 53 (2004):
The interface between silicon and a high-k
oxide

This paper deals with the interface between silicon and SrTiC>3. Based on the
understanding of Sr adsorption (compare publication 2) we propose an interface
structure as well as a method to engineer the band-offsets between silicon and
the oxide.
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The ability of the semiconductor industry to continue scaling
microelectronic devices to ever smaller dimensions (a trend
known as Moore's Law1) is limited by quantum mechanical
effects: as the thickness of conventional silicon dioxide (SiO2)
gate insulators is reduced to just a few atomic layers, electrons
can tunnel directly through the films. Continued device scaling
will therefore probably require the replacement of the insulator
with high-dielectric-constant (high-fc) oxides2, to increase its

thickness, thus preventing tunnelling currents while retaining
the electronic properties of an ultrathin SiO2 film. Ultimately,
such insulators will require an atomically defined interface with
silicon without an interfacial SiC>2 layer for optimal performance.
Following the first reports of epitaxial growth of AO and ABO3

compounds on silicon*"7, the formation of an atomically abrupt
crystalline interface between strontium titanate and silicon was
demonstrated*"10. However, the atomic structure proposed for
this interface is questionable because it requires silicon atoms
that have coordinations rarely found elsewhere in nature. Here
we describe first-principles calculations of the formation of the
interface between silicon and strontium titanate and its atomic
structure. Our study shows that atomic control of the inter-
facial structure by altering the chemical environment can
dramatically improve the electronic properties of the interface
to meet technological requirements. The interface structure
and its chemistry may provide guidance for the selection
process of other high-k gate oxides and for controlling their
growth.

Interfacing a new oxide with silicon is a major challenge. A gate
oxide has to fulfil a number of requirements in addition to intrinsic
properties such as the high dielectric constant and low defect
concentrations. The gate oxide must also be chemically stable in
contact with silicon, it must have a sufficiently large injection
barrier, and it must not have interface states in the bandgap of
silicon. Oxides related to silicon dioxide, used in today's transistors,
uniquely fulfil these requirements owing to their strong bonds to
silicon and their flexible bonding network. They fail only because of
their low dielectric constant. Retaining the same beneficial proper-
ties for high-Jt oxides has turned out to be very difficult. The first
high-It oxides introduced technologically are likely to be amorphous
oxides or silicates of Hf and Zr with an interfacial SiO2 layer. By
around 2010, however, the projected miniaturization of transistors
will mean that an interfacial SiO2 layer will no longer be tolerable
and oxides with an atomically well-defined interface with silicon
will be required.

Before discussing the formation of the interface, we need to
review the clean (001) surface of silicon and describe its changes due
to Sr adsorption. On the unreconstructed silicon surface the atoms
form a square array. Owing to a lack of upper bonding partners,
each atom has two singly occupied dangling bonds pointing out of
the surface. Pairs of silicon atoms dimerize, using up one dangling
bond per atom to form the dimer bond. This is called the 'dimer
row' reconstruction. A second rearrangement leads to the 'buckled
dimer' reconstruction, in which one atom of each dimer lifts up and
the other shifts down, resulting in a buckled dimer. This buckling
causes both electrons to localize in the upper silicon atom of a
dimer, whereas the other silicon atom with the empty dangling
bond prefers a more planar arrangement.

By depositing various amounts of Sr atoms onto the Si(001)
surface we explored the structural complexity of Sr adlayers". This
enables us to attribute atomic structures to the periodicities
observed experimentally10*12. Here we summarize only the findings
relevant for the present topic: initially each Sr atom donates two
electrons into the empty dangling bonds of the surface. As Sr is
added, the dimer buckling vanishes because both dangling bonds of
a Si dimer become filled with electrons. Similar to Ba (refs 13,14), Sr
first occupies the trough between the dimer rows, in the centre of
four dimers. At a coverage of half a monolayer all positions in
the trough are occupied and each dimer dangling bond is filled
with two electrons. This (2 X 1) structure is the only Sr-covered
surface without surface states in the bandgap of silicon. Therefore, it
is a suitable building block for an interface without states in the
gap, as required for device applications. The finding of a sizeable
bandgap also explains why this surface is fairly resistant to oxi-
dation15.

Thus we found that the substrate surface can be chemically
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saturated by half a monolayer of Sr. Such a surface is 'isoelectronic'
to an H-terminated silicon surface. Hydrogen is known to be very
effective at passivating silicon. In the following, we therefore refer
to the Si surface covered with half a monolayer of Sr as the
Sr-passivated substrate.

After having gained insight into the metal overlayers, we investi-
gated the formation of an oxide layer. We start from the Sr-passi-
vated substrate and simulate the deposition of one layer of SrO.
During a heating cycle to 600 K this single oxide layer reconstructs
significantly. However, after placing two or more layers of SrO or
SrTiOj on top of the reconstructed SrO layer, the oxide layers
crystallize into the perfect bulk structure. Thus we obtain an
atomically abrupt interface between the silicon substrate and the
high-it oxide. This interface structure, denoted A and shown in Fig.
1, corresponds to the Sr-passivated silicon surface matched to the
nonpolar SrO layer of the oxide.

After the chemical saturation of the substrate surface with half a
monolayer of Sr, the second-most-important property is the match-
ing of the charge patterns of the oxide and the Sr-passivated
substrate surfaces joined at the interface. Whereas the SiO2/Si
interface relies on strong covalent bonds across the interface and a
flexible bond network of the oxide, the interface described here is

based on the chemical saturation of the silicon surface with an
alkaline earth metal, so that a template for the deposition of a
matching oxide is obtained.

In a device the interface is exposed to a number of chemical
influences that affect the stability of the stack. The most
critical question is the stability of the interface with respect to
oxidation. Oxygen ions can diffuse out of the gate oxide to the
interface.

To explore how the interface changes upon oxidation, we have
added oxygen atoms to a wide range of different sites. Oxygen first
attacks the surface silicon atoms at their vacant coordination sites.
After introducing one monolayer of oxygen into the interface all
these sites are consumed. The resulting structure, denoted B, is
shown in Fig. 1. Additional oxygen atoms, up to a total oxygen
content of 1.5 monolayers, insert into the dimer bonds. As
explained below, structure B and the dimer-oxidized variant of
structure B are the optimum choices for device applications.

Figure 2 illustrates the phase boundaries of the interfaces as a
function of the oxygen chemical potential. The chemical potential is
defined as the energy required to add a single oxygen atom to the
system. It is the driving force for oxidation, which can be controlled
externally, for example, by choosing the appropriate temperature

£ Oxygen Strontium

Figure 1 Atomic structures of the SrTi03/S(001 ) interfaces: structure A (on left),

unoxidized interface; structure B (on right), oxidized interface. Top, view slightly off the

[110] direction of silicon, which is parallel to the [100] direction of the oxide. The topmost

layer corresponds to the oxide surface of our slab calculation. Bottom, view along the

interface normal of the interface layer.
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and oxygen partial pressure during growth. In thermal equilibrium
the chemical potential is related to the partial pressure and tem-
perature of the growth chamber. It should be noted, however, that
the formation of the stack mostly involves non-equilibrium pro-
cesses, so that the chemical potential at the interface lags behind the
value reached in the growth chamber. The oxygen chemical poten-
tial needs to be sufficiently low to avoid formation of an interfacial
SiO2 layer but high enough to avoid a large oxygen vacancy
concentration in the gate oxide, which may cause trap-assisted
leakage currents.

Our results indicate that structures A and B can be formed
selectively in the absence of an interfacial SiO2 layer. The processing
window—the stability region of interface B—extends from —0.24 to
0.05 eV and corresponds to a range of partial pressures of nearly
three orders of magnitude at 1,000 K. This region lies almost entirely
below the coexistence line of Si and SiO2-

In addition, we find indications of sizeable thin-film effects,
which delay the formation of an interfacial SiO2 layer. This can be
inferred from the fact that the oxidation of all dim er bonds requires
a chemical potential of 0.19eV, and subsurface oxidation starting
from interfaces A or B requires energies in excess of 0.91 eV above
the coexistence line of Si and SiO2.

The interface structure proposed in this work is quite different
and much simpler than previously assumed: it was believed that an
interfacial suicide8'' or silicate"17 layer must be formed. Such a layer
is not present in the interface that emerged from our simulations.
Nevertheless, our simulated SrTiO3/Si(001) interfaces reproduce
the undisputed features of the Z-contrast images of ref. 8, such as
the pattern of interfacial Sr atoms and the oxide-substrate registry.
Thus the lateral alignment of the columns of Sr and Ti atoms relative
to the Si substrate and the ( 2 X 1 ) periodicity can clearly be
identified.

We also performed calculations on the interfaces proposed by
McKee and co-workers"1'10 and by Wang and co-workers"117. As also
shown previously1*, the former interface"-9 is metallic, which is
detrimental for device applications. The same applies for the latter
structural proposal1617, which reconstructs significantly upon
relaxation.

On the basis of electron-count arguments, Robertson and
Peacock recently proposed a structure18 that is related to our

-0.24 eV

-0.60 eV

Figure 2 Phase diagram for interface oxidation. Shaded areas indicate the stability
regions of the defect-free interfaces A and B and the dimer-oxidized variant of interface
B. The blank regions separating them correspond to disordered structures with an oxygen
content that increases with increasing chemical potential. The external parameter is the
oxygen chemical potential. The zero of the chemical potential corresponds to the
coexistence of bulk Si and Si02 (a-quartz) in thermal equilibrium.

dimer-oxidized variant of structure B. It differs in that the oxide
starts with the TiO2 layer instead of a SrO layer and it is derived
from a c(2 X 2) dimer reconstruction of the silicon surface. If we
modify our interface by terminating the oxide with a TiO2 layer
instead of a SrO layer, it is more stable than Robertson's proposal
by 0.19eV per (1 X I) surface unit cell. Having an oxide termi-
nated by SrO is, however, favourable compared to TiO2 termi-
nated oxides, because the TiO2 layer and the substrate in direct
contact are expected to react, as pointed out1*. Conceptually
similar interfaces with a TiO2 interrace layer have been investi-
gated1', ruling out their use in devices on the basis of their
electronic properties.

A critical parameter for gate stacks is the injection barrier, which
is the offset between the conduction band edges of the silicon
substrate and the oxide. It prevents electrons from entering the
oxide conduction band, where they can cross the gate oxide. For
device applications the injection barrier should be larger than 1 eV
(ref. 3). There are indications2"1 that the injection barriers for most
high-fc oxides are too low.

Before we discuss our results on the band offsets we need to
briefly touch upon the bandgap problem of density functional
theory (DFT)2"5: typically the one-particle energies obtained in
these calculations underestimate the bandgap. Therefore, there is an
uncertainty in our calculated injection barriers. Assuming that the
error of the valence band edge is negligible, as required in exact DFT,
and using the experimental bandgaps of silicon and SrTiO3 (ref. 24),
we anticipate that our calculations underestimate the injection
barrier by 0.7-0.8 eV.

For interface A we obtain an injection barrier that is negative by
0.6 eV. Including our correction, we estimate the injection barrier to
lie at 0.1-0.2 eV. The injection barrier lies below the technologically
required minimum.

For interface B, however, we obtain a positive injection barrier of
0.5 eV. Adding the correction, our final estimate yields a positive
injection barrier of 1.2-1.3 eV, which fulfils the criterion. The
margin is sufficiently large that a reasonable error in the band-
offset correction does not lead to an unacceptably low injection
barrier. Most important is the ability to influence the injection
barrier by carefully choosing the processing conditions.

Note that band offsets are frequently derived from the proper-
ties of the two bulk materials alone21, disregarding the interface
structure and composition in detail. The interface between silicon
and SrTiO3 is an example where the band offset can be engin-
eered by controlling the chemical environment. The change of
the band offset due to oxidation is about 1.1 eV, and is thus
sizeable. It results from a dipole created when the electrons are
transferred from the filled dangling bonds of the surface silicon
atoms to the oxygen atoms that attach to the vacant coordination
sites.

The injection barrier of interface B is fairly insensitive to
additional oxidation of the dimer bonds. An amorphous interfacial
SiO2 layer is likely to destroy these restrictions and thus lead to a
lower injection barrier. D

Methods
We performed state-of-the-art electronic structure calculations and ab inttio molecular
dynamics simulations" based on density functional theory1"3-2* and the projector
augmented wave method1'.

The calculations have been done on 5-layer slabs of silicon. The slab calculations
included a vacuum region of at least 6 A between repeated slabs. The relevant calculations
of the interfaces arc done in a (2 X 2) supcrccIL AU structures are relaxed without
symmetry constraints. The hydrogen-terminated silicon back plane has been kept
frozen.

Our calculations used a plane wave cutoff of 30 Ry for the plane wave part of the wave
function. We used the frozen-core approximation. Semi-core states of Sr and Ti have,
however, been treated as valence electrons. We used the following sets of projector
functions per angular momentum: 2$2pld for oxygen, 2$2pld for silicon, 3s2p2d for
strontium and 2s2p2d for titanium.

For all calculations of Sr adsorption we used a grid with about 64 lateral Jt-points per
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( l x l ) surface unit cell. For the interfaces we used a grid corresponding to 16 Jt-points per
( l x l ) unit cell For metallic structures we used the Mermin functional with a
temperature of 1,000 K and the extrapolation to zero Kelvin proposed in
rcf. 28.

The band offsets have been derived by relating the plane wave part of the potential,
averaged laterally, to band edges. The relative displacement between potential and band
edges has been obtained from the epitaxially strained bulk materials.

The phase diagram in Fig. 2 was obtained from the total energies as a function of the
oxygen chemical potential. A number of different, stoichiometric and non-stoichiometric,
interface structures with varying oxygen content have been considered. The regions where
one of the stoichiometric interfaces (A, B or the dimer-oxidized variant of 8) is most stable
are shaded. Tests for the upper boundary of interface A with larger, that is (4 X 4), unit cells
confirmed that the phase boundaries obtained in (2 X 2) unit cell are reliable to about
0.03 eV.
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The ocean's biological pump strips nutrients out of the surface
waters and exports them into the thermocline and deep waters. If
there were no return path of nutrients from deep waters, the
biological pump would eventually deplete the surface waters and
thermocline of nutrients; surface biological productivity would
plummet. Here we make use of the combined distributions of
silicic acid and nitrate to trace the main nutrient return path
from deep waters by upwelling in the Southern Ocean1 and
subsequent entrainment into subantarctic mode water. We
show that the subantarctic mode water, which spreads through-
out the entire Southern Hemisphere" and North Atlantic
Ocean3, is the main source of nutrients for the thermocline. We
also find that an additional return path exists in the northwest
corner of the Pacific Ocean, where enhanced vertical mixing,
perhaps driven by tides4, brings abyssal nutrients to the surface
and supplies them to the thermocline of the North Pacific Our
analysis has important implications for our understanding of
large-scale controls on the nature and magnitude of low-latitude
biological productivity and its sensitivity to climate change.

The classical explanation for the observed nutrient distribution of
the ocean in the low latitudes is that the downward flux of biogenic
material from the surface of the ocean is balanced by upwelling of
dissolved inorganic nutrients driven by vertical mixing in the main
thermocline. This essentially one-dimensional view grew out of
early theories of thermocline and thermohaline circulation that are
no longer tenable. Estimates of the magnitude of vertical mixing in
the main thermocline are about an order of magnitude smaller than
required to explain the vertical profiles of tracers within this
feature5. In addition, ocean model simulations of radiocarbon
distribution show that balancing the formation of deep waters by
upwelling through the main thermocline gives results that are
inconsistent with observations1. Instead, these studies suggest that
a more likely return path for the deep water to the surface is in the
Southern Ocean1.

Subantarctic Mode Water (SAMW) has been identified as the
main conduit of nutrients from the Southern Ocean to the upwel-
ling regions of the equatorial Pacific and off South America'. The
SAMW is a pyenostad (a layer of relatively uniform density) that
originates in the thick wintertime mixed layers that ring the
Southern Ocean7 (Fig. Id). This belt, which is particularly strong
eastward of the central Indian Ocean to the western South Atlantic,
coincides with the Subantarctic Zone (SAZ) between the Subtropi-
cal Front at about 40-45° S and the Subantarctic Front at about 45-
55° S, and appears to also include the Polar Front Zone (PFZ)
between the Subantarctic Front and Polar Front just to the south
(Fig. Id). The SAMW pyenostad increases in density from
<ie = 26.5 (equivalent to 1,026.5 kg m~3) in the western Atlantic
to oe = 27.1 in the southeast Pacific8 as it flows in an eastward
circuit around the Southern Ocean.

<B 2003 Nature Publishing Group NATURE | VOL 42711 JANUARY 20041 www.nature.com/nature
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First-principles calculations of strontium on
Si(001)

This publication provides a consistent picture of the chemistry of Sr on the Si (001)
surface. Starting from an isolated Sr ad-atom, we explore the adsorption struc-
tures up to a coverage of 4/3 ML and propose a surface phase-diagram which is
compatible with recent experimental results.
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First-principles calculations of strontium on Si(001)
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This paper reports state-of-the-art electronic structure calculations on the deposition of strontium on the
technologically relevant, (001) orientated silicon surface. We identified the surface reconstructions from 0 - j
monolayers and relate them to experimentally reported data. A phase diagram is proposed. We predict phases
at g, 5, \, §, and 1 monolayers. Our results are expected to provide valuable information in order to understand
heteroepitaxial growth of a prominent class of high-K oxides around SrTiO3. The insight obtained for stron-
tium is expected to be transferable to other alkaline-earth metals.
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L INTRODUCTION

Device scaling has been the engine driving the microelec-
tronics revolution as predicted by Moore's law.1 By reducing
the size of transistors, processors become faster and more
power efficient at an exponential rate. Currently the main
challenge in device scaling is the integration of high-^T ox-
ides as gate oxides into silicon technology.

The gate oxide is the dielectric of a capacitor, which is
used to attract charge carriers into the channel region. Thus a
current can flow from source to drain, provided a voltage is
applied to the gate electrode. With a thickness2 of only 1-2
nm the gate dielectric is the smallest structure of a transistor.
As the thickness of the gate oxide is further reduced, its
insulating property is lost due to direct tunneling through the
ultrathin oxide. The results are intolerable leakage currents
and a large power consumption.

A remedy to this problem is the replacement of the current
SiO2 based gate oxides with an insulator having a larger
dielectric constant, a so-called high-K oxide. A high-tf oxide
gate with the same capacity as an ultrathin SiO2 based one
will be thicker and should therefore exhibit smaller leakage
currents due to direct tunneling. The integration of new ox-
ides into the semiconductor technology has, however, proven
to be a major problem. Hence an enormous research effort is
underway to understand growth of high-K oxides onto sili-
con.

Currently, HfO2 and ZrO2 are the main contenders for the
first generation of high-^T oxides to be introduced in fabrica-
tion. These oxides still exhibit an interfacial SiO2 layer and
therefore do not form a direct interface with silicon. As scal-
ing proceeds, an interfacial SiO2 layer cannot be tolerated
anymore. The existence of an atomically abrupt interface be-
tween silicon and a high-K oxide has been demonstrated by
McKee etal?A for B a ^ r ^ T i C ^ on Si(OOl), after an epi-
taxial relationship has been reported in the late 1980's.5'6

A detailed understanding of metal adsorption is crucial to
control oxide growth on Si. The growth process is guided by
the sequence of structures that develop as the metal is depos-
ited on the silicon surface.3 The nature of these structures as
well as the interface between Si and a high-tf oxide is, how-
ever, still under debate.

The adsorption of the alkaline-earth metals Sr and Ba on
Si(001) has been extensively studied. Most of the studies of
Sr on Si(001) are diffraction studies such as low-energy elec-
tron diffraction7"12 (LEED) and reflection high-energy elec-
tron diffraction13"16 (RHEED) or scanning tunneling
microscopy8-912 (STM) experiments. The STM studies have
been most valuable because these contribute detailed real-
space information on the atomic scale. Similar LEED,17"19

RHEED,20 and STM (Refs. 21-25) as well as x-ray photo-
emission studies26'19 (XPS) have been performed for Ba.
X-ray standing-wave experiments provide valuable restric-
tions on the structures with coverages of 1/2 and 1/3 mono-
layer (ML).27 The photoemission2811 studies provide insight
into the ionization state of Sr, and show a qualitative change
of the Fermi-level pinning as a function of coverage.11

Diffraction studies suffer from the fact that these average
over several structures and terraces. Here STM experiments
provide valuable clues. One of the major experimental diffi-
culties is the determination of the coverage at which the data
are collected.11

Theoretical investigations of isolated Ba atoms adsorbed
on Si(001) have been performed by Wang et al.29

In this work we address the deposition of Sr on Si(OOl)
using state-of-the-art electronic structure calculations. We at-
tempt to provide a complete set of adsorption structures,
their energetics, chemical binding and electronic structure.
We will categorize the reconstructions by pointing out the
driving forces that lead to the various ordered structures.
This provides a unified picture of Sr adsorption from low
coverage up to 4/3 ML.

II. COMPUTATIONAL DETAILS

The calculations are based on density-functional
theory30-31 (DFT) using a gradient corrected functional.32 The
electronic structure problem was solved with the projector
augmented wave method,33 an all-electron electronic struc-
ture method using a basis set of plane waves augmented with
partial waves that incorporate the correct nodal structure.
The frozen core states were imported from the isolated atom.
For the silicon atoms, we used a set with two projector func-
tions per angular momentum for s and p character and one
projector per angular momentum with d character. The hy-

0163-1829/2OO4/69(7)/0753O9( 13)/$22.50 69 075309-1 ©2004 The American Physical Society
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drogen atoms of the back surface had only one s-type pro-
jector function. For strontium we treated the 4s and 4p core
shells as valence electrons. Per angular momentum we used
three s-type and two p- and d-type projector functions. The
augmentation charge density has been expanded in spherical
harmonics up to € = 2. The kinetic-energy cutoff for the
plane-wave part of the wave functions was set to 30 Ry and
that for the electron density to 60 Ry.

A slab of five silicon layers was used as silicon substrate.
Wang et a/.2' report that the adsorption energy of a Sr atom
on the surface changes by 0.05 eV when between a 4-layer
slab and a 6-layer slab of silicon. In our calculations the
energy per additional silicon atom agrees to within 0.06 eV
with that of bulk silicon between a 4-layer and a 5-layer slab.
The dangling bonds of the unreconstructed back surface of
the slab have been saturated by hydrogen atoms. The lateral
lattice constant was chosen as the experimental lattice con-
stant a =5.4307 Â of silicon,34 which is 1% smaller than the
theoretical lattice constant. Since we always report energies
of adsorbate structures relative to the energy of a slab of the
clean silicon surface, the lateral strain due to the use of the
experimental lattice constant cancels out. The slabs repeat
every 16 Â perpendicular to the surface, which results in a
vacuum region of 9.5 A for the clean silicon surface.

The Car-Parrinello ab initio molecular dynamics35 scheme
with damped motion was used to optimize the electronic and
atomic structures. All structures were fully relaxed without
symmetry constraints. The atomic positions of the back plane
of the slab and the terminating hydrogen atoms were frozen.

Many of the Sr adsorption structures are metallic, which
requires a sufficiently fine grid in k space. We used an
equivalent to 8 X 8 points per (1X1) surface unit cell. This
value has been chosen after careful convergence tests for
surface structures, bulk silicon, and bulk Sr suicides (Fig. 1).
In cases where this k mesh is incommensurate with the size
of the unit cell we selected the closest, finer commensurate k
mesh.

For metallic systems, the orbital occupations were deter-
mined using the Mermin functional37 which produces a
Fermi distribution for the electrons in its ground state. The
electron temperature was set to 1000 K. In our case this
temperature should not be considered as a physical tempera-
ture but rather as a broadening scheme for the states obtained
with a discrete set of k points. The Mermin functional adds
an entropie term to the total energy, which is approximately
canceled by taking the mean of the total energy V{T) and the
Mermin-free energy F(T)=U(T)-TS(T) as proposed by
Gillan:38

PHYSICAL REVIEW B 69, 075309 (2004)

U{T=0)~\[F(T)+U(T)]. (1)

The forces are, however, derived from the free energy
F(T). Relaxation of the (3 X 1 ) 4/3 ML reconstruction at 0
K and 1000 K shows that the atomic positions at the two
temperatures differ by less than 0.06 À or 1.5% of the
nearest-neighbor bond length.

In order to express our energies in a comprehensible man-
ner, we report all energies relative to a set of reference ener-
gies. This set is defined by bulk silicon and the lowest-energy
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FIG. 1. it-point convergence: Energy in eV relative to the con-
verged value vs characteristic Jt-point spacing (Ref. 36). From top to
bottom: bulk silicon per atom; adsorption energy per Sr atom for a
coverage of 1/2 ML; bulk suicides SrSi Cmcm, SrS\2I4 ,/amd,
and SrSi2/M332 per atom. Our surface calculations used a it-point
spacing of 0.2 À" ' or the closest commensurate mesh.

polymorph of SrSi2 (/>4332). The reference energies are
listed in Table I. The reference energy Eo[Sr] for a Sr atom,
corresponding to the coexistence of bulk silicon and bulk
SrSi2, is extracted from the energy £[SrSi2] of the disilicide
calculated with a ( 8 x 8 x 8 ) f c mesh and the reference energy
of bulk silicon E0[Si] as

] = £[SrSi2]-2£otSi]. (2)

The bulk calculation for silicon was performed in the two-
atom unit cell with a ( 10X 10X 10) k mesh and at the experi-
mental lattice constant of 5.4307 À.34

For the surface calculation, we always subtracted the en-
ergy of a clean (4X2) silicon surface of the same slab thick-
ness, to account for the slab including hydrogen termination.

TABLE I. Reference energies used in this paper without frozen
core energy. See text for details of the calculation.

Energy [H]

£„ [Si]
£0 [Sr]
Eo [5-layer Si slab]
Eo [4-layer Si slab]

-4.0036
-31.1441
-21.1140
-17.1083

075309-2
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For the surfaces with j ML coverage of silicon we assumed
that the corresponding reservoir for the silicon atoms is a
silicon terrace. Hence, the reference energy for the 4.5 layer
silicon slab is the average energy of a 4-layer slab and a
5-layer slab. The terrace energy itself does not enter the limit
of an infinitely dilute step density.

In some of our structures the choice of unit cell has an
impact on the dimer buckling. We estimated the energy of a
buckling reversal from the energy difference of a (2 X 2) and
a (5 X2) supercell. The cell with an odd number of dimers
contains one buckling reversal. The calculated energy for
such a buckling reversal is 0.06 eV.

III. BULK SILICIDES

Before studying the adsorption of Sr on silicon, we inves-
tigated the bulk suicides of Sr. The energetics of bulk sui-
cides provide us with the driving force to go from ordered
surface structures to suicide grains on the surface. Our cal-
culations on early transition metals on silicon indicate that
silicide formation is a major problem for layer-by-layer
growth of an oxide.39

The binding characteristics of the bulk suicides provide us
with insight into the favored structural templates which
might be anticipated for the Sr-covered silicon surface.

Sr silicides are typical Zintl compounds. According to the
Zintl-Klemm concept,40 atoms with an increased number of
electrons form similar structures as atoms with the corre-
spondingly increased atomic number. Consequently, a charge
transfer of one electron to silicon will result in a preferred
bonding environment similar to phosphorous with three or
five covalent bonds. Addition of two electrons will result in
chainlike structures like sulfur. After addition of three elec-
trons, one anticipates formation of dimers and once four
electrons are transferred, isolated ions are expected. In other
words, for every added electron one covalent bond will be
missing.

Due to the large difference in electronegativity, Sr for-
mally donates its two valence electrons to the silicon sub-
strate.

(1) In SrSi2 one electron is transferred per silicon atom.
Hence threefold coordinated silicon networks are formed as
shown in the top two structures of Fig. 2.

(2) Two electrons are transferred in SrSi so that the silicon
network is similar to that of elemental sulfur with two-
coordinated silicon atoms forming Si chains as seen in the
middle left panel of Fig. 2. The middle right panel shows
another modification of SrSi. The average number of cova-
lent bonds per silicon atom is, however, still 2.

(3) In Sr5Si3 there is a charge transfer of ten electrons to
three silicon atoms, which can be used to form two Si3 ~ ions
and one Si4~ ion. The two Si3" combine to form dimers and
the Si4" is no more able to form covalent bonds. Hence we
observe an equal number of Si dimers and single Si ions in
the structure of Sr5Si3 as shown in the lower left panel of
Fig. 2.

(4) In Sr2Si four electrons are transferred to each silicon
atom. As a consequence, the Si atoms in the structure on the
bottom right of Fig. 2 do not form covalent bonds.

PHYSICAL REVIEW B 69, 075309 (2004)

FIG. 2. (Color online) Bulk silicide structures. Top left,
SrSi2(/4 t lamd) (Ref. 41); top right; SrSi2(P4332) (Ref. 42);
middle left, SrSi (Cmcm) (Ref. 43); middle right, SrSi (Immm)
(Ref. 44); bottom left, Sr5Si3(/4/mcm) (Ref. 45); bottom right,
Sr2Si (Pnma) (Ref. 46). The large, dark (red) spheres represent Sr
atoms; the smaller, light (beige) spheres represent Si atoms. Ener-
gies are listed in Table II.

We find SrSi2 (/>4332) to be the most stable phase of
silicides per Sr atom (Table II). Therefore we have chosen
this material to define, together with bulk Si, the reference
energy for Sr.

