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Zusammenfassung

Ich stelle eine vereinfachte Version von Shelah’s “preserving a little implies preserving
much” vor: Sei I ein Ideal, das von einem Suslin ccc forcing Q erzeugt wird (z.B. das
Ideal der Lebesque Nullmengen oder das der mageren Mengen). Ein solches Ideal ist
notwendigerweise σ–vollständig und ccc, und ro(Q) ∼= Borel/I.

Wir nennen ein forcing P preserving, wenn P keine positive Borelmenge klein macht,
d.h. wenn für jede Borelmenge A in V mit A /∈ I gilt: in der P–Erweiterung V [GP ] ist
AV /∈ I. P ist strongly preserving, wenn P gar keine Menge klein macht, das heißt im Fall
Q=random insbesondere auch daß keine nichtmeßbaren Mengen Nullmengen werden.

Im allgemeinen ist preserving stärker als nur die Aussage daß ωω ∩ V nicht klein wird,
und zumindest konsistenterweise gibt es ein proper forcing P das preserving aber nicht
strongly preserving ist. Wenn P allerdings Suslin+ ist, gilt: Ist P preserving, dann erhält
P generische Elemente über Kandidaten, und ist daher strongly generic.

Die Äquivalenz zur Erhaltung der Generizität ist auch für die Limesschritte von proper
Iterationen nützlich: Es ist völlig unklar wie eine Eigenschaft wie preserving erhalten
werden sollte, aber Erhaltung von Generizität ist (zumindest in den wichtigsten Fällen,
null und mager) iterierbar. Siehe dazu das Kapitel über Erhaltungssätze in [BJ95]. Mehr
zu (kurzen) Suslin proper Iterationen steht in [GJ92].

Für mager wurde die Equivalenz von preserving und strongly preserving von Goldstern
and Shelah in [She98, Lem 3.11, p.920] gezeigt. Pawlikowski, auf [JS90] aufbauend,
bewies in [Paw95] die Äquivalenz für P=Laver und I=Null. Shelah hat die Äquivalenz
allgemein im Zusammenhang mit nep forcing in [She04] bewiesen. Die Definition und die
grundlegenden Eigenschaften des zu einem forcing Q gehörenden Ideals wurden schon
seit langem verwendet, z.B. im Arbeiten von Judah, Bartoszyński und Ros lanowski, die
in [BJ95] zitiert sind. Im Zusammenhang damit steht auch [Sik64, §31].
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Abstract

We (i.e. I) present a simplified version of Shelah’s “preserving a little implies preserving
much”: If I is the ideal generated by a Suslin ccc forcing (e.g. Lebesque–null or meager),
and P is a Suslin+ forcing, and P is I–preserving (i.e. it doesn’t make any positive
Borel–set small), then P preserves generics over candidates and therefore is strongly
I–preserving (i.e. doesn’t make any positive set small).

This is also useful for preservation in limit–steps of iterations (Pα)α<δ: while it is not
clear how one could argue directly that Pδ still is weakly I–preserving, the equivalent
“preservation of generics” can often be shown to be iterable (see e.g. the chapter on
preservation theorems for proper iterations in [BJ95] for the case of I=Lebesque–null or
meager). For (short) iterations of Suslin forcings, see [GJ92].

For the ideal of meager sets the equivalence of weak preservation and preservation was
done by Goldstern and Shelah [She98, Lem 3.11, p.920]. Pawlikowski [Paw95] showed
the equivalence for P=Laver and I=Null, building on [JS90]. Shelah proved the theorem
in the context of nep forcing [She04]. The definition and basic properties of the ideal
belonging to Q have been used for a long time, e.g. in works of Judah, Bartoszyński and
Ros lanowski, cited in [BJ95], also related is [Sik64, §31].
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1 Review of Suslin+ forcing

In this section, we will recall the definition and basic properties of Suslin proper, Suslin
ccc and Suslin+ forcing, and introduce an “effective” version on Axiom A. Despite it’s
name, Suslin+ is a generalization of Suslin proper.

1.1 Candidates, Suslin and Suslin+ forcing

We assume that the forcing Q is defined by formulas ϕ∈Q(x) and ϕ≤(x, y), using a real
parameter pQ. Fixing ZFC∗, we call M a “candidate” if it is a countable transitive ZFC∗

model and pQ ∈ M .

Assume that ϕ∈Q and ϕ≤ are absolute between candidates and V . Let M be a candidate,
and let QM , ≤M be the evaluation of ϕ∈Q, ϕ≤ in M (i.e. QM = Q ∩ M and ≤M =
≤ ∩M). We assume that in M , QM is a set and ≤M a (quasi) p.o. on this set. We will
also assume that p ⊥ q is absolute between M and V . Then we call q ∈ Q M–generic
(or: Q–generic over M), if q 
 “GQ ∩ QM is QM–generic over M”.

Since in V [GQ], GQ ∩QM is closed upwards, and ⊥ is absolute, “q ∈ Q is M–generic” is
equivalent to: For all D ∈ M s.t. D ⊂ QM dense (or max a.c. etc): q 
 G ∩ D 6= ∅.

Definition 1.1. A (definition of a) forcing Q is Suslin (or: strongly Suslin) in the
parameter pQ ∈

�
w.r.t. ZFC∗, if:

1. pQ codes three
˜
Σ1

1 relations, R∈
Q, R≤

Q and R⊥
Q.

2. R≤
Q is a (quasi) p.o. on Q = {x ∈ ωω : R∈

Q(x)}, and p ⊥Q q iff R⊥
Q(p, q).

