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Kurzfassung

Das synchrone Designparadigma sieht sich zunehmend mit immer größer werden-
den Problemen konfrontiert: Die Illusion, dass alle Komponenten eines Chips synchron
arbeiten, kann aufgrund steigender Taktraten und der immer größeren Chipflächen
nur mit extremen (Hardware-) Aufwand aufrecht erhalten werden. Auch Leistungsver-
brauch und Wärmeentwicklung stellen zunehmend kritische Faktoren dar. Vielverspre-
chende Alternativen bilden asynchrone Designmethoden: Diese benötigen kein globales
Taktsignal, sondern basieren auf lokalen Kontrollmechanismen und arbeiten ereignis-
gesteuert, wodurch die Verlustleistung erheblich reduziert werden kann.
Aus diesem Grund wurden in der vorliegenden Arbeit verschiedene Methoden zum Ent-
wurf von asynchronen Schaltungen analysiert und die Code Alternation Logic (CAL)
für die spätere Implementierung eines Prozessorprototypens ausgewählt. Dieser Ansatz
kodiert die notwendigen Informationen zur Datenflusskontrolle in den Daten selbst:
Für die logischen Zustände LOW und HIGH gibt es jeweils zwei unterschiedliche
Darstellungen; wir sprechen in diesem Zusammenhang auch von der Phase eines Si-
gnals. Aufeinanderfolgende Daten werden in unterschiedlichen Phasen kodiert, wodurch
Schaltungseinheiten diese voneinander unterscheiden und die dazugehörige Informati-
on eindeutig zuordnen können. Nichtlineare Schaltungsstrukturen stören jedoch den
homogen alternierenden Datenfluss und beeinträchtigen somit die Datenflusskontrolle.
Der Fokus dieser Dissertation liegt in der Behandlung solcher nichtlinearen Struktu-
ren. Grundsätzlich werden zwei Arten von Nichtlinearität unterschieden: Vorwärts- und
Rückkopplungsschleifen einerseits sowie selektive Schaltungskomponenten andererseits.
Erstere führen dazu, dass Eingänge an Schaltungselementen in unterschiedlichen Pha-
sen kodiert sind, obwohl sie demselben Kontext angehören. Um dennoch die korrekte
Funktionalität der Schaltung zu gewährleisten, müssen gezielt sogenannte Phasenum-
kehrer in die Schaltung eingefügt werden. In dieser Arbeit wird gezeigt, dass deren
Platzierung nicht ausschließlich von der Schaltungstopologie, sondern auch von der In-
itialisierung abhängt. Weiters bewirken nichtlineare Datenpfade eine Selbstregulierung
der Schaltvorgänge, wodurch sich eine starke Abhängigkeit der Verarbeitungsgeschwin-
digkeit von der Initialisierung ergibt.

Bei der zweiten Art von Nichtlinearität handelt es sich um Schaltungselemente, die nur
eine Teilmenge ihrer Eingänge benötigen um, den Ausgang zu bilden - z.B. Multiplexer
- oder nur eine Teilmenge der Ausgänge setzen - z.B. Demultiplexer. Diese Komponen-
ten bewirken, dass die Schaltungsteile, die an den nicht selektierten Eingängen bzw.
Ausgängen angeschlossen sind, ihre Phasensynchronisation mit der restlichen Schaltung
verlieren. Es wird gezeigt, dass dieses Problem durch Synchronisationsschaltungen oder
durch die Verwendung von Platzhalterdaten vermieden werden kann.
Die Erkenntnisse dieser Arbeit wurden durch Simulationen bestätigt und im Design ei-
nes funktionierenden Hardwareprototypens für einen asynchronen Prozessor auch prak-
tisch verifiziert.



11

Abstract

The synchronous design paradigm faces some limitations: The illusion that all com-
ponents inside a chip receive the (active) clock edge at the same point in time can
be sustained only under a considerable hardware effort. In addition, the power con-
sumption of a CMOS circuit is proportional to the applied clock frequency - thus the
increasing clock frequency coupled with today's high integration density escalates the
heating problem. In contrast, asynchronous design methods promise to solve all these
problems in a natural manner: On the one hand they require only (local) handshake
mechanisms instead of a global time reference. On the other hand, asynchronous meth-
ods are event-driven - hence they consume energy only when useful work has to be
performed, in contrast to synchronous circuit, which are permanently triggered by the
clock signal.
With this motivation several asynchronous design methods were analyzed. A specific
method, namely the Code Alternation Logic was selected to implement an asynchronous
processor prototype. The principle of this approach is to encode the information nec-
essary for the data flow control in the processed data itself, by defining two disjoint
representations for the logical HIGH and two for the representation of LOW. To high-
light that from a logical point of view both représentants carry the same information
we say that a signal can be coded in different phases. Since subsequent data waves are
coded in alternating phases, each component inside the circuit can distinguish incom-
ing data and associate it to a specific context. However, non-linear circuit structures
disturb this alternating sequence of data waves and therefore affect the data flow con-
trol. The focus of this thesis is placed on such non-linear structures. Here, two types
of non-linearity are distinguished: forward/feedback paths and selecting nodes.
The first one causes that components receive signals which belong to the same context,
but are coded in different phases. To overcome this problem we have to place phase
inverters in a selective manner. In this work it is shown, that the placement not only
depends on the circuit topology, but also on its initialization. Furthermore it is pointed
out, that feedback/forward paths cause a structural regulation of the data flow. As a
consequence, the performance of a circuit depends strongly on its initialization.
The second source of non-linearity is constituted by nodes, which require only a subset
of their inputs to generate the output (multiplexer, e.g.) and/or nodes which set only
a subset of their outputs (de-multiplexer, e.g.). Consequently the parts of the circuit,
which are connected to the unselected inputs/outputs of selecting nodes, loose their
phase synchronization with the remaining circuit. This difficulty can be solved by using
synchronizer circuits or "dummy" data.

The findings of this thesis were confirmed by simulation and verified by the implemen-
tation of a hardware prototype of an asynchronous processor.
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Chapter 1

Introduction

The history of asynchronous logic design is quite long. Asynchronous design methods
date back to the 1950s and two people in particular shall be mentioned, namely David
A. Huffman [47] and David E. Müller [76]. Nevertheless clocked circuits dominate the
market of digital circuits today, while a small segment is reserved for asynchronous
chips [112] only. The triumphal procession of the synchronous approach is based on
its discretization of time: This facilitates the description of the circuit behavior -
the designer hypothesizes that all operations within the circuit finish in time to be
sampled with the next clock edge. Hence neither glitches, signal delay and skew nor
physical properties such as driver power or the real duration of a logical operation
have to be considered during functional description. This circumstance yield to
shorter design cycles and paved the way for Hardware Description Languages (HDL's)
such as Verilog [3] and VHDL [4], boosting the productivity of chip designers again.
Furthermore, the observation of the values at well-known discrete points in time
facilitates the simulation and debug process of a design. In addition design verification
" . . . becomes a matter of checking the delays in the combinatorial logic functions
between the (clocked) registers. This is a straightforward process . . . " [39], which can
be automated.
The synchronous design style in conjunction with high level hardware description lan-
guages, elaborated tool and technological advances concerning integration density has
enabled great strides to be taken in the design and performance of computers. In 1965
Gordon Moore predicted that chip density (and performance) doubles every eighteen
months [74]. "In 24 years the number of transistors on processor chips has increased
by a factor of almost 2400, from 2300 on the Intel 4004 in 1971 to 5.5 million on the
Pentium Pro in 1995 (doubling roughly every two years") [27]. Moore's observation
stays true until today (2004) and speaking at the International Solid-States Circuits
Conference (ISSCC 2003), Moore has predicted, that this trend will proceed in the next
decade [73]. As a result, processor cores clocked with several GHz and built out of more
than 400 millions transistors [48] [26] are standard for use in personal computers, today.

However, during the last decade there has been a revival in research on asynchronous
circuits [89] [39] - the intensive research activity is reflected by the exploding number
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publications concerning asynchronous logic in the last years (see Figure 1.1).
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1.1 Motivation

What is the motivation behind moving away from a well established and approved
design methodology? With the improvements made in the last decades several already
existing problems concerning the chip design style became increasingly critical and will
be further aggravated by each new technology step. One root of the problem is that
the signal propagation is limited by the speed of the light1. As soon as the signal
propagation delay becomes a significant part of the clock period - clock frequencies
beyond one GHz imply clock periods under one nanosecond - circuit designers have to
pay a heavy price to keep up the illusion that all components receive the rising edge of
the clock signal at the same time [102].
Another critical issue concerns power consumption [19]. The clock signal triggers the
components always, regardless of whether they have to do useful work or not - in-
creasing unnecessarily the energy consumption. Furthermore, the miniaturization ag-
gravates the situation by escalating the heat density inside high performance chips.
In addition the combination of larger chips and faster transistors caused a fundamental
change in the relation between gate and wire delay: In today's sub-micron designs, wire
delays and not gate delays are the dominant factors for circuit timing (see figure 1.2).

1To be more precise electrical signals travel on chips with 2/3 of the speed of the light
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wire delay

minimum feature
size /um

Figure 1.2. Gate vs. Interconnect Delay [103]

Thus a reliable verification of a circuit can be done after place & route only, and so
it is performed at a very late point in time in the design process. In practice, however,
timing problems often necessitate changes in the functional design. In this way the
separation of functional design and timing analysis causes unnecessary long iteration
cycles.

The asynchronous approach seems to solve most of the problems in a natural way:
Being event-driven, asynchronous circuits (i) perform operations only when required,
reducing the power consumption, (ii) do not require a global time reference, disarming
the problems concerning clock distribution and signal skew.
As a fetch-ahead to the following chapters, important properties of asynchronous cir-
cuits, which can be advantages in some areas [104], are listed as follows:

• Achieve average case performance, [66] [65] [119] [120]
. . . operating speed is determined by actual local delays rather than the global
worst-case latency.

• Low power consumption, [37] [36] [81] [12] [11]
. . . consume power only when needed.

• Provide easy modular composition, [75] [60] [107] [9]
. . . asynchronous components are combined with simple handshake protocols.

• Avoid clock distribution and clock skew problems,
. . . because there is no global clock.

• Lower electro magnetic emission and noise, [70] [86] [11]
. . . local triggered registers tend to be active at any point in time.

• Variations in fabrication process parameters, temperature and supply voltage are
not as critical as in synchronous designs, [80] [79] [64]
. . . because the timing is based on the relationship of the delays instead of on the
absolute values.



CHAPTER 1. INTRODUCTION

Convinced by the potential of the asynchronous design style our department started
its research activity in this field four years ago. The aim was not to invent a new
method, but to provide an in-deep analysis of one existing design style. We have
chosen the four phase logic approach [69] [21] due to the fact that it allows to build
completely delay-insensitive circuits on gate level and it does not require a neutral
state between valid data word such as the Null Convention Logic [31]. On account of
the four phase logic alternates the data encoding style within consecutive data words,
we call this logic CAL (Code Alternation Logic).
To perform our analysis, we have first developed a reference object, namely a syn-
chronous processor core called SPEAR (Scalable Processor for Embedded Applications
in Real-time Environments). In the second step we re-designed it using the CAL ap-
proach. This not only opened the way to perform conventional analyses but it also
allows to compare the asynchronous processor with the synchronous one concerning
i.e. speed, fault-tolerance, testability and so on.

1.2 Contribution and Objectives

The basic principle of CAL is to encode subsequent data with alternating phases.
This allows all components in a CAL circuit to judge consistency of their input data
and thus to decide if a new output has to be generated or not. In regular circuit struc-
tures such as in a linear pipeline, the aforementioned data flow control mechanism can
be applied in a straight forward manner. In contrast to non-linear circuit structures,
this data flow control mechanism is a delicate issue, as it is extremely prone to deadlock.

The contribution of this thesis is an in-depth analysis of non-linear structures in con-
junction with the CAL design style. We distinguish between two types of non-linearity:
selecting nodes and feedback/forward paths.
The latter one requires the placement of additional phase inverters inside the circuit in
order to guarantee consistently encoded input data for all components in the circuit.
For this placement not only the steady state of a circuit must be considered, but also
the dynamic effects have to be taken into account. We found that feedback/forward
paths cause a structural regulation of the data flow. As a consequence the performance
of a circuit depends on its initialization.
The second source of non-linearity is selecting nodes. These are (i) nodes, which re-
quire only a subset of their input to perform their operation or (ii) nodes, which only
activate a dedicated subset of their outputs. We can observe that in both cases the
nodes - and subsequently the related data paths - which are connected to the unused
ports of selecting nodes may loose their (phase-) synchronization with the remaining
circuit. As a consequence, the control flow must be adopted in an appropriate manner.
Finally, the validity of these findings are demonstrated by implementing an asyn-
chronous processor core with CAL.
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1.3 Structure of the Thesis

After this short introduction in Chapter 2 we will investigate the fundamental prob-
lem concerning digital design, i.e. to determine whether data is ready to be read and
to ensure that no data gets lost in the circuit. Two basic domains are proposed in
which these problems can be treated, namely the time domain and the information do-
main. Subsequently we are going to analyze which parts and in which domains current
approaches solve the fundamental design problems. The section concludes with a com-
parison of presented methods. In Chapter 3 focus of our attention will be placed to a
specific design method named Code Alternation Logic(CAL). The data flow regulation
principle of this approach as well as the implementation of its basic gates is shown.
Since tools constitute a huge challenge with respect to asynchronous logic design, we
will conclude this chapter presenting our design flow and explaining how we adapted
the synchronous tools for our purpose. In Chapter 4 the reader will be introduced to
the reference processor SPEAR and the target technology platform where we have im-
plemented the processor core, namely Altera's Quartus II and its FPGA APEX 20kC.
Since the SPEAR processor is a highly non linear device we analyze in the impact of
non-linear structure on CAL circuits Chapter 5. The influence of forward and feedback
path as well as the difficulties concerning selecting nodes are going to be analyzed in
detail. With these findings we are able to implement the ASPEAR, which is illustrated
in chapter 6. The thesis ends with a conclusion in Chapter 7.



Chapter 2

State of the Art

Circuit design styles can be classified into two major categories, namely synchronous
and asynchronous. The first approach is based on one or more globally distributed pe-
riodic timing signals, called clocks, which sequence the circuit [20]. The asynchronous
design style is a event-driven circuit design technique where, instead of the components
sharing a common clock and exchanging data on clock edges, data is passed on as soon
as it is available [32].Although the asynchronous design methods have been studied
for many decades, today the clocked circuits dominate the market of digital circuits.
However the synchronous design style faces some fundamental limits: Propagation of
electrical signals on chips is bounded by the speed of light: As the chips get bigger and
the clocks run faster, this physical restriction becomes more and more a crucial factor
in the design process of synchronous chips [67]. Another critical aspect constitutes
the power consumption: In CMOS circuits the dissipated energy is proportional to
the switch activity - in synchronous circuits the gate activity is driven by the clock
signals, independent from the fact if useful work has to be done or not. Possible op-
tions to solve these problems are clock gating [41], where unused parts of the circuit
are temporally disabled, or speed down the clock frequency during idle states [49] [25].
However, these are compromise solutions which aim to compensate the weak points of
the synchronous design principle and which have to be paid in terms of recovery time
and circuit overhead.

Being an event-driven method, the asynchronous design style promises to solve the
mentioned difficulties by its nature. Motivated by this circumstance a lot of asyn-
chronous design techniques were developed [42]. Though all approaches have the same
underlying principle, namely being event driven, their concrete effectuations look com-
pletely different.

Furthermore many approaches deal with only one particular design aspect. Hence
implementing a complete chip requires often a combination of methods. This makes it
difficult to classify asynchronous circuits and to compare them with the synchronous
design style.
For completeness we will mention a third design style, namely the Globally-
Asynchronous Locally-Synchronous(GALS) approach. The fundamental idea of this
approach is applied successfully to compose systems on higher abstraction levels,
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connect a printer with a PC, e.g. As more and more components can be integrated
on a single silicon die, this method becomes attractive even for VLSI designs [28] [55].
However, this design style can be traced back to the previously mentioned styles and
therefore it will not be considered separately.

All methods and design styles have one point in common: If we take a look from
a more abstract point of view, we could recognize that all methods, including the
synchronous approach, aim to solve the same problem, namely to ensure that all data
is correctly processed by the circuit. We call this problem the fundamental design
problem.
To be able to depict this problem in greater detail, we will first provide a system model
in Section 2.1. Based on this definition we will figure out the fundamental design
problem and deduce its root in Section 2.2. In Section 2.3 we will distinguish between
two basic strategies, which deal with the fundamental design, namely the use of time
or the use of information. With this theoretical background we are able to analyze and
classify characteristic types of design approaches in Section 2.4. This chapter concludes
with a comparison of the presented design styles.

2.1 System Model

2.1.1 Terminology

Terms such as signal, vectors, bits, e.g. are used in many different fields of appli-
cations. As a consequence these terms are interpreted in a slightly different manner
depending on its context. Due to this common usage a discussion inside our depart-
ment flared up about the exact meaning and interpretation of several expressions. Also
the literature could not help to clarify the situation due to the fact that some terms
are defined differently. It is for this reason that we devote a section to define the used
terminology.

We call the input of a Boolean logic function an input vector. It is constituted by a
number of signals - one for each input. The Boolean logic function defines a specific
mapping from the input vector to an output signal. This mapping is implemented
by a logic function unit. Often several Boolean logic functions are applied to the
same input vector in parallel, creating several output signals with a common semantic
context (data path elements like adder, e.g.). The term logic function units is used in
a broader sense to describe the implementation of this set of Boolean functions as well.

We call the smallest unit of information conveyed on a signal a bit, and the (consis-
tent) vector of bits conveyed on an input vector a data word. A signal can be physically
represented by one or more rails, whose logic levels define the signal's logic state. The
two mandatory logic states of a signal are "high (HI)"and "low (LO)", but states such
as "NULL", "illegal"or "in transition"are conceivable and sometimes used as well. A
signal-level code relates the logic levels of the rails - viewed as a vector that represents
a signal - to the logic state of the corresponding signal. For the digital rails we consider
that the logic level may either be "0" or " 1 " . In the conventional single-rail encoding a
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signal is represented by only one rail whose logic level is directly mapped to the signal
state.

input vector
LOGIC

I FUNCTION
UNIT

output signal

signal 1
signal 2
signal 3

signal n

DW.. data word

Figure 2.1. Terminology

We refer to an input vector as consistent at instant tj, if the states of all its signals
belong to the same context at instant tu i.e. if they represent one single valid data
word, and inconsistent otherwise. We also call the involved signals consistent under
this condition. We call a signal valid at instant tiy if its state at instant tt is the
stable result of a logic operation performed on a consistent input vector, and invalid
otherwise.

2.1.2 Data Flow

Prom the point of view of information flow every function unit FU is preceded by a
data source SRC that provides the input vector for FU, and followed by a data sink
SNK that further processes the output signal or vector of FU (maybe in context with
the outputs of other function units). Both data sink SNK and source SRC represent
an abstraction of the remaining circuit and may internally consist of further function
units. We call an output bit by of FU consumed by the sink SNK at U, if by is still
properly considered in the flow of information in SNK, regardless of whether by is
overwritten by a subsequent bit bz after U or not. Usually consumption implies the
transfer of the information to some storage element.

An information flow is termed lossless, if all pertaining bits are properly consumed
at all instances U. Also a signal path Pk is called lossless, if the information flow along
Pk is lossless. To guarantee losslessness, SRC and SNK, have to be appropriately
coordinated.

2.13 Timed Data Flow Relation

Considering the temporal relations and delays involved in the data transfer between
SRC and SNK, we have to extend our model by timing issues. Figure 2.3 illustrates
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this model. Thus a source trigger TRGSRC,X is employed to determine the instant
tissues for a data word DWSRC,X to be issued by the data source SRC1. As soon as
SRC is ready to accept a trigger, it will react by issuing the requested data word
DWSRC,X which will - after some delay - become visible and consistent at the output
of SRC at instant tiaaw,iX. The interval between trigger event (tTRG,SRC,x) and actual
visibility of the consistent data word DWSRC,X

 a t the output (tissue,x) is named the
issue delay Aissue. Next DWSRC,X propagates to the function unit FU where it is
processed. The corresponding result, DWpu,x, propagates from the output of FU
to the data sink SNK, passing SNK's input logic, until it is finally available as a
consistent data word DWSNK,X within the sink and hence ready for consumption at
instant tsNKrdy,x- The interval between ti3aueiX and tsNKrdy,x is termed as processing
delay Ap™^. At some point in time tSNKtr9,x > tsNKrdy,x the sink trigger TRGSNK,X

is activated, which will - after some inherent delay - cause DWSNK,X to be actually
consumed at instant tconsume,x- We call the interval between tsNKrdy,x and iconsume,i
the consumption delay /^consume and the interval between t$NKtrg,x and iconsume.i the
sink trigger delay AsNKtrig-

At instant tissuetX+i > tconsume^ it is safe to trigger the next data word DWSRC,X+I

to be issued by the source. We call the delay until this actually occurs (i.e. the
interval between tconsume,! and tiS3ue>x+i) the cycle delay A ^ e - Notice that DWSNK,X

does not necessarily become invalid immediately at Ua8XU>tX+\ but only after DWSRC,X+I

has propagated through FU to SNK. We describe this conservation of the previous
data word by an invalidity delay Ainvalid- Consequently the system designers have
the opportunity to choose a negative A ^ e thus increasing throughput by issuing the
next data word DWSRC,X+I already before the current data word DWSNK,X has been
consumed. Note that all delays may vary and hence some margins have to be considered
in the timing.

2.2 The Fundamental Design Problem

Based on the aforementioned definitions the fundamental problem of digital logic
design can be subsumed as follows: Ensure a lossless information flow in the system.
Under this fundamental constraint systems are typically optimized for maximum infor-
mation throughput. In order to achieve these aims the designer has to coordinate the

*As we will see later that on this trigger the essential means for controlling the data flow in the
signal path
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issue,x+l

triggers of source and sink appropriately. In context with the timed data flow model
presented above, this implies the following:

• The trigger of the sink TRGSNK,X must not be activated before tsNKrdy,x (ensure
losslessness): tsNK,trg,x > tsNK,rdy,x- Less formally speaking this means that a
new data word may only be captured by the sink after it has become consistent.
To achieve maximum throughput capturing should, however, occur as soon af-
ter tsNKrdy,x as possible. As a consequence, every design method must allow a
judgement of consistency of a data word in one way or the other (fundamental
requirement 1). Considering that validity is a prerequisite for consistency it
must be possible to judge on a signal's validity as well.

• The trigger of the source TRGSRC,X can safely be activated after tconsumetX to
guarantee losslessness, which means that the next data word may be issued only
after the previous has been consumed: tissuetX+i > tconsume^- F° r maximum
throughput it is desirable to place the trigger right after tconSume,x o r e v e n prior
to this instant (negative cycle delay). With respect to the design method this
requires the existence of some kind of information feedback from the sink to the
source (fundamental requirement 2).

Figure 2.4 illustrates these requirements. In practice requirement 2 has turned out
to be relatively easily fulfilled by an appropriate circuit structure (micropipeline, e.g.),
while the assessment of validity and consistency (fundamental requirement 1) is a
notorious problem that we will analyze more closely in the following sections.

2.2.1 Formal Incompleteness of Boolean Logic

Boolean logic defines functions on a high abstraction level. In essence a Boolean
function is a time-free mapping (truth table, e.g.) from the signals that form the
input vector to an output signal. The output is reacting continuously to any change
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of the input word - there is no such thing as a trigger. This further implies that only
consistent data words are applied to the logic function. In other words Boolean logic
does not provide any means for expressing or considering validity or consistency. Due
to this fact Boolean logic is called "formally incomplete"in [31]. In fact there is no
way of even expressing temporal relationships within the framework of Boolean logic -
it is postulated that the input vectors are always consistent and the generated output
is free of glitches. Unfortunately, due to signal delay and signal skew, none of these
assumptions is fulfilled in a physical circuit implementation.

In conclusion, Boolean logic does not solve any of the fundamental requirements
and so it does not contribute to solving the fundamental design problem in the first
place. Still, Boolean logic is the established way of describing logic operations. All
design methods have to compensate for this shortcoming in one way or another. In
Section 2.3 we will analyze how different design styles solve this problem. However,
before this action is performed we will analyze the roots of the problem in greater
detail.

2.2.2 Signal Delay

Two constituents of signal delay are commonly distinguished, namely gate delay and
interconnect delay. While gate delay is mainly determined by technology and fan-out,
interconnect delay depends on many parameters that are specific to a given signal path:
drive strength of the sender's output, capacitance and resistance of potential switch
elements or vias along the wire, length and physical arrangement of the particular wire,
and capacitance of the connected inputs,for instance. In addition, overall signal delay is
a function of the operating conditions (supply voltage, temperature). As a consequence
the time it takes an output to become valid is non-zero, which is contradictory to the
assumptions made by the Boolean logic.

