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Zusammenfassung
Die Suhe nah einer vereinheitlihten Theorie aller Naturkr�afte ist einesder Hauptziele der modernen Physik. Die Stringtheorie ist zur Zeit dervielversprehendste Kandidat f�ur eine solhe Theorie. Sie vereint niht nurdie Gravitation mit den Kr�aften des Elektromagnetismus und der starkenund shwahen Wehselwirkung, sondern sie vereint auh die fundamentalenBausteine der Natur in ein einziges Objekt, n�amlih eine shwingende Saite,den String.Mitte der neunziger Jahre hat die \zweite String-Revolution" gezeigt,dass sih die f�unf bis dahin bekannten und als untershiedlih betrahtetenStringtheorien als vershiedene Limiten einer einzigen fundamentalen Theo-rie verstehen lassen. Die vershiedenen Versionen dieser fundamentalen The-orie sind durh ein Netz von Abbildungen, genannt Dualit�aten, miteinan-der verbunden. In diesem Zusammenhang spielen niht st�orungstheoretis-he, ausgedehnte Objekte, sogenannte D-branes, eine herausragende Rolle.Von besonderem Interesse ist die sogenannte Selbst-Dualit�at der Typ II-B Stringtheorie. Die zugeh�orige Dualit�atstransformation (SL(2;Z)) bildeteine Theorie geshlossener (fundamentaler) Strings auf eine Theorie vonD(irihlet)-Strings ab.In dieser Arbeit werden allgemeine Modelle von fundamentalen Stringsund Dirihlet-Strings in der NSR Formulierung mit den Methoden der BRSTKohomologie untersuht. Diese Methode hat sih im Zusammenhang mitder Beshreibung von Eihtheorien als �au�erst n�utzlih erwiesen. Sie fa�twesentlihe Eigenshaften der Eihsymmetrie in eine einzige nilpotente An-tiderivation zusammen. Diese Antiderivation wird BRST Di�erential genannt.In den Kohomologiegruppen des BRST Di�erentials sind wihtige physikalis-he Informationen �uber einer Eihtheorie enthalten, sowohl die Ebene derklassishen Physik als auh die der Quantenphysik betre�end.Die Klasse der untersuhten Theorien wird durh ihren Feldinhalt unddie auferlegten Eihsymmetrien de�niert. Im besonderen wird Invarianzunter lokaler N = 1 Supersymmetrie verlangt. Durh die Einf�urung einergeeigneten Basis der Felder l�a�t sih die Berehnung der Kohomologiegrup-pen auf die Betrahtung superkonformer Tensorfelder und geeignet de�nierterGeistfelder einshr�anken. In einem ersten Shritt der Kohomologie wird dieallgemeinste Wirkung f�ur diese Klasse von Modellen berehnet. Im Falle der



D-String Modelle wird die bekannte Superstring Wirkung um einen U(1)Anteil erweitert. Die so erg�anzte Wirkung l�a�t sih in einem erweitertenTarget-Raum interpretieren.Die allgemeinste Wirkung bestimmt die Transformationen der f�ur dieweitere Analyse wihtigen Antifelder unter der Einwirkung des BRST Dif-ferentials. Mit den vollst�andigen BRST Transformationen der Felder undAntifelder werden die globalen Symmetrien der betrahteten Modelle klas-si�ziert und an einem vereinfahten Beispiel veranshauliht. Es zeigt sih,dass im Falle der D-String Modelle die globalen Symmetrien durh jene derfundamentalen Superstring-Modelle niht ausgesh�opft werden. Es tretennihttriviale Symmetrien der zus�atzlihen Target-Raum Dimensionen aufund die Isometrien des \standard Target-Raumes" werden um Dilatationenerweitert.Im folgenden wird gezeigt, da� alle physikalish relevanten Kohomolo-giegruppen der betrahteten supersymmetrishen Modelle zu jenen der reinbosonishen Modelle (Modelle ohne Supersymmetrie) isomorph sind. DiesesErgebnis ist �uberrashend, zeigt es doh, da� die lokale N = 1 Super-symmetrie keinen Einu� auf die Kohomologie des BRST Di�erentials hatund somit auh auf wesentlihe physikalishe Eigenshaften der betrahtetenModelle niht einwirkt. Dies steht im Gegensatz zu Theorien mit \mehr"Supersymmetrie. So ist bekannt, dass lokal N = 2 supersymmetrisheStringtheorien die Struktur der zugrundeliegenden Raum-Zeit Mannigfaltig-keiten auf sogenannte K�ahler-Mannigfaltigkeiten einshr�anken.
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Chapter 1
Introdution
Why Strings?String theory [1{3℄ is a promising andidate for a onsistent theory of allfores of nature. It ombines a number of ideas that have been put for-ward in searh for a uni�ed theory, like ompati�ation of extra dimensions(Kaluza-Klein mehanism), grand uni�ation and supersymmetry. More-over, string theory neessarily ontains a massless spin-2 state, i.e., it on-tains gravity. All of these features of the theory arise from the simple ideato replae the standard point partile by one dimensional objets, namelystrings. This might raise the question, why not two dimensional objets,alled membranes, or even higher dimensional objets (\p-branes")? Theanswer to this question is, as in most ases in string theory, given by math-ematial onsisteny. Only for one-dimensional objets the mathematialstruture seems to ontrol the diÆulties arising from divergenes, bothspae-time and internal. Nevertheless, the idea of higher dimensional objetsreappears in several ways and plays an outstanding role in the desriptionof string theory at strong oupling.Until the mid nineties the existene of �ve di�erent onsistent string the-ories puzzled the sienti� ommunity and disappointed those, who laimedthe absolute uniqueness of string theory. This was related to the limited un-derstanding of string theory in terms of perturbation theory, the interationof few strings at weak oupling. The inreasing insight into the dynamis ofstrings at strong oupling resolved this unsatisfatory situation in an elegantway. It turned out that the seemingly di�erent onsistent string theories atweak oupling are merely di�erent limits in the spae of vaua of a singleunderlying theory, thereby relating di�erent weakly oupled string theoriesby dualities. By now a web of dualities onnets the di�erent string theoriesand the eleven dimensional \M-theory".
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Chapter 1. Introdution 2
Why D-branes?An essential ingredient in the understanding of nonperturbative e�ets instring theory is the appearane of new extended objets, D-branes [5, 6℄.These dynamial objets have the simple interpretation as objets on whihstrings an end. The massless states, whih orrespond to D-brane modesarising from an open string attahed to it, give rise to a vetor �eld living onthe world volume of the D-brane and a number of salars desribing the em-bedding of the brane into spae-time. Thus D-branes are losely related togauge theories and a fruitful interplay between gauge theory, the geometryof D-branes and string theory has been the origin of many insights in reentyears. D-branes provide a remarkably simple desription of nonperturbativephenomena, sine they have the orret properties to �ll out duality multi-plets and a highlight of \D-brane physis" is the appliation to the quantummehanis of blak holes.An espeially interesting ase of strong-weak duality in string theory isthe onjetured self duality of type IIB theory. The dual objets to thefundamental string are onjetured to be D-strings. They have the samemassless exitations (reall that a gauge �eld in two dimensions has no dy-namis), but they are di�erent objets. Espeially their tensions are di�erentwith their quotient given by the string oupling. At weak oupling the fun-damental string is muh lighter than the D-string, while at strong ouplingthe situation is reversed. Thus one is naturally led to the onlusion that thetheory at weak oupling is the same as at strong oupling, with the rôle ofthe fundamental string and the D-string reversed. The orresponding dual-ity transformation is onjetured to be the integer subgroup of the SL(2; R )symmetry of the low energy IIB supergravity. It ats on (p; q) strings, i.e,the bound states of p fundamental strings with q D-strings, and is believedto be an exat symmetry of the theory.It is well known that the tension of a super-p-brane may be generateddynamially as the ux of a world volume p-form gauge �eld [7, 8℄. This sug-gests to ombine the gauge �eld of the D-string and the tension-generatinggauge �eld into an SL(2; R ) doublet [9, 10℄. The result is a twelve dimen-sional theory. The idea to onstrut manifestly duality invariant ationsfor strings and branes has been taken up by several authors in a variety ofontexts [11{18℄.Why BRST ohomology?Gauge invariane is a basi priniple in models of fundamental interations.The BRST formalism, �rst established by Behi, Rouet and Stora [19{21℄,provides an extremely useful tool for dealing with gauge symmetries. Itenodes the gauge symmetry and its properties in a single antiderivative,usually denoted by s, whih is stritly nilpotent on all the �elds and in



