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Abstract

The size of volumetric datasets used in medical environments is increasing

at a rapid pace. Due to excessive pre-computation and memory demand-

ing data structures, most current approaches for volume visualization do not

meet the requirements of daily clinical routine. In this diploma thesis, an

approach for interactive high-quality rendering of large medical data is pre-

sented. It is based on image-order raycasting with object-order data traver-

sal, using an optimized cache coherent memory layout. New techniques and

parallelization strategies for direct volume rendering of large data on com-

modity hardware are presented. By using new memory efficient accelera-

tion data structures, high-quality direct volume rendering of several hundred

megabyte sized datasets at sub-second frame rates on a commodity notebook

is achieved.

Kurzfassung

Die Größe von in der Medizin verwendeten Volumensdatensätzen nimmt ra-

pide zu. Doch, aufgrund von exzessiver Vorberechnung und speicherintensi-

ven Datenstrukturen, sind viele Visualisierungstechniken solchen Datenmen-

gen nicht gewachsen. Im Rahmen dieser Diplomarbeit wird eine Methode

präsentiert, die die direkte Volumsvisualisierung von großen Datensätzen auf

Standardhardware ermöglicht. Der Ansatz basiert auf einem hochqualitati-

ven Image-Order-Algorithmus mit Object-Order-Datenverarbeitung, der ein

optimiertes Cache kohärentes Speicherlayout einsetzt. Des weiteren werden

neue Techniken und Strategien zur Parallelisierung auf Standardhardware

präsentiert. Durch den Einsatz von neuen speicheroptimierten Beschleuni-

gungsdatenstrukturen, werden für Datensätze einer Größe von vielen hundert

Megabyte Darstellungsraten von mehreren Bilden pro Sekunde auf einem

Standard-Notebook erreicht.
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Chapter 1

Introduction

The beginning of knowledge is

the discovery of something we

do not understand.

Frank Herbert

Visualization is the process of transforming information into a visual form,

enabling users to observe the information. The resulting visual display en-

ables the scientist or engineer to perceive visually features which are hidden

in the data but nevertheless are needed for data exploration and analysis [8].

On the computer science side, it uses techniques of computer graphics

and imaging. On the human side, perceptual and cognitive capabilities of

the viewer determine the conditions the process needs to take into account.

Successful visualization can reduce the time it takes to understand the under-

lying data, to perceive relationships, and to extract significant information.

Scientific visualization is a tool that enables scientists to analyze, under-

stand, and communicate the numerical data generated by scientific research.

In recent years, humans have been collecting data at a rate beyond what can

be studied and comprehended. Scientific visualization uses computer graph-

ics to process numerical data into two- and three-dimensional visual images.

This visualization process includes gathering, processing, displaying, analyz-

ing, and interpreting data. It is revolutionizing the way scientists do science

1



CHAPTER 1. INTRODUCTION 2

as well as changing the way people deal with large amounts of information.

Volume visualization is a field within scientific visualization, which is

concerned with volume data. Volume data are 3D entities that may have

information inside them, might not consist of surfaces and edges, or might

be too voluminous to be represented geometrically. Volume visualization is

a method of extracting meaningful information from volumetric data using

interactive graphics and imaging, and it is concerned with volume data rep-

resentation, modeling, manipulation, and rendering. Volume datasets are

obtained by sampling, simulation, or modeling techniques. For example, a

sequence of 2D slices obtained from Computed Tomography (CT) or Mag-

netic Resonance Imaging (MRI) is three-dimensionally reconstructed into a

volume model and visualized for diagnostic purposes, planning of treatment,

or surgery. The same technology is often used for non-destructive inspec-

tion of composite materials or mechanical parts. Similarly, confocal micro-

scopes produce data which is visualized to study the morphology of biological

structures. In many computational fields, such as in computational fluid dy-

namics, the results of simulation typically running on a supercomputer are

often visualized as volume data for analysis and verification. Recently, many

traditional geometric computer graphics applications, such as CAD and sim-

ulation, have been exploiting the advantages of volume techniques called

volume graphics for modeling, manipulation, and visualization.

Over the years many techniques have been developed to visualize volu-

metric data. Since methods for displaying geometric primitives were already

well-established, most of the early methods involve approximating a surface

contained within the data using geometric primitives. Common methods in-

clude contour tracking [13], opaque cubes [12], marching cubes [27], marching

tetrahedra [48], dividing cubes [3], and others. These algorithms fit geometric

primitives, such as polygons or patches, to constant-value contour surfaces

in volumetric datasets. After extracting this intermediate representation,

hardware-accelerated rendering can be used to display the surface primi-

tives. In general, these methods require to make a decision for every data

sample whether or not the surface passes through it. This can produce false

positives (spurious surfaces) or false negatives (erroneous holes in surfaces),
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(a) (b)

Figure 1.1: Comparison of surface and volume rendering. (a) traditional
surface representation of a volumetric dataset. (b) direct volume rendering
of the same dataset.

particularly in the presence of small or poorly defined features. As informa-

tion about the interior of objects is generally not retained, a basic drawback

of these methods is that one dimension of information is essentially lost.

In response to this, direct volume rendering techniques were developed

that attempt to capture the entire 3D data in a single 2D image. Volume ren-

dering techniques convey more information than surface rendering methods,

but at the cost of increased algorithm complexity, and consequently increased

rendering times. To improve interactivity in volume rendering, many opti-

mization methods as well as special-purpose volume rendering hardware have

been developed. Direct volume rendering algorithms include approaches such

as raycasting [24], splatting [56], and shear-warp [20]. Instead of extracting

an intermediate representation, volume rendering provides a method for di-

rectly displaying the volumetric data. The original samples are projected

onto the image plane in a process which interprets the data as an amorphous

cloud of particles. It is thus possible to simultaneously visualize informa-

tion about surfaces and interior structures without making any assumptions

about the underlying structure of the data. Volume rendering comprises

more information in a single image than traditional surface representations
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(see Figure 1.1), and is thus a valuable tool for the exploration and analysis

of data. However, due to the increased computational effort required and

the enormous size of volumetric datasets, the ongoing challenge of research

in volume rendering is to achieve fully interactive performance.

This diploma thesis presents new methods and extensions to existing

techniques for interactive direct volume rendering of large medical data. A

high-quality volume visualization system has been developed which is ca-

pable of interactively handling large datasets on commodity hardware. An

overview of algorithms for volume rendering is given in Chapter 2. In Chap-

ter 3, we propose several techniques to enable the handling of large datasets,

which are combined in a single framework to form a high-performance vol-

ume rendering algorithm. We discuss an alternative storage scheme that

can significantly improve the cache behavior of a volume rendering algo-

rithm. Furthermore, we present parallelization strategies which are well-

suited for commodity hardware, and introduce memory efficient acceleration

data structures. Chapter 4 focuses on the concepts used in the implemen-

tation of our algorithm. In Chapter 5, the performance of our techniques is

discussed and our results are presented. Finally, in Chapter 6, the contents

of this diploma thesis is summarized.



Chapter 2

State of the Art in Volume

Rendering

Art is making something out

of nothing and selling it.

Frank Zappa

This chapter will give a brief scientific background about volume ren-

dering techniques in general. We start by introducing a common optical

model and then discuss several algorithms and optimizations that have been

proposed.

2.1 Optical Model for Volume Rendering

Optical models for direct volume rendering view the volume as a cloud of

particles [30]. Light from a source can either be scattered or absorbed by

particles. In practice, models that take into account all the phenomena tend

to be very complicated. Therefore, practical models use several simplifica-

tions. A common approximation for the volume rendering integral is given

by [32]:

5
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Iλ(x, r) =
∫ L

0
Cλ(s)µ(s)e−

∫ s

0
µ(t)dtds (2.1)

Hereby, Iλ is the amount of light of wavelength λ coming from a ray

direction r that is received at location x on the image plane. L is the length

of the ray r and µ is the density of volume particles which receive light

from the light sources and reflect it towards the observer according to their

material properties. Cλ is the light of wavelength λ reflected and/or emitted

at location s in the direction of r. The equation takes into account emission

and absorbtion effects, but discards more advanced effects such as scattering

and shadows.

In general, Equation 2.1 cannot be computed analytically. Hence, most

volume rendering algorithms use a numeric solution of the equation. This

results in the common compositing equation:

Iλ(x, r) =
L/∆s
∑

i=0

Cλ(si)α(si) ·
i−1∏

j=0

(1 − α(sj)) (2.2)

Here α(si) are the opacity samples along a ray and Cλ(si) are the local

color values derived from the illumination model. C and α are referred to as

transfer functions. These functions assign color and opacity to each intensity

value in the volume.

2.2 Volume Rendering Techniques

In general, a volumetric dataset consists of samples arranged on a regular

grid. These samples are also referred to as voxels. While most volume ren-

dering techniques are based on the theoretical framework presented in Sec-

tion 2.1, several different techniques implementing this optical model have

emerged. In the following, we use a taxonomy based on the processing order

of the data. We distinguish between image-order, object-order, and hybrid-

order. Image-order methods start from the pixels on the image plane and

compute the contribution of the appropriate voxels to these pixels. Object-

order techniques traverse the voxels and compute what their contribution to
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the image is. Hybrid-order methods try to combine both approaches. Tech-

niques based on the texture mapping capabilities of the graphics hardware

as well as dedicated volume rendering hardware solutions are each discussed

in a separate section.

2.2.1 Image-Order Volume Rendering

The image-order approach to volume rendering determines, for each pixel on

the image plane, the data samples which contribute to it. Raycasting [24]

is an image-order algorithm that casts viewing rays through the volume.

At discrete intervals along the ray, the three-dimensional function is recon-

structed from the samples and the optical model is evaluated. This process is

illustrated in Figure 2.1. As the accumulation is performed in front-to-back

order, viewing rays that have accumulated full opacity can be terminated.

This very effectively avoids processing of occluded regions and is one of the

main advantages of raycasting. One challenge in raycasting is the efficient

skipping of non-contributing regions (i.e., regions that have been classified as

transparent). As typical medical datasets commonly contain a large number

of such voxels, this has a major performance impact.

Numerous approaches for improving the performance of raycasting have

been presented. Most of them rely on one or more of the following principles:

Image-Space Coherency

There is high coherency between pixels in image space, i.e., it is highly prob-

able that between two pixels having identical or similar color we will find

another pixel having the same (or similar) color. This observation is ex-

ploited by adaptive refinement [26]. The method works by initially casting

rays only from a subset of screen pixels. ”Empty”pixels residing between

pixels with similar values are assigned an interpolated value.

Object-Space Coherency

Datasets contain regions having uniform or similar values. One way to in-

crease the performance of raycasting therefore is to avoid sampling within
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image plane

resample

locations

viewing ray
volume

Figure 2.1: Illustration of raycasting. A ray starting at an image pixel is cast
through the volume, evaluating the optical model at each resample location.

these regions. In an approach by van Walsum et al. [53] a ray starts sampling

the volume at low frequency (i.e., large spacing between sample points). If

a large value difference is encountered between two adjacent samples, addi-

tional samples are taken. This idea can be extended to lower the sample rate

in regions where only small contributions of opacity are made.

Inter-Ray Coherency

For orthographic viewing the increased coherency between rays can be ex-

ploited. All rays, although having different origin, have the same slope. To

avoid computations involved in advancing the ray through voxel space, the

idea of template-based raycasting has been presented [57]. The sample points

encountered by a ray are pre-computed and stored in a template. All rays

can then be generated by applying the ray template.

Inter-Frame Coherency

In interactive viewing the differences between subsequent frames are usually

small. The C-Buffer approach [58] works by storing, at each pixel location,
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the object-space coordinates of the first non-empty voxel hit by the corre-

sponding ray. This information is used to estimate the initial position of a

ray in the consecutive frame. For each change of viewing parameters, the

C-Buffer is transformed accordingly. In the case of rotation, a transformed

buffer goes through a process of eliminating coordinates that might have

become hidden.

Empty Space Skipping

As datasets usually contain large regions which are classified as transparent,

several methods have been suggested to rapidly traverse empty space. Levoy

presented an approach called hierarchical spatial enumeration [25]. The al-

gorithm first creates a binary pyramid of the volume, which encodes empty

and non-empty space. Raycasting is started at the top level of the pyramid.

Whenever a ray reaches a non-empty cell, the algorithm moves down one

level, entering whichever cell encloses the current location. Otherwise, the

intersection point with the next cell is calculated and the ray is forwarded to

this position. Following this idea, a min-max octree based on the volume’s

data values can be generated. This octree can be used to efficiently create

the pyramid data structure whenever the classification changes. Another ap-

proach is space leaping [4, 50, 6]. Here, a distance transform is applied to the

volume to calculate a ”proximity”or ”skip”value for each empty cell which

encodes the distance to the nearest opaque cell. The value therefore is the

distance that can be safely skipped along any ray that samples this cell. A

drawback of this method is that it requires extensive processing every time

the transfer function is changed.

Efficient Memory Access

For large datasets, memory access has a considerable impact on the overall

processing time of a raycasting algorithm. The most simple memory lay-

out for raycasting is a three-dimensional array. However, using this storage

scheme leads to view-dependent render times, due to changing memory ac-

cess patterns for different viewing directions. This can greatly affect the
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performance for large datasets. Another common storage scheme is brick-

ing [40], where the volume data is stored as sub-cubes (blocks) of a fixed size.

In general, this approach reduces the view dependent performance variations

but does not increase the memory consumption. Law and Yagel have devel-

oped a thrashless raycasting method based on such a memory layout [22]. In

their approach, all resample locations within one block are processed before

the algorithm continues to process the next block. Knittel [17] and Mora et

al. [35] achieved impressive performance by using a spread memory layout.

The main drawback of such an approach is the enormous memory usage. In

both systems, the memory usage is approximately four times the data size.

2.2.2 Object-Order Volume Rendering

In contrast to image-order techniques, object-order methods determine, for

each data sample, how it affects the pixels on the image plane. In its simplest

form, an object-order algorithm loops through the data samples, projecting

each sample onto the image plane. Splatting [56] is a technique that traverses

and projects footprints (known as splats) onto the image plane, (see Figure

2.2). Voxels that have zero opacity, and thus do not contribute to the image,

can be skipped. This is one of the greatest advantages of splatting, as it can

tremendously reduce the amount of data that has to be processed. But there

are also disadvantages: Using pre-integrated kernels introduces inaccuracies

into the compositing process, since the 3D reconstruction kernel is compos-

ited as a whole. This can cause color bleeding artifacts (i.e. the colors of

hidden background objects may ”bleed”into the final image).

To remedy these artifacts, an approach has been developed which sums

voxel kernels within volume slices most parallel to the image plane. How-

ever, this leads to severe brightness variations in interactive viewing. Mueller

et. al. introduced a method which eliminates these drawbacks [36]. Their

approach processes voxel kernels within slabs aligned parallel to the image

plane. All voxel kernels that overlap a slab are clipped to the slab and

summed into a sheet buffer. Once a sheet buffer has received all contri-

butions, it is composited with the current image, and the slicing slab is
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image plane

splat

voxel

volume

Figure 2.2: Illustration of splatting. The optical model is evaluated for each
voxel and projected onto the image plane using a footprint (splat).

advanced forward. Mueller et. al. also presented an acceleration technique

called early splat elimination which allows to skip footprint rasterization for

occluded voxels [37]. However, the projection transformation still has to be

performed for these voxels, hence, this optimization is not as effective as early

ray termination in raycasting.

2.2.3 Hybrid-Order Volume Rendering

Image-order and object-order algorithms have very distinct advantages and

disadvantages. Therefore, some effort has been spent on combining the ad-

vantages of both approaches.

Shear-warp [20] is such an algorithm. It is considered to be the fastest

software-based volume rendering algorithm. It is based on a factorization

of the viewing transformation into a shear and a warp transformation. The

shear transformation has the property that all viewing rays are parallel to

the principal viewing axis in sheared-object-space. This allows volume and

image to be traversed simultaneously. Compositing is performed into an

intermediate image. A two-dimensional warp transformation is then applied
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viewing rays

image

plane

volume

slices

shear

project

warp

Figure 2.3: Illustration of the shear-warp mechanism. The volume slices are
sheared so that all viewing rays are parallel to the major viewing axis. After
the projection process has been performed, the distorted intermediate image
is warped into the final image.

to the intermediate image, producing the final image. This basic mechanism

is illustrated in Figure 2.3.