As a side remark, we note that a lower energy of a Sr
atom in a bulk silicide compared to the adsorbed Sr on the
surface does not automatically indicate the formation of sil-
icide grains during growth: The silicide formation may be
suppressed by the strain due to an epitaxial constraint by the
silicon lattice constant. Thus the formation of silicides is
expected to be delayed for thin films, because the bulk sili-

TABLE II. Energies per Sr atom of bulk silicides relative to our
reference energies.

E [Sr] [eV]

SrSi2 (/>4332)
SrSi2 (14,/amd)
SrSi (Cmcm)
SrSi (Immm)
Sr5Si3 (lAlmcm)
Sr2Si (Pnma)

0.00
0.01
0.09
0.20
0.39
0.45

075309-3
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cides have a large mismatch with the silicon substrate. This
argument does not refer to the thermodynamic equilibrium of
large samples, but it indicates that nucleation of suicide
grains will have to overcome a large barrier.

IV. THE CLEAN SILICON SURFACE

The clean (001) silicon surface has a c(4X2) dimer-row
reconstruction. We briefly summarize the driving forces to-
wards this reconstruction in order to understand the adsorp-
tion structures of Sr on silicon.

An unreconstructed surface of silicon (001) is terminated
by a square, (1X1) array of atoms. Each silicon atom on the
surface is connected by two bonds to the subsurface. Conse-
quently, there are two half-occupied dangling bonds on each
silicon sticking out of the surface.

Each pair of surface silicon atoms forms a dimer bond
which saturates one of the two dangling bonds on each atom.
The dimers arrange in rows. This is the so-called (2X1)
dimer-row reconstruction which results in an energy gain of
0.65 eV per (1X1) unit cell according to our calculations.

In a second reconstruction, both electrons in the dangling
bonds localize on one atom of each dimer, resulting in a
dimer buckling. The buckling is driven by the fact that an
sp3 hybridization is favored for a five-electron species such
as the negative Si atom, while an sp2 hybridization is fa-
vored for a three-electron species such as the positive silicon
atom. The sp2 hybridization in turn favors a planar bonding
environment, whereas three-coordinated sp3 bonded atoms
form an umbrellalike environment. In the buckled-dimer row
reconstruction, the electrons are localized on the atoms stick-
ing out farthest from the surface. The dimer buckling can be
considered as a Peieri's distortion which splits the half-filled
energy bands resulting from the dimer bonds into a filled and
an empty band, with a band gap in between. The energy gain
due to this distortion is 0.12 eV per (1 X1 ) cell.

The energies quoted here are in reasonable agreement
with previously published local-density approximation
pseudopotential calculations.47 The dimer reconstruction can
be considered to be fairly stable. Even at 1500 K only 3% of
the dimer bonds are broken, as estimated from the Boltz-
mann factor with A£ = 0.65 + 0.12 eV.

Two neighboring buckled dimer rows interact only
weakly. We obtain an energy difference of 1.2 meV per
dimer between the c(4X2) reconstruction with antiparallel
buckling and the p(2X2) reconstruction with parallel buck-
ling on neighboring dimer rows. This indicates that the buck-
ling patterns of different rows are fairly independent of each
other.

Within a row, however, the buckling of the dimers is
coupled in an anticorrelated manner. This can, at least partly,
be explained by the fact that the lower silicon atom of a
dimer pushes the two adjacent subsurface silicon atoms
apart. For the equivalent silicon atom of the next dimer, it is
therefore favorable to be in the higher, s p3-like
configuration.48

There has been an intense debate as to whether there is
dimer buckling or not. STM images reveal a 2 X 1 structure.
They exhibit the buckling only at rather low temperatures

PHYSICAL REVIEW B 69, 075309 (2004)

FIG. 3. Top view of the Si(001) surface and the four high-
symmetry positions spanning the surface irreducible (2X1) unit
cell. The dimer buckling is not shown. The energies are listed in
Table III.

and near defects. The theoretical predictions depend strongly
on the approach chosen (cluster calculations with configura-
tion interaction or density-functional calculations with peri-
odic boundary conditions). The most conclusive results have
been produced by quantum Monte Carlo simulations,49 indi-
cating that the buckling is present and density-functional cal-
culations just overestimate the energy difference.

The fact that STM experiments cannot resolve the dimer
buckling may be due to thermal averaging of the two buck-
led configurations. We believe that the mechanism is due to
the migration of a solitonlike defect in the anticorrelated
buckling pattern of a dimer row. The calculated energy for
this defect is 0.06 eV (see Sec. II). Thus we predict a con-
centration of one such defect per 11 dimers at room tempera-
ture. Typical tunnel currents in STM experiments are around
1 nA, which corresponds to six electrons per nanosecond.

Thus even a soliton migration barrier as large as 0.05 eV
would imply that the buckling changes once during the trans-
fer of a single electron. These estimates should be taken with
caution, since the small energy difference of 0.06 eV carries
a large relative error bar.

From the comparison between DFT and quantum Monte
Carlo calculations one can deduce an error bar of 0.05 eV per
(1X1) unit cell due to electron correlations.49 We verified
that this correction does not qualitatively affect the findings
reported in this paper.

V. ISOLATED Sr ON SILICON

In order to determine the low-coverage limit of Sr adsorp-
tion, we investigated the energy as a function of the lateral
position of a Sr adatom on the surface. The total energy as a
function of the lateral position of Sr is obtained by constrain-
ing the lateral movement of the Sr atom relative to the rigid
back plane of the slab. The calculations were performed in a
(4X4) surface supercell. We considered the high-symmetry
points of the (2X1) surface shown in Fig. 3 and the mid-
point between the local minima. The energies of the high-
symmetry positions are given in Table III.

Sr has the global minimum at position A as defined in Fig.
3. Sr is located in the trench between the dimer rows and in
the center of 4 surrounding dimers. The Sr atoms are slightly
elevated above the plane of the surface dimers.

A metastable position, D of Fig. 3, is located in between
two dimers on top of a dimer row. It is 0.29 eV higher in
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TABLE III. Relative energies of isolated Sr on the Si(001) sur-
face at the high-symmetry points of the surface irreducible unit cell
as well as the A-D midpoint. The labels refer to Fig. 3.
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Position A£ [eV]

A
B
C
D
A - D midpoint

0.00
0.55
0.75
0.29
0.61

energy than the global minimum. We will see that the struc-
tures A and D are repeating motifs in a range of different
adsorption structures.

The diffusion of Sr on the silicon surface proceeds about
equally fast parallel and perpendicular to the dimer rows,
with a slight preference for the parallel direction. The diffu-
sion barrier along the valley is equal to the energy difference
between sites A and B, namely, 0.55 eV, the one across the
row is 0.61 eV and is estimated by the midpoint between the
sites A and D

It should be noted that in our analysis we ignored the
reduced symmetry due to dimer buckling. As a result, differ-
ent versions of the high-symmetry points quoted here exist
with slightly different energies. For the structure A, we found
two versions which differ in energy by 0.15 eV. In these
cases the lowest-energy structure has been chosen.

In contrast to Sr, there has been a lot of work related to
isolated Ba atoms adsorbed on Si(OOl).29"21 Our results are in
line with previous calculations for isolated Ba on Si(OOl).29

We believe that both atoms behave in a similar fashion. Ba
has been found mostly on sites A in the trenches, and also on
sites D on top of the dimer rows. The main difference be-
tween Ba and Sr lies in the energy difference between the
two metastable sites A and D. For Ba the difference is 0.88
eV (Ref. 29) which is substantially larger than 0.29 eV for
Sr.

The chemical binding can be well understood in an ionic
picture as suggested by the chemical binding of the suicides.
The two electrons of the Sr atom are donated into an unoc-
cupied dangling bond of a Si dimer. Interestingly we find this
electron pair to be localized at a single dimer. This is evident
from the dimer buckling, which vanishes when both dangling
bonds are occupied.

The Sr atom experiences an additional electrostatic stabi-
lization from the remaining three buckled dimers next to it.
They are buckled such that the negative, and therefore raised,
silicon atoms are located next to the Sr atom. The local con-
figuration is shown in Fig. 4. This arrangement significantly
affects the buckling of the two dimer rows adjacent to the Sr
atom: (1) the buckling gets pinned and is therefore observed
in STM images in the vicinity of a Sr atom whereas it is
thermally averaged out on the bare surface; (2) the dimer
buckling within one row is reversed as already pointed out
by Wang el o/.29 This becomes apparent by looking at the
row left to the Sr atom in Fig. 4.

From the static structure shown in Fig. 4 it is not evident
why both dimer rows contain a buckling reversal as observed

FIG. 4. Schematic representation of the isolated Sr adatom at
position A. The filled circle represents the Sr adatom; the rectangle
represents a filled and therefore unbuckled Si dimer. The triangles
represent buckled dimers. The flat side of a buckled dimer indicates
the upper Si atom with a filled dangling bond, whereas the pointed
side indicates the lower Si atom with the empty dangling bond. The
charge transfer from the Sr adatom to one of the surrounding dimers
is indicated by the arrow; the preferred adsorption site (see Sec. VI)
in the neighboring valley by the open circle.

in Fig. l(b) of Yao et al.21 We attribute the experimental
observation to a dynamical effect: One electron pair can rap-
idly migrate from the filled dimer to one of the three buckled
dimers next to the Sr adatom. If this fluxional motion occurs
on a time scale faster than the time scale for a buckling
reversal of the entire chain, the buckling will appear pinned
in both dimer rows.

hi our supercell with an even number of dimers in a row,
every reversal of the buckling must be compensated by a
second one, thus artificially destabilizing site A. This adds an
uncertainty of up to 0.12 eV to all energies for the isolated
Sr. Even taking this uncertainty into account, isolated Sr ada-
toms do not form a thermodynamically stable phase at any
coverage as will be demonstrated in the following section.

VL CHAIN STRUCTURES AT DILUTE COVERAGES

The Sr atoms on the surface tend to arrange in chains, as
seen in the STM experiments.8'9 Similar results have been
obtained for Ba on Si(OOl).22

Our calculations predict random, single-chain structures
up to a coverage of £ ML. Between g ML and 3 ML we find
condensed, single- and double-chain structures. Above \ ML
the multiple-chain structures convert into disordered arrays
of double vacancies as will be discussed below. We investi-
gated chain structures with coverages of jç, ^, j , j , | ,
& , 5, A, and u ML. We find an energy gain of 0.3-0.4 eV
per Sr atom when single chains are formed from isolated Sr
adatoms on A sites.

The chain formation is driven by the electrostatic attrac-
tion between the positively charged Sr ions, located at A
sites, and the negatively charged dimers: An isolated Sr ion
located at an A site, with the lone pairs of the four neighbor-
ing dimers pointing towards it, donates its two valence elec-
trons into a silicon dangling bond adjacent to a neighboring
valley. Thus it offers a preferred binding site for a Sr atom in
that valley, namely next to this filled dangling bond as seen
in Fig. 4. This second atom in turn donates its electron pair to
the dimer row which does not already contain a negatively
charged dimer and all four surrounding dimers will rearrange
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to point their lone pairs towards the new adatom. This pro-
cess continues to form chains of Sr atoms. The filled dimers
are clearly identified by the absence of any buckling.

Two nearest Sr ions of one chain are displaced parallel to
the dimer row by one lattice constant in order to position the
filled dimer in between. Since the favorable Sr positions are
staggered with respect to the dimers, the chains run at an
angle of 30 deg relative to the direction of a dimer or 60 deg
with respect to the dimer rows. The small energy difference
of 0.02 eV per Sr ion between diagonal and zigzag chains at,
e.g., gth ML cannot be considered as a hard number due to
the systematic errors of DFT calculations. It does, however,
indicate that the energy cost for changing the direction of
such a chain is negligible so that these chains may meander
on the surface.

As for the isolated Sr adatom, an additional stabilization
occurs due to the dimer buckling of the surrounding silicon
dimers. The negatively charged, raised part of an adjacent
dimer is located next to the Sr ion, stabilized by electrostatic
and covalent interactions. Reversing the buckling of one of
the dimers next to a Sr ion raises the energy by 0.38 eV.50

This ordering induces a freezing of the dimer buckling,
which reaches far out into the clean silicon surface, as can be
clearly seen in the STM images by Hu et alP

At first sight one might think that there is a second pre-
ferred binding site in Fig. 4, right next to the initial adatom
on the A site below the open circle. This configuration is,
however, only possible for a pair of Sr atoms. A further con-
tinuation of such a chain perpendicular to the dimer row will
make it impossible to rearrange dimers in a way that only
filled dangling bonds are oriented towards the adatoms. Such
chains are therefore destabilized with respect to diagonal or
zigzag ones.

A favorable registry between two Sr chains is obtained if
the Sr atoms are either in contact or separated by an even
number of vacant A sites along each valley of the Si surface.
This follows from a simple building principle which is an
extension of what is already known from isolated chains.

(1) Each Sr atom is electrostatically stabilized by four
negatively charged silicon atoms located next to it. Negative
silicon atoms have two electrons in their dangling bond and
are in a raised, sp'-like bonding configuration. Violation of
this rule raises the energy by 0.38 eV per empty dangling
bond next to the Sr atom. At this level of abstraction we do
not distinguish between a negatively charged Si atom of a
buckled and an unbuckled dimer.

(2) There are no reversals of the dimer buckling in the Sr
free regions on the surface. A buckling reversal increases
energy by 0.06 eV. This is a consequence of the anticorre-
lated coupling of the dimer buckling within one row (see
Sec. IV).

When the chains approach the shortest possible distance
before they collapse into double chains, we obtain a partially
ordered structure at \ ML as shown in Figs. 5(c) and 5(d). It
should be noted that our calculations indicate that also the
condensed chains at 5 ML change their directions frequently,
even though synchronized with the neighboring chains run-
ning in parallel.

As the coverage increases, Sr atoms arrange themselves
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FIG. 5. Schematic representation of a set of chain structures.
Isolated chains are shown in the top row. The ordered single-chain
structures at 1/6 ML are shown in the middle row. The bottom row
shows the ordered structures at j ML. The left-hand side shows
straight (diagonal) chains running at an angle of 60° to the dimer
rows, while the right column shows zigzag chains perpendicular to
the dimer rows. See Fig. 4 for a description of structural elements.
The surface unit cells are outlined. The energies are listed in Table
IV.

into double chains as shown in Fig. 5(e), resulting in a par-
tially ordered surface structure at 3 ML. The " 1 XT' areas in
Fig. 4 of Ojima et al.u can be explained by double chains at
a 4 ML. Their interpretation that buckled Ba dimers at 5 ML
coverage are responsible for this "wavy structure" cannot be
supported by our calculations.

If we continue this building principle beyond 4 ML, we
will obtain sequences of triple, quadruple, etc., chains of Sr
atoms separated by double vacancies. However, the positions
of the double vacancies of different valleys are then only
weakly correlated. Double vacancies of neighboring valleys
can arrange themselves almost arbitrarily except that they do
not line up perpendicular to the dimer rows. This implies a
new building principle of double vacancies that do not nec-
essarily arrange in chains. Note that a multiple-chain struc-
ture of Sr atoms can also be interpreted as a chain structure
of double Sr vacancies. This building principle can already
be observed in Figs. 5(e) and 5(f) for | ML, which show that
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FIG. 6. Layer-projected density of states of the single-chain
structure at 1/6 ML. Values are divided by the number of atoms in
the layer. The vertical line at 0 eV indicates the Fermi level, the
arrow points at the characteristic surface band in the band gap of
silicon.

double vacancies in neighboring valleys can assume three
out of four relative positions. While the energy difference
between the structures in Figs. 5(e) and 5(0 is as small as
0.04 eV per Sr atom, it decreases further for the analogous
structural patterns for wider Sr chains. For coverages close to
j ML, when the concentration of double vacancies is dilute,
we therefore expect a nearly random arrangement of double

TABLE IV. Energies per Sr adatom relative to our reference
energies for all structures graphically represented in the figures un-
less not already tabulated elsewhere in the paper.

Sr coverage

l/oo
l/oo

1/6
1/6
i

1i
41
4
I
2

1
1
1

4/3

Figure number

5(a)
5(b)

5(c)
5(d)

5(e)

5(0
14 bottom

14 top
9

11 left

10 left
10 right

11 right

13

Energy/Sr [eV]

just schematic
just schematic

- 1 . 1 5
- 1 . 1 5
- 1 . 1 0
- 1 . 0 6

- 0 . 3 0
0.44

- 0 . 9 2
- 0 . 7 4

0.04

0.08
- 0 . 1 2

0.28

total

Sr

top SI

layer 1

layer 2

layer 3

layer 4

• i • i • i • i •

^ A

-10 - 6 - 4 - 2
Energy [eV]

FIG. 7. Layer-projected density of states of the double-chain
structure at j ML. Values are divided by the number of atoms in the
layer. The vertical line at 0 eV indicates the Fermi level, the arrow
points at the characteristic band states in the band gap of silicon.

vacancies instead of multiple chains.
The reciprocal lattice vectors for the diagonal chain struc-

tures are ( j ,0) and (± %,i), where n is the periodicity of the
the real-space unit cell [compare Figs. 5(c) and 5(e)] along
the dimer-row direction. It should be noted that there is some
structural disorder due to frequent changes in the chain di-
rection. For zigzag chains the corresponding reciprocal lat-
tice is spanned by the vectors (j-,0) and (0,;). The actual
diffraction pattern observed in experiment will contain a
mixture of both reciprocal lattices.

The density of states of the single-chain structure at \ ML
is shown in Fig. 6. The states on the Sr atom, which appear
in the valence band, can be attributed to the tails of the Si
dangling bonds, which hybridize with the St-s orbital. We
observe states in the Si band gap, which are assigned to the
empty dangling bonds on the buckled dimers. These states
actually form a single band that is separated from the valence
and conduction bands. The fact that they appear as individual
states is an artifact of our discrete sampling of the Brillouin
zone. This band pins the Fermi level in the lower part of the
band gap. This feature remains nearly unchanged in the den-
sity of states of the double-chain structure at \ ML (Fig. 7). It
disappears, however, with the absence of the half-occupied
dimers at j ML as seen in Fig. 8. Thus the gap states remain
approximately in their position as the coverage increases, but
the density of states is reduced. Hence the Fermi level will
remain pinned in the lower part of the silicon band gap up to
a coverage of j ML. At this point the Fermi level becomes
unpinned. In the following we will see that for coverages
above j ML states from the conduction band are pulled into
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FIG. 8. Layer-projected density of states of the (2 X 1 ) structure
at \ ML. Values are divided by the number of atoms in the layer.
The vertical line at 0 eV indicates the Fermi level.

the band gap of silicon, and pin the Fermi level in the upper
part of the band gap.

This finding explains the discontinuity of the band bend-
ing as observed by Herrera-Gomez et al. Their XPS studies
show that the Fermi level shifts up by almost 0.5 eV when
the coverage is increased from below j ML to above. How-
ever, it should be noted that such a discontinuity in Fermi-
level pinning is not specific to detailed structures: also
higher-energy structures exhibit a similar behavior.

VU. THE (2X1) RECONSTRUCTION AT j ML

At a coverage of j ML all dangling bonds of the surface
dimers are fully occupied (Fig. 9). It can be considered as the
canonical Sr covered Si surface. It is the only Sr covered
surface structure without states in the band gap of silicon.
This structure is "isoelectronic" to a hydrogen terminated
silicon surface and is therefore expected to be comparably
inert. The increased resistance to oxidation has already been
observed experimentally.12 A (2X 1 ) reconstruction at j ML
has already been reported by several authors.7"51'17'11'14

This structural template has been proposed to be the basic

FIG. 10. (Color online) Building blocks for the surface structure
with 1 ML coverage having a (2X1) (left) and a (1X1) (right)
reconstruction. The outlined circles represent single Si atoms in the
first layer. The energies are listed in Table IV.

building block of the interface between silicon and SrTiO3.52

Vm. FROM î ML TO 1 ML

For coverages between | ML and 1 ML, we find struc-
tures built up from three structural templates: (1) the (2
X 1) reconstruction at \ ML (Fig. 9), (2) the (2 X 1) recon-
struction at 1 ML (Fig. 10 left), and (3) the (1 X1) recon-
struction at 1 ML (Fig. 10 right)

When we increase the coverage above | ML, the addi-
tional atoms occupy the D sites, since all A sites are already
occupied. When all A sites and all D sites are occupied, as
shown in the left panel of Fig 10, the coverage is that of 1
ML. At this coverage, two electrons are transferred to each
silicon atom instead of only one as in the case of the | ML.
These electrons can fill the dimer antibonding states and thus
break up the dimer bond. When all dimer bonds are broken at
1 ML, we obtain a ( 1X 1 ) reconstructed silicon surface with
a Sr ion above the center of each square of silicon atoms
(Fig. 10 right). This structure is, however, never realized in
its pure form due to the large strain in the top layer. An
indication for the strain is the difference between the spacing
of Sr atoms in bulk SrSi (Fig. 2) and that of this hypothetical
surface structure. The former is larger by 25%. Nevertheless,
this pattern is found as a building block in a number of
low-energy structures between coverages of \ ML and 1

FIG. 9. (Color online) The (2X1) reconstructed surface at £
ML coverage. The energy is listed in Table IV.

FIG. 11. (Color online) The (3 X 1 ) structures for coverages 2/3
ML (left) and 1 ML (right). Energies are listed in Table IV.
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FIG. 12. Layer-projected density of states for the (3 X 1 ) surface
at 2/3 ML coverage. Values are divided by the number of atoms in
the layer. Note that the characteristic peak just below the Fermi
level is not a single state, but the top of a surface band extending
into the continuum of the valence band states. The vertical line at 0
eV indicates the Fermi level.

ML. The (1X1) reconstruction at 1 ML is unfavorable by
0.04 eV per Sr atom compared to the corresponding (2
X 1 ) structure.

By combining the (2X1) structure at j ML (Fig. 9) and
the ( 1 X 1 ) structure at 1 ML (right panel of Fig. 10), a series
of structures with increasing coverage and periodicity can be
formed: dimer rows are separated by stripes of the (1
X 1 )/l ML structure with increasing width. This leads to a
series of (n X 1 ) structures at a coverage of l i4r i ML. We

have investigated these structures from n = 3 to n = 6.
The first structure in the series is the 3 X1 reconstructed

surface at a coverage of f ML shown in the left panel of Fig.
11. It consists of dimer rows separated by a stripe of two Sr
atoms in the ( 1 X 1 )/l ML configuration. According to our
calculations, this structure is present as a distinct phase be-
tween Ï ML and 1 ML.

In order to form this structure the dimer row pattern needs
to reconstruct. This process is facilitated by the additional
electrons in the conduction band which weaken the dimer
bonds: beyond a coverage of j ML, Sr is likely to act as a
catalyzer for dimer bond rearrangement.

The density of states for this (3X1) structure (Fig. 12)
exhibits a surface band that ranges from the continuum of the
valence band of bulk silicon into its band gap. The surface
band is localized on the dangling bonds of the silicon dimers
and the undimerized silicon atoms. The Fermi level is pinned
between this band and the conduction band of silicon (see
also discussion in Sec. VI).

For coverages greater than f ML, that is, n > 3 , the struc-

PHYSICAL REVIEW B 69, 075309 (2004)

O _ CZ] _ O .

FIG. 13. (Color online) 4/3 ML coverage showing a 3X 1 sili-
cide layer. The energy is listed in Table IV.

tures can be interpreted as stripes with coverage of 1 ML
with a ( 1 X 1 ) reconstruction separated by dimer rows with-
out Sr, as discussed above. As the stripes with (1
X I )/l ML increase in width, they build up strain, which can
be released by forming dimer rows with Sr atoms on top
(Fig. 10 left). This corresponds to a transition between both I
ML structures shown in Fig 10. Since the energy difference
between these structural variants is smaller than 0.04 eV per
Sr atom, it is likely that they do not form distinct phases but
transform into each other in a fluxional fashion.

At a coverage of I ML we find a series of structures built
from the two structural templates in Fig. 10. In our calcula-
tions the (3X1) (Fig. 11) and (4X1) reconstructions are
most stable and, within the theoretical error bar, degenerate.
There is a slow increase in energy towards the ( 5 x 1 ) and
(6X1) reconstructions which are less than 0.11 eV per Sr
atom higher in energy.

K . BEYOND 1 ML

Beyond 1 ML additional Sr atoms deposit on top of the
silicon atoms in the ( 1 X 1 ) stripes. The first commensurate
structure is the (3X1) structure at a coverage of j ML
shown in Fig. 13.

Fan et al. have observed a (3 X 1 ) reconstruction at a cov-
erage of 1.3 ML, Bakhtizin et alP have published STM
images with a ( 3 X1 ) periodicity for a coverage of 1.2 ML.
There, alternating bright and dark stripes have been ob-
served, which we attribute to the Sr atoms on top of the
dimer rows (darker stripes) and those on top of the twofold
coordinated Si atoms (more prominent stripes).

X. THE (3X2) STRUCTURE AT \ ML

Diffraction and STM studies identify a (3X2) recon-
struction at \ ML.7-51-8-9-19-22-271"3'24 The diffraction studies
(LEED, RHEED) did not distinguish between the orienta-
tions parallel and perpendicular to the dimer rows as they
average over multiple terraces. Most previous studies as-
sumed that the 3 X direction of the (3 X 2) surface unit cell
is orientated parallel to the dimer rows.8'9'27'53 However, the
STM images of Hu et al.22 (Fig. 5) and Ojima et al.24 (Fig.
4) clearly show that the 3 X axis is orthogonal to the dimer-
row direction. This is particularly evident from the images
showing the phase boundaries between the (3X2) recon-
structed domains and chain structures. This observation im-
plies that the dimer row pattern is disrupted.

Our lowest-energy structures for this coverage are vari-
ants of the quadruple chain as described in Sec. VI. We have
been unable to determine a thermodynamically stable struc-
ture with a (3 X2) diffraction pattern at ; ML.
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FIG. 14. Suicide structures with a c(4X2) reconstruction at 3

ML: The j ML c(4X2) structure as proposed by McKee et ai
(Ref. 3) (top) and the lowest-energy structure we find for that
chemical composition (bottom). The large dark circles correspond
to Sr, the smaller, outlined ones to Si in the suicide layer (only in
the top figure) and the small black dots to Si atoms in the first full
layer. In the lower graph the Si atoms of the suicide layer have
formed dimers indicated by the triangles. Energies are listed in
Table IV.

Hu et al.22 suggested two (3X2) structures for g and \
ML. We simulated both of them and found them energeti-
cally unfavorable compared to the corresponding chain struc-
tures by more than 0.61 eV per Sr atom. Despite various
other attempts, we failed to arrive at a thermodynamically
stable surface structure with this reconstruction.

This failure may be attributed to our inability to scan the
entire phase space. However, one should also consider the
possibility of coadsorption of other elements such as hydro-
gen or oxygen, which may help to tie up the dangling bonds
created by disrupting the dimer-row pattern. These effects
have not been considered in the present study.

For the sake of completeness we also studied the model
for the \ ML coverage with the 3 X direction parallel to the
dimer row. It was lower in energy than the structures sug-
gested by Hu et al.22 Nevertheless, it turned out 0.23 eV per
Sr atom higher in energy than the quadruple chain structure.

XI. SrSi2 SURFACE LAYER

So far, we have discussed structures on a stoichiometric Si
surface. The atomic model for the interface between Si and
SrTiO3 by McKee et al.,3 which can be seen in the top panel
of Fig. 14, has inspired us to also investigate reconstructions
with only { ML of silicon in the surface layer. Such a struc-
ture can, in principle, be formed by the migration of Si atoms
or dimers from step edges onto the terraces. For a clean
surface this process is clearly not energetically favorable.
However, it cannot be excluded a priori that the presence of
Sr stabilizes a surface with j ML of silicon.

We started from the structure proposed by McKee et al?
which consists of \ ML of Sr and j ML of Si. In this struc-
ture the Sr atoms occupy every second A site in the valleys,

0.4

0-2

•fi
m 0.0

• M

1/6 1/4 1/2 2/3 1 4
Sr Coverage [ML]

FIG. 15. (Color online) The adsorption energy (Ref. 55) per
(1X1) unit cell as a function of Sr coverage. The open diamonds
represent thermodynamically accessible structures, the triangles
correspond to metastable structures.

while the Si atoms deposit on top of the center of four sub-
surface Si atoms. We restricted our search to the c(4X2)
periodicity reported by McKee et al.

We find a number of metastable structures, the most stable
one (Fig. 14 bottom) differs substantially from the proposal
by McKee et al. The j ML of silicon on the surface com-
bines into dimers, a behavior already known from Si ada-
toms on Si(001).54 The Sr atoms occupy positions in the
center of four such dimers.

The energy of this structure is, however, still higher by
0.80 eV per Sr adatom than our lowest-energy structure at
this coverage, namely, double chains of Sr atoms. The energy
was evaluated relative to the average of a 4-layer and a
5-layer slab, representing a terrace. This energy thus de-
scribes the process of adsorption of Sr and the decomposition
of two terraces into a single terrace with an additional j ML
of silicon.

We consider the difference in formation energy of 0.80 eV
per Sr atom, relative to our lowest-energy structure at this
coverage, as too large for this structure to be physically rel-
evant.

