
DISSERTATION

Distributed Collaborative Augmented Reality

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Anleitung von

A.o. Prof. Dipl.-Ing. Dr. Michael Gervautz

Institut Nr. 186

Institut für Computergraphik

und Univ.-Ass. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

als betreuendem Assistenten

eingereicht an der Technischen Universität Wien

Fakultät für Technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Gerd Hesina

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 2 -

Abstract

Augmented Reality is the mixture of computer graphics and text with real world and/or video

images. This thesis presents improvements for collaborative augmented reality environments.

We present a toolkit, which uses a distributed shared scene graph approach to enable

transparent distribution at the lowest level. Application migration is used to distribute

computational load within the system. We demonstrate how migration can be applied and

used for load balancing, dynamic workgroup management, remote collaboration, and even

“ubiquitous computing”. The resulting system is a complex distributed collaborative

augmented reality work environment, which is used to address the question of how to use

three-dimensional interaction and new media in a general work environment, where a variety

of tasks are carried out simultaneously by several users. The implementation was done in the

Studierstube system, a collaborative augmented reality environment. At its core, the system

uses collaborative augmented reality to incorporate true 3D interaction into a productivity

environment. This concept is extended to include multiple users, multiple host platforms,

multiple display types, multiple concurrent applications, and a multi-context (i. e., 3D

document) interface – into a heterogeneous distributed environment. All this happens almost

totally transparent to the application programmer.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 3 -

Kurzfassung (German Abstract)

Augmented Reality ist die Überlagerung von Computergraphik und Text mit der wirklichen

Umgebung und/oder Videobildern. Diese Dissertation behandelt Verbesserungen für

kollaborative Augemented Reality (AR) Umgebungen. Wir stellen ein Werkzeug vor, dass

einen verteilten, mehrfach benutzten Szenegraphen, als Ansatz verwendet, um eine

transparente Verteilung auf der untersten Ebene zu ermöglichen. Application migration wird

verwendet um Berechnungen innerhalb des Systems aufzuteilen, eine dynamische

Anwenderverwaltung zu erreichen, Kollaboration zwischen weit entfernten Anwendern zu

ermöglichen und um “ubiquitous computing” zu unterstützen. Das resultierende System ist

eine komplexe kollaborative AR Arbeitsumgebung, welche dazu verwendet wird, um die

Frage, wie man dreidimensionale Interaktion in einer üblichen Arbeitsumgebung, in der

verschiedenste Aufgabenstellungen gleichzeitig durch mehrere Benutzer bearbeitet werden, zu

behandeln. Die Implementierung wurde im Studierstube System ausgeführt, welches eine

kollaborative Augemented Reality Umbgebung ist. Als Kern verwendet das System

kollaborative AR um echte 3D Interaktion in die Arbeitsumgebung einzubinden. Dieses

Konzept wird um jeweils multiple Benutzer, Computer Plattformen, Anzeigegeräte, parallele

Applikationen und Kontextschnittstellen (d.h. 3D Dokumente), zu einer heterogenen

verteilten Umgebung erweitert. All dies geschieht beinahe völlig transparent für den

Applikationsprogrammierer.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 4 -

Acknowledgments

While it will be impossible to thank all those who have contributed in some way to this work,

there are certain folks who must be acknowledged. First and foremost are the members of the

Institute of Computer Graphics and Algorithms at Vienna University of Technology, where

this work was undertaken, especially my advisors Dieter Schmalstieg and Michael Gervautz.

Thanks to Werner Purgathofer for giving me a chance to work at the institute. Numerous

others at the institute influenced this work over the years, especially Anton Fuhrmann.

Thanks to Markus Krutz, Rainer Splechtna, Hermann Wurnig and Andreas Zajic for their

implementation work. Special thanks to Meister Eduard Gröller for spiritual support

throughout the whole project.

I would like to thank my family and friends who have encouraged and supported me over the

many years spent on this and previous work. My family has never wavered in their support, or

in their conviction that I could and would one day complete this dissertation. Especially I

would like to thank Gudrun for endless patience and love and my little daughter Alexandra for

giving me a new reason to live.

This work was supported by the Austrian Science Foundation (FWF) under project no.

P-12074.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 5 -

Mit einer Weisheit,

die keine Träne kennt,

mit einer Philosophie,

die nicht zu lachen versteht,

und einer Größe,

die sich nicht vor Kindern verneigt,

will ich nichts zu tun haben.

— Khalil Gibran

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 6 -

Table of Contents
1 INTRODUCTION.. 8

2 STRUCTURE OF THE THESIS.. 11

3 RELATED WORK .. 13

3.1 FUNDAMENTALS OF NETWORKING FOR VIRTUAL ENVIRONEMNTS.. 15

3.2 DISTRIBUTED SYSTEMS EXAMPLES... 22

3.3 SHARED SCENE GRAPHS .. 31

3.4 COLLABORATIVE AUGMENTED REALITY ... 33

4 STUDIERSTUBE OVERVIEW ... 35

4.1 BACKGROUND.. 35

4.2 DISTRIBUTED STUDIERSTUBE... 37

4.3 SUMMARY.. 41

5 DISTRIBUTED OPEN INVENTOR.. 42

5.1 INTRODUCTION .. 42

5.2 DISTRIBUTED SHARED SCENE GRAPH ... 43

5.3 REPLICATED SCENE GRAPH PROTOCOL... 45

5.4 LOCAL VARIATIONS ... 47

5.5 NETWORKING... 49

5.6 APPLICATION IN OUR AUGMENTED REALITY ENVIRONMENT ... 50

5.7 IMPLEMENTATION .. 52

5.8 RESULTS .. 55

5.9 DISTRIBUTED OPEN INVENTOR, VERSION 2 ... 57

5.10 SUMMARY ... 58

6 BRIDGING MULTIPLE USER INTERFACES WITH AUGMENTED REALITY 59

6.1 INTRODUCTION .. 59

6.2 MULTIPLE USERS.. 59

6.3 MULTIPLE CONTEXTS... 60

6.4 MULTIPLE LOCALES ... 61

6.5 INTERACTION DESIGN... 63

6.6 IMPLEMENTATION .. 65

6.7 RESULTS .. 72

6.8 SUMMARY.. 77

7 CONTEXT MIGRATION... 79

7.1 INTRODUCTION .. 79

7.2 CONTEXTS AND MIGRATION .. 79

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 7 -

7.3 ACTIVATION MIGRATION... 81

7.4 APPLICATION MIGRATION .. 82

7.5 USAGE OF MIGRATION.. 82

7.6 RESULTS .. 87

7.7 SUMMARY.. 89

8 CONCLUSIONS AND FUTURE WORK ... 90

8.1 DISCUSSION ... 91

9 REFERENCES... 94

10 APPENDIX... 102

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 8 -

1 Introduction

Technical progress in recent years gives reason to believe that virtual reality (VR) has a good

potential as a user interface of the future. At the moment, VR applications are usually tailored

to the needs of a very specific domain, such as a theme park ride or a virtual mock-up for

design inspection. We believe that augmented reality (AR), which is the mixture of computer

graphics and text with real and/or video images, and sometimes called the less obtrusive

cousin of VR, has a better chance to become a viable user interface for everyday productivity

applications, where a large variety of tasks has to be covered by a single system.

This work has mainly been motivated by the fact that current AR and VR environments

support only a limited number of users and a fixed number of applications. The investigation

of such systems revealed more limitations and problems. Display devices are not

interchangeable or able to be mixed and many systems lack a powerful interaction metaphor.

Furthermore we did not find systems which utilize the power of multiple user interface

dimensions like multiple users, multiple concurrent applications, multiple display devices,

multiple host computers, and multiple operating systems.

To address the aforementioned problems, this thesis proposes new techniques and tools to

build truly distributed systems that allow for larger collaborative workgroups in augmented

reality. The proposed solution runs software on a network of graphics workstations - one for

each user and allows different display technologies. A sophisticated networking set-up

provides minimal latency and low bandwidth requirements so that the quality of the shared

experience is not adversely affected. This solution is scalable: extension to any reasonable

number of users can be done by adding another module without system modifications.

The presented techniques are not limited to AR/VR environments. Many systems and

applications, like networked games, computer supported cooperative work systems, web-

based applications, distributed mobile systems and even distributed databases could take

advantage of the proposed approaches because those systems have often the same (or at least a

portion of the) aforementioned problems.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 9 -

This thesis focuses on problems, which arise if non-distributed systems are turned into

distributed ones (e.g. to improve scalability, or to enable a larger user-base). Furthermore it

tries to find new tools and techniques to interact with distributed systems.

We developed Studierstube, which is a research AR environment. Studierstube is the study

room where Goethe's famous character, Faust, tries to acquire knowledge and enlightenment.

We chose this term as the working title for our efforts to develop user interfaces for future

work environments. In the Studierstube project we try to address the question of how to use

three-dimensional interaction and new media in a general work environment, where a variety

of tasks are carried out simultaneously. In essence, we are searching for a 3D interaction

metaphor as powerful as the desktop metaphor for 2D.

The original Studierstube architecture (Schmalstieg et al., 1996) that has been developed

makes use of a relatively powerful workstation with multiple graphics outputs. Hence only a

limited number of users, which wear head mounted displays (HMD) is supported. While this

approach allows the construction of a multi-user system with little overhead, it is not truly

scalable, i.e. more than a certain number of users can definitely not be supported due to

hardware limitations. Furthermore collaborators are forced to be in the same room and are

limited to HMD displays.

In order to research, develop and verify the new techniques and tools, we have chosen to

enhance the Studierstube system. We also propose to extend our design to connect multiple

remote Studierstube sites with each other for combined local/tele-collaboration. Local users

may collaborate in augmented reality at the local site, and simultaneously interact with

another user group at a site anywhere on the Internet. For example, Studierstube could be used

as a utility for exploring scientific visualisation systems. Several groups are able to share their

workspace within our environment. The resulting architecture enables advanced features for

collaborative virtual environments, allowing multiple concurrent applications as well as

multiple users - both local and remote.

Furthermore we introduce light weight application migration to be able to shift computational

load of replicated applications from one host to another, while application migration streams

live applications from host to host in a way that is transparent to the application programmer

and user(s). We demonstrate how these tools can be applied for load balancing, dynamic

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 10 -

workgroup management, remote collaboration, and even ubiquitous computing (Weiser,

1991). This thesis presents our approaches to turn Studierstube into a distributed system.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 11 -

2 Structure of the Thesis

We introduce related work in chapter 3. Chapter 4 describes basic concepts of our distributed

collaborative augmented reality system Studierstube and chapter 5 presents the major building

block, which enables distribution of the system. In chapter 6 we have a close look at the

whole system and describe new techniques, which are used to bridge multiple user-interface

dimensions. New tools for application handling are introduced in chapter 7, and chapter 8

concludes this thesis.

This thesis contains material previously published in:

G. Hesina, D. Schmalstieg, A. Fuhrmann, W. Purgathofer: Distributed Open Inventor:

A Practical Approach to Distributed 3D Graphics, Proc. VRST ‘99, London, pp. 74-

81, Dec. 1999.

D. Schmalstieg, A. Fuhrmann, G. Hesina: Bridging Multiple User Interface

Dimensions with Augmented Reality, Proceedings of the 3rd International Symposium

on Augmented Reality (ISAR 2000), pp. 20-30, Munich, Germany, Oct. 5-6, 2000.

D. Schmalstieg, A. Fuhrmann, G. Hesina., Zs. Szalavári, L. M. Encarnação, M.

Gervautz, W. Purgathofer: The Studierstube Augmented Reality Project. To appear in:

Augmented Reality: The Interface is Everywhere, SIGGRAPH 2001 Course Notes,

Los Angeles CA, USA, ACM Press, August 2001.

D. Schmalstieg, G. Hesina: Converging User Interface Paradigms Using Collaborative

Augmented Reality, to appear in Proc. of 9th International Conference on Human-

Computer Interaction 2001 (HCII), New Orleans, USA, August 5-10, 2001.

D. Schmalstieg, G. Hesina: Application Migration for Virtual Work Environments,

available as Technical Report, submitted to UIST 2001, Orlando, Florida, November

11-14, 2001.

During the development of the thesis the following additional papers have been published,

which are partially relevant to the work presented here:

G. Hesina, D. Schmalstieg: A Network Architecture for Remote Rendering,

Proceedings of Second International Workshop on Distributed Interactive Simulation

and Real-Time Applications, pp. 88-91, Montreal, Canada, July 1998. IEEE Computer

Society.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 12 -

F. Faure, C. Faisstnauer, G. Hesina, A. Aubel, M. Escher, F. Labrosse, J. Nebel, J.

Gascuel: Collaborative Animation over the Network, IEEE Proceedings of Computer

Animation 1999 (CA’99), 26-28 May, Geneva, Switzerland, 1999.

A. Fuhrmann, G. Hesina, F. Faure, M. Gervautz: Occlusion in collaborative

augmented environments, Proceedings of the 5th EUROGRAPHICS Workshop on

Virtual Environments (EGVE 1999), Vienna, June 1-2, 1999.

Extended version appeared in: Computers & Graphics 23(6), pp. 809-819, 1999.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 13 -

3 Related Work

The main attraction of Computer Graphics during the last years was the creation of interactive

three-dimensional applications, since they provide the basis for other scientific disciplines and

the entertainment industry. This interest in interactive graphics applications started just a few

years ago, because earlier the hardware was not capable to deal with the huge amount of data

to be processed in realtime. But in the last years even machines in lower price ranges are able

to render three-dimensional scenes in realtime and graphics standards made it possible for

vendors to produce hardware solutions as commodity items.

Now three-dimensional real-time rendering is a fast developing section of computer graphics,

like computer science itself. In the beginning were three-dimensional objects, which could be

rendered in a viewer and be moved with the mouse. But this solution is only satisfying, when

one just wants to view a single object and not a whole scene. Therefore more realism and

power was added to this model. That is, one does not just watch a scene from an outside

position, but becomes more and more immersed in the world itself. The hardware used for

interaction became more and more complex as well. To get a realistic feeling of being

integrated in the virtual world, devices like the head mounted display (HMD) were introduced

and made a high impression on the users. These output devices are still not standard

equipment of every computer for economic and ergonomic reasons, but in the future this may

change.

Semantic structuring of the scenes was introduced to allow architectural walkthroughs, city

walkthroughs, fly-overs and more. In such applications, it is interesting to allow more than

just one participant in such an environment. To make so-called multi-user virtual reality (VR)

possible it is necessary to distribute the whole system over a network. This reveals the true

power of the system, since the number of the participants is no longer restricted and they are

able to collaborate.

The idea to support collaboration of human users lead in two directions: remote collaboration

(Bryson, 1993) and local collaborative virtual environments where users join a world and can

interact and communicate in a natural way. In the latter category two very successful

approaches have been developed: The CAVE (Cruz-Neira, 1993) and the workbench

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 14 -

(Responsive Workbench, (Krüger et al., 1995), Virtual Workbench (Obeysekare et al., 1996),

Virtual Table (Encarnação et al., 1999)).

CAVE (Computer Automated Virtual Environment, see Figure 1) is a scientific data

visualization system which projects stereoscopic images on the walls of a room. The observer

needs to wear LCD shutter glasses. This approach assures superior quality and resolution of

viewed images and wider field of view in comparison to HMDs. The CAVE is essentially a

five-sided cube. The participant stands in the middle of the cube, and images are projected

onto the walls in front, above, below, and on both sides (left, right) of the participant.

Figure 1: This figure shows a CAVE system, which has been used at the SIGGRAPH 1998
conference.

The Workbench (see Figure 2) is essentially a table on which computer generated images are

projected resulting in a typical set-up used by e.g. surgeons, engineers and architects. The

resource requirements are less demanding than those of the CAVE and the horizontal

workspace is very useful for manipulation with hand-held tools. Both systems suffer from the

drawback that true stereoscopic images can only be rendered for one “master” user wearing

the head tracker - users have to remain close to the master because distortions increase

proportional to their distance to the tracked point of view. Applications in which users

surround an object won’t work in the CAVE and are only possible for two participants in an

enhanced version of the workbench (Agrawala et al., 1997).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 15 -

Figure 2: Two users simultaneously view a shared virtual environment on the Responsive
Workbench. Note that the image on the Workbench is rendered for the point of view of the

camera.

In order to describe distributed virtual environments (DVE) we need to introduce frequently

used terms and discuss some networking issues.

3.1 Fundamentals of networking for virtual environemnts

Building a distributed virtual environment implies that data must be transmitted over a

network. As mentioned in the previous section it should be possible to support many users,

which can interact in a virtual world. Hence the system should be scaleable. That is, it should

be possible to support a larger number of users and adding new users should not cause a

redesign of the whole system.

Virtual environments should be responsive. Users should be able to interact in such an

environment in (nearly) real-time. Therefore every time consuming function must be

optimized to achieve the best performance. Networking in every form is very time consuming

and therefore a problem, but careful design and optimizations in transmission functions are

used to keep the required time low.

If needed data is not available the whole system may stall, but if all data is delivered just in

time no stalling caused by the network should occur. To achieve this, problems caused by the

network must be analyzed. The following introduces frequently used terms within networked

virtual environments.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 16 -

Objects

This term is often used to describe properties of a virtual world. The definition ranges from

C++ objects to a description as parameters, that could define position, orientation,

acceleration, color, texture, surfaces, topology, temporality and some other parameters.

Sometimes objects are called entities in virtual worlds.

Actor, Avatar, Scene, Scenegraph

A particular type of object is called actor. It has the ability to interact with other objects in an

environment. An avatar is the (geometric) representation of a user. If a virtual environment

provides the functionality of avatars then it is possible that users of this environment can see

each other via avatars. A scene is a geometric description of many objects (e.g. a virtual

world). The hierarchical structuring of a scene (and therefore its objects) is often based on a

graph structure, which is called scenegraph.

Latency

Latency is the time measured from the setting of input until corresponding output is

manifested. Sending messages over a network introduces latency and this conflicts with

needed concurrent execution. The latency is not mainly introduced due to physical limitations

of a network. It is rather a cause of network and software issues. For example, a message that

is sent over a network may pass many network interfaces that process this message and

convert it into an individual recognizable format. The fastest network is useless if the

processor that read messages is slow.

Limited Bandwidth

Bandwidth is the capacity that a telecommunications medium has for carrying data. For voice

communication (e.g., telephone), bandwidth is measured in the difference between the upper

and lower transmission frequencies expressed in cycles per second, or hertz (Hz). For digital

communication, bandwidth and transmission speed are usually treated as synonyms and

measured in bits per second. Bandwidth is limited by physical limitations of the

communication medium and the speed of used processors.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 17 -

Unpredictable Bandwidth

The actual speed or transmission time of a message from source to destination depends on a

number of factors. For example, World Wide Web transmissions travel at very high speed on

fiber optic lines most of the way but lower bandwidths on local loops at both ends, and server

processing time add to the overall transmission time. Therefore bandwidth is said to be

unpredictable. It is possible that a link between a source and destination computer breaks

down. Such events are always unpredictable.

