
StubeRenA
Studierstube Render Array

-
A Seamless Tiled Display

Gottfried Eibner

June 2003

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Contents

I 7

1 Introduction 9
1.1 Motivation . 9
1.2 Overview . 11

2 Commodity hardware today 13
2.1 Projectors . 13
2.2 Computer systems . 15
2.3 Screen material . 15
2.4 Our choices . 16

3 Related work 17
3.1 Calibration approaches . 17

3.1.1 Abutted displays . 18
3.1.2 Regular overlap displays 19
3.1.3 Rough overlap displays 20

3.2 Computer systems . 28
3.2.1 Parallel computer architecture 29
3.2.2 Networked computer architecture 30

3.3 Network hardware . 30
3.3.1 Ethernet . 31
3.3.2 Myrinet . 32

3.4 Data distribution . 33
3.4.1 Synchronized execution 37
3.4.2 Primitives distribution 40
3.4.3 Pixel distribution . 43

3.5 Display synchronization . 43
3.5.1 Frame buffer switch synchronization 44
3.5.2 Refresh rate synchronization 44

3.6 Open Inventor . 46
3.7 Distributed Open Inventor and Studierstube 49

3

4 CONTENTS

4 Design issues 51
4.1 Calibration . 51
4.2 Cluster architecture . 52
4.3 Data distribution . 53
4.4 Display synchronization . 53

5 Implementation issues 57
5.1 Calibration . 57
5.2 Studierstube . 58

5.2.1 Data distribution . 58
5.2.2 Display synchronization 59
5.2.3 Tiled Display . 63
5.2.4 Summary . 64

6 Results 69
6.1 Performance . 69
6.2 Visual accuracy . 73
6.3 Scalability . 75
6.4 Maintenance . 79

7 Future work 81
7.1 Display and event synchronization 81
7.2 Synchronized execution . 81
7.3 Very large displays . 82
7.4 Detecting the screen wall . 82
7.5 Other synchronization models 82

8 Acknowledgement 83

II 85

9 User Manual 87
9.1 Introduction . 87
9.2 Application usage . 89

9.2.1 Server application . 89
9.2.2 Camera client application 89
9.2.3 Projector client application 91
9.2.4 User client application 93

9.3 Installation and Compilation 95
9.3.1 Before compiling the Overlap package 96
9.3.2 Before running any part of the Overlap software 96

CONTENTS 5

9.4 Running the applications . 96
9.5 Known problems . 97

10 Developer Manual 99
10.1 Introduction . 99
10.2 Class hierarchy . 99
10.3 Overlap server code . 100

10.3.1 RenaServer . 104
10.3.2 RenaReactor . 104
10.3.3 RenaLogin . 104
10.3.4 RenaLine . 104
10.3.5 RenaObject . 105
10.3.6 RenaCamera . 105
10.3.7 RenaProjector . 105
10.3.8 RenaUser . 106
10.3.9 main . 106
10.3.10Summary . 106

10.4 Camera client code . 106
10.4.1 RenaCameraWindow 106
10.4.2 RenaCameraClient . 107
10.4.3 RenaCalibration . 107
10.4.4 RenaProjectorData . 108
10.4.5 RenaMath . 108
10.4.6 main . 109

10.5 Projector client code . 109
10.5.1 RenaProjectorWindow 109
10.5.2 RenaProjectorClient 109
10.5.3 main . 109

10.6 User client code . 109
10.6.1 RenaUserClient . 110
10.6.2 main . 110

10.7 Additional code . 110
10.7.1 RenaClient . 110
10.7.2 RACOM . 111
10.7.3 Defined macros . 111

10.8 Remarks for future extensions 112
10.8.1 Extension of Overlap 112
10.8.2 Known bugs . 113

6 CONTENTS

Abstract

High-end rendering systems have provided the computer graphics community
over a long period with high resolution graphics at high frame rates, allow-
ing to build up large tiled displays. But with the increasing performance of
commodity computer and graphics hardware we are able to build such large
displays without the costs of high-end rendering systems. The key concept is
to build an inexpensive large tiled display for interactive 3D graphics, com-
posed of multiple overlapping projections, driven by a PC based rendering
cluster.
In this thesis we will show how to build up a tiled display from scratch using
oblique projectors to display high-resolution scenery. Each projector is driven
by a PC. The PCs are connected to form a network that is capable to share
and distribute data and scenery content. All projected images together form
a large high-resolution tiled display. To run the tiled display and compensate
distortion coming from oblique projection, we have implemented a software
to calibrate the projectors and find their relative poses. The software package
undistorts oblique projectors used for the tiled display and generates blend-
ing masks for overlapping projection areas. Both undistortion and blending
masks are used to run a seamless tiled display. While undistortion guaran-
tees the continuity of geometry displayed by different projectors, blending
masks make overlapping regions appear seamless and equally bright. With-
out blending masks overlapping regions would appear brighter than the other
regions. This would lead to regions of different brightness.

Keywords: tiled display, render cluster, synchronization, calibration, dis-
tributed graphics, virtual reality.

Part I

7

Chapter 1

Introduction

“Tiled displays are an emerging technology for constructing semi-
immersive visualization environments capable of presenting high-
resolution images from scientific simulation. [...] However, the
largest impact may well be in using large-format tiled displays
as one of possibly multiple displays in building “information” or
“active” spaces that surround the user with diverse ways of inter-
acting with data and multimedia information flows. These envi-
ronments may prove to be the ultimate successor of the desktop
metaphor for information technology work.” [Humphreys et al.00]

1.1 Motivation

Large seamless tiled displays are an approach to show information, explore
and visualize scientific data from complex simulations, or render 3D scenery
at high resolution with high refresh rates and with high details. Tiled dis-
plays were first based on high-end rendering system with parallel computing
abilities. These high-end systems supported the computer graphics com-
munity for a long time with high resolution graphics scenery featuring the
possibility to drive several displays concurrently needed for tiled displays at
high or constant frame rates.

The drawbacks of high-end systems today are on the one hand their price
and on the other hand the fast performance growth of low-cost graphics ac-
celerators in the last years reaching or even putting high-end machines capa-
bilities behind them. Nowadays it is no problem to build a rendering system
with a cluster of computers based on cheap PC hardware each equipped with
low-cost graphics accelerators connected to one or more displays to produce
one large tiled display with an immersive panoramic view and high-resolution

9

10 CHAPTER 1. INTRODUCTION

at the same time.
When designing such an equivalent but cheap system we have to keep in

mind that we want to design a rendering system that allows an application to
render to a large tiled display with the ability to distribute scenery content,
user input, and other data like synchronization points relevant for rendering.
We have to switch from a shared memory approach to a distributed one.
With the reduction of prices for displays, computer hardware, and graphics
accelerators we can build such a rendering system multiple times cheaper
than high-end rendering systems. While the costs for high-end systems are
above a million dollars, the costs of a PC hardware based render cluster
should not exceed an order of magnitude less than the high-end systems’
costs. With costs in mind and the rapidly increasing performance of present-
day graphics hardware, the inexpensive solution also is the better one making
it possible to track modern computer and graphics hardware and architecture.
So we are able to extend and maintain our system with minimal financial
effort and keep pace with newer and faster hardware.

Taking a look at the software side, the advantage of a tiled display ren-
der system is its high scalability and flexible extension without the need to
change the application’s code. We are able to run any application we want
on the large display without or with minor changes. This leads us to another
goal of large displays. With a tiled display we are able to render large and
complex 3D scenery at high detail giving us the chance to explore virtual
environments with a new sight. Running already existing applications on
the tiled display, we can explore and visualize scientific data from complex
simulations or render virtual environments with higher details and at higher
resolution than using a single projector or monitor (see figure 1.1). This
impressive experience in a virtual environment is the final goal of any virtual
or augmented reality system leaving the user without any doubt, that his
experience is real.

In this thesis we examine the different approaches taken by other research
groups to build a tiled display. The goal is to build a seamless tiled display
from scratch using mid-range projectors and a computer cluster to render
3D scenery. All computers within the cluster are autonomous and connected
via a local area network to form an integrated facility. The cluster renders
a common shared scenery. The rendered images are projected on a display
surface and form a large high-resolution tiled display. The aim of this thesis
is to show the advantages to render complex scenery with a render cluster
and a tiled display. These advantages are high detailed scenery, high frame
rates, and multiple setups including front projection, stereo projection, and
auto-calibration of arbitrarily positioned projectors.

To be able to render to the tiled display, we used and extended our

1.2. OVERVIEW 11

Figure 1.1: A 4.7 Megapixels tiled display, using six mid-range projectors
with a resolution of 1024× 768 pixels each versus a 1600× 1200 pixels high-
end projector reaching a resolution of about 1.9 Megapixels. As shown in the
magnified sections of both projections, on the tiled display finer details are
visible. If both projections should be equally bright, the high-end projector
must be 6 times brighter than the mid-range projectors.

Studierstube framework [Studierstube]. The Studierstube system is a collab-
orative augmented reality system. Its primary use is to provide a 3D render
system which augments real scenes with virtual 3D gaphics. It is a multi-
user and multi-application system allowing multiple users to collaborate in a
virtual world on different tasks.

We create the Studierstube Render Array - StubeRenA - which is a render
cluster that drives a seamless tiled display. Each node within the render
cluster runs the Studierstube system and represents a “user” in a virtual
world. Each “user” renders his part of the scenery on his tile of the tiled
display to form the seamless tiled display in the end.

1.2 Overview

Chapter 2 investigates the differences of hardware components we need and
states our way of choice. We depict the differences of computer architectures

12 CHAPTER 1. INTRODUCTION

and the choice of projectors and screen materials leading to different tiled
display configurations.

Chapter 3 gives an overview of other research projects. We will investigate
their approaches and ask for advantages and disadvantages of their systems.
We give a classification of the different tiled display setups and the different
software solutions to run a tiled display.

Chapter 4 shows our way of choosing between different approaches from
other research projects keeping in mind a low budget solution with high
visual accuracy and high scalability.

Chapter 5 gives an overview of our implementation to calibrate a tiled
display with arbitrary size and resolution, and to enhance the Studierstube
framework to render Studierstube applications on the tiled display.

Chapter 6 & 7 give a summary of our approach and serves as a guideline
for developers to extend the StubeRenA project in the future. It points out
directions that have been left out in this work and describes ideas that came
to our mind in the course of research.

Chapter 9 documents the usage of our calibration software to calibrate
oblique projectors to build a seamless tiled display.

Chapter 10 documents the code and classes to run our calibration soft-
ware.

Chapter 2

Commodity hardware today

To build large display screens with today’s commodity hardware, we have
to take a look at the different hardware components we need. They can be
divided into three parts, projectors, computer systems, and screen material.
We have to investigate all three kinds of hardware to pick out the most
suitable for our solution concerning price, durability, and maintenance.

2.1 Projectors

Projectors are the most important hardware to investigate, because they
create the tiled display in the end. The choice of projector is perhaps the
most difficult decision, because there exists a variety of models differing in
price, resolution, and brightness. These factors determine the appearance
of the whole tiled display. There are also some other factors that account
for appearance, but the mentioned one are the most critical one. So the
projectors have to fulfill a variety of parameters to be selected as the hardware
to use.

• Price is a main factor when designing a tiled display. Depending on the
resolution of the display we need half a dozen or a dozen of projectors
to satisfy our needs. So keeping the price low will save a lot of money
at the end. Our restriction was a range between $3000 to $5000 dollars.
Although there are projectors beyond the $10K dollar mark which are
mainly used for high end multimedia purpose (like in seminar rooms,
or theaters) supporting different video formats, automatic correction,
and distortion, automatic brightness adaption, and many more. But
with the drop-off in prices of the low and middle class projectors it gets
possible to fulfill the other factors without exceeding a limited budget.

13

14 CHAPTER 2. COMMODITY HARDWARE TODAY

• The resolution of each projector determines the resolution of the tiled
display as a whole. Using low resolution projectors increases the num-
ber of projectors we need to build a high resolution tiled display. This
in turn raises the number of display hardware and finally the number
of computer hardware units. But with the ongoing improvement in
LCD and DLP technology, the resolution of low-cost projectors will
move beyond the one Mega pixel mark in the near future supporting
resolutions above 1280× 1024 pixels.

• Brightness comes into concern when using the tiled display in normal
environments unlike seminar rooms or theaters which are used with
dimmed daylight or artificial lighting conditions. Brightness should be
as high as possible to meet our need to set up a tiled display even in
well lit rooms. We choose a minimum brightness of about 1500 ANSI-
Lumen. This is enough because the use of several projectors on a screen
surface increases the luminance perceived by the viewer compared to
only one very bright projector (i.e. four 1500 Lumen projectors will be
as bright as one 6000 Lumen projector when lighting an area on the
screen with fixed size).

• Weight as a factor of concern was addressed to keep our tiled display
transportable, using it as a portable high resolution display easy to set
up and install anywhere we need. Weight also affects scalability. If
heavy projectors are used, special mounting racks have to be used, but
with light ones we can use off-the-shelf mounting systems.

• Other factors also delimits the appearance, clarity, and image quality
of the tiled display. These factors include

color gamut: using different projector models lowers the impres-
sion of one large display since seams between adjacent projectors
become noticeable

data interfaces (analog or digital): while analog signals can be
transmitted over long distances, a digital signal will save the clar-
ity and sharpness of an image since D/A-A/D conversions are
unnecessary

optics: optical properties affect image quality (flatness of focus,
sharpness, image distortion, etc.)

refresh rates: high refresh rates are vital for active stereo, but also
avoid eyestrain of the viewer

2.2. COMPUTER SYSTEMS 15

2.2 Computer systems

There are two types of computer systems currently used to drive a tiled
display. Shared memory machines deliver the possibility to share scenery
content and data, while networked PC clusters keep scalable under some as-
pects. Using high-end computer systems with shared memory and the ability
to drive more than one graphics accelerator shows up to be very expensive.
There also exists a PC based shared memory solution, i.e. a PC equipped
with several graphics cards to drive several displays. The limiting factor of
the PC approach is its poor bandwidth when complex scenes should be ren-
dered. The drawback of both approaches is that only a limited number of
displays can be driven, which restricts the resolution of the tiled display. For
the PC render cluster, we can use off-the-shelf computer hardware equipped
with a commodity graphics accelerator and a network card to be able to
distribute, or replicate scenery and application data among the nodes in the
cluster.

In each case different problems exist that need to be addressed. Shared
data management, computation speed, bandwidth to the rendering pipelines,
and display synchronization, to list a few of them. Each system keeps its
own solution for these tasks, including software reengineering or adaption
to run common applications on the tiled display. In the end, the image
generators must have sufficient performance to deliver real-time performance.
See section 3.2 for a brief description of advantages and disadvantages of the
two architectural approaches. It should be pointed out that communication
and synchronization is much easier in the shared memory architecture, but
as mentioned in section 1.2 we want to use off-the-shelf computer hardware
charging the budget as little as possible. This approach keeps our system
scalable to increase the resolution of the tiled display in the future by adding
some computers and projectors to the render cluster.

2.3 Screen material

When designing a tiled display an important step is to choose the right screen
material. There are two possibilities to drive the display. On the one hand
rear or back projection which will be more elegant and comfortable for a user,
because he is not limited in movement in front of the screen to watch the
scenery. So the user can pick out details shown on the display while nearly
touching the screen with his nose, or point to the screen without interfering
with the displayed content. On the other hand during front projection the
user will sometimes partially occlude the scenery when standing in the beam

16 CHAPTER 2. COMMODITY HARDWARE TODAY

of light of any projector. It should be pointed out that [Sukthankar et al.01]
and [Jaynes et al.01] show a way to remove shadows on the display surface.
But these approaches are difficult. The same display area must be illuminated
redundantly by more than one projector under different projection angles
to mute shadows. This increases the number of projectors and computers
used within the render cluster. During rendering an additional task must
be running to detect shadows with cameras. Despite its disadvantages, front
projection is the only option when space is limited to setup the tiled display,
like in office rooms.

The primary criteria for choosing screens include image performance
(e.g. brightness, resolution, angle of view, contrast ratio, conserving polariza-
tion), availability of large seamless sheets, type of mounting method, rigidity
(or degree of self-support in large-span applications), weight, fragility, porta-
bility, and cost. In addition we need to consider physical constraints. For
example, if a system must be moved, then we need to use a lightweight screen
and lightweight mounting system. This would probably indicate using a flex-
ible fabric screen material and a tension-based mounting system.

2.4 Our choices

As we see the choice of hardware directly affects the budget. Since we want an
easy to install and transportable tiled display, we take lightweight projectors
below 2 kg. We use mid-range projectors with a resolution of 1024 × 768
pixels and a brightness of 1900 ANSI-Lumen. This makes our tiled display
even useable in daylight environments. To be prepared for the future and be
able to increase the resolution of our tiled display, we take the render cluster
approach. We use commodity PC hardware equipped with one graphics
accelerator to render 3D sceneries. We also put in network cards to be able
to distribute data among a common local area network. The screen material
of choice was a polarization conserving front projection sheet. This gives us
the freedom to use the screen for passive stereo projection.

Chapter 3

Related work

We have investigated related approaches to build up large screen displays
with high resolution from the following point of view:

• Scalability: The ability to add new hardware components, i.e. adding
more displays and/or computers to the render cluster, without changing
system, or application code, or without any needs to change the used
render architecture, and without lowering the overall performance.

• Maintenance: Maintenance comes into concern when thinking about a
large display area driven by a dozen or more displays. You can imagine
how time consuming manual adjustments of each projector will be. So
we need to keep maintenance effort as low as possible. All maintenance
steps if any should be done by the tiled display system automatically.

• System architecture: This is a major point concerning costs and main-
tenance. Even with a low budget a suitable rendering cluster can be
built showing results comparable to high-end system solutions.

• Performance: How a system performs directly influences its usabil-
ity. The better the performance, the more realistic can the scenery be
displayed, dissolving the user’s doubt or disbelief in acting in a non-
real environment. Our goal is to fade the border between reality and
virtuality.

3.1 Calibration approaches

A number of research groups have investigated tiled displays and used them
to create a single high-resolution seamless display by combining a collection
of lower resolution projectors. Research approaches have shown that these

17

18 CHAPTER 3. RELATED WORK

a)

b)

c)

Figure 3.1: The three display groups: a) abutted, b) regular overlap, c) rough
overlap.

displays can be divided into three groups: abutted, regular overlap, and rough
overlap displays [Gotz01].

3.1.1 Abutted displays

Abutted displays are the first multi-projector displays that come in mind
when building a tiled display. They are easy to use in a render system,
because each pixel on the display screen is rectangular and next to each other
and furthermore every pixel in the frame buffer is directly represented by one
pixel on the screen. This allows applications to span their display content
over many millions of pixels with minor changes in rendering the display
content and without any need to undistort oblique projected pixels. But this
pixel to pixel relation leads to the need that all projectors in the display are
carefully aligned side by side in such a way that neither do pixels overlap
nor does any gap between pixels of adjacent projection areas exist. Abutted
systems are fairly common and are used in everything from sports stadium
scoreboards to trade show exhibits. Some examples of abutted displays are
the CAVE [Cruz-Neira et al.93] (while not high-resolution), “Office of Real
Soon Now” [Bishop00], and the display wall system at Lawrence Livermore
National Laboratory [Schikore et al.00]. This display system scales well, but
the maintenance increases with every projector device added to the system.
Hence the system must deliver the possibility to adjust each projector, an

3.1. CALIBRATION APPROACHES 19

high-tech rack systems must be used. This leads to high costs for the rack and
for calibration. Since every projector is calibrated by hand, calibration is a
time-consuming task. Another drawback of this system is that each projector
has to be orthogonal to the display screen to create rectangular images, thus
only back-projection is possible which will need additional space behind the
display screen. Therefore if a projector is misaligned, pixel errors will be
markable on the tiled display disturbing the illusion of a large high-resolution
display. See figure 3.1(a) for an abutted display.

Hereld et al. developed sophisticated projector positioner to calibrate pro-
jectors by hand. They published an image of this positioner in their paper
[Hereld et al.00b]. Also hardware blending masks are used to avoid overlap-
ping regions on the display [Hereld et al.00a]. Their paper allows to get a
hint how delicate mechanical fine-adjustment can be.

