
DISSERTATION

Distributed Computing in the Presence of Bounded

Asynchrony

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Univ.Prof. Dr. Ulrich Schmid

Inst.-Nr. E182/2

Institut für Technische Informatik
Embedded Computing Systems

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Josef Widder

Matr.-Nr. 9625114

Meidlgasse 41/4/4
A-1110 Wien

Europäische Union

Wien, im Mai 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

i

Verteilte Algorithmen unter eingeschränkter Asynchronität

Diese Dissertation untersucht verschiedene Aspekte des Θ-Modells, einem zeitfreien
Systemmodell für verteilte Systeme. Die zugrunde liegende Annahme ist die Existenz
eines begrenzten Verhältnisses der Übertragungsdauern von Nachrichten die gleichzeitig
unterwegs sind. Das Modell wurde von Le Lann und Schmid eingeführt, die zeigten,
dass das fundamentale consensus Problem in ihm eine Lösung besitzt.

Der erste Teil dieser Dissertation beschäftigt sich mit einer Neudefinition des Mod-
ells basierend auf zwei Modellen. Als erstes das system model, das ein sehr flexi-
bles Zeitverhalten modelliert und daher eine hohe Abdeckung möglicher Zustände von
realen Netzwerken hat. Das zweite ist das computational model, das der ursprünglichen
Definition entspricht. Weiters wird gezeigt, dass die beiden Modelle gleich stark sind,
dh. Probleme die eine Lösung in einem Modell haben, haben auch eine im anderen.

Der zweite große Abschnitt beschäftigt sich mit Algorithmen und deren Verhalten
im Θ-Modell. Der grundlegende Algorithmus dient zur Uhrensynchronisation; auf ihm
basierend werden dann andere Algorithmen aufgebaut. In diesem Teil wird auch mittels
strongly dependent decision problem gezeigt, dass das Θ-Modell bezüglich Lösbarkeit
von Problemen zu den synchronen gezählt werden muss, obwohl es keine obere Grenze
von Übertragungsdauern voraussetzt.

Der dritte und letzte Abschnitt beschäftigt sich mit dem Problemkreis Netzwerk-
initialisierung (booting). In der Theorie wird meist über dieses Problem hinweg gese-
hen, wahrscheinlich weil einfache Annahmen über das Zeitverhalten getroffen werden
können, die dieses Problem einfach “weg definieren”. Da in dieser Dissertation zeitfreie
Modelle und Algorithmen untersucht werden, sind solche Annahmen nicht zulässig,
weil darauf basierende Lösungen nicht mehr als zeitfrei bezeichnet werden können.
Wie auch im zweiten Abschnitt beginnen wir mit Uhrensynchronisation in der Ini-
tialisierungsphase und stellen dann Lösungen von anderen Problemen vor, die darauf
basieren.

ii

iii

Distributed Computing in the Presence of Bounded
Asynchrony

This thesis investigates various aspects of the Θ-Model. The Θ-Model is a time free
model of distributed systems which assumes that end-to-end delays of the fastest and
slowest messages over the network are correlated. This relation is expressed by giving
an upper bound Θ on the ratio of longest and shortest transmission times of messages
which are simultaneously in transit. The model was introduced by Le Lann and Schmid,
who showed that the Θ-Model is sufficiently strong to solve the fundamental yet not
trivial problem of consensus. Their innovative results left room for improvement in the
definition of the Θ-Model and raised some questions, including the amount of synchrony
in the model and related to it what kind of problems have solution in it.

The first part of this thesis is dedicated to a refinement of the original definition of
the Θ-Model. This is achieved by distinguishing two different models: The first one is
the system model, which is very flexible regarding the timing of the described system.
It should reach very high assumption coverage—the probability that the assumptions
made in a model hold in real systems. The second model is the computational model,
which is similar to the original definition of the Θ-Model. After that, we show that
these two models are equivalent with respect to expressiveness. It hence follows that
existing results, which rely upon the original definition of the Θ-Model, are valid in
the novel system model as well.

The next major part introduces several algorithms and analyzes their behavior when
executed in the Θ-Model. The basic algorithm is a clock synchronization algorithm
whereupon several other algorithms—e.g. implementation of the perfect failure detec-
tor and atomic commitment—are devised. This part also gives an answer to the ques-
tion of the amount of synchrony in the model. Using the strongly dependent decision
problem—which is sort of a benchmark that separates synchronous from asynchronous
models—it is shown that the Θ-Model must in fact be attributed as synchronous. This
is quite surprising given that the system model does not stipulate an upper bound on
message transmission delays.

The third part considers booting. The problem of system startup is often neglected
in distributed computing theory. We believe that this is due to the fact that when
real systems are considered, timed semantics are usually employed, which allow sev-
eral simplifications of the booting problem. Since we consider a time free model, the
problem of booting clock synchronization is particularly difficult because classic failure
assumption (e.g. f < n/3) cannot be employed properly in the booting phase. Based
upon a clock synchronization algorithm that properly handles booting, we show how
to adapt solutions to other problems in distributed computing such that they provide
(some of) their properties during booting as well.

iv

Acknowledgments

I am grateful to my supervisor Ulrich Schmid who is the best teacher I ever had. He
prepares an open and fruitful environment that allows young people (like I still pretend
to be) to deliver scientific work at a level that can persist in the strong international
competition. I thank Mehdi Jazayeri for his valuable comments and suggestions when
grading this thesis. I am also grateful to Gérard Le Lann who invited me to work with
him at INRIA Rocquencourt for two months. During this stay I learned very much,
not limited to predictability of distributed systems. Further I thank Martin Hutle for
proof reading drafts of this thesis. His remarks helped me improving the presentation
of the results. Discussions with him give me deeper insight into many challenges we
are facing.

Ich danke meiner Mutter Edith Widder und meinen Großeltern für das Schaffen eines
familiären Umfeldes das mir mein Studium so leicht gemacht hat. Dank auch an meine
Freunde Andi, Josef, Martin, Migo, und Tobi.

In Erinnerung an meinen Vater Josef Widder.

Supported by the Austrian BM:vit FIT-IT project DCBA, project no. 808198.

v

vi

vii

Human nature is such that simple, easy to understand solutions are spontaneously
favoured (and selected). However, with distributed real-time applications, the question
is whether such an instinctive attitude is appropriate. . .

Gérard Le Lann

viii

Contents

1 Introduction 1
1.1 Motivation for this Thesis . 2
1.2 Road Map . 3
1.3 Related Work . 4

2 Modeling Distributed Real-Time Systems 5
2.1 Network of Queues . 5
2.2 Asynchronous Distributed Real-Time Systems 7
2.3 Suitable Models for Real-Time Systems 7

3 The Θ-Model for Distributed Real-Time Systems 11
3.1 Physical System . 11

3.1.1 Faults . 11
3.1.2 Timing . 12

3.2 System Model . 12
3.3 Computational Model . 13
3.4 Equivalence of the Models . 14
3.5 Round Based Significant Uncertainty Ratio 15

3.5.1 Byzantine Faults . 16
3.5.2 Crash Faults . 17
3.5.3 Clean-Crash Faults . 17

3.6 Related Work . 17

4 The Θ-Model Compared to other System Models 19
4.1 Partial Synchrony . 19
4.2 Semi-Synchrony . 21
4.3 The Archimedean Assumption . 22

5 Implementation Issues 23
5.1 Design Immersion . 23
5.2 Assumption Coverage . 23
5.3 Real-Time Scheduling . 24
5.4 Experimental Results . 24
5.5 Deterministic Ethernet . 25
5.6 Algorithms at Application Level . 25

ix

x CONTENTS

5.7 Bounded Drift Clocks . 26

6 Selected Algorithms in the Θ-Model 27
6.1 Clock Synchronization . 27

6.1.1 Byzantine Case . 28
6.1.2 Clock Synchronization Properties 30
6.1.3 Restricted Failure Modes . 33

6.2 Failure Detection . 37
6.3 Synchrony of the Θ-Model . 39

6.3.1 The Strongly Dependent Decision Problem 40
6.3.2 Fault-Tolerant Broadcast . 42
6.3.3 Simulating Lock-Step . 44

6.4 Non-Blocking Atomic Commitment . 46
6.4.1 Clean-Crash Faults . 47
6.4.2 Crashes . 49

6.5 Related Work . 50
6.5.1 Clock Synchronization . 50
6.5.2 Unreliable Failure Detectors . 51
6.5.3 Synchronizers . 51
6.5.4 Non-Blocking Atomic Commit 52

7 Booting Clock Synchronization 53
7.1 Perception Based Failure Model . 54

7.1.1 Execution Model . 54
7.1.2 Model of the Startup Phase . 58
7.1.3 Physical Failure Model . 59
7.1.4 Perception Failure Model . 60

7.2 The Algorithm . 65
7.3 Mapping to the Perception based Execution Model 67
7.4 From Early to Degraded Mode . 68
7.5 From Degraded to Normal Mode . 74
7.6 Related Work . 81

8 Booting Θ-Algorithms 83
8.1 Eventually Perfect Failure Detector . 83
8.2 General Considerations . 85
8.3 Lock-Step . 85
8.4 Atomic Multicast . 87
8.5 Non-Blocking Atomic Commitment . 89

9 Conclusions 91
9.1 Required Synchrony for Consensus . 91
9.2 Clock Synchronization Implementation 92
9.3 Dependable Real-Time Systems . 92
9.4 Outlook on Further Research Directions 93

Chapter 1

Introduction

A distributed system consists of a collection of autonomous computers linked by a
network such that these computers can coordinate their activities and share their re-
sources. They employ distributed algorithms for this purpose which consist of multiple
processes that are executed concurrently on the multiple processors. In order to exhaus-
tively describe the system’s behavior it is usually necessary to analyze these algorithms
and prove their properties mathematically.

In sharp contrast to single computer systems, the fault of a single component does
not necessarily lead to a failure of the whole system. Distributed algorithms should
hence be able to tolerate a given number of faulty remote processes or links. (These
numbers must usually be derived statistically from hardware and software error prob-
abilities.) Adding the notion of fault tolerance to distributed systems renders many
problems extremely difficult to handle, however. Classic results even show that funda-
mental problems like agreeing on a common value—consensus—is impossible in certain
settings; cp. the well known FLP result [42]. These settings include the type of faults
(e.g. computers that crash or send faulty values, lossy communications) and—of even
more interest—the timing of the system. The mentioned FLP result, for example,
just refers to one possible crash fault and to asynchronous systems, i.e. systems where
message transmission and relative computer speeds are unbounded. Still: What kind
of distributed systems really need such weak assumptions? Are there computers that
are infinitely fast compared to others or are there networks where failure free sending
of a message takes infinitely long? Since this is not the case, the assumption coverage
of system models must be considered.

Models of distributed systems are formulated by simplifying the observed objects
and by describing their behavior by sets of rules. These abstractions are used to reason
formally about system properties. Assumption coverage is a measure of how well the
model fits the real target system. It is the probability that the assumptions in the
model hold in the system. Returning to the FLP model, its coverage regarding timing
assumptions is 1 in every real system such that solutions to problems in asynchronous
systems can be transferred into all types of systems without decreasing coverage. Since
there is no solution for agreement in asynchronous systems, however, additional as-
sumptions (feasibility conditions) must be added in order to solve the problem. These

1

2 CHAPTER 1. INTRODUCTION

assumptions should be as weak as possible such that coverage can be maximized. Much
work [29, 19] was devoted to this problem. Two major approaches can be distinguished
here: (1) Adding synchrony and (2) adding information about failures. As a matter of
fact these approaches are related to each other since implementing (2) is possible only
by (1); nevertheless (2) is addressed in literature very often since it is a smart way to
encapsulate synchrony in the asynchronous world.

Synchrony can be added by assumptions which are made about the timing behavior
of a system or system components, e.g. bounds on message delays and computing
speeds. Regardless of how values for the timing are derived, the probability that
they hold during real operation must always be considered strictly less than 1. If the
goal is maximizing assumption coverage, the means for achieving this is weakening
the assumptions as far as possible while maintaining the solvability of the required
problems (under the given set of assumptions).

But lets now turn to a special property of distributed computing problems: Real-
time requirements. Real-time problems arise in applications where not only correct
responses are required, but these responses also have to meet deadlines. In the real-
time community exists a widespread believe nowadays that synchronous (timed) system
models are required in order to provide solutions to real-time problems. It should be
clear by now that these solutions have the drawback that their assumption coverage is
necessarily smaller than those of time free models. Therefore approaches are required
that reconcile real-time and maximal coverage. Such an approach is the design im-
mersion principle [65, 66] which just states: Take a time free solution and analyze it
(using schedulability analysis) on a given system that employs optimal online schedul-
ing algorithms. If this analysis reveals that the solution executed on the given system
meets all its deadlines we have a real-time system. This approach is preferable since, in
order to maximize safety (nothing bad ever happens) and coverage, least assumptions
should be made and synchrony should be introduced as late as possible during the
development life cycle. More abstractly, when immersing a time free solution into a
real distributed system, we say that the system’s timing properties emerge. Thus it is
possible to design time free real-time systems. This thesis is devoted to this branch of
research.

1.1 Motivation for this Thesis

As one possible timing model for time free real-time applications, Le Lann and
Schmid [67, 68] introduced the Θ-Model. In this model, Θ is a measure of asynchrony
in distributed systems; namely an upper bound on the ratio of the longest and shortest
end-to-end message transmission times. To demonstrate its suitability for algorithms
solving asynchronous real-time distributed computing problems, a major task is to
devise solutions to the most fundamental agreement problems like FD based consensus,
atomic broadcast and atomic commitment.

Since the problem of handling system booting becomes difficult in asynchronous—
i.e. time free—designs, as already discussed in [106], the behavior of the mentioned
algorithms will be explored during booting as well.

1.2. ROAD MAP 3

In addition, a refinement of the original Θ-Model is presented, which is particularly
promising in terms of assumption coverage. Explicit upper bounds are dismissed by just
referring to longest message transmission at some given point in time which effectively
leads to time dependent bounds (i.e. that may vary over time). It is then shown that the
new definition of the model has the same expressive power than the original definition
such that existing results remain valid. Moreover, the analysis of algorithms may still
be conducted in the simple to handle original model and “mechanically” translated
into the weaker model.

We compare the Θ-Model to partially synchronous and semi-synchronous models,
by opposing the respective assumptions and discussing their relation. We also compare
their respective power by examining solutions to some specific distributed computing
problems, like the SDD problem.

1.2 Road Map

The remainder of this thesis is divided into three major parts: The Θ-Model, algo-
rithms, and system booting.

It starts with Section 2 where properties of real systems are discussed and several
models are examined w.r.t. their suitability for describing those. Based upon these
results, we introduce the Θ-Model in Section 3, where we provide two models: The
system model in Section 3.2 models the timing behavior of a distributed system with
high coverage. The second model is an easy to handle computational model which
is introduced in Section 3.3. We will show that both models are equivalent regarding
expressive power such that results of the computational model can easily be transferred
to the high coverage system model of Section 3.2. Since, by then, we have introduced
the model we are ready to compare it to other well known models in Section 4. In
Section 5 we discuss several practical issues related to the Θ-Model.

The second major part can be found in Section 6 and is devoted to algorithms for the
Θ-Model. We introduce fundamental building blocks first which are required by any
of our high-level algorithms, namely clock synchronization in Section 6.1 and perfect
failure detection (for solving consensus) in Section 6.2. Section 6.3 is devoted to the
more theory related question of the degree of synchrony in the Θ-Model. To accomplish
this, a solution of the strongly dependent decision problem is given which shows that
the Θ-Model is equivalent to synchronous models in this respect. Based upon those
foundations we give an algorithm for atomic broadcast in Section 6.3.2 and a lock-step
simulation in Section 6.3.3. This simulation allows to solve agreement problems even
in presence of the most severe type of faults, i.e. Byzantine faults. Since non-blocking
atomic commitment is not reducible to consensus or atomic broadcast in asynchronous
systems, we finally give solutions to this problem in Section 6.4 as well.

It is usually (implicitly) assumed in distributed computing theory that all processes
are initially up such that they do not miss messages sent by other correct processes. In
timed systems it is convenient to use information on time for booting the system – at
the cost of reduced coverage though. Since we consider time free algorithms we must
handle system booting in a time free manner. The third major part is hence devoted to

4 CHAPTER 1. INTRODUCTION

this problem: A solution to the pivotal clock synchronization algorithm that works also
during booting is presented in Section 7. This section also reviews the perception based
failure model, which underlies the analysis of our clock synchronization algorithm.
Booting in the context of other distributed algorithms is discussed in Section 8.

1.3 Related Work

The books by Coulouris et al. [23], Tanenbaum et al. [97] and the book edited by
Mullender [77] are good introductions into basic problems and concepts of distributed
systems. More related to the work that is presented here are the books by Lynch [71],
Attiya and Welch [9] and Tel [98] as they concentrate on the theoretical aspects of
distributed systems and algorithms. Basic principles of real-time systems are presented
in the books by Kopetz [59] and Veŕıssimo et al. [101].

This thesis focuses on the Θ-Model and its ability to solve real-time problems. The
results presented here build upon the work by Le Lann and Schmid, who introduced
the Θ-Model as well as an implementation of the perfect failure detector [67] and dis-
cussed its ability to maximize coverage [68]. Part of our results were/will be published
in a number of papers: Clock synchronization algorithms that support booting are
presented in [106, 109]. Based on these algorithms, a refinement of the failure detector
implementation is given in [108], which can be used during booting as well. For a
variant of the Θ-Model, were the synchrony assumptions hold just after some possibly
unknown global stabilization time, a simulation for Byzantine consensus is presented
in [107]. In [55] two self-stabilizing failure detector implementations are devised. The
relation of the Θ-Model to real-time networks is examined in [52]: The timing behavior
of Θ-algorithms is observed when executed in an architecture built upon deterministic
Ethernet.

Chapter 2

Modeling Distributed Real-Time
Systems

Since any solution to a problem in distributed real-time computing is just as good
as its underlying model, a crucial part in the design of dependable real-time systems
is the choice of the right model. When choosing a model, several topics must be
addressed. First of all, one has to examine what to describe, i.e. the type of systems the
devised algorithms shall eventually be executed on. A suitable model should adequately
describe the core properties of those systems. Among those are queuing phenomenons
as discussed in Section 2.1, which severely affect the system timing.

The problems that have to be solved by the algorithms are obviously another impor-
tant topic that must be addressed when choosing a model. We discuss novel application
domains for real-time systems in Section 2.2.

After this we shortly review existing approaches which aim at these novel application
domains in Section 2.3 and discuss whether these are suitable for the problems we want
to address.

2.1 Network of Queues

A message transmission over a network consists of local message preparation at
the sender, transmission over the link, and local receive computation at the receiver.
This is of course an abstraction which hides away that messages go through various
queues at the sender and receiver such that the sojourn times in queues—depending
on scheduling characteristics—must be considered as important part of the message
transmission delay δ.

In Figure 2.1 it is depicted how a distributed system can be modeled as a network of
queues. All messages that drop in over one of the n − 1 incoming links of a processor
must eventually be processed by the single CPU. Every message that arrives while the
CPU processes former ones must hence be put into the CPU queue for later processing.
In addition, all messages produced by the CPU must be scheduled for transmission over
every outgoing link. Messages that find an outgoing link busy must hence be put into
the send queue of the link’s communication controller for later transmission.

5

6 CHAPTER 2. MODELING DISTRIBUTED REAL-TIME SYSTEMS

CPU

CPUC

C

C

C

C

C

proc.

proc.

p2

p3

p1

p4

Figure 2.1. A simple queuing system representation of a fully connected distributed
system of 4 processors

As Le Lann and Schmid [67] observe, the transmission delay (between two correct
processes p and q) δpq = dpq + ωpq consists of two parts: A fixed part dpq > 0 which
is determined by process speeds and data transmission characteristics and a variable
part ωpq ≥ 0 which captures all variations of δpq; including:

• precedences, resource sharing and contention, with or without resource preemp-
tion, which creates waiting queues,

• varying (application-induced) load,

• varying process execution times (which may depend on actual values of input
parameters),

• occurrence of failures.

2.2. ASYNCHRONOUS DISTRIBUTED REAL-TIME SYSTEMS 7

Especially in networks with shared channel topologies (like Ethernet), these points
do not vary independently at different nodes. The shared channel makes it impossible
for the adversary to slow down just some messages, and hence to violate some upper
bound τ+ without slowing down all messages simultaneously. It follows that the lower
bound on messages delays τ− cannot be attained simultaneously during such periods.
Hence, the Θ-Model (cp. Section 3) does not bound τ+ and τ− but just the ratio of
these bounds Θ = τ+/τ−. Regarding coverage this is advantageous for systems where
the smallest delays (τ−) are increased at least by c/Θ whenever the longest delays (τ+)
increase by an amount of c: Obviously, Θ cannot be violated here.

2.2 Asynchronous Distributed Real-Time Systems

Recently, new application domains, like space, autonomy and artificial intelligence
etc. became targets for distributed real-time systems [56]. A peculiarity of these
new applications is the timing behavior induced by the uncertainty regarding future
operational environments. Requirements of such applications are hence different from
classical application domains of real-time systems, like engine control or industrial
automation at machine level. These applications normally comprise very simple control
tasks executed on dedicated processors with constant computation load and therefore
predictable timing behavior, such that synchronous timing models are suitable, i.e.
have sufficiently large coverage (the probability that the assumptions in the model
hold during real operation).

For the above mentioned new application domains new system models must be de-
vised since synchronous models of computation do not apply. One reason for this are
uncertain environments: Consider long lived space borne applications, for example,
where timing uncertainty is induced just by the unpredictable environment. Another
source for asynchrony are intensive on demand computations. Choosing timing bounds
for normal operation according to rare computation requirements is costly and often
not even required from a safety point of view. Finally using COTS (commercially of
the shelf) components significantly reduces costs which opens new application domains
for real-time systems. Unfortunately—due to pipelines, caches etc.—modern COTS
processors do have quite unpredictable timing behavior. Therefore weaker models of
computation should be devised [51, 66] in order to increase the coverage.

2.3 Suitable Models for Real-Time Systems

We now shortly review what kinds of weak timing models have been devised by the
distributed computing community, and how suitable they are for real-time distributed
applications. It is very well known that, due to the fundamental FLP impossibility
result [42], important agreement problems have no solution in the weakest timing
model, i.e. pure asynchrony. Since our goal are models that are as weak as possible, we
take FLP as starting point and review what can be added to the asynchronous model
in order to solve agreement problems which are required as building blocks for most
real-time control applications.

8 CHAPTER 2. MODELING DISTRIBUTED REAL-TIME SYSTEMS

Lets start with the most abstract approach taken by Chandra and Toueg [19], who
introduced the concept of failure detectors (FDs) and showed that even unreliable FDs
are sufficient to solve consensus in asynchronous systems. We regard their contribu-
tion as twofold. On one hand they formulated what kind of information on failures is
required by processes in asynchronous environments in order to solve consensus. Sec-
ond, FDs are time free constructs which hide synchrony assumptions. As shown by
Hermant and Le Lann [51], this second contribution can be employed very efficiently
in real-time systems by recognizing that implementing FDs can be done in lower net-
work layers. As already exploited in many clock synchronization based application,
lower level uncertainty is much smaller than application level uncertainty, i.e. clocks
can be synchronized closer than it would be possible on application level (where they
are used). FD implementations can, similarly, be devised which detect failures fast,
i.e. in shorter times than application level messages may travel in the worst case.

Nevertheless, FDs are abstract, time free constructs. For distributed real-time sys-
tems we must guarantee that all deadlines are met, i.e. we have to model the synchrony
of our system more explicitly. Note that we may still refer to FD based solutions, but
we have to give time bounds on failure detection times as well as on termination of
agreement algorithms. We therefore now discuss some timing models which are neither
totally asynchronous nor totally synchronous.

Dolev, Dwork and Stockmeyer [29] investigated how much synchronism has to be
added to asynchronous systems in order to solve consensus. They identified five syn-
chrony parameters (processors, communication, message order, broadcast facilities and
atomicity of actions) which can be varied into 32 different partially synchronous sys-
tem models. For each of those, they investigated whether consensus is solvable or not.
Solutions for consensus in such system models are given in the paper by Dwork, Lynch
and Stockmeyer [37], where two sources for uncertainty—computational speed and
transmission times—are considered. They postulated ∆ as (unknown) upper bound
on message delay (on the network) and Φ as upper bound on relative computational
speeds. Although this model is weaker than the synchronous model, it has many hid-
den assumptions which do not seem suitable for real-time applications. For example
delivering of a set of message takes one step regardless how large this set is. This totally
ignores timing uncertainty induced by different queuing schemes and varying network
load during operation. One step is required as well to send a message point-to-point.
We believe—and argue this in more detail in Section 4.1 and Section 4.2—that such
modeling is not suitable for real-time requirements since the hidden assumption are
too restrictive for the targeted application domains.

As mentioned above, new application domains for real-time systems [56] triggered
some more recent research on novel timing models. We will discuss two well known
approaches here, namely the timed asynchronous distributed system model TA [24, 74]
and the timely computing base model TCB [99, 100, 17].

The TA model assumes that during system operation there exist sufficiently long
periods during which no faults occur and liveness can be achieved. At first sight
this appears similar to the partial synchronous models [37] where it is assumed that,
after some stabilization time, the system is synchronous. Partial synchronous models

2.3. SUITABLE MODELS FOR REAL-TIME SYSTEMS 9

describe systems where a known bound exists and eventually holds, however, whereas in
TA some δ on the message delays is defined. How the value for δ is chosen is application
dependent. One approach proposed in [24, 74] is that if the system should react within
D real-time units, and the protocol requires a message chain consisting of k messages
in order to react, then δ

∆
= D/k should be chosen. From this definition follows the

definition of a timing fault, i.e. a message transmission that requires more than δ time.
This is, in the best case, just a partial solution to a real-time problem. In fact δ is not
an upper bound, but just some value for which it is assumed that “most” messages are
faster than δ. The solution of a real-time problem would require a guarantee that δ
holds sufficiently often, but no solution to this problem is given in [24, 74].

The TCB takes the same approach: Definition of timing properties. But here a
whole subsystem, the timely computing base, is defined. Whenever the application
requires something to happen timely, the TCB is used (for e.g. message transmission,
local timeout). A TCB is defined to be independent of the asynchronous part of the
system (interposition). The TCB is protected from faults that could violate timing
(shielding). And its complexity is such that verifiable mechanisms can be implemented
(validation). The problem, however, is that the description of the TCB [99] does
not provide “feasibility conditions” like how often it may be used to transmit timely
messages, while in the description of an example TCB implementation [17] it is argued
that it cannot be overloaded since load can be controlled. Again, this is in the best case
just a partial solution to a real-time problem since deriving rules on message arrivals
would be required to ensure that the TCB is in fact timely. No such rules are presented
in [99, 100, 17].

Both, TA and TCB are timed system models, i.e. local information on time is used
to detect remote performance faults. The question arises whether this is required. It is
often argued that such faults have to be detected in order to take actions that prevent
hazards, i.e. to ensure safety. And it is believed that using local information on time
provided by clocks is required to do so. The design immersion principle, introduced
by Le Lann [51, 66] takes a different approach. The goals that have to be reached by
a real-time system are safety, liveness, and timeliness. Distributed computing theory
tells us that, for many problems, safety and liveness can be reached even in asyn-
chronous systems, or at least in some sort of weak partial synchronous models. Design
immersion describes a system engineering process where a design is made based on the
weakest synchrony assumptions possible and formally proved to meet safety require-
ments (nothing bad ever happens) and liveness requirements (eventually something
good happens). Only after this, the solution is immersed into a real target proved (e.g.
via scheduling analysis) to satisfy certain timeliness requirements in this target system
as well.

The advantage of this approach is increased coverage: It is more likely that safety and
liveness hold in time free designs than in designs resting directly on the assumed timing
properties of the target system: Improved coverage means that there are system states
where the immersed solution still delivers some service while the direct solution does
not. In order to investigate this we have to consider exceptional cases: Consider periods
where the target system’s behavior deviates from the expected one, which cannot be

10 CHAPTER 2. MODELING DISTRIBUTED REAL-TIME SYSTEMS

ruled out as 100% coverage is impossible to reach, especially when missions with long
operation times in not completely predictable environments have to be considered.
In such periods a design resting on weaker assumptions may still deliver safety and
liveness, while just timeliness is lost. A design directly resting on the target system
may lose safety and liveness along with timeliness. Note that in such periods it is
impossible for any solution to ensure timeliness, such that the best one can hope for
is maintaining safety and liveness (properties which can be ensured even in purely
asynchronous systems according to distributed computing theory).

The question, however, arises what kind of weak models are suitable for design
immersion. There are two requirements for such systems: (1) important problems (like
consensus) must have a solution in the model, (2) the model’s timing assumptions must
be implementable in real systems, and the assumptions should even hold in cases where
the system does not behave as expected (in order to improve coverage further). We
believe that the Θ-Model which was introduced by Le Lann and Schmid [67], is well
suited for modeling real-time distributed systems. Unlike other partially synchronous
models, the Θ-Model is sufficiently strong to solve consensus and related problems
even in the absence of upper bounds on message transmission delays with links that
need not provide FIFO (First-In First-Out) semantics. The apparent contradiction to
FLP [42, 29] is resolved by replacing the upper bounds ∆ and Φ by an upper bound
Θ on the ratio of longest and shortest end-to-end transmission times. Computational
speeds and transmission times are hence put together into end-to-end delays, which is
the only duration which must adhere to our assumptions.

This kind of modeling has at least three important advantages: (1) for termination
times of real-time applications only the end-to-end delays are relevant such that re-
garding anything else unnecessarily complicates analysis. (2) By modeling end-to-end
delays we are less restrictive regarding relative computational speeds and transmission
times: Only their sum must behave as expected such that a violation of either one
does not necessarily lead to violation of our assumption. (3) Research results [68, 5]
show that there exists a relation of upper and lower message transmission times in
many systems: If a network is in a high load or even an overload state it is clear that
upper message transmission times are larger than in low load periods. But in high
load periods all messages must be queued at the network interfaces such that even the
fastest transmissions become slower as well. In [52] we provide an example of how to
build a system with a small value for Θ and how to prove timeliness properties of this
system while executing time free algorithms.

Chapter 3

The Θ-Model for Distributed
Real-Time Systems

After discussing the motivation for introducing new models we now formally define the
objects of the Θ-Model and their interrelationships.

3.1 Physical System

We consider a system of n distributed processes1 denoted as p, q, . . ., which commu-
nicate through a reliable, error free and fully connected point-to-point network2. We
assume that a non-faulty receiver of a message knows the sender. This assumption also
includes that processes have distinct identifiers which can be ordered uniquely3. The
communication channels between processes need not provide FIFO transmission, and
there is no authentication service4.

3.1.1 Faults

The most fundamental algorithms (clock synchronization) of this thesis deal with
Byzantine nodes. In order do tolerate them we define the following threshold: Among
the n processes there is a maximum of f < n/3 faulty ones. No assumption is made
on the behavior of Byzantine faulty processes.