Scalability

Scalability of a system does not only mean that it should function well in the rescaled

situation, but it should actually take full advantage of it. For example, an application program

would be scalable if it could be moved from a smaller to a larger operating system and take

full advantage of the larger operating system in terms of performance (user response time and

so forth) and a larger number of users that could be handled.

Network Topology

A topology describes the configuration or arrangement of a (usually conceptual) network,

including its nodes and connecting lines. It describes the relation of computers within a

network and defines a routing algorithm, which is used to transmit packets. By choosing a

certain network topology, the system can exploit the inherent benefits such as prevention of

cycles. It is important to use a network topology that fulfills quality of service requirements

like latency. Another important reason to choose network topology carefully is scalability.

Bridge

In a network, a bridge is a hardware device or software that copies a data-link (physical

network level) packet from one network to the next network along the communications path.

For example, two local area networks (LANs) might be interconnected with a bridge, a

connecting wide area network (WAN) link, and a bridge at the other end.

Router

On the Internet, a router is a device or, in some cases, software in a computer, that directs

information packets to the next point toward their destination. The router is connected to at

least two networks and decides which way to send each information packet based on its

current understanding of the state of the networks it is connected to. A router creates or

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 18 -

maintains a table of the available routes and their conditions and uses this information along

with distance and cost algorithms to determine the best route for a given packet. Typically, a

packet may travel through a number of routers before arriving at its destination.

Unicast: 1 to 1

A UNICAST packet is addressed to a particular, single network address. Only the recipient

will recognize this packet since its network interface knows about its own particular address.

All the other stations on the subnet will not read this packet since the packet destination

address differs from their own addresses.

Unicasts from one subnet to another one cross bridges transparently. Since the bridges know

about the network topology (i.e. where the source and destination are located), only the

segments that have to support the traffic will forward the packet. Routers only forward unicast

packets.

Unicast network topologies do not scale well because a single message is sent to all other

nodes. So the message transfer has O(N2) complexity.

Broadcast: 1 to all

It is possible to send broadcast packets on a network if, and only if the network supports

broadcasting. Broadcast packets can place a high load on a network since they force every

host on the network to service them. This transmission technique is typically used for two

reasons: it is desired to find a resource on a local network without prior knowledge of its

adress, or important functions such as routing require that information be sent to all accessible

neighbors. Broadcast messages are used to send updates to all other nodes at once. The O(N)

messages transferred over the network must be processed from all other nodes.

Multicast: 1 to many

Multicast is a form of data transmission that facilitates transmission from one point to many

points more or less simultaneously. It is, for example, used for programming on the MBONE,

a system that allows users at high-bandwidth points on the Internet to receive live video and

sound programming. In addition to using a specific high-bandwidth subset of the Internet,

Mbone multicast also uses a multicast protocol that allows signals to be encapsulated as TCP

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 19 -

packets when passing through parts of the Internet that can not handle the multicast protocol

directly.

With multicasting it is possible to send messages to a subset of participating workstations.

The basic idea behind multicasting in virtual environments is to map entity properties to

multicast groups and send entity updates only to relevant groups. Therefore it is possible to

define a multicast group in which a client can be seen by others. A client sends information

updates only to the relevant group. Furthermore clients listen only to “interesting” groups,

that is, only groups that can be seen.

A MULTICAST packet is addressed to a subset of nodes on a subnet. The destination address

is particular to the group of systems it wants to reach: this is called a multicast group. Modern

network interfaces are only listening to the groups the system should listen to (requested by

the applications on the node). Unfortunately, most network interfaces listen to all multicast

packets and the application has to decide whether each multicast packet is interesting for it or

not.

Bridges forward multicasts and since they cannot know where the potential destinations are

located, the multicast packets are sent to all interfaces. This behavior is called flooding

because all segments see all packets. Multicasts do not cross routers unless they are routed

using a special multicast routing protocol.

Tunneling

Many routers do not support IP multicast routing yet. Therefore multicast packets often travel

over long distances across so called “tunnels”. A tunnel is a unicast (point-to-point) virtual

link that may cross several bridges and routers. Tunnel endpoints can be routers supporting

multicast routing, or workstations running special daemons to emulate multicast routing.

These systems listen to multicast packets, encapsulate them into unicast packets, and send

them over one or more tunnels. Each remote tunnel endpoint can then send the encapsulated

multicasts over other tunnels, or restore the multicast packets and put them on their local

LAN.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 20 -

MBONE

MBONE stands for Multicast backBONE. This is a world-wide virtual network defined over

the Internet to support routing of multicast packets. These packets are carrying mainly audio

and video data from video-conferences over the net. MBONE is a virtual infrastructure of

tunnels linking networks that can directly support IP multicast.

Being an overlay network of the Internet, MBONE is a shared medium providing a limited

bandwidth. People sending data over the MBONE are supposed to follow the MBONE

etiquette. In particular, a video session must consume less than 128 kbit/s.

To avoid saturating the Internet, the MBONE network has its own rate limiting system. This

is a static mechanism implemented on MBONE routers which drops packets when the global

throughput over a given tunnel might exceed a predefined value. Therefore the MBONE

cannot support more than 2 or 3 parallel international broadcasts without dropping packets.

Client-Server network topology

Clients and servers play special roles. A client serves the end user directly and requests info

from a server, which offers the info and responds to requests. Servers should be reliable. That

is, requests must be served and delivered. However, this means not that client-server

communication must be reliable. Sometimes servers must be fault tolerant. This can be

achieved by either using recovery mechanisms or to use backup servers (e.g., database

servers).

In such systems there are no direct client-client connections. Messages are sent to servers that

route them to other clients and/or servers in the distributed simulation system. The main

advantage is that it is possible to cull, augment or modify messages at a server before

propagating them to other clients. This model of a distributed virtual environment minimizes

the network traffic.

Hybrid topology

A hybrid network topology consists usually of peer-to-peer and client-server communication.

That is, a host is able to transmit data to some hosts directly and to other ones through a

central server. For example a LAN-based client will typically communicate with other hosts

on the LAN in a peer-to-peer fashion but would communicate with a low-bandwidth

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 21 -

connected host (e.g. modem connection) through a server that can aggregate and compress

packets for delivery.

Connection types

Two types of data transport mechanisms can be distinguished:

• connection-oriented: A virtual connection is set up between a sender and receiver and

is used for the transmission of a stream of data.

• connectionless: Datagrams are transmitted to specified destinations without prior

knowledge of a path.

Connection oriented services are based on a virtual connection which is a logical channel

between a sender and receiver. This connection must be set up before any data is transmitted

and it is closed when no longer needed. Once a connection has been opened data may begin

to flow. The data items are usually bytes, and the stream may be of any length. The transport

layer software is responsible to subdivide the stream of data for transmission and to deliver it

reliable in the correct sequence to the receiver.

Connectionless services may be unreliable. Therefore the application layer is responsible for

detecting lost or out-of-order datagrams and to force retransmissions or other error recovery

mechanisms. However, both types are needed for some applications because each mechanism

offers performance and programming benefits. Datagrams are fast delivered but the

transmission is unreliable. Communication via streams is slow but it is reliable.

Stream vs. Datagram

Communication via streams is connection oriented. That is, communication takes place after a

connection between two participants is established. It is ensured that packets are transferred in

the right order and that the whole transfer is always uncorrupted. The most important property

of a stream is, that no message boundaries exist. Streams are used if reliable transfer is

required and maybe the size of the whole transfer is unknown.

Datagrams are only used if connectionless communication is used. That is, communication

takes place without a pre set up connection between two participants and every message is

addressed individually. The delivery of datagrams is not guaranteed because packets may be

unable to leave the sender or may be dropped by routers or other busy machines. If a datagram

arrives it is ensured that its contents are uncorrupted. Datagrams have message boundaries

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 22 -

which depend on individual configurations of involved routers. Communication with

datagrams is used if speed is important and unreliable transfer is acceptable.

Replication

Many objects in a distributed virtual environment must be replicated, rather than just shared,

because the programs using the data cannot afford the overhead of remote access. A good

example is the description of a graphical scene (e.g. scene graph). The programs that update

the displays must redraw their scenes as often as possible. Therefore it is necessary to have the

scene graph locally available.

3.2 Distributed systems examples

Many researchers have built common virtual places in which users can interact with each

other and also with responsive applications. On the one hand, vertical distribution is used to

enhance the performance of graphical applications by executing on an ensemble of separate,

communicating machines, exploiting the resulting parallelism (Gelernter, 1992). Such a

configuration, often called decoupled simulation (Shaw et al., 1993), is commercially

available via tools like Performer (Rohlf & Helman, 1994). On the other hand, horizontal

distribution is used to enable collaborative applications, which allow multiple users to work

together, possibly over large distances. To get a more detailed insight into distributed virtual

environments and to introduce some networking issues we describe and discuss some well-

known systems, which influenced our work in some way.

SIMNET

SIMNET (Pope, 1989) is a distributed military virtual environment and is sometimes called

“the mother of networked virtual environments”. SIMNET was begun in 1983 and the goal

was to develop a low-cost networked virtual environment for training small units to fight as a

team. The SIMNET network software architecture consists of an object-event architecture, a

notion of autonomous simulation nodes, and an embedded set of predictive modeling

algorithms called “dead reckoning” (Miller & Thorpe, 1995). While broadcast is used to

distribute event messages to other hosts, multicast is used to concurrently run multiple

independent excersises. A dedicated simulation protocol is used for object updates. The

successor of this simulation protocol is DIS (distributed interactive simulation), which has

been standardized by IEEE (IEEE, 1993).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 23 -

Advantages

Dead reckoning is used to reduce the transmitted number of packets. This also makes packet

loss less of a problem because objects continue to move in the direction of its last known

heading and at its last known speed.

Disadvantages

The broadcast mechanism places many packets onto the network, which limits scalability.

SIMNET requires the use of dedicated high-performance networks and its proprietary

implementation needs specialized hardware (SGI). Hence it is not usable by a broad range of

researchers and it is impossible to support the simulation of different types of participants on

different types of machines.

NPSNET

While the early NPSNET-I to III (Zyda et al., 1992) systems used broadcasting and an

proprietary simulation protocol, NPSNET-IV (Macedonia et al., 1995) was the first three-

dimensional environment that incorporated both the DIS application protocol and the IP

multicast network protocol.

DIS is used for application level communication among independently developed simulators

(e.g. aircraft simulators and constructive models). IP multicast is used to support large-scale

distributed simulation over internetworks. NPSNET utilizes heterogeneous parallelism

(decoupled simulation) for system pipelines (e.g. draw, cull, application, and network) and for

the development of a high-performance network software interface.

The target application set is distributed battlefield simulation. Therefore much attention is

paid to consistent updates of battlefield units. The best effort approach to distributed

consistency relies on the DIS communication library. NPSNET uses a geographic approach to

define multicast groups whereby the world is partitioned into hexagonal areas each associated

with a multicast group.

Advantages

Decoupled simulation is used to utilize capabilities of powerful machines. NPSNET IV uses a

vicinity-based area of interest filtering, based on a subdivision of the environment in 2D

hexagonal cells. Furthermore the DIS protocol is used to achieve a more open system design

and to allow communication among independently developed simulators.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 24 -

Disadvantages

Due to the system architecture, NPSNET supports only a limited number of participants.

Furthermore it is not possible to filter out or group specific network messages (this fact should

not be confused with the aforementioned partitioning into cells).

MR Toolkit

The MR Toolkit (Shaw & Green, 1993) peer package implements a simple shared virtual

memory model. Raw memory locations can be marked as shared and local changes explicitly

flushed to the other copies, which must then explicitly receive the changes. The system is

based on an unreliable best-effort protocol (UDP). It ignores lost packets and hopes that there

is sufficient redundancy in packet transmission.

Advantages

MR does not use additional heartbeat packets, because it relies on frequent sending of packets.

The use of an unreliable protocol improves the network delay over a reliable one because the

overhead of error correction and retransmission of the same packet is economized. However,

the frequent sending of packets places a high load on the network.

Disadvantages

MR Toolkit has no features to handle heterogeneous architectures. It provides a single, fully

replicated VE, in which each process has an exact copy of the same world. MR maintains a

complete graph connection topology, which results in O(N2) messages (in respect of the

number of participants). This limits the total number of participants to four or less because of

the packet loads.

DIVE

The original DIVE architecture (Carlsson & Hagsand, 1993) used the ISIS toolkit concept of

process groups (Birman, 1993) to simulate a large shared memory over a network. A process

group is a set of processes that are addressed as a single entity via multicasting. A more recent

version of DIVE (Frecon & Stenius, 1998) makes heavy use of a scalable reliable multicast

approach (instead of ISIS) for the exchange of events in order to keep the views consistent

that multiple users on a network have of the world. Designed around metaphors like a white

board or conference table, DIVE focuses on the development of new ways of computer

supported cooperative work in three dimensions.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 25 -

Advantages

DIVE uses a distributed, fully replicated database, which is dynamic and has the capability to

add new objects and to modify the existing database in a reliable and consistent way.

Disadvantages

DIVE uses reliable multicast protocols and concurrency control via a distributed locking

mechanism to accomplish database updates. This adds significantly to the communication

costs. Because of this software architecture, it is difficult to scale DIVE beyond 16 or 32

participants. However, it does well in situations where database changes must be guaranteed

and accurate at each participant’s site.

NetEffect

NetEffect (Das et al., 1997) is a client-server architecture with multiple servers, which aims to

support more than 1000 users. A client is linked to a server via a connection-oriented reliable

connection. Each server manages one or more user-groups (so-called communities), which

can be populated by user controlled avatars, and manages the transmission of update messages

between the various clients. It uses “group dead reckoning”, based on a visibility which is pre-

determined by the system designer by defining object groups, which are in the same building

or room. The communication between the servers is limited by managing all objects in a

“community” on the same server, independent to the physical location of the connected clients

managing those objects. Dynamic load balancing is used to create a uniform distribution of

users over the servers. A similar approach is used within our system, which is described in

chapter 7.

Advantages

Packet transmission is reduced by using a “group dead reckoning” approach for pre-defined

object groups. Since NetEffect aims to support a very large number of geographically

dispersed users it does not use multicast. This enables modem users to participate without

additional software or hadware requirements. In order to distribute the load among the servers

load balancing is used to support a greater number of users.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 26 -

Disadvantages

NetEffect uses one master server, which maintains a databases of users. If the total number of

users becomes extremely large, the master server may slow down a lot as the look-up time for

the database increases significantly. A way to solve this problem is to replicate the master

server. The user-database can be divided under multiple master servers, which makes the

architecture more scalable.

RING

The RING system (Funkhouser, 1995) represents a virtual environment as a set of

independent entities each of which has a geometric description and behavior. Entities can be

either static (e.g. terrain, buildings, furniture) or dynamic. Latter can be either autonomous

(e.g. robots) or controlled by a user (e.g. vehicles) via input devices.

Every entity is managed by exactly one client workstation. Furthermore clients maintain

surrogates for some entities managed by other clients (remote entities). Such surrogates

contain representations for the entity's geometry and behavior. But it is possible that

representations are simplified. When a client receives a message for a remote entity, it updates

the geometric and behavioral model for the entity's local surrogate.

RING is a client-server based application. Therefore no direct client-client connections exist.

A client sends a message to the corresponding server which forwards this message to other

client and server workstations participating in the same distributed simulation. The main

advantage of this network topology is that servers can cull, augment and alter messages before

sending them to other clients or servers.

Server based message culling is implemented using pre-computed line-of-sight visibility

information. The virtual environment is partitioned into a spatial subdivision of cells and

servers keep track of which cells contain which entities by exchanging automatic update

messages when entities move around and cross cell boundaries. RING uses an unreliable

network protocol to speed up communication and to transmit position update messages.

Therefore the application layer is responsible for delivery guarantee of important messages.

Advantages

Client workstations can not limit the entities in the entire distributed simulation because the

storage, processing, and network bandwidth requirements of each client are independent

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 27 -

among them. Every client must store and handle update messages only for the subset of

entities visible to one of the client's local entities. High-level management of the virtual

environment may be performed by servers without the involvement of every client. For

example, adding and removing an entity requires notification of only one server. This server

handles the notification of other involved clients or servers.

This client-server network topology enables the use of efficient networks and protocols

available between server workstations, but not available to all client workstations. For

example, clients may use a slow modem connection to a server, but the servers may use high-

bandwidth links for server-server connections.

Disadvantages

The message routing through servers introduce extra latency. Because of no direct client-

client connections, every message from a client routes through at least one server and possibly

two. Some high-level decisions in a server (e.g. movement in a cell) increase the latency.

However, Funkhouser claims that extra latency due to server processing has not been

noticeable during experiments.

Spline

Spline (Waters et al., 1997) provides a convenient architecture for implementing multi-user

virtual environments that are based on a shared world model. The world model is stored in an

object-oriented database. Applications interact with each other by making changes to the

world model and observing changes made by other applications. The system distributes the

world model maintaining a partial copy of the model locally in each Spline process. Such a

copy contains the parts of the model that are near to the point of interest. To maintain

approximate consistency between the world model copies, Spline sends update messages

when necessary.

A spline process is structured into the following modules: application support, world model,

and inter-process communication. The latter sends out multicast messages describing changes

in the local world model copy made by the local application and receives messages from other

Spline processes about remote changes. The API of Spline consists primarily of operations for

creating/deleting objects in the world model and reading/writing data fields in these objects.

The application support module contains some tools that allow interaction between an

application and the local world model copy.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 28 -

Locales are simple collector classes and are the central organizing principle of the Spline

world model. Every object is in exactly one locale. Messages about an object are sent only to

the multicast address of the containing locale. If someone wants to know something about an

object but the corresponding locale is unknown there is only one method to retrieve the

address of the locale. This method uses so-called beacons to locate objects. Beacons contain a

tag and the multicast address of the locale. The key feature of a beacon is that in addition to

broadcasting messages about itself via the multicast address of the locale it is in, it broadcasts

messages about itself via a special beacon multicast address. Spline features multiple locales

that correspond to activities (for example, chat takes place in a street café, while train rides

take place on a train). We used an adapted variation of locales in our system (see chapter 6).

Advantages

Messages about an object are sent to the multicast address of the containing locale. This

makes it possible to filter incoming messages primarily by opening connections to the

multicast addresses of the locales a process is currently interested in and not opening

connections to the multicast addresses of other locales. Therefore the main filtering of

messages is performed at the hardware level of routers and network cards. The processor load

of any individual user is reduced.