3.1.2 Regular overlap displays

Another approach to build multi-projector displays requires projectors to be
carefully aligned so that there is some controlled overlap between projectors.
The projectors are required to have a precise geometric relationship that
ensure regularity between overlap regions. The overlap regions are used to
blend imagery across projector boundaries. Alpha blending techniques are
used to fade pixels of overlapping projectors. This is done to help hide both
photometric and geometric discontinuities at the boundaries. Due to the
overlapping regions the application’s code must be changed to handle blended
pixels in these regions. Princeton’s Scalable DisplayWall [Li et al.00] and
Stanford’s Interactive Mural [Humphreys,Hanrahan99] are both examples of
regular overlap displays. Like the abutted display approach the scalability
of the system is good, but maintenance, costs, and space is as bad as with
abutted displays, because of precise geometric calibration between the used
projectors. Even though hard borders of the former display type are reduced
due to controlled overlaps, pixel misalignment is still as noticeable as in the
former approach. Figure 3.1(b) depicts a regular overlap display.

In this tiled display approach overlapping projection areas and tapering
the brightness of the image from each projector results in a smooth intensity
transition from tile to tile. This effect can be achieved in signal electronics
[Panoram, Trimension] or in software [Raskar et al.99]. Blending techniques
are vital to form a seamless tiled display. Blending tiles in overlapping regions
in software is no problem with current graphics hardware. Raskar et al.’s
approach is to weight all projected pixels by using alpha-masks for each
projector. Each alpha-mask assigns an intensity weight [0−1] for every pixel
in the projector. Weights of all projected pixels illuminating the same display

20 CHAPTER 3. RELATED WORK

a) b)

Figure 3.2: Alpha masks (a) for regular overlapping projectors (b) to blend
pixels in overlapping regions.

surface point should add up to unity. When using regular overlaps the alpha
masks are easy to build, because we know the exactly shape of all overlapping
regions. Figure 3.2 shows the alpha masks for the regular overlap display.
We will discuss the technique to compute and use alpha-mask to blend pixels
in the next section in more detail.

3.1.3 Rough overlap displays

The last group of these display systems is the most easiest to set up and
maintain because it allows rough overlap regions between projectors. The
only requirement is that projectors actually overlap. This means that over-
lapping regions can be of arbitrary shape and size, and projectors can be
installed anywhere near the display screen to project their scenery. This in-
cludes also front projection which will not be possible with the former two
display types. Figure 3.1(c) shows a display with rough overlap regions.

A drawback of this approach is that application code has to be rewritten
in order to counteract the oblique projections and to blend the imagery within
the overlapping regions. So as an additional render step the oblique display
content of each projector has to be undistorted and blended.

As a set up step, the configuration of projectors and their relative pose
has to be detected. This calibration is done automatically by camera and
image detection techniques. The projection area of each projector is detected
by cameras to solve for projection relationships between all projectors. Each
camera used introduces a possible error in misalignment of projectors due
to local coordinate system conversion between camera space and projector
space. The scalability of this system is limited by the errors done during
calibration, thus these errors must be minimized. We will discuss this step
later in more detail.

Maintenance is very low, because projectors need not to be aligned any-
way and the calibration step is only made once after the system is installed
or reconfigured. Even more Raskar et al. present a method to make ’intelli-

3.1. CALIBRATION APPROACHES 21

gent’ projectors be aware of other projectors in their vicinity. The setup is
a group of ’intelligent’ projectors forming a large display area. If an unit is
added to the group it sends a ’request to join’ message via a proximity net-
work (like wireless Ethernet, RF or infrared). All surrounding units receive
this message and scan for a projection pattern of the new unit with their
cameras. If anyone camera of the group sees the pattern, the group’s units
perform a calibration step and integrate the new unit to the group. Other-
wise the new unit is in the vicinity of the group, but does not overlap with its
own extent of the display [Raskar et al.03]. These ’intelligent’ projectors are
aware of one another and can be setup anywhere without any restriction. So
this approach of a tiled display is self-configuring when multiple ’intelligent’
projectors are put together and has no maintenance at all.

Chen et al. describe a method to minimize the calibration errors when
using more than one camera (i.e. more than one local coordinate system to
solve for) [Chen et al.01a]. Raskar et al. solve the problem of calibration
with more than one camera even for non-planar surfaces and describe in
their paper how to compensate for misalignment. In this approach, a series
of calibrated stereo cameras are used to determine the display surface and
individual projector’s intrinsic and extrinsic parameters in a common coor-
dinate frame. The result is an exhaustive description of the entire display
environment. Although this approach allowed for a general solution, the
computational effort and resources needed to implement this approach in-
troduce their own level of complexity. They developed a two-pass rendering
algorithm for edge blending and pixel morphing necessary for overlapping
regions and non-planar surfaces [Raskar et al.99]. In the first pass, the de-
sired image for the user is computed and stored as a texture map. In the
second pass, the texture is effectively projected from the user’s viewpoint
onto the polygonal model of the display surface. The display surface model,
with the desired image texture mapped onto it, is then rendered from the
projector’s viewpoint. This is achieved in real-time using projective textures.
The rendering cost of this two-pass method is independent of complexity of
the virtual model.

Blending

As mentioned in the last section Raskar et al. developed a blending tech-
nique to blend overlapping pixels to form a seamless display. With their
method each alpha-mask assigns an intensity weight [0− 1] for every pixel in
the projector. Weights of all projected pixels illuminating the same display
surface point should add up to unity. The weight is additionally modified
through a gamma lookup table to correct for projector non-linearities. To

22 CHAPTER 3. RELATED WORK

a) b)

Figure 3.3: Alpha masks for four rough overlapping projectors (a) to blend
pixels in the noticeable overlapping regions (b).

find the alpha-mask, they use a camera to view the overlapped region of
several projectors. They form a convex hull Hi in the camera’s image plane
of observed projector Pi’s pixels. The alpha-weight Am(u, v) associated with
projector Pm’s pixel (u, v) is evaluated as follows:

Am(u, v) =
αm(m, u, v)∑N
i=1 αi(m,u, v)

(3.1)

where αi(m, u, v) = wi(m,u, v)di(m, u, v) and i is the index of the projectors
observed by the camera (including projector m). In the above equation,
wi(m,u, v) = 1 if the camera’s observed pixel of projector Pm’s pixel (u, v) is
inside the convex hull Hi; otherwise wi(m, u, v) = 0. The term di(m, u, v) is
the distance of the camera’s observed pixel of projector Pm’s pixel (u, v) to
the nearest edge of Hi. Figure 3.3 shows the alpha masks for a rough overlap
display.

Calibration

In [Raskar et al.02] he and other researchers show a way to compute the
relative pose among oblique projectors utilizing an off-the-self camera. They
use homographies between the camera image and each projector image to
calibrate the projectors and undistort their images. Because a homography
is a planar projective transform (a collineation in <2) it is defined up to
an unknown scale factor by four pairs of matching points. By displaying
and detecting a calibration pattern on each projector, they gather matching
points and compute a homography.

A homography can be used to map two different projections of one fixed
point. Think of two cameras C1,2, viewing a fixed single point p on a 3D

3.1. CALIBRATION APPROACHES 23

Π

C1 C2

p

m1 m2
H

m1 ∝ Hm2

Figure 3.4: Two cameras C1, C2 see one single point p from different views
(m1,m2). The homography H defines the relation between the cameras’
coordinate frames.

plane Π, the point positions m1,2 in the two images are related by a 3 × 3
homography matrix H. If m1 and m2 are projections of p, then

m2 ∝ Hm1 (3.2)

where m1 and m2 are homogeneous coordinates and ∝ means equality up to
scale (see figure 3.4). In the same way a pair of homographies can be used
to define the relationship between projector to projector coordinates, as we
will see in the following section.

Raskar et al. use one single camera C to record all the projector images.
The projector to camera mapping as well as relative projector to projector
mapping are then described by the above plane homographies due to the
planar display surface used. For notation, they choose homogeneous coordi-
nates for both 2D camera coordinates xc = (x, y, 1)T and for 2D projector
coordinates ui = (u, v, 1)T , i = 1, . . . , N , from multiple source projectors. In
this context, the input consists of N projector images captured by the single
camera C with the known homography matrix, Hc1,Hc2, . . . ,HcN , satisfying

ui ∝ Hcixc , i = 1, . . . , N (3.3)

The display coordinates on the display surface are denoted as xr = (x, y, 1)T .
The relationship between the display coordinates and camera coordinates can
be described by another 2D projective matrix Hrc. Obviously, we have

ui ∝ Hcixc ∝ (HciHrc)xr , i = 1, . . . , N. (3.4)

A new set of 3× 3 matrices

Hri = HciHrc , i = 1, . . . , N (3.5)

24 CHAPTER 3. RELATED WORK

xc ∝ Hrcxr

ui ∝ Hcixc ∝ HciHrcxr

Hri ≡ HciHrc , ui ∝ Hrixr

⇒ ui ∝ HriH
−1
rj uj

Hr2H
−1
r1

Hr1H
−1
r2u1 u2

Hc1 Hr2Hr1 Hc2

Hrc
xc

xr

Figure 3.5: Pairs of homographies can be used to define relations between
different coordinate frames.

specifies the geometrical relationship between the individual projector and
final display coordinate directly. Equation 3.4 and 3.5 determines the pixel
mapping between two arbitrary projectors as follows

uj ∝ Hrjxr , xr ∝ H−1
ri ui ⇒ uj ∝ HrjH

−1
ri ui (3.6)

where ui and uj denote the corresponding pixels in projector Pi and Pj,
respectively (see figure 3.5).

With the derived equations the weights for the alpha-masks can be easily
computed. Remember equation 3.1 that defines the weight for projector
Pm’s pixel um = (u, v, 1)T . To find the weight Am(um) Raskar et al. use the
homographies which are computed with normalized projector coordinates,
i.e. the u and v coordinates of um vary between [0, 1]. Hence, the distance
of a pixel to the closest edge in the projector Pm is described by dm(um) =
w(u, v)min(u, v, 1 − u, 1 − v) where w(u, v) = 1 if u ∈ [0, 1] and v ∈ [0, 1],
= 0 otherwise. This reduces the weights assignment problem, to a simple
minimum function. Inserting the above derived distance function dm and
equation 3.6 in equation 3.1 leads to

Am(um) =
dm(um)∑N

i=1 di(HriH−1
rmum)

, m = 1, . . . , N. (3.7)

After computing the homographies and blending mask for each projector,
they compute a projection matrix and use commodity graphics accelerators
to undistort the final output on each projector. The oblique projection matrix

3.1. CALIBRATION APPROACHES 25

a)

b) c)

Figure 3.6: A tracked user at position t viewing a scenery with off-axis
projection(a). Oblique projectors create key-stoned imagery (b). The plot
(c) shows depth-buffer values along a scan line for points along constant depth
(green). Applying uncorrected homography H (red), the values range beyond
[−1, 1] and do not change linearly. After using the corrected homography H

′

(blue) traditional graphics pipeline can be used to render correct 3D scenery.

26 CHAPTER 3. RELATED WORK

Pm for projector Pm is the homography Hrm, i.e. the homography that maps
display surface points to projector points, times a common projection matrix
P (like one, defined with a view frustum in OpenGL). The homography Hrm

has to be extended to a 4×4 matrix H44
rm to be useable in a common graphics

pipeline.

Hrm ≡

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 ⇒ H44
rm =

h11 h12 0 h13

h21 h22 0 h23

0 0 1 0
h31 h32 0 h33

In the end the oblique projection matrix for projector Pm is

Pm = H44
rmP. (3.8)

With the projection matrices and blending masks Raskar and his colleagues
built a seamless tiled display with oblique projectors and without any time-
consuming mechanical calibration steps.

But this approach has to be extended as we will see. Raskar describes
in his papers [Raskar00] and [Raskar99] a single-pass rendering method for
planar surfaces with roughly aligned or even oblique projectors and a tracked
user to display 3D scenery. He shows in his papers that the naive approach
of using a projection matrix Pp = HP 1 like the one derived above creates
correct 3D scenery for an oblique projector P , but that the depth-buffer
values cannot be used for visibility and clipping. In his paper the common
projection matrix P is used for a tracked user and updated as the user moves.
The homography matrix H is used to undistort the oblique projection on
planar display surfaces. Rendering the virtual point v for a tracked user at
position t using an oblique projector as shown in figure 3.6 with the given
projection matrix P leads to distorted depth-buffer values.

The oblique projection matrix for a tracked user calculates as follow
Pp = HPT where PT = Frustum(t,S, zn, zf)Translate(−t) is the clipping
volume from the user’s view and is updated as the user moves. S is an axis
aligned rectangle on the display surface Π bounding the key-stoned quadri-
lateral Q illuminated by the projector. Frustum(t,S, zn, zf) defines a view
frustum by creating a pyramid with t and the four corners of S truncated
with the near plane, z = tz − zn, and the far plane, z = tz − zf . H is the
known homography or collineation matrix to map screen pixels to projec-
tor pixels. The homography is independent of the user location and hence

1H is the homography between projector and display surface coordinates. We will use
H instead of H44

rm from now on.

3.1. CALIBRATION APPROACHES 27

remains constant. With the oblique projection matrix Pp applied to a 3D
scene, the depth values are distorted by the homography H.

The depth values of virtual points between near and far plane due to
PT are mapped to [−1, 1]. Let (mTx, mTy, mTz, mTw)T = PT (v, 1)T and
mTz/mTw ∈ [−1, 1]. After collineation, the new depth value is actually
mTz = (h31mTz + h32mTy + mTw) which (i) may not be in [−1, 1] resulting
in undesirable clipping and (ii) is a function of pixel coordinates, changes
quadratically and hence cannot be linearly interpolated during scan con-
version for visibility computation (see figure 3.6(c)). Using a single 4 × 4
matrix, it is impossible to achieve two hyperbolic interpolations for the
depth values. One solution is to render an image using the projection ma-
trix PT , and then warp the resultant image to undistort oblique projection.
This would require a two-pass rendering method that first renders the im-
age in texture memory and then achieves warping using texture mapping.
Raskar shows that rendering and warping can be achieved in a single pass
using an approximation of the depth buffer values. Note that mTx/mTw

and mTy/mTw ∈ [−1, 1] for points rendered inside the rectangle S. Hence
((1− | h31 | − | h32 |)mTz)/(h31mTx + h32mTy + mTw) is guaranteed to be in
[−1, 1]. Further, by construction of PT , the angle between projector’s optical
axis and the normal of the planar surface is the same as the angle between
the optical axis and retinal plane of frustum for PT . Thus, if this angle is
small (i.e. | h31 | and | h32 |� 1), the depth values are modified but the
changes are monotonic and almost linear across the depth-buffer as shown in
figure 3.6(c).

H
′
=

h11 h12 0 h13

h21 h22 0 h23

0 0 1− h31 − h32 0
h31 h32 0 h33

With the corrected collineation matrix that undistort oblique projection

and corrects depth values during matrix multiplication, we are now able to
build the corrected oblique projection matrix

Pp = H
′
PT .

Another approach was taken by Chen et al. [Chen et al.00d]. They pro-
vide a mechanism to help reduce roughly aligned projectors by calculating
a corrective projection matrix (a collineation matrix from projector space
to display space) for each projector. An uncalibrated camera with control-
lable zoom and focus, mounted on a pan-tilt unit observes geometric rela-
tionships - point and line matches - between adjacent projectors to solve
the matrix equations. Simulated annealing is used to find a global solution

28 CHAPTER 3. RELATED WORK

that minimizes the overall pixel position and line slope error between adjoin-
ing projector segments. This approach requires substantial image data and
computation. The drawbacks of their solution is its slowness and that data
collection and a final solution can take over 30 minutes to compute. Further-
more, this approach corrects the imagery for slightly misaligned projectors,
it is not clear if it can handle large misalignment.

UNC’s PixelFlex system is an example of a rough overlap display [Yang et al.01].

3.2 Computer systems

This section investigates the advantages and disadvantages of different hard-
ware architectures. There exists various kinds of architectures with high-end
hardware architecture at the one end of the scale and off-the-self PC hardware
on the other end. High-end hardware offers the opportunity to share memory
among render tasks and rendering pipelines. It also offers the opportunity
to use more than one extremely high-end graphics module allowing parallel
rendering. Even more, most high-end system supports, when using multi-
ple graphics modules, output synchronization in hardware. Shared memory
leaves out the problem of data sharing via networks. Many researches have
investigated the high-end system approach in the past, first because com-
modity hardware of that time did not fulfill their needs, second because of
the mentioned capabilities and opportunities. Such a system can handle a
tiled display easily, but it is not infinitely scalable, because the number of
graphics modules plugged into the system is limited. Another drawback is
that these systems are very expensive. Researches quickly found themselves
limited in their demands to the hardware in terms of price and scalability.
One example is Stanford’s Interactive Mural [Humphreys,Hanrahan99]. The
system was first implemented on a SGI machine. This high-end machine
drive up to 8 outputs, so a 4×2 display array was achieved. When the group
at Standford wanted a higher resolution, they reimplemented a new version
based on a PC cluster, because the high-end machine system cannot scale
beyond the eight outputs.

With the needs to build up a scalable tiled display without the costs of
a high-end hardware system, we will turn to the commodity hardware ap-
proach. Commodity hardware today offers the possibility to render realistic
scenery with high resolution and at high frame rates. So researchers came to
the point to build a networked cluster with commodity hardware systems to
deliver their needs for data sharing and synchronizing. Using off-the-shelf PC
hardware and a fast rendering graphics accelerator we are able to drive one
or two displays per PC. Even if we want to scale up the system, we just have

3.2. COMPUTER SYSTEMS 29

to add another PC and another display at no high costs. A drawback of the
networked render cluster is its slow data sharing ability when using today’s
network technologies. So we are forced to think of a good design when it
comes to the aspect of parallel rendering. This comes especially true when it
comes to the point of sharing the scenery content and distributing it within
a render cluster. But also with this drawback, the costs of the cluster and
its good scalability makes it worth investigating. The approaches of other
research groups have shown that it is possible to render complex scenes on a
tiled display in real-time, e.g. Princeton’s Scalable Display Wall [Li et al.00]
and Stanford’s new version of Interactive Mural [Humphreys et al.00].

3.2.1 Parallel computer architecture

The hardware approach in the last ten years to provide high-resolution graph-
ics at high frame rates was tightly coupled with high-end graphics machines.
These machines mostly offer the possibility for parallel computing and even
for parallel rendering. These systems are equipped with one processor and
one graphics module at the lowest level, or at the highest level with several
processors and several graphics modules. They give the possibility to share
memory among different render tasks needed to render on a tiled display.

The advantages of such a system is that a shared render context where
different tasks run concurrently and in parallel to render a high-resolution
scene is already supported in hardware. Each task will represent and render
the scene of a specific tile on the tiled display. Since a tiled display will show
a complex scene, the geometry for the different tasks will be the same, but
each task only renders a part of the whole scene. With the opportunity to
share data and memory on such systems, very little changes have to be done
to transfer visual context and geometry data between the different tasks.

The drawback of these approaches are, while they use very specific and
dedicated hardware components, that these rendering systems are very ex-
pensive, often costing millions of dollars. Another drawback is the needed
scalability and extensibility for tiled displays. These system often allow to ex-
tend the number of processor and graphics modules only to a specified limit.
When this limit is reached, the maximum resolution of the tiled display will
be reached.

The PowerWall at the University of Minnesota and the InfiniteWall at
the University of Illinois at Chicago are examples, each driven by an SGI
Onyx2 with multiple InfiniteReality graphics pipelines.

30 CHAPTER 3. RELATED WORK

3.2.2 Networked computer architecture

In the last few years the huge barrier between high-end graphics computer
systems as mentioned in the section above and commodity graphics acceler-
ators was broken. Nowadays graphics accelerators for commodity computers
even top the performance of high-end graphics systems. Thus we have the
possibility to build a tiled display with off-the-shelf hardware components
with the performance of high-end graphics machines.

To create a tiled display we need a bundle of computers, each equipped
in such a way that it can render 3D scenery, display the scenery on the tiled
display, and communicate with other computers that contribute to the tiled
display. We will name this bundle a render cluster . Within the render cluster
different machines solve different problems as described in section 3.4. We
have to solve the problem to render to the tiled display within an ordered
manner and to show a homogeneous content. This is done via data distri-
bution and communication which are the backbone of a render cluster. So
each machine is equipped with a network card and connected to a local area
network. The next section gives a brief description on different network cards
and approaches and their advantages and disadvantages.