Chapter 1. Introdution 3
its extension to the so-alled �eld-anti�eld formalism also on the anti�elds.This antiderivative is alled BRST di�erential. The nilpoteny of the BRSTdi�erential de�nes the BRST ohomology in the spae of loal funtions ofthe �elds and anti�elds, whih is the spae of all BRST losed funtions !,s! = 0, modulo BRST exat funtions. A funtion ! is alled BRST exat,if it lies in the image of s, i.e., ! = s�. Due to the nilpoteny of s BRSTexat funtions are automatially losed.The ohomology of the BRST di�erential aptures important physialinformation on the quantum level as well as on the lassial. In fat this wasrealized at �rst at the quantum level, where it turns out to be a useful toolin the perturbative renormalization of quantum �eld theories. Quantizing agauge theory usually starts with �xing a gauge. The BRST symmetry thenbeomes a substitute for gauge invariane. The appliations of BRST meth-ods at the quantum level inlude the lassi�ation of andidate anomalies,the determination of gauge invariant ounter terms, and the renormaliza-tion of omposite, gauge-invariant operators in the ontext of the operatorprodut expansion.The relevane of the BRST ohomology at the lassial level has beenrealized more reently. At negative ghost number the BRST ohomologyis isomorphi to the \harateristi ohomology". This ohomology gener-alizes the notion of onserved urrents and involves neessarily anti�elds,sine these are the only elements with negative ghost number. Another im-portant appliation of BRST methods at the lassial level is the relationto deformation theory. This is of interest for the onstrution of onsistentinterations and the proof of their uniqueness up to �eld rede�nitions.For all of the physial questions above, a omplete treatment of theproblem in the language of the BRST formalism requires the onsiderationof anti�elds. In the following �fteen years after the initiation of the inves-tigation of the BRST ohomology with the seminal papers [19{21℄ manyresults on the anti�eld independent ohomology were established. However,the anti�eld dependent problem remained largely untouhed. Originally theanti�elds were onsidered as soures for the BRST variations of the �elds.This point of view was apt for the purposes of renormalization of gaugetheories but obsured their entral rôle for ohomologial alulations. Thenovel interpretation of the anti�elds as being assoiated to the equations ofmotion and thereby implementing them into the ohomologial problem inan algebraially well de�ned way opened the road to new progress. Thisinterpretation originates from the Hamiltonian formulation of the BRSTsymmetry [22{24℄. There the anti�elds are regarded as the momenta on-jugate to the ghosts. The implementation of the equations of motion viathe so-alled Koszul-Tate di�erential is essential for the generalization of theBRST onstrution to the ase where the gauge algebra loses only on-shell.In its present form the anti�eld formalism was established in [25{27℄.For an introdution to the BRST formalism see the book of Henneaux
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and Teitelboim [28℄ and the reviews on the anti�eld formalism [29℄ and onthe appliations of BRST ohomology in the ontext of gauge theories ofYang-Mills type [30℄, where also an extensive list of the relevant literaturean be found.Outline of the thesisMotivated by the onsiderations disussed above we present in this thesis aBRST ohomologial analysis of superstring models in the NSR formulation[31{33℄ with loal (1,1) supersymmetry [34, 35℄ inluding an arbitrary num-ber of abelian gauge �elds. The lass of models under study is quite generalsine it is haraterized only by requirements on the �eld ontent and thegauge symmetries. In partiular it ontains both, models of fundamentalsuperstrings and of their SL(2;Z) dual D-strings, but it is not restrited tothem.As a �rst step of the ohomologial analysis all loal world-sheet a-tions ompatible with these requirements are determined. This analysis isaomplished by a ohomologial omputation in the spae of loal fun-tions whih do not depend on anti�elds (this is possible beause we use aformulation in whih the ommutator algebra of the gauge transformationsloses o�-shell). Its result has been reported and disussed already in [36℄:when abelian gauge �elds are absent, the ohomologial analysis reproduesthe general superstring ation found already in [37℄; in presene of abeliangauge �elds, it yields loally supersymmetri extensions of the purely bosoniations derived in [38, 39℄ and may be interpreted in terms of an enlargedtarget spae with one `frozen' extra dimension for eah gauge �eld. In parti-ular there are loally supersymmetri ations of the Born-Infeld type amongthese ations [36℄.The seond step of the ohomologial analysis investigates the loalBRST ohomology, denoted by H(s) throughout the thesis, for the mod-els whose world-sheet ations were determined by the �rst step. The ationis needed to �x the BRST transformations of the anti�elds. Our analysisis general exept for a very mild assumption (invertibility) on the \targetspae metri".We expliitly ompute the ohomology groups with ghost numbers 0 and1, whih ontain the information on the rigid symmetries and dynamial on-servation laws and disuss the results for a simpli�ed model. In view of apossible interpretation of the ations in terms of a twelve dimensional theory(in the ase of two abelian world sheet gauge �elds), it is interesting thatthe symmetries of the super-D-string ation are not exhausted by the isome-tries of the ten-dimensional standard superstring target spae. Additionalsymmetries are possible, ating nontrivially also on the extra dimensions.Interestingly the solutions to the superstring BRST ohomology at ghostnumbers 0 and 1 are already haraterized by their purely bosoni oun-
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terparts. This suggests the onjeture that the ohomology groups of thesupersymmetri models are in one to one orrespondene with those of thepurely bosoni models.1That this is indeed the ase, at least for the physially interesting oho-mology groups, is the subjet of the last part of this thesis. We shall provethat the ohomology groups of H(s) at ghost numbers g < 4 are isomor-phi to their ounterparts in the orresponding bosoni string models2 [thebosoni model orresponding to a partiular superstring model is obtainedfrom the latter simply by setting all fermions to zero in the world-sheetation℄. Furthermore, the orrespondene is very expliit: the representa-tives of the s-ohomology of a superstring model are simply extensions oftheir \bosoni" ounterparts, i.e., they ontain the representatives of thes-ohomology of the orresponding bosoni string model and omplete themto s-oyles of the superstring model [analogously to the superstring ationitself, whih ontains the bosoni string ation and ompletes it to a loallysupersymmetri one℄.This result provides a omplete haraterization of the ohomology groupsHg(s), g < 4 beause the ohomology H(s) for the bosoni string modelshas been ompletely determined in [40℄ (ordinary bosoni strings) and [39℄(bosoni strings with world-sheet gauge �elds). In partiular, this impliesthat the nontrivial Noether urrents, global symmetries, onsistent deforma-tions, bakground harges and andidate gauge anomalies of an NSR super-string model with (1,1) supersymmetry are in one-to-one to orrespondenewith those of the bosoni string model. The results for the bosoni modelswere derived and disussed in detail in [38{42℄. We shall not repeat or sum-marize these results here, but we shall briey omment on the relevane ofour results to the deformation problem at the end of setion 4.1.The result is quite remarkable and surprising sine it means that theloal (1,1) supersymmetry of the models under study has no e�et on thestruture of the ohomology at all! We note that our analysis and resultapplies analogously to models with less supersymmetry, notably heterotistrings with loal (1,0) supersymmetry (by swithing o� one of the super-symmetries). However, we do not expet that it extends to superstrings withtwo or more loal supersymmetries of the same hirality, suh as heterotistrings with loal (2,0) supersymmetry. These supersymmetries restrit al-ready the world-sheet ation to speial bakgrounds [43{45℄. Aordingly,we expet that the loal BRST ohomology of suh superstring models is\smaller" than the one for orresponding bosoni strings.The thesis is organized as follows. In setion 2 we give a lightning review1Indeed already the di�erent supersymmetri world sheet ations are parametrized bythe same \target spae funtions" as the bosoni ations.2We believe that the isomorphism extends to all higher ghost number setors as wellsine most parts of our proof (in fat, everything exept for the ase-by-ase study inappendix A.2) hold for all ghost numbers.
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of string theory with speial emphasis on the relevane in view of \D-brane"physis. In partiular we explain that the existene of D-branes is requiredby onsisteny of string theory with T-duality. Furthermore, we summa-rize some well known results on strings in bakground �elds and �nally wedisuss the emergene of nonommutative geometry from open strings inbakground �elds. For the ase of general bakgrounds we give a Kont-sevih type produt and disuss its properties in the ontext of onformalinvariane. In the following setions we turn to the BRST ohomologialanalysis of superstrings and D-strings.In setion 3.2 we speify the �eld ontent and the gauge symmetries ofthe models under onsideration. The BRST transformations of the �eldsorresponding to the gauge symmetries are given. In setion 3.3 we on-strut �eld variables (jet spae oordinates) that are well suited for theohomologial analysis. This involves the super-Beltrami parametrizationfor the gravitational multiplet and a onstrution of superonformal tensor�elds for the matter and gauge multiplets. In setion 4 the �rst part ofthe ohomologial analysis is arried out. We determine the most generalation for the �eld ontent and gauge transformations introdued before byomputing H2(s) in the spae of anti�eld independent loal funtions.In setion 5 we introdue the anti�elds, give their BRST transformationsand extend the superonformal tensor alulus by onstruting superon-formal anti�eld variables. The expliit analysis of the anti�eld dependentohomology at ghost numbers 0 and 1 is arried out in hapter 6. A detailedalulation is given and the results are disussed for a simpli�ed model.Then we turn to the general proof of the one to one orrespondene ofthe BRST ohomology H(s) to the purely bosoni one at ghost numbersg < 4. In setion 7.1 we de�ne and analyze an on-shell BRST ohomologyH(�); in setion 7.2 we show that Hg(�) is isomorphi to Hg(s) and tothe ohomology of the orresponding bosoni string model when g < 4.Some details of the analysis of setions 7.1 and 7.2 are olleted in theappendies A.1 and A.2. The remaining appendies give a short summaryof the derivation of the gauge transformations from the supergravity Bianhiidentities and ontain a olletion of the s-transformations of the ovariant(= superonformal) �eld and anti�eld variables.



Chapter 2
String theory in a nutshell
This hapter is devoted to a lightning review of string theory. Due to itsrih struture it is hopeless to over the subjet in a self ontained waywithout restriting to ertain subareas of the theory. Thus, we will fousmainly on the basi onepts relevant for the topis disussed in the restof the thesis. Most of the material presented here an be found in anyintrodutory letures on string theory and D-branes [1{4℄.
2.1 Open and losed stringsA bosoni string propagating in a D dimensional at spae-time is desribedby the embedding funtions X�(�; �), with � = 0; 1; : : : ;D � 1, of the twodimensional \world-sheet" parameterized by � and � into \spae-time". Inanalogy to the point partile ase one an write down an ation proportionalto the area of the world-sheet measured by the indued metri on the worldsheet. This ation is alled the Nambu-Goto ation. It has the awkwardproperty of ontaining derivatives under the square root and is thus notwell suited for quantization. There is a fairly easy way to irumvent thisproblem, by introduing an additional auxiliary metri gmn on the world-sheet, whih is the analog to the einbein introdued for the point partile.The resulting world sheet ation, whih is usually alled Polyakov1 ation isgiven by SP = � 14��0 Z d�d�p�g gmn�mX��nX���� ; (2.1.1)where g denotes the determinant of the world-sheet metri. The fator infront of the integral is proportional to the tension of the string written interms of the Regge2 slope �0, whih has the dimension of (spae-time) length1The ation was in fat found by Brink, Di-Vehia and Howe and Deser and Zumino.Polyakov pointed out its relevane in the path integral quantization.2String theory was originally proposed to be a theory of strong interations. Mesonresonanes obey a linear spin-mass relation, with �0 � (1GeV )�2 being the slope of the7
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squared. ��� is the spae-time metri and gmn is the inverse of the world-sheet metri. This ation is lassially equivalent to the Nambu-Goto ation,i.e., it gives rise to the same equations of motion.The Polyakov ation possesses a large number of symmetries, namelyD-dimensional Poinar�e invarianeX 0� = ���X� +A�g0mn = gmn; (2.1.2)where ��� is a Lorentz transformation and A� is a translation, two dimen-sional di�eomorphism invarianeÆX� = �m�mX�Ægmn = �l�lgmn + (�m�l)gln + (�n�l)glm; (2.1.3)for two parameters �l(�; �) and Weyl invarianeX 0� = X�g0mn = e2!(�;�)gmn: (2.1.4)Poinar�e invariane is a onsequene of taking spae-time to be at and isa global symmetry in the world-sheet sense. Equation (2.1.2) states thatthe embedding funtions X�(�; �) simply transform as a vetor, while theworld sheet metri is invariant. The invariane under two dimensional worldsheet di�eomorphisms and the invariane under loal resalings of the world-sheet metri are nontrivial gauge symmetries. From equations (2.1.3) itfollows that X�(�; �) transforms as a salar under loal reparametrizationsof the world-sheet, while the metri transforms of ourse as a ovariant ranktwo tensor. These symmetries are essential features of the theory and insetion 3.2 we will use them, extended by additional gauge symmetries andsupplemented with a presribed �eld ontent, to haraterize the whole lassof models onsidered in the BRST ohomologial problem. Moreover, theyare features of the lassial theory and give interesting results when one triesto retain them in a quantum theory. We will ome bak to this point later,when we disuss strings propagating in bakground �elds.The equations of motion following from the variation of the Polyakovation are Tmn = 0 (2.1.5)�m (pggmn�nX�) = 0; (2.1.6)trajetories. In string theory the parameter is of the order of the natural sale determinedby the fundamental onstants of gravity and quantum mehanis, i.e., the inverse Plankmass squared M�2P .
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where Tmn is the world sheet energy momentum tensor. It is onservedrnTnm = 0 as a onsequene of reparametrization invariane and more-over, Weyl invariane requires the energy momentum tensor to be traeless,Tmm = 0. The seond equation has to be supplemented with appropriateboundary onditions. Taking the world-sheet to be parameterized suh that0 � � � �0 one hasopen string : X 0�(�; 0) = X 0�(�; �) = 0;losed string : X 0�(�; 0) = X 0�(�; �)X�(�; 0) = X�(�; �)gmn(�; 0) = gmn(�; �); (2.1.7)where a prime denotes the derivative with respet to �. Note that we haveintrodued losed strings by imposing periodiity. The boundary onditionsfor the open string are the standard Neumann boundary onditions statedmore ovariantly nm�mX� = 0, where nm is a vetor normal to the bound-ary. The boundary onditions (2.1.7) are the only ones that are ompatiblewith spae-time Poinar�e invariane and the equations of motion. If the on-dition of Poinar�e invariane is relaxed there are ertain other possibilities,whih will beome important in the ontext of D-branes, see setion 2.2.Their relevane and onsisteny was disovered in the ontext of T-duality.The Polyakov ation (2.1.1) de�nes a two dimensional �eld theory on thestring world-sheet. It desribes D massless salar �elds X� oupled to themetri gmn. From the world-sheet point of view Poinar�e invariane is aninternal symmetry ating on �elds at �xed � and �. Amplitudes for spae-time proesses are given in terms of matrix elements of this two dimensionalquantum �eld theory. In setion 2.3 we will onsider generalizations of thePolyakov ation, namely nonlinear sigma models.
2.2 D-branesD-branes are extended objets de�ned by the fat that open strings mayend on them. The existene of suh extended objets in string theory hasbeen unovered in the ontext of T-duality [46, 47℄. Let us review some ofthe arguments.Using two dimensional di�eomorphism invariane and Weyl symmetry,whih are three loal or gauge symmetries, to �x the three independentdegrees of freedom of the world-sheet metri, we an at least loally hooseit to be of the form gmn = Æmn. Furthermore, hoosing omplex oordinateson the world sheet and mapping it to the omplex plane one an write thePolyakov ation as S = 12��0 Z� d2z �X� ��X�: (2.2.8)
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The equations of motion then take the form� ��X� = 0; (2.2.9)whih implies that �X� is holomorphi and ��X� is antiholomorphi. Interms of the orresponding Laurent expansions the general solution is givenby

X� = x� � i�02 p�lnjzj2 + ir�02 Xn6=0 1n(��nz�n + ~��n�z�n)� X�L +X�R (2.2.10)for losed strings and for open strings
X� = x� � i�02 p�lnjzj2 + ir�02 Xn6=0 1n��n(z�n + �z�n): (2.2.11)

The overall motion of the string is desribed by its enter of mass position x�and its momentum p�, whih is identi�ed with the zero mode of the Laurentexpansion of �X� and ��X�. The mode expansions desribe the osillatorydegrees of freedom of the string.T-duality for losed stringsNow onsider losed strings in a target spae with one ompat dimension,say X25. Let us work out the impliations of the periodiity X25 = X25 +2�R for the solution to the equations of motion. We fous on the zero modeontributions written in terms of the original variables
X� = x� + ~x� � ir�02 (��0 + ~��0 )� +r�02 (��0 � ~��0 )� + (osillators):(2.2.12)In the ase of a non-ompat dimension the term proportional to � hasto vanish so that ��0 = ~��0 . The ompat dimension allows an additionalsolution. Running one around the losed string we get

X�(z; �z)! X�(z; �z) + 2�r�02 (��0 � ~��0 ): (2.2.13)But now X� need not be single valued under the hange � ! � + 2�. Itan hange by an integer multiple of 2�R. Furthermore the momentumidenti�ed with p� = q 12�0 (��0 + ~��0 ) has to be an integer multiple of theinverse radius of the ompat dimension to ensure the single valuedness of
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exp(i p �X). Solving the two resulting equations for the ompat dimensionX25 one �nds