Disadvantage

A great disadvantage is the fact that MBONE is not public useable. The usage of multicasting

is very convenient and efficient but not everyone is able to use it. Another disadvantage is

that, if too many actors are within a multicast group, the produced overhead in message

processing by the nodes is unacceptable. Small multicast groups force actors to change their

associated group very often. This additional overhead of entering and leaving groups

introduces high work-load to the whole virtual environment.

CRYSTAL

The purpose of CRYSTAL (Tsao and Lumsden, 1997) is to create a VE that can be quickly

adapted for many different types of scientific investigations. CRYSTAL allows for on-the-fly

expandability by using a modular architecture to link various pieces of execution code

dynamically to alter the VE's function and appearance. To let the modules interact with one

another in the VE, CRYSTAL segments the VE into 3D volumes called crystals. Each module

possesses one or more crystals, and draws virtual objects in the corresponding space. They are

similar to desktop windows. Whereas desktop windows are completely independent, crystals

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 29 -

can interact frequently with one another. Our Studierstube framework uses and extends those

ideas to support multiple users, multiple applications, multiple locales, and a multiple

document interface as described in chapter 6.

Advantages

Crystals may also be completely independent. In this case, the VE becomes a general-purpose,

multi-context workspace. e.g. one crystal is a 3D graph, another is a clock, etc. CRYSTAL

allows any modular configurations so that the VE as well as the hardware components to

control the VE can be customized on the fly.

Disadvantages

The CRYSTAL system does not incorporate true multi-user operation, which is clearly a

limiting factor for a DVE. It can only be used in quasi multi user mode using a virtual

workbench or CAVE.

CSpray

CSpray (Pang & Wittenbrink, 1997) is a collaborative 3D visualization system, which uses

different levels of information sharing, an intuitive control strategy for coordinating access to

shared resources, and several 3D visualization tools. This system allows a small group of

geographically distributed scientists to share their data and to interactively create

visualizations. It uses a stream based networking approach.

Advantage

Cspray uses a playback mechanism to save a trace of a collaborative session. This can later be

read back and fed to the system to create a playback of the visualization process. Furthermore,

one can also collaborate during playback.

Disadvantage

The design of Cspray limits the system to SGI machines. Hence it is not possible to use other

platforms to participate.

Virtual environment construction tools

To speed up the development of distributed virtual environments tools were developed (e.g.

Bamboo (Watsen & Zyda, 1998) and Octopus (Hartling et al., 2001)). Bamboo is a cross-

platform toolkit for developing dynamically extensible, real-time networked virtual

environments. By using the plugin metaphor utilized in commercial packages like Adobe

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 30 -

Photoshop, applications can load and unload modules at runtime, which allows the system to

reconfigure itself dynamically. These modules can define geometry, textures, sounds,

behavior, interfaces, etc. (Singhal and Zyda, 1999). Bamboo adds a security model to ensure

correct, safe behavior of a collaborative virtual environment. Beyond this, it has a component

for area-of-interest management to reduce the information individual sites have to process

(Abrams et al., 1998). Finally, it provides a persistent universe so that shared environments

can be “discovered” any time.

Octopus is a tool for enabling the development of collaborative VR applications. The main

design goal is to mask the details of the underlying networking from the programmers. It is

independent of the software used to create the VR environment, hence it can be integrated in

existing application development toolkits. Octopus provides object sharing and a framework

for using and adding avatars. Its treatment of shared objects as user-defined structures

provides more flexibility than large collaborative combat-related solutions. However, Octopus

supports only explicit distribution and lacks a consistent marshall/unmarshalling (flattening

data-structures for network transmission) strategy. Furthermore it is unusable in

heterogeneous networks because the object sharing mechanism is built on top of the runtime

type information (RTTI) from C++.

3.2.1 Discussion

This section is a comparison between client-server and peer-to-peer network topologies

designed for virtual environments. A central server is clearly a bottleneck because of resource

consuming operations like many network i/o operations or client management. A server

usually means that there is some finite limit to the number of participants and therefore the

system is definitely not scaleable, but allows to achieve persistence of the whole system. Let

us assume that the last user of a peer-to-peer based virtual environment leaves the world.

What would happen? If no additional mechanisms of data warehousing are used then the

system would be dissolved.

However, since a peer-based design avoids the potential bottleneck of a central resource,

simple transmission techniques like broadcasting (send a message to all participants, whether

they are interested or not) may introduce high network-load. Some systems use multicasting

for communication. The greatest disadvantage of multicasting is that not all networks are able

to support this technique (e.g. modem connections). Furthermore it is not so easy to choose a

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 31 -

right sized number of participants (or objects) that are associated with a multicast group. The

size of a multicast group may dynamically change (participants join/leave). This operations

introduce overhead to the system.

So, it is not easy to choose between server and peer-based design approaches. Hence some

hybrid systems were introduced (e.g. RING: (Funkhouser, 1995), NPSNET-IV: (Singhal and

Zyda, 1999), DWTP: (Broll, 1998)). RING introduced a hybrid system design including peer-

to-peer and client-server communication. Users are able to connect to servers, which manage

the regions for them. The client-server communication is connection-less. Therefore it does

not matter if a user changes servers very often because connection-less datagrams introduces

not much overhead. The server-server communication is realized with peer-based multicast.

That is of no interest for users because they do not realize the multicasts between servers. But

with this hybrid design a new problem needs to be solved. If a server is highly loaded (e.g. too

many connected clients) it should be possible to migrate them. One solution of this problem

might be load balancing (see chapter 7).

While there are many other distributed virtual environments, we have only discussed those

that heavily influenced the networking strategies of our system presented in this thesis. Other

prominent DVE systems that are not immediately relevant to our work include dVS

(Grimsdale, 1991), WAVES (Kazman, 1993), AVIARY (Snowdon & West, 1994), VEOS

(Bricken & Coco, 1994), BrickNet (Singh et al., 1995), MASSIVE (Greenhalgh & Benford,

1995), VLNET (Pandzic et al., 1995), Community Place (Lea et al., 1997), and Ultima Online

(Origin, 1997).

The next section presents work, which is very important to understand some ideas (in respect

of distribution) behind our own system.

3.3 Shared Scene Graphs

Distributed Virtual Environments often separate the visual representation of objects from the

application semantics. While this increases modularity in the design, it also creates a “dual

database” problem. Some architectures including recent work on DIVE (Steed et al., 1999),

Avango (Tramberend, 1999), SGAB (Zeleznik et al., 2000) and Repo-3D (MacIntyre &

Feiner, 1998) address this problem in a manner very similar to Distributed Open Inventor

(DIV), which is presented in chapter 5, and (Hesina et al., 1999). DIV is an extension to the

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 32 -

popular Open Inventor (OIV) toolkit (Strauss & Carey, 1992) with the concept of a distributed

shared scene graph, similar to distributed shared memory (Levelt et al., 1992).

As MacIntyre and Feiner put it, “Keeping these dual databases synchronized is a complex,

tedious, and error-prone endeavor. In contrast, some non-distributed libraries, such as

Inventor, allow programmers to avoid this problem by using the graphics scene description to

encode application state”. Repo-3D addresses the problem using Modula-III with language

embedding of distributed objects together with a custom graphics solution (Obliq-3D). While

Modula-III is certainly a good choice for language-level embedding of distributed objects, in

our opinion the user acceptance of Avango (Tramberend, 1999) - a solution based on

mainstream choices (C++, Performer (Rohlf & Helman, 1994)) - would be higher.

However, Avango relies on subclassing Performer to mix in the desired transparent support

for distribution. This implies that Avango applications can only use those features of

Performer made available through subclassing. Furthermore, many architectural features of

Avango - such as field contained in scene graph nodes and connections between fields - are

standard features of OIV, but not part of Performer.

The Scene Graph as Bus (SGAB) approach, is a proposed mechanism for mapping between

heterogeneous scene graphs, in a cross-platform manner. It maps scene graphs from different

toolkits to an internal representation and is therefore more or less not restricted to specific

scene graph toolkits.

Recent work on DIVE (Steed et al., 1999; not to be confused with DIV) introduced a scene-

graph based database extension to avoid unnecessary network messages. So-called holder

objects are able to generate a cascade of database modifications, instead of generating many

network packets describing the modifications.

While groupware applications from the computer supported cooperative work field (CSCW)

share some concepts of distributed objects (in our case: distributed shared scene graphs) with

the aforementioned systems, inconsistencies tend to arise from multiple users attempting to

perform conflicting actions: the results are usually obvious to the users and can be corrected

using social protocols. However, this might be an acceptable solution for local collaboration

(e.g. a virtual conference in the same room) but definitely not an acceptable solution for

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 33 -

remote collaboration. Although CSCW systems share fundamental semantic problems (e.g.

consistency) with the aforementioned systems, solutions differ significantly due to different

technical environments (2D vs 3D, conventional desktop applications vs virtual reality

interface).

Last but not least, we examine some work and collaborative augmented reality, which is

highly related to our work.

3.4 Collaborative Augmented Reality

Almost a decade ago, Weiser introduced the concept of ubiquitous computing as a future

paradigm on interaction with computers (Weiser, 1991). In his vision, computers are

constantly available in our surrounding by embedding them into everyday items, making

access to information almost transparent. In contrast, augmented reality systems focus on the

use of personal displays (such as see-through head-mounted displays) to enhance a users

perception by overlaying computer generated images onto a user’s view of the real-world.

Collaborative augmented reality enhances AR with distributed system support for multiple

users with multiple display devices, allowing a co-located joint experience of virtual objects

(Billinghurst et al., 1998b; Schmalstieg et al., 1996; Szalavári et al., 1998a). Some researchers

are experimenting with a combination of collaborative AR, ubiquitous computing and other

user interface concepts. Prominent examples include EMMIE developed at Columbia

University (Höllerer et al., 1999; Butz et al., 1999), work by Rekimoto (1998), and the

Tangible Bits Project at MIT (Ishii and Ullmer, 1997; Ullmer et al., 1998). These systems

share many aspects with our approach for a collaborative augmented reality system making

use of a variety of stationary as well as portable devices.

Working with such a system will require transfer of data from one computer’s domain to

another. For that aim, Rekimoto (1997) proposes multi-computer direct manipulation, i. e.

drag and drop (or pick and drop, as Rekimoto calls it) across system and display boundaries.

To implement this approach, a physical prop (in Rekimoto’s case, a pen) is used as a virtual

“store” for the data, while in reality the data transfer is carried out via the network using the

pen only as a passive locator. Similar transfer functions are available in EMMIE (Butz et al.,

1999). Such use of passive objects as perceived media containers is also implemented by the

Tangible Bits group’s mediaBlocks (Ullmer et al., 1998).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 34 -

An issue that inevitably arises when multiple users are collaborating is that of privacy – users

do not necessarily want all their data to be public (Szalavári et al., 1998a; Butz et al., 1998). A

solution for the privacy issue is possible for every architecture that supports independent

display to multiple users, be it via separate desktop displays (Smith and Mariani, 1997), hand-

held displays (Rekimoto, 1998), head-mounted displays (Schmalstieg et al., 1996; Butz et al.,

1999) or time-interlacing displays (Agrawala et al., 1997). So called subjective views can be

employed for displaying local variations only to one user, if they are useless or distracting to

other users, such as local highlighting or annotations, or if privacy is desired. Subjective

views are also part of our Studierstube environment, and will be further exploited for the

research proposed in this thesis. The Studierstube system is introduced in the next chapter.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 35 -

4 Studierstube Overview

This chapter gives a short introduction to our Studierstube system. We present some

background information on the original Studierstube framework and give an overview of the

distributed version, which is used to experiment with distributed collaborative augmented

reality.

4.1 Background

The original Studierstube architecture (Schmalstieg et al., 1996; Szalavári et al., 1998b) was a

collaborative augmented reality system allowing multiple users to gather in a room and

experience the sensation of a shared virtual space that can be populated with three-

dimensional data. Head-tracked see-through head-mounted displays (HMDs) allow each user

to choose an individual viewpoint while retaining full stereoscopic graphics. This is achieved

by rendering the same virtual scene for every user’s viewpoint (or more precisely, for every

user’s eyes), while taking the users’ tracked head positions into account.

Collaborators may have different preferences concerning the chosen visual representation of

the data, or they may be interested in different aspects. It is also possible to render customized

views of the virtual scene for every user that differ in aspects other than the viewpoint (for

example, individual highlighting or annotations). At the same time, co-presence of users in the

same room allows natural interaction (talking, gesturing etc.) during a discussion. The

combination of real world experience with the visualization of virtual scenes yields a powerful

tool for collaboration (Figure 4).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 36 -

Figure 4: Two collaborators wearing see-through displays are examining a virtual object. Note
that the system supports independent views on shared objects.

Figure 5:The Personal Interaction Panel combines tactile feedback from physical props with
overlaid graphics to form a two-handed general purpose interaction tool.

We use the Personal Interaction Panel (PIP) as an input device for our system. The PIP (see

Figure 5) is a two-handed interface (Szalavári & Gervautz, 1997) that is composed of two

lightweight hand-held props, a pen and a panel, both equipped with magnetic trackers. Via the

see-through HMD, the props are augmented with computer generated images, thus instantly

turning them into application-defined interaction tools similar in spirit to the virtual tricorder

of Wloka & Greenfield (1995), only using two hands rather than one. The pen and panel are

the primary interaction devices.

The props’ familiar shapes, the fact that a user can still see his or her own hands, and the

passive tactile feedback experienced when the pen touches the panel make the device

convenient and easy to use. Proprioception (Mine et al., 1997) is readily exploited by the fact

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 37 -

that users quickly learn how to handle the props and can remember their positions and shapes.

A further advantage is that users rarely complain about fatigue as they can easily lower their

arms and look down on the props.

This version of our Studierstube framework was able to render independent views for multiple

users but it was limited to only one host (in respect of rendering). The next section describes

the distributed version of Studierstube, which resulted from the work presented in this thesis.

4.2 Distributed Studierstube

While the Studierstube architecture from (Szalavári et al., 1998b) incorporated simple

distribution mechanisms to provide graphics from multiple host computers and shared data

from a separate device (tracker) server, the initial networking approach later turned out to be

insufficient for the evolving distribution requirements. An even more limiting factor was that

the toolkit allowed to run only a single application and a single application at a time. To

address these problems and to enhance Studierstube we developed several extensions. We

added multi-user capabilities and features from desktop systems (multitasking, multi

document interface).

Multiple users

The first extension is to allow multiple users to collaborate (e.g. Figure 16, Figure 17).

Collaboration of multiple users implies that the system will typically incorporate multiple host

computers. However, we also allow multiple users to interface with a single host (e.g. via a

large screen display), and a single user to interface with multiple computers at once. On a very

fundamental level, this means that we are dealing with a distributed system. Hence we need a

mechanism to run applications in a distributed manner. Since Studierstube is based on the

Open Inventor scene graph toolkit we use a distributed shared scene graph approach called

DIV (see chapter 5, and Hesina et al., 1999). Additional capabilities which stem from

distribution arise: multiple types of output devices such as HMDs, projection-based displays,

hand-held displays etc. can be handled, and the system can span multiple operating systems.

Multiple applications

To support multiple applications we need loadable application objects, which are written as

separate shared objects, and dynamically loaded into the runtime framework. This is achieved

by embedding applications in the scene graph. Applications use the concept of so-called

contexts, which are the fundamental units from which the Studierstube environment is

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 38 -

composed. A context is a union of data itself, the data’s representation and an application

which operates on the data.

Multiple document interface

In a conventional desktop system, the data representation of a document is typically a single

2D window. Analogously, in our three-dimensional user interface, we define a context’s

representation as a three-dimensional structure contained in a certain volume – a 3D-window.

Unlike its 2D counterpart, a context can be shared by any group of users, and even more

importantly, can be present in multiple locales simultaneously by replication.

Multiple locales

Locales correspond to coordinate systems in the virtual environment. They usually coincide

with physical places (such as a lab or conference room, or parts of rooms), but they can also

be portable and associated with a user, or used arbitrarily – we even allow (and use)

overlapping locales in the same physical space. We define that every display used in a

Studierstube environment shows the content of exactly one locale. Every context can (but

need not) be replicated in every locale; these replicas will be kept synchronized by

Studierstube’s distribution mechanism.

Application migration

In section 3.1 we outlined problems of networking for distributed virtual environments. To

address some of them and to further enhance our framework we developed tools, which are

able to migrate applications from one host to another (independently of the operating system).

These tools enable us to support dynamic user groups. That is, users are able to late-join a

collaboration session or to leave at any time. Application migration is mainly used to perform

load balancing among the participating hosts, which yields to better scalability. Furthermore

migration is used to support and enhance remote collaboration (migration of privileges to

modify a context and therefore its scenegraph).

4.2.1 Distributed shared scene graph

Current high-level graphics libraries are engineered around the concept of a scene graph, a

hierarchical object-oriented data structure of graphical objects (see section 3.3). Such a scene

graph gives the programmer an integrated view of graphical and application specific data, and

allows for rapid development of arbitrary 3D applications. While most DVE systems use a

scene graph for representing the graphical objects in the application, many applications

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 39 -

separate application state from the graphical objects. This application state is then distributed,

while the graphical objects are kept locally. This allows custom solutions that optimize

network utilization through minimal sharing of application state, but has two distinct

disadvantages: Replicated application state and graphical objects must be kept synchronized

(called “dual database problem” in (MacIntyre & Feiner, 1998)), and the distribution is not

transparent to the application developer, who may even be forced to actively send

synchronization messages in some replication schemes.

An alternative solution now popularized by a number of research groups (DIVE: Frecon &

Stenius, 1998; Repo-3D: MacIntyre & Feiner, 1998; Avango: Tramberend, 1999; SGAB:

Zeleznik et al., 2000) overcomes these disadvantages by introducing a distributed shared

scene graph using the semantics of distributed shared memory. Distribution is performed

implicitly through a mechanism that keeps multiple local replicas of a scene graph

synchronized without exposing this process to the application programmer or user. By

embedding application specific state in the scene graph, applications can now be developed

without taking distribution into account, unless special multi-user features are desired.

Our own implementation of this concept is Distributed Open Inventor (DIV) (see chapter 5

and Hesina et al., 1999) based on the popular Open Inventor (OIV) toolkit (Strauss & Carey,

1992). It utilizes OIV‘s notification mechanism to automatically trigger an observer callback

whenever an application changes something in the observed scene graph. These changes are

then propagated to all scene graph replicas using reliable multicast. Network transparent

access to input (tracker) data is provided through a similar mechanism based on multicast

from a tracker source.

4.2.2 Runtime extension through application objects

Even dedicated end-user applications such as today‘s computer games incorporate some kind

of extension mechanism that allows to add new content to the application not contained in the

original distribution of the program. In virtual environments that feature a virtual world

metaphor, these extensions are introduced as new objects and places. In contrast, a virtual

work environment metaphor is extended through adding of new applications and services

rather than objects.