Problems like non-blocking atomic commitment (Section 6.4), reliable broadcast
(Section 6.3.2), or strongly dependent decision (Section 6.3.1) are traditionally studied
in the presence of crash respectively clean-crash faults only. By clean-crash fault we
mean processes that do not crash in the middle of the execution of a statement. We
require such behavior for statements like “send message to all” in order to ensure

1For conciseness we assume that every of the n processors in a system executes just one process.
2A model where several classes of link failures [109, 68] are considered is employed later, in Section 7.
3This assumption is required for atomic broadcast in Section 6.3.2 which requires that messages

are ordered according to process identifiers.
4We do not consider authenticated algorithms since it is never guaranteed that malicious processes

cannot break the authentication scheme. By devising solutions without authentication, our correctness
proofs cannot be invalidated by this event.

11

12 CHAPTER 3. THE Θ-MODEL FOR DISTRIBUTED REAL-TIME SYSTEMS

consistent message transmissions5. Crash faulty processes on the other hand may
crash at any time. In the presence of clean-crash faults we require systems where
f < n. If crash faults are considered we require f < n/2. These numbers stem from
the requirement to implement clock synchronization (compare Section 6.1.3).

In Section 7 we will use the perception based hybrid failure model [88] which in-
corporates various types of process and link failures. The model is discussed there in
greater detail.

3.1.2 Timing

We consider time free algorithms, i.e. processes that do not have access to hardware
clocks or an external time base. Regarding timing behavior we distinguish two models:
The system model described in Section 3.2 which describes a dynamic timing behavior
with no upper bounds upon message transmission delays δ. The ratio of longest and
shortest message delays of messages that are simultaneously in transit, however, is
bounded. Such timing behavior renders the analysis of such systems very complicated.
To simplify the analysis we therefore introduce our computational model in Section 3.3
which just considers fixed but unknown upper and lower bounds on message transmis-
sion delays. We then show in Section 3.4 that these two models are equivalent, i.e.
algorithms that have been shown to satisfy their safety and liveness requirements in
the computational model also work in the system model.

Except the fundamental clock synchronization algorithm, all algorithms in this thesis
will have a priori knowledge of some integer Ξ which is a function of the uncertainty
ratio Θ (read on).

Regarding system booting we assume throughout Section 6 that all correct processes
are initially up and listening to the network. We will see in Section 7 and Section 8,
however, how to get rid of this assumption in a time free manner.

3.2 System Model

Processes communicate by message passing. The time interval a message m is in
transit consists of three parts: Local message preparation (includes queuing) at the
sender, transmission over the link, and local receive computation (includes queuing)
at the receiver. We denote tm

s the instant the preparation of message m starts. The
instant the receive computation is finished is denoted as tm

r .
In our system model we say that message m is in transit during the real-time interval

[tms , tmr). We denote by δm = tmr − tms the end-to-end computational + transmission
delay of message m sent from one correct process to another. Further let M(t) be the
set of all messages between correct processes that are in transit at real-time t. Let τ−(t)
be a lower envelope function on transmission delays of all messages that are in transit
at real-time t, such that for any time t it holds that τ−(t) ≤ min(δm) for all m ∈ M(t)
if |M(t)| > 0 and τ−(t) = 1 otherwise. We define for a fixed Θ ∈ IR, Θ ≥ 1 the upper

5Such behavior can usually be simulated in the presence of crash faults by reliable broadcast. This
is discussed later in Section 6.3.2 and Section 6.4.2.

3.3. COMPUTATIONAL MODEL 13

envelope function τ+(t) ≤ Θτ−(t). At any time t it must hold that τ+(t) ≥ max(δm)
for all m ∈ M(t) if |M(t)| > 0.

An example execution of some algorithm in the system model is depicted in Fig-
ure 3.1. At the top of the figure the message pattern is given. Below the two tightest
bounds τ+(t) and τ−(t) are sketched in a diagram. This diagram is derived by con-
structing a square for every message m between tm

s and tmr . At every instance the
shortest message in transit defines τ−(t) and the longest one τ+(t). As in the exam-
ple in Figure 3.1 the same message may define both τ− and τ+ at different times,
depending on the other messages which are currently in transit.

p

q

r

τ+(t)

τ−(t)

δ

t

t

1

tms

tmr

δm

δm

m

Figure 3.1. Timing of the System Model

3.3 Computational Model

We will denote by δpq the end-to-end computational + transmission delay of a mes-
sage sent between two correct processes p and q; δpq can be different for each message.

Our computational model stipulates an upper bound τ+ for the transmission delay
as well as a lower bound τ− such that 0 < τ− ≤ δ ≤ τ+ < ∞, where τ− and τ+ are
fixed but not known in advance. Since τ+ < ∞, every message sent from a correct

14 CHAPTER 3. THE Θ-MODEL FOR DISTRIBUTED REAL-TIME SYSTEMS

process to another one is eventually received. Measures for the timing uncertainty
are the transmission delay uncertainty ε = τ+ − τ− and the transmission delay ratio
Θ = τ+/τ−.

3.4 Equivalence of the Models

We now show the equivalence of our two models. We argue that an observer of the
system which is equipped with a “real-time clock” whose timebase emerges from the
system is not able to distinguish executions in the system model from executions in
the computational model.

Theorem 1 (Equivalence). The system model and the computational model have the
same expressive power.

Proof. Let us assume an omniscient observer in both systems who is equipped with a
clock which provides him with observer-real-time, i.e. a time base that look to him like
real-time. More specifically, we assume that the observer-real-time t′ is constructed as
a function of Newtonian time t in the following way:

t′ = β(t) =
∫

1

τ−(t)
dt. (3.1)

In the computational model, where τ−(t) = τ−, we hence get as time base β(t) =
t/τ−+c, thus all correct message transmission delays take between 1 and Θ of observer-
real-time here.

We now consider a message m between two correct processes in the system model.
In order to get the measured value of the end-to-end delay we have to consider β(tm

r)−
β(tms). For any time t ∈ [tms , tmr), we have tmr − tms ≥ τ−(t) ≥ tm

r
−tm

s

Θ
. By monotonicity

of integrals we get

1 ≤ β(tmr) − β(tms) =

tm
r

∫

tm
s

dt

τ−(t)
≤ (tmr − tms) ·

Θ

tmr − tms
= Θ.

Since both, the system and the computational model are time free, no action can
occur based on a timeout of a hardware clock etc. but only upon reception of a message
and upon the completion of processor startup:

• Processor startup. Since processes start at unpredictable times, the occurrences
of the very first action of every processor are completely unrelated in either model.

• Message reception. Apart from the very first action, all subsequent actions and
hence messages sent by a correct process are direct responses to a received mes-
sage.

When monitoring the execution of a distributed algorithm in system S using the
appropriate observer-real-time clock, the observer cannot decide whether S adheres to
the computational or to the system model.

3.5. ROUND BASED SIGNIFICANT UNCERTAINTY RATIO 15

More informally one can argue about the equivalence when referring to the length
of message chains: During the transmission of a (slow) message m, there cannot be a
concurrent causal message chain which has at least one (broadcast or receive) event in
common with m such that the chain consists of more than Θ messages during [tm

s , tmr).
Theorem 1 reveals that the system model which does not incorporate upper bounds

on message transmission times (given that Θ holds) can in fact be reduced to a partially
synchronous model with fixed but unknown upper and lower time bounds. It is hence
possible to analyze distributed algorithms in the simple to handle computational model
and transfer the results regarding safety and liveness to the more “elastic” system
model.

Stating timeliness results in the context of real-time systems also requires special
care: If the analysis in the computational model shows that some algorithm has a
running time depending on τ+, one has to be aware of the fact that these results
must be translated to the system model where we just have the function τ+(t). The
underlying system’s timing behavior during some execution of our algorithm hence
emerges to upper network layers. Assume t1 is the time when an execution starts
according to observer-real-time base β, and t2 when it ends. The elapsed real-time
is then determined by ∆t = β−1(t2) − β−1(t1). When proving worst case response
times in real-time systems, however, the strict upper bound on τ+(t) of the considered
system must be considered during the late binding process. Only by carefully derived
upper bounds on message delays—by referring to the distributed real-time scheduling
problem— timeliness properties can be said to be properly achieved.

Remark The definition of τ−(t) = 1 in the case of no messages in transit was intro-
duced in order to construct β(t) in the proof of Theorem 1 as an one-to-one mapping.
It has no influence on bounds on durations of executions, and is only required during
initialization of the algorithm (since we have no simultaneous start assumption). After
initialization there will always be messages in transit and our envelope functions are
defined in the natural way. One could also think of an extension of the Θ-Model that
allows local timeouts (e.g. to reduce traffic). Such timeouts must properly taken care
of when analyzing worst case response times, however.

3.5 Round Based Significant Uncertainty Ratio

In this thesis we will only consider round based algorithms in the Θ-Model. Such
algorithms are executed in asynchronous rounds, i.e. every correct process sends a
message for every round k. The transition to round k + 1 occurs when n− f messages
for the current round are received. It will turn out that the uncertainty we have to deal
with does not stem from the ratio of message delays directly but rather from the ratio
of the longest message delay and the shortest round switching intervals. The shortest
round-switching interval τf, however, is not determined by only a single correct message.
Rather it is determined by the sending time of the first message and the receive time of
the n − f th message. In the worst case this is irrelevant since any message is bounded
by τ−, and all could be sent simultaneously. From a practical point of view this is

16 CHAPTER 3. THE Θ-MODEL FOR DISTRIBUTED REAL-TIME SYSTEMS

very important, however. If one tries to establish an analytical expression for τ− one
would examine an idle system and the sending of a single message in this system—
which could be a self reception as well. Obviously the receiver just has to deliver one
message here. However, assuming that the receiver can process, say n − f messages
as fast as a single one is typically not valid in real systems. Choosing τf = τ− hence
would be overly conservative since round switching requires n − f messages, i.e. is
determined by the n − f fastest message. In particular, in broadcast bus networks
one cannot transmit two messages simultaneously over the bus, i.e. the n − f fastest
messages must be transmitted one after the other. The time for n − f messages to be
transmitted in such networks is hence always larger than the best case time of sending a
single message in an idle system. Using τ− in the analysis would lead to over-valuations
of the significance of τ−.

Since we will consider several types of faults and hence different clock synchronization
algorithms, the uncertainty ratio Θ used in our analysis will be slightly different for
different fault classes.

3.5.1 Byzantine Faults

In our round based algorithms, the transition to the next round occurs when n − f
messages for the current round have been received i.e. when at least n − 2f ≥ f + 1
messages sent by correct processes have arrived. In our timing analysis, we will hence
set τf equal to the transmission time of the n − 2f fastest correct message. More
specifically, we will use τf as expression for the shortest time it may take to send
n − f messages from distinct processes to one receiver (end-to-end). This choice is
advantageous since τf need not be satisfied by all messages, but just by the n − 2f
fastest one between two correct processes. Consequently, τ− will not show up in the
analytical expression for shortest round switching intervals explicitly, although of course
τf ≥ τ−. The system’s timing is therefore not violated even when up to f processes
commit early timing failures, i.e. their messages are faster than τf. Let us formalize
this observation:

Definition 1 (Incoming Messages). For any correct process q, τ−
q is the n − 2f

smallest δpq for all messages sent by correct processes p that enable an event at q. τf is
defined as the the smallest τ−

q of all correct processes q.

Lemma 1 (Sending Time). If a correct process receives messages from at least n−2f
distinct correct processes by time t, then at least one message was sent by time t − τf.

Proof. Follows from Definition 1.

Definition 2 (Significant Uncertainty Ratio). The smallest feasible value of the
uncertainty ratio Θ is Ω = τ+/τf.

Remark Note that τf determines the time required for n− f messages to be received
by a correct process. There are two possible approaches here. Assuming τf > τ− leads
to small values for Θ, and hence improved performance. This requires, however, that

3.6. RELATED WORK 17

all correct processes behave as expected regarding timing. Another approach, however,
would consist of improving reliability, i.e. coverage. Setting τf = τ− we would allow up
to f Byzantine faults and, additionally, f otherwise correct processes to commit early
timing faults without violating the bound on the round-switching intervals.

3.5.2 Crash Faults

Asynchronous execution where just benign faults are considered are slightly different.
We assume that processes are correct until they crash. Round switches will happen
based on the reception of n − f messages from correct (not yet crashed) processes.
Hence τf can be defined similar to the Byzantine case by replacing n − 2f with n − f
in Definition 1 and hence Lemma 1. Note carefully, however, that early timing faults
must not happen here!

3.5.3 Clean-Crash Faults

Round switches will happen based upon the reception of message from n − f ≥ 1
processes, thus τf = τ− must be considered. In many applications, however, f is
considerably smaller than n. In such cases τf can be defined as in the crash fault case.

3.6 Related Work

The need for thinking about various types of synchrony started with the fundamental
paper by Fischer, Lynch and Paterson [42] who showed that there is no deterministic
algorithm for asynchronous systems that solves consensus if just one process may crash.

Dolev, Dwork and Stockmeyer [29] investigated how much synchronism has to be
added to asynchronous systems in order to solve consensus. Dwork, Lynch and Stock-
meyer [37] gave consensus algorithms for several kinds of partial synchrony. These
results are also presented in the book by Lynch [71]. More work on agreement under
diverse partially synchronous system models can be found in [8, 7, 81].

Chandra and Toueg [19] introduced the concept of unreliable failure detectors (FDs).
Chandra, Hadzilacos, and Toueg [18] have shown the weakest type of unreliable FDs
that solves consensus. More related work on FDs can be found in Section 6.5.

Timed semantics and the failure detector approach are compared by Charron-Bost,
Guerraoui and Schiper [21] who show that synchronous systems are strictly stronger
than asynchronous systems equipped with the perfect failure detector P.

In real-time systems research, however, asynchronous algorithms have almost never
been used. This is a consequence of the widespread believe that in order to build real-
time applications timed algorithms have to be used [24, 100]. The design immersion
principle (also referred to as late binding) by Le Lann [65, 66] has shown that this
believe is wrong! Hermant and Le Lann [51] have shown that it is possible to use
asynchronous algorithms efficiently to solve real-time computing problems. Moreover
it is possible to show that implementations using late binding reach higher coverage.
Regarding soft real-time systems there exists some work as well that deals with the
usage of asynchronous algorithms [53].

18 CHAPTER 3. THE Θ-MODEL FOR DISTRIBUTED REAL-TIME SYSTEMS

Chapter 4

The Θ-Model Compared to other
System Models

Having introduced our Θ-Model in Section 3, we will now investigate the differences
with respect to classic approaches on modeling the timing of distributed systems be-
tween the two extrema lock-step synchrony and pure asynchrony. We consider here
partial synchrony [37], semi-synchrony [81], and the Archimedean assumption [103].

4.1 Partial Synchrony

In the Θ-Model we consider end-to-end delays, i.e. τ+(t) and τ−(t), whereas partially
synchronous—denoted as ParSync—models [37] incorporate delays as follows:

∆ is the upper bound on message delays (not end-to-end)

Φ is the upper bound on the relative computational speeds.

When taking a closer look at the definition of Φ one finds that the time base ParSync-
real-time is defined as the frequency of steps of the fastest process. Therefore at any
instant in ParSync-real-time a process may take at most one step. Furthermore, any
correct process must take at least one step when the fastest one makes Φ steps. This
has two important implications: From the theoretical point of view, ParSync turns out
to be a special case of the Θ-Model, i.e. the Θ-Model is strictly closer to asynchrony in
the hierarchy than ParSync. From the point of view of coverage, the ParSync model
turns out to have limited abilities to model real systems.

Lets start with the theoretical point of view. Bounded Φ means that no computa-
tional step can be taken in 0 time. Regarding end-to-end delays (which are modeled in
the Θ-Model) ParSync models must have τ− > 0: At any time a process may take at
most one step where sending and receiving of some message cannot happen simulta-
neously. However, any end-to-end delay must be measured in ParSync as the interval
between ”the time process p sends a message to q” and ”the time q sends its next
message” (in reaction to p’s). Since receive and send cannot happen at q at the same
time we get τ− ≥ 1.

19

20 CHAPTER 4. THE Θ-MODEL COMPARED TO OTHER SYSTEM MODELS

Bounded Φ also means that there exists a finite lower bound on process speeds,
i.e. no process is infinitely slow. In conjunction with the bounded message delay this
implies a bounded end-to-end delay τ+ as well.

To make a fair comparison of the synchrony assumptions of the Θ-Model and
ParSync, we have to examine the models more closely. In [37] ParSync comes in
two flavors:

ParSync.GST - ∆ is known, and holds from some global stabilization time on.

ParSync.Unknown - ∆ is unknown, and holds always.

From the existence of τ− > 0 and τ+ < ∞ we arrive at the conclusion that the
Θ-Model and the ParSync model can be strictly ordered in hierarchy. For this we have
to consider two additional versions of the Θ-Model (note that, in this thesis, we will
mostly stick to the ’classic’ Θ-Model when devising algorithms, since we are interested
in algorithms suitable for distributed real-time systems. Nevertheless, we will refer to
the other variants several times):

Θ.GST - some known Θ holds just from some global stabilization time on: We can
employ one of the algorithms presented later (Theorem 11) which implements
�P. It follows that ParSync.GST is a special case of this model with fixed lower
and upper bounds on end-to-end delays that hold after GST.

Θ.Unknown - some unknown Θ always holds: We can update the timeout integer
Ξ in the FD implementation (compare Section 6.2) whenever a message from a
suspected process drops in. Eventually Ξ will become the correct value. It follows
that ParSync.Unknown is a special case of this model with fixed lower and upper
bounds on end-to-end delays.

These two findings imply that our algorithms could be run in ParSync models and
would work as expected. Therefore the Θ-Model fully includes ParSync and is hence
strictly closer to asynchrony.

As far as coverage of ParSync in real systems is concerned, we note that even the
slowest process p must be able to receive a subset of the messages which were added
to its message buffer since its last step. The synchrony assumption, however, requires
that it must receive a message m at the latest ∆ ParSync-real-time steps after m was
put into its in buffer. Lets construct a worst case scenario in this model: Let n − 1
processes be fast and send, at every step, a message to the single slow process p. If one
wants to implement the model in a real system, the duration of a step must be such
that p can deliver (n− 1)Φ messages during a step. Otherwise the in-buffer of p could
not be emptied at each step, such that it would require unbounded memory.

We believe that this modeling has some shortcomings: Fast and slow processes
require the same amount of time for a step. When looking at queuing issues, it becomes
obvious that the length of a step must depend on the time a slow process requires to
deliver (n − 1)Φ messages. Therefore the performance of a fast process is limited

4.2. SEMI-SYNCHRONY 21

by the delivering speed of a slow one. Consequently, there exist a considerably large
τ− = 1ParSync in ParSync models, which is far away from being 0.

It follows that ParSync’s definition of computation speed has influence only on send-
ing messages. For receiving messages a slow process and a fast one deliver the same
number of messages during the same time interval. Just that a fast process delivers
some messages every instant and the slow one delivers many messages just every Φ
instants. This is not a proper way of modeling slow process and clearly inferior to the
modeling of end-to-end delays in the Θ-Model.

4.2 Semi-Synchrony

The usage of the term partial synchrony [37, 29] as described in Section 4.1
has slightly changed in recent years. In literature models are called ParSync now
which where originally referred to as semi-synchronous (SemiSync), obviously since in
SemiSync [80, 81, 8] there also exist Φ and ∆ (compare Section 4.1). There is, however,
a slight difference: Since processes may deliver messages and send responses in zero
time, there does not exist some bounded τ− > 0 in this model. The absence of this
synchrony-enabling parameter is compensated by referring to bounded-drift local clocks
(timers, hardware clocks, watchdogs etc.). The existence of some (possibly unknown)
Φ and ∆ (and hence τ+) makes it possible to detect crashes based on approximate
local information on the progress of real-time provided by local clocks.

We will later see in Section 5.7 that even the existence of local clocks does not help
(w.r.t. increasing performance or number of solvable problems) in the Θ-Model. This
is due to the fact that τ+(t) does not imply a strict upper bound on end-to-end delays.
We now informally discuss this property by referring to SemiSync.

The way how clocks are used in SemiSync relies on the following property: Due to
bounded Φ and ∆ and the existence of a bounded drift clock, a correct process’s clock
ticks at most some x times until some message from a correct process must arrive. In
the Θ-Model, Φ and ∆—represented now by τ+(t)—vary over time, such that bounded
drift clocks are of no help.

We believe that SemiSync models do not exploit properly the inherent synchrony of
all real computer networks: Setting the lower bound to 0 is obviously a safe assumption,
but real systems have lower bounds on message transmissions (due to the physical
impossibility of transmitting and processing information in zero time).

From a theoretical viewpoint SemiSync is of course of highest interest since its lower
bounds on termination times apply to weaker models as well.

Non-technical Remark Before returning to more technical topics, lets have a look
at the aesthetics of the Θ-Model when compared SemiSync (and to ParSync): In
SemiSync, times from different domains are compared: Message delays and clock fre-
quencies. We believe that these two domains are totally independent, such that compar-
ing them, in order to timeout processes is not an elegant solution. (Whether elegance
should be left in the domain of tailors and shoemakers will not be discussed here.)
Exploiting the inherent synchrony of the system (recall τ− > 0 in any real system) and
comparing (somehow) slow and fast messages is preferable from this viewpoint as well.

22 CHAPTER 4. THE Θ-MODEL COMPARED TO OTHER SYSTEM MODELS

4.3 The Archimedean Assumption

The Archimedean assumption was introduced by Vitányi [102, 103] and limits a
distributed systems asynchrony. It was employed in the context of message and time
complexity bounds for distributed systems with realistic timing behavior. The same
assumption was employed by Spirakis and Tampakas [94] for the same purpose. Some
remarks on this work can also be found in the book by Tel [98].

The model based upon the Archimedean assumption involves

• an a priori known upper bound u on message transmission delay + time interval
between two process steps (respectively clock ticks in [103])

• a lower bound m on the time between two steps of a process (resp. ticks of local
clocks)

• some bounded s ≥ u/m.

Vitányi [103] uses this synchrony assumption to show that time-driven algorithms
can be devised that achieve smaller message and/or time complexity compared to al-
gorithms in purely asynchronous systems. In [103] time-driven algorithms for leader
election (see also [102]), spanning tree construction, and (hardware) clock synchro-
nization are given. Spirakis and Tampakas [94] provide timed algorithms for mutual
exclusion, symmetry breaking in a logical ring and the problem of readers and writers.

Although it seems that the synchrony assumptions of the Θ-Model and the
Archimedean assumption are similar, it must be noted that there is a subtle difference.
Unlike the lower bound τ− in the Θ-Model, the lower bound m in the Archimedean
model does not involve message reception. Hence, whereas τ− and τ+ are likely to
be correlated via queuing delays such that Θ may hold even in case of high/overload,
there cannot be any correlation between m and u in case of increasing transmission
delays. The coverage of Θ is hence higher than those of s.

The Archimedean assumption differs from the Θ-Model also in the fact that the
former’s synchrony is primarily used for simulating local “hardware clocks” by just
executing computing steps in a spin loop. Due to the definition of s, this clock can
be used to timeout messages. The same could of course be done in the Θ-Model, by
doing self-reception in a spin loop. Note that this would even work when transmission
delays go up in periods of overload, since self reception is also done via the queues
of a processor (rather than just writing into memory). Still, the algorithms employed
in this thesis do not use this technique, which has the additional disadvantage that it
would not allow us to utilize the typically larger value of τf (cp. Section 3.5).

Last but the not least, the problems addressed in this thesis are very different from
the problems investigated under the Archimedean assumption. Like Le Lann and
Schmid [67], we employ the Θ-Model as a weak partially synchronous system model,
suitable for solving consensus and related problems in a time free manner. By con-
trast, the work in [103, 94] is basically concerned with reducing complexity by adding
synchrony assumptions to the system.

Chapter 5

Implementation Issues

5.1 Design Immersion

This section describes the work that has to be done when immersing solutions of
this thesis into real systems in order to achieve real-time properties. Our results have
the following property in common: “If we know values for Θ and τ+(t) during the
execution of some algorithm we can derive the termination times”. In order to get
bounded termination times we hence require bounds for Θ and τ+(t). The bound
τ̄+ ≥ τ+(t) for all times t is hence an important factor (although it is not compiled
into our algorithms). It is the solution to the worst case response time associated with
the distributed real-time scheduling problem. Careful analysis for the targeted system
has to be done to derive this value. This analysis [51] depends on the type of the
network and is out of the scope of this thesis.

Similarly, for all times t, τ̄− ≤ τ−(t) is the lower bound and hence the best case
solution to the distributed real-time scheduling problem. It would be perfectly safe to
use the ratio Θ̄ = τ̄+/τ̄− in order to derive a value for Θ. This approach, however,
would be very inefficient (Θ will show up in our termination time bounds, and it is the
only value that has to be known a priori to the algorithms). This is where the system
model is required: In most systems in which distributed algorithms are executed one
cannot have message end-to-end delays of τ̄+ and τ̄− at the same time. In high load
periods (e.g. contention on a shared medium) some message transmissions will require
τ̄+. But no message in transit will require τ̄− during this periods. This can be used
to decrease the actual value of Θ by referring to the system model where τ+(t) and
τ−(t) are variant: We are faced with a variant of the distributed real-time scheduling
problem: How are τ+(t) and τ−(t) related in the target system? In many systems the
solution to this problem generates a bound on Θ which is considerably smaller than Θ̄.

5.2 Assumption Coverage

This section presents several arguments that should strengthen the strong connection
of real systems and the Θ-Model. We do so by reviewing some arguments [67] that
should be considered when reasoning about the coverage of the Θ-Model.

23

24 CHAPTER 5. IMPLEMENTATION ISSUES

Since the Θ-Model is fundamentally different from other well known partially syn-
chronous models [37, 19] the arguments regarding coverage must obviously be slightly
different. It is important to notice that the Θ-Model does not stipulate an upper
bound ∆ upon message transmission times (see the system model in Section 3.2). The
synchrony assumption is rather stipulated explicitly by establishing a relation of longest
and shortest message transmission delays. We hence must compare the coverage of the
∆-assumption to the coverage of the Θ-assumption. We consider here the “pessimistic”
approach from Section 5.1, i.e. we consider strict upper and lower bounds τ̄+ and τ̄−,
respectively such that Θ̄ = τ̄+/τ̄−. This approach is pessimistic in the sense that
it gives the largest value for Θ, while it reaches higher coverage as discussed in the
following.

Let a model with an assumption on ∆ (and hence τ+) have a value for coverage c∆.
A model which assumes a bound on Θ̄ has a value for coverage cΘ ≥ c∆cτ−. Since τ−

is the solution of the best case schedulability analysis—which should be very simple to
derive compared to worst case analysis—its coverage can be considered 1. Hence cΘ is
at least as good as c∆. If we can find just one execution where the Θ-assumption holds
whereas the ∆-assumption is violated we have shown that the coverage of Θ is in fact
better. That such executions exists is obvious from queuing issues which were already
discussed in Section 2.1.

5.3 Real-Time Scheduling

It should be clear by now that real-time guarantees do not come for free. Consid-
erable work by computer scientists is required in order to derive the required figures
for τ̄+, τ̄−, and Θ by analyzing distributed scheduling algorithms. We now give some
numbers on these bound which can be found in real-time literature:

When we regard τ+ and τ− as clock synchronization (resp. failure detector) level
end-to-end delays [51], the resulting delay uncertainty ε is usually much smaller than
the uncertainty εA = τ+

A − τ−
A at application-level. Typical values for the latter are

τ−
A = 100µs and τ+

A = 10 . . . 100ms, which would lead to some ΘA = 100 . . . 1000.
Rather, τ+ and τ− are the worst case and best case response times, respectively, as-
sociated with the distributed real-time scheduling problem underlying the distributed
clock synchronization execution. Typical values for Θ reported in real-time systems
research [39, 49] are 5 . . . 10.

5.4 Experimental Results

In order to get an idea of the value of Θ some experiments were conducted by
Albeseder [5]: The basic clock synchronization algorithm from Section 6.1 was exe-
cuted on Linux workstations connected by switched Ethernet and a custom monitoring
software was used to determine the values of the message end-to-end delays. The clock
synchronization algorithm from Section 6.1 was run like a fast failure detector using
high-priority threads and head-of-the-line scheduling [51]. During a run, varying net-
work as well as processor load in the range of 1..60% was artificially induced. Similar

5.5. DETERMINISTIC ETHERNET 25

behavior of the network was observed in all 29 runs with a length of 120s each. The
numbers we report here are average values over all runs: Absolute bounds on message
end-to-end delays were τ̄− ≈ 23µs and τ̄+ ≈ 640µs. Pessimistically this would lead
to Θ̄ ≈ 27.8. The effective Ω, however, was measured according to our system model
and thus considered only those messages that are simultaneously in transit. Moreover,
following Section 3.5, it is not the duration of one fastest message τ− that determines
the behavior of our algorithms but just the duration τf of the n− 2fth fastest message
from a correct process. Obviously, this makes a difference in real networks since the
usually small self reception time has no influence on the overall timing. This has been
confirmed by the experiments, which revealed a value of Ω ≈ 9.8.

Those and other results are strong evidence that τ−(t) and τ+(t) are indeed corre-
lated, i.e. all end-to-end delays of all messages grow in high load situations. Moreover,
these results showed that even in these settings—which are far from being real-time
networks that deliver much less timing uncertainty—the uncertainty ratio Θ remains
within reasonable bounds.

5.5 Deterministic Ethernet

In [52] it was shown how an implementation of the perfect failure detector P in the
Θ-Model can be immersed into a real system. The work rests upon an architecture
built atop Deterministic Ethernet (which has various nice properties, e.g. upper bounds
on message delays). This architecture followed the fast FD approach [51] where failure
detection is done low level and higher level application can make use of it (similar to
clock synchronization, where the clocks are synchronized low level in order to reduce
the uncertainty). For this architecture it was shown that the time free solution can
be implemented efficiently by using suitable queuing and bus arbitration schemes: It
has been shown analytically that the architecture build atop of deterministic Ethernet
delivers a timing behavior characterized by Θ = 1. This approach hence allows to
implement totally time free solutions for consensus in real networks, without sacrificing
real-time behavior.

5.6 Algorithms at Application Level

The values for Θ we discussed in Section 5.3, Section 5.4, and Section 5.5 are mostly
in the context of implementations of the fundamental clock synchronization algorithms
(cp. Section 6.1) respectively failure detectors (cp Section 6.2). In order to reduce
uncertainty they will typically be implemented at low level such that performance is
comparable to fast failure detectors [51].

Other algorithms in this thesis—like those presented e.g. in Section 6.3 or Sec-
tion 6.4—will typically be executed at application level such that values for Θ at this
level must be derived analytically as well. These values may me considerably larger
than those discussed in the previous sections, however.

26 CHAPTER 5. IMPLEMENTATION ISSUES

5.7 Bounded Drift Clocks

Most of the computers which are considered for building reliable real-time system are
equipped with hardware clocks. The question arises how such clocks could be employed
in order to improve the system performance, reduce overhead etc.