XII. PHASE DIAGRAM

We now investigate which of the reported structures form
at given experimental conditions. The thermodynamic stabil-
ity is determined by the zero-Kelvin Gibbs free energy
G(fi) = E — fiN, where E is the energy per Sr atom and N is
the number of Sr atoms, fi is the chemical potential of the Sr
atom relative to our reference energy for Sr. The extrinsic
quantities, such as energies G and £, as well as the atom
numbers are measured per (1X1) unit cell of the silicon
surface. In Fig. 15 we show the adsorption energy E per (1
XI) surface unit cell.

The thermodynamically stable phases are determined by
connecting the points in Fig. 15 by line segments and form-
ing the lower envelope. Each line segment corresponds to the
coexistence of two phases, denoted by a and b, at the ends of
the line segment with energies Ea and Eb and Na and Nb Sr
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FIG. 16. One-dimensional phase diagram of Sr on Si(OOl) as a
function of the Sr chemical potential. The shaded region between
the j and \ ML phases indicates disordered surface structures as
described in Sec. VI. Above the dashed line at a chemical potential
of 0 eV bulk Sr suicides are thermodynamically stable compared to
surface structures.

atoms per (1X1) unit cell. For a coverage N per (1X1) unit
cell between Na and Nb, the energy is E(N) = Ea + (Eb

-Ea)l(Nb-Na)(N-Na). The slope of the line segment,
namely, fi = dE(N)/dN=(Ea-Eb)/(Na-Nb), is the chemi-
cal potential at which both phases a and b coexist. All struc-
tures not contributing to the lower envelope are not thermo-
dynamically stable at low temperatures. At higher
temperatures they may be stabilized due to entropie effects.

The one-dimensional phase diagram is shown in Fig. 16.
The region in between two lines corresponds to the different
surface phases. The lines indicate the coexistence of the two
neighboring phases.

We find thermodynamically stable phases at 5 ML and 3
ML. We did not fully explore the phase diagram below \
ML. In this region we find single-chain structures as shown
in Figs. 5(a) and 5(b). Entropie effects disorder the arrange-
ment of chains at room temperature.

At \ ML we find an ordered structure of double chains.
Beyond \ ML we predict nearly random arrangements of
double vacancies. The double vacancy is stabilized relative
to the single vacancy due to a favorable dimer buckling.

The structure at j ML is a clear phase boundary for a wide
range of chemical potentials.

The next phase boundary is found at a coverage of § ML
with a (3 X 1 ) reconstructed surface. Above § ML there are a
number of low-energy structures with various coverages and
an (n X 1 ) periodicity.

Within the phase region of the § ML coverage, bulk Sr
suicides become thermodynamically stable as indicated by
the dashed line in Fig. 16. As mentioned above, we expect
the onset of suicide formation to be significantly delayed due
to thin-film effects as the bulk Sr suicides are highly incom-
mensurate with the Si(001) substrate.

It is of interest to compare our phase diagram with that

PHYSICAL REVIEW B 69, 075309 (2004)

obtained by McKee et al.16 At around 600 C they determine
three line compounds at 3 ML, | ML, and f ML. Our calcu-
lations reproduce phase boundaries at j ML and j ML. The
next phase with a (3X1) diffraction pattern is seen at f
= 0.625 ML, which is close to the coverage of 5, where our
calculations predict a phase with the identical periodicity.
The difference in coverage corresponds to a change by 1 in
16 adatoms or j ; ML. This difference may be attributed to
occasional Sr vacancies, which help to release strain.
It seems surprising that no phase boundary is seen at j ML.
This may be due to the fact that, on the one hand, the
(2X1) structure develops continuously out of the multiple
chains structures below \ ML and, on the other hand, it can
be transformed continuously into the (3X1) structure by
introducing thin stripes with local coverage of 1 ML.

The multiplicity of structures with low energy above a
coverage of j ML suggests the presence of disordered struc-
tures at elevated temperatures. McKee reports incommensu-
rate structures beyond a coverage of f ML.16

A similar multiplicity of structures is found for 1 ML. Our
calculation predicts a (3 X1 ) structure as the most favorable.
However, we find also ( 4 x 1), (5X1) , and (6X 1) recon-
structions within a window of 0.11 eV per Sr atom.

We did not extend our calculations beyond \ ML, where
an overlayer of metallic Sr is formed. Therefore, our data do
not necessarily indicate the presence of a phase boundary at
4/3 ML.

XIII. CONCLUSIONS

In this paper we have investigated the surface structures
of Sr adsorbed on Si(001) as a function of coverage. We
propose a theoretical phase diagram by relating the phase
boundaries at zero temperature to chemical potentials,
which can be converted into partial pressure and temperature
in thermal equilibrium. We predict phases at 5 ML, \ ML,
5 ML, I ML, and 1 ML. Structural models are discussed
for all experimentally observed reconstructions except a
(3X2) reconstructed layer attributed to a coverage of \ ML.
The models are explained in terms of structural templates
and rationalized in terms of their electronic structure.

Our findings elucidate the chemistry of alkaline-earth
metals on Si(001) and the phases of Sr on Si(001), which is
expected to provide critical information for the growth of
one of the most promising high-Jf gate oxides to date,
namely, SrTiO3.
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6.3 Phys. Rev. B 70, in press:
The chemistry of La on the Si(001) surface:
ab-initio electronic structure calculations

This paper explores the adsorption structures of La on Si(OOl). We find that
the La ad-atoms behave quite similarly to Sr at low coverages (compare publica-
tion 2). Above a coverage of 1/3 ML, La is in a 2+ oxidation state and behaves
identically to Sr. The La adsorbate structures, however, are only thermodynam-
ically stable up to a coverage of 1/3 ML.
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The chemistry of La on the Si(OOl) surface from first principles

Christopher R. Ashman,1 Clemens J. Forst,1'2 Karlheinz Schwarz2 and Peter E. Blöchl,1'*
1 Clausthal University of Technology, Institute for Theoretical Physics,

Leibnizstr.10, D-38678 Clausthal-Zellerfeld, Germany and
2 Vienna University of Technology, Institute for Materials Chemistry,

Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
(Dated: August 30, 2004)

This paper reports state-of-the-art electronic structure calculations of La adsorption on the Si(001)
surface. We predict La chains in the low coverage limit, which condense in a stable phase at a
coverage of j monolayer. At j monolayer we predict a chemically rather inert, stable phase. La
changes its oxidation state from La3+ at lower coverages to La2+ at coverages beyond 5 monolayer.
In the latter oxidation state, one electron resides in a state with a considerable contribution from
La-d and / states.

PACS numbers: 68.43.Fg, 68.47.Fg, 71.15.Mb, 73.20.-r

I. INTRODUCTION

Device scaling has been the engine driving the micro-
electronics revolution as predicted by Moore's law.1 By
reducing the size of transistors, processors become faster
and more power efficient at an exponential rate. Cur-
rently the main challenge in device scaling is the integra-
tion of high-k oxides as gate oxides into silicon technol-
ogy-

The gate oxide is an integral part of a metal-oxide-
semiconductor field-effect transistor (MOSFET). It is the
dielectric of a capacitor, which is used to attract charge
carriers into the channel between source and drain, and
thus switches the transistor between its conducting and
its non-conducting state. With a thickness of approxi-
mately 1-2 nm,2 the gate oxide is the smallest structure
of a transistor. Further scaling would result in an unac-
ceptably high quantum mechanical leakage current and
thus a large power consumption.

In current transistors, the gate oxide is made from SiC>2
and SiOxNy. Future transistor generations will have to
employ oxides with a higher dielectric constant (high-
k). This allows greater physical thicknesses and thus
reduces the quantum mechanical leakage currents. The
main contenders for the replacement of SiC"2 in future
transistors are, from today's point of view, oxides con-
taining alkaline earth metals like Sr or Ba, third-row el-
ements like Y or La, forth-row elements like Ti, Zr and
Hf, or mixtures thereof. Prominent examples are per-
ovskite structures around SrTiC>33 and LaAlO3

4'5'6, flu-
orite structures like ZrC>2 and HfC>27 and also Y2O3 and
La2O38'9 or pyrochlore structures like La2Hf2O710 and
La2Zr2C>7.u'12 Recently, also promising results on Pr2Û3
have been published.13

While the first high-k-oxides will be grown with an in-
terfacial S1O2 layer, a further reduction in scale requires
high-k-oxides with a direct interface to silicon. The re-
quirement to limit interface states, and the often crys-
talline nature of the oxides demand an epitaxial growth of
the oxides on silicon. Considering layer-by-layer growth
by molecular beam epitaxy (MBE), the first growth step

for high-k oxides is the deposition of the metal on sili-
con. Therefore we have investigated deposition of metals
out of the three most relevant classes for high-k oxides
on Si(001). These are the divalent alkaline-earth met-
als and the three- and the four-valent transition metals.
The results on adsorption of Zr and Sr have been pub-
lished previously.14'15 The present paper completes the
study with a description of La-adsorption on Si(OOl) as
example of a trivalent metal.

Our previous work has shown that Zr tends to form
silicides readily.14 Silicide grains have been observed af-
ter Zr sputtering on Si(OOl),16 unless silicide formation
is suppressed by early oxidation which, however, leads to
interfacial SiC>2. The Sr silicides are less stable in con-
tact with silicon and due to their sizable mismatch in
lattice constant, nucleation does not proceed easily. The
alkaline-earth metals Sr and Ba have been used in the
first demonstration of an atomically defined interface be-
tween a high-k oxide, namely SrTiO3 and silicon.3 By
following through the detailed steps of the formation of
this interface, starting at the low-coverage structures of
metal adsorption, we were able to provide a new pic-
ture for the phase diagram of Sr on Si(001).15 The phase
diagram has been important to link the theoretical inter-
face structure of SrTiC>3 on Si(001) to the experimental
growth process.15'17'18 From the interface structure and
its chemistry we could show in turn that the band-offset,
a critical parameter for a transistor, can be engineered to
match technological requirements by carefully controlling
the oxidation of the interface.17

Since many of the characteristics of Sr adsorption carry
over to La-adsorption let us briefly summarize the main
results.15 Sr donates its electrons to the empty dan-
gling bonds of the Si-surface. The Si-dimers receive
electron pairs one-by-one, and unbuckle as they become
charged. When all Si dangling bonds are filled, i.e. be-
yond j monolayer (ML), additional electrons enter the
anti-bonding states of the Si-dimers at the surface, and
thus break up the Si-dimer-row reconstruction.

At low coverage, Sr forms chains running at an angle
of 63° to the Si-dimer rows. As the coverage increases,
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the chains condense first into structures at g ML and at
\ ML, which are determined by the buckling of the Si-
dirners and their electrostatic interaction with the pos-
itive Sr ions. At | ML a chemically fairly inert layer
forms, where all dangling bonds are filled and all ideal
adsorption sites in the valley between the Si-dimer rows
are occupied.

The paper is organized similar to our previous work
on Sr adsorption. In Sec. II we describe the computa-
tional details of the calculation. In Sec. Ill and IV we
review briefly the reconstruction of the Si(001) surface
and we discuss the known bulk La suicides. Sec. V, VI
and VII deal with the low coverage limit, where La ad-
atoms form dimers and chain structures. Beyond the
canonical coverage of 1/3 ML (Sec. VIII) we observe a
change in the oxidation state of the La ad-atoms from
3+ to 2+ (Sec. IX). The results are placed into context
in Sec. X where we propose a phase diagram for La on
the surface. The computational supercells used for the
simulation of the low-coverage structures are shown in
the appendix.

II. COMPUTATIONAL DETAILS

The calculations are based on density functional
theory19'20 using a gradient corrected functional.21 The
electronic structure problem was solved with the projec-
tor augmented wave (PAW) method,22'23 an all-electron
electronic structure method using a basis set of plane
waves augmented with partial waves that incorporate the
correct nodal structure. The frozen core states were im-
ported from the isolated atom. For the silicon atoms we
used a set with two projector functions per angular mo-
mentum for s and p-character and one projector per an-
gular momentum with d-character. The hydrogen atoms
saturating the back surface had only one s-type projector
function. For lanthanum we treated the 5s and 5p core
shells as valence electrons. We used two projector func-
tions per magnetic quantum number for the s, p, and /
angular momentum channels and one for the d channel.
The augmentation charge density has been expanded in
spherical harmonics up to I = 2. The kinetic energy cut-
off for the plane wave part of the wave functions was set
to 30 Ry and that for the electron density to 60 Ry.

A slab of five silicon layers was used as silicon sub-
strate. This thickness was found to be sufficient in pre-
vious studies on Sr adsorption.15 The dangling bonds of
the unreconstructed back surface of the slab have been
saturated by hydrogen atoms. The lateral lattice con-
stant was chosen as the experimental lattice constant
a = 5.4307 Â of silicon,24 which is 1 % smaller than
the theoretical lattice constant. Since we always report
energies of adsorbate structures relative to the energy of
a slab of the clean silicon surface, the lateral strain due
to the use of the experimental lattice constant cancels
out. The slabs repeat every 16 Â perpendicular to the
surface, which results in a vacuum region of 9.5 Â for the

clean silicon surface.
The Car-Parrinello ab-initio molecular dynamics25

scheme with damped motion was used to optimize the
electronic and atomic structures. All structures were
fully relaxed without symmetry constraints. The atomic
positions of the backplane of the slab and the terminating
hydrogen atoms were frozen.

Many of the adsorption structures are metallic, which
requires a sufficiently fine grid in k-space. We used an
equivalent to twelve by twelve points per ( l x l ) surface
unit cell. Previous studies have shown that a mesh of
eight by eight k-points is sufficient.15 We have chosen a
higher density here as this allows us to use commensurate
k-meshes for 3x and 2x surface reconstructions.

For metallic systems, the orbital occupations were de-
termined using the Mermin functional,26 which produces
a Fermi-distribution for the electrons in its ground state.
The electron temperature was set to 1000 K. In our case
this temperature should not be considered as a physi-
cal temperature but rather as a broadening scheme for
the states obtained with a discrete set of k-points. The
Mermin functional adds an entropie term to the total
energy, which is approximately canceled by taking the
mean of the total energy U(T) and the Mermin-free en-
ergy F(T) = U(T) - TS(T) as proposed by Gillan:27

(1)

The forces are, however, derived from the free-
energy F(T). The resulting error has been discussed
previously.15

In order to express our energies in a comprehensible
manner, we report all energies relative to a set of ref-
erence energies. This set is defined by bulk silicon and
the lowest energy suicide LaSÎ2. The reference energies
are listed in Tab. I. The reference energy Z?o[La] for a
La atom, corresponding to the coexistence of bulk silicon
and bulk La, is extracted from the energy £[LaSi2] of
the disilicide calculated with a 9 x 9 x 3 k-mesh for the
tetragonal unitcell with a = 4.326 and c = 13.840 and
the reference energy of bulk silicon jEo[Si] as

£o[La] = £[LaSi2] - 2E0(Si]. (2)

The bulk calculation for silicon was performed in the
two atom unit cell with a (10 x 10 x 10) k-mesh and at
the experimental lattice constant of 5.4307 Â.24

For the surface calculations, we always subtracted the
energy of a slab of the clean (4 x 2) silicon surface of the
same layer thickness and backplane.

III. THE SILICON SURFACE

Before discussing the adsorption of La, let us briefly
summarize the chemistry of the clean (001) surface
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TABLE I: Reference energies used in this paper without
frozen core energy. See text for details of the calculation.

Energy [H]

TABLE II: Energies per La atom of bulk suicides relative to
our reference energies (Tab. I).

£o[Si] -4.0036
Eo[La] -32.1395
£ ' " " ' [5 laycr-Si-slab] -21.1139

FIG. 1: Top view of the Si(001) surface and the four high
symmetry positions spanning the surface irreducible (2 X 1)
unit cell. The dimer buckling is not shown.

of silicon. A more detailed account has been given
previously.15

On the unreconstructed silicon surface, the atoms form
a square array. Due to a lack of upper bonding partners,
each atom has two singly occupied dangling bonds point-
ing out of the surface. In order to avoid half-occupied
bands, pairs of silicon atoms dimerize, using up one dan-
gling bond per atom to form the dimer bond. This
is called the dimer row reconstruction. Still, one dan-
gling bond per silicon atom is half occupied, which drives
the so-called buckled-dimer reconstruction: One atom of
each dimer lifts up and the other shifts down, resulting in
a "buckled" dimer. This buckling causes both electrons
to localize in the upper, sp3-like silicon atom of a dimer,
whereas the other, sp2-like silicon atom with the empty
p-like dangling bond prefers a more planar arrangement.

Fig. 1 shows a ball stick model of the silicon surface
and introduces the high-symmetry adsorption sites A to
D, which we will refer to in the following discussion.

Filling the empty dangling bond with two electrons
results in a removal of the buckling as observed in our
studies on Sr adsorption.15 As La has an odd number of
valence electrons, we also examined the changes of the
buckling upon filling the initially empty dangling bond
with a single electron. While the difference in z coordi-
nate of the two silicon atoms of a buckled dimer is 0.76 Â
and the one of an unbuckled dimer 0.00 Â, it is 0.35 Â
after donation of a single electron to a dimer. Thus the
amplitude of the dimer buckling may be used as a mea-
sure for the electron count.

LaSi2 (741/omdS)
LaSi (Pnma)
LaSi (Cmcm)
La3Si2 (P4/mbm)

E[La] [eV]

0.00
0.42
0.62
0.80

IV. BULK LA SILICIDES

In the case of Sr, the chemical interaction with sil-
icon could be understood by investigating the bulk Sr
suicides.15 All these structures could be explained by
the Zintl-Klemm concept.28 The electropositive Sr atoms
donate their two valence electrons to the silicon atoms.
Each accepted electron saturates one of silicon's four va-
lences. A Si~ can thus form three covalent bonds, a Si2"
only two, a Si3" only one and a Si4~ has a closed shell
and does not form covalent bonds. This principle was
found to also be valid for the surface reconstructions of
Sr on Si(OOl).15

The Zr suicides on the other hand cannot be explained
by the simple Zintl-Klemm concept.14 The Zr d states
also contribute to the bonding and thus retain a variable
number of electrons.

Similarly, the La suicides cannot be simply explained
by a quasi-ionic interaction with silicon. We find La in
formal charge states between two and three (i.e. charge
according to the Zintl-Klemm concept). Also the atom
and angular momentum resolved density of states reveals,
that La d states are partly occupied in these structures.

Fig. 2 shows the La suicides. LaSi2 is the lowest energy
suicide. The energies per La atom are listed in Table II.

V. AD-ATOMS AND LA DIMERS

Our search for the adsorption structures of La have
been guided by the electron count rules that emerged
from our investigation of Sr15 adsorption on the same
surface. The studies of Sr provided a consistent picture:
The electrons from Sr are fully transfered into the Si-
dimer dangling bonds of the Si substrate. The ordering
of Sr atoms on the surface is determined by the electro-
static attraction between the Sr-cations and negatively
charged Si-ions at the surface. The negative Si-ions are
the raised atoms of buckled Si dimers and the atoms of
filled, and thus unbuckled, dimers. This picture holds up
to coverages where all Si-dimers are filled at 1/2 ML. Due
to the different electron count of La as compared to Sr,
we expect that the silicon dimers are filled already at a
coverage of 1/3 ML and secondly we anticipate deviations
from the above scheme.

Even though we predict La-chains to be the most stable
structures in the low coverage limit, we first investigate
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FIG. 2: (Color online) The bulk suicide structures, top left:
LaSÎ2 141/amdS29 (lowest energy structure); top right: LaSi
Pnma;30 bottom left: LaSi Cmcm;31 bottom right:
P4/mbm.32

isolated ad-atoms33 and La-dimers in order to provide an
understanding of the constituents of the more extended
structures. Chain structures are more stable by 0.34-
0.40 eV per La atom as compared to isolated ad-atoms.

Similar to Sr,15 we find the most stable position of
an isolated La atom at position A, in the center of four
Si-dimers (compare Fig. 1). The position D, B and C
have energies 0.23 eV, 0.51 eV and 1.70 eV higher than
position A. A (4 x 4) supercell has been used for these
calculations.

The diffusion barrier along the valley is equal to the
energy difference between sites A and B, namely 0.52 eV,
the one across the row is 1.31 eV and is estimated by the
midpoint between the sites A and D.

The formation of La dimers lowers the energy per ad-
atom by 0.10-0.18 eV compared to isolated ad-atoms.
Due to the topology of the Si(001) surface, three differ-
ent types of La-dimers can be formed: (1) orthogonal to
the Si dimer rows, (2) parallel to the Si dimer rows and
(3) diagonal to the Si dimer rows. All three structures
are shown in Fig. 3. We find that the parallel La-dimer is
lowest in energy, followed by the orthogonal and diagonal
La-dimers. All La-dimers lie within a small energy win-
dow of 0.08 eV. Note, that we only investigated singlet
states.

A pair of La atoms has six valence electrons and from
the lessons learned from Sr adsorption, one would assume
that three Si-dimers in the vicinity of the La-dimer get
unbuckled. This is, however, not the case. Only two
Si-dimers become fully unbuckled. The remaining two
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cd cd

cd cd

c d Ä & cd cd

cd~c^> cd cd

cd cd

& cd vz
cd & c:
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> cd

^ cd

c d
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FIG. 3: Schematic representation of isolated La-dimers on the
Si(001) surface. The filled circles represent the La ad-atoms,
the rectangles represent a filled and therefore unbuckled Si-
dimers. The triangles represent buckled Si-dimers. The flat
side of a buckled dimer indicates the upper Si atom with a
filled dangling bond, whereas the pointed side indicates the
lower Si atom with the empty dangling bond. Only the Si-
dimers which are clearly unbuckled have been drawn as rect-
angles. The partially unbuckled ones are represented by tri-
angles (see discussion in section V). The supercells used for
the total energy calculations are shown in Fig. 14.

electrons from the La-dimer enter into states that are
derived from the upper dangling-bond band and which
have an admixture of the La-d and / states.

Usually one can easily distinguish between buckled and
unbuckled dimers. In the vicinity of La-dimers oriented
diagonally or orthogonally, however, we also observe Si-
dimers with an intermediate buckling amplitude. Thus,
in these cases, the oxidation state of the La atom, namely
2+ versus 3+ cannot be attributed in a unique manner.

For the orthogonal and diagonal La-dimers we observe
a tendency for the La atoms to reduce their distance com-
pared to staying centered on A sites by 1 - 4%. For
the parallel La-dimer this effect is opposite and much
larger. The distance between the two La atoms is 4.11 Â,
compared to 3.84 Â between two A sites which amounts
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to an expansion of 7 %. This ad-atom repulsion within
one valley has already been observed in case of Sr15 and
explains the formation of isolated chains instead of con-
densed chains or clusters at low coverages. Nevertheless,
we find the parallel dimer to be the most stable.

VI. CHAIN STRUCTURES AT LOW
COVERAGES

As we combined pairs of the most favorable site for
isolated La ad-atoms into dimers, we now search for ways
to stack the three types of La-dimers together into more
extended structures.

We systematically approached linear chain structures.
Each of the three La-dimer types - parallel to the Si-
dimer row, orthogonal or diagonal - has been stacked
such that it shares at least one Si-dimer, so that this Si-
dimer is next to two Lanthanum atoms from different La-
dimers. The energetic ordering has been deduced on the
basis of binding energy per La atom (compare Tab. III).
Note that the binding energy per La atom for a given
chain structure is slightly coverage dependent. In case
of the double stepped chains (compare Fig. 4a for the
structural principle) the adsorption energy varies within
0.06 eV at coverages between 1/10 and 1/5 ML. In order
to ensure comparability all numbers listed here refer to
a coverage of 1/6 ML.

We start our investigation with parallel La-dimers
shown in Fig. 3b, which is the most stable dimer struc-
ture. The most favorable chain in this class is stacked
perpendicular to the Si-dimer rows as shown in Fig. 4c.
Its energy lies 0.06 eV per La atom above the lowest en-
ergy chain structure.

The most favorable chain made from orthogonal La-
dimers is shown in Fig. 4a. It can also been interpreted
as a variant of a chain of diagonal La-dimers (compare
Fig. 3 c). This is the most favorable chain structure of La
atoms on Si(001). Its chains run at an angle of about 76°
to the Si-dimer row. It should be noted that it is equally
possible to arrange the La-dimers in a zig-zag manner
as shown in 4b. The zig-zag chain has not been explic-
itly calculated. The coexistence of straight and zig-zag
chains has been found for Sr on Si(001), where the two
modifications have been shown to be almost degenerate
in energy.15

In all low-energy structures each La atom is thus sur-
rounded by four silicon atoms having filled dangling
bonds. Three of them are partners of filled Si-dimers
while one is a buckled Si-dimer with the negative Si atom
pointing towards the La ad-atom. On the basis of count-
ing unbuckled Si-dimers, these structures are in a 3+
oxidation state.

The La-chain is the configuration with lowest energy
in the low coverage limit. The lowest energy chain struc-
tures are of the order of 0.17 eV per La atom more stable
than the most favorable isolated La-dimer. At elevated

La-dimer type
parallel
parallel
parallel
parallel
parallel
orthogonal
orthogonal/diagonal
diagonal

a

90

63

45

34

0

90

76

63

E[La] [eV]

-0.30
-0.15
-0.20
-0.13
-0.07
-0.26
-0.36
-0.28

panel
a

b

c

d

e

f

g
h

TABLE III: Energies per La atom of the chain structures at
1/6 ML. The orientation of the chain is described by the angle
a (degrees) of the chain to the Si-dimer row. The supercells
used for the total energy calculations are sketched in the cor-
responding panels of Fig. 15.
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FIG. 4: Schematic representation of isolated La ad-atom
chains, a) a single, double-stepped La chain. This is the ener-
getically most favorable surface reconstruction at low cover-
ages. A change in chain direction is realized by stacking two
La-dimers with different orientation (b). Panel (c) shows the
lowest energy chain structure derived from parallel dimers.
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FIG. 5: Layer resolved density of states of 1/5 ML. The arrow
indicates the upper dangling bond bands in the gap of silicon.
The La panel was magnified by a factor of 2.5. The seemingly
large gap of the silicon substrate is due to finite size effects and
also found for the clean silicon surface at this slab thickness.
For bulk silicon we obtain a "typical" GGA value of 0.65eV.
This DOS corresponds to the supercell outlined in Fig. 6 b.

shorter chain fragments. From the energy-difference of
the linear chain and the isolated La-dimer, we obtain
an estimate for the chain termination energy of approxi-
mately 0.09 eV. It should be noted, that experiments of-
ten observe shorter chain sequences than predicted from
thermal equilibrium as high-temperature structures are
frozen in.

The electronic structure of the La-chain is analogous
to that of the Sr single chain.15 The empty silicon surface
has an occupied and an un-occupied band formed from
the dangling bonds of the Si-dimers. La donates electrons
into the upper dangling bond band. Those dangling bond
states, which become filled, are shifted down in energy
due to the change in hybridization on the one side and
due to the proximity of the positive La-cations on the
other side.

VII. CONDENSED CHAINS

With increasing coverage, the chains become closer
packed. In the case of Sr, there was a preference for
a periodicity of (2n + 1) surface lattice spacings along

the Si-dimer row direction.15 This restriction has been
attributed to the requirement that every cation be sur-
rounded by four Si-atoms with filled dangling bonds, and
that there is no frustration of the Si-dimer buckling, i.e.
adjacent Si-dimers are buckled antiparallel.

For La the situation is more complex. Due to the
longer periodicity of the La chains compared to those
of Sr, there are two families of chain packing for La as
shown in Fig. 6. In the first family the La chains are
displaced only parallel to the Si-dimer row direction. In
the second family the chains are in addition displaced
perpendicular to the Si-dimer row.

The first family has a preference of (2n + 1) surface
lattice spacings along the dimer row as in the case of
Sr adsorption. The spacing in the second family is arbi-
trary. The reason is that in family one, the buckling of
every second Si-dimer row is pinned on both sides by two
neighboring La chains (see Fig. 6a). A Si-dimer is pinned,
if its buckling is determined by the Coulomb attraction
of its raised, and thus negatively charged, Si atom to a
nearby La ion. Since the buckling alternates along the Si-
dimer row, this pinning can lead to indirect, long-ranged
interaction between different La-chains.

In the second family the buckling of every Si-dimer
row is pinned only at one La-chain as seen in Fig. 6b,
while there is no preference of the Si-dimer buckling at
the other La-chain. Thus for La we find — in contrast to
Sr15 - arbitrary chain spacings.

The closest packing of La-chains before they merge is
1/5 ML. We consider two La-chains merged if La atoms
of different La chains occupy nearest-neighbor A sites
within one valley. We predict a distinct phase at this
coverage as seen in Fig. 12 and discussed later. This
structure, shown in Fig. 6b, is derived from chains of
the second family. An explanation for finding a phase at
1/5 ML is that the energy at higher coverage increases
due to the electrostatic interaction of the La atoms within
one valley. For the first family, the highest possible cov-
erage before La-chains merge is 1/6 ML (Fig. 6a).

Note that the chains can change their direction with-
out appreciable energy cost as shown in Fig. 4b. Exper-
imentally measured diffraction patterns would reflect a
configurational average.

The layer resolved density of states is shown in Fig. 5.
We see that the Fermi-level lies in a band gap of the
surface. Above the Fermi-level and still in the band-gap
of bulk Si, surface bands are formed, which originate from
the remaining empty dangling bonds of the buckled Si-
dimers. As in the case of Sr, these states form flat bands
in the band-gap of silicon, which approximately remain
at their energetic position as the La coverage is increased.
Its density of states, however, scales with the number of
empty dangling bonds.