Since each machine executes different tasks, we will divide the machines
into two parts according to their tasks. One part is formed by display nodes ,
where each display node is responsible to render the correct part of the scene
and to display it on the tiled display. The other part consists of control
nodes , where each control node’s task is to handle user input, and run the
application code. This is only one possible division of the cluster. In another
architecture, an control node handles user input and distributes it to the
display nodes, while each display node runs the application code, renders
the scene, and displays it on the tiled display. We will investigate for the
different task approaches in section 3.4.

3.3 Network hardware

This section investigates different network designs available today. It points
out their usage in the terms of scalability, bandwidth, transfer rates, and
latency. With present-day network technology it is possible to transfer data
with more than one Giga-bit per second. Thus current technology gives us
the possibility to render even very complex scenes at high frame rates without
the need to store the scenery data on the display nodes.

3.3. NETWORK HARDWARE 31

3.3.1 Ethernet

In 1972 the first experimental version of Ethernet was developed by Metcalfe
and his Xerox PARC colleagues to link Xerox Altos to one another, and
to servers and laser printers. This very first version was called the Alto
Aloha Network, but in 1973 Metcalfe changed the name to Ethernet, to make
it clear that the network mechanisms had evolved well beyond the Aloha
system, and that Ethernet supports any computer. Since 1973 the Ethernet
gained a great popularity and is the most commonly chosen network layer
for local area networks.

The Ethernet system consists of three basic elements

• the physical medium used to carry Ethernet signals between computers,

• a set of medium access control rules embedded in each Ethernet in-
terface that allow multiple computers to fairly arbitrate access to the
shared Ethernet channel, and

• an Ethernet frame that consists of a standardized set of bits used to
carry data over the system.

The computers linked to an Ethernet network, also named stations, op-
erate independently of all other stations on the network. There is no central
controller and therefore each station can send and receive data to and from
the shared medium. Thus a protocol is needed that is aware of collision de-
tection and multiple access to the medium. Ethernet signals are transmitted
serially, one bit at a time, over the shared signal channel to every attached
station. To send data a station first listens to the channel, and when the
channel is idle the station transmits its data in the form of an Ethernet
frame, a so called packet. After each frame transmission, all stations on the
network must contend equally for the next frame transmission opportunity.
This ensures that access to the network channel is fair, and that no sin-
gle station can lock out the other stations. Access to the shared channel is
determined by the medium access control (MAC) mechanism embedded in
the Ethernet interface located in each station. The medium access control
mechanism is based on a system called Carrier Sense Multiple Access with
Collision Detection (CSMA/CD).

The CSMA/CD protocol functions somewhat like a dinner party in a
dark room. Everyone around the table must listen for a period of quiet
before speaking (Carrier Sense). Once a space occurs everyone has an equal
chance to say something (Multiple Access). If two people start talking at the
same instant they detect that fact, and quit speaking (Collision Detection).

32 CHAPTER 3. RELATED WORK

These techniques make the Ethernet a powerful tool to build up local
area networks (LANs) very quickly with heterogenous hardware. Nowadays
LANs are build up with 10 Mbps Ethernet and 100 Mbps Fast Ethernet.

Also the 100 Mbps Fast Ethernet seemed to be the fastest transfer rate
possible with the Ethernet technology, recent research have shown that also
1 Gbps is possible with this technology, and, as technology outlays itself, 10
Gbps Ethernet technology is in a ready to be released state.

Thus the ethernet technology offers different bandwidth ranging from
10 Mbps up to 1 Gbps. The latency depends on the system overall accesses.
The more stations want to access the network at the same time the worse
the latency get due to the collision detection algorithm. The scalability of
the system is very good, since there is no restriction in adding stations to
the network.

3.3.2 Myrinet

[Boden et al.95] developed another technology introduced as Myrinet to pro-
vide a fast network with 1 Gbps and higher transfer rates. Myrinet is a
new type of local-area network (LAN) based on the technology used for
packet communication and switching within ”massively parallel processors”
(MPPs). Think of Myrinet as an MPP message-passing network that can
span campus dimensions, rather than as a wide-area telecommunications net-
work that is operating in close quarters. The technical steps toward making
Myrinet a reality included the development of

• robust communication channels with flow control, packet framing, and
error control,

• self-initializing, low-latency, cut-through switches,

• host interfaces that can map the network, select routes, and translate
from network addresses to routes, as well as handle packet traffic, and

• streamlined host software that allows direct communication between
user processes and the network.

Myrinet was developed from the results of two research projects, the Caltech
Mosaic, an experimental, fine-grain multicomputer, and the USC Information
Sciences Institute (USC/ISI) ATOMIC LAN, which was built using Mosaic
components (see [Boden et al.95] References 1 to 3).

Multicomputer Message-Passing Networks. A multicomputer is
an MPP architecture consisting of a collection of computing nodes, each

3.4. DATA DISTRIBUTION 33

with its own memory, connected by a message-passing network. The Caltech
Mosaic was an experiment to “push the envelope” of multicomputer design
and programming toward a system with up to tens of thousands of small,
single-chip nodes rather than hundreds of circuit-board-size nodes. The fine-
grain multicomputer places more extreme demands on the message-passing
network due to the larger number of nodes and a greater interdependence
between the computing processes on different nodes. The message-passing-
network technology developed for the Mosaic achieved its goals so well that
it was used in several other MPP systems, including the medium-grain Intel
Delta and Paragon multicomputers, the Stanford DASH multiprocessor, and
the MIT Alewife multiprocessor.

Myrinet provide a network technology with extremely fast transfer rates
with parallel transfer schemes and it is a good candidate to upstage the
Ethernet technology. The parallel transfer schemes restricts the scalability
of the system. It allows two nodes to communicate without disturbing two
other nodes within the same network. But the number of nodes within a
network is limited. To keep the system scalable a hierarchial network must
be built.

3.4 Data distribution

We will define some terms that we use in this thesis to be clear what we
are talking about. A render cluster is a collection of autonomous computers
linked by a network, with software designed to produce an integrated com-
puter facility. This facility is able to render to a tiled display and distribute
data within the render cluster. Each computer within the render cluster is
referred as render node. As other authors in the computer community have
shown, render nodes have different tasks to process to run a tiled display. We
will divide these tasks into four groups, user interface, application, render ,
and display task. Depending on the tasks a render node processes, it belong
to one of the two node groups. Control nodes process user input (e.g. mouse
movement, tracker data, etc.), while display nodes show framebuffer content
and drive the different displays of the tiled display (e.g. projectors). The
application task executes application code, and the render task renders and
draws scenery content. Depending on the individual performance of the two
node groups, both tasks can be shifted among the two groups, see figure 3.7.
So a minimal render cluster may have one control node, for user input, and
several display nodes, for displaying.

The aim of data distribution is to distribute rendering content, user input,
and shared application data to each render node to show huge high-resolution

34 CHAPTER 3. RELATED WORK

a) b) c)

Figure 3.7: The four task groups shifted between a control and a display
node, depending on each nodes performance.

scenery on a tiled display. Since we know the different tasks for a tiled display,
we also know the two groups within the render cluster that run the tasks to
manage the tiled display. It is a design philosophy which group (control, or
display) handles which tasks. But a this point we can distinguish between
two different distribution techniques. On the one hand the client-server
approach. Control nodes act as clients, while display nodes run as servers
waiting for their clients’ data (e.g. user input, scenery, images) and show
their part of the scenery on the screen wall. On the other hand the master-
slave approach. In this architecture control nodes run as masters, processing
user input, and distribute their data to display nodes which themselves run as
slaves and are triggered by the masters to show the scenery. Both distribution
techniques are an issue of implementation design, so we will not go into detail
for now. Both techniques have their own advantages and disadvantages. But
both provide similar or equivalent concepts for distributing and sharing data
among a render cluster. We will discuss our choice of distribution technique
in chapter 4.

We will give a short overview at the different approaches for the task
shift problem and discuss their advantages and disadvantages in the follow-
ing sections. In a poor performance control node scenario, control nodes
only process user inputs, while display nodes has to process all other tasks

3.4. DATA DISTRIBUTION 35

a) b) c)

Figure 3.8: A render cluster with the render nodes divided into two
groups, control nodes (light-green) and display nodes (light-red). With high-
performance control nodes compressed image data is sent to the display nodes
(a). With mid-performance control and display nodes primitives are dis-
tributed (b). And with high-performance display nodes, only control data
must be sent (c).

(application, render, and display). So the display node side keeps the main
part of work. When assigning maximum load to control nodes, each control
node has to process user input, execute application’s code, and render the
scenery. The display nodes only display pixels distributed by the control
nodes. So the main part of work is on the control node side. In the medium
performance case the tasks are evenly share among the node groups. The
control nodes perform user input and application tasks, while the display
nodes process render and display tasks.

We have to care about synchronization when multiple nodes run the ap-
plication code – regardless of which group they belong to. We have to syn-
chronize both, the application’s execution path on each node processing the
application code and the rendering output. Depending on each node’s perfor-
mance several scenarios arise. Figure 3.8 depicts the task load for each node
group. The perfomance of the individual nodes influences the architectural
design for the render cluster. Depending on the performance of each node
group we shift the task load to the higher performance group. Of course
the control and display group can collapse if high performance machines are
used. In this case all nodes can handle all four tasks in real-time and no
distinction between control and display nodes is possible. We will go into
more detail in the following sections to describe the different scenarios and

36 CHAPTER 3. RELATED WORK

their feasible solutions.

Scenery data (like geometry, position, orientation, etc.) must be shared
and updated among the render cluster. We can choose between three alter-
natives for distributing scenery data to show the scenery correctly on a tiled
display [Chen et al.00b].

We can render the scenery on control nodes for poor performance display
nodes and then distribute packed image data to the latter to display the
output (see figure 3.7(a) and figure 3.8(a)). Since we only distribute pixels to
display nodes we describe this technique as pixel distribution in section 3.4.3.

With higher performance display nodes and the ability to render with
graphics accelerators, we can distribute the primitives instead of pixels to
save network traffic. After distributing the primitives building up the scenery
we render them directly on the display nodes. Thus a copy of the application
code runs on each control node while the display nodes render the scene
(see figure 3.7(b) and figure 3.8(b)). For these midrange performance display
nodes display content distribution can be viewed from the used API to render
the content. One can use an OpenGL API to render 3D scenery, or OS
dependent APIs to render a large desktop environment. Using and replacing
API-calls to distribute the render content is known as primitives distribution.
An obvious solution for primitives distribution is to replace the installed
system’s driver for the demanded API with an enhanced version of it to
be able to distribute the different API calls that are needed to render the
scenery on different display nodes. We will have a closer look on related
works handling this style of data distribution in section 3.4.2.

With high performance display nodes, we can in turn run a copy of the
application code on each display node. The control nodes only have to process
user inputs (see figure 3.7(c) and figure 3.8(c)). Thus control is the only data
distributed from control nodes to display nodes and is referred as control
distribution. We will not discuss control distribution because there is no
tile specific implementation needed. The control data are sent to all display
nodes and processed by the application code. Since control data are normally
small data packets the traffic load on the network is the least.

Special care has to be taken if we run multiple copies of the application
code on anyone group of nodes. In this scenario we have to take care about
a parallel execution of the codes. Section 3.4.1 describes two approaches to
synchronize application’s execution path on different nodes. It turns out that
synchronization of the application’s execution path on each node running
the application will show identical behavior. This kind of synchronization in
respect to execution is known as synchronized execution.

3.4. DATA DISTRIBUTION 37

3.4.1 Synchronized execution

The basic idea in synchronized execution is to run multiple instances of an
application on different render nodes. The application’s execution path will
be synchronized within a synchronization boundary, so that the application
instances assume identical behavior within this boundary. As a result of
synchronization these instances generate identical scene descriptions, which
can simply be identical OpenGL 3D primitives across all render nodes or some
higher-level scene description that each node instantiates in a tile-specific
fashion. In the first case the graphics accelerator performs tile-specific culling.
With the appropriate projection matrix set, as described in section 3.1.3,
it processes all primitives, but only renders those that fall within its view
frustum. In the second case the higher-level scene desription can be used to
cull parts of the scene that are totally outside the tile’s view frustum. If we
use scene graphs that organizes the scene data in a hierarchy of bounding
volumes in respect to object vicinity, whole subgraphs can be pruned near
the root without visiting and culling each leaf of the subgraph. Figure 3.9
depicts the difference if view frustum culling is done in hardware, or in a
higher-level scene description fashion.

We will now investigate two approaches taken by Chen et al. and their
usability.

System-level synchronization

The basic idea in system-level synchronization (SSE) is to run an appli-
cation on multiple nodes in a transparent fashion, i.e. without modify-
ing and relinking the application code. Chen and his colleagues showed
in [Chen et al.00c, Chen et al.00b] that multiple copies of a single-threaded
application can run unchanged while intercepting system specific API-calls
to enable execution path synchronization. Synchronizing a single-threaded
program at the system call level leads to synchronized program execution.
The reason is that code execution is deterministic from the microprocessor
architecture’s point of view. Only external events can influence a single-
threaded application’s execution path. The way these external events affect
the program behavior is through the system-call interface. It follows that
if the interaction between the program and the OS environment is identical
on all nodes, the program instances will all follow the same execution path
and exhibit the same behavior, and as a result, produce the same graphics
primitives.

A few simplifying assumptions must be made for the SSE approach. First,
programs that interact with the rest of the system via shared-memory seg-

38 CHAPTER 3. RELATED WORK

a) b)

Figure 3.9: Running multiple applications synchronized with system-level
synchronization (a) and application-level synchronization (b). While in the
first approach the whole scenery must be drawn on each node, in the latter
approach only the part of the scenery that belongs to the tile’s view volume
must be rendered.

ments are ignored. In such a case reads and writes to the shared-memory
segments have to be intercepted and distributed in order to achieve identical
application states among the nodes. This leads to a permanent interception
of the application and increases the overhead to run synchronized. Second
the applications must use system-call APIs defined on the OS, like accessing
the CPU cycle counter via the QueyPerformanceCounter() on the Windows
platform, so that these accesses can be intercepted to be used for synchro-
nization.

This mechanism has one limitation. It cannot guarantee to work with ar-
bitrary multi-threaded programs. It is hard to mimic identical interleaving of
threads among multiple program instances. In theory this mechanism should
also work for those multi-threaded application in which only a single thread
interacts with the environment while the other threads simply compute the
scene without affecting the internal states of the application.

Chen et al. show that among numerous system calls an application makes,
only a handful of them can alter application states. These calls include to
query window messages and the system timer. Their approach of a system-
level synchronization layer performs synchronization for these specific system
calls.

3.4. DATA DISTRIBUTION 39

This approach to synchronize multiple instances of an application is the
most suitable when program code is not available and cannot be altered. So
it represents an easy and fast approach to make synchronization work. But if
code is available another approach is more practical. This is even more true
when running multi-threaded applications. As a drawback of this mechanism,
since the code of the application is left untouched, the whole scenery and all
primitives are generated on each node processing an application’s instance.
If we are rendering hundreds of thousands of polygons the frame rate will
drop below an interactive rate. So we have to think of a more elegant way
to render only a subset of the polygons that really belongs to the view of a
specific tile.

Application-level synchronization

System-level synchronization can synchronize multiple program instances
running on nodes within a render cluster. However, it is not guaranteed
to work for multi-threaded programs. Also the former approach cannot sep-
arate the program into scene management and scene rendering components,
i.e. the parts of a program where the scene is described and managed in some
way with respect to tile-specific boundaries and where the scene description is
interpreted and primitives are rendered. With system-level synchronization
the scene rendering component generates all graphic primitives describing
the scene and the graphics accelerator performs tile-specific rendering and
culling.

Chen et al. presented a way to solve this problems. The synchronization
boundary is moved into the application itself. The same mechanism for
system-level program synchronization can be used to synchronize program
instances at the application level. Instead of synchronizing system calls, they
synchronize function calls within the application. They provide a simple API
call SynchronizeResult() to let all display nodes get consistent results.
This function is used for each function in the application code that must
be synchronized and must show identical results. A synchronized function
operates on result of the replaced function and stores it temporarily. Then
the SynchronizeResult() function is called with the temporary result to
get consistent results among all nodes. After this function returns the result
is identical on each node and can be used by the application. Table 3.1 shows
the scheme how a synchronized function is built.

This solution is the best choice in designing a tiled display. Each appli-
cation instance can take advantage of application-level synchronization by
simply performing high-level object culling based on its tile view frustum.
Given N projectors in a tiled display, each screen tile frustum is approxi-

40 CHAPTER 3. RELATED WORK

synchronized syncF(a,b,c,..) ⇒ result:
temp ⇐ F(a,b,c,...)

SynchronizeResult(temp)

result ⇐ temp

Table 3.1: To run multiple application instances synchronized, function calls
are synchronized in the application-level synchronization approach.

mately 1/N of the global frustum. In general this results in a small fraction
of objects to render for each tile. Instead of generating all the primitives
and letting the graphics accelerator throw out primitives that fall outside
the local frustum, as in the former approach, the scene rendering component
of each program instance can avoid generating groups of graphics primitives,
by comparing their bounding volume with its view frustum. Such high-level
culling needs much less computation time and consumes far less local bus
bandwidth.

3.4.2 Primitives distribution

Leaving application code unchanged is one of the major goals in designing a
tiled display in order to run an application on the tile display where source
code is not available. The easiest way is to replace the driver used to show
the graphics content, mostly an graphics API like OpenGL or the OS widget
construction routines, with an enhanced version on one machine to supply
rendering on each display node invoking the graphics API routines on them.
Every display node renders a part of the tiled display without running the
application code itself. The control node delivers the appropriate display
nodes with the given geometry and appearance of the scenery. Thus only
graphics API commands must be sent from the control side to the display
side keeping the traffic load via the network as low as possible. This approach
was implemented in a server-client model where the client act as the appli-
cation executing machine (control node), using the display nodes as servers
to show the scenery, and in a master-slave model where the master executes
the application intercepting the graphics primitives and send them over the
network to the display nodes which are acting as slaves.

OpenGL extensions

Researchers at Stanford University [Humphreys et al.00] investigated the de-
sign of a distributed graphics system that allows an application to render to

3.4. DATA DISTRIBUTION 41

a large tiled display. Their goal was to run a normal OpenGL application
unchanged on a large tiled display. They showed when rendering large scenes
with a heavy load of geometry on their distributed OpenGL implementation
WireGL, the total render time was comparable to rendering on a single ma-
chine. The render time fall off to about 87% while using 32 render servers
building a 8× 4 tiled display.

They developed an efficient protocol to send OpenGL commands to the
render servers by replacing the OpenGL driver on the client host. Their
assumption was the spatial locality of successive primitives. After packing
many primitives together (bucketing), the packet will be sent to just one
server in most cases. Only in overlapping regions a copy must be sent to
each server that contributes to this region. The algorithm also keep track of
state changes and update the render servers states when needed saving traffic
load on the network, because not every state change belongs to all servers.

They have shown in their results that scalability is possible until the
bounding box of the packed geometry data reaches the size of a tile in the
display, i.e. when the packing algorithm is forced to send every packet to
more than one server, the frame time of their distributed rendering system
will slow down.

“Although bucketing is critical to achieving output scalability, it
is important to note that it does not allow us to scale the size of
the display forever. As the display gets bigger (that is, as we add
more projectors), the screen extent of a particular bounding box
increases relative to the area managed by each rendering server.
As a result, more primitives will be multiply transmitted, limiting
the overall scalability of the system.” [Humphreys et al.00]

But they have proven that it is many times faster to explicitly send
the packets to the servers they belong then to simple broadcast all the
OpenGL commands to all servers. This comes especially true if the num-
ber of displays is increased. They compared the render time using their
isosurface set March with over 1 million triangles.