�25o = r�02 � nR + wR�0 � �r�02 pL~�25o = r�02 � nR � wR�0 � �r�02 pR; (2.2.14)where n and w are integers. We onlude that in the ase of a ompatdimension a whole tower of new states appears orresponding to a losedstring wound w times around the ompat dimension. For a large radius Rof the ompat dimension the momentum states are light and the windingstates are heavy, i.e., it osts muh energy to exite them in the spetrum.In the ase of a small radius the situation is reversed. The momentum statesare heavy while the winding states are light.One an push this further and ask what happens in the deompati�-ation limit R ! 1 and in the limit of R ! 0. In the deompati�ationlimit the winding modes beome in�nitely massive and deouple from thespetrum. The momentum states go over to a ontinuum of states. Indeedthis perfetly �ts with what one should intuitively expet, namely to reoverthe unompati�ed situation. But what happens in the R ! 0 limit? Themomentum states beome in�nitely heavy and deouple from the spetrum.In the ase of point partiles this would be all we observe. The ompati-�ed dimension vanishes and we are left with one dimension less. But losedstrings behave quite di�erently. The winding states now form a ontinuumand the unompati�ed dimension reappears! In fat a theory of losedstrings ompati�ed on a irle of radius R is dual to a theory ompati�edon a radius 1=R, i.e., the spetrum is invariant under the exhange of n$ wand R $ �0=R. The fully interating theory an be desribed in terms ofthe T-dualized oordinate X 0(z; �z) = X(z)�X(�z), whih is a parity trans-formation ating on the right moving part only. It has the same operatorproduts and energy momentum tensor, sine the minus sign enters in allthese ases in pairs. The dual oordinate aounts only for the hange inthe sign of the right moving zero mode in the onformal �eld theory, whihhanges the spetrum from the theory with radius R to that of the theorywith radius 1=R. The theories are idential, one being written in terms ofX and one in terms of X 0.This duality is alled T-duality and it is an exat symmetry of pertur-bative losed string theory. This gives evidene to the idea of a minimallength in string theory, namely the self dual radius R = p�0. The sameonsiderations hold for toroidal ompati�ation of several dimensions andeven for more general ompati�ations.
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T-duality and open stringsSomething di�erent has to happen in the ase of open strings. This is lear,sine there is no onserved winding number for open strings. So in theR! 0 limit there is no tower of winding states, whih e�etively generatesa dimension. Rather the situation is similar to the �eld theory ase: thestates with nonzero momentum beome in�nitely heavy and deouple fromthe spetrum and we are left with one dimension less. Now the puzzlingpoint in this story is that a theory of open strings neessarily ontains losedstrings. After taking the R ! 0 the open strings live in one dimension lessthan the losed strings! The solution to this puzzle is that the endpoints ofthe open strings are on�ned to a D�1 dimensional hyperplane. Indeed theinterior of an open string annot be distinguished from a losed string andthus should still vibrate in all D dimensions just like a \real" losed string.Let us work this out in more detail starting from the open string modeexpansion X�(z; �z) = X�(z) +X�(�z)

X�(z) = 12x� + 12x0� � i�0p� ln z + ira02 Xn6=0 1n��nz�nX�(�z) = 12x� � 12x0� � i�0p� ln �z + ira02 Xn6=0 1n��n�z�n (2.2.15)
and onsider the oordinate X25 ompati�ed on a irle of radius R. TheT-dual oordinate is X 025(z; �z) = X25(z)�X25(�z). Thus we get3

X 025(z; �z) = x025 � i�0p25 ln(z�z ) + ir�02 Xn6=0 1n�25n (z�n � �z�n)
= x025 + 2i�0p25� +p2�0Xn6=0 1n�25n e�in� sinn�= x025 + 2i�0 nR� +p2�0Xn6=0 1n�25n e�in� sinn�: (2.2.16)

The essential point is the absene of a � dependene in the zero mode setor,i.e. there is no momentum in the X 025 diretion. The Neumann boundaryonditions ��X = 0 are replaed by Dirihlet boundary onditions �tX = 0!The osillator terms vanish at the endpoints � = 0; � and the ends areon�ned to X 025(�)�X 025(0) = 2��0 nR = 2��0nR0: (2.2.17)3After Wik rotating to Eulidean time � ! �it and mapping the ylinder to theomplex plane one has z = exp(t+ i�) = exp(i�+).
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The di�erene is an integer multiple of the radius of the dual dimension.Thus we onlude that under T-duality the normal and the tangential deriva-tive are exhanged�nX25(z; �z) = �zX25(z) + ��zX25(�z) = �tX 025(z; �z)�tX25(z; �z) = �zX25(z)� ��zX25(�z) = �nX 025(z; �z) (2.2.18)This gives a onsistent piture of what happens in the T-dualized diretion.In all other diretions the situation is not hanged and the string endpointsare still free to move. The 24 dimensional hyperplane to whih the stringends are on�ned are alled a Dirihlet 24-brane or D24-brane for short. Thesame piture goes through for any number of oordinates giving D-branesof higher odimension.It is natural to expet that these objets are really dynamial objets,beause in a theory ontaining gravity perfetly rigid objets do not exist.Rather one expets the D-branes to utuate in shape and position. One anwork this out by looking at the massless spetrum of the theory. Masslessstates arise from non-winding states beause the string tension ontributesan energy to a strethed string. Stiking to the example of the D-24 branewe �nd ���1jk >; V = �tX�eikX�25�1jk >; V = �tX25eikX = �nX 025eikX0 : (2.2.19)These are of ourse the same massless states as those of the original theorybut viewed from the dual theory. The �rst line in (2.2.19) is a gauge �eldliving on the D-brane with 25 omponents tangent to the brane dependingon the world volume oordinates of the brane. The seond line, representingthe gauge �eld in the ompat diretion in the original theory, beomes theposition of the brane in the dual piture. From the D-brane world volumepoint of view it is simply a salar living there. Again this piture goesthrough for several T-dualized diretions. Now let us onsider the meaningof these modes. Let the value of the salar vary while we move along thebrane. This orresponds to an embedding of the brane into the transversedimensions and thus determines the shape of the brane. The salar thusplays the same role as the oordinate funtion X�, whih desribes a string.Reall that from the world-sheet point of view the X�'s are salar �elds!The values of the gauge �eld bakground desribe the shape of the D-brane as a (possibly solitoni) bakground for the gauge degrees of freedomand their quanta desribe utuations about that bakground.World-volume ations for D-branesWe started from open strings ompati�ed on a irle and were naturallyled to the existene of extended objets on whih open strings are allowed
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to end. Moreover, due to the presene of gravity we onlude that theseare in fat dynamial objets. Thus one might ask how the low energye�etive world-volume ation looks like. This is easily answered taking intoaount the disussion of the previous paragraph. The massless �elds onthe brane world-volume are given by a gauge �eld Am and a number oftransverse salars orresponding to the position of the brane. Introduingthe orresponding world-volume �elds �a one is led by diret analogy to thestring ase to the following ation for a single D-braneSp = �Tp Z� d�p+1e��pdet(Gab +Bab + 2��0Fab); (2.2.20)where Gab and Bab denote the pullbak of the spae-time metri and theantisymmetri tensor �eld of the losed string bakground to the (p + 1)dimensional D-brane world-volume. This is nothing but the analog of theNambu-Goto string ation and is known as the Born-Infeld ation for non-linear eletrodynamis. The dependeny on B+2��0F 4 an be understoodby the fat that in the open string ation the B-�eld and the boundarygauge �eld A are related by a spae-time gauge invarianeB�� ! B�� + ���� � ���� A� ! A� � 12��0��; (2.2.21)whih is preserved by the ombination 2��0F�� = B�� + 2��0F�� . This isinvariant under both spae-time gauge symmetries, the one mentioned aboveand the U(1) gauge symmetry of A.An interesting modi�ation arises when one onsiders a number of o-inident D-branes. Intuitively it is lear that additional massless degreeof freedom arise from strings ending on di�erent branes. The U(1) gaugesymmetry is enhaned and beomes a non-abelian U(N) gauge symmetry,where N is the number of oinident branes, and the gauge �eld beomesan N �N matrix. The same happens to the olletive oordinates for theembedding of the D-branes. This is the �rst appearane of \nonommuta-tive geometry" in terms of matrix oordinates. Again some insight into theform of the low energy e�etive ation an be gained by T-duality startingfrom the Born-Infeld ation.As a onluding remark to this setion we omment on the dilaton fa-tor e�� in the Born-Infeld ation and the brane tension Tp. The dilatondependeny an be understood from the the fat that this is an open stringtree level e�etive ation omputed on the disk. The Dp-brane tension isdetermined by T-duality (by a reursion relation) up to an overall normal-ization. The atual value of the D-brane tension an be omputed from theexhange of a losed string between two D-branes and is of the order of theinverse string oupling.4For onveniene we will set 2��0 = 1 in the following and reintrodue the expliitdependeny on �0 where it is neessary.
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2.3 Strings in bakground �eldsWe have written down the Polyakov ation (2.1.1) assuming that the stringsare propagating in an unompati�ed at target spae with a Minkowskianmetri ��� . A �rst step towards a generalization is to onsider the nonlinearsigma modelS = � 14��0 Z d�d�p�g gmn�mX��nX�G��(X); (2.3.22)with a nontrivial spae-time metri G��(X). From the two-dimensionalworld-sheet point of view this orresponds to a theory of D salar �eldswith �eld dependent ouplings. That this is indeed a sensible hoie anbe seen by onsidering an expansion around the at bakground G��(X) =��� + h��(X), where h��(X) is a small deviation from at spae. Insertingthis into the (Eulidean) path integral one �nds a term14��0 Z d2z h��(X)�X� ��X� : (2.3.23)Setting h��(X) / ��� exp(ik �X) with a symmetri polarization matrix ���one is simply inserting a graviton vertex operator into the path integral.The insertion of the full metri G��(X) orresponds to a oherent state ofgravitons. Generalizing this proedure to inlude other bakgrounds of themassless sting states one obtains for the losed string setorS = � 14��0 Z d�d�p�g �gmn�mX��nX�G��(X)+"mn�mX��nX�B��(X) + �0R(2)�(X)�; (2.3.24)where R(2) denotes the two-dimensional Rii salar assoiated with theworld-sheet metri gmn. We have added terms orresponding to the antisym-metri tensor �eld B��(X) and the dilaton �(X). In the limit of small B and� the vertex operators for these bakgrounds are B��(X) / a�� exp(ik �X)and �(X) / � exp(ik � X) with an antisymmetri polarization matrix a�� .Here some remarks are in order onerning the oupling of the dilaton.Firstly one observes that this ation is lassially invariant under globalsale transformations but not under loal Weyl transformations. The dila-ton term breaks this invariane unless the dilaton is onstant. Let us on-sider a onstant dilaton for the moment. Then the �rst and the third termtogether look like the ation for D massless salars minimally oupled togravity in two dimensions. But there is no dynamis assoiated with theworld-sheet Rii salar appearing in the dilaton term. This is easily seenfrom the Einstein equations in two dimensions, beause Rmn� 12 gmnR van-ishes identially. However, the Hilbert ation has a topologial meaning. In
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the path integral a term � �4��0 Z d�d�p�g R(2); (2.3.25)where � for now is an arbitrary parameter, will give rise to a fator exp(���).� denotes the Euler number of the string world sheet � = 2�2h�b�, whereh; b;  are the numbers of handles, boundaries and rossaps, respetively.For open strings (2.3.25) is in fat modi�ed. One then has to inlude theextrinsi urvature on the boundary. For instane an open string tree leveldiagram has the topology of the disk and will thus be weighted with a fatorexp(��). The emission and reabsorption of an open string will be relatedto a hange in the Euler number of Æ� = �1. Relative to the tree level openstring diagram the amplitude for emitting an open string will be weightedby a fator exp(�=2), whih we thus regard as the open string oupling. Inthe same way one gets for the amplitude for emitting a losed string a fatorexp(�), whih is regarded as the losed string oupling. Hene the ouplingonstants in string theory are ontrolled by the Euler term in the ation.Now let us return to the situation for the onstant dilaton bakground. Fromthe disussion above one might suspet that the string oupling is a free pa-rameter, but this is not the ase. Di�erent values for the string oupling donot orrespond to di�erent theories but to di�erent bakgrounds in a singletheory and the only free parameter in the theory remains the string tension.Now before we turn to impliations resulting from Weyl invariane letus inspet some possible extensions for open string bakgrounds. The mostgeneral ation for open strings oupling to massless bakground �elds5 isS = � 14��0 Z�d�d�p�g �gmn�mX��nX�G��(X)+"mn�mX��nX�B��(X) + �0R(2)�(X)�� 12��0 Z��ds�2��0A��tX� + �0K(2)�(X)� (2.3.26)We have inluded the extrinsi urvature of the boundary K(2) and the openstring gauge �eld A� with the vertex operator R�� ds���tX� exp(ik � X),where �t denotes the tangential derivative to the world-sheet boundary ��.The Gauss-Bonnet term, whih gives the Euler number, is now14� Z�R(2) + 12� Z��K(2) = �; (2.3.27)whih explains the neessity to inlude the boundary urvature beause thedilaton determining the oupling onstant must multiply the entire Eulerdensity.5It is also possible to inlude other bakgrounds, for instane for the tahyon �eld orhigher order tensor �elds orresponding to massive spin > 2 modes. For losed strings theterm orresponding to the tahyon is S = � 14��0 R d�d�p�g T (X).
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To de�ne a onsistent string theory the ation (2.3.26) has to be Weylinvariant, both lassially and as a quantum theory. This is related to thetraelessness property of the two dimensional energy momentum tensor. Forthe losed string setor one �nds [1{3℄T mm = � 12�0�G��gmn�mX��nX� � 12�0�B��"mn�mX��nX� � 12��R(2);(2.3.28)where the oeÆient funtions are the renormalization group beta funtion-als assoiated with the oupling funtions indiated as supersripts.Sale invariane in a quantum �eld theory is related to the vanishing ofthe renormalization group � funtions, whih arise from ultraviolet diver-genes in Feynman diagrams. Sine Weyl invariane implies sale invariane,whih in turn is related to the vanishing of the beta funtion, the ultraviolet�niteness of the two dimensional quantum �eld theory and Weyl invarianeare intimately related6. The breakdown of sale invariane in the quan-tum theory an be understood by the fat that there is no regularizationsheme preserving onformal invariane. The subtration of ontributionsof a massive regulator �eld as in the Pauli-Villars regularization breaks saleinvariane whereas dimensional regularization violates sale invariane be-ause the sigma model is only sale invariant in two dimensions.There have been a large number of ontributions to this subjet, most ofthem in the 80's [48{53℄. The remarkable result is that the vanishing of thebeta funtions gives rise to spae-time �eld equations. Expliitly the betafuntions for the losed string setor are given by�G�� = �0 �R�� + 2r�r��� 14 H���H ��� �+O(�02)�B�� = �0 ��12 r�H��� +r��H����+O(�02) (2.3.29)�� = D�266 � �0 �r2��r��r��+ 124 H���H����+O(�02)For the gauge �eld bakground the beta funtion is given by [51, 52℄�A� = � GG� (B + F )��� r�(B + F )��

+12 � (B + F )G� (B + F )���H���(B + F )�� + 12r��(B + F )�� ; (2.3.30)whih is valid to all orders in �0 and to lowest order in derivatives of B+F .7 Reall that only the ombination F whih is invariant under both spae-time gauge transformations, the U(1) gauge transformation of A and the6Considerations onerning full ultraviolet �niteness also have to take into aountwave funtion renormalization not just the renormalization of the ouplings.7Displaying the �0 dependeny of the beta funtions in the ase of a pure gauge �eldbakground gives �A� = 2��0 �1� (2��0F )2��1 ��r�F��.
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ombined transformation (2.2.21) of B and A, enters in these expressions.H��� is the orresponding �eld strength and is given byH��� = ��B�� + ��B�� + ��B��: (2.3.31)Indeed it is possible to derive these spae-time equations of motion from aspae-time ation. For the losed string bakground this isSlosedeff = 12�2 Z dDXp�Ge�2�hR+ 4r��r��� 112H���H���

�2(D � 26)3�0 +O(�0)i: (2.3.32)By a �eld rede�nition one an remove the dilaton fator in front of the spae-time Rii salar and thus obtain the standard Einstein-Hilbert ation. Thisis usually referred to as going to the \Einstein frame". In this terminologythe ation (2.3.32) is written in the \string frame". To lowest order in �0the e�etive ation orresponding to the open string setor is given by theYang-Mills ationSYMeff = �C4 Z dDXe��F��F�� +O(�0): (2.3.33)Note that the appearane of the fator exp� in the ations above is on-sistent with the fators one would expet for the appearane of the stringoupling.In (2.3.30) we gave the spae-time equation of motion for the gauge �eldA to all orders in �0 but the Yang-Mills ation omprises only leading orderterms in �0. One might ask if one an do better and indeed the spae-timee�etive ation inluding all orders in �0 and lowest order in derivatives ofB + F is given by the Born-Infeld ationSopeneff = Z dDXe��pdet(G+B + F ): (2.3.34)One might propose that the proper way to desribe interating open andlosed strings is to simply add the spae-time e�etive ations for the losedand open string setor. The equations of motion arising from the ombinedation reprodue orretly the beta funtions for the gauge �eld but thelosed string beta funtions are extended by additional terms orrespondingto gauge �eld soure terms. This is quite reasonable sine the gauge �eldsshould at as a soure for gravity. But the presene of a boundary does nothange the beta funtions of the losed string massless �elds. Neverthelessone an argue that the orresponding equations of motion are interpretableas string loop orreted beta funtions [52℄.We will not be onerned with higher order loop orretions to the betafuntions, but the Born-Infeld ation will one again show up in the ontextof nonommutative geometry arising from D-branes in nontrivial bakground�elds.
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2.4 Nonommutative GeometryThis setion is devoted to an old idea in a new guise and also ontains someomments on reent work done in ollaboration with Manfred Herbst [54℄.The idea8 that the struture of spae-time hanges at short distanes andthereby provides an e�etive ultraviolet ut-o�, whih regularizes the no-torious in�nities present in quantum �eld theory, was already proposed byHeisenberg in the 1930's. He suggested a lattie struture, whih of oursebreaks Lorentz invariane. Nevertheless, for pratial and numerial reasonsthis lattie version of spae-time is quite satisfatory, when random lattiesare used. In this Lattie approximation Lorentz symmetry is a lassial sym-metry and is broken at the mirosopi level. Some time later Snyder [57℄proposed the idea to use a nonommutative struture at small length sales.It was von Neumann who introdued the term \nonommutative geometry"for a general geometry in whih the algebra of funtions is replaed by anonommutative algebra.The argument that a nonommutative struture provides an e�etiveut-o� an be seen from analogy with the quantization of the lassial phase-spae, where oordinates are replaed by generators of the algebra. Sinethese do not ommute they annot be diagonalized simultaneously and thusit is no longer justi�ed to speak of the phase-spae in terms of points. Ratherthe points of phase-spae have to be replaed with Bohr ells. In the sameway one replaes the points of spae-time with Plank ells with the di-mension of the Plank area.9 In a oherent desription this \pointlessness"eliminates the ultraviolet divergenes of quantum �eld theory by oarse-graining spae-time just like an ultraviolet ut-o� � prevents a theory toprobe length sales smaller the ��1. The question is how does this oher-ent desription of spae-time look like? The simplest but by far not theonly possibility is to introdue nonommuting spae-time oordinates, i.e.to replae the oordinates by generators satisfying ommutation relations[q�; q� ℄ = ik��� : (2.4.35)The parameter k is a fundamental area sale.A simple and probably the most prominent example of a nonommuta-tive \spae" ovariant under the ation of a ontinuous symmetry group isprovided by the \fuzzy sphere" [56℄. Let us review how nonommutativegeometry makes its appearane in string theory.8For a historial review of nonommutative geometry see for instane [55℄. The stan-dard referene for a rigorous mathematial presentation of nonommutative geometry isthe book of A. Connes [58℄, but see also for instane the introdutory letures of GiovanniLandi [59℄.9This assumption is in fat not mandatory, sine experimental bounds would allowmuh larger sales.
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Open strings in a onstant B-�eldThe most prominent example for the appearane of nonommutative geom-etry in string theory, whih is also most extensively overed in the literature,arises from open strings in the bakground of a onstant antisymmetri ten-sor �eld B�� [60{63℄. The simplest ase is to onsider bosoni open stringsmoving in a at Eulidean bakgroundS = 14��0 Z�[g���mX��mX� + i"mnB���mX��nX� ℄: (2.4.36)The term involving the B-�eld bakground an be rewritten as a boundaryterm SB = i4��0 Z��B��X��tX� ; (2.4.37)where �t denotes the derivative tangential to the world-sheet boundary. Theonly e�et of this boundary ation is that it modi�es the boundary onditionsto G���nX� + iB���tX������ = 0; (2.4.38)with �n denoting the normal derivative. For B = 0 these are simply Neu-mann boundary onditions, whereas for large B (or g ! 0) the boundaryonditions beome Dirihlet. Thus (2.4.38) interpolates between these twoases. By onformally mapping the string world sheet to the upper halfplane (we will only be onerned with the tree level approximation) andhoosing omplex oordinates the propagator onsistent with the boundaryonditions (2.4.38) is [51, 52℄< X�(z; �z)X�(w; �w) >=��0hg�� ln jz � wj � g�� ln jz � �wj+G�� ln jz � �wj2 +��� ln� �w � z�z � w�i;(2.4.39)where the following quantities are introduedG�� =h 1g �B2 i����� =h Bg �B2 i�� : (2.4.40)These quantities are to be understood as series in g and B. Note that G��is symmetri and ��� is antisymmetri. In fat these quantities have al-ready appeared in a di�erent ontext. The beta funtions for the gauge�eld bakground (2.3.30) ontain exatly these quantities generalized to anononstant B �eld and a possibly urved metri. Moreover the e�et of the
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gauge �eld is taken into aount by replaing the B �eld by the gauge in-variant quantity B+F . We will keep this in mind, when we try to generalizethe setting used in (2.4.36) to arbitrary bakgrounds.Restriting the propagator (2.4.39) to boundary values of z and w, i.e.,z = �z = � and w = �w = � 0, one gets the propagator relevant for open stringvertex operators< X�(�)X�(� 0) >= ��0G�� ln(� � � 0)2 + i��0����(� � � 0); (2.4.41)with �(�) denoting the sign funtion being 1 or -1 for positive or negative� . This suggests a simple intuitive interpretation of the objets de�ned in(2.4.40), namely that G�� is the metri e�etively seen by the open strings.This is justi�ed by the way G�� appears in the boundary propagator.The interpretation of ��� beomes lear, when one omputes the om-mutator interpreting � as time[X�(�);X�(�)℄ = T (X�(�);X�(��)�X�(�);X�(�+))= i��� ; (2.4.42)whih is exatly the relation (2.4.35) for nonommutative oordinates! Thissuggests that we should be able to desribe the theory in terms of a non-ommutative deformed produt de�ned on funtions. Indeed this an beaomplished by taking the zero slope limit �0 ! 0 to deouple the stringbehavior, while keeping the open string parameters G and � �xed. In thislimit one is left with a topologial ation for the bulk and the boundary de-grees of freedom are governed by the boundary ation (2.4.37). The produtof funtions is identi�ed as the Moyal-Weyl produtf(x) � g(x) = e i2��� ��y� ��z� f(y)g(z)��y=z=x: (2.4.43)An interesting thing happens when an abelian gauge �eld is added by ou-pling it to the boundary in the usual way. Due to the presene of divergenesin the quantum �eld theory, the theory has to be regularized. Choosing apoint splitting regularization on �nds that the usual gauge transformationhas to be modi�ed to the gauge invariane of nonommutative Yang-Millstheory. On the other hand, if one would have hosen a Pauli-Villars regular-ization the ordinary gauge transformation would have been preserved. Butambiguities arising from di�erent hoies of regularization shemes shouldbe related to �eld rede�nitions in the e�etive ation. This has led Seibergand Witten [63℄ to propose a map from \ordinary" gauge theory to nonom-mutative gauge theory, whih by now is well-known as the Seiberg-Wittenmap. The natural question arises if the e�ets of a more general (nonon-stant) B-�eld an still be desribed in the elegant way of replaing ordinaryproduts by a star produt.
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Open stings in general bakgroundsPhysially the situation desribed in the previous subsetion orrespondsto the embedding of a at brane into at bakground. The �rst step to-wards a generalization of this situation is to allow for a varying B-�eld and�eld strength F of the boundary gauge �eld, but to demand that the �eldstrength H = dB should vanish. The physial piture in this situation is theembedding of a urved brane into a at bakground. This situation is loselyrelated to the problem of deformation quantization of Poisson manifolds. Atypial example of a Poisson manifold is provided by a sympleti mani-fold, i.e., a di�erentiable manifold endowed with a nondegenerate losed twoform. This two form is provided by the B �eld due to the vanishing of the�eld strength. It was shown by Kontsevih [64℄ that every �nite dimensionalPoisson manifold an be quantized in the sense of deformation quantization.Stated without mathematial rigour this means that there exists an isomor-phism from equivalene lasses of assoiative algebras (we think of them asthe algebras of funtions) to the equivalene lasses of Poisson manifolds.This boils down to the problem of identifying an appropriate star produton the spae of formal power series in a deformation parameter, suggestivelydenoted by ~, with oeÆients in the spae of smooth funtions C1(M) on adi�erentiable manifold M . We denote this algebra with A[[~℄℄. Appropriatemeans in this ontext that the star produt is assoiative and redues tof � g = fg + i~2 ff; gg+O(~2); (2.4.44)where ff; gg denotes the Poisson braket on the manifold M . More gener-ally a star produt is de�ned in terms of bidi�erential operators Bi, wherethe subsript i indiates the order in the deformation parameter ~. Thereis a natural gauge group ating on star produts, whih onsists of auto-morphisms of the algebra A[[~℄℄ of the form f ! f +Pn>0 ~nDn(f), wherethe Dn are di�erential operators. It is natural to onsider star produtsup to this gauge equivalene. Kontsevih showed that every Poisson braketomes from a anonially de�ned star produt modulo equivalene. In doingso he took advantage of ideas from string theory. This was lari�ed by awork of Cattaneo and Felder [65℄, who showed that the formula given byKontsevih an be interpreted in terms of the perturbative expansion of thepath integral of a topologial model of open strings.From the sigma model point of view the sympleti ase is similar to theonstant ase in the sense that loally one an hoose Darboux oordinates.The algebra of funtions on the D-brane world-volume is deformed to a non-ommutative (but still assoiative) algebra in terms of the Kontsevih starprodut. In the �eld theory limit �0 ! 0 orrelators an still be omputedusing the star produt. So the struture obtained for the onstant ase per-sists for the more general sympleti ase. But is this true for the more
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venturous ase of a B �eld with nonvanishing �eld strength? This learlyorresponds to the embedding of a urved brane into a urved spae-time.The open string sigma model with general bakground �elds de�nes a highlynonlinear �eld theory. Thus one an hardly expet to get exat results. Onean think of two oneptually rather di�erent approahes to this problem.One is to look for ertain ontrollable settings, for instane strings on groupmanifolds [66{69℄, most prominently on the group manifold of SU(2) [70℄.In this setting there exists an exat onformal �eld theory desription forertain maximally symmetri branes on S3, namely those wrapped on on-jugay lasses of SU(2), whih are generially 2-spheres. The algebra offuntions on the brane orrespond to the well known \fuzzy-spheres". Theexat form of the algebra depends on the size of the 3-spheres, i.e. the levelof the orresponding WZW model, in whih they are embedded. D-braneson the group manifold of SU(2) have been studied intensively. In [71℄ andsubsequent work [72, 73℄ it has been argued that the spherial branes arestabilized due to the interplay between the nontrivial B �eld and the quan-tized U(1) world volume ux. An interesting feature present in the SU(2)WZW model are the nonassoiative deformations of the algebras of fun-tions on the worldvolume at �nite level k. In the limit where the level k issent to in�nity, i.e., when the bakground beomes at (remember the levelk is assoiated to the radius of the S3), these algebras beome assoiative.We will also �nd nonassoiative algebras by taking a di�erent route.A rather di�erent approah, though oneptually more straightforward,is to generalize the methods used in [60℄ to the situation of urved bak-grounds by using a perturbative expansion [54, 78℄. The starting point forthese alulations is the open string sigma model with generi bakground forthe spae-time metri g��(X) and the gauge potentials B��(X) and A�(X).Then one employs the standard bakground �eld method [48, 74{77℄ to ex-pand around the zero modes X� = x� + ��. This allows to expand theation into a free part and additional interation terms. The propagator forthe free �eld theory is then given by (2.4.39), whih in turn an be used toperturbatively alulate orrelation funtions of the interating theory. Car-rying out these alulations one an read o� a nonommutative and evennonassoiative produt from the orrelators [54℄f(x) Æ g(x) = f g � i2��� D�f D�g � 18������ D�D�f D�D�g� 112���D���� �D�D�f D�g +D�f D�D�g�+ O(�3); (2.4.45)where � is essentially of the same form as in (2.4.40) with B replaed bythe fully gauge invariant ombination F = B + 2��0F . The importantdi�erene is, however, that in this ase � is not onstant but depends onthe zero modes x�. The produt de�ned in (2.4.45) has the same struture
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as the formula given by Kontsevih, but the partial derivatives are replaedby ovariant derivatives ompatible with the metri g�� and most notably� does in general not de�ne a Poisson struture.The key properties of this produt are that it is nonommutative andnonassoiative, but inserted into an integral it beomes assoiative and en-joys a yli symmetryZ dDxpg �Ff1Æ: : :Æfn�1Æfn�Z dDxpg �FfnÆf1Æ: : :Æfn�1; (2.4.46)whih is usually referred to as trae property. Here some disussion is inorder. Both properties, assoiativity as well as the trae property (2.4.46)hold only in a ertain sense, namely if the spae-time bakground �elds ful�lltheir equations of motion. In the approximation above (i.e., to seond orderin �) this means that we have to use the beta funtion for the bakgroundgauge �eld (2.3.30). By virtue of this equation and due to the ontributionof the measure, the additional terms give a total divergene and thus thelaimed properties indeed hold. At �rst sight this may seem to be an ad hoassumption, but let us give some arguments that this is indeed a sensibleresult.Both properties are losely related to onformal invariane. This is easilyexplained for the trae property. Take the world-sheet of the open string tobe the disk. Open string vertex operators are inserted on the boundary andthus orrelation funtions have to be invariant under yli permutations ofthe operator insertions. In fat the orrelators have to be invariant under theonformal Killing group of the disk, whih is SL(2; R ). Nevertheless we an-not expet onformal invariane to hold, if we do not impose the restritionson the spae-time bakground �elds arising from the beta funtions. Thereare, however, some subtleties to be taken are of. First of all, if one insiststo desribe orrelation funtions in terms of the generalized star produt(2.4.45) one has either to deal with the logarithmi divergenes, whih omefrom the G�� term of the boundary propagator (2.4.41), by an appropriaterenormalization proedure or one has to onsider a ertain deoupling limit,similar to that of Seiberg and Witten. The seond solution is de�nitely theless involved way, but it is not quite lear in whih sense the beta funtionsshould be interpreted in a �eld theory limit of �0 ! 0. On the other hand,studying the problem of renormalization in this ontext is an interestingquestion by itself. Thus we plan to investigate this topi in future work.