Let’s consider a variant of the Θ-Model where processes are equipped with good
clocks, i.e. clocks with bounded drift. Models like this where the synchrony assumption
is a strict upper bound on message delays are called SemiSync (cp. Section 4.2), where
usually faults are detected by setting timeouts. We do not find any improvement by
such an approach under the Θ–assumption. First, τ+(t) has no upper bound, such
that the system model is too weak to timeout processes using local hardware clocks
by just measuring one round trip and estimating τ+(t) then. This is because τ+(t)
can unboundedly increase in future. But even if not just one round trip, but bΘ + 1c
causally related round trips to some process p are measured, such that these must
overlap with one round trip to some process q, there is no gain in performance. It can
easily be shown by example that this solution, when immersed into real systems (cp.
Section 5.1) may have worse termination times than our approach (see Section 6.2),
while reducing coverage by referring to timed semantics. Moreover such measurement
has to be repeated for every timeout.

Local clocks (in fact any approximate local notion of elapsed time) can be employed,
however, for controlling the overhead of our algorithms. Consider the failure detector in
Section 6.2 that always requires messages to be in transit. If this would be implemented
like this, there would not be any bandwidth left for other algorithms that use the failure
detector. To make this algorithm suitable for real systems, local timeouts are used just
to keep the failure detector quiet for some time [52, 68]. Note that even if we used
clocks in such a way, we would still have time free algorithms, in the sense that the
clocks are not used to measure remote events of message delays. Hence, the correctness
of the algorithms do not rely on an assumed relation of clock tick intervals and message
delays.

Chapter 6

Selected Algorithms in the
Θ-Model

This section introduces fault-tolerant algorithms for the Θ-Model. Here, we consider
the simple case where all processes are initially up and listening to each other. This
assumption will be dropped in Section 7 and Section 8, where we consider system
booting in detail. We start with clock synchronization which is the primitive underlying
all our other algorithms. We present an implementation of the perfect failure detector
P for solving consensus, an implementation of atomic broadcast that uses our clocks
directly instead of referring to P, and some non-blocking atomic commitment protocols.

From a theoretical viewpoint Section 6.3 is is the most surprising one since it gives a
solution to the strongly dependent decision problem. This reveals that the Θ-Model is
as powerful as a synchronous model although it stipulates no upper bound on message
transmission delays in the system model. We further give an algorithm that simulates
lock-step synchrony, which makes it possible to execute any synchronous algorithm in
a totally time free way—even if Byzantine faults are considered.

6.1 Clock Synchronization

Clock synchronization is a fundamental service in many distributed systems. Al-
though traditionally studied in systems with a priori known timing behavior where
all the processes are equipped with hardware clocks, it can also be solved in partially
synchronous systems with software clocks (counters). Formally the problem of clock
synchronization reads as follows.

Definition 3 (Clock Synchronization). Every correct process p maintains an
integer-valued clock Cp(t), that can be read at arbitrary real-times t. It must satisfy:

(π) Precision Requirement. There is some constant precision Dmax > 0 such that
|Cp(t)−Cq(t)| ≤ Dmax for any two correct processes p and q and any real-time t.

(α) Accuracy Requirement. There are some constants a, b, c, d > 0 such that a(t2 −
t1) − b ≤ Cp(t2) − Cp(t1) ≤ c(t2 − t1) + d for any correct process p and any two
real-times t2 ≥ t1.

27

28 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

According to (π) the difference of any two correct clocks in the system must always
be bounded, whereas (α) guarantees some relation between progress of clock-time and
progress of real-time. In literature (α) is often referenced as linear envelope require-
ment. The constants a, b, c, and d determine how fast logical time (measured in ticks
representing some logical time unit) progresses with respect to real-time. In case of
our solution, a clock ticks whenever its clock synchronization algorithm enters the next
round of computation.

6.1.1 Byzantine Case

The algorithm given in Figure 6.1 is a variant of the classic non-authenticated clock
synchronization algorithm by Srikanth and Toueg [95]. It provides the fundamental
properties (π) and (α) in our Θ-Model in systems with at most f < n/3 Byzantine
faults. It is started by sending (round 0) in line 3. If a correct process receives f + 1
(round l) messages (see line 5) it can be sure that at least one of those was sent by a
correct process and therefore also sends (round l). If a process receives n− f ≥ 2f + 1
(round k) messages (line 10) it can be sure that at least f +1 of those will be received
by every correct process—which then executes line 5—, such that within bounded
time all correct processes receive n − f (round k) messages. Therefore when receiving
these n − f (round k) messages a correct process updates its clock to k + 1. We will
see in the following analysis that this behavior suffices to guarantee (π) and (α).

0: VAR k : integer := 0;
1:

2: /* Initialization */
3: send (round 0) to all [once];
4:

5: if received (round `) from at least f + 1 distinct processes with ` ≥ k
6: → k := `; /* jump to new round */
7: send (round k) to all [once];
8: fi

9:

10: if received (round k) from at least n − f distinct processes
11: → k := k + 1;
12: send (round k) to all [once]; /* start next round */
13: fi

Figure 6.1. Clock Synchronization Algorithm

The algorithm given in Figure 6.1 is totally time free, i.e. it has no knowledge of τ+,
τ−, ε, and not even Θ. Its properties regarding (π) and (α) solely emerge from the
underlying system’s timing properties. Therefore, violations of any assumptions of the
system timing can do no harm to the algorithm per se. It is just the properties (π) and
(α) that get out of the derived bounds. If the system returns to expected behavior (π)
and (α) return to their expected values as well1. In the algorithm given in Figure 6.1

1In the implementation of the eventually perfect failure detector �P this property is of major

6.1. CLOCK SYNCHRONIZATION 29

the value k is the current clock value of the process. In the analysis we will often refer
to it by Cp(t). We start the analysis with some definitions.

Definition 4 (Local Clock Value). Cp(t) denotes the local clock value of a correct
process p at real-time t; σk

p , where k ≥ 0, is the sequence of real-times when process p
sets its local clock value to k + 1.

Definition 5 (Maximum Local Clock Value). Cmax(t) denotes the maximum of
all local clock values of correct processes at real-time t. Further, let σk

first = σk
p ≤ t be

the real-time when the first correct process p sets its local clock to k + 1 = Cmax(t).

We start our analysis with the following observation in Lemma 2, which is required
in order to show our major properties later.

Lemma 2 (2nd if). The first correct process that sets its clock to k = Cmax(t) > 0
by time t must do so by line 10 and hence sends (round Cmax(t)) by time t. By t at
least n− 2f correct processes have clock value k − 1 and have sent their (round k − 1)
message.

Proof. By contradiction. Assume that the first correct process p sets its clock to
k = Cmax(t) at instant t by line 5. At least one correct process must have sent a
message for a tick l ≥ k to enable the rule at p. Since correct processes only send
messages for ticks less or equal their local clock value, at least one must already have
had a clock value l ≥ k at instant t. This contradicts p to be the first one that reaches
clock value k. When entering round k by line 10 process p sends (round Cmax(t)).

The following Theorem 2 introduces the four basic properties of our algorithm. These
properties2 will be used in this thesis to derive all other results. They hence apply to
any algorithm satisfying (P), (U), (Q), and (S).

Theorem 2 (Clock Synchronization Properties). In systems of n ≥ 3f + 1 pro-
cesses, the algorithm given in Figure 6.1 achieves:

(P) Progress. If all correct processes set their clocks to k by time t, then every correct
process sets its clock at least to k + 1 by time t + τ+.

(U) Unforgeability. If no correct process sets its clock to k by time t, then no correct
process sets its clock to k + 1 by time t + τf or earlier.

(Q) Quasi Simultaneity. If some correct process sets its clock to k at time t, then every
correct process sets its clock at least to k − 1 by time t + ε.

(S) Simultaneity. If some correct process sets its clock to k at time t, then every correct
process sets its clock at least to k by time t + τ+ + ε.

interest. Since our implementation can only deliver eventual semantics during booting, the consensus
algorithm must live with this semantics anyway. Our implementation will hence always guarantee
safety, even when timing assumptions are temporarily violated—compare Section 6.2.

2Anticipating the context of system booting [106, 109], it should be noted that (U) and (Q) hold
for any number of participating processes—compare Section 7.

30 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

Proof. We show the properties separately.
Progress. By assumption at least n−f correct processes set their clocks to k, and hence
send (round k) by time t. These messages must be received by all correct processes by
time t + τ+. Thus they set their clocks to k + 1 by line 10, if they have not already
done so.

Unforgeability. Assume by contradiction that a correct process p sets its clock to k + 1
by time t + τf. Correct processes may set their clock by (1) line 10 or (2) line 5.

Assume (1). Process p does so based on n − f (round k) messages by distinct
processes, i.e. at least n− 2f were sent by correct processes. By Lemma 1 at least one
of these messages was sent by time t, which provides the required contradiction.

Assume (2). Process p does so based on f + 1 (round k + 1) messages, i.e. at least
one correct process has already clock value k + 1 by time t + τf. The first correct
process which has set its clock to k + 1 must have done so by line 10 by Lemma 2.
By applying (1) we again derive a contradiction.

Quasi Simultaneity. Let process p be the first correct process to set its clock to k. By
Lemma 2 p sets its clock to k using line 10. This happens based on n − f ≥ 2f + 1
(round k − 1) messages by distinct processes. At least f + 1 of these must be sent by
correct processes whose messages are received by all correct processes by t + ε. They
then set their clocks to k − 1 by line 5, if they have not already done so.

If process p is not the first process which sets its clock to k, then at least one correct
processes has done so before at time t′ < t. By the same reasoning as above all correct
processes must set their clocks to k − 1 by time t′ + ε < t + ε.

Simultaneity. According to (Q) all correct processes set their clock to k − 1 by t + ε.
By (P) all processes set their clock to k by time t + τ+ + ε.

6.1.2 Clock Synchronization Properties

The following analysis solely bases on the properties (P), (U), (Q), and (S). It may
hence be applied to any clock synchronization algorithm that achieves these properties
(e.g. the algorithms of the following sections, which achieve even uniform versions of
our properties for restricted fault types). We now give some technical lemmas and
necessary definitions in order to derive our theorems for precision (π).

Lemma 3 (Fastest Progress). Let the first correct process set its clock to k at time t.
Then no correct process can reach a larger clock value k ′ > k before t + τf(k

′ − k).

Proof. By induction on l = k′−k. For l = 1, Lemma 3 is identical to (U) and therefore
true. Assume that no correct process has set its clock to k + l before t + lτf for some l.
Thus no correct process may set its clock to k + l + 1 before t + lτf + τf = t + τf(l + 1)
by (U). Hence Lemma 3 is true for l + 1 as well.

In our analysis we will frequently require a bound upon the maximum progress of
Cmax during a given real-time interval [t1, t2]. Lemma 3 can be applied for this purpose
if t1 = σk

first, but not if t1 is arbitrary. As in [89], we unify those cases via the following
Definition 6.

6.1. CLOCK SYNCHRONIZATION 31

Definition 6 (Synchrony). Real-time t is in synchrony with Cmax(t) iff t = σk
first

for some arbitrary k, as defined in Definition 5. Let the indicator function of non-
synchrony be defined as

It6=σ = Iσ(t) =

{

0 if t is in synchrony with Cmax(t),
1 otherwise.

Lemma 4 (Maximum Increase of Cmax within Time Interval). Given any two
real-times t2 ≥ t1, then Cmax(t2) − Cmax(t1) ≤ b t2−t1

τf
c + Iσ(t1).

Proof. Let k = Cmax(t1) − 1. We have to distinguish the two cases σk
first = t1 and

σk
first < t1.
Let σk

first = t1 such that Iσ(t1) = 0. From Lemma 3 follows that Cmax may increase
every τf time units, hence b t2−t1

τf
c times before t2. Since Iσ(t1) = 0, Lemma 4 is true

for this case.
Now let σk

first < t1, such that Iσ(t1) = 1, and let the real-time t′ = σk+1
first > t1. We

can now apply Lemma 3 starting from time t′. Since t2 − t1 > t2 − t′ it follows from
Lemma 3 that Cmax cannot increase more often than b t2−t1

τf
c times between t′ and t2.

At instant t′, Cmax increases by one such that Cmax(t2)−Cmax(t1) ≤ b t2−t1
τf

c+1. Since

Iσ(t1) = 1 Lemma 4 is true.

The fundamental properties (Q) and (S) just state that all correct processes set their
clocks to some value within a bounded real-time interval. Precision can be derived
from how often a fast process advances its clock within this interval. Since we have
two different properties, we now derive two bounds on precision.

Theorem 3 (Precision by Quasi Simultaneity). Any algorithm which guarantees
(P), (U), and (Q) satisfies the precision requirement (π) with Dq = bΩ + 2c.

Proof. If no correct process advances its clock beyond k = 2, precision Dq ≥ 2 is
automatically maintained since all clocks are initially synchronized to k = 0.

Assume that a correct process p has local clock value k ≥ 0 within a still un-
known precision Dq with respect to all other correct processes—and therefore also to
Cmax(t

′)—at real-time t′. We use (Q), Definition 6 and Lemma 4 to reason about Dq

by calculating Cmax(t) for some time t > t′.
Let process p advance its clock to k + 1 such that σk

p = t > t′. Since p has not done
so before t, no other correct process has set its clock to k + 2 before t − ε, following
directly from (Q), thus σk+1

first ≥ t − ε.

From Lemma 4 follows that Cmax(t) ≤ b t−(t−ε)
τf

c+ Iσ(t−ε)+Cmax(t−ε). Let us now

take a closer look at the term Iσ(t − ε) + Cmax(t − ε): If σk+1
first = t − ε and therefore

t − ε is synchronized with Cmax, Cmax(t − ε) = k + 2 and Iσ(t − ε) = 0 (following
Definition 6). If on the other hand σk+1

first > t − ε, then Cmax(t − ε) = k + 1 and
Iσ(t − ε) = 1. In both cases Iσ(t − ε) + Cmax(t − ε) = k + 2 such that Cmax(t) ≤
b ε

τf
c + k + 2 = b τ+−τ−

τf
+ 2c + k ≤ bΩ + 2c + k. Thus Cmax(t) ≤ bΩ + 2c + k.

32 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

Process p has clock value Cp(t
′) = k at time t′ < t which is by assumption within

precision. Since Cp(t
′) < Cp(t) and Cmax(t

′) ≤ Cmax(t), we get a bound for Dq from
the difference Cmax(t) − Cp(t

′) = Cmax(t) − k ≤ bΩ + 2c.

Theorem 4 (Precision by Simultaneity). Any algorithm which guarantees (P),
(U), (Q), and (S) satisfies the precision requirement (π) with Ds = b2Ω + 1c.

Proof. The same arguments as in the proof of Theorem 3 apply here as well. By
employing times and values of (S) instead of (Q) the bound on precision can easily be
derived.

Both Dq and Ds are valid bounds for (π). In general, however, Dq is the tighter one.

Theorem 5 (Precision). Any algorithm which guarantees (P), (U), (Q), and (S)
achieves precision (π) with Dmax = min{Dq, Ds}.

Proof. Both Theorem 3 and Theorem 4 apply.

After our proof of precision we now start our analysis of accuracy with some technical
lemmas.

Lemma 5 (Slowest Progress). Let p be the last correct process that sets its clock
to k at time t. No correct process can have a smaller clock value than k ′ > k at time
t + τ+(k′ − k).

Proof. By induction on l = k′ − k. For l = 1, Lemma 5 is identical to (P) from
Theorem 2 and therefore true. Assume that the last correct process sets its clock to
k + l at time t + τ+l for some l. Note that all correct processes have set their clocks
to k + l by then. According to (P), every correct process must set its clock to l + 1 by
time t + τ+l + τ+ = t + τ+(l + 1). Hence, Lemma 5 is true for l + 1 as well.

Lemma 6. Let p be a correct process that sets its clock to k at time t. Then, p sets its
clock to k + 1 by time t + 2τ+ + ε.

Proof. The proof uses the properties (P) and (S) from Theorem 2. Simultaneity (S)
guarantees that all correct processes set their local clocks to k by time t′ = t + τ+ + ε.
Progress (P) guarantees that all correct processes, including p, must set their clocks to
k + 1 by time t′ + τ+. Hence p sets its clock by time t + 2τ+ + ε.

Lemma 7 (Lower Envelope Bound). Any algorithm which guarantees (P), (U),
(Q), and (S) ensures that the clock of every correct process p satisfies t2−t1

τ+ − 5 + 2
Θ

<
Cp(t2) − Cp(t1) for all times t2 ≥ t1.

Proof. Let Cp(t1) = k + 1 and Cp(t2) = k + l + 1 for some l ≥ 0. Process p has
set its clock to k + 1 at time σk

p ≤ t1 and to k + l + 1 at time σk+l
p ≤ t2 < σk+l+1

p .
Hence, t2 − t1 < σk+l+1

p − σk
p ≤ σk+l

p − σk
p + 2τ+ + ε according to Lemma 6 and thus

t2 − t1 − 2τ+ − ε < σk+l
p −σk

p . Using (S) in Theorem 2 in conjunction with Lemma 5, it
follows that σk+l

p −σk
p ≤ lτ+ + τ+ + ε and hence t2 − t1 − 2τ+ − ε < lτ+ + τ+ + ε. Since

l = Cp(t2)−Cp(t1), our lower envelope bound evaluates to t2−t1
τ+ −5+ 2

Θ
< Cp(t2)−Cp(t1)

as asserted.

6.1. CLOCK SYNCHRONIZATION 33

Lemma 8 (Upper Envelope Bound). Any algorithm which guarantees (P), (U),
(Q), and (S) ensures that the clock of every correct process p satisfies Cp(t2)−Cp(t1) <
t2−t1

τf
+ Dmax + 1 for all times t2 ≥ t1.

Proof. From precision in Theorem 5 follows that Cmax(t)−Dmax ≤ Cp(t) ≤ Cmax(t) at
all times t. Thus Cp(t2) − Cp(t1) ≤ Cmax(t2) − Cmax(t1) + Dmax. Applying Lemma 4,
the statement of our lemma follows immediately.

Theorem 6 (Accuracy). Any algorithm which guarantees (P), (U), (Q), and (S)
achieves accuracy (α) with

t2−t1
τ+ − 5 + 2

Θ
< Cp(t2) − Cp(t1) < t2−t1

τf
+ Dmax + 1

for all correct processes p and all times t2 ≥ t1.

Proof. Follows from Lemma 7 and Lemma 8.

6.1.3 Restricted Failure Modes

As mentioned above, clock synchronization is the fundamental service in the Θ-
Model. Since many problems in distributed computing (e.g. non-blocking atomic com-
mitment) are studied in the presence of minor faults as clean-crash or crash faults only,
we now give clock synchronization algorithms for such faults as well. Although it is
possible to use the algorithm from the Byzantine case for this purpose, in applications
it is nevertheless better to decrease the required number of processes to tolerate less
severe faults.

This section’s algorithms reach the same properties as given in Theorem 2. Therefore
the derived properties (π) and (α) from Section 6.1.2 are achieved as well. This allows
us to regard the clock synchronization layer as black box which provides identical
properties regarding timing no matter what failure modes are considered.

In the following we will state properties that hold for all processes, uniformly. Of
course we cannot guarantee any properties for processes that have crashed. When we
argue about all processes we mean all processes that are still alive.

Clean-Crash Faults

By clean-crash faults we mean processes which remain correct until they stop operation.
Any step in the algorithm is executed completely or not at all. The critical operation
in this context of the algorithm given in Figure 6.2 is the send operation (send message
to all): We assume that processes do not crash during the execution of an if-statement
(line 5), i.e. that they are executed as atomic steps. (Such behavior seems natural
for Ethernet-like networks which have a shared broadcast medium. One must ensure,
however, that no overruns at input queues occur since this would violate the atomicity
assumption.) Figure 6.2 gives a clock synchronization algorithm for clean-crash faults.
We will now confirm that the algorithm reaches the same properties as the algorithm
given in the previous section for n ≥ f + 1.

34 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

The algorithm given in Figure 6.2 is a simplified version of the algorithm of Fig-
ure 6.1. Since we just consider clean-crash faults here, every message a process receives
is received by all correct processes within ε by definition. Therefore the algorithm
requires just one rule to update its clock value.

0: VAR k : integer := 0;
1:

2: /* Initialization */
3: send (round 0) to all [once];
4:

5: if received (round k) from at least n − f distinct processes
6: → k := k + 1;
7: send (round k) to all [once]; /* start next round */
8: fi

Figure 6.2. Clock Synchronization Algorithm tolerating Clean-Crash Faults

The properties from Theorem 2 are extended from correct processes to all processes
(before they stop); the properties are uniform.

Theorem 7 (Properties with Clean-Crash Faults). In presence of f < n clean-
crash faults, the algorithm given in Figure 6.2 satisfies the following properties:

• Uniform Progress. If all correct processes set their clocks to k by time t, then
every process sets its clock at least to k + 1 by time t + τ+.

• Uniform Unforgeability. If no process sets its clock to k by time t, then no process
sets its clock to k + 1 by time t + τf or earlier.

• Uniform Simultaneity. If some process sets its clock to k at time t, then every
process sets its clock at least to k by time t + ε.

Proof. We show the properties separately.
Uniform Progress. By assumption at least n − f correct processes send (round k) by
time t. These messages are received by time t+ τ+ by all processes (that are still alive)
which then set their clocks to k + 1 by line 5 if they have not already done so.

Uniform Unforgeability. Assume by contradiction that a process sets its clock to k + 1
by time t+ τf. Processes can update their clocks only by line 5. Thus the process has
received at least n− f (round k) messages. These messages must have been sent by t.
Since processes send messages only for ticks less or equal their clock value we derive a
contradiction.

Uniform Simultaneity. Let process p be the first process to set its clock to k. By
Lemma 9 the first process has set its clock to k by time t using line 5. This happens
based on n − f (round k − 1) messages by distinct processes, which must be received
by all processes (that are still alive) by t + ε. They then set their clocks to k − 1 by
line 5.

6.1. CLOCK SYNCHRONIZATION 35

If process p is not the first process which sets its clock to k, then at least one correct
processes has done so before at time t′ < t. By the same reasoning as above all correct
processes must set their clocks to k − 1 by time t′ + ε < t + ε.

Uniform simultaneity in the clean-crash fault case reconciles (Q) and (S) as defined
in the Byzantine case. Thus (P), (U), (Q), and (S) apply. We may therefore state
the following corollary which implies that the algorithm given in Figure 6.2 satisfies all
derived properties (π) and (α) of the previous section as well.

Corollary 1. In presence of f < n clean-crash faults, the algorithm given in Fig-
ure 6.2 satisfies the properties of Theorem 2 according to the computational model in
Section 3.5. In the case where n = f + 1, one must set τf = τ−.

Crash Faults

Crashes have the following impact: Processes may fail to send messages to all, i.e. they
may send messages only to a subset of the processes. It is of practical importance that
the properties from Theorem 2 must be uniform, i.e. that they must also apply to crash
faulty processes until they actually crash.

The algorithm given in Figure 6.3 is very similar to the algorithm of Figure 6.1. We
again require two rules for maintaining the clock value since due to crashes message
may be received inconsistently by correct processes. A difference to the algorithm
of Figure 6.1, however, is that every received message was sent by a (then) correct
processes. Thus line 5 has to wait for 1 message only instead of f + 1.

0: VAR k : integer := 0;
1:

2: /* Initialization */
3: send (round 0) to all [once];
4:

5: if received (round `) from at least 1 process with ` ≥ k
6: → k := `; /* jump to new round */
7: send (round k) to all [once];
8: fi

9:

10: if received (round k) from at least n − f distinct processes
11: → k := k + 1;
12: send (round k) to all [once]; /* start next round */
13: fi

Figure 6.3. Clock Synchronization Algorithm tolerating Crashes

Lemma 9 (2nd if – Restricted Faults). The first process that sets its clock to
Cmax(t) > 0 by time t must do so by line 10.

Proof. By contradiction. Assume that the first process p sets its clock to k = Cmax(t)
at instant t by line 5. At least one process must have sent a message for a tick ` ≥ k

36 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

to enable the rule at p. Since processes only send messages for ticks less or equal than
their local clock value, at least one must already have a clock value ` ≥ k at instant t.
This contradicts p to be the first one that reaches clock value k.

Theorem 8 (Properties with Crashes). In the presence of f < n/2 crash faults,
the algorithm given in Figure 6.3 satisfies the following properties:

• Uniform Progress. If all correct processes set their clocks to k by time t, then
every process sets its clock at least to k + 1 by time t + τ+.

• Uniform Unforgeability. If no process sets its clock to k by time t, then no process
sets its clock to k + 1 by time t + τf or earlier.

• Uniform Quasi Simultaneity. If some process sets its clock to k at time t, then
every process sets its clock at least to k − 1 by time t + ε.

• Uniform Simultaneity. If some process sets its clock to k at time t, then every
process sets its clock at least to k by time t + τ+ + ε.

Proof. We show the properties separately.
Uniform Progress. By assumption at least n − f correct processes send (round k) by
time t. These messages are received by time t+ τ+ by all processes (that are still alive)
which then set their clocks to k + 1 by line 10 if they have not already done so.

Uniform Unforgeability. Assume by contradiction that a process p sets its clock to k+1
by time t + τf. Processes may set their clock by (1) line 10 or (2) line 5.

Assume (1). Process p does so based on n − f ≥ f + 1 (round k) messages by
distinct processes. By Lemma 1 at least one of these messages was sent by time t,
which provides the required contradiction since processes send messages only for ticks
less or equal their clock value.

Assume (2). Process p does so based on one (round k + 1) message, i.e. at least one
process has already clock value k + 1 by time t + τf. The first process which has set its
clock to k + 1 must have done so by line 10 by Lemma 9. By applying (1) we again
derive a contradiction.

Uniform Quasi Simultaneity. Let process p be the first process to set its clock to k. By
Lemma 9 the first process has set its clock to k by time t using line 10. This happens
based on n − f (round k − 1) messages by distinct processes. At least one of these
must be sent by a correct process whose messages are received by all processes (that
are still alive) by t + ε. They then set their clocks to k − 1 by line 5.

If process p is not the first process which sets its clock to k, then at least one correct
processes has done so before at time t′ < t. By the same reasoning as above all correct
processes must set their clocks to k − 1 by time t′ + ε < t + ε.

Uniform Simultaneity. According to uniform quasi simultaneity all processes set their
clock to k − 1 by t + ε. By uniform progress all processes set their clock to k by
time t + τ+ + ε.

As in the case of clean-crash faults the following lemma ascertains the derived prop-
erties (π) and (α) from Section 6.1.2 in the case of crash faulty processes.

6.2. FAILURE DETECTION 37

Corollary 2. In presence of f < n/2 crash faults, the algorithm given in Figure 6.3
satisfies the properties of Theorem 2.

Remark The analysis in Section 7 reveals that the algorithm given in Figure 6.3 in
fact also tolerates send omission faulty processes. These are processes that fail to
send an arbitrary number of messages but are otherwise correct, i.e. they follow the
algorithm correctly. Crash faulty processes can be regarded as a sub class of omission
faulty ones as they fail to send all messages after they crash.

6.2 Failure Detection

In this section, we show how to extend the clock synchronization algorithm of Sec-
tion 6.1 in order to obtain an implementation of the perfect failure detector P. Note
that it is possible to use even the clock synchronization algorithm for Byzantine faults
in order to handle early timing faults (and hence improve coverage). Classic failure
detectors, however, are defined for crash faults only. The following properties must be
provided by every implementation of P [19]:

(SC) Strong completeness: Eventually, every process that crashes is permanently sus-
pected by every correct process.

(SA) Strong accuracy: No process is suspected before it crashes.

The algorithm given in Figure 6.4 is a simple extension to the clock synchronization
algorithm of Figure 6.1. The first addition is the vector saw max[∀q] that stores for
every process q the maximum clock tick k received via (round k) messages. It is
written upon every message reception in line 3. Whenever a process updates its clock
k (compare line 5 and line 10 in Figure 6.1), it checks saw max[∀q] in line 6 in
order to find out which processes failed to send messages for tick k − ΞP at least. All
those processes are entered into the vector suspect[∀q], which is the interface to upper
layer programs that use the failure detector module, hence the list of suspects.

0: VAR suspect[∀q] : boolean := false;
1: VAR saw max[∀q] : integer := 0;

2: Execute Clock Synchronization from Section 6.1

3: if received (round `) from q
4: → saw max[q] := max(`, saw max[q]);
5: fi

6: whenever clock value k is updated do (after updating)
7: → ∀q suspect[q] := (k − ΞP) > saw max[q];

Figure 6.4. Failure Detector Implementation

We will now show that, if ΞP is chosen appropriately, the algorithm given in Fig-
ure 6.4 indeed implements the perfect failure detector.

38 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

Theorem 9. Let ΞP ≥ min{d3Ω+1e, d2Ω+2e}. In a system with n ≥ 3f+1 processes,
the algorithm given in Figure 6.4 implements the perfect failure detector.

Proof. We have to show that strong completeness (SC) and strong accuracy (SA) are
satisfied.

For showing (SC), it is sufficient to notice that a process that crashes after it updates
its clock to ` will be suspected by every correct process p when p reaches clock value
k ≥ ` + ΞP . Since progress of clock values is guaranteed by Lemma 5 every correct
process will reach clock value k within bounded time (the exact time bound is derived
below in Theorem 10).

To prove (SA), we have to show that ΞP is chosen sufficiently large such that every
correct process which reaches a clock value k at time t has already received messages
for ticks at least k − ΞP by every correct process. In the worst case setting, a correct
process p sets its clock to k at instant σk−1

p = σk−1
first; hence k = Cmax(σ

k−1
p). From

Lemma 3, it follows that Cmax(σ
k−1
p − τ+) ≥ k − dΩe. Assuming a precision Dmax, a

bound for the smallest possible clock value of a correct process reads Cmin(σk−1
p −τ+) ≥

Cmax(σ
k−1
p − τ+)−Dmax = k − dΩe −Dmax. Consequently, every correct process must

have sent a message for tick Cmin(σk−1
p − τ+) by time σk−1

p − τ+, which arrives at p
by time σk−1

p . Thus, choosing ΞP ≥ dΩe + Dmax is sufficient to ensure that p does not
incorrectly suspect any correct process.

Since dxe + dye ≥ dx + ye and d−xe = −bxc, it follows from setting x = z + w and
y = −w that dz + we ≥ dze + bwc. By setting z = Ω and bwc = Dmax we employ
dz+we to choose ΞP . Depending on Ω, precision Ds or Dq is smaller and can be used to
calculate ΞP (by replacing Dmax). Hence, using Ds = b2Ω+1c, we get ΞP ≥ d3Ω+1e.
Performing the same calculation for Dq = bΩ + 2c, we get ΞP ≥ d2Ω + 2e.

To find the worst case detection time of our FD algorithm, we have to determine how
long it may take from the time a process p crashes with clock value k until all correct
processes reach a clock value of k + ΞP and hence suspect p. In the worst case setting,
process p has the maximum clock value and crashes immediately after reaching it. All
other processes must first catch up to the maximum value, and then make progress for
ΞP ticks until correctly suspecting p.

Theorem 10 (Detection Time). The algorithm of Figure 6.4 with the value ΞP

chosen according to Theorem 9 implements the perfect failure detector. Its detection
time is bounded by (ΞP + 2)τ+ − τ−.