2.2.3 Signal Skew

Due to the uncertainties with respect to signal delays no pair of signals will exhibit
exactly the same delay. The difference of delays within signals of the same input vector
is called skew. Notice that by definition skew distorts the temporal relations between
signal transitions. As a result, the assumption that the transition from one data word
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to the next one will occur at once (as implied by the continuous, untriggered definition
of a Boolean logic function) is unrealistic. The edges on the individual rails will rather
arrive sequentially, causing inconsistent intermediate signals and input vectors that
(temporarily) result in invalid outputs. In this sense the skew disproves the validity
and consistency assumption made by the Boolean logic. Figure 2.5 illustrates this
effect.

DWx

,-. /
signal #1 1 ,' '. /

signal #? 1 : ).

signal #1 1 ; ;

signal #n 1

consistent

1
1

DWX+1

•' /

• / 1
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- consistent time
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Figure 2.5. Transition between Consistent Data Words

As mentioned in Section 2.1 a signal may be represented by more than on rail. It is
clear that in this case skew between the rails additionally compromises signal validity.

2.3 Strategic Options

In Section 2.2 we pointed out that it is an essential task of every digital design
method to ensure that only consistent and valid data is consumed by the data sink and
that the source is synchronized to the sink in such a way that no data get lost. In this
section we will identify two basic domains where this can be performed. Remember,
that it is not required to solve all aspects of the fundamental design problem in one
domain - mixed solutions are also possible.

2.3.1 Time Domain

Having figured out timing issues - namely delay and skew - as one root of the fun-
damental design problem, one consequent solution is to compensate for their undesired
effects directly in the time domain.

Concerning the validity and consistency requirement we can simply determine all
relevant delays between source trigger TSRC,X at instant ti3SuetX and tsNKrdy,x, the point
in time when the data word is known to be ready for being captured at the sink. The
sum of these delays constitutes the minimum time we have to wait after the source
trigger until we can safely apply the sink trigger:

t,consume,x ^ + ti + ^process (2.1)
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The determination of Aissue and Ap,.^^ involves a careful analysis of the
(implementation-dependent) delays. In the same way we can relate the source trig-
ger to the sink trigger:

tissue,x+l — tconsumetx T (2.2)

Like above AsNKtrig must be determined by means of a delay analysis of a given imple-
mentation. Remember, however, that delays vary, and therefore we cannot determine
exact values, but we have to make conservative estimates to be on the safe side.

Based on this strategy we can use two different approaches to implement the control
of the triggers:

1. The use of coupled timers that - started with one trigger event (source or sink) -
generate the other respective trigger event (sink or source) after the appropriate
amount of time (TSNK or

2. The use of a global time reference for source and sink from which periodic triggers
for source and sink are derived with an appropriate phase difference, Tphase.

TRG
SNK

Coupled timer

Timer
SRC

Timer
SNK

SNK

TRG
SRC

TSNK^ Aissue,local+ A processing.local

TSRC 5 ASNKtrig,local + Acycle,local
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Figure 2.6. Fundamental Solutions in the Time Domain

The main difference between those methods is that the coupled timer approach only
needs local delays, which are delays between the actual source-sink pair. In contrast the
global timer has to use the worst case delays of the overall circuit. Another difference is
that the latter uses ^consumption while the coupled timer has to consider only &sNK,trig-
Due to the fact that a timer "starts" a new trigger event, only after an incoming trigger
event had occurred, the difference between the point in time where data is ready to



CHAPTER 2. STATE OF THE ART 14

be consumed and the point in time where the trigger is recognized at the destination
side does not matter. These strategies are capable of solving the fundamental design
problem on all levels, since all delays have passed and the circuit is stable at the trigger
instants. In some sense we have thus overcome the formal incompleteness of Boolean
logic by condensing the missing information on validity and consistency into the timer
settings and using dedicated control signals to convey this information between source
and sink. Notice, however, that we have just postulate that the input vector will be
consistent and valid after AiSSUe + /^process, in fact we have no means to directly assess
consistency and validity. As a result the determination of delays becomes a crucial
issue. Two essentially contradicting arguments guide the choice of the timing settings:

1. Restrictive assumptions: It is not possible to determine any finite value for the
delay without making assumptions on the implementation. Thus, the higher the
delays the fewer assumptions must be made and the fewer restrictions apply to
the implementation and the safer we can assume our losslessness property.

2. Performance: Obviously an overly conservative delay estimation has a negative
impact on the throughput in terms of data words per second. In order to keep the
resulting performance degradation minimal, a minimal overestimation of delays
should be striven for.

So ultimately the choice of timing settings turns out to imply a tradeoff between
performance and assumptions that have to be made on (and finally be met by) the
implementation. Many models and techniques exist that allow to determine delays for
a given circuit topology and technology. However, since delay and skew depend on many
parameters, an "aggressive"choice of timing settings towards maximum performance
compromises the robustness of the circuit.

2.3.2 Information Domain

Alternatively we can tackle the other root of the problem, namely the formal in-
completeness of Boolean logic. Different methods are available to enforce the different
fundamental requirements:

Validity: Recall from Section 2.1 that a signal is termed valid if it is the stable
result of a Boolean function performed on a consistent data word. There are several
possibilities to judge on the validity of a signal:

• Ensuring continuous validity: If we can manage to build the logic function
unit in such a way that it produces only valid outputs, judgement of the output
signal's validity becomes trivial. A function unit of this type must change its
output only in response to a consistent input word2. To this end it must (a)
be able to judge on the consistency of the input word and (b) hold the last

2Notice that ensuring continuous validity does not enforce continuous consistency, since the com-
bination of valid signals pertaining to a different context does not yield a consistent data word
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valid output signal during transient phases of inconsistent inputs. This obviously
requires some kind of storage element for each logic function unit.

Even with an input perfectly changing from one consistent state to the other, skew
within the function unit may cause invalid transient spikes at the output signal.
Therefore special care must be taken for the design of the function unit. This
causes a trade-off with respect to the partitioning of a circuit into function blocks:
A coarse-grained partitioning into few function units saves storage elements, while
a fine-grained partitioning facilitates better control of skew effects.

If the signal is composed of more than one rail, continuous consistency in the
rail domain is a necessary condition for continuous validity in the signal domain.
This can be ensured by the employment of a grey-code on the rail level, e.g. [118]

• Extending the signal code: Another approach to make validity visible is to
establish a more comprehensive alphabet in comparison to the binary Boolean
logic (by using more than one rail per signal, e.g.) and to define a subset of
all expressible codewords, which are considered as "valid". In contrast to the
previous approach, direct transition from one valid codeword on the rail-level to
the next is no more mandatory, (invalid) intermediate states are allowed, since
they can be identified. In other words, if a valid codeword has been reached
after a number of single transitions on k of n rails of a signal, there must be no
other valid codeword that can be reached by transitions on the remaining n — k
rails. This allows us to unambiguously identify when a codeword is complete,
irrespective of the order in which the transitions occur. The transition to the
next codeword must include another transition on at least one of the k rails. The
same condition - though in a different formulation - has been presented in [114].

• Current sensing: This method exploits the fact that transient effects in a
circuit are associated with current flow. Unfortunately, however, the reverse is
not necessarily true: The lack of dynamic current flow is indeed a reasonable
indication that the inputs are stable (and hence consistent?) and the output
is stable and hence valid. Without any restrictions on the delays, it may well
occur that one slow rail transition arrives after the circuit has been considered
stabilized. Another problem with this method is the lack of an event separating
two successive identical data words, which substantially complicates consistency
judgement. Finally the inclusion of analog circuitry for the current sensors causes
additional technological efforts [45].

Consistency: Imagine the situation depicted in Figure 2.7: SNK has an input vector
composed by two signals* each of which are valid. This does not necessarily imply that
the input vector is consistent, because the bits on the signal could well belong to
different contexts. Notice, that validity does not imply consistency, but consistency
requires validity.

To judge consistency, a circuit must be able to differentiate between two consec-
utive bits carried on a signal line, even if they hold the same information. This



CHAPTER 2. STATE OF THE ART 16

Figure 2.7. Validity vs. Consistency

means that we have to choose a signal level code which relates information to context.
So in order to be applicable for our purpose, a coding scheme must meet two conditions:

Consistency Condition 1: Existence of transitions
There must be at least one signal transition between any two successive code words.
While this naturally happens in transition based coding schemes, it requires special
efforts to ensure a transition between two successive identical data words in state
based coding schemes. A usual solution is to introduce a "neutral" code word (like all
zero, e.g.) between any two data words in a "return to zero"manner.
Consistency Condition 2: Membership to contexts
As can be viewed in Figure 2.3, two data waves (belonging to a different context) will
transiently coexist between SRC and the associated SNK: There is a finite interval when
the new data wave has already been issued and propagates through the FU, but the
previous one is still valid at the SNK's input. This procedure is properly synchronized
by the trigger control. If more data waves were admitted between SRC and SNK we
would loose control of them and in particular not be able to prevent one data wave
from catching up with its predecessor (unless this is ensured by timing assumptions).
As a consequence, if our basic requirement is to be able to distinguish data waves with
different contexts, we normally come along with two disjoint code sets on the rail level,
which allows us to unambiguously assign every bit to one of the two data waves, which
includes when

Losslessness: As already outlined, the losslessness property requires us to provide
the data source, SRC, with information when new data can be issued and the data
sink, SNK, with information on when data can be consumed. The latter can be
achieved by checking consistency and validity of the SNK's input vector without
relying on the time domain.

The source trigger can only be derived from information explicitly provided by the
data sink such as a control signal acknowledging the consumption of the previous
data word. Since there is only one single bit of information required on this backward
path, there is no potential for skew effects. Nevertheless, the consumption of a data
word can usually not be directly measured, which gives rise to conceptually weak
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compromises in this respect.

Prom a higher level of abstraction we can consider the function unit as part of the
data source/sink and map the lossless requirement of a communication process problem
(see Figure 2.8).

request

data

acknowledge

Figure 2.8. Communication Process

In fact there is a strong relation between communication channels and delay in-
sensitive circuits [77]. However it is essential to realize that communication channels
solve only a part of the fundamental design problem, namely losslessness. Consistency
and validity cannot be answered by a communication channel alone, other mechanisms
for this purpose are still required. Due to the fact that a lot of literature concerning
communication channels in context with asynchronous logic [115] [123] [106] exists, we
will give only a brief overview it in this section. A data source and a data sink are
connected over a communication channel. The point were a channel is connected is
called a port. We distinguish between unidirectional and bidirectional channels. For
the following we will consider only unidirectional channels which reflect the natural
of communication in digital circuit. A port can be active, this means that such a
port initializes a communication process, or passive, where the port reacts on incoming
events.

Obviously there must be an agreement between source and sink, in which way data
is transmitted over the communication channel - a so-called communication protocol.
Basically we can distinguish between a 2-phase protocol and a J^-phase protocol. In
contrast to the 2-phase protocol, the 4-phase protocol returns back to its "neutral
state", after each communication cycle, (see Figure 2.9)

Furthermore we have to distinguish between push channel, where the data source is
the active party, and pull channel, where the data source reacts on requests of the data
sink. A detailed description of communication mechanism with respect to asynchronous
circuits can be found in [77].

2.33 Hybrid Solutions

It is not necessary to solve the fundamental design problem in one domain only. Quite
on the contrary, many design approaches are based on a hybrid solution. Huffman
codes [47] or micropipelines [107], e.g., solve only a part of the fundamental design
problem and only their combination with other methods yields the desired result.
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Figure 2.9. Communication Protocols

In most cases library cells, such as AND, OR, latches, .., are implemented by making
local timing assumptions e.g. isochronic fork [62] or fast local feedbacks [31] [30], since
it is quite easy to consider timing assumptions within such atomic cells and yield more
efficient implementations in terms of speed and silicon area.

This leads to a further classification of circuits with respect to the assumptions made
about timing [104]. Figure 2.10 shows a circuit fragment comprising three gates, where
the output signal of gate A is connected to the inputs of gate B and C. The delays
inside the gates AA, AB and Ac, represent the processing delays, while A1; A2 and A3,
form the propagation delays of each wire segment.

B

Figure 2.10. Circuit Fragment with Gates and Delays

Depending on the assumption made with respect to delays, circuits can be classified
as follows [104]:

Delay-insensitive circuits (DI): We consider a circuit delay-insensitive if its cor-
rect operation depends neither on gate delays nor on wire delays. [62] shows that only
circuits composed by Muller-C-gates and inverters can be delay insensitive using single
output gates. This is a strong restriction, which limits the practical applicability of
such type of circuit. However, this is the only class of circuits, which solves all aspects
of the fundamental design problem exclusively in the information domain.

Quasi-delay-insensitive circuits (QDI): These circuits are delay-sensitive with
the exception of some carefully identified wire forks. Related to Figure 2.10 this would
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require that A2 = A3. In other words, the QDI approach hypothesizes that all
transitions at the end point of (carefully selected) wired forks occur at the same time.
Such forks are called isochronic forks.

Speed-independent circuits (SI): These circuits operate correctly, assuming that
gate delays are bounded but unknown and that the wires are ideally zero delayed.
Hence a SI implementation of the circuit depicted in Figure 2.10 would require that
Aa = A2 = A3 = 0.

Self-timed circuits (ST): Forcing always (Q)DI or SI could result in an overkill
- sometimes a tradeoff between implementation complexity and delay assumptions is
reasonable. In this sense circuits whose correct operation relies on more elaborate
and/or engineering assumptions are called self-timed circuits.

Timed circuits (TI): In this class of circuits all delays, gates and wire delays, have
to be taken in to account in order to ensure a correct behavior of the circuit. In other
words, such types of circuits solve the fundamental design problem entirely in the time
domain.

Furthermore, we different abstraction levels of a circuit implementation have to be
considered. Until now we have dealt with abstract logic function blocks only, disre-
garding whether we are considering a simple inverter built from two transistors or a
complex ALU. The distinction between abstraction levels is vital because several design
approaches use speed-independent or quasi-delay-insensitive library cell implementa-
tions (on transistor level) and combine them yielding to a delay-insensitive circuit on
gate level. In this way the timing analysis of arbitrary circuits is restricted to a small
number of (little) library elements and hence has to be performed only one time dur-
ing library compilation. This allows us to build circuits, such as an ALU, for which
the fundamental design problem is entirely solved in the information domain (on this
higher level of abstraction).

2.4 Design Techniques

This section is intended to give an overview about current design techniques with the
aim to illustrate how they solve the fundamental design problem. Obviously not all de-
sign methods developed in the last half century can be covered. Instead, characteristic
representatives of each design approach will be dealt with.

2.4.1 Synchronous Approach

Basic principle: The synchronous approach answers all subproblems concerning the
fundamental design problem in the time domain using a common time reference (see
Figure 2.6). It employs a unique control rail, the clock signal, to indicate validity,
consistency and losslessness at the same time. At every active edge of the clock all
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signals have to be consistent and valid by definition and therefore ready to be consumed.
Due to the fact that data sources get the same clock signal as data sinks, the active
clock edge signalizes also the point in time where new data can be issued. In this
way the regulation of the data flow is also strictly based on time and occurs without
feedback (see Figure 2.11). By assuming that all data sources and sinks get a common
global time reference from the clock signal, it is implied that all these components
actually get the active edges at the same point in time. However, since skew and
delay effect also affect the clock signal, this claim is not justified for deep sub-micron
technologies. Quite on the contrary, [67] predicts that in the near future only a small
percentage of the die will be reachable during a single clock cycle. Furthermore, the
clock signal has no immediate relation to consistency/validity of signals or rails and
the clock signal - it is just a strictly periodic and time driven control signal.

SRC SNK

Clk

Figure 2.11. Synchronous Design Approach

The minimum distance between active clock edges Tcik is derived from ^.process and
^consumption- Its calculation is based on worst case assumptions concerning physi-
cal properties, performable operations, applicable data and operation conditions [40].
&Cyde and Aissue are reflected in hold and setup time of registers. Note, that in the
synchronous approach data is consumed and issued in exactly the same point in time.
Further it is assumed that both data sources and sinks are always ready to perform
their operations on each active clock edge - flipflops have no means to signalize that
they are busy at the moment.

Efficiency: The synchronous approach is extremely hardware-efficient, since it uses
one single global control signal, which is easy to generate by means of a crystal oscilla-
tor. The highly efficient single-rail encoding can be used to represent all signals. If the
logic state of a signal changes from one data word to the next, a signal transition is
performed; if the state remains the same, no transition is required. Assuming a random
distribution of state patterns on a signal, this yields to an average of 0.5 signal (=rail)
edges per bit, which means that the energy consumption caused by data transitions
is extremely low. Assuming a properly chosen clock frequency, no consideration of
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transient effects and consistency issues is required during functional design.
Through the insertion of so-called pipeline registers the signal path is often structured
into smaller sub-paths. The timing of these smaller sub-paths can be more easily
analyzed, and in addition pipelining yields some performance gains [44].

Problems: So apparently all problems of logic design are solved by the synchronous
approach, and indeed millions of synchronous designs have been working properly and
reliably over the past decades. Still, however, substantial problems have remained un-
solved on the conceptual level, and the current technology trends make these problems
more and more evident:

• The indirect conclusion from time to consistency and validity of signals is the main
conceptual deficiency: Time is easy to measure but not by itself an indication
for consistency and validity. In fact, an artificial correlation between time and
consistency and validity is extremely hard to establish and can not never be
guaranteed.

• The assumption of stable states during functional design does not eliminate the
need for consideration of transient effects. In fact it only postpones the problem
to an explicit timing analysis that is required later on. This timing analysis is
often much more complicated than the functional design. With the increasing
clock rates and the proceeding miniaturization this problem becomes more and
more stringent.

• With its wide extension and the strong drivers required to keep delay and skew
low, the clock network dissipates a significant share of the power of a chip. In
order to be able to keep the clock skew within 300 picoseconds, the designers
of the DEC Alpha CPU [102] developed a clock driver circuit, which dissipates
over 40% of the power of the entire chip ([20]). Unfortunately this outweighs the
advantage of low power consumption in the data path. In addition, substantial
heat problems are caused by the fact that switching activities are periodic rather
than demand driven.

• A solution of the delay and skew problems in the timing analysis phase is possible
only if restrictions on the timing behavior are made. This, however, has severe
consequences:

— Considering that interconnect delays already dominate gate delays [98] re-
alistic timing estimations can only be constructed after the place & route,
i.e. at a very late point in the design process. In practice, however, timing
problems often necessitate changes in the functional design. In this way
the separation of functional design and timing analysis causes unnecessarily
long iteration cycles.

— Any change in the circuit or technology requires a complete revision of the
timing analysis.
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— As already mentioned the actual delays of a given implementation still de-
pend on the operating conditions and are affected by type variations. Hence
the delay assumptions made during the timing analysis must be arbitrary
to some extent. While assuming the worst case scenario within the specified
range of operating conditions clearly leads to performance loss in the aver-
age case, there is still a residual risk of exceeding the assumed limits: "...In
order to achieve a reasonable shield against these variables, the clock period
is extended by a certain margin. In current practice these margins are often
100% or more in high speed systems." [20]. Some innovative design meth-
ods [110] [84] soften this rationale by adopting the clock rate to the actual
condition. However this requires an additional effort in terms of silicon die
and control mechanisms.

• As a matter of fact no restrictions can be made for asynchronous inputs at
synchronous/real-world borderlines and interfaces to other clock domains. Con-
sequently these signals cannot properly be considered in the timing analysis, and
so metastability problems arise [33]. By use of additional synchronizer circuits
metastability can be made sufficiently improbable, but no conceptual remedy to
completely eliminate it has been found so far.

• Synchronous designs have a very problematic behavior with respect to EMC,
since most of the energy is concentrated in one single spectral line.

2.4.2 Bundled-Data Approach

Basic principle: The basic concept of bundled-data [104] is to arrange several
(data-) signals in a group and to use a common control signal, which serves as a trigger
to signalize validity and consistency of these (data-) signals. The control signal is
generated at the same time as the related data signals by the source node and hence to
operate correctly, the data path must be at least as fast as the control path. To ensure
this procedure it may be necessary to insert additional delays, so-called matching delays
in the control signal path. In this sense bundled-data solves consistency and validity
in the time domain. The control signal can be used as a trigger for data sinks only and
therefore the bundled data approach does not provide any means for data flow control.
This requirement has to be fulfilled by other methods or on a higher system level.

^ datawave

SRC FU SNK

datawave

Figure 2.12. Bundled-Data Design Approach
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As illustrated in Figure 2.12 consistency and validity are ensured in a similar manner
as in the synchronous approach. This allows asynchronous designers to use standard
(i.e. non hazard-free) implementation of logic function units [52]. The main difference
between the synchronous and the bundled data approach is that the latter requires
only local timing information (see coupled timer in Section 2.3.1) instead of taking
into account the whole circuit to determine the temporal sequence of trigger events.

Efficiency: The most efficient representation of data is to use one single wire per bit
- the higher the number of data bits, which are bundled, the closer the bundled-data
approach moves to this maximal efficiency rate. Apart from the matching delays, which
can be implemented using inverter chains or by duplicating the critical path of the stage
between source/sink, no extra completion detection circuits are required. Assuming a
random distribution of state patterns on a signal and a reasonable number of bundled
signals, the bundled data leads similar to the synchronous approach to an average of 0.5
signal (=rail) edges per bit. Thus, the bundled data approach is highly efficient not only
in terms of silicon area, but also in terms of energy efficiency. Due to this fact bundled
data was used in several asynchronous designs implementations [38] [54] [82] [108].

Problems: Although the major difficulty of the synchronous design style, namely
provide a global time reference anywhere in the circuit, is defused by requiring only
local timing information the bundled data still faces some problems:

• Time is still used to determine consistency and validity of signals. The basic
problem with this indirect conclusion is similar to those in synchronous systems,
even if the locality makes it more manageable.

• The matched delays have to be calculated considering worst case scenarios. These
yield to waste of performance.

• Due to the increasing dominance of wire delay over gate delay [125], matching
delay can be determined reliably only after place&route. Furthermore a valida-
tion of the final circuit is required, due to the fact that some variations during
the fabrication may affect the (data-) signal path but not its related matching
delay for example.

• Moving to a new technology all delay elements have to be re-calibrated.

• Bundled-data is usually used to model data busses. However means to control
the data flow are not provided.

2.43 Huffman Approach

Basic principle: D.A. Huffman [47] can be considered as one of the spiritual parents
of the asynchronous logic design. Huffman developed the so-called fundamental mode
circuits. These circuits [78] are intended to be used for asynchronous state machines.
As depicted in Figure 2.13 Huffman circuits have primary inputs, primary outputs,
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and a the feedback loop. The fundamental mode requires that only one input signal
changes at a time. The current state is "stored" in the feedback path and thus may
need delay elements to prevent state changes from occurring too rapidly. However the
feedback signals are inputs of the combinational logic as well - hence it is even required
that by passing from one to the next state, only one bit changes. Therefore the state
encoding scheme has to be carefully chosen [104]. A further requirement of Huffman
circuits is, that the combinational logic is glitch-free, which can be achieved through
redundant terms in the KV-map [78].
While validity is answered in the information domain (glitch-free functions) and by
the environment (only one bit changes at the input side), consistency is solved by the
delay element in the feedback path. The lossless property has to be guaranteed by the
environment: It is assumed that a new input vector is issued only when the circuit has
reacted a stable state.

inputs
Comb.

Logic

el
ay

Q

outputs

Figure 2.13. Huffman Circuit [77]

There are some enhancements of the Huffman circuit which soften the fundamental
mode requirement. The multiple input changes(MlC) [34] [58] extension is based on
the assumption that the input changes happen within some tightly bounded interval of
time, and hence they can be considered to have occurred simultaneously. Stevens [105]
allows input changes at any time as long as they are grouped together in bursts. This
yields to the so called burst mode circuits. The most general mode of operation is the
unrestricted input change mode (UIC) [111]. The UIC design method demands that
an input does not change twice in a given time period.

Efficiency: Just like the approaches presented previously Huffman circuits use a sin-
gle rail encoding. However the Huffman approach does not allow glitches, albeit delay
elements are used. The reason is that the delay element is not used to primarily sig-
nalize consistency, but prevents the circuit to become unstable, due to the feedback
signal. The demand of being glitch free limits potential optimizations during synthesis
and leads to larger circuits. However, a lot of work has be done in this field, the inter-
ested reader can find further information about Huffman circuit synthesis approaches
in [17] [18] [90] [116] [122]. The restriction, that a new input can occur only when the sys-
tem has settled in a stable state, limits the throughput: A new input must be delayed
at least two times the delay of the combinational logic (in the first step the next state
is calculated, in the second step the output is settled according to the input and the
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new state information) and one time the delay of the delay element. Using a one-hot
state encoding simplifies the associated logic but worsens the throughput further:
"... For a one-hot encoding, this means that a new input must be delayed long enough

for three trips through the combinational logic and two trips through the delay element. "
([42] p.71)

Problems: The requirement posed by the fundamental mode but also by its exten-
sions, MIC and UIC, lead to several limitations of the circuit design:

• One big handicap of Huffman circuits is that data paths cannot be implemented
- a data bus carries information, which is arbitrary per definition and hence
restrictions can not be applied. This limits the practical applicability of the
Huffman approach to control circuits only.