Q is Suslin proper, if in addition

3. for every candidate M , and every p ∈ QM , there is a q ≤ p M–generic.

Remarks:

• If Q is Suslin, then (2) holds in all candidates as well, since (2) can be written as
a conjunction of a

˜
Σ1

1 and a
˜
Π1

1 formula.
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1 Review of Suslin+ forcing

• However, the formula “(∈Q,≤Q, pQ, ZFC∗) codes a Suslin proper forcing” is a
˜
Π1

3

statement, so in general (3) will not hold any more in candidates, i.e. a Suslin
forcing Q that is Suslin proper in V is not necessarily proper in a candidate M .

• If Q is Suslin, then ⊥ is a Borel relation, and therefore the statement “{qi : i ∈ ω}
is predense below p” (i.e. p 
 G ∩ {qi : i ∈ ω} 6= ∅) is

˜
Π1

1 (i.e. relatively
˜
Π1

1 in the

˜
Σ1

1 set (ω+1)Q).

In [IHJS88] it is proven that if a forcing Q is Suslin and ccc (in short: Suslin ccc), then
Q is Suslin proper in a very absolute way:

Lemma 1.2. Assume Q is Suslin ccc. Then

1. Q is Suslin proper: even 1Q is generic for every candidate.

2. In every candidate, Q is ccc.

3. This still holds in any extension on V .

Actually this requires that ZFC∗ contains a certain sentence ϕ0, the completeness the-
orem for Keisler–logic. However, since it is provable in ZFC that ϕ0 holds in H(χ) for
large regular χ, this requirement is easily met, see the section on normality on page 5.

Note that this lemma is trivially true for a Q that is definable without parameters (e.g.
Cohen, random, amoeba, Hechler), assuming of course for (2) that ZFC∗ is strong enough
to prove that Q is ccc, and for (3), that ZFC ` Q ccc.

Cohen, random, Hechler and Amoeba forcing are Suslin ccc and Mathias forcing is Suslin
proper. Miller or Sacks forcing, however, are not, since incompatibility is not Borel.

This motivated a generalization of Suslin proper, Suslin+ (see [Gol93, p. 357]): here, we
do not require ⊥ to be

˜
Σ1

1 any more, so “{qi : i ∈ ω} is predense below p” will generally
be

˜
Π1

2. However, we require that there is a
˜
Σ1

2 relation epd (“effectively predense”) that
holds for “enough” predense sequences:

Definition 1.3. A (definition of a) forcing Q is Suslin+ in the parameter pQ w.r.t. ZFC∗,
if:

1. pQ codes two
˜
Σ1

1 relations, R∈
Q, R≤

Q and an (ω + 1)–place
˜
Σ1

2 relation epd.

2. In V and every candidate M , R≤
Q is a (quasi) p.o. on Q = {x ∈ ωω : R∈

Q(x)}, and
if epd(qi, p), the {qi : i ∈ ω} is predense below p.

3. for every candidate M , and every p ∈ QM , there is an q ≤ p s.t. for all D ∈ M ,
D ⊆ QM dense: epd(di, q) holds for some enumeration {di : i ∈ ω} of D.

Clearly, every Suslin proper forcing is Suslin+: epd can just be defined by “{qi : i ∈ ω}
is predense below p”, which is even a conjunction of

˜
Π1

1 and
˜
Σ1

1, and then 1.3.(3) is just
a reformulation of 1.1(3).

2



1 Review of Suslin+ forcing

1.2 Effective Axiom A

The usual tree–like forcings are Suslin+. Here, we consider the following forcings consist-
ing of trees on <ωω ordered by ⊆ (usually, Sacks is defined on <ω2, but this is equivalent
by a simple density argument):

• Sacks (perfect trees: ∀s ∈ T ∃t ≥T s ∃≥2n : t_n ∈ T )

• Miller (superperfect trees: every node has either exactly one or infinitely many
immeditate successors, and ∀s ∈ T ∃t ≥T s ∃∞n : t_n ∈ T )

• Laver (let s be the stem of T . Then ∀t ≥T s ∃∞n : t_n ∈ T )

• Ros lanowski (∀s ∈ T (∃!n ∈ ω : s_n ∈ T ) ∨ (∀n ∈ ω : s_n ∈ T ) and
∀s ∈ T ∃t ≥T s ∀n ∈ ω : t_n ∈ T )

Clearly, “p ∈ Q” and “q ≤ p” are Borel (but p ⊥ q is not).

(Alternatively, Q could of course be defined as the set of trees just containing a corre-
sponding set, then x ∈ Q is

˜
Σ1

1, and two compatible elements p, q have a canonical lower
bound, p ∩ q).

In the following, we call Sacks, Miller and Ros lanowski “Miller–like”. For Sacks, there
is a proof of the Suslin+ property in [Gol93], using games. Here we prove Suslin+ using
an effective version of Axiom A:

Baumgartner’s Axiom A for a forcing (Q,≤) (see e.g. [Bau83]) can be formulated as
follows: There are relations ≤n s.t.

1. ≤n+1 ⊆≤n ⊆≤

2. ∀(an) ∈ ωQ : an+1 ≤n an → ∃aω∀n aω ≤ an (fusion)

3. ∀p ∀n ∀D ⊆ Q dense ∃q ≤n p ∃B ⊆ D countable, predense ≤ q

Remarks:

• Actually, this is a weak version of Axiom A, usually even something like aω ≤n an

or aω ≤n−1 an will hold.

• It is easy to see that in (3), instead of dense predense we can use open dense or
maximal antichain.