However, the conceptual boundary between objects and applications is fuzzy. Extensions can

have various forms of implementation, from passive geometric datasets to entities whose

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 40 -

behavior is determined through some scripting mechanism to native binary modules. In an

object oriented framework, it is good practice to extend a system through deriving new

objects from a foundation class, so that they can inherit a standard interface that will allow the

surrounding simulation framework to talk to them in a meaningful way. This is used within

our Studierstube framework to provide an interface to application programmers. Some

approaches take this idea to the extreme by only providing a kernel capable of loading

extensions (Bamboo: (Watsen & Zyda, 1998); Jade: (Oliveira et al., 1999)).

4.2.3 Contexts in Studierstube

Our virtual environment Studierstube (Schmalstieg et al., 2000) combines object-oriented

runtime extension through subclassing and scene-graph based 3D work environments. An

application in the Studierstube system is developed as a context that is embedded as a node in

the scene graph. Surprisingly, we are not aware of any other extension mechanism that uses

this particular approach.

Context classes are derived from a context foundation class that extends the basic scene graph

node interface of OIV with a fairly capable application programmer‘s interface (API). This

API allows convenient management of 3D user interface elements and events, and also

supports a multiple-document interface – each document gets its own 3D window. Multiple

documents are implemented through application instances embedded as separate nodes in the

scene graph. However, they share a common application code segment, which is loaded on

demand. Naturally, multiple applications can be loaded concurrently for convenient multi-

tasking.

As the scene graph is distributed using DIV, so are the applications embedded in it. A newly

created context instance will be added to all replicas of a scene graph, and will therefore be

distributed. The programming model of making application instances nodes in the scene graph

also implies that all application specific data – i. e., data members of the application instance –

are part of the scene graph, and thus implicitly distributed by DIV (see Figure 6).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 41 -

Figure 6: (a) Traditional distributed virtual environments separate graphical and application
state, and synchronize only application state. (b) A distributed shared scene graph achieves

replication that is transparent to the application.

4.3 Summary

This chapter introduced the Studierstube system. Some background information on the

original Studierstube framework and an overview of the distributed version were presented.

We outlined the requirements, which are necessary to build a distributed version and proposed

solutions. The core component of the distributed system (DIV) is presented in chapter 5.

Multiple applications, multiple users, multiple locales, and the support for a multiple

document interface are described in chapter 6. Chapter 7 presents application migration and

some applications of it. Results are presented at the end of every chapter. Chapter 8 draws

conclusions.

App

App
specific
data

App

Scene Graph

Host 1 Host 2
explicit
sync

App App

Host 1 Host 2

implicit
sync

a)

b)

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 42 -

5 Distributed Open Inventor

5.1 Introduction

In order to achieve our goal to enhance the Studierstube system and to build a distributed

collaborative augmented reality environment we need a “toolkit” that is responsible for

distribution of the graphical content. The graphical part of Studierstube is built on top of the

Open Inventor (OIV) toolkit (Strauss & Carey, 1992) which is an object-oriented scene graph

storing both geometric information and active interaction objects. This toolkit is widely

available and popular with graphics programmers, and is based on the most widely accepted

language for graphics (C++).

To ease the distribution and to eliminate consistency problems at the scene graph level we

have developed a tool that distributes OIV’s scene graph by detecting changes and to

distribute only that differences. This approach is able to distribute the Studierstube system in a

transparent and easy way. Furthermore this approach yields to a general-purpose tool for

distributed graphics. That is, legacy OIV applications, which use this tool, are also able to

achieve distributed execution in a transparent way. This solution has two advantages:

1. Most of the required work to enhance Studierstube to support collaboration via

network is taken care of by DIV.

2. It is transparent to the Studierstube application programmer. That is, programs can be

written without distribution in mind.

Our approach - Distributed Open Inventor (DIV) - extends the basic software to support a

distributed shared scene graph, comparable to distributed shared memory (Figure 7). The

implementation is almost transparent to the application programmer. Distributed programs

generally execute efficiently, and the programmer need not deal with network peculiarities.

The first version of DIV utilized the notification scheme of OIV to observe a scene graph for

changes. At that time OIV was commercial software and not available as source code. The

successor of this DIV version uses the freely available open-source version of OIV. We have

modified the underlying code base to improve performance and to track changes more

accurately. The following chapters describe the first approach. At the end the second version

is introduced and compared against the first one.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 43 -

Figure 7: A single user’s view of an interactive graphical application (top) is extended with the
concept of a distributed shared scene graph (bottom) for multiple users.

5.2 Distributed shared scene graph

5.2.1 Motivation and overview

A scene graph is a hierarchical data structure of graphical objects. The application builds and

maintains the scene graph, and the graphics toolkit uses it to create images. DIV’s scene graph

has the semantics of a database held in distributed shared memory (Levelt et al., 1992):

Multiple workstations in a distributed system can make concurrent updates to the system, and

all updates are reflected at each workstation’s view of the scene graph. The scene graph

represents the shared state of the distributed systems to both the application, and to the users

via the images rendered from it.

The DIV runtime system takes care that all views are updated in a timely fashion, and that

conflicts arising from simultaneous or near simultaneous updates of the same data entity are

resolved so the consistency of the shared scene graph is not compromised.

The simplest approach to a synchronous view on shared data is to store the data only once and

redirect any access via remote procedure calls (e. g. Sun RPC (Sun, 1988), Java RMI (Sun,

1998), CORBA (Ben-Natan, 1995), DCOM (Rubin & Brain, 1999)). However, interactive

graphical applications, in particular virtual environments, require that the data used for

Display

Display

User Application Scene Graph

Single User:

Multiple User:

User Application

Distributed shared
scene Graph

User Application Display

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 44 -

rendering is stored locally at the workstation, or interactive frame rates will simply be

impossible. Therefore pure client-server approaches are infeasible for our purposes.

Instead, our approach relies on replication of the scene graph (or at least, the relevant portion)

at every workstation and keep these replicas synchronized. In this section, we give an

overview about how this goal is achieved. First an analysis of the paths that data flows in an

interactive graphics application is given. We then consider the characteristics of these paths,

in particular, which path must be fast and therefore optimized (such as the transfer from the

graphical data base to the rendering hardware mentioned above).

5.2.2 Communication path for interactive graphics applications

Interactive graphical applications place the human user in a loop with the computer. A simple

model of this loop is composed of the following stages (Figure 8):

• Input from the user

• Application specific computation

• The scene graph representing the visual state of the system

• Display of the scene graph

This model features the following principal communication paths within the computer system:

• Propagation of input events from the input devices to the computation module

• Updates to the scene graph as a result of computation

• Rendering of a 3D image from the scene graph

Some modifications of the scene graph do not require complex computations by the

application, but can perform simple changes to scene graph attributes directly related to the

input, but with highest possible responsiveness. The graphics toolkit allows to set up such

interactions (e. g. dragging, camera movement) to work within the runtime software at

maximum performance, without involving user written computation code (comparable to

nervous reflexes which do not involve the human brain). We call such communication paths

input streams (Figure 8).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 45 -

Figure 8: Typical communication path in an interactive graphical application placing the human
in a feedback loop.

Because of performance requirements, input streams cannot be distributed over the network -

the interaction would be too slow and the network load too high. Therefore, input streams are

allowed to make local modifications to the scene graph, with mandatory synchronization only

taking place after the input stream has been disabled (optionally updates can be made for

synchronization purposes with lower frequency).

For the design of DIV, we must distinguish which communication paths must be fast and

hence require the communicating components to reside at the same workstation. Clearly,

rendering must be as fast as possible, which requires the scene graph to be stored locally and

thus created the need for replication in the first place. Additionally, dividing interactions into

input streams and input events allows to keep input streams locally, and distribute only input

events. We have followed these design principles throughout our work.

5.3 Replicated scene graph protocol

This section explains the protocol necessary to synchronize two copies of a scene graph. Let

us first examine the properties of the data structure we are dealing with. A scene graph is an

object-oriented hierarchical structure reflecting the semantic relationships of graphical objects

in the scene. It is composed of nodes, which are implemented as first class objects in the

toolkit’s underlying object-oriented host language (C++ in the case of Open Inventor). The

toolkit typically offers a large variety of node classes for all purposes of the application. Each

node is composed of fields that store that attribute data for a particular node class. A directed

acyclic graph is constructed from group nodes that store links to their children. Rendering is a

by-product of traversing the scene graph and executing each node’s rendering method.

User

Display

Application

updates
Scene Graph

rendering

Input
input
 eventsinput

streams

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 46 -

The vocabulary of operations possible on a scene graph consists of relatively few messages.

The state of every node is determined by a node’s fields. Reading a field’s value does not

change the state of the scene graph and therefore need not be distributed. The most common

operation that must be propagated is an update of a field’s value. Fields store a basic data type

such as numerical values, boolean flags, vectors, matrices etc. The information necessary to

encode such an update can be encoded in fixed size messages and efficiently transmitted over

the network.

A special case occurs when the structure of the scene graph itself changes - nodes may be

added or removed. Special messages are reserved to create and delete nodes. Note that while a

typical graphical application frequently performs field updates such as changing the position

of an object, changes to the scene graph’s structure are relatively rare. However, if node

creation occurs, there is a tendency to create a whole sub graph at once, consisting of a

substantial amount of data. To make this process more efficient, applications often load whole

sub graphs from a file. Our implementation generalizes this approach by introducing a

message which allows all participating workstations to load a sub graph either from file (if a

common file service exists) or from a URL. This solution is convenient for application

programmers and also more efficient than creating node by node.

Deletion of group nodes is always recursive, i. e. if a parent node is deleted and its children

are not referenced elsewhere in the scene graph, the children are also deleted, hence no

message for deleting sub graphs is necessary.

Per default, nodes in OIV are anonymous unless the programmer explicitly specifies a name.

However, references to nodes in messages require a unique node identifier. Therefore a

message for naming a node (the node is identified by indicating the path from the root) is

introduced.

A summary of the messages necessary to keep scene graph replicas synchronized is given in

Table 1.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 47 -

Message parameters

Update field Node id, field id, value

Create node
Node type, parent node

name, child index

Delete node Node name

Create sub graph File name or URL,

parent node name,

child index

Set node name Path to node, new

node name
Table 1: protocol to keep scene graphs synchronized

5.4 Local variations

Most applications will just require to share a scene graph. However, a potentially much larger

range of distributed graphics applications can be constructed by allowing local variations in

the scene graph. Local variations (Figure 9) can be useful in a variety of ways:

• Individual content per user: Each user may operate on a variety of data sets, and choose to

share only some of them, or decide on-line which data sets can be seen by other users and

which not. Reasons may include privacy and security (compare (Pang & Wittenbrink,

1997)), individuality (e. g. a private shelf or clip board) or work flow (only “polished”

data is shared).

• The same data may be viewed differently by multiple users, which is different to the

above in that structurally identical or at least similar data is shown with different attributes

to different users. Reasons to change the representation of one particular data set for

individual users can be motivated by their roles. For example, a customer sees a simpler

representation than the sales manager, or a teacher sees solutions to problems that the

students may not see. Sometimes part of the data (such as labels) may also be intentionally

hidden from other users, for example in multi- player games (Szalavári et al., 1998a) (see

Figure 10).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 48 -

• Individual viewpoints are a special case of individual content. This concept is particularly

useful for virtual environments (see section 5.6) where head tracking on a per-user base

determines the position of a virtual camera.

Figure 9: Local variations (such as a “shelf”) allow to customize the behavior for each user.

Client

local
“shelf”

local
root
node

replica
of global

scene

Server

master copy of global scene

updates

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 49 -

Figure 10: Personal displays secure privacy when playing Mahjongg – the left player (top view)
cannot see his opponent’s tile labels and vice versa (bottom view)

Some typical editing operation such as high lighting, selection, dragging, or cursor display

require locally varying graphics. Note that these interaction concepts work in conjunction with

low-latency input streams (see section 5.2.2) that short cut the distributed communication

paths.

Using DIV to construct a scene graph that is partially distributed is straight forward: The

scene graph used locally can vary from workstation to workstation. The only restriction is that

those portions that are distributed must be replicated at all workstations, which does not affect

applicability in practice.

5.5 Networking

Apart from basic connectivity, a key issue in distributing changes to a shared database like

DIV’s scene graph is how consistency among the participating processes is guaranteed.

Several approaches to this problem have been investigated in the context of distributed virtual

environment, and can be loosely categorized into pure client-server solutions (often found in

Internet gaming such as Ultima Online (Origin, 1997) or Everquest (Sony, 1999)), pure peer-

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 50 -

to-peer communication (such as DIVE (Frecon & Stenius, 1998)) and hybrid topologies (such

as RING (Funkhouser, 1995)).

Trade-offs in designing ideal network support are application specific and it is therefore

difficult to design a distributed graphics toolkit that performs well under all circumstances

while still be sufficiently suited for general purposes. We have therefore designed networking

support in DIV as a configurable module to be prepared for future needs. The currently

supported implementation is intended for high performance and scalability for applications

that require high bandwidth such as immersive virtual environments with body tracking.

For achieving consistency, we employ a similar approach like Repo-3D (MacIntyre & Feiner,

1998): a sequencer process performs serialization of events generated by multiple users.

Changes to the scene graph are then distributed via reliable multicasting (based on UDP with

negative acknowledgments) to the participants, so that a consistent view of the scene graph

replicas is maintained. There may be more than one sequencer present to avoid overloading

one process. Typically the scene graph is coarsely divided into several logically coherent

chunks (sub scene graphs) such as the content of different 3D windows (Schmalstieg et al.,

2000), applications or data sets, which are then associated with separate sequencer processes.

Increased flexibility is obtained by allowing a participant to choose to replicate all such sub

scene graphs, or select any subset, depending on application semantics and user preferences.

Using this approach, it is possible to perform application specific computation either locally at

each participant, or once in the sequencer process (the sequencer is then funtionally equivalent

to an application server). The latter allows a certain degree of vertical distribution - for

example, application specific computation can be performed by a compute server with

multiple CPUs, while the participating workstations can focus on 3D rendering. It is also

possible to create asymmetric master-slave configurations (for example, public demonstrators

or location based entertainment).

5.6 Application in our Augmented Reality environment

Virtual environments differ from desktop-based interactive graphical applications primarily in

their choice of input and output devices. While output is shown - usually in stereo - on a head-

mounted display, or in a CAVE, input is generated using a 6 degree of freedom (6DOF)

tracking system such as an Ascension Flock of Birds.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 51 -

Figure 11: The Studierstube virtual environment uses DIV together with a tracker server that
multicasts tracker data over the network.

While there is no principle difference of tracker data from input received from a mouse or

keyboard, the high data rate (6DOF x multiple stations x 120 updates/sec) makes it necessary

to consider the work load placed on each part of the distributed system when processing input

from 6DOF trackers.

Furthermore, virtual environments typically demand a high- performance, low latency setup.

For example, head tracking should directly control the virtual camera used to render the user's

view. Such a requirement is directly equivalent to our input streams in that the communication

path from input source to final image should be as fast as possible. Unfortunately, tracking

multiple users requires that tracker data is sent over the network at some point, as only a

single workstation can be connected to the tracker (typically via a serial line).

To test the applicability of the first version of DIV within our Augmented Reality system

(Studierstube) we did some experiments (Schmalstieg et al., 2000) to use DIV (Figure 11).

We resolve the issue of short communication path by distinguishing a tracker server, one or

multiple application servers, and rendering clients. The tracker server uses its own multicast

group to transmit tracker data over the network to both application servers and rendering

clients. An additional benefit of this approach is that computationally intensive filtering and

prediction tasks applied to the tracker data can be carried out by the tracker server without

consuming resources on other workstations.

tracker
server

client 1 client 3client 2

appl.
server

T

T

T T

T

T T

T

T

Update events

HMD

tracking data

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 52 -

The way the tracker data is treated by the rendering clients is quite different from the

application servers:

The rendering clients use the tracker data directly as an input stream for continuous actions,

for example to control the virtual camera or to control interaction widgets such as the rubber

band shown in Figure 15.

The application servers transform the tracker data into input events. For example, the server

notes when the tracker hits a button area in 3D and passes a “press button” event to the

application code, which then reacts appropriately.

Creating interaction elements that execute in such a hybrid client/server style requires a little

effort, but it keeps communication paths as shorts as possible. Tracker data is always directly

delivered to the workstation that needs it, no matter whether it is a client or server.

5.7 Implementation

5.7.1 Software architecture

Open Inventor was a commercial software product available for most graphics platforms,

(including most Unix variants and Windows NT) and uses OpenGL for rendering. Note that

OIV is now open-source. It was chosen because of its popularity, flexibility and we built

Studierstube on top of it. Furthermore we have many legacy OIV applications available in our

lab. OIV is implemented as an object-oriented class hierarchy in C++ and a library for runtime

binding. Refer to Figure 12 for an overview.

The obvious choice of adding distribution properties to a class hierarchy is to modify one of

the base classes to take care of distribution, so that this property is inherited throughout the

class hierarchy. Unfortunately, Open Inventor as a commercial product was not available in

source code, which ruled out this approach.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 53 -

Figure 12: DIV is software that plugs into a standard graphics solution – Open Inventor – to
provide distribution.

Instead, we resorted to a different approach which is equally feasible and works even if no

source code is available: OIV has a built-in concept of notification that is used to propagate

updates upwards in the scene graph hierarchy if a node is modified. These notification events

can be monitored with a so-called node sensor. A user-specified callback function is executed

whenever something changes in the sub graph associated with the node sensor. The callback

receives as parameters references to the field which has changed and to the node containing

the field. Update messages can trivially be constructed from this information, as only the new

absolute value of the field needs to be transmitted (idempotent messages). Recording the

modifications made to a scene graph by an application implicitly serves as a serialization

mechanism if the application receives input events from multiple users.

A slightly more complicated situation arises if the structure of the scene graph itself changes,

i. e. a node is added or deleted. In this case, the node sensor still calls the user's function,

indicating the group node whose children have changed, but does not indicate which child has

been added or removed. We resolved this matter by caching the hierarchical structure with a

“shadow” scene graph that consists of copies of only the group nodes, while leaf nodes are

referenced. When a group's children change, the group node is compared to its shadow to

evaluate what change has been made. The shadow data structure is not included in the scene

and thus not visible. It has also a small memory footprint and little computational overhead as

it contains only links.

Application

DIV

Open Inventor

Graphics
Hardware

Network
Hardware

Application
layer

Toolkit
layer

Hardware
layer

API

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 54 -

DIV itself uses a similar approach as Avango (Tramberend, 1999) to handle late-joining users.

A new user has no knowledge of the current shared application state and therefore it is

impossible to participate without an atomic state transfer from an old user to the new one.