Chapter 3
Charaterization of themodels
3.1 The ohomologial problemAfter exploring the playground provided by string theory we turn to thehard fats of the BRST ohomologial analysis of superstring models. Thisanalysis will be arried out in the framework of the NSR formulation [31{33℄ with loal (1,1) supersymmetry [34, 35℄ inluding an arbitrary number ofabelian gauge �elds. The lass of models under onsideration is quite generalsine it is haraterized only by requirements on the �eld ontent and thegauge symmetries. The �eld ontent is given by the omponent �elds of threetypes of supersymmetry multiplets: the 2d supergravity multiplet, `mattermultiplets' ontaining the `target spae oordinates', and abelian gauge �eldmultiplets. The number of matter multiplets and gauge �eld multiplets isnot �xed. Thus our results apply to any target spae dimension (1,2, : : :) and an arbitrary number (0,1, : : : ) of abelian world-sheet gauge �elds.The supersymmetry transformations are obtained from an analysis of theBianhi identities of 2d supergravity in presene of abelian gauge �elds.Before starting with the tehnial part let us summarize some basi fatsabout the BRST ohomology we are going to analyze. Here and through-out this thesis H(s) denotes the ohomology of the BRST di�erential in thespae of loal funtions, whih neither depend expliitly on the world-sheetoordinates nor on the world-sheet di�erentials, but only on the �elds, anti-�elds and their derivatives. This ohomology is the most important one forthe models under study beause the other loal BRST ohomology groupsan be easily derived from it. This is due to the invariane of the modelsunder world-sheet di�eomorphisms, owing to a general property of di�eo-morphism invariant theories disussed in detail in setions 5 and 6 of [79℄(see also [80{82℄).In partiular, H(s) yields diretly the ohomology in form-degree 2 of s
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modulo the \world-sheet exterior derivative" d. 1 This ohomology is themost relevant one for physial appliations and denoted by Hg;2(sjd), whereg spei�es the ghost number setor. Coyles of Hg;2(sjd) are denoted by!g;2 and the oyle ondition iss!g;2 + d!g+1;1 = 0; (3.1.1)where !g+1;1 is some loal 1-form with ghost number g+1. !g;2 is a obound-ary inHg;2(sjd) if !g;2 = s!g�1;2+d!g;1 for some loal forms !g�1;2 and !g;1.Hg;2(sjd) is related to H(s) through the desent equations as explained in[79{82℄. The physially interesting ohomology groups Hg;2(sjd) are thosewith ghost numbers g < 2: H�1;2(sjd) yields the nontrivial Noether urrentsand global symmetries [83℄, H0;2(sjd) andH1;2(sjd) determine the onsistentdeformations [85℄, bakground harges [41℄ and andidate gauge anomalies(see, e.g., [86℄). The orresponding ohomology groups of s are Hg(s) withg < 4. These will be the objets of interest in the remainder of this thesis.
3.2 Field ontent and gauge symmetriesThe �eld ontent of the models we are going to study is given by the su-pergravity multiplet onsisting of the vielbein e am , the gravitino ��m and anauxiliary salar �eld S.2 Furthermore we onsider a set of salar multipetsfXM ;  M� ; FMg orresponding to the string \target spae oordinates" andtheir superpartners and a set of abelian gauge multiplets fAim; �i�; �ig. OnMinkowskian world-sheets all �elds are real and the fermions are Majorana-Weyl spinors. The number of salar multiplets and gauge multiplets isnot spei�ed, i.e. our approah overs any number of suh �elds. Asgauge symmetries we impose world-sheet di�eomorphisms, loal 2d Lorentztransformations, Weyl and super-Weyl transformations and of ourse loal(1,1) world-sheet supersymmetry. Furthermore we require invariane underabelian gauge transformations of the Aim and under arbitrary loal shifts ofthe auxiliary �eld S. The gauge symmetries entail the orresponding ghost�elds, whih �xes the �eld ontent to�A = fe am ; � �m ; S;XM ;  M� ; FM ; Aim; �i�; �i; �m; ��; Cab; CW ; ��;W; ig;where �m denote the world sheet di�eomorphism ghosts, �� are the super-symmetry ghosts and Cab is the Lorentz ghost. CW and �� are the Weyl andsuper-Weyl ghosts, respetively. i are the ghosts assoiated with the U(1)transformations of the gauge �elds and W denotes the ghost orrespondingto the loal shifts of the auxiliary �eld S. The gauge transformation of the1Atually d is de�ned on the jet spae of the �elds and anti�elds [30℄.2m; a; � denote 2d world-sheet, Lorentz and spinor indies, respetively.
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supergravity multiplet written as BRST transformations arese am = �n�ne am + (�m�n)e an � 2i��� �m (aC)�� +C ab e bm + CW e ams� �m = �n�n� �m + (�m�n)� �n +rm�� � 14 ��e amS(a)�� + 12 CW� �m+i��(m) �� � 14 Cab� �m "ab(�) ��sS = �n�nS � CWS +W�4�(�C)�"nmrn� �m + i �(mC)�� �m S; (3.2.2)where C�� is the harge onjugation matrix satisfying �(a)T = C�1(a)C.� is de�ned through ab = �ab1l + "ab� and "01 = "10 = 1. rm denotesthe Lorentz ovariant derivativerm = �m � 12 ! abm labin terms of the Lorentz generator lab and the spin onnetion! abm = EanEbk(![mn℄k � ![nk℄m + ![km℄n)![mn℄k = ekd�[ne dm℄ � i�nk�m; E ma e bm = Æ ba : (3.2.3)The BRST transformations of the salar multiplets readsXM = �m�mXM + �� M�s M� = �m�m M� � i��(mC)��(�mXM � � m M ) + ��C��FM+14 Cab"ab(�) ��  M� � 12 CW M�sFM = �m�mFM + ��(m) �� frm M� + i� m (nC)�(�nXM � � Æn  MÆ )�� mC�FMg �CWFM : (3.2.4)The BRST transformations of the U(1) multiplets ares�i = �n�n�i + ��(�) �� �i� �CW�is�i� = �n�n�i� + ���i(�C)��"mn(�mAin + �mn�i � i�n�C�m�i)�i(�mC)��(�m�i � �m��i) + i(�C)��S�i�+14 Cab"ab(�) � �i + 2��(�C)���i � 32 CW�i�sAim = �n�nAim + (�m�n)Ain + �mi�2i ��� �m (�C)���i � ��(m) �� �i�: (3.2.5)These transformations were obtained by analyzing the 2d supergravity alge-bra in presene of the salar matter and gauge multiplets [91℄ analogouslyto the superspae analysis of [92℄. A short summary of the analysis is givenin appendix B. In the supergravity setor we used the onstraintsT��a = 2i(aC)��; Tab = T�� = 0 (3.2.6)
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and in the U(1) setor F i�� = 2i(�C)���i: (3.2.7)All onstraints are onventional, i.e., an be ahieved by rede�nitions of theonnetions. The transformations of the ghosts are suh that the BRSTdi�erential s squares to zero,s�n = �m�m�n + i����(nC)��s�� = �n�n�� � i���(mC)�� �m � 14 Cab��"ab(�) �� + 12 CW ��sCab = �m�mCab � i4 ����S(�C)��"ab � i����(mC)��! abm�2����(�C)��"absCW = �n�nCW + 2����s�� = �n�n�� � 14 Cab��"ab(�) �� + i��(n) �� �12 �nCW � �(�nC)��12 CW �� + ��WsW = �n�nW � 4i��(mC)�� �rm�� � 14 � �mW � i2 � m (n) � (�nCW )��4��� �m (mnC)���(�nC) � CWWsi = �m�mi + i����(�C)���i � i����(mC)��Aim: (3.2.8)We remark that the use of Weyl, super-Weyl and Lorentz transformations, aswell as the shift symmetry assoiated with the auxiliary �eld S are artefatsof the formulation and disappear in an equivalent formulation based ona Beltrami parametrization of the world-sheet zweibein (see setions 3.3and 4). Of ourse we ould have used the Beltrami approah from thevery beginning, but we deided to start from the more familiar formulationpresented above.
3.3 Superonformal tensor alulusThe �rst part of our ohomologial analysis onsists in the onstrutionof a suitable \basis" for the �elds and their derivatives (more preisely:suitable oordinates of the jet spae assoiated with the �elds). The goal isto �nd a basis fu`; v`; wIg with as many s-doublets (u`; v`) as possible andomplementary (loal) variables wI suh that swI an be expressed solelyin terms of the w's, i.e., su` = v`; swI = rI(w): (3.3.9)On general grounds, suh a basis is related to a tensor alulus [82, 93, 94℄.In the present ase the tensor alulus is a superonformal one, generalizingthe onformal tensor alulus in bosoni string models found in [40℄ (seealso [39℄). The w's with ghost number 1 are spei� ghost variables orre-sponding to the superonformal algebra, the w's with ghost number 0 are\superonformal tensor �elds" on whih this algebra is represented.
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3.3.1 Super-Beltrami parametrizationThe superonformal struture of the models under onsideration is relatedto the supersymmetri generalization of the so-alled Beltrami parametriza-tion [95, 96℄. Beltrami di�erentials parametrize onformal lasses of 2d met-ris, and this makes them natural quantities to be used as basi variables inthe present ontext. Sine Beltrami di�erentials hange only under world-sheet reparametrizations but not under Weyl or Lorentz transformations,their use leads to a simpler formulation of the models under study (f. re-marks at the end of setion 3.2, and in setion 4). In the following we hoosea Eulidean notation and parametrize the worldsheet with independent vari-ables z and �z rather than with light one oordinates, beause this simpli�esthe notation and avoids some fators of i.3As it is not hard to guess the supersymmetri generalization of the Bel-trami parametrization involves in addition to the bosoni Beltrami di�er-ential � a fermioni partner �, the Beltramino. The starting point is theparametrization of the vielbeinez = (dz + d�z� z�z )e zze�z = (d�z + dz� �zz )e �z�z : (3.3.10)The oeÆients � z�z and � �zz are the Beltrami di�erentials� := � z�z = e z�ze zz ;�� := � �zz = e �zze �z�z ; (3.3.11)whereas the fators e zz and e �z�z are referred to as onformal fators. Oneshould note that the Beltrami di�erentials transform under di�eomorphismsbut do not hange under Weyl or Lorentz transformations. The latter \stru-ture group transformations" are arried solely by the onformal fators whihform s-doublets (u`; v`) with ghost variables substituting (in the new basis)for the Lorentz ghost and the Weyl ghost.The fermioni superpartners of the Beltrami di�erentials are suitableombinations of the gravitino �elds� := q 8e zz �� 2�z � �� 2z ��� := q 8e �z�z �� 1z � ��� 1�z � : (3.3.12)The Beltraminos are also invariant under struture group transformations.Espeially they do not hange under super-Weyl transformations. Again one3Note that reality onditions of spinors are subtle after Wik rotation to Eulideanspae: In our left-right symmetri ase of (1,1) supersymmetry we ould de�ne ( )� =� and work with manifestly real ations, but obviously this would not be possible forheteroti theories. This is, however, irrelevant in our algebrai ontext.