90 Publications

<=CJ c d _ 1=1 ̂  1=1

L3ZIWC^
EZI

FIG. 6: Schematic representation of the two packing types
of double stepped La chains at their maximum condensed
coverage. The reconstruction in panel a) consists of paral-
lel La chains. The chains in panel b) are also displaced by
one valley orthogonal to the Si-dimer rows. The ovals indi-
cate the pinning of the Si-dimcr buckling by a La ad-atom.
The dashed double zig-zag lines shows the positions where,
in case of structure a), an even number of Si-dimers can be
inserted in order to arrive at more dilute coverages. In case of
structure b) an arbitrary number of Si-dimers can be inserted,
as the buckling of each row is just pinned on one side. The
calculational supercells are outlined.

VIII. THE CANONICAL SURFACE AT 1/3 ML
COVERAGE

If the spacing of the chains is further reduced, they
condense at 1/3 ML to the structure shown in Fig. 7.

There are several versions of this structure type. They
have a repeating sequence of two La-atoms and one va-
cant A site in each valley in common. The relative dis-
placement of this sequence from one valley to the next,
however, may differ. We investigated several structures
and found the one shown in Fig. 7 to be the most stable.

A structure with a sequence of four A sites occupied
with metal ions separated by two empty A sites, has been
the most favorable structure at this coverage in the case
of Sr adsorption.15 For La, however, this configuration is

LZH
FIG. 7: Schematic representation of the most stable recon-
struction at the canonical coverage of 1/3 ML. AU Si-dimer
dangling bonds are filled. This structure can be thought of
as the condensed chain structure in Fig. 6 b) with a reduced
chain spacing. The calculational supercell cell is outlined.

energetically unfavorable.
At a coverage of 1/3 ML, all silicon dangling bonds

are filled due to the electrons provided by the La ad-
atoms. This surface is isoelectronic to the Sr covered sur-
face at 1/2 ML.15 For the Sr-covered silicon surface, the
increased oxidation resistance of the corresponding 1/2
ML structure has been observed experimentally.34 Simi-
larly we suggest that the surface covered with 1/3 ML of
La will have an increased oxidation resistance.

In Fig. 8 we show the layer-resolved density of states of
the most stable structure at 1/3 ML. In analogy to the
1/2 ML covered Sr surface, there are no surface states
deep in the band gap of silicon, because all Si-dimer dan-
gling bonds are filled and shifted into the valence band
due to the electrostatic attraction of the electrons to the
positive La ions. Note, however, that in contrast to the
canonical surface coverage of Sr on Si(OOl) at a cover-
age of 1/2 ML, the canonical La surface exhibits vacant
.A-sites.

IX. TRANSITION FROM LA3+ TO LA2+
ABOVE 1/3 ML

Up to the canonical coverage of 1/3 ML, all thermo-
dynamically stable reconstructions could be explained by
La being in the 3+ oxidation state. In contrast to the
isolated La-atoms and La-dimers, the oxidation state can
clearly be identified from the number of unbuckled Si-
dimers: Each unbuckled dimer has received two electrons.
A 3+ oxidation state is also consistent with the density
of states.

If we follow the picture that emerged from Sr, we would
anticipate that increasing the coverage above 1/3 ML in
case of La would lead to filling the Si-dimer antibonds,
which results in a breaking up of the dimer bonds. For
La the situation is different: the La-d band is located
at much lower energies as compared to Sr. Therefore
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FIG. 8: Layer resolved density of states of 1/3 ML. The La
panel was magnified by a factor of 2. Compare Fig. 5 for a
discussion about the Si band gap. This DOS corresponds to
the supercell outlined in Fig. 7.

o o o o o o o
FIG. 9: The lowest energy structures at 2/3 ML in the 2+ (a)
and 3+ (b) regime. The calculational supercells are outlined.

the energy to break the Si-dimer bonds is larger than
that to add electrons into the La d-shell. As a result we
find that La changes its oxidation state from 3+ to 2+.
Oxidation states of La that are even lower are unfavorable
due to the Coulomb repulsion of electrons within the La-
d and / shells. Thus the structures above 1/3 ML can be
explained in terms of La2+ ions and are similar to those
found for Sr.15

It may be instructive to compare two structures with
different oxidation states of La. A good example is found
at a coverage of 2/3 ML: The lowest energy structure
is a (3 x 1) reconstruction already found for Sr15 and
depicted in Fig. 9a. This is a clear 2+ structure. Since
every Si-dimer only accepts two electrons, they can just
accommodate two of the three valence electrons of La.
The lowest structure with formal La3+ ions, which can
clearly be identified as having all Si-dimer bonds broken,
is shown in Fig. 9b. It has an energy which is 0.36 eV per
La atom higher than the structure with La2+ ions.

At 1/2 ML, we find a structure where all A sites are
occupied to be most stable. There the La d-states are
partially occupied. We confirmed that the system is not
spin polarized.

The crossover of the energy surfaces of the 2+ and
the 3+ structures is shown in Fig. 10 using a set of sur-
face reconstructions, for which the charge state can be
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FIG. 10: Crossover of the total energy surfaces of the 2+ and
3+ regime beyond the canonical coverage of 1/3 ML.

determined unambiguously. It can be clearly seen that
the 2+ structures become significantly more stable above
1/2 ML. From Fig. 11 it is apparent that the energy
rises sharply as the La atoms cross over to the 2+ oxida-
tion state beyond the canonical interface at a coverage of
1/3 ML.



92 Publications

1/5 1/3 0.42 2/3
La Coverage [ML]

FIG. 11: (Color online) The surface energy35 versus coverage.
The open diamonds correspond to the thermodynamically ac-
cessible surface structures while the triangles mark metastable
structures. Compare Figs. 6b, 7 and 9a for the structures at
1/5, 1/3 and 2/3 ML, respectively. At 0.42 ML we predict
a (2 x 1) reconstruction which originates from the half-ML
structural template with a La vacancy concentration of 17%
(see discussion in the text).
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FIG. 12: The phase diagram for La adsorption on Si(001).

X. PHASE DIAGRAM

Based on the surface energies composed in Fig. 11
we extracted the zero-Kelvin phase diagram shown in
Fig. 12. The slope of the line-segments of the lower en-
velope in Fig. 11 corresponds to the chemical potential,
at which the two neighboring phases coexist (for a more
elaborate discussion, refer to Ref.15). The stable phases
are defined by the coverages where two line segments with
different slopes meet. The zero for the La chemical po-
tential has been chosen as the value at which LaSi2 and
silicon coexist. Consequently, all phases in regions of
positive chemical potentials are in a regime where the
formation of bulk suicides is thermodynamically favor-
able.

Below a chemical potential of —0.44eV we expect sin-
gle chain structures as described in Sec. VI. At 1/5 ML
we predict a distinct phase since this is the highest pos-
sible coverage without La ad-atoms at nearest neigh-

bor A sites (compare Fig. 6b). At a chemical potential
of -0.19eV the stability region of the 1/3 ML coverage
(Fig. 7) starts.

The transition from the phase at 1/3 ML to the
2 x 1 reconstructed surface at 1/2 ML, where all A-
sites are filled, can be described by a decrease of La-
vacancies (compare Fig. 7 of this manuscript and Fig. 9
of Ref.15). From this point of view, the phase at 1/3 ML
can be described by an ordered array of La-vacancies
in the 1/2 ML structure. There is an effective repul-
sion between La-vacancies due to the repulsion between
La-atoms on neighboring .A-sites. We describe the to-
tal energy by an empirical model energy of the form
E(cv) = Eg + Ej • cy + A • cv, where cv is the con-
centration of La vacancies, Eg is the energy of the struc-
ture with all A-sites filled (1/2 ML), Ej is the formation
energy of an isolated La-vacancy, and A describes the re-
pulsion between vacancies. Coexistence between the two
phases would result from a negative value of A. In that
case, adding an additional ad-atom to a phase requires
more energy than starting a new phase with the next
higher coverage. Between 1/3 and 1/2 ML, however, A
is positive as filling a portion of vacancies is favorable
compared to creating patches of pure 1/2 ML coverage.

We calculated the energy of an adsorption structure
with three La atoms on neighboring A sites separated by
one vacancy within one valley. La triplets in different
valleys have been arranged, so that the distance between
vacancies is maximized in order to minimize the repulsive
energy. Based on the energies at 1/3 and 1/2 ML as well
as at the intermediate coverage of 3/8 ML just described,
we can determine the three parameters Eg, Ef and A to
be 0.05, -0.56 and 0.26 eV, respectively.

At a certain vacancy concentration of cv = 17% (i.e.
a La-coverage of 0.42 ML) we find a phase boundary with
the next stable phase at 2/3 ML at a chemical potential
of 0.94 eV. According to our phase diagram, the pure
surface reconstruction at 1/2 ML is never formed. The
shaded region in Fig. 12 corresponds to 1/2 ML structural
template with variable vacancy concentration.

As seen in the phase diagram shown in Fig. 12 bulk sili-
cide formation becomes thermodynamically stable within
the stability region of the 1/3 ML coverage. In a growth
experiment we would expect the formation of bulk sili-
cide grains to be delayed beyond a coverage of 1/3 ML.
The nucleation of suicide grains may suffer from the large
mismatch between bulk suicide phases and silicon. This
is of particular importance during the initial stages of
nucleation because the strained interface region occupies
most of the volume of the grain.

Thus it may be of interest to know the stability of
suicide thin films on Si(001). We found one such suicide
layer which is shown in Fig. 13. It consists of a (1 x 1) sil-
icon surface in contact with two La layers that sandwich
a layer of Si4~ ions in between. While we have not per-
formed a thorough search of other candidates, the energy
of this silicide layer indicates that suicide formation will
at the latest be initiated beyond a coverage of 2/3 ML.
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FIG. 13: (Color online) Silicide overlayer at a coverage of
2 ML.

FIG. 14: Supercells used for the simulation of isolated La
dimers shown in Fig. 3.

We can thus only pin down the onset of silicide formation
within a coverage interval between 1/3 (thermodynami-
cally) and 2/3 ML (including kinetic considerations).

images introduced by the calculational supercell in or-
der to emphasize that fact that this local arrangement
corresponds to an isolated dimer. Fig._14 sketches the

C3F
FIG. 15: Supercells used for the calculation of La chains at
1/6 ML as listed in Tab. III.

supercells used. They were chosen in order to avoid frus-
tration of Si dimers due to periodic images.

Tab. Ill summarizes the energetics of chains structures
built from La dimers. The supercells used in the corre-
sponding total energy calculations are sketched in Fig. 15.

XI. CONCLUSIONS

In this paper we have investigated the surface struc-
tures of La adsorbed on Si(001) as a function of cover-
age. We propose a theoretical phase diagram by relating
the phase boundaries at zero temperature to chemical
potentials, which can be converted into partial pressure
and temperature in thermal equilibrium.

Our findings elucidate the chemistry of third row ele-
ments on Si(001) and the phases of La on Si(001), and are
expected to provide critical information for the growth of
a wide class of high-k oxides containing La. The phase di-
agram may be used as a guide for the growth of La-based
oxides on Si(001).

APPENDIX A: SUPERCELLS AT DILUTE
COVERAGES

Fig. 3 shows the three possible La-dimer orientations
on the Si(001) surface. We did not draw the periodic
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6.4 Comp. Mat. Sei. 27, 70 (2003):
Heteroepitaxial growth of high-k gate ox-
ides on silicon: insights from first-principles
calculations on Zr on Si(001)

In this publication we show that all Zr surface reconstructions are thermodynam-
ically unstable with respect to suicide formation. At a coverage of 2 ML, the
surface reconstruction contains structural elements of bulk ZrSi2 which indicates
a low nucleation barrier for suicide grains.
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Abstract

Metal deposition of Zr on a Si(00 1) surface has been studied by state-of-the-art electronic structure calculations.
The energy per Zr adatom as a function of the coverage shows, that Zr forms suicide islands even at low coverages.
Adsorbed Zr is thermodynamically unstable against the formation of bulk suicide ZrSi2- The observation that the
islands consist of structural elements of the bulk suicide is an indication that suicide grains will form spontaneously.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The scaling of the CMOS transistor has been
the driving force behind the tremendous increase
in microprocessor performance observed during
the last decades. While the problems of the past
were dominated by manufacturai aspects, one now
faces the first fundamental physical limitations as
structures in logical devices approach atomic di-
mensions.

As a rule of thumb, the thickness of the gate-
oxide has to be directly proportional to the chan-

* Corresponding author. Address: Clausthal University of
Technology, Institute for Theoretical Physics, Leibnizstr. 10, D-
38678 Clausthal-Zellerfeld, Germany.

nel length in a MOSFET (metal oxide silicon field
effect transistor) device. In the course of the on-
going miniaturization, also the thickness of this
insulating layer is being continually reduced. By
the year 2007, gate-oxides in a transistor will ap-
proach a thickness of 1.5 nm [1], which corre-
sponds to about ten atomic distances. The
quantum mechanical tunneling currents through
such a thin oxide are intolerable and cause
increased power consumption and deteriorated
switching characteristics of the transistor. Replac-
ing SiO2-based oxides, nowadays employed as gate
dielectric, is one of the "key challenges" to the
semiconductor industry [1], which has to find a
solution within the next four to five years.

Employing high-& (=large dielectric constant)
oxides would allow for a greater physical thickness

0927-0256/03/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved,
doi: 10.1016/SO927-O256(02)OO427-5
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while preserving the electrical properties. Possible
candidates have to meet an extensive list of
requirements [2] such as sufficiently large band
offsets, thermodynamical stability or interface
quality.

The Si-SiC>2 system meets all these require-
ments in an unparallelized way [3]. First attempts
to grow alternative oxides on Si(001) did not yield
satisfactory results for a variety of reasons—often
originating in the interface region.

In the course of changing to a new gate mate-
rial, one also considers to now grow crystalline
oxide layers. It has been a paradigm that the gate
oxide must be amorphous in order to avoid dis-
locations and grain boundaries, which provide
natural pathways for leakage currents and atom
diffusion. However, in the very small devices used
in the near future, the probability for such a defect
may be sufficiently small. On the other hand,
epitaxial oxides bear the promise of very low de-
fect concentrations at the interface to silicon,
which is crucial for efficient device operation.

The first account of heteroepitaxial growth of a
transition metal oxide has been presented by a
seminal work of McKee et al. [4] who succeeded in
growing SrTiC>3 on Si(0 01). For the divalent ele-
ments detailed studies have been performed [5-10].
A similar understanding does not yet exist for the
technological relevant early transition metals such
as zirconium. Theoretical studies on Zr are limited
bulk interface calculations of silicates [11].

The deposition and formation of an interface
between one of the major contenders for high-&
oxides, namely zirconia (Z1O2), and silicon has not
yet been investigated with ab-initio simulations. As
a first step we performed state-of-the-art electronic
structure calculations of the deposition of Zr on
Si(0 01) up to a coverage of two monolayers
(MLs).

2. Computational aspects

We performed first-principles calculations
within the framework of density functional theory
[12,13] using the gradient corrected density func-
tional of Perdew, Burke and Enzerhof [14]. The
electronic structure problem has been solved with

the projector augmented waves method [15], which
uses augmented plane waves to describe the full
wave-functions and densities without shape ap-
proximation. The PAW method as implemented
in the CP-PAW code employs the Car-Parrinello
approach [16] to minimize the total energy func-
tional.

The core electrons are described within the
frozen core approximation with the semi-core (4s
and 4p) shells of the Zr atoms treated as valence
electrons. Plane wave cutoffs of 30 and 60 Ry for
the wave functions and the density have been used.

For metallic systems we minimized the Mermin
functional with respect to the occupation numbers
which yields the Fermi-Dirac distribution for the
electrons. An electronic temperature of 1000 K
was used. The zero-Kelvin result has been ex-
trapolated using the method suggested by [17].

The reconstructed Si(001) surface is the tem-
plate for our growth studies. It is modeled by a
slab consisting of five silicon layers, where the
bottom layer is saturated with two hydrogen
atoms per silicon. The position of the hydrogen
atoms and the lowest silicon layer has been frozen.
Supercells with 16 atoms per layer have been used
for the calculations of Zr in the dilute limit, 8 at-
oms per layer for all higher coverages. In the first
case, the distance between two periodic images of
an adatom is 15.36 A. For all surface calculations
the &-mesh density corresponds to 64 lateral k-
points per p(l x 1) surface unit cell.

3. Dilute limit

Fig. 1 shows the structure of the reconstructed
Si(0 0 1) surface. Excellent accounts covering the
full complexity of the surface reconstruction can
be found in literature [18,19]. The resulting struc-
ture can, however, be explained by the following
considerations: While every bulk silicon is 4-fold
coordinated, the surface atoms lack their upper
bonding partners which leaves two dangling bonds
per atom, each occupied by one electron. In a first
step, two neighboring silicon atoms form a dimer
bond—initially parallel to the surface—which
leaves one dangling bond per atom. Now both
electrons are transferred into one dangling bond to
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Fig. 1. Si(00 1) surface with c(4 x 2) reconstruction. The figure
represents one supercell of the slab as used as a template in our
calculations.

reduce the number of unpaired electrons to zero.
This results in the buckling as the silicon with the
filled dangling bond prefers a tetrahedral bonding
arrangement, while the other prefers a planar sp2

configuration. From the electrostatic point of view,
the alternating buckling behavior is favorable. Our
calculations readily reproduce previously reported
results such as the c(4 x 2) reconstruction and
the difference in z-coordinate of two silicon atoms
within a dimer [20].

The energy surface of a Zr adatom on Si(001),
has been obtained by freezing the lateral position
of the adsorbed atom relative to the slab back-
plane, while all other degrees of freedom were fully

Fig. 2. The total energy surface of an isolated Zr adatom as a
function of the lateral position on the Si(001) surface. The
dimer silicon atoms are located at the bar-shaped maxima on
this surface. The valleys in the energy map correspond to the
valleys between the dimer rows.

relaxed. We used a grid of 12 Zr positions in the
irreducible zone of the reconstructed p(2 x 1) sil-
icon surface.

The resulting total energy surface for an iso-
lated Zr on top of Si(0 0 1) is shown in Fig. 2. Two
nearly degenerate positions can be identified. One
is located in the valley right in the middle of two
dimers of neighboring rows and the other on top
of a dimer row between to adjacent dimers. A
third, local minimum, is located in the valley and
has an energy 0.30 eV higher relative to the most
favorable positions. The diffusion is quasi one-
dimensional with barriers of 0.70 eV for diffusion
parallel to the dimer rows and 1.63 eV from the
valley to the row.

4. Coverage of 0.25 and 0.5 monolayers

In order to investigate the formation of a con-
tinuous film, we increased the coverage. The
structures with coverages of 0.25 and 0.5 ML have
similar energies per Zr atom as the dilute limit (see
Fig. 3). A wealth of complex structures has been
found. Here, however, we only summarize the
main trends of the chemical binding.

To first approximation Zr prefers a formal 4+
charge state—the projected density of states of the
Zr «/-states is located well above the Fermi level. It
is well known that for transition metal cations the

0.0625 0.125 0.25 0.5
Log[Zr]

Fig. 3. The energy per Zr adatom as a function of the coverage.
Energies are given relative to bulk ZrSii and bulk Si.
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s- and p-electrons are located above the d-states,
and have only a minor effect on the occupied
states. The silicon dimers at the surface accept up
to two electrons in their dangling bonds. A clear
structural indication that the dangling bonds are
filled is the disappearance of the dimer buckling.

Further electrons that are supplied at increased
coverage of Zr, occupy the anti-bonding states of
the dimer bond. As a consequence the silicon di-
mers break up. This happens at a coverage of half
a ML and above. It should be noted, however, that
metallic states accept some of the electrons so that
the number of broken dimers does not directly
correlate with the number of Zr adatoms in the
ratio one to one. As a result of the interplay be-
tween breaking dimers and metallic states we find
fairly complex reconstructions of the surface
structure for intermediate coverages.

5. Suicide formation

Upon increase of the coverage to a full ML, the
energy drops by 0.64 eV per adatom (see Fig. 3).
The stable structure with ML coverage is shown in
Fig. 4. All dimer bonds of the surface layer are
broken, and the Zr atoms occupy the centers of the
square array of surface silicon atoms in the re-
sulting p(l x 1) reconstruction. Such a layer is one
structural element of bulk ZrSi2.

The energy gain is, however, not due to the
surface geometry but can be attributed to a dimer
reconstruction of the silicon subsurface. A meta-
stable state without this reconstruction is even
higher in energy than adsorbed Zr at lower cov-
erages.

During the reconstruction, the silicon atoms in
the layer underneath the ZrSi surface layer form
dimers analogous to the bare silicon surface. In
contrast to the dimer row reconstruction of the
silicon surface, these subsurface dimers are not
buckled and are arranged in a checkerboard in-
stead of a row pattern.

At a coverage of two MLs a second ZrSi layer is
formed. This configuration is shown in Fig. 5. The
second layer is nearly identical to the first, but is
shifted laterally. The double layer is again a
structural element of bulk ZrSi2, the structure of
which is shown in Fig. 6. The ZrSi double layer

Fig. 5. Structure obtained at a structure of two monolayers of
Zr. The ZrSi double layer constitutes a structural element of
bulk ZrSi2 (compare to Fig. 6). Note the dimer reconstruction
of the silicon layer underneath the ZrSi double layer.

Fig. 4. The structure of a Zr monolayer. Below the suicide
layer, subsurface dimers have formed.

Fig. 6. Structure of ZrSi2 bulk. It consists of pure silicon layers
separated by a ZrSi double layers. This double layer exhibits Si
zig-zag chains separated by Zr atoms.
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consists of one-dimensional Si zig-zag chains sep-
arated by Zr atoms. The Zr atoms lie approxi-
mately in the plane of the upper and lower atoms
of the Si chain. As for ML coverage the first silicon
layer underneath the ZrSi double layer exhibits a
dimer reconstruction.

Despite an additional energy gain from the ML
coverage to a coverage of two MLs of 0.25 eV per
adatom, even this structure is still 0.67 eV higher in
energy than bulk ZrSi2. While the atomic process
has not yet been resolved in every detail, our
findings give strong indications for the nucleation
of the suicide.

6. Discussion and conclusion

We presented the results of state of the art
ab-initio electronic structure calculations aiming at
understanding the deposition of Zr atoms on a
Si(00 1) surface as it is the case in an MBE reac-
tion chamber.

Our results are summarized in Fig. 3, which
shows the energy per Zr adatom as a function of
the coverage. For coverages below one monolayer
the energy is nearly independent of the coverage.
At a coverage of 1 ML we observe a sharp drop in
energy by 0.64 eV, followed by further drops in
energy for higher coverages. All structures are less
stable than bulk suicide.

Our findings suggest that islands with a local
coverage of 1 ML or higher are formed even at low
coverages. The islands contain structural elements
of bulk ZrSi2, which is more stable than any sur-
face structure. Therefore a likely scenario is the
formation of bulk silicide grains, that disrupt
the surface morphology, and are detrimental for
epitaxial growth. Modification of growth condi-
tions, such as exposing the surface to an oxygen
containing ambient, may bypass silicide formation
during the first growth steps.
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6.5 Book Chapter:
Electronic structure methods: Augmented
Waves, Pseudopotentials and the Projector
Augmented Wave Method

This manuscript will appear in the "Handbook of Materials Modeling" of Kluwer
Academic Publishers. It provides an overview over state-of-the-art electronic
structure methods. Emphasis is given on the Projector Augmented Wave
method [24] which has been used for the application project described in part II.
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^ The main goal of electronic structure methods is to solve the Schrödinger equation
OO

for the electrons in a molecule or solid, to evaluate the resulting total energies, forces,

> response functions and other quantities of interest. In this paper we describe the

£-J basic ideas behind the main electronic structure methods such as the pseudopotential

^ and the augmented wave methods and provide selected pointers to contributions that
O
r^- are relevant for a beginner. We give particular emphasis to the Projector Augmented
O
^ Wave (PAW) method developed by one of us, an electronic s tructure method for ab-

£H initio molecular dynamics with full wavefunctions. We feel tha t it allows best to
i

T3 show the common conceptional basis of the most widespread electronic structure
Ü
O methods in materials science.

>

X I. INTRODUCTION

The methods described below require as input only the charge and mass of the nuclei, the

number of electrons and an initial atomic geometry. They predict binding energies accurate

within a few tenths of an electron volt and bond-lengths in the 1-2 percent range. Currently,

systems with few hundred atoms per unit cell can be handled. The dynamics of atoms can

be studied up to tens of pico-seconds. Quantities related to energetics, the atomic structure

and to the ground-state electronic structure can be extracted.

In order to lay a common ground and to define some of the symbols, let us briefly touch

upon the density functional theory22'30. It maps a description for interacting electrons, a

nearly intractable problem, onto one of non-interacting electrons in an effective potential.
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Within density functional theory, the total energy is written as

w
Here, |\tn) are one-particle electron states, /„ are the state occupations, n(r) =

5Zn/"^'n(r)^'n(r) is the electron density and Z(r) = — ^2RZR6(T ~ ~&R) *S *ne nuclear

charge density density expressed in electron charges. ZR is the atomic number of a nucleus

at position R R . It is implicitly assumed that the infinite self-interaction of the nuclei is

removed. The exchange and correlation functional contains all the difficulties of the many-

electron problem. The main conclusion of the density functional theory is that Exc is a

functional of the density.

We use Dirac's bra and ket notation. A wavefunction \£n corresponds to a ket | ^ n ) , the

complex conjugate wave function ^* corresponds to a bra (^„|, and a scalar product

/d 3 r ^^ ( r ) ^ m ( r ) is written as (^ n | ^ m ) . Vectors in the 3-d coordinate space are indicated

by boldfaced symbols. Note that we use R as position vector and R as atom index.

In current implementations, the exchange and correlation functional Exc[n(r)] has the form

£TC[n(r)] = Id3r FIC(n(r), |Vn(r)|)

where Fxc is a parameterized function of the density and its gradients. Such functionals are

called gradient corrected. In local spin density functional theory, Fxc furthermore depends

on the spin density and its derivatives. A review of the earlier developments has been given

by Parr40.

The electronic ground state is determined by minimizing the total energy functional ü ^ n ]

of Eq. 1 at a fixed ionic geometry. The one-particle wavefunctions have to be orthogonal.

This constraint is implemented with the method of Lagrange multipliers. We obtain the

ground state wavefunctions from the extremum condition for

r), Am,n] = £[*„] - J } ( * n | t f m > - <5n>m]Am,n (2)

with respect to the wavefunctions and the Lagrange multipliers Am:„. The extremum con-

dition for the wavefunctions has the form

m)Am,n (3)



104 Publications

where H — — 2^-V2 + ves{r) is the effective one-particle Hamilton operator. The effective

potential depends itself on the electron density via

e2 f j 3 ,n(r') + Z(r')V{r) = y dr | +^(r)f j 3 ,n(r') + Z(
y dr |r-r|

where /iIC(r) = (5£|H";r^ is the functional derivative of the exchange and correlation func-

tional.

After a unitary transformation that diagonalizes the matrix of Lagrange multipliers Amin,

we obtain the Kohn-Sham equations.

H\tyn) = |^n)en (4)

The one-particle energies en are the eigenvalues of An m{",+{m9.

The remaining one-electron Schrödinger equations, namely the Kohn-Sham equations given

above, still pose substantial numerical difficulties: (1) in the atomic region near the nucleus,

the kinetic energy of the electrons is large, resulting in rapid oscillations of the wavefunction

that require fine grids for an accurate numerical representation. On the other hand, the

large kinetic energy makes the Schrödinger equation stiff, so that a change of the chemical

environment has little effect on the shape of the wavefunction. Therefore, the wavefunction

in the atomic region can be represented well already by a small basis set. (2) In the bonding

region between the atoms the situation is opposite. The kinetic energy is small and the

wavefunction is smooth. However, the wavefunction is flexible and responds strongly to the

environment. This requires large and nearly complete basis sets.

Combining these different requirements is non-trivial and various strategies have been de-

veloped.

• The atomic point of view has been most appealing to quantum chemists. Basis func-

tions that resemble atomic orbitals are chosen. They exploit that the wavefunction in

the atomic region can be described by a few basis functions, while the chemical bond

is described by the overlapping tails of these atomic orbitals. Most techniques in this

class are a compromise of, on the one hand, a well adapted basis set, where the basis

functions are difficult to handle, and on the other hand numerically convenient basis

functions such as Gaussians, where the inadequacies are compensated by larger basis

sets.
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• Pseudopotentials regard an atom as a perturbation of the free electron gas. The

most natural basis functions are plane-waves. Plane waves basis sets are in principle

complete and suitable for sufficiently smooth wavefunctions. The disadvantage of the

comparably large basis sets required is offset by their extreme numerical simplicity. Fi-

nite plane-wave expansions are, however, absolutely inadequate to describe the strong

oscillations of the wavefunctions near the nucleus. In the pseudopotential approach

the Pauli repulsion of the core electrons is therefore described by an effective potential

that expels the valence electrons from the core region. The resulting wavefunctions

are smooth and can be represented well by plane-waves. The price to pay is that all

information on the charge density and wavefunctions near the nucleus is lost.

• Augmented wave methods compose their basis functions from atom-like wavefunctions

in the atomic regions and a set of functions, called envelope functions, appropriate

for the bonding in between. Space is divided accordingly into atom-centered spheres,

defining the atomic regions, and an interstitial region in between. The partial solutions

of the different regions, are matched at the interface between atomic and interstitial

regions.