“Broadcasting commands to twice the number of servers halves
the rendering speed, as expected. For March, WireGLs rate for
32 rendering servers only decreases by 13% from the single server
configuration, compared to broadcast, which runs 25 times slower.
WireGLs performance decrease is due to a small number of geom-
etry primitives crossing multiple server outputs, resulting in addi-
tional transmissions of the geometry buffer.” [Humphreys et al.00]

42 CHAPTER 3. RELATED WORK

Chromium is an extension of the WireGL concepts. It uses WireGL
as a codebase for distributed rendering, extending it in the way of having
not only one render client running an application, but to permit multiple
render clients running the same application in parallel. Thus every render
client has only to render a piece of the tiled display submitting render com-
mands to a few render servers instead of shipping the whole scenery to all
servers. This extension leads to a performance speed-up when rendering
scenery with millions of triangles or primitives [Chromium]. Application like
March which extracts and renders an isosurface from a volumetric data set –
a typical scientific visualization task – should perform at higher frame rates
when rendered in parallel. The dataset of March is a 4003 volume, and the
corresponding isosurface consists of 1,525,008 triangles. So, WireGL renders
March at 0.25 frames per second. Rendering March with Chromium with
multiple render client increases the frame rate significantly.

Chromium represents another proof that running multiple application
instances in a tiled display improve overall performance.

Virtual displays

Another design is to replace the normal display with a virtual display as
supported by most modern OS. While running an application on the control
node and drawing its content on a virtual display, the virtual display driver
will send the content to the appropriate display nodes to show the output on
the tiled display. The benefit of this approach is to capture display content
on its lowest level, so no one has to care about which graphics API is used
to draw the content or whether display content is accessed directly drawing
pixels into the virtual display frame buffer. The solution’s drawback is its
bad scalability and the massive impact on the network bandwidth if scenery
content is almost drawn pixel by pixel. While using a 3D graphics API to
draw the content saves many instructions that have to be shipped in the
virtual display approach. Think of drawing a triangle on the screen, with a
virtual display every pixel with its color will be sent over the network in this
approach. In the former approach only a few primitive attributes will be sent
and the pixels will be drawn by the display nodes during rasterization.

At Princeton [Chen et al.00b] enhanced the virtual display driver (VDD)
and the OpenGL driver with new versions of the OS bounded DLLs. The
new DLLs intercept the API’s commands on the application executing ma-
chine and send them over the network to the display nodes. By replacing
the VDD driver they are able to render the Windows desktop on their tiled
display without changing any code of Windows desktop programs. With the
replacement of the OpenGL-DLL they rendered different OpenGL applica-

3.5. DISPLAY SYNCHRONIZATION 43

tions without changing application code.

3.4.3 Pixel distribution

[Chen et al.00a] developed a method to display ultra-high-resolution videos
with resolutions matching the resolution of a tiled display. In their approach
they designed a parallel MPEG2-video decoder for a PC cluster based tiled
display. Thus the render cluster itself driving the tiled display can be build up
of low performance hardware PC, because only pixels transmitted as image
parts for each tile in the display have to be unpacked and displayed on the
display nodes. So this approach is a good example for pixel distribution
leaving the ’render’ costs on the MPEG2 decoder nodes.

“In a parallel MPEG-2 video decoder for PC cluster based tiled
display wall systems, three major components work together. A
splitter divides the input stream into small work units and sends
them to the decoders. The decoders might need to communicate
with each other to decode a picture. Finally, the decoded pix-
els might be redistributed before being displayed. There are two
challenges in successfully building such a system: high perfor-
mance and scalability. The system should be able to play ultra-
high-resolution videos at an interactive frame rate while keeping
the communication requirement at a minimum such that an off-
the-shelf network can be used.” [Chen et al.00a]

Another approach for distributing pixels was investigated at Princeton
by [Samanta99]. They sought for a balanced render algorithm to balance
the render load evenly over all display nodes. Each node renders not only
parts that belong to his tile in the tiled display, but also parts for other
nodes. After each node has rendered its parts, pixels that do not belong to
the node’s tile must be redistributed to the right render node to display the
scenery correctly. Although this technique is very sophisticated and exploit
the cluster’s performance the best, the tightrope walk is to keep pixel and
render distribution low while frame rates should be high.

3.5 Display synchronization

There are many synchronization models that come to mind. We can dis-
tinguish mainly between two concepts, hardware synchronization, and soft-
ware synchronization. Furthermore we divide synchronization models into

44 CHAPTER 3. RELATED WORK

four parts, application-level, system-level, frame buffer switch synchroniza-
tion, and refresh rate, or vertical blank synchronization known as genlocking.
All except genlocking can be used to synchronize program execution to pro-
vide parallel execution of the same application on the different display nodes
to improve overall performance and render times.

The first two synchronization models directly synchronize the applications
code execution. They allow to run multiple application instances within the
render cluster, as described in section 3.4. Although genlocking can be used
for another task important to tiled displays (see description below), it cannot
or only in a limited way be used to synchronize program execution. If the
render node limits its render time to fit into one frame cycle application
execution synchronization can be achieve with genlocking techniques. In any
other case a second synchronization model must be used to achieve coherent
rendering content.

We will now have a deeper look on the latter two synchronization models
and their possible realizations in hardware, or software.

3.5.1 Frame buffer switch synchronization

Although this synchronization model is very similar to the system-level syn-
chronization, we mention it here, because it has a special purpose regarding
rendering. With parallel rendering on every render node we want to syn-
chronize the rendering result of every node. A common task in rendering is
a frame buffer switch, i.e. when rendering is done the current rendered scene
has to be displayed. When a frame buffer switch occurs the back buffer with
the current rendered content must be displayed becoming the front buffer
and vice versa the front buffer must be hidden to render a new frame. But in
a synchronized model, before a render node is allowed to switch its buffers, it
has to wait until all display nodes within the render cluster have finished their
actual frame and are ready to display the new content. Thus, this approach
is easy to implement, capturing the OS-switchBuffer() call to implement
this behavior.

[ChannelSync] offers a low-cost solution for frame buffer switch synchro-
nization with a low-cost network.

3.5.2 Refresh rate synchronization

This is the most advanced model of synchronization, because with refresh
rate synchronization we are able to do active stereo on the one hand. On
the other hand it also provides the most visual accuracy concerning frame
buffer switches or refreshes. Think of viewing a high-resolution video with

3.5. DISPLAY SYNCHRONIZATION 45

Figure 3.10: Unsynchronized tiles in a tiled display lead to visible differences.
Projectors 1&2 show frame 1, while projectors 3-6 show frame 2. Refresh rays
are indicated as brighter regions in the images.

many short scenes, so that scene cuts appear every few seconds. With refresh
rate synchronization you are not able to distinguish between each individual
display, because every display refreshes its content together. While only syn-
chronizing buffer switches, i.e. showing the content of the next video frame,
one display could have been half finished while the other is just beginning
to refresh its content. So, slight differences can be visible in the content of
the whole tiled display and this would be even more true when a scene cut
arises. Figure 3.10 depicts this situation. Using refresh rate synchronization
visible differences are avoided and all displays starting to draw a new frame
at the same time, see figure 3.11.

This model can be solved either in hardware or software. While the
software solution is time-critical and needs to be supported by the OS to have
exact time slices for synchronizing the refresh rate without being interrupted
by other threads even OS ones, hardware supported genlocking is free from
OS-dependencies and able to synchronize the refresh rates externally. With
genlocking on board, one need not be concerned with the implementation at
all.

There exists only one software solution and fortunately it is open source
[SoftGenLock]. So it is possible to look behind the scenes and see what
the researchers have done to make this possible. They used a real-time
OS (real-time Linux) to synchronize the different graphics cards. With a

46 CHAPTER 3. RELATED WORK

Figure 3.11: Synchronizing the refresh rates of all tiles avoid visible differ-
ences since all displays start a new frame at the same time. Refresh rays are
indicated as brighter regions in the images.

dedicated network driven via the parallel port they are able to synchronize
up to 6 display nodes within 6 µs providing a fast synchronization but with
the lack of scalability. Their main idea is to prohibit the vertical blank signal
on every graphics card until all cards reaches the end of their frame buffers.
Then all cards together are forced to send the vertical blank signal starting
at the same time to refresh their displays. A clear and obvious approach,
but with the disadvantage to have direct access to the video card registers
to be able to delay the refresh signals. Thus, one needs to know the exact
addresses of the needed graphics card registers and is not allowed to program
in a high-level language due to time-critical computations.

The hardware implementation uses a similar ability of some graphics card
to suppress the refresh signal. Also a dedicated cable is used on the output
of the graphics cards to detect and prune the refresh signal until all graphics
card have finished their frame output. With cascading the synchronization
hardware this implementation approach is scalable. Researches from Ars
Electronica Futurelab have implemented this approach [ArsBox].

3.6 Open Inventor

Open Inventor [Wernecke94] is an object-oriented toolkit for the development
of interactive 3D graphics applications. It is the base of the Studierstube API,
because of its profound design and philosophy of extensibility.

Scene Graph

The database that represents a virtual scene in Open Inventor is called scene
graph. The scene graph is a directed acyclic graph and rooted by a single

3.6. OPEN INVENTOR 47

Figure 3.12: A simple scene graph.

node. There exists many different nodes with dedicated behavior to display
the scene, handle user input, and change the scene content based on some cal-
culations or simulations. A single node can hold a collection of information.
We will listen a few built-in nodes:

• Group nodes structure the scene graph. They serve as containers hold-
ing several nodes or assembling several subgraphs. They are the only
nodes within the scene graph, while all other nodes forming the leaves
of the graph.

• Attribute nodes change the way subsequent shape nodes are rendered.
Material nodes for instance change the appearance of a scene object’s
surface, transformation nodes alter a scene object’s scale, its position
or its alignment.

• Camera and light nodes represents the position and orientation of cam-
eras and lights to view and illuminate the scenery.

• Shape nodes as their name suggests form the base for a geometric de-
scription of real objects. There are built-in shapes, like cubes, spheres
or cylinders, and there are more complex ones like face sets that allow
the application developer to define arbitrary shapes described by a set
of triangles.

Figure 3.12 shows a scene graph that uses a group node that contains
the whole scene and roots the scene graph. A camera node is used to make
the scenery viewable. The translation node is used to alter the position of
the virtual object described by the two following nodes. The material node
sets up surface characteristics. It changes the current render attributes for all

48 CHAPTER 3. RELATED WORK

following shape nodes. This affects the last node, a shape node that describes
the appearance of the object.

Open Inventor’s major strength is its extensibility. The application de-
veloper can implement new nodes that can be inserted into the scene graph.
Open Inventor’s library provides macros and helper functions that aid the
developer to create new nodes.

Actions and events

The database of Open Inventor is traversed by either an action or an event.
Both call a distinct function of a node when the node is traversed. Ac-
tions and events are a common design pattern, known as “visitor pattern”.
[Gamma et al.94] describes what a visitor should do: “ ... represent an op-
eration to be performed on the elements of an object structure. Visitor lets
you define a new operation without changing the classes of the elements on
which it operates.”

Actions (and events) can be considered as a design decision by the Open In-
ventor developers to ensure far-reaching extensibility. Let’s assume we want
to extend the functionality of a hierarchy of classes, like the nodes of Open In-
ventor. In terms of extension in an object oriented fashion, like in C++, we
have to implement the functionality for each class adding a new method - in
the case we can access the source code. If we cannot, subclassing each class
and extend it the new with the desired method is the only way in C++. This
is an error-prone and unreasonable process if the number of classes increases
and the level of complexity is high.

Inventor employs actions to solve this problem. An action maintains a list
of static methods, one for each node class. When such an action is applied
to the root of the scene graph, this list is used to determine the method to
call for the particular node that is just traversed [Wernecke et al.94] Actions
practically encapsulate methods as a class of their own. The action of interest
for us is the SoGLRenderAction. This action traverses the scene graph calling
the appropriate function of each node encountered. In order to define the
action, Open Inventor must be provided a function for every node type.
Group nodes successively pass the action to its children starting with the
first one. Attribute and light nodes change the current render state, i.e. the
way all subsequent shape nodes will be rendered. Camera nodes set the
viewing point of the scene, changing the location of the global coordinate
system. Shape nodes will render the objects they are describing.

To render and view a scenery, we must merely apply a SoGLRenderAction
to the scene graph’s root. The action concept will cause the run-time system
to traverse the scene graph and to render the database as desired.

3.7. DISTRIBUTED OPEN INVENTOR AND STUDIERSTUBE 49

3.7 Distributed Open Inventor and Studier-

stube

In this section we investigate the two concepts of virtual reality operating
systems and shared data for interactive 3D graphics.

Distributed Open Inventor

Distributed Open Inventor [Hesina et al.99] is an extension to the popular
Open Inventor toolkit for interactive 3D graphics. The toolkit is extended
with the concept of a distributed shared scene graph, similar to distributed
shared memory. From the application programmer’s perspective, multiple
workstations share a common scene graph. The proposed system introduces a
convenient mechanism for writing distributed graphical applications based on
a popular tool in an almost transparent manner. Local variations in the scene
graph allow for a wide range of possible applications, and local low latency
interaction mechanisms called input streams enable high performance while
saving the programmer from network peculiarities. Although Distributed
Open Inventor intended use is a collaborative setup for multiple users viewing
a shared scene graph, this approach is a good candidate for a tiled display
since it provides all needed distribution techniques vital for a tiled display.

Studierstube

The Studierstube framework is an operating system for applications in vir-
tual reality. It supports multiple users collaborating in a distributed system.
While initially developed for scientific visualization, the generic approach
supports almost any kind of VR application on a wide range of VR-hardware.
It is based on the Distributed Open Inventor which itself is an extension of
the Open Inventor in the sense of a distributed shared scene graph. The
Studierstube framework consist of inherent concepts, like real-time graphics,
high-level interaction methods, multi-user integration, and distributed exe-
cution. Thus making this framework a ready-to-use system to build up a
tiled display for virtual reality.

With the Studierstube framework we have not only a well working ren-
dering system for VR-applications supporting multiple users and parallel
application execution, but also the demanded shared memory, respectively
shared scene graph concept mandatory for a tiled display. With the underling
Open Inventor API it is easy to extend for rendering on a tiled display.

50 CHAPTER 3. RELATED WORK

Chapter 4

Design issues

In this chapter we present our solution to build up a scalable tiled display
with commodity PC and graphics hardware and low-cost projectors.

4.1 Calibration

We have implemented the approach taken by Raskar et al. They calibrate
oblique projectors with image detection techniques, and compute collineation
matrices between projector space, camera space and display space, also
named homographies. With these homographies it is easy to generate a
projection matrix for each display that can be used as a pre-transformation
matrix in the render step. It undistorts oblique projection from roughly po-
sitioned and aligned projectors. The technique describe by [Raskar et al.02]
uses structured patterns projected by each projector to extract feature points
and finds the corresponding collineation between camera and projector pix-
els. With this collineation it is easy to compute projector to projector and
display to projector homographies. The projector to projector homographies
are used to compute the needed blending masks for intensity weighting in
overlapping regions.

During rendering the projector to display homographies can be used as
pre-transformation matrices to undistort oblique projection. Blending mask
using alpha blending techniques are used as a post-rendering step to blend
multiple pixels in overlapping regions. So the scenery will be corrected,
rendered, and blended in a single-pass saving a lot of computation time (see
section 3.1.3 for a brief description).

51

52 CHAPTER 4. DESIGN ISSUES

Figure 4.1: Two dedicated networks to separate shared scene data (red) from
synchronization events (green).

4.2 Cluster architecture

As mentioned in chapter 3, there are many possibilities to build up a render
cluster. To keep the costs low we decided for the off-the-shelf PC hardware
solution using dual processor PCs with a commodity graphics accelerator to
drive the tiled display. Each computer drives two displays from two outputs
and is able to do quad buffering for active stereo displays.

To be able to build a render cluster to share data and synchronize displays,
we need to connect the PCs within a network. We had to choose between
normal 100 Mbps Fast Ethernet and other high-speed networks, like Myrinet.
The latter one was the better in the term of high transfer rate which are
recommendatory for graphic applications. But we did not take any high-
speed network cards which are designed to send a Giga bit per second of
data. First, because of high price and second, because our Studierstube
framework performs well with normal ethernet cards since data sharing and
replication between the display nodes is not done very often. Two 100T-
Ethernet network cards were put in each computer creating two dedicated
networks. The reason for two network cards per computer is that one network
is used for data sharing and the other for synchronization. So interference
of both is avoided to guarantee full bandwidth when data is shared and
synchronization points are sent (see figure 4.1).

We use high performance computers equipped with dual processors and
one graphics accelerator each, as mentioned above. To run the computers
as a sharing scene graph cluster we use our Studierstube framework. This
allows us to create a render cluster with one control node running as mas-
ter to collect user data, like tracking data, mouse motion. The other nodes

4.3. DATA DISTRIBUTION 53

within the cluster are display nodes running as slaves. They process all other
tasks - executing application code, rendering, and displaying the scenery on
the tiled display. With this approach a copy of our Studierstube framework
runs on each display node concurrently. In terms of tiled displays types we
are running multiple copies of application codes on the different display node
and since we are also sometimes using both graphics cards output channels,
we run two copies of the code on each display node. So we have to take
care about a synchronized execution of code on every single display node.
We used system-level synchronization with a simple frame buffer switch syn-
chronization. The application code halts when ever a buffer switch should
occur. When all display nodes are ready to switch their frame buffer con-
tent, the application will be notified to continue code execution. Figure 4.2
shows a time diagram and how every copy of the application is treated when
synchronization points are met.

4.3 Data distribution

The Studierstube framework already delivers data distribution. Since this
framework is build on top of Open Inventor its data distribution strategies
are tightly coupled with node creation and destruction, and event genera-
tion. The distributed Open Inventor extension provides easily manageable
data distribution (see section 3.7). This extension is build in a master-slave
scheme, where one master holds the master copy of the scene graph and de-
livers its slaves with updated copies of the scene graph as soon as any content
of the scene graph is changed. So in our solution we choose the synchronized
execution model where a master synchronize all its slaves to render the cor-
rect view of the scene. We take a lazy synchronization model between the
application driven by the slaves using frame buffer switch synchronization.
So the application’s execution path is stopped by each slave, when its scene
part is completely rendered. After all slaves have finished rendering their
scenes, the frame buffer switch occurs and implicitly synchronizes all slaves’
execution paths.

4.4 Display synchronization

Since we want to enhance our existing Studierstube framework, it is the eas-
iest way to enhance this framework with a synchronization scheme. Studier-
stube is build on top of Open Inventor which is a 3D scene graph API allowing
to build complex scenery by describing the scene with a scene graph. The

54 CHAPTER 4. DESIGN ISSUES

Figure 4.2: A time diagram showing system-level synchronization of multiple
copies of an single-threaded application. After each buffer switch the code’s
execution path is synchronized again.

4.4. DISPLAY SYNCHRONIZATION 55

scene graph contains different nodes, some representing geometry, transfor-
mation, or grouping sub graphs, see section 3.6 for a brief description of
Open Inventor. To synchronize the result - a rendered frame - we create a
new node and add it at the end of each display node’s scene graph which
synchronize the render result of all display nodes. Since Open Inventor tra-
verses its scene graph to render the scenery describe by the scene graph, it
is the easiest way to do synchronization within the Open Inventor traversal
philosophy. While appending this new node at the end of the scene graph, it
will trigger its synchronization method after all scenery was rendered. When
one of these nodes is traversed during rendering, it notifies a render control
server that it has finished rendering. After all display nodes have sent their
signals to the server, the render control server then notifies each node to
swap the buffers allowing them to show up the new content. So we achieve
a uniform content switch (new frame content) over the whole tiled display.
We described this technique in section 3.5 as the frame buffer switch syn-
chronization.

But we have to mention that when synchronizing via the frame buffer
switch, we have to take care of application synchronization as a second step,
too. So we have to ensure that user inputs and application data changes,
so called application events, are synchronized on each display node when a
buffer switch occurs. Since we can not guarantee that events are delivered
to the display nodes in the time-order they occurred on the control node, we
have to divide these events into two parts. First, all events that occurred
before the buffer switch have to be distributed to all display nodes before
the buffer switch takes place. Second all events occurred after the buffer
switch compared to the control node’s execution path at that time must
be retarded until the next buffer switch occurs. Retarding the events after
finishing rendering can be done on the master side or the slave side, i.e. on
the control node or the display nodes. If this is done on the display nodes,
each display node has to collect the events occurred the first display node has
finished rendering and not to trigger them until all display nodes are allow
to switch the frame buffer. Figure 4.3 shows the scenario where events are
collected on the slave side by the display nodes and are retarded until the
next buffer switch occurs. When the first display node has finished rendering
all subsequent events have to be retarded and stored on all display nodes,
until every display node continues program execution.