Chapter 3. Charaterization of the models 30
an �nd omplementary ombinations of the gravitinos forming s-doubletswith ghost variables that substitute for the super-Weyl ghosts. The fatthat Weyl, Lorentz and super-Weyl ghosts (and not just their derivatives)our in s-doublets as we just desribed reets that Weyl, Lorentz andsuper-Weyl invariane are artefats of the formulation.The Beltrami parametrization involves also a rede�nition of the di�eo-morphism ghosts, sometimes alled the Beltrami ghost �elds. This againhas to be supplemented with a rede�nition of the supersymmetry ghosts.The new ghost variables, whih replae the di�eomorphism ghosts �z and��z and the supersymmetry ghosts �1 and �2 are� := (�z + ���z)�� := (��z + ���z)" := 12 (�̂2 + ��z�); �̂2 :=q 8e zz �2�" := 12 (�̂1 + �z ��); �̂1 :=q 8e �z�z �1 (3.3.13)In terms of the new ghost variables the BRST transformations of \right-moving" and \left-moving" quantities deouple from eah other [95℄,s� = ��� � �� + (��)� � + �"s� = �2�� � 2�� + (��)� "+ ���+ 12 ���s� = ��� � ""s" = ��"� 12 "��; (3.3.14)with analogous transformations for the right movers.3.3.2 Superonformal ghost variables and algebraWe have now paved the road for the onstrution of �eld variables fu`; v`; wIgful�lling (3.3.9). In fat we have already identi�ed some s-doublets (u`; v`),namely the u's given by the onformal fators and their fermioni ounter-parts and the orresponding v's given by ghost �elds substituting in the newbasis for the Weyl, Lorentz and super-Weyl ghosts. Furthermore, the �eldS obviously forms an s-doublet with a ghost �eld substituting for W . Thederivatives of these u's and v's form s-doublets as well. The Beltrami dif-ferentials �; �� and their derivatives are u's too. From (3.3.14) one observesthat s� and s�� ontain derivatives ��� and ��� and of the reparametrizationghosts, respetively. Taking derivatives of these transformations, one seesthat the m-th derivatives of the Beltrami di�erentials pair o� with ghostvariables that substitute in the new basis for all (m + 1)-th derivatives ofthe reparametrization ghosts exept for �m+1� and ��m+1��. Analogously,the s-transformations of the Beltraminos ontain derivatives ��" and ��" ofthe supersymmetry ghosts. Thus the m-th derivatives of � and �� pair o�
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with ghost variables substituting for all (m + 1)-th derivatives of � and ��exept for �m+1" and ��m+1�". We introdue the following notation for thoseghost variables whih do not sit in s-doublets:fCNg = f�p; ��p; "p+12 ; �"p+12 : p = �1; 0; 1; : : : g; (3.3.15)with �p = 1(p+ 1)! �p+1���p = 1(p+ 1)! ��p+1��"p+12 = 1(p+ 1)! �p+1"�"p+12 = 1(p+ 1)! ��p+1�": (3.3.16)These ghost variables ful�ll the requirement imposed in (3.3.9) on w's. In-deed, using (3.3.14), one easily omputes their s-transformations:s�p = �12�q�rf prq + 12"a"bf pab= 12�q�r(r � q)Æpr+q � 12"a"b2Æpa+b (3.3.17)s"a = �12�p"f ap + 12"�pf ap= �"�p �p2 � � Æap+: (3.3.18)The f 's whih our in these transformations are the struture onstants ofa graded ommutator algebra of operators �N to be represented on tensor�elds onstruted of the omponent �elds of the matter and U(1) multiplets,f�Ng = fLp; �Lp; Gp+12 ; �Gp+12 : p = �1; 0; 1; : : : g: (3.3.19)This graded ommutator algebra is nothing but the NS superonformal al-gebra[Lp; Lq℄ = (p� q)Lp+q; fGa; Gbg = 2La+b; [Lp; Ga℄ = �p2 � a�Gp+a;(3.3.20)with the analogous formulas for the �L's and �G's and the usual property thatthe holomorphi and antiholomorphi generators (anti-)ommute,[Lp; �Lq℄ = 0; fGa; �Gbg = 0;[Lp; �Ga℄ = 0; [�Lp; Ga℄ = 0:The representation of this algebra on superonformal tensor �elds, and theexpliit onstrution of these tensor �elds, will be given in the followingsubsetion.
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3.3.3 Superonformal tensor �eldsWe shall now summarize the representation of the algebra (3.3.20) on super-onformal tensor �elds onstruted of the �elds and their derivatives (therepresentation on anti�elds is disussed in setion 5) suh that the BRSTtransformation of these tensor �elds reads4sT = Xp��1��pLp + ��p �Lp + "p+12 Gp+12 + �"p+12 �Gp+12 � T : (3.3.21)
The superonformal tensor �elds orresponding to the �elds XM ,  M� , FMand their derivatives are denoted by XMm;n,  Mm;n, � Mm;n, FMm;n , where thesubsripts take the values (m;n 2 f0; 1; 2; : : : g) and denote the number ofoperations L�1 and �L�1 ating on XM0;0,  M0;0, � M0;0, FM0;0, respetively. L�1and �L�1 will be identi�ed with ovariant derivatives (see below),XM0;0 � XM ;  M0;0 � (e zz =2)12  M2 ; � M0;0 � (e �z�z =2)12  M1 ;FM0;0 � 12 (e zz )12 (e �z�z )12 FM ;XMm;n = (L�1)m(�L�1)nXM0;0 (m;n 2 f0; 1; 2; : : : g) et.The representation on these tensor �elds an be indutively dedued fromthe algebra (3.3.20) using that all operations Lm, �Lm, Ga, �Ga vanish onXM0;0 exept for L�1, �L�1, G�1=2 and �G�1=2, with G�1=2XM0;0 =  M0;0 and�G�1=2XM0;0 = � M0;0 (as an be read o� from sXM ). This gives on XMm;n:

LpXMm;n = ( m!(m�p�1)!XMm�p;n for p < m0 for p � m�LqXMm;n = ( n!(n�q�1)!XMm;n�q for q < n0 for q � nGp+12 XMm;n = ( m!(m�p�1)! Mm�p�1;n for p < m0 for p � m�Gq+12 XMm;n = ( n!(n�q�1)! � Mm;n�q�1 for q < n0 for q � nThe ation on the other �elds is then easily obtained using[Lp; G�12 ℄ = 12 (p+ 1)Gp�12 ; fGp+12 ; G�12 g = 2Lp4T stands for any of these superonformal tensor �elds; �'s and "'s are the ghostvariables (3.3.16).
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and the analogous formulas for �L and �G in (3.3.20). One obtains

Lp Mm;n = ( m!(m�p)! �m� p+ 12 (p+ 1)� Mm�p;n for p � m0 for p > mGp+12  Mm;n = ( m!(m�p�1)!XMm�p;n for p < m0 for p � m�Gq+12  Mm;n = (� n!(n�q�1)!FMm;n�q�1 for q < n0 for q � n�Lq Mm;n = ( n!(n�q�1)! Mm;n�q for q < n0 for q � nLpFMm;n = ( m!(m�p)! �m� p+ 12 (p+ 1)�FMm�p;n for p � m0 for p > mGp+12 FMm;n = ( m!(m�p�1)! � Mm�p;n for p < m0 for p � mand analogous formulas for L's, G's, �L's and �G's ating on � Mm;n, and �L'sand �G's ating on FMm;n.The relation to the �elds and their derivatives is established by identi-fying the operations L�1 and �L�1 with ovariant derivatives D and �D alongthe lines of [82℄,L�1 � D = 11� ���h� � ���� �Xp�0( �Mp �Lp � ��MpLp)
�Xa ( �Aa �Ga � ��AaGa)i�L�1 � �D = 11� ���h�� � �� �Xp�0(MpLp � � �Mp �Lp)
�Xa (AaGa � � �Aa �Ga)i (3.3.22)