During this atomic state transfer all other communications within that certain group is

suspended until the transfer completes.

5.7.2 Lazy naming

As mentioned in section 5.3, every message refers to a node and thus needs to uniquely

identify the node. OIV has a built-in naming scheme for nodes based on a hash table, which is

highly efficient and ideal for our purposes. It also lets users specify names for nodes in

geometry files (.iv) which is a convenient way for applications to identify nodes and also

works when the geometry file is distributed. However, it frequently occurs that applications

modify anonymous nodes and these modifications have to be distributed.

In case of such an event, DIV automatically detects that the node is nameless and resolves the

problem: The node is assigned a synthetic unique name composed of a prefix and the path

from the root. This name is distributed (hence the set node name message), and then the

update message refers to the newly named node. This lazy naming scheme creates extra

network traffic only the first time a node is modified. As the working set of nodes that are

modified in the life cycle of an application is typically small, the resulting overhead is

negligible and independent of a potentially huge scene graph.

5.7.3 Usage example

In order to demonstrate the ease of transformation of exiting OIV applications into distributed

applications based on DIV, we give a code example. Shown are the few modifications

necessary to achieve a simple master-slave configuration. The first step is to create a DIV

manager object for master or slave operation:

div = new CDivMain(ipAddress, port, masterOrSlave);

The next step is to create a root node for the scene graph at the master and enable sharing:

root = new SoSeparator;

root->ref();

div->shareNode(root, “myRootNode”);

As an example we add a sphere to the scene graph (this action is already shared):

Root->addChild(new SoSphere);

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 55 -

The parameter “myRootNode” is required to identify the corresponding root nodes in the

master and slave process. The slave has several options to build a corresponding scene graph -

either create it locally, or load it from a file or via the network. In any case, it must name its

root node corresponding to the master:

root->setName(“myRootNode”);

Finally, both master and slave call their main loop. For a slave, DIV provides a modified main

loop which compensates the fact that OIV is not thread safe and can therefore not be used for

asynchronous processing of network updates. Figure 13 shows an example of an update.

Figure 13: Example of a field update in a master-slave configuration. (1) User triggers an action
by pressing a button. (2) Corresponding callback is executed and modified field1 of node2. (3)
Event notification is propagated upwards in scene graph and observed by sensor. (4) Sensor
transmits message to slave host. (5) Receiver picks up message and looks up corresponding

node in internal hash table. (6) Slave node is modified.

5.8 Results

Several distributed multi-user applications were implemented with DIV. To verify that DIV

indeed provides a programming environment that is convenient for programmers familiar with

scene graph toolkits, and that distribution is almost transparent, we have extended existing

single user applications written for OIV. The fact that DIV is mostly equivalent to OIV

allowed to realize our test applications in a few days.

The first example that was chosen for distribution is the maze game (Figure 14) featuring a

hand-held labyrinth toy which can be tilted to make a ball roll through the corridors. The

objective is to guide the ball to the goal while avoiding the holes in the maze's floor. The

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 56 -

game was distributed for multiple users, allowing each user to see and manipulate the maze.

Updates were intentionally made relative so that the resulting tilt is equal to the sum of the

steering motions of all users, which creates an interesting and entertaining collaborative task.

Users can also see each other's point of view represented by a simple avatar, a feature which

makes use of a locally varied scene graph (each user's scene graph contains avatars for the

other users, but not for the user).

A second example was constructed from a multi-user painting application implemented in our

virtual environment Studierstube. Multiple users can collaboratively apply 3D paint into a

common work volume. Each user wears a head-tracker and a tracked “brush” tool; the data

from the head and tool tracker is directly fed as an input stream to the virtual camera and

cursor, respectively.

Parameters such as paint color, size of paint droplets and paint pressure are controlled with

local interaction widgets, which represent local variations of the scene graph - each user can

have an individual current color etc. Furthermore, we make use of local variations combined

with input streams for the line drawing utility (Figure 15), which displays a rubber band while

the user is dragging. When the rubber band is released, a line of paint droplets is created and

added to the shared scene graph.

Figure 14: The shared maze game allows users to collaborate (or work against each other)
using multiple workstations.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 57 -

Figure 15: The shared spraying application allows multiple users to paint collaboratively. The
top image shows a user drawing a rubber band, which is an example of a local graphical

variation connected to an input stream. Note how the second user’s view (bottom image) does
not show the rubber band.

5.9 Distributed Open Inventor, Version 2

As mentioned before the previous sections described the first version of DIV. On August 15,

2000, SGI released Open Inventor to the open source community. This move enabled us to

redesign DIV and to use a different approach to achieve our main goal: transparent

distribution.

A drawback of the first approach is the need of a “shadow” scene graph structure which is

required because OIV does not provide a mechanism to correctly identify structural scene

graph changes. The “shadow” structure was used to save a snapshot of the scene graph and to

compare it against the actual state. During tests we identified some problems with that

approach. For example custom OIV nodes might disable the copy mechanism which prevents

copying into the “shadow” structure.

To resolve this issue and to eliminate the “shadow” structure we slightly redesigned DIV.

Open Inventor is now really open and available as source code. Therefore we were able to

modify the base class of the group node to store additional information about a structural

change. This information consists of three parts: type of change, index of modified or new

child and a pointer to the modified or new child.

The notification mechanism is now able to retrieve that information and to report it via the

usual callback mechanism. This little change was enough to remove the shadow structure and

to improve DIV’s overall performance.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 58 -

Additional modifications to multiple valued fields (array fields) were done to optimize those

field updates. OIV is not able to report the index of a changed array entry within a multiple

valued field. Instead OIV reports that the whole field was modified resulting in a large DIV

message if the array has many entries. To overcome this issue the base class for multiple

valued fields store the index of the modified entry.

5.10 Summary

This chapter has introduced a practical approach to distributed graphics, realized as DIV, the

Distributed Open Inventor library. DIV is founded on the notion of a distributed shared scene

graph, a powerful data structure that unifies graphical and application data with distributed

control. Our implementation extends the popular Open Inventor toolkit and thus allows

programmers to continue software development in a familiar style and software development

environment. We have built DIV to enable distributed collaborative work within our

Studierstube system. Our approach is almost completely transparent to the application

programmer and allows existing applications to be distributed with very little effort. DIV is

used in Studierstube but can also be used with legacy OIV applications as well. The next

chapter describes the design philosophy of our distributed collaborative augmented reality

version of Studierstube, as well as the underlying software and hardware architecture.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 59 -

6 Bridging Multiple User Interfaces with Augmented Reality

6.1 Introduction

While the previous chapter described the toolkit (DIV) that we have developed to distribute

our Studierstube system on a low (graphical attribute) level, this chapter introduces our work

to enhance our system on an application level to enable distributed collaborative augmented

reality.

As mentioned in the distributed Studierstube overview section 4.2, Studierstube started as a

pure augmented reality setup (Schmalstieg et al., 1996; Szalavári et al., 1998b) that focused

on experimenting with the possibilities of new user interfaces that incorporate AR. This

architecture incorporated simple distribution mechanisms to provide graphics from multiple

host computers and shared data from a separate device (tracker) server. It turned out that this

approach was insufficient to provide a framework for distributed collaborative augmented

reality. An even more limiting factor was that the toolkit allowed to run only a single

application at a time. This chapter describes our efforts to convert Studierstube to a distributed

collaborative augmented reality environment.

For efficient experimentation, we have implemented a framework that generalizes over

multiple user interface dimensions, allowing rapid prototyping of different user interface

styles. The Studierstube user interface spans the following dimensions:

6.2 Multiple users

The system allows multiple users to collaborate (e.g. Figure 16, Figure 17). While we are

most interested in computer-supported face-to-face collaboration, this definition also

encompasses remote collaboration. Collaboration of multiple users implies that the system

will typically incorporate multiple host computers. However, we also allow multiple users to

interface with a single host (e.g. via a large screen display), and a single user to interface with

multiple computers at once. On a very fundamental level, this means that we are dealing with

a distributed system. It also implies that multiple types of output devices such as HMDs,

projection-based displays, hand-held displays etc. can be handled and that the system can span

multiple operating systems.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 60 -

Figure 16: Collaborative work in Studierstube: 3D painting application window (with focus,
middle) and object viewer window (without focus, lower right).

This has the advantage that application specific computations, typically callbacks triggered

through events created through user input, need not be repeated at every host. Instead, for

every application instance, a master host is determined, which is responsible for performing

all execution of application code. The updates to the application state resulting from these

computations are then replicated in the slaves‘ replicas of the application instance through

DIV.

6.3 Multiple contexts

As pointed out above, applications are used to construct contexts. Contexts are structured

along the lines of the model-view-controller (MVC) paradigm known from Smalltalk’s

windowing system (Goldberg & Robson, 1983): Studierstube’s data, representation, and

application correspond to MVC’s model, view, and controller, respectively. Not surprisingly,

this structure makes it straightforward to generalize established properties of 2D user

interfaces to three dimensions.

Every context is an instance of a particular application type. Contexts of different types can

exist concurrently, which results in multi-tasking of multiple applications, a feature which is

well established within the desktop metaphor, but rarely implemented in virtual environments.

Moreover, Studierstube also allows multiple contexts of the same type to co-exist, allowing a

single application to work with multiple data sets. In the desktop metaphor, this feature is

generally known as a multiple document interface. Note that it differs from simply allowing

multiple instances of the same application which are unaware of each other. Multiple contexts

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 61 -

of the same type are aware of each other can share features and data. For example, consider

the shared “slide sorter” from section 6.7.

Figure 17: Two Studierstube users working jointly on multiple applications in front of a large
screen, usually with passive stereo glasses (not shown)

6.4 Multiple locales

Locales correspond to coordinate systems in the virtual environment. They usually coincide

with physical places (such as a lab or conference room, or parts of rooms), but they can also

be portable and associated with a user, or used arbitrarily – we even allow (and use)

overlapping locales in the same physical space. We define that every display used in a

Studierstube environment shows the content of exactly one locale. Every context can (but

need not) be replicated in every locale; these replicas will be kept synchronized by

Studierstube’s distribution mechanism.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 62 -

LAN

Host 2

Host 3

Host 1

virtual
table

Locale B

Locale A

Figure 18: Multiple locales can simultaneously exist in Studierstube. They are used to
configure multiple different output devices and/or to support remote collaboration

To understand why the separation of locales and contexts is necessary, consider the following

examples:

• Multiple users are working on separate hosts. They can share contexts, but can layout the

context representations (3D-windows) arbitrarily according to screen format and personal

preferences. This is made possible by defining separate locales, as the position of 3D-

windows is not shared across locale boundaries (Figure 18). The hosts can be in separate

buildings for remote collaboration, or they can be placed side by side. In the latter case,

locales would probably overlap, as users might see several or all screens.

• A user wearing a see-through HMD is looking at a large projection screen through the

HMD. Both display devices (HMD, projection screen) can be set to use the same locale,

so the graphics in a user’s HMD may augment the projection screen’s output. Of course

this setup is view-dependent and work for only one user, so alternatively, the projection

screen may use a separate locale, and present graphical elements which are

complementary to the HMD output.

By separating locales (geometric relationships) from contexts (semantic relationships), we

achieve a great amount of flexibility in the configuration of displays.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 63 -

The system presented in this thesis must be understood as an experimental platform for

exploring the design space that emerges from bridging multiple user interface dimensions. It

can neither compete in maturity and usability with the universally adopted desktop metaphor

nor with more streamlined, specialized virtual environment solutions (e. g., CAVEs).

However, Studierstube demonstrates a design approach for next generation user interfaces as

well as solutions on how to implement these interfaces.

6.5 Interaction design

In this section, we give a more detailed explanation of important features and concepts of our

user interface.

6.5.1 3D-windows

The use of windows as abstraction and interaction metaphor is a long-time convention in 2D

GUIs. Its extension to three dimensions seems logical (Feiner & Beshers, 1990; Tsao &

Lumsden, 1997) and can be achieved in a straightforward manner: Using a box instead of a

rectangle seems to be the easiest way of preserving the well-known properties of desktop

windows when migrating into a virtual environment. It supplies the user with the same means

of positioning and resizing the display area and also defines its exact boundaries. Obvious

differences of these 3D windows (”boxes”) to their desktop counterparts can in many cases be

resolved easily. Positioning a box by grabbing a designated part of its geometry may of course

include the rotation of the window to an arbitrary orientation. Resizing is achieved by

grabbing a corner and repositioning it with 3DOF, thereby changing all measurements of the

box in one movement.

6.5.2 Contexts and sharing

A context encapsulates visible and invisible application-specific data together with the

responsible application. The notion of an application is therefore completely hidden from the

user, in particular, users never have to “start” an application, they simply open a context of a

specific type. This approach simplifies operation and is successfully implemented in today’s

Personal Digital Assistants such as the PalmPilot, albeit with a limited set of applications.

Compared to the desktop metaphor, this approach is much closer to the concept of an

information appliance, which is always “on”, as desired by several authors (Billinghurst et al.,

1998a; Mann, 1997).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 64 -

Studierstube supports multi-tasking of different applications (e.g. a painting application and a

3D modeler), but also multiple concurrent contexts associated with the same application

(Figure 19). This approach is similar to popular desktop systems such as the multiple

document interface.

Figure 19: Multiple document interface in 3D – the left window has the user’s focus and can be
manipulated with the current PIP sheet.

Depending on the semantics of the associated application, ownership of a context may or may

not privilege a user to perform certain operations on the information (such as object deletion).

Per default, users present in the same locale will share a context. A context – represented by

its 3D-window - is owned by one user, and subscribed by others. Per default, a context is

visible to all users and can be manipulated by any user in the locale.

6.5.3 Subjective views

A user owning a context may decide to declare that context as private, so that it is hidden to

other users. Some contexts may allow special subjective views with a finer granularity than

the simple choice of completely visible vs. completely hidden, e. g. object shown with or

without textures, such as proposed in (Szalavári et al., 1998a). Basic support for subjective

views is built into Studierstube in the form of shared/non-shared data. However, while private

contexts are a standard feature of Studierstube, the semantics of such custom subjective views

must be defined in the application associated with a context.

6.5.4 Multiple locales

Multiple locales can exist concurrently. This concept is very powerful, as it not only allows to

connect multiple Studierstube environments over a network for remote collaboration, but also

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 65 -

to set up an environment with multiple co-located, i. e., overlapping locales. Consider as a

scenario a spacecraft mission control center with dozens of collaborating operators assembled

in a large hall. Every involved user will assume a specific role and require specific tools and

data sets, while some aspects of the mission will be shared by all users. A naïve approach of

embedding all users in a single locale means that users in close proximity can work in a

shared virtual space, while other users who desire to participate are too far away to see the

data well, and are not within arm’s reach for manual interaction. By separating contexts from

locales, a remote user can import the context into a separate locale, and interact with it

conveniently. While our available resources do not allow us to verify such large-scale

interaction, in section 6.7 we present some results that back up our considerations.

6.6 Implementation

6.6.1 System overview

Our software development environment is realized as a collection of C++ classes built on top

of the Open Inventor (OIV) toolkit (Strauss & Carey, 1992). The rich graphical environment

of OIV allows rapid prototyping of new interaction styles. The file format of OIV enables

convenient scripting, overcoming many of the shortcomings of compiled languages without

compromising performance. At the core of OIV is an object-oriented scene graph storing both

geometric information and active interaction objects. Our implementation approach has been

to extent OIV as needed, while staying within OIV’s strong design philosophy.

This has lead to the development of two intertwined components: A toolkit of extensions of

the OIV class hierarchy (mostly interaction widgets capable of responding to 3D events), and

a runtime framework, which provides the necessary environment for Studierstube applications

to execute. Together, these components form a well-defined application programmer’s

interface (API), which extends the OIV API, and also offers a convenient programming model

to the application programmer (section 6.6.5). Applications are written and compiled as

separate shared objects (.so for IRIX, .dll for Win32), and dynamically loaded into the

runtime framework. A safeguard mechanism makes sure only one instance of each application

is loaded into the system at any time. Besides decoupling application development from

system development, dynamic loading of objects also simplifies distribution as application

components can be loaded by each host whenever needed. All these features are not unique to

Studierstube, but rarely found in virtual environment software.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 66 -

6.6.2 3D-windows

A context is normally represented in the scene by a 3D-window, although we allow a context

to span multiple windows. The 3D-window class is a container associated with a user-

specified scene graph. This scene graph is normally rendered with clipping planes set to the

faces of the containing box, so that the content of the window does not protrude from the

window’s volume. Nested windows are possible, although we have found little use for them.

The window is normally rendered with associated ”decoration” that visually defines the

windows extent and allows it to be manipulated with the pen (move, resize etc). The color of

the decoration also indicates whether a window has a user’s focus (and hence receives 3D

event from that user). Like their 2D counterparts, 3D-windows can be minimized (replaced by

a three-dimensional icon to save space in a cluttered display), and maximized (scaled to fill

the whole work volume and receive input events exclusively). Typically, multiple context of

the same type will maintain structurally similar windows, but this decision is at the discretion

of the application programmer.

6.6.3 PIP sheets

Studierstube applications are controlled either via direct manipulation of the data presented in

3D-windows, or via a mixture of 2D and 3D widgets on the PIP. A set of controls on the PIP –

a PIP sheet - is implemented as an OIV scene graph composed primarily of Studierstube

interaction widgets (such as buttons etc.). However, the scene graph may also contain

geometry (e. g., 2D and 3D icons) that are useful to convey user interface state or merely as

decoration. Note that all 3D widgets of Studierstube (e.g. buttons, sliders, checkboxes, dials)

are able to distinguish between 3 different operation modes:

1. Normal mode (default): if Studierstube is used in non-distribution mode. Widgets react

with their default behavior.

2. Master mode: if the associated context is a master context. Widgets do not send

updates via DIV unless a “commitment event” occurs (e.g. slider: button release).

3. Slave mode: if the associated context is a slave context. Widgets react with their

default behavior. Updates via DIV are possible (master mode widgets send updates

after a “commitment event” has occurred).

Every type of context defines a PIP sheet template, a kind of application resource. For every

context and user, a separate PIP sheet is instantiated. Each interaction widget on the PIP sheet

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 67 -

can therefore have a separate state. For example, the current paint color in our artistic spraying

application (Figure 19) can be set individually by every user for every context. However,

widgets can also be shared over all users, all contexts, or both. Consequently, Studierstube’s

3D event routing involves a kind of multiplexer between windows and users’ PIP sheets

(Figure 20).

input

Figure 20: Multiplicity relationships in Studierstube - control elements on the PIP are
instantiated separately for every (user, 3D-window) pair

6.6.4 Distributed execution

The distribution of Studierstube requires that for each replica of a context all graphical and

application-specific data is locally available at each host which has a replica. In general,

applications written with OIV encode all relevant information in the scene graph, so

replicating the scene graph at each participating host already solves most of the problem.