• The implementation of hazard free circuits, requires an additional effort during
system design. An in-deep discussion about Hazard-free two-level logic synthesis
can be found in [77] on page 165 ff.

• Some boolean functions may not change monotonically during a multiple input
change. Such functions are considered to have a functional hazard. Eichelberg [29]
shows that it is impossible to build a hazard-free gate level implementation of a
function, which has function hazards.

• Although of glitch-free function units have to be used, delay elements are still
required. The same drawbacks concerning delay elements, as mentioned in the
previous sections, are true for the Huffman circuits.

• No means for data flow control are included - it is postulated that data is issued
in a correct manner by the environment. The fact that points in time where data
can be issued depend not only on a straight forward delay calculation of function
units, but to the delay calculation of circuits containing loops, aggravates this
weak point.

2.4.4 Design Techniques Using Signal Coding - The NCL Example

Basic principle: Many approaches exist, which use signal encoding to ensure valid-
ity of signals and make consistency of signal vectors directly visible [57]. NCL (Null
Convention Logic) which was developed by Theseus Logic was chosen as the repré-
sentant of this class of implementation approaches due to the fact that it is the most
mature one and because some industrial experiences have been already made [70]. This
design approach extends the Boolean logic by a so-called NULL state [31]. In particular
an NCL signal can assume a DATA state - which is either a valid HI or a valid LO, in
NCL called "TRUE"or "FALSE", respectively - or a NULL state. For encoding these
three states the single-rail approach is obviously not sufficient, and a two-rail signal
representation is used instead, with NULL being represented as (0,0), TRUE as (1,0)
and FALSE as (0,1). The NULL state does not convey any information, it serves only
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as a neutral state separating two consecutive codewords. Figure 2.14 illustrates this
behavior.

input a

input b

NCL
Gate output

1 NULL 1

1 NULL

1 NULL

:DATA

1 DATA 1

1 DATA

[ NULL
j

; NULLl

1 NULL

r
:
\|

DATA 1

DATA

DATA

i I
1 |

input a

input b

output

Figure 2.14. Sequence of DATA and NULL Waves

Feedback ensures that a new data (DATA or NULL) can be processed only when
the input vector is consistent. To realize this behavior so-called threshold gates are
used [56]. These gates change their output only when the complete input vector is either
DATA or NULL. This hysteresis provides a synchronization of the wavefronts on the
gate level. In other words consistency and validity check on signals are implemented at
gate level. With the proposed encoding on signal level exactly one rail changes its logic
level upon the transition from NULL to DATA and vice versa, regardless of whether
DATA is TRUE or FALSE. Due to the mandatory introduction of the NULL waves a
neutral state (NULL) is assumed on every signal after every single data word, which
enforces the edge required to meet the consistency condition 1 (see Section 2.3.2). From
this neutral state an edge on any one of the two rails leads to the TRUE or FALSE
state, which guarantees that the codeword itself is always valid. The NCL approach
does not provide any mechanism to ensure losslessness.

Efficiency: A NULL state between each pair of DATA states regulates the data flow
in onward direction and ensures consistency. From a performance point of view this
convention is very expensive - in fact the maximal achievable throughput is halved by
the NULL wave. However, due to the fact that this approach does not require any delay
elements, the resulting circuit operates as fast as it can, which partially compensates
the drawback of the NULL wave.
In contrast to single-rail encoding styles where the average of 0.5 signal (=rail) edges
per bit can be assumed, NCL requires in any case 2 edge per bit on the rails.
The usage of two rails per bits yield by its nature to larger circuit compared to single
rail implementations. Furthermore each NCL primitive requires some kind of storage
element which increases again the price in terms of silicon area. However, Theusus Logic
proposes some tricky hardware solutions which keep this overhead within reasonable
limits [30].

Problems: The NCL approach integrates data and control information in a single ex-
pression. This merger combined with the alternation of DATA and NULL waves makes
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validity and consistency directly visible, without making (apparently) any assumption
about timing - this feature has its price:

• Higher effort in terms of gates and interconnect: the dual rail encoding doubles
the number of wires and multiplies size of logical gates: A gate with two single-
rail inputs has four possible input combinations to take in account, while a two
dual-rail input gate has sixteen possible input combinations.

• The convention that NCL gates start to produce a new output value only when
all inputs are in the NULL/DATA state, requires that the gate holds its output
value in between. As consequence a NCL gate must contain some kind of memory
element inside. Theseus Logic proposes threshold gates for this purpose. The
functionality of these gates is basically implemented using feedback signals inside
the gate. Although NCL does not require timing assumption on gate level, to
operate properly the feedback signals inside the gates have to be fast enough to
settle the gate before the next input vector change occurs. This is a sustainable
requirement, however due to the fact that a timing assumption has to be made,
NCL circuits have to be classified as quasi-delay-insensitive circuits rather than
delay-insensitive ones.

• The NULL waves reduce throughput on the one side and energy efficiency on the
other side (see previous paragraph)

• NCL does not provide any means for data flow control. This means NCL has
to be combined with other design techniques such as Micropipelines .e.g. For
this purpose consistency of a signal vector has to be provided explicitly to the
additional design method. This requires a further circuit, so-called Completion
Detection Circuit ( CMPD).

2.4.5 Transition Signalling Approach

Basic principle: In conventional coding techniques logic states of signals are mapped
to voltage levels of physical rails. In contrast transition signaling [104] uses edges on
rails to convey the information. Transition signaling also employs two-rail coding on
the signal level. A transition on one rail indicates a HI, a transition on the other rail
a LO. From a more abstract point of view transition signaling uses a one-hot encoding
scheme for HI and LO and therefore fulfils the validity property on code level. The
neutral state between consecutive codewords is defined by the absence of transitions
on the rails. In contrast to NCL, where the neutral state must be explicitly generated,
transition signaling provides this state automatically and hence a new codeword is
recognized even if it carries the same information as the previous one. In this sense
consistency is integrated directly in the coding style. In [63] it has been shown that
the only single output gates that can be used in conjunction with transition signalling
circuits are Muller-C-Gate and inverter. This limits the usability of this scheme for
real circuits.
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Efficiency: Transition signalling can be compared to a NRZ coding style. This ob-
viously favors the achievable throughput and hence promises higher performance for
circuits using this approach. Albeit transition signalling uses a dual rail encoding, only
one single transition/edge per bit is required. Note that a transition occurs in any
case, even if the same bit information is transmitted consecutively by the same signal.
Thus data content itself does not influence the number of edges required to convey the
information.
Compared to single rail encoding the dual-rail approach doubles the number of wires.
However, the main weak point of transition signalling with respect to area efficiency
is the complexity of gates, which are able to operate on signal transitions instead of
signal levels.

Problems: Coupling information to events is an extremely elegant method to solve
the fundamental design problem concerning validity and consistency. Nevertheless
there are some (practical) problems which inhibit the breakthrough of this design
technique:

• Gates require a high implementation effort due to the fact that they operate on
edges instead of signal levels. Furthermore the set of allowed gates is limited,
this restricts the practical applicability of this design style.

• The basic principle of digital design is to distinguish between two discrete sig-
nal states/levels, namely LOW and HIGH or '0' and '1 ' . Transition signalling
based on transitions of signals instead of levels of signals, means that transition
signalling is event based instead of state based. Hence, this approach requires to
completely change the well established and approved way of thinking concerning
digital circuit design. This radical change demands not only new tools but also
a complete re-education of engineers.

• Transition signalling circuits are susceptible to interferences. Each glitch even
the smallest one produces two edges, which are interpreted per definition by a
transition signalling circuit as two valid bits. Muller-C gate implementations
as proposed in [107] moderate this problem, since they are more robust against
glitches. In spite of the risk that a small impulse generated by an electrical inter-
ference e.g. causes a malfunction is much higher than in other design approaches.

• The fact that transition signalling is events based makes it extremely difficult to
debug transition signalling circuits. Debug tools cannot directly derive the logical
information carried by signal - instead the event sequence must be journalized
to determine information, which is currently conveyed by the signal.

2.4.6 Handshake Protocols: The Micropipeline Approach

Basic principle: There are several choices of handshake protocols, which can be
used to control the communication inside a circuit [77] (see Section 2.3.2). The mi-
cropipelines introduced by Sutherland [107] in particular uses a 2-phase signalling
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for the handshake protocol. Basically micropipelines are a means for structuring com-
plex logic designs in general and data path designs in particular. In contrast to the
synchronous pipelines they employ local handshake signals between any two pipeline
stages to interlock the inter-operation between the individual stages so that the speed
of data flow can be adapted to the local situation. They provide an elastic pipeline
for the handshake signals that allows to buffer requests. In this way the micropipeline
approach provides a straightforward solution for data flow control.

data out

ack(out)

Figure 2.15. Micropipeline

The latches inside the micropipeline have two operation modes:

• Transparent: input data is passed directly to the output.

• Frozen : the latch maintains the value of the output independently of the input
data.

As illustrated in Figure 2.15 the latches have four control signals, by means of
which their behavior can be controlled: Capture(C), Capture.done(Cd) and Pass(P),
Pass-done(Pd).
The Pass input sets the register in the transparent mode. After a certain delay the
register achieves this state which is signalized by the Pass-done signal. Similarly the
Capture and the Capture-done signals freeze the latch and signalize that the latch is
effectively frozen. The Muller-C gate [107], which acts as AND concatenation of events,
ensures that the latch freezes only when the new input data has been passed through
the register. The original micropipeline approach employs delay elements to ensure
consistency. Fundamentally this corresponds to the bundled data circuits between
pipe-latches. However, it is possible to generate the completion signals by combining
the micropipeline with other design approaches [117].

Efficiency: First of all the micropipeline approach provides a mechanism to control
the dataflow. Like its synchronous counterpart, the micropipeline can be further used
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to enhance throughput of circuits. Especially the micropipeline introduced by Suther-
land seems to be particularly suitable for this purpose due to fact that it implements
a 2-phase-handshake protocol. This means that no Return-to-Zero is required, which
shortens the cycle time. However, practical experience shows something quite differ-
ent: Based on this argument the first asynchronous ARM processor Amuletl [121]
was developed using techniques based extensively on Sutherland's Micropipelines. For
the second processor generation, Amulet2(e) [37], a 4-phase-handshake protocol rather
than a 2-phase-handshake protocol was chosen because it was discovered to be simpler
and more efficient.
Examination of area efficiency is not meaningful when we only are speak of about
communication protocols. To implement the function unit between pipe stages mi-
cropipelines have to be combined with some other design style - bundled data was
suggested by Sutherland e.g.. Therefore the area efficiency depends strongly on the
chosen method to make consistency visible.

Problems: The Micropipeline approach is intended to solve only one part of the fun-
damental design problem, namely the data flow control. Weak points of this approach
are:

• The original micropipeline introduced by Sutherland provides a bundled data
approach to signalize consistency. This moves all problems mentioned in the
section about bundled data to the micropipeline approach as well. Also the
bundled data design style can be replaced by any other approach which solve the
consistency problem.

• Apart from the delay element parallel to the data path, two additional delay
elements are required inside the latches: a capture-done delay and a pass-done
delay. This vast use of delay elements cuts down the potential advantage of
asynchronous circuits.

• Although the 2-phase-signalling used for the handshake protocol promises higher
performance compared to a RTZ protocol, the practice has shown the oppo-
site: The second generation of the AMULET processors was based on a 4-phase-
signalling handshake protocol due to the fact that the 2-phase-signalling in the
first processor generation permitted only a slow and complicated implementation.

2.4.7 High Level Description Approaches

Basic principle: In contrast to all methods discussed so far, High Level Description
Approaches do not explicitly consider the effective hardware implementation of the
circuit, but outsource this aspect to an (automated) synthesis process instead. Hence
the main task of these high level methods is to purvey a description, which fulfills
specific constraints/requirements in order to enable the synthesis tool to build correct
operating circuits. However the synthesis process on its part has to revert to one of
the "low level" design approaches described previously. Therefore related to strategic
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options high level description methods do not pose a new design technique, they provide
a framework to develop circuits and to formally verify its behavior instead. High level
descriptions fall roughly into 2 categories, namely Graphical methods and Translation
methods.

Graphical methods: Due to the fact that Petri nets [99] are used to describe concur-
rent systems, almost all of the graph-based methods are based on this graph model or
on a restricted form of it [53]. Signal Transition Graphs (STG) introduced by Chu [16]
are such a restricted form of a Petri net, which allow only limited options to select
alternative responses of the circuit. Other variants of Petri nets are Interface nets (I-
nets) [72] Machine nets, (M-nets) [97] or Change Diagrams [113]. Timed Event/Level
structure (TEL) is a graphical method which, allows specify timing information [94],
in order to permit efficient circuit implementations.

Translation methods Almost all high-level description languages for asynchronous
circuits are based on the use of a language that belongs to the Communicating Se-
quential Processes (CSP) [14] [13] family, rather than to classical hardware description
languages such as VHDL [4] or Verilog [3]. The characteristics of CSP are described
in [77] as follows:

• Concurrent processes

• Sequential and concurrent composition of statements within a process

• Synchronous message passing over point-to-point channels (supported by the
primitives send, receive and - possible - probe)

OCCAM [109][83] LOTOS [124] and CCS [71] are programming languages which
are able to describe parallel processes. Tangram [10], CHP [61] and BALSA [8] are
languages which are specially designed to model (concurrent) asynchronous circuits.

Efficiency: In general high level descriptions permit shorter development cycles due
to automated processes below the abstraction level of the description. Today global
optimization techniques for asynchronous logic are difficult to utilize during the trans-
lation process and hence automated synthesis often produces inefficient results [53].
However it is a matter of time until asynchronous synthesis tools achieves the same
quality as it synchronous counterparts.

Problems: There are mainly three problems which can be identified concerning high
level descriptions:

• Although the asynchronous design style has a long history, interest arose only
in the last decade and thus researchers and engineers started to investigate this
discipline. It is clear that existing approaches and tools are not fully developed
yet.
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• Only circuits with limited complexity can be modelled. This is especially true
for graphical based approaches due to their awkwardness in specifying input
choices [53].

• The automated synthesis process hides the information about the implementation
on gate level. Having a well approved and established tool chain this may be a
desired property, but as the asynchronous design techniques are being still in
the fledgling stage this circumstance limits the possibilities to investigate the
implemented circuit and to find out possible improvements.

2.5 Comparison

Due to the fact that different design techniques are intended for different purposes -
Huffman circuits for ASFMs, bundled data for data path modelling e.g. - and because
each design style has a lot of extensions on its part, it is difficult to make a comparison.
Thus we will confront the presented design techniques with respect to basic aspects
and compare them only in a qualitative manner. This should still enable the reader to
judge the presented design techniques and visualize their advantage and drawbacks.

Covered part of the fundamental design problem: The most characteristic
features of a design technique are the aspects of the fundamental design problem it
covers and the domain (time or information) in which the related problems are solved.
Hence in Table 2.1 the presented methods are compared with respect to the domain, in
which they solve consistency, validity and losslessness. The column E (Environment) is
used to express that the design technique does not solve the corresponding subproblem,
but moves the responsibility to the environment. Column / (Information) and T
(Time) are used to express whether the problem is solved in the information or in
the time domain.
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Table 2.1. Comparison wrt. the fundamental design problem

In contrast to all other methods the synchronous approach provides a complete
solution of all subproblems of the fundamental design problem in the time domain. On
the one hand the clock signal guarantees consistency and validity at the instant when
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data is taken over and on the other hand it regulates the data flow. The bundled data
approach is intended to soften the problems concerning distribution of a global time
reference by using local timing assumptions only. It makes consistency and validity
"visible", but leaves data flow control issues unconsidered. Similarly the Huffman
circuits move the responsibility to provide only "allowed" inputs at the right time to
the environment. In the same way the NCL approach alone does not provide any
means to control the data flow. However, the alternating data waves in combination
with the completion detection signal make this approach particularly suitable to be
extended by a communication protocol, which controls the data flow. Due to the event
based approach and the one-hot-encoding for events, transition signalling also solves
consistency and validity in the information domain. Means to control the data flow are
not provided. In contrast, the micropipeline is a concert implementation of a handshake
circuit and thus intended for data flow control. Sutherland suggested to combine the
micropipeline with the bundled data approach to build function units inside pipe stages.
Therefore consistency and validity are solved in the time domain. It is difficult to
classify high level design methods due to the multitude of different techniques covered
by this category. In general these methods demand some restrictions concerning input
vectors, which have to be abided by the environment. Consistency and validity are
largely solved in the information domain by these methods instead.

Area and energy efficiency: Other important aspects are the area and energy
efficiency. Basically the number gates, which are required to implement a given func-
tionality depend on the used design style. However specific technologies favor certain
design styles - furthermore the degree of customization of basic gates has a crucial im-
pact on the resulting circuit size. So to provide a quantitative expression not only the
design style, but also the used technology (CMOS, NMOS, ...) and the degree in which
basic (library) gates are adapted to a given design approach, has to be considered.
The same is true for power consumption. As a consequence a quantitative analysis
permits a comparison of circuits with highly specific implementations as illustrated
in [57]. Instead, this section claims to provide generic overview and hence the design
styles will be investigated with respect to area and energy efficiency from a qualitative
point of view only. In Table 2.2 the comparison with respect to area is subdivided in
three aspects: (i)wires per bit, which indicates the number of wires representing a bit.
(ii) gate size this defines the number of boolean basic gates (AND, OR, INVERTER),
which are necessary to build an AND-gate of the analyzed method. It is clear that
specific implementations yield to a much better solution in terms of transistor count.
However, we will use standard logic basis gates as a reference points, to get a suitable
comparision. (iii) add. circuits indicates if the design technique requires additional
circuits apart from the implementation of the logical function itself to build working
circuits.

Based on the fact that (C)MOS poses the state of the art technology for circuit im-
plementation, the energy efficiency can be roughly drawn back to the number of edges
which occur within a circuit. Hence with respect to energy efficiency we distinguish
three scenarios: (i) worst case, where it is assumed that the signal toggles in each cycle
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from TRUE to FALSE and vice versa, (ii) average case, where a random distribution
of the signal states is assumed, and (iii) best case, where the signal always keeps the
same information.
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Table 2.2. Comparison wrt. Area and Energy Efficiency

Synchronous and bundled data approaches have similar characteristics concerning
their area efficiency. The main difference lies in the method to distribute the timing
information: The synchronous style uses a global time reference which is distributed
over a clock tree, while bundled data uses coupled timers, which can be implemented
using delay elements. The 1+ entry in the gate size column of Huffman codes should
indicate that this approach can basically use the same gates as the previous methods,
but an additional effort in terms of gates is required to ensure that the resulting function
unit is glitch free. Using a signal coding, the NCL style requires 2 wires to represent
a bit. As a consequence the size of the basic gates increases exponentially: From the
true table depicted in [56] it is easy to derive that a NCL-AND gate can be built using
six conventional gates (four AND and two OR gates). To guarantee that the output
keeps its old value having inconsistent inputs two additional gates to memorize the
output value of each wire are required.3 Based on the bundled data approach, the
micropipeline also shows its characteristics concerning area efficiency. With respect
to energy efficiency the first three approaches quoted in Table 2.2 show foreseeable
behavior: If the signal state does not change then no edges occurs, if the state changes
each time then an edge occurs always. The NCL approach instead shows a more
surprising characteristic: in each scenario (even in the best case!!) two edges occur
per bit: Based on a RTZ scheme NCL has to transmit each information bit twice -
in the first step the effective information is emitted and to return back to the neutral
state the previous information has to be inverted and sent again. Also the transition
signalling approach does not show any difference concerning number of edges between
the best and the worst case. The reason is that the information itself is coupled to
the signal edges and hence even if the same information is consecutively transmitted

3It is clear, that a memory element is much more complex than a simple AND gate for instance.
Due to the fact that a NCL basic gate does require a full memory element, but a solution similar
to a transition gate lasts out in a dynamic logic style, we equated these memory elements with two
standard gates in Table 2.2
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over the same signal line, one edge per information bit takes place. As expected the
micropipeline shows similar to the area efficiency considerations the same characteristic
as the bundled data approach.
At this point is important to highlight the distinction between energy efficiency and
power consumption. The first one describes the energy which is required to transmit one
single bit. The latter one is the energy which a circuit dissipate over time. In general
asynchronous circuits operate only when it is required (=event driven), a synchronous
circuit is always triggered by a periodic clock signal. Therefore, asynchronous circuits
having a worse energy efficiency than the synchronous ones, may still consume less
power than their synchronous counterparts.



Chapter 3

Code Alternation Logic - CAL

The CAL system was developed by Professor A. Steininger and his PhD. students
W.Huber and myself. Due to this fact there are common parts in the theses of his
students. In order to allow them to invest more time and as a consequence to provide
a higher quality of work, Professor Steininger suggested that each PhD. student has
to write only one of the common chapters, "State of the Art" and "Code Alternation
Logic". Thus following chapter was written by W.Huber.

As implied by the name the major part here will consist of the coding of signals, but
CAL provides much more. The system consists of a tool-set to realize asynchronous cir-
cuits which are automatically compiled in several stages. All these steps are performed
with synthesis-scripts with the synopsys design compiler. Furthermore, a simulation
concept is added to be able to prove the functional description of the circuit as well as
to ensure the correctness of the synthesis. This tool-set allows us to design a 16 Bit
processor based on CAL, and to put it successfully into operation. This chapter will
give a detailed step-by-step introduction into CAL.

3.1 Background of CAL

CAL can be classified as a signal coding method, which solves the fundamental design
problem from Section 2.2 in the information domain. Let us recall these terms:

With delay-insensitive circuits a method is provided to design asynchronous circuits
in a way that their behavior is independent of the speed of their components or the
delay on the wires. They are correct by design. A further big advantage of such circuits
is that the circuit can derive information whether the computation has finished or not.
Only the time needed for this computation is used for waiting rather than the worst-
case time.

Signal coding describes a coding system, which is widely used to design self-timed
systems. Design methods using signal coding can be split up into several approaches by
means of how data is encoded. The traditional style - the 4-phase dual-rail1 approach

1In this context, we use the term dual-rail to describe a signal consisting of two rails. The instance
how data is coded is not defined so far.

36
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- uses tree logic states, which can be formed with the two rails: " 1 " , "0"and "invalid".
There is a separate spacer used between every change of the state. This spacer token is
necessary to distinguish whether a new data wave had begun or not. So the throughput
is reduced to the half of the original one.

This disadvantage of needing such spacers is not given by the other popular dual
rail technique - the transition signalling. But this approach has also its drawback: As
shown in Section 2.4.5 the actual state of rails cannot be determined by just looking
on it: However, an internal state "00"of this two rails could represent a logic "l"as
well as a "0". It depends on the context in which this transition happened.

So the idea is to combine these two approaches and to try to eliminate the two
drawbacks: On the one hand it should be possible to transport information every cycle,
on the other to determine the value without considering the history. We designed a
coding scheme that is based on the alternation of code sets as shown in detail in the
rest of this chapter. There are two similar approaches from the early nineties: [21]
introduced the Level-Encoded 2-Phase Dual-Rail (LEDR) and [69] named the same
coding technique Four State Asynchronous Architecture:

Level-Encoded 2-Phase Dual-Rail (LEDR) [21] presents three different hard-
ware implementations of the LEDR principle: The first is based on a PLA-
structure, the second on a self-timed Domino logic structure with dynamic stor-
age, and the third implementation uses series stack of transistors. There is,
however, no design methodology given how to build logic with this gates. Fur-
ther work in the LEDR field is done by [96, 95] where four input Phased Logic
gates are used as computational elements. Here a net-list of D-Flip-Flops and
combinational logic driven by a single clock can be automatically synthesized.

Four State Asynchronous Architecture This approach uses only multiplexors
and the authors claim that this allows to reduce complexity. Furthermore, the
multiplexors has been optimized at the transistor level and it has been imple-
mented in 2 fim CMOS technology in 1991. This approach is optimized to speed
and the best performance is given using dynamic latches because they are smaller
and faster. [68]

As pointed out in Section 2.2 the fundamental design problem leads to the 2 funda-
mental requirements, which are the main parts of the next sections.

3.2 Coding Scheme

The key idea of CAL is to use two disjoint code sets for representing the logic state
of a signal. The additional information which code set is being applied is called the
phase of a signal, (pO and ip\ respectively. The representations are used alternatively, so
within a sequence of data words each bit can uniquely be assigned to the corresponding
data word.