The aligned traversal is the basis for many optimizations: A runlength-

encoding of the intermediate image allows an efficient early-ray termination

approach. Additionally, runlength-encoding of the volume for each of the

three major viewing axes allows skipping of transparent voxels. Additionally,

an approach for empty space skipping which is based on a min-max octree

has been presented. In contrast to runlength-encoding, this approach allows

fast classification and does not require three copies of the volume.

The problem of shear-warp is the low image quality caused by using

only bilinear interpolation for reconstruction, a varying sample rate which is

dependent on the viewing direction, and the use of pre-classification. Some

of these problems have been solved [51], however, the image quality is still

inferior when compared to other methods, such as raycasting.

2.2.4 Texture Mapping Techniques

With graphics hardware becoming increasingly powerful, researchers have

started to utilize the features of commodity graphics hardware to perform

volume rendering. These approaches exploit the increasing processing power

and flexibility of the Graphics Processing Unit (GPU). Nowadays, GPU-
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Figure 2.4: Volume rendering using 2D textures. For each of the three major
viewing axes, a stack of 2D textures is stored. During rendering the stack
corresponding to the axis most parallel to the current viewing direction is
chosen and rendered in back-to-front order as textured quads using alpha
blending.

Figure 2.5: Volume rendering using 3D textures. The volume is stored as a
single 3D texture. A set of planes parallel to the image plane is rendered in
back-to-front order using alpha blending with appropriately specified texture
coordinates.

accelerated solutions are capable of performing volume rendering at interac-

tive frame rates for medium-sized datasets on commodity hardware.

One method to exploit graphics hardware is based on 2D texture map-

ping [45]. This method stores stacks of slices for each major viewing axis in

memory as two-dimensional textures. The stack most parallel to the current

viewing direction is chosen. These textures are then mapped on object-

aligned proxy geometry which is rendered in back-to-front order using alpha

blending (see Figure 2.4). This approach corresponds to shear-warp factor-

ization and suffers from the same problems, i.e., only bilinear interpolation

within the slices, and varying sampling rates depending on the viewing di-

rection.
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Approaches that use 3D texture mapping [2, 7, 55, 31] upload the whole

volume to the graphics hardware as a three-dimensional texture. The hard-

ware is then used to map this texture onto polygons parallel to the viewing

plane which are rendered in back-to-front order using alpha blending (see

Figure 2.5). 3D texture mapping allows to use trilinear interpolation sup-

ported by the graphics hardware and provides a consistent sampling rate. A

problem of these approaches is the limited amount of video memory. If a

dataset does not fit into this memory, it has to be subdivided. These blocks

are uploaded and rendered separately, making the bus bandwith a bottleneck.

One way to overcome this limitation is the use of compression [11].

The increasing programmability of the graphics hardware has enabled

several researches to apply acceleration techniques to GPU-based volume

rendering [46, 18]. The performance of these approaches, however, is heavily

dependent on the hardware implementation of specific features.

2.2.5 Special-Purpose Hardware

Due to the high computational cost of direct volume rendering, several re-

searchers have proposed special-purpose volume rendering architectures. Most

recent research has focused on accelerators for raycasting of regular datasets.

Several architectures, such as VOGUE [16], VIRIM [10], VIZARD II [33],

and EM-Cube [39], have been proposed. A comprehensive comparison of

these architectures can be found in [44]. The EM-Cube architecture also

served as a basis for the commercially available VolumePro board [41], which

is capable of rendering a 5123 dataset at 30 frames/second.

2.3 Comparison of Volume Rendering Algo-

rithms

A extensive comparison of available algorithms for volume rendering has been

performed by Meißner et al. [32]. While research has progressed since this

study was performed, their basic findings are still valid. They conclude that

the raycasting and splatting yield to similar image quality. The render times
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(a) (b) (c) (d)

Figure 2.6: Comparison of volume rendering algorithms [32]. (a) raycasting.
(b) splatting. (c) shear-warp. (d) 3D texture mapping.

of these methods are very much dependent on the type of dataset and transfer

function. Shear-warp and 3D texture mapping provide high performance, but

at the cost of degraded image quality. Recent work has been able to improve

the quality of texture mapping approaches [5]. Figure 2.6 displays an excerpt

of the result images by Meißner et al.



Chapter 3

Volume Rendering of Large

Datasets

Many a small thing has been

made large by the right kind

of advertising.

Mark Twain

This chapter describes the fundamental components of our volume visu-

alization system. First, we define a set of features that will be supported and

derive the implications of these requirements. We then give an overview of

the volume rendering pipeline. Next, the memory storage and access scheme

that is used, is explained. We then go on to examine our approaches for

parallelization and reconstruction. Finally, we show several optimizations

to increase the performance of the algorithm and present a technique for

increasing interactivity.

3.1 Introduction

When developing a volume visualization system, one must carefully evaluate

the requirements with respect to its applications. These requirements depend

on the type of datasets that will be processed, the desired image quality,

16
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the degree of interactivity, etc. They influence, among others, the type of

algorithm to be chosen and the optimizations that can be integrated.

3.1.1 System Requirements

For our system, be have carefully selected a number of features that we want

to support:

Medical Datasets

The system will be primarily used to visualize medical datasets of anatomic

nature aquired by CT or MRI.

High Quality

The system has to provide high quality. The user should be able to change

the method of reconstruction, gradient estimation, and the sampling interval

at run-time.

Interactive Viewing

The system has to allow interactive modification of viewing parameters. It

must be capable of allowing the user to rotate, zoom and translate the vol-

ume.

Interactive Classification

It has been reported that transfer function design is a non-trivial task, which

cannot easily be automated [14]. It is therefore essential that a volume

rendering system allows fully interactive modification of the transfer function.

Low Memory Consumption

The system has to be capable of handling large datasets (> 5123) on com-

modity hardware. In general, a medical visualization system consists of sev-

eral modules. As these modules all share the same resources, our approach
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should have the lowest possible memory footprint. Even sacrificing some per-

formance, it should rather compute on the fly, than hold large pre-computed

data structures in memory.

Parallelization Support

In order to achieve maximum performance, our system has to be capable

of supporting multiple processors. Additionally, advanced features of the

latest commodity hardware, such as Simultaneous Multithreading, have to

be supported. None of these features, however, must be mandatory. Instead,

the system has to automatically adapt to the given hardware configuration.

Pure Software

While graphics hardware acceleration can be exploited to increase the perfor-

mance of a volume rendering system, certain problems arise when these kind

of algorithms have to run in a heterogenous hardware environment. Sup-

ported features might differ, drivers might be outdated, etc. To avoid these

problems, our system must not rely on any advanced features of the graphics

hardware.

3.1.2 Implications

The requirements listed in the previous section have a number of implica-

tions on the choice of techniques that are useful. As hardware-accelerated

techniques cannot be used, the choice of algorithms is limited to software

algorithms. Shear-warp does not provide sufficient image quality, which ba-

sically reduces the choice to either a splatting or a raycasting approach. It has

been shown that current splatting and raycasting approaches have distinct

advantages and disadvantages. While splatting can efficiently skip empty

space, raycasting performs better for high pixel content [32]. Considering

the fact that the highest performance for splatting can only be reached if

the graphics hardware is exploited for footprint rasterization and that ray-

casting is generally better suited for parallelization, the basic algorithm of

our volume visualization system will be an image-order raycasting approach.
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The kind of datasets which will be primarily used with our system do not

profit from perspective projection. Since orthogonal viewing allows many

optimizations, our system will only support parallel projection. The system

will support voxels of up to 12 bits, as this is the common format for medical

datasets. Due to performance issues, the voxels have to be aligned to byte

boundaries, which leaves 4 bits. These 4 bits will be used to store segmen-

tation information, which allows up to 16 different objects. Gradients will

not be pre-computed and stored in memory, as it is common practice. In-

stead, they will be computed on-the-fly during rendering. Gradients require

a considerable amount of memory. Storing gradients as uncompressed sin-

gle precision floating-point values would require 3 × 4 = 12 bytes additional

memory for every voxel. Even using gradient quantization, still requires at

least 10 to 12 additional bits at each voxel for sufficient quality, which would

double memory usage. Furthermore, using pre-computed gradients does not

allow to quickly change the gradient estimation method at run-time with-

out recomputing gradients for the entire dataset. Since demands for both

high quality and interactive viewing exist, an effective scheme for automatic

adaption is required. During classification and viewing parameter changes,

the system has to transparently adapt rendering parameters to achieve in-

teractive frame rates.

3.2 The Raycasting Pipeline

The goal of raycasting is the (approximate) calculation of the volume render-

ing integral for every viewing ray originating at the image plane and passing

through the volume. This evaluates to advancing rays through the volume

with regular increments ∆s (i.e. the object sample distance) and performing

the following steps at each location:

Reconstruction Reconstruction is the process of constructing a continuous

function from the dataset. This step is necessary, since we want to

sample the data at evenly spaced positions (resample positions) along

each ray.
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Figure 3.1: Four versions of the volume rendering pipeline. Both, classifica-
tion and shading, can be performed before or after reconstruction.

Classification Classification is the process of assigning a color and an opac-

ity to a data value.

Shading We use the term shading for the process of evaluating the illumi-

nation model.

Compositing Compositing determines the contribution of a classified and

shaded sample to the final image.

There are several possibilities in which order these steps can be per-

formed (see Figure 3.1): Both classification and shading can occur before

reconstruction (pre-classification, pre-shading) or after reconstruction (post-

classification, post-shading).

Pre-classification assigns a color and an opacity to the samples before

applying a reconstruction filter. Post-classification, on the other hand, ap-

plies to reconstruction filter to the original sample values and then classifies

the reconstructed function values. Pre- and post-classification will produce

different results, whenever the reconstruction does not commute with the

transfer functions. As the reconstruction is usually non-linear, it will only

commute with the transfer functions if the transfer functions are constant or
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(a) (b)

(c) (d)

Figure 3.2: Comparison of classification and shading orders. (a) pre-
classification and pre-shading. (b) pre-classification and post-shading. (c)
post-classification and pre-shading. (d) post-classification and post-shading.
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identity.

Pre-shading means that the illumination model is evaluated at the grid

points only. Post-shading reconstructs the gradient (and/or other parameters

required for evaluating the illumination model) at every resample location

and then evaluates the illumination model. Again, pre-shading and post-

shading are only equivalent if the lighting model is constant or an identity

function of its parameters.

The loss in image quality caused by pre-classification and pre-shading has

been previously discussed [5]. We have performed a comparison of all four

variants using floating-point precision calculations throughout the pipeline.

As shown in Figure 3.2, pre-classification causes the most severe artifacts.

The differences between pre-shading and post-shading are more subtle, but

still clearly visible. Our approach therefore uses both, post-classification and

post-shading.

The following sections will discuss reconstruction, classification, shading,

and compositing in detail.

3.2.1 Reconstruction

To render images from volume datasets, it is necessary to reconstruct a con-

tinuous function from the data samples. In many cases the first derivative,

or gradient, of this function also has to be reconstructed, e.g. for shading.

Function Reconstruction

A point sample can be represented as a scaled Dirac impulse function. Sam-

pling a signal is equivalent to multiplying it by a grid of impulses, one at each

sample point, as shown in Figure 3.3 [29]. The Fourier transform of a two-

dimensional impulse grid with frequency fx in x and fy in y is itself a grid of

impulses with period fx in x and fy in y. If we call the impulse grid k(x, y)

and the signal g(x, y), then the Fourier transform of the sampled signal, ĝk,

is ĝ ∗ k̂. Since k is an impulse grid, convolving ĝ with k̂ amounts to dupli-

cating ĝ at every point of k̂, producing the spectrum shown at bottom right

in Figure 3.3. The copy of ĝ centered at zero is the primary spectrum, and
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ĝ k̂ kĝĝ =k̂

g k gk

Figure 3.3: Two dimensional sampling in the space and frequency do-
main [29]. In the space domain (top), sampling corresponds to the mul-
tiplication of the original function with an impulse grid. In the frequency
domain (bottom), sampling corresponds to the convolution with an impulse
grid.

the other copies are called alias spectra. If ĝ is zero outside a small enough

region that the alias spectra do not overlap the primary spectrum, then ĝ

can be recovered by multiplying ĝk by a function ĥ which is one inside that

region and zero elsewhere. Such a multiplication is equivalent to convolving

the sampled data gk with h, the inverse transform of ĥ. This convolution

with h allows us to reconstruct the original signal g by removing, or filtering

out, the alias spectra, so we call h a reconstruction filter.

Thus, the goal of reconstruction is to extract the primary spectrum and

to suppress the alias spectra. Since the primary spectrum comprises the

low frequencies, the reconstruction filter is a low-pass filter. It is clear from

Figure 3.3 that the simplest region to which we could limit ĝ is the region

of frequencies that are less than half the sampling frequency along each axis.

We call this limiting frequency the Nyquist frequency and the region the

Nyquist region. An ideal reconstruction filter can then be defined to have

a Fourier transform that has the value one in the Nyquist region and zero

outside it.

Extending the above to three-dimensional signals as used in volume ren-

dering, the sampling grid becomes a three-dimensional lattice and the Nyquist

region a cube. Given this Nyquist region, the ideal convolution filter is the
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inverse transform of a cube, which is the product of three sinc functions.

hI(x, y, z) = (2fN)3sinc(2fNx)sinc(2fNy)sinc(2fNz) (3.1)

Thus, in principle, a volume signal can be exactly reconstructed from

its samples by convolving with hI . In practice, however, hI cannot be im-

plemented, because it has infinite extent in the spacial domain. Practical

filters will therefore introduce some artifacts into the reconstructed function.

A practical filter takes a weighted sum of a limited number of samples to

compute the reconstruction of a point. That is, it is zero outside some finite

region. This region is called the region of support. Filters with a larger

region of support are generally more expensive since more samples have to

be weighted.

The simplest interpolation function is known as zero-order interpolation,

which is actually just a nearest neighbor function. The value at any location

is simply the value of the closest sample to that location. One common inter-

polation function is a piecewise function known as first-order interpolation,

or trilinear interpolation. With this function, the value is assumed to vary

linearly along directions parallel to one of the major axes. Let the point p lie

at location (xp, yp, zp)
T within a cubic cell and let v000, ..., v111 be the sample

values at the eight corners of the cell. The value vp at location p, according

to trilinear interpolation, is then:

vp = v000(1 − xp)(1 − yp)(1 − zp)+

v100xp(1 − yp)(1 − zp)+

v010(1 − xp)yp(1 − zp)+

v001(1 − xp)(1 − yp)zp+

v011(1 − xp)ypzp+

v101xp(1 − yp)zp+

v110xpyp(1 − zp)+

v111xpypzp

(3.2)

Marschner and Lobb [29] have examined various reconstruction filters.

The best results were achieved with windowed sinc filters. While they pro-
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vide superior reconstruction quality, they are also about two orders of magni-

tude more expensive than trilinear interpolation. Therefore, when interactive

performance is desired, trilinear reconstruction is often the method of choice.

Gradient Reconstruction

For volume rendering, not only the original function needs to be recon-

structed. Especially the first derivative of the three-dimensional function,

which is called the gradient, is quite important since it can be interpreted as

the normal of an iso-surface. Gradients are used in shading and thus have

considerable influence on image quality. Möller et al. [34] even concede gra-

dient reconstruction having a greater impact on image quality than function

reconstruction itself. The ideal gradient reconstruction filter is the derivative

of the sinc filter, called cosc, which again has infinite extent and therefore

cannot be used in practise.

Möller et al. [34] have examined different methods for gradient recon-

struction. They have identified the following basic approaches:

Derivative First (DF) This method computes gradients at grid points of

the rectilinear grid formed by the data samples. The gradient at a

resample location is determined by interpolation between the gradients

at the neighboring grid points.

Interpolation First (IF) This methods computes the derivative from a set

of additionally interpolated samples at the resample location.

Continuous Derivative (CD) This approach uses a derivative filter which

is pre-convolved with the interpolation filter. The gradient at a resam-

ple location is computed by convolving the volume by this combined

filter.

Analytic Derivative (AD) This method uses a special gradient filter de-

rived from the interpolation filter for gradient estimation.

In their work, they prove that DF, IF and CD are numerically equivalent

and show that the AD method delivers bad results in some cases. An impor-
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tant point of their work is the conclusion that the IF method outperforms

the common DF method.

They state that the cost (using caching) of the DF method is nED +

m(4EH) and the cost of the IF method is m(ED+EH), where m is the number

of voxels, n is the number of samples, ED is the computational effort of

gradient estimation, and EH is the computational effort of the interpolation.