Now for “effective Axiom A” it is required that the B ⊆ D in (3) is effectively predense
below q, not just predense. Then Suslin+ follows from 1.3(1)&(2) and the effective
version of Axiom A. To be more exact:

3



1 Review of Suslin+ forcing

Lemma 1.4. Q is Suslin+ in the parameter pQ w.r.t. ZFC∗, if

1. pQ codes
˜
Σ1

1 relations, ∈Q, ≤Q, and
˜
Σ1

2 relations ≤n
Q (n ∈ ω) and a (ω + 1)–place

˜
Σ1

2 relation epd.

2. In V and every candidate M : R≤
Q is a (quasi) p.o. on Q = {x ∈ ωω : R∈

Q(x)}, and
epd(qi, p) → (qi) is predense below p

3. In V , ∀(an) ∈ ωQ : an+1 ≤n an → ∃aω∀n aω ≤ an (fusion).

4. In all candidates, ∀p ∀n ∀D ⊆ Q dense ∃q ≤n p ∃{bi : i ∈ ω} ⊆ D s.t. epd(bi, q)

Proof. First we define epd′(p′i, q
′) to mean ∃q ≥ q′ ∃{pi} ⊆ {p′i} : epd(pi, q). Clearly, this

is a
˜
Σ1

2 relation coded by pQ satisfying 1.3.(2). Let M be a candidate, let {Ai : i ∈ ω}
list the maximal antichains of QM in M , and let a0 = p ∈ QM arbitrary. We have
to find a q ≤ p satisfying 1.3.(3) w.r.t. epd′. In M , find to each an an an+1 ≤n an

according to (4), using An as A. In V , find q = aω according to (3). Now, for each
n, M � epd(bi, an+1), so this holds in V , and q ≤ an+1, so by the definition of epd′,
epd′(pi, q), where {pi : i ∈ ω} = An.

The usual proofs that the forcings defined above satisfy axiom A also show that they
satisfy the effective version.

To be more explicit: Assume Q is any of the forcings defined above. We define (for p,
q ∈ Q, n ∈ ω):

• split(p) = {s ∈ p : ∃≥2 s_n ∈ p}

• split(p, n) = {s ∈ split(p) : ∀t ( s : t /∈ split(p, n)}

• q ≤n p, if q ≤ p and split(q, n) = split(p, n)
(so q ≤0 p if q ≤ p and q has the same stem as p).

• for s ∈ p, p[s] = {t ∈ p : t ⊆ s ∨ s ⊆ t}

• F ⊆ p is a front, if it is an antichain meeting every branch of p.

• epd(pi, q) is defined by: There is a front F ⊆ q such that ∀f ∈ F ∃i ∈ ω : pi = q[f ].

• For Miller–like forcings, effectively predense could also be define as epd′(pi, q) :↔
∃n ∀s ∈ split(q, n)∃i : pi = q[s].

Clearly, split(p), split(p, n), p[s] and epd′ are Borel, “F is a front” is
˜
Π1

1, therefore epd is

˜
Σ1

2.

The following facts are easy to check (p, q ∈ Q):

4



1 Review of Suslin+ forcing

• if s ∈ p, then p[s] ∈ Q

• if F ⊂ p is a front, and q ‖ p, then ∃s ∈ F q ‖ p[s]

• split(p, n) is a front in p

• For (qn)n∈ω s.t. qn+1 ≤n qn, there is a canonical limit qω and qω ≤n qn.

• If Q is Miller–like, and if F ⊂ p is a front, and ∀s ∈ F, ps ∈ Q, ps ⊆ p[s], then⋃
s∈F ps ∈ Q.

• If Q is Laver, and if F ⊂ p is a front, and ∀s ∈ F , ps ∈ Q has stem s, then⋃
s∈F ps ∈ Q.

Then effective Axiom A for Miller–like forcings is proven as follows: Assume, D ≤ Q is
dense, p ∈ Q. For all s ∈ split(s, n), p[s] ∈ Q, so there is a ps ≤ p[s] s.t. ps ∈ D. Now let
q =

⋃
s∈F ps ∈ Q. Then q ≤n p, and {ps} ⊆ D are effectively predense below q according

to the definition of epd′ (or epd).

For Laver, we have to define a rank of nodes: If D is a dense set and p a condition with
stem s0, s ≥p s0, define rkD(p, s) as follows: If there is a q ≤ p, q ∈ D, q has stem
s, then rkD(p, s) = 0. Otherwise rk(p, s) is the minimal α s.t. ∃∞t � s : rkD(t) < α.
rkD is well–defined for all nodes above the stem of p: Otherwise, the set of nodes not in
dom(rkD) form a Laver condition q ≤ p, then pick q′ ≤ q s.t. q′ ∈ D, let s be the stem
of q′, then rkD(p, s) = 0, a contradiction. Now the value of rkD is strictly decreasing
along branches, therefore F = {s ∈ p : rkD(p, s) = 0} is a front. So for each s ∈ F there
is a ps ≤ p in D with stem s. So {ps : s ∈ F} is effectively predense below

⋃
s∈F ps.

1.3 Normality

ZFC∗ is called normal if for regular χ large enough, H(χ) � ZFC∗. We will only be
interested in Suslin forcings that are defined with respect to a normal ZFC∗: If e.g.
ZFC∗ contains 0 = 1, then every Q that is Suslin is trivially Suslin proper, but this is of
course not the right spirit.