56 CHAPTER 4. DESIGN ISSUES

Figure 4.3: A time diagram showing event retarding on each display node.
The control node sends events via multicast (flashes), so that every event
is distributed to all display nodes. After the first display node has finished
rendering (at t0), all subsequent events have to be stored on each display
node until a buffer switch occurs (at t1).

Chapter 5

Implementation issues

This chapter describes the taken steps to fulfill our needs to drive the tiled
display, keeping in mind scalability, maintenance, and performance.

5.1 Calibration

Since we want to add and remove displays from the tiled display as needed,
we implemented a calibration software that support any number of displays
to calibrate. We chose a server-client model to maintain displays and cam-
eras and to run all parts of our calibration software on different nodes within
a network. A server will handle all clients that registers at it. It also han-
dles and directs messages to the right clients. See chapter 10 for a detailed
description of the implementation of the server and its clients. Each client
represents one of the three groups, a user, a projector or display, or a cam-
era. The user client processes user inputs and invokes the different cali-
bration steps just on the user’s demand. A projector client represents a
display within the render cluster, without any restriction of size, brightness,
or location. Thus allowing a display node to drive more than one display
at a time. The camera client handles the video stream from a camera and
performs the computations for the needed projection matrices and blending
masks using [Raskar et al.02]’s approach with building homographies . The
homographies are extracted using OpenCV’s pattern recognition techniques.
A simple chessboard pattern is projected for each display and captured by
the camera. The feature points of the pattern are extracted using OpenCV’s
FindChessBoardCornerGuesses() function and the homographies are com-
pute with OpenCV’s FindHomography() function. Figure 5.1 shows the
found feature points during a calibration step. These homographies are ex-
tended to 4× 4 matrices to be usable in a common graphics pipeline. After

57

58 CHAPTER 5. IMPLEMENTATION ISSUES

Figure 5.1: Detecting feature points of a projected chessboard pattern during
calibration (left). All feature points are detected and the convex hull of each
calibrated projector is shown in red (right).

the extension the matrices have to be corrected to approximate depth-buffer
values as described in [Raskar00, Raskar99] due to depth value distortion
when the homographies are applied to common view frustum or projection
matrices. A detail description on homography and blending mask compu-
tations and how to approximate the distorted depth values can be found in
section 3.1.3). This approach scales well and maintenance is low if the in-
stalled system is not changed very often, i.e. if displays that belongs to a
node are not removed or added. So if a render cluster is once installed and
only the displays are rearranged, the only step done is to run the calibration
software parts and recompute the projection matrices and blending masks.
If a display, or camera is removed or added to the render cluster, a short
configuration file must be written to describe the parameters of the display,
or camera respectively. See chapter 9 for a description of the configuration
files.

Since we want to calibrate a tiled display and use it within our Studier-
stube framework, our calibration software can not only be used to calibrate
the tiled display, but also to generate Studierstube specific files to run the
Studierstube after the calibration step (see section 5.2.3).

5.2 Studierstube

5.2.1 Data distribution

A distributed version of Open Inventor was developed previously, so that data
distribution is not an issue of this thesis. But we will shortly describe how
it works. Since Studierstube is based on Open Inventor, data distribution is

5.2. STUDIERSTUBE 59

based on Open Inventors scene description philosophy. A scene is described
by a scene graph with various kinds of nodes. A node can contain geometry,
do transformations, bundle a group of other nodes, or act with a specific
behavior when it is visited by an action or an event. The run-time system
of Open Inventor takes care of event, action, and even node generation, so it
is easily to catch modifications to the scenegraph and distribute them to all
slaves. If a node is created or removed from the master’s scene graph, it is
also created or removed in all slaves’ scene graphs. Any action or event that
occurs on the master host will be serialized and transmitted to the slaves.
At the slaves the same event will be generated to guarantee equal behavior
on all machines.

This also includes user input, since every input from the user is converted
into an Open Inventor event. This event then visits all nodes in the scene
graph. So equal scene nodes on the different cluster nodes show the same
event specific behavior.

The replication of node or subgraph generation and destruction and the
serialization of events saves a lot of network traffic since only changes in the
shared scene graph and occurring events are transmitted. In other approaches
(like primitive distribution) every time a frame is rendered all scenery data
is transmitted to the display nodes. In our implementation we chose the
synchronized execution approach. This approach scales very well, since the
main network traffic are user, application and synchronization events (which
are mostly very short message packets less than one KB). Scene graph data
is only transmitted when a part of the scene is changed. Although the in-
tended use of the Distributed Open Inventor was a collaborative setup for
multiple users, it fits perfectly to build a tiled display. For each tile within
the tiled displays we setup a “user” that only watches, and renders the scene
without any interaction. So we can easily implement the semantics of a tiled
display without implementing extra code to support multiple displays in our
framework.

5.2.2 Display synchronization

To synchronize the display content of all displays within the tiled display, we
decided to take a synchronization point when a render node has finished ren-
dering. Thus we can easily synchronize the application’s execution path, since
it will stop as soon as the synchronization point is reached, and synchronize
the display content at the same time. It is the advantage of Open Inventor’s
visiting pattern philosophy that application execution synchronization is so
easily achieved. In Open Inventor events and actions visit all nodes in the
scene graph invoking a node specific behavior. The Open Inventor action

60 CHAPTER 5. IMPLEMENTATION ISSUES

that is responsible for rendering is a SoGLRenderAction. This action visit
all nodes in the scene graph during rendering invoking the nodes’ rendering
semantics. We implemented one new node that when visited by this ac-
tion can synchronize the display nodes within the render cluster. To achieve
synchronization we first implemented the abstract base class SoRenderSync.
Based on this class the actual synchronization node, reacts only when it is
visited by a SoGLRenderAction, thus all other actions are ignored and not
delayed by this node. So during rendering the code execution on a display
host within the render cluster is suspended after a SoGLRenderAction trig-
gered the SoRenderSync subclass’ action behavior. As soon as all display
hosts have finished the rendering process and performed their render action
behavior, they leave the suspended mode and continue code execution. This
also leads to a application execution synchronization, because Open Inven-
tor will collect all events that arrives during the suspended process and will
trigger them just before the next SoGLRenderAction takes place.

As mentioned we developed a node to react when a SoGLRenderAction
traverses the scene graph. As a base for synchronization nodes we imple-
mented the SoRenderSync class as an abstract class to provide a simple
thread generation to run the server thread. A virtual function is provided
to implement the server’s thread behavior saving the developer from thread
generation peculiarities. All subclasses of this node synchronize several dis-
play nodes within the render cluster when a SoGLRenderAction arrives at
the subclass node (see the following section for details).

We have implemented the SoRenderSyncUDP class as a subclass. This
class performs synchronization using an UDP server and a multicast group
where the clients joins. When a render action passes this node, the client
sends a packet to inform the server that it has finished rendering. As soon
as all clients have sent their packets to the server, the server will sent a
broadcast packet to the multicast group to allow the clients to switch to the
next frame and continue their code execution.

Each display node that should be synchronized should have a SoRender-
SyncUDP node at the end of its scene graph. Any one of the display nodes
acts as server and client at the same time to synchronize all other display
nodes, respectively clients. This special node starts a server thread to process
its clients. As by design it is also allowed to run its client unsynchronized
from the rest of the clients. We chose this design to be able to use one of the
stations within the render cluster as a monitoring rendering machine. This
is important when large and complex scenes are viewed which can not be
rendered at interactive frame rates. The monitoring machine is used to show
a draft of the scene which renders much faster than the actual output on the
display wall. Think of a view of an isosurface mesh or a complex simulation

5.2. STUDIERSTUBE 61

typedef struct

{

unsigned long frameNumber;

unsigned short clientNumber;

unsigned short retransmit;

} Packet;

Table 5.1: The message packet transmitted between the synchronization
server and its clients.

output where millions of triangles have to be rendered on the tiled display.
When rendering a low resolution model on the monitoring node, we are able
to render the scene in real time on this node since it is not synchronized with
the other render nodes. The tiled display renders a high-detail model at non-
interactive frame rates instead. This allows the user to interactively change
the point of view or change other elements (like simulation constraints) on
the monitoring node, while watching a high detail model on the tiled display.

Code fragments and message protocols

Now we will look at the code and the messages we have implemented to
synchronize the render cluster. A simple packet is used to perform commu-
nication between the synchronization server and its clients. The packet holds
information about the rendered frame and the clients. The packet is eight
bytes long and contains the frame number that was actually rendered by the
client. Each client must have a unique number which is also transmitted
to the server. An additional field is used when a client did not meet the
synchronization constraints. The packet is a C-struct to easily access the
information (see table 5.1). An second C-struct was defined to maintain
the clients and can be used by the server thread to log clients’ statistics (see
table 5.2.

We implemented the abstract base class SoRenderSync to support thread
generation. This class has one virtual function void serverCode(void)

that must be overwritten to support sever semantics. Since this class is
derived from an Open Inventor node it also has the virtual function void

GLRender(void). Reimplementing this function, the synchronization func-
tionality of each single render client can be achieved. We will have a look at
some parts of the SoRenderSync class to show how it works and how it can
be extended by subclassing.

62 CHAPTER 5. IMPLEMENTATION ISSUES

typedef struct

{

unsigned long joinedAtFrame;

unsigned long framesDropped;

unsigned long frameNumber;

bool active;

} ClientStatistic;

Table 5.2: The ClientStatistic struct to store information about clients within
the server thread.

/** Number of client (setting to -1 forces this node to act as

* server). */

SoSFInt32 clientNum;

/** Determines synchronous/asynchronous rendering for server

* nodes. Has no effect on client nodes’ rendering.*/

SoSFBool synchronized;

As a second step we have to subclass the SoRenderSync class. The SoRen-
derSyncUDP class derived from SoRenderSync uses an UDP server collecting
packets from its clients. In the other direction each client joins a multicast
group used by the server to send a reply packet that informs the clients to
switch their frame buffer and to continue code execution.

We present here a short guide how to subclass the SoRenderSync in three
steps:

First subclass the SoRenderSync class.
class STBAPI_API SoRenderSyncUDP: public SoRenderSync {

Second add some fields to specify sever and multicast addresses, or what-
ever fields are needed to build synchronization server-client model.
. . .
public:

/** Multicast address and port clients join. */

SoSFString multicastAddress;

SoSFInt32 multicastPort;

/** Interface address for outgoing client messages. */

SoSFString interfaceAddress;

5.2. STUDIERSTUBE 63

/** Server address and port all clients will send a

* message to when this node is rendered. */

SoSFString serverAddress;

SoSFInt32 serverPort;

. . .

Third overwrite the following two virtual functions to implement synchro-
nization semantics and make synchronization work.
public:

virtual void GLRender(SoGLRenderAction *action);

. . .

protected:

virtual void serverCode(void);

. . .

When the render function GLRender() is invoked, the client sends its
packet with its unique client number and actually rendered frame number
to the server and wait for the server’s response. This in turn suspends the
client from executing code. The server collects all packets from its clients
and compare their frame number with its own predicted frame number. If
any client does not send its package within a certain time interval, the server
exclude this client from the render cluster and sends the frame switch mes-
sage, a packet with a client number of -1 and the actual frame number. If a
client fails it can join the server at any time and gets synchronized again. If
the server fails all clients reset their frame number and try to connect to the
server. This gives us the possibility to remove and add nodes at any time,
even the server code executing node.

The serverCode() function is invoked once the server thread starts. It
runs and processes its clients requests infinitely.

5.2.3 Tiled Display

With the Studierstube API and its underlying Distributed Open Inventor
API, we can easily build up a tiled display since it provides all needed meth-
ods to support shared scene data and event serialization. In section 3.1.3 we
talked about rough overlap displays. These display are formed by oblique
projectors, so we have to correct the display scenery of each projector in
respect to the user’s view. The computed projection matrices and blending

64 CHAPTER 5. IMPLEMENTATION ISSUES

masks are bound into the scene graph of each display to form a seamless tiled
display. We extended the Studierstube API by some classes to be able to
render to our tiled display. The SoAlphaMaskKit class is responsible to blend
pixels in overlapping regions of adjoining projectors, so that these pixels are
as bright as pixels in non-overlapping regions. It contains a field texture

where the blending mask can be stored. Our calibration software will build
a SoAlphaMaskKit for each projector as an output of the calibration step.
The SoOffAxisCamera class was extended by a field called matrix. It stores
a collineation matrix (homography) for the specific tile to correct the scenery
of the scene graph the camera will render. This matrix maps pixels from pro-
jector coordinate frame to pixels in display coordinate frame. To be useable
for visibility culling and clipping, it also corrects depth-buffer values which
will be distorted by the collineation. This matrix is set by the calibration
software for each projector and stored in a common UserKit to be useable in
the Studierstube environment. An additional class, the SoStuberenaKit , was
developed as a startup application when the Studierstube system is launched.
It has a SoSeparator field called postScene that can contain any subgraph.
As the name of the field suggests this subgraph is attached at the very end
of the scene graph to a local part of the graph that is not distributed. In the
most cases this class is used to contain synchronization nodes. This is crucial,
because distributing a synchronization node to the shared scene graph will
lead to non predictable result. Each display node will start a SoStubrenaKit
which contains a subclass of SoRenderSync mentioned above for synchro-
nization and a SoAlphaMaskKit for blending overlapping regions. Since the
SoStuberenaKit is an application, we do not want to run it forever and waste
resources of Studierstube. After the subgraph of this kit is linked to the
unshared part of each node’s scene graph, the SoStuberenaKit application is
closed leaving a blank Studierstube framework ready to work.

5.2.4 Summary

We extended the Studierstube API by five classes to be able to render and
display Studierstube applications to our tiled display. These five classes are:

• The SoRenderSync class is an abstract base class all synchronization
nodes working within the StubeRenA tiled display should be derived
from.

• The SoRenderSyncUDP class is responsible to synchronize the display
content (see table 5.3).

5.2. STUDIERSTUBE 65

• The SoAlphaMaskKit class is responsible to blend pixels of adjoining
projectors (see table 5.4).

• The SoOffAxisCamera class was extended by the field matrix, which
corrects the oblique projection of its projector’s area (see table 5.5).

• The SoStuberenaKit was developed to link the synchronization nodes
to the part of the local scene graph copy on the display machines which
will not be distributed and of course will be at the end of the whole
scene graph (see table 5.3).

66 CHAPTER 5. IMPLEMENTATION ISSUES

#Inventor V2.1 ascii

DEF STBRENA SoApplicationKit {

readOnly TRUE

classLoader SoClassLoader {

className "SoStuberenaKit"

fileName "../apps/stuberena/stuberena_stb"

}

contextKit DEF stuberena SoStuberenaKit {

clonePipSheet FALSE

!IMPORTANT! Do not remove the following lines.

The calibration program will not set these values if the lines are removed.

postScene SoSeparator {

File { name "//Dartagnan/Documents/Overlap/renaMask[00].iv" }

SoRenderSyncUDP {

multicastAddress "224.0.0.1"

serverAddress "128.131.167.145"

clientNum 0

}

}

}

appGeom Separator {

Texture2 { filename "../apps/stuberena/stuberena.gif" }

}

info Info { }

}

#

renaStartKit[00].iv generated automatically: Fri Aug 29 10:57:45 2003

#

StubeRenA calibration software (c) 2003 Vienna University of Technologie

#

Table 5.3: The SoStuberenaKit to start a tile within the render cluster and
append a SoAlphaMaskKit and a SoRenderSyncUDP node at the end of the
local scene graph.

5.2. STUDIERSTUBE 67

#Inventor V2.1 ascii

SoAlphaMaskKit {

texture SoTexture2 {

wrapT CLAMP

wrapS CLAMP

model MODULATE

image

128 128 4

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0x4b 0x5e 0x6b 0x75 0x7c 0x83 0x88 0x8c 0x90 0x93 0x93 0x94 0x94 0x94 0x94

0x94 0x94 0x94 0x94 0x94 0x94 0x95 0x95 0x95 0x95 0x95 0x95 0x95 0x95 0x95 0x95

0x95 0x95 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x96 0x97 0x97

0x97 0x97 0x97 0x97 0x97 0x97 0x97 0x97 0x97 0x97 0x98 0x98 0x98 0x98 0x98 0x98

...

...

...

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1c 0x2f 0x3d 0x47 0x4d 0x69 0xff

0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x2f 0x48 0x58 0x5e 0x5e 0x5d 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

}

}

#

renaMask[00].iv generated automatically: Fri Aug 29 10:57:45 2003

#

StubeRenA calibration software (c) 2003 Vienna University of Technologie

#

Table 5.4: The SoAlphaMaskKit that is loaded from a SoStuberenaKit ap-
plication. A value of 0xff fades the corresponding pixel black and a value of
0x00 means that the pixel is illuminated at full brightness.

68 CHAPTER 5. IMPLEMENTATION ISSUES

#Inventor V2.1 ascii

SoUserKit {

!IMPORTANT! Do not remove the following line.

The calibration program will not set this value if the line is removed.

userID 10

display SoDisplayKit {

station 2

!IMPORTANT! Do not remove the following lines.

The calibration program will not set these values if the lines are removed.

stereoCameraKit SoStereoCameraKit {

camLeft SoOffAxisCamera {

matrix 1.01263334 0.00690716901 0 0.0224769952

-0.013100665 1.02769573 0 -0.0135801814

0 0 0.636612232 0

1.01919947 -1.0478436 0 1

viewportMapping ADJUST_CAMERA

nearDistance 0.01

farDistance 100

focalDistance 2

orientation 0 1 0 0

size 0.35 0.27

eyepointPosition 0 0 0.5

}

}

cameraControl SoTrackedDisplayControlMode {} # used to hide examiner viewer buttons

headlight TRUE

headlightIntensity 1.0

backgroundColor 0 0 0

transparencyType BLEND

windowBorder FALSE

showMouse FALSE

!IMPORTANT! Do not remove the following lines.

The calibration program will not set these values if the lines are removed.

xoffset 0

yoffset 0

width 1024

height 768

}

}

#

Projector 00’s display mode: mono

#

#

renaUserKit[00].iv generated automatically: Fri Aug 29 10:57:45 2003

#

StubeRenA calibration software (c) 2003 Vienna University of Technologie

#

Table 5.5: A common user kit to run a tile as a passive user to render the
scene.

Chapter 6

Results

In this chapter we present our results and show how our system performs.
We compare rendering results of distributed rendering and rendering on a
single computer. We run multiple copies of our Studierstube environment
within the render cluster and synchronize the application’s execution path
with system-level synchronization. This as describe in chapter 3 is a viable
way to synchronize the application as long as they run single-threaded. If
the Studierstube framework is supporting multi-threaded execution in the
future, then this synchronization model only works if only one single thread
interacts with the environment while the other threads compute the scenes
without affecting the internal states of the application.

6.1 Performance

Performance is the vital part of every virtual or augmented reality system.
The system should perform at interactive frame rates to guarantee the illusion
for the user that every action he takes directly manipulates his environment.
This is important to mimic realistic behavior since the user’s experience in
real life is that every action performed changes the environment at any time.

Our system performs well under all circumstances and all configurations.
We run our system on a single computer as a reference when running it on
our tiled display.

With the tiled display system there are two possibilities to perform ren-
dering and object culling. Tile specific rendering culls an object that fall
totally outside the tiles viewing volume before its primitives are generated
and rendered. This should raise the performance of the whole system and
should allow interaction in real-time. The overhead made to compute the
parts of the scene graph that are, partly or totally, visible and that are invis-

69

70 CHAPTER 6. RESULTS

ible at all is negligible compared to the rendering time. Total scene rendering
on the other hand is the easiest way to let the system render scenes. Already
existing applications can be used as they are and tile-specific culling and
rendering is performed by the graphics accelerator. But as one can expect
there more complex scenes must be rendered the more the frame rate drops.
At a certain point when to many primitives must be rendered interaction in
real-time is no more guaranteed.