However, we recognize that if an expensive gradient estimation method

is used, i.e. ED is much larger than EH , and the sampling rate is high, i.e.

m is much larger than n, the DF method has advantages. Since the gradient

estimation only is performed at grid points, a higher sampling rate does not

increase the number of necessary gradient estimations. Additionally, from a

practical point of view the DF method has other advantages: Modern CPUs

provide SIMD extensions which allow to perform operations simultaneously

on multiple data items. For the DF method this means that, assuming the

same interpolation method is used for gradient and function reconstruction,

the interpolation of function value and gradient can be performed simultane-

ously (i.e., since the function value has to be interpolated anyway, gradient

interpolation almost comes for free). Using the IF method, this is not possi-

ble, since different filters are used for function and gradient reconstruction.

Central and intermediate differences are two of the most popular gradient

estimation methods. However, since they use a small neighborhood they are

very sensitive to noise contained in the dataset. Filters which use larger

neighborhood therefore in general result in better image quality. This is

especially true for medical datasets, which are often strongly undersampled

in z-direction.

Neumann et al. [38] have presented a theoretical framework for gradi-

ent reconstruction based on linear regression which is a generalization of

many previous approaches. The approach linearly approximates the three-

dimensional function f(x, y, z) according to the following formula:

f(x, y, z) ≈ Ax + By + Cz + D (3.3)

The approximation tries to fit a 3D regression hyperplane onto the sam-
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pled values assuming that the function changes linearly in the direction of

the plane normal n = (A, B, C)T . The value D is the approximate density

value at the origin of the local coordinate system. They derive a 4D error

function and examine its partial derivatives for the four unknown variables.

Since these partial derivatives have to equal zero at the minimum location of

the error function, they end up with a system of linear equations. Assuming

the voxels to be located at regular grid points leads to a diagonal coefficient

matrix. Thus, the unknown variables A, B, C,D can be calculated by simple

linear convolution:

A = wA

26∑

k=0
wkfkxk, B = wB

26∑

k=0
wkfkyk,

C = wC

26∑

k=0
wkfkzk, D = wD

26∑

k=0
wkfk

(3.4)

with
wA = 1

∑
26

0
wkx2

k

, wB = 1
∑

26

0
wky2

k

,

wC = 1
∑

26

0
wkz2

k

, wD = 1
∑

26

0
wk

(3.5)

The wk are the weights of the weighting function, an arbitrary spherically

symmetric function, which is monotonically decreasing as the distance from

the local origin is getting larger. k denotes the index of a voxel with an offset

(x, y, z)T in the 26-neighborhood of the current voxel and is defined as:

k = 9(z + 1) + 3(y + 1) + (x + 1) (3.6)

The vector (A, B, C)T is an estimate for the gradient at the local origin

and the value D is the filtered function value at the local origin. Using

the filtered values instead of the original samples leads to strong correlation

between the data values and the estimated gradients. These low-pass filtered

values come as by-product of gradient estimation at little additional cost.

Using this estimation method for an arbitrary resample location, however,

requires additional computational effort. It is necessary to perform a matrix

inversion and a matrix multiplication at each location. Thus, the gradient

estimation using Neumann’s approach is much cheaper, if gradients are only

computed at grid points. However, we do not pre-compute the gradients since
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this would require a considerable amount of additional memory. Instead, the

gradients and filtered values are computed on-the-fly for each cell. Trilinear

interpolation is then used to calculate the function value and gradient at each

resample location.

Additionally, this approach has other advantages: Since nothing is pre-

computed, different gradient estimation and reconstruction filters can be im-

plemented and simply changed at run-time without requiring further pro-

cessing. It also helps to solve the problem of using the filtered values instead

of the original samples, because the original dataset is still present and the

additional filtering can be disabled by the user. This is important in medical

applications, since some fine details might disappear due to filtering.

3.2.2 Classification

Classification is the process of assigning a color and opacity to a reconstructed

function value. Transfer functions, usually implemented as lookup tables, are

used for this mapping. During rendering, the reconstructed function value

serves as an index for the lookup tables, which contain color and opacity

values. Levoy first suggested the use of one-dimensional piecewise linear

transfer functions [24]. Additionally, he used the gradient magnitude for

opacity modulation, which effectively adds a second dimension. Opacity

modulation enhances regions with high gradients and reduces the opacity of

homogenous regions. Multi-dimensional transfer functions are a more general

approach which has proven to provide more control over the appearance

of the rendering [15]. However, these functions also require higher order

derivatives. These have to be either pre-computed, which increases memory

usage, or calculated on-the-fly, which decreases performance.

We therefore support one dimensional transfer functions including op-

tional opacity modulation based on the gradient magnitude. Additionally,

we support segmentation by assigning an object index to each voxel. For

every object, an independent transfer function can be defined. Since 12 bit

voxels are standard for medical datasets, the remaining 4 bits can be used for

the segmentation information, as the data has to be aligned to byte bound-
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(a) (b)

Figure 3.4: Example of segmented dataset. Four objects have been seg-
mented: skullcap, blood vessels, brain, and background. (a) the skullcap has
been disabled to display the brain. (b) skullcap and brain have been disabled
to reveal occluded blood vessels.

aries for better performance. This allows up to 16 objects to be defined.

A separate transfer function can be assigned to each of these objects and

individual objects can be enabled or disabled (see Figure 3.4).

3.2.3 Shading

Despite its lacking physical validity, the Phong illumination model [42] is

still widely used in computer graphics. Its popularity is most probably based

on its simplicity. Phong’s model is a local illumination model, which means

only direct reflections are taken into account. While this may not be very

realistic, it allows illumination to be computed efficiently. The model consists

of an independent ambient, diffuse and specular term. It has the following

parameters:

Light vector L The light vector is the normalized vector from a location

in space to the light source. In case of a directional light source, this

vector is the same for all points in a scene.
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Figure 3.5: Parameters of the Phong illumination model. The light vector
L points towards the light source and the view vector V points towards the
viewer. N is the surface normal at the point the model is evaluated at. The
half-way vector H is the vector half way between L and V .

View vector V The view vector is the normalized vector from a location

in space along a viewing ray to its origin on the image plane. In case

of parallel projection, this vector is the same for all points in a scene.

Surface normal N The Phong illumination model was originally designed

for the rendering of surfaces. In volume rendering, the surface normal

is approximated by the normalized gradient at the resample location.

These parameters are illustrated in Figure 3.5. Additionally, the half-way

vector H = 1
2
(L + V ) is displayed.

Three constants, Fambient, Fdiffuse, and Fspecular, control the contribution

of each term to the final light intensity. The shaded color is computed by

multiplying the input color (e.g. the color of a sample as obtained through

the transfer function) by the sum of the three terms (see Equation 3.7).

We assume here that the color of the light source is always white and can

therefore disregard its color contribution.

cout = cin(Iambient + Idiffuse + Ispecular) (3.7)



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 31

The ambient term (Equation 3.8) is constant. Its purpose it to simulate

the contribution of indirect reflections, which are otherwise not accounted

for by the model.

Iambient = Fambient (3.8)

The diffuse term (Equation 3.9) is based on Lambert’s cosine law which

states that the reflection of a perfect rough surface is proportional to the

cosine of the angle α between the light vector L and the surface normal N .

Idiffuse = Fdiffuse max(L · N, 0) (3.9)

The specular term (Equation 3.10)adds an artificial highlight to simulate

specular reflections. For computing the specular term, Blinn proposed to use

the half-way vector H [1], which is a vector halfway between the light vector

and the view vector. The specular lighting intensity is then proportional

to the cosine of the angle β between the half-way vector H and the surface

normal N raised to the power of n, where n is called the specular exponent

of the surface and represents its shininess. Higher values of n lead to smaller,

sharper highlights, whereas lower values result in large and soft highlights.

Ispecular = Fspecular max((H · N)n, 0) (3.10)

Despite the low complexity of this illumination model, shading still has

considerable impact on performance. One way to speed up the evaluation

is the use of reflectance maps [52], which contain pre-computed illumination

information. However, the use of such data structures requires a considerable

amount of additional memory and can lead to cache thrashing. Furthermore,

they have to be re-computed every time the illumination properties change.

Thus, we choose to evaluate the illumination model on-the-fly. The most

time consuming part of the model is the exponentiation used in the specular

term. However, since this is a purely empirical model, every function that

evokes a similar visual impression can be used instead of the exponentiation.

Schlick therefore proposed to use the following approximation [47]:
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(a) (b)

Figure 3.6: Visual comparison of specular highlights obtained with Phong’s
and Schlick’s approach. (a) Phong. (b) Schlick. The specular exponent is 16
in both cases.

xn ≈ x

n − nx + x
(3.11)

Schlick’s approximation is generally much faster to compute and yields

to very similar results (see Figure 3.6). Figure 3.7 shows a comparison of the

original function and the approximation for different values of n.

Our system uses the Phong illumination model with Schlick’s approxima-

tion for the specular term. One directional light source is supported. This

allows us to compute shading at little cost. This setup is well suited for

medical applications, where the user generally does not benefit from (and

might even be disturbed by) increased photorealism.

3.2.4 Compositing

In raycasting, the volume rendering integral is approximated by repeated

application of the over-operator [54, 43] in front-to-back order. That is,

at each resample location, the current color and alpha values for a ray are

computed in the following way:



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 33

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 3.7: Comparison of Phong’s and Schlick’s approach for specular high-
light simulation. (a) Phong: f(x) = xn. (b) Schlick: f(x) = x

n−nx+x
.

n = 1, 2, 4, 8, 16, 32.

cout = cin + c(x)α(x)(1 − αin)

αout = αin + α(x)(1 − αin)
(3.12)

cin and αin are the color and opacity the ray has accumulated so far.

x is the reconstructed function value and c(x) and α(x) are the classified

and shaded color and opacity for this value. The advantage of using the

front-to-back formulation of the over-operator is the possibility of early ray

termination. As soon as a ray has accumulated full opacity (i.e., αout = 1),

no further processing has to be done for this ray.

This formulation is only valid if compositing is performed at evenly-spaced

locations at a distance of 1. If the object sample distance, i.e., the distance

between subsequent samples along a ray, differs from 1, opacity correction

is needed. Assuming an equal object sample distance for all rays, opacity

correction can be achieved by using a corrected lookup table for the opacity

values:

αcorr(x) = 1 − (1 − α(x))∆s (3.13)

where αcorr is the corrected opacity transfer function, α is the original
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Level Latency Size
Register 1 ns - 3 ns 1 KB
Level 1 Cache 2 ns - 8 ns 8 KB - 128 KB
Level 2 Cache 5 ns - 12 ns 0.5 MB - 8 MB
Main Memory 10 ns - 60 ns 256 MB - 2 GB
Hard Disk 8 ms - 12 ms 100 GB - 200 GB

Table 3.1: Memory hierarchy of modern computer architectures. Memory is
structured as a hierarchy of successively larger but slower storage technology.

opacity transfer function, and ∆s is the object sample distance. In Equa-

tion 3.12, α is then replaced by αcorr.

3.3 Memory Management for Large Datasets

The past years have shown that the discrepancy between processor and mem-

ory performance is rapidly increasing, making memory access a potential

bottleneck for applications which have to access large amounts of data. Ray-

casting, in particular, is prone to cause problems, since it generally leads

to irregular memory access patterns. This section discusses strategies to

improve memory access patterns taking advantage of the memory hierarchy.

The memory of contemporary computers is structured in a hierarchy of

successively larger, slower, and cheaper memory levels. Each level contains a

working copy or cache of the level above. Recent developments in processor

and memory technology imply an increasing penalty if programs do not take

optimal advantage of the memory hierarchy. The memory hierarchy of a

x86-based system is shown in Table 3.1. The L1 cache is used to temporarily

store instructions and data, making sure the processor has a steady supply

of data to process while the memory catches up delivering new data. The L2

cache is the high speed memory between the processor and main memory.

Going up the cache hierarchy towards the CPU, caches get smaller and

faster. In general, if the CPU issues an operation on a data item, the request

is propagated down the cache hierarchy until the requested data is found.

It is very time consuming if the data is only found in a slow cache. This

is due to the propagation itself as well as to the back propagation of data
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through all the caches. For good performance, frequent access to the slower

caches has to be avoided. Accessing the slower caches, like hard disk and

main memory, only once would be optimal. We assume that there is enough

main memory available to hold the volume data and all other data structures

necessary - the hard disk only has to be accessed when a volume is loaded.

Thus, the main focus lies in optimizing main memory access.

3.3.1 Bricking

The most common way of storing volumetric data is a linear volume layout.

Volumes are typically thought of as a stack of two-dimensional images (slices)

which are stored in an array linearly. The work-flow of a standard volume

raycasting algorithm on a linearly stored volume is as follows: For every

pixel of the image plane a ray is cast through the volume and the volume

data is resampled along this ray. At every resample position resampling,

gradient computation, shading, and compositing is performed. The closer

the neighboring rays are to each other, the higher the probability is that

they partially process the same data. Given the fact that rays are shot one

after the other, it is very likely that the same data has to be read several

times from main memory, because in general the cache is not large enough

to hold the processed data of a single ray. This problem can be targeted by a

technique called tile casting. Here, rather than processing one ray completely,

each pass processes only one resample point for every ray. However, different

viewing directions still cause a different amounts of cache line requests to load

the necessary data from main memory which leads to a varying frame-rate.

The concept of bricking supposes the decomposition of data into small

fixed-sized data blocks (see Figure 3.8). Each block is stored in linear order.

The basic idea is to choose the block size according to the cache size of the

architecture so that an entire block fits into a fast cache of the system. It

has been shown that bricking is one way to achieve high cache coherency,

without increasing memory usage [40]. However, accessing data in a bricked

volume layout is very costly.
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(a) (b)

Figure 3.8: Linear and bricked volume layouts. (a) linear volume layout
stored as a stack of slices. (b) bricked volume layout stored as a set of
blocks.

3.3.2 Addressing

In raycasting the eight samples closest to the current resample location are

required in every processing step when trilinear interpolation is used. In a

linear volume layout, these samples can be addressed by adding constant

offsets to one known address. The necessary address computations are given

in Algorithm 1.

Algorithm 1 ComputeSampleAddressesLinear(i,j,k)

samplei,j,k = i + j · Vx + k · Vx · Vy

samplei+1,j,k = samplei,j,k + 1
samplei,j+1,k = samplei,j,k + Vx

samplei+1,j+1,k = samplei,j,k + 1 + Vx

samplei,j,k+1 = samplei,j,k + Vx · Vy

samplei+1,j,k+1 = samplei,j,k + 1 + Vx · Vy

samplei,j+1,k+1 = samplei,j,k + Vx + Dx · Vy

samplei+1,j+1,k+1 = samplei,j,k + 1 + Vx + Vx · Vy

V{x,y,z} are the volume dimensions and i, j, k are the integer parts of the
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current resample position. This addressing scheme is very efficient. Once the

lower left sample is determined the other needed samples can be accessed just

by adding an offset.

The evolution of CPU design shows that the length of CPU pipelines

grows progressively. This is very efficient as long as conditional branches

do not initiate pipeline flushes. Once a long instruction pipeline is flushed

there is a significant delay until it is refilled. Most of the present systems

use branch prediction. The CPU normally assumes that if-branches will

always be executed. It executes the if-branch before actually checking the

outcome of the if-clause. If the if-clause returns false, the else-branch has to

be executed. This means that the CPU flushes the pipeline and refills it with

the else-branch. This is very time consuming, due to the increasing size of

the pipelines.