The projector augmented wave method is an extension of augmented wave methods and the

pseudopotential approach, which combines their traditions into a unified electronic structure

method.

After describing the underlying ideas of the various approaches let us briefly review the

history of augmented wave methods and the pseudopotential approach. We do not discuss

the atomic-orbital based methods, because our focus is the PAW method and its ancestors.

II. AUGMENTED WAVE METHODS

The augmented wave methods have been introduced in 1937 by Slater49 and were later

modified by Korringa31, Kohn and Rostokker29. They approached the electronic structure

as a scattered-electron problem. Consider an electron beam, represented by a plane-wave,

traveling through a solid. It undergoes multiple scattering at the atoms. If for some energy,

the outgoing scattered waves interfere destructively, a bound state has been determined.

This approach can be translated into a basis set method with energy and potential dependent



106 Publications

basis functions. In order to make the scattered wave problem tractable, a model potential

had to be chosen: The so-called muffin-tin potential approximates the true potential by a

constant in the interstitial region and by a spherically symmetric potential in the atomic

region.

Augmented wave methods reached adulthood in the 1970s: O.K. Andersen1 showed that

the energy dependent basis set of Slater's APW method can be mapped onto one with

energy independent basis functions, by linearizing the partial waves for the atomic regions

in energy. In the original APW approach, one had to determine the zeros of the determinant

of an energy dependent matrix, a nearly intractable numerical problem for complex systems.

With the new energy independent basis functions, however, the problem is reduced to the

much simpler generalized eigenvalue problem, which can be solved using efficient numerical

techniques. Furthermore, the introduction of well defined basis sets paved the way for full-

potential calculations32. In that case the muffin-tin approximation is used solely to define

the basis set |xi), while the matrix elements (xi\H\xj) of the Hamiltonian are evaluated

with the full potential.

In the augmented wave methods one constructs the basis set for the atomic region by solving

the radial Schrödinger equation for the spheridized effective potential

-h2

V 2 + {)

as function of energy. Note that a partial wave <^,m(e, r) is an angular momentum eigenstate

and can be expressed as a product of a radial function and a spherical harmonic. The energy

dependent partial wave is expanded in a Taylor expansion about some reference energy e„/

<t>t,m{e, r) = <?W,m(r) + (e - e ^ ) ^ , m ( r ) + O((e - eVtt)
2)

where 0„/,m(r) = (f>t,m(Cv,t,r)- The energy derivative of the partial wave </>„(r) =

solves the equation

[h2

V2 + veff(r) - €Vt

Next one starts from a regular basis set, such as plane-waves, Gaussians or Hankel func-

tions. These basis functions are called envelope functions |%i). Within the atomic region

they are replaced by the partial waves and their energy derivatives, such that the resulting
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wavefunction is continuous and differentiable.

Xi(r) = X«(r) - ^2öfl(r)xi(r) + ^ 0R(r) \(/>„,R,e,m(r)aRAm>i + ̂ >Ä,«,m(r)6ßiAmiil (5)
R R,e,m

9R(T) is a step function that is unity within the augmentation sphere centered at R« and

zero elsewhere. The augmentation sphere is atom-centered and has a radius about equal to

the covalent radius. This radius is called the muffin-tin radius, if the spheres of neighboring

atoms touch. These basis functions describe only the valence states; the core states are

localized within the augmentation sphere and are obtained directly by radial integration of

the Schrödinger equation within the augmentation sphere.

The coefficients CLR^^^ and b.R,«,m,i are obtained for each \xi) as follows: The envelope

function is decomposed around each atomic site into spherical harmonics multiplied by

radial functions.

Xi(r) = J2 u«Am,i(|r - RR\)Ye,m(r - RR) (6)

e,m

Analytical expansions for plane-waves, Hankel functions or Gaussians exist. The radial parts

of the partial waves 4>u,R,e,m and <^v,R,i,m are matched with value and derivative to Uß,<,m,,(|r|),

which yields the expansion coefficients a,Rtetmii and &ß ,̂m,i.

If the envelope functions are plane-waves, the resulting method is called the linear augmented

plane-wave (LAPW) method. If the envelope functions are Hankel functions, the method is

called linear muffin-tin orbital (LMTO) method .

A good review of the LAPW method1 has been given by Singh46. Let us now briefly men-

tion the major developments of the LAPW method: Soler50 introduced the idea of additive

augmentation: While augmented plane-waves are discontinuous at the surface of the aug-

mentation sphere if the expansion in spherical harmonics in Eq. 5 is truncated, Soler replaced

the second term in Eq. 5 by an expansion of the plane-wave with the same angular momen-

tum truncation as in the third term. This dramatically improved the convergence of the

angular momentum expansion. Singh45 introduced so-called local orbitals, which are non-

zero only within a muffin-tin sphere, where they are superpositions of <j> and (/> functions from

different expansion energies. Local orbitals substantially increase the energy transferability.

Sjöstedt47 relaxed the condition that the basis functions are differentiable at the sphere ra-

dius. In addition she introduced local orbitals, which are confined inside the sphere, and

that also have a kink at the sphere boundary. Due to the large energy-cost of kinks, they
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will cancel, once the total energy is minimized. The increased variational degree of freedom

in the basis leads to a dramatically improved plane-wave convergence37.

The second variant of the linear methods is the LMTO method1. A good introduction into

the LMTO method is the book by Skriver48. The LMTO method uses Hankel functions

as envelope functions. The atomic spheres approximation (ASA) provides a particularly

simple and efficient approach to the electronic structure of very large systems. In the ASA

the augmentation spheres are blown up so that their volume are equal to the total volume

and the first two terms in Eq. 5 are ignored. The main deficiency of the LMTO-ASA method

is the limitation to structures that can be converted into a closed packed arrangement of

atomic and empty spheres. Furthermore energy differences due to structural distortions are

often qualitatively incorrect. Full potential versions of the LMTO method, that avoid these

deficiencies of the ASA have been developed. The construction of tight binding orbitals as

superposition of muffin-tin orbitals2 showed the underlying principles of the empirical tight-

binding method and prepared the ground for electronic structure methods that scale linearly

instead of with the third power of the number of atoms. The third generation LMTO3 allows

to construct true minimal basis sets, which require only one orbital per electron-pair for

insulators. In addition they can be made arbitrarily accurate in the valence band region, so

that a matrix diagonalization becomes unnecessary. The first steps towards a full-potential

implementation, that promises a good accuracy, while maintaining the simplicity of the of the

LMTO-ASA method are currently under way. Through the minimal basis-set construction

the LMTO method offers unrivaled tools for the analysis of the electronic structure and has

been extensively used in hybrid methods combining density functional theory with model

Hamiltonians for materials with strong electron correlations19

III. PSEUDOPOTENTIALS

Pseudopotentials have been introduced to (1) avoid describing the core electrons explicitely

and (2) to avoid the rapid oscillations of the wavefunction near the nucleus, which normally

require either complicated or large basis sets.

The pseudopotential approach traces back to 1940 when C. Herring invented the orthog-

onalized plane-wave method20. Later, Phillips43 and Antoncik4 replaced the orthogonality

condition by an effective potential, which mimics the Pauli-repulsion by the core electrons
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and thus compensates the electrostatic attraction by the nucleus. In practice, the potential

was modified, for example, by cutting off the singular potential of the nucleus at a certain

value. This was done with a few parameters that have been adjusted to reproduce the

measured electronic band structure of the corresponding solid.

Hamann, Schlüter and Chiang18 showed in 1979 how pseudopotentials can be constructed

in such a way, that their scattering properties are identical to that of an atom to first

order in energy. These first-principles pseudopotentials relieved the calculations from the

restrictions of empirical parameters. Highly accurate calculations have become possible

especially for semiconductors and simple metals. An alternative approach towards first-

principles pseudopotentials58 preceeded the one mentioned above.

A. The idea behind Pseudopotential construction

In order to construct a first-principles pseudopotential, one starts out with an all-electron

density-functional calculation for a spherical atom. Such calculations can be performed

efficiently on radial grids. They yield the atomic potential and wavefunctions <j>^m(r). Due

to the spherical symmetry, the radial parts of the wavefunctions for different magnetic

quantum numbers m are identical.

For the valence wavefunctions one constructs pseudo wavefunctions \<j>e,m)'- There are nu-

merous ways6'27'35'52 to construct the pseudo wavefunctions. They must be identical to

the true wave functions outside the augmentation region, which is called core-region in the

context of the pseudopotential approach. Inside the augmentation region the pseudo wave-

function should be node-less and have the same norm as the true wavefunctions, that is

{4>e,m\4>e,m) = {(f>e,m\<t>e,m) (compare Figure 1).

From the pseudo wavefunction, a potential ue(r) can be reconstructed by inverting the

respective Schrödinger equation.

£ - V 2 + * / ( r ) - e , J 4>e,m(r) = 0 = • u , ( r ) = e ± ^ 2 ^

This potential u((r) (compare Figure 1), which is also spherically symmetric, differs from

one main angular momentum £ to the other.

Next we define an effective pseudo Hamiltonian
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FIG. 1: Illustration of the pseudopotential concept at the example of the 3s wavefunction of Si.

The solid line shows the radial part of the pseudo wavefunction <f>e,m- The dashed line corresponds

to the all-electron wavefunction 4>^m which exhibits strong oscillations at small radii. The angular

momentum dependent pseudopotential U( (dash-dotted line) deviates from the all-electron one vejj

(dotted line) inside the augmentation region. The data are generated by the fhi98PP code15.

and determine the pseudopotentials vp
t
s such that the pseudo Hamiltonian produces the

pseudo wavefunctions, that is

= ue(r) - d\> ], r) (7)

This process is called "unscreening".

Z(r) mimics the charge density of the nucleus and the core electrons. It is usually an atom-

centered, spherical Gaussian that is normalized to the charge of nucleus and core of that

atom. In the pseudopotential approach, ZR{r) it does not change with the potential. The

pseudo density n(r) = £^n /n4'*(r)^'„(r) is constructed from the pseudo wavefunctions.

In this way we obtain a different potential for each angular momentum channel. In order to

apply these potentials to a given wavefunction, the wavefunction must first be decomposed

into angular momenta. Then each component is applied to the pseudopotential vp
e
s for the

corresponding angular momentum.
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The pseudopotential defined in this way can be expressed in a semi-local form

t^(r, r') = t?(r)*(r - O + £ k»(r) [«T (r) - v(r)] ^ ' " / ' V ^ r ' ) ] (8)
e,m •- I I J

The local potential v(r) only acts on those angular momentum components, not included in

the expansion of the pseudopotential construction. Typically it is chosen to cancel the most

expensive nonlocal terms, the one corresponding to the highest physically relevant angular

momentum.

The pseudopotential is non-local as it depends on two position arguments, r and r'. The

expectation values are evaluated as a double integral

= fd3r /dVr(r)/s(r,r')*(r'

The semi-local form of the pseudopotential given in Eq. 8 is computationally expensive.

Therefore, in practice one uses a separable form of the pseudopotential8'28'55.

* &K (9)

Thus the projection onto spherical harmonics used in the semi-local form of Eq. 8 is replaced

by a projection onto angular momentum dependent functions \vps4>i).

The indices i and j are composite indices containing the atomic-site index R, the angular

momentum quantum numbers £, m and an additional index a. The index a distinguishes

partial waves with otherwise identical indices R, £, m, as more than one partial wave per site

and angular momentum is allowed. The partial waves may be constructed as eigenstates to

the pseudopotential vPS for a set of energies.

One can show that the identity of Eq. 9 holds by applying a wavefunction \^f) = ^V \<f>i)Ci

to both sides. If the set of pseudo partial waves \<f)j) in Eq. 9 is complete, the identity is

exact. The advantage of the separable form is that (4>vps\ is treated as one function, so that

expectation values are reduced to combinations of simple scalar products (^>iVps\4>).

B. The Pseudopotential total energy

The total energy of the pseudopotential method can be written in the form

E =
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The constant Eseij is adjusted such that the total energy of the atom is the same for an

all-electron calculation and the pseudopotential calculation.

For the atom, from which it has been constructed, this construction guarantees that the

pseudopotential method produces the correct one-particle energies for the valence states

and that the wave functions have the desired shape.

While pseudopotentials have proven to be accurate for a large variety of systems, there is

no strict guarantee that they produce the same results as an all-electron calculation, if they

are used in a molecule or solid. The error sources can be divided into two classes:

• Energy transferability problems: Even for the potential of the reference atom, the

scattering properties are accurate only in given energy window.

• Charge transferability problems: In a molecule or crystal, the potential differs from

that of the isolated atom. The pseudopotential, however, is strictly valid only for the

isolated atom.

The plane-wave basis set for the pseudo wavefunctions is defined by the shortest wave length

À = 2TT/|G| via the so-called plane wave cutoff Epw = 2™*'• ^ 1S °^en specified in

Rydberg (1 R y = | H«13.6 eV). The plane-wave cutoff is the highest kinetic energy of all

basis functions. The basis-set convergence can systematically be controlled by increasing

the plane-wave cutoff.

The charge transferability is substantially improved by including a nonlinear core

correction36 into the exchange-correlation term of Eq. 10. Hamann17 showed, how to con-

struct pseudopotentials also from unbound wavefunctions. Vanderbilt34'55 generalized the

pseudopotential method to non-normconserving pseudopotentials, so-called ultra-soft pseu-

dopotentials, which dramatically improves the basis-set convergence. The formulation of

ultra-soft pseudopotentials has already many similarities with the projector augmented wave

method. Truncated separable pseudopotentials suffer sometimes from so-called ghost states.

These are unphysical core-like states, which render the pseudopotential useless. These prob-

lems have been discussed by Gonze16. Quantities such as hyperfine parameters that depend

on the full wavefunctions near the nucleus, can be extracted approximately54. A good review

about pseudopotential methodology has been written by Payne41 and Singh46.
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In 1985 R. Car and M. Parrinello published the ab-initio molecular dynamics method14.

Simulations of the atomic motion have become possible on the basis of state-of-the-art

electronic structure methods. Besides making dynamical phenomena and finite tempera-

ture effects accessible to electronic structure calculations, the ab-initio molecular dynamics

method also introduced a radically new way of thinking into electronic structure methods.

Diagonalization of a Hamilton matrix has been replaced by classical equations of motion for

the wavefunction coefficients. If one applies friction, the system is quenched to the ground

state. Without friction truly dynamical simulations of the atomic structure are performed.

Using thermostats12-13'24'39 simulations at constant temperature can be performed. The Car-

Parrinello method treats electronic wavefunctions and atomic positions on an equal footing.

IV. PROJECTOR AUGMENTED WAVE METHOD

The Car-Parrinello method had been implemented first for the pseudopotential approach.

There seemed to be unsurmountable barriers against combining the new technique with

augmented wave methods. The main problem was related to the potential dependent basis

set used in augmented wave methods: the Car-Parrinello method requires a well defined and

unique total energy functional of atomic positions and basis set coefficients. Furthermore

the analytic evaluation of the first partial derivatives of the total energy with respect to wave

functions, H\^n), and atomic position, the forces, must be possible. Therefore, it was one of

the main goals of the PAW method to introduce energy and potential independent basis sets

that were as accurate as the previously used augmented basis sets. Other requirements have

been: (1) The method should at least match the efficiency of the pseudopotential approach

for Car-Parrinello simulations. (2) It should become an exact theory when converged and

(3) its convergence should be easily controlled. We believe that these criteria have been met,

which explains why the PAW method becomes increasingly wide spread today.

A. Transformation theory

At the root of the PAW method lies a transformation, that maps the true wavefunctions

with their complete nodal structure onto auxiliary wavefunctions, that are numerically con-

venient. We aim for smooth auxiliary wavefunctions, which have a rapidly convergent plane-
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wave expansion. With such a transformation we can expand the auxiliary wave functions

into a convenient basis set such as plane-waves, and evaluate all physical properties after

reconstructing the related physical (true) wavefunctions.

Let us denote the physical one-particle wavefunctions as |^„) and the auxiliary wavefunctions

as | ^ n ) . Note that the tilde refers to the representation of smooth auxiliary wavefunctions

and n is the label for a one-particle state and contains a band index, a fc-point and a spin

index. The transformation from the auxiliary to the physical wave functions is denoted by

T.

l*n> = T|*B) (11)

Now we express the constrained density functional F of Eq. 2 in terms of our auxiliary

wavefunctions

n, Am,n] = E[TÏ!n) - £ [<*„ |T tT |* m > - ôn<m}Am<n (12)
n,m

The variational principle with respect to the auxiliary wavefunctions yields

ï t e n . (13)

Again we obtain a Schrödinger-like equation (see derivation of Eq. 4), but now the Hamilton

operator has a different form, H — T^HT, an overlap operator O — T^T occurs, and the

resulting auxiliary wavefunctions are smooth.

When we evaluate physical quantities we need to evaluate expectation values of an operator

A, which can be expressed in terms of either the true or the auxiliary wavefunctions.

(A) = £/n<ttn|yl|tfn> = £/n(*n|TtylT|*B> (14)
n n

In the representation of auxiliary wavefunctions we need to use transformed operators A —

T^AT. As it is, this equation only holds for the valence electrons. The core electrons are

treated differently as will be shown below.

The transformation takes us conceptionally from the world of pseudopotentials to that of

augmented wave methods, which deal with the full wavefunctions. We will see that our

auxiliary wavefunctions, which are simply the plane-wave parts of the full wavefunctions,

translate into the wavefunctions of the pseudopotential approach. In the PAW method the
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auxiliary wavefunctions are used to construct the true wavefunctions and the total energy

functional is evaluated from the latter. Thus it provides the missing link between augmented

wave methods and the pseudopotential method, which can be derived as a well-defined

approximation of the PAW method.

In the original paper9, the auxiliary wavefunctions have been termed pseudo wavefunctions

and the true wavefunctions have been termed all-electron wavefunctions, in order to make

the connection more evident. We avoid this notation here, because it resulted in confusion

in cases, where the correspondence is not clear-cut.

B. Transformation operator

Sofar, we have described how we can determine the auxiliary wave functions of the ground

state and how to obtain physical information from them. What is missing, is a definition of

the transformation operator T.

The operator T has to modify the smooth auxiliary wave function in each atomic region, so

that the resulting wavefunction has the correct nodal structure. Therefore, it makes sense

to write the transformation as identity plus a sum of atomic contributions SR

R- (15)
R

For every atom, SR adds the difference between the true and the auxiliary wavefunction.

The local terms <S# are defined in terms of solutions \<f>i) of the Schrödinger equation for

the isolated atoms. This set of partial waves \<j>i) will serve as a basis set so that, near the

nucleus, all relevant valence wavefunctions can be expressed as superposition of the partial

waves with yet unknown coefficients.

^ i(r)c i for |r - RÄ | < TV,Ä (16)
t€ß

With i € R we indicate those partial waves that belong to site R.

Since the core wavefunctions do not spread out into the neighboring atoms, we will treat them

differently. Currently we use the frozen-core approximation, which imports the density and

the energy of the core electrons from the corresponding isolated atoms. The transformation

T shall produce only wavefunctions orthogonal to the core electrons, while the core electrons

are treated separately. Therefore, the set of atomic partial waves |</>*) includes only valence

states that are orthogonal to the core wavefunctions of the atom.
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For each of the partial waves we choose an auxiliary partial wave \<f>i). The identity

for ieR

(17)

defines the local contribution SR to the transformation operator. Since 1 + SR shall change

the wavefunction only locally, we require that the partial waves \<f>i) and their auxiliary

counter parts |0j) are pairwise identical beyond a certain radius rC]#.

(pi(r) = 4>i{v) for ieR and |r - R ß | > rc,Ä (18)

Note that the partial waves are not necessarily bound states and are therefore not normaliz-

able, unless we truncate them beyond a certain radius rCiß. The PAW method is formulated

such that the final results do not depend on the location where the partial waves are trun-

cated, as long as this is not done too close to the nucleus and identical for auxiliary and

all-electron partial waves.

In order to be able to apply the transformation operator to an arbitrary auxiliary wave-

function, we need to be able to expand the auxiliary wavefunction locally into the auxiliary

partial waves.

for |r - RB | < rc,R (19)

ieR ieR

which defines the projector functions \pi). The projector functions probe the local character

of the auxiliary wave function in the atomic region. Examples of projector functions are

shown in Figure 2. From Eq. 19 we can derive YlieR l^«)(Pt| = 1) which is valid within rCi#.

It can be shown by insertion, that the identity Eq. 19 holds for any auxiliary wavefunction

\^/) that can be expanded locally into auxiliary partial waves |<^), if

(pi\4>j) = 6iJ for iJeR (20)

Note that neither the projector functions nor the partial waves need to be orthogonal among

themselves. The projector functions are fully determined with the above conditions and a

closure relation, which is related to the unscreening of the pseudopotentials (see Eq. 90 in9).

By combining Eq. 17 and Eq. 19, we can apply SR to any auxiliary wavefunction.

SR\*) = £5ÄlÄ><ftl*> = £(|&> - &>)fo|*> (21)
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FIG. 2: Projector functions of the chlorine atom. Top: two s-type projector functions, middle:

p-type, bottom: d-type.

Hence the transformation operator is

(22)

where the sum runs over all partial waves of all atoms. The true wave function can be

expressed as

R

with

(23)

(24)

(25)

In Fig. 3 the decomposition of Eq. 23 is shown for the example of the bonding p-a state of

the Cl2 molecule.

To understand the expression Eq. 23 for the true wave function, let us concentrate on

different regions in space. (1) Far from the atoms, the partial waves are, according to Eq. 18,

pairwise identical so that the auxiliary wavefunction is identical to the true wavefunction,

that is ^(r) = ^(r ) . (2) Close to an atom R, however, the auxiliary wavefunction is,

according to Eq. 19, identical to its one-center expansion, that is ^(r) = ^ ( r ) . Hence
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FIG. 3: Bonding p-cr orbital of the CI2 molecule and its decomposition of the wavefunction into

auxiliary wavefunction and the two one-center expansions. Top-left: True and auxiliary wave

function; top-right: auxiliary wavefunction and its partial wave expansion; bottom-left: the two

partial wave expansions; bottom-right: true wavefunction and its partial wave expansion.

the true wavefunction \&(r) is identical to ̂ ( r ) , which is built up from partial waves that

contain the proper nodal structure.

In practice, the partial wave expansions are truncated. Therefore, the identity of Eq. 19 does

not hold strictly. As a result the plane-waves also contribute to the true wavefunction inside

the atomic region. This has the advantage that the missing terms in a truncated partial wave

expansion are partly accounted for by plane-waves, which explains the rapid convergence of

the partial wave expansions. This idea is related to the additive augmentation of the LAPW

method of Soler50.

Frequently, the question comes up, whether the transformation Eq. 22 of the auxiliary wave-
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functions indeed provides the true wavefunction. The transformation should be considered

merely as a change of representation analogous to a coordinate transform. If the total energy

functional is transformed consistently, its minimum will yield auxiliary wavefunctions that

produce the correct wave functions | ^ ) .

C. Expectation values

Expectation values can be obtained either from the reconstructed true wavefunctions or

directly from the auxiliary wave functions

{A) = £
n n=l

(26)
n n=l

where /„ are the occupations of the valence states and 7VC is the number of core states. The

first sum runs over the valence states, and second over the core states \<f>c
n).

Now we can decompose the matrix element for a wavefunction <£ into its individual contri-

butions according to Eq. 23.

R R!

R

R

R "^fi l-

part 1

part 2

(27)

part 3

Only the first part of Eq. 27, is evaluated explicitly, while the second and third parts of

Eq. 27 are neglected, because they vanish for sufficiently local operators as long as the partial

wave expansion is converged: The function tyR — ̂ !l
R vanishes per construction beyond its

augmentation region, because the partial waves are pairwise identical beyond that region.

The function ^ — ^!R vanishes inside its augmentation region, if the partial wave expansion
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is sufficiently converged. In no region of space both functions ^Jj — ^ and ̂  — ^)j are

simultaneously nonzero. Similarly the functions ^}j — ^)j from different sites are never non-

zero in the same region in space. Hence, the second and third parts of Eq. 27 vanish for

operators such as the kinetic energy ^ - V 2 and the real space projection operator |r)(r|,

which produces the electron density. For truly nonlocal operators the parts 2 and 3 of Eq. 27

would have to be considered explicitly.

The expression, Eq. 26, for the expectation value can therefore be written with the help of

Eq. 27 as

{A) = 5 3 ( i i ^ ^ )

n—1

NC,R

(
R i,jeR neR

NC,R

~ E ( E DiAÏAm) + EtàM&>) (28)
R ijeR neR

where Dij is the one-center density matrix denned as

n) fn(*n\Pj) (29)

The auxiliary core states, |0£) allow to incorporate the tails of the core wavefunction into

the plane-wave part, and therefore assure, that the integrations of partial wave contributions

cancel strictly beyond rc. They are identical to the true core states in the tails, but are a

smooth continuation inside the atomic sphere. It is not required that the auxiliary wave

functions are normalized.

Following this scheme, the electron density is given by

n(r) =n(r) + £(n},(r)-nk(r)) (30)

iJ€R
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where nCtR is the core density of the corresponding atom and ÜCIR is the auxiliary core density

that is identical to nCyR outside the atomic region, but smooth inside.

Before we continue, let us discuss a special point: The matrix element of a general operator

with the auxiliary wavefunctions may be slowly converging with the plane-wave expansion,

because the operator A may not be well behaved. An example for such an operator is the

singular electrostatic potential of a nucleus. This problem can be alleviated by adding an

"intelligent zero" : If an operator B is purely localized within an atomic region, we can use

the identity between the auxiliary wavefunction and its own partial wave expansion

0 = <*n|£|*n> - <*i|B|*i> (32)

Now we choose an operator B so that it cancels the problematic behavior of the operator

A, but is localized in a single atomic region. By adding B to the plane-wave part and the

matrix elements with its one-center expansions, the plane-wave convergence can be improved

without affecting the converged result. A term of this type, namely v will be introduced in

the next section to cancel the Coulomb singularity of the potential at the nucleus.

D. Total Energy

Like wavefunctions and expectation values also the total energy can be divided into three

parts.

£[*„, RR} = Ë + J2 {ER - ÉR) (33)
R

The plane-wave part E involves only smooth functions and is evaluated on equi-spaced grids

in real and reciprocal space. This part is computationally most demanding, and is similar

to the expressions in the pseudopotential approach.

If L
2 47reoy J |r - r'|

+ J d3rv(r)fi(r) + Exc[ü(r)} (34)

Z(r) is an angular-momentum dependent core-like density that will be described in detail

below. The remaining parts can be evaluated on radial grids in a spherical harmonics expan-
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sion. The nodal structure of the wavefunctions can be properly described on a logarithmic

radial grid that becomes very fine near nucleus,

(35)

47T60 J J
/ > r / d r

2 47T60 J J |r - r ' |

nl{v)} (36)[

The compensation charge density Z(r) = 5ZÄ Zfl(r) is given as a sum of angular momentum

dependent Gauss functions, which have an analytical plane-wave expansion. A similar term

occurs also in the pseudopotential approach. In contrast to the norm-conserving pseudopo-

tential approach, however, the compensation charge of an atom ZR is non-spherical and

constantly adapts to the instantaneous environment. It is constructed such that

nR(v) + ZR{v)-n'R{v)-ZR{v) (37)

has vanishing electrostatic multi-pole moments for each atomic site. With this choice, the

electrostatic potentials of the augmentation densities vanish outside their spheres. This is

the reason that there is no electrostatic interaction of the one-center parts between different

sites.

The compensation charge density as given here is still localized within the atomic regions. A

technique similar to an Ewald summation, however, allows to replace it by a very extended

charge density. Thus we can achieve, that the plane-wave convergence of the total energy is

not affected by the auxiliary density.

The potential v = J2RVR> which occurs in Eqs. 34 and 36 enters the total energy in the

form of "intelligent zeros" described in Eq. 32

v&\**\h) (38)

The main reason for introducing this potential is to cancel the Coulomb singularity of

the potential in the plane-wave part. The potential v allows to influence the plane-wave



6.5 Publication 5: book chapter 123

22

convergence beneficially, without changing the converged result, v must be localized within

the augmentation region, where Eq. 19 holds.

E. Approximations

Once the total energy functional provided in the previous section has been defined, ev-

erything else follows: Forces are partial derivatives with respect to atomic positions. The

potential is the derivative of the non-kinetic energy contributions to the total energy with

respect to the density, and the auxiliary Hamiltonian follows from derivatives H\fyn) with re-

spect to auxiliary wave functions. The fictitious Lagrangian approach of Car and Parrinello14

does not allow any freedom in the way these derivatives are obtained. Anything else than

analytic derivatives will violate energy conservation in a dynamical simulation. Since the

expressions are straightforward, even though rather involved, we will not discuss them here.

All approximations are incorporated already in the total energy functional of the PAW

method. What are those approximations?

• Firstly we use the frozen-core approximation. In principle this approximation can be

overcome.

• The plane-wave expansion for the auxiliary wavefunctions must be complete. The

plane-wave expansion is controlled easily by increasing the plane-wave cutoff defined

as Epw = \tPG'$nax. Typically we use a plane-wave cutoff of 30 Ry.

• The partial wave expansions must be converged. Typically we use one or two partial

waves per angular momentum (£, m) and site. It should be noted that the partial wave

expansion is not variational, because it changes the total energy functional and not

the basis set for the auxiliary wavefunctions.