For that aim, we have created Distributed Open Inventor (DIV) (section 5; Hesina et al., 1999)

as an extension (more a kind of plug-in) to OIV. A scene graph need not be totally replicated

– local variations (compare MacIntyre & Feiner, 1998) in the scene graph can be introduced,

which is among others useful for fine-tuning low-latency operations such as dragging.

More importantly, local variations allow us to resolve distribution on a per-context base. A

context is owned by one workstation (called a master context), which will be responsible of

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 68 -

processing all relevant interaction on the application, while other workstations (in the same

locale and in other locales) may replicate the context (as a slave context).

The roles that contexts may assume (master or slave) affect the status of the context’s

application part. The context data and its representation (window, PIP sheet etc.) stay

synchronized over the whole lifespan of the context for every replica. The application part of

a master context is active and modifies context data directly according to the users’ input. A

slave context’s application is dormant and does not react to user input (for example, no

callbacks are executed if widgets are triggered). Instead, a slave context relies on updates to

be transmitted via DIV. Note that context replicas can swap roles (e. g., by moving master

contexts to achieve load balancing), but at any time there may only be one master copy per

replicated context.

This has the advantage that application specific computations, typically callbacks triggered

through events created through user input, need not be repeated at every host. Instead, for

every application instance, a master host is determined, which is responsible for performing

all execution of application code. The updates to the application state resulting from these

computations are then replicated in the slaves‘ replicas of the application instance through

DIV.

This approach shares the most significant advantage of DVE client-server systems such as

NetEffect (Das et al., 1997), RING (Funkhouser, 1995), or Ultima Online (Origin, 1997):

serialization of updates is implicitly performed, which removes the need for a special

consistency protocol and simplifies distribution semantics. In fact, a master/slave pair of

application instances has similar semantics like network objects (Birrell et al., 1993), or even

X windows (Scheifler & Gettys, 1983) applications that separate user interface from

application execution, only that Studierstube applications execute the user interface on both

client and server.

Once the low-level replication of context data is taken care of by DIV, the high-level context

management protocol is fairly simple: A dedicated session manager process serves as a

mediator among hosts as well as a known point of contact for newcomers. The session

manager does not have a heavy workload compared to the hosts running the Studierstube user

interface, but its directory services are essential. For example, it maintains a list of all active

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 69 -

hosts and which contexts they own or subscribe, it gets to decide about policy issues such as

load balancing etc.

The master host can be determined for every application instance separately. This implies that

a single host can be master for one application instance, but slave for another. Coarse grained

parallelism is introduced by distributing the master responsibilities over the hosts according to

some scheme. This dual role of every host as master/slave for application instances can be

seen as a generalization of peer-to-peer DVE systems such as NPSNET (Zyda et al., 1992),

where hosts maintain a master copy of the locally controlled entity and slave (or “ghost” (Blau

et al., 1992)) copies for all other.

It is noteworthy that the assignment of master host to application is not performed per

application class, but per application instance. This commonly leads to situations where the

master copies of two application instances of the same application are maintained by two

different hosts. This implies a truly distributed execution of that application, which is handed

by the system in a manner completely transparent to the application programmer and the

application‘s user(s). Since application instances correspond to documents maintained by the

application, the system also implements a distributed multi-document interface.

In combination, the embedding of application instances into a distributed shared scene graph

allows to combine attractive properties of client-server and peer-to-peer systems into a

coherent whole.

Finally, input is managed separately by dedicated device servers (typically PCs running

Linux), which also perform the necessary filtering and prediction. The tracker data is then

multicast in the LAN, so it is simultaneously available to all hosts for rendering. Every uses

this input data to construct 3D Events.

As pointed out above, only the master copy of a replicated application instance needs to

perform application specific computation. Therefore, only the master copy of an application

node registers event callbacks with the runtime system, and this rule applies recursively to all

event-aware nodes (widgets) contained in that applications sub graph. As a consequence, if an

event occurs only the master copy of an application instance will react to it directly, regardless

whether the event processing is done directly by the application or indirectly by a contained

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 70 -

widget. Slave copies receive their updates through DIV messages that are automatically

created when a node‘s state changes.

However, as pointed out in (MacIntyre & Feiner, 1998), some interaction such as highlighting

or dragging styles require highest performance feedback and cannot rely on a regular

distribution mechanism. For that purpose, a temporarily relaxed consistency is introduced on a

per-widget level. Both master and slave widgets are allowed to directly process input events

for visual display (e. g., update an object‘s position while dragging it), but after the local

operation is finished, only the master widgets is allowed to “commit” the action by setting the

final state, which is then propagated to slave widgets (see also section 6.6.3). Using this

protocol, no inconsistencies can occur, while high performance of local operations is ensured.

Note that this kind of distributed behavior is implicit in the widgets, and need not concern an

application programmer that uses these widgets in an application.

6.6.5 Application programmer’s interface

The Studierstube API imposes a certain programming model on applications, which is

embedded in a foundation class, from which all Studierstube applications are derived. By

overloading certain polymorphic methods of the foundation class, a programmer can

customize the behavior of the application. The structure imposed by the foundation class

makes sure the application allows multiple contexts to be created (i. e., offers the equivalent to

a multiple document interface), each of which can be operated in both master mode (normal

application processing) and slave mode (same data model, but all changes occur remotely

through DIV).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 71 -

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd jgflkjsdfgkjvakltj
i4trrtg
dfs;lghjksdl;fhkl;sgkdh dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg h
khjlkjnlkjl;kfjg;lksdfjbhl;kjsl

ykbjm ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkhgseizr

uivhseuityb hiouyi jrt
jhrnthj si

jitosjhimthibmriptmbdnoi

ijniojniojfoijiojhgiojfdghiom
dfoimhn
ifgjosdjigoijdiosfh
dfghklj hh h jhjhjh jkh jh iu iuh uihiuh
uhiuhij h
‘ji hnjn nun nn

kj lkjlkji

window application

PIPsheet
(per user)

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd
jgflkjsdfgkjvakltj i4trrtg
dfs;lghjksdl;fhkl;sgkdh
dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg
h

khjlkjnlkjl;
kfjg;lksdfjbhl;kjslykbjm
ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkh

Context 1

Context 2

Figure 21: A context is implemented as a node in the scene graph, as are windows and pip
sheets. This allows to organize all relevant data in the system in a single hierarchical data

structure.

The key to achieve all this is to make the context itself a node in the scene graph. Such

context nodes are implemented as OIV kit classes. Kits are special nodes that can store both

fields, i. e., simple attributes, and child nodes, both of which will be considered part of the

scene graph and thus implicitly be distributed by DIV. Default parts of every context are at

least one 3D-window node, which is itself an OIV kit and contains the context’s “client area”

scene graph, and an array of PIP sheets, which are also special scene graphs. In other words,

data, representation, and application are all embedded in a single scene (Figure 21), which can

be conveniently managed by the Studierstube framework.

To create a useful application with all the properties mentioned above, a programmer need

only create a subclass of the foundation class and overload the 3D-window and PIP sheet

creation methods to return custom scene graphs. Typically, most of the remaining application

code will consist of callback methods responding to certain 3D events such as button press or

3D direct manipulation events. Although the programmer has great freedom to use anything

that the OIV and Studierstube toolkits offer, it is a requirement that any instance data is stored

in the derived context class as a field or node, or otherwise it will not be distributed. However,

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 72 -

this is not a restriction in practice, as all basic data types are available in both scalar and

vector format as fields, and new types can be created should the existing ones turn out to be

insufficient (a situation that has not occurred to us yet).

Note that allowing a context to operate in both master and slave mode has implications on

how contexts can be distributed: It is not necessary to store all master contexts of a particular

type at one host. Some master contexts may reside on one host, some on another host – in that

case, there will be corresponding slave contexts at the respective other host, which are also

instances of the same kit class, but initialized to function as slaves. In essence, our API

provides a distributed multiple document interface.

Figure 22: Storyboard application with two users and two contexts as seen from a third
“virtual” user used for video documentation. In the background the video projection is visible.

6.7 Results

To demonstrate our framework, we chose the application scenario of Storyboard design. This

application is a prototype of a cinematic design tool. It allows multiple users to concurrently

work on a storyboard for a movie or drama. Individual scenes are represented by their stage

sets, a kind of world in miniature (Pausch et al., 1995). Every scene is represented by its own

context, and embedded in a 3D-window. Users can manipulate the position of props in the

scene as well as the number and placement of actors (represented by colored board game

figures), and finally the position of the camera (Figure 22, Figure 23).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 73 -

Slide
Sorter

Focused
Context

Unfocused
Context

Scene
Selection

New
Context

Delete
Context

Actor

Pen

Camera

Stage
Set

Toggle
sorter/show

on projection

Toggle
sorter/show

on PIP

Actor
Selection

Figure 23: The Storyboarding application allows the 3D placement of actors, props, and
cameras. The slide sorter shows a storyboard of all camera “shots”

All contexts share an additional large slide show window, which shows a 2D image of the

selected scene from the current camera position. By flipping through the scenes in the given

sequence, the resulting slide show conveys the visual composition of the movie.

Alternatively, a user may change the slide show to a “slide sorter” view inspired by current

presentation graphics tools, where each scene is represented by a smaller 2D image, and the

sequence can be rearranged by simple drag and drop operations. The slide sorter comes

closest to the traditional storyboard used in cinematography. It appears on the PIP for easy

manipulation as well as on the larger projection screen.

Using the distributed Studierstube framework, we ran the Storyboard application in different

configurations.

6.7.1 Heterogeneous displays

Our first configuration (Figure 22, Figure 24) consisted of three hosts (SGI Indigo2,

Intergraph Wildcat, SGI O2), two users, and two locales (Figure 25). It was designed to show

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 74 -

the convergence of multiple users (real ones as well as virtual ones), contexts, locales, 3D-

windows, hosts, displays and operating systems.

The two users were wearing HMDs, both connected to the Indigo2’s multi-channel output,

and seeing head-tracked stereoscopic graphics. They were also fitted with a pen and pad each.

The Intergraph workstation was driving an LCD video projector to generate a monoscopic

image of the projection screen (without viewpoint tracking) on a projection wall. The slider

show/sorter 3D-window was hidden from graphics output on the HMDs, so the users could

see the result of their manipulation of the miniature scenes on the large bright projection

exploiting the see-through capability of the HMDs. Users were able to perform some private

editing on their local contexts, then update the slide show/sorter to discuss the results.

Typically, each user would work on his or her own set of scenes. However, we choose to

make all contexts visible to both users, so collaborative work on a single scene was also

possible. The slide sorter view was shared between both users, so global changes to the order

of scenes in the movie were immediately recognizable.

SGI Indigo2
Impact

driving HMD

Intergraph
Wildcat
driving

video projector

SGI O2
driving
video

recorder

video
recorder

HMD

Pen

PIP

video projector

tracker
server

video
camera

Figure 24: Hardware setup for the heterogeneous display experiment.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 75 -

The third host – the O2 – was configured to combine the graphical output (monoscopically)

from Studierstube with a live video texture obtained from a video camera pointed at the users

and projection screen. The O2 was configured to render for a virtual user, whose position was

identical with the physical camera. This feature was used to document the system on video.

This configuration used two locales, one shared by the two users and the O2, while a separate

locale was used for the Intergraph driving the projection screen (again viewed by a virtual

user).

LAN

LA
N

Intergraph

O2

Cam.

Proj.

Indigo2

Figure 25: Heterogeneous displays – two users simultaneously see shared graphics (via their
see-through HMDs) and a large screen projection

The additional video host allowed us to perform live composition of the users’ physical and

virtual actions on video, while the video projector driving the projection screen could be

freely repositioned without affecting the remainder of the system.

6.7.2 Symmetric workspace

The second example was intended to show multi-user collaboration in pure augmented reality

with multiple hosts. The Storyboarding application was executed in a more conventional

augmented reality setup consisting of two hosts (Indigo2, Intergraph), two users, and one

locale (Figure 26).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 76 -

LAN

IntergraphIndigo2

Figure 26: A symmetric workspace configuration uses homogeneous displays (2 HMDs) to
present a shared environment to multiple users in a single locale

Both users were wearing HMDs again, but the first user was connected to the Indigo2, while

the second user was connected to the Intergraph. In this configuration, the slide show/sorter

was included in the graphics shown via the HMD rather than projected by a separate video

projector.

While the obtainable frame rate was significantly higher than for the first configuration, since

rendering load for the two users was distributed over two hosts, no high resolution wide field-

of-view projection was available for the slide show/sorter. Consequently, only a single locale

was necessary since both users shared the same physical space.

6.7.3 Remote collaboration

The third example was created to show remote collaboration of multiple users. In this setup,

we built a second Studierstube environment in the laboratory next door to experiment with the

possibilities of remote collaboration. We then let two users collaborate remotely using the

Storyboard application.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 77 -

LAN LAN

Intergraph Indigo2

Locale B
(2nd room)

Locale A
(1st room)

Figure 27: Remote collaboration: Two geographically separated users experience a shared
environment

Note that the results are preliminary in the sense that all hosts were connected to the same

LAN segment, and network performance is thus not representative of what one would get over

a wide area network connection. However, this was not the current focus of investigation.

The system consisted of two hosts (Indigo2 in the first laboratory, O2 in the second), two

users and two locales (Figure 27). Each user was wearing a HMD connected to the local

workstation. In contrast to configuration from section 6.7.2, two locales were used as the users

did not share a physical presence. The sharing of context, but not locale, allowed them to

rearrange their personal workspace at their convenience without affecting collaboration.

6.8 Summary

This chapter presented distributed Studierstube, a prototype user interface that uses distributed

collaborative augmented reality to bridge multiple user interface dimensions: Multiple users,

context, and locales as well as applications, 3D-windows, hosts, display platforms, and

operating systems. Distributed Studierstube supports collaborative work by coordinating a

heterogeneous distributed system based on a distributed shared scene graph and a 3D

interaction toolkit.

Our implementation prototype shows that despite its apparent complexity, such a design

approach is principally feasible, although much is left to be desired in terms of quality and

maturity of hard- and software. However, this is out of scope of this thesis.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 78 -

The next chapter introduces further enhancements to our framework, which enable support

and use of dynamically changing user groups as well as load balancing strategies, locales for

remote collaboration via WANs and application streaming which is used to support late

joiners.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 79 -

7 Context Migration

7.1 Introduction

In chapter 6 we introduced the distribution enhanced version of Studierstube. The following

describes further improvements: Contexts (applications) are able to change their current status

(either master or slave). This enables us to implement load balancing strategies and locales for

remote collaboration. Furthermore we present a concept for collaboration via WANs (e.g. the

Internet) and application streaming which is used to support late joiners in our framework.

7.2 Contexts and Migration

As mentioned in section 6.6.4, the roles that contexts may assume affect the status of the

context’s application part. The application part of a master context is active and modifies

context data directly according to the users’ input. In contrast, a slave context’s application is

dormant and does not react to user input. For example, no callbacks are executed if widgets

are triggered. Instead, a slave context relies on updates to be transmitted via DIV. When the

application part changes the scene graph of the master context, DIV will pick up the change

and propagate it to all slave contexts to keep them in sync with the master context. This

process happens transparently within the application, which uses only the master context’s

scene graph.

Figure 29: Master and slave context synchronization via DIV updates.

An important feature of context replicas is that they are able to swap roles. That is, a master

becomes a slave and vice versa. Note that at any time there may be only one master per

replicated context. We use a dedicated process (“session manager”) to implement a directory

service and a known point of contact for late-joiners. The session manager (sman) maintains a

AppCode
callbacks

updates

Master

App

Slave

DIV

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 80 -

list of all active hosts and which contexts they own and subscribe to. All communications with

the sman process is done via bi-directional reliable data transfer through a dedicated

distribution-manager object. Figure 30 depicts the integration of the session manager process

into our system.

 Figure 30: Three hosts are connected to the session manager (via a distribution-manager
object). They run two contexts (C1, C2) in either master (M) or slave (S) mode. Through the
telnet interface it is possible to perform maintenance tasks or display statistics about the

current session. DIV updates are sent via the two multicast groups.

We call the whole process of role swapping migration. We distinguish between two different

versions of migration:

• Application migration allows to transfer running Studierstube applications from one host

to another, maintaining intact the state of the user interface as well as the internal state of

the application.

• Activation migration is the light-weight variant of application migration: an application

executes in a distributed system using a replication mechanism, but the responsibility for

the computationally critical portion – called activation – of the application can be handed

off from host to host without affecting the application or its user(s).

Session
Manager

Telnet
Interface

Distr
Man

C 1
S

C 2
M

Host A

Distr
ManC 1

S C 2
S

Host C

Host B

Distr
ManC 1

M
C 2

S

Directory
Service

Multicast
groups

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 81 -

These tools allow us to address a number of practical issues in user interface and application

management for virtual work environments that are otherwise difficult to resolve:

• Dynamically changing configurations: Late joining and early exit of users and their

respective hosts can be handled by migrating the set of application instances and their

activations for each host.

• Load balancing: Applications can be migrated from one host to another if the

computational load is too high. This mechanism can also account for situations where it is

desirable to support asymmetric configurations, e. g., when a powerful compute server is

available to offload less capable workstations, or when not all hosts are able to execute a

particular application due to platform or hardware constraints.

• Utilization of heterogeneous network capacity: Many DVE applications acknowledge

variations in network performance by quality of service management and degradation

strategies, but make the unrealistic assumption that the networking quality is

homogeneous. We observe that small groups of co-located users are also likely to share a

high-bandwidth local area network (LAN), while remote collaboration typically relies on a

lower performance wide area network (WAN). Activation migration can be used to make

the best of both situations simultaneously by allowing finer grained interaction between

users sharing a higher bandwidth network.

• Ubiquitous computing: Applications can be made to follow a user across physical

locations.

7.3 Activation Migration

At any point during the processing of two events by an application instance, the instance‘s

master can be changed from one host to another. All that is required is that the application

node and its contained sub graph recursively unregister their event callbacks at the old master

host, and register callbacks at the new master host. The old master becomes a slave and vice

versa; from this moment on the new master host will be responsible for triggering all

application specific behavior. This process is transparent to other hosts, the user and even the

application itself. Section 7.5 details how activation migration is used to build support for load

balancing, early exit, remote group collaboration and even some forms of ubiquitous

computing.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 82 -

7.4 Application migration

Complete application migration requires that a running application instance moves from one

host to another, while user interface and internal state are kept intact. This is different to the

aforementioned activation migration in that it requires complete transportation of the live

application to a host that did not replicate that application instance before (otherwise

activation migration would be sufficient).