But we must state here, that even under tile specific rendering the frame
rate can fall below real-time restrictions. Think of a polygonal model of an
isosurface extraction of a 3D volume set. This normally generates over a
million of polygons to be rendered. And even if we only render the part
of the model that is visible in one tile, we still have to compute hundreds
of thousands of polygons. This still is not possible to be rendered in real-
time. But with our StubeRenA tiled display we can run one node as a
monitoring machine, rendering a low resolution model to make real-time
interaction possible for the user. The user than can perform his actions in
real-time and see the results on the low resolution model, while the other
nodes within the cluster render the model at high-detail on the tiled display.
We will now compare and show the results of our StubeRenA framework.

Non-tile specific rendering

In the first test we take normal Studierstube applications that are not aware
of tiled specific rendering. Thus the whole scene will be rendered on each
display node and visible parts are culled with view frustum clipping tech-
niques by the render hardware. In this scenario we expect equal frame rates
on all machines. And the frame rate compared to the single reference render-
ing computer should even match with slightly lower frame rates on the tiled
display originating from synchronization. We run two to four applications in
parallel and moved the application’s windows to compare even and uneven
render loads on the nodes and the render performances. As expected in a
non-tile specific rendering the render times only slightly differ from each an-
other. We choose two setups where each render node drives a single display
and one setup where each node drives two displays.

First, we setup a two-display tiled display with one master control node
and two slave rendering nodes driving the displays. When rendering scenes
with less polygonal complexity the slaves are slightly slower than the single
rendering machine. This difference comes from synchronization when one
node is waiting for the other to refresh the display. If we run one application
both systems (tiled display and single computer) show the same frame rate of
approximately 30 frames per second. If we run two applications concurrently

6.1. PERFORMANCE 71

uneven load even load heavy load
render time 53ms 47ms 50ms 50ms 0.1s 0.1s
synch. time 0.1ms 10ms 0.1ms 0.05ms 0.2ms 1ms
frames/s 18 fps 20 fps 10 fps
fps(single) 21 fps 21 fps 10 fps

Figure 6.1: Non-tile specific rendering with normal Studierstube applications.
A two display setup driven by two nodes with uneven, even, and heavy
load balance. In the even load scenario synchronization time is ≤ 0.1ms,
in the other scenarios synchronization time is ≥ 1ms which slows down the
performance compared to the single rendering computer.

we gain 21 frames per second on the single rendering machine, while the tiled
display system renders the scenery in 18 frames per second if the render load
is uneven distributed, i.e. only one node of the both renders the scenery to the
frame buffer, while the other drops all polygons since they are not visible. In
an even load scenario where both nodes has to render to their frame buffers,
the frame rate gets in reach of the single rendering machine. If we increase the
render load starting some more applications the synchronization boundaries
become less noticeable and the frame rates equals on the tiled display and
the single computer. Figure 6.1 shows the results in comparison.

In the second setup we build a three-display tiled display. The master
takes the rule of both a control node and a rendering node. In this scenario
the same situation arises like in the two display setup. If the render load is
not evenly distributed, i.e. if one node must render the scenery to its frame
buffer, while the other two cull all polygons, the frame rates drops again
slightly compared to the single rendering computer, see figure 6.2.

In the third case we setup a four-display tiled display with one master
control node and two slave rendering nodes driving two displays each, see
figure 6.2.

Tile specific rendering

Now, we will turn to the more interesting part of driving a tiled display.
If scenery is rendered in a tile-specific fashion, i.e. that parts of the scene
can be clipped before their primitives are generated and rendered, then we
exploit the advantages of a tiled display when multiple instances running

72 CHAPTER 6. RESULTS

three display setup four display setup
render time 32ms 24ms 24ms 40ms 40ms 25ms 25ms
synch. time 0.1ms 8.5ms 9.5ms 0.1ms 9ms 2ms 2ms
frames/s 30 fps 25 fps
fps(single) 30 fps 30 fps

Figure 6.2: Non-tile specific rendering with normal Studierstube applications.
A three display setup driven by three nodes and a four display setup driven
by two nodes. Frame rates are comparable to single computer rendering.
The four display setup shows worse results, because each node must render
two frames at a time. Displays 1,2 and 3,4 contributes to node 1 and node 2
respectively.

concurrently within the render cluster. Each instance of the application can
perform pre-culling steps before the scene graph is traversed and rendered.
Thus we can prune the scene graph and only render a part of it. This in
turn improves overall performance of the tiled display. As in the non-tile
specific rendering, we choose two setups where each render node drives a
single display and one setup where each node drives two displays. We run
a view dependent scenery with over 500.000 polygons to compare the tiled
display’s performance with that of a single machine.

First, we setup a two-display tiled display with one master control node
and two slave rendering nodes driving the displays. Figure 6.3 shows the
results in comparison. If the scenery is moved into the display area of the tiled
display, the frame rates drops below the single computer rendering’s frame
rate. This is of the higher-resolution of the tiled display against the single
computer’s resolution, since in this scene also a level of detail dependent of
the screen resolution is computed. But if the scene is moved into the middle
of the tiled display the render performance of the tiled display matches the
single machine’s performance.

In the second setup we build a three-display tiled display. The master
takes the rule of both a control node and a rendering node. And in the
third case we made a four-display tiled display with one master control node
and two slave rendering nodes driving two displays each. Figure 6.4 depicts
the results of these setups. It shows clearly that the tiled display approach

6.2. VISUAL ACCURACY 73

uneven load slightly uneven even load
render time 40ms 5ms 60ms 20ms 50ms 50ms
synch. time 0.1ms 34ms 0.1ms 35ms 0.1ms 1ms
frames/s 25 fps 16 fps 20 fps
fps(single) 30 fps 15 fps 12 fps

Figure 6.3: Rendering a scenery that performs tile-specific culling before
primitives are generated and rendered by the hardware. A two display setup
driven by two nodes with uneven, slightly uneven, and even load balance. In
the even load scenario synchronization time is ≤ 0.1ms, in the other scenarios
synchronization time is ≥ 3ms. In the uneven load scenario the frame rate
is below the single computer’s frame rate due to a higher level of detail when
the scenery is rendered on the tiled display.

matches the single node rendering even though the tiled display system ren-
ders at a higher level of detail generating more polygons than the single
machine.

6.2 Visual accuracy

One vital part of a tiled display is its visual accuracy. Miscalibration of a
projector’s collineation matrix leads to a wrong calculated projection matrix.
This influences the visual accuracy since misaligned tiles within the tiled dis-
play show discontinuities in geometry. The human eye is trained to find
geometric relations like lines and shapes. Even if shapes are only partially
seen, the human perception reconstruct their origin shapes. Therefore non-
continuous shapes, objects, or geometry at adjoining tiles must be avoided.
Otherwise this leads to a visual disruption. Thus makes a tiled display un-
usable since the discontinuities are disturbing the illusion of a large seamless
high-resolution display.

The most important part for visual accuracy are of course the overlapping
regions where multiple projectors displays the same geometry. We have im-
plemented the solution shown by Raskar et al. [Raskar et al.02]. We project
a calibration pattern, an ordinary chessboard, with each projector. A cam-
era takes a snapshot of each projection and try to find the feature points of
the calibration pattern. Since we now the feature points position in normal-

74 CHAPTER 6. RESULTS

three display setup four display setup
frames/s 18-20 fps 15 fps
fps(single) 10-12 fps 10-12 fps

Figure 6.4: Tile specific rendering performed on a three and four display
setup. These results show that, if we render in a distributed way and perform
tile-specific scene graph pruning, the frame rate always stays higher compared
to a single computer rendering the same scenery even at a lower level of detail.
And to top the tiled display approach, in the four display setup each node
must render two frames at a time, but also in this case the tiled display
system performs better than the single computer rendering. Displays 1,2
and 3,4 contributes to node 1 and node 2 respectively.

ized projector space, we can find a collineation between the detected feature
points and the normalized feature points. This homography describes the
relation between each projector space and camera space. This technique is
even good enough to show subpixel accuracy while the resolution of the de-
tecting cameras is 3 to 5 times lower than the resolution of the tiled display,
see figure 6.5. Although with the camera we used the algorithm does not
always find the best solution for calibration. It sometimes turn out that even
if all feature points of the patterns are detected the resultant homography
and therefore the resultant projection matrix does not meet the accuracy
needed to project continuous geometry in the overlapping regions. This can
be mostly avoided by (i) raising the number of feature points, i.e. raising the
resolution of chessboard squares on the chessboard pattern, (ii) tuning the
camera’s distortion parameters and the lighting conditions, and (iii) prevent-
ing the camera from choosing auto-leveling the brightness. The last point is
most critical since off-the-shelf webcams often exhibit the behavior to over-
tune the contrast and brightness levels. If the projection pattern is taken
with a standard digital camera under the same environmental circumstances
the contrast levels are much better and do not exhibit strong escapees. Fig-
ure 6.6 shows the two pictures taken by both cameras and the corresponding
histograms. While the standard digital camera shows smooth an equal levels,
the off-the-shelf camera exhibits very jagged and bright levels. This can make
feature detection difficult, because alternating bright and dark fields, like a

6.3. SCALABILITY 75

Figure 6.5: An off-the-shelf camera with a resolution of 640×320 pixels (left)
detects the feature points of a projected calibration pattern (right).

chessboard exhibits, crossfade and the well defined intercept points of the
fields can not be detected. This shows directly to use an accurate camera to
get sharp and well-defined points of interception. In the end, this influences
the detection and calibration step, and the attained results are the most ac-
curate. Finding the intercept points of the chessboard at their real position
is most critical to get a good result for the homographies. Figure 6.7 shows
two projected patterns and the found positions of crossing fields. On the
left the points are all detected in nearly their real positions, whereas on the
right some positions of the points are wrong detected. Wrong position leads
to slight errors when finding the homographies between the feature point in
projector and in camera space. And this in the end mess up the continuity of
geometry when a projection matrix is compute from the wrong homography.

With accurate feature point detection we achieve subpixel accuracy on
images of the tiled display. Figure 6.8 to figure 6.9 shows render results and
the achieved pixel accuracy and geometrical continuity.

6.3 Scalability

In this section we discuss the scalability of our system concerning the different
part of the tiled display.

Calibration

First, while our calibration algorithm is scalable, the presented implementa-
tion only supports one camera at the moment. This restricts the actual size
of the tiled display at the moment. At the time of investigation the number

76 CHAPTER 6. RESULTS

Figure 6.6: Photographs and histograms of a standard digital camera (left)
and an off-the-shelf camera (right) for the same shot under equal environ-
mental circumstances. The off-the-shelf camera has an jagged histogram
predominantly in bright regions. This makes feature detection difficult.

Figure 6.7: These two snapshots show a good result of detected feature
points on the left and a bad result on the right. The detected positions of
crossing fields are not on their real positions. This leads to wrong computed
homographies and to not matching geometries in overlapping regions.

6.3. SCALABILITY 77

Figure 6.8: A rendered interaction panel used for user input. Geometry and
literals remain continuous even in overlapping regions.

Figure 6.9: A magnified section where all projectors overlap. Pixels from
different projectors match in overlapping regions.

78 CHAPTER 6. RESULTS

of hardware available to drive the tiled display did not exceed the maximum
amount that can be calibrated by the current version of our software. But
it should be made clear that the actual version should be extended to be
prepare to scale up our tiled display in the future.

Synchronization

When designing a scalable system, we also have to look at our synchronization
scheme. It will not scale infinitely, but since we use a dedicated network for
synchronization only and the sent synchronization message are very small
(8 bytes raw data), the traffic load on the network is very low. In our
experiments the overall load of the synchronization network was always less
then 0.01% of the total bandwidth. This is a very good indication that the
synchronization will not be a limiting factor concerning network load.

Distributed Open Inventor

Turning towards the distribution layer of the Studierstube framework, the
Distributed Open Inventor, can prevent scaling up the system. Distributed
Open Inventor uses multicast messages which slow down overall performance
as other researches have shown in the past. Using multicast messages in a
tiled display system can impact the network bandwidth. Since we use the
Studierstube framework in a parallel execution fashion with system-level call
synchronization, the main data that has to be transmitted is user input and
other application state changes (e.g. node generation or field alteration).
If the scenery is not altered to often the disadvantages from the multicast
approach in Distributed Open Inventor is negligible and only impacts the
system for short time periods. This is remarkable when high-detail scenery
with thousands of polygons is loaded and then distributed to all instances of
the Studierstube framework. This scenario arose in the experiments with tile
specific rendering, where a scenery was loaded with over 500.000 polygons.
Distributing the dataset take nearly two seconds, but after the scenery was
transmitted to all nodes it rendered smooth and without any interruption.

The advantage of this approach is that when the shared scene graph is
once distributed to all render nodes, altering states do not impact the network
load. But, during scene graph distribution the system slows down, or even
stagnate if a scenery with high detail is loaded. Thus having a copy of the
shared scene on the slave’s harddisk and load it instead of distributing it will
improve the render cluster’s performance.

6.4. MAINTENANCE 79

6.4 Maintenance

As a last point to interrogate for, we should examine our solution with re-
spect to maintenance. Since we designed our system to perform calibration
automatically and without any manual fine tuning, maintenance is low. The
only thing that must be maintained is the setup of the actual tiled display
configuration. As described in chapter 9 the user of the tiled display has
to write some configuration files to setup each part of the system, including
cameras, projectors, and the user himself to be able to start the calibration
process.

After a setup is described by its configuration files it can be reconfigured
and moved as the user wants it as long as no system parts are added or
removed. Then, the only step to drive the tiled display again after a rear-
rangement is to run the calibration software to compute the new blending
masks and projection matrices. After the calibration step the tiled display
is ready to run.

80 CHAPTER 6. RESULTS

Chapter 7

Future work

7.1 Display and event synchronization

As mention in section 4.4 and 6.2 there is no synchronization between events
and display refreshes. An event related to a certain frame should be deliv-
ered to all slaves before the display refresh occurs. Thus the session manager
and the render synchronization should be aware of each other not only run-
ning concurrently but in a synchronized manner. To be clear a frame refresh
should not occur before its related events have arrived at the client sides.
This should be supported by new versions of the tiled display, while in the
current version late arriving events are noticeable as disjoining scenery be-
tween different tiles.

7.2 Synchronized execution

We use high performance display nodes within the render cluster allowing
us to run the same application code on every display node. We have to
guarantee that every copy of the program runs synchronized, so we used
frame buffer switch synchronization to realize system-level synchronization
(see 3.4.1). This simple technique guarantees system-level synchronization
for single threaded programs, like the current version of Studierstube. But
future versions of Studierstube will be based on a multi-threaded implemen-
tation. With a multi-threaded Studierstube, we have to synchronize every
thread, known as application-level synchronization (see 3.4.1). This is fairly
done with a simple SynchronizeResult() method that keeps shared data
synchronized for every single thread. This affects the code of Studierstube
applications to meet synchronized results at defined points and to synchro-
nize program execution.

81

82 CHAPTER 7. FUTURE WORK

7.3 Very large displays

In our tests we only used one camera to calibrate the whole display. For very
large displays this would become more and more inaccurate if more displays
are added to the render cluster. So we have to use more than one camera each
taking a partially look at the display. Then each camera tries to calibrate as
many displays as possible while displays it will see partially or not at all will
not lead to a calibration result and do not count for this camera. After each
camera has tried to calibrate each display, a virtual camera will assemble
the results from all cameras combining the homographies of each camera
space to one virtual camera space and calibrate the whole display in the
virtual camera space. An implementation of this approach was introduced
in [Chen et al.01a].

7.4 Detecting the screen wall

Our solution for calibration forces the user of our tiled display to put the
camera in front of the screen wall during calibration. Its detection plane
must be parallel to the screen and the horizontal and vertical axis has to be
aligned with the ones of the display to compute exact projection matrices for
the displays in the render cluster. With region growth algorithms it is also
possible to detect the screen wall and to put the camera anywhere in front of
the screen wall. A method to detect an oblique screen wall in respect to the
camera’s detection plane and to compute a projection matrix to auto-correct
the projection areas of the projectors is described in [Sukthankar et al.00a].

7.5 Other synchronization models

We implemented just one model of synchronization, a software buffer swap
synchronization. For future research there are many more synchronization
models we can think of to implement and support for our tiled display, see
section 3.5.

Chapter 8

Acknowledgement

First of all I would like to thank Dieter Schmalstieg for offering me this
project, making me familiar with the people of our institute, and always
handing me to the right person when a problem arose. I would thank all
people who helped me to fix the code and spent their time and skill to
get things done. Namely, in alphabetical order, Hannes Kaufmann giving
me advice in distributed Studierstube and to make things running, Joseph
Newman for helping me ordering hardware, Gerhard Reitmayr who spent a
lot of time for discussion on implementation design to extend and enhance the
Studierstube software, Thomas Pintaric who wrote a wrapper class to easily
access Microsoftr’s DirectShowr which makes camera and video stream
access very uncomplicated and totally independent from my tasks, Daniel
Wagner for supporting me and giving me introductory advice using cameras
under Microsoftr’s DirectXr and DirectShowr and who helped me to
debug a lot of code.

I also thank the people at MERL (Mitsubishi electronics research labs) for
their code of their Mosaic software. We used it as a base for our calibration
software. We extracted some parts of their software to integrate it into ours.

83

Index

abutted display, 18

collineation, 22, 51, 63, 64
control node, 30, 33, 40, 52, 55

data distribution
bucketing, 41
control node, 33
display node, 33
render cluster, 33
render node, 33
task, 33

application, 33
display, 33
render, 33
user interface, 33

display node, 30, 33, 39, 40, 43, 44,
46, 52, 55, 57, 60, 64, 70,
81

display type, 17
abutted display, 18
regular overlap display, 19
rough overlap display, 20

homography, 22, 51, 57, 63, 64, 82

regular overlap display, 19
blending, 19

render cluster, 30
control node, 33
display node, 33
render node, 33

rough overlap display, 20
blending, 21, 51, 57, 64
collineation, 22

corrected projection matrix, 27
depth-buffer approximation, 26,

27
homography, 22, 23
non-planar surface, 21
projection matrix, 26

SoAlphaMaskKit, 64, 65
SoGLRenderAction, 60
SoOffAxisCamera, 64, 65
SoRenderSync, 60, 61, 64
SoRenderSyncUDP, 60, 62, 64
SoStuberenaKit, 64, 65
synchronized execution, 37

application-level sync., 39
system-level sync., 37

84

Part II

85

Chapter 9

User Manual

9.1 Introduction

The Overlap software package is a calibration software designed to run on a
cluster of workstations to meet the need for a large tiled display. Its intended
use is to calibrate a tiled display composed of various displays connected to a
computer cluster. A computer cluster is a set of networked computers which
share data of the different overlap software parts. Each computer within the
cluster can drive one or more displays. All displays together form a huge
display termed a tiled display. And each display will be referred to as a tile
of the tiled display. The output generated by the calibration software is used
to run a tiled display (examples for outputs used by other applications are
blending masks, projection and collineation matrices). See figure 9.1.

The display assembly can be homogeneous (using the same or a similar
display device for each tile of the tiled display), or heterogenous (using differ-
ent devices to form a multi-screen display). In the homogeneous case using
projectors one can build a seamless tiled display with as many devices as
needed to form a Megapixels screen wall. Alternatively one can use regular
monitors for displaying a large scenery with high detail and high resolution.
The drawback are the seams between adjoining displays. In the heterogenous
case any kind of displays may be used building a mixture of seamless displays
and information sideboards. Figure 9.2 depicts these three configurations.

In our implementation we used a 3× 2 projector array to build a display
wall with a total resolution of 4.7 Megapixels.

87

88 CHAPTER 9. USER MANUAL

Figure 9.1: A tiled display composed of various displays connected to a
computer cluster.

Figure 9.2: The three different display configurations. I) homogeneous dis-
play assembly: a seamless tiled display using projectors. II) heterogeneous
display assembly: a) a tiled display using multiple monitors, b) a tiled display
using a seamless display part and an information part with seams.

9.2. APPLICATION USAGE 89

9.2 Application usage

The Overlap software package contains four applications to calibrate each
display in the tiled display, namely a server application, a camera client,
projector client, and user client application. The server application manages
the communication between the three other applications. The server must be
the first application to run. All other applications can be started arbitrarily.
The camera client application takes care of calibration. A projector client
application will be launched for each display within the render cluster that
contributes to the tiled display. The user client application is the interface for
an user to start the calibration and change various calibration parameters.
Each application will be started with a configuration file holding a brief
description, see the following paragraphs for detailed information.