Algorithm 2 ComputeAddressBricked(i,j,k)
u = (i mod Bx) + (j mod By) · Bx + (k mod Bz) · Bx · By

v = (i/Bx) + (j/By) · (Vx/Bx) + (k/Bz) · (Vx/Bx) · (Vy/By)
return (u · Bx · By · Bz + v)

Algorithm 3 ComputeSampleAddressesBricked(i,j,k)
samplei,j,k = ComputeAddressBricked(i,j,k)
if (i mod Bx) < Bx − 1 and (j mod By) < By − 1 and (k mod Bz) < Bz − 1 then

samplei+1,j,k = samplei,j,k + 1
samplei,j+1,k = samplei,j,k + Bx

samplei+1,j+1,k = samplei,j,k + 1 + Bx

samplei,j,k+1 = samplei,j,k + Bx · By

samplei+1,j,k+1 = samplei,j,k + 1 + Bx · By

samplei,j+1,k+1 = samplei,j,k + Bx + Bx · By

samplei+1,j+1,k+1 = samplei,j,k + 1 + Bx + Bx · By

else

samplei+1,j,k = ComputeAddressBricked(i + 1,j,k)
samplei,j+1,k = ComputeAddressBricked(i,j + 1,k)
samplei+1,j+1,k = ComputeAddressBricked(i + 1,j + 1,k)
samplei,j,k+1 = ComputeAddressBricked(i,j,k + 1)
samplei+1,j,k+1 = ComputeAddressBricked(i + 1,j,k + 1)
samplei,j+1,k+1 = ComputeAddressBricked(i,j + 1,k + 1)
samplei+1,j+1,k+1 = ComputeAddressBricked(i + 1,j + 1,k + 1)

end if

Using a bricked volume layout one will encounter this problem. The
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addressing of data in a bricked volume layout is more costly than in a linear

volume layout. To address one data element, one has to address the block

itself and the element within the block. The necessary address computation

is given in Algorithm 2. B{x,y,z} are block dimensions, V{x,y,z} are the volume

dimensions, i, j, and k are the integer parts of the current resample position.

In contrast to this addressing scheme, a linear volume can be seen as one

large block. To address a sample it is enough to compute just one offset. In

algorithms like volume raycasting, which need to address a certain neighbor-

hood of data in each processing step, the computation of two offsets has a

considerable impact on performance. To avoid this performance penalty, one

can construct an if-else statement (see Algorithm 3). The if-clause checks if

the needed data elements can be addressed within one block. If the outcome

is true, the data elements can be addressed as fast as in a linear volume. If the

outcome is false, the costly address calculations have to be done. This sim-

plifies address calculation, but the involved if-else statement incurs pipeline

flushes. In the following, we address this problem.

To avoid the costly if-else statement and the expensive address computa-

tions, one can create a lookup table to address all the needed samples. The

straight-forward approach would be to create a lookup table for each possible

sample position in a block. For a block of 323 this would lead to 323 different

lookup tables to address the neighboring samples. In the resampling case,

7 neighbors need to be addressed - accordingly the size of the lookup tables

would be 323 · 7 · 4 bytes = 896 KB (4 bytes per offset). For accessing a

26-neighborhood a table of 323 · 26 · 4 bytes = 3.25 MB (4 Bytes per offset)

would be required. Such a large lookup table is not preferable, due to the

limited size of cache. However, the addressing of such a lookup table would

be straight-forward, because the indices in the lookup table would be the

corresponding offsets of the current sample position, assuming the offset is

given relative to the block memory address.

To reduce the size of the lookup table, the possible sample positions can

be distinguished by the locations of the needed neighboring samples. The first

sample location (i, j, k) is defined by the integer parts of the current resample

position. Assuming trilinear interpolation, during resampling neighboring
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Figure 3.9: Access patterns during resampling and gradient computation.
(a) typical access pattern during resampling (8-neighborhood). (b) typical
access pattern during gradient computation (26-neighborhood).
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Case (i mod Bx) ∈ (j mod By) ∈ (k mod Bz) ∈
0 {0, ..., Bx − 2} {0, ..., By − 2} {0, ..., Bz − 2}
1 {0, ..., Bx − 2} {0, ..., By − 2} {Bz − 1}
2 {0, ..., Bx − 2} {By − 1} {0, ...,Bz − 2}
3 {0, ..., Bx − 2} {By − 1} {Bz − 1}
4 {Bx − 1} {0, ...,By − 2} {0, ...,Bz − 2}
5 {Bx − 1} {0, ...,By − 2} {Bz − 1}
6 {Bx − 1} {By − 1} {0, ..., Bz − 2}
7 {Bx − 1} {By − 1} {Bz − 1}

Table 3.2: Cases for the position within a block for 8-neighborhood address-
ing. For every case, the range of each component of the three-dimensional
position within a block is displayed.

samples to the right, top, and back of the current location are required. A

block can be subdivided into subsets. For each subset, we can determine the

blocks in which the neighboring samples lie. Therefore, it is possible to store

these offsets in a lookup table [9]. This is illustrated in Figure 3.9 (a). We

see that there are four basic cases, which can be derived from the current

sample location. This can be mapped straightforwardly to 3D, which leads

to eight distinct cases. These eight cases are shown in Table 3.2.

In the following, we construct a function to efficiently address the lookup

table. The input parameters of the lookup table addressing function are the

sample position (i, j, k) and the block dimensions Bx, By, and Bz. We assume

that the block dimensions are a power of two, i.e., Bx = 2Nx , By = 2Ny , and

Bz = 2Nz . As a first step, the block offset parts of i, j, and k are extracted

by a conjunction with the corresponding B{x,y,z} − 1. The next step is to

increase all by one to move the maximum possible value of B{x,y,z} − 1 to

B{x,y,z}. All the other possible values stay within the range [1, B{x,y,z} − 1].

Then a conjunction of the resulting value and the complement of B{x,y,z}− 1

is performed, which maps the input values to [0, B{x,y,z}]. The last step

is to add the three values and divide the result by the minimum of the

block dimensions, which maps the result to [0,7]. This last division can

be exchanged by a shift operation. Algorithm 4 shows the lookup table

index computation and Algorithm 5 shows how the neighboring sample offsets
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Case ia ja ka ib jb kb i′ j′ k′ index
0 0-30 0-14 0-6 1-31 1-15 1-7 0 0 0 0
1 0-30 0-14 7 1-31 1-15 8 0 0 8 1
2 0-30 15 0-6 1-31 16 1-7 0 16 0 2
3 0-30 15 7 1-31 16 8 0 16 8 3
4 31 0-14 0-6 32 1-15 1-7 32 0 0 4
5 31 0-14 7 32 1-15 8 32 0 8 5
6 31 15 0-6 32 16 1-7 32 16 0 6
7 31 15 7 32 16 8 32 16 8 7

index = ((i′ + j′ + k′) ≫ min(Nx, Ny, Nz))
{i′, j′, k′} = (({i, j, k} & (B{x,y,z} − 1))

︸ ︷︷ ︸

{ia,ja,ka}

+1)

︸ ︷︷ ︸

{ib,jb,kb}

& ∼ (B{x,y,z} − 1)

Table 3.3: Lookup table index calculation for 8-neighborhood. The calcula-
tion of the lookup table index is shown for Bx = 32, By = 16, Bz = 8

can be computed using the lookup table. We use & to denote a bitwise

and operation, | to denote a bitwise or operation, ≫ to denote a right shift

operation, and ∼ to denote a bitwise negation. In Table 3.3 we give an

example of the calculation for a block size of 32 × 16 × 8.

Algorithm 4 ComputeResampleLookupIndex(i,j,k)
i′ = ((i & (Bx − 1)) + 1) & ∼ (Bx − 1)
j′ = ((j & (By − 1)) + 1) & ∼ (By − 1)
k′ = ((k & (Bz − 1)) + 1) & ∼ (Bz − 1)
return ((i′ + j′ + k′) ≫ min(Nx, Ny, Nz))

Algorithm 5 ComputeSampleAddressesResampleLookup(i,j,k)

samplei,j,k = ComputeAddressBricked(i,j,k)
index = ComputeResampleLookupIndex(i,j,k)
samplei+1,j,k = samplei,j,k + LUT [index][0]
samplei,j+1,k = samplei,j,k + LUT [index][1]
samplei+1,j+1,k = samplei,j,k + LUT [index][2]
samplei,j,k+1 = samplei,j,k + LUT [index][3]
samplei+1,j,k+1 = samplei,j,k + LUT [index][4]
samplei,j+1,k+1 = samplei,j,k + LUT [index][5]
samplei+1,j+1,k+1 = samplei,j,k + LUT [index][6]

A similar approach can be done for the gradient computation. We present

a general solution for a 26-connected neighborhood. Here we can, analogous

to the resample case, distinguish 27 cases. For 2D, this is illustrated in Figure



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 42

Case ia ja ka ib jb kb ic jc kc i′ j′ k′ index
0 1-30 1-14 1-6 0-29 0-13 0-5 2-30 2-14 2-6 0 0 0 0
1 1-30 1-14 7 0-29 0-13 6 2-30 2-14 8 0 0 1 1
2 1-30 1-14 0 0-29 0-13 15 2-30 2-14 16 0 0 2 2
3 1-30 15 1-6 0-29 14 0-5 2-30 16 2-6 0 1 0 3
4 1-30 15 7 0-29 14 6 2-30 16 8 0 1 1 4
5 1-30 15 0 0-29 14 15 2-30 16 16 0 1 2 5
6 1-30 0 1-6 0-29 31 0-5 2-30 32 2-6 0 2 0 6
7 1-30 0 7 0-29 31 6 2-30 32 8 0 2 1 7
8 1-30 0 0 0-29 31 15 2-30 32 16 0 2 2 8
9 31 1-14 1-6 30 0-13 0-5 32 2-14 2-6 1 0 0 9
10 31 1-14 7 30 0-13 6 32 2-14 8 1 0 1 10
11 31 1-14 0 30 0-13 15 32 2-14 16 1 0 2 11
12 31 15 1-6 30 14 0-5 32 16 2-6 1 1 0 12
13 31 15 7 30 14 6 32 16 8 1 1 1 13
14 31 15 0 30 14 15 32 16 16 1 1 2 14
15 31 0 1-6 30 31 0-5 32 32 2-6 1 2 0 15
16 31 0 7 30 31 6 32 32 8 1 2 1 16
17 31 0 0 30 31 15 32 32 16 1 2 2 17
18 0 1-14 1-6 63 0-13 0-5 64 2-14 2-6 2 0 0 18
19 0 1-14 7 63 0-13 6 64 2-14 8 2 0 1 19
20 0 1-14 0 63 0-13 15 64 2-14 16 2 0 2 20
21 0 15 1-6 63 14 0-5 64 16 2-6 2 1 0 21
22 0 15 7 63 14 6 64 16 8 2 1 1 22
23 0 15 0 63 14 15 64 16 16 2 1 2 23
24 0 0 1-6 63 31 0-5 64 32 2-6 2 2 0 24
25 0 0 7 63 31 6 64 32 8 2 2 1 25
26 0 0 0 63 31 15 64 32 16 2 2 2 26

index = (9i′ + 3j′ + k′)
{i′, j′, k′} = ((((({i, j, k} & (B{x,y,z} − 1))

︸ ︷︷ ︸

{ia,ja,ka}

−1) & (2B{x,y,z} − 1))

︸ ︷︷ ︸

{ib,jb,kb}

| 1) + 1)

︸ ︷︷ ︸

{ic,jc,kc}

≫ N{x,y,z}

Table 3.4: Lookup table index calculation for 26-neighborhood. The calcu-
lation of the lookup table index is shown for Bx = 32, By = 16, Bz = 8.
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3.9 (b). Depending on the position of sample (i, j, k) a block is subdivided

into 27 subsets.

The first step is to extract the block offset, by a conjunction with B{x,y,z}−
1. Then we subtract one, and conjunct with B{x,y,z}+B{x,y,z}−1, to separate

the case if one or more components are zero. In other words, zero is mapped

to 2·B{x,y,z}−1. All the other values stay within the range [0, B{x,y,z}−2]. To

separate the case of one or more components being B{x,y,z}−1, we add 1, after

the previous subtraction is undone by a disjunction with 1, without loosing

the separation of the zero case. Now all the cases are mapped to {0, 1, 2}
to obtain a ternary system. This is done by dividing the components by the

corresponding block dimensions. These divisions can be replaced by faster

shift operations. Then the three ternary variables are mapped to an index

in the range of [0, 26]. The final lookup table index computation is given in

Algorithm 6. In Table 3.4 we give an example of the calculation for a block

size of 32 × 16 × 8.

Algorithm 6 ComputeGradientLookupIndex(i,j,k)
i′ = (((((i & (Bx − 1)) − 1) & (2Bx − 1)) | 1) + 1) ≫ Nx

j′ = (((((i & (Bx − 1)) − 1) & (2Bx − 1)) | 1) + 1) ≫ Ny

k′ = (((((k & (Bz − 1)) − 1) & (2Bz − 1)) | 1) + 1) ≫ Nz

return (9i′ + 3j′ + k′)

The presented index computations can be performed efficiently on current

CPUs, since they only consist of simple bit manipulations. The lookup tables

can be used in raycasting on a bricked volume layout for efficient access to

neighboring samples. The first table can be used if only the eight samples

within a cell have to be accessed (e.g., if gradients have been pre-computed).

Compared to the if-else solution which has the costly address computation

in the else branch, we get a speedup of about 30%. The benefit varies,

depending on the block dimensions. For a 32 × 32 × 32 block size the else-

branch has to be executed in 10% of the cases and for a 16 × 16 × 16 block

size in 18% of the cases.

The second table allows full access to a 26-neighborhood. This approach

reduces the cost of addressing by 40% compared to a if-else solution, as the

else-branch has to be executed more often for a larger neighborhood. The
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Figure 3.10: Blockwise raycasting scheme. A ray-front is advancing through
the volume processing one list of blocks in each pass. The numbers inside
the blocks identify their block list.

lookup table has a size of 27 cases · 26 offsets · 4 bytes per offset = 2808 bytes.

This can be reduced by a factor of two due to symmetry reasons. Therefore

we have a very small lookup table of 1404 bytes. This is an improvement of

a factor of 2427 compared to the straight-forward solution.

Another possible option to simplify the addressing is to inflate each block

by an additional border of samples from the neighboring blocks [11]. How-

ever, such a solution increases the overall memory usage considerably. For

example, for a block size of 32 × 32 × 32 the total memory is increased by

approximately 20%. This is an inefficient usage of memory resources and

the storage redundancy reduces the effective memory bandwidth. Our ap-

proach practically requires no additional memory, as all blocks share one

global address lookup table.

3.3.3 Traversal

As stated in the previous sections, it is important to ensure that data once

replaced in the cache will not be requested again, thus avoiding thrashing.

Law and Yagel have presented a thrashless distribution scheme for parallel
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raycasting [22, 23, 21]. Their scheme relies on an object space subdivision of

the volume. While their method was essentially developed in the context of

parallelization, avoiding multiple distribution of data, it is also useful for a

single-processor approach.

The volume is subdivided into blocks, as described in Section 3.3.1. These

blocks are then sorted in front-to-back order depending on the current view-

ing direction. The ordered blocks are placed in a set of block lists in such a

way that no ray that intersects a block contained in a block list can intersect

another block from the same block list. Each block holds a list of rays whose

current resample position lies within the block. The rays are initially as-

signed to the block which they first intersect. The blocks are then traversed

in front-to-back order by sequentially processing the block lists. The blocks

within one block list can be processed in any order, e.g., in parallel. For each

block, all rays contained in its list are processed. As soon as a ray leaves a

block, it is removed from its ray list and added to the new block’s ray list.

When the ray list of a block is empty, processing is continued with the next

block. Figure 3.10 illustrates this approach.

The generation of the block lists does not have to be performed for each

frame. For parallel projection there are eight distinct cases where the order

of blocks which have to be processed remains the same. Thus, the lists can

be pre-computed for these eight cases. Figure 3.11 shows this for 2D where

there are four cases.

3.4 Parallelization Strategies for Commodity

Hardware

Raycasting has always posed a challenge on hardware resources, thus, numer-

ous approaches for parallelization have been presented. As our target plat-

form is consumer hardware, we have focused on two parallelization schemes

available in current stand-alone PCs: Symmetric Multiprocessing (SMP) and

Simultaneous Multithreading (SMT).
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Figure 3.11: Front-to-back orders of blocks. In an interval of 90 degrees of
the viewing direction the front-to-back order remains constant. The numbers
inside the blocks identify their block list, and thus the designated processing
order.

3.4.1 Symmetric Multiprocessing

Architectures using multiple processors within the same computer are re-

ferred to as Symmetric Multiprocessing systems. Multiprocessor architec-

tures improve overall performance by allowing threads to execute in parallel.

As Law and Yagel’s traversal scheme [22] was originally developed for paral-

lelization, it is straight-forward to apply it to SMP architectures. Since the

blocks contained in each block list are independent, they can be distributed

among the available physical CPUs.