Proof. Assume the worst case: A process p is crashing at time tc where k = Cp(tc) =
Cmax(tc). By (S) in Theorem 2 every correct process must reach clock value k by
time t′ = tc + τ+ + ε. When a correct process reaches clock value k + ΞP it will
suspect p. By Lemma 5 every correct process must reach that clock value by time
t = t′ + ΞPτ+ = tc + τ+ + ε + ΞP τ+ = tc + (ΞP + 2) τ+ − τ−.

The detection time in Theorem 10 is given in the context of the computational model
of Section 3.3. In order to give the detection time in the system model of Section 3.2,

6.3. SYNCHRONY OF THE Θ-MODEL 39

one has to transfer the times tc and tc + (ΞP + 2) Ω − 1 (see Equation 3.1) into real-
time. The detection latency is hence given by ∆t = β−1(tc + (ΞP + 2) Ω− 1)− β−1(tc).
When immersing the failure detector algorithm into a real system one has to consider
τ̄+ (compare Section 5.1) in order to derive the worst case detection time. Following
the fast failure detector approach [51, 1] these detection times are much smaller than
application level message delays. Using this approach it is hence possible to devise
very efficient agreement algorithms.

Note that our failure detector implementation relies upon the totally time free clock
synchronization algorithm from Section 6.1. The latter algorithm has no a priori knowl-
edge of Θ such that violations of Θ do not do any harm to the correctness of the
algorithm. Just the calculated bounds on (π) and (α) are violated. Consider the vari-
ant of the Θ-Model where Θ just holds from some unknown global stabilization time
(GST) on [37, 19, 107]. Our clock synchronization algorithm will return to its predicted
behavior within a short period of time.

Theorem 11 (Eventually Perfect Failure Detector). When executed in a system
where Θ (see system model, Section 3.2) holds from some unknown time GST on, the
algorithm of Figure 6.4 with the value ΞP chosen according to Theorem 9 implements
the eventually perfect failure detector �P.

Proof. Let k − 1 = Cmax(GST). After time t = σk
first + ε all correct processes have set

their clocks based on messages by correct processes which were sent after GST. Thus
(P), (U), (Q), and (S) apply for all rounds greater than k with values τ+ and τ− (as
well as ε), satisfying the Θ assumption. Hence (π) and (α) are as predicted for these
rounds. Thus Theorem 9 and Theorem 10 apply from time t on.

Remark Note that we devised an alternative implementation [55] of �P that works
in networks with n > f in the presence of up to f crash faults. It can also be used
as a local FD [54] in sparse networks where just the neighbors have to be observed. A
variant of this algorithm can be applied in order to get the leader oracle—the weakest
FD which allows to solve asynchronous consensus [18]—both in sparsely and fully
connected networks.

6.3 Synchrony of the Θ-Model

When taking a closer look at the implementation of P in Section 6.2 it turns out
that is has stronger semantics than just (SC) and (SA): When a process detects a crash
from process p it can also be sure that no more messages from p are in transit. This
reveals that the Θ-Model allows a correct process p to determine an instant t when it
is guaranteed that no more earlier messages from a given process will arrive at p after
time t. A problem that can be reduced to the decision of whether a message from
some process is still in transit is the strongly dependent decision problem [21]. In the
following section we will give a solution for this problem.

40 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

6.3.1 The Strongly Dependent Decision Problem

Charron-Bost, Guerraoui and Schiper [21] showed that synchronous system models
are strictly stronger that asynchronous systems enriched with (possibly perfect) failure
detectors. The argument is that there are problems solvable in synchronous models
that have no solution in asynchronous ones. To make the point clear, the strongly
dependent decision (SDD) problem was introduced. There are two processes p and q.
Process p has an input value v chosen from a set {0, 1}. Process q shall output a
decision value satisfying the following requirements:

Integrity: Process q decides at most once.

Validity: If p has not initially crashed, the only possible decision value for q is p’s
initial value.

Termination: If q is correct, then q eventually decides.

The solution for synchronous systems is straight forward [21]. At round 0 process
p sends its decision value to q. If p was not initially dead (stopped before round 0)
q receives the message and decides during the computational phase of round 0. If p
was dead, q detects this at round 0 and may decide any value (assuming lock-step
synchrony where each round consists of send, receive, and computation phase).

In asynchronous systems there cannot be a solution to SDD: Even if a failure detector
correctly detects a process p to be faulty, p may have sent a message when it was still
alive. Since this message could travel arbitrarily long, a process q may decide based
on the information provided by the failure detector and dismiss p’s message. This
would violate validity. If, on the other hand, q would ignore the suspicion of the failure
detector while p was initially dead, q would wait vainly and termination would be
violated.

We will now see that the Θ-Model is sufficiently strong to solve SDD, since the
knowledge of Ω is sufficient to timeout a process. Informally our algorithm (given
in Figure 6.5) works as follows. The initial value of the producer p is piggybacked
to the (round 0) clock synchronization message. Processes p and q then execute the
clock synchronization introduced in Section 6.1. When the consumer q reaches a round
number k ≥ Ξsdd and it has not received a message from process p it can conclude that
p was initially dead and that no (round 0) messages are in transit; q decides 0. If q
receives p’s (round 0) message, however, it may decide on p’s value.

Since SDD is defined for clean-crash faults only, we use the clock synchronization
algorithm for clean-crash faults given in Section 6.1.3 with n = 2 and f = 1, which
satisfies (U), (Q), (P), and (S). Using these properties we now show that the algorithm
given in Figure 6.5 in fact solves the SDD problem.

Theorem 12. The algorithm given in Figure 6.5 with Ξsdd ≥ d2Ωe solves the SDD
problem.

6.3. SYNCHRONY OF THE Θ-MODEL 41

For the producer process p
1: send (round 0, v) to q [once];

2: if received (round 0) from q then /* if the message from the consumer is received */
3: → send (round 0, v) to q [once]; /* before line 1 was executed */
4: fi

5: Execute Clock Synchronization from Section 6.1.3

For the consumer process q
6: send (round 0) to p [once];

7: Execute Clock Synchronization from Section 6.1.3

8: if received (round 0, v) from p then
9: → return(v);
10: fi

11: if k > Ξsdd then
12: → return(0);
13: fi

Figure 6.5. A Solution to the SDD Problem

Proof. We show the three requirements of SDD separately.

Integrity. Deciding is done using the return function, hence once a decision is made
the function is left.

Validity. If p is not initially crashed it must send its (round 0, v) message either
spontaneously (upon booting) or as answer to q’s (round 0) message. This message
must be received before the time when process q’s clock value k > Ξsdd, if Ξsdd is chosen
sufficiently large. Let t be the time q sends (round 0). It must receive (round 0, v) from
p by time t + 2τ+ (round trip). By Lemma 3 it may reach a clock value k ≤ 2τ+

τf
= 2Ω

by then; hence validity is satisfied since Ξsdd ≥ d2Ωe.

Termination. The latest possible time td when process q decides is when k reaches a
value k > Ξsdd. By Lemma 5, td ≤ t + τ+(Ξsdd + 1).

Remarks

• In the Θ-Model, the integer value Ξsdd is the software clock’s equivalent of a 2τ+

timeout in semi-synchronous systems, i.e. one round trip time.

• In our two processes setting, clock synchronization possibly degrades at q to
sending messages to itself. Obviously this is no practical solution, but should
just demonstrate the power of the model.

42 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

6.3.2 Fault-Tolerant Broadcast

We have seen that SDD is solvable in the Θ-Model, since it is possible to timeout
certain events (the sending of a message). This leads us to the problem of atomic
broadcast [50], where all receivers of messages must deliver messages in the same order.
In order to do so receive and deliver must be distinguished: When a message drops
in from the network we say it is received. It is then queued in the atomic broadcast
algorithm until a decision is made whether the message should be accepted, in which
case the message will be delivered to upper network layers. To implement atomic
broadcast, we can hence use our timeout mechanism to determine locally that no
messages are in transit that should be delivered before the messages which are queued
for delivery.

In order to handle crash faults, we have to ensure that messages are either delivered
by each correct process or by none (which would be the case in the presence of clean-
crash faults by definition). Hence we have to ensure Uniform Timed Reliable Broadcast
(UTRB) [12], which requires the following properties:

Integrity: For any message m, each process delivers m at most once, and only if m
was actually broadcast by some process

Validity: If a correct process broadcasts a message m, then all correct processes even-
tually deliver m.

Timeliness: There is some time ∆b such that if the broadcast of m is initiated at
real-time t, no process delivers m after real-time t + ∆b.

Uniform Agreement: If a process delivers m, then all correct processes eventually
deliver m.

Babaoğlu and Toueg [12] showed that the algorithm given in Figure 6.6 solves the
UTRB problem with termination time ∆b = (f+1)τ+. We therefore leave the following
theorem without proof.

/* to rb-send, the broadcaster executes: */
0: send (message) to all processes;
1: deliver (message);

/* to rb-deliver, process p 6= broadcaster executes: */
2: upon first receipt of (message) do
3: send (message) to all processes;
4: deliver (message);

Figure 6.6. A Simple UTRB Algorithm

Theorem 13 (Reliable Broadcast). The algorithm given in Figure 6.6 achieves the
properties required for uniform timed reliable broadcast.

6.3. SYNCHRONY OF THE Θ-MODEL 43

In addition to the properties of reliable broadcast, atomic broadcast requires that
all processes deliver the messages in total order.

Total Order: If processes p and q both deliver messages m and m′, then p delivers m
before m′ if and only if q delivers m before m′.

We will see that this can be achieved in the Θ-Model. In fact, the algorithm given in
Figure 6.7 solves FIFO-Atomic-Broadcast (FIFO refers to the property that messages
sent by process p are received in the same order as p has sent them). Note that the
algorithm integrates the reliable broadcast algorithm from Figure 6.6.

/* Broadcaster s executes: */
0: send (message, s, Cs, i) to all processes /* Cs is the local time stamp */
1: queue (message, s, Cs, i) for delivery /* i is the sequence number */

/* Process q 6= broadcaster executes: */
2: upon first receipt of (message, s, Cs, i)
3: → send (message, s, Cs, i) to all processes
4: queue (message, s, Cs, i) for delivery

/* Any process p executes: */
5: whenever clock k is updated do (after updating)
6: → delivera all queued messages with time stamp Cs ≤ Cp − Ξabc

7: Execute Clock Synchronization from Section 6.1.3

aordered by (1) increasing timestamps, (2) in-
creasing process identifiers, and (3) increasing in-
dexes i

Figure 6.7. A Simple Atomic Broadcast Algorithm in the Θ-Model

For the algorithm in Figure 6.7, we assume that all processes have synchronized
clocks according to Section 6.1. Every process s that wishes to broadcast a message
at time t, timestamps this message with its local clock value Cs(tsend) and assigns an
index i to it, i.e. a local sequence number that makes every message unique. This is
required since processes may broadcast multiple message during one round, i.e. the
time stamp is not sufficient for total ordering. Then it initiates a reliable broadcast
(line 0-1). Each correct process p which receives a messages forwards the message
with its original time stamp, according to the reliable broadcast algorithm (line 2-4).
Instead of delivering immediately, p waits for delivery until it reaches a local clock
value Cp = Cs(tsend) + Ξabc (line 5-6). If two processes initiate a broadcast with the
same time stamp the process identifier has to be used in order to establish a consistent
delivery order. Since all processes deliver the same message during the same local
round, message are totally ordered.

Theorem 14. The algorithm given in Figure 6.7 with Ξabc ≥ bΩ(f + 1)c + Dq solves
the atomic broadcast problem.

44 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

Proof. Assume process s reliably broadcasts a message m at time tsend with local time
stamp Cs(tsend). By time tsend + τ+(f + 1) each correct process either queues m for
delivery, or never does so otherwise (by Theorem 13). The maximum clock value of any
correct process that enqueues m at some time t is Cp(t) ≤ Cs(tsend) + bΩ(f + 1)c+ Dq

by Lemma 3 and (π). Hence reliable broadcast has already terminated when the first
correct process delivers m.

All processes deliver the same set of messages due to reliable broadcast. Moreover
they deliver them ordered by time stamp, process identifier, and local sequence number,
hence in total order.

Remark Obviously, Dq may be replaced by Dmax in Theorem 14. We used Dq in order
to reuse the proof also in the case of booting—where just Dq holds—in Section 8.4.

6.3.3 Simulating Lock-Step

The simplest computational model for designing distributed algorithms is the model
of lock-step synchrony: All processes execute round-based algorithms and make their
receive, computation, and send actions simultaneously in lock-step. Physics, however,
tells us that it is impossible to guarantee that events at distributed processes happen
simultaneously. Still, it is possible to simulate lock-step behavior, i.e. create the illusion
of lock-step synchrony to applications.

Such simulation is particularly convenient if we have to consider more severe fault
classes such as Byzantine faults, where unreliable failure detectors are not sufficient to
solve e.g. the consensus problem.

Lock step algorithms are executed in simultaneous rounds, which consist of three
actions at each correct process. They are executed in the following order: sendr →
receiver → computer. For the ease of presentation our synchronizer algorithm calls
the function start given in Figure 6.8, where first the messages of the current round
are read, then the computational step is taken, and finally the messages for the next
round are sent. Note carefully that all the steps are taken in the same order – just in
the call start(0) the operations read and compute are omitted in order to start with
send0, to remain consistent with literature [71].

For each participant
1: procedure start(r:integer)
2: begin

3: if r > 0
4: read round r − 1 messages;
5: execute round r − 1 computational step;
6: fi

7: send round r messages;
8: end;

Figure 6.8. Lock-Step Framework using the Synchronizer in Figure 6.9

We will see that it is possible in the Θ-Model to simulate lock-step executions.
That such a simulation exists is quite surprising at first sight – given that the system

6.3. SYNCHRONY OF THE Θ-MODEL 45

model does not stipulate an upper bound on message transmission times. On the other
hand, our solution to the SDD problem already classified the Θ-Model as an “almost
synchronous one”. We present an algorithm which serves as middle layer between clock
synchronization and lock-step algorithms. Because this algorithm provides information
on when to perform an action (and not on the faulty processes) we call this algorithm
a synchronizer [10].

Our solution relies upon the idea that in the Θ-Model it is possible to timeout
processes (in the SDD problem of Section 6.3.1 we had an algorithm for one round and
one sender for clean-crash faults only). We do so in our algorithm given in Figure 6.9.
As underlying service we use our clock synchronization algorithm which guarantees
(P), (U), (Q), and (S) in the presence of Byzantine faults. The clock synchronization
ticks are regarded as micro ticks, not visible to the upper layer application. The upper
layer is provided with macro ticks r. We assume that upper layer application messages
are piggybacked on the corresponding clock synchronization messages.

For each correct participant p
1: VAR r : integer := 0; // lock step rounds

2: send (round 0) to all [once];

3: Execute Clock Synchronization from Figure 6.1

4: upon first update of clock do
5: call start(0);

6: whenever the local clock Cp is updated do
7: if (Cp − 1)/Ξsync > r + 1
8: → r := r + 1;
9: call start(r);
10: fi

Figure 6.9. Synchronizer for the Θ-Model

To implement a synchronizer we have to ensure that all messages from correct pro-
cesses for the current round are received at any correct process when it starts its com-
putation step. Simultaneity (S) provides us with an upper bound τ+ +ε on the interval
where all correct processes enter some round r. Since message delays are bounded by
τ+, we just have to ensure that the time between the first correct process entering
round r and the first correct process entering round r + 1 is larger than 2τ+ + ε. We
do so in the following theorem.

Theorem 15. The algorithm given in Figure 6.9 with Ξsync ≥ 3Ω is a synchronizer.

Proof. We have to show that correct lock-step executions are guaranteed, i.e. that lock-
step round r messages are received before the receiver step is taken in the following
invocation of start. Assume the first correct process executes start(r) for r ≥ 0 at time
tr. Further let ` be the micro tick correlated with round r. By simultaneity (S) all

46 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

correct processes execute start(r) by time t = tr + τ+ + ε such that all corresponding
messages are received by time t = tr +2τ+ + ε. A correct process executes start(r +1)
at some time tr+1 when it reaches micro tick ` + Ξsync by line 7. By Lemma 3,
tr+1 ≥ tr + Ξsyncτf ≥ tr + 3Ωτf = tr + 3τ+ ≥ tr + 2τ+ + ε = t, thus all round r
messages sent by correct processes must be received when a correct process executes
start(r + 1).

Theorem 15 reveals that any problem that is solvable in synchronous systems has
a solution in the Θ-Model as well. We believe that this result is interesting given
that the system model does not stipulate upper bounds on message delays. However,
termination times of solutions that use our synchronizer may not always be optimal.
For example, reliable broadcast in synchronous systems requires f + 1 rounds. We
would therefore have to ensure that (f +1)(2τ+ + ε) time units have elapsed, while we
have seen a solution in Section 6.3.2 where just (f + 1)τ+ time units have to be timed
out. In the following section we will introduce atomic commit algorithms which work
in this more efficient way.

6.4 Non-Blocking Atomic Commitment

The atomic commitment problem originates in replicated distributed databases
where—in order to keep the databases consistent—transactions have to be made per-
manent either at all sites or at none, atomically. Before executing an update all par-
ticipants are asked whether it is acceptable to do the update. If just one replica says
no the common decision must be abort and no participant may execute the update.
Atomic commitment is of course not restricted to databases. Especially in the field
of critical systems one might think of applications where a no of just one participant
must be considered in order to prevent hazards. We therefore introduce a solution to
this problem in this section.

It is obvious that atomic commitment cannot be defined properly in the presence of
Byzantine faults. We hence just consider restricted failure modes here.

It has been shown [21] that synchronous systems dominate asynchronous systems
enriched with failure detectors regarding problems that can be solved: Any algorithm
that requires certainty whether a message from a process is still in transit or not
cannot be solved in asynchronous systems augmented with failure detectors, since
failure detectors can only detect if a process has crashed and not whether it managed
to send messages before a crash (compare Section 6.3.1). This property is vital for non-
blocking atomic commit protocols as well, since one has to enforce that if a process
decides it has knowledge of all votes.

The problem of atomic commit, however, allows several kinds of definitions (i.e. non-
triviality properties). In literature [46] several asynchronous solutions to variants of
NBAC are described. As already observed in [21], systems that have a solution to the
SDD problem allow more efficient NBAC algorithms. We confirm this observation by
devising two atomic commit algorithms in the Θ-Model.

Equipped with a perfect failure detector, solving NBAC is straight forward. If there
are no faults all votes must be exchanged and a decision must be made, based on the

6.4. NON-BLOCKING ATOMIC COMMITMENT 47

votes. In the case of faults, the failure detector eventually suspects a crashed process.
Each process waits until it has received votes by all or a process is suspected, and
then another round is started to decide; see [46] for a detailed description. If there are
any suspicions, failure detector based atomic commit protocols must in general abort.
Therefore they are quite inefficient. In the following section we will provide a protocol
that allows to commit even if processes fail during the execution of the algorithm.

Note that our atomic commit protocols will be fully distributed in the sense that
they do not have a central coordinator.

6.4.1 Clean-Crash Faults

We assume processes here that may just stop, i.e. can fail by clean-crashes only:
Hence sending a message to all happens atomically. We will see in Section 6.4.2 that
this assumption can be dropped by employing a reliable broadcast algorithm (recall
Section 6.3.2) that simulates this behavior, at the cost of increased response times and
increased number of processes. Note that clean crashes are natural faults in broadcast
networks (Ethernet) provided that overruns in input queues can be avoided.

In this section we will provide an atomic commit protocol which commits if all correct
processes that are initially up vote yes. It is hence possible to commit in cases where
protocols based on failure detectors would abort. Note that our protocol can easily
be adapted to commit only if all processes were initially up. In fact, since at the
end of the protocol all correct processes have the same information on the system, any
deterministic function will lead to agreement. Which behavior is actually required in
the envisioned system is a design decision.

Before we introduce our protocol, let us first state the requirements of NBAC:

Integrity: Every participant decides at most once.

Validity: If a participant’s decision is commit, then all votes are yes.

Uniform Agreement: No two participants decide differently.

Termination: Every correct participant eventually decides.

These properties are the same in any atomic commit protocol. Protocols differ,
however, in the non-triviality property. It defines in which cases—in practice that
means how often—a protocol commits. Take for example protocols where processes
are equipped with the eventually strong failure detector �S [46]. A false suspicion could
lead to abort although no failure occurred and all voted yes. Under our assumption
(clean-crashes) we give a protocol that provides the following non-triviality property.

Non-Triviality-Clean-Crashes: If all participants that are not initially dead vote
yes the outcome decision is commit.

Here processes may stop during the execution of the protocol. As long as they voted
yes it is possible to commit.

48 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

In the algorithm given in Figure 6.10 all participants send their vote together with
their (round 0) message to all. Different requests can be distinguished via the req field
in the messages. We have chosen to start our algorithm with clock value 0 because it
eases the presentation. If there is a clock synchronization algorithm that runs during
the whole system operation, however, the request can be timestamped according the
the local clock value as well. The respective clock values when decisions are taken
have to be calculated based on the time stamps of the requests in this case. (compare
atomic broadcast in Section 6.3.2).

In order to satisfy non-triviality we have to ensure that each process sends its vote
to all. Processes that are not initially dead must send at least one message, i.e. the
first message must include the proposed value.

For each participant
1: send (round 0, req, myvote) to all [once];
2: if received (round 0, req, vote) from any participant then
3: → send (round 0, req, myvote) to all [once];
4: fi

5: Execute Clock Synchronization from Section 6.1.3

6: if k > Ξs
ac then

7: → if only votes yes have been received then
8: → return(commit)
9: else

10: → return(abort)
11: fi

12: fi

Figure 6.10. NBAC Protocol Tolerating Clean-Crash Faults

Before we show that the algorithm given in Figure 6.10 in fact solves the NBAC
problem we need a preliminary lemma.

Lemma 10. A participant executing the algorithm given in Figure 6.10 with Ξs
ac =

d2Ωe has received all votes when it decides.

Proof. Let the first process send its vote to all at time t. All other participants must
receive all votes by time t + 2τ+ by line 2. By Lemma 3 the largest round number a
correct process reaches by then is b2τ+/τfc = b2Ωc. Since a participant decides when
it has reached round number k > Ξs

ac = d2Ωe it must have received all (round 0)
messages from all participants that are not initially down, i.e. by all participants that
voted.

Theorem 16. The algorithm given in Figure 6.10 with Ξs
ac ≥ d2Ωe achieves NBAC.

Proof. We show each of the requirements of NBAC separately.
Integrity: A participant decides when k > Ξs

ac. Since it uses the return function only
once, integrity follows.

6.4. NON-BLOCKING ATOMIC COMMITMENT 49

Validity: Lemma 10 states that if a participant decides, it has received all votes. By
line 7 it only decides commit if all votes where yes.

Uniform Agreement: If a process decides, it has received all votes. Any two participants
hence decide on the same set of messages and must therefore decide the same value.

Termination: Every correct process decides when it reaches round k > Ξs
ac. Let t be

the time the first process sends its (round 0) message. By line 2 all processes send
(round 0) by time t + τ+, which is the assumption of (P). Therefore every correct
process reaches round k by time t + τ+ + τ+Ξs

ac ≥ t + τ+(2Ω + 1) (see Lemma 5).

Non-Triviality: If all votes are yes, by line 7 every outcome must be commit.

Remark From simultaneity (S) follows that all correct processes reach round k > Ξs
ac

within τ+ + ε, such that they commit within a short period of time. This is important
in the context of real-time systems as well.

6.4.2 Crashes

It is well known that for systems where processes may crash during the execution
of a step, reliable broadcast is required in order to keep the views of the remaining
processes consistent (compare Section 6.3.2). To solve NBAC in this case, we employ
an adaptation of the protocols from [83] which are based upon a semi-synchronous
system model, where upper time bounds on transmission and computation steps are
known, and the processes are equipped with local hardware clocks with known drift.
We will see that our software clocks can be employed in the same manner, without
knowing the bounds on transmission and computation steps.

Due to the more severe failure mode, it is not possible to satisfy the same non-
triviality property as if only clean-crash failures had to be considered. This section’s
protocol achieves the following property:

Non-Triviality-Crashes: If all processes vote yes and no failure occurs, then the
outcome decision is commit.

As in the case of clean-crash failures we start with a preliminary lemma which
guarantees equal sets of messages at all processes when the decision is made.

Lemma 11. All participants executing the algorithm given in Figure 6.11 with Ξc
ac ≥

dΩ(f + 2)e have delivered the same votes when they decide.

Proof. If there are no faults and all vote yes by reliable broadcast all deliver these
votes and decide in line 9. If there is one vote no and one process delivers it, by
reliable broadcast all deliver it and decide in line 3. We have to show that if one of
these two cases happen, they happen at every process before line 6 is enabled.

Let the first process enter round ` > Ξc
ac where it decides using line 6 at time t′. By

Lemma 3 the first process enters round 1 not after time t ≤ t′−Ξc
acτf. By (Q) hence all

processes send (round 0) by time t+ε and reliably broadcast their vote. By Theorem 13
all the votes are delivered by time t′′ = t+ε+(f +1)τ+ < t+(f +2)τ+ = t+Ξc

acτf ≤ t′.
Since t′′ < t′ our lemma is true.

50 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

For each participant
1: along with (round 0) reliably broadcast (req, myvote);

2: Execute Clock Synchronization from Section 6.1.3

3: if a vote no has been delivered
4: → return(abort)
5: fi

6: if k > Ξc
ac

7: → return(abort)
8: fi

9: if all votes are delivered and all are yes

10: → return(commit)
11: fi

Figure 6.11. NBAC Protocol Tolerating Crashes

Theorem 17. The algorithm in Figure 6.11 with Ξc
ac ≥ dΩ(f + 2)e achieves NBAC.

Proof. We show each of the requirements of NBAC separately.
Integrity: A participant decides using a return function, hence only once.

Validity: By line 9.

Uniform Agreement: By Lemma 11.

Termination: Every correct process decides when it reaches round k > Ξc
ac. Let t be

the time the last correct process sends its (round 0) message and hence its vote. Every
correct process reaches round k by time t + τ+Ξc

ac; see (P) in Lemma 5.

Non-Triviality: If no failure occurs every correct process delivers all votes before it
reaches a clock value k > Ξc

ac by Lemma 11. It commits by line 9.

6.5 Related Work

6.5.1 Clock Synchronization

Clock synchronization in distributed systems is a very well-researched field, see [30,
93, 82, 92, 84, 73, 85] for an overview. In the field of self-stabilizing [28] clock synchro-
nization much work has been conducted [33, 32, 78, 6] as well. There is even some
work on Byzantine self stabilizing clock synchronization [25, 33, 26]. The algorithms
introduced in this thesis are improvements regarding coverage of our previous work pre-
sented in [106, 109]. These algorithms are adaptations of the classic non-authenticated
clock synchronization algorithm by Srikanth and Toueg [95].

Clock synchronization with booting in the Θ-Model has been introduced in [106].
In [109] we presented a clock synchronization algorithm that handles hybrid failure
modes. Besides link failures (which we have not discussed yet) the whole range of
possible process failure modes were investigated.

6.5. RELATED WORK 51

6.5.2 Unreliable Failure Detectors

Failure detectors are particularly attractive, since they encapsulate synchrony as-
sumptions in a time free manner. Consensus algorithms using FDs are hence com-
pletely time free and thus share the coverage maximization property proper to purely
asynchronous algorithms. Nevertheless, the question of coverage arises also when im-
plementing a failure detector, which of course requires the underlying system to satisfy
at least some synchrony assumptions. In fact, existing implementations of the perfect
failure detector P rest upon knowing the bounds on the end-to-end transmission delays
of messages and hence require a synchronous system.

Since it has been shown in [63] that perpetual FDs cannot be implemented in par-
tially synchronous systems with unknown delay bounds [37, 19], perpetual accuracy
properties like strong accuracy (“no processor is suspected before it crashes”) are usu-
ally replaced by eventual ones (“there is a time after which correct processors are not
suspected by any correct processor”). Many papers deal with the implementation of
such eventual-type FDs [19, 61, 62, 22, 48, 40, 51, 15, 2]. Eventual properties are usually
in conflict with the timeliness requirements of real-time systems, however. Neverthe-
less if an algorithm, designed to work with an eventual FD, uses a perpetual FD that
provides bounded detection times, real-time properties can be achieved here as well.

In purely asynchronous systems, it is impossible to implement even eventual-type
failure detectors. FDs with very weak specifications [44, 4] have been proposed as an
alternative here. The heartbeat failure detectors of [4] do not output a list of suspects
but rather a list of unbounded counters. Like �P, they permit to solve the important
problem of quiescent reliable communication in the presence of crashes, but unlike �P,
they can easily be implemented in purely asynchronous systems.

In view of the impossibility results of [29] and [63], it was taken for granted until
recently that implementing perpetual failure detectors requires accurate knowledge of
delay bounds and hence a synchronous system model. Still, the algorithms presented
in [76, 75] reveal that perpetual FDs can be implemented in a time-free manner in
systems with specific properties. For example, there is a time-free implementation of
P in systems where it can be assumed a priori that every correct processor is connected
to a set of f +1 processors via links that are not among their f slowest ones. The algo-
rithm cannot verify whether the underlying system actually satisfies this assumption,
however, and no design for implementing this property was given.

The failure detector presented in this thesis follows an idea that was originally de-
veloped by Le Lann and Schmid [67]. There exists subsequent work on this approach
regarding coverage maximization [68] and system booting [108].

6.5.3 Synchronizers

In literature several approaches have been proposed to simulate synchronous sys-
tems, see also [9] for an overview on several simulation techniques.. Awerbuch [10]
introduced the term synchronizer to describe algorithms that simulate synchronous
networks in asynchronous ones. The algorithms he presented could be used in net-
works with arbitrary topologies, but only in the absence of faults.

52 CHAPTER 6. SELECTED ALGORITHMS IN THE Θ-MODEL

Dwork, Lynch and Stockmeyer [37] devised several simulations for lock-step syn-
chrony in the presence of partial synchrony for several types of process failures (includ-
ing non-authenticated Byzantine). These simulations reach lock-step behavior eventu-
ally. In the global stabilization time model it is reached after the system has stabilized.
In the case where the timing bounds are unknown the round durations are increased,
and lock-step is reached when the rounds are sufficiently long.

Round-by-round fault detectors where introduced by Gafni [43]. Such fault detectors
provide some process p—running a round based algorithm—with information about
other processes which might have crashed. If all processes from whom no message for
the current round has dropped in are suspected, the next round is entered.

6.5.4 Non-Blocking Atomic Commit

Consensus [9, 71] and non-blocking atomic commitment [83, 46, 38, 27, 12] are very
similar agreement problems. Their relation is investigated in [47, 20] and Guerraoui
shows in [47] that these problems are not comparable in asynchronous systems.

The uniform timed reliable broadcast algorithm we employed can be found in [12],
where several other topics related to atomic commitment are discussed as well

Guerraoui and Schiper [46] presented decentralized non-blocking commit protocols.
In contrast to the classical two phase commit and three phase commit these protocols
do not have a central coordinator. The algorithm in [46] rely upon the eventually
strong failure detector �S. In [83] several non-blocking atomic commitment algorithms
are presented and investigated for several system models—from synchronous to asyn-
chronous with failure detectors. Timed atomic commit was introduced in [27]. The
algorithm that was presented there uses local hardware clocks in order to detect that
timing constraints are violated.