9.2.1 Server application

The server application will be launched just with a single parameter telling
it on which port to listen to. The server is only responsible for delivering the
concurrent clients with the right information. Thus every client application
is able to communicate with each other.
Usage: server [port], if no port is supported a default port number is
used.

9.2.2 Camera client application

The camera application should be started with a configuration file telling the
application which camera to use and at which resolution. The application
will run a preview window showing the current area seen by the camera. The
camera should be installed in a way keeping its image plane roughly parallel
to the screen surface with the camera’s field of view covering the whole area
of the projection screen. In the current implementation of the Overlap soft-
ware only one camera is used to calibrate the tiled display. So, all displays
must be seen by the selected camera. Once running the calibration step the
camera will take a snapshot of each display finding its relative position and
orientation to all other displays and in respect to the display screen.

Configuration file

The configuration file contains information about the server and the camera.
There are four values to set in the configuration file, see also table 9.1.

90 CHAPTER 9. USER MANUAL

server: string:integer server: 169.128.128.1:23451

size: integer,integer size: 640,480

name: string name: 1394

param file: string param file: camparams.txt

Table 9.1: Camera configuration file specification (left), example (right).

float float float float -0.200 -0.300 0.000 -0.006

float float float 640.000 0.000 320.000

float float float 0.000 480.000 240.000

float float float 0.000 0.000 1.000

Table 9.2: Camera parameter file specification (left), example (right).

server: Specifies the host name or the IP-address where the calibration
server is running. The port can be additionally set. Write the port
after the name with a colon separated

size: Describes the resolution of the used camera in pixels. Horizontal
resolution first, vertical second.

name: The camera’s name, or a part of the name (like 1394, Quickcam,
Sony, . . .).

param file: Specifies a parameter file that contains the distortion parame-
ter of the camera. See next section for a brief description on parameter
files.

Parameter file

The parameter file contains the distortion coefficients used by OpenCV to
undistort images taken by a calibrated camera. Within the file the parame-
ters are written as floats and separated by spaces. The four floats in the first
line representing the four tangential and radial distortion parameters. Where
the next three lines containing three floats each line represent the camera in-
trinsic matrix. Table 9.2 shows the file specification and an example.

Usage

camera [config-file], if no configuration file is supported default values
are used for the camera without a guarantee to run the application.

9.2. APPLICATION USAGE 91

camera -calib images fieldX fieldY fieldSize time, use camera client
as stand-alone application to find distortion parameters. Note: a cal-
ibration pattern (chessboard) is needed to compute the parameters.
Move and rotate the calibration pattern in front of the camera to find
good results for the distortion parameters. After all images are taken
the undistorted camera view is shown. The computed result can be
accepted and the application quits. If the result is not accepted by
the user the camera calibration process starts again. The result can
be copied to a parameter file. Set images to the number of images
that should be taken to find the distortion parameters. Set fieldX

and fieldY to the number of fields on the chessboard in horizontal
and vertical direction. fieldSize is the real size of a chessboard field
in centimeters. time is the elapsed time in milliseconds between con-
secutive snapshots.

camera -preview parameter-file, use camera client as stand-alone ap-
plication to manually tune distortion parameters. The output can be
copied to a parameter file. Set parameter-file to a distortion param-
eter file. Its content will be read and used for fine adjustment.

9.2.3 Projector client application

The projector application will be started for each display in the render clus-
ter respectively in the tiled display. With the information taken from the
configuration file one can add as many displays as needed to form the tiled
display. The configuration file contains a description of the display like res-
olution, gamma correction value, and its brightness. But it delivers also the
opportunity to build a mono tiled display, or a stereo tiled display. In the
latter case all displays have to be either a stereo left, or stereo right dis-
play. If a mixed usage of mono and stereo displays are used, the Overlap
software will change to mono mode. All displays with a stereo left attribute
forming the tiled display for the left eye, and all displays with a stereo right
attribute forming the tiled display for the right eye. Each tiled display will
be calibrated like a mono tiled display would do, but to achieve a stereo tiled
display, both should overlap. Figure 9.3 depicts the situation for a mono
display and a stereo display.

Configuration file

The configuration file contains information about the server and the projector
or display used. There are six values to set in the configuration file, see also

92 CHAPTER 9. USER MANUAL

Figure 9.3: A mono tiled display on the right and a stereo tiled display on
the left. Note the overlap of two projectors at a time from the left eye group
(red) and the right eye group (green).

table 9.3.

server: Specifies the host name or the IP-address where the calibration
server is running. The port can be additionally set. Write the port
after the name with a colon separated

origin and size: Describes the origin and the size of the used display in
pixels. The origin is measured with respect to the computer’s desktop
or framebuffer resolution (e.g. using a 2048 × 768 pixels desktop res-
olution with two displays at a resolution of 1024 × 768 pixels leads to
0,0 for the first and 1024,0 for the second display).

mode: This value is one of mono, stereo_left, or stereo_right to describe
the intended use of the display. If mono is used a mono display wall
will be built. If stereo_left or stereo_right is used for the used
displays, a passive stereo display will be built. If a mixture of mono
and stereo_* is used, a mono display wall is constructed.

gamma and brightness: Specifies an exponential gamma correction value
within the alpha mask generation parameter, and a linear brightness
factor with respect to all other used displays (range between 0 and 1)

Usage

projector [config-file], if no configuration file is supported default val-
ues are used for the display without a guarantee to run the application or
representing the display correctly.

9.2. APPLICATION USAGE 93

server: string:integer server: 169.128.128.1:23451

origin: integer,integer origin: 0,0

size: integer,integer size: 1024,768

mode: string mode: mono

gamma: float gamma: 1.9

brightness: float brightness: 1.0

Table 9.3: Projector configuration file specification (left), example (right).

9.2.4 User client application

The user application represents the interface for the user to start and change
the calibration steps. It runs in a console window and the user controls the
application with the keyboard. See table 9.4 for a description of the keys’
intended use.

Configuration file

The configuration file contains information about the Overlap server and con-
tains information necessary to build Open Inventor files for the Studierstube
environment. There are four values to set in the configuration file, see also
table 9.5.

server: Specifies the host name or the IP-address where the calibration
server is running. The port can be additionally set. Write the port
after the name with a colon separated

render sync server address: This specifies the host name or IP address
where the synchronization server runs. This server is used in the Stu-
beRenA environment to synchronize framebuffer switches between the
all render synchronization clients. Clients are instantiate by the sub-
class of SoRenderSyncUDP and join a multicast group to listen to the
server’s synchronization packet.

render sync multicast address: The multicast IP address where the
render synchronization clients can join. This multicast group is used
by the render synchronization server. A packet is sent to all members of
this group to force a framebuffer switch. This guarantees synchronized
output on all tiles of the tiled display.

shared directory: A shared directory destination, where generated files
are stored. Files that are generated during the calibration step are

94 CHAPTER 9. USER MANUAL

Calibration control keys
CTRL-X Stops all overlap applications connected with the server

(including all clients and the server)
X Stops the user application
G,.. Terminates a client group (P-projector, C-camera, A-both

projector and camera clients)
H Shows help (command keys)
S Starts calibration
ESCAPE Stops calibration
R Runs Studierstube on display wall
T Runs Studierstube on display wall and terminates all cal-

ibration programs
Projector control keys
N Sets new resolution of chessboard
P Shows/hides pattern on each projector client’s display

area
B Shows/hides blank screen on each projector client’s dis-

play area
RIGHT/LEFT Increase/decrease pattern brightness of each projector

client
Camera control keys
V Switches between camera preview modes
C Shows/hides camera client’s preview window
SPACE Resets calibration values (alpha masks and display wall

area)
UP/DOWN Scrolls through detected pictures or computed alpha

masks

Table 9.4: Keys and their meanings.

9.3. INSTALLATION AND COMPILATION 95

server: string:integer
render sync server address: string
render sync multicast address: string
shared directory: string
server: 169.128.128.1:23451

render sync server address: 169.128.128.1

render sync multicast address: 224.0.0.1

shared directory: //Blue/shared/overlap

Table 9.5: User configuration file specification (top), example (bottom).

store to this directory. This directory contains all files needed for the
StubeRenA to run (e.g. alpha masks, correcting projection matrices,
startup informations).

Usage

user [config-file], if no configuration file is supported default values are
used for the user application without a guarantee to run the Studierstube
software correctly afterwards.

9.3 Installation and Compilation

Overlap consists of four program parts. The files overlap.exe, camera.exe,
projector.exe, and user.exe. Additional components are the DLLs from
Intel’s Image Processing Library (IPL) and the DLL from the DsDxVide-
oWrapper which must also be installed (extend PATH variable with ’./over-
lap/bin/DLLs’) or in the same directory as the camera.exe file.

The original Overlap directory structure looks as follows (unzipping the
overlap software package)

Executables and DLLs
./overlap/bin

./overlap/bin/DLLs

Source code
./overlap/src

./overlap/src/all

./overlap/src/lib

./overlap/src/renaCameraClient

96 CHAPTER 9. USER MANUAL

./overlap/src/renaClient

./overlap/src/renaProjectorClient

./overlap/src/renaProtocols

./overlap/src/renaServer

./overlap/src/renaUserClient

9.3.1 Before compiling the Overlap package

• Install DirectX8.1 SDK (for the DsDxVideoWrapper)

• Install OpenCV (for camera calibration routines)

• Set an environment variable OPENCV to full path of ./Opencv/cv

directory

• Compile and build the CVl.lib (for release code) and/or CVld.lib (for
debug code)

– Open ./OpenCV/_dsw/cv.dsw

– Switch to ’Win32 Release Static’ or ’Win32 Debug Static’ within
the Build bar.

– Start compile

• Compile Overlap package

– Switch to project ’all files’ in the workspace window to compile
the whole package

– or switch to any project of ’rena*Client’, ’renaServer’ to compile
individual parts of the package

9.3.2 Before running any part of the Overlap software

• Add to PATH variable the full path to ./Overlap/bin/DLLs

• Install DirectX8.1 SDK (for the DsDxVideoWrapper)

9.4 Running the applications

• See section 9.3.2 before proceeding.

9.5. KNOWN PROBLEMS 97

• Run the server application first – server.exe file (usage: server [port]

see section 9.2.1).

• Run any of the client applications on any node within the network.

• You have to run at least one camera and two projector clients to be
able to start the calibration.

• The server does not allow more than one user client. The first user
client that register at the server will be served.

• In the server and user console window you will see which clients are
connected to the server.

• Hit the key ’H’ in the user console to get the list of control commands
to use the calibration software (see also table 9.4).

• In the camera preview window you will see the actual process of the
calibration and the camera’s view.

• The camera console window shows information about the calibration
progress.

9.5 Known problems

• Run the server and user application on the same machine. Since very
small buffers are used for communication and no care about message
fragmentation is done, this should avoid any problem. If the user client
fails start it again (this is because of fragmented messages, maybe we
will fix this problem in future versions of Overlap).

98 CHAPTER 9. USER MANUAL

Chapter 10

Developer Manual

10.1 Introduction

The Overlap software package is a calibration software designed to run on a
cluster of workstations to meet the need for a large tiled display. Its intended
use is to calibrate a tiled display composed of various displays connected to a
computer cluster. A computer cluster is a set of networked computers which
share data of the different overlap software parts. Each computer within
the cluster can drive one or more displays. All displays together form a
huge high-resolution display termed a tiled display. And each display will be
named a tile of the tiled display.

This chapter describes in a short way the main steps taken when running
one of the software components and the used classes to do so. It should be
remarked that display and projector is used interchangeably, because of the
intended use of Overlap to calibrate a seamless tiled display built up with
projectors. But it should be mentioned here that any display can be bound
into the tiled display.

In the following section we will show the hierarchy of classes used and their
relationship one another. We use ACE, the Adaptive Communication Envi-
ronment, as a base to implement platform independent code for all classes
in respect to network communications. But some parts are still platform
specific and may be ported to other platforms in future extensions.

10.2 Class hierarchy

Figure 10.1 shows the classes used to run the server side, while figure 10.2
and figure 10.3 shows the classes for the client side. All following sections
will use this diagrams to illustrate how the individual components and classes

99

100 CHAPTER 10. DEVELOPER MANUAL

interact with each other.

Table 10.1 depicts the structure of protocols that are send between clients
and server or clients and clients. It also shows a part of the used RACOM
class which stores all header strings. This structure allows future extensions
of protocols and the behavior they should invoke at the client side. A pro-
tocol has one or two parts and can be simple or complex to invoke different
behaviors. The first part is the header in is of the type <....| where the dots
stand for specific protocols. A valid protocol header would be registration ok
(<rgok|), or register user client (<regU|). The last character of the header
is a client specifier and can be one of U, C, or P for one of different client
types. If it is none of the three then this header is a general message that
can be send to any client or to the server.

A simple protocol only consists of the header and would be used to in-
form the client that its registration was successful as an example (RACOM::
REGISTER_OK ⇒ <rgok|). Simple protocols are used for a direct communi-
cation between the server and a client.

A complex protocol consist of the header and a tail, a detailed message,
delimited by a special character. As an example a complex protocol would
be to inform the camera client which image it has to take (e.g. take im-
age 3: RACOM::TAKE_IMAGE + RACOM::RACOM_FULL + 3 + RACOM::EOM ⇒
<timC|full|3>). Complex protocols are always delimited with a > charac-
ter (RACOM::EOM).

As a last option protocols can be combined. This allows to send protocols
from one client to another. So, if the user client wants to tell all camera clients
to take picture three, it will send the server a combined protocol that tells
the server to forward it to all camera clients (e.g. user to camera take image
3: RACOM::SEND_TO_CAM + -1 + RACOM::TAKE_IMAGE + RACOM::FULL + 3
+ RACOM::EOM ⇒ <sdcU|-1><timC|full|3>). Note the two client specifiers
at the end of each header (U and C). This emphasizes that some protocols
are only used by specific clients. As a last example, if the user client want
a specific camera, let’s say number 0, we have to replace the -1 with a 0.
If -1 is used in a RACOM::SEND_TO_. . . protocol, all mentioned clients of that
group (CAM,PROJ) are delivered with the subsequent protocol.

10.3 Overlap server code

The server application consists of a handful classes to establish a connection
oriented peer to peer communication to a client.

10.3. OVERLAP SERVER CODE 101

Figure 10.1: The classes and their relationship on the server side.

102 CHAPTER 10. DEVELOPER MANUAL

Figure 10.2: The classes and their relationship on the camera client side.

10.3. OVERLAP SERVER CODE 103

Figure 10.3: The classes and their relationship on the projector and user
client side.

A Header contains 6 chars including < and |. The
Body can be of arbitrary size and contains additional
information.
<header|body>

A simple protocol uses a header only:
<clrd| – client ready

A Complex protocol uses header and body:
<stbP|//Blue/shared/ 196.0.0.1> – start Studier-
stube on projector client!

Combined protocols use simple and complex protocols:
<sdpU|-1><stbP|//Blue/shared/ 196.0.0.1> – send
to all projectors to start Studierstube!

Table 10.1: The schematic structure of a protocol.

104 CHAPTER 10. DEVELOPER MANUAL

10.3.1 RenaServer

RenaServer.h, RenaServer.cxx

This class contains an ACE reactor and ACE acceptor for managing incoming
clients that want to connect. Each accepted client will be stored in a list of
RenaLine instances. The reactor and acceptor are derivatives of ACE reactor
and acceptor built-in classes.

It is the application base class. An instance is created in the main()

function and will start the Overlap server waiting for clients to connect.

10.3.2 RenaReactor

RenaServer.h

This class is a subclass of the ACE Reactor built-in class to handle opening
connection from clients. See ACE’s documentation for a more descriptive
essay. It contains additionally to the ACE functionality the server instance
it correlates to, to make sever data access (especially for client information
and communication through the RenaLine object) easily.

10.3.3 RenaLogin

RenaLogin.h

A subclass of the ACE Acceptor template class to handle clients that try to
connect to the server via a socket stream.

10.3.4 RenaLine

RenaLine.h, RenaLine.cxx

This is a subclass of the ACE Svc Handler template class. It handles incom-
ing and outgoing messages via a socket stream connection. Each RenaLine
instance is a unique object representing an opened socket stream with the
server on one end and a client on the other end supporting message transfer
between the peers.

When a client first connects to the server, an unspecified line will be
opened containing a non specified client. Until the client does not register at
the server telling its behavior (camera, projector, or user), the line remains
unspecified.

Each line contains therefore a unique RenaObject instance with infor-
mation about the client and its dedicated protocols for communicating with
the server and the other clients. When messages are passed to a client the
RenaObject will handle the message’s content and reply accordingly.

10.3. OVERLAP SERVER CODE 105

10.3.5 RenaObject

RenaObject.h, RenaObject.cxx

Each RenaObject correspond to a client application. Each subclass of Re-
naObject class represents a specified client with dedicated information about
the client. The base class RenaObject supports basic communication meth-
ods to send and receive messages via a socket stream using its RenaLine
instance.

The two fundamental methods of the RenaObject are the process()

and processRegistration() methods. Both methods waiting for incoming
messages and deciding on the content of the incoming message what message
should be replied.

The process() method allowing client to register at the server and telling
the server its intended use as camera, projector, or user client. If the client
does not send the correct protocol to register it will be removed after four
tries. If on the other hand the client send the correct protocol for registra-
tion it metamorphoses to one of the appropriate subclasses of RenaObject
(RenaCamera, RenaProjector, or RenaUser).

The three next paragraphs describes the subclasses of RenaObject. The
only difference between RenaObject class and its subclasses are additional in-
formation that are extracted when the client registers calling processRegis-

tration() method and the dedicated communication protocols that each
client must understand calling process() method.

10.3.6 RenaCamera

RenaObject.h, RenaObjectComm.cxx

This class containing information about the camera client’s resolution and
supporting the evaluation of the communication protocol the client sends to
the server (process() method).

10.3.7 RenaProjector

RenaObject.h, RenaObjectComm.cxx

This class containing information about the projector client’s resolution, ori-
gin, mode, gamma correction value, and its brightness in relation to other
display devices. It also supports the evaluation of the communication proto-
col the client sends to the server (process() method).

106 CHAPTER 10. DEVELOPER MANUAL

10.3.8 RenaUser

RenaObject.h, RenaObjectComm.cxx

This class evaluates of the communication protocol the client sends to the
server (process() method), i.e. the demanded action the user wants to take
place.

10.3.9 main

server.cxx

The main function starts the server application.

10.3.10 Summary

All classes of the Overlap server application supporting either the basic net-
work communication using ACE or the protocols that are used by both the
client and server sides to run the whole Overlap software. None of the classes
perform work concerning the calibration itself. See the next sections for a
brief description on how the calibration is done by the clients.

10.4 Camera client code

The code has three parts. The first part is the camera display window to
show the camera’s view and the progress of the calibration. The second runs
the client side and handles communication and protocols. And last but not
least the third part. It is the main part of the calibration supporting all the
needed routines to calibrate the tiled display. See the following three sections
for a brief description.

10.4.1 RenaCameraWindow

RenaCameraWindowWin32.h, RenaCameraWindowWin32.cxx,

RenaCameraWindow.h

The RenaCameraWindowWin32 class has the capability to generate a pre-
view window for a camera connected to the computer. Once it has found
the demanded camera a window is created to show the camera’s view. When
starting the calibration the window also displays the progress of the calibra-
tion step, showing the detected chessboards and calculated alpha mask.

10.4. CAMERA CLIENT CODE 107

10.4.2 RenaCameraClient

RenaCameraClient.h, RenaCameraClient.cxx

This class provides the methods to establish and end a communication with
the server (create() and destroy() method), handles its own protocols
(run() method), and starts the client’s preview window (init() method).
It also stores the resolution of its camera on the client side and has an instance
of RenaCalibration class to calibrate the displays.

10.4.3 RenaCalibration

RenaCalibration.h, RenaCalibration.cxx

This class does all the stuff for calibrating the displays, generating blending
masks for overlapping regions, and writing the results to disk.