A possible problem occurs when rays from two simultaneously processed

blocks have the same subsequent block, as shown in Figure 3.12. As blocks

processed by different CPUs can contain rays which have the same subsequent

block, race conditions occur when both CPUs simultanously try to assign rays

to the ray list of one block. One way of handling these cases would be to use

synchronization primitives such as mutexes or critical sections to ensure that

only one thread can assign rays at a time. However, the required overhead
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Figure 3.12: Concurrency problem in parallel block processing. The two
highlighted blocks are processed by different CPUs. When both CPUs try
to add their rays to the next block’s ray list, race conditions can occur.

can decrease the performance drastically. Therefore, to avoid race conditions

when two threads try to add rays to the ray list of a block, each block has a

ray list for every physical CPU. When a block is being processed, the rays of

all these lists are cast. When a ray leaves the block, it is added to the new

block’s ray list corresponding to the CPU currently processing the ray.

The basic algorithm processes the pre-generated block lists in passes.

The ProcessVolume procedure (see Algorithm 7) is executed by the main

thread and distributes the blocks of each pass among the available processors.

It starts the execution of ProcessBlocks (see Algorithm 8) in a thread for

each of the processors. ProcessBlocks traverses the list of blocks assigned

to a processor and processes the rays of each block. ProcessRay performs

resampling, gradient estimation, shading, and compositing for a ray, until it

leaves the current block or is terminated for another reason (e.g., early ray

termination). It returns true if the ray enters another block and false if no

further processing of the ray is necessary. ComputeBlock returns the new

block of a ray when it has left the current block. In the listed procedures,
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countphysical is the number of physical CPUs in the system.

Algorithm 7 ProcessVolume(blocklists)
for all lists l in blocklists do

Partition l = l0 ∪ ... ∪ lcountphysical−1

for i = 0 to countphysical − 1 do

Begin execution of ProcessBlocks(li,i) in thread Ti+1 on physical CPU i
end for

Wait for threads T1,...,Tcountphysical
to finish

end for

Algorithm 8 ProcessBlocks(blocklist,idphysical)
for all blocks b in blocklist do

for i = 0 to countphysical − 1 do

for all rays r in b.raylist[i] do

if ProcessRay(r) then

{the ray has entered another block}
Remove(b.raylist[i],r)
newBlock = ComputeBlock(r)
Insert(newBlock.raylist[idphysical],r)

else

{the ray has been terminated or has left the volume}
Remove(b.raylist[i],r)

end if

end for

end for

end for

3.4.2 Simultaneous Multithreading

Simultaneous Multithreading is a well-known concept in workstation and

mainframe hardware. It is based on the observation that the execution re-

sources of a processor are rarely fully utilized. Due to memory latencies

and data dependencies between instructions, execution units have to wait

for instructions to finish. While modern processors have out-of-order execu-

tion units which reorder instructions to minimize these delays, they rarely

find enough independent instructions to exploit the processor’s full poten-

tial. SMT uses the concept of multiple logical processors which share the

resources (including caches) of just one physical processor. Executing two
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Figure 3.13: Comparison of conventional CPU and Hyper-Threading CPU.
(a) conventional CPU with single architectural state. (b) Hyper-Threading
CPU with duplicated architectural state, one for each logical processor.

threads simultaneously on one processor has the advantage of more inde-

pendent instructions being available, and thus leads to more efficient CPU

utilization. This can be implemnted by duplicating state registers, which

only leads to little increases in manufacturing costs. Intel’s SMT implemen-

tation is called Hyper-Threading [28] and was first available on the Pentium

4 CPU. Currently, two logical CPUs per physical CPU are supported (see

Figure 3.13). Hyper-Threading adds less than 5% to the relative chip size and

maximum power requirements, but can provide performance benefits much

greater than that.

Exploiting SMT, however, is not as straight-forward as it may seem at

first glance. Since the logical processors share caches, it is essential that the

threads operate on neighboring data items. Therefore, in general, treating

the logical CPUs in the same way as physical CPUs leads to little or no per-

formance increase. Instead, it might even lead to a decrease in performance,

due to cache thrashing. Thus, our processing scheme has to be extended in
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order to allow multiple threads to operate within the same block.

The blocks are distributed among physical processors as described in the

previous section. Additionally, within a block, multiple threads each exe-

cuting on a logical CPU simultaneously process the rays of a block. Using

several threads to process the ray list of a block would lead to race con-

ditions and would therefore require expensive synchronization. Thus, in-

stead of each block having just one ray list for every physical CPU, we now

have countlogical lists per physical CPU, where countlogical is the number of

threads that will simultaneously process the block, i.e., the number of logi-

cal CPUs per physical CPU. Thus, each block has countphysical · countlogical

ray lists raylist[idphysical][idlogical] where idphysical identifies the physical CPU

and idlogical identifies the logical CPU relative to the physical CPU. A ray

can move between physical CPUs depending on how the block lists are parti-

tioned within in each pass, but they always remain in a ray list with the same

idlogical. This means that for equal workloads between threads, the rays have

to be initially distributed among these lists, e.g., by alternating the idlogical

of the list a ray is inserted into during ray setup.

The basic algorithm described in the previous section is extended in the

following way: The ProcessBlocks procedure (see Algorithm 9) now starts

the execution of ProcessRays for each logical CPU of the physical CPU it is

executed on. ProcessRays (see Algorithm 10) processes the rays of a block

for one logical CPU. All other routines remain unchanged.

Algorithm 9 ProcessBlocks(blocklist,idphysical)
for all blocks b in blocklist do

for i = 0 to countlogical − 1 do

Begin execution of ProcessRays(b,idphysical,i) in thread Tidphysical·countlogical+i+1 on
logical CPU i of physical CPU idphysical

end for

Wait for threads Tidphysical·countlogical+1,...,Tidphysical·countlogical+countlogical
to finish

end for

Figure 3.14 depicts the operation of the algorithm for a system with

two physical CPUs, each allowing simultaneous execution of two threads,

i.e. countphysical = 2 and countlogical = 2. In the beginning seven treads,

T0, ..., T6, are started. T0 performs all the preprocessing. In particular, it
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Algorithm 10 ProcessRays(block,idphysical,idlogical)
for i = 0 to countphysical − 1 do

for all rays r in block.raylist[i][idlogical] do

if ProcessRay(r) then

{the ray has entered another block}
Remove(currentBlock.raylist[i][idphysical],r)
blocknew = ComputeBlock(r)
Insert(blocknew.raylist[idphysical][idlogical],r)

else

{the ray has been terminated or has left the volume}
Remove(block.raylist[i][idlogical],r)

end if

end for

end for

has to assign the rays to those blocks through which the rays enter the

volume first. Then it has to choose the lists of blocks which can be processed

simultaneously, with respect to the eight to distinguish viewing directions.

Each list is partitioned by T0 and sent to T1 and T2. After a list is sent,

T0 sleeps until its slaves are finished. Then it continues with the next pass.

T1 sends one block after the other to T3 and T4. T2 sends one block after

the other to T5 and T6. After a block is sent, they sleep until their slaves

are finished. Then they send the next block to process, and so on. T3, T4,

T5, and T6 perform the actual raycasting. Thereby T3 and T4 simultaneously

process one block, and T5 and T6 simultaneously process one block.

3.5 Memory Efficient Acceleration Data Struc-

tures

Applying efficient memory access and parallelization techniques still is not

sufficient to efficiently handle the huge processing loads caused by large

datasets. In this section, we introduce optimization techniques to reduce

this workload. We present three different techniques which each can achieve

a significant reduction of rendering times. Our focus lies in minimizing the

additional memory requirements of newly introduced data structures.



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 52

TT0 0 

TT1 1 

TT3 3 

TT4 4 

logical CPU 0

logical CPU 1

physical CPU 0

image plane

advancing

ray-front

TT2 2 

TT6 6 

TT5 5 

logical CPU 3

logical CPU 2

physical CPU 1 

Figure 3.14: Simultaneous Multithreading enabled raycasting. The work is
distributed among the threads Ti executing on different logical CPUs.
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3.5.1 Gradient Cache

It has been argued that the quality of the final image is heavily influenced by

the gradients used in shading [34]. High-quality gradient estimation methods

have been developed, which generally consider a large neighborhood of sam-

ples. This implies higher computational costs. Due to this, many approaches

use expensive gradient estimation techniques to pre-compute gradients at

the grid points and store them together with the original samples. The addi-

tional memory requirements, however, limit the practical application of this

approach. For example, using 2 bytes for each component of the gradient in-

creases the size of the dataset by a factor of four (assuming 2 bytes are used

for the original samples). In addition to the increased memory requirements

of pre-computed gradients, this approach also reduces the effective memory

bandwidth. We therefore choose to perform gradient estimation on-the-fly.

Consequently, when using an expensive gradient estimation method caching

of intermediate results is inevitable if high performance has to be achieved.

An obvious optimization is to perform gradient estimation only once for each

cell. When a ray enters a new cell, the gradients are computed at all eight

corners of the cell. These gradients are then re-used during resampling within

the cell. The benefit of this method is dependent on the number of resample

locations per cell, i.e., the object sample distance.

However, the computed gradients are not reused for other cells. This

means that each gradient typically has to be computed eight times, as il-

lustrated in Figure 3.15. For expensive gradient estimation methods, this

can considerably reduce the overall performance. It is therefore important

to store the results in a gradient cache. However, allocating such a cache for

the whole volume still has the mentioned memory problem.

Our blockwise volume traversal scheme allows us to use a different ap-

proach. We perform gradient caching on a block basis. Our cache is capable

of storing one gradient for every grid point of a block. Thus, the required

cache size is (Bx +1)× (By +1)× (Bz +1) where Bx, By, Bz are the block di-

mensions. The block dimensions are increased by one to enable interpolation

across block boundaries. Each entry of the cache stores the three compo-
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rays
resample

locations

Figure 3.15: Redundant gradient computation at grid positions. Without
caching, the gradient at the highlighted grid position has to be recomputed
multiple times.

nents of a gradient, using a single precision floating-point number for each

component. Additionally, a bit set has to be stored that encodes the validity

of an entry in the cache for each grid point of a block.

When a ray enters a new cell, for each of the eight corners of the cell the

bit set is queried. If the result of a query is zero, the gradient is computed

and written into the cache. The corresponding value of the bit set is set to

one. If the result of the query is one, the gradient is already present in the

cache and is retrieved.

The disadvantage of this approach is that gradients at block borders have

to be computed multiple times. However, this caching scheme still greatly

reduces the performance impact of gradient computation and requires only

a modest amount of memory. Furthermore, the required memory is inde-

pendent of the volume size, which makes this approach applicable to large

datasets.
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3.5.2 Entry Point Buffer

One of the major performance gains in volume rendering can be achieved by

quickly skipping data which is classified as transparent. In particular, it is

important to begin sampling at positions close to the data of interest, i.e.,

the non-transparent data. This is particularly true for medical datasets, as

the data of interest is usually surrounded by large amounts of empty space

(air). The idea is to find, for every ray, a position close to its intersection

point with the visible volume, thus, we refer to this search as entry point

determination. The advantage of entry point determination is that it does

not require additional overhead during the actual raycasting process, but

still allows to skip a high percentage of empty space. The entry points

are determined in the ray setup phase and the rays are initialized to start

processing at the calculated entry position. The basic goal of entry point

determination is to establish a buffer, the entry point buffer, which stores

the position of the first intersection with the visible volume for each ray.

As blocks are the basic processing units of our algorithm, the first step

is to find all blocks which do not contribute to the visible volume using the

current classification, i.e., all blocks that only contain data values which are

classified as transparent. It is important that the classification of a whole

block can be efficiently calculated to allow interactive transfer function modi-

fication. We store the minimum and maximum value of the samples contained

in a block and use a summed area table of the opacity transfer function to

determine the visibility of the block [19].

A summed area table is a data structure for integrating a discrete func-

tion. We use a one-dimensional summed area table to evaluate the integral

of the opacity transfer function α over the voxels represented by a block. The

summed area table is computed in the following way: S(0) is equal to α(0)

and S(i) = S(i − 1) + α(i) for all i > 0.

The integral of the discrete function α over the interval [imin, imax] can

then be evaluated in constant time by performing two table lookups:

imax∑

imin

α(i) = S(imax) − S(imin − 1) (3.14)
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block

image plane

template

Figure 3.16: Block template generation. The block is projected onto the
image plane, its depth values are rasterized and stored in a template image.

We then perform a projection of each non-transparent block onto the

image plane with hidden surface removal to find the first intersection point

of each ray with the visible volume [49]. The goal is to establish an entry point

buffer of the same size as the image plane, which contains the depth value for

each ray’s intersection point with the visible volume. For parallel projection,

this step can be simplified. As all blocks have exactly the same shape, it is

sufficient to generate one template by rasterizing one block under the current

viewing transformation (see Figure 3.16). Projection is then performed by

translating the template by a vector t = (tx, ty, tz)
T which corresponds to the

block’s position in three-dimensional space in viewing coordinates. Thus, tx

and ty specify the position of the block on the image plane (and therefore the

location where the template has to be written into the entry point buffer)

and tz is added to the depth values of the template. The Z-buffer algorithm

is used to ensure correct visibility. During ray setup, the depth values stored
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(a) (b)

Figure 3.17: Block and octree projection. (a) projection of non-transparent
blocks. (b) projection of non-transparent octree nodes.

in the entry point buffer are used to initialize the ray positions.

The disadvantage of this approach is that it requires an addition and a

depth test at every pixel of the template for each block. This can be greatly

reduced by choosing an alternative method. The blocks are projected in

back-to-front order. The back-to-front order can be easily established by

traversing the generated block lists (see Section 3.3.3) in reverse order. For

each block the Z-value of the generic template is written into the entry point

buffer together with a unique index of the block. After the projection has

been performed, the entry point buffer contains the indices and relative depth

values of the entry points for each ray. During ray setup, the block index is

used to determine the translation vector t for the block and tz is added to

the relative depth value stored in the buffer to find the entry point of the ray.

The addition only has to be performed for every ray that actually intersects

the visible volume.

We further extend this approach to determine the entry points in a higher

resolution than block granularity. We replace the minimum and maximum

values stored for every block by a min-max octree. Its root node stores the

minimum and maximum values of all samples contained in a block. Each ad-
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ditional level contains the minimum and maximum value for smaller regions,

resulting in a more detailed description of parameter variations inside the

block. The resulting improvement in entry point determination is depicted

in Figure 3.17.

The advantage of a min-max octree is, that it stores only information

about the data values, which are independent of the transfer functions and

viewing parameters. Thus, the octree can be generated in a preprocessing

step. When the classification changes, the summed area table is used to

efficiently determine the visibility of each octree node.

For determining the visibility of an octree node, the integral over the in-

terval defined by the minimum and maximum values of the node is evaluated

using the summed area table. If the integral is zero, then all voxels repre-

sented by the node are transparent. Otherwise, a more detailed level of the

octree is used to refine the estimated classification.

When the classification changes, the summed-area table is recursively

evaluated for all blocks. The classification information itself can be stored

efficiently using a technique called hierarchy compression. Our octree has a

maximum depth of three for each block. All nodes except the most detailed

octree level (level 2) have three states (see Figure 3.18):

• opaque, i.e., none of the children of the node is transparent,

• transparent, i.e., all of the node’s children are transparent,

• inhomogeneous, i.e., the node has transparent and non-transparent chil-

dren.

For efficient storage and visibility determination, we use the following

scheme: The information whether a node of level 2 is transparent or opaque

is stored in one bit. Since each node of level 1 contains eight nodes of level

2, no additional information has to be stored for level 1. The state of a level

1 node can be determined by testing the byte which contains all the bits of

its children. For level 0 such a hierarchy compression scheme would require

to test 8 bytes to determine the state of a level 0 node and 64 bytes for

the whole block. Thus, for level 0 we explicitly store the state information.
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transparent opaque inhomogeneous

block

level 2

level 0 level 1

Figure 3.18: Octree classification of a block. The block is recursively subdi-
vided into nodes which are either classified as fully transparent, fully opaque,
or inhomogeneous. Leaf nodes can only be fully transparent or fully opaque.
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Since there are three states, we need two bits for each level 0 node. Thus,

two additional bytes are stored which contain the two bit state information

for all level 0 nodes.

The projection algorithm is modified as follows. Instead of one block

template there is now a template for each octree level. The projection of one

block is performed by recursively traversing the hierarchical classification in-

formation in back-to-front order and projecting the appropriate templates

for each level, if the corresponding octree node is non-transparent. In addi-

tion to the block index, the entry point buffer also stores an index for the

corresponding octree node (node index). During ray setup, the depth value

in the entry point buffer is translated by the tz component of the translation

vector plus the sum of the relative offsets of the node in the octree.