Lower bounds regarding message complexity as well as timing complexity can be
found in [38].

Chapter 7

Booting Clock Synchronization in
the Perception-Based Fault Model

We showed in Section 6 that many important problems in distributed computing have
time free solutions. Still, all the presented algorithms rest on the assumption that all
correct processes are always up respectively up early enough such that they do not
miss each other’s messages. When considering real systems this assumption is too
strong. In timed systems this assumption can easily be enforced by assuming that all
processes boot within a known time interval. Setting a local timeout before starting to
send messages suffices to create the illusion of always up processes. Since we consider
time free solutions we cannot use a priori knowledge of real-time bounds, however.
Consequently, we make no assumption on booting times.

It is well known [30] that, without authentication, no more than one third of the
processes may be Byzantine to ensure the clock synchronization properties (π) and
(α) in the presence of timing uncertainty. Since the threshold of one third cannot
be guaranteed during booting, our goal is to handle system startup without further
increasing the number of required processes.

In this section we present a clock synchronization algorithm which exhibits graceful
degradation during the booting phase: Whereas (α) can only be guaranteed after
booting has completed, (π) is ensured during whole system operation. Using this
algorithm we show later in Section 8 how to transform the algorithms from Section 6
such that they provide (some of) their properties during the booting phase as well.

Moreover we will present our solution under a hybrid failure model, i.e. a failure
model that incorporates multiple types of process failures as well as link failures. Un-
til now we distinguished only very few types of process faults: Byzantine, stops and
crashes. In recently emerging application domains (e.g. wireless networks) the probabil-
ity of link failures dominates process failures. Mapping link failures to process failures
is not a good choice here [88], since one quickly runs out of non-faulty processes in case
of traditional failure models.

Unfortunately there exist many impossibility results which state that many prob-
lems in distributed computing have no solution if links are unreliable. These results,
however, refer to unrestricted link failures only. Fair lossy links—if infinitely many

53

54 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

messages are sent over a link infinitely many are received—is an often alternative. Al-
gorithms may just retransmit messages as often as required in order to generate the
abstraction of perfect links. A more appropriate approach for real-time applications is
tolerating link faults by space redundancy (adding processes) instead of time redun-
dancy (retransmission of messages), however. This approach has recently been shown
to work for the consensus problem [86, 91, 105, 16] and in clock synchronization [109].

Lets now turn to process failures: From a theoretical point of view the “all Byzantine”
assumption (like in Section 6.1) is of course safe. When considering the probability
of Byzantine faults compared to crash faults, however, it is obvious that making the
Byzantine assumption for just tolerating crash failures is expensive (n ≥ 3f +1 instead
of 2f + 1). A hybrid failure model [109] allows to dimension the system according to
the actual reliability requirements (and based on failure probabilities) since formulas
for n are given that incorporate independent numbers of e.g. Byzantine, symmetric,
omission faults.

In this section we present an overview of the hybrid perception based failure model
of [87] and describe how to extend the clock synchronization algorithm from Section 6.1
in order to handle booting. The analysis follows the one in [109].

7.1 Perception Based Failure Model

This section contains an overview of the perception based failure model, which ex-
tends the model introduced in [88] by adding messages with history and proper handling
of the startup phase. It consists of an execution model, a basic physical failure model,
and a more abstract perception failure model. Both the physical and the perception
failure model are hybrid ones [104, 11], i.e., distinguish several classes of failures. The
advantage of a hybrid failure model is its improved resilience: Less severe failures can
usually be handled with fewer processes than more severe ones.

We will omit a detailed description of the physical failure model [87]. It distinguishes
several classes of time and value failures for both processes and links, and uses assertions
like “at most φav processes may behave Byzantine in a single round”. Due to the
exploding number of possible combinations of time and value failures, it is not used
for analyzing fault-tolerant algorithms, however. Its primary purpose is the analysis of
the assumption coverage [64] in real systems, see [90] for an example.

The physical failure model can be mapped to a more abstract (and vastly simpler)
perception failure model , which is similar in spirit to the round-by-round fault detector
approach of [43]. It is a generalization of the synchronous model of [90, 91], and is solely
based upon the local view (i.e. perception of failures) of every process in the system.
The perception failure model is particularly well-suited for analyzing the fault-tolerance
properties of distributed algorithms.

7.1.1 Execution Model

We consider a system of n distributed processors connected by a fully or partially
connected point-to-point network. All links between processors are bidirectional, con-

7.1. PERCEPTION BASED FAILURE MODEL 55

sisting of two unidirectional channels that may be hit by failures independently. Links
need not necessarily provide FIFO transmission. The system will execute a distributed
round based algorithm made up of one or more concurrent processes at every processor.
Any two processes at different processors can communicate bidirectionally with each
other via the interconnecting links. Every processor is identified by a unique processor
id p ∈ Π = {1, . . . , n}; every process is uniquely identified system-wide by the tuple
(processor id, process name), where the process name N is chosen from a suitable name
space. Since a process will usually communicate with processes of the same name, we
will distinguish processes primarily by their processor ids and suppress process names
when they are clear from the context. Our model, however, allows sender and receiver
process to have different names as well.

Since we restrict our attention to round based algorithms, all processes execute a
finite or infinite sequence of consecutive rounds k = 0, 1, In every round except
the initial one k = 0, which is slightly different, a single process p may broadcast
(= successively send) a single message—containing the current round number k and
a value V k

p depending upon its local computation—to all processes contained in p’s
current receiver set Rk

p ⊆ {1, . . . , n}.1 We assume that every (non-faulty) receiver q
knows its current sender set Sk

q = {p : q ∈ Rk
p} containing all the processes that should

have sent a message to it, and that a process satisfying p ∈ Rk
p (and hence p ∈ Sk

p)
sends a message to itself as well. Note that this convention does not prohibit an
efficient direct implementation of self-reception, provided that the resulting end-to-end
transmission delay is taken into account properly.

Concurrently, for every round number `, process p receives incoming round ` messages
from its peer processes ∈ S`

p and collects their values in a local array (subsequently
called perception vector) V `

p = {V 1,`
p , . . . , V n,`

p }. Note that V`
p = V`

p(t) as well as its
individual entries V i,`

p = V n,`
p (t) are actually time dependent; we will usually suppress

t, however, in order not to overload our notation. Storing a single value for each
peer in the2 perception vector is sufficient, since any receiver may get at most one
round ` message from any non-faulty sender. The entry V q,`

p ∈ V`
p (subsequently called

perception) is either ∅ if no round ` message from process q came in yet (or if q 6∈ S `
p),

or it contains the received value from the first round ` message of process q. In case
of multiple round ` messages from the same sender q, which must be faulty here, the
receiver could also drop all messages and set V q,`

p to some obviously faulty value, instead
of retaining the value from the first message.

Process p’s current round k is eventually terminated at the round switching time σk
p ,

which is the real-time when process p switches from round k to the next round k + 1.
Note that round switching is event based—and part of the particular algorithm—in

1In this chapter , we use the following notation: “Anonymous” processes and round numbers are
usually denoted by lowercase letters p, q and k, l, respectively. Process subscripts denote the process
where a quantity like V p,k

q is locally available, process superscripts denote the remote source of a
quantity. Calligraphic variables like Vr

p denote sets or vectors, bold variables like τ denote intervals.
2Since we allowed multiple concurrent processes, there may of course be several different perception

vectors on a processor. Any process—but at most one per processor—may send messages for a specific
perception vector, but at most one process per processor may receive messages from it.

56 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

case of asynchronous (time free) systems but enforced externally in case of synchronous
systems. At the round switching time, the value V k+1

p = Fp(V
k
p (σk

p), Σp) to be broadcast
by process p in the next round k + 1 is computed as a function Fp of the round k
perceptions available in Vk

p = Vk
p (σk

p) and p’s local state Σp at time σk
p .

The above execution model is generalized by introducing messages with arbitrary
history size 0 ≤ h ≤ ∞. History size h > 0 means that a round k message includes also
the values broadcast in the h rounds 0 ≤ k − h, . . . , k − 1 prior to the current round k
(if any). If some round k′ message from sender q arrives at process p while in round
k ≤ k′, all the still empty entries V q,`

p ∈ V`
p for max{k, k′ − h} ≤ ` ≤ k′ are filled with

the appropriate values contained in the message. Note that such “late” perceptions are
retained even when a proper round ` message drops in later (which could occur since
we do not assume FIFO channels); unlike the arrival of two proper round k messages,
this does not constitute an error.

Although round ` perceptions filled in upon reception of a round k′ > ` message
may be time faulty, in the sense that they should have arrived earlier (namely, in the
process’s proper round ` message), they are nevertheless useful for some algorithms:
h = ∞ models full information mode protocols, whereas h = 0 corresponds to the
standard situation. The case h > 0 allows to model a more flexible round switching,
which allows to incorporate information from processes within h + 1 rounds.

Remark In line 6 resp. line 13 of the algorithm of Figure 7.4, for example, we em-
ploy h = 1 for echo-messages to substitute round ` messages that were not received due
to late booting and catch-up. In case of this particular algorithm, “late” perceptions
need not be considered time faulty. Typically, however, a history size h > 0 must be
accounted for in the failure model, see Section 7.1.3.

Formally, the essentials of the above execution pattern are captured by two specific
events: bek

p = V k
p (tkp) is process p’s round k broadcast event , whereas pep,k

q = V p,k
q (tp,k

q)
denotes process q’s perception event of process p’s broadcast event. Those events are
related via their parameter values V p,k

q = V k
p (which are equal if there is no failure)

and their occurrence times tp,k
q = tkp + δp,k

q , where δp,k
q is the end-to-end computational

+ transmission delay between sender p and receiver q in round k. Note that the local
round k computation V k+1

p = Fp(V
k
p (σk

p), Σp) is also included in δp,k
q (or in δp,k+1

q), which
creates the abstraction of algorithms that consist of statements executed in zero time.

Figure 7.1 shows this relation. Note carefully that δp,k
q does not only depend upon

the local computation and network load related to the particular round k message sent
from p and q. As argued in [67, 68], scheduling issues make δp,k

q dependent upon any
round k message that is sent and received by p and q.

According to our computational model in Section 3.3 again our model stipulates
minimum and maximum values τ− > 0 and τ+ < ∞, not necessarily known to the
algorithm, such that

τ− ≤ δp,k
q ≤ τ+ (7.1)

for any two well-behaved processes p, q connected by a non-faulty link. Note that

7.1. PERCEPTION BASED FAILURE MODEL 57

t

t
End-to-end comp. + trans. delay δp

q

tk
p message transmission p → q

msg(V k
p , k)

Local comp. at p

Local comp. at q

Receiver q

tp,k
q

Sender p

Perception event
pep,k

q = V p,k
q (tp,k

q)

Broadcast event bek
p = V k

p (tk
p)

Figure 7.1. Relation between process p’s round k broadcast event bek
p

= V k
p
(tk

p
) and

its corresponding perception event pep,k
q

= V p,k
q

(tp,k
q

) at process q.

this relation must be valid for any round k, and for p = q as well.3 Introducing the
interval τ = [τ−, τ+], the above relation (7.1) can be written concisely as δp,k

q ∈ τ . The
resulting bound for δp,k

q ’s delay uncertainty resp. delay ratio, which will play a central
role in our analysis, is given by ε = τ+ − τ− resp. Θ = τ+/τ−.

The above description of the execution model of a single process must still be ex-
tended to multiple processes. Three functions and one additional event are sufficient
for this purpose:

• create(P) creates and initializes a process with name P on the caller’s processor,
including its perception vector and reception processing setup. It is usually called
at boot time, for any process that will eventually run on a certain processor.
If called at time tq, it raises a parameterless init event ie0

q occurring at time
ι0q ≥ tq that signals completion of booting. It ensures that every correct process
p’s broadcast event that occurs at time tk

p ≥ ι0q − τ− generates a perception
event pep,k

q at q at some time tp,k
q ≥ ι0q, provided that the message is not hit

by a link failure. Earlier broadcast event’s are usually completely lost (at least
must be assumed to be completely lost), however, in the sense that there is no
corresponding perception event at q.

• init(P, k, V k
p ,Rk

p) raises the broadcast event bek
p with receiver set Rk

p in process
P at the caller’s processor p. It can be called by any process running on the
same processor as P and is also used internally by P to initiate bek

p at the round
switching time σk−1

p in round k > 0. Obviously, init must not be called more
than once and only after ι0p.

• wait(P, k, X) blocks the caller process Q until process P 6= Q on Q’s processor
has completed round k; a value X from P is optionally returned to the caller

3The typically very small self-reception delay could be considered as an (early) link timing failure
and hence be masked by increasing f ra

` and fsa
` by 1.

58 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

upon unblocking. Note that this operation does not affect process P ’s execution
and may require some memory if P terminates round k before wait is called.

In the pseudo code employed for the description of our algorithms, a more high-level
way of expressing concurrency will usually be used:

cobegin

{ block 1 }
...

{ block k }

coend

is a concise description of k concurrent processes, each executing one block i.

7.1.2 Model of the Startup Phase

At the very beginning all processes are down. Every message that arrives at a process
while it is down is lost, and no messages are sent by such a process. Note carefully
that we do not even allow spurious messages from a down process or any of its links
here. Correct processes boot at unknown times that cannot be bounded a priori.

During startup, a correct process goes through the following sequence of operating
modes:

1. down: A process remains down when it has not been created yet or has not
completed booting. Messages that drop in while a process is down are usually
completely lost, i.e., do not generate a corresponding perception event.

2. up: A process q gets up when it has completed booting, at time ι0q. Recall
that every correct process p’s broadcast event that occurs at time tk

p ≥ ι0q − τ−

generates a perception event pep,k
q at q at some time tp,k

q ≥ ι0q, provided that the
message is not hit by a link failure.

(a) passive: A process that just got up performs an algorithm dependent initial-
ization phase, where it is called passive. As the first action in passive mode,
a process typically sends a special join message to all its peers. The first re-
ception of a join message from some process p causes the receiver to send an
algorithm-dependent reply message to p (point-to-point); subsequent join
messages from the same sender are usually ignored.

(b) active: A process that has completed its initialization phase is called active.

Remark In case of the algorithm of Figure 7.4, for example, a passive process broad-
casts join—namely, (round 0), in order to get the last (round k) message of every
peer—and participates in the algorithm as in active mode. It need not satisfy the
clock synchronization conditions (π) and (α) from Definition 3 while passive, however.
The transition to active mode occurs when the process can be sure that it is within
the synchronization precision Dboot.

7.1. PERCEPTION BASED FAILURE MODEL 59

The communication pattern for joining is obviously different from ordinary rounds.
Whereas join is broadcast by a single joining process p, the replies are typically sent
back by all peers via point-to-point messages. All the processes’ join can be considered
as a special booting round’s messages, however, so both execution model and failure
model apply to join as for any round k message. Response messages are different,
however. Although compatibility with our execution model is maintained by assuming
Rresp

q = {p} and Sresp
p = Π, we need some additional assumptions with respect to our

failure model.
Since the semantics of response messages are algorithm dependent, it does not make

sense to define a generic model here. Basically, the joiner p must be provided with suf-
ficient information to construct an internal state that is equivalent—in some algorithm
dependent sense—to the state it would have had if it had not missed earlier messages
due to late booting. This is a demanding requirement, however, since e.g. failures that
occurred before p got up must be taken into account.

In case of the clock synchronization algorithm of Section 7.2, for instance, any pro-
cess s that successfully received p’s join responds by retransmitting4 the last sent
(round ks). Retransmissions must happen in a way, however, which lets the resulting
perception matrices maintain compliance with our failure model. For example, if arbi-
trary link failures in process s’s original round ks broadcast already caused f ra

` receivers
q 6= p to deliver faulty round ks perceptions V s,ks

q , it must not happen that s’s response
message to p’s join suffers from an arbitrary link failure as well. Response messages
may hence be viewed as messages belonging to the original round k broadcast here,
which are deferred until the appropriate receiver is up. As in case of messages with
history h > 0, perceptions recovered via response messages are usually time faulty,
however (see Remark 4 on Definition 10).

7.1.3 Physical Failure Model

Our physical failure model basically5 assumes that at most fa, fs, fo and fc processors
may be arbitrary, symmetric, omission, and clean crash faulty during any single round.
Clean crash faulty processes may be mute to all receiving processes (consistently) in
some round, omission faulty processes may fail to send the correct message to an
arbitrary subset of the receivers (inconsistently). Symmetric failures allow a process
to disseminate an erroneous value consistently, whereas arbitrary faulty processes may
even exhibit Byzantine behavior.

Since we will often establish uniform results (which also hold for processors with
benign failures, namely, omission and clean crash faulty processes unless they have

4These retransmissions may cause the arrival of two round k messages from the same sender, which
is usually considered an error in our execution model, recall Section 7.1.1. This is of course not true
here, so we just assume that the first perception entered into some round k perception vector is
retained—and not overwritten by some error value—when a second round k message drops in.

5In the fully-fledged physical failure model [87], it is differentiated between the number of physical
failures φav , φsv , . . . and the number of perceptions failures fa, fs, . . . for generality. More specifically,
formulas like fa = φav for the perception failure numbers, given the physical failure numbers, are
provided when mapping the the physical failure model to the perception failure model.

60 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

crashed), we will use the term obedient process to denote non-faulty, omission, and
clean crash faulty processes that are still alive at the point of observation.

As far as link failures are concerned, every receiving process may experience at most
f r

` link failures affecting different peers in the reception of every round, with at most
f ra

` ≤ f r
` arbitrary time/value faulty ones (producing early or late message receptions

and/or faulty values). Similarly, every sending process may generate at most f s
` link

failures when sending a message to all its peers per round, with at most f sa
` ≤ f s

`

arbitrary time/value faulty ones among those. Assigning different numbers of send
and receive link failures is useful for modeling certain restricted process failures [90];
usually, however, f r

` = f s
` = f` and f ra

` = f sa
` = f a

` . As long as processes do not
exceed those limits, they need not be considered (process) faulty. Further details will
be provided in the next section.

Remark Note that we stick to Schmid’s [87] original definition of the fault model:
Crash failures in the physical failure model are equivalent to clean-crash failures in
Section 6.4.1. The (asymmetric) crash faults of Section 6.4.2 on the other hand must
be modeled as omission faulty here.

7.1.4 Perception Failure Model

Consider the round k perception vector Vk
q (t)—observed at some real-time t—of a

well-behaved process q. Our execution model implies that Vk
q (t) is monotonic in time,

in the sense that |Vk
q (t + ∆t)| ≥ |Vk

q (t)| for any ∆t ≥ 0, since perceptions are only
added. Moreover, since the value V k+1

q to be broadcast in the next round k + 1 is
computed solely from Vk

q := Vk
q (σk

q) and q’s local state at the round switching time
σk

q , it is obvious that, ultimately, only the failures in the perceptions present at the
respective round switching times count. Timing failures are no longer visible here (but
will probably affect σk

q , recall Section 7.1.1), since a message that did not drop in by
σk

q at process q just results in V p,k
q = ∅. Consequently, the resulting perception failure

model is much simpler than the physical one and therefore more suitable for analyzing
an algorithm’s fault-tolerance properties.

Our formalization hence rests upon the n × n perception matrix Vk(t)6 of round k
perceptions observed at the same arbitrary real-time t—typically some process’s round
switching time—at all processes:

V(t) =

V1(t)
V2(t)

...
Vn(t)

=

V 1
1 V 2

1 . . . V n
1

V 1
2 V 2

2 . . . V n
2

...
...

...
...

V 1
n V 2

n . . . V n
n

t

(7.2)

Note that V(t) is in fact a quite flexible basis for our failure model, since different
“views” of the state of the distributed computation can be produced easily by choosing
a suitable t.

We distinguish the following failure modes for single perceptions in V(t) in our per-
ception failure model:

6We will subsequently suppress the round number k in quantities like Vk(t) for brevity.

7.1. PERCEPTION BASED FAILURE MODEL 61

Definition 7 (Perception Failures). Process q’s perception V p
q of process p’s broad-

cast value Vp can be classified according to the following mutually exclusive failure mode
predicates:

• correct(V p
q): V p

q = Vp,

• omission(V p
q): V p

q = ∅,

• value(V p
q): V p

q 6= ∅ and V p
q 6= Vp.

Next, we have to classify sender7 process failures. This requires the important notion
of obedient processes: An obedient process is an alive process that faithfully executes
the particular algorithm. It gets its inputs and perform its computations exactly as a
non-faulty process, but it might fail in specific ways to communicate its value to the
outside world. We will subsequently use this term instead of non-faulty whenever a
process acts as a receiver (“obedient receiver”), since this will allow us to reason about
the behavior of (benign) faulty processes in case of uniform properties [50] as well.
If Rp denotes some sender p’s receiver set, let Rp ⊆ Rp denote the set of obedient
processes among those.

Whereas the physical failure model differentiates timing failures according to δp,k
q ∈ τ

vs. δp,k
q 6∈ τ and hence incorporates those quantities explicitly, it is solely the choice

of t that is used in Definition 8 for this purpose: It only depends upon t whether a
non-faulty perception V p

q represents a perception event pep
q from a non-faulty or rather

a timing faulty process p. Hence, neither δp,k
q nor τ will show up in the definitions of

the perception failure model below.

Definition 8 (Perception Process Failures). Let p be a (faulty) sender process
and g be some obedient receiver with ∅ 6= V p

g ∈ V(t), if there is any such g. In the
absence of link failures, process failures of p can be classified according to the perceptions
V p

q ∈ V(t + ε) at all obedient receivers q ∈ Rp ⊆ Rp as follows:

• Non-faulty: ∀q ∈ Rp : correct(V p
q),

• Manifest: ∀q, r ∈ Rp : V p
q = V p

r 6= Vp detectably,

• Crash: ∀q ∈ Rp : omission(V p
q),

• Omission: ∀q ∈ Rp : correct(V p
q) ∨ omission(V p

q),

• Symmetric: ∀q, r ∈ Rp : V p
q = V p

r ,

• Arbitrary: no constraints.

A faulty process producing at most omission failures is called benign faulty.

The following Definition 9 specifies the possible failures in perceptions caused by link
failures. Note that it is formalized for non-faulty sender processes only, although link
failures may of course also hit faulty senders in our final failure model.

7Receiver process failures will be considered below when introducing link failures.

62 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Definition 9 (Perception Link Failures). In the absence of sender process failures,
a failure of the link from sender p to an obedient receiver q is classified according to its
effect upon q’s perception V p

q ∈ V(t) as follows:

• Link non-faulty: V p
q = Vp,

• Link omission: V p
q = ∅,

• Link arbitrary: no constraint.

The failure classes up to link omission failures are called benign.

To overcome the impossibility of consensus in presence of unrestricted link failures
[45, 71], it turned out that send and receive link failures should be considered indepen-
dently [91, 90]. The following link-failure-related parameters are hence incorporated in
the final perception failure model of Definition 10 below:
(A1s) Broadcast link failures: For any single sender s, there are at most f s

` receiver
processes q with a perception vector Vq that contains a faulty perception V s

q from s
caused by link failures, see Figure 7.2.

(recv)

... faulty

(send)

(recv)

(recv)

(recv)

Vq = (V 1
q , . . . , V s

q , . . . , V n
q)

V1 = (V 1
1 , . . . , V s

1 , . . . , V n
1)

p1

ps

Vp = (V 1
p , . . . , V s

p , . . . , V n
p)

Vn = (V 1
n , . . . , V s

n , . . . , V n
n)

pq

pp

pn

Figure 7.2. Example of a broadcast failure that affects the messages of two recipients.

(A1r) Receive link failures: In any single process q’s perception vector Vq, there are at
most f r

` faulty perceptions V p
q caused by link failures, see Figure 7.3.

Separating broadcast and receive link failures makes sense due to the fact that we
consider the unidirectional channels, rather than the bidirectional links, as single fault
containment regions: Broadcast link failures affect outbound channels, whereas receive
link failures affect inbound channels. Still, broadcast and receive link failures are of
course not independent of each other: If a message from process p to q is hit by
a failure in p’s message broadcast, it obviously contributes a failure in process q’s
message reception as well. Nevertheless, our failure model considers (A1s) and (A1r) as

7.1. PERCEPTION BASED FAILURE MODEL 63

(send)

(send)

(send)

(send)

(recv)

... faulty

Vr = (V 1
r , . . . , V p

r , V q
r , . . . , V n

r)

pr

p1

pp

pq

pn

Figure 7.3. Example of a receive failure that involves the messages from two senders.

independent of each other and of process failures, for any process in the system and any
broadcast/reception. Only the model parameters f s

` and f r
` cannot be independently

chosen (without restricting the link failure patterns), since the system-wide number of
broadcast and receive link failures must of course match. Hence, f s

` = f r
` = f` is the

most natural choice, although other settings can also be considered [90].
Note carefully that we allow every process in the system to commit up to f s

` broadcast
and up to f r

` receive link failures in every round, without considering the process as
faulty in the usual sense. In addition, the particular links actually hit by a link failure
may be different in different rounds. A process must be considered (omission) faulty,
however, if it exceeds its budget f s

` of broadcast link failures in some round. Note that
a process that experiences more than f r

` receive link failures in some round must in
general be considered (arbitrary) faulty, since it might be unable to correctly follow
the algorithm after such an event.

The following Definition 10 contains the complete perception based failure model,
which just specifies the properties of any round’s perception matrix VR(t). Note care-
fully that this definition is valid for arbitrary times t, including those where the per-
ceptions from some senders did not yet arrive (and are hence ∅).

Definition 10 (Asynchronous Perception Failure Model). Let Vk(t) be the
round k perception matrix of an asynchronous system of processes running on differ-
ent processors that comply to our execution model. For any obedient receiver q, it is
guaranteed that V p,k

q = ∅ if p 6∈ Sk
q or if V p,k

q was not received by time t. Moreover:

(P1) There are at most fa, fs, fo, fc, and fm columns in Vk(t) that may correspond
to arbitrary, symmetric, omission, crash, and manifest faulty processes and may
hence contain perceptions V p,k

q according to Definition 8.

(A1s) In every single column p, at most f s
` perceptions V p,k

q ∈ Vk(t) corresponding to

obedient receivers q ∈ R
k

p ⊆ Rk
p may differ from the ones obtained in the absence

64 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

of broadcast link failures. At most f sa
` ≤ f s

` of those perceptions may be link
arbitrary faulty.

(A1r) In every single row q corresponding to an obedient receiver, at most f r
` of the

perceptions V p,k
q ∈ Vk(t) corresponding to senders p ∈ Sk

q may differ from the
ones obtained in the absence of receive link failures. At most f ra

` ≤ f r
` of those

may be link arbitrary faulty.

(A2) Process q can be sure about the origin p of V p,k
q ∈ Vk(t).

(A3) ∅ 6= V p,k
q ∈ Vk(t) ⇒ ∅ 6= V p,k

r ∈ Vk(t+ε) for every non-faulty sender p connected
to obedient receivers q and r via non-faulty links.

Remarks

1. The effects of process failures (P1) and link failures (A1s), (A1r) are considered
orthogonal; it can hence happen that a link failure hits a perception originating
from a faulty sender process. This is also true for manifest and clean crash
failures, where link arbitrary failures could create non-empty perceptions at some
receivers.

2. (P1) implies that our perception failure model is compatible with traditional
process failure models. For example, fa Byzantine faulty processes can gener-
ate inconsistently faulty perceptions only in the fa columns they correspond to.
Hence, all existing lower bounds and impossibility results, like n ≥ 3fa + 1 for
consensus in presence of fa arbitrary process failures [60], remain valid.

3. Analysis results under our perception failure model are automatically valid for
partially connected networks as well, since the consequences of an incomplete
communication graph can be viewed as (persistent) link omission failures. How-
ever, sparsely connected graphs and, in particular, partitioned ones cannot be
modeled, cp. [90, Thm.3.2].

4. Our failure model also allows arbitrary resp. symmetric faulty processes to com-
mit an early/late timing failure inconsistently resp. consistently (within ε). Nei-
ther omission faulty nor clean crash faulty processes may generate time-faulty
perceptions in case of no history (h = 0). In case of messages with history or re-
sponses to join-messages, however, the latter cannot usually be guaranteed: Just
take an omission faulty process s, for example, which omits sending a round k
message to p but not to q. If this process sends a round k + 1 message to p
in the next round, it also generates a round k perception V s,k

p at p. Although
V s,k

p = V s,k
q , the former is of course time faulty since it arrived too late w.r.t.

the sender’s proper round k’s broadcast event. Hence, any type of benign pro-
cess failure may result in a timing failure in case of h > 0 and must hence be
accounted for in fs or fa. Note that the latter is not required for the algorithm
studied in this paper, since late timing failures are no more severe than omissions
for the algorithm of Figure 7.4.

7.2. THE ALGORITHM 65

5. Although message corruption is a fairly rare event if CRC checksums are used,
one has to acknowledge the fact that the occurrence of arbitrary receive link
failures is more likely than it meets the eye. After all, the messages sent in every
round of the execution may be turned into a false round k message if the round
number contained in the messages is corrupted.

6. Messages with history h > 0 can reduce the number of arbitrary link failures,
since value failures may be detected by comparison and turned into omission
failures here. The number of link omission failures is usually also decreased in
case of h > 0. Like in the case of benign process failures, however, the number
of late timing failures may increase and must be accounted for in f ra

` and f sa
` .

Note that the latter is again not required for the algorithm studied in this paper,
since late timing failures are no more severe than omissions for the algorithm of
Figure 7.4.

The primary way of using our failure model in the analysis of agreement-type algo-
rithms is the following: Given the perception vector VR

q (σR
q) of some obedient receiver

process q at its round switching time σR
q , it allows to determine how many perceptions

will at least be present in any other obedient process r’s perception vector VR
r (σR

q + ε)
shortly thereafter. The following Lemma 12 developed in [88] formalizes this fact.

Lemma 12 (Difference in Perceptions). At any time t, the perception vector Vq(t)
of any process at an obedient receiver q may contain at most f ra

` +fa +fs timing/value-
faulty perceptions V p

q 6= ∅. Moreover, at most ∆f = f r
` + f r

` + fa + fo perceptions V p
r

corresponding to V p
q 6= ∅ may be missing in any other obedient receiver’s Vr(t+∆t) for

any ∆t ≥ ε.

Proof. The first statement of our lemma is an obvious consequence of Definition 10.
To prove the second one, we note that at most f ra

` +fa +fo perceptions may have been
available (partly too early) at q without being available yet at r, additional f ra

`
′ ≤ f ra

`

perceptions may be late at r, and f r
` − f ra

`
′ ones could suffer from an omission at r.

All symmetric faulty perceptions present in Vq(t) must also be present in Vr(t + ∆t),
however. Summing up all the differences, the expression for ∆f given in Lemma 12
follows.

7.2 The Algorithm

The clock synchronization algorithm considered here is a hybrid variant of the algo-
rithm of Section 6.1. Note carefully that our algorithm is completely time free in that
it does not incorporate τ+ and τ−, and not even ε or Θ.