ZFC∗ will definitely be normal if ZFC∗ follows from e.g. ZFC minus powerset plus
i630 exists. In such a case, ZFC∗ is called absolutely normal (since it will still be
normal in any ZFC–model V ′). We can find a fixed absolutely normal ZFC∗

0 that will
work for all Suslin ccc forcings (ZFC∗

0 just has to contain the completenes theorem for
Keisler–logic, see lemma 1.2). So if Q is Suslin ccc, then it is automatically Suslin
proper w.r.t. the fixed normal ZFC∗

0, and this still holds in all forcing extensions of
V . (Note however, that Q can not be normal w.r.t. ZFC∗

0 in every ZFC∗
0–candidate,

otherwise there would be an infinite descending chain of candidates.) We can also fix a
stronger, still absolutely normal ZFC∗

1 s.t. ZFC∗
1 ` ∀P 
P ZFC∗

0, i.e. for all ϕ ∈ ZFC∗
0,

5



1 Review of Suslin+ forcing

ZFC∗
1 ` (∀P forcing: 
P ϕ). Then any ZFC∗

1–candidate remains a ZFC∗
0 candidate after

forcing with any set forcing P . We can also assume that ZFC∗
1, ZFC∗

0 are definable in
(and therefore element of) any ZFC∗

0–candidate. So if M1 is a candidate, it makes sense
to say M1 � “M2 is a candidate” (and this clearly implies that M2 really is a candidate).

In the normal case, a Suslin+ forcing is proper: Assume N ≺ H(χ), p ∈ N . Let M be
the transitive collapse of N . Since Q ⊆ ωω, QN isn’t changed by the collapse. If q ≤ p
M–generic, then q is N–generic.

We will frequently and without mentioning use the well known fact that for large (w.r.t.
τ), regular χ: H(χ) � p 
 ϕ(τ) iff p 
 H(χ)V [G]

� ϕ(τ).

As an example how we will use normality, assume that for a name
˜
η ∈ H(ℵ1) and all

candidates M , M �


˜
η /∈ V . Then this is true in V as well. Otherwise, if V � p 


˜
η = r,

then for some regular χ, H(χ) � p 


˜
η = r (since

˜
η[G] = r is absolute between H(χ)V [G]

and V [G]). Take N ≺ H(χ) countable, M its transitive collapse. Then M is a candidate,
and M � p 


˜
η = r, a contradiction. We will usually abbrevate arguments of this kind

by just refering to normality.

For every countable transitive model, M � “q 
 ϕ(τ)” iff for all M–generic G, M [G] �

“ϕ(τ [G])”. If Q is Suslin+ and M a candidate, then M � “p 
 ϕ(τ)” iff for all M-
and V –generic G, M [G] � “ϕ(τ [G])”. (One direction is clear. For the other, assume
M � “p′ ≤ p, p′ 
 ¬ϕ(τ)”. Let q ≤ p′ be M generic. Then for any V –generic G
containing q, G is M–generic as well and M [G] � “¬ϕ(τ [G])”.)

Lemma 1.5. Let V1 ⊆ V2 be two transitive models of ZFC, ω1 ⊂ V1, V1 � x ∈ H(ℵ1).
Then “there is a candidate M containing x s.t. M � ϕ(x)” is absolute between V1 and
V2.

This is shown exactly as Σ1 (Shoenfield–Levy) absoluteness.

Lemma 1.6. If Q is Suslin ccc, M1 a candidate, M2 ⊃ M1 is either V or another
candidate, and G is Q–generic over M2, then G is Q–generic over M1.

Proof. If A ∈ M1, M1 � “A max a.c.”, then M1 � “A countable” because of lemma 1.2,
so “A is maximal” is a

˜
Π1

1 statement, therefore absolute, so G ∩ A 6= 0.
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2 The Ideals

In this section we will introduce the class of ideals to which the main theorem will apply.

2.1 The Forcing Q

If Q is ccc, then a name τ for an element of ωω can clearly be transformed into an
equivalent countable name

˜
η: for every n, pick a maximal antichain An deciding τ(n),

then
˜
η:={(p, (n, m)) : p ∈ An, p 
 τ(n) = m}.

From now on, we will assume the following (and M will always denote a candidate):

Assumption 2.1. Q is a Suslin ccc forcing,
˜
η is a countable name coded by pQ, 
Q

˜
η ∈

ωω \ V , and in all candidates: {�
˜
η(n) = m�, n, m ∈ ω} generates ro(Q).

“X generates ro(Q)” means that there is no proper sub–Boolean–algebra Y ⊇ X of
ro(Q) s.t. for all A ⊆ Y , supro(Q)(A) ∈ Y .

Lemma 2.2. This assumption is absolute between V ⊆ V ′ transitive models of ZFC
s.t. ω1

V ′

⊆ V . Also, the assumption is downwards absolute between V and candidates
M .

Proof. • “Q is a Suslin ccc” is absolute anyway (see 1.2).

• 
Q

˜
η ∈ ωω \ V is true in V iff it holds in all candidates:

If M � p 


˜
η = r, take q ≤ p M–generic, then in V , q 


˜
η = r. The other

direction follows from normality.

• A statement of the form “every candidate thinks ϕ(x)” for an x ∈ H(ℵ1)
V is abso-

lute between V and V ′ by 1.5, and downwards absolute between V and candidates,
since M1 � “M2 candidate” → V � “M2 candidate.

Lemma 2.3. For A Borel, “q 


˜
η ∈ A” is

˜
∆1

2, absolute between V , V ′ as in 2.2, and
absolute between candidates and V .

Remark: [BB97, 2.7] gives a general result for Q ccc and
˜
Σ1

n.