The node index encodes the position of a node’s origin within the octree.

It can be calculated in the following way:

index(node) =
N−1∑

i=0

octanti(node) · 8N−i−1 (3.15)

where N is the depth of the octree, octanti is the octant of level i where

the node is located. For an octree of depth N there are 8N different indices.

The relative translational offsets for the octree nodes can be pre-computed

and stored in a lookup table of 8N entries indexed by the node index.

3.5.3 Cell Invisibility Cache

As the depth of the octree does not reach down to cell level, the initial position

of a ray might not be its exact intersection point with the visible volume.

Thus, some transparent regions are still processed. We therefore introduce a

cell invisibility cache to skip the remaining transparent region at cell level.

We can skip the resampling and compositing in a cell if all eight samples

of the cell are classified as transparent. To determine the transparency, a

transfer function lookup has to be performed for each of these samples. For

large zoom factors, several rays can hit the same cell and for each of these

rays the same lookups would have to be performed.
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A cell invisibility cache is attached at the beginning of the traditional

volume raycasting pipeline. This cache is initialized in such a way that it

reports every cell as visible. In other words every cell has to be classified.

Now, if a ray is sent down the pipeline, every time a cell is classified invisible

this information is stored in the cache. If a cell is found to be invisible, this

information is stored by setting the corresponding bit in the cell invisibility

cache. As the cache stores the combined information for eight samples of a

cell in just one bit, this is more efficient than performing a transfer function

lookup for each sample. The information stored in the cell invisibility cache

remains valid as long as no transfer function modifications are performed.

During the examination of the data, e.g., by changing the viewing direction,

the cache fills up and the performance increases progressively.

The advantage of this technique is that no extensive computations are

required when the transfer function changes. The reset of the buffer can be

performed with virtually no delay, allowing fully interactive classification.

As transfer function specification is a non-trivial task, minimizing delays

initiated by transfer function modifications greatly increases usability.

3.5.4 Load Balancing

For every pass of the rendering algorithm, a list of blocks is distributed among

the available processors. A straight-forward approach for this distribution is

to simply divide the list into equally sized portions. This works well if the

algorithm does not use any optimizations for skipping empty space. However,

employing the optimizations presented in the previous sections can lead to

a very unequal distribution, and thus, reduce the performance gains due to

using multiple CPUs.

We use a simple estimate to determine the computational effort required

for processing a whole block. For a list of N blocks L = {B0, ..., BN−1} we

compute for each block B ∈ L:

load(B) =
rays(B)

1 + Ct · transparency(B)
(3.16)

rays(Bi) is the number of rays entering the block Bi and transparency(Bi)
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is a measure for the number of transparent samples in the block. An estimate

measure for the transparency can be retrieved from the classified min-max

octree. Depending on how many octree levels are taken into account, the

estimate will become more accurate. For example, a simple way to obtain

such a measure is to sum up the transparency information of the top-level

octree nodes by counting fully transparent nodes as 1
8
, fully opaque nodes as

0, and inhomogeneous nodes as 1
16

. The factor Ct determines the fraction of

processing cost between a fully opaque and a fully transparent block. If Ct

is 0, the cost of processing an opaque and a transparent block is the same,

if Ct is 1, the cost of processing a fully transparent block is half the cost of

processing a fully opaque block.

We then want to find a partition of L = L0∪...∪LM−1 for M CPUs, so that

the workload for each CPU is approximately equal. We sort all blocks B ∈ L

in descending order of load(B). A greedy algorithm then traverses the sorted

list and always assigns a block to the CPU with the smallest current load,

until all blocks have been assigned to a CPU. This approximative algorithm

results in better balanced loads while introducing little overhead.

3.6 Maintaining Interactivity

In a volume visualization system interaction is very important. The user

has to be able to freely move the viewpoint and zoom in and out. However,

since the performance of the algorithm cannot be predicted for all types of

datasets and transfer functions, it is necessary to use an adaptive scheme for

modifying rendering parameters to achieve reactivity during interaction.

We identify the following rendering parameters that represent a trade-off

between quality and speed:

Image sample distance The distance in x and y direction on the image

plane between neighboring rays.

Object sample distance The distance between subsequent samples along

a ray.



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 63

Reconstruction quality level The method used for resampling and gra-

dient estimation.

Since the rendering time is approximately proportional to the number of

rays cast, the image sample distance has quadratic influence on rendering

time. The influence of the object sample distance is very much dependent

on the transfer function and the dataset itself, thus, in contrast to the image

sample distance there is no general rule. For resampling and gradient quality

there is also no general rule. Though the different methods can be ordered

according to their complexity, their influence on the actual render time cannot

be predicted.

Our adaption scheme uses a user-supplied desired render time tdesired, the

minimum and maximum values for the image sample distance isdmin and

isdmax, the minimum and maximum values for the object sample distance

osdmin and osdmax, and the minimum and maximum values for the recon-

struction quality level rqlmin and rglmax. The reconstruction quality level de-

fines the method used for resampling and gradient estimation. The methods

are ordered according to their quality and complexity in the following way:

quality(rqli) > quality(rqli+1) and complexity(rqli) > complexity(rqli+1).

The basic adaption procedure given in Algorithm 11 computes the val-

ues for settingsnew, for a desired render time tdesired based on the values of

settingsold and the render time told achieved with these settings. ∆osd and

∆rql define the increments in which to increase or decrease the objects sample

distance and reconstruction quality level.

First, the image sample distance is adjusted according to the assumption

that it has quadratic influence on the render time. If the resulting image

sample distance is lower than isdmin, the image sample distance is set to

isdmin and the object sample distance is adjusted. If the object sample

distance cannot be adjusted, i.e., the resulting value is lower than osdmin,

then it is set to osdmin and the reconstruction quality level is adjusted, if

possible. If the adjusted image sample distance is greater than isdmax, it is

set to isdmax and the object sample distance is adjusted. If the object sample

distance cannot be adjusted, i.e., the resulting value is greater than osdmax,
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then it is set to osdmax and the reconstruction quality level is adjusted, if

possible.

Algorithm 11 ComputeAdaption(tdesired,settingsnew,told,settingsold)

settingsnew.isd = settingsold.isd
√

told

tdesired

if settingsnew.isd < isdmin then

settingsnew.isd = isdmin

settingsnew.osd = settingsold.osd − ∆osd

if settingsnew.osd < osdmin then

settingsnew.osd = osdmin

settingsnew.rql = max(settingsold.rql − ∆rql, rqlmin)
else

settingsnew.rql = settingsold.rql
end if

else if settingsnew.isd > isdmax then

settingsnew.isd = isdmax

settingsnew.osd = settingsold.osd + ∆osd

if settingsnew.osd > osdmax then

settingsnew.osd = osdmax

settingsnew.rql = min(settingsold.rql + ∆rql, 0, rqlmax)
else

settingsnew.rql = settingsold.rql
end if

else

settingsnew.osd = settingsold.osd
settingsnew.rql = settingsold.rql

end if

An application using this adaption scheme can supply different degrees of

interactivity corresponding to different values for tdesired. For example, it is

common to provide an interactive mode while the user modifies the viewing

parameters (camera position, lighting setting, etc.) and a high-quality mode.

The interactive mode would have a low value for tdesired, e.g. 0.1 seconds (10

frames/second). The high quality mode would use a very high value or

even ∞ for tdesired to ensure the best possible quality. However, since the

adaption for the object sample distance and the reconstruction quality level

is only incremental, it is possible that a transition from interactive mode to

high quality mode does not lead to the best quality.

A solution to this problem is to base the adaption on the last known values

for the current mode. In a table, for every possible value of tdesired the values

for image sample distance, object sample distance, reconstruction quality
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level, and the actual render time achieved with these settings are stored.

Before ComputeAdaption is called, tdesired is used to retrieve settingsold and

told from this table. After rendering has been performed, the measured render

time and the corresponding settings are written into the table again. This

ensures that the adaption is always based on the last known values for the

current render mode. An application can use this method to define any

number of different render modes. It is even possible to define new modes

at run-time by simply specifying a new value for tdesired. Using a value that

is not found in the table causes a new entry filled with default values to be

generated.

Figure 3.19 shows an example of the adaption scheme used in our proto-

type application. The interactive mode is activated when the user presses a

mouse button and moves the mouse to rotate the camera. When the mouse

button is held down longer than one second without moving the mouse, a

preview mode rendering is automatically performed. A high quality mode

rendering is performed as soon as the user releases the mouse button.



CHAPTER 3. VOLUME RENDERING OF LARGE DATASETS 66

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

image sample distance

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

object sample distance

0 1 2 3 4 5 6 7

reconstruction quality level

(a)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

image sample distance

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

object sample distance

0 1 2 3 4 5 6 7

reconstruction quality level

(b)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

image sample distance

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

object sample distance

0 1 2 3 4 5 6 7

reconstruction quality level

(c)

Figure 3.19: Example of interaction modes. (a) interactive mode - desired
render time: 0.25s. (b) preview mode - desired render time: 1.0s. (c) high-
quality mode: desired render time: ∞.



Chapter 4

Implementation

If debugging is the process of

removing bugs, then

programming must be the

process of putting them in.

Edsger W. Dijkstra

The volume rendering algorithm was implemented in C++. Care was

taken to avoid additional overhead of virtual method calls, etc. for criti-

cal parts of the algorithm. Additionally, the code was written according to

optimization guidelines. Some parts were optimized using inline assembler,

however, our experience has shown that heavy use of inline assembler code

can result in bad performance. This is due to the fact that inline assem-

bler affects code reordering, i.e., the compiler cannot reorder instructions to

achieve optimal performance. Inlining of methods has proven to be one of

the most valuable strategies for manual code optimization.

We have developed an interactive prototype application. The prototype

allows the management of multiple datasets and segmented objects, the ma-

nipulation of camera settings, light settings, transfer functions, and the se-

rialization of projects. Additionally, a wrapper library has been developed

which provides access to the core functionality via a thin interface. The li-

brary was deliberately designed to provide a simple interface, and thus, only

67



CHAPTER 4. IMPLEMENTATION 68

provides limited flexibility. Its purpose is to enable easy integration of the

implemented algorithms into existing applications.

4.1 Architecture

To build an extensible framework, we have developed several basic concepts

which allow the easy integration of different algorithms. In the following, we

give a brief overview over the principal building blocks of our architecture.

Figure 4.1 depicts the interaction among these basic components.

4.1.1 Environment

The environment is a description of the scene which contains information

about camera, light sources, and actors. An actor is the concrete representa-

tion of a volumetric dataset within the scene. It stores properties like transfer

functions, illumination settings, transformation, etc.

4.1.2 Volumes

A volume implements the storage scheme for volumetric data, such as a lin-

ear volume layout or a bricked volume layout. The implementation uses the

concept of volume iterators. An iterator provides access to the volume data

hiding the internal data representation. Thus, when the internal data repre-

sentation changes the remaining modules are not affected. There are general-

purpose iterators for volume traversal in predefined orders, random-access

iterators, and specialized iterators. Specialized iterators include iterators for

casting a single ray (used for picking) and an iterator which implements Law

and Yagel’s volume traversal scheme [22].

4.1.3 Renderers

A renderer uses one or more iterators to implement a specific rendering

method. The renderer determines the system configuration (number of CPUs,

support of Hyper-Threading, etc.) and instantiates its iterators accordingly.
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Figure 4.1: Architecture overview. The interrelationships between the basic
components are depicted.
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Additionaly, means for overriding these automatically detected settings are

provided. Each stage of the volume rendering pipeline is freely configurable

using templates. This implementation enables the compiler to produce highly

optimized code, because it is able to generate different code versions at com-

pile time. Apart from volume renders, other renders have been implemented

(e.g., for two-dimensional on-screen display of dataset information).

4.1.4 Manipulators

Manipulators provide means to interactively modify the scene. This in-

cludes the modification of the camera (translation, rotation, zoom, etc.),

light sources and actors. A manipulator uses an abstract event interface and

is therefore independent of the used windowing toolkit or operating system.

4.1.5 Viewers

A viewer manages a set of renderers and manipulators. The viewer treats

each renderer as a separate layer. The output images of all renderers are col-

lected and composed into a final image for display. Events are passed on to

the corresponding renderer or manipulator. The viewer base class defines in-

terfaces for communication with renderers and manipulators. Derived classes

establish a binding to a concrete windowing toolkit, such as Qt or GLUT.
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Results

Insanity: doing the same

thing over and over again and

expecting different results.

Albert Einstein

In this chapter we state the results that were determined by thorough

analysis and benchmarking of our algorithms. We examine the effects of

bricking, analyze the performance of our parallelization strategies, and demon-

strate the effectiveness of our acceleration data structures. We compare the

quality of reconstruction filters currently available in our implementation.

Finally, we present visualization results obtained with real-world medical

datasets.

5.1 Memory Management for Large Datasets

For a comparison of bricked and linear volume layouts, we use a Dual Intel

Pentium Xeon 2.4 GHz equipped with 512 KB level-2 cache, 8 KB level-1

data cache, and 1 GB of Rambus memory.

In our system, we are able to support different block sizes, as long as each

block dimension is a power of two. If we set the block size to the actual volume

dimensions, we have a common raycaster which operates on a simple linear
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volume layout. This enables us to make a meaningful comparison between

a raycaster which operates on simple linear volume layout and a raycaster

which operates on a bricked volume layout. To underline the effect of bricking

we benchmarked different block sizes. Figure 5.1 shows the actual speedup

achieved by blockwise raycasting. For testing, we specified a translucent

transfer-function, such that the impact of all high level optimizations was

overridden. In other words, the final image was the result of brute-force

raycasting of the whole data. The size of the dataset had no influence on the

actual optimal gains.

Furthermore, we did a worst-case comparison with respect to the view-

ing direction. In case of small blocks the worst case is similar to the best

case. In contrast to that, using large bricks shows enormous performance

decreases depending on the viewing direction. This is the well known fact

of view-dependent performance of a raycaster operating on a linear volume

layout. The constant performance behavior of small blocks is one of the main

advantages of a bricked volume layout. There is nearly no view dependent

performance variation anymore.

Going from left to right in the chart shown in Figure 5.1, first we have a

speedup of about 2.0 with a block size of 1 KB. Increasing the block size up

to 64 KB also increases the speedup. This is due to more efficient use of the

cache. The chart shows an optimum at a block size of 64KB (32 × 32 × 32)

with a speedup of about 2.8. This number is the optimal tradeoff between the

needed cache space for ray data structures, sample data, and lookup tables.

Larger block sizes lead to performance decreases, as they are too large for the

cache, but still suffer from the overhead caused by bricking. This performance

drop-off is reduced, once the block size approaches the volume size. With

only one volume-sized block, the rendering context corresponds to a common

raycaster operating on a linear volume layout.
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Figure 5.1: Block-based raycasting speedup compared to raycasting on a
linear volume layout

5.2 Parallelization Strategies for Commodity

Hardware

To evaluate the performance of our parallelization strategies, we use the

same test system as in the previous section. This system has two CPUs and

supports Hyper-Threading.

Our system is able to force threads on specific physical and logical CPUs.

By following this mechanism we tested different configurations to obtain

figures for the speedup achieved by the presented techniques. All test runs

consistently showed the same speedup factors.

The achieved speedups for Symmetric Multiprocessing and Simultaneous

Multithreading are shown in Figure 5.2. Testing Simultaneous Multithread-

ing on only one CPU showed an average speedup of 30%. While changing

the viewing direction, the speedup varies from 25% to 35%, due to differ-

ent transfer patterns between the level 1 and the level 2 cache. Whether

Hyper-Threading is enabled or disabled adding a second CPU approximately

reduces the computational time by 50%, i.e., Symmetric Multiprocessing and
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Figure 5.2: Symmetric Multiprocessing and Simultaneous Multithreading
speedups

Simultaneous Multithreading are independent. This shows that our Simulta-

neous Multithreading scheme scales well on multi-processor machines. The

Hyper-Threading benefit of approximately 30% is maintained if the second

hyper-threaded CPU is enabled.

Figure 5.3 shows the Simultaneous Multithreading speedup for different

block sizes. The speedup significantly decreases with larger block sizes. Once

the level 2 cache size is exceeded, the two threads have to request data from

main memory. Therefore, the CPU execution units are less utilized. Very

small block sizes suffer from a different problem. The data fits almost into

the level 1 cache. This means that one thread can utilize the execution units

more efficiently, and the second thread is idle during this time. But the

overall disadvantage is the inefficient usage of the level 2 cache. The optimal

speedup 100
100−30

≈ 1.42 is achieved with a block size of 64 KB (32× 32× 32).