We do not discuss here numerical approximations such as the choice of the radial grid, since

those are easily controlled.

F. Relation to the Pseudopotentials

We mentioned earlier that the pseudopotential approach can be derived as a well defined

approximation from the PAW method: The augmentation part of the total energy AE =
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E1 — Ê1 for one atom is a functional of the one-center density matrix A,jeß defined in

Eq. 29. The pseudopotential approach can be recovered if we truncate a Taylor expansion

of AE about the atomic density matrix after the linear term. The term linear to A j is the

energy related to the nonlocal pseudopotential.

ß A ri

= Eself + £ fn(Vn\v
ps\*n) - f <?rv(r)ü(r) + O(Did - D^f (39)

which can directly be compared to the total energy expression Eq. 10 of the pseudopotential

method. The local potential v(r) of the pseudopotential approach is identical to the corre-

sponding potential of the projector augmented wave method. The remaining contributions

in the PAW total energy, namely Ë, differ from the corresponding terms in Eq. 10 only in

two features: our auxiliary density also contains an auxiliary core density, reflecting the non-

linear core correction of the pseudopotential approach, and the compensation density Z(r)

is non-spherical and depends on the wave function. Thus we can look at the PAW method

also as a pseudopotential method with a pseudopotential that adapts to the instantaneous

electronic environment. In the PAW method, the explicit nonlinear dependence of the total

energy on the one-center density matrix is properly taken into account.

What are the main advantages of the PAW method compared to the pseudopotential ap-

proach?

Firstly all errors can be systematically controlled so that there are no transferability errors.

As shown by Watson56 and Kresse33, most pseudopotentials fail for high spin atoms such

as Cr. While it is probably true that pseudopotentials can be constructed that cope even

with this situation, a failure can not be known beforehand, so that some empiricism remains

in practice: A pseudopotential constructed from an isolated atom is not guaranteed to be

accurate for a molecule. In contrast, the converged results of the PAW method do not

depend on a reference system such as an isolated atom, because PAW uses the full density

and potential.

Like other all-electron methods, the PAW method provides access to the full charge and spin

density, which is relevant, for example, for hyperfine parameters. Hyperfine parameters are

sensitive probes of the electron density near the nucleus. In many situations they are the

only information available that allows to deduce atomic structure and chemical environment
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of an atom from experiment.

The plane-wave convergence is more rapid than in norm-conserving pseudopotentials and

should in principle be equivalent to that of ultra-soft pseudopotentials55. Compared to the

ultra-soft pseudopotentials, however, the PAW method has the advantage that the total

energy expression is less complex and can therefore be expected to be more efficient.

The construction of pseudopotentials requires to determine a number of parameters. As

they influence the results, their choice is critical. Also the PAW methods provides some

flexibility in the choice of auxiliary partial waves. However, this choice does not influence

the converged results.

G. Recent Developments

Since the first implementation of the PAW method in the CP-PAW code, a number of

groups have adopted the PAW method. The second implementation was done by the group

of Holzwarth23. The resulting PWPAW code is freely available51. This code is also used as

a basis for the PAW implementation in the Ablnit project. An independent PAW code has

been developed by Valiev and Weare53. Recently the PAW method has been implemented

into the VASP code33. The PAW method has also been implemented by W. Kromen into

the ESTCoMPP code of Bliigel and Schroder.

Another branch of methods uses the reconstruction of the PAW method, without taking

into account the full wavefunctions in the energy minimization. Following chemist notation

this approach could be termed "post-pseudopotential PAW". This development began with

the evaluation for hyperfine parameters from a pseudopotential calculation using the PAW

reconstruction operator54 and is now used in the pseudopotential approach to calculate

properties that require the correct wavefunctions such as hyperfine parameters.

The implementation by Kresse and Joubert33 has been particularly useful as they had an

implementation of PAW in the same code as the ultra-soft pseudopotentials, so that they

could critically compare the two approaches with each other. Their conclusion is that both

methods compare well in most cases, but they found that magnetic energies are seriously

- by a factor two - in error in the pseudopotential approach, while the results of the PAW

method were in line with other all-electron calculations using the linear augmented plane-

wave method. As a short note, Kresse and Joubert incorrectly claim that their implemen-
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tation is superior as it includes a term that is analogous to the non-linear core correction of

pseudopotentials36: this term however is already included in the original version in the form

of the pseudized core density.

Several extensions of the PAW have been done in the recent years: For applications in

chemistry truly isolated systems are often of great interest. As any plane-wave based

method introduces periodic images, the electrostatic interaction between these images can

cause serious errors. The problem has been solved by mapping the charge density onto a

point charge model, so that the electrostatic interaction could be subtracted out in a self-

consistent manner10. In order to include the influence of the environment, the latter was

simulated by simpler force fields using the molecular-mechanics-quantum-mechanics (QM-

MM) approach57.

In order to overcome the limitations of the density functional theory several extensions have

been performed. Bengone7 implemented the LDA+U approach into the CP-PAW code.

Soon after this, Arnaud5 accomplished the implementation of the GW approximation into

the CP-PAW code. The VASP-version of PAW21 and the CP-PAW code have now been

extended to include a non-collinear description of the magnetic moments. In a non-collinear

description the Schrödinger equation is replaced by the Pauli equation with two-component

spinor wavefunctions

The PAW method has proven useful to evaluate electric field gradients42 and magnetic hy-

perfine parameters with high accuracy11. Invaluable will be the prediction of NMR chemical

shifts using the GIPAW method of Pickard and Mauri44, which is based on their earlier

work38. While the GIPAW is implemented in a post-pseudopotential manner, the extension

to a self-consistent PAW calculation should be straightforward. An post-pseudopotential ap-

proach has also been used to evaluate core level spectra25 and momentum matrix elements26.
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Part III

Novel Theory — Ab-Initio Atomic
Fragments



Chapter 7

Why Atomic Fragments?

Nowadays, the vast majority of electronic structure calculations in materials sci-
ence is done on the basis of density functional theory (compare section 2.2).
Differences mostly occur in terms of the numerical representation of the wave-
functions and densities. A discussion of the different flavors of basis sets is found
in our publication 5, section 6.5. In a basis set representation, a wave-function is
written as

N

where the \xi) are the basis functions. From now on I will make extensive use
of the bra-ket notation introduced by Dirac. For a brief introduction see ap-
pendix A.2. The introduction of basis functions transform the Schrödinger equa-
tion into a matrix equation

N

H\1>)=e\1>) ^ £ « « < * = «*, (7.2)

where matrix elements of the Hamiltonian Tiij are defined as (xil^lXj) a nd the
Ci by equation 7.1. The resulting eigenvalue problem can then be solved using a
series of iterative and direct numerical approaches that are available [53, 84, 54,
55, 23, 53, 56].

In the field of solid state simulations, the state-of-the-art approach is to use
delocalized basis functions, mainly derived from a plane-wave (Fourier) repre-
sentation. In order to obtain accurate results one needs in the order of 100 to
1000 basis functions per atom. For a 100-atom unit cell, the size of the Hamilton
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matrix is thus between 10000 by 10000 and 100000 by 100000. This does not
only result in a large numerical effort, but also makes the analysis of the results
cumbersome. Additional techniques such as atom resolved density of states or the
crystal orbital overlap population (COOP) analysis are used in order to extract
information about the chemical bonding. The advantage of these basis functions,
however, is that they allow for accurate and robust calculations.

A second approach uses basis functions that are localized in space. In contrast
to the delocalized basis functions they are - according to O. K. Andersen [85] -
"intelligible" and fast. An intelligible electronic structure method is, following his
definition, a method which is based on a minimal and flexible basis of short ranged
orbitals. In this context, "minimal" refers to a basis set size which corresponds
to the number of orbitals needed to accommodate the valence electrons of the
system. For example a minimal basis set for silicon would consist of four orbitals,
one of s and three of p character.

Due to the minimal character of the basis, the basis functions have to be well
adapted to the actual system. Therefore, each basis function will have a much
more complex character. A review of recent approaches is given in section 9.5.

Minimal basis sets are very useful not only in connection with analysis but also
for applications as the so-called order-TV methods [86], which aim to scale linearly
with system size in terms of numerical effort. This is in contrast to the conven-
tional approaches which scale with N2 to iV3 and are therefore limited to system
sizes of a few hundred atoms at the moment.

The following chapters will introduce a novel scheme to construct atomic frag-
ment orbitals from first principles. This is, to the best of our knowledge, the first
time that a parameter-free construction has been proposed and implemented.
Our approach is based on the construction of atomic potentials which mimic the
Pauli-repulsion of the neighboring atoms and thus deform and localize the orbitals
on the central atom. This results in geometry-adapted localized basis-functions.=

Chapter 8 introduces a novel theory which uses nodeless wave-functions and al-
lows to calculate deformation potentials yielding the atomic fragment orbitals as
solutions. Chapter 9 deals with the calculation of atomic fragment orbitals using
a plane-wave basis and discusses their properties.



Chapter 8

Theory of nodeless
wave-functions

This chapter describes a novel method proposed by Peter Blöchl [60] to expand
atomic wave-functions in terms of nodeless basis-functions. First aspects of this
new theory have already been explored in the diploma thesis of Mike Thieme [87].

8.1 Properties of an atomic fragment

When transferring an isolated atom into a crystal or molecule, its electron density
experiences a deformation or contraction due to the presence of other atoms. We
define an atomic fragment as a three-dimensional "puzzle piece" whose shape
depends on the local atomic structure around the central atom. In the following
chapters I will introduce a procedure which allows to obtain such fragments as
solutions to a Schrödinger equation including a so-called deformation potential
that is derived from first principles.

I will employ the frozen core approximation [88] which assumes that the core
density is not affected by changes in the chemical environment. This approxima-
tion is also used in pseudo-potential and PAW [60] approaches and proves to be
reliable.

Our approach is based on the following properties which an atomic fragment
(valence) orbital should have, namely to

- be a solution of the atomic potential near the nucleus of the central atom
and
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- have the shape of the energy derivative of the valence wave-function of the
neighboring atom near that nucleus.

The shape-condition at the neighboring atoms can be rationalized in terms of an
expansion of a wave-function around an energy EQ:

<f>(e) = <t>(e0) + j>(eo)(e - e0) + O((e - e 0 ) 2 ) , (8.1)

where <j> denotes the energy derivative of <f>. Constructing molecular orbitals as a
linear combination of atomic fragment orbitals leads to a situation, where - in the
vicinity of a specified nucleus - we have a linear combination of <f> and 4> similar
to equation 8.1. Such a basis has at least the potential to solve the Schrödinger
equation to linear order. In addition, the energy derivative 4> is automatically
orthogonal to the core wave-functions and thus one does not need to include the
core wave-functions in the basis set.

These requirements on the atomic fragments thus are a physically sensible choice.
As the theory of nodeless wave-function develops we will see that this special
choice leads to potential terms, which mimic the Pauli-repulsion of the neighbor-
ing atoms and thus provides a consistent physical picture.

For the construction of fragment orbitals which have these properties, we need
special potential terms in order to calculate the energy derivative of the valence
wave-functions as a solution to a homogeneous Schrödinger equation. The energy
derivative of a wave-function, however, is defined as the solution to the following
inhomogeneous Schrödinger equation:

(8.2)

In order to obtain <f> as the solution of a homogeneous Schrödinger equation, an
additional potential term r\ is required:

10=0

which is defined as
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Such a potential 77, however, is numerically very inconvenient since the \4>) in the
denominator exhibits nodes for all but the first wave-function of each angular
momentum channel (Is, 2p, 3d and 4/ ) .

8.2 Theory of nodeless wave-functions

The above problem was solved by Peter Blöchl who proposed the theory of node-
less wave-functions [60]. In this section I will derive the basic concept of nodeless
wave-functions using a different approach as in the initial formulation [60, 87].

The underlying principle is to find a set of nodeless wave-functions \ui) and their
energy-derivatives \ùi) from which we can construct the atomic wave-functions
\<j)n) and their energy derivatives \(j)n)

\<f>n) = £ !«*><*,„ (8.3)

n

\j>n) = ^2 \Ui)di,n + K)e"> (8-4)

where the index n is a wave-function count for a given angular momentum L Note
that the expansion for the n-th wave-function only includes the first n nodeless
wave-functions.

While the expansion coefficients Ci>n depend on the wave-function index n we re-
quire the nodeless wave-functions \UJ) to be a well defined basis for a given atomic
species. To simplify the notation we will drop the index n for the coefficients Cjin
from now on, implying that a set of coefficients is only valid for a given atomic
wave-function \4>n) or its energy derivative |</>„).

8.2.1 Definition of the \ui)

The atomic wave-functions are defined by the atomic Hamiltonian H:

(H - ei)\(j>i) = 0 for i > 1. (8.5)

The first eigenfunction for each angular momentum channel £, \<j>i), is nodeless
by definition so it is straightforward to choose
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Following equation 8.3 we now make an ansatz for \u2) of the form

\<h) = l«i>ci + \u2)c2, (8.6)

with | «2) as well as c\ and c2 yet undefined and require the expansion to be a
solution of the atomic Schrödinger equation (8.5):

0 = (H-e2)\<h)
Eqn=8-6

 Cl(H - e-OI«!) + c2{U - e2)\u2)
ci [{% - Si) - (s2 - ej] \Ul) + c2{U - e2)\u2)

+c2(U- e2)\u2).

The above equation still has three unknown quantities: \u2), c\ and c2, which are,
however, coupled by an inhomogeneous Schrödinger equation:

c2(H - s2)\u2) = ci(e2 - ei)|«i).

We are now free to choose the expansion coefficients C\ and c2. Defining c2 as
Ci(e2 — S\) results in a particularly simple inhomogeneous differential equation
for \u2):

(U-e2)\u2) = \Ul). (8.7)

Note that via the choice of c2, this definition of \u2) is coupled to a specific
expansion for \<j>2):

\<h) = ci\ui) + ci(e2 - £i)|«2> = ci |«x) + (e2 - £l)\u2) . (8.8)

The remaining free parameter c\ can be interpreted as a normalization constant
and is undefined by construction since the norm oi\(f>2) is not fixed by the atomic
Schrödinger equation (8.5). It can be determined by normalizing the expansion in
equation 8.8. Note that any other choice for c2 is equally possible and will result
in a different scaling of \u2) as well as in a more complicated form of equations 8.7
and 8.8.
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Following the above principle we now expand |03) in terms of the already defined
\ui) and \u2) as well as of the new quantity \u3):

\<fa) = |«i)ci + \u2)c2 + \u3}c3.

Applying the Hamiltonian to the expansion and using the knowledge of its action
on 1̂ 3) as well as on |wi) and \u2) we again arrive at a parametrized differential
equation for IU3):

c3{U-e3)\uz) = ci ( e3 - el - ^ J |«i) + c2(s3 -

By choosing

2

— = e3-eu

we can eliminate \u\) from the inhomogeneity. Following the arguments related
to equations 8.7 and 8.8 we again choose the parameter c3 as

c3 = c2(e3 - e2)

to arrive at a possibly simple equation for \u3)

(H-e3)\u3) =

coupled to the expansion

103) = Ci [|tii> + (e3 - ei)|«2> + (£3 -

with the norm (c\) again undefined.

For a general wave-function \(f>n) we proceed in an analogous way. Starting from
\ui) = \(f>i) we define the \ui) for i < (n — 1) as we have just defined \u2) and
IM3). The atomic Hamiltonian is then applied to the expansion of equation 8.3
and exploiting the action already defined for the \ui) up to (n — 1) we arrive at
the familiar parametrized differential equation for \un):

n-2 , v

cn(7i - en)\un) = ^2(en-ei- - ^ ) \ui) + cn^{en - eB_i)|«n-i)-
i=i ^ Ci '
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Following the established principle we define the expansion coefficients by a re-
cursive relation

Ci
or explicitly by c{ = n ~ £j) (8.9)

and obtain the differential equation for a general \ui)

(H - Si)\ui) — \ui-i) for i > 1 and |u0) = 0. (8.10)

8.2.2 Definition of \ùn)

The energy derivative of a wave-function is defined by equation 8.2. In analogy
to the determination of the differential equations for the \ui), we now apply the
Hamiltonian to the expansion of equation 8.4:

(H - en) \ùn)e = Y] \ui)a.

The expansion coefficients Q as well as the action of the Hamiltonian on the \ui)
are already defined. Regrouping leads to a parametrized differential equation for
\ùn):

n - 1

e(H-en)\ùn) =
rl

-j) + \un)cn.

A simple equation is again obtained by removing all \ui) for i < (n — 1) from the
inhomogeneity which defines the rfj as well as e as

di+i = di(en - Si) + ^ and e = cn.

The differential equation for \iin) is thus

(U-en)\ùn) = \un). (8.11)
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Table 8.1: The behavior of atomic wave-functions \<f>i), the nodeless wave-functions
|«t) and the energy derivatives \ùi) at the origin.

index i
1
2

n

\4n)

r*

rt

Ui) Ùi)

r t j.l+2

rl+2(n-\) ri+2n

8.2.3 Properties of the nodeless wave-functions

Knowing the differential equations defining the |UJ) and their energy derivatives
(equations 8.10 and 8.11) we can now analyze their properties at the nucleus as
well as at large distances:

r —> 0: The behavior of the nodeless wave-functions at the origin can be esti-
mated using a power series expansion of the potential, the inhomogeneity
and the solution. This ansatz is derived in appendix D.I. Table 8.1 sum-
marizes the results.

Note, however, that these boundary conditions are only valid when no mix-
ing of the true wave-function \<f>i) to the nodeless ones is included. In
principle, any linear combination of \(f>i) and \ui) is still a solution to equa-
tion 8.10, since \(f>i) solves the homogeneous differential equation. However,
any mixing of the atomic wave-function would inevitably introduce nodes.
Therefore we suppress the |</>j) character by forcing a behavior as listed in
table 8.1, that is we enforce an r

i+2(n-1) behavior instead of re. For details
see appendix D.I.

r —» oo: At large radii the \ui) become identical to the corresponding \4>i), since
the \UJ) for j < i are responsible for describing the lower and thus less
extended \<j)j) (equation 8.3).

nodal character: While no rigorous proof for the nodeless character of the \ui)
has been found so far, we could demonstrate numerically for a series of
elements that the construction described so far (including the boundary
conditions at the origin) yields nodeless radial solutions.

Figures 8.1 and 8.2 visualize the decomposition of the 3s atomic wave-function
of silicon into the nodeless wave-functions and the shape of the nodeless wave-
functions |ui) to |u3) for the silicon s channel. In the lower panel of figure 8.2 the
almost perfect exponential decay of the |itj) outside the corresponding maximum
can be observed. Together with the ra behavior at the origin, the nodeless wave-
functions show a close connection to Slater type orbitals [89] that are frequently
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1 2 3 4 5
distance from nucleus [a j

Figure 8.1: The 3s wave-function of silicon decomposed into the contributions from
the nodeless wave-functions \ui) times the corresponding weights Cj. Each nodeless
wave-function is responsible for one local extremum of the atomic wave-function. The
extrema of the atomic wave-function Ifo) are slightly shifted to larger r values compared
those of the nodeless wave-functions.

1 2 3 4 5
distance from nucleus [a^

Figure 8.2: The first three nodeless wave-functions \ui), \u2) and |«3) for the silicon
s-channel scaled to have a common maximum value, {u^) is the wave-function with
the outermost maximum. The lower panel shows the nodeless wave-functions on a
logarithmic scale.
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used in quantum-chemical methods when high accuracy is needed. The possibility
to parametrize these radial solutions in terms of an A • rae~^r ansatz has already
been mentioned by Thieme [87]. Appendix D.2 discusses various fits to \v,3) for
the Si-s channel.

8.2.4 Generalization to arbitrary energies

So far we have restricted our derivations to the atomic bound states |</>„). In a
solid or molecule, however, we need to describe bonding and anti-bonding states
which lie energetically below or above the atomic eigenvalue. We will now use a
conceptually identical ansatz to arrive at an energy-dependent valence-nodeless
wave-function \qn(e)) which will replace \un) (but not the \ui) for i < n) in the
expansion of equation 8.3.

We thus express the atomic wave-function \4>n(s)) at an arbitrary energy

by an expansion of the type

n - l

Applying the Hamiltonian to the expansion and using the established procedure
for removing all \ui) but |«n_i) from the inhomogeneity, we arrive at a definition
for |çn(ff)) (compare equation 8.10):

{% - e)\qn{e)) = \un_x) (8.12)

as well as for the expansion coefficients (compare equation 8.9):

i - l

Ci = c 1 J ] (e -e i ) . (8.13)
. 7 = 1

Figure 8.3 shows the energy dependent nodeless valence wave-function for the
silicon s-channel. Mind that the nodeless attribute for \qn{e)) just applies in
the energy interval en-\ < e < en. At ei, |<73(£)} is identical to the energy
derivative |«2) (compare equations 8.11 and 8.12). Nevertheless we will use the
attribute nodeless also for the \qn{e)) in the following discussion. Upon increasing
the energy starting from £2, the wave-function becomes initially steeper until it
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Figure 8.3: |ç3(e)) for the Si s-channel in an energy window of ±0.15 H around the
atomic eigenvalue. The bound state at the atomic eigenvalue £3 is indicated by the
bold line. The dash-dotted and dashed curves show 193(62)) and 193(64)), respectively.

bends down to form the inner maximum at around 1 a.u. At energies larger than
£n, \Qn(£)) exhibits a node. Upon increasing the energy above £3, the slope at
radii outside the first extremum again increases until the second extremum is
formed at around 5 a.u. The next bound state is at £4.

At e = en, \qn{^n)) is furthermore identical to \un) and the coefficients are identical
to the ones derived for the bound states (compare equation 8.9).

Furthermore it can be shown that the j t h energy derivative of the energy de-
pendent wave-function |çn+i(e)) at s = en is identical to the j + 1st derivative
of \qn(e)) at e = en, a relation which will be needed for the construction of the
potential terms:

(8.14)

This relation is evident for j = 0 by comparing equations 8.11 and 8.12 bearing
in mind that \qn{£n)) is identical to \un). The proof for the general expression of
equation 8.14 is given in appendix D.3.
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8.3 Potentials for nodeless wave-functions

The ability to expand atomic wave-functions at arbitrary energies into a set of
nodeless wave-functions now allows us to construct numerically convenient ab-
initio pseudo-potentials rjn(e) for the a nodeless wave-function as already outlined
in section 8.1. We rewrite the inhomogeneous Schrödinger equation

{H - e)\qn(e)) = [-^V2 + vAE - e] Me)) = K_i>

into a homogeneous one

[ - ^V2 + vAE + Vn(e) - e 1 \qn(e)) = 0,

which defines r)n(e) as

mV' Me))'
The additional potential term rjn(s) now mimics the presence of the lower shells.
We can thus identify rjn(e) with a "Pauli-repulsion potential" for the energy
dependent nodeless wave-function \qn(e)). The reconstruction of the |0n) from
the from \qn(£)) and the fixed \ui), i < n can be performed via the expansion
coefficients of equation 8.13 or, alternatively, by an orthogonalization of \qn(£))
to the \ui) for i < n.

The potential term r)n(e) is, however, energy dependent which renders the nu-
merical solution of the Schrödinger equation cumbersome. We thus expand r)n(e)
around some energy ev (not necessarily the energy of the bound state en):

rfjev)(e - ev) + O(e - ev)
2

rj{ev) • eu + rfn{ev) -e + O(e

{ev) -on(ev)

where r)'n(ev) = ^l • The expansion is then truncated after the linear term

and rewritten into an energy independent part vn(ev) and an energy dependent
part on{eu) -e, the so-called overlap times the energy. The linearized Schrödinger
equation thus reads like

[-^V2 + vAE + vn(ev) - e(l + on(e„))] \qn(e)) = 0. (8.15)
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The corresponding Rayleigh quotient

(qn(e)\l + on(e,,)\qn(e)))

justifies the identification of on{ev) with an overlap operator.

Such a linearization of an energy dependent potential is common practice in
many electronic structure methods. The introduction of the overlap term changes
the eigenvalue problem, associated with solving a Schrödinger equation without
overlap, into a so-called generalized eigenvalue problem [53], for which, however,
efficient numerical libraries exist [53, 56].

8.3.1 On-site Pauli-repulsion potentials

At the central atom of the atomic fragment we need to use a potential yielding
the energy-dependent valence wave-function \qn{e)) as a solution. r/n(e) and r)'n(e)
are therefore given by

\Un-\) ,

MiJ> and

Note that |«n-i) is considered to be a fixed quantity within the assumed frozen-
core approximation and therefore has a zero energy derivative. In the following
we will choose the expansion energy ev to be equal to the eigenvalue of the bound
valence state en. Note, however, that any other choice is equally possible. The
linearized potential vn(en) and overlap on(en) are thus given by

K - l ) \ , , e \Qn{£n))

|9n(gn)>
(8.16)

|gn(gn))K-l) \Q\Un-l) /R ,-x

8.3.2 OfF-site Pauli-repulsion potentials

On all other but the central atom of a specific fragment orbital, the wave-function
should experience the Pauli-repulsion from the core and valence shells. Based on
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the potential and overlap terms of equations 8.16 and 8.17 we thus have to shift
the wave-function index n by +1. The index n of the expansion energy is, however,
not changed since the incoming wave will be at an energy near the valence bound
state en. It is only natural to expand all potential terms in the system around
the same energy. We thus arrive at the following expressions for potential and
overlap:

, ) = lü»L_ 1+e

1/7 . ̂ C- UU
On+1(gn) = -

8.14

|9n+l(gn)>.

|9n+l(gn)>|«n> 8.14 |«n)|«n>

By comparing these two equations with the definition of the energy derivative
of the nodeless wave-functions (equation 8.11) we observe that we would have
obtained the same expressions if we had directly constructed potentials for the
energy derivative \qn(£n)) = \ùn)- At this point we now see that the puzzle
pieces assembled so far really fit together to form a consistent physical picture.
The Pauli-repulsion of the neighboring atoms results in the character of an en-
ergy derivative, which was initially postulated (compare equation 8.1 and related
text). Note, however, that this assumption did not enter the construction of the
potential terms.

To have a comparable degree of approximation at the central atom and at the
neighboring atoms we will, however, not use the linearization for the repulsive
potentials. The tails on the neighboring atoms contribute only in the linear part
of the Taylor expansion of the atomic wave-function (compare equation 8.1 and
related text). We will thus use the following potential and overlap terms in all
applications:

vn+l(en) = - J ^ _ = - M (8.20)
\q{£)) \Un)

o„+i(en) = 0. (8.21)

8.3.3 Properties of the Pauli-repulsion potentials

The on- and off-site valence potentials ^3/4(̂ 3) as well as the corresponding overlap
terms 03/4(63) for the silicon s and p channels are potted in figure 8.4.

If |g„(e)) does not exhibit nodes, which is the case in an energy interval from en_i
to en, the resulting potential terms will not have any singularities except at the
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-6 -

distance from nucleus [a.u.]

(a) Silicon s channel. Upper panel: on-site components; lower panel:
off-site components.

-6 -

distance from nucleus [a.u.]

(b) Silicon p channel. Upper panel: on-site components; lower panel:
off-site components.

Figure 8.4: Valence (n = 3) potential and overlap terms for silicon. The covalent
radius of silicon is 2.1 a.u., the nearest neighbor atom in a silicon crystal would be at
around 4.3 a.u.
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origin (compare equations 8.16 and 8.18). There the potential exhibits an 1/r2

behavior (compare table 8.1 and equations 8.16 and 8.18). The overlap terms
approach a constant value at the origin.

At large radii, all potential and overlap terms show an exponential decay deter-
mined by the difference in decay constants of the corresponding nodeless wave-
functions. As evident from figure 8.4, both, potential and overlap terms, extend
far away from the nucleus, well into the atomic region of neighboring atoms.

The potential and overlap terms derived in this section constitute "perfect"
pseudo-potentials (compare our publication 5, section 6.5) in a sense that they
mimic the exact Pauli-repulsion from the frozen core states. Unfortunately, the
singularity at the origin as well as the long-range behavior are numerically cum-
bersome as will be discussed in the next chapter.



Chapter 9

Calculation of Atomic Fragment
Orbitals

Figure 9.1 shows the basic idea behind the calculation of atomic fragment or-
bitals: For a specific central atom, an electron "sees" the core electrons of that
atom but the core plus valence electrons on the neighboring atoms. With the
potential terms of the previous chapter (compare equations 8.16 to 8.19) we do
have potentials at hand which mimic exactly these two situations. On the basis
of a given molecular or crystal potential, we can now add the atom-centered po-
tentials and overlap terms of the last chapter to arrive at a total potential which
yields fragment orbitals as solutions to the corresponding Schrödinger equation.
In the following we will denote the atom-centered potential and overlap terms
as "Pauli-repulsion" terms and the sum of the molecular potential as well as the
Pauli-repulsion terms will be called "deformation potential".

An atomic fragment calculation thus consists of two steps which will be discussed
in the following two sections:

an atomic calculation to determine the on- and off-site Pauli-repulsion terms
for all species involved (equations 8.16 to 8.19);

the determination of the fragment orbitals as a solution to the deformation
potential.
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central atom neighboring atom

Figure 9.1: Sketch of the basic idea behind the generation of atomic fragment orbitals.
The large black dots indicate the nuclei whereas the small black dots refer to electrons.
The circles correspond to electronic shells. The open circle denotes the electron for
which we want to create a fragment orbital.