Figure 3.1 shows the flow of data waves in CAL: Due to the alternation of ipO waves
and <£>1 waves it becomes easy to synchronize signals within a data word even in the
case of arbitrary skew.
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Two logic states in two representations lead to the need of four code words, which can
be encoded with at least two rails a and b. Table 3.1 shows the used state assignment:

logic state
"LO"
"HI"

code ipO

(a,b)=(0,0)
(a,b)=(l,l)

code <pl
(a,b)=(0,l)
(a,b)=(l,0)

Table 3.1. CAL Coding Scheme

Table 3.1 and Figure 3.2 show the important property of CAL: If data words are
coded in alternate phases cpO and (pi, every valid transition from one phase to the other
changes exactly one level of one rail:

Figure 3.2. Possible Phase Transition

A logic "LO" in phase (pO can only be followed by a "LO" or a "HI" in phase (pi. In
the first case the level of the rails changes from (0,0) for "LO" in ipO to (1,0) for a "HI"
in ipl. The second transition leads to (0,1) for the representation of "LO" in phase (pi.

As seen in Table 3.1 CAL uses a dense code which means that every bit combination
is used for describing a valid code word. There is no representation for the state invalid.
Recall that one of the three requirements in the information domain (see Section 2.3.2)
is validity: In the case of CAL continuous validity is ensured. So every gate has to
guarantee a valid output signal. As described above exactly one transition is needed
to change from one valid code word to another valid one. This fulfills both conditions
for consistency needed as second part of the fundamental requirement: The demand
for the existence of a transition is given due this to fact as well as the membership to
the contexts: If there is exact one transition between every code word, every transition
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will change the context and so the membership can be derived. The impact on CAL
designs leads to the following important rules which are summarized here:

I: Data values of each signal must be coded in alternating phases.

II: The calculation is performed when all input phases are in the same phase.

Ill: In the case that the input signals are in different phases the output remains in its
last valid state.

Until now it looks as if CAL solves all problems in the information domain - in
other words it is delay insensitive. In fact CAL is a hybrid solution as described in
Section 2.3.3. Concerning a higher level - a design built with CAL-gates - the CAL
approach is delay insensitive. There are no assumptions made neither on the gate
delays nor on the wire delays. A closer look at the CAL gates shows that there are
timing assumptions, e.g. local feedback loops in latches. The resulting constraints for
the design can be solved within the basic gates. The information to build these gates
in a correct manner is stored in specific libraries.
Both validity and consistency are needed to solve the fundamental requirement 1. The
second one will be the target of the next section.

3.3 Control Flow

The design rules of Section 3.2 must be true for the whole design, so they must be
valid for pipeline structures too. Rule I defines that the code set used in CAL alternates
with every data word. This means that a bit that has been part of a valid code word
in (pO becomes invalid in (pi. Recall the fundamental requirement 2 from Section 2.2
where some kind of feedback is needed. Figure 3.3 shows the pipeline structure where
the feedback is represented in terms of capture_done signals to trigger the source firing.
The source can derive the trigger condition directly from the data wave: If all bits of
a data word are in ipO, the data word is consistent and can be consumed. As soon as
several bits change to tpl, the ipO bits become obsolete and the data word is inconsistent
until the last bit has changed to (pi as well. Obviously, some kind of synchronization
is required to prevent that a fast ipO bit, e.g., catches up with the preceding (pO data
wave.

This is, however, easy to achieve by the inclusion of a hysteresis in the logic functions:
Similar to the approach used in NCL the output of a logic gate in CAL changes only
when the data word at the input is consistent as defined in rule III. In Figure 3.3 a
simple linear pipeline is shown:

To explain the functionality of the pipeline structure the stage in the middle is used.
There are two conditions when this stage fires:

1. The upstream logic function f(x) has completed the calculation and so the data
on the input of this stage is ready to be captured. This information can be
retrieved directly from the data word.
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Figure 3.3. CAL Pipeline Structure

2. The downstream stage has already caught the previous wave (the result of g(x))
and so the data of this stage is not needed any longer. The downstream stage
provides this with the capture-done signal.

Recall Figure 3.1 which shows the flow of data waves in CAL: Due to the alterna-
tion of <p0 waves and </?l waves it becomes easy to synchronize signals within a data
word even in case of arbitrary skew. It can be verified that all three rules defined in
Section 3.2 are fulfilled.

3.4 Levels of Abstraction

It is not very comfortable to design logic circuits using a rail representation as de-
scribed in Table 3.1. Furthermore, it is not possible to use existing synthesis tools,
because they are designed for single rail logic used in synchronous designs. This leads
to the need of two different descriptions for CAL: One for the designer and another
one for the tools. Both definitions are written in VHDL in our case, but it is also
possible to transform the representations to Verilog or any other hardware description
language.

basic definitions

iinctional definitions

CAL

CAL__beh
used for CALJogic

CAL_rail
used for CAL_jrail_logic

Figure 3.4. Library dependencies

As shown in Figure 3.4 the library structure is built hierarchically: The CAL library
is the root of all other libraries and provides basic type definitions for all others.
All common definitions for the behavioral and the rail style of CAL are given here.
Furthermore, some basic conversion functions are provided. This library will be used
in every step of the asynchronous design as well as in the testbench. As an addition
to the CAL library the cal_beh and cal_rail contain functionality needed for the
corresponding logic. In both logic systems - calJLogic and cal_rail_logic - for
example a logic AND is available. In calJLogic this function has two single rail inputs
and one single rail output, while in cal_rail_logic the same function requires dual-
rail signals. In summary, these two libraries provide functions with the same purpose
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but with the logic types needed for the logic system actually used - calJLogic or
cal_rail_logic.

3.4.1 Behavioral Description - calJogic

The definition of cal_logic is the interface for the human designer. A single rail,
multi value code is used to describe the four states of CAL. As shown in Table 3.2 the
different states are specified with lower and uppercase letters "P'and "h". For the phase
ipO the lower case versions 'T'and "h"axe used for the logic states "LO"and "HI"and
likewise "L"and "H"are applied for ipl.

logic state
"LO"
"HI"

code ipO
1
h

code ipl
L
H

Table 3.2. cal_logic Coding Scheme

To provide full simulation and synthesis support of traditional design tools it is
necessary to define several types and classes. At first, a new data type has to be
declared. In the case of calJLogic the four states have to be defined. Furthermore,
it is not enough to build a four-value type, because a reasonable simulation tool needs
more possible values. There has to be a value which sets a signal to undefined, e.g.
at the startup. Moreover, the simulation should be able to handle the situation when
two outputs drive one signal and both of them want to assign a different value. This
definition is very similar to stdJogic data type for the stdJogic-1164 standard for the
VHDL language [5]. Furthermore, the type is expanded to a vector of n such signals
and so the calJ-ogicvector type is created. As shown in Source 3.4.1 the VHDL
definition for the calJLogic type consists of eight characters:

type cal_ulogic i s ( 'U', — Uninitialized
'X', — Forcing Unknown
' 1 ' , — 0 type phiO
' h ' , — 1 type phiO
'L ' , — 0 type phil
' H \ - - 1 type phil
' Z ' , — High Impedance
' - ' — Don't care

Source 3.4.1: cal_logic VHDL definition

As described above, the definition and some basic conversion functions, e.g. from
stcLlogic to calJLogic and vice versa are part of the cal library. The definition of
the data type is the starting point of the whole system to build logic devices with CAL.
Furthermore, several logic functions have to be designed to support the simulation and
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the synthesis of CAL designs. These are special parts for the behavioral description of
designs with CAL and therefore they are part of the cal_beh library.

Boolean functions: To build designs various functions have to be defined. Such
functions describe the relationship between the inputs and the output. They are
also used by the synthesis to build e.g. conditions of «/-clauses. If we consider
a two-input AND-gate, we can define the function between the two inputs and
the output in case the two input signals are in the same phase. So rule I and II
from Section 3.2 can be implemented. Considering the condition in an «/-clause
again, it is not possible to use methods which use any kind of history or context.
Therefore, it is not possible to remain with in the old state with simple functions,
because they can just derive the new value. So it must be ensured, that these
gates process only input signals that are in the same phase. This is done by
inserting so called sta&Ze-procedures into the VHDL code.

stable-procedure : In VHDL this procedure is inserted into the behavioral code to
ensure that the VHDL-process continues only if all inputs of this staö/e-procedure
are in the same phase. So rule III can be enforced. The procedure is implemented
with VHDL wait until-statements to suspend the current process until the con-
dition is met. Notice, that this function is only necessary in cal_logic.

Register and latches: One of the big differences between cal_logic and usual syn-
chronous designs is the methodology by which storage elements are implemented.
In the case of synchronous designs this is usually done with clock edges. As shown
on the left side in Source 3.4.2, the active clock edge is the point in time where
the current value is accepted and frozen:

p2_SM : process (elk, reset)
begin

if reset = RES_ACT then
Pc <= (others => '0');

elsif elk'event and elk = '1' then
Pc <= PcNxt;

end if ;
end process p2_SM;

p2_reg: cal_reg
generic map (
w => 108,
reset_value

port map (
d =>
q =>
c_done =>
pass =>
reset =>

=> 01)

PcNxt,
Pc,
c_done,
pass,
reset):

Source 3.4.2: Register Implementation in stdJLogic and CAL

The right side of the source code shows the register implemented in CAL. Both
implementations have input (PcNxt), output (PC), the reset signal, and the value
which should be used after reset. In the synchronous approach others =i '0'
is used to specify the value after reset the CAL uses resetjvalue =i 01 as a
generic map. The big difference is given when the register stores the data. In the
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synchronous version it is done with the rising clock edge. In contrast CAL uses
a handshake protocol {cAone and pass).

Conversion functions: A CAL design should be able to interact with "nor-
mal" stcLlogic circuits as well as the environment. For this purpose a set of
conversion functions is needed. In the case of cal_logic the transformations are
done by simple translation tables.

The issues above have been described in detail for the behavioral description, because
they constitute the main differences between the synchronous design and the CAL logic
design. The process of transforming a regular synchronous design to CAL starts with
renaming the data types from stcLlogic to cal_logic, followed by inserting the stable-
procedure to ensure rule III. Furthermore the registers must be converted from the
if elk'event style to the instances of the cal-register and the required acknowledge
signals. To interact with the environment the appropriate conversion functions must
be applied.

3.4.2 Functional Description - cal_rail Jogic

Table 3.3 shows the cal_rail_logic type consisting of two rails of the std_logic
type. The two rails are bound together and have one name.

type cal_rail_logic is
record

linel : stcLlogic;
lineO : stcLlogic;

end record;

Table 3.3. cal_rai l_ logic Coding Scheme and the VHDL DeEnition

Boolean functions: All logic functions are available as pre-synthesized elements. So
only existing functions are used and the design consists of instances of them. In
the case of cal_rail_logic AND, OR, and IV are defined and all other logic
functions are put down to them. Notice, that here the gates fulfill the rules I - III
themselves because each of them is built with a kind of hysteresis or a memory
element as seen later.

Special gates: For the synthesis of CAL a set of specialized gates is needed. For
example, the (/^-detector or the components of the cal-register are some of them.
The gates and their functionality are defined and so they are available for the
rest of the design flow.

Conversion functions: The transformation from cal_rail_logic to std_logic logic
is quite easy, because a-rails in CAL directly represent the signal state in Boolean
logic. Hence, in the inverse case only minor coding effort is required to add the
adequate phase to the conventional Boolean signal.

The implementation of some selected gates is presented in the next chapter.

logic state
"LO"
"HI"

code ipO
(0,0)
(1,1)

code ipl

(0,1)
(1,0)
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3.5 Basic Gates

To illustrate how logic functions can be implemented in CAL we discuss the example
of a 2-input AND here. The derivation of the required functions is quite straightfor-
ward, and essentially the same is true for other basic functions such as OR, NAND,
NOR and XOR.

3.5.1 AND Gate

Table 3.4 shows the truth table on the signal level:

z

E2
h
1
H
L

E l
h
h
1

hold
hold

1
1
1

hold
hold

H
hold
hold

H
L

L
hold
hold

L
L

Table 3.4. Truth Table of a 2-input AND in CAL

For inputs that are within the same phase the respective AND function is simply
applied and the output is represented in the same phase. For inputs in different phases
the last valid output is retained ("hold"). On the rail level this truth table has to be
expanded to two rails per signal, yielding one separate truthtable for each rail of the
output - Za and Zb, each with four input rails as shown in Figure 3.5:
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Figure 3.5. Schematic and Truth Table of the AND-gate
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The resulting circuit for one AND-gate consists of two RS-flip-flops - one for each
rail a and b of the output signal Z. Furthermore, for each of the RS-FF's logic functions
are used to derive the correct set and reset action. This results in the need of four
4-input and 1-output functional blocks for set and reset: Ra, 5 a , Rb, and £&.

The ihitial hardware implementation requires 6 logic elements (LEs) for one CAL-
AND-gate. In comparison with a standard AND the gate count increases significantly,
but it should be considered, that we are mapping the design to a standard FPGA
library that has not been specifically optimized for CAL.

3.5.2 Phase Detector

Considering that there are two possible phases for each signal which is used to
associate a bit to a data word there is the need to detect the phase of a signal. This
is very simple for a single signal: Both rails have to be combined with an XOR and
the result is the phase - 0 for the phase </?0 and 1 for <pl. As shown in Figure 3.6(b)
this scheme can be expanded to an n-bit wide bus: The rails of each single signal are
combined with an XOR-gate and the n results are tied together with an and-gate (" all-
ones detector") and an or-gate ("all-zero"detector). The RS-Flip-Flop ensures that the
output only changes if all inputs are in the same phase as demanded by rule III. This
circuit acts as a multi-input Muller-C gate.

2 i (p-value

= 1

«1

•

-

s i

—

1

J

(a) Symbol (b) Implementation

Figure 3.6. The </>detector

Notice that the (/^-detector can also be used for completion detection, because the
value at the output changes only if all input values are in the same phase. This is
necessary, e.g., for register implementation used in pipeline structures.

3.5.3 (/^-Converter

Sometimes it is necessary to convert the phase of a signal. Remember the pipeline
of Figure 3.3 and consider the case that the signals from the first and second stage are
both inputs of the same gate. So the values should be used when the signals are in
different phases. Here a ^-converter is used to convert the phase of one of the signals
so that they can be combined. Fortunately, the implementation is very simple:
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Figure 3.7. Implementation of a (/̂ -Converter

Due to the fact, that only one bit may change, the delay of this one inversion cannot
cause an invalid output as a result of skew. If rail a changes due the phase change, the
result will be delayed. When rail b changes there is no impact on the circuit caused by
the (^-converter.

3.5.4 CAL Register

The implementation of registers used in the pipeline structure in Section 3.3 is now
discussed in detail. In Figure 3.8 the proposed implementation of such a register is
shown. The chosen implementation represents a hybrid solution (see Section 2.3.3) to
solve the fundamental design problem. As described further the solutions in higher
abstraction levels are done in the information domain and on this higher level there
are no requirements on the design in terms of delay and skew. The needed timing
assumption on gate level must be met inside one register. If we can guarantee these
requirements on this local area, the registers can be used without paying attention to
thé timing.

Figure 3.8. Implementation of CAL Register

The basic function of a register in a pipeline is given in Section 3.3. Remember
that the latches get transparent if (i) the phase at the input differs from the phase
at the output and (ii) the phase of the downstream stage is the same as the phase
stored in the latches (i.e. visible at the output). Condition (i) can be checked by
comparing the outputs of the (^-detector, both at the input ($in) and at the output
($out)- Condition (ii) implies that the pass signal from the downstream stage equals
the output of (&(nit)- The Latches will lock if the phase on the output is equal with
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that on the input ($jn = $out)- The reset signal is used to start the latches up with a
predefined state.

There is one important detail. The capture done signal is generated by a latch with
an inverse en input. That shall ensure that the c-done signal is not given to the
upstream stage before the latches have actually stored their values. This works under
the following timing assumptions:

• All latches must have the same gate-delay. This can be ensured when all of them
are taken from the same library, so that they are built equally.

• The en-signal for the latches inside the registers must hold the isochronic fork
assumption, this can be achieved by a well known routing process.

Further discussions on this topic will be given in [117]

3.6 CAL Design-Flow

We have described the basic gates so far. However, now we need a methodology to
build hardware from a description of the design. Similar to the synchronous case there
should be a behavioral description as a starting point. If the description meets the
specification it is the input of a tool chain which generates the associated hardware.

Therefore, as outlined in Section 3.4.2 we have defined a type to describe each signal
with a single-rail 4-value data type called caLlogic. In a library the basic boolean
functions for this type are defined and so the design can be simulated on behavioral
level. At this state the design is described with caLraiLlogic. Recall that the data type
used in this description consists of two rails of conventional 2-value stdJLogic signals.
The steps performed to get a design in std_logic vectors to be placed and routed with
usual tools are described in Figure 3.9.

The difference between the conventional Design Flow and the approach used with
CAL logic is clearly visible: Both approaches start with a behavioral description and
the result of each of them is a description understood by the place&xoute tool. This final
description may only use gates of the target library - Altéra APEX (see Section 4.2.1)
in our case. After performing this last step the design can be downloaded to the FPGA.

In the conventional case the VHDL-code is elaborated and transformed into an inter-
mediate language used by the synthesis tool. This functional description is the starting
point for the synthesis during which the design is finally mapped to gates of the target
library. In our case this is the APEX-library. As a result we get the prelayout repre-
sentation of our design. This file is used for simulation on the one hand and as input
for Quartus to perform place&route and the download to the FPGA on the other hand.

The result of the elaboration step performed in the CAL design flow is the functional
description where the design is built with CAL gates. The functionality of the CAL
gates is described in a special library (CAL-beh) to facilitate the simulation, which is
described in detail in Section 3.7. For the synthesis an other library is needed which
provides synthetic operators to build design specific gates. One of this operators is
used to build a <£>-detector with the width needed by the design. So with the first
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Figure 3.9. CAL-Design Flow

synthesis the design is transformed from the four-value caL/ogzc-description to the
dual-rail caLraiLlogic. As described above this representation uses pairs of std-logic
signals and the functionality of the gates is provided by the caLraiMibrary. This
representation is used for simulation purposes as well as input for the second synthesis
which is very similar to the synthesis in the synchronous case. The APEX technology
library is used as target library which results in a design constructed with APEX-gates.

It is important to note that the design flow allows us to change the actual type of
pipeline register used for synthesis quite easily, because the functionality is added by
the appropriate library. This led us to experiment with several implementation options
that all turned out to have their specific benefits and drawbacks. A discussion of these
different options will be the focus of [117].

3.7 Simulation Concept

In this section the simulation of a CAL design is discussed. At the beginning the
four simulation steps shall be defined as follows (compare Figure 3.9):

behavioral simulation Simulation with calJLogic signals and any timing informa-
tion of the resulting hardware. The input is the source code of the designer
without any synthesis applied.

functional simulation The first synthesis has already transformed the cal_logic
code is into the cal_rail_logic format. However, no timing information has
been added in this step.
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pre-layout simulation The second synthesis has mapped the circuit to the target
library - in our case the Altéra APEX library. The functionality is constructed
just with gates of the target library and so the number of gates and their standard
delay is known and used for the simulation. However, the place&route has not
been performed and for the delay of the wire just default values are used.

post-layout simulation This representation contains the whole timing information
of the design. Every gate as well as each wire delay is known an used for the
simulation. This leads to a high complexity of the simulation and consequently
to a very long simulation duration.

The motivation for a clever simulation method is clear and it is based on the design
flow: The data types of the signals change with every step towards the real hardware.
Still it should be possible to use the same testbench for all four simulation levels. As
described earlier in this chapter the starting point of the designs is the behavioral style
- in our case cal_logic. The signals in the design as well as the ports are cal_logic.
With the next step these types are transformed to cal_rail_logic. Therefore, the
ports are also translated and the signals with the same names as before are now com-
posed of caljrail_logic.

The two rails are combined with the specific type to one record. After place&route
the design consists of std_logic signals and so the ports are converted once again.
Furthermore, the number of ports doubles with the last step and so each signal becomes
a vector of two stcLlogic rails. In the same way the width of each vector doubles.

inl: cal_logic
in2: cal_logic
out: cal_logic

P_inl

^ >

P_in2

P_inl
P_inl
P_out

cal_logic;
cal_logic;
cal_logic;

s*—x

(CAL-Architecture /

DUT

P_out

Testbench

(a) Behavioral Simulation

inl: cal_logic;
in2: cal_logic;
out: cal_logic;

P_in2 P_in2

_inl: cal_rail_logic;
_inl: cal_rail_logic,-

P_out: cal_rail_logic;

DUT_rail

DUT

Testbench

(b) Functional Simulation

Figure 3.10. Simulation Concept

Although with each step the level of detail and therefore the refinement of delay
increases, this three formats still represent the same design with the same functionality.
The testbench is also written by the designer and therefore the cal_logic style is used.
As shown in Figure 3.10(a) it is straightforward to perform the first simulation - the
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behavioral simulation - because the types of the ports match with the signal types of
the testbench.

The next simulation steps cannot be performed so easily. Here the types of the ports
out of the device under test (DUT) do not equal those of the testbench. Conversion
functions have to be inserted to connect the DUT to the signals of the testbench. As
shown in Figure 3.10(b) this is done automatically by our tool: To be able to simulate
a design a configuration is used anyway to select and combine the architecture for a
specific entity. By means of some scripts we create a new architecture D UT in which
the original design DUT.rail is instanced. The architecture itself consists of just this
instance and the appropriate conversion functions. So while the designer has to write
the testbench and the first configuration as in the synchronous case, the CAL specific
parts are generated automatically.

In Figure 3.11 the postlayout simulation example shows the value of the program
counter and the output of a ROM:
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^ instr_cal
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— instraddr_pc_d_rail(6)
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Figure 3.11. Postlayout Simulation Example

In the first two lines the pass and capture-done signals are shown, followed by the
address and the instruction. In this example only the lowest four Bits are shown. In
line tree and four they are shown in cal-logic style as they can be seen at every
level of simulation. This is followed by the signals without the mapping to cal_logic.
Every vector consist of eight stcLlogic signals, those of address is shown in detail.
As depicted in Figure 3.11, it very difficult to derive the value of the busses from
the stcLlogic description: The address is incremented by one every step and the
instruction remains at zero.
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This strategy has finally allowed us to reach the goal mentioned at the beginning
of this chapter - one testbench for all simulations. In the same way it is possible to
automate the verification process: The behavioral simulation must be checked by the
designer manually whether the specification is met or not. If the wanted functionality
is given the remaining simulation steps are performed by the tool and the result can
be crosschecked with those from the behavioral simulation automatically.

3.8 Summary

CAL is a design technique using signal coding and a dense code where two represen-
tations - one for </?0 and one for tpl - of each logic value "LO"and "HI"are given. Our
approach is similar to NCL with some important advantages: There is no need for the
so called spacer or NULL-waves in CAL which doubles the throughput compared with
NCL. Furthermore, the energy overhead in terms of transitions per bit is low: Exactly
one rail transition per bit is required.

CAL is classified as hybrid solution to manage the fundamental design problem. A
design built just with CAL-gates is delay insensitive and so validity and consistency are
needed to tackle the problem in the information domain. The basic gates have internal
delay assumptions yielding to design constraints - this is the part of the system solved
in the time domain. The implementation of basic gates is demonstrated on appropriate
candidates: The internal structure of an AND-gate as well as a complex CAL register
is described in detail.

The human interface to build CAL circuits - cal-logic - and the coding style on
gate level - cal_rail_logic - are introduced. Furthermore, the methodology and the
used libraries for the CAL design flow demonstrate the automated way from the design
written by the engineer to the download file. This and the simulation concept show
the practical applicability of our CAL approach.



Chapter 4

Prototyping Environment

In this chapter the environment for the evaluation is presented: The synchronous refer-
ence design is shown, which is the starting point of our asynchronous implementation.
The motivation to build a processor ourselves was the possibility to have a deep knowl-
edge of design details, because it is very hard to derive the internal functionality from
a standard microprocessor - like an ARM. Furthermore, the dependencies between the
control signal among pipeline stages are very hard to explore, which is, however, one
of the key points of our design. To avoid such troubles we decided to build our own
processor - SPEAR.
The target platform for the design is an FPGA evaluation board. In the following a
look at the underlying concepts and the evaluation boards is given and the advantages
and drawbacks of the FPGA implementation are discussed.

4.1 The SPEAR Processor

4.1.1 Core Architecture

SPEAR is the acronym for " Scalable Processor for Embedded Applications in Real-
time environments" [23] and the main goal of several design decisions [22] was to build
a processor which has a well known temporal behavior [24]. The processor executes
every instruction in exactly one cycle and the instructions are also one word wide.
The SPEAR design has been developed to provide moderate computational power and
represents a RISC architecture which executes instructions through a three-stage-deep
pipeline. The instruction set comprises 80 instructions, further a compiler suite [51]
comprising the GCC [92] and the LCC has been developed supporting this instruction
set. Most of these instructions are implemented as conditional instructions [93] which
means an instruction is executed or replaced by a NOP depending on the condition
flag. A preceding test instruction sets this flag once and it is valid until the next test
instruction. For example, a move instruction with condition false is executed when the
result of the test instruction is false.