The algorithm of Section 6.1 handles initialization if all obedient processes are up and
listening to the network right from the beginning. Since we got rid of this assumption
just executing the algorithm from Section 6.1 could lead to dead locks. We therefore
add the booting section (lines 2-5) where processes just send (round 0) upon finishing
booting, and answer such messages from others by retransmitting the last (round k)
message they have sent. It is easy to see that round 1 can only be entered if a given

66 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

0: VAR k : integer := 0; /* clock value */
1: VAR mode : {passive, active} := passive;

cobegin

/* Booting Section */
2: send (round 0) to all [once]; /* join message */
3: if received (round 0) for the first time from p
4: → re-send (round k) to p; /* current round */
5: fi

/* Processes for (round `) messages */
6: if received (round `) or (round ` + 1) from

at least f ra
` + fa + fs + 1 distinct processes

7: → if ` ≥ k
8: → for j := k to ` − 1 send (round j) to all [once]; /* send skipped echos */
9: k := `; /* catch up to new clock value */
10: fi

11: send (round k) to all; [once]
12: fi

13: if received (round `) or (round ` + 1) from
at least n − f s

` − fr
` − fa − fs − fo − fc distinct processes

14: → if mode = passive → mode := active; fi

15: if ` ≥ k
16: → for j := k to ` − 1 send (round j) to all [once]; /* send skipped echos */
17: k := ` + 1;
18: fi

19: send (round k) to all; [once]
20: fi

coend

Figure 7.4. Clock Synchronization Algorithm for the Hybrid Perception Based Failure
Model with Startup

number of correct processes are eventually up. We will later see that these processes are
sufficiently many to guarantee (Q) quasi simultaneity and (U) unforgeability (compare
Theorem 2), such that they always remain within precision (π) to each other. The
progress property (P) however, cannot be guaranteed until all correct processes become
up. Consequently, three consecutive modes of system operation must be distinguished
to properly handle system startup:

• Early mode, where the first few correct processes have completed booting and
started exchanging messages. It terminates when the first obedient process ad-
vances its clock to 1.

• Degraded mode, where enough correct processes are up such that some clocks
may advance when “assisted” by faulty processes and links.

• Normal mode, where sufficiently many correct processes are up and synchronized
to guarantee progress for all clocks.

7.3. MAPPING TO THE PERCEPTION BASED EXECUTION MODEL 67

Note carefully that it is impossible for any process in the system to delimit the exact
borders between those modes from local information.

In order to add system startup handling to the original clock synchronization algo-
rithm, join messages and an additional if-clauses are required. First of all, a newly
booted process must tell all others that it is up now and must learn their current clock
values. This is accomplished by means of join messages, as introduced in Section 7.1.2:
Every process p sends join = (round 0) as the very first message after having com-
pleted booting. Every process q that receives this message replies by retransmitting its
previously sent (round k) message (lines 2-5). This ensures that p will eventually get
sufficiently many messages—which may have been lost while it was down—to trigger
the catch-up rule described below.

In order to ensure that a late starter can catch-up it must receive f ra
` + fa + fs + 1

messages for a single round from distinct processes (line 6). Due to (Q) we can only
guarantee that correct processes remain within two rounds. This is why we introduced
messages with history size h = 1.

Moreover, due to failures or a large group of simultaneous late joiners, the first
round an initializing process might reach by the catch-up rule could be arbitrarily
small. This would violate the precision requirement, however. We therefore assume
that only active, but not passive processes, must satisfy (π). A passive process switches
to active mode when it has sufficient evidence that its local round number is within
precision Dboot of the clocks of the other correct active processes in the system. This is
accomplished by the second if-clause (line 13), which triggers when sufficiently many
(round `) messages have been received. We will show in Section 7.4 that any such `
can be guaranteed to be sufficiently close to the maximum correct clock value in the
system.

In the following sections, we will prove that our algorithm satisfies the clock syn-
chronization properties (π) and (α) – (π) during whole system operation and (α) when
sufficiently many correct processes are up. In Section 7.3, we will see how its execution
matches the execution model of Section 7.1.1. The analysis starts with Section 7.4,
where we explore how our algorithm behaves in early and degraded mode, i.e. when
not sufficiently many processes are up to guarantee progress of the clocks. Section 7.5
deals with the transition between degraded and normal mode, which takes place when
late processes join the system.

7.3 Mapping to the Perception based Execution Model

The algorithm is given in an event based notion that consists of the three outermost
if-statements, numbered from the zero-th if (line 2) up to the second if (line 13). The
variable k provides the clock value Cp(t) of the processor p that executes the algorithm.
In order to be able to analyze our algorithm under the perception based failure model
of Definition 10, we must show that its execution complies to the execution model
of Section 7.1.1. Every execution of our algorithm can in fact be described by the
following process running on every processor p:

Infinitely many single-round processes L, L ≥ 0, where process L processes (round `)

68 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

messages for ` = L in the perception vector V `
p. All those processes must be active

concurrently right from the start and can terminate after execution of line 13. Note
that they can be viewed as a way of concurrently executing all rounds of a single
multiple-round process.

In order formally model the fact that computations are actually triggered upon
arrival of (round x) or (round x + 1) in our algorithm, we use messages with history
size h = 1. For example, when an (round k + 1) message from process p arrives at
q in case of h = 1, both the perception V p,k+1

q and, provided that still V p,k
q = ∅, the

perception V p,k
q is filled. Hence, the above processes can act upon a single perception

vector Vk
q as required by our execution model, yet process messages (round k) and

(round k + 1).

As in Definition 2 it is possible also for the perception based failure model to define
an effective uncertainty ratio Ω. In order to do so we give the following definition and
lemma.

Definition 11 (Short Transmission Times). Let q be any obedient processes. Con-
sidering a fixed obedient process q, τ−

q is the n − f s
` − f ra

` − f r
` − 2fa − 2fs − fo − fc

smallest δpq for all messages sent by obedient processes p which are used to enable an
event at q at real-time t. τf is the smallest τ−

q for any obedient process q.

The term n− f s
` − f ra

` − f r
` − 2fa − 2fs − fo − fc accounts for the minimal number of

messages by obedient processes which is required by any obedient process—executing
the algorithm given in Figure 7.4—to advance its clock by line 13.

Lemma 13 (Incoming Messages). If a correct process receives messages by at least
n − f s

` − f ra
` − f r

` − 2fa − 2fs − fo − fc distinct obedient processes by time t, then at
least one message from these processes was sent by time t − τf.

Proof. Follows from Definition 1.

Definition 12 (Hybrid Effective Uncertainty Ratio). The smallest value of the
uncertainty ratio which may be considered in the late binding process is Ω = τ +/τf.

7.4 From Early to Degraded Mode

Before considering the full system startup scenario, we will study the algorithm of
Figure 7.4 in a system of n ≥ f s

` +2f ra
` +2f r

` +3fa+2fs+2fo+fc+1 processes,8 where a
fixed but arbitrary number 0 ≤ nup(K) ≤ n of processes have completed booting when
the messages from the first obedient process that started some round K may arrive.
Note that all those nup(K) processes can receive all messages for ticks k ≥ K from
each other (except faulty ones, of course). The special case nup(0) = n describes the

8Incorporating f s
` in our algorithm is only required to guarantee liveness in the transition from

degraded to normal mode (Theorem 22 and Theorem 24); it accounts for send link failures in join-
messages of late starters. Consequently, most of our results—in particular, the ones of this section—
hold when setting f s

` = 0 in Figure 7.4 and in our formulas (despite of f r
` > 0) as well.

7.4. FROM EARLY TO DEGRADED MODE 69

situation where all processes must be up and running right from the very beginning,
i.e., where system startup is ignored [70, 95, 86]. The case nup(1) < n will be used to
describe the behavior of our algorithm during (the beginning of) degraded mode.

We start with some frequently used definitions and lemmas, which apply to any
operation mode. Note that a passive process p’s local clock Cp(t) refers to its current
round number k (see Figure 7.4) at time t in our analysis; terms like p’s clock value
and “p sets its clock” are hence meaningful for both active and passive processes. Still,
the clock synchronization properties need only hold for active processes. Of particular
importance is the maximum clock value of all obedient processes in the system, which
will be used as the ”reference time” in our precision analysis.

Definition 13 (Maximum Clock Value). Consider some real-time t.

• Cmax(t) is the maximum of the local clocks of all obedient processes that are up
at time t.

• σk−1
first = σk−1

p ≤ t denotes the real-time when the first obedient process p sets its

local clock to k = Cmax(t); σ−1
first is the time when the first obedient process has

completed booting. Note that p’s clock value, and hence Cmax, is defined to be k
at time σk−1

first, and k − 1 at σk−1
first − ε for any infinitesimally small ε > 0.

The maximum set of obedient processes that did not miss any tick k message from each
other (except the ones missing due to process or link failures, of course) is denoted by
Pup(k), with nup(k) = |Pup(k)|.

The following Lemma 14 reveals a few straightforward properties about messages
sent by correct9 processes.

Lemma 14 (Message Generation). Consider any correct process p executing the
algorithm of Figure 7.4. If p reached clock value k > 0 by time t, it must have sent
(round k′) for all 0 ≤ k′ ≤ k − 1 by time t.

Proof. Consider the sequence of values {cm}m≥0, assigned to p’s clock variable at real-
times {tm}m≥0. Using induction on m, we will show that p must have emitted (round `′)
for all 0 ≤ `′ ≤ cm by time tm. Since it is obvious from Figure 7.4 that cm can only be
monotonically increasing, our lemma then follows immediately.

For the basis m = 0, obviously c0 = 0 and the claim is void since no (round) message
needs to have been sent by t0. Assuming now that the claim holds for m−1 ≥ 0, i.e. all
(round `′) for 0 ≤ `′ ≤ cm−1 have been sent by time tm−1 when p’s clock is set to cm−1,
we have to show that the claim holds for m as well: Two cases must be distinguished
here, according to whether setting p’s clock to cm occurs via line 6 or line 13.

If p sets its clock via line 13 in in Figure 7.4, we must obviously have cm = cm−1 +1.
Since triggering of line 13 implies triggering of line 6, (round cm−1) = (round cm−1)
must have been sent by time tm. Combining this with the induction hypothesis, the
claim follows immediately.

9Transmission of messages of obedient process q are guaranteed to be successful only if q is correct.

70 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

If p sets its clock to cm via line 6, it sends (echo, l′′) for cm−1 ≤ l′′ ≤ cm by line 8;
note that (echo, cm−1) is of course only emitted here if this has not happened earlier.
Combining this with the induction hypothesis, our claim follows also in this case.

The following lemma shows that progress of Cmax(t) is only possible via line 13.

Lemma 15 (2nd if). The first obedient process that sets its clock to tick k = Cmax(t) >
0 by time t must do so by line 13.

Proof. By contradiction. Assume that the first obedient process p sets its clock to
k = Cmax(t) at instant t by line 6. At least one obedient process must have sent a
message for a tick ` ≥ k to enable this rule at p. Since obedient processes only send
messages for ticks less or equal their local clock value, at least one must already have
had a clock value ` ≥ k at instant t. This contradicts p to be the first one that reaches
clock value k.

The following Lemma 16 shows that processes which completed booting early enough
can be guaranteed to be in Pup(k), since they must have got all tick k messages from
other obedient processes (except messages hit by failures). Bear in mind, however, that
early booting is not the only only way of ensuring inclusion in Pup(k). A late starting
process p may also achieve p ∈ Pup(k) via the join-protocol even though it completes
booting after time σk−1

first + τ−.

Lemma 16 (Booting Times). Any obedient process p that is up by time σk−1
first + τ−

satisfies p ∈ Pup(k).

Proof. Since the first obedient process that emits a tick k message does so not earlier
than time σk−1

first, according to our algorithm in Figure 7.4 and Lemma 15, no obedient

process p can receive such a message before time σk−1
first + τ−. Since p is up by that

time, it will hence receive all tick ` ≥ k messages from correct processes.

The following Theorem 18 is the first major result of this section. It shows that
the clocks of obedient processes obey two properties, namely, uniform unforgeability
(U), and uniform quasi simultaneity (Q) – in concordance with Section 6.1. These
properties are weak in the sense that they suffice to ensure (π) but are to weak to
guarantee (α). This is due to the small number of processes that participate during
booting and the impossibility results [30] on the minimal number of processes which
are required to guarantee (π) and (α).

Theorem 18 (Weak Clock Synchronization Properties). For n ≥ f s
` + 2f ra

` +
2f r

` + 3fa + 2fs + 2fo + fc + 1, the algorithm from Figure 7.4 achieves

(U) Uniform Unforgeability. If no obedient process sets its clock to k by time t, then
no obedient process sets its clock to k + 1 by time t + τf or earlier.

(Q) Uniform Quasi Simultaneity. For any k ≥ 1, if an obedient process sets its clock
to k at time t, then, by time t + ε, every obedient process ∈ Pup(k − 1) sets its
clock at least to k − 1 and, if correct, sends (round k − 1).

7.4. FROM EARLY TO DEGRADED MODE 71

Proof. Uniform Unforgeability. Setting the clock value can be done by (1) the line 13

or (2) line 6. The proofs are by contradiction.
Assume (1) that there is an obedient process p that sets its clock to k+1 before instant

t+ τf using line 13. This implies |Vk
p (t+ τf)| ≥ n−f s

` −f ra
` −f r

` −2fa −2fs−fo −fc ≥
2f ra

` +f r
` +2fa+fo+fs+1. Since, according to Lemma 12, only at most f ra

` +fa+fs of the
corresponding (round k) perceptions may be due to messages produced by arbitrary
receive link failures and time/value-faulty processes, at least one obedient process q
must have sent (round k) for k ∈ {k, k+1} before time t+τf (according to Lemma 13),
which contradicts the assumption of unforgeability.

Assume (2) that there is an obedient process p that sets its clock to k + 1 before
instant t + τf using line 6. Process p does so because |V l

p(t + τf)| ≥ f ra
` + fa + fs + 1

for some l ≥ k + 1. That is, at least one (round l) message, l ∈ {l, l + 1}, must have
been sent by an obedient process q before t. l > k and messages for tick l are sent by
an obedient process only after tick k messages. But by assumption of (U), no tick k
message was sent before t, which again provides the required contradiction.

Uniform Quasi Simultaneity. Assume first that k = Cmax(t). If the obedient process
p that advanced its clock to k by assumption used line 13, then |V (k−1)

p (t)| ≥ 2f ra
` +

f r
` + 2fa + fo + fs + 1. Hence, the perception vector for tick k − 1 at any obedient

process q ∈ Pup(k − 1) at time t + ε must satisfy |V (k−1)
q (t + ε)| ≥ f ra

` + fa + fs + 1
according to Lemma 12.10 It follows that every obedient process ∈ Pup(k− 1) achieves
sufficient evidence in line 6 to catch-up to round k− 1 (if it has not already done so).
This fact (or Lemma 14 if p has already reached an even larger clock value ≥ k by
t + ε) guarantees that (round k − 1) is sent by time t + ε.

If, on the other hand, the obedient process p advanced its clock to k by line 6, there
must be a process p′ that set its clock to k by line 13 earlier according to Lemma 15.
Using p′ in the above argument establishes (Q) in this case as well.

If k < Cmax(t), then at least one obedient process has already set its clock to l > k
at some time t′ ≤ t using line 13. We have shown in the previous paragraph that all
obedient processes ∈ Pup(k − 1) must set their clocks to l − 1 (and hence at least to
k − 1) by time t′ + ε (and hence by time t + ε) as asserted.

Since (U) and (Q) are satisfied, Lemma 3 and Lemma 4—derived in Section 6.1—
hold as well. These lemmas will be used in the following analysis.

The following two technical Lemmas 17 and 18 are the major tools in our precision
analysis. Both lemmas—and hence all the results built upon those—actually hold for
every algorithm that satisfies uniform unforgeability (U) and uniform quasi simultane-
ity (Q). Lemma 18 bounds the maximum real-time difference between any obedient
process’s clock and Cmax (i.e., the fastest obedient process) at about the same clock
time. Note carefully that it actually holds for any k′ ≥ k and hence for any t ≥ σk

first,
since p ∈ Pup(k) implies p ∈ Pup(k

′).

10If n is increased, |V
(k−1)
q

′

(t + ε)| increases accordingly. This fact will be used for ensuring quasi
simultaneity (Q) despite of some missing (round k − 1) due to send link failures: By adding another
fs

` to n, the at most f s
` lost join-messages of a late starter p, which may lead to the lack of up to f s

`

responses (round k − 1) at p, can be masked transparently, see the proof of Theorem 22.

72 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Lemma 17 (Real-Time Bounds). For any obedient process p ∈ Pup(k) where k+1 =
Cmax(t) such that σk

first ≤ t < σk+1
first, the following holds:

σk−1
p ≤ σk

first + ε (7.3)

Cp(t + ε) ≥ Cp(σ
k−1
p) = Cmax(σ

k
first) − 1 = Cmax(t) − 1 (7.4)

Moreover, if p is correct, it is guaranteed to send (round k) by time t + ε.

Proof. According to (Q) in Theorem 18, all obedient processes ∈ Pup(k), and hence
also p, must set their clocks to at least k by time σk

first + ε. (Q) hence implies (7.3)
and the claimed sending of (round k).

If (7.3) holds, it follows from σk
first ≤ t < σk+1

first that Cmax(t) = k + 1 and σk−1
p ≤

σk
first+ε ≤ t+ε. Consequently, Cp(t+ε) ≥ Cp(σ

k−1
p) = k and hence Cmax(t)−Cp(t+ε) ≤

1, which confirms (7.4).

The following lemma provides a bound for the maximum clock time difference of any
obedient process and Cmax at the same real-time. Note that the precision Dq implied by
Lemma 18 actually holds for any k′ ≥ k and hence for any t ≥ σk−2

p , since p ∈ Pup(k)
implies p ∈ Pup(k

′).

Lemma 18 (Logical Time Bounds). For any obedient process p ∈ Pup(k), k ≥ 1,
and any t′ with σk−2

p ≤ t′ < σk−1
p ,

Cmax(t
′) ≤ Cp(t

′) + Dq = k − 1 + Dq (7.5)

Cmax(σ
k−1
p) ≤ Cp(σ

k−1
p) + Dq − 1 = k − 1 + Dq (7.6)

with

Dq = bΩ + 2c. (7.7)

Proof. If Cmax never reaches k + 1, (7.5) and (7.6) hold trivially since Dq ≥ 1. Hence,
suppose that Cmax reaches k+1 at time σk

first < ∞. Let t = σk−1
p denote the time when

p sets its clock to k. In order to compute Cmax(t), we use Lemma 4 and our knowledge
of Cmax(t− ε) ≤ Cmax(σ

k
first) = k + 1 due to monotonicity of Cmax in conjunction with

(7.3): From Lemma 4, we infer that Cmax(t) ≤ b t−(t−ε)
τf

c + Iσ(t − ε) + Cmax(t − ε). If

σk
first = t − ε such that t − ε is synchronized with Cmax, then Cmax(t − ε) = k + 1 and

Iσ(t − ε) = 0 according to Definition 6. If, on the other hand, σk
first > t − ε, then

Cmax(t − ε) = k and Iσ(t − ε) = 1. In both cases, Iσ(t − ε) + Cmax(t − ε) = k + 1 and
hence Cmax(t) ≤ b ε

τf
c+ k + 1 ≤ bΩ + 2c+ k− 1. As Cmax(t

′) ≤ Cmax(t) since t′ < t and

Cp(t
′) = k − 1, (7.5) follows. If we increase t′ until t′ = t = σk−1

p , then Cp(t
′) increases

from k − 1 to k and thus reduces the difference to Cmax by 1, as asserted in (7.6).

The following Lemma 19 is a simple corollary of Lemma 18. It immediately leads to
the precision bound given in Theorem 19 below.

Lemma 19 (Precision Bound). Let t be any real-time where Cmax(t) = K ≥ 1, and
p be an obedient process with Cp(t) = k for some 0 ≤ k ≤ K. If p ∈ Pup(k + 1), then
k ≥ K − Dq. If t = σk−1

p and p ∈ Pup(k), then k ≥ K − Dq + 1.

7.4. FROM EARLY TO DEGRADED MODE 73

Proof. Inequality (7.5) in Lemma 18 reveals that Cmax(t
′) ≤ k + Dq for all σk−1

p ≤ t′ <
σk

p since p ∈ Pup(k + 1) by assumption. Given that Cp(t) = k implies t < σk
p here, we

can choose t′ = t such that K = Cmax(t) ≤ k + Dq as asserted. If, on the other hand,
t = σk−1

p , then (7.6) applies and hence K = Cmax(t) ≤ k + Dq − 1.

Theorem 19 (Bulk Precision). Consider a system of n ≥ f s
` + 2f ra

` + 2f r
` + 3fa +

2fs + 2fo + fc + 1 processes running the algorithm of Figure 7.4. For any K ≥ 1 and
all real-times t ≥ σK−1

first, all obedient processes p ∈ Pup(kp + 1) with kp = Cp(σ
K−1
first)

maintain a mutual precision of Dq = bΩ + 2c.

Proof. Let K ′ ≥ K be such that σK′−1
first ≤ t < σK′

first and hence Cmax(t) = K ′. Applying
Lemma 19 reveals that all obedient processes p ∈ Pup(k

′
p + 1) with k′

p = Cp(t) satisfy
K ′ − k′

p ≤ Dq and are hence within precision Dq. Since p ∈ Pup(kp + 1) implies
p ∈ Pup(k

′
p + 1) for any k′

p ≥ kp, our lemma follows.

With those preparations, we are now ready for computing the precision of our algo-
rithm during early and (the beginning of) degraded mode: Since no obedient process
can advance its clock from 0 to 1 as long as less than n − f s

` − f r
` − fa − fs − fo − fc

processes have completed booting, see Figure 7.4 (line 13), the system remains in
early mode until the n − f s

` − f r
` − fa − fs − fo − fc-th process p (faulty ones in-

cluded) completes booting, at some time tup. Progress of any obedient process—and
hence the transition to degraded mode—is possible only after time tup + τ−, since p’s
(round 0), as well as the assistance of all faulty processes, is needed for this purpose.
Hence, degraded mode starts at some time σ0

first ≥ tup +τ−, with some specific number
n− f s

` − f r
` − fa − fs − fo − fc ≤ nup(1) ≤ n of processes that have completed booting

soon enough to be able to receive each other’s tick 1 messages. Note that all these
nup(1) processes have clock value 0 or 1, and are hence a priori synchronized to each
other within precision 1 during early mode.

Setting K = 1 in Theorem 19 immediately yields the precision of our algorithm in a
system with n ≥ f s

` +2f ra
` +2f r

` +3fa +2fs +2fo +fc +1 processes, where an arbitrary
but fixed number nup(1) ≤ n of processes start in degraded mode. It shows that all
obedient processes among the nup(1) ones are synchronized to within Dq for all times.

Theorem 20 (Precision of Early Starters). Consider a system of n ≥ f s
` +2f ra

` +
2f r

` + 3fa + 2fs + 2fo + fc + 1 processes with a fixed number nup(1) = |Pup(1)| ≤ n of
processes that completed booting by time σ0

first and are hence ready to receive all their
tick 1 messages. The obedient processes p ∈ Pup(1) are synchronized to each other
within Dq = bΩ + 2c during whole system lifetime.

Proof. Since all obedient processes in Pup(1) have clock value 0 or 1, they are obvi-
ously synchronized within precision 1 ≤ Dq up to time σ0

first. From time σ0
first on,

Theorem 19 secures precision Dq due to the fact that all obedient processes p with
Cp(σ

0
first) = k ≤ 1 are up since time σ0

first ≤ σk
first according to our assumption

p ∈ Pup(1).

74 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

7.5 From Degraded to Normal Mode

Theorem 20 can be applied to all obedient processes that have completed booting
by the beginning of degraded mode. It shows that all those early starters remain syn-
chronized to each other within Dq. The problem is, however, that additional processes
might complete booting during degraded mode, after the set of early starters has made
some progress. As late processes start with a clock value of 0, they are clearly not syn-
chronized right from the start. This does not matter, since passive processes need not
satisfy precision (π). Unfortunately, however, even active late starters could compute
their first clock values from very little information on the system state. Although they
will eventually also reach precision Dq, this results in a considerably larger precision
Dboot during a short period of time after becoming active. Since no process can deter-
mine locally whether it is already within Dq, it is Dboot that determines our algorithm’s
worst case precision. This fact is essential when considering other algorithms during
booting, later in Section 8: A priori knowledge of Dboot will be used to derive a local
estimation of Cmax(t) when some process becomes active at time t.

Besides the larger precision Dboot, late starters introduce another disadvantageous
property: In order to guarantee that all correct processes become active and synchro-
nized within bounded time, we have to guarantee a sufficiently large “leader group” of
correct processes. Therefore, our algorithm requires an increased number of processes
for some restricted failure modes and for tolerating send link failures11 in join-messages:
It will turn out that fs + fc + f s

` additional processors are required here, i.e., that we
need a system with n ≥ 2f s

` + 2f ra
` + 2f r

` + 3fa + 3fs + 2fo + 2fc + 1 processes. Unlike
in Section 7.4, symmetric process failures are hence as severe as asymmetric ones, and
crash failures are as severe as our omission failures in presence of late starters. Note
that this can be explained by the fact that (receiver) processes boot at unpredictable
times, which turns otherwise consistently perceived process failures into inconsistently
perceived ones.

In order to compute Dboot, we first give a bound on real-time tsync when an obedient
late starter process p reaches a local clock value Cp(tsync) within precision Dq, such
that Cmax(t)−Cp(t) ≤ Dq for any time t ≥ tsync. Time tsync hence delimits the period
where p may have the worst case precision Dboot. It must be noted, however, that tsync

depends upon progress of Cmax here (which is not guaranteed during booting).

Lemma 20 (First Synchronization). Let p be an obedient process that gets up at
time tup and let k = Cmax(tup − τ− − ε) + 1 ≥ 1 for any infinitesimally small ε. Then,
p ∈ Pup(k), Cp(tsync) = k where tsync ≤ σk

first + ε, and

Cmax(t) − Cp(t) ≤ Dq (7.8)

for all times t ≥ tsync = σk−1
p . Moreover,

Cmax(tsync − ε) ≤ Cmax(tup − τ− − ε) + bΩ + 2c. (7.9)

11Send link failures (f s
` > 0) must be considered explicitly only in Theorem 22 and Theorem 24; all

other results hold for f s
` = 0 (despite of f r

` > 0) as well.

7.5. FROM DEGRADED TO NORMAL MODE 75

Proof. Our choice of k ensures σk−1
first ≥ tup − τ− and hence tup ≤ σk−1

first + τ−, such that
p ∈ Pup(k) by Lemma 16. Hence, Lemma 17 holds and (7.3) ensures tsync = σk−1

p ≤
σk

first + ε and hence Cp(t) ≥ k for all t ≥ tsync. Lemma 19 guarantees that p is within
precision Dq for all t ≥ tsync as asserted in (7.8).

In oder to confirm (7.9), we abbreviate t′ = σk
first such that Cmax(t

′) = Cmax(tup −
τ− − ε) + 2 = k + 1 and Iσ(t′) = 0 according to Definition 6. From Lemma 4, it

follows that Cmax(tsync − ε) ≤ Cmax(t
′ + ε − ε) ≤ Cmax(t

′) + b (t′+ε−ε)−t′

τf
c + Iσ(t

′) ≤

Cmax(tup − τ− − ε) + 2 + bΩc = Cmax(tup − τ− − ε) + bΩ + 2c as asserted.

Next we have to consider the worst case quality of the information that a passive
process p might use to change to active. We start with Lemma 21, which reveals that
messages from some common obedient process r are required for both advancing Cmax

and changing p to active (line 13). Note carefully, however, that it need not be the
same message from r since h = 1.

Lemma 21 (Common Process). For n ≥ 2f s
` +2f ra

` +2f r
` +3fa +3fs+2fo +2fc +1,

any two obedient processes p and q that execute line 13 in the algorithm of Figure 7.4
use messages from at least one common obedient process r.

Proof. Let f ′
a ≤ fa and f ′

s ≤ fs be the actual number of arbitrary and symmetric
faulty processes, respectively. Both processes p and q must have got at least n − f s

` −
f r

` − fa − fs − fo − fc (round kp) and (round kq) perceptions, respectively. At most
f ′

a + f ′
s + f ra

` of those could have a malign faulty origin (see Lemma 12), such that
m = n−f s

` −f r
` −fa −fs −fo −fc −f ′

a −f ′
s −f ra

` is the minimal number of perceptions
obtained from obedient processes at either p and q. The total number of obedient
processes in the system is at most n − f ′

a − f ′
s. Since

2m − n + f ′
a + f ′

s = n − 2f s
` − 2f r

` − 2fa − 2fs − 2fo

−2fc − f ′
a − f ′

s − 2f ra
`

≥ n − 2f s
` − 2f r

` − 2f ra
` − 3fa − 3fs

−2fo − 2fc

≥ 1, (7.10)

the pigeonhole principle reveals that at least one of p and q’s (round)-perceptions must
originate from the same obedient process r (although it need not be the same message
from r that generated those perceptions at p and q).

We are now ready for computing Dboot. The worst situation with respect to Cmax

occurs when a late starter p switches to active shortly after getting up, such that is
has very few information on the system state, and that Cmax progresses at maximum
rate until time tsync, where p is guaranteed to be within Dq. The worst case precision
Dboot then occurs shortly before tsync.

Theorem 21 (Precision). For n ≥ 2f s
` + 2f ra

` + 2f r
` + 3fa + 3fs + 2fo + 2fc + 1,

the algorithm of Figure 7.4 achieves the precision property (π) during whole system
life-time with Dboot = b2Ω + 4c.

76 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Proof. Let tup be the time when late starting process p gets up. Assume that process p
changes to active at time t1 ≥ tup, with a clock value of k +1, based on a (round k +1)
message received at time t′1 ≤ t1 that was sent by the common obedient process r
guaranteed by Lemma 21. This (round k + 1) message is “interpreted” as (round k)
at p, which is legitimate due to the history size h = 1. In addition, consider time
t2 = σk+1

first, when the first obedient process q increases Cmax to k + 2. According to
Lemma 21, a (round k + 1) message from the same process r must be present at q at
time t′2 ≤ t2. We must distinguish two cases here: The (round k + 1) message received
at p could be the result of r’s “regular” (round k + 1) broadcast, or r’s response to p’s
join-message.