Building on Studierstube‘s distributed architecture, such application migration is straight

forward: All application state is encoded in the scene graph through the application node and

its contained sub graph. Marshalling a arbitrary scene graph into a memory buffer is a

standard operation of OIV (SoWriteAction). The application is marshalled, so its complete

live state – both graphical and internal – is captured in the buffer, and can be transmitted over

the network to the target host, where it is unmarshalled (SoDB::readAll) and added to the

local scene graph, where it resumes its operation.

For a complete migration, the source host should unregister the application instance‘s event

callbacks before migration and delete the application instance after marshalling. Moreover,

the destination host must load the application‘s binary object module if not already present in

memory, and register the application‘s event callbacks so it can become a master copy.

However, in many cases it is desirable to create a replicated application on both the source

and destination host. In this case deletion of the source copy is not performed. The remainder

of the procedure depends on whether source or destination are intended to become master, but

both is straight forward to accomplish. Section 7.5 describes the implementation of late

joining behavior and support for ubiquitous computing using application migration.

7.5 Usage of migration

In this section, we describe the use of our new tools – activation migration and application

migration – to implement several interesting behaviors of a distributed virtual work

environment.

7.5.1 Load balancing

One straight forward application of activation migration is load balancing. Every host

responsible of running a master copy of an application instance must continuously perform

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 83 -

application specific computation as the user generates input events. Even if no interaction is

intended, tracking data from the user‘s input devices continues to arrive and must be checked

for possibly interactions. These computations need not be performed if a host has only a slave

copy, which will be updated only as a consequence of remote computation.

Subdividing the responsibilities for master copies among hosts allows a better utilization of

computational resources. However, the set of application instances will change over time as

application instances are created and deleted by the users. As a consequence, computational

load may become unevenly distributed.

As a countermeasure, we have implemented a simple load balancing mechanism which

utilizes activation migration: A session manager which runs as a dedicated process once in the

environment is responsible for monitoring the computational load. When it changes due to

modifications of the set of application instances, the session manager initiates appropriate

activation migration to balance the load. Currently, we have only implemented a very simple

load balancing strategy that tries to assign an equal number of master instances to each host.

However, an arbitrary policy can be used to decide how to balance the load without changing

the underlying mechanism. A simple extension would be to assign weights to application

instances depending on their demand for resources and capacity estimates to hosts depending

on their processing power. It is also possible to lock activations to specific hosts or group of

host, for example if binary modules are available for only some of the used platforms, so not

all hosts are technically capable of running master copies of an application.

7.5.2 Late joining

When hosts are added to a Studierstube session after the distributed system is already

executing, it is necessary to build a copy of the replicated application instances at the new

host. This is easily achieved through the application migration mechanism described in

section 7.4 using the variant that does not delete the source application instance. Whether or

not the new copy becomes master or slave is determined by the load balancing policy.

7.5.3 Early exit

The opposite operation to late joining of a host is early exit, where one host ceases operation

of the distributed system while the remaining hosts continue to execute. In this case, no

application migration is necessary, the exiting host simply deletes its application instances.

However, any master copies maintained by the exiting host need an activation migration to

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 84 -

one of the remaining host before they are deleted, so one master copy remains available.

Again, the target of the activation migration can be determined using load balancing.

Figure 31: (a) Uneven distribution of load on hosts 1 and 2. (b) Load balancing moves one
master privilege to host 2. (c) Host 3 joins late and receives one master privilege from host 1.

(d) Host 2 exits early and passed its master privilege to host 3.

M

Host 1

S
SM

Host 2

S

M

M

Host 1

S

S M

Host 2

S

M

M

Host 1

S

S M

Host 2

S

Host 3

M

S

S

S

M

Host 1

S

S

M

Host 3

M

S

a)

b)

d)

c)

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 85 -

7.5.4 Ubiquitous computing

A ubiquitous computing environment allows a user to get access to computing services using

a variety of interaction platforms. In our case, we consider only interaction platforms capable

of performing 3D interaction with Studierstube applications. For example, two non-immersive

display platforms (e. g. back-projection table and large desktop monitor) driven by two hosts

can be connected using a multi-computer direct manipulation metaphor: By dragging the 3D

window that belongs to an application across display boundaries, it can also be migrated (see

). This migration can take one of two distinct forms:

1. The application instance was already distributed and shared by the hosts before the

manipulation act. Then only the activation needs to migrate to the target host. After this

migration, the destination host becomes master, but the application is still distributed and

shared.

2. The application is only executing at the source host. Then the manipulation act triggers

application migration to the destination host. After that, the application is only executing

at the destination host.

The second variant will probably not be used for multi-computer direct manipulation style

interaction in most cases, but may be interesting if the display platforms are not physically

adjacent. For example, users may want to migrate their applications from office to home and

vice versa.

Figure 32: Two hosts sharing a single physical space – when the user moves application
windows across display boundaries, the application is migrated along.

Virtual
screen
space

A
B

Display 1Host 1

Host 1

Display 2

Physical space

A B

Display 1 Display 2

a)

b)

Host 2

Host 2

M S

A A

AA

B B

BB

M

M

M

M

S

S

S

S

= Master = Slave

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 86 -

7.5.5 Remote collaboration

Remote collaboration can bring together users in a virtual environment that cannot share a

physical environment, because they are geographically separated. A reasonable assumption is

that the hosts of co-located users share a LAN and can leverage high network performance,

which allows for example to share tracking data through multicasting. In contrast, remote

collaboration will typically use a WAN with significantly higher latency and lower

bandwidth. However, users in separate locations do also not share a geometric frame of

reference, so that collaboration will significantly differ from co-located collaboration.

We use these observations to allow for remote collaboration of two (or more) groups of co-

located users. It is assumed that user groups at each end of the WAN share a LAN, in which a

distributed Studierstube system is executed as previously described. In addition, the two local

Studierstube are connected via the WAN through proxy processes that route multicast

messages (see Figure 33). While the tracking information is kept separately in each LAN,

DIV messages are tunneled through the proxy connection. In that way, replicas of application

instances are kept synchronized over the WAN.

However, only users on the side where the application instance‘s master copy resides can

interact with the application while the users at the other side of the WAN connection are

passive observers (note that they still can choose individual viewpoints, which is a behavior

that does not affect the application). This setup can be reversed if users trigger activation

migration to move the master copy to the other side of the WAN. This results in a reversal of

active and passive user groups. We have chosen to trigger the reversal using a simple click-to-

focus event for the 3D window that the application provides. This approach supports also

locales at each side (see section 6.4) because the separation of locales from contexts is

achieved through the implementation of 3D windows.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 87 -

Figure 33: In this scenario, two Studierstube sites are connected remotely. Users at a site
owning the master privilege of an application can interact directly with it, users at the slave site

can observe but need to request activation migration before interaction.

7.6 Results

The aforementioned new features of Studierstube give us the ability to perform very

interesting experiments. We chose three scenarios: Activation migration, locales, and

application streaming. For each scenario we defined some experiments which are now

described in detail.

7.6.1 Activation migration

We have chosen this scenario to demonstrate our master/slave concept. We used a setup with

three hosts (Figure 30) which were located in the same LAN but not in the same room. Host

A was an SGI Onyx2 (located in Room A), Host B an SGI Octane and Host C an SGI Visual

Workstation PC (both located in Room B). Every host ran a context of a spraying application

(Figure 16) and a context of a painting application (Figure 17).

Peer-to-peer load balancing

The first experiment demonstrates load balancing with a peer-to-peer strategy. The session

manager uses the following ad-hoc algorithm to perform symmetric load balancing:

1. Compute a load indicator for each host based on a simple formula: load = number-

of-master-processes + 0.5 * number-of-slave-processes

2. Assign the master context to the host with the lowest load. Every other hosts get

slave privileges for that particular distributed context.

We describe now the realization of this experiment. User A (at host A) starts a context of the

test application (“spraying”, Figure 16). The session manager computes the load of each host

A (M)
B (S)

MCAST
PROXY

A (S)
B (S)

LAN

Hosts 1+2 may
modify A

A (S)
B (M)

MCAST
PROXY

A (S)
B (S)

LAN

Hosts 3+4 may
modify B

Host 1 Host 3

Host 4Host 2 WAN

All hosts can observe A and B

A, B: Contexts
M, S: Master, Slave

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 88 -

and decides that Host A gets master and all other hosts get slave privileges for that context.

After some collaboration work User A decides to start another application (painting). Hence

the sman process calculates again the load of all hosts and detects that Host B has only a

running slave context. Host B gets master and all other hosts slave privileges. We compared

the overall frame rate at Host A with a scenario (same setup without load balancing) where

Host B (single CPU) managed two master contexts and all other hosts only ones with slave

privileges. The result was that with load balancing we gained 30% of rendering performance

(frame rate change) at Host B and lost only 20% at host A. This shows that running a mixture

of master slave processes is less time-consuming than running multiple master contexts on a

single CPU machine. The better performance at Host A results from the fact, that Host A is a

multiple CPU machine. Obviously a multiple CPU machine is able to handle master contexts

in an optimized way.

Static application server

The next experiment demonstrates load balancing with a static server strategy. That is, every

new context is started with master privileges on the same pre-defined host, which acts as a so-

called application server (every application runs at this host computer with master privileges).

We used the same scenario as above but with the static server strategy. Host A (SGI Onyx2

with 4 CPUs) acted as our application server. The result was that the frame rate at every host

gained 30% compared to the load balancing strategy (see previous experiment). This clearly

confirms our observation, that running multiple master contexts at a multiple CPU machine is

optimized.

Remote collaboration

The last experiment investigated remote collaboration. We reconfigured our setup and

replaced Host B with a PC which was located in another computer lab which was not in the

same LAN with Host A and C. Hence Host A and C defined one site and Host B another one.

In order to be able to use our reliable multicast mechanism for distribution we tunneled all

multicast traffic through interconnected proxies. The focus policy of contexts (and therefore

their surrounding 3D-windows) was changed to “click to master”. That is, if someone from a

site who does not own master privileges from a specific context clicks into a window the

master from the corresponding context at a host at the other site is switched into slave mode

and the originator gets master privileges. We used the same scenario as in experiment 1. Host

A and B managed one slave and one master context per host. Host C served two slave

contexts. After some collaborative work user B clicked into a slave context window and got

master privileges. Host A lost the master privileges from that context. Our observation was

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 89 -

confirmed that collaboration through contexts that have a master and a slave copy at the same

site is fast.

7.6.2 Locales

To demonstrate our possibility to use locales and remote collaboration we connected Host A

from the above experiment to a Virtual Table and repeated the experiment with the same

results. This experiment shows our transparent integration of multiple display types.

7.6.3 Application streaming

The last set of experiments is used to demonstrate our application streaming feature. We chose

the same setup of experiment 1. After some work with the running applications we added a

fourth host (a PC) to the system. Every application was streamed to the new user. The

application and PIP-sheet state of the new user’s Studierstube was correctly distributed and it

was possible to collaborate with the others. Another experiment was to test a scenario, where

an application follows the user, as he or she changes the current location. We used the Onyx2

from the previous experiments and connected it to a projection wall. The Octane was

connected to the Virtual Table and ran a context of the painting application with one user.

After some painting the Onyx2 was added to the system and after a commit action from the

user (button click), the application was streamed to the Onyx2 while the user was walking to

the projection wall. The user was able to present the previous painted object to a large

audience, who watched the application on the projection wall.

7.7 Summary

We have presented enhancements to our distributed Studierstube system, which is capable of

handling multiple users and multiple applications and we have introduced and evaluated two

related new tools for moving applications among hosts: light-weight activation migration and

application migration through streaming linearized scene graphs. Furthermore we have shown

how to use these tools for load balancing, remote collaboration and ubiquitous computing.

The next section concludes this thesis and presents some future work.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 90 -

8 Conclusions and Future Work

Studierstube is a prototype distributed system for building innovative user interfaces that use

collaborative augmented reality. It is based on a heterogeneous distributed system based on a

shared scene graph and a 3D interaction toolkit. This architecture allows for the amalgamation

of multiple approaches to user interfaces as needed: augmented reality, projection displays,

ubiquitous computing. The environment is controlled by a two-handed pen-and-pad interface,

the Personal Interaction Panel, which has versatile uses for interacting with the virtual

environment. We also borrow elements from the desktop, such as multi-tasking and multi-

windowing. The resulting software architecture resembles in some ways what could be called

an “augmented reality operating system.” The work presented in this thesis added many

enhancements to the original Studierstube system and presented tools that enable the

construction of a distributed collaborative augmented reality system. The author wants to

stress the point that these tools are not limited to the Studierstube system.

We introduced DIV (distributed Open Inventor), which is the major building block of our

distributed system. It extends the popular 3D graphics toolkit Open Inventor to enable

transparent distribution at the scene graph level. As a by-product this yielded a universal tool

to enable distribution in legacy Open Inventor applications (which were not written with

distribution in mind). It is planned that this tool is made available to the public under the

LGPL (Lesser Gnu Public License). The integrated network layer supports only a simple

reliable multicast transmission technique, which may not be suitable for all future needs. To

overcome this issue one needs to replace the network layer with an appropriate solution.

We find that the most important enhancement of our system through the addition of

application nodes and associated migration tools is the ability to execute complex and

experimental distributed user interfaces in a heterogeneous distributed system with little

effort.

As observed by Tsao and Lumsden (1997), in order to be successful for everyday productivity

work situations, virtual environment systems must allow “multi-tasking” and “multi-context”

operation. By “multi-tasking” they mean that the virtual environment can be re-configured to

execute a particular application, i. e., there is a separation of VR system software and

application software. Multi-context operation goes beyond that by allowing multiple

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 91 -

applications to execute concurrently rather than sequentially. They also point out that this

resembles a development earlier experienced for 2D user interfaces, which evolved from

single-application text consoles to multi-application windowing systems. It is no surprise that

by “judicious borrowing”, many useful results from 2D user interfaces become applicable to

3D, as is evident with Studierstube’s PIP, 3D-windows, or 3D event system.

Our framework is a user interface that uses collaborative augmented reality to bridge multiple

user interface dimensions: Multiple users, contexts, and locales as well as applications, 3D-

windows, hosts, display platforms, and operating systems. This architecture allows to

combine multiple approaches to user interfaces as needed, so that it becomes easy to create a

3D work environment, which can be personalized, but also lends itself to computer supported

cooperative work.

With our approach, we can cater for new system requirements (e. g., to support more users or

displays) through the addition of a new workstation that seamlessly fits into the already

existing pool. Using an appropriate load balancing policy that uses the mechanisms presented

in this thesis, we can accommodate a large variety of system requirements from a limited

hardware pool. While we do not claim unbound scalability, we found our system design very

useful for the small group collaboration we are investigating.

8.1 Discussion

The CRYSTAL system from (Tsao & Lumsden, 1997) presents the use of “multi-tasking” and

“multi-context” operations in a virtual environment system. It does not incorporate true multi-

user operation, and consequently has no need for multiple locales. Figure 34 extends the

taxonomy from CRYSTAL. For example, MIT’s mediaBlocks (Ullmer et al., 1998) allow a

user to work with different manipulators, which are dedicated devices for specific

applications, and the mediaBlocks themselves are a very elegant embedding for context data.

However, although principally possible, no multi-user scenarios were demonstrated.

In contrast, SPLINE (Barrus et al., 1996) is designed towards multi-user interaction. While

SPLINE completely immerses a user in a purely virtual world and thus does not meet our

definition of a work environment, it features multiple locales that correspond to activities (for

example, chat takes place in a street café, while train rides take place on a train).

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 92 -

The closest relative to our work is Columbia’s EMMIE (Butz et al., 1999). Except for explicit

support of locales, EMMIE shares many basic intentions with our research, in particular

concurrent use of heterogeneous media in a collaborative work environment. Like ourselves,

the authors of EMMIE believe that future user interfaces will require a broader design

approach integrating multiple user interface dimensions before a successor to the desktop

metaphor can emerge.

Figure 34: Extended taxonomy for multiple dimensions of user interfaces with some related
work (adapted from CRYSTAL). In the original taxonomy, multi-tasking and multi-context were

considered separately, which is not necessary. Instead, handling of multiple locales is
considered.

The presented ideas are generally useable and are in no way limited to the Studierstube

platform. The presented approaches to bridge multiple user interface dimensions could be

utilized in AR and VR systems to build more general solutions for everyday work

environments. The distributed shared scene graph approach (implemented as DIV), which is

based on the OIV toolkit is able to transparently turn legacy OIV applications (which were

written with no distribution in mind) into distributed ones. Furthermore, the presented

technique is not limited to scene graphs. It can be applied to different hierarchical data

structures. For example to share and dynamically update distributed HTML pages. Another

application could be to use this technique to enable transparent distribution of XML based

applications. It would ease distribution of applications and eliminate common mistakes.

Because XML is often used as a scripting language to configure a system, it could then be

used to transparently synchronize several configuration files in a distributed system.

MediaBlocks

EMMIE

Studierstube
SPLINE

CRYSTAL

Multi-user +
multi-host

Multi-task +
multi-context

Multi-locale

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 93 -

The migration and load-balancing approaches are very powerful tools to enhance the

scalability of systems. One example that comes to mind is the combined usage of some of the

presented approaches (DIV, migration tools, load-balancing) to build a CAVE system with

several PC workstations. This would yield a scaleable CAVE system in a lower price range.

Note that PC workstations are very powerful commodity items, but unlike expensive high-end

systems such as SGI Onyx2, they are usually not very scalable.

Future work will use application migration in the context of mobile AR: Users may enter or

leave Studierstube sessions at any time with their mobile AR equipment, or meet for

instantaneous collaboration. A leaving user takes (copies of?) running applications onto the

road, and a new user may share running applications with others.

And always remember: “Avatars do it in cyberspace”.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 94 -

9 References

(Abrams et al., 1998) Abrams H., Watsen K., Zyda M. Three Tiered Interest

Management for Large-Scale Virtual Environments, Proceedings of VRST '98, Taipei,

Taiwan, November 1998.

(Agrawala et al., 1997) Agrawala M., Beers A., Fröhlich B., McDowall I., Hanrahan

P., Bolas M. The Two-User Responsive Workbench: Support for Collaboration

Through Individual Views of a Shared Space, Proc. SIGGRAPH ‘97, pp. 327-332,

1997.

(Barrus et al., 1996) Barrus, J., R. Waters, R. Anderson. Locales and Beacons: Precise

and Efficient Support for Large Multi-User Virtual Environments. Proc. VRAIS ‘96,

pp. 204-213, 1996.

(Ben-Natan, 1995) Ben-Natan, R. CORBA: A Guide to the Common Object Request

Broker Architecture, McGraw Hill, 1995.

(Billinghurst et al., 1998a) Billinghurst M., Bowskill J., Jessop M., Morphett J. A

Wearable Spatial Conferencing Space, Proc. ISWC ‘98, pp. 76-83, 1998.