where Mp = 1(p+1)! �p+1�; �Mp = 1(p+1)! ��p+1��;Ap+12 = 1(p+1)!2 �p+1�; �Ap+12 = 1(p+1)!2 ��p+1��:One readily heks that these formulas result in loal expressions for thesuperonformal tensor �elds and their s-transformations. Introduing thefollowing notation for the lowest weight superonformal matter �eldsXM � XM0;0 ;  M �  M0;0 ; � M � � M0;0 ; F̂M � FM0;0 ; (3.3.23)
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one gets in partiular the following superovariant derivativesDXM = 11� ���h(� � ����)XM � 12 �� � M + 12 ��� MiD M = 11� ���h(� � ����) M + 12 ��(��) M + 12 ��F̂M + 12 ���DXMi�D M = 11� ���h(�� � ��) M � 12 (��) M � 12 �DXM � 12 ���F̂Mi(3.3.24)and analogous expressions for �DXM , �D � M and D � M . We do not spell outhigher order ovariant derivatives expliitly beause it turns out that they donot ontribute nontrivially to the ohomology. The BRST transformationsof the superonformal tensor �elds are summarized in appendix C.1.The onstrution of the superonformal tensor �elds arising from thegauge multiplets is similar, one one has identi�ed the suitable ghost vari-ables and the lowest order tensor �elds. The gauge �elds Aim and theirsymmetrized derivatives �(m1 : : : �mkAimk+1) (k = 1; 2; : : : ) form s-doubletswith ghost variables that substitute for all the derivatives of the ghosts i.Therefore one expets that only the undi�erentiated ghosts i give rise tow-variables. Promising andidates for these w-variables are ghost variablesCi of the same form as in the purely bosoni ase [39℄,Ci = i + �mAim : (3.3.25)The s-transformations of the gauge �elds, written in terms of Ci, and of theCi themselves readsAim = �n(�nAim � �mAin) + �mCi � ��� �mF i�� � ��e amF ia�sCi = �m�n(�mAin � �nAim) + 12 ����F i��+�m��� �mF i�� + �m��F im� (3.3.26)where we used notation of appendix B. Sine we expet Ci to ount amongthe w's, its s-transformation should involve only w's again, see (3.3.9). Thissuggests a strategy to determine the superonformal tensor �elds orre-sponding to the undi�erentiated �elds �i, �i� and to the �eld strengthsof Aim: one tries to rewrite sCi in (3.3.26) in terms of the ghost variables(3.3.16) and to read o� from the result the sought superonformal tensor�elds. This strategy turns out to be suessful; one obtainssCi = ���F i0;0 + ��"�i0;0 + ��"��i0;0 + "�"�i0;0
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where �i0;0 = pe zz e �z�z �i�i0;0 = q e �z�z2 ��e zz �i2 + �2z�i���i0;0 = q e zz2 �e �z�z �i1 + �1�z�i�F i0;0 = 11� ����12 "mn(�mAin � �nAim)+12 ����i � 12 �����i � 14 ����i�: (3.3.27)An expliit omputation shows that the s-transformations of these quantitiesare indeed of the desired form (3.3.21), with�i0;0 = G�12 �i0;0; ��i = �G�12 �i0;0; F i0;0 = �G�12 G�12 �i0;0: (3.3.28)It is now straightforward to onstrut, along the previous lines, variables�im;n, �im;n, ��im;n, F im;n on whih the algebra (3.3.20) is represented and(3.3.21) and (3.3.22) hold. We do not spell out these tensor �elds (with m orn di�erent from 0) expliitly beause it turns out that they do not ontributenontrivially to the ohomology. The resulting BRST transformations aresummarized in appendix C.1 too.We introdue the following notation for the lowest order (i.e. lowestweight, see below) superonformal tensor �elds arising from the gauge mul-tiplet: �̂i � �i0;0 ; �i � �i0;0 ; ��i � ��i0;0 ; F i � F i0;0 : (3.3.29)Again tensor �elds of higher order will be denoted by D�̂i, �D�̂i, D �D�̂i et.but as already stated above their expliit form will not be needed.
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Ation
We shall now determine the most general ation for the �eld ontent andgauge transformations spei�ed in setion 3.2. The ation has vanishingghost number and is independent of anti�elds. Furthermore the requirementthat the ation be gauge invariant translates into BRST invariane up tosurfae terms. The integrands of the world-sheet ations we are looking forare thus the anti�eld independent solutions !0;2 of equation (3.1.1). Theyare related through the desent equations to the solutions ofs! = 0; ! 6= s!̂;gh (!) = 2; agh (!) = agh (!̂) = 0 (4.0.1)where gh is the ghost number and agh is the anti�eld number (=\antighostnumber", see setion 5 for the de�nition). In the previous setion we haveonstruted a basis for the �elds and their derivatives satisfying the require-ments of (3.3.9). By standard arguments this implies that ! and !̂ anbe assumed to depend only on the wI , i.e., on superonformal tensor andghost �elds introdued in setion 3.3.1 Furthermore we an restrit the in-vestigation to funtions ! and !̂ with vanishing \onformal weights" by anargument used already in [39, 40℄: we extend the de�nition of L0 and �L0 toall w's (inluding the ghost variables) byns ; ��(��) owI = L0wI ; ns ; ��(����) owI = �L0wI : (4.0.2)
Hene, in the spae of loal funtions of the w's the derivatives with respetto �� and ���� are ontrating homotopies for L0 and �L0, respetively, andthe ohomology an be nontrivial only in the intersetion of the kernels ofL0 and �L0.1The u's and v's ontribute only \topologially" via the de Rham ohomology of thezweibein manifold to the s-ohomology, f. theorem 5.1 of [79℄. In partiular they do notontribute nontrivially to the solutions of (4.0.1).

36
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All w's are eigenfuntions of L0 and �L0 with the eigenvalues being their\onformal weights". The only wI with negative onformal weights are theundi�erentiated di�eomorphism ghosts �; �� and the undi�erentiated super-symmetry ghosts "; �"; their onformal weights are (�1; 0), (0;�1), (�1=2; 0)and (0;�1=2), respetively [here (a; b) are the eigenvalues of (L0; �L0)℄. Theonly superonformal tensor �elds with vanishing onformal weights are theundi�erentiated XM . These properties simplify the analysis enormously.Our strategy for �nding the solutions to (4.0.1) will be based on anexpansion in supersymmetry ghosts

! = �kXk=0!k ; (N" +N�")!k = k!ks = s2 + s1 + s0 ; [N" +N�"; sk℄ = ksk; (4.0.3)where we have introdued the ounting operator N" for the susy ghost " andall its derivatives N" =Xn�0(�n") ��(�n") (4.0.4)
and analogously N�" ounts �" and derivatives thereof.2 One observes that s2is the simplest piee in the above deomposition of s. It ats nontriviallyonly on the reparametrization ghosts �, ��, derivatives thereof and on Ci,s2� = �"" ; s2�� = ��"�" ; s2Ci = "�"�̂i :We shall base the investigation on the ohomology of s2. The oyle on-dition s! = 0 deomposes intos2!�k = 0; s1!�k + s2!�k�1 = 0; : : : (4.0.5)Due to the requirement of ghost number 2 and anti�eld number 0 in (4.0.1),one is left with 0 � �k � 2. The three possible values for �k are now analysedase by ase.�k=0: The general form of !�0 aording to the ondition of vanishing onfor-mal weight is!�0 = ���A(1;1) + ���A(1;0) + �� ����A(0;1) + � ����B(1;0) + ����B(0;1)+��2�A(0;0) + �� ��2�� �A(0;0) + �� ����B(0;0) + CiCjDij(0;0)+�CiDi(1;0) + ��CiDi(0;1) + ��CiDi(0;0) + ����Ci �Di(0;0);2We note that the expansion (4.0.3) holds beause we are studying the anti�eld in-dependent ohomology here. The analogous expansion in presene of anti�elds is moreinvolved; in fat, it an even involve in�nitely many terms. Therefore the strategy appliedhere to determine the ation is not pratiable in the same way for analysing the full(anti�eld dependent) ohomology later.
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where the A's, B's and D's do not depend on the ghosts and the subsripts(m;n) indiate their onformal weights. It is easy to verify expliitly thats2!�0 = 0 , !�0 = 0: (4.0.6)�k=1. The general form of !�1 is!�1 = �"A(3=2;0) + ���"A(0;3=2) + ��"A(1;1=2) + ��"A(1=2;1)+��"A(1=2;0) + �� ���"A(0;1=2) + "��B(1=2;0) + �"����B(0;1=2)+"����C(1=2;0) + �"��C(0;1=2) + "CiDi(1=2;0) + �"CiDi(0;1=2);where again the A's, B's and D's do not depend on the ghosts and theironformal weights are indiated in brakets. A straightforward omputationshows that s2!�1 = 0 imposesA(3=2;0) = A(0;3=2) = C(1=2;0) = C(0;1=2) = 0A(1;1=2) = �̂iDi(1=2;0) ; A(1=2;1) = �̂iDi(0;1=2)A(1=2;0) = �2B(1=2;0) ; A(0;1=2) = �2B(0;1=2)The onformal weights (1=2; 0) and (0; 1=2) implyDi(1=2;0) =  MDMi(X); Di(0;1=2) = � M �DMi(X)B(1=2;0) =  MBM (X); B(0;1=2) = � M �BM (X)where we indiated that the remaining B's and D's are arbitrary funtionsof the X's. Hene, we get!�1 = (��"�̂i + "Ci) MDMi(X) + (��"�̂i + �"Ci) � M �DMi(X)+("�� � 2��") MBM (X) + (�"���� � 2�� ���") � M �BM (X):The seond equation (4.0.5) requires that s1!�1 be s2-exat. This imposesBM = �BM = 0; DMi = �DMi ; �N �DiM = �MDiN, BM = �BM = 0; DMi = �DMi = �MDi(X)where we have introdued the notation�M = ��XM :Furthermore, the seond equation (4.0.5) uniquely determines the funtion!0, whih orresponds to !�1 [the uniqueness follows from (4.0.6)℄. It turnsout that the other equations (4.0.5) do not impose further onditions in thisase, but are automatially ful�lled. Altogether we �nd!�1 = [(��"�̂i + "Ci) M + (��"�̂i + �"Ci) � M ℄�MDi(X) (4.0.7)!0 = ����[ M ��i � � M�i + F̂M �̂i +  M � N �̂i�N ℄�MDi(X)+Ci(�DXM + �� �DXM )�MDi(X) (4.0.8)
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Using the freedom to add a oboundary we obtain by adding s[CiDi(X)℄ to!�1 + !0 the equivalent solution���F iDi(X)� ���( M ��i � � M�i + F̂M �̂i +  M � N �̂i�N )�MDi(X)+��"(�i + �̂i M�M)Di(X) + ��"(��i + �̂i � M�M )Di(X)+"�"�̂iDi(X): (4.0.9)�k=2. The general form of !�2 is given by!�2 = ""A(1;0) + �"�"A(0;1) + "�"A(1=2;1=2) + "�"B(X) + �"���" �B(X);where due to the indiated onformal weights one hasA(1;0) = DXMAM (X) +  M NAMN (X)A(0;1) = �DXM �AM (X) + � M � N �AMN (X)A(1=2;1=2) = F̂MHM (X) + �̂iHi(X) +  M � NHMN (X)We an simplify !�2 using the freedom to subtrat s-exat piees from ans-oyle. In partiular, we an therefore neglet piees in !�2 whih are ofthe form s1!̂1 + s2!̂0 (i.e. we onsider !0 = ! � s(!̂1 + !̂0) where ! is ans-oyle arising from !�2). Choosing!̂1 = 12 (�" � M � " M)HM (X)we get s1!̂1 = "�"F̂MHM (X) + 12 (�"�" �DXM � ""DXM )HM (X)�12 (�" � M � " M)(�" � N + " N )�NHM (X):This shows that by subtrating s1!̂1 from !�2, we an remove the pieeF̂MHM (X) from A(1=2;1=2), thereby rede�ning A(1;0), A(0;1) and HMN (X).Furthermore, we have""A(1;0) + �"�"A(0;1) + "�"�̂iHi(X) + "�"B(X) + �"���" �B(X) = s2!̂0;!̂0 = ��A(1;0) � ��A(0;1) + CiHi(X)� 12 ��B(X)� 12 ���� �B(X):Hene, we an also remove the piees ontaining A(1;0), A(0;1), Hi(X), B(X)and �B(X) from !�2. Without loss of generality, we an thus restrit theinvestigation of the ase �k = 2 to!�2 = "�" M � NHMN (X): (4.0.10)Obviously !�2 satis�es the �rst eqation (4.0.5), sine it does not involve �,�� or Ci. One now has to analyze the remaining equations (4.0.5). It is
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straightforward to ompute s1!�2 and to verify that the seond equation(4.0.5) is solved by!1 = ��"[DXM � N �  M F̂N +  M � N K�K ℄HMN (X)���"[ M �DXN + F̂M � N �  M � N � K�K ℄HMN (X): (4.0.11)The third eq. (4.0.5) requires that s0!�2 + s1!1 be s2-exat. This turns outto be the ase (for arbitrary HMN ) and determines !0. One �nds!0 = ���
;
 = (DXM �DXN + F̂M F̂N +D � M � N �  M �D N)HMN (X)�(DXM � N � K + �DXN M K)�KHMN (X)+(F̂M K � N � F̂K M � N + F̂N M � K)�KHMN (X)+ M K � N � L�K�LHMN (X): (4.0.12)The remaining two equations (4.0.5) are also satis�ed and the funtionsHMN (X) are ompletely arbitrary. The symmetrized part H(MN)(X) andthe antisymmetrized part H[MN ℄(X) give rise to the \target spae metri"GMN and the \Kalb-Ramond �eld" BMN , respetively. Despite of our stringinspired terminology we stress that there are no onditions imposed on GMNand BMN apart from their symmetry properties. In partiular the \metri"GMN need not be invertible (in setion 7.1 we shall impose that a submatrixof GMN be invertible). BMN is determined only up toH[MN ℄(X)! H[MN ℄(X) + �[MBN ℄(X)where BM (X) are arbitrary funtions. This originates from the fat thatthe s-oyle ! = !�2 + !1 + !0 remains form invariant under! ! ! + s[(" M + �" � M + �DXM + �� �DXM )BM (X) + : : : ℄where the dots stand for terms at least bilinear in the fermions. Changing !by suh s-exat piees results in the above hange of H[MN ℄(X) and modi�esthe Lagrangian by a total derivative.
4.1 ResultWe onlude that up to rede�nitions by oboundary terms, the general solu-tion of (4.0.1) is given by the sum of the funtions (4.0.9){(4.0.12). The so-lution involves arbitrary funtions Di(X) and HMN (X), whih parametrizethe various possible ations. The antisymmetri part of HMN (X) is de-termined only up to rede�nitions of the form HMN (X) ! HMN (X) +�[MBN ℄(X), whih modify the Lagrangian only by total derivatives. The
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funtions Di(X) are determined up to arbitrary onstants, sine only deriva-tives thereof enter in the equivalent solution (4.0.7) and (4.0.8).3 Owing togeneral properties of desent equations in di�eomorphism invariant theories[79{82℄, the integrand of the ation is obtained from the solution of (4.0.1)simply by substituting world-sheet di�erentials for di�eomorphism ghosts�m. The resulting Lagrangian, written in terms of the Beltrami �elds, is ageneralized version of the one found in [95℄:L = LMatter + LU1LMatter = 11���� �(� � ����)XM (�� � ��)XN (GMN +BMN )� �(� � ����)XM� N + (�� � ��)XM �� � N�GMN�12 ��� M � NGMN�� (1� ���)F̂M F̂NGMN� � � N (� � ����) � M +  N(�� � ��) M�GMN� � M � N(� � ����)XK(�KNM � 12 HKNM )� M N(�� � ��)XK(�KNM + 12 HKNM )+16 (�� � M � N � K � � M N K)HKMN+(1� ���)F̂M K � N (2�KNM �HKNM )+12 (1� ���) M K � N � LRKMLNLU1 = F iDi � (1� ���)[ M(��i � 12 11���� ����̂i)� � M(�i � 12 11���� ����̂i)+F̂M �̂i +  M � N�N ℄�MDi (4.1.13)where we have introdued the following notationsGMN := H(MN)(X) BMN := H[MN ℄(X)Di := Di(X) F i := "mn(�mAin � �nAim)
KNM := �KHMN (X)� �MHKN (X) + �NHKM (X)= 2�KNM �HKNMRKLMN := �M�[KHL℄N (X)� �N�[KHL℄M (X)The \target spae urvature" RKLMN we have introdued is of ourse notthe Riemannian one. The Riemannian urvature appears after eliminatingthe auxiliary �elds from the ation.Of ourse, the ation an be also written in terms of the original �eldsintrodued in setion 3.2. One obtains from the matter part the well known3A onstant in Di yields a topologial term in the ation proportional to the Chernlass of the gauge bundle.
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superstring ation inluding the B-�eld bakground [37℄L=e = 12�mXM�nXN (�hmnGMN + "mnBMN ) + i2 Mm�m NGMN+12FMFNGMN + �knk( N�nXM � 14C�n M N)GMN+(12FM K N � i Nm M�mXK)�NKM+14(FM K� N � i Nm� M�mXK)HNKM� i12�mnm M Nn� KHMNK+ 116 M (1l + �) N K(1l + �) LRKMLN+"mnDi�mAin + i4 M N�i�N�MDi+12(i N��i � iFN�i + �mm N�i)�NDi: (4.1.14)Thus the ohomologial analysis shows that in the absene of gauge multi-plets the Lagrangian derived in [37℄ is in fat unique up to total derivativesand hoies of the bakground �elds. It should be kept in mind, however,that this uniqueness is tied to the gauge transformations spei�ed in se-tion 3.2. It gets lost when one allows that the gauge transformations getdeformed. This deformation problem an be analysed by BRST ohomo-logial means too, but then the relevant ohomologial problem inludesthe anti�elds [85℄. The results whih we shall derive in the seond part ofthis work imply that the nontrivial deformations orrespond one-to-one tothe deformations of the bosoni string models. All deformations of bosonistring models without world-sheet gauge �elds were derived in [41℄. We anthus onlude that the nontrivial deformations of the standard superstringworld-sheet ation [37℄ and its gauge transformations are supersymmetrigeneralizations of the ations and gauge transformations given in [41℄. Afull analysis (to all orders in the deformation parameters) of the deforma-tion problem for bosoni models with world-sheet gauge �elds is missing sofar, but a omplete lassi�ation of the �rst order deformations was givenin [39℄. The latter results extend thus to the superstring models too.