7



2 The Ideals

Proof. We assume A is built up along a wellfounded tree TA from basic clopen sets of the
form {x : x(n) = m} using countable unions and intersections (but no complements).
If A =

⋃
{Ai : i ∈ ω}, then wlog we can assume that every member of the sequence

(Ai)i∈ω occurs infinitely often in this sequence.

So there is a tree TA together with a mapping a that assigns a basic clopen set to each
leaf, and “

⋃
” or “

⋂
” to all other nodes. This determines a canonical assignment from

the nodes s ∈ TA to Borel sets As s.t. A〈〉 = A. (And if a(s) =
⋃

, s_n ∈ TA, then there
are infinitely many m s.t. As_n = As_m.) Then q 


˜
η ∈ A iff

(∗) ∃b : TA → Q ∪ {�} s.t.

• b(〈〉) = q,

• ∀s ∈ TA : a(s) = “
⋃

” → {b(t) 6= � : t � (s)} is predense ≤ b(s),

• ∀s ∈ TA : a(s) = “
⋂

” → ∀t � s : b(s) = b(t)

• if s is a leaf, and a(s) = As = {x : x(n) = m}, then {p : (p, (n, m)) ∈
˜
η} is

predense≤ b(s)

Q is Suslin proper, therefore “{ai : i ∈ ω} is predense below p” is (relatively)
˜
Π1

1, so the
statement is

˜
Σ1

2. Also, it is equivalent to q 


˜
η ∈ A: If there is such an assignment b,

then for all nodes s, b(s) 


˜
η ∈ As (by induction starting at the nodes). For the other

direction we construct the assignement b starting at the root b(〈〉) = q. If b(s) = p,
then by induction p 


˜
η ∈ As. If a(s) =

⋂
, then As =

⋂
t�s At, i.e. p 


˜
η ∈

⋂
t�s At,

then clearly for all t � s, p 


˜
η ∈ At, so b(t) = p works for all successors t of s. If

a(s) =
⋃

, then As =
⋃

t�s At, i.e. p 


˜
η ∈

⋃
t�s At. Now consider X =

⋃
t�s Xt,

Xt = {p′ ∈ Q : p′ 


˜
η ∈ At}. Then X is dense below p. Let X ′ be a maximal antichain

in X. Then X ′ is a countable predense set below p. Now distribute all the p′ ∈ X ′ to
the according t � s. To be more exact, let X ′

t = Xt ∩ X ′. We did assume that for each
t � s, the set At = {t′ � s : At = At′} is infinite. If t′ ∈ At, then X ′

t = X ′
t′ . If X ′

t 6= ∅,
then there is a surjective mapping c from X ′

t to At, since X ′
t is at most countable and

At infinite. So for t′ ∈ At, define b(t′) to be c(t′). If X ′
t = ∅, define b(t′) = � for t′ ∈ At.

Now clearly b(t) 


˜
η ∈ At, and {b(t) 6= � : t � s} is predense below b(s).

Since q 


˜
η ∈ A is

˜
Σ1

2, it is absolute between V , V ′ and upwards absolute between
candidates and V . To see that it is downwards absolute as well, assume that “q 


˜
η ∈ A”

holds in V but not in M . Then in M , there is a q′ ≤ q s.t. M � “q′ 


˜
η /∈ A”. If q′′ ≤ q′

M–generic, and G V –generic s.t. q′′ ∈ G, then M [G] �

˜
η[G] /∈ A, so V [G] �

˜
η[H ] /∈ A

by absoluteness. On the other hand, q′′ ≤ q, a contradiction to q 


˜
η ∈ A.

So q 


˜
η ∈ A iff for all candidates M s.t. A, q ∈ M , M � q 


˜
η ∈ A, which is

˜
Π1

2. So we
get

˜
∆1

2.

Lemma 2.4. The statement “{�
˜
η(n) = m�, n, m ∈ ω} generates ro(Q)” in M is equiv-

alent to: for all G1 6= G2 Q–generic over M ,
˜
η[G1] 6=

˜
η[G2].
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2 The Ideals

Proof. If {�
˜
η(n) = m�, n, m ∈ ω} generates ro(Q), then G ∩ QM can be calculated (in

M [G]) from
˜
η[G]. On the other hand, let (in M) B = ro(Q), C the proper complete

subalgebra generated by �
˜
η(n) = m�. Take b0 ∈ B s.t. no b′ ≤ b0 is in C, and let

c = inf{c′ ∈ C : c′ ≥ b0}, b1 = c \ b0. So for all c′ ∈ C, c′ ‖ b0 iff c′ ‖ b1. Let G0 be
B–generic over M s.t. b0 in G, then H = G0 ∩C is C–generic. In M [H ], b1 ∈ B/H . So
there is a G1 ⊃ H containing b1.

Definition 2.5. For q ∈ QM , η∗ is called (Q,
˜
η)–generic over M containing q (η∗ ∈

Gen(M, q)), if there is a G ∈ V M–generic s.t. q ∈ G and
˜
η[G] = η∗.

Gen(M, 1Q) will be denoted by Gen(M).

Lemma 2.6. Gen(M, q) is (uniformly) Borel.

Uniformly means that x ∈ Gen(M, q) is absolute between candidates M ′ and V s.t.
M ′

� M is a candidate, and between V and V ′ as in 2.2.

Proof. Let X = QM (countable, with discrete topology), A = {G ⊂ X :
G M–generic (containing q)}. Then A is a

˜
Π0

2 subset of X2, i.e. a Borel set. f : A → ωω
defined by G 7→

˜
η[G] is continuous (since

˜
η[G](n) = m iff there is a p ∈ G s.t.