9.1 Atomic calculations to extract the deforma-
tion potential

In the derivations of chapter 8 we have only considered a specific angular mo-
mentum number I at a time, the wave-function indices i and n have thus only
been used within one specified ^-channel. This nomenclature is valid for an atom
since, in a spherically symmetric atomic potential, we can write each eigenstate
as a radial times an angular momentum dependent part:

(ßem(r) = <t>tm(\r\)Ytm(f).

<f>em(\r\) is a so-called radial function which just depends on the magnitude of r.
In a non-magnetic system, the radial functions are furthermore independent of m.
Yim is the spherical harmonic corresponding to the quantum numbers £ and m.
Ytm is potential independent and has the angular direction of r as an argument.
For a non-magnetic case, it is therefore sufficient to solve a radial Schrödinger
equation for <^(|r|):

1(1+1)
2r2 v(\r\)-e \ (9.1)

where ^/(|r|) denotes an inhomogeneity which we will need in order to calcu-
late the nodeless wave-functions and their derivatives (compare equations 8.10
and 8.11). The three-dimensional problem is thus reduced to a one-dimensional
one.
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This type of equation is usually solved on a radial grid, where the ith grid point
is defined as

r . r pO(t-l) /Q O\

with ri being the innermost grid point and a the so-called logarithmic spacing.
Such grids are very fine near the origin, where the wave-functions exhibit their
strong oscillations, and become exponentially wider at larger distances. For a
given set of boundary conditions at the nucleus (compare table 8.1) as well as at
large distances from the nucleus, it is then straightforward to solve a Schrödinger
equation of type 9.1. The numerical implementation described in the diploma
thesis of Mike Thieme [87] has also been used in the context of this thesis.

This atomic code calculates, for a given atomic species, the Pauli-repulsion po-
tential and overlap terms of equations 8.16 to 8.19 for each angular momentum
channel £ on radial grids.

9.2 From a single atom to a solid

The spherical symmetry of an atomic calculation is of course lost in a solid or
molecule. The solutions to the Schrödinger equation are therefore superpositions
of several angular momentum components. We thus have to set up a potential
which probes the angular-momentum character of the wave-function and then
provides the correct radial potentials. In order to simplify the notation we will
now use the index i as an atomic index which also specifies whether the corre-
sponding potential or overlap term is on- or off-site. The Pauli-repulsion potential
for atom i is thus given by

Pauli _ V ^ \y \ Pauli/y i

£m

This type of potential is called "non-local" potential since it depends on two
position arguments:

E
f X(\r\ — \r'\\\

Y, (r\ I ?iPaulinrn • " ' ' " I Y* (r'Im ^

where f denotes the direction of the vector r and the superscript '*' denotes the
complex conjugate. For a set of atoms at positions Ri, the total Pauli repulsion
potential is written as
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i,em

This expression can directly be translated for the overlap terms. It is common
practice to separate the non-local potential into a local and a non-local part:

i=\ tm

\r-Ri\2

YL(r' - Ri)- (9-3)

Potentials of this form also occur in the pseudo-potential approach which is re-
viewed in our publication 5, section 6.5 as well as in references [23, 90].

Since plane-waves constitute a very flexible basis set which is numerically con-
venient to handle, we decided to base the first implementation of the atomic
fragment orbitals on a plane-wave representation [23, 90]. This allowed us to ben-
efit from the approaches already developed in the context of pseudo-potentials.
There are basically two schemes available which allow to incorporate non-local
potentials as those of equation 9.3 into a Schrödinger equation:

- direct evaluation of the matrix elements {G\vPauh\G') (compare equation 7.2
and corresponding text) in a plane-wave basis [91];

- transformation into separable potentials [92, 93].

In the course of this thesis I have developed two plane-wave codes to calculate
the atomic fragments. The initial one followed the first approach. While it
is well known, that the use of separable potentials is numerically by far more
efficient, the long-range behavior of our potential and overlap terms (compare
section 8.3.3) initially seemed to be a showstopper for this approach as discussed
in section 9.3.3.

Via a specific choice of the local potential (compare equation 9.3), however, we
found a way to also construct separable potentials. Both implementations will
shortly be reviewed in the following sections.
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9.2.1 The nonlocal pseudo-potential code

The total Hamiltonian of a molecule or solid including the Pauli repulsion poten-
tial is given by

U = - ^ V 2 + vcrystal(r) + üPauli(r, r ') .

We now have to calculate the matrix elements (G\ - |V 2 |G ' ) , (G|ucrystal|G") and
(G\vPàuh\G') (compare equation 7.2 and related text).

The first one is straightforward to evaluate in reciprocal space, since

(G\ - \V2\G') = (G\G')\\Gf = 8G,Glv\\G'\\

if we follow the definition of a plane-wave given in appendices A.2 and E. V
denotes the unit cell volume.

The matrix elements of the crystal potential vCTystal as well as of the local potential
of uPauh have the form

') = Vvcrystai(G - G'),

where vcrystal(G) is the Fourier transform of ücrystal(r) (refer to appendix E.3 for
details). Analysis of this term reveals, that the Fourier expansion of the potential
must include a larger number of components compared to the wave-functions
since \G — G'\ can be twice as long as the maximum wave-vector |Gmax | of the
wave-function expansion:

w> = £ \G)CG.
G,|G|<|Gmax

This forces us to use two grids, one for the wave-functions and another, finer one
for the potential.

In the current implementation we have used a superposition of atomic potentials
as a guess for the crystal potential. While such a superposition is definitely not
equal to the self-consistent potential, it is a valid choice to explore the effect of
the Pauli repulsion potentials and will be used throughout this thesis.

Before using the Pauli-repulsion potentials •yPaull(|r|) (compare equation 9.2)
given on a radial grid, we first have to perform a Bessel transform (compare
appendix E.2) which leads to a logarithmically spaced grid in reciprocal space
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vatom(\G\). For each matrix element (G\v*tom\G') we then have to interpolate the
corresponding value of vàtom(\G — G'\).

After this step we have only calculated the matrix elements of a potential at the
origin, since uPauh(|r|) is an atom-centered potential. In Fourier representation
it is, however, straightforward to shift any function by multiplying it with so-
called "structure-factors". Shifting a function f(r) = X^GeiGr/(^0 by a v e c t o r R
translates into a multiplication of each component of its Fourier transform f(G)
by a phase factor e~lGR:

/(r -R) =
G G G

f(G) is thus the Fourier transform of the shifted function. We now use the same
scheme to shift the atomic potential to any point in space. The final crystal
potential matrix element is thus given by

•"'atoms

<G>crystal|G') =

The most tricky part are the nonlocal potential matrix elements which, for a
given £ are calculated as:

/

where Pe(a) is a Legendre polynomial and the j^(|r|) are Bessel functions. 7 is
defined as

G-G'
7 = \G\\G'\-

A detailed derivation of this expression is given in appendix E.4. The matrix
elements are then again shifted to the positions of the corresponding atoms using
structure factors. Expressions for the ^-dependent overlap terms are obtained by
replacing v^(\r\) by oM(|r|).

Finally we have to solve the Matrix equation (compare equation 7.2).

(G\H\G')(G'\iP)=e(G\ü\G')(G'\iP)



9.2 From a single atom to a solid 157

which is done using numerical libraries [84] or, alternatively, iterative approaches
as discussed in section 3.1 and appendix C.

While the non-local pseudopotential code was a valuable tool to explore the effect
of the deformation potential, it did not prove to be efficient enough to perform
accurate calculations in terms of a large plane-wave cutoff. The quality of a
plane-wave basis is defined by IGmaxI via the corresponding kinetic energy Epw =
2^l^max|2- To calculate the fragment orbitals, the cells have to be large enough
to ensure that there is no interaction between periodic images. Even a memory
of 2 GB allowed us to only go up to a plane-wave cutoff of 7 Ry for the smallest
reasonable simulation cell. Typical pseudo-potential or PAW [24] calculations
use a cutoff energy between 20 to 30 Ry. Irrespective of the memory argument, a
single calculation took up to several hours on a state-of-the-art microprocessor.
The majority of the time was spent in setting up the matrix elements.

9.2.2 The separable pseudo-potential code

The deficiencies of the nonlocal pseudo-potential approach mentioned above have
led to the development of separable potentials [92] in the eighties. This approach
has later been extended independently by Blöchl [93] and Vanderbilt [94]. The un-
derlying principle will now directly be introduced at the example of the linearized
Schrödinger equation for the nodeless wave-functions (compare equation 8.15).

In contrast to equation 8.15, we will now, however, also include local potential
and overlap terms, denoted i>£aul1 and o^uh, as in the previous sections. In the
following paragraphs we will only consider the atomic case for a specified angular
momentum channel and thus drop the indices i, £ and m. Our Schrödinger
equation reads

Me)) = 0.

In the following derivation and also in all the calculations in section 9.3 we have
used the energy of the atomic eigenvalue en as expansion energy eu (compare
equations 8.16 to 8.19). We know that \qn{^n)) — \un) is an exact solution to
this linearized Schrödinger equation. We can use this information, the so-called
"closure relation", to obtain an expression for the non-local potential:
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— - V 2 -I- 7, a t o m -1- ?.Pau l i _ c- (I 4. nPauVl) I?/ \ 4-V -TV -t- U I o c £ ^ l t O | o c ^ |«n/ +

[ 1
/•„Pauli/ \ _ 7,Pauli\ _ / Pauli/ \ _ „PauliN I \ _ n / Q 4>I

|p(en)>c(E„)

The second term, or alternatively the negative of the first term is now identified
to be proportional to a so-called "projector function" \p{sn)) which we will ab-
breviate in the following as \p). The constant c(en), short c, is determined by
requiring that

{p\un) = 1

and thus

n) — vloc ) — en\o [en) — o loc ) \ \un).

Using the projector function, the Schrödinger equation for \un) can now be written
as

(un\ [vp^(en) - vif'1} ~ en[op^(sn) - o^f] \un)(j>\ \un) = 0.

It can be shown by insertion that \un) is indeed a solution and the linearized
Schrödinger equation for arbitrary energies e now reads as

- \V2 + ̂ atom + <o
auli - e{\ + ofo

a
c
uli) + (9.5)

i] K><p| ] \qn(e)) = 0.

The potential energy operator is thus defined as

V =
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and the overlap operator similarly as

0 = 1 + Oir + \p)(Un\ [0PaUli(£„) - Of-"] \Un)(p\.

Note that the two matrix elements (un\ • • • \un) above are constant and can be pre-
calculated on radial grids. The interaction of a wave-function with the nonlocal
potential has thus been reduced to a simple scalar-product between a projector
function and the wave-function. However, equation 9.5 is only correct to linear
order around en. To enhance energy transferability it is possible to include more
projector functions for each angular momentum channel [93, 94]. We have, how-
ever, only used one projector function per angular momentum quantum number
in the context of this thesis.

The separable form has two major advantages compared to the nonlocal form.
First of all the numerical effort to evaluate the non-local potential is very small
compared to the setup of the nonlocal potential matrix as will be discussed below.
The second advantage is the memory requirement. While the full Hamilton and
overlap matrices have to be stored in the nonlocal approach, it is sufficient to store
the projector functions, equivalent to wave-functions, in the separable code. The
local potential is evaluated in real space and only requires a grid-representation
of the potential, which requires a similar amount of memory as a wave-function
(it is actually more since we have to use a finer grid for the potential as discussed
above).

To determine W.\iß) in the separable code we

- calculate (G\ — ^V2^) = IVIG^GI^) in the plane-wave representation.
This operation just involves to multiply each Fourier component by the ki-
netic energy of the corresponding plane-wave as well as the unit-cell volume.

- make a fast-Fourier transform [95] to real space and evaluate the interaction
of the wave-function with the local potential. Numerically this corresponds
to a product of two functions on a regular grid. Another fast-Fourier trans-
form transfers the result back to reciprocal space.

- compute the projections {p\ip) in reciprocal space and add the contribu-
tions from the nonlocal potential (compare equation 9.5). This again only
involves wave-functions and no matrix-vector operations.

The sum of the three contributions above gives 7i\ip). The procedure is analogous
for the overlap operator. The knowledge of V]^) and O\tp) allows us to employ
iterative minimization schemes such as steepest descent, conjugate gradient or
molecular dynamics (compare chapter 3 for an introduction). For the present
case I have implemented a state-by-state conjugate gradient minimization scheme.
Details of the conjugate gradient technique are described in appendix C.
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Figure 9.2: ID-plot of the silicon 3s nodeless wave-function obtained from a radial
atomic calculation and from a 3D plane-wave calculation. Note that the circles do
not represent points from the real-space grid, which is much more coarse, but are
interpolated from the plane-wave expansion.

9.3 The First Atomic Fragments

The atomic fragment orbitals and densities presented in this section are calculated
using the separable code introduced in section 9.2.2. The higher efficiency in terms
of memory and microprocessor requirements allowed us to use larger plane-wave
cutoffs and thus to obtain better quality images. All pictures were obtained with
a cutoff of 30 Ry. The potential for £ = 1 has been used as the local potential.

9.3.1 The free silicon atom

As a first test system we have performed calculations on an isolated atom in
an FCC cell with a lattice constant of 20 a.u. Figure 9.2 shows an overlay of the
silicon 3s nodeless wave-function as obtained from the radial Schrödinger equation
(compare section 9.1) and from a plane-wave calculation (compare section 9.2.2).
The radial solution is to be considered as the exact one. It can nicely be observed
that we obtain a good match between both solutions. Differences only occur at
the nucleus where the plane-wave solution goes to slightly negative values. This
can be attributed to our finite plane-wave cutoff. A discussion of the numerical
challenges is given in section 9.3.3.
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Figure 9.5: The silicon s projector function as calculated on a radial grid as well as
after a Fourier transform at different plane-wave cutoffs.

extent of the projector functions (compare figures 8.4 and 9.5 as well as equa-
tion 9.4). This allowed us to do calculations using separable pseudo-potentials.
Nevertheless, the long-range behavior of the Pauli repulsion terms may result in
a bad energy transferability since they range far into the bonding region.

Further development of the Pauli repulsion potentials will have to focus on these
two issues. The construction of the potential terms as well as the application to
silicon has, however, been demonstrated and so far the results are promising.

9.4 Tight binding with atomic fragment orbitals

As a first application for the atomic fragment orbitals I have developed a tight-
binding code to calculate band-structures for an fixed input potential. Tight-
binding is the extension of the LCAO (linear combination of atomic orbitals)
approach to solids. We start out from an infinite lattice as sketched in figure 9.6.
The lattice points R are defined as

R = + a2t2 + 0:3*3,

where the ti are the lattice vectors and the a:* are integer numbers. The coordi-
nates of the individual atoms of one lattice site, the so-called basis, is denoted by
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Figure 9.6: Sketch of a two-dimensional lattice.

rK The absolute position r of atom j on lattice site R is thus given as r = r7 + R.
Be aware that R is used as a vector towards a lattice site and the corresponding
index at the same time.

A localized atomic wave-function i on atom j , |xj), in our context this will be an
atomic fragment orbital, is now expanded into a Bloch wave:

R

The A;-vector dependent matrix element of any operator A can now be evaluated
via

A3,3 _Ai,i',k ~

R,R'

R,R'

E
R

*{r - rj - R)A(r, r')Xi'(r'

rj - R)A(r, r')x2>' - rj'

- rj' - R')eikR>

LAR=R'-R

drdr'x>*(r - r> - R)A(r, r')

•xï(r'-rj' -(R + AR))eikAR

= M
.AR

drdr'xï*(r - rj)A(r, r')x?(r' - rj' - AR) eikAR

where M denotes the number of lattice sites. Since this factor occurs in all matrix
elements it is not considered. The expression for A3^, k still includes an infinite
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sum over Ai?. Assuming a purely local operator A, A(r, r')6(r — r') in real space,
all but a few elements of this sum will be zero, if the atomic wave-functions xî (r)
are localized. All operators under consideration, namely kinetic energy, potential
and overlap, are de-facto local. The non-locality of the potential is restricted to
small regions around each atom and the infinite sum is therefore reduced to a few
elements.

Furthermore it is important to notice that the Äff, (Ai?) are ̂ -independent and
thus have to be evaluated only once. The /c-dependent matrix elements A™, k are
obtained by multiplying each sub-element with the corresponding phase factor
e%kAR a n ( j pe rfo r ming the sum over all Ai?.

To set up a tight-binding Hamilton or overlap matrix we first of all have to map
all atomic basis functions of all atoms onto a single index. The total dimension
of the matrix is

where nP denotes the number of basis functions for a specific atom j . In a second
step, all sub-matrix elements Afj, (Ai?) are set up. For a given k-point it is
then straightforward to set up the k-dependent tight-binding matrix which can
be diagonalized using numerical libraries [84].

As a first application we have calculated the band-structure for the 2-atom FCC
unit cell of silicon. Figure 9.7(a) shows the result. We observe a nice qualitative
agreement with the self-consistent result of figure 9.7(b). Note that the tight-
binding calculation was performed in a non-selfconsistent potential derived from
a superposition of atomic potentials. Therefore it can not be expected that the
bandstructure matches quantitatively.

In the implementation of the tight-binding code, there is still a numerical prob-
lem with the integration routine since the lowest two bands are not degenerate
between the k-points X and W.

9.5 Relation of our theory to previous
approaches

The idea of deformed ions traces back to Finnis [97], who tried to construct a
well adapted input density in the context of the non-selfconsistent Harris-Foulkes
functional (compare appendix F). Realizing that the Harris-Foulkes functional
yields poor surface energies for Al when using a superposition of atomic densities,
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(a) Band structure obtained with a minimal basis of atomic fragment Orbitals
and a superposition of atomic potentials.
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(b) Band structure obtained from a self-consistent LAPW calculation [26]. Figure
courtesy of Peter Blaha, Vienna University of Technology, Austria.

Figure 9.7: Bandstructure of a silicon 2-atom FCC unit cell.
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he introduced a two-parameter cutoff function to contract the density. Later,
Chetty and co-workers [98] used the following relationship to extracted the Fourier
components of a deformed ion out of the self-consistent density of a homo-nuclear
system:

„total l(~i\ „deformed atom

where Si(G) denotes the structure factor (compare section 9.2.1) for atom i and
plane-wave G. For a given ptotal(G) and atomic positions, it is therefore possible
to obtain pdeformed ion for all G where the sum over the structure factors is non-
zero. The authors report a contraction of the density, similar to the approach of
Finnis.

A more recent approach are the third generation muffin tin orbitals developed
by Ole Andersen and co-workers with a review given in reference [85]. Their
fragment orbitals are constructed as a superposition of typically three so-called
"kinked partial waves", obtained at different energies. A kinked partial wave

- is a solution to the muffin-tin potential within a hard sphere around the
central atom;

- is zero in the hard spheres of all other atoms;

- is a screened spherical wave in the so-called interstitial region, subject to
the constraint that it must match in value the partial solutions inside the
atomic spheres. Since the derivatives need not to match, the resulting joint
wave-functions carry the attribute "kinked". A screened spherical wave is
a solution to the differential equation

While the solution inside the central sphere has a well defined (£, m) character,
it contains a mixture of different angular momenta components in the interstitial
region. At least in terms of the character of the wave-functions in the two kinds
of atomic spheres, this approach conceptually fulfills the two requirements of sec-
tion 8.1, namely |0) character in the central sphere and \4>) character in the other
spheres. The first requirement is fulfilled exactly, the second on an approximate
level: The energy derivative of a wave-function has only a very small amplitude
near the nucleus and then diverges exponentially at some point. Similarly, the
kinked partial waves are zero in the vicinity of the neighboring nucleus and then
adopt the form of a spherical partial wave. On the basis of this argument, both
approaches aim at a similar character of the atomic fragment. Andersen and
co-workers use, however, full wave-functions including nodes. Furthermore their
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construction is based on joining solutions in different regions of space whereas our
approach relies on the design of potential terms which yield the atomic fragments
as a solution to a single Schrödinger equation.

In the context of tight-binding and order-iV approaches [86] it is furthermore
common practice to construct basis functions which are zero beyond a certain ra-
dius. This is done via geometrical constraints or artificial confinement potentials.
For a review of recent developments refer to references [99, 100, 101].

In terms of nodeless wave-functions there have been first approaches in the context
of pseudo-potential generation [102, 103, 104]. These constructions were based
on a mixing of core states into the valence states in order to obtain

- smooth pseudo wave-functions,

- minimal core overlap, and

- minimal radial kinetic energy.

The main difference between this and our approach is, that we propose a direct
construction without any fitting procedure.

9.6 Outlook

In the third part of this thesis I have introduced a novel concept of nodeless
wave-functions which allows us to calculate atomic potentials which mimic the
Pauli-repulsion of the core or valence electrons. These potential terms have then
been used to construct atomic fragments, which are atomic orbitals and densities
that are adapted to a specific atomic neighborhood. While there is still work to
be done in terms of numerics and self-consistency, the results obtained so far are
very promising although primarily qualitative.



Appendix A

Notation

A.I Atomic units

Atomic units have been introduced as a convenient system of units in quantum
mechanics. Fundamental constants are chosen to be equal to unity which signifi-
cantly reduces the effort of writing formulae. The table below lists the values for
the most important quantities:

Quantity
mass
charge
length

eiieigy

angular momentum

atomic unit
electron mass me = 1
electron charge e = 1

Bohr radius ÜQ = 1

SI value
9.10938 • IO-31

1.60218 • 10-19

5.29177 • 10-10

4 S5Q74 • 10~18

1.05457-10-34

kg
C
m
7

Js

The single particle Schrödinger equation is thus simplified from

to
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A.2 Dirac's bra-ket notation

The bra-ket or Dirac notation was introduced by Paul Dirac and has become
the standard notation in quantum mechanics. This appendix only introduces
the concepts relevant to this thesis and is meant to provide an intuitive picture.
A more in-depth discussion can be found in any modern textbook on quantum
mechanics.

In the bra-ket notation, a quantum mechanical state is denoted by a so-called
ket:

where ip is the label identifying the state. A ket has to be considered as an
abstract object. Consider a vector in real space, which specifies a direction, as
an analogue. Only in connection with a basis it is possible to assign numerical
values, in this case an n-tuple of numbers, to this abstract object. The numerical
values of this n-tuple are defined as the scalar products onto the corresponding
basis vectors. Similarly we can only assign a numerical value to the ket l^) by
evaluating a scalar product with another state. The real space representation of
a wave-function |t/>), for example, is obtained as a scalar product with the bra (r\,
being an eigenstate of the position operator:

The complex conjugate ip*(r) is defined as

In a more mathematical way, the bra (tp\ is an element of the "dual space" of
the Hubert space containing the ket \ip). The dual space is the set of linear
functionals from the Hubert space to the complex numbers. In the picture of a
vector-space, the row vectors constitute the dual space to the column vectors.

Apart from real space, another popular choice of representation is the momentum
space. Plane waves \G) are eigenfunctions of the momentum operator, p\G) =
HG\G). In the course of this thesis, their real space representation is defined as:

(r\G) = eiGr.

Plane-waves constitute an orthogonal basis:
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(G\ff) = V5G,G>.

Be aware that in some text-books, (r\G) is defined as W ^elGr for periodic sys-
tems, where V denotes the volume of periodicity. The pre-factor thus results in
a normalization, and the set of \G) is orthonormal.

The unity operator in these two representations is thus defined as

where the sum in the last term must be replaced by an integral for non-periodic
systems. A scalar product between two states ip and <f) in the two representations
is therefore evaluated as

= f
JV

dr
V

again assuming periodic boundary conditions and thus discrete values of G.

Consistently, the Fourier expansion of a real-space function x/j(r) is obtained via

G

where ip(G) is the Fourier transform of tp(r) and defined as ^{G\iß). Mind that
this definition is tied to the previous definition of (r\G).

The expectation value of an operator in bra-ket notation is written as

(A) =

where the rules for evaluation in specific representations is obtained by inserting
the corresponding unity operator as demonstrated for the scalar product.



Appendix B

Analysis used for publications of
part II

This appendix contains details on the analysis performed for our publications
attached in chapter 6.

B.I Surface phase diagrams

This section describes how to calculate the surface phase diagrams based on the
adsorption energy per ad-atom. We have used this analysis in our publications 2
and 3 attached in chapter 6.

For the derivation we start out from a macroscopic number of m Si^lx1^ surface
unit cells and two phases a and b which share a common phase boundary. For
the moment let us assume that we already know the phase diagram. Later in this
section we will show how to derive it from a set of surface reconstructions. At
a coverage 6a, corresponding to phase a, the number of atoms at the surface iVa

and the energy E(Na) is given by:

Na = m6a

E(Na) = NaEa = m9aEa =

where Ea is the energy per ad-atom in phase a and Ea = 9aEa the correspond-
ing energy per (1 x 1) surface unit cell. Adding more ad-atoms to the surface will
lead to the nucleation of islands of phase b and a reduction of the area covered
by phase a. For N atoms on the surface, Na < N < iV6, there is a coexistence of
phases a and b, with ma/ra& surface unit cells covered by phase a/b:
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M ft Mf ÏA _ . N-m9b N-NbN - ma9a + (m - ma)9b —> ma = — — = —.
Va ~ Vb Va — Ob

The surface energy for a general iV between Na and Nb can now be written as

E(N) = ma9aEa + (m - ma)9bEb

"a — ub

(lxl) p(lxl)

- f {9- eb)
Va — Vb

p(lxl) p(lx6 ~ f
The chemical potential in the coverage range between 9a and 6b is therefore given
by

_ dE(N) __ dE^(9) _ Ea
lxl) - Ejlxl) Ejlxl) - Ea

lxl)

^ ~ dN d9 ~ 9a-9b ~ 9b-6a
 { • }

and thus constant. Instead of using the coverage 9, this insight now allows us
to draw a phase diagram as a function of the chemical potential. The phase
boundary between two phases a and b is then defined by the chemical potential
of equation B.I, since it corresponds to a coexistence of both phases. Chemical
potentials can then be related to process parameters such as partial pressure
and temperature using approaches of statistical mechanics (compare chapter 4
and [70, 71, 72, 73]).

The chemical potential defining a phase boundary corresponds to the slope of a
line connecting the two phases in an surface energy per ( l x l ) unit cell versus
coverage plot as for example in figure 5.7. While the phase boundary is char-
acterized by a specific chemical potential, a phase is characterized by a range
of chemical potentials between the phase boundaries to the phases at lower and
higher coverages.

So far we have assumed to already know the thermodynamically stable phases.
Based on the formalism just derived it is now straightforward to unambiguously
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identify the phases from the low energy surface reconstructions at various cov-
erages. Imagine we have found surface reconstructions a to e as sketched in
figure B.I. Each of the reconstructions is the lowest energy structure of the
corresponding coverage but, as we will see, not necessarily thermodynamically
stable.

e
Figure B.I: Illustration of the search for phases out of a set of surface reconstructions.

We now start by connecting reconstruction a with all other reconstructions and
compute the chemical potential at which these pairs would coexist. The next
phase is then the reconstruction, which is connected to phase a by the lowest
chemical potential. This can be rationalized by imagining to increase the chemical
potentials starting at minus infinity. At some point, ad-atom adsorption will
become thermodynamically favorable and phase a will be formed. Upon further
increase the phase-boundary between a and b will be crossed and phase b will
form.

Repeating the same procedure for phase b now gives reconstruction e as the
next phase which means that c and d will not be observed in thermodynamical
equilibrium and are hypothetical structures.

To compute fx(N,T), the energies Ea/b have to be replaced by Ea/b(T).
chapter 4 for a discussion.

See

B.2 Calculation of band offsets

In the context of heterostructures it is often of importance to calculate the relative
position of the bandstructures of the two materials joined. In the context of high-
k oxides these so-called band offsets are a crucial parameter for device application
as outlined in section 5.3.4.

The most straightforward way to determine the band offsets is to plot a layer-
resolved density of states as in figure B.2. One can then measure the valence band
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offset as the difference of the two valence band maxima. While this is a convenient
and quick way to obtain a first estimate, it is not a very accurate scheme. First
of all the k-mesh used in interface calculations is usually just sufficiently dense to
give reliable total energies and cannot reveal every feature of the band-structure.
It is therefore likely, that the valence band minimum is not precisely reproduced.
Secondly, the bandstructure can be spread out due to finite size effects. Finally
it is often difficult to distinguish the bulk band edge from surface states.

The correct procedure is to use well k-converged bulk calculations of the two ma-
terials and relate them to the interface calculation via the potential. As outlined
in equation F.I on page 207 the effective potential of the Kohn-Sham equations
is only defined to within a constant. The choice of this constant has no effect on
charge-neutral cells since the effect of the potential on the electrons is canceled
by the same effect on the positive nuclei. This constant shift of the potential
does, however, shift the Kohn-Sham eigenvalues and therefore the bandstructure.
A direct comparison of band edges from two different bulk calculations is thus
not possible.

We can, however, relate the band edges of the bulk calculation to the corre-
sponding electrostatic potential. It is then possible to determine the offsets of
the bulk electrostatic potentials to the electrostatic potential of the interface cal-
culations [105]. The position of the band edges of the bulk systems can now be
shifted by exactly these offsets to give DFT band offsets at the interface. In the
example of figure B.3, the offset for Si is -1.08 V and for SrTiO3 1.88 V. The bulk
band structures thus have to be shifted by 1.08 and —1.88eV.

The above scheme allows us to reliably determine the DFT band-offsets. In order
to arrive at the true band-offsets we still have to make two approximations.