Instruction and data memory are both 4 kB in size, but it is possible to add up to
128 kB of external instruction memory and 127 kB of additional data memory. The

52
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uppermost 1 kB of the data memory is reserved for memory mapping of the extension
modules. These modules (see Section 4.1.2) are used to customize SPEAR to the needs
of the environmental interaction. As a result of the memory mapping, no dedicated
instructions for extension module access are needed - common load/store instructions
are used - which satisfies the RISC [44] philosophy of our approached design. The
register file holds 32 registers which are split up into 26 general purpose and 6 special
function registers, three of them are used to construct stacks efficiently using frame
pointer operations. The remaining three are used to save the return address in case
of an interrupt or subroutine call. SPEAR supports 32 exceptions, 16 of them are
hardware exceptions - interrupts - and 16 can be activated by software, we call
them traps. The entries of the exception vector table hold the corresponding jump
addresses to the interrupt/exception service routines for each interrupt or exception.
The SPEAR ALU performs all provided arithmetic and logical functions, but it is
also responsible for offset calculation on jumps. Furthermore, the ALU is used to pass
through data from the exception vector table or register file. Figure 4.1 shows a block
diagram of the SPEAR processor.

Figure 4.1. SPEAR Architecture

The SPEAR pipeline is structured into an instruction fetch (FE), an instruction
decode (DE) and a combined execute/write-back (EX/WB) stage. In the fetch cycle,
the instruction memory is accessed and one instruction opcode is passed to the decode
stage. During the decode cycle the control signals for the memories and the ALU are
generated, furthermore the operands of the instruction are retrieved from the register
file. The execute/write-back stage performs the intended operation of the instruction
and writes the resulting value to the appropriate memory location. When an extension
module access (EXT) happens, it is also executed during the EX/WB cycle.
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4.1.2 Extension Modules

As mentioned above extension modules are used to fit the processor for different
applications. For reasons of simplicity and lucidity, the integration of and the access to
extension modules should work the same way. Thus a generic interface for all extension
modules has been defined [46]. All extension modules are mapped to a unique location
at the uppermost region of the data memory. The modules are accessed via eight
registers using simple load and store instructions, as from the processor's point of view
the extension modules are simply memory locations. A block diagram of the generic
extension module interface is shown in Figure 4.2. The first two registers are the status
and config register of the module. The status register tells the processor the current
state of the extension module. Among other things it shows if an interrupt has been
activated, an error has occurred, or if the extension module is still busy. The config
register is used to specify parameters for the operations of the module. Next to a soft-
reset bit, which is used to deactivate the extension module, an interrupt acknowledge
bit exists to reset the interrupt status. The remaining six registers Data 0 - Data 5
are available for module specific issues.

Processor
Core

Interface

Address

WR-Data

RD-Data

WR/nRD

Interrupt

BaseAddr

Req

Status
Config
DataO
Datai

Data 3
Data 4
Data 5

Addr. Dec

Figure 4.2. Generic Extension Module Interface

There is a special extension module - the processor control unit which has to be used
in every design. It comprises functional blocks which are essential for the processor, e.
g. the processor status word.

4.1.3 Implementation Results

Some implementation details are given here to finish the description of the syn-
chronous reference design: Our processor SPEAR utilizes 1,794 logic elements of the
APEX20KC FPGA (see 4.2.1). This is about 15 % of the total number of logic ele-
ments. Further, the on-board data and instruction memories as well as the. register
file use more than 70,000 memory bits - which is about 47 % of the number available.
Finally, SPEAR runs with a maximum clock frequency of 46 MHz on this FPGA.
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4.2 The Hardware Platform

The target technology for the synthesis and the following place&route steps are
FPGAs1. The decision to build hardware on FPGAs instead of using full- or semi
-custom ASIC-chips is based on the fact, that it is much faster and much cheaper to
get a prototype. The SPEAR processor as well as the asynchronous designs should
be tested as a physical implementation to prove the functionality - e.g. by displaying
several buses on a logic analyzer. Modern FPGAs are nowadays quite fast and big
enough to contain a processor design. Unfortunately, the use of FPGAs does not only
cause advantages: The performance of a processor built with the FPGA basic gates is
not as high as the value which can be reached with an ASIC design, but designs should
be proof-of-concept and therefore the performance is not the key achievement.

Our prototyping board called megAPEX [6] is built by El Camino and it is equipped
with an FPGA out of the APEX Family, which is described in detail in the following
section.

4.2.1 APEX FPGA Family

An FPGA (Field Programmable Gate Array) is an integrated circuit that consists
of an array, or a regular pattern, of logic cells. The logic cells can be configured to
represent a limited set of functions. These individual cells are connected by a matrix of
programmable switches. The developer's design is implemented by specifying the logic
function for each cell and selectively closing switches in the interconnect matrix. The
array of logic cells and the interconnect matrix are taken form a set of basic building
blocks for logic circuits. These basic blocks are combined to achieve the intended
behavior of more complex designs.
The logic cell architecture varies between different device families. In general, each
logic cell combines a few binary inputs (typically between 3 and 10) to one or two
outputs according to a boolean logic function specified in the programmed design. In
most FPGA families, there exists the possibility of registering the combinatorial output
of the cell, so that clocked logic (like counters or state-machines) can be implemented
easily. The combinatorial logic of the cell can be physically implemented as a small
look-up table (LUT) or as a set of multiplexors and gates.

The APEX family represents highly integrated FPGA devices which are manu-
factured in 0.22 /im to 0.15 /xm processes. APEX devices are available in ranges
from 30,000 to over 1.5 million gates. The APEX architecture consists of so-called
MegaLABs[7]: These function blocks can be connected with each other as well as to
I/O Pins. LUT-based logic provides optimized performance for data-path and register-
intensive designs, whereas product-term-based logic is optimized for combinational
paths, such as state machines. Embedded system blocks (ESB)[7] can implement a
variety of memory functions, including first-in-first-out (FIFO) buffers, ROM or dual-
port RAM functions. The ESBs support memory block sizes of 128x16, 256x8, 512x4,

*We use the term FPGA for off-the-shelf components. However, there are some approaches for
bundled-data systems STACC[87], PGA-STC[59] and for general purpose architectures - Montage[43].
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1024x2 and 2048x1, but can be cascaded to implement larger sizes. The MegaLAB
Structure comprises a set of logic array blocks (LABs), one ESB, and a MegaLAB in-
terconnect, which routes signals within the MegaLAB structure. The amount of LABs
inside each MegaLAB depends on the specific APEX device, and can range from 10 to
24 LABs. Signal interconnections between MegaLABs and I/O pins are provided by
the FastTrack Interconnect, a set of fast column and row channels (additionally LABs
at the edge of MegaLABs can be driven by I/O pins via the local interconnect).

Each LAB consists of 10 logic elements (LE) and the associated local interconnect.
Signals are transferred between LEs in the same or adjacent LABs, ESBs or IOEs via
high-speed local interconnects. The LAB-wide control signals can be generated from
the LAB's local interconnect, global signals, or dedicated clock pins.
The logic element (LE), the smallest addressable logic unit in the APEX architecture,
is very compact and provides efficient logic usage. Figure 4.3 shows a block diagram
of an LE. Each logic element contains a four-input LUT, which is a function generator
that is able to implement any function of four input variables. Furthermore, carry and
cascade chains as well as a programmable register for D-, T-, JK-flip flop and a shift
register implementation are part of each LE. LEs can drive the local interconnect, the
MegaLAB interconnect, and the FastTrack interconnect structures.
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Figure 4.3. Logic Element Structure [7]

For our experiments we use 20KC1000 devices, that feature the 0.15 ßm process and
all-layer-copper interconnect. This FPGA is equipped with 38.400 Logic Elements - it
is comparable to 1,000,000 typical gates. Further information can be found at [7].



CHAPTER 4. PROTOTYPING ENVIRONMENT 57

4.2.2 Limitations

FPGAs are designed and optimized for synchronous designs and this clearly has an
impact for the implementation of purely asynchronous circuits. Our experience with
APEX devices lead to the following points:

Wire delay: As mentioned in the introduction the wire delay gets more and more
important in the chip design. In ASICs this drawback can be tackled by opti-
mizing the routing. In FPGAs, however, this is not possible, because the wires
are built during the manufacture of the FPGA and only the interconnects are
programmed by the design. This leads to longer wires and thus to a larger delay.
It can be seen that the wire delay limits the performance in synchronous FPGA
designs. The design of the super-scalar variant of the SPEAR namely LANCE
shows this effect [35].

Logic elements (LEs): As shown in the section above, Altéra FPGAs are composed
of LEs. Four input signals can be combined to one output. This does not meet
our requirements: In a CAL design each gate has a dual-rail output and in the
case of feedbacks it has more than four inputs. If more than four inputs of one
output are required, additional LEs have to be utilized and so the design grows
very fast.

Synchronous register: Every LE is equipped with an edge-triggered register which
reflects the optimization for synchronous designs. In the case of CAL however,
they are useless.

RS-flipflops: In basic gates (see 3.5) an RS-flipflop is used as a memory cell to hold
the old state of the output. Unfortunately, the APEX FPGA does not offer an
RS-flipflop as a component in an LE. It must be built with an LE and an external
feedback. This external feedback can lead to problematic race conditions with
other signals.

Place&route tools: The tools for place&xoute as well as the timing analyzing tools
are also optimized for the use with synchronous designs. They are built to op-
timize the register to register delay. This leads to very long execution times for
the tools as well as to not optimized results for asynchronous designs.

In summary, FPGAs are principally not intended and well suited for asynchronous
logic designs. Asynchronous designs implemented in FPGAs have many disadvantages
compared to synchronous FPGA designs on the one hand and asynchronous ASICs on
the other. Still we found the reconfigurability of the FPGA platform worth the price
and as shown later, we have built an asynchronous version of SPEAR on an FPGA.



Chapter 5

Non-Linear Dataflow

In contrast to the previous sections where the data flow control mechanism was illus-
trated between directly adjacent CAL components, this chapter will focus on circuit
structures that exhibit a non-linear data flow.
The CAL approach distinguishes sequenced data words by their alternating phase en-
coding. Data sources have to take this fact into account and alternate the encoding
style between ipO and (pi with each new data package issued. By doing so, all CAL
components inside the circuit can associate their input signals to a specific context and
thus judge consistency. Therefore, in linear circuits no further arrangements have to
be performed to ensure that data propagates through the circuit and that it will be
processed correctly.
Non-linear circuit structures change this situation completely - the non-linearity causes
an interference of the alternating encoded information packages and hence a malfunc-
tion or even a deadlock may occur.

(i) ! (ü)

Figure 5.1. (i)Forward and Feedback Path, (ii) Selecting Node

As depicted in Figure 5.1 we distinguish between two types of non-linearity: The
first one has its origin in a forward or feedback signal path of the circuit. This means
that data is directly fed from the pipe stage where it is generated to the pipe stage
where it is consumed (bypassing the pipe register(s) in-between). This may cause
an inconsistent input vector and as a consequence a deadlock. This problem can
be solved by the selective placement of phase inverters, which is discussed in Section 5.1.
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The second type of non-linearity has its roots in selecting nodes: These nodes spread
the input data to selected outputs only or require only a selected subset of the input
to produce the next output value. As a consequence, nodes connected to non-selected
data paths may loose their (phase-)synchronization with the remaining circuit. This
problem can be handled either by providing/reading dummy data to/from the unse-
lected data path and generate handshake signals accordingly, or by inserting a so-called
synchronizer circuit. This point will be referred to in Section 5.2.

5.1 Avoiding Deadlocks

One of the advantages of asynchronous circuits over their synchronous counterparts
is their elastic characteristic. An asynchronous pipeline, for instance, works similar to
a FIFO - new data can be issued until the pipeline is full on the one hand and data
can be consumed until the pipeline is empty on the other hand. Hence data source
and sink are decoupled and the average throughput will be improved. As illustrated in
the previous chapter this requires some kind of data flow regulation inside the circuit.
If we move away from the simple linear pipeline and consider a more complicated
structure, then we have to pay careful attention so that this non-linear structure does
not cause a malfunction or a deadlock: A CAL pipeline is based on the assumption
that consecutive pipe stages carry alternating phases. If we have a forward path from
one pipe stage to another a deadlock may occur. To prevent this procedure, we must
put a phase inverter in this forward path. However, this is not imperative, because if a
forward path skips an even number of pipe stages no deadlock occurs. Furthermore we
have to consider the dynamic behavior of the circuit: In contrast to the synchronous
approach, where all pipe registers switch at the same time, latches fire consecutively in
an asynchronous pipeline. This yields to short, but intended periods where adjacent
latches in a pipeline carry the same phase. This fact has to be considered also when
we decide whether a phase inverter has to be placed in a feedback/forward path. In
order to get a more concise picture we represented the circuit as a graph. Using this
graphical description in the following sections we will analyze the influence and the
impact of forward and feedback paths in asynchronous pipelines.

5.1.1 Introduction to Graphs

A graph G=(N,E) is defined by the set of nodes N = {n\,rvi, ... n„} and by the asso-
ciated connection (edges) E = {ei,e2, ... em} between nodes. We distinguish between
undirected graphs and directed graphs or digraphs in which the edges are directed. More
formally expressed: A digraph is a (usually finite) set of nodes N and a set of ordered
pairs (a,b) (where a, b are in N) called edges. The node a is the initial node of the
edge and b the terminal node [15]. Two nodes are adjacent if they are connected by
an edge. A weighted graph associates a value weight with every edge in the graph [2].

Under certain consideration weights are used to provide a relation between different
edges (or paths). For instance, weights often are associated with the price of a con-
nection in terms of geographical distance. Hence instead of weight the expression cost
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is used, too. A path is a sequence of consecutive edges in a graph and the length of
the path is the number of edges traversed. A loop is a path which ends at the node it
begins.

vertex
vertex-

\
edge- weight
name

, ,- ' ' path:

Figure 5.2. Directed Weighted Graph

5.1.2 From the Circuit to the Graph

The first intuitive way to represent a circuit as a graph is to map signal paths to
edges and components to vertices or nodes. In digital circuits, however, there are
two types of components, namely combinational and sequential ones. With respect
to asynchronous circuits, the main difference between these components concerns the
need of handshake signals. While sequential components require handshake signals to
control the data flow (see chapter 3), combinational circuits do not need any additional
signals apart from the input vector to perform their operation, generate new output
signals, and hence propagate the information. Due to this fact, combinational circuits
are said to be transparent with respect to handshake signals. This transparency has
also another effect: In the stable state the input vector and output signal carry the same
phase. In contrast, sequential components such as pipe registers have data coded in
different phases between input and output ports in the stable state. Thus we distinguish
between transparent (=combinational) and non-transparent(=sequential) nodes in
our graph representation.

In contrast to conventional CAL-signals (data and control signals such as a
write-enable signal, for instance), handshake signals are single-rail encoded. As a
consequence, they do not carry any phase information and would require a special
indication in the graphical representation. Nevertheless, the handshake signals do not
provide any additional (useful) information on this abstraction level - they only react
to events and can be easily reconstructed for a given event sequence. Therefore, to
simplify the presentation we will not draw handshake signals explicitly. However, we
have to bear in mind that sequential nodes which are connected directly or through an
arbitrary number of combinational (transparent) components share handshake signals
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for the data flow regulation purpose.

Memory blocks have to be treated separately from pipe registers and combinational
elements, due to the fact that they can operate in two modes: read mode and write
mode.
How should a memory element be modelled in the graphical representation? Basically
we have come up with three possibilities:

1. Define both, read and write access, as transparent operations.

2. Define both, read and write access, as non-transparent operations.

3. Map a memory block to two logical nodes - a transparent one for the read access
and a non-transparent node for the write access.

Due to the fact that a write access consumes the input data, handshake signals are
required to signalize the termination of the write operation to the next upstream se-
quential node. So the first option cannot be taken in account, as transparent nodes do
not provide handshake signals.
Thus we have to choose between the second and the third possibility. The second option
has the advantage that the graphical representation and the real hardware structure
are congruent - we have one memory node in the graphical representation and one
memory element in the real hardware implementation. However, this approach does
not reflect the real behavior of the circuit: While the write access "consumes" the input
vector (which corresponds to the behavior of a non-transparent node), the read access
acts similar to a combinational circuit: The address can be viewed as an input vector
and the related memory content as the result of a transformation of this input vector
into the output vector. This corresponds to a (programmable) function unit with an
extremely efficient implementation technique and therefore to a transparent node. In
fact, in some microprocessors the instruction decoder is replaced by a ROM to reduce
the size of the circuit [44], or in many FPGA architectures [1] LUTs1 are used to imple-
ment combinational functions. Modelling a read access as a non-transparent process
would give way to a falsified representation of these memories behavior. Though the
third option does not yield a direct matching between the physical implementation and
the graphical representation, this approach allows the closest mapping from a logical
point of view: The splitting of a memory node into a virtual memory..write node and
a virtual memory-read node opens the way to model both types of access in a natural
manner. The read access can be performed completely asynchronous - this means that
after an arbitrary time the new output is generated in response to a new address -
while the write access explicitly signalizes its completion through handshake signals.
Figure 5.3 shows how a graphical representation of a circuit can be built following the
convention defined in this section.

Latch 1, Latch 2, and Latch 3 are mapped to the non-transparent nodes LI,
L2, and L3, while the function unit FU between Latch 2 and Latch 3 is repre-
sented by a transparent node. The memory block MEM is split into two nodes,

stands for Look Up Table, which are small programable memory elements
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non-transparent nodes

FU

transparent nodes

Circuit Related graph

Figure 5.3. Graphical Representation of a Circuit

namely a non-transparent write node Mem- WR and a transparent read node MemJiD.

The last circuit structures, which we have to model in order to be able to represent
any circuit by a graph are buses. Until now we have considered only point-to-point
connections. Nevertheless an output signal can be consumed by more than one compo-
nent. Such a fork structure can be modelled by inserting a (virtual) transparent node
with one input and a suitable number of outgoing edges (see Figure 5.4a). Similarly,
merge structures can be modelled by additional (virtual) nodes with n inputs and one
output, where n is the number of sources as illustrated in Figure 5.4b.

O
•o

(a) Multi-destination structure

Q
o-

O

(b) Multi-source structure

Figure 5.4. Bus Model

By modelling merge and fork structures in above portrayed way the number of in-
and outputs of physical nodes are left unchanged, which makes it easier to re-associate
the edges of the graph to the signal lines of the circuit.

Furthermore, this approach allows to model even tri-state buses. Tri-state buses may
be critical in conjunction with CAL, however: if all sources switch to high impedance,
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the bus reaches either an undefined state or its state is fixed by pull-up or pull-down
resistors. In any case a deadlock is going to occur. Hence, the designer has to pay
attention that the bus is always driven - which questions the benefit of this type of
circuits.

In the next section we will identify the position of the phase inverters that have to
be added due to non-linear circuit structures - if such an inverter has to be placed in
bus structure then we have to consider that placing the inverter at the output of the
upstream node causes the phase of all downstream nodes to be inverted, which may
not be intended. Thus, a good rule-of-thumb is to place inverters directly on the input
side of components and never on their output side. This may not lead to an optimal
solution with respect to area-efficiency but it will certainly avoid undesired side effects.

5.1.3 Steady State

In order to operate properly a CAL circuit requires that consecutive pipe stage carry
different encoded data. So a pipeline is addressed as "full", if all adjacent stages in a
pipeline carry alternating coded data. In contrast we define a pipeline as "empty" if
all pipe stages carry data which is encoded in the same phase [104].

Before we can start finding out the position of the phase inverters required to
accommodate the feedback/forward paths in the circuit, we have to decide, whether
we will consider a full or an empty pipeline. As we will see, the difference between this
two configurations has an impact on the result. As a starting point we will assume a
full pipeline - the findings of this section will be projected to an empty circuit later
on in this chapter.

To determine which phase each node has to carry, we start from the first node in
the graph and set its input ports to an arbitrary phase2. Then we set the phase of the
outgoing edges: If the node in question is a transparent one, then the outgoing edges
have to be set to the same phase as the incoming edges, otherwise the phase has to
be inverse to the phase of its incoming edges. Subsequently we can go through the
output/input edges to the next node. Obviously, at least one input edge of this node is
defined as a result of the previous step. This allows us to define the phase of all other
incoming and outgoing edges. In this manner we can pass through the entire graph. If
two incoming edges of the same node have different phases, then a phase inverter has
to be placed.

To illustrate this approach, we will apply it to the graph in Figure 5.5. Let us choose
node L 1 as a starting point - we assign the input edge (pO (see Figure 5.5a) and the
output y?l, because it is a non-transparent node (see Figure 5.5b). The next node is
function unit FU 1. Being a transparent node the output edge has to carry the same
phase as its input edge. The phase of the latter is already defined by the output of L 1
and hence the output of FU 1 is set to tpl. (see Figure 5.5c). This implies that the

2 Due to the fact that the phase itself is not essential - only its alternation between adjacent nodes
is decisive - we can start from any node of the graph, although the starting node impacts the result
(see Section 6)
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output edge of node L 2 is set to <pO, and so on.

<pO

(a) First step: input phase of LI = cpO

FU2) -I L3

(c) Choose next node: FU 1

(b) Second step: set the output phase accordly

(d) Final result

Figure 5.5. Determination of Phases in a Graph

Figure 5.5(d) illustrates the final result. Being a linear circuit no phase inverters are
required. Now we will add a forward path,.which yields to a nonlinear structure (see
Figure 5.6a. Note that the forward path relates the events of L 3 with the events of L
1 - from a logical point L 3 consumes the output of L 1. This requires that L 1 has to
consider not only L 2 but also L 3 to decide whether it can fire or not. Hence, when
adding a forward / feedback path we must not forget to add proper handshake signals
(which are not depicted in Figure 5.6b).

contradiction

forward path

(a) Deadlock due to inconsistent input vector (b) Deadlock resolved by a phase inverter

Figure 5.6. Inconsistent Input Vector due to a Forward Path

Due to the fact that latches can carry only consistent output vectors (see previous
section) the forward path has to be set to the same phase as the already existing out-
going edge, namely to (pi. Now a problem arises at node L 3 where one input is set to
ipO, the other to ipl instead, which gives way to an inconsistent input vector for this
node. Remember, CAL components wait until the input vector is consistent before a
new output is generated. In a full initialized circuit the last node has to fire first to
make room for new data at the input side. Therefore the circuit constellation in Figure
5.6a would yield a deadlock: Obviously node L 3 cannot take over new data due to
its inconsistent input vector and this procedure also blocks node L 2: L 3 signalizes -
through the handshake signals - that the data conveyed onto the output of node L 2
and (transformed by FU 1) has not been consumed yet. Hence, L 2 cannot fire in
order to ensure that no data get lost in the circuit. The same is true for node L 1. As
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a consequence no progress can occur and the circuit will be stalled regardless of the
behavior of its environment.
The deadlock can be resolved by placing a phase inverter in the forward path as illus-
trated in Figure 5.6b. The phase inverter acts similar to a latch - it ensures that the
phase on incoming edges and outgoing edges differs. This yields to a consistent input
vector for node L 3, and therefore new data can be taken over. At this point it is im-
portant to highlight the fact that a phase inverter does not affect only data signals but
also the related handshake signals: As described in Section 3 the capture-done signal
of a latch indicates by its level the phase of the data which was consumed last. As a
logical consequence, if we add a phase inverter in the data path between two latches
we also have to negate the corresponding capture-done signal.

The abovementioned deadlock is easy to recognize since the circuit will not start
working after reset. However, a missing phase inverter can cause more malicious mal-
function which can be extremely difficult to identify. In Figure 5.7 the forward path
is connected to the FU 2 node, instead of L 3. As in the previous example we assume
that the output of the function unit 2 FU 2 carries (pO. We recognize an inconsistent
input vector, but in this example a transparent node is affected.

contradiction

<po

Figure 5.7. Forward Path to a Transparent Node

Due to the fact that a transparent node does not participate in the handshake pro-
cedure, the inconsistent input has a completely different impact - one will be able to
view that in this circuit no deadlock occurs.

Figure 5.8 illustrates what happens: In 5.8(1) the starting point of the circuit is
shown. As expected node FU 2 has an inconsistent input vector. The input vector
of node L 3 , however, is consistent and being a sink L 3 can consume its input as
illustrated in 5.8(2). The (pO at the "output" side of the node indicates that data coded
in cpO was consumed and that the next data to be used must be coded in (pi.

Node L 3 communicates over the handshake channels that has consumed its input
data and hence it is allowed for node L 2 to change its output 5.8(3). As soon as L 2
has taken over new data, the input vector of FU 2 becomes consistent, a new output
can be generated and L 1 takes over its input data 5.8(4). Immediately after that L 1
fires due to the fact that its output data has already been consumed by L 2 and L 3.
The new output generated by FU 2 enables L 3 to fire - FU 1 produces a new output
(see Figure 5.8(5)) because L 1 has produced a new input vector.