(Billinghurst et al., 1998b) Billinghurst M., Weghorst S., Furness III T.: Shared Space:

An Augmented Reality Approach for Computer Supported Collaborative Work,

Virtual Reality: Virtual Reality - Systems, Development and Applications, 3(1), pp.

25-36, 1998.

(Birman, 1993) Birman, K. The process group approach to reliable distributed

computing. Communications of the ACM, 36(12):37-53, December 1993.

(Birrel et al., 1993) Birrell, A., Nelson, G., Owicki, S., and Wobber, E. Network

objects. In Proc. 14th ACM Symp. on Operating Systems Principles, 1993.

(Blau et al., 1992) Blau, B., Hughes, C. E., Moshell, M. J., and Lisle, C. Networked

virtual environments. In Proc. 1992 ACM Symp. on Interactive 3D Graphics, pp. 157–

164, 1992.

(Bricken & Coco, 1994) Bricken, W, Coco, G. The VEOS project. Presence:

Teleoperators and Virtual Environments, 3(2):111–129, 1994.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 95 -

(Broll, 1998) Broll W. DWTP: An Internet Protocol for Shared Virtual Environments.

Proc. of the 3rd ACM Symposium onVirtual Reality Modeling Language (VRML ’98),

pp. 49-56, February 1998.

(Bryson, 1993) S. Bryson. The Virtual Wind Tunnel. SIGGRAPH ‘93 Course, No. 43,

pp. 2.1-2.10

(Butz et al., 1998) Butz A., C. Beshers, S. Feiner. Of Vampire Mirrors and Privacy

Lamps: Privacy Management in Multi-User Augmented Environments, Proc. ACM

UIST ‘98, pp. 171-172, Nov. 1998.

(Butz et al., 1999) Butz A., Höllerer T., Feiner S., MacIntyre B., Beshers C..

Enveloping Computers and Users in a Collaborative 3D Augmented Reality, Proc.

IWAR ‘99, pp. 1999.

(Carlsson & Hagsand, 1993) Carlsson, C., and Hagsand, O. DIVE – A platform for

multi-user virtual environments. Computers & Graphics 17(6):663-669, 1993.

(Cruz-Neira et al., 1993) Cruz-Neira C., Sandin D. J., DeFanti T. A. Surround-Screen

Projection-Based Virtual Reality: The Design and Implementation of the CAVE. In

Proceedings of SIGGRAPH `93, pp. 135-142, 1993.

(Das et al., 1997) Das, T. K., Singh, G., Mitchell, A., Kumar, P. S., McGhee, K.

NetEffect: A Network Architecture for Large-Scale Multi-User Virtual Worlds. In

Proc. of the ACM Symposium on Virtual Reality Software and Technology

(VRST’97), 157-164, 1997.

(Encarnação et al., 1999) L. M. Encarnação, A. Stork, D. Schmalstieg, O. Bimber. The

Virtual Table – A Future CAD Workspace. Proceedings of the 1999 CTS (Autofact)

Conference, Detroit MI, Sept. 1999.

(Feiner & Beshers, 1990) Feiner S., C. Beshers. Worlds Within Worlds: Metaphors for

Exploring N-Dimensional Virtual Worlds, Proc. UIST '90, pp. 76-83, 1990.

(Frecon & Stenius, 1998) Frécon, E, and Stenius M. DIVE: A Scaleable network

architecture for distributed virtual environments. Distributed Systems Engineering

Journal (special issue on Distributed Virtual Environments), 5(3), 91-100, Sept. 1998.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 96 -

(Funkhouser, 1995) Funkhouser, T. RING: A Client-Server System for Multi-User

Virtual Environments. 1995 Symposium on Interactive 3D Graphics, 85- 92, April

1995.

(Gelernter, 1992) Gelernter, D. Mirror worlds. Oxford University Press, 1992.

(Goldberg & Robson, 1983) Goldberg A., D. Robson. Smalltalk-80: The language and

its implementation. Addison-Wesley, Reading MA, 1983.

(Greenhalgh & Benford, 1995) Greenhalgh C., Benford, S. Virtual reality tele-

conferencing: Implementation and experience. In Proc. of the Third European

Conference on Computer Supported Cooperative Work (ECSCW ’95), Stockholm,

1995.

(Grimsdale, 1991) Grimsdale, C.: dVS Distributed Virtual Environment System.

Computer Animation, virtual reality, Visualisation 1991; Blenheim Online, Pinner,

Middlesex, pp.163-170, 1991.

(Hartling et al., 2001) Hartling P., Just C., Cruz-Neira, C. Distributed Virtual Reality

Using Octopus. Proc. of IEEE Virtual Reality 2001, pp. 53-62, March 13-17,

Yokohama, Japan, 2001.

(Hesina et al., 1999) Hesina G., D. Schmalstieg, A. Fuhrmann, W. Purgathofer.

Distributed Open Inventor: A Practical Approach to Distributed 3D Graphics. Proc.

VRST ‘99, London, pp. 74-81, Dec. 1999.

(Höllerer et al., 1999) Höllerer T., S. Feiner, T. Terauchi, G. Rashid, D. Hallaway.

Exploring MARS: Developing indoor and outdoor user interfaces to a mobile

augmented reality system, Computers & Graphics, 23(6), pp. 779-785, 1999.

(IEEE, 1993) IEEE standard for information technology – protocols for distributed

simulation applications: Entity information and interaction. IEEE standard 1278-1993.

New York: IEEE Computer Society, 1993.

(Ishii and Ullmer, 1997) Ishii H., Ullmer B. Tangible Bits: Towards Seamless

Interfaces between People, Bits and Atoms, Proc. CHI ‘97, pp. 234-241, 1997.

(Kazman, 1993) Kazman R. Making WAVES: On the design of architectures for low

end distributed virtual environments. In Proc. IEEE VRAIS ’93, pp. 443–449.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 97 -

(Krüger et al., 1995) W. Krüger, C. Bohn, B. Fröhlich, H. Schüth, W. Strauss, and G.

Wesche. The Responsive Workbench: A Virtual Work Environment. IEEE Computer,

28(7):42-48, 1995.

(Lea et al., 1997) Lea R., Y. Honda, K. Matsuda, S. Matsuda. Community Place:

Architecture and Performance. Proceedings of ACM VRML’97, pp. 41-50, 1997.

(Levelt et al., 1992) Levelt, W. G., Kaashoek, M. F., Bal H. E., and Tanenbaum, A. S.

A Comparison of Two Paradigms for Distributed Shared Memory. Software - Practice

and Experience, 22(11), 985-1010, Nov. 1992.

(Macedonia et al., 1995) Macedonia M.R., Zyda M.J., Pratt D.R., Brutzman D.P., and

Barham P.T.: Exploiting Reality with Multicast Groups - A Network Architecture for

Large Scale Virtual Environments. Proceedings of the IEEE Virtual Reality Annual

International Symposium (VRAIS'95), 1995.

(MacIntyre & Feiner, 1998) MacIntyre, B., and Feiner, S. A Distributed 3D Graphics

Library. SIGGRAPH 98 Conference Proceedings, Annual Conference Series, 361-370,

1998.

(Mann, 1997) Mann S. Smart Clothing: The Wearable Computer and WearCam,

Personal Technologies, 1(1), Springer-Verlag, March 1997.

(Miller & Thorpe, 1995) Miller D., Thorpe J. A. SIMNET: The advent of simulator

networking. In Proc. of the IEEE 83(8):1114-1123, August 1995.

(Mine et al., 1997) M. Mine, F. Brooks Jr., C. Sequin. Moving Objects in Space:

Exploiting Proprioception In Virtual-Environment Interaction. Proc. SIGGRAPH ’97,

pp. 19-26, 1997.

(Obeysekare et al., 1996) U. Obeysekare et al.: Virtual Workbench - A Non-Immersive

Virtual Environment for Visualizing and Interacting with 3D Objects for Scientific

Visualization. Proceedings of Visualization `96, pp. 345-350, 1996.

(Oliveira et al., 1999) Oliveira M., Crowcroft J., Brutzman D., Slater M. Components

for Distributed Virtual Environments, Proc. VRST ‘99, London, pp., Dec. 1999.

(Origin, 1997) Origin. Ultima Online, online computer game, 1997. URL:

http://www.owo.com/.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 98 -

(Pang & Wittenbrink, 1997) Pang, A., and Wittenbrink, C. Collaborative 3D

Visualization with CSpray. IEEE Computer Graphics & Applications, 17(2), 32-41,

1997.

(Pandzic et al., 1995) Pandzic, I., Çapin, T., Magnenat Thalmann, N., Thalmann, D.

VLNET: A Networked Multimedia 3D Environment with Virtual Humans. Proc.

Multi-Media Modeling MMM `95, Singapore, pp.21-32, November 1995.

(Pausch et al., 1995) Pausch R., T. Burnette, D. Brockway, M. Weiblen. Navigation

and Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures, Proc.

SIGGRAPH ’95, pp. 399-401, 1995.

(Pope, 1989) Pope A. The SIMNET network and protocols. Technical Report 7102.

Cambridge, MA: BBN Systems and Technologies, July 1989.

(Rekimoto, 1997) Rekimoto J. Pick-and-Drop: A Direct Manipulation Technique for

Multiple Computer Environments, Proc. UIST ‘97, pp. 31-39, 1997.

(Rekimoto, 1998) Rekimoto J. A Multiple Device Approach for Supporting

Whiteboard-based Interactions, Proc. CHI ‘98, pp. 344-351, 1998.

(Rohlf & Helman) Rohlf, J., and Helman, J. IRIS Performer: A High Performance

Multiprocessing Toolkit for Real-Time 3D Graphics. In Proc. ACM SIGGRAPH ‘94,

381-394, 1994.

(Rubin & Brain, 1999) Rubin, W., and Brain, M. Understanding DCOM. Prentice Hall

PTR, 1999, ISBN 0-13-095966-9.

(Scheifler & Gettys, 1983) Scheifler R. W., Gettys J. The X window system. ACM

Transactions on Graphics, 16(8):57-69, August 1983.

(Schmalstieg et al., 1996) Schmalstieg D., A. Fuhrmann, Zs. Szalavári, M. Gervautz.

Studierstube - Collaborative Augmented Reality, Proc. Collaborative Virtual

Environments ‘96, Nottingham, UK, Sep. 1996.

(Schmalstieg et al., 1999) Schmalstieg D., L. M. Encarnação, Zs. Szalavári. Using

Transparent Props For Interaction With The Virtual Table, Proc. SIGGRAPH

Symposium on Interactive 3D Graphics ‘99, pp. 147-154, Atlanta, GI, April 1999.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 99 -

(Schmalstieg et al., 2000) Schmalstieg D., Fuhrmann A., Hesina G., Szalavári Zs.,

Encarnação L. M., Gervautz M., Purgathofer W.: The Studierstube Augmented

Reality Project. To appear in: "Augmented Reality: The Interface is Everywhere",

SIGGRAPH 2001 Course Notes, Los Angeles CA, USA, ACM Press, August 2001.

Available as technical report TR-186-2-00-22 (ftp://ftp.cg.tuwien.ac.at/pub/TR/00/TR-

186-2-00-18Paper.pdf), Vienna University of Technology, December 2000.

(Shaw et al., 1993) Shaw, C., Green, M., Liang, J., and Sun, Y. Decoupled Simulation

in Virtual Reality with the MR Toolkit. ACM Transactions on Information Systems,

11(3):287-317, 1993.

(Shaw & Green, 1993) Shaw, C., and Green, M. The MR Toolkit peers package and

experiment. In Proc. of VRAIS ‘93, 463-469, 1993.

(Singh et al., 1995) Singh G., Serra L., Png W., Wong A., Ng H. BrickNet: Sharing

Object Behaviors on the Net. In Proc. IEEE VRAIS ’95, pp. 19–25, 1995.

(Singhal and Zyda, 1999) Singhal S., Zyda M. Networked Virtual Environments,

Addison-Wesley, New York, NY, 1999. ISBN: 0201325578

(Smith and Mariani, 1997) Smith G., J. Mariani. Using Subjective Views to Enhance

3D Applications, Proc. VRST ‘97, pp. 139-146, New York, NY, Sep. 1997.

(Snowdon & West, 1994) Snowdon, D., and West, A. AVIARY: Design Issues for

Future Large-Scale Virtual Environments. Presence, 3(4), 288-308, 1994.

(Sony, 1999) Sony Corporation. Everquest, online computer game, 1999. URL:

http://www.everquest.com/.

(Steed et al., 1999) Steed, A., Frecon, E., Avatare, A., Pemberton, D., Smith, G. The

London Travel Demonstrator. Proc. VRST ‘99, London, pp. 50-57, Dec. 1999.

(Strauss & Carey, 1992) Strauss, P. S., and Carey, R. An Object-Oriented 3D Graphics

Toolkit, In Computer Graphics (Proc. ACM SIGGRAPH ‘92), 341-349, Aug, 1992.

(Sun, 1998) Sun Microsystems. Java Remote Method Invocation - Distributed

Computing for Java. March 1998. URL:

http://java.sun.com/marketing/collateral/javarmi.html.

ftp://ftp.cg.tuwien.ac.at/pub/TR/00/TR-186-2-00-22Paper.pdf

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 100 -

(Sun, 1988) Sun Microsystems. Remote Procedure Call Protocol Specification.

Network Working Group RFC1050, April 1988.

(Szalavári & Gervautz, 1997) Szalavári Zs., M. Gervautz. The Personal Interaction

Panel - A Two-Handed Interface for Augmented Reality, Computer Graphics Forum,

16(3), pp. 335-346, Sep. 1997.

(Szalavári et al., 1998a) Szalavári, Z., Eckstein, E., and Gervautz, M. Collaborative

Gaming in Augmented Reality. Proceedings of VRST’ 98, 195-204, Taipei, Taiwan,

Nov. 2-5, 1998.

(Szalavári et al., 1998b) Szalavári Zs., A. Fuhrmann, D. Schmalstieg, M. Gervautz.

Studierstube - An Environment for Collaboration in Augmented Reality, Virtual

Reality - Systems, Development and Applications, 3(1), pp. 37-49, 1998.

(Tramberend, 1999) Tramberend, H. Avango: A Distributed Virtual Reality. IEEE

Virtual Reality, 1999. [Avocado is now known as Avango]

(Tsao & Lumsden, 1997) Tsao J., C. Lumsden. CRYSTAL: Building Multicontext

Virtual Environments, Presence, 6(1), pp. 57-72, 1997.

(Ullmer et al., 1998) Ullmer B., Ishii H., Glas D. mediaBlocks: Physical Containers,

Transports, and Controls for Online Media, Proc. SIGGRAPH ‘98, pp. 379-386, July

1998.

(Waters et al., 1997) Waters, R., Anderson, D., Barrus, J., Brogan, D., Casey, M.,

McKeown, S., Nitta, T., Sterns, I., and Yerazunis, W. Diamond Park and Spline:

Social Virtual Reality with 3D Animation, Spoken Interaction and Runtime

Extendability. Presence, 6(4), 461-481, 1997.

(Watsen & Zyda, 1998) Watsen K. and Zyda M., Bamboo - A Portable System for

Dynamically Extensible, Real-Time, Virtual Environments, Proceedings of the 1998

Virtual Reality Annual International Symposium (VRAIS '98), IEEE, Atlanta, GA,

March 1998.

(Weiser, 1991) Weiser M. The Computer for the twenty-first century. Scientific

American, pp. 94-104, 1991.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 101 -

(Wloka & Greenfield, 1995) M. Wloka, E. Greenfield: The Virtual Tricoder: A

Uniform Interface for Virtual Reality. Proceedings of ACM UIST'95, pp. 39-40, 1995.

(Zeleznik et al., 2000) Zeleznik, B., Holden., L., Capps, M., Abrams, H., and Miller,

T. Scene-Graph-As-Bus: Collaboration between Heterogeneous Stand-alone 3-D

Graphical Applications. Eurographics 2000, August 2000

(Zyda et al., 1992) Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P.

NPSNET: Constructing a 3D Virtual World. In Proc. 1992 ACM Symposium on 3D

Graphics, 147-156, March 1992.

DISTRIBUTED COLLABORATIVE AUGMENTED REALITY

- 102 -

10 Appendix

Curriculum Vitae
Gerd Hesina

Göttschach 56

A-2632 Grafenbach

AUSTRIA

hesina@cg.tuwien.ac.at

1974 Born on the 29th of June in Vienna, Austria

1980-1984 Primary School at Volksschule, 1110 Vienna, Molitorgasse 11

1984-1986 Secondary School at BRG 11, 1110 Vienna, Gottschalkgasse 21

1986-1988 Secondary School at BRG Neunkirchen, 2620 Neunkirchen

1988-1993 Department of Engineering and Electronics at HTL Wiener Neustadt

June 1993 Graduation from HTL Wiener Neustadt

1989-1993 Worked as freelance programmer

October 1993 Begin of studies at the Technical University of Vienna, major field

computer science

1996 Started working on diploma thesis:

“A Network Library for Multi-User Virtual Environments”

1997 Finished thesis

June 1997 Degree: Diplom-Ingenieur der Informatik (scM)

October 1997 Started working on ph.D. thesis (“Distributed Collaborative Augmented

Reality”) as research assistant at the Institute of Computer Graphics at the

Vienna University of Technology

May 2001 Finished thesis

	1	INTRODUCTION	8
	Structure of the Thesis
	Related Work
	Fundamentals of networking for virtual environemnts
	Distributed systems examples
	Discussion

	Shared Scene Graphs
	Collaborative Augmented Reality

	Studierstube Overview
	Background
	Distributed Studierstube
	Distributed shared scene graph
	Runtime extension through application objects
	Contexts in Studierstube

	Summary

	Distributed Open Inventor
	Introduction
	Distributed shared scene graph
	Motivation and overview
	Communication path for interactive graphics applications

	Replicated scene graph protocol
	Local variations
	Networking
	Application in our Augmented Reality environment
	Implementation
	Software architecture
	Lazy naming
	Usage example

	Results
	Distributed Open Inventor, Version 2
	Summary

	Bridging Multiple User Interfaces with Augmented Reality
	Introduction
	Multiple users
	Multiple contexts
	Multiple locales
	Interaction design
	3D-windows
	Contexts and sharing
	Subjective views
	Multiple locales

	Implementation
	System overview
	3D-windows
	PIP sheets
	Distributed execution
	Application programmer’s interface

	Results
	Heterogeneous displays
	Symmetric workspace
	Remote collaboration

	Summary

	Context Migration
	Introduction
	Contexts and Migration
	Activation Migration
	Application migration
	Usage of migration
	Load balancing
	Late joining
	Early exit
	Ubiquitous computing
	Remote collaboration

	Results
	Activation migration
	Locales
	Application streaming

	Summary

	Conclusions and Future Work
	Discussion

	References
	Appendix