M � “p 


˜
η(n) = m”). f is injective, therefore Gen(M, q) is Borel.

2.2 The Q–Ideal

Definition 2.7. 1. I = {X ⊆ ωω : ∃A ⊇ X Borel s.t. 
Q

˜
η /∈ A} (where A is

interpreted as a Borel–name evaluated in V [G], not as a set of V ).

2. X ∈ I+ means X /∈ I, and X is co–I means ωω \ X ∈ I.

For example, if � is the random algebra and � Cohen forcing, then I� are the null- and
I� the meager sets.

An immediate consequence of 2.3 is

Corollary 2.8. For A Borel, A ∈ I is absolute.

Lemma 2.9. I is a σ–complete ccc ideal containing singletons, and there is a surjective
σ–Boolean–algebra homomorphism φ : Borel → ro(Q) with kernel I, i.e. ro(Q) is
isomorphic to Borel/I as a complete Boolean algebra.

ccc means: there is no uncountable family {Ai} s.t. Ai ∈ I+ and i 6= j → Ai ∩ Aj ∈ I
(or equivalently: Ai ∩ Aj = ∅).
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2 The Ideals

Proof. σ–complete is clear: If Xi ⊆ Ai ∈ I, and ∀i : 

˜
η /∈ Ai, then 


˜
η /∈

⋃
Ai ⊇

⋃
Xi.

For each A Borel, define φ(A) = �
˜
η ∈ A� ∈ ro(Q). Then φ(ωω \A) = ¬φ(A), φ(

⋃
Ai) =

sup{φ(Ai)}, and if A ⊆ B, φ(A) ≤ φ(B). If φ(A) ≤ φ(B), then 


˜
η /∈ (A \ B), so

A \ B ∈ I. Since
˜
η generates ro(Q) (in all candidates, and therefore in V as well by

normality) and since Q is ccc, ro(Q) = φ′′Borel. So φ : Borel → ro(Q) is a surjective
σ–Boolean–algebra homomorphism. The kernel is the σ − closed Ideal I, so Borel/I is
isomorphic to ro(Q) as a σ–Boolean–algebra, and since ro(Q) is ccc, even as complete
Boolean algebra.

If q ∈ Q, and Bq Borel s.t. φ(Bq) = q, then for all A Borel, q 


˜
η ∈ A iff 
 (

˜
η ∈ B →

˜
η ∈ A) iff 


˜
η /∈ B \ A. Therefore

Corollary 2.10. If φ(Bq) = q, then q 


˜
η /∈ A iff A ∩ Bq ∈ I.

Lemma 2.11. “φ(Bq) = q” is absolute between V , V ′ and candidates

Proof. φ(Bq) = q is equivalent to (q 


˜
η ∈ Bq) & (p ⊥ q → p 


˜
η /∈ Bq). Because of

lemma 2.3 and since p ⊥ q is Borel, this is a
˜
Σ1

2 statement, therefore absolute between
V and V ′ and upwards absolute between M and V .

If V � φ(Bq) = q, then M � q 


˜
η ∈ Bq (2.3 again). Assume, in M there is a p ⊥ q

s.t. p 6

˜
η /∈ Bq. So in V , p ⊥ q, and wlog p 


˜
η ∈ Bq in M and therefore in V , a

contradiction.

Lemma 2.12. 1. Gen(M) = ωω \
⋃
{AV : A ∈ Borel ∩ I ∩ M}

2. If Bq ∈ M , q ∈ QM , φ(Bq) = q, then Gen(M, q) = ωω \
⋃
{AV : q 


˜
η ∈ A} =

Gen(M) ∩ Bq.

I.e. η∗ is generic over M iff for all A Borel s.t. M � “A ∈ I”: η∗ /∈ AV .

Proof. Assume η∗ ∈ Gen(M, q). Let G be M–generic s.t. q ∈ G and
˜
η[G] = η∗. If

M � q 


˜
η /∈ A, then M [G] � η∗ /∈ AM [G], i.e. V � η∗ /∈ AV .

For the other direction, we define in M φ : Borel → ro(Q) as in the proof of 2.9. If
φ(A) ≤ φ(B), then 


˜
η /∈ (A \B), so by our assumption, η∗ /∈ (A \B). Given η∗, define

G by φ(A) ∈ G iff η∗ ∈ A. G is a well defined: If η∗ ∈ A \ B, then φ(A) 6= φ(B). We
have to show that G is a generic filter over M : If φ(A1), φ(A2) ∈ G, then η∗ ∈ A1 ∩ A2,
so φ(A1) ∧ φ(A2) ∈ G. If φ(A) ≤ φ(B), then η∗ /∈ (A \ B), so φ(A) ∈ G → φ(B) ∈ G.
Since φ(∅) = 0, and η∗ /∈ ∅, 0 /∈ G. If sup(φ(Ai)) ∈ G, (Ai) ∈ M , then η∗ ∈

⋃
Ai, i.e.

for some i, φ(Ai) ∈ G.

If φ(B) = q, then q 


˜
η ∈ B by definition of φ, i.e. q 


˜
η

˜
/∈ ωω \ B, so so η∗ /∈ ωω \ B

by the assumption, so q ∈ G.