Note that the temporal relation between the events on FU 1 and L 3 does not make
any difference due to the fact the FU 2 keeps its old output as long as an inconsistent
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(4)

Figure 5.8. Progress of a Circuit

input vector is applied. In 5.8(6) we have the same situation as in 5.8(3) but with an
inverted phase constellation. Hence node L 2 consumes its input vector, which triggers
node L 1 on its part. In figure (8) we reach the same configuration as in the starting
point. Observe that even having an inconsistent input vector no deadlock has taken
place.
What went wrong or did actually anything go wrong? If we take a look at 5.8(3)
and 5.8(4) we recognize the bug: FU 2 starts its execution after L 2 has taken over
(pi. The point is that FU 2 was probably not intended to combine the "old" data from
FU 1 with "new" data from L 2. Instead FU 2 joints the new produced output of L 2
(coded in (pi) with the output of FU 1. There are two possibilities: first the additional
path is a "regular" forward path or this path is used for another purpose.

Regular forward path: If the forward path is a regular forward path, i.e. data
conveyed by the forward path and data conveyed by the "regular" path (in the next
iteration) is identical and FU 2 has to select between these signals (in accordance
with some control signals). Then the circuit will operate correctly. However, in this
case the forward path would not be not required, since the regulation of the data flow
is inherent in asynchronous circuits. Thus, if we have to transform a synchronous
circuit, which has such a forward path inside, into an asynchronous CAL circuit, then
we can perform a straight forward mapping of all signal paths. By doing so we are
sure that we have not forgotten any useful signal path and that the "dead" forward
path does not influence the correct functionality of the circuit. Or does it?
The missing phase inverter affects the timing of the circuit - it transforms the originally
delay-insensitive circuit to a speed independent one: In the previous explanation a
hidden timing assumption was made: In Figure 5.8(3) L 2 takes over data coded in
(pi and this gives way to a consistent input vector for FU 2. Now, we will assume that
the connection between L 2 and FU 2 is subject to a large delay. While the data is
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propagating from the output of L 2 to the input of FU 2, L 1 can take over new data
(coded in ipO) and FU 1 can produce a new output in its part. This data, coded in
(pO will be transmitted to FU 2. If this action proceeds faster than the propagation of
the output of L 2 to FU 2 then a deadlock occurs.

Arbitrary data path: Contrariwise if the edge between FU 1 and FU 2 is not
used for forwarding purposes, then a malfunction will occur without exception: As
illustrated in Figure 5.9 the output of FU 1 and L 2 should be added. Furthermore we
assume that the output of L 2 carries "6", the forwarded output of FU 1 "3" and the
"normal" output of FU 2 "2". This circuit will add the values carried by the outputs
of FU 1, namely 2 and 3, instead of 3 and 6. The problem is that L 2 must fire before
the adder can perform its operation.

(pO

Figure 5.9. Arbitrary Data Path

This simple example shows the complexity of forward paths in asynchronous CAL
designs. On the one hand a forward path may cause a deadlock - this is relatively
easy to find out and on the other hand the circuit might operate as well, but produce
unintended results. Such errors are extremely difficult to seek out because they have
their origin in the dynamic behavior of the circuit.

5.1.4 Dynamic Behavior

In this section we will analyze the dynamic behavior of the circuit illustrated in
Figure 5.10a. In contrast to the previous example, this circuit is highly non-linear, due
to the fact that it contains not only a forward but also a feedback path. If we want to
initialize the circuit with alternating phases we may recognize that an additional phase
inverter has to be put on the forward edge (see Figure 5.10b).

In Figure 5.10b the circuit contains only nodes which have consistent input vectors.
Now we will analyze what happens when the circuit starts to operate. For this purpose
we assume that the data sink node SNK consumes data without delay. Similarly, the
source node SRC produces data immediately after L 1 has demanded for it. The first
node, which becomes active, is SNK - its input vector is consistent and therefore -
as postulated above - it will consume its input data immediately (see Figure 5.11(i)).
This consumption is signalized through the handshake signals to L 3. This node has
also consistent input edges and thus it will take over its input data enabling L 2 to fire
(see Figure 5.11(ii)). Also L 2 has consistent inputs and hence can in turn take over
its input data as illustrated in Figure 5.11(iii).

As depicted in Figure 5.11(iv) The output of L 2 causes that FU 2 gets new input
data and toggles its output to (pi. As a consequence, the input vector of L 1 becomes
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(a) Graph example with forward and feedback path

(b) Graph with phase inverter

Figure 5.10. Highly Non-Linear Circuit Example

(0

(ii) (1V) I SRC

inconsistent input vector

Figure 5.11. Sequence of Transitions

inconsistent. This obviously prevents L 1 to consume its input data and a deadlock
occurs. However this deadlock is not mandatory, quite on the contrary: At the mo-
ment where L 2 has taken over the new data, L 1 receives the information (over the
handshake signals) that its output data was consumed and therefore new data can be
accepted. If the handshake signals are faster than the delay of the signals from the
output of L 2 through the function unit FU 2 to the input of L 1 then the data can
be consumed by L 2 before its input becomes inconsistent.

Here we have the same situation as in the previous section with respect to the forward
path: The data, which was accepted by L 1 is not the data that the system designer
intends to be consumed. The logical sequence of events implies that L 1 is activated
after L 2 has taken over data and all inputs of L 1 are in a stable state. If the feedback
path goes through more than one non-transparent node then this circumstance can be
viewed more clearly. Anyhow, this circuit is no more delay insensitive (on the gate
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level) but speed independent.
Is it impossible to build delay-insensitive nonlinear pipelines? What is the origin of the
problem? The clue is that the nodes in the circuit do not operate in a lock step manner
- they do not switch concurrently, but in a sequential way. Figure 5.12 illustrates this
aspect in a more apparent way.

(1)

(2)

(3)

(4) fcpO

Figure 5.12. Abstract Switch Sequence

The phase indication inside the squares should indicate the phase carried by the
output vector of the node. To get a more illustrative picture, we assume that all nodes
are non-transparent. As already mentioned in the introduction of this chapter, we
assume a full initialized pipeline (see Figure 5.12(1)). Due to this fact only the data
sink can take over data - it is the last node in the chain. For a short instant the last
two nodes keep the same phase (see Figure 5.12(2)): the last but one node cannot
consume its input data, before the last node has acknowledged the consumption on its
part. For the time, which is required to get and to process this acknowledged signal,
both nodes carry the same phase on their output.
In the next step the last but one node takes over data on its part, thus reestablishing
the alternating order of the phases on the circuit part on its output side. On its input
side however, we have the same situation as previously, namely two adjacent non-
transparent nodes which keep the same phase. As before this is only an intermediate
state and when the previous node switchers, the alternating order is reestablished3 (see
Figure 5.12(3)). We may see that if a circuit makes progress such duplicated states will
takes place. These intermediate states are called bubbles [104]. Figure 5.13 compares
the circuit in state (1) and in state (4). The node which holds the bubble is marked.
This node constitutes the border between the part of the circuit, which has still the

3Watchful readers would object, because in the meanwhile the last node in the chain is also enabled
to fire again. In order to be able to concentrate this explanation on the actual point this aspect will
be ignored.
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same phase configuration as in the initiatory state and the part where nodes have
already switched. Taking a deeper look we recognize the phases have moved one step
in the sink direction and the resulting gap is filled by the bubble.

(1)

(4)

""A
bubble

Figure 5.13. Impact of Switching Activities

What is the impact of feedback paths? In Figure 5.14 we added such an exemplary
feedback path to the circuit illustrated in Figure 5.11. The source node of the feedback
path carries ipl and the destination node requires the same phase on its input. Hence
based on this static analysis no additional inverter is required for this edge.

Due to the fact that the circuit in Figure 5.14 switches in the same order, we can
transfer the state information in Figure 5.11(4) directly to this circuit. Now, we rec-
ognize the problem: We determined the phase inverter, based on a steady state of the
circuit. Being a full initialized circuit the last node switches first, then the last but one
node and so on. Thus the feedback path carries information from a node which appears
ahead of time in the logical event sequence to a node which will be activated later. As
a consequence the initial state of the source node of the feedback path changes before
the destination node has fired and a deadlock occurs as illustrated in Figure 5.14(4).

(i) t»0

inconsistent input vector => deadlock

(4)

bubble

Figure 5.14. Switch Sequence with Feedback Path

The reader can easily reconstruct that a forward path is not affected by this mech-
anism due to the fact that the node, which receives the forwarded data is in the event
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sequence prior to the source node of the forward edge.

inconsistent input vector

Figure 5.15. Final Circuit Constellation

Hence to solve this problem we have to identify all feedback paths in the circuit
and invert their phase (again). Nevertheless, this violates the consistency requirement
in the steady state as illustrated in Figure 5.15. In a running circuit, this has no
additional effect, because nodes which have inconsistent inputs keep their old output
value until the input data becomes consistent. In the startup phase, however, this
may represent a problem for combinational nodes: Due to the fact that transparent
(=conbinational) nodes are not initialized by the reset, there is no defined "previ-
ous" state that they can keep in case of inconsistent inputs. Therefore the inconsistent
input yield to an undefined output. Anyhow, in the physical implementation this
undefined state does not affect the proper operation of the circuit: On the one hand
the sequential nodes that enclose combinational gates are initialized correctly and
hence consume data only when it is consistent and coded in the expected phase. On
the other hand, the circuit has to be initialized in a way, that enables it to start up,
and hence an inconsistent input vector will become consistent sooner or later.
However, this circumstance causes problems to most of the available commercial
simulation tools: Being originally intended for a use with synchronous circuits, (where
such undefined signals denote a real mistake) conventional simulation tools propagate
undefined states through the whole circuit making a simulation impossible. If we
want to use these tools for asynchronous circuit design then we have to take this fact
in account: Either we feed the reset signal to all combinational circuits, i.e. to the
RS-latches embedded in all AND, OR gates, or we disable the additional inverters in
the feedback path during the reset phase (for simulation only). The latter is seems to
be a more reasonable solution.

Note, it is not required that the phase inverters are placed directly in the feedback
path: From a logical point of view a feedback signal forms a loop in the circuit -
hence any edge of the loop can be inverted to achieve the desired effect. However, the
original initialization must not be changed due to the additional inverter. At this point
it is essential to highlight that the proposed solution only works when the pipe is full
initialized. In the next sections we will generalize these results.
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5.1.5 Structural Regulation of the Data-How

In the previous section we have built a correctly operating circuit by adding an
inverter into the feedback path. This inverter was necessary to account for the fact
that the phase of each node moved downstream one step (in the direction of the data
sink). Without the additional inverter this would cause an inconsistent input vector on
the node that receives the feedback signal but has not fired yet. However, the node that
generates the feedback signal could fire again and hence re-produce the inconsistent
input vector at the node which receives this signal. Is there something which prevents
this node to switch again? The answer is yes, because non-linear structures inside
a circuit cause a structural regulation of the data flow. As illustrated in the
previous chapter handshake signals between latches steer the data flow, but only locally
i.e. between two adjacent nodes. The result is an elastic pipeline: A data source can
issue data until all pipe stages are full, regardless of the data sinks behavior and vice
versa - the data sink can consume data as long as the pipeline is not empty disregard
of the data sources behavior. The local data flow regulation between pairs of pipe
registers ensures that incoming data propagates as far as possible into the pipeline and
guarantees that, if data is consumed at end of the pipeline, the remaining data will
moved downstream. A feedback path (the same is true for forward paths) inside such
a circuit monopolizes this mechanism: The existence of a forward or a feedback signal
implies that at least one signal is generated in one pipe stage and consumed in another
one. This creates a concatenation of these pipe stages (which are not adjacent) and
thus restricts the elasticity of the entire pipe: To ensure that no data is getting lost
when the first pipe switches, the concatenated one has to switch on its part, before the
first one switches again. To illustrate this more demonstratively, Figure 5.16 zooms out
the environment of the starting and the end point of the feedback edge from a logical
point of view.

Structural regulation between SRC and SNK

Figure 5.16. Structural Regulation

We may view that the node L 1 has two inputs, one from SRC and the other one
from L k. Hence L 1 can fire only when both nodes has produced valid data. On the
other hand L k acts a source for SNK and for L 1. This in turn requires that L k
can fire only when both nodes have consumed their output. The consequence of this
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concatenation is that the circuit delimited by L 1 and L k is no longer elastic: A new
data package can be issued only when L k has consumed a data package aforementioned
- L k can fire again only if a new data package was consumed by L 1 in the meantime.

This can be seen as a vital breakthrough, if we go back to the original problem,,
namely identify the additional inverters in the feedback path: Assuming a full initialized
pipeline, we know that after L k has fired all nodes in the backward direction - this
means L k-1, L k-2, ... L 2 fire exactly one time before L 1 can become active. This
finally enables L k to fire again and the procedure starts once more. Due to the fact
that this behavior is deterministic and guaranteed, all feedback paths must cause a
violation of the alternating sequence of phases during the reset phase.

5.1.6 Empty Initialized Pipeline

Why have we stressed the fact up till now that the pipeline must be full? In order
to find out the impact of pipeline initialization, let us consider, what happens if we
initialize all latches with the same phase - which leads to an empty pipeline.

Figure 5.17. Empty Initialized Pipeline with Feedback Path

At first we will analyze the impact of the feedback paths. For this purpose we
consider the circuit in Figure 5.17. Due to the fact that the pipeline is empty, neither
SNK nor the nodes inside the circuit can fire. Therefore SRC has to issue data encoded
in ipl - this would lead to an inconsistent input vector if no phase inverter is place in
the feedback path. This circumstance can be generalized: In an empty initialized
pipeline we have to place a phase inverter on all feedback paths.

Now, we will consider what happens with the issued data: As depicted in Fig-
ure 5.18(1) SRC provides new data, which is consumed byLl (see Figure 5.18(2)).
Subsequently L 2 takes over the issued data on its part as depicted in Figure 5.18(3).
Although SRC provides the next data package L 1 cannot fire again even due to the
fact that L k has not fired yet. In Figure 5.18(k) L k fires and only now L 1 is enabled
to consume its input data (see Figure 5.18(k+l)).

We recognize a completely different switch sequence of the circuit compared to the
full initialized pipeline: In the latter we always have (apart from the bubble) alternating
phases on the output of adjacent nodes - in the empty initialized pipeline (with feedback
path) all nodes must carry the same phase before the new data can be issued.

This also affects the placement of the phase inverters in the forward path: To find
out, if phase inverters have to be placed on forward paths we consider Figure 5.18 again
and add a forward path to the circuit as illustrated in Figure 5.19.
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( k + 1 ) f f «

Figure 5.18. Event Sequence of an Empty Initialized Pipeline

Forward path

Figure 5.19. Empty Pipeline with Forward Path

We see that destination node of the feedback path becomes an inconsistent input
vector, when L 1 has fired as illustrated in Figure 5.19. However, this inconsistency
will be resolved, at the moment, when the input data wave propagates through the
circuit and arrives at node L k. Hence, in an empty initialized pipeline no phase
inverter has to be placed on forward path.

We recognize that full and empty initialized non-linear pipelines do not only have a
completely different event sequence, but they even required a different phase inverter
setup in order to avoid deadlocks. In the next section we will analyze the impact of
the initialization on the performance.

5.1.7 Relation Between Performance and Initialization

One consequence of the structural regulation of the data flow is that the initialization
influences the throughput of the circuit. In order to show this, we will consider in the
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first step only non-transpaxent nodes - the impact of transparent nodes will be modelled
later on in this section. As in the previous sections we assume that data source and
sink are faster than the pipeline circuit and thus do not constitute the bottleneck. We
recognize in Figure 5.20 that the empty and the full initialized circuits are not identical
- the additional inverter in the feedback path should indicate that depending on the
chosen initialization different inverter configurations may be required.

Empty initialized ; Fully initialized

Figure 5.20. Full and Empty Initialized Circuit

In the first we will consider the empty initialized circuit. The first node, which fires,
is L 1. As explained in the previous section L 1 can fire again, after the first input
data wave was spread through the entire circuit and consumed by L k.

Therefore the achievable throughput 0 can be formulated as:
1

where k is the number of edges in-between the start and the end node of the feedback
edge and ASW(i) is the time which node L(i) requires to switch.

Now, hoping to get a better result we will perform the same analysis for the full
initialized pipeline. Due to the fact that the last node of the circuit fires first, we
will consider the time between the consumption of consecutive data packages. While
this is equivalent to the period where new data can be issued, its calculation is more
illustrative. Hence L k fires first and changes the phase of the feedback path, which
forms the input data for L 1. According to our assumption that the data source
produces new data immediately, its output must be already set to the next phase, such
that the input vector of L 1 becomes valid as soon as the feedback fromL k arrives.
However, L 1 cannot fire, because its output has not been consumed by L 2 yet. The
latter cannot fire, due to the fact that its output has not been taken over by L 3 yet,
and so on. We recognize that all pipe registers must fire before L 1 can fire on its
part. This in turn enables L k and initiates the described event sequence again. One
can view from this procedure that the throughput 0 of the full initialized pipeline is
defined by:
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where k is the number of edges in-between the start and the end node of the
feedback edge and ASW(i) is the time which node L (i) requires to fire.

This is a notable result - even being full initialized, all nodes inside the feedback
path must fire on time, before a new input can be issued and respectively a new output
can be generated. We see that there is no difference between the full and the empty
initialized pipeline, if we do not consider the delay of function units in-between the
pipe stages.

Impact of function units on performance: Now we will consider the impact of
function units between pipe registers. Do they have the same effect on the full and the
empty initialized circuits, namely to slow down the progress, or is there a difference?
To investigate this we consider the circuit in Figure 5.21:

ASW(l) AFU(l) ASW(2) AFU(2) ASW(3) AFU(k-l) ASW(k) AFU(k)

Figure 5.21. Pipeline with Function Units

We assume that the circuit is in the steady state. As previously we will analyze how
much time is required until new data can be issued or consumed respectively: The
throughput 0 of an empty initialized circuit can be calculated as follows:

With FU =
fc=i {ASW(i)

The throughput is defined by the sum of delays of the pipe registers and the function
units. This is a comprehensible result due to the fact that a data package has to
pass through all components before the next one can be issued. Note, that the
objective of pipe registers is to divide the circuit in sub-circuits, which operate
concurrently. In an empty initialized pipeline, however, the pipe stages do not process
different data waves concurrently, instead the same data wave is processed by all
pipe stages in a serial manner. This stands as a contradiction to the basic princi-
ple of pipelining, since the circuit would operate faster without any pipe register inside.

Now we will consider the full initialized circuit: We assume again that the circuit is in
the steady state: The last node fires first due to the fact that - as postulated previously
- the data sink consumes immediately its output after becoming valid. Subsequently
to it the last but one (non-transparent) node fires. In contrast to the empty pipeline,
where non-transparent nodes must wait until the function units located previously to
them have generated the next (valid) input data, in the full initialized pipeline this
is not always true. Due to the fact that the firing sequence runs opposite to the
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propagation of the data waves the output, which is generated by the function unit, is
not consumed within the next firing event as illustrated in Figure 5.22.

(Ll fires)

(k-2)P event
(L3 fires)

2nd event
(Lk fires)

Figure 5.22. Impact of Function Units to a Full Initialized Pipeline

We recognize that the output of FU 1 will be consumed only after whether (k-2)
nodes have fired, as illustrated in Figure 5.22. Hence, we have to distinguish, if the
function unit is able to generate its output in time, such that the subsequent node can
consume it immediately, or not.
In the first case, we assume that the delay of the function unit FU 1 dominates - after
FU 1 has finished its operation, the next downstream node, L. 2, can fire and complete
the "firing cycle"by enabling L 1 again. The throughput 0 can more formally be
expressed as follows:

1
with slow FU — + ASW((i + 1) mod k) + (AFU(i))

(5.4)

when E,fc=i ASW(i) - (ASW(j) + ASW((j + 1) mod k) < m a x ^ * AFU(j).
In contrast, if the function unit FU 1 generates its outputs fast enough so that the

subsequent node L 2 can fire immediately, then the throughput is described as follows

eFull with fast FU — (5.5)

when £*=o ASW(i) - ASW{j) + ASW((j + 1) mod k) > maxo<i<fc AFU(j).
We recognize that in this case the propagation delay of the function units between pipe
stages has no impact on the resulting throughput. However, compared to the empty
initialized pipeline the full initialized one yields always higher throughput.

5.1.8 Nested Feedbacks/Forwards Path

Until now we have considered only one single feedback path - in real circuit im-
plementations nested loops may also occur. Nevertheless, this does not constitute a
problem - a sub-circuit, which incorporates such a nested loop, can be abstracted to
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Figure 5.23. Nested Feedback Path

a super-node. Now we can place the inverters, handling the super-node such as all
normal nodes (see Figure 5.23).

Inside the super-node we can apply the same algorithm to place the inverters, where
the nodes outside the super node are considered as data source and data sink respec-
tively. In this way we can recursively progress, until we reach the inner most loop.
Note, it is possible to choose different initialization types for the super node and the
global circuit - this has only an influence on the overall performance. Notice, that the
super-node has to be modelled as transparent or non-transparent one, depending on
the number and type of nodes which it incorporates.

5.1.9 Algorithm for Placing Phase Inverters

In Section 5.1.7 we have portrayed that a full initialized non-linear pipeline is prefer-
able to an empty initialized one due to the fact that it permits higher performance. In
contrast to the empty pipeline, where the phase inverter can be placed in a straight
forward manner, in a full initialized circuit different aspects such as the number of
non-transparent nodes, which are skipped by a nonlinear signal path as well as the dy-
namical behavior of the circuit, have to be considered. As a consequence, identifying
the position of phase inverters becomes a too complex and error prone task. Hence, we
incorporated the rule for the appropriate phase inverter placement, derived from the
specific examples above, into a software algorithm: As illustrated in Figure 5.24 the
placement is performed in two steps.

In the first step the steady state is considered: An arbitrary node is selected and
the phases on its in- and output edges are set. Using this node as a starting point, the
algorithm goes through the graph node by node considering that: (a) in- and output
edges of transparent nodes have to be set to the same phase and (b) the phases of in-
and outputs of non-transparent nodes have to differ. If a conflict with respect to the
phase of an edge occurs, then a phase inverter has to be placed. For the final circuit
the non-transparent nodes have to be initialized as assumed in this step.
In the second step the dynamic behavior must be considered: This requires that we
place phase inverters on all feedback paths. How does the algorithm identify a feedback
path?
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1SI step: steady state

violation => phase inverter has to be placed

2nd step: dynamic behaviour

loop => phase inverter has to be placed

Figure 5.24. Placement of Phase Inverter

From a logical point of view, a feedback path builds a loop in the graph. Hence the
algorithm identifies all loops and places the inverter on one edge of the loop. From a
logical point of view, it does not matter what edge of the loop is inverted. In practice
the placement of the inverter affects the start up sequence of the nodes involved by the
loop: The non-transparent node arranged beforehand to this phase inverter will fire
first after the reset signal is deactivated. Note that a phase inverter can be shared by
several loops. This can be used for optimization purpose, but if the loops are treated
independently one from each other, then some loops in the final circuit may contain
(unintentionally) more than one inverter. The algorithm prevents this by considering
all loops simultaneously during the phase inverter placement.

As depicted in Section 6 the result of the algorithm depends strongly on the selected
starting node. Due to this fact the starting node can be selected manually and provided
as a parameter to the program which implements the algorithm. A detailed description
of the algorithm can be found in [91].

5.1.10 Practical Results

To substantiate the results elaborated in this section we made some simulations: For
this purpose we built a simple pipeline with six pipe stages, where data source (SRC)
and sink (SNK) are emulated by the testbench.
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[FUI] H P2 ) *i FU2) »-( P3 ) •{ FU3) •{ P4 ) •{ FU<
^ —

ASW AFU ASW AFU ASW AFU ASW AFU

ASW(i)=10ns

Figure 5.25. Pipeline which is Used for Simulation

FU5J-
s—/

ASW AFU ASW

AFU(i) = 40ns

We set the switch delay of all latches to 10 ns and delay of all function units to 40
ns to get more comprehensible simulation results.
To show the elasticity of linear structures in asynchronous designs, first we simulate
the pipeline without a feedback.

Eil» Edit Marker QoTo ¥lew Options iVIndow
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data_SRC[15fl)

passj j l

p1_out_d(lSSJ)

P2_out_d(iao)

p3_out_d(15D)

Fully initilaized pipeline / Pipeline is empty

SNK node consumes input SRC node issues new data Pipeline is full

Figure 5.26. Simulation of a Linear Pipeline

As illustrated in Figure 5.26 we initialized the pipeline in such a way that all adjacent
latches carry alternating phases on their outputs. We wrote the testbench in such a way
that SNK becomes active first. SNK can consume all data waves inside the pipeline,
regardless of the behavior of SRC - this leads to an empty pipeline. Afterwards we
activated SRC - like SNK the data source can issue data independently until the
pipeline is full again.

As mentioned in the previous section the propagation of data leads to "bubbles"
inside the circuit, this means, that the outputs of adjacent pipe registers carry the same
phase for a short period. To show this behavior, we zoomed out the data consumption
of Figure 5.26.