1. We assume that the DFT valence band maxima are reproduced correctly
and the DFT valence band offsets are thus equal to the true valence band
offsets. This condition is automatically fulfilled in exact DFT since the
highest occupied orbital determines the decay of the density into the vac-
uum and is therefore directly connected to the electron density [41]. In
practical DFT calculations this is not automatically fulfilled since we have
to approximate the exchange-correlation functional. GW calculations in-
dicate that the shifts in valence band maxima can be decisive [106, 107].
The inclusion of so-called "vertex corrections" to GW, however, shift the
valence band maximum again up towards the LDA value [108]. At least for
silicon these comparisons have shown that GW calculations do not neces-
sarily yield better results for the position of valence band maxima. Using
DFT valence band offsets therefore seems to be an equally valid choice.

2. We have to deal with the well-known band-gap problem of DFT (compare
chapter 2.3 for a discussion). The Kohn-Sham eigenvalues are just La-
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Energy (eV)

Figure B.2: Layer resolved density of states for the oxidized interface (compare right
panel of figure 5.15). The lower three panels are the first three silicon layers, not
including the dimer silicon atoms. The top two layers are the first two unit cells
of SrTiO3 and the remaining, fully blackened density of states corresponds to the
interfacial layer consisting of the dimer silicon atoms and the 1/2 ML of Sr. The
valence band maxima and the conduction band minima in both regions are marked by
vertical lines.
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[001] direction

Figure B.3: Overlay of the plane-wave part of the electrostatic potential of a cal-
culation where SrTiC>3 is sandwiched between silicon as well as bulk SrTiC>3 and Si
calculations. The characteristics of these potential curves are discussed in figure 5.18.

grange multipliers to enforce the orthogonality of the wave-functions and
have no physical meaning. Nevertheless it has turned out that DFT band-
structures are qualitatively correct. The largest deviation from the true
band-structure is the underestimation of the band-gap by up to a factor of
two. Bulk silicon, for example, has an experimental gap of 1.17 eV. Using
state-of-the-art gradient corrected functionals we get a gap of just 0.65 eV
in DFT. For SrTiO3 we obtain 1.93 eV instead of 3.32 eV. As a result, the
DFT conduction band offsets have to be corrected to account for DFT's
underestimation of band gaps. In the present example the conduction band
offset had to be increased by 0.78 eV.



Appendix C

The Conjugate Gradient
minimization scheme

This appendix contains a derivation of the conjugate gradient minimization
scheme [54, 55, 23, 53, 56]. In order to enhance readability I will first show the
basic principles at the example of the minimization of some abstract functional
E. We will also assume that we know the gradient operator Q which allows us to
compute the gradient of the functional. The gradient operator Q is furthermore
assumed to be constant which translates into an harmonic functional E. We will
later apply these results to the minimization of the Hohenberg-Kohn-Sham en-
ergy functional. Mind that a variety or different flavors of the conjugate gradient
scheme are available and in use today [23, 56, 109]. In this appendix I will only
derive the underlying ideas and introduce the concepts needed in part III of this
thesis.

C.I Steepest descent revisited

The starting point is the steepest descent algorithm already introduced in sec-
tion 3.1. The basic principle is again visualized in figure C.I. Starting from an ini-
tial guess point |a;i) we compute the gradient |<7i) = G\x\) and minimize E along
\gi). Such a one-dimensional minimization is called line-minimization. Finding
the minimum of E along \gi) is equivalent to finding a point |z2) = |a:i) + \gi)ai,
where the gradient |^) = G\%2) is orthogonal to \gi). In other words: the mini-
mum along a line is found at the point where the equipotential line is parallel to
the direction of minimization.

In the sequence of line-minimizations of the two-dimensional example of fig-
ure C.I, all even and all odd search directions are parallel. We are thus repeatedly



184 The Conjugate Gradient minimization scheme

Figure C.I: Conjugate Gradient (thick line) versus steepest descent (dotted line) at
the example of a two-dimensional energy surface. The labels are explained in the text.

minimizing along directions which have already been minimized before. As a re-
sult we will need an infinite number of iterations to arrive at the exact minimum,
even for this simple, two-dimensional example.

C.2 Construction of "conjugated" gradients

Theoretically, it is possible to find the exact minimum of an iV-dimensional har-
monic potential with iV minimization steps. The problem of the steepest descent
approach is related to the fact that gradients become linearly dependent on their
predecessors. The idea behind "conjugated" gradients, or better, "conjugated"
search directions, is to circumvent exactly this linear dependence. In the fol-
lowing discussion, we will distinguish between gradients \gi) = Ç\xi) and search
directions |SJ). Both are equal in the steepest descent approach.

The first conjugate gradient iteration is equal to the first steepest descent step
and the search direction |si) is thus equal to the gradient \gi). From then on
we define the search direction to be a linear combination of the gradient and all
previous search directions:

7 1 - 1

where the ßi are determined by the condition that the gradient at point |xn+i) =
\xn) + \sn)&n is orthogonal to all previous search directions. At every "new" point
of the sequence, the gradient will thus point into a direction which has not been
minimized before.
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C.2.1 First iteration

The first step of a conjugate gradient minimization is identical to steepest de-
scent, that is, the first search direction jsi) is identical to the gradient \g{). The
minimum of the first line-minimization la^) is thus found according to

ta) = |zi) + |si)o;i- (C.l)

Mathematically, a line-minimization corresponds to determine |o;n+i) as

|„ \ — Iv \ _l_ le \™ (O 0\

where an is defined by the condition that

0 = (Sn\9n+l) = (Sn\g\xn+l) °= (sn\9n) + {sn\g\sn)an (C.3)

and therefore

(sn\gn)
_

C.2.2 Second iteration

After obtaining \x2) analogous to the first steepest descent step, the search for
Ixs) is again written as a line minimization

|x3> = |x2) + \s2)a2 (C.5)

with

= \92) + \si)ßx. (C.6)

Note that \s2) still needs to be defined. The steepest descent approach is recovered
by setting ßi equal to zero. In the conjugate gradient approach, however, we
will use this additional degree of freedom to require that l^) = Glxs) is not
only orthogonal to \s2) (condition for line-minimization, compare equations C.2
to C.4) but also to \s\). This excludes the possibility of a linear dependence
to |si) as in the case of the steepest descent approach. Using the expansion of
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equation C.5 we can now determine a2 according to equation C.4. Secondly, we
enforce the orthogonality of |^3) to \s\):

0 = (sM = (siieizs) C= {si\92l+(si\G\s2)a2. (C.7)

Since a2 is finite, we must choose ßi and thus \s2) so that

0 = <si|0|s2) =6 (si\Ç\g2) + (« i löMA (C.8)

and therefore

c i (g2\g2) -

In the second substitution we have expressed (si| in the numerator in terms of (x2\
and (xi\ according to equation C.I. We can furthermore show that the second
term of the numerator is zero:

(9i\92) = (gi\Ç\z2)
 C= (gM + ̂ ^Ç^) C= 0. (CIO)

In the last equality we have used that |<?i) = |si). We will later show, that
(Pnlffl5«} = {sn\G\sn) for arbitrary n. The mixing coefficient ß\ of equation C.6
is thus given as

C.2.3 Third iteration

In order to clarify the procedure, let us also analyze the third step for finding
IX4) using

\XA) = \x3) + \s3)a3 and |s3) = |̂ 3> + h)A> + |si>Ä- (Cl l )

a3 is again found in the course of a line-minimization using equation C.4. ßx and
ß2 are then determined to ensure orthogonality of ^4) with respect to \s\) to \s2)
(orthogonality to \s$) is enforced in the course of the line-minimization). Let us
first calculate ß2 via



c=80

Following equation C.9, ß2 can now be written as

(93 Iff?) ~ (^1^3)
Ä =

where the second term in the nominator again vanishes due to

(^2^3) = (52|ö|^3) = (52IP2) + a>2{g2\Ç\s2) = 0,

since

(#2|£/|S2) ^ (S2|Ö 1̂ 2) — ßl(si\C\s2) = (S2|Ö|S2)-

To determine ß\ we demand orthogonality between ^4) and \s\)\

0 = (8l\g4) °= £i|£ä) + (Sl\g\s3)a3.

Since 0:3 7̂  0, this equation translates into

0 = (si\Q\s3)
 C= (Sl\Ç\g3) + (s1\C\s2)ß2+(s1\C\s1)ß1,

c=8o

and therefore

(Sl|0|03> C.I C.14
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°= {S2\g3) +(s2\Ç\s3)a3.

The condition that (s2|£|s3) = 0 can be reformulated:

0 = (S2\Q\S3)
 Càl (S2\Ç\g3) + (S2J£|£O A

(9M - (9M\ = 0. ((

Since each gradient can be expressed in terms of search directions (compare for
example equation C.ll), it can easily be verified, that any scalar product (gi\gj) is
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zero for i ^ j and not only for i = j — 1 as can be generalized from equation C.14.
The third search direction \sz) is therefore given by

le \ I/. \
*3> = \93) \92\g2)

Analysis of the equations leading to ß\ and ßi reveals that, for the definition of
\sn), only ßn-i 7̂  0 since the corresponding equation (C.13) also contains the
scalar product (gn-i\9n-i) m the nominator. The expressions for all other ßi
contain only scalar products of the form (çi\gj), i ^ j which are zero as a matter
of construction (see discussion after equation C.16).

C.2.4 Generalization and Summary

The scheme sketched above yields the following relations:

(Si\G\Sj)

(si\S\9j)

<Si\9i)

(9i\9j)

as
C.8+C.15

C.3,C.7,C12

CAi

Sij

Sij

• const.

i + &ij+i)

• const.,

• const.

• const.

for i < j

(C.17)

(C.18)

(C.19)

(C.20)

It is straightforward to see that the above equations, although derived only for
i < 4, can be generalized for any index number since the rules needed for an
index i trace back to rules already established for indices smaller than i and the
condition of line-minimization for index i.

We can thus conclude that a conjugate gradient minimization determines its
search directions via

C= \9n+l) + \Sn)ßn

with

(9n+l\gn+l)
ß —

(Sn\9n) (9n\9n)

The fact that all ßi except ßn vanish (generalize equation C.16) is the key to
the success of conjugate gradient approaches. The general expansion for \sn+i)
(compare for example equation C.ll)
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K+l) = \9n+l)

thus reduces to equation C.21. It is thus only necessary to save the last search
direction in order to conjugate the new gradient to all previous search directions.
As a matter of construction, the search directions are linearly independent since
each of them includes a gradient which is orthogonal to all previous search direc-
tions (compare equation C.21). Assuming an iV-dimensional harmonic functional,
the (N + l)st gradient must therefore be zero since it it is orthogonal to the N
previous, linearly independent search directions.

C.3 Back to simulation

So far we have considered an abstract functional. We can now apply the conjugate
gradient scheme in order to minimize the degrees of freedom in our models. In
terms of the nuclei, the gradient is equal to the force and an implementation of
the algorithm is straightforward.

Things get more involved when dealing with wave-functions. For the optimization
of a single wave-function (state-by-state minimization) we need to minimize the
Rayleigh quotient

subject to the constraint that \ipn) is orthogonal to all lower wave-functions. The
minimum condition disregarding the constraints yields

\gn)= \H-e(\ipn))O

\gn) is then orthogonalized to all lower bands and the current one:

\9n) =
K n

\9n)

and can then be used as an input into the conjugate gradient scheme.
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Figure C.2: Gradient vector and error vector in a general harmonic potential.

C.4 Preconditioning

We now have a scheme at hand which allows us to exactly minimize a N-
dimensional harmonic functional in N steps. This large improvement compared
to the steepest descent approach would still not be enough to render conjugate
gradient to a useful scheme to minimize, for example, the electronic structure in
an ab-initio calculation. Typically, such calculations use a basis set size between
10.000 and 100.000. This would thus translate into a corresponding number of
minimization steps.

The reason why usually just in the region of 20 steps are needed is called "precon-
ditioning". Figure C.2 again shows the familiar two-dimensional harmonic energy
surface. For a general, that is non-spherical, potential, the gradient vector is not
parallel to the error vector defined as the difference between the actual position
and the minimum value. The gradient is dominated by the "hardest mode", in
the example of figure C.2 the vertical one. On the basis of the knowledge of the
direction of the error vector, it would be possible to minimize every functional
with just one line minimization.

Imagine for a moment that we know the shape of the energy surface,

E(x, y) = ax2 + by2,

in our example. The error vector at any point is thus given as

whereas the gradient vector is given by



C.4 Preconditioning 191

2ax
2by

A precondition matrix of the form

(C.22)

would transform the gradient vector onto the error vector allowing for an exact
minimization using only one line-minimization, independent of the dimensional-
ity.

In practical calculations we do, of course, not know the exact form of the energy
functional. Otherwise a numerical minimization would not be necessary. Never-
theless it is in many cases possible to gain some approximate information about
the energy surface. Note that only the relative magnitude of the matrix elements
is important as indicated in equation C.22.

Using a plane-wave derived basis set for the numerical representation of the wave-
functions one exploits the fact that the kinetic energy of a vast majority of basis
functions is larger than their potential energy in a pseudized potential (compare
our publication 5, section 6.5). The Hamilton matrix element for plane-waves is
given as

nG,G' = (G\ - l-V2 + v\G') = \v\G\HG,G, + (G\v\G').

If the kinetic energy is dominating, the Hamilton matrix becomes diagonally
dominant. One therefore uses a preconditioning matrix K which has the form of

for large |G|. Teter et al. [55] have introduced a polynomial form for the diagonal
elements which additionally approaches one for small wave-vectors where the
matrix is not diagonally dominant anymore. A refinement has later been proposed
by Kresse et al. [56].

For minimizing an energy functional with respect to nuclear coordinates, we can
employ a lower level energy functional to gain some information about the energy
surface. To get a reasonable preconditioning for a DFT structure optimization one
could use a parametrized energy functional to obtain a harmonic approximation
of the energy surface around each atom. The inverse of each force constant then
defines a diagonal preconditioning matrix element.



Appendix D

Derivations and proofs for the
atomic fragment formalism

This appendix contains derivations and proofs related to part III of this thesis.

D.I Power series ansatz for nodeless wave-
functions and their energy derivatives

The full Schrödinger equation in a spherically symmetric potential including an
inhomogeneity \(p)

can be split into an angular momentum dependent and a radial part. In this
context we assume that the potential is spherically symmetric and that the in-
homogeneity \(f>) has the same angular momentum quantum numbers £, m as the
solution \<j>). The solutions to the angular momentum dependent part are the
spherical harmonics which are independent of the potential v(H). The radial
Schrödinger equation is given by

= M\r\). (D.I)

To estimate the behavior of the solution near the origin we now expand the
potential (assuming the most simple C/r shape, which is, however, a good ap-
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proximation in the vicinity of the nucleus) and the solution in terms of a power
series:

v(\r\) = Cr - l

3=0
oo

k=0

From now on we will simply write r instead of \r\ in order to enhance readability.
For the solution <p{r) we only consider positive exponents since any negative ex-
ponents would lead to a divergence at the origin and thus to a non-normalizable
wave-function. In our context we can apply the same restriction to the inhomo-
geneity.

Equation D.I thus translates into

0 = [-5 fc+i

(D.2)

Since the set of {rJ'}; j > 0 constitutes a linearly independent polynomial basis,
equation D.2 is only fulfilled if the expression in square brackets vanishes for every
j . This condition determines the coefficients af

The homogeneous differential equation: to calculate the atomic eigenfunc-
tions we have to solve the homogeneous differential equation where the inhomo-
geneity \<p) and thus all bj are zero. We have demanded above that a, = 0 for
all negative j . Since only coefficients ô  with i < j enter into the definition of aJ ;
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the first non-zero a, to solve equation D.3 can only occur in connection with the
following term being zero:

which is the case for j = i and j = — £ — 1. The latter can be excluded since
all aj for negative j are zero by definition. Therefore, all atomic eigenfunctions
exhibit an rl behavior at the origin.

The inhomogeneous differential equation: for the calculation of the |«j)
and \ùn) we have to solve an inhomogeneous differential equation. Starting with
|M2) we have to use \ui) = \(f>i) with an re behavior as inhomogeneity. The first
non-zero coefficient be is, however, shifted in index by —2 since bj_2 enters the
definition of a,j (equation D.3). Therefore, the leading two components of |M2),
namely re and re+1 are equal to the first two coefficients of |02), &i and at+1.

It can easily be verified that any linear combination of \u2) and \<j>2) is still a
solution of the inhomogeneous Schrödinger equation defining \u2)- Via appropri-
ate boundary conditions at the origin we can enforce a zero-mixing of |</>2) which
cancels the first two expansion coefficients. The resulting |«2) thus shows an re+2

behavior determined by the inhomogeneity. The same arguments can be used to
arrive at the r

t+2^-1) behavior of a general |MJ).

Within the above choice of the \un), the Schrödinger equation for the energy
derivative \un) has an inhomogeneity with an r£+2(*~1) behavior. The \ùn) there-
fore start with ri+2*, if we again require a zero-mixing of the atomic eigenfunction.

D.2 Parametrization of nodeless wave-functions

Figure 8.2 on page 142 suggests a straightforward parametrization of the nodeless
wave-functions by Slater type orbitals of the form

u(\r\) oc |r |Qe-^ rl , (D.4)

where a should be close to the analytical behavior at the origin listed in table 8.1
on page 141 while — ß should lie in a region around the atomic eigenvalue.

Figure D.I shows various fits to the third nodeless wave-function for the silicon s
channel using functional forms related to equation D.4. It can clearly be observed
that the simple approach of equation D.4 does not give a satisfactory fit, espe-
cially at large r. The parameters a and ß are 2.46 and 2.03. The introduction
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Figure D.I: Various fits to the third (=valence) nodeless wave-function \u$) of the
silicon s-channel.

of a second polynomial or exponential term improves the result (last curve in
figure D.I). Only the fit with two polynomial and two exponential parameters
(not shown in the figure) is indistinguishable from the correct IM3) on the scale
of figure D.I.

D.3 Algebra for energy-dependent nodeless
wave-functions

In section 8.2.4 the concept of energy-dependent nodeless wave-functions \qn{e))
has been introduced to expand atomic wave-functions at arbitrary energies. An
energy-dependent nodeless wave-function is defined by the inhomogeneous differ-
ential equation

(D.5)

and can alternatively be written as

\qn+l(e))= \\qn(e)} - \qn(en))
e -£r,

(D.6)
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Substitution into equation D.5 shows that the above expression is indeed a solu-
tion. We now insert the Taylor expansion of \qn(s)) around e = en

i. / n\

3=0 J

into equation D.6:

- £ • »

Note that la-7) denotes to the j t h power of a ket \a), whereas \a^) refers to the
j t h energy derivative. The above expression can be generalized to an arbitrary
derivative of \qn+i(e)):

j=k+l

At e = en equation D.7 is reduced to the simple form

(D.7)

I fc+l\

which is the expression postulated in equation 8.14.



Appendix E

Calculating Atomic Fragments

This appendix contains several derivations that are needed in the context of the
plane-wave codes developed to calculate atomic fragment orbitals.

E.I Prerequisites

Definition of a Fourier transform: As already discussed in appendix A.2,
this definition is not the only possible one. V denotes the volume of periodicity.

- for periodic systems we choose:

<r|G> = e>a'

G

for non-periodic systems we have to deal with continuous G vectors and the
1/V term transforms into a c?G/(27r)3 term:

= f d3G<f>(G)eiGr

)e-iGr
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Expanding a plane-wave into spherical harmonics and Bessel functions

3t{\G\\r\)Ytm{G)Ylm{f)
£,m

Formulas related to spherical harmonics

m=-t

G G'
cos 7 =

dm

•Pe(œs0G)eim4>G

d(cos 9

E.2 From radial grids to a plane-wave
representation

This section shows how a function that is given in terms of a radial part times
spherical harmonics

tm

can be transformed into G space

f(r) = Jd3Gf(G)eiGr.

Note that at this point we are using a continuous set of G vectors, since we do
not require periodic boundary conditions.

Using the prerequisites introduced so far we write
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4?r

J oo
d3r

Arc

4TT

4?T

^-iGr

1 em <L2°.

düYlm(f)Yl,ml{f)

*-1'" [T
\r\r2fem(\r\)je,(\G\\r\) \Yeruf{0)

d\r\r2Um'(\r\)je'(\G\\r\)\Yeml(G).

The expression for a periodic function and thus discrete G vectors is obtained by
multiplying with

(27T)3

V

The final expression for a case with periodic boundary conditions is thus

= 7EH' f r
v em' Uo

In the applications of part III, all functions which need to be transformed can be
expressed in terms of a single radial times spherical harmonics expression. In this
case the sum over £' and m! is thus removed. The expression in square brackets is
called spherical Bessel transform of order t and is calculated on radial grids [110].
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E.3 The local potential in reciprocal space

In this section I derive the expression for a matrix element of a local potential in
G space.

(G\vloc\G') = JJ d3rd3r'(G\r)(r\vloc\r')(r'\G')

= f d3r(G\r)(r\vloc\r)(r\G')
Jv

= !d3rvloc(r)e^G'-G>
Jv

= Vvl0C(G-G'),

where V is the unit-cell volume and v\oc(G) is the Fourier transform of v\oc(r)
(compare appendix E.2).
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E.4 The nonlocal potential in reciprocal space

This section derives the expression for a matrix element of the non-local potential
in reciprocal space.

= ff d3rdV(47r)2 J2
J ^V VV'm'm"VV'm'm"

m

fjvdG'Wr'DY^iÔ^Y^i?)

d\r\d\r'\r2r'
VV'm'm."

5ni5mm'

y r | ) . (E.I)

/(|r|) is the radial part of the potential.



Appendix F

The Harris-Foulkes Functional

The Kohn-Sham equations can only be solved iteratively, since the potential in
the Hamiltonian depends on the electron density, which is itself built up from
the solutions of the Kohn-Sham equations. The standard procedure to itera-
tively solve for the electronic ground state is the so-called self-consistency cycle
visualized in figure F.I.

Starting from an input density, usually a superposition of atomic densities, the
Hamiltonian is set up and the Kohn-Sham equations are solved. A new density
is obtained from the occupied Kohn-Sham orbitals. This new density only equals
the input density, when convergence is achieved. Otherwise, input and output
densities are mixed and the cycle is started again.

J. Harris [111] and M. Foulkes [112] independently developed an energy expression
closely related to the Hohenberg-Kohn-Sham formalism, which is designed to yield
good approximations to the total energy but on the basis of a reasonable input
density and just one self-consistency iteration.

F.I DFT revisited

According to the Hohenberg-Kohn-Sham theorems, the many-body energy cor-
responding to a ground state electron density po(r) is given by

£HKS[po] =

= Ts[pQ] + EH[p0] + Exc[po] + I vext(r)p0(r)dr,
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Figure F.I: A typical self-consistency cycle used in many electronic structure codes
to determine the electronic ground state.

where the Hartree energy EH is given by

Po(r)po(r')
\r - r'\

drdr'

and the exchange and correlation energy Exc is approximated by a local or semi-
local form as discussed in section 2.2. All terms except the kinetic energy of the
noninteracting system, Ts[po], a r e denoted as Epot, ignoring that Exc also includes
kinetic contributions due to correlation.

The kinetic energy Ts[p0] is calculated from the solutions to the Kohn-Sham
equations:

and

where ft is the occupation number of state i. In the above equation, Ts is a
functional of the effective potential ueff and not of the density. The requirement
that the Hohenberg-Kohn-Sham functional becomes stationary at the ground
state density relates the density and the effective potential via the so-called self-
consistency condition:
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(F.I)

where the constant can be set to zero for a closed system. A more elaborate
discussion of density functional theory and its development is found in section 2.2.

In a self-consistency cycle we usually start out with an input density pm and
construct the effective input potential

vext(r)= J fz
which is then used to determine the single-particle eigenvalues and -functions {ei}
and {(f>i}. In this context, the density calculated from the eigenfunctions {fa}
(compare equation 2.6), is denoted as pout(r) and is in general not equal to pm(r).
Only for the ground-state density, input and output densities are identical and
selfconsistency is achieved.

After one self-consistency cycle, the total energy E[poat(r)], can be evaluated in
several ways which all give identical results:

£HKVut(r-)] = JTfi [<t>*(r)(-lv2)fa(r)dr + Epot[p^(r)}

N

Sf o=o ' n

V)

vext(r)pou\r)dr.

(F.2)

(F.3)

(F.4)

In equation F.2 the kinetic energy is evaluated directly, whereas in the approach
of equation F.3 and F.4 one uses the sum of the Kohn-Sham eigenvalues and
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subtracts out the interaction of the output density with the effective potential
generated from the input density. This approach is especially useful for some
augmented wave basis sets as the direct evaluation of the kinetic energy can be
cumbersome.

Equations F.2 to F.4 are strictly variational which means that all non-converged
energies E[pont(r)] are above the converged result E[po(r)]. The total energy at
the ground-state density is then, in the notation of equation F.4, given as

+Exc[po{r)}.

F.2 Non-selfconsistent DFT calculations

Three groups of authors independently approached the topic of non-selfconsistent
density functional calculations. The first have been Wendel and Martin [113] in
the context of a calculation on silicon. Harris [111] wanted to calculate the
interaction energy of weakly interacting systems. He assumed that the density
of the two systems in contact is very close to the sum of the density of the two
isolated systems. Foulkes and Haydock [112] connected density functional theory
and non-selfconsistent tight-binding calculations. Independently they all arrived
at the same expression which will be derived following Foulkes and Haydock [112].

All three groups of authors considered the energy expressions F.2 to F.4 as too
cumbersome to evaluate for a single-cycle calculation since pout(r) has to be eval-
uated. Foulkes and Haydock started from an expression corresponding to equa-
tion F.3 and expanded Epot[pout(r)] in terms of Epot[pin(r)]:

= Epot[p
in(r)}

SE,pot Ap(r) dr

Ml Op2

ôp

Ap(r) Ap(r')drdr'+ O[(Ap)% (F.5)

p1

pot

p'

where Ap(r) = pout(r) — pm{r). Substituting the expansion of Epot[pout(r)] into

equation F.3, using weff[p
in(r)] = —f2*- and truncating the expansion after the

" pin

linear term leads to
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NN r

£HKVut(r)] « £ / « * -

= Ew[pia(r)}, (F.6)

the so-called Harris-Foulkes functional. It differs from the corresponding
Hohenberg-Kohn-Sham expression only in terms quadratic in Ap(r). At the
ground state density the Harris-Foulkes functional is also stationary and identi-
cal to the Hohenberg-Kohn-Sham functional, since Apout(r) = Apm(r).

One can also expand i£HKS[pout(r)] and EUF[pm(r)] in terms of the ground state
energy E»KS[p0(r)} = E"F[p0(r)]:

r2£HKS

Apout(r) Apout(r')drdr'

öp2

PO

s.2 pHKS

Apin(r) Apout(r')drdr'
PO

where Apin/out(r) = pin/out(r) — po(r). The second functional derivative of the
Hohenberg-Kohn-Sham functional at the ground-state density is positive due to
the variational principle. Since ApoutApout is also non-negative, EHKS[pout(r)] is
above the ground state energy and thus the expression is variational. EUF[pm(r)}
also depends on Apm and the product ApmApout is not necessarily non-negative.
In fact it turns out to be negative in most cases duo to the so-called "overshoot-
ing" [112, 97]: the output density usually "overcompensates" the errors of the
input density. As a result, ApmApont is negative in many regions of space and
the Harris functional acts like a lower bound to the self-consistent energy whereas
the EnKS[pont (r)] is an upper bound. The Harris-Foulkes functional is thus only
stationary and not variational at the ground-state density.

Since this method is only used for single-cycle calculations, the non-variational
character does not matter at all. The stationary character, however, ensures
that the eigenvalues obtained are better than the density from which they were
obtained. It is a-priori unclear whether one of the two functional expressions is in
general superior over the other. By construction they both have very similar error
expressions. Empirically one has, however, observed, that usually the Harris-
Foulkes functional is a better approximation to the self-consistent energy [97].
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10. "Ab initio Molecular Dynamics with full Wave Functions: The PAW
Method",
13. Edgar Lüscher Seminar, Serneus, Switzerland; 02.-07.02.2002
invited

Posters

• "Growth of high-K oxides on silicon: SrTiO3/Si(001)",
Workshop on Application of Density-Functional Theory in Condensed-Matter
Physics, Surface Physics,Chemistry, Engineering, and Biology,
Berlin, Germany; 21.07.-30.07.03

• "The nonlinear optics material: KTiOPO4",
DFT Summer School, Caramulo, Portugal; 28.08.-02.09.01

• "The nonlinear optics material: KTiOPO4",
16 Workshop on Novel Materials and Superconductors, Planneralm, Austria;
04.02.-10.02.01

Attendance

• 17. Workshop on Novel Materials and Superconductors, Planneralm,
Austria; 24.02.-02.03.02

• Hauptversammlung der Deutschen Bunsen-Gesellschaft, Stuttgart,
Germany; 24.05.-26.05.01

• Applied DFT 2001 Conference, Vienna, Austria; 14.01.-17.01.01



NON-SCIENTIFIC

10.1994-09.1995 Service in the Austrian army

09.1999 Promotion to Second Lieutenant by the Austrian President Dr. Thomas
Klestil

04.1996-10.2000 Tour guide for a Viennese travel agency for the destinations Libya,
Southwest USA and Canada

10.2002 Promotion to First Lieutenant by the Austrian Secretary of Defence