But before it can calibrate the displays it has to known the camera’s dis-
tortion parameters defined in OpenCV. The parameters are 4 lens distortion
parameters and a 3 × 3 distortion matrix (i.e. a rotation and translation
matrix). See OpenCV documentations for a brief description. Look for
the keywords camera calibration, lens distortion or 3d reconstruction. The
readCamParams() method reads these values from a file, see chapter 9 for a
description of this file. The setCameraResolution() method sets the used
resolution of the camera.

All other parameters are shipped by the user client to the camera clients
and/or projector clients and used during calibration.

setProjectorData(), setNumProjectors(), and setPatternValues()

are the methods of use to store the appropriate values for each projector
and the values for the projected chessboard resolution. For each projector a
variety of parameters are stored including its resolution, origin, brightness,
and gamma correction values, and the mode parameter. In the calibration
step we need also to store its homography and its detected chessboard points.
Further we need to store the calculated alpha mask. These values are store
in an instance of RenaProjectorData class, see next section.

detectChessboardCorners() and detectOrientation() are the meth-
ods to detect the corners of the chessboard’s grid elements. These corner
points are stored to calculate the homography between camera space and
display space. detectOrientation() is used to determine the order of the
points, since the used OpenCV function cvFindChessBoardCornerGuesses

does not sort the points from top to bottom or left to right, it does it also
vice versa from bottom to top or right to left. So we have to determine in
which direction the function detected the points.

calcOverlapAndMatrices() is the main method to calculate the homo-

108 CHAPTER 10. DEVELOPER MANUAL

graphies and their related projection matrices, the maximum projection area
that can be build with the tiled display, and the alpha masks to generate a
seamless display with smooth and seamless overlapping regions. For main-
tainability and easy reading the code, this function is divided into four sub-
functions. calcHomographies() computes the homographies using the de-
tected feature points of the chessboard calibration pattern. To calculate the
maximum projection area that is possible for the current tiled display configu-
ration calcMaximumProjectionArea{Stereo}() is used. calcAlphaMasks(),
and calcGLMatrices() computes the blending masks and the corrected pro-
jection matrices to drive each tile in the tiled display.

There are two methods to save the computed values to disk, writeToFile-
OVL() and writeToFileOIV(). The former one stores the matrix in the alpha
mask in raw data form to disk. The latter one generates some Open Inventor
files to store the matrix and the alpha mask for later use in the Studierstube
project.

There are some helper methods left which are self explanatory and which
are called as subroutines from the other methods. Step through the source
code to get a hint or look at the method documentation of the Overlap
software package.

10.4.4 RenaProjectorData

RenaCalibration.h, RenaCalibration.cxx

The calibration software must know about the projectors’ parameters. An ad-
ditional class stores these values, RenaProjectorData. Each instance repre-
senting one display within the render cluster containing its resolution, origin,
brightness, and gamma correction value. In the calibration step it stores the
homography and detected chessboard points in normalized projector space
and in normalized camera space. As a postprocessing step an OpenGL pro-
jection matrix and alpha mask is calculated to build a seamless tiled display
with all used displays.

10.4.5 RenaMath

RenaMath.h, RenaMath.cxx

These two files containing some vector algebra to access and calculate vectors
and matrices easily. The code is very short and self explanatory. See the
method documentation of the Overlap software package to get a hint.

10.5. PROJECTOR CLIENT CODE 109

10.4.6 main

camera.cxx

The main() function starts the camera client application.

10.5 Projector client code

The code has two parts. The first part is the projector client display window
to show a chessboard or a blank screen during calibration. The second runs
the client side and handles communication and protocols. See the following
two sections for a brief description.

10.5.1 RenaProjectorWindow

RenaProjectorWindow.h, RenaProjWindowWin32.h,

RenaProjWindowWin32.cxx

This class is used to display a chessboard with a given number of fields and a
given border size. The methods showBlank(), showPattern(), and hide()

are used to show a blank (black) screen, the desired pattern and to hide the
display window to show the desktop content.

10.5.2 RenaProjectorClient

RenaProjectorClient.h, RenaProjectorClient.cxx

This class provides the methods to establish and end a communication with
the server (create(), destroy() methods), handles protocols (run() method),
and creates the client’s display window (init() method). It also stores the
resolution, origin, mode, gamma correction value, and brightness of its dis-
play on the client side.

10.5.3 main

projector.cxx

The main() function starts the projector client application.

10.6 User client code

There is only one class to provide the user client application.

110 CHAPTER 10. DEVELOPER MANUAL

10.6.1 RenaUserClient

RenaUserClient.h, RenaUserClient.cxx

This class supports the methods to communicate with all other clients and to
start the calibration step. The main function is the startCalib() method.
It provides all actions to step through the calibration cycle. Showing the
chessboard on each projector one after the other and sending the appropriate
protocols to the camera client to take a snapshot of the tiled display, or to
calculate the calibration parameters.

The startCalib() method is written in that way that more than one
camera client can participate to the calibration cycle. Although the func-
tionality for more than one camera neither in computing a global space for
all cameras to determine homographies between camera spaces nor in sup-
porting protocols to do so is not written yet. But it holds the opportunity to
easy extend a future version of the Overlap software to keep scalable in the
number of used display and arranging them (e.g. think of a huge panorama
vision with say 8× 4 displays, one must use more than one camera to get a
good shot and accurate projection matrices for the displays).

10.6.2 main

user.cxx

The main() function starts the user client application.

10.7 Additional code

10.7.1 RenaClient

RenaClient.h, RenaClient.cxx

This class provide the basic communication method using socket stream with
ACE. There are four methods.

• open() opens a socket stream using ACE.

• sendMessage() sends a message to the server side using a socket stream.

• recvMessage() receives a message from the server side.

• recvMessageNoWait() waits for a message until a demanded time pe-
riod expires.

10.7. ADDITIONAL CODE 111

10.7.2 RACOM

protocols.h, protocols.cxx

This class stores all protocol keywords to ease up programming and avoid
redundant copies of the keywords within the code.

The class supports also a copy() and concat() method to copy or
concat multiple buffers into one. Both methods are declaration are the
same copy/concat(char *dest, int number, ...), dest is the destina-
tion buffer where the other buffers are copied or concatenated to, number is
the number of buffer that follows this argument.

10.7.3 Defined macros

The following macros are defined to help programming in a convenient way.
They intended use is to send or receive messages, convert messages to string
terminating them with a zero byte, to send headers or check if a message
contains a specific header. It frees the developer from calling dedicated func-
tion and handling the returned value.
Macros for blocking waiting until a message arrives.
_get number of bytes received
_msg message buffer
_size size of message buffer in bytes
_term bool flag if true terminate received message with zero
RENA_RECV_MSG_GET_RET(_get,_msg,_size)

RENA_RECV_MSG_RET(_msg,_size)

RENA_RECV_MSG_TERM_RET(_msg,_size,_term)

Macros for non blocking waiting for messages.
_get number of bytes received
_msg message buffer
_size size of message buffer in bytes
_call call function void _call(void) when no message is ar-

riving (i.e. in idle case)
RENA_RECV_MSG_NOWAIT_RET(_msg,_size)

RENA_RECV_MSG_GET_NOWAIT_RET(_get,_msg,_size)

RENA_RECV_MSG_GET_IDLE_CALL_RET(_get,_msg,_size,_call)

RENA_RECV_MSG_IDLE_CALL_RET(_msg,_size,_call)

112 CHAPTER 10. DEVELOPER MANUAL

Macro for sending a message header.
_header message buffer containing header
RENA_SEND_HEADER_RET(_header)

Macros for sending messages.
_get number of bytes sent
_msg message buffer
_size size of message buffer in bytes
RENA_SEND_MSG_GET_RET(_get,_msg,_size)

RENA_SEND_MSG_RET(_msg,_size)

Macro for sending a message to the user client.
_buf message buffer (size of _buf must be at least the message

size plus header size plus two additional bytes)
_msg message to user
RENA_SEND_MSG_TO_USER_RET(_buf,_msg)

Macro for testing a message buffer if it contains the demanded header.
_header header to search for
_msg message buffer
RENA_MSG_HAS_HEADER(_msg,_head)

Macros for information output in debug mode.
RENA_OUTPUT_COMM(_x) prints message _x in debug mode
RENA_ERROR_RETURN(_x,_y) prints the ACE error message _x

in debug mode, returns error code
_y in release and debug mode.

10.8 Remarks for future extensions

10.8.1 Extension of Overlap

The use of macros and dedicated protocols makes it very simple to extend the
Overlap software. See section 10.7.3 to get a hint what the different macros
are for.

The most viable and easy way to extend Overlap is to extend the pro-
tocols to support the demanded new functionality. You just have to add a
new header and maybe some sub-protocols. The new functionality must be
supported by the client which you want to extend and the client’s run()

method must care for the new protocol. When the protocol is detected in
the run method, just call the appropriate methods for the new functionality

10.8. REMARKS FOR FUTURE EXTENSIONS 113

you want.
Especially the server need not to be change. Since it only acts as a

moderator between the clients. In other words, each client sends a message
to the server telling it with which other client it want to talk.

10.8.2 Known bugs

At the moment no care about message fragmentation is done. Message frag-
mentation occurs sometimes when more messages are stored in the message
buffer than it can hold. At the end of the buffer a message can be cut. The
rest of the message will be written in the buffer when it is read and cleared by
its application. The user client receives a lot of data containing all informa-
tions about the used displays and cameras. This sometimes leads to message
fragmentation when the user client does not read the buffer quick enough.
So the user client is sensitive for message fragmentation and sometimes fails
if more messages are stored in its buffer and message cutting occurs.

114 CHAPTER 10. DEVELOPER MANUAL

Bibliography

[Bishop00] Gary Bishop, Greg Welch, Working in the Office of the “Real
Soon Now”, IEEE Computer Graphics and Applications 20(4) (2000),
pages 76-78.

[Boden et al.95] Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, Wen-King Su
Myrinet – A Gigabit-per-Second Local-Area Network IEEE MICRO Vol.
15 (February 1995), pages 29-36.

[Chen et al.00a] Han Chen, Kai Li, Bin Wei, A Parallel Ultra-High Resolu-
tion MPEG-2 Video Decoder for PC Cluster Based Tiled Display Systems,
International Parallel and Distributed Processing Symposium (April 2002).

[Chen et al.00b] Yuqun Chen, Han Chen, Douglas W. Clark, Zhiyan Liu,
Grant Wallace, Kai Li, Software Environments For Running Desktop Ap-
plications On A Scalable High-Resolution DisplayWall, Technical Report
TR-619-00, Department of Computer Science, Princeton University (April
2000).

[Chen et al.00c] Yuqun Chen, Han Chen, Douglas W. Clark, Zhiyan Liu,
Grant Wallace, Kai Li, Software Environments For Cluster-based Display
Systems, First IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (May 2001)

[Chen et al.00d] Yuqun Chen, Douglas W. Clark, Adam Finkelstein, Tim-
othy C. Housel, Kai Li, Automatic Alignment Of High-Resolution Multi-
Projector Displays Using An Un-Calibrated Camera, IEEE Visualization
(2000), pages 125-130.

[Chen et al.01a] Han Chen, Rahul Sukthankar, Grant Wallace, Tat-Jen
Cham, Calibrating Scalable Multi-Projector Displays Using Camera Ho-
mography Trees, Computer Vision and Pattern Recognition Technical
Sketch (2001).

115

116 BIBLIOGRAPHY

[Chen et al.01b] Han Chen, Yuqun Chen, Adam Finkelstein, Thomas
Funkhouser, Kai Li, Zhiyan Liu, Rudrajit Samanta, Grant Wallace,
Data Distribution Strategies for High-Resolution Displays, Computers and
Graphics 25 (2001), pages 811-818.

[Cruz-Neira et al.93] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. De-
Fanti, Surround-Screen Projection-Based Virtual Reality: The Design and
Implementation of the CAVE, Computer Graphics 27(Annual Confer-
ence Series) (1993), pages 135-142.

[Friesen00] Jerrold A. Friesen, Thomas D. Tarman, Remote High-
Performance Visualization and Collaboration, IEEE Computer Graphics
and Applications (2000).

[Gamma et al.94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlis-
sides, Design Patterns - Elements of Reusable Object-Oriented Software,
Addison-Wesley (1994).

[Gotz01] David Gotz, Design Considerations for a Multi-Projector Display
Rendering Cluster, Technical Report TR01-25, University of North Car-
olina at Chapel Hill (2001).

[Hereld et al.00a] Mark Hereld, Ivan R. Judson, Rick L. Stevens, Introduc-
tion to Building Projection-based Tiled Display Systems, Computer Graph-
ics and Applications 20(4) (2000), pages 22-28.

[Hereld et al.00b] Mark Hereld, Ivan R. Judson, Joseph Paris, Rick L.
Stevens, Developing Tiled Projection Display Systems, Proceedings of
Fourth Immersive Projection Technology Workshop (2000).

[Hesina et al.99] Gerd Hesina, Dieter Schmalstieg, Anton Fuhrmann, Werner
Purgathofer, Distributed Open Inventor: A Practical Approach to Dis-
tributed 3D Graphics, Proceedings of the ACM Symposium on Virtual
Reality Software and Technology (1999), pages 74-81.

[Humphreys,Hanrahan99] Greg Humphreys, Pat Hanrahan, A Distributed
Graphics System for Large Tiled Displays, Proceedings of IEEE Visualiza-
tion Conference (1999), pages 215-223.

[Humphreys et al.00] Greg Humphreys, Ian Buck, Matthew Eldridge, Pat
Hanrahan, Distributed Rendering for Scalable Displays, IEEE Supercom-
puting 2000 (October 2000).

BIBLIOGRAPHY 117

[Humphreys et al.01] Greg Humphreys, Ian Buck, Matthew Eldridge, G.
Stoll, M. Everett, Pat Hanrahan, WireGL: A Scalable Graphics System
for Clusters, Proceedings of SIGGRAPH 2001 (August 2001), pages 129-
140.

[Jaynes et al.01] Christopher Jaynes, Stephen Webb, R. Matt Steele,
Michael Brown, W. Brent Seales Dynamic Shadow Removal from Front
Projection Displays IEEE Visualization (2001).

[Li et al.00] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry
Cook, Stefanos Damianakis, Georg Essl, Adam Finkelstein, Thomas
Funkhouser, Timothy Housel, Allison Klein, Zhiyan Liu, Emil Praun,
Rudrajit Samanta, Ben Shedd, Jaswinder Pal Singh, George Tzanetakis,
and Jiannan Zheng, Building and Using A Scalable Display Wall System,
IEEE Computer Graphics and Applications 20(4) (2000), pages 671-680.

[Raskar99] Ramesh Raskar, Oblique Projector Rendering on Planar Surfaces
for a Tracked User, SIGGRAPH 1999 (1999), Sketch.

[Raskar et al.99] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-
Chao Chen, Greg Welch, Herman Towles, Brent Seales, Henry Fuchs,
Multi-Projector Displays Using Camera-Based Registration, Proceedings
of IEEE Visualization (October 1999), pages 161-168.

[Raskar00] Ramesh Raskar, Immersive Planar Display using Roughly Aligned
Projectors, In IEEE Virtual Reality (March 2000).

[Raskar et al.02] Ramesh Raskar, Jeroen van Baar, Jin Xiang Chai A Low-
Cost Projector Mosaic with Fast Registration, In Proceedings of Fifth
Asian Conference on Computer Vision (January 2002).

[Raskar et al.03] Ramesh Raskar, Jeroen van Baar, Paul Beardsley, Thomas
Willwacher, Srinivas Rao, Clifton Forlines iLamps: Geometrically Aware
and Self-Configuring Projectors, SIGGRAPH 2003 (2003).

[Samanta99] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai
Li, Jaswinder Pal Singh, Load Balancing for Multi-Projector Render-
ing Systems, SIGGRAPH/Eurographics Workshop on Graphics Hardware
(August 1999).

[Schikore et al.00] Daniel R. Schikore, Richard A. Fischer, Randall Frank,
Ross Gaunt, John Hobson, Brad Whitlock. High-Resolution Multiprojector
Display Walls, IEEE Computer Graphics and Applications 20(4) (2000),
pages 38-44.

118 BIBLIOGRAPHY

[Sukthankar et al.00a] Rahul Sukthankar, Robert G. Stockton, Matthew D.
Mullin, Automatic Keystone Correction for Camera-assisted Presentation
Interfaces, Proceedings of International Conference on Multimodal Inter-
faces (2000).

[Sukthankar et al.00b] Rahul Sukthankar, Robert G. Stockton, Matthew D.
Mullin, Self-Calibrating Camera-Assisted Presentation Interface, Proceed-
ings of International Conference on Control, Automation, Robotics and
Computer Vision (2000).

[Sukthankar et al.01] Rahul Sukthankar, Tat-Jen Cham, Gita Sukthankar,
Dynamic Shadow Elimination for Multi-Projector Displays, Proceedings
of Computer Vision and Pattern Recognition (2001).

[Wernecke94] Josie Wernecke, The Inventor Mentor: Programming Ob-
ject Oriented 3D Graphics with Open InventorTM ,Release 2, March 1994.

[Wernecke et al.94] Josie Wernecke and Open Inventor Architecture Group,
Inventor Toolmaker : Extending Open Inventor, Release 2, March 1994.

[Yang et al.01] Ruigang Yang, David Gotz, Justin Hensley, Herman Towles,
Michael S. Brown, PixelFlex: A Reconfigurable Multi-Projector Display
System, Proceedings of IEEE Visualization (2001).

[Chromium] Standford University, DOE labs, Chromium Project,
http://sourceforge.net/projects/chromium.

[SoftGenLock] sourceforge.net, SoftGenLock Manual: Software Active Stereo
and Genlock for Linux, http://netjuggler.sourceforge.net.

[ArsBox] Ars Electronica Futurelab, ARSBOX,
http://futurelab.aec.at/arsbox.

[ChannelSync] CGSD Company, ChannelSyncTM , http://www.cgsd.com.

[Panoram] Panoram Technologies, http://www.panoramtech.com/.

[Studierstube] Studierstube Augmented Reality Project,
http://www.studierstube.org/.

[Trimension] Trimension, http://www.trimension-inc.com.

http://sourceforge.net/projects/chromium
http://netjuggler.sourceforge.net
http://futurelab.aec.at/arsbox
http://www.cgsd.com
http://www.panoramtech.com/
http://www.studierstube.org/
http://www.trimension-inc.com

	I
	Introduction
	Motivation
	Overview

	Commodity hardware today
	Projectors
	Computer systems
	Screen material
	Our choices

	Related work
	Calibration approaches
	Abutted displays
	Regular overlap displays
	Rough overlap displays

	Computer systems
	Parallel computer architecture
	Networked computer architecture

	Network hardware
	Ethernet
	Myrinet

	Data distribution
	Synchronized execution
	Primitives distribution
	Pixel distribution

	Display synchronization
	Frame buffer switch synchronization
	Refresh rate synchronization

	Open Inventor
	Distributed Open Inventor and Studierstube

	Design issues
	Calibration
	Cluster architecture
	Data distribution
	Display synchronization

	Implementation issues
	Calibration
	Studierstube
	Data distribution
	Display synchronization
	Tiled Display
	Summary

	Results
	Performance
	Visual accuracy
	Scalability
	Maintenance

	Future work
	Display and event synchronization
	Synchronized execution
	Very large displays
	Detecting the screen wall
	Other synchronization models

	Acknowledgement

	II
	User Manual
	Introduction
	Application usage
	Server application
	Camera client application
	Projector client application
	User client application

	Installation and Compilation
	Before compiling the Overlap package
	Before running any part of the Overlap software

	Running the applications
	Known problems

	Developer Manual
	Introduction
	Class hierarchy
	Overlap server code
	RenaServer
	RenaReactor
	RenaLogin
	RenaLine
	RenaObject
	RenaCamera
	RenaProjector
	RenaUser
	main
	Summary

	Camera client code
	RenaCameraWindow
	RenaCameraClient
	RenaCalibration
	RenaProjectorData
	RenaMath
	main

	Projector client code
	RenaProjectorWindow
	RenaProjectorClient
	main

	User client code
	RenaUserClient
	main

	Additional code
	RenaClient
	RACOM
	Defined macros

	Remarks for future extensions
	Extension of Overlap
	Known bugs