In Figure 5.27 we recognize that the bubble propagates in the opposite direction to
the data waves and compensates the "gap"originating from the propagation of the data
waves as illustrated in Section 5.1.4.
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Figure 5.27. Data Propagation in Detail

In the next step we added the feedback path and applied the same stimuli to the
pipeline. This simulation is shown in Figure 5.28.
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Figure 5.28. Structural Regulation of the Data Flow

We see that P6 fires immediately after SNK has consumed its output, which is
signalized by the falling edge of the capture-done signal of the sink node (c^doneSNK)
- this enables PI to fire. The SNK in turn consumes the (new) output of P6 again
(see rising edge of c.doneSNK). However, P6 is prevented to fire again due to the
structural regulation of the data flow: Only when SRC issues new data and PI takes
it over, then P6 is enabled to fire again. The simulation confirms that the feedback
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causes a structural regulation of the data flow.
The next experiments shall illustrate the impact of the initialization on the

throughput. For this purpose we changed the behavior of SRC and SNK in the
testbench, so that they react immediately: New data is issued promptly after PI has
fired and the output of P6 will be consumed, immediately after it becomes valid.
Hence SNK and SRC does not constitute a bottleneck and the simulations display
the highest achievable throughput of the circuit.

In Figure 5.29 the result of the simulation with an empty initialized pipeline is shown.
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Figure 5.29. Throughput of an Empty Initialized Pipeline

First P6 fires and enables PI to switch. As valid data lies on its input, this node
can take over new data on its part. The delay of 10 ns originates from the switch delay
of the pipe register. We may view that PI fires again after 260 ns - this equals to the
theoretical value of the throughput defined by Equation 5.3:

ACycle =

ACycle =

ACycle =

AFU(i));
i=\

6 * ASW + 5 * AFU]

6 * 10ns + 5 * 40ns = 260ns; (5.6)

Note that the feedback path does not contain a FU- this, however, is not
mandatory. An additional delay in this path has the same impact on the throughput
as the delays of all other function units: it has to be added to the sum of all other delays.

Now we will consider the full initialized pipeline. We have used the same environment
as with the empty initialized pipeline. Due to the fact that the condition (k — 2) *
ASW > AFU is fulfilled the expected cycle delay is defined by the sum of the switching
delays (= 60 ns). This was verified by the simulation in Figure 5.30.



CHAPTER 5. NON-LINEAR DATAFLOW 83

Eil« Edit Markör fioTo

D|c3|B| Jt|"&LL

reset

> dala_SRC(l5 0)

pass_pl

> pl_out_d(15:0)

> p2_out_d(15:0)

> p3_out_d(lS:0)

> p*t_out_d(lS:0)

> pS_out_d(15:0)

> p6_om(15:0)

c_done_snk

• I I I»

• •I

MO

' j 1 •

|

T. T.

• 1
Ready

•'hi

Î
1

|
Ll

• • • • r

• ' • ( •

1
View

"1 HJ

660

r ! T.

•r t . i

r. r. "!. ';

'-', V. L

I

T. i

OllU'ifflrflfcri _
Options Window tlolp

^|ii] «|»|«|»|^)_«jrf7c<t
i

680 70

Vi t . 11'. I ' l l ' , H. l i , l.-il '

/

•. i.T. r t . r r v? , r'i /

.1 " . H "!-!'. "i.'sT "'i."*j /

r.i.r r.i.'.ji. ; •. i'. [/". /

V. V.V.I'. V. V.'l.M. 'H,>

r t, T. r. T, T T. T, y t. T, r T

j

i

i." 1

'. i-.

i. ''.

. H.

1 /i

I

all]

720 740

'=. T. r, •;. T. r, ?, r, r, r. r. r,

V. f,"i..V V. 1,'H1. H.K

• r.r M;T. r v.T. <• i",t. <

i ', "H_ "H", -H\ "H", "rf. "K, V. *j

K, W.-rf.-l •:.ï.-'-.V.Ït

t=*, V l p 'L". V 'L1. V*. V,'H

_J

CO

760

!

-i •
•
:•

f\K.h-H.y_-|_

"•. T, 17 r. T. J. "('. L !

\ 'H1 AV, 'H' K.jH* 'H

/ i

I

.V

.,',:

•<

I

780

l.T. •• S.V. f.

•f. i'. If i i , l-

1."-' r.'i. v r.

I- .VV
1 . T. T , -,. •

Time-3100

QMtï

800 820

i' :.."i 1, l r 1'. -r. ";•.•{',•;. T .

'i.V. .• ';'. V. '•.'i.T JL" i". V"

. -r. H I;- i-."r[i." .v ;.r. v : . -

: «-' L'.i , ' • r. r.r. . -

T.T 1 T.V T T. T l . ï .T. T. T. •:• '

V. 1 • V, V, 1 •. rf. W. 1H'. H. H'.'

.T.'i.T. f i . l .T T.T.T 1 !

1»

-

•

_

|w(-io iWfc-îb ÎSd-o

I
P6 fires PI fires PI fires again

Figure 5.30. Throughput of a Full Initialized Pipeline

In contrast to the empty pipeline, where PI has fired 10 ns after P6 has consumed
its input, in the full initialized pipeline 50 ns elapse between those events. This has its
origin in the different event sequence: in both circuits P6 activates PI - in the empty
initialized pipeline PI can fire immediately due to the fact that its output was already
consumed (or is empty). In the full initialized pipeline the output of PI has not been
consumed yet. In fact we can observe in the simulation that all nodes between P6 and
PI fire before PI can take over the input data on its part.

To investigate the case where the condition (k — 2) * ASW > /S.FU is violated we
enhanced the delay of the function units FU 5 to 70 ns. As a consequence, we have to
use Equation 5.4 to calculate the cycle time.

^^BJTi^tT
Ells Edit Marker floTo

D|sS|H] jsJ^J.*

reset

> dota_SRqiS:0)

P«S3_pl

> pl_out_d(lS:0)

B- p2_out_d(lS:0)

> p3_o«_d(15:0)

> p4_out_d(lS:0)

t> pS_out_d(15:0)

> p6_OUt(lS:0)

c_done_snk

.1 1 1»

• u..|*-|a:-

320

r f. T. T. r.

. - • • ! • -

- . ".: r

i v r.

' . . 1 . ! '

• i
Ready

aI E
yiew

rt|z

340

- . - H,'K

1

' r. •;. "

. V L. L

f- '. i. ".

r. i.-.'

I

Options

-I«] K l

360

'H, 'H\ 'H

;. !*. 1 V

V. l .V

-.1 'I f

'_. L. L

. r, T. Ï t.

V. L.I'.

i

sattindow Help

^J«!»!*! j j l it^l sl»l
-so i

380 400 420

V. 'H -,

* ' , - . ' •

L.'»'

'H'. H, 'K. '-J'. 'H1. -H H' -H' *

t
••.<•:> v ;. i.v. y . /

i. =-• H tr H. H 11 \j

i V ' J 1 ' l . . r | - , y L.i

L.U.J-LA L| y T T

1
- , , r , , y ; r v r

i /
/

440

•r

1'. . T

L. v '•;

'. r r. - .

L . 'L' ̂  .

. t.r. •.

j 1

1 1

460

"'. t . T. "'. T. T.

'.'1. I1 1 ï. f

. I >•. >•'.>'.

.. , ., ,. , f ;_.

L.'V, L'. L'.t

•M. ' !

480 500

r. •:,'!• V, • i / l . T. r_ r

. H.'K. H K H K

.• . . • " . . i .v

-r -f 'H' H i-r '•

]_L.V.t
" r. Î y

'IM1, i.i î . ' • / '

/

/

/

aae

90

520 540 560 580

H". H1. 'H1. H I-?1, H. "H', h1. "K, H'. >T. H *

/

H.7 . . i . v r i . c r. :. • •' ! . " .' r. , '

L' l'.'J X.:.V. H H' r,.-K H.-H "

I.'.-.j.i. L if -H.K. 'H. M.1--. 1- V fi' r/

• ". ' . . ' • ! . ï . ' ' T 1.' •'•• '."' U1 '-'. t '•

'. i - 'r . . . . ' - - i v . ••.••• [.'. . . i . - i . f . i ,.•

1
1»

f

-t

Time-3100 VVK-10 IWfc-10 Sel-0

P6 fires r
PI fires

PI fires again

Figure 5.31. Throughput of a Full Initialized Pipeline with slow FUs

The simulation confirmed the theoretical approach: In Figure 5.31 the cycle delay
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is equal to 90 ns, which is equivalent to two times the switch delay plus the delay of
the slowest function unit.

For the last simulation we inserted more bubbles in the full initialized pipeline - this
leads to a mixed initialized pipeline i.e. one part of the pipeline is empty and the other
part full initialized. Regardless of the activities of the SRC/SNK these bubbles can
move inside the circuit. However they cannot dissolve due to the structural regulation
caused by the feedback path. This leads to an apparently unpredictable, but periodical
behavior of the circuit, as illustrated in Figure 5.32
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Figure 5.32. Non-Linear Pipeline with Bubbles

By means of sophisticated analysis approach the behavior can, of course, be modelled.
However, this topic goes beyond the scope of this thesis and therefore will not be further
considered.

5.1.11 A Short View to Other Design Styles

As illustrated feedback/forward paths may cause a deadlock due to the potentially
encoding mismatch between the "regular" signals and the feedback/forwarded ones.
Such a mismatch can not happen if no signal encoding is used. Hence, all asynchronous
design styles, which use a single rail encoding are not directly affected by this problem
- they move this issue into the time domain, by considering the feedback/forward paths
during calculation of the clock period or the matching delays respectively.
As NCL uses a dual rail encoding, this design technique is subject to the same risk
of deadlocks in conjunction with feedback and forward paths as CAL. However there
exists no counterpart to CAL's phase inverter in NCL. Thus if "phase inverters" are
required in NCL circuits complete registers have to be inserted in feeback/forward
paths. This penalizes the performance and the area efficiency in comparison to the
CAL solution.
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5.2 Selecting Nodes

Until now we have considered only nodes that consume all their inputs and accord-
ingly set all their outputs. Nevertheless, we have already encountered a circuit where
this assumption is violated, namely Figure 5.3. Let us consider this circuit in more
detail again (see Figure 5.33). In the previous section we assumed that the virtual
memory nodes {MemJWR and MemJiD) operate independently one from the other.
However, a more realistic assumption would be that L 1 issues either a write or a read
command and therefore only one node, MemJNR or MemJiD, will be enabled.

non-transparent nodes

transparent nodes

Figure 5.33. Virtual Memory Nodes

Hence L 1 will deliver data to MemJWR or (through MemJiD) to L 2 - as a con-
sequence the alternating coded sequence of data waves at the output of L 1 will be
distributed in an arbitrary manner between Mem^ WR and L 2 (assuming an arbitrary
distribution of write and read commands). This in turn causes the subset of data
waves which are sent to L 2, for instance to show a random distribution with respect
to their phase encoding. To operate properly L 2 requires a strict alternating sequence
of phases on its input - if we subsequently try to issue two data waves with the same
phase encoding, then L 2 will take over the first one, but not the second one. L 2 will
not recognize the second data wave as the next data wave because its phase encoding
does not differ from the previous one. As a consequence, no acknowledgement will
be sent back to L 1, which in turn causes that L 1 cannot fire again and therefore
a deadlock occurs. This problem takes place, because we do not want to read and
write simultaneously. However, the mentioned deadlock has not to be confused with
the deadlock that originated from feedback and forward paths - the origin of the prob-
lem is a completely different one: In contrast to the previous section, where we got
inconsistent input vectors caused by signals which skip a pipe stage, in this section we
will consider nodes, which require only a subset of inputs to perform their operation
and/or set only a subset of their output signals accordingly. We call such nodes select-
ing nodes. The critical task in conjunction with these nodes is to ensure that the data
paths, which are connected to the disregarded input signals and/or to the unselected
outputs signals do not loose the synchronicity with the remaining circuit.
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5.2.1 The Root of the Problem

The root of the complication with selecting nodes is the fluctuation of validity in
CAL. To the essence of the meaning one has to return to the basics of CAL focusing
our attention to the dynamic characteristic of signals with respect to their validity.
In Figure 5.34(i) a node L 1 with one input signal is illustrated4. We can not judge
validity of the signal without considering the state of the destination node. The state
of a node, however, varies over time - it changes when data is taken over. Hence, a
signal, which carries the same encoded information is considered as valid at one time
and as invalid in the next instant (see Figure 5.34(ii) and (iii)).

(i)

I
valid

(ii)

Figure 5.34. Fluctuation of Validity

In a continuous data path the fluctuation of validity is intended and used for data
flow control purpose. However, there may be some nodes in a circuit that propagate
data in a selective manner, such as a de-multiplexer, for instance. As already outlined
such nodes cause all (alternative) downstream paths to change phases in a irregular
fashion. Due to the fluctuation of validity the same output of the selecting node may
be considered as valid for one node and as invalid for another one. This corrupts the
control flow mechanism inherently in the CAL encoding style and inhibits the correct
operation of the circuit. In the following we will differentiate between several types of
nodes that may cause such irregularities in the control flow.

5.2.2 Selecting Node

Nodes that consume all input signals to perform their operation and always set all
of their output signals, are easy to handle with respect to data flow control: (i) the
node waits until all input signals become consistent and (ii) a new data wave is only
generated when all destination nodes has consumed their input data (see Section 3).
Now we will consider, what follows when only a subset of the input signals is required
or when the generated output data is intended to be consumed only by a subset of all
destination nodes5.

4 Instead of an input vector we will consider only one single signal for now - in this way consistency
is always guaranteed

5Even mixed forms are possible, namely nodes which require only a subset of their inputs and set
only a subset of their outputs. However these nodes can be represented by two logical nodes, where
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(i) (ii)

Figure 5.35. (i) Split Data Path (ii) Combined Data Path

In Figure 5.35 two circuits axe shown, on the left we can view a circuit which splits
a data path: The output data of L 2 will be transmitted either to L a or to L b. This
is indicated by the switch circuit inside the subsequent node to L 1 - hence we call
this node a selecting split node. On the right side of Figure 5.35 we see a circuit which
combines two data paths to one: L 1 receives its input data either from L a or form
L b - this is indicated by the switch symbol inside the node which combines the data
paths. In the following we will analyze the combination and the splitting of data paths
in detail.

5.23 Combination of Data Paths

Data paths can be combined in two different ways: Either the selecting node puts the
data from L a and L b to its output in an alternating sequence or both data packages
are considered to belong to the same context, but only one of them will be passed
through.

As we see in Figure 5.36(i) all data packages are passed through in the first case - the
selecting node operates similar to a zipper and "serializes" the data of all input nodes.
Therefore throughput of L 1 is twice the size of L a or L b6. We call this operation
mode merge mode. In contrast Figure 5.36(ii) shows a circuit, where the same number
of data packages passes through all nodes. This selecting node discards data packages
of non-selected the inputs and L 1 will only acquire the selected data package. This
corresponds to the functionality of a multiplexer. Thus we refer to this operation the
multiplex mode, or MUX mode

Merge mode As we have already illustrated in Figure 5.36(i) the merge mode com-
bines the data paths to a single one and no data gets lost. The first consequence is
that the merge mode requires individual handshake signals for each input data stream.

the first one evaluates the selected input vectors and produces a "virtual output" and the second node
distributes this output to the intended destination nodes. Hence we will only focus our interest on
these two basic selecting nodes only.

6 Assuming a balanced selection between the data paths
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A n - A 2

B0A0-

A n - A 2

(i) ! (ü)

Figure 5.36. (i) Merge Mode (ii) MUX Mode

Figure 5.37 shows the principle of the merge mode again. Now we may recognize the
problem of this operation mode: To operate properly both data paths must each carry
data coded with alternating phases. Combining these data paths to one common data
path, the alternating data encoding is violated in the resulting data path7.

merged data path

same phase encoding

Figure 5.37. Merge Operation

We implemented the example circuit (illustrated in Figure 5.38) to explore in greater
detail the behavior of the merge circuit.

The circuit was configured in such a way that data path a issues even numbers
and data path b issues odd numbers only. To get a more clear picture, we set up
the testbench so that the first five data packages are consumed from data path a and
afterwards it switches to data path b. In Figure 5.39 we can see the result of the
simulation. When data is consumed from data path a, then data on input b does not
change. Contrariwise, when input b is selected, then data path a keeps a constant
signal value. Thus the circuit operates correctly. In the next simulation we switched
between the data paths one step earlier. As illustrated in Figure 5.40 a deadlock takes
place in this case.

7The same is true when we have an arbitrary switch sequence, the crucial point is that no data
package will be discarded
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Figure 5.38. Merge Circuit
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Figure 5.39. Merge Operation without Deadlock

What is the difference between these simulations? If we take a closer look at the
first simulation we may recognize that the data, which lies on the input b of the merge
element is encoded in the phase that is required next after the switch event. Hence the
select signal sel and data.merged-b are consistent - the selecting merge element can
fire and the data package of data path b can be consumed.
As aforementioned, in the second simulation we switched one data package earlier -
as a consequence the encoded input data lying on input b does not correspond to the
requested phase encoding: This leads to an inconsistent input vector and as a result
the merge node cannot fire. How can we still implement a generic merge circuit?
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The alternation of data encoding is a basic principle of CAL - therefore it must be
guaranteed for all data paths. Thus the only solution is to insert a synchronizer circuit
between those data paths, or, to be more exact, one synchronizer for each incoming
data path. Figure 5.41 depicts the block diagram of a synchronizer circuit and shows
where its has to be placed in the merge circuit.
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Figure 5.41. (i) Merge Structure with Synchronizer Circuit (ii)Synchronizer Circuit

The synchronizer circuit operates in two modes:
(i) If the data package on its output has already been consumed then it must be ensured
that this data will not be used again: Thus the synchronizer switches its output in such
a way that it is always in an invalid state.
(ii) If the input package has not been consumed yet, then the synchronizer ensures that
its output carries everytime valid encoded data, in order to ensure that no deadlock
occurs, when the merge element switches to its output. Obviously the synchronizer
must switch between these operation modes when its output data was consumed or
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when it receives a new (valid) input data.
How can the synchronizer determine the phase encoding, that leads to a valid or to
an invalid data encoding? For this purpose the cAonejmerge signal (= capture done
signal of the destination node) can be used: The destination node of the -merge element
signalizes the encoding of the last consumed data - thus the synchronizer switches its
output to this phase, if it wants to build invalid data and in the other phase otherwise.

We repeated the previous simulations again, and the results in Figure 5.42 and 5.43
demonstrate that now the merge circuit operates always correctly.
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Figure 5.42. Merge Operation with Synchronizer Circuit (I)

We recognize that in both simulations the synchronizer toggles dataJbjmerge in such
a way that the input vector of the merge element is always consistent. Furthermore
we highlighted in Figure 5.42 that the synchronizer on input a toggles its output data
to the invalid phase, due to the fact that its data path has not been selected yet, but
its output data has already been consumed. However, the synchronizer separates the
data and phase information - this is necessary to be able to generate the data with the
requested phase encoding at the outside of the circuit. To prevent that the old data
is re-encoded with the new phase encoding information, it must be guaranteed that
the pure data information arrives earlier at the Std2CAL component than the phase
information. This involves a timing assumption and therefore a synchronizer circuit
cannot be delay insensitive.
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Figure 5.43. Merge Operation with Synchronizer Circuit (II)

Another (hidden) timing assumption has already been made even on the gate level:
The time the synchronizer requires to switch its output from one coding style to the
other one must be shorter than the delays resulting from the time required by the
selecting node to switch to the other data path plus the time to consume the next data
wave plus the time required to switch back to the original data path. This constraint
seems to be easy to maintain - however, from a theoretical point of view the
resulting circuit is no longer delay insensitive nor speed-independent.

MUX mode: Similar to the merge mode in the MUX operation mode only one input
will be selected and passed onto the output, but data on all unselected inputs will be
discarded instead. As a result the same number of data packages passes through all
nodes. This simplifies the data flow control: A selecting MUX node operates similarly
to a conventional node, which consumes all its inputs: This allows us to connect di-
rectly - this means without any additional control circuits - all acknowledged inputs
of the source nodes with the request signal of the destination node.
Now the questions arises: Do we have to wait until all input vectors are valid, or can we
produce the new output immediately after the selected inputs (and the related control
signals) are getting consistent and valid? Prom a performance point of view it would be
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reasonable to switch immediately. This decision is also motivated by one of the basic
principles of asynchronous circuits, namely to start to working as soon as possible.
To analyze the impact of this decision we will consider the simple circuit example in Fig-
ure 5.44. This circuit is composed of a multiplexer (=selecting node) and two latches.
As a result of the considerations above, we assume that the multiplexer switches when
the control signal and the selected input vector are valid, we call such a multiplexer to
be "eager".
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data out
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>elect

Figure 5.44. Circuit with Multiplexer

Due to the fact that we aim of delay insensitive circuits, we insert an arbitrary
delay Aa into data path a, while data path b and the select signal are not delayed. To
investigate how the circuit operates we assume that data path b is selected the first
two times, while data path a will be selected in the third operation step. In the first
step Latch 1 issues data coded in </?0 for instance. Due to the fact that the signals
on select and data path b arrive immediately at the multiplexer, the latter is enabled
to switch and Latch 2 consumes the data. This in turn enables Latch 1 to fire again.
In the next step (pi will be issued and data path b will be selected again. After Latch
2 has consumed this data wave, Latch 1 will issue the third data wave coded in ipO.
As mentioned above in this third step data path a will be selected: Recall that on
data path b data waves have been issued in the previous two steps as well (coded in tpO
and (pi, respectively), but these have not been selected. If Aa is larger than the time
which was required for the previous two operations, then the first data wave (which
was coded in ipO, too) has not reached the output of the delay element yet and hence
not actually been discarded although it was meant to be. When this data wave reaches
the output it composes a consistent input vector with the select signal of the third
data wave and the MUX will switch leading to malfunction of the circuit. Aa can be
expressed more formally as follows:

Aa < 2 * ( max AProcess + AMUX) + 2 * ASW(1) + 2* ASW(2) (5.7)

ASW(i) is the switch delay of Latch 1 and Latch 2 respectively, while AProcess is
maximum of the delays of the data path a and AMUX is the time the multiplexer
requires to switch.

The validity of this finding can be confirmed also by simulations: We implemented
the circuit in Figure 5.44 and issued on both input of the multiplexer a counter value,
which is incremented by the testbench. As a result we expect that the output would
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Figure 5.45. "Eager" Multiplexer Circuit with Balanced Input Delays

show a continuously incremented value. For the first simulation we set Aa and ASW(i)
to 10 ns. A.MUX and ̂ Processing are set to zero. The simulation in Figure 5.45
shows that the circuit operates correctly.
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Figure 5.46. "Eager" Multiplexer Circuit with Unbalanced Input Delays

For the next simulation we incremented the delay Aa to 45 ns. We recognize in
Figure 5.46 that the multiplexer takes over an old data package as follows from the
above explanation.
To avoid this problem MUX has to wait until all inputs (even the non required ones)
are valid and consistent before it fires.

Hence for the simulation in Figure 5.47 we used a non-eager multiplexer. We
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Figure 5.47. "Non-eager" Multiplexer

recognize that the multiplexer operates correctly - the price for this is performance
loss. The simulations showed that the throughput of the circuit decreases due to the
fact that the "non-eager" multiplexer waits always until the data, conveyed by slowest
data path, becomes valid.

This circumstance can also be portrayed on a higher abstraction level: We have to
take a look at the context relation between the data packages on all inputs of the select-
ing MUX node. The fact that all inputs are possible candidates to be passed through
to the output implies that all data packages must appertain to the same context - each
of them could be selected and propagated to the output of the multiplexer representing
the next context for the destination node (see Figure 5.48). This in turn implies that
some kind of synchronization between the data paths is required to guarantee that the
order of contexts is kept. Due to the fact that we will consider a generic circuit, we can
not expect that this synchronization is ensured anywhere else in the circuit - and as
shown in the previous example a malfunction may occur, even if such a synchroniza-
tion exists (Latch 1 synchronizes the input data in the circuit example in Figure 5.44).
Therefore the selecting MUX node has to wait until all inputs become valid before
it can fire. Otherwise we have to make timing assumptions as shown in the example
depicted by Figure 5.44, which results in speed-independent or timed circuits.

5.2.4 Split Data Path

A split data path is characterized by the fact that a source node has more than one
destination node. The distribution of data in such a circuit structure can occur in two
ways: (i) Data is transmitted to all nodes in a broadcasted manner - we will call this
mode the fork mode, (ii) Data is only sent to the selected destination nodes - we will
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Figure 5.48. Context of Input Data

call this the DEMUX mode
The fork operation mode can be easily handled, since all nodes are recipients of all
data waves, the source node has to wait until all nodes acknowledge the data package
before it replaces the current data by the next one.

The DEMUX mode cannot be handled in such a straightforward manner. As de-
picted in Figure 5.49 the input data is divided between data path a and data path b.