This is also the optimal block size for the bricked volume layout.

5.3 Memory Efficient Acceleration Data Struc-

tures

To demonstrate the impact of our high-level optimizations we used a com-

modity notebook system equipped with an Intel Centrino 1.6 GHz CPU, 1

MB level 2 cache, and 1 GB RAM. This system has one CPU and does not
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Figure 5.3: Simultaneous Multithreading speedup for different block sizes

support Hyper-Threading, so the presented results only reflect performance

increases due to our high-level acceleration techniques.

The memory consumption of the gradient cache is not related to the

volume dimensions, but determined by the fixed block size. We use 32×32×
32 blocks, the size of the gradient cache therefore is is (33)3 · 3 · 4 byte ≈ 422

KB. Additionally we store for each cache entry a validity bit, which adds up

to 333/8 byte ≈ 4.39 KB.

Figure 5.4 shows the effect of per block gradient caching compared to per

cell gradient caching and no gradient caching at all. Per cell gradient caching

means that gradients are reused for multiple resample locations within a

cell. We chose an adequate opacity transfer function to enforce translucent

rendering. The charts from left to right show different timings for object

sample distances from 1.0 to 0.125 for three different zoom factors 0.5, 1.0,

and 2.0. In case of zoom factor 1.0 we have one ray per cell, already here per

block gradient caching performs better than per cell gradient caching. This

is due to the shared gradients between cells. For zooming out (0.5) both

gradient caching schemes perform equally well. The rays are so far apart

such that nearly no gradients can be shared. On the other hand, for zooming

in (2.0), per block caching performs much better than per cell caching. This
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Figure 5.4: Comparison of different gradient caching strategies

is due to the increased number of rays per cell. For this zoom factor, per

block gradient caching achieves a speedup of approximately 3.0 compared to

no gradient caching at a typical object sample distance of 0.5.

The additional memory usage of the acceleration data structures is rather

low. The cell invisibility cache has a size of 323 bit = 4096 byte. The min-max

octree has a depth of three storing 4 byte at each node (a 2 byte minimum

and maximum value) and requires at most 2340 byte. Additionally, the

classification information is stored, which requires 66 byte. We use blocks

of size 32 × 32 × 32 storing 2 bytes for each sample, which is a total of

65536 bytes. Our data structures increase the total memory requirements by

approximately 10%.

Figure 5.5 compares our acceleration techniques for three large medical

datasets. In the fourth column of the table, the render times for entry point

determination using block granularity is displayed. Column five shows the

render times for octree based entry point determination. In the fifth col-
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umn, the render times for octree based entry point determination plus cell

invisibility caching are displayed. Typically, about 2 frames per second are

achieved for these large data sets.

5.4 Comparison of Reconstruction Filters

In order to evaluate the quality of a reconstruction filter, Marschner and

Lobb have defined a test signal [29]:

ρ(x, y, z) =
1 − sin(πz

2
) + α(1 + ρr(

√
x2 + y2))

2(1 + α)
(5.1)

where

ρr(r) = cos(2πfM cos(
πr

2
)) (5.2)

They sampled this signal on a 40 × 40 × 40 grid in the range −1 <

x, y, z < 1, with fM = 6 and α = 0.5. This signal has the property that a

significant amount of its energy lies near the Nyquist frequency making it a

very demanding filter test.

We use this function to evaluate the reconstruction quality of our sys-

tem. We support gradient estimation using Neumann’s method [38], central

differences, and intermediate differences. Either first-order interpolation (tri-

linear interpolation) or zero-order interpolation (nearest neighbor) is used for

function value and gradient. Additionally, we support using filtered values

computed by Neumann’s 4D linear regression approach instead of the actual

density value. In Figure 5.6, we apply these reconstruction techniques to the

Marschner-Lobb function sampled on different grid sizes and compare them

with an analytic evaluation of the function and its derivative.

The effects of the different gradient estimation methods on real datasets

can be seen in Figure 5.7. Neumann’s method produces less fringing artifacts

than the other methods. Also note that using the filtered density value

causes some details to disappear. While this effect might be beneficial to the

visual appearance of the image, this typically cannot be tolerated in medical
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(a) (b) (c) (d) (e)

Visible Male aorta lower extremities

Image Dimensions Size Block Octree Cell
(a) 587 × 341 × 1878 0.70 GB 0.61 s 0.46 s 0.40 s
(b) 587 × 341 × 1878 0.70 GB 0.68 s 0.53 s 0.45 s
(c) 512 × 512 × 1112 0.54 GB 1.16 s 0.93 s 0.61 s
(d) 512 × 512 × 1202 0.59 GB 0.86 s 0.70 s 0.64 s
(e) 512 × 512 × 1202 0.59 GB 0.69 s 0.46 s 0.37 s

Figure 5.5: Acceleration techniques tested on different datasets. Column four
lists the render times for entry point determination at block level. The fifth
column gives the render times for entry point determination using octree
projection. The last column lists render times for octree projection plus
additional cell invisibility caching.
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environments.

5.5 Visualization Results

To demonstrate the applicability of the presented methods, we display visu-

alization results for clinical datasets in Figures 5.8, 5.9, 5.10, and 5.11. The

images show anatomic features and/or pathologies.
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Figure 5.6: Comparison of reconstruction methods using the Marschner-Lobb
test signal. (a) analytic evaluation. (b) zero-order interpolation, interme-
diate differences gradients. (c) zero-order interpolation, central differences
gradients. (d) zero-order interpolation, Neumann gradients. (e) first-order
interpolation, intermediate differences gradients. (f) first-order interpolation,
central differences gradients. (g) first-order interpolation, Neumann gradi-
ents. (h) first-order interpolation, Neumann gradients and filtering.
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(a) (b) (c) (d)

Figure 5.7: Comparison of gradient reconstruction methods. (a) first-order
interpolation, intermediate differences gradients. (b) first-order interpola-
tion, central differences gradients. (c) first-order interpolation, Neumann
gradients. (d) first-order interpolation, Neumann gradients and filtering.
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Figure 5.8: CT scan of colon. Bones and colon are displayed in the top
image. The bottom image shows the colon without bones.
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Figure 5.9: CT scan of heart. The myocardal muscle is displayed in red, the
coronary vessels are depicted in yellow tones.
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Figure 5.10: CT scan of lumbar spine. A fracture of a lumbar vertebra is
highlighted.
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Figure 5.11: CT scan of abdomen. Through enhancement of the abdominal
vascular structure an aorta aneurysma can be recognized.



Chapter 6

Summary

A conclusion is the place

where you got tired of

thinking.

Martin H. Fischer

In this final chapter, we summarize the main contributions presented in

this diploma thesis.

6.1 Introduction

Direct volume rendering (DVR) is a powerful technique to visualize complex

structures within volumetric data. Its main advantage, compared to standard

surface rendering, is the ability to concurrently display information about the

surface and the interior of objects. This aids the user in conveying spatial

relationships of different structures.

In medicine, visualization of volumetric datasets acquired by computed

tomography (CT), magnetic resonance imaging (MRI), or ultrasound imag-

ing helps to understand patient’s pathological conditions, improves surgical

planning, and has an important role in education. However, a typical data

size of today’s clinical routine is about 512 × 512 × 1024 (12 bit CT data)
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and will increase in the near future due to technological advances in acqui-

sition devices. Conventional slicing is of limited use for such large datasets

due to the enormous amount of slices. However, providing interactive three-

dimensional volume visualization of such large datasets is a challenging task.

6.2 Memory Management for Large Datasets

The past years have shown that the discrepancy between processor and mem-

ory performance is rapidly increasing, making memory access a potential

bottleneck for applications which have to process large amounts of data.

Raycasting, in particular, is prone to cause problems, since it generally leads

to irregular memory access patterns. We discussed practical methods to

improve memory access patterns taking advantage of the cache hierarchy.

6.2.1 Bricking

The most common way of storing volumetric data is a linear volume layout.

Volumes are typically thought of as a number of two-dimensional images

(slices) which are kept in an array. While this three-dimensional array has

the advantage of simple address calculation, it has disadvantages when used

in raycasting: Given the fact that rays are shot one after the other, the same

data has to be read several times from main memory, because the cache is

not large enough to hold the processed data of a single ray. This problem can

be targeted by a technique called tile casting. Here, rather than processing

one ray completely, each pass processes only one resample point for every ray.

However, different viewing directions still cause a different amount of cache-

line requests to load the necessary data from main memory, which leads to a

varying frame-rate. The concept of bricking supposes the decomposition of

data into small fixed-size data blocks. Each block is stored in linear order.

The basic idea is to choose the block size according to the cache size of the

architecture so that an entire block fits in a fast cache of the system.
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6.2.2 Addressing

The addressing of data in a bricked volume layout is more costly than in a

linear volume layout. To address one data element, one has to address the

block itself and the element within the block. In contrast to this addressing

scheme, a linear volume can be seen as one large block. To address a sample

it is enough to compute just one offset. In algorithms like volume raycasting,

which need to access a certain neighborhood of data in each processing step,

the computation effort for two offsets instead of one generally cannot be

neglected. In a linear volume layout, the offsets to neighboring samples are

constant. Using bricking, the whole address computation would have to be

performed for each neighboring sample that has to be accessed. To avoid this

performance penalty, one can construct an if-else statement. The if-clause

consists of checking if the needed data elements can be addressed within one

block. If the outcome is true, the data elements can be addressed as fast as

in a linear volume. If the outcome is false, the costly address calculations

have to be done. This simplifies address calculation, but the involved if-else

statement incurs pipeline flushes.

We therefore applied a different approach. We distinguished the pos-

sible sample positions by the locations of the needed neighboring samples.

The first sample location (i, j, k) is defined by the integer parts of the cur-

rent resample position. Assuming trilinear interpolation, during resampling

neighboring samples to the right, top, and back of the current location are

required. A block can be subdivided into subsets. For each subset, we can

determine the blocks in which the neighboring samples lie. Therefore, it is

possible to store these offsets in a lookup table.

The lookup table contains 8 · 7 = 56 offsets. We have eight cases, and for

each sample (i, j, k) we need the offsets to its seven adjacent samples. The

seven neighbors are accessed relative to the sample (i, j, k). Since each offset

consists of four bytes the table size is 224 bytes. The basic idea is to extract

the eight cases from the current resample position and create an index into

a lookup table, which contains the offsets to the neighboring samples.

The input parameters of the lookup table addressing function are the
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sample position (i, j, k) and the block dimensions Bx, By, and Bz. We assume

that the block dimensions are a power of two, i.e., Bx = 2Nx , By = 2Ny , and

Bz = 2Nz . As a first step, the block offset part from i, j, and k is extracted

by a conjunction with the corresponding B{x,y,z} − 1. The next step is to

increase all by one to move the maximum possible value of B{x,y,z} − 1 to

B{x,y,z}. All the other possible values stay within the range [1, B{x,y,z} − 1].

Then a conjunction of the resulting value and the complement of B{x,y,z}− 1

is performed, which maps the input values to [0, B{x,y,z}]. The last step

is to add the three values and divide the result by the minimum of the

block dimensions, which maps the result to [0,7]. This last division can be

exchanged by a shift operation. In summary, the lookup table index for a

position (i, j, k) is given by:

i′ = ((i & (Bx − 1)) + 1) & ∼ (Bx − 1)

j′ = ((j & (By − 1)) + 1) & ∼ (By − 1)

k′ = ((k & (Bz − 1)) + 1) & ∼ (Bz − 1)

index = (i′ + j′ + k′) ≫ min(Nx, Ny, Nz)

(6.1)

We use & to denote a bitwise and operation, | to denote a bitwise or

operation, ≫ to denote a right shift operation, and ∼ to denote a bitwise

negation.

A similar approach can be done for the gradient computation. We pre-

sented a general solution for a 26-connected neighborhood. Here we can,

analogous to the resample case, distinguish 27 cases. The first step is to

extract the block offset, by a conjunction with B{x,y,z}−1. Then we subtract

one, and conjunct with B{x,y,z} + B{x,y,z} − 1, to separate the case if one or

more components are zero. In other words, zero is mapped to 2 ·B{x,y,z}− 1.

All the other values stay within the range [0, B{x,y,z} − 2]. To separate the

case of one or more components being B{x,y,z}−1, we add 1, after the previous

subtraction is undone by a disjunction with 1, without loosing the separation

of the zero case. Now all the cases are mapped to {0, 1, 2} to obtain a ternary

system. This is done by dividing the components by the corresponding block

dimensions. These divisions can be replaced by faster shift operations. Then

the three ternary variables are mapped to an index in the range of [0, 26]. In
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summary, the lookup table index computation for a position (i, j, k) is:

i′ = (((((i & (Bx − 1)) − 1) & (2Bx − 1)) | 1) + 1) ≫ Nx

j′ = (((((j & (By − 1)) − 1) & (2By − 1)) | 1) + 1) ≫ Ny

k′ = (((((k & (Bz − 1)) − 1) & (2Bz − 1)) | 1) + 1) ≫ Nz

index = 9i′ + 3j′ + k′

(6.2)

The presented index computations can be performed efficiently on current

CPUs, since they only consist of simple bit manipulations. The lookup tables

can be used in raycasting on a bricked volume layout for efficient access to

neighboring samples. The first table can be used if only the eight samples

within a cell have to be accessed (e.g., if gradients have been pre-computed).

The second table allows full access to a 26-neighborhood. Compared to the

if-else solution which has the costly computation of two offsets in the else

branch, we get a speedup of about 30%. The benefit varies, depending on

the block dimensions. For a 32× 32× 32 block size the else-branch has to be

executed in 10% of the cases and for a 16 × 16× 16 block size in 18% of the

cases.

6.2.3 Traversal

It is most important to ensure that data once replaced in the cache will not be

required again to avoid thrashing. Law and Yagel have presented a thrashless

distribution scheme for parallel raycasting [22]. Their scheme relies on an

object space subdivision of the volume. While their method was essentially

developed in the context of parallelization, to avoid redundant distribution of

data blocks over a network, it is also useful for a single-processor approach.

The volume is subdivided into blocks. These blocks are then sorted in

front-to-back order depending on the current viewing direction. The ordered

blocks are placed in a set of block lists in such a way that no ray that intersects

a block contained in a block list can intersect another block from the same

block list. Each block holds a list of rays whose current resample position lies

within the brick. The rays are initially added to the list of the block which
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they first intersect. The blocks are then traversed in front-to-back order by

sequentially processing the block lists. The blocks within one block list can

be processed in any order, e.g., in parallel. For each block, all rays contained

in its list are processed. As soon as a ray leaves a block, it is removed from its

list and added to the new block’s list. When the ray list of a block is empty,

processing is continued with the next block. Due to the subdivision of the

volume, it is very likely that a block entirely remains in a fast cache while

its rays are being processed, provided the block size is chosen appropriately.

The generation of the block lists does not have to be performed for each

frame. For parallel projection there are eight distinct cases where the order

of blocks which have to be processed remains the same. Thus, the lists can

be pre-computed for these eight cases.

6.3 Parallelization Strategies for Commodity

Hardware

Raycasting has always posed a challenge on hardware resources. Thus,

numerous approaches for parallelization have been presented. As our tar-

get platform is consumer hardware, we have focused on two parallelization

schemes available in current stand-alone PCs: Symmetric Multiprocessing

(SMP) and Simultaneous Multithreading (SMT).

6.3.1 Symmetric Multiprocessing

Computer architectures using multiple similar processors connected via a

high-bandwidth link and managed by one operating system are referred to as

Symmetric Multiprocessing systems. Each processor has equal access to I/O

devices. As Law and Yagel’s traversal scheme [22] was originally developed

for parallelization, it is straight-forward to apply to SMP architectures. The

blocks in each of the block lists can be processed simultaneously. Each block

list is partitioned among the countphysical CPUs available.

A possible problem occurs when rays from two simultaneously processed

blocks have the same subsequent block. One way of handling these cases
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would be to use synchronization primitives, such as mutexes or critical sec-

tions, to ensure that only one thread can assign rays at a time. However,

the required overhead can decrease the performance drastically. Therefore,

to avoid the race conditions when two threads try to add rays to the ray list

of a block, each block has a list for every physical CPU. When a block is

being processed, the rays of all these lists are processed. When a ray leaves

the block, it is added to the new block’s ray list corresponding to the CPU

currently processing the ray.