10



2 The Ideals

It remains to be shown that
⋃
{AV : A ∈ M, q 


˜
η /∈ A} = ωω \ (Bq ∩ Gen(M)). By

2.10, q 


˜
η /∈ A iff A ∩ Bq ∈ I. So if q 


˜
η /∈ A and η∗ ∈ A ∩ Bq, then η∗ /∈ Gen(M),

i.e. if η∗ ∈ A then η∗ /∈ Bq or η∗ /∈ Gen(M). On the other hand, if η∗ /∈ Bq, then for
A = ωω \ Bq, q 


˜
η /∈ A and η∗ ∈ A. And Gen(M, q) ⊆ Gen(M) is clear.

Lemma 2.13. Gen(M) ∈ co–I, and Gen(M, q) is relatively co–I in Bq.

Proof. Gen(M) is Borel. Let A = ωω \ Gen(M). Assume A ∈ I+, i.e. p 


˜
η ∈ A. So

if p ∈ G V –generic, then V [G] � “
˜
η[G] not (Q,

˜
η)–generic/M”. But if G is V –generic,

then it is M–generic (see 1.6), a contradiction.

Note that if Q is not ccc, then our definition of I does not lead to anything useful. For
example, if Q is Sacks forcing, then IQ is the ideal of countable sets, and clearly lemma
2.12 does not hold any more. There seem to be a few possible definitions for a similar I
generated by a non–ccc Q, see e.g. [She04].
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3 Preservation

Definition 3.1. 1. P is I–preserving, if for all A ∈ I+ Borel, 
P AV ∈ I+.

2. P is strongly I–preserving, if for all X ∈ I+, 
P X̂ ∈ I+.

For example, � is strongly I�–preserving, but not I�–preserving. � is strongly I�–
preserving, but not I�–preserving.

Note that being preserving is stronger than just “
P V ∩ ωω /∈ I”. For example, let
X = {x ∈ ωω : x(0) = 0}, Y = ωω \ X. Let Q be the forcing that adds a real

˜
η s.t.

˜
η is

random if
˜
η ∈ X, and

˜
η is Cohen otherwise. Clearly, Q is Suslin ccc. A ∈ I iff (A ∩ X

null and A∩ Y meager). So if P is random forcing, then 
P (ωωV /∈ I & Y V ∈ I). Note
that in this case, for any candidate M , a Q–generic real η∗ over M will still be generic
after forcing with P if η∗ ∈ X, but not if η∗ ∈ Y .

However, if P is homogeneous in a certain way, then weakly preserving and preserving
are equivalent (see [She04] for a sufficient condition).

Also, preserving and strongly preserving are generally not equivalent, not even for P
ccc. The standard example is the following: Let Q be � (Cohen), i.e. I is the ideal of
meager sets. We will construct a forcing extension V ′ of V and a forcing P ∈ V ′ s.t. P
is preserving but not strongly preserving (in V ′):

Let �ω1
be the forcing adding ℵ1 many Cohen reals (ci)i∈ω1

, i.e. �ω1
= {f : ω × ω1 →

2 partial, finite}. Then for any �ω1
–extension V [ci], {ci : i ∈ ω1} is a Luzin set (i.e. for

all X meager, X ∩ {ci : i ∈ ω1} is countable), and for all A Borel non–meager, A∩ {ci :
i ∈ ω1} is uncountable. If r is random over V , and (ci)i∈ω1

is �ω1
–generic over V [r],

then (ci) is �ω1
–generic over V as well. So the ccc forcing � ∗ �V [GC ]

ω1
can be factored as

�V
ω1
∗

˜
P , where

˜
P is a name for a ccc forcing. Let V ′ = V [(ci)], V ′′ = V ′[GP ] = V [r][(ci)].

Then in V ′, P =
˜
P [(ci)] is ccc and preserving, ωω ∩ V /∈ I, but P 


ωω ∩ V ∈ I.

Definition 3.2. 1. For q ∈ QM , p ∈ P M , η∗ is called absolutely (Q,
˜
η)–generic over

M containing q w.r.t. p (η∗ ∈ Genabs(M, q, p)), if there is a p′ ≤ p P–generic over
M s.t. (in V ), p′ 
P η∗ ∈ Gen(M [G], q).

2. P preserves generics for M , if Gen(M) = Genabs(M, 1Q, p), i.e. every M–generic
real could still be M [G]–generic in an extension.

Genabs(M, q, p) ⊆ Gen(M, q) by 1.6.
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3 Preservation

Lemma 3.3. If P preserves generics for (the transitive collapse of) cofinally many
countable N ≺ H(χ), then P is strongly preserving.

Here, cofinally many means that for all X ⊂ ωω there is a N ≺ H(χ) countable contain-
ing X and P with the required property.

Remark: The lemma still holds if Q is any ccc forcing (then N is not collapsed but used
directly as in usual proper forcing).

Proof. Assume, p 
P X ⊆
˜
A[GP ] ∈ I, i.e. p 
P 
Q

˜
η /∈

˜
A[GP ]V [GP ][GQ] . Let N ≺ H(χ)

containing P, X,
˜
A, Q, p, let M be thecollapse of N and η∗ ∈ Gen(M), p′ ≤ p M–generic

s.t. p′ 
 η∗ ∈ Gen(M [GP ]). Let G be V –generic, p′ ∈ G.

Then V [G] � M [GP ][GQ] � η∗ /∈ A ⊇ X, so V � η∗ /∈ X. Therefore Gen(M) ∩ X = ∅.
Gen(M) is co–I, therefore V � X ∈ I.

Theorem 3.4. Assume that P is Q–preserving in V , and that this property is preserved
by set forcing. Then P is strongly preserving.