If (round k + 1) at p and q are from r’s broadcast, |t′1 − t′2| ≤ ε. The worst case
precision occurs when r sent (round k + 1) as early as possible, such that Cmax can
progress as much as possible before p gets the associated messages (reception of these
messages would require p to catch up to a clock value > k + 1). The worst setting
is hence t′1 = tup and t2 = t′2 = σk+1

first = tup − ε. Since t2 = σk+1
first, t2 is synchronized

with Cmax and hence Iσ(t2) = 0 by Definition 6. If t2 ≥ tup − τ− it follows that
Cmax(tup − τ− − ε) ≤ Cmax(t2) − 1 = k + 1 which is smaller than the case where
t2 < tup − τ− for which Lemma 4 hence reveals

Cmax(tup − τ− − ε) ≤ Cmax(t2) +
⌊(tup − τ− − ε) − (t2)

τf

⌋

+ Iσ(t2)

= k + 2 +
⌊ε − τ− − ε

τf

⌋

≤ bΩc + k + 2 (7.11)

for any infinitesimally small ε here.
If, alternatively, p gets its (round k + 1) as a response to its join-message, process

r must not have caught up to some clock value > k + 1. Hence, if t0 denotes the
real-time when join arrives at r, we must have t0 < σk+1

r ≤ σk+2
first + ε (and hence

t′1 < σk+2
first + ε + τ+ since the response message may travel at most τ+). After all,

r ∈ Pup(k + 2) since r helped to advance Cmax to k + 2, such that (7.3) in Lemma 17
implies σk+1

r ≤ σk+2
first + ε. Allowing join to travel only τ− in order to maximize tup in

our worst case setting, this implies tup < σk+2
first + ε− τ−. Abbreviating t3 = σk+2

first, this
implies

Cmax(tup − τ− − ε) ≤ Cmax(t3) +
⌊ε − 2τ− − ε

τf

⌋

= k + 3 +
⌊τ+ − 3τ− − ε

τf

⌋

≤ bΩc + k + 3 (7.12)

here. Comparison with (7.11) reveals that this constitutes the worst case situation.
We are still free to choose t1 to complete our worst case setting for Dboot. Note that
p could switch to active based on messages with malign origin or sent by passive

7.5. FROM DEGRADED TO NORMAL MODE 77

processes, which means that t1 ≥ t′1 can be arbitrary. We assume that this happens
immediately before tsync, the time when p is guaranteed to be within precision Dq

according to Lemma 20. Recalling (7.9), the required bound for Dboot is hence implied
by Cmax(tsync−ε) ≤ Cmax(tup−τ−−ε)+bΩ+2c ≤ bΩc+k+3+bΩ+2c ≤ b2Ω+4c+k+1,
such that Cp(t1) = k + 1 ≥ Cmax(tsync − ε) − b2Ω + 4c as asserted.

Apart from precision, it is not difficult to show that all active processes also satisfy
the upper envelope bound of the accuracy property (α):

Lemma 22 (Upper Envelope Bound). For n ≥ 2f s
` + 2f ra

` + 2f r
` + 3fa + 3fs +

2fo +2fc +1, all obedient processes p that are active by time t1 satisfy Cp(t2)−Cp(t1) <
t2−t1
2τ−

+ Dboot + 1 for all times t2 ≥ t1.

Proof. From Theorem 21, it follows that Cmax(t)−Dboot ≤ Cp(t) ≤ Cmax(t) at all times
t ≥ t1. Thus, Cp(t2) − Cp(t1) ≤ Cmax(t2) − Cmax(t1) + Dboot. Applying Lemma 4, the
statement of our lemma follows immediately.

Theorem 21 reveals that late starters can be guaranteed to maintain precision when
they switch to active mode. What still needs to be shown, however, is that this switch
to active occurs eventually. In order to prove this, we first show in Lemma 23 that, at
any time t, at least f s

` + f ra
` + f r

` + fa + fs + 1 correct processes have clock values of
Cmax(t) or Cmax(t) − 1 and emitted corresponding echo-messages by time t.

Lemma 23 (Frontier Processes). Consider any time t with k = Cmax(t) > 0. In a
system with n ≥ 2f s

` +2f ra
` +2f r

` +3fa +3fs +2fo +2fc +1 processes, the algorithm of
Figure 7.4 ensures that there are at least f s

` + f ra
` + f r

` + fa + fs + 1 correct processes
with local clock values k or k − 1 which have sent (round k) or (round k − 1).

Proof. Let p be the first obedient process that sets its clock to the maximum at time t,
such that Cp(t) = Cmax(t) = k. According to Lemma 15, this happens via line 13, so p
satisfies |V (k−1)

p (t)| ≥ n−f s
` −f r

` −fa−fs−fo−fc ≥ f s
` +2f ra

` +f r
` +2fa+2fs+fo+fc+1.

At least f s
` + f ra

` + f r
` + fa + fs + 1 of those originate from correct processes that sent

either (round k− 1) or (round k), recall the history size h = 1. Since correct processes
never send (round)messages for ticks larger than their local clock values, they must all
have a clock value of k or k − 1 at time t.

The following major Theorem 22 implies a bound on the time tsync when a late
starting process p gets synchronized within Dq, which—unlike Lemma 20—does not
depend upon progress of Cmax. The problem with Lemma 20 is that one cannot a
priori bound the difference between tup and tsync ≤ σk

first + ε, since σk
first can happen

at any time in the future. In this case, however, p actually gets synchronized when the
join-protocol terminates, i.e., by time tup + 2τ+: Since there is no further progress of
Cmax here, the responses to join recover all missed tick k−1 or k−2 messages. Having
received all the responses, the late starter p can hence catch up to k − 2 as if it had
been up right from time σk−3

first on, i.e., as if p ∈ Pup(k− 2). A similar argument applies
if Cmax progresses to k during the join-protocol. It is important to note, however, that
p need not be active at time tsync. That is, p is already well-synchronized at tsync but
does not know this fact.

78 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Theorem 22 (First Synchronization via Join). Let p be an obedient process that
gets up at time tup ≥ σ0

first in a system with n ≥ 2f s
` +2f ra

` +2f r
` +3fa+3fs+2fo+2fc+1

processes running the algorithm of Figure 7.4, and assume that k = Cmax(tup − τ− −
ε) + 1 ≥ 1 for any infinitesimally small ε. Then, there is some tsync ≤ tup + 2τ+ with
` = Cp(tsync) ≥ k − 2, such that p ∈ Pup(min{`, k}) and

Cmax(t) − Cp(t) ≤ Dq (7.13)

for all times t ≥ tsync.

Proof. Since k = Cmax(tup − τ− − ε) + 1 ≥ 1, it follows that σk−1
first ≥ tup − τ− and

hence p ∈ Pup(k) by Lemma 16. Consequently, k is the first tick that is observed
comprehensively by p. We will show that p gets sufficiently many messages to set its
clock at least to ` ≥ k − 2 at some time tsync with σ`−1

p ≤ tsync ≤ tup + 2τ+, and that
p ∈ Pup(`) and (7.13) hold from this time on.

Since p sends its join message at time tup, any obedient process receives it within
I = [tup + τ−, tup + τ+]. By time tup + 2τ+, all the responses from correct processes
must have arrived at p. We have to distinguish 3 cases:

Case (a): If σk
first ≤ tup + τ+, Lemma 20 reveals tsync ≤ tup + τ+ + ε ≤ tup +2τ+ and

hence confirms our lemma for ` = k. So let us assume that σk
first > tup + τ+, which

implies that only σk−1
first could occur within I.

Case (b): If σk−1
first 6∈ I, the value of Cmax does not increase within I, i.e., k′ =

Cmax(tup + τ−) = Cmax(tup + τ+) with k′ = k or k′ = k − 1, depending upon whether
(b.1) σk−1

first < tup +τ− or (b.2) σk−1
first > tup +τ+ (the latter is only possible for k ≥ 2 due

to tup ≥ σ0
first). Lemma 23 assures that there is a set P of at least f s

` +f ra
` +f r

` +fa+fs+1
correct processes at time tup + τ− that last sent (round k′) or (round k′ − 1). Since
correct processes send echo-messages with increasing index only, and k ′ is the maximum
clock value throughout I and hence the maximum possible index, all the processes in
P last sent (round k′) or (round k′ − 1) at any time t ∈ I. Since at most f s

` of
the processes in P may have lost p’s join due to send link failures, there are at least
f ra

` + f r
` + fa + fs + 1 (round k′) or (round k′ − 1) among the responses on p’s join-

message. Recalling the at most f r
` receive link failures, it follows that there is some

time σk′−2
p ≤ tsync ≤ tup + 2τ+ with |V (k′−1)

p (tsync)| ≥ f ra
` + fa + fs + 1. This triggers

line 6 that causes Cp(tsync) ≥ k′ − 1, if this has not happened earlier. Moreover,
by time tsync, we can be sure that the responses to join recovered all but at most
f s

` tick k′ − 1 messages that might have been missed due to late booting. Hence, at
time tsync, the situation at p is equivalent to p ∈ Pup(k

′ − 1). Note that the up to f s
`

missing (round k′ − 1) or (round k′) originating from lost join messages do not matter
for the pivotal quasi simultaneity (Q) property, since our n is larger by f s

` than the
n of Theorem 18. Lemma 19 thus guarantees that p is within precision Dq for all
times t ≥ tsync and hence (7.13).

Case (c): Finally, if σk−1
first ∈ I, the value of Cmax increases from k−1 to k somewhere

within interval I. Consider the at least f s
` + f ra

` + f r
` + fa + fs + 1 correct processes

that last sent (round k) or (round k − 1) according to Lemma 23 at time σk−1
first. If

p’s join-message reached one of those processes q at some time t ≥ σk−1
first, its response

7.5. FROM DEGRADED TO NORMAL MODE 79

message is guaranteed to be (round k−1) or (round k) by the same reasoning as before.
If, on the other hand, p’s join-message reached q at some time t < σk−1

first, there are
two possibilities: If the index of the last sent echo-message of q was already k − 1 at
time t, the response message is (round k − 1) as required. Otherwise, the response
message is some (round k − x) with x ≥ 2. However, by time σk−1

first, process q must
have changed its state such that it last sent (round k) or (round k − 1) according to
Lemma 14, which means that this message must already be in transit and reaches
p by σk−1

first + τ+ ≤ tup + 2τ+. Like above, it hence follows that there is some time

σk−2
p ≤ tsync ≤ tup + 2τ+ with |V (k−1)

p (tsync)| ≥ f ra
` + fa + fs + 1, which triggers

line 6 and causes Cp(t
′) ≥ k − 1, if this has not happened earlier. By the very

same reasoning as in case (b) above, we can claim that the join-protocol established
a situation equivalent to p ∈ Pup(k − 1), and that hence Lemma 19 implies (7.13) as
required. This eventually completes the proof of Lemma 22.

Equipped with Theorem 22, it is not difficult to bound the time it takes for all
obedient processes to become active after the n − fa − fs − fo − fc-th correct process
got up. We need some additional properties related to Theorem 18 for this purpose,
however, which apply only when at least n− f s

` − fa − fs − fo − fc processes are up in
a system with n ≥ f s

` + 2f ra
` + 2f r

` + 3fa + 3fs + 2fo + 2fc + 1 processes.

Theorem 23 (Clock Synchronization Properties). In a system with n ≥ f s
` +

2f ra
` +2f r

` +3fa +3fs +2fo +2fc +1 processes, the algorithm from Figure 7.4 achieves

(P) Uniform Progress. If at least n− f s
` − fa − fs − fo − fc correct processes set their

clocks to k ≥ 0 by time t, then every obedient process ∈ Pup(k) sets its clock at
least to k + 1 and becomes active by time t + τ+.

(S) Uniform Simultaneity. Suppose there are at least n− f s
` − fa − fs − fo − fc correct

processes among the processes ∈ Pup(k− 1). If any obedient process sets its clock
to k > 0 at time t, then every obedient process ∈ Pup(k − 1) also sets its clock at
least to k and becomes active by time t + τ+ + ε.

Proof. Uniform Progress. According to Lemma 14, all of the at least n − f s
` − fa −

fs − fo − fc ≥ 2f ra
` + 2f r

` + 2fa + 2fs + fo + fc + 1 correct processes must have sent
(round k) by time t. Taking into account the at most f r

` receive link failures, the
(round k) perception vector of every obedient process p ∈ Pup(k) at time t + τ+ hence
satisfies |Vk′

p (t + τ+)| ≥ n − f s
` − f r

` − fa − fs − fo − fc. Consequently, p sets its clock
to k + 1 by line 13 in Figure 7.4, if it had not already done so. Hence, switching to
active mode is guaranteed to happen in this case as well.

Uniform Simultaneity. According to (Q) all correct processes set their clock to k − 1
by t + ε. By (P) all processes set their clock to k by time t + τ+ + ε.

Now we are ready for our Theorem 24, which bounds the time it takes for all obedient
processes to become active after the last correct process got up, and shows that the
system is guaranteed to make progress afterward.

80 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Theorem 24 (Initialization Time). Let tup ≥ σ0
first, with k = Cmax(tup−τ−−ε)+1 ≥

1 for any infinitesimally small ε, be the time when the n − fa − fs − fo − fc-th correct
process gets up in a system of n ≥ 2f s

` +2f ra
` +2f r

` +3fa +3fs +2fo +2fc +1 processes
running the algorithm of Figure 7.4. All obedient processes that got up by time tup

switch to active by time tup + ∆init and progress to at least k by time tup + ∆init + τ+,
where ∆init = 2τ+ + ε.

Proof. Let p be the n−fa−fs−fo−fc-th correct process that gets up at tup. Theorem 22
ensures that it gets synchronized with Cmax—and hence with all other processes that
are up at tup—within Dq at time tsync ≤ tup+2τ+ and satisfies `p = Cp(tsync) ≥ k−2 as
well as p ∈ Pup(min{`p, k}). Obviously, q ∈ Pup(min{`q, k}) and precision Dq also holds
for obedient processes q that booted earlier, including the early starters. Abbreviating
t′ = tsync and k′ = Cmax(t

′) ≥ k−1, we will first show that every obedient process q sets
its clock to at least k′ ≥ k − 1 and becomes active by time t′ + τ+ + ε ≤ tup + ∆init. If
already Cq(t

′) ≥ k′, nothing remains to be done. In the other case Cq(t
′) ≤ k′−1, we can

apply simultaneity (S) in Theorem 23 since q ∈ Pup(k
′ − 1) due to q ∈ Pup(min{`q, k})

and `q ≤ Cq(t
′) ≤ k′ − 1. Hence, q must set its clock to at least k′ and switch to active

by time t′ + τ+ + ε as asserted.
Using progress (P), it is easy to show that every obedient process q reaches at least

clock value k′ + 1 ≥ k by time t′ + 2τ+ + ε. Every process q has already reached clock
value k′, so obviously q ∈ Pup(k

′). Hence, q sets its clock to at least k′ + 1 within
another τ+. This eventually completes the proof of Theorem 24.

We still have to consider very late processes, which complete booting after the n −
fa − fs − fo − fc-th correct one. The following Theorem 25 gives a bound upon the
time until such a process becomes active. Since we have already guaranteed progress
here, this is equivalent to integrating processes into running systems.

Theorem 25 (Integration Time). Suppose that some obedient process gets up at
time tup after the n − fa − fs − fo − fc-th correct one. Then, p switches to active by
time tup + ∆init with ∆init = 2τ+ + ε.

Proof. The proof of Theorem 24 does not depend upon p being the n−fa−fs−fo−fc-th
correct process, but could be any obedient process booting after the n−fa−fs−fo−fc-
th correct one. Hence, it can be re-used literally here.

Since this section’s clock synchronization algorithm ensures uniform versions of (P),
(U), (Q), and (S) during normal mode, it also satisfies (π) and (α) as given in Theorem 5
and Theorem 6, respectively.

7.6. RELATED WORK 81

7.6 Related Work

Clock synchronization in distributed systems is a very well researched field, see [30,
93, 82, 92, 84, 73] for an overview. Still, there are only a few papers [95, 73, 70, 57, 96]
known to us that deal with initial synchronization, mostly in the context of integrating a
new process in an already running system. For initialization it is often assumed that all
correct processes are up and listening to the network when the algorithm is started [95,
70]. In systems where processes boot at unpredictable times, this assumption is too
strong.

Some solutions for booting exist for very specific architectures: System startup of
TTP—viewed as change from asynchronous to synchronous operation—has been in-
vestigated in [96]. Initial clock synchronization for the MAFT architecture [57] has
been solved, but under stronger system assumptions: A priori assumptions on message
transmission delay and local timers are used there to construct a sufficiently large listen
window. Termination is achieved by Byzantine Agreement, which, however, requires
2f +1 correct processes to be up and running. This cannot always be guaranteed dur-
ing startup, however. Our goal is minimizing the number of such a priori assumptions.
Still we do not know of any approach that could be compared to ours [106, 109] with
respect to partial synchrony in conjunction with initially down correct processes.

Our clock synchronization algorithm has graceful degradation [72] during system
booting. This prevents Byzantine processes from corrupting the system state dur-
ing the startup phase where more than one third of the running processes may be
Byzantine. Mahaney and Schneider [72] introduced synchronous approximate agree-
ment algorithms which provide graceful degradation when between 1/3 and 2/3 of the
processes are faulty. We reach the same bounds.

If the algorithm would have no graceful degradation, the system could be forced into
arbitrary states and the solution for initialization must be self-stabilizing [28]. Most self-
stabilizing clock synchronization algorithms [34, 79, 6] do not stabilize if some processes
remain faulty during the whole execution. Still, there exist self-stabilizing Byzantine
clock synchronization algorithms [25, 33] as well. They are an overkill for solving
the booting problem, however. None of the existing solutions guarantees constant
stabilization times like we do for booting. Moreover, we consider a weaker (time free)
system model.

Our results are also related to the crash recovery model [3], where processes crash
and recover arbitrarily during the execution of a consensus algorithm. Similar work
was conducted in the context of clock synchronization [14]. We, however, consider
Byzantine processes and more than n/2 “crashed” (actually, “initially dead”) processes
during startup. This exceeds the bounds used in [3, 14].

82 CHAPTER 7. BOOTING CLOCK SYNCHRONIZATION

Chapter 8

Booting Θ-Algorithms

The previous Section 7 presented a clock synchronization solution that guarantees some
of its properties during system booting. In order to cope with the reduced number of
participating processes it was required to relax the accuracy requirement (α) during
the booting phase. In this section we will discuss how to adapt the algorithms from
Section 6 in order to cope with booting as well. Again, we will see that some properties
that can be achieved easily when all correct processes are always up must be relaxed
here.

In order to keep the presentation concise we will again use restricted fault models in
this section. In particular we do not consider link faults, hence f ra

` = 0, f r
` = 0 and

f s
` = 0. The types of process failures considered depend on the problem (similar to

Section 6).

8.1 Eventually Perfect Failure Detector

Recalling the semantics of the perfect failure detector P, the properties of our clock
synchronization algorithm suggest two approaches for adding system startup to the FD
implementation of Section 6.2. First, we noted already in Section 7 that our algorithm
maintains some precision Dboot > Dmax during whole system lifetime. Hence, if we
based ΞP upon Dboot, most of the proof of Theorem 9 would apply also during system
startup: (SC) is guaranteed, since progress of clock values is eventually guaranteed,
namely, when normal mode is entered. The major part of the proof of (SA) is also
valid, provided that Dmax is replaced by Dboot.

There is one remaining problem with this approach, however: During system startup,
the resulting algorithm could suspect a correct process that simply had not started yet.
When this process eventually starts, it is of course removed from the list of suspects –
but this must not happen in case of a perfect failure detector. Note that not suspecting
processes that never send any message until transition to normal mode does not work
either, since a process cannot reliably detect when the transition to normal mode
happens and could hence “overlook” a crashed processor. Consequently, unless the
perfect FD specification is extended by the notion of “not yet started” processes, there
is no hope of implementing P also during system startup.

83

84 CHAPTER 8. BOOTING Θ-ALGORITHMS

The alternative is to accept degraded failure detection properties during system
startup: We will show below that the failure detector of Figure 8.1 actually implements
the eventually perfect FD �P. This FD is weaker than P, since it just assumes that
there is some time t after which (SA) must hold whereas P ensures that (SA) always
holds. In our case, t is the time when the last correct process has completed booting
and normal mode is entered. Nevertheless, viewed over the whole system lifetime, our
FD algorithm only provides eventual semantics:

(SC) Strong Completeness: Eventually, every process that crashes is permanently
suspected by every correct process.

(E-SA) Eventually Strong Accuracy: There is a time after which correct processes are
not suspected by any correct process.

As in Section 6.2 we consider f Byzantine processes in order to tolerate early timing
faults. (But we may as well refer to the algorithm in Section 6.1.3 for crash faults.)
The algorithm given in Figure 8.1 is identical to the algorithm from Section 6.2 (a
description can be found there). It just uses the clock synchronization algorithm that
handles booting from Section 7.

0: VAR suspect[∀q] : boolean := false;
1: VAR saw max[∀q] : integer := 0;

2: Execute Clock Synchronization from Section 7

3: if received (round l) from q
4: → saw max[q] := max(l, saw max[q]);
5: fi

6: whenever clock value k is updated do (after updating)
7: → ∀q suspect[q] := (k − ΞP) > saw max[q];

Figure 8.1. Failure Detector Implementation

Theorem 26 (Eventually Perfect FD). Let ΞP ≥ min{d3Ω + 1e, d2Ω + 2e}. In a
system with n ≥ 3f + 1 processes where booting is considered, the algorithm given in
Figure 8.1 implements the eventually perfect failure detector.

Proof. We have to show that (SC) and (SA) are eventually satisfied. Let tup be the
time when the last correct process gets up. Theorem 24 shows that all correct processes
satisfy (P), (U), (Q), and (S) by time tup + 3τ+ + ε. Hence, after that time, the proof
of Theorem 9 applies literally and reveals that our algorithm implements P and hence
belongs to the class �P during whole system lifetime.

Theorem 26 reveals that any consensus algorithm that uses �P under the general-
ized partially synchronous system model of [19] solves the booting problem if used in

8.2. GENERAL CONSIDERATIONS 85

conjunction with our FD implementation. After all, the model of [19] allows arbitrary
message losses to occur until the (unknown) global stabilization time GST. �P-based
consensus algorithms that work with eventually reliable links can also be used immedi-
ately. Such solutions are useful even in the context of real-time systems, since we can
bound the time until �P becomes P. Finally, it should not be too difficult to adapt
FD-based consensus algorithms to the perception-based failure model. This would even
allow to drop the perfect link assumption after GST.

8.2 General Considerations on Applications during Booting

Due to the eventual semantics of �P in Section 8.1 it is not required to argue explic-
itly about how processes might find out Cmax. This is different in some higher-level
applications, e.g. lock-step simulation and atomic broadcast. A simulation algorithm
should be able to determine in which round the system is, and when it is safe for a
process to start to participate. In case of atomic broadcast the algorithm should not
start delivering messages before it can be sure that no earlier messages in between are
lost. For this reason we give the following corollary which determines a point in logical
time from when on participating in the algorithms is safe. For that reason we add a
priori knowledge on the integer clock synchronization precision Dboot to the algorithms
from now on.

Corollary 3 (Certainty Point). If a correct process p becomes active at local time `
it can be sure that it misses no messages sent by correct processes for rounds k > Ψ,
where Ψ = ` + Dboot. Thus, p has certainty that p ∈ Pup(k) for all rounds k > Ψ. The
set of all correct processes that know that they are ∈ Pup(k) is denoted as Pwork(k).

In the following sections we will see how Ψ can be employed to handle the booting
phase for the problems of lock-step simulation, atomic broadcast and NBAC.

8.3 Lock-Step

Lock step algorithms usually assume that all processes start simultaneously in
round 0. When system booting is considered this assumption must be weakened since
it is impossible in the Byzantine case to guarantee that a process can determine the
point in time when all correct processes are up [106]. We hence give a simulation where
processes may enter lock-step execution during any round. The result is a simulation
for lock-step algorithms with deferred start rounds. In order to keep consistent with
the definitions of Section 6.3.3, a process starts a round with sending its message.
In Figure 8.2 the boolean booted is used to distinguish the start of the first round a
processes participates in from other rounds.

In Figure 8.3 the interface to clock synchronization is given. As long as processes
remain passive they do not participate (by calling the function start) in lock-step
algorithms. Upon getting active (line 5) the certainty point Ψ is calculated. Based
on it the largest missed macro tick m is determined in line 7. When the next macro
tick m+1 is eventually reached (line 10), the process starts to participate and sends its

86 CHAPTER 8. BOOTING Θ-ALGORITHMS

0: procedure start(r:integer, booted:boolean)
1: begin

2: if booted
3: read round r − 1 messages;
4: execute round r − 1 computational step;
5: fi

6: send round r messages;
7: end;

Figure 8.2. Lock-Step Framework using the Synchronizer in Figure 8.3

first message by calling the function start. After that it has completed its initialization
and participates in the lock-step algorithm (hence just executes line 16 from then on).

We now show that the given algorithm in fact simulates lock-step behavior. Since
we have no simultaneous start in round 0 we just have to make sure that a correct
process executes the rounds it participates in correctly.

Lemma 24 (Initialization). For any correct process p that executes the algorithm
given in Figure 8.2 in conjunction with the algorithm in Figure 8.3 with Ξboot

sync ≥ 2Ω+1
there is some r such that p executes all rounds s ≥ r in proper order.

Proof. By Theorem 24 all correct processes become active after sufficiently many cor-
rect processes get up. Let correct process p become active at local round k after
sufficiently many correct processes are already active. By (P) from now on p increases
its round number regularly. By line 5 and line 10 in Figure 8.3 process p eventually
starts participating.

In Section 6.3.3 we showed how to choose Ξsync when sufficiently many processes
are always up to guarantee the properties (P), (U), (Q), and (S). (S) was of particular
interest there since its time bounds went into calculation of Ξsync. During booting,
however, (S) cannot be guaranteed (since the lower envelope bound does not hold).
We will see in the following theorem that (Q) can be employed for this purpose as well.

Theorem 27 (Synchronizer with Booting). For any correct process p that executes
the algorithm given in Figure 8.2 in conjunction with the algorithm in Figure 8.3 with
Ξboot

sync ≥ 2Ω + 1 it holds that if p executes the computational step from round r it has
received all messages sent by correct processes in round r.

Proof. Let the first process s send its round r message at the corresponding micro
tick k. Further let correct process q be the first to experience tick k + 1 at time t. By
(Q) all correct processes p ∈ Pwork(k) experience tick k by time t + ε and hence send
their round r messages which will be received by all correct processes p ∈ Pwork(k) by
time t + τ+ + ε. By Lemma 3 no correct process can have a greater clock value than
k + 1 + τ++ε

τf
≤ k + 1 + 2Ω by then. By line 16 all correct processes have received all

round r messages before they execute the computational step for round r.

8.4. ATOMIC MULTICAST 87

0: VAR r : integer := 0; /* lock step rounds */
1: m : integer := 0; /* start round */
2: Ψ : integer := 0 /*certainty point */
3: participate : boolean := false;

4: Execute Clock Synchronization from Figure 7.4

5: upon change to active do
6: → Ψ := k + Dboot;
7: m := bΨ/Ξboot

syncc;

8: whenever active and clock k is updated do
9: → if participate = false
10: → if k/Ξboot

sync ≥ m + 1
11: → r := bk/Ξboot

syncc;
12: call start(r, false);
13: participate := true;
14: fi

15: else

16: → if k/Ξboot
sync ≥ r + 1

17: → r := r + 1
18: call start(r, true);
19: fi

Figure 8.3. Synchronizer for the Θ-Model with Startup

Still, upper layer synchronous algorithms that use this synchronizer must be aware
that not all processes start simultaneously. There is some work on this problem [69] in
the context of consecutive executions of early deciding consensus, where it is required
to agree on the starting round for the next instance of consensus.

8.4 Atomic Multicast

The solution for atomic multicast during booting is straight forward. A process
starts delivering messages at a given round r only when it can be sure that it can
deliver all messages with time stamp Cs ≥ r in the same order as delivered by other
processes. Any message that originates in a round after certainty point Ψ must have
been sent after p got up. Therefore it starts queuing messages from this round on.

Again, we have to adapt the requirements in order to cope with the booting problem.
The following starting round requirement prohibits that any process p delivers messages
that were possibly sent before p was up.

Starting Round: No process p 6∈ Pwork(k) delivers a message with time stamp k.

The original (UTRB) validity property as stated in Section 6.3.2 requires that all
correct processes deliver a message which was broadcast by a correct process. Clearly
this cannot be achieved for processes that were down when the message was originally
broadcast respectively when it was delivered by the already up processes. The following

88 CHAPTER 8. BOOTING Θ-ALGORITHMS

booting validity replaces the original one and just requires that the already participat-
ing correct processes to deliver messages. Similar argumentation is also required for
agreement such that we give an agreement definition in the booting case as well.

Booting Validity: If a correct process broadcasts a message m with time stamp k,
then all correct processes p ∈ Pwork(k) eventually deliver m.

Booting Agreement: If a process delivers m with time stamp k, then all correct
processes p ∈ Pwork(k) eventually deliver m.

The algorithm is given in Figure 8.4. lines 1-7 are similar to our atomic broadcast
solution without booting in Section 6.3.2. The only difference is delivery of messages in
line 7 which happens only at active processes that have reached a clock value greater
than Ψ where they can be sure that messages are ordered consistently. As already seen
in the synchronizer implementation, Ψ is calculated at processes upon change to active
in line 11. Delivery in line 12 is done similarly to our solution in Section 6.3.2.

0: /* Active Broadcaster s executes if active and Cs > Ψ: */
1: send (message, s, Cs, i) to all processes
2: queue (message, s, Cs, i) for delivery

3: /* Process q 6= broadcaster executes: */
4: do upon first receipt of (message, s, Cs, i)
5: → send (message, s, Cs, i) to all processes
6: if Cs > Ψ and active
7: → queue (message, s, Cs, i) for delivery

8: Execute Clock Synchronization from Figure 7.4

9: /* Any process p executes: */
10: upon change to active do
11: → Ψ := k + Dboot;

12: whenever active and clock k is updated do (after updating)
13: delivera all queued messages with time stamp Cs ≤ Cp − Ξabc

aordered by (1) increasing timestamps, 2) in-
creasing process identifiers and (3) increasing in-
dexes i

Figure 8.4. Atomic Multicast with Startup

Theorem 28 (Atomic Multicast with Booting). All correct processes p ∈ Pwork(k)
that execute the algorithm given in Figure 8.4 deliver all messages from correct processes
sent with time stamp Cs ≥ k in total order.

Proof. All processes p ∈ Pwork(k) are up when messages with time stamp Cs(t) ≥ k are
sent. Since messages are reliably broadcast (in fact multicast since not all processes

8.5. NON-BLOCKING ATOMIC COMMITMENT 89

need to be up yet) by lines 1-7 all processes p ∈ Pwork(k) receive these messages
consistently.

We may now employ the proof of Theorem 14 (atomic broadcast without booting)
since it relies solely on Lemma 3 which also holds during booting since (U) holds.

8.5 Non-Blocking Atomic Commitment

We now turn to the problem of NBAC and how it can be solved if booting has to
be considered. As seen in Section 7.5 clean-crash faults are as severe as crash faults
(= asymmetric omission faults) in the booting case. In this section we therefore just
consider crash faults—as in Section 6.4.2. As already indicated there, starting all
requests in round 0 was just a simplification. In this section each request is issued
by some participant which timestamps it. Again, different requests can be separated
via the req field in the messages. If a correct process reaches the round where it can
be sure that it cannot miss any more votes, it decides. In the case of crash faults in
Section 6.4.2 we required votes from all n processes. This means that we can only
commit requests at times where all processes are active and no processes have crashed
yet. From this we derive the following non-triviality property:

Non-Triviality-Booting: For requests issued by some correct process p with time
stamp k = Cp: If |Pwork(k)| = n and all participants vote yes and no failure
occurs the outcome decision is commit.

The algorithm given in Figure 8.5 again employs the clock synchronization algorithm
from Section 7. Upon changing to active, the certainty point Ψ is set. An active correct
process can be sure that it was already active when a request with time stamp greater
than Ψ was issued. Therefore, only for requests that have time stamps greater than Ψ
the processes actively participate and vote. If for some request all processes participate
and no process crashes for Ξb

ac rounds it is possible to commit if all votes are yes.
Note that the req field in the algorithm in Figure 8.5 is used to distinguish requests.