6.3.2 Simultaneous Multithreading

Simultaneous Multithreading is a well-known concept in workstation and

mainframe hardware. It is based on the observation that the execution re-

sources of a processor are rarely fully utilized. Due to memory latencies

and data dependencies between instructions, execution units have to wait

for instructions to finish. While modern processors have out-of-order execu-

tion units which reorder instructions to minimize these delays, they rarely

find enough independent instructions to exploit the processor’s full potential.

SMT uses the concept of multiple logical processors which share the resources

of just one physical processor. Executing two threads simultaneously on one

processor has the advantage of more independent instructions being avail-

able, thus increasing CPU utilizations. This can be achieved by duplicating

state registers, which only leads to little increases in manufacturing costs.

Intel’s SMT implementation is called Hyper-Threading and was first avail-

able on the Pentium 4 CPU. Currently, two logical CPUs per physical CPU

are supported.

For exploiting SMT, it is essential that the threads operate on neighbor-

ing data items, since the logical processors share chaches. Therefore, treating

the logical CPUs in the same way as physical CPUs leads to little or no per-

formance increase. Instead, it might even lead to a decrease in performance,

due to cache thrashing. Thus, the processing scheme has to be extended in

order to allow multiple threads to operate within the same block.

The blocks are distributed among physical processors as described in the
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previous section. Additionally, within a block, multiple threads each exe-

cuting on a logical CPU simultaneously process the rays of a block. Using

several threads to process the ray list of a block would lead to race con-

ditions and would therefore require expensive synchronization. Thus, in-

stead of each block having just one ray list for every physical CPU, we now

have countlogical lists per physical CPU, where countlogical is the number of

threads that will simultaneously process the block, i.e., the number of logi-

cal CPUs per physical CPU. Thus, each block has countphysical · countlogical

ray lists raylist[idphysical][idlogical] where idphysical identifies the physical CPU

and idlogical identifies the logical CPU relative to the physical CPU. A ray

can move between physical CPUs depending on how the block lists are parti-

tioned within in each pass, but they always remain in a ray list with the same

idlogical. This means that for equal workloads between threads, the rays have

to be initially distributed among these lists, e.g., by alternating the idlogical

of the list a ray is inserted to during ray setup.

6.4 Memory Efficient Acceleration Data Struc-

tures

Applying efficient memory access and parallelization techniques still is not

sufficient to efficiently handle the huge processing loads caused by large

datasets. We presented algorithmic optimizations to reduce this workload.

We introduced three techniques which each can achieve a significant reduc-

tion of rendering times. Our goal was to minimize the additional memory

requirements of newly introduced data structures.

6.4.1 Gradient Cache

When using an expensive gradient estimation method, caching of intermedi-

ate results is inevitable if high performance has to be achieved. An obvious

optimization is to perform gradient estimation only once for each cell. When

a ray enters a new cell, the gradients are computed at all eight corners of

the cell. The benefit of this method is dependent on the number of resample
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locations per cell, i.e., the object sample distance. However, the computed

gradients are not reused for other cells. This means that each gradient typ-

ically has to be computed eight times. For expensive gradient estimation

methods, this can considerably reduce the overall performance. It is there-

fore important to store the results in a gradient cache. However, allocating

such a cache for the whole volume still has the mentioned memory problem.

Our blockwise volume traversal scheme allows us to use a different ap-

proach. We perform gradient caching on a block basis. The cache is able

to store one gradient entry for every grid position contained in a cell of the

current block. Thus, the required cache size is (Bx +1)× (By +1)× (Bz +1)

where Bx, By, Bz are the block dimensions. The block dimensions have to

be increased by one to enable interpolation across block boundaries. Each

entry of the cache stores the three components of a gradient, using a 4 byte

single precision floating-point number for each component. Additionally, a

bit array has to be stored that encodes the presence of an entry in the cache

for each grid position in a cell of the current block.

When a ray enters a new cell, for each of the eight corners of the cell the

bit set is queried. If the result of a query is zero, the gradient is computed

and written into the cache. The corresponding value of the bit set is set

to one. If the result of the query is one, the gradient is already present

in the cache and is retrieved. The disadvantage of this approach is that

gradients at block borders have to be computed multiple times. However,

this caching scheme still greatly reduces the performance impact of gradient

computation and requires only a modest amount of memory. Furthermore,

the required memory is independent of the volume size, which makes this

approach applicable to large datasets.

6.4.2 Entry Point Buffer

One of the major performance gains in volume rendering can be achieved by

efficiently skipping data which is classified as transparent. In particular, it

is important to begin sampling at positions close to the data of interest, i.e.,

the non-transparent data. This is particularly true for medical datasets, as
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the data of interest is usually surrounded by large amounts of empty space

(air). The idea is to find, for every ray, a position close to its intersection

point with the visible volume, thus, we refer to this search as entry point

determination. The advantage of entry point determination is that it does

not require additional overhead during the actual raycasting process, but

still allows to skip a high percentage of empty space. The entry points

are determined in the ray setup phase and the rays are initialized to start

processing at the calculated entry position. The basic goal of entry point

determination is to establish a buffer, the entry point buffer, which stores

the position of the first intersection with the visible volume for each ray.

As blocks are the basic processing entities of our algorithm, the first step

is to find all blocks which do not contribute to the visible volume using the

current classification, i.e., all blocks that only contain data values which are

classified as transparent. It is important that the classification of a whole

block can be calculated efficiently to allow interactive transfer function modi-

fication. We store the minimum and maximum value of the samples contained

in a block and use a summed area table of the opacity transfer function to

determine the visibility of the block. We then perform a projection of each

non-transparent block onto the image plane with hidden surface removal to

find the first intersection point of each ray with the visible volume. The goal

is to establish an entry point buffer of the same size as the image plane, which

contains the depth value for each ray’s intersection point with the visible vol-

ume. For parallel projection, this step can be simplified. As all blocks have

exactly the same shape, it is sufficient to generate one template by rasterizing

the block under the current viewing transformation. Projection is performed

by translating the template by a vector t = (tx, ty, tz)
T which corresponds to

the block’s position in three-dimensional space in viewing coordinates. Thus,

tx and ty specify the position of the block on the image plane (and therefore

the location where the template has to be written into the entry point buffer)

and tz is added to the depth values of the template. The Z-buffer algorithm

is used to ensure correct visibility. In ray setup, the depth values stored in

the entry point buffer are used to initialize the ray positions.

The disadvantage of this approach is that it requires an addition and a
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depth test at every pixel of the template for each block. This can be greatly

reduced by choosing an alternative method. The blocks are projected in

back-to-front order. The back-to-front order can be easily established by

traversing the generated block lists in reverse order. For each block the Z-

value of the generic template is written into the entry point buffer together

with a unique index of the block. After the projection has been performed,

the entry point buffer contains the indices and relative depth values of the

entry points for each ray. In ray setup, the block index is used to find the

translation vector t for the block and tz is added to the relative depth value

stored in the buffer to find the entry point of the ray. The addition only has

to be performed for every ray that actually intersects the visible volume.

We further extended this approach to determine the entry points in a finer

resolution than block granularity. We replaced the minimum and maximum

values stored for every block by a min-max octree. Its root node stores

the minimum and maximum values of all samples contained in the block.

Each additional level contains the minimum and maximum value for smaller

regions, resulting in a more detailed description of parameter variations inside

the block. Every time the classification changes, the summed area table is

recursively evaluated for each octree node and the classification information

is stored as linearized octree bit encoding using hierarchy compression.

The projection algorithm was modified as follows. Instead of one block

template there is now a template for every octree level. The projection of

one block is performed by recursively traversing the hierarchical classification

information in back-to-front order and projecting the appropriate templates

for each level, if the corresponding octree node is non-transparent. In ad-

dition to the block index, the entry point buffer now also stores an index

for the corresponding octree node. In ray setup, the depth value in the en-

try point buffer is translated by the tz component of the translation vector

plus the sum of the relative offsets of the node in the octree. The relative

translational offsets for the octree nodes can be pre-computed and stored in

a lookup table.
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6.4.3 Cell Invisibility Cache

We introduced a cell invisibility cache to skip the remaining transparent

regions at cell level. We can skip the resampling and compositing in a cell

if all eight samples of the cell are classified as transparent. To determine

the transparency, a transfer-function lookup has to be performed for each of

these samples. For large zoom factors, several rays can hit the same cell and

for each of these rays the same lookups would have to be performed.

A cell invisibility cache is attached at the beginning of the traditional

volume raycasting pipeline. This cache is initialized in such a way that it

reports every cell as visible. In other words every cell has to be classified.

Now, if a ray is sent down the pipeline, every time a cell is classified invisible

this information is stored in the cache. If a cell is found to be invisible, this

information is stored by setting the corresponding bit in the cell invisibility

cache. As the cache stores the combined information for eight samples of a

cell in just one bit, this is more efficient than performing a transfer function

lookup for each sample. The information stored in the cell invisibility cache

remains valid as long as no transfer function modifications are performed.

During the examination of the data, e.g., by changing the viewing direction,

the cache fills up and the performance increases progressively.

The advantage of this technique is that no extensive computations are

required when the transfer function changes. The reset of the buffer can be

performed with virtually no delay, allowing fully interactive classification.

As transfer function specification is a non-trivial task, minimizing delays

initiated by transfer function modifications greatly increases usability.

6.5 Results

We performed a comprehensive performance evaluation of the proposed tech-

niques. The results were obtained by thorough experiments on diverse hard-

ware.
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6.5.1 Memory Management for Large Datasets

For a comparison of bricked and linear volume layouts, we used a Dual Intel

Pentium Xeon 2.4 GHz equipped with 512 KB level-2 cache, 8 KB level-1

data cache, and 1 GB of Rambus memory.

In our system, we are able to support different block sizes, as long as

each block dimension is a power of two. If we set the block size to the actual

volume dimensions, we have a common raycaster which operates on a simple

linear volume layout. This enables us to make a meaningful comparison

between a raycaster which operates on a simple linear volume layout and

a raycaster which operates on a bricked volume layout. To underline the

effect of bricking we benchmarked different block sizes. We have a speedup

of about 2.0 with a block size of 1 KB. Increasing the block size up to 64 KB

also increases the speedup. This is due to more efficient use of the cache. The

chart shows an optimum at a block size of 64KB (32×32×32) with a speedup

of about 2.8. This number is the optimal tradeoff between the needed cache

space for ray data structures, sample data, and lookup tables. Larger block

sizes lead to performance decreases, as they are too large for the cache, but

still suffer from the overhead caused by bricking. This performance drop-

off is reduced, once the block size approaches the volume size. With only

one volume-sized block, the rendering context is that of a common raycaster

operating on a linear volume layout.

6.5.2 Parallelization Strategies for Commodity Hard-

ware

To evaluate the performance of our parallelization strategies, we used the

same test system as in the previous section. This system has two CPUs and

supports Hyper-Threading.

Our system is able to force threads on specific physical and logical CPUs.

By following this mechanism we tested different configurations to obtain fig-

ures for the speedup achieved by the presented techniques. All test runs

consistently showed the same speedup factors. Testing Simultaneous Mul-

tithreading on only one CPU showed an average speedup of 30%. While
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changing the viewing direction, the speedup varies from 25% to 35%, due to

different transfer patterns between the level 1 and the level 2 cache. Whether

Hyper-Threading is enabled or disabled adding a second CPU approximately

reduces the computational time by 50%, i.e., Symmetric Multiprocessing and

Simultaneous Multithreading are independent. This shows that our Simulta-

neous Multithreading scheme scales well on multi-processor machines. The

Hyper-Threading benefit of approximately 30% is maintained if the second

hyper-threaded CPU is enabled.

For different block sizes, the speedup for Simultaneous Multithreading

varies. The speedup significantly decreases with larger block sizes. Once the

level 2 cache size is exceeded, the two threads have to request data from

main memory. Therefore, the CPU execution units are less utilized. Very

small block sizes suffer from a different problem. The data fits almost into

the level 1 cache. This means that one thread can utilize the execution units

more efficiently, and the second thread is idle during this time. But the

overall disadvantage is the inefficient usage of the level 2 cache. The optimal

speedup 100
100−30

≈ 1.42 is achieved with a block size of 64 KB (32× 32× 32).

This is also the optimal block size for the bricked volume layout.

6.5.3 Memory Efficient Acceleration Data Structures

To demonstrate the impact of our high-level optimizations we used a com-

modity notebook system equipped with an Intel Centrino 1.6 GHz CPU, 1

MB level 2 cache, and 1 GB RAM. This system has one CPU and does not

support Hyper-Threading so the presented results only reflect performance

increases due to our high-level acceleration techniques.

The memory consumption of the gradient cache is not related to the

volume dimensions, but determined by the fixed block size. We use 32×32×
32 sized blocks, the size of the gradient cache therefore is is (33)3 · 3 · 4 byte

≈ 422 KB. Additionally we store for each cache entry a validity bit, which

adds up to 333/8 bytes ≈ 4.39 KB.

The impact of our gradient caching scheme is determined by the zoom

factor and the object sample distance. In case of zoom factor 1.0 we have one
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ray per cell, already here per block gradient caching performs better than per

cell gradient caching. This is due to the shared gradients between cells. For

zooming out both gradient caching schemes perform equally well. The rays

are so far apart such that nearly no gradients can be shared. On the other

hand, for zooming in, per block caching performs much better than per cell

caching. This is due to the increased number of rays per cell. For a zoom

factor of 2.0, per block gradient caching achieves a speedup of approximately

3.0 compared to no gradient caching at a typical object sample distance of

0.5.

The additional memory usage of the acceleration data structures is rather

low. The cell invisibility cache has a size of 323 bit = 4096 byte. The min-max

octree has a depth of three storing 4 byte at each node (a 2 byte minimum

and maximum value) and requires at most 2340 byte. Additionally, the

classification information is stored, which requires 66 byte. We use blocks

of size 32 × 32 × 32 storing 2 bytes for each sample, which is a total of

65536 bytes. Our data structures increase the total memory requirements by

approximately 10%.

Our tests have shown that a combination of the proposed optimizations

achieves render times of about 2 frames per second for various large datasets.

6.6 Conclusion

We have presented different techniques for volume visualization of large

datasets on commodity hardware. We have shown that efficient memory

management is fundamental to achieve high performance. Our work on par-

allelization has demonstrated that well-known methods for large parallel sys-

tems can be adapted and extended to exploit evolving technologies, such as

Simultaneous Multithreading. Our memory efficient data structures provide

frames per second performance even for large datasets. A key point of our

work was to demonstrate that commodity hardware is able to achieve the

performance necessary for real-world medical applications. In future work,

we will investigate out-of-core and compression methods to permit the use

of even larger datasets.
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vise and help. I further thank Eduard Gröller, our beloved master, for his
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[18] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In Proceedings of Visualization 2003, pages 287–292,

2003.

[19] P. Lacroute. Fast Volume Rendering Using a Shear-Warp Factoriza-

tion of the Viewing Transformation. PhD thesis, Stanford University,

Computer Systems Laboratory, 1995.

[20] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp

factorization of the viewing transformation. Computer Graphics, 28(An-

nual Conference Series):451–458, 1994.

[21] A. Law and R. Yagel. Exploiting spatial, ray, and frame coherency

for efficient parallel volume rendering. In Proceedings of GRAPHICON

1996, pages 93–101, 1996.

[22] A. Law and R. Yagel. Multi-frame thrashless ray casting with advancing

ray-front. In Proceedings of Graphics Interfaces 1996, pages 70–77, 1996.

[23] A. Law and R. Yagel. An optimal ray traversal scheme for visualizing

colossal medical volumes. In Proceedings of Visualization in Biomedical

Computing 1996, pages 43–52, 1996.

[24] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-

ics and Applications, 8(3):29–37, 1988.

[25] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on

Graphics, 9(3):245–261, 1990.

[26] M. Levoy. Volume rendering by adaptive refinement. The Visual Com-

puter, 6(1):2–7, 1990.

[27] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution

3D surface construction algorithm. Computer Graphics, 21(4):163–168,

1987.



BIBLIOGRAPHY 105

[28] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Up-

ton. Hyper-threading technology architecture and microarchitecture.

Intel Technology Journal, 6(1):4–15, 2002.

[29] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters

for volume rendering. In Proceedings of Visualization 1994, pages 100–

107, 1994.

[30] N. Max. Optical models for volume rendering. In M. Göbel, H. Müller,
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