Remarks: Actually, it is not necessary that “P is Q–preserving” is preserved by any set
forcing, it is just required that “P is Q–preserving” holds after collapsing some regular
cardinal. However, since collapses seems to be nearly as complicated as any forcing can
get, this condition doesn’t seem to be much weaker.

We will show that for many N ≺ H(χ), q ∈ QN , p ∈ P N , M the transitive collapse:
Genabs(M, q, p) is equal to Gen(M, q). We will start with showing that it is not empty:

Lemma 3.5. If P is preserving, then for all candidates M , q ∈ QM , p ∈ P M ,
Genabs(M, q, p) 6= ∅.

Proof. In V , Bq ∈ I+ (since q 


˜
η ∈ Bq). Assume that G is M– and V –generic. Then in

V [G], Gen(M [G], q) is relatively co–I in Bq, and BV
q ∈ I+, so Y = Gen(M [G], q) ∩ V ∈

I+.

If V � Genabs(M, q, p) = ∅, then for all η∗ ∈ V , p′ ≤ p M–generic: p′ 
 η∗ /∈ Y , i.e.
p′ 
 Y = ∅, a contradiction.

Now choose χ1, χ2 regular s.t. 2ℵ0 < χ1, 2χ1 < χ2, and H(χi) � ZFC∗
1, ZFC∗

P .

Let N ≺ H(χ) be a (P– and Q–) candidate, χ1, χ2 in N . Choose any p0 ∈ P N ,
q0 ∈ QN , and let φ : N → M be the transitive collapse of N , φ(H(χ1))=:H1. Let R−

i

be the collapse of H(χi) to a countable ordinal, and Ri:=φ(R−
i ) (i ∈ {1, 2}). So M is a

candidate, M � H1 = H(φ(χ1)), and M � R1 
 2ℵ0 ≤ φ(χ2).

Let η∗ ∈ Gen(M, q0). We have to show that η∗ ∈ Genabs(M, q0, p0). Let GQ ∈ V be a
M–generic filter containing q0 s.t.

˜
η[GQ] = η∗, and GR ∈ V R2–generic over M [GQ],

M ′ = M [GQ][GR].
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3 Preservation

Lemma 3.6. M ′
� “H1 is a candidate, η∗ ∈ Genabs(H1, q0, p0)”

If this is correct, then theorem 3.4 follows: Assume, M ′
� “p′ ≤ p0 H1–generic, p′ 


η∗ ∈ Gen(H1[GP ], q0)”. Let p′′ ≤ p be M ′–generic. Then p′′ is H1 generic and therefore
M generic as well (since P(P ) ∩ M = P(P ) ∩ H1), and p′′ 
 η∗ ∈ Gen(M [GP ], q0).

Proof of lemma 3.6. It is clear that H1 is a candidate in M ′. Assume towards a contra-
diction, that M ′

� “η∗ /∈ Genabs(H1, q, p)”, Then this is forced by some q1 ∈ GQ and
r ∈ R2, but since R2 is homogeneous, we can omit r, and since q0 ∈ GQ, wlog q1 ≤ q0,
so
(∗) M � “q1 
Q 
R2

η∗ /∈ Genabs(H1, q0, p0)”.

Now we can construct the following diagram:

M
R1 - M [GR1

]:=M1

@
@

@
@

@

Q

R �
�

�
�

�
R1/Q

G̃1

� @
@

@
@

@

R′

G̃2
R

M [η⊗]
R2

G̃1 ∗ G̃2

- M [η⊗][GR2
] = M2

First, choose GR1
∈ V R1–generic over M , and let M1 = M [GR1

]. In M1, pick η⊗ ∈
Genabs(H1, q1, p0) (using lemma 3.5), so since Genabs ⊆ Gen, M1 � “∃G⊗

Q Q–gen/H1

s.t. q1 ∈ G⊗
Q,

˜
η[G⊗

Q] = η⊗”. This G⊗
Q clearly is M–generic as well (since M ∩ P(Q) =

H1 ∩ P(Q)), so we can factorize R1 as R1 = Q ∗ R1/Q s.t. GR1
= G⊗

Q ∗ G̃1.

Now we look at the forcing R2 = RM
2 in M [G⊗

Q]. R2 forces that R1 is countable and
therefore equivalent to Cohen forcing, R1/Q is a subforcing of R1. Also, R2 adds a
Cohen real R2 adds a Cohen real. So R2 can be factorized as R2 = (R1/Q) ∗ R′,
where R′ = (R2/(R1/Q)). We already have G̃1 (R1/Q)–generic over M [G⊗

Q], now choose

G̃2 ∈ V R′–generic over M1, and let GR2
= G̃1 ∗ G̃2 So GR2

∈ V is R2–generic over
M [G⊗

Q], M2:=M [G⊗
Q][GR2

].

Let H2 be H(φ(χ2))
M1. Then H2 � “p1 ≤ p0H1–generic, p1 
 η⊗ ∈ Gen(H1[GP ])”,

and in M2, H2 is a candidate. Let in M2, p2 ≤ p1 be H2–generic, and in V p3 ≤ p2

M2–generic. Let GP be P–generic over V containing p3. Then G is M2– and H2–
generic, and since P(P ) ∩ H2 = P(P ) ∩ M1, GP is M1–generic as well. So M1[GP ] �

“∃G⊗
2 Q–generic/H1[GP ] s.t.

˜
η[G⊗

2 ]”] = η⊗. But this G⊗
2 exists in M2[GP ] ⊇ M1[GP ],

and being a generic filter for a candidate and the evaluation of names in candidates is
absolute. So in M2, η⊗ could be generic for H1[GP ] after forcing with P , a contradiction
to (∗).
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