Lemma 25. All participants p ∈ Pwork(k) executing the algorithm given in Figure 8.5
with Ξb

ac ≥ Ω(f + 2) + Dboot that decide have delivered the same votes for requests time
stamped with clock values > k.

Proof. Since the votes for a request time stamped with k are reliably broadcast by
active and participating processes (line 1-9), we only have to show that every correct
process which delivers a vote does so before it reaches a clock value of ` > Ξb

ac + k.
At every correct process we have at most two reliable broadcast with causal de-

pendency: Let q be the first correct process which broadcasts its vote at time t.
When this message is delivered by any process p, p then reliably broadcasts its
own vote. Process p does so by time t + (f1 + 1)τ+, f1 being the faults that hap-
pen during this first reliable broadcast. Process p’s vote is delivered at any correct
process by time t + (f1 + 1)τ+ + (f2 + 1)τ+, f2 being the faults during the sec-
ond reliable broadcast. Since f ≥ f1 + f2, the latest time any process delivers all

90 CHAPTER 8. BOOTING Θ-ALGORITHMS

To initiate a new request if k ≥ Ψ
1: send (k, req, myvote) to all;
2: deliver (k, req, myvote);

Process q 6= requester executes:
3: if received (l, req, vote) for the first time
4: → if l > Ψ
5: → deliver (l, req, vote);
6: send (l, req, myvote) to all;
7: deliver (l, req, myvote);

For all processes
8: Execute Clock Synchronization from Section 7

9: upon change to active do
10: → Ψ := k + Dboot;

11: whenever active and clock k ≥ Ψ is updated do (after updating)
12: For all requests with time stamp ≤ k − Ξb

ac

13: if all votes are delivered and all are yes

14: → return(commit)
15: else

16: → return(abort)
17: fi

Figure 8.5. NBAC Protocol Tolerating Crashes with Booting

votes is t + (f + 2)τ+. By Lemma 3, by this time the largest possible clock value

` ≤ (f+2)τ+

τf
+ k + Dboot = Ω(f + 2) + k + Dboot ≤ Ξb

ac + k.

Theorem 29. The algorithm given in Figure 8.5 with Ξb
ac ≥ Ω(f + 2) + Dboot solves

the NBAC problem.

Proof. We show each of the requirements of NBAC separately.
Integrity: A participant decides using a return function, hence only once.

Validity: By line 15.

Uniform Agreement: A process commits if it has received all votes, and all votes are
yes. By Lemma 25 agreement is achieved.

Termination: By Theorem 24 eventually there will always be progress of clock values
in the system. Every correct participating process decides on a request by the time,
when it reaches round ` > k +Ξb

ac by line 14. If the request was issued at some time t
when progress of clock values was already guaranteed (compare Section 7.5) then very
correct process reaches round k by time t+ τ+Ξb

ac by Lemma 5 and decides. If progress
of clocks was guaranteed only from some time t′ > t on, then all will reach this clock
value by time t′ + τ+Ξb

ac by Lemma 5 as well.

Non-Triviality: If no failure occurs every process votes on p’s request—which was time
stamped with Cp—,and by Lemma 25 every process delivers all votes before it reaches
a clock value k > Cp + Ξb

ac. It hence commits by line 15.

Chapter 9

Conclusions

9.1 Required Synchrony for Consensus

From a theoretical point of view, when considering new system models one usually
starts with examining the solvability of consensus in it. Since the presented clock
synchronization algorithms are totally time free (even no a priori knowledge of Θ),
they can be employed in several variants of the Θ-Model. We can actually distinguish
four possible system models which have assumptions on Θ:

(1) The variant used in this thesis, i.e. some known Θ that always holds. We have
provided an implementation of P in this model. This model is hence well suited
for real-time systems.

(2) We can also think of a model where known Θ holds just from some global stabi-
lization time GST on. We have seen that our implementation of P in model (1)
can be employed in order to implement �P in (2).

(3) Some unknown Θ always holds. In this model �P can be implemented as well.
Whenever a message from a falsely suspected process p drops in, Ξ must be
adapted, according to the current local clock value and the round number of p’s
message. Eventually Ξ will reach the correct value (according to Theorem 9) and
our failure detector is perfect from then on.

(4) Some unknown Θ holds from GST on. The same algorithm as in (3) might be
employed but in contrast to model (3), Ξ cannot be guaranteed to be a priori
bounded according to Theorem 9 since Θ could be violated before GST. Never-
theless we again have an implementation of �P.

The previous arguments just refer to crash faults. When considering more severe
types of failures, like Byzantine faults, failure detectors are of no use. For this purpose
we provided a simulation which allows to run lock-step algorithms in the Θ-Model in
Section 6.3.3. Note also that the consensus algorithms by Dwork, Lynch, and Stock-
meyer [37] can easily be transfered into the Θ-Model as well. In [107] we presented a
simulation which shows that Byzantine consensus has a solution in a model where the
Θ assumptions just holds after some possibly unknown GST.

91

92 CHAPTER 9. CONCLUSIONS

9.2 Clock Synchronization Implementation

When comparing our novel clock synchronization algorithm (see Section 6.1 and Sec-
tion 7) to previous ones [106, 109, 67] (which all rely upon the classic non-authenticated
clock synchronization algorithm by Srikanth and Toueg [95]) it is obvious that it is much
simpler as it requires just one type of messages. Even more important is the property
that precision (π) and the upper envelope bound of (α) does not depend on τ− but
rather upon τf (the round switching time). As already argued in Section 3.5 this either
leads to improved coverage or improved performance (= smaller values for Θ).

This is particularly important in Ethernet-like networks, where two messages cannot
be sent over the physical link simultaneously. Since messages are sent strictly one after
the other, one may not need to consider the first message for deriving a bound on Θ.

9.3 Dependable Real-Time Systems

Reviewing this thesis’s results suggests the following approach to build highly reliable
systems: At the basic layer, the clock synchronization with booting (Section 7) should
be used. It has the advantage that no a priori knowledge of Θ is required, that it works
under a wide variety of process and link failures, and that it delivers the synchrony
of the communication layer directly to the upper layer. If the system timing hence
temporarily does not behave as assumed, the clock synchronization algorithm keeps
working and just gets out of the assumed bounds. If the system returns to the expected
behavior the clock synchronization bounds will hold again. This is very important in
recently emerging application domains where it is nearly impossible to predict system
behavior during the whole system operation. Moreover, for such application we have
argued in Section 5.2 that the assumption on the delay ratio is more likely to hold than
assumptions on upper bounds on message delays.

Depending on the types of faults, different layers should be put atop of clock syn-
chronization. For crash faults, we propose using the eventually perfect failure detector
�P with booting (Section 8.1). Since it has just eventual semantics, every algorithm
that uses �P will still satisfy its safety properties even when system timing violations
translate into false suspicion at the �P layer. If the system returns to the expected
behavior our failure detector becomes perfect again. We can hence guarantee bounded
detection times if our assumptions are met and guarantee safety even if our assump-
tions are violated. This property of asynchronous designs is often ignored in real-time
literature [24] which argues that “compare and kill” is the only solution to ensure
safety. From the distributed computing theory viewpoint Doing nothing is safe! It is
of course the task of system engineers to design the interaction with environment in
such a way that the previous statement is true. This results in a more robust, safer
solution. We believe that many control problems allow such an approach.

On the other hand keeping systems running although time bounds are violated as
long as the system remains in a consistent state will usually lead to less severe damage.
This is especially true in systems where environment conditions are not as predictable
as required for many timed solutions (e.g. space borne applications).

9.4. OUTLOOK ON FURTHER RESEARCH DIRECTIONS 93

Atop of the �P layer, finally, higher-level algorithms can be devised. Obviously
there lies a drawback in worst case termination times: Algorithms which use eventual
type failure detectors are usually less effective than those using perpetual ones since
their termination times depend on the failure pattern during the execution as well as
on the number and pattern of false suspicions. This must taken into account when
dimensioning a reliable distributed system.

There is much recent research [36, 35, 58, 13] on failure detector based asynchronous
Byzantine consensus. To our best knowledge, however, there exists no satisfying def-
inition of failure detectors in the case of non-authenticated Byzantine faults by now.
We hence propose a different approach to build a system tolerating this kind of faults
in the Θ-Model: Applications may directly be put atop our synchronized clocks, using
the techniques employed for the solutions of atomic broadcast or non-blocking atomic
commitment (cp. Section 8.4 and Section 8.5; these cannot tolerate Byzantine faults,
however). Another approach would be to introduce a synchronization layer that creates
the illusion of lock-step synchrony (Section 8.3) to the applications. It is then possi-
ble to run any synchronous algorithm atop of this layer. This easily allows to devise
Byzantine-tolerant applications at the cost of possibly higher termination times.

9.4 Outlook on Further Research Directions

The most challenging question in distributed computing theory is the one on the
weakest timing model that allows to solve the fundamental, yet not trivial consensus
problem. Therefore it is still subject to currently ongoing work [67, 107, 41, 2, 76].
Although the Θ-Model provides an important step towards this goal, there is still
room for improvement. For example, just reconciling some of the mentioned approaches
might lead to even weaker timing models.

In the case of the Θ-Model, we mentioned in Section 3.4 that the length ratio of two
concurrent message chains is bounded by Θ as consequence of our system model (cp.
Section 3.2). Bounding just these length ratio instead of bounding message end-to-end
delays might lead to an even weaker system model that allows to solve consensus. One
important point, however, must always be regarded: Can the envisioned system model
be implemented in real systems? We showed in Section 5.5 that the Θ-Model can in
fact be implemented very efficiently in real-time systems. Other approaches [24, 76]
that try to weaken the system model, however, just provide probabilistic guarantees.
We believe that it is mandatory to show how to implement the new models in order to
remain in contact with real systems and real problems.

An issue which is closely related to the timing of distributed systems is queuing. It
would be an interesting topic for future research whether we can give analytical feasi-
bility conditions for systems that guarantee applicability of the Θ-Model. As a starting
point for such research some networks of queues—as depicted in Figure 2.1—must be
analyzed. This analysis, however, must not rely on time triggered processes—as often
assumed in queuing theory—but on event based ones and must consider adversaries
according to the particular failure model used.

94 CHAPTER 9. CONCLUSIONS

Apart from timing models, there are also open questions on fault models. The self-
stabilization [28, 31] paradigm, for example, does not model permanent, but rather arbi-
trary transient faults. A very interesting research field are fault-tolerant self-stabilizing
(ftss) algorithms. Reconciling ftss and time free algorithms leads to even more reliable
systems. For the Θ-Model, we have presented ftss failure detector implementations [55].
But many more problems are out there that must be solved.

An interesting research field lies between classic fault-tolerance and ftss. The crash
recovery model [3] describes transient faults which do not lead to an arbitrary system
state, as assumed in self-stabilization. For the Θ-Model we have solved the booting
problem, for example. It seems as if this might be half the way to crash recovery:
For example, one might think of a similar non-blocking atomic commit algorithm as
the one in Section 8.5 that may be employed in the crash recovery model. We would
require that at least f + 1 processes do not crash after they have booted. The others
may crash and recover. A decision commit can be reached during periods when all
processes are active.

Bibliography

[1] Marcos Aguilera, Gérard Le Lann, and Sam Toueg. On the impact of fast failure
detectors on real-time fault-tolerant systems. In Proceedings of the 16th Interna-
tional Symposium on Distributed Computing (DISC’02), volume 2508 of LNCS,
pages 354–369. Springer Verlag, Oct 2002.

[2] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
On implementing Omega with weak reliability and synchrony assumptions. In
Proceeding of the 22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC’03), 2003.

[3] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and
consensus in the crash-recovery model. Distributed Computing, 13(2):99–125,
April 2000.

[4] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. On quiescent reliable
communication. SIAM Journal of Computing, 29(6):2040–2073, April 2000.

[5] Daniel Albeseder. Experimentelle Verifikation von Synchronitätsannahmen für
Computernetzwerke. Diplomarbeit, Embedded Computing Systems Group, Tech-
nische Universität Wien, May 2004.

[6] Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks
in step. In Sam Toueg, Paul G. Spirakis, and Lefteris M. Kirousis, editors,
Distributed Algorithms, 5th International Workshop, volume 579, pages 71–79,
Delphi, Greece, 7–9 1991. Springer-Verlag.

[7] Hagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine consensus.
Proceedings of the 3rd ACM Symposium of Distributed Computing, pages 119–
133, August 1984.

[8] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on
the time to reach agreement in the presence of timing uncertainty. Journal of the
ACM (JACM), 41(1):122–152, 1994.

[9] Hagit Attiya and Jennifer Welch. Distributed Computing. McGraw-Hill, 1998.

[10] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM
(JACM), 32(4):804–823, 1985.

95

96 BIBLIOGRAPHY

[11] M.H. Azadmanesh and Roger M. Kieckhafer. Exploiting omissive faults
in synchronous approximate agreement. IEEE Transactions on Computers,
49(10):1031–1042, October 2000.

[12] Özalp Babaoğlu and Sam Toueg. Non-blocking atomic commitment. In Sape
Mullender, editor, Distributed Systems 2nd Ed., pages 147–166. ACM Press, 1993.

[13] Roberto Baldoni, Jean-Michel Hélary, Michel Raynal, and Lenaik Tangui. Con-
sensus in byzantine asynchronous systems. Journal of Discrete Algorithms,
1(2):185–210, 2003.

[14] Boaz Barak, Shai Halevi, Amir Herzberg, and Dalit Naor. Clock synchronization
with faults and recoveries (extended abstract). In Proceedings of the nineteenth
annual ACM symposium on Principles of distributed computing, pages 133–142.
ACM Press, 2000.

[15] Marin Bertier, Olivier Marin, and Pierre Sens. Implementation and perfor-
mance evaluation of an adaptable failure detector. In Proceedings of the In-
ternational Conference on Dependable Systems and Networks (DSN’02), pages
354–363, Washington, DC, June 23–26, 2002.

[16] Martin Biely. An optimal Byzantine agreement algorithm with arbitrary node
and link failures. In Proc. 15th Annual IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS’03), pages 146–151, Ma-
rina Del Rey, California, USA, November 3–5, 2003.

[17] A. Casimiro, P. Martins, and P. Veŕıssimo. How to build a timely computing base
using real-time linux. In Proceedings of the 2000 IEEE International Workshop
on Factory Communication Systems, pages 127–134, Porto, Portugal, September
2000. IEEE Industrial Electronics Society.

[18] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–722, June 1996.

[19] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[20] Bernadette Charron-Bost. Comparing the atomic commitment and consensus
problems. In Future Directions in Distributed Computing 2002, volume 2584 of
LNCS, pages 29–34. Springer-Verlag, 2003.

[21] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper. Synchronous
system and perfect failure detector: Solvability and efficiency issues. In Pro-
ceedings of the IEEE Int. Conf. on Dependable Systems and Networks (DSN’00),
pages 523–532, New York, USA, 2000. IEEE Computer Society.

BIBLIOGRAPHY 97

[22] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service
of failure detectors. In Proceedings IEEE International Conference on Dependable
Systems and Networks (ICDSN / FTCS’30), 2000.

[23] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems. As-
sison Wesley, 3rd edition, 2000.

[24] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657,
1999.

[25] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-
stabilizing clock synchronization. In Proceedings of the 7th International Confer-
ence on Principles of Distributed Systems, Dec 2003. to appear.

[26] Ariel Daliot, Danny Dolev, and Hanna Parnas. Self-stabilizing pulse synchro-
nization inspired by biological pacemaker networks. In Proceedings of the 6th
International Symposium on Self-Stabilizing Systems, SSS’03, volume 2704 of
LNCS, pages 32–48. Springer Verlag, June 2003.

[27] Susan B. Davidson, Insup Lee, and Victor Wolfe. Timed atomic commitment.
In IEEE Transactions on Computers, volume 40, pages 573–583, May 1991.

[28] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[29] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchro-
nism needed for distributed consensus. Journal of the ACM, 34(1):77–97, January
1987.

[30] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility
and impossibility of achieving clock synchronization. Journal of Computer and
System Sciences, 32:230–250, 1986.

[31] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[32] Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization. In Proceed-
ing of the 12th Annual ACM Symposium on Principles of Distributed Computing
(PODC’93), pages 97–108, 1993.

[33] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the
presence of byzantine faults. In Proc. of the 2nd Workshop on Self-Stabilizing
Systems, May 1995.

[34] Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization. Algorith-
mica, 18(4):486–511, 1997.

98 BIBLIOGRAPHY

[35] Assia Doudou, Benoit Garbinato, Rachid Guerraoui, and André Schiper. Mute-
ness failure detectors: Specification and implementation. In Proceedings 3rd
European Dependable Computing Conference (EDCC-3), volume 1667 of LNCS
1667, pages 71–87. Springer, September 1999.

[36] Assia Doudou and André Schiper. Muteness detectors for consensus with byzan-
tine processes. In Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing (PODC-17), 1998.

[37] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[38] Cynthia Dwork and Dale Skeen. The inherent cost of nonblocking commitment.
In Proceedings of the second annual ACM symposium on Principles of distributed
computing, pages 1–11. ACM Press, 1983.

[39] R. Ernst and W. Ye. Embedded program timing analysis based on path cluster-
ing and architecture classification. In Digest of Technical Papers of IEEE/ACM
International Conference on Computer-Aided Design, pages 598–604. IEEE Com-
puter Society, April 1997.

[40] Christof Fetzer, Michel Raynal, and Frederic Tronel. An adaptive failure detec-
tion protocol. In Pacific Rim International Symposium on Dependable Computing
(PRDC 2001), December 2001.

[41] Christof Fetzer and Ulrich Schmid. On the possibility of consensus in asyn-
chronous systems with finite average response times. Research Report 14/2004,
Technische Universität Wien, Institut für Technische Informatik, Treitlstraße 3,
A-1040 Vienna, Austria, 2004. (submitted).

[42] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty processor. Journal of the ACM, 32(2):374–382,
April 1985.

[43] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying syn-
chrony and asynchrony. In Proceedings of the Seventeenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 143–152. ACM Press, 1998.

[44] Vijay K. Garg and J. Roger Mitchell. Implementable failure detectors in asyn-
chronous systems. In Proceedings of the 18th Int. Conference on Foundations of
Software Technology and Theoretical Computer Science (FST & TCS’98), LNCS
1530, pages 158–169. Springer, 1998.

[45] Jim N. Gray. Notes on data base operating systems. In G. Seegmüller R. Bayer,
R.M. Graham, editor, Operating Systems: An Advanced Course, volume 60 of
Lecture Notes in Computer Science, chapter 3.F, page 465. Springer, New York,
1978.

BIBLIOGRAPHY 99

[46] R. Guerraoui and A. Schiper. The decentralized non-blocking atomic commit-
ment protocol. In Proceedings of the 7th IEEE Symposium on Parallel and Dis-
tributed Processing (SPDP-7), pages 2–9, San Antonio, Texas, USA, 1995.

[47] Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing, 15:17–25, 2002.

[48] Indranil Gupta, Tushar D. Chandra, and Germán S. Goldszmidt. On scalable and
efficient distributed failure detectors. In Proceedings of the 20th ACM Symposium
on Principles of Distributed Computing (PODC’01), pages 170–179, August 2001.

[49] J.C. Palencia Gutiérrez, J.J. Gutiérrez Garcia, and M. Gonzáles Harbour. Best-
case analysis for improving the worst-case schedulability test for distributed hard
real-time systems. In Proceedings of the 10th Euromicro Workshop on Real-Time
Systems, pages 35–44, June 1998.

[50] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related prob-
lems. In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
Addison-Wesley, 2nd edition, 1993.

[51] J.-F. Hermant and Gérard Le Lann. Fast asynchronous uniform consensus in
real-time distributed systems. IEEE Transactions on Computers, 51(8):931–944,
August 2002.

[52] J.-F. Hermant and Josef Widder. Implementing time free designs for distributed
real-time systems (a case study). Research Report 23/2004, Technische Univer-
sität Wien, Institut für Technische Informatik, May 2004. Joint Research Report
with INRIA Rocquencourt. (submitted for publication).

[53] M. Hurfin and M. Raynal. Asynchronous protocols to meet real-time constraints:
Is it really feasible? How to proceed? In Proceedings of the IEEE Intl. Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC), pages 290–297.
IEEE Computer Society, April 2003.

[54] Martin Hutle. An efficient failure detector for sparsely connected networks. In
Proc. IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN’04), Innsbruck, Austria, February 2004.

[55] Martin Hutle and Josef Widder. Time free self-stabilizing local failure detection,
May 2004. (submitted for publication).

[56] E.D. Jensen and B Ravindran. Guest editors’ introduction to special section on
asynchronous real-time distributed systems. IEEE Transactions on Computers,
51(8):881–882, August 2002.

[57] Roger M. Kieckhafer, Chris J. Walter, Alan M. Finn, and Philip M. Thambidurai.
The MAFT architecture for distributed fault tolerance. IEEE Transactions on
Computers, 37:398–405, April 1988.

100 BIBLIOGRAPHY

[58] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzantine
fault detectors for solving consensus. The Computer Journal, 46(1):16–35, 2003.

[59] Hermann Kopetz. Real-Time Systems. Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, 1997.

[60] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

[61] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Efficient algorithms to im-
plement unreliable failure detectors in partially synchronous systems. In Proceed-
ings of the 13th International Symposium on Distributed Computing (DISC’99),
LNCS 1693, pages 34–48. Springer, September 1999.

[62] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Optimal implementation
of the weakest failure detector for sloving consensus. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC’00), page 334,
2000.

[63] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. On the impossibility of im-
plementing perpetual failure detectors in partially synchronous systems. In Pro-
ceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-
based Processing (PDP’02), January 2002.

[64] Gérard Le Lann. Certifiable critical complex computing systems. In K. Duncan
and K. Krueger, editors, Proceedings 13th IFIP World Computer Congress 94,
volume 3, pages 287–294. Elsevier Science B.V. (North-Holland), 1994.

[65] Gérard Le Lann. On real-time and non real-time distributed computing. In Pro-
ceedings 9th International Workshop on Distributed Algorithms (WDAG’95), vol-
ume 972 of Lecture Notes in Computer Science, pages 51–70. Springer, September
1995.

[66] Gérard Le Lann. Asynchrony and real-time dependable computing. In Proceed-
ings of the 8th IEEE Intl. Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2003), page 8p., Guadalajara, Mexico, 2003. IEEE Computer
Society.

[67] Gérard Le Lann and Ulrich Schmid. How to implement a timer-free perfect failure
detector in partially synchronous systems. Technical Report 183/1-127, Depart-
ment of Automation, Technische Universität Wien, January 2003. (submitted).

[68] Gérard Le Lann and Ulrich Schmid. How to maximize computing systems cov-
erage. Technical Report 183/1-128, Department of Automation, Technische Uni-
versität Wien, April 2003.

BIBLIOGRAPHY 101

[69] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of
protocols without simultaneous termination. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, pages 203–212. ACM
Press, 2002.

[70] Jennifer Lundelius-Welch and Nancy A. Lynch. A new fault-tolerant algorithm
for clock synchronization. Information and Computation, 77(1):1–36, 1988.

[71] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[72] Stephen R. Mahaney and Fred B. Schneider. Inexact agreement: Accuracy,
precision, and graceful degradation. In Proceedings 4th ACM Symposium on
Principles of Distributed Computing, pages 237–249, Minaki, Canada, August
1985.

[73] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. NASA
Technical Paper 3349, November 1993.

[74] Shivakant Mishra and Cristof Fetzer. The timewheel group communication sys-
tem. IEEE Transactions on Computers, 51(8):883–899, August 2002.

[75] Achour Mostéfaoui, David Powell, and Michel Raynal. A hybrid approach for
building eventually accurate failure detectors. In Proceedings of the 10th IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC 2004),
3-5 March 2004, Papeete, Tahiti, pages 57–65. IEEE Computer Society, 2004.

[76] Anchour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous imple-
mentation of failure detectors. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’03), San Francisco, CA, June 22–25,
2003.

[77] Sape Mullender. Distributed Systems. ACM Press/Addison Wesley, New York,
2nd ed. edition, 1993.

[78] Marina Papatriantafilou and Philippas Tsigas. Self-stabilizing wait-free clock
synchronization. Technical Report CS-R9421, Centrum voor Wiskunde and In-
formatica, Netherlands, 1994.

[79] Marina Papatriantafilou and Philippas Tsigas. On self-stabilizing wait-free clock
synchronization. Parallel Processing Letters, 7(3):321–328, 1997.

[80] S. Ponzio. The real-time cost of timing uncertainty: Consensus and failure de-
tection. Master’s thesis, Massachusetts Institute of Technology, May 1991.

[81] Stephen Ponzio and Ray Strong. Semisynchrony and real time. In Proceedings
of the 6th International Workshop on Distributed Algorithms (WDAG’92), pages
120–135, November 1992.

102 BIBLIOGRAPHY

[82] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-tolerant
clock synchronization in distributed systems. IEEE Computer, 23(10):33–42,
October 1990.

[83] Michel Raynal. A case study of agreement problems in distributed systems:
non-blocking atomic commitment. In Proceedings of High-Assurance Systems
Engineering Workshop, pages 209–214, Aug 1997.

[84] Ulrich Schmid, editor. Special Issue on The Challenge of Global Time in Large-
Scale Distributed Real-Time Systems, Real-Time Systems 12(1–3), 1997.

[85] Ulrich Schmid. Orthogonal accuracy clock synchronization. Chicago Journal of
Theoretical Computer Science, 2000(3):3–77, 2000.

[86] Ulrich Schmid. How to model link failures: A perception-based fault model. In
Proceedings of the International Conference on Dependable Systems and Networks
(DSN’01), pages 57–66, Göteborg, Sweden, July 1–4, 2001.

[87] Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with
imperfect communications. Technical Report 183/1-120, Department of Automa-
tion, Technische Universität Wien, January 2002. (Extended version of [88]).

[88] Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with
imperfect communications. In 22nd Symposium on Reliable Distributed Systems
(SRDS’03), pages 361–370, October 6–8, 2003.

[89] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization.
Real-Time Systems, 12(2):173–228, March 1997.

[90] Ulrich Schmid and Bettina Weiss. Synchronous Byzantine agreement under hy-
brid process and link failures. Technical Report 183/1-124, Department of Au-
tomation, Technische Universität Wien, November 2002. (replaces TR 183/1-
110).

[91] Ulrich Schmid, Bettina Weiss, and John Rushby. Formally verified byzantine
agreement in presence of link faults. In 22nd International Conference on Dis-
tributed Computing Systems (ICDCS’02), pages 608–616, July 2-5, 2002.

[92] Fred B. Schneider. Understanding protocols for byzantine clock synchronization.
Technical Report 87-859, Cornell University, Department of Computer Science,
August 1987.

[93] Barbara Simons, Jennifer Lundelius-Welch, and Nancy Lynch. An overview of
clock synchronization. In Barbara Simons and A. Spector, editors, Fault-Tolerant
Distributed Computing, pages 84–96. Springer Verlag, 1990. (Lecture Notes on
Computer Science 448).

BIBLIOGRAPHY 103

[94] Paul Spirakis and Basil Tampakas. Efficient distributed algorithms by using
the archimedean time assumption. In Proceedings of the 5th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 88), volume 294 of LNCS,
pages 248–263. Springer Verlag, February 1988.

[95] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626–645, July 1987.

[96] Wilfried Steiner and Michael Paulitsch. The transition from asynchronous to syn-
chronous system operation: An approach for distributed fault-tolerant systems.
Proceedings of the The 22nd International Conference on Distributed Computing
Systems, July 2002.

[97] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems. Principles
and Paradigms. Prentice Hall, 2001.

[98] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2001.

[99] Paulo Veŕıssimo and António Casimiro. The timely computing base model and
architecture. IEEE Transactions on Computers, 51(8):916–930, August 2002.

[100] Paulo Veŕıssimo, António Casimiro, and Christof Fetzer. The timely computing
base: Timely actions in the presence of uncertain timeliness. In Proceedings
IEEE International Conference on Dependable Systems and Networks (DSN’01
/ FTCS’30), pages 533–542, 2000.

[101] Paulo Veŕıssimo and Lúıs Rodrigues. Distributed Systems for System Architects.
Kluwer Academic Publishers, 2001.

[102] Paul M.B. Vitányi. Distributed elections in an archimedean ring of processors.
In Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 542–547. ACM Press, 1984.

[103] Paul M.B. Vitányi. Time-driven algorithms for distributed control. Report CS-
R8510, C.W.I., May 1985.

[104] Chris J. Walter and Neeraj Suri. The customizable fault/error model for depend-
able distributed systems. Theoretical Computer Science, 290:1223–1251, October
2002.

[105] Bettina Weiss and Ulrich Schmid. Consensus with written messages under link
faults. In 20th Symposium on Reliable Distributed Systems (SRDS’01), pages
194–197, October 28–31, 2001.

[106] Josef Widder. Booting clock synchronization in partially synchronous systems.
In Proceedings of the 17th International Symposium on Distributed Computing
(DISC’03), volume 2848 of LNCS, pages 121–135. Springer Verlag, October 2003.

104 BIBLIOGRAPHY

[107] Josef Widder. Consensus in the presence of bounded asynchrony: A simulation
(extended abstract), May 2004. (submitted for publication).

[108] Josef Widder, Gérard Le Lann, and Ulrich Schmid. Perfect failure detection
with booting in partially synchronous systems. Technical Report 183/1-131,
Department of Automation, Technische Universität Wien, April 2003.

[109] Josef Widder and Ulrich Schmid. Booting clock synchronization in partially
synchronous systems with hybrid node and link failures. Technical Report 183/1-
126, Department of Automation, Technische Universität Wien, January 2003.
(submitted for publication).

Curriculum Vitae

Josef Widder

1110 Vienna, Meidlgasse 41/4/4

Personal Data
Date of Birth: March, 18, 1977
Place of Birth: Vienna
Citizenship: Austria

Education
1983 – 1987 Volksschule (elementary school)

1110 Wien, Hoefftgasse 7
1987 – 1991 Bundesrealgymnasium (grammar school)

2320 Schwechat, Ehrenbrunngasse 6
1991 – 1996 Höhere Technische Bundeslehranstalt

Abteilung für EDV/Betriebstechnik
(polytechnic - EDP/engineering department)
1030 Wien, Ungargasse 69

1996 – 2002 Technische Universität Wien – Informatik
(Vienna University of Technology – Computer Science)
academic degree: Diplomingenieur (Master of Science)

Working Experience
July 1993 and July 1995 summer job at Fa. Zörkler

gearwheel technologies & mechanical engineering
July – August 1997 summer job at Spardat
Sept 1997 – Jan 1998 working student at Spardat: Software developer
September 2000 Die Donau - Danube Tourist Commission

Homepage development danube-river.org
(Special Award of the Jury was given by the
magazine ”tourist austria” in June 2001)

May 2001–May 2002 volunteer: Aktion Leben Österreich
development of donator/donations database

Jan 2003 – present research assistant at TU Vienna
Automation Systems Group and
Embedded Computing Systems Group