D,

data path a

data path b

Figure 5.49. DEMUX Operation Mode

In Figure 5.49 an alternating selection between the output data paths is assumed.
Hence data path a receives all packages with an even index and data path b gets all
packages with an odd index. The CAL approach, however, requires adjacent data
packages of the input stream Do, D\, . . . Dn to be encoded with alternating phases.
As a consequence of the switch activity of the selecting DEMUX node, data path a
as well as data path b will receive data coded within the same phase only. It is easy
to understand that even an arbitrary switch sequence will yield to a similar situation.
There are two possibilities to solve this problem. Either we use a synchronizer circuit
as explained in the previous section or we insert additional dummy data in both data
paths to re-establish the phase alternation sequence.
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Synchronizer circuits: As described in the previous section, can be used without
modification for synchronizing splitting data paths as well. In contrast, the synchro-
nizer has to be located at the output side of the selecting node (see Figure 5.50). The
advantage of the synchronizer circuit is that both data paths are decoupled one from
the other. The price which has to be paid is that the resulting circuit is no longer
delay-insensitive nor speed-independent.

Figure 5.50. DEMUX Structure with Synchronizer Circuit

However, the synchronizer solution is not generic. It works fine if both data paths are
independent from each other. If the data paths have a common node8 in the remaining
circuit, as illustrated in Figure 5.51, then a deadlock may occur:

data path "a"
common node

data path "b"

Figure 5.51. Interlinked Data Paths

If we assume an arbitrary switch sequence for the DEMUX node, then we must also
permit the possibility that a data path will be selected more often in series: Let us
suppose that this will happen for data path a in Figure 5.51. As a consequence the
circuit that belongs to data path a will become full, while data path b will become empty.
Consequently node L ab will be unable to fire and consume data on its inputs. This
causes an accumulation in data path a. If this holdup reaches the selecting DEMUX
node, then data path b can never receive new data and hence L ab will never be able
to fire. As a result the holdup cannot be resolved and an deadlock occurs. Thus the
synchronizer solution is suitable if we only want to connect independent circuits.

Dummy data: This approach is able to handle not only independent, but also tightly
coupled data paths. The difference to the fork mode is that the destination nodes do

8We presume that the common node consumes all its input, in contrast to a MUX selecting node
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not get the same data - the selected node gets the "real" data, while all other ones
only receive dummy data9. The intention of dummy data is to keep the non-selected
nodes up to date with respect to the current phase of the source node. In some sense
the dummy data packages provide synchronization information (=phase) without any
actual data. Figure 5.52 depicts how the dummy data is inserted into the data stream.
Obviously the dummy data has to be inserted by the selecting node.

data path a

data path b

Figure 5.52. DEMUX Circuit with Dummy Data

Basically, there are two ways to generate dummy data: Either dummy data is marked
explicitly by additional signals or so-called NOP (No OPeration) commands are used.
The latter is only possible if the destination node supports such a command. Fur-
thermore it has to be ensured that the node that gets the NOP command generates
an acknowledgement. In the case of the MemJWR node, mentioned at beginning of
this chapter a NOP command can be easily generated by disabling the write command
line. Due to the fact that in this circuit implementation all nodes consume some kind
of data - even dummy data will be consumed - the source node has to wait until all
nodes signalize that they have already used up their input data. This leads to a waste
of performance, but the dummy approach conserves the delay insensitive character of
the circuit. Furthermore, this approach can be directly applied to selecting DEMUX
circuits with more than two outputs.

5.2.5 Tradeoff Between Performance and Delay-Insensitivity

We have shown that using selecting nodes in conjunction with the CAL coding style,
delay insensitive circuits can be built only when fork/DEMUX nodes wait until all
destination nodes have consumed its current output data and when MUX nodes waits
until all inputs have issued new data before they performed their operation. (Merge
node are an exception - they always yield to self-timed circuits). Waiting for an
unselected data to arrive leads to a waste of performance, which is avoidable, if we

9Dummy data has not to be confused with the NULL-wave in NCL: dummy data is inserted when
it is needed - the NULL wave is an integral part of the NCL coding style. Dummy data can rather
be compared with default values of registers, which are set when no write access takes place
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move away from the dogma of delay insensitivity. Let us recall the circuit example
of Figure 5.44: Having multiplexers in such small circuits, it is simple to estimate
the timing of all data paths and hence allow the MUX to switch before all inputs are
valid without the risk of a malfunctions. In fact in the literature functions, which
perform their operation before all input are valid, are already considered and referred
to as "eager functions" [85]. However the decision in favor of performance or delay
insensitivity may depend on several other aspects and has to be performed individually
for each circuit.

5.2.6 Short View to Other Design Styles

The selecting node problem does not affect all those design techniques which use
single rail encoding style: The validity of signals has to be provided explicitly by these
design techniques. Therefore the validity of data does not depend on the current state
of nodes as it is the case in CAL. In this way it is easy to define a generic invalid state
and hence avoid all the problems, which arises in conjunction with selecting nodes.
Similar to CAL NCL uses a dual rail encoding. Hence in this design technique the
validity of data fluctuates as it does in CAL. However there is a crucial difference:
NCL has a NULL wave which explicitly marks an intermediate state between two data
packages. This intermediate state can be used for synchronization purposes. Hence an
NCL circuit does not require synchronizer circuits to deal with the multi-source and
multi-destination problem. The "eager" function problems, however still exists.
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5.3 Summary

In this chapter we illustrated the impact of non-linear structures to the CAL design
style. Two types of non-linearity were distinguished: forward/feedback paths and se-
lecting nodes.
Due to the coding scheme of CAL, forward and feedback paths may cause a phase mis-
match at the input of the destination component of the forward/feedback paths. This
problem can be solved by selective placement of phase inverters. We show that to find
out the position of the phase inverter we have to consider the initialization of the cir-
cuit as well as its dynamic behavior. Furthermore we discovered that forward/feedback
paths yield to a structural regulation of the data flow and as a consequence the per-
formance of the circuit depends heavily on its initialization.
The second type of non linearity is constituted by selecting nodes - these are nodes
that requires only a subset of their input/output to perform their operation. We find
out that there exist two solutions to deal with selecting nodes: One solution is to use
so-called "non-eager" selecting nodes. These nodes have to wait until all input vectors
(even the non-required ones) are valid or all output vectors are consumed respectively,
before the new output can be generated. This penalizes the performance of the circuit,
but yields to a delay-insensitive circuit. The second solution is to use synchronizer cir-
cuits and allow selecting nodes to become active immediately after the required input
signals only become valid or when the selected output channel only was consumed. The
synchronizer circuits guarantee that none of the involved data path loose its (phase-)
synchronization. However, this implies timing assumptions which in turn yield to self
timed circuits. The system designer has to decide whether the gain of performance
justifies the loss of delay-insensitivity.



Chapter 6

ASPEAR - Asynchronous SPEAR

In this section we will show how we built the asynchronous processor core ASPEAR
starting from the synchronous reference processor SPEAR described in Section 4. Using
the design flow described in Section 3, the transformation from conventional designs
to CAL circuits can be performed by (i) renaming all signals from stdJogic to caLlogic
and (ii) replacing processes, which build registers with CALJatch instances. Obviously
the handshake signals of the CAL latches have to be connected correctly.
However, the SPEAR processor core required a couple of additional modifications to
permit us to apply the CAL design style. As illustrated in Chapter 5 we have to pay
special attention to non linear structures.

6.1 Synchronous Reference Processor

6.1.1 Structural Adaptation of SPEAR

One of the key features of SPEAR is its scalability - there exist many different
variants of the processor core. As we will validate the concepts presented in this
work we have chosen the basic version of the processor core, without any additional
extensions apart from the Processor Control Unit. However, a few modifications on
the processor core itself had to be made, in order to fit the architecture for the CAL
design approach:

Writeback bus: It is modelled in the original SPEAR processor as a tri-state
bus: This allows us to connect an arbitrary number of additional Extension
Modules without any further modification of the processor core. As depicted in
Section 5.2 tri-state buses cause problems in conjunction with CAL - we recog-
nized that the high impedance state on the bus leads to undefined and/or invalid
input vectors for destination nodes. As a consequence the data flow mechanism
is corrupted and a deadlock occurs. We have two possibilities to deal with the
Writeback bus: either we replace the bus by a multiplexer or we ensure that the
bus is always driven.

The latter requires a dummy module, which drives the bus when all other modules
switch their outputs to high impedance. This leads to a costly "bus-keeper"

101
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Writeback Bus

module in terms of hardware since not only the entire hardware configuration
must be known by the dummy module, but also the associated control signals
have to be evaluated. The multiplexer solution has the disadvantage that a
separate input port for each extension module must be provided. This procedure
restricts the scalability of SPEAR. Furthermore a central control unit is required
to generate the control signals which select the active input.
Note, simple pull-up resistors cannot be used, because the Writeback Bus must
carry valid "dummy" data even in the idle state, which will be illustrated later
on in this chapter. We chose the multiplexer solution for our purpose - the
first prototype of ASPEAR is intended to validate the concepts elaborated in the
previous chapter - hence scalability is not a crucial factor and for a small number
of extension modules the multiplexer solution is less complex than the bus keeper
module solution.

Incrementer: In ASPEAR, the program counter cannot generate the next ad-
dress by incrementing the output of the PC and feeding it back (using a phase
inverter) to its input. Such a feedback constitutes a problem for CAL latches -
as illustrated in Figure 6.2 a "direct" feedback causes two competing data paths
from the output of the latch to its input, which are the incremented output of
the register and the output signal of the $ — Detector which freezes the latches.

If Al is less A2 then the incremented output will be consumed again before
the latch is frozen. Thus a direct feedback affects the delay-insensitivity of the
circuit1 To avoid this problem we exploit the redundancy of a pipelined processor
core and use the program counter value stored in Pipe Register 1 as input for the
incrementer.

Instruction ROM: To simplify the design we waived the program download
module and replaced the Instruction RAM and Boot-ROM by a simple ROM.

1 There are alternative solutions for this problem. These will be addressed in [117]
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Figure 6.2. Incrementer Module

Figure 6.3 illustrates the processor configuration which served as the starting point
for ASPEAR processor core.

Write Back Bus

Figure 6.3. Reference Processor Core

6.1.2 Memory Implementation

Memories are considered to be asynchronous by their nature. However, in this con-
text the expression "asynchronous" refers to memories that do not require a clock
signal - it does not mean that validity and consistency of data are directly visible at
the output of these memories.
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Figure 6.4 depicts a read access. We assume that the read address changes exactly at

address

Ctrl

' data out Ctrl , KTWaWR

Setup' '•Reaction1 JiJitter

ReadAccess

Figure 6.4. Read Access Timing

the same time - this does not imply that the related output data will also change in
an ideal manner. One may view that quite the opposite is the case: As illustrated in
Figure 6.4 the access time tneadAcœss is composed of three parts: (i) The setup time
tsetup which defines how long the read address has to be stable before a read command
can be applied, (ii) The reaction time traction which defines the period needed by the
memory until the first output changes and (iii) the jitter time tjitter which expresses
how long it takes until all remaining outputs are in the (steady) final state. These pa-
rameters, even if defined in the data sheets, are completely useless for delay-insensitive
implementations of memories. A lot of research activities are ongoing in this field and
some solutions were proposed: [100] proposes a current sensing approach to determine
whether a memory operation is completed or not. In [101] a static SRAM design is pre-
sented: For the read access it exploits the fact that each SRAM cell is connected to two
bit lines, which carry a complementary value during the read access and the same state
otherwise. Thus, to determine the termination of read operations a dual-rail voltage
sensing on these bit lines is used To signalize the termination of the write access, delay
elements are utilized: Depending on the position of the memory, where the write oper-
ation takes place, different (matched) delays are used. In this way the average (write-)
performance of the memory could be improved. In [50] a full-customized register bank
is presented which is able to signalize the termination of read/write operations without
any delay elements.

Due to the fact, that our target device is an FPGA we have no possibilities to change
the embedded memory blocks. Therefore we have to implement a work around as
illustrated in Figure 6.5.

Since we do not know in which phase data will be requested, we cannot store the CAL
encoded signals directly in the memory. This forces us to separate the data- and the
phase- information and to store data only - as a result such a memory implementation
can neither be delay insensitive nor speed-independent. The conversion of the CAL
input signals to stdJogic is performed by the CAL2STD component. Note, that as
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illustrated in Section 3 this transformation is very simple due to the fact that line a of
CAL encoded signals always carries the data information.
The output of the memory has to be re-transformed to a CAL Jogic type. As the read
access is transparent, input and output of the CAL memory have to carry the same
phase. Thus the input phase is scanned by ip-Detector and used to build the CAL coded
output signals. STD2CAL must receive the data read from the conventional memory
before the (new) phase information is provided by the (p — Detector. Otherwise the
old data would be encoded with the new phase information - subsequent components
would consider this signal as the new data wave and consume it. To ensure that this
does not occur AT has to be adapted so that the following equation is fulfilled:

3 3

A T + t^-det + 2 J twireDelayii) > tcALISTD + ^MemAcc + tSTDICAL + z2 twireMem(i) (6.1)
i=0 t = 0

In contrast to the read access where, the (CAL-)read control signal can be directly
connected to the conventional memory the WrEna signal requires a dedicated treat-
ment: We have to ensure that data and address are valid before the write signal becomes
active. This can be easily achieved by using the output of the yj-Detector - it changes
its state only when all input signals are valid and consistent. The WR^CTRL unit
can use this signal in conjunction with the CAL write/read control signal to generate
the WrEna signal for the conventional asynchronous memory. We still have to assume
that the delay of the input data through the CAL2STD unit is less than the delay of
the WrENA generated by the WR-CTRL unit. Thus the write access cannot be delay
insensitive.

Figure 6.6 illustrates the final implementation of our CAL-memories. We are aware
that this is only a less-than-ideal solution - in this work, however, our focus was to
verify the concepts presented in Section 5 and hence we consider the CAL memory
elements as basic blocks such as the other basic gates presented in Chapter 3.
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6.2 Feedback and Forward Paths

Even the basic SPEAR version exhibits a lot of forward and feedback paths. The fact
that we have only a short pipeline further complicates the placement of the inverter,
because the entire non-linearity is concentrated in this small area. To get a first
simplification, we will build a graphical representation of the processor core, where
signals that have the same source and destination nodes are combined to a single edge.

6.2.1 Graphical Representation

To construct the graphical representation we have to identify what nodes are trans-
parent and which are non-transparent: ALU, decoder and incrementer are combina-
tional nodes and hence transparent. The pipe registers and the program counter regu-
late the data flow, thus they are non-transparent. All other nodes are memory compo-
nents and therefore they have to be split into virtual transparent and non-transparent
parts. These components are hatched in Figure 6.7.

Figure 6.7. Direct Mapping from Components to Nodes

In the representation of Figure 6.8 we have split the memory components into trans-
parent and non-transparent nodes and re-arranged the graph to evidence the logical
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structure of the processor core. Note that the virtual nodes of the register file as well
as those of the vector table are located in different pipe stages.

(pO

phase boundaries

Figure 6.8. Graphical Representation of ASPEAR

We recognize that RF-wr, VT-wr, DMem-wr and ProcCtrLwr act as data sinks for
the processor. In a processor core the instruction memory can be considered as data
source. However in the graphical representation of the processor core a dedicated
source node can not by identified: The instruction memory is triggered by the program
counter, which receives is next value from pipe register 1. The latter in turn obtains its
input data from the memory and the program counter - this constitutes a self triggered
loop (i.e. a loop that needs no external stimulation), which provides the input data of
the processor core. As we can view in Figure 6.8 this loop is not the only non-linear
structure - the processor core contains a series of other feedback and forward paths.
Therefore we will identify the phase inverters required to accommodate these non-linear
structures in the next step.

6.2.2 Phase Inverter Placement

As a consequence of the throughput considerations in Section 5.1.10 we decided to
initialize the pipeline of the ASPEAR as full.

To identify the position of the phase inverters we used the algorithm described in
Section 5.1.9. This program requires as input a textual description of the graph, which
has the following format:

Sourcenode_type Edge.weight Destinâtionnode.type

The type of a node can be either transparent(T) or non-transparent(N), the weight of
an edge defines the number of signals which are associated to it.
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Having the a graphical representation such as in Figure 6.8 it is quite simple to derive
the required textual description. We applied the algorithm several times by switching
the starting node: The best constellation required only 92 inverters, the worst one 242
instead.

6.23 Impact of Structural Regulation

One of the fundamentals of asynchronous logic is, that each destination node has to
acknowledge consumed data to the related source node. At the ASPEAR example we
can see how the structural regulation of the data flow breaks down this rule: Let us
consider PC, PI, and P2 (see Figure 6.8). Both nodes, PC and PI, obtain data from
P2 over the Writeback Bus path. While an acknowledge from PC to P2 is mandatory,
the data consumed by PI needs not to be acknowledged explicitly: PC can fire only if
PI has consumed its output. Therefore the acknowledgement from PC to P2 includes
the information that PI has already consumed the data on the feedback path.

6.2.4 Forward Mechanism

The SPEAR core contains several forward mechanisms - in this section we will
consider one of them in detail: the condition-flag forwarding.
The instruction set of the processor core provides conditional instructions. These are
instructions where their execution depends on the fact if the condition flag of the
Processor Status Register is set or not. The Processor Status Register is situated in the
Processor control unit. The condition flag is set by the ALU as a result of a dedicated
arithmetic operation which defines the condition. A typical instruction sequence using
conditional instructions looks as follows:

CMPI r l , 2; /* Compare register 1 with two */
JMP_CT addr; /* Condition t rue : jump to addr else do nothing */

The compare immediate instruction (CMPI rl,2) causes that the ALU subtracts the
constant "2" from rl - if the result is zero then the condition flag will be set in the
processor control register as illustrated in Figure 6.9.

The Pipe Register 2 uses this flag to determine if a conditional instruction should
be executed or replaced by a NOP. In the synchronous processor the condition flag
generated by the ALU is stored only with the next active clock edge in the Proces-
sor Status Register. As a consequence the condition flag is available to pipe register 2
only one clock cycle later. Thus if a conditional instruction follows a compare instruc-
tion the old condition flag is going to be consumed by pipe register 2. To ensure a
correct operation we have to forward the condition flag output of the ALU to the pipe
register 2: Depending on the preceding instruction (compare instruction or not) the
condition flag generated by the ALU or by Processor Status Register has to be used
for evaluation purpose.
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forwarded cond. flag

Figure 6.9. Forwarding of the Condition Flag

The asynchronous counterpart of SPEAR does not need this forwarding mechanism:
The Processor Control Unit is a destination node of Pipe Register 2. Due to the control
flow mechanism, the source node can fire again only if the destination node has con-
sumed its output. In this way the result of the compare instruction (=condition flag)
must be consumed first by the Processor Control Unit and hence the correct condition
flag is available before Pipe Register 2 can fire again.

6.3 Selecting Nodes

Due to the fact that a micro-controller can execute different instructions (the
(A)SPEAR instruction set comprises 80 instruction) on the same hardware platform,
one can imagine that many selecting nodes are required inside such a circuit. In this
section we will focus our attention on the execution stage of the processor core, where
we can identify a combination of data paths as well as a split data path.

6.3.1 MUX Structure

At the beginning of this section we motivated the replacement of the tri-state bus
(= Writeback Bus) by a multiplexer. This is a typical example of a MUX structure
which may cause a malfunction if an "eager"multiplexer is used: One input of the
multiplexer is generated by ProcCtrLrd. Remember that the extension module interface
comprises eight registers - having only such a small number of registers the address
decoding is done very quickly. Another input is generated by the ALU, which performs
arithmetic operations that are much slower than a read access of a small register file.
Therefore this multiplexer structure is equivalent to the example in Figure 5.44 in
Section 5.2.
Obviously, we can assume that the execution of an arithmetic operation is faster than
the propagation of two data waves through the execute stage of the processor core.
However, as we will see in the next section an FPGA implementation of a CAL circuit
increases the size of the circuit by an order of magnitude: In such a huge circuit the
interconnect delay will become dominant (see [35]). Hence it is reasonable to renounce
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of "eager"multiplexers at the cost of lower average performance, in order to get a
delay-insensitive circuit.

6.3.2 DEMUX Structure

The entire processor core can be considered as a single big de-multiplexer: We rec-
ognize that the output of P2 is consumed by all non-transparent nodes - however
this is not required for all instructions. Quite on the contrary, there is no instruction
that requires the data to be issued to all non-transparent nodes. As a consequence
these nodes are address in a selective manner. In Section 5.2 we have shown that
such a structure can be handled either by using a synchronizer circuit or by issuing
dummy data. For tightly coupled data paths such as those found in a processor core,
the dummy data approach is the favorable solution: Apart from the CAL data flow
control mechanism, which can be compared with the clock signal in synchronous de-
signs, the processor core has an "execution"control mechanism on a higher abstraction
level, which is regulated by the instructions. Therefore each node recognizes due to
the "execution"flow mechanism whether it is selected or not. Thus we can broadcast
the output of P2 to all nodes - if the data is not intended for a specific node, then it
considers the received data as dummy data. Note that in both cases (dummy data or
not) an acknowledgement must be generated.
Now we understand why P2 has to wait until the PC has consumed a (dummy) jump
address even if the current instruction is an arithmetic operation and the result has
already been written into the register file.
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6.4 Implementation Results

Having taken into account all the consideration of this section we developed the first
prototype of ASPEAR. As we have already mentioned the target platform constitutes
ALTERA 's APEX 20KC FPGA (see Section 4). In Figure 6.10 we see the summary
of the compilation process performed by Quartus II, the Place&Route frontend for
the APEX 20KC. Compared to its synchronous counterpart, which requires ca. 2000
logic elements, ASPEAR needs ten-times as much logic elements as the synchronous
SPEAR.
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Figure 6.10. Compilation Report of ASPEAR

Figure 6.11 reports the post-layout simulation of the processor core. We recognize
the switch activity of the programm counter and the pipe registers: as a consequence
of the full initialization, pipe register 2 fires first, subsequently pipe register 1 switches,
which in turn activates the program counter.
Furthermore we can determine the DEMUX behavior of pipe register 2 as aforemen-
tioned: passjp2 changes its value only when all destination node of pipe register 2 have
activated their C-done signals.
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Figure 6.11. Simulation Report of ASPEAR

We can observe that the processor works with a speed comparable to a synchronous
clock with 2,5 MHz. Building an asynchronous processor that is larger and still slower
than its synchronous equivalent appears to be disappointing at first glance. It should
be considered , however, that no optimization has taken place on the given platform
(see Chapter 4). Given these suboptimal conditions, we are proud that ASPEAR works
correctly, and view this as a convincing sign for the robustness of the used asynchronous
approach.



Chapter 7

Conclusion and Outlook

CAL is a promising asynchronous design style, due to the fact that it can be imple-
mented using standard design tools on the one hand and it leads to delay-insensitive
circuits on gate level on the other hand. Furthermore the alternating encoding style of
subsequent data wave allows to associate each bit in the circuit to a specific context,
which simplifies the debugging procedure of CAL circuits. Due to the fact that the
CAL approach uses a signal encoding non-linear structures such as forward/feeback
path as well as selecting nodes face some problems: Either a deadlock occurs due to a
permanently inconsistent input vector or unselected components loose their (phase-)
synchronization because they only receive a subset all incoming data waves.
In this thesis we analyzed in detail these topics in order to contextualize the complex
interactions between data flow control, which is inherent in CAL, and non-linear
circuit structures. We explained how phase inverters have to be placed in the circuit
to avoid deadlocks and how selecting nodes must be adopted to ensure a correctly
operating circuit. In addition we have portrayed that feedback/forward paths cause a
structural regulation of the data flow and thus the performance of the circuit depends
on its initialization. Furthermore we illustrated that, using CAL, merge structures
cannot be implemented in a delay insensitive manner.
All these findings were considered during implementation of the ASPEAR processor
core. Although the asynchronous processor core cannot keep up with its synchronous
counterpart, neither in terms of processing speed nor in terms of gate count, this first
prototype demonstrates that validity of the presented concepts.

However, ASPEAR is intended to be used for research purpose and in this sense it
stands as an ideal starting point for further optimizations and research activities:

CAL-memories: The weakest point of this prototype is constituted by the CAL-
memories. These are the only parts of the processor core which are not delay
insensitive. Basically, two strategies can be taken into consideration: (i) En-
hanced conventional memories by storing a signature in addition to the data,
which can be used to determine the validity of the current output vector, (ii)
Build a full customized "CAL-memory"as presented in [50].

113
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Basic gates: The key to improve speed and reduce the gate count are more efficient
basic gate implementations - this requires a transistor level as effectuated in [21].
Another aspect which has to be investigated is if all basic gates require a memory
element or if it suffice that only pipe registers check consistency?

Structural optimizations: ASPEAR is based on a direct mapping from its syn-
chronous counterpart. Some other implementations are imaginable: all pipe reg-
isters could be removed from processor core, for instance. On the one hand this
would result in longer data paths, on the other hand the additional delay resulting
from the communication protocol, as well as the switching delay of the registers
would be eliminated. In this way it is possible to investigate the optimal relation
between the number of pipe registers and the length of data paths.

There is still a lot of work to do, however, I hope that this thesis will fire some
further research activities concerning CAL at the department.
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