Chapter 5
Anti�elds
To proeed with our analysis we have to bring the anti�elds into the game.Aording to the priniples of the �eld-anti�eld formalism [25, 26, 28, 29℄to eah �eld a orresponding anti�eld ��A is introdued with ghost numberand statistisgh (��A) = �gh (�A)� 1; �(��A) = �(�A) + 1 (mod 2);suh that the statistis of the anti�elds is opposite to that of the orrespond-ing �elds. It is useful to introdue still another grading into the algebra of�elds and anti�elds, namely the already mentioned anti�eld (or antighost)number. On all the �elds (inluding the ghosts) the anti�eld number is de-�ned to be zero, i.e., agh (�A) = 0. On the anti�elds the anti�eld numberequals minus the ghost number, agh (��A) = �gh (��A).The antibraket for two arbitrary funtions of the �elds �A and anti�elds��A is de�ned as (F;G) = Z �ÆRFÆ�A ÆLGÆ��A � ÆRFÆ��A ÆLGÆ�A� :Thus the antibraket has odd statistis and arries ghost number one. TheBRST transformations of the anti�elds are generated via the antibraket bythe proper solution S to the lassial master equation (S;S) = 0 aordingto s��A = (S;��A) = ÆRSÆ�A :Owing to the o�-shell losure of the gauge algebra S simply readsS = S0 � Z (s�A)��A;where S0 is the lassial ation and s�A are the BRST transformationsgiven in setion 3.2. It is useful to deompose the BRST di�erential aord-ing to the grading with respet to the anti�eld number s =Pk��1 sk with43
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agh (sk) = k (this deomposition should not be onfused with the one in(4.0.3) even though we use the same notation). The deomposition startswith the �eld theoretial Koszul-Tate di�erential Æ � s�1 and the di�er-ential  � s0. Contrary to the bosoni ase the deomposition does notterminate at this level. An additional part s1 raising the anti�eld numberby one unit shows up reeting �eld dependent gauge transformations in theommutator of supersymmetry transformations. The Koszul-Tate di�eren-tial ats nontrivially only on the anti�elds and implements the equations ofmotion. Hene, the knowlegde of the lassial ation is neessary to deter-mine the Æ-transformations of the anti�elds. However, the ation of the partof the BRST di�erential leaving the anti�eld number unhanged is deter-mined solely by the imposed gauge transformations. The -transformationsof the anti�elds orresponding to the matter �elds and the U(1) multipletreadX�M = �m(�mX�M)� i�m(��(mC)�� ��M )�12 �m(��(nmC)����nF �M) ��M = �m(�m ��M ) + ��X�M � i�(mC)���m ��M � i2 �m(��(m) �� F �M )� i8 ��(m�) �� ! abm "abF �M � 12 ��� Æm(mnC)�Æ� �n F �M�14 Cab"ab(�) ��  ��M + 12 CW ��MF �M = �m(�mF �M )� ��C�� ��M � i2 ��(mC)����mF �M + CWF �MA�mi = �n(�nA�mi )� (�n�m)A�ni+i�n(��(�C)��"nm���i )��i = �m(�m��i )� ��(�C)��"mn�n(�C)�m���i�i�m(��(�mC)�����i � i2 ��(�C)��S���i+2i����m(�C)��A�mi � 2�(�C)����i +CW��i���i = �m(�m���i )� ��(m) �� A�mi + ��(�) �� ��i�i��(�mC)�(��)���i � i�Æ(�C)Æ�"kl ��k(l) � ����i�14 Cab"ab(�) �� ���i + 32 CW���i : (5.0.1)s1 ats nontrivially on A�mi , ��i and on the anti�elds for the gravitationalmultiplet ��m� , e�ma and S�. In partiular one �ndss1A�mi = i����(mC)���i ; s1��i = �i����(�C)���i ;where �i denote the anti�elds orresponding to U(1) ghosts.The expliit form of the BRST transformations of the anti�elds for thegravitational multiplet and the ghosts will not be needed in the following.In setion 7.2 it is shown that they do not ontribute nontrivially to theohomology, at least at ghost number g < 4.
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5.1 Superonformal anti�eldsWe shall now identify \superonformal anti�elds" whose -transformationstake the same form as the s-transformations of superonformal tensor �eldsin (3.3.21). The identi�ation of superonformal anti�elds is somewhat moreinvolved than the proedure for the �elds. From experiene with the bosoniase one expets reasonable andidates to arise from rede�nitions of the form��A ! 11���� ��A, aounting for the fat that anti�elds transform under dif-feomorphisms as tensor densities rather than tensors. In addition we have totake are of their \struture group transformations", i.e., of their onformalweights, their Lorentz transformations and super-Weyl transformations1.Yet this does not suÆe to obtain -transformations of the desired form.It turns out that the anti�elds have to be mixed among themselves. Theseonsiderations lead us to the following de�nitions of the lowest order matteranti�eldsF̂ �M � F �M(0;0) = 11� ���(e zz e �z�z )�12 F �M ̂�M �  �M(0;0) = ip2 11� ���(e zz )�12  �M 2 + ���1� ���F̂ �M�̂ �M � � �M(0;0) = ip2 11� ���(e �z�z )�12  �M 1 � ���1� ���F̂ �MX̂�M � X�M(0;0) = 11� ���X�M + ���1� ��� ̂�M + ���1� ��� �̂ �M + ���1� ���F̂ �M :Their -transformations are indeed of the desired form (3.3.21) and readexpliitlyF̂ �M = (�D + �� �D)F̂ �M � " �̂ �M + �" ̂�M + 12 ((��) + (����))F̂ �M ̂�M = (�D + �� �D) ̂�M + "X̂�M + �" �DF̂ �M + (12 (��) + (����)) ̂�M + (���")F̂ �M �̂ �M = (�D + �� �D) �̂ �M + �"X̂�M � "DF̂ �M + ((��) + 12 (����)) �̂ �M � (�")F̂ �MX̂�M = (�D + �� �D)X̂�M + "D ̂�M + �" �D �̂ �M + ((��) + (����))X̂�M+(�") ̂�M + (���") �̂ �M : (5.1.2)The expressions above are in fat already omplete, sine s1 does not atnontrivially on the matter anti�elds. Analogously to the situation of thesuperonformal tensor �elds the algebra (3.3.20) is represented on these�elds and their derivatives, whih we denote byF �M(m;n) = (L�1)m(�L�1)nF̂ �M � (D)m( �D)nF̂ �M ;1Anti�elds transform \ontragradiently" under struture group transformations asompared to the orresponding �elds.
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et, where the operators L�1 and �L�1 are identi�ed with superovariantderivatives as in (3.3.22). In partiular one �nds on the anti�elds withlowest onformal weights the following expressionsDF̂ �M = 11� ����(� � ���� � 12(����)+12 ��(��))F̂ �M � 12 ��� �̂ �M � 12 �� ̂�M��DF̂ �M = 11� ����(�� � �� � 12(��)+12�(����))F̂ �M + 12� �̂ �M + 12��� ̂�M�D ̂�M = 11� ����(� � ���� � (����) + 12 ��(��)) ̂�M�12 ���X̂�M � 12 �� �DF̂ �M � 12(�� ��)F̂ �M��D ̂�M = 11� ����(�� � �� � 12(��) + �(����)) ̂�M+12�X̂�M + 12 ���DF̂ �M + 12 ��(��)F̂ �M�and analogous formulas for D �̂ �M and �D �̂ �M . Again higher order anti�eldswill not be needed.The onstrution of the ovariant anti�elds for the gauge multiplet fol-lows the arguments given above, with the additional task to get rid of thesuper-Weyl transformations. We introdue the rede�nitions�̂�i � ��i(0;0) = � 11� ���(e �z�z )�12 (e zz )�1��2�̂��i � ���i(0;0) = 11� ���(e zz )�12 (e �z�z )�1��1�̂�i � ��i(0;0) = 1p2 11� ���(e zz )�12 (e �z�z )�12 ��i�12 11� ��� ��̂ 2z � ���̂ 2�z � �̂�i � 12 11� ��� ��̂ 1�z � ��̂ 1z � �̂��iÂ�i � A�i(0;0) = 1p2 11� ��� � �A�i + ��A�i �� 11� ��� ����̂�i + ����̂��i��̂A�i � �A�i(0;0) = 1p2 11� ��� �A�i + � �A�i �� 11� ��� ���̂��i + ����̂�i� ;where we have used the shorthand notation for the orretions involvinggravitions �̂ 1z =q 8e �z�z � 1z and �̂ 2z =q 8e zz � 2z with obvious expressions for
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the �z omponents. The -transformations then read�̂�i = (�D + �� �D)�̂�i + 12 ������i + "�̂�i � �" �̂A�i �̂��i = (�D + �� �D)�̂��i + 12 �� �̂��i + �"�̂�i � "Â�i�̂�i = (�D + �� �D)�̂�i + 12 (�� + ����)�̂�i + "D�̂�i + �" �D�̂��iÂ�i = (�D + �� �D)Â�i + ��Â�i + �"D�̂�i � "D�̂��i � �"�̂��i �̂A�i = (�D + �� �D) �̂A�i + ���� �̂A�i + " �D�̂��i � �" �D�̂�i � ���"�̂�i ; (5.1.3)and are indeed of the desired form respeting the requirement (3.3.9). Notethat the ombination of the gravitinos used in the rede�nition of �̂�i trans-forms into the super-Weyl ghost thereby removing the unwanted transfor-mation properties under the super-Weyl symmetry. Again higher order an-ti�elds will not be needed.The expliit form of the superonformal anti�elds given above has al-ready been used to derive the results for the rigid symmetries presentedin [36℄. A omplete list of the BRST transformations (inluding the Koszul-Tate part and the s1-transformations) of the anti�elds needed for the oho-mologial analysis is given in appendix C.2. In the following setions (andalso in the appendies) we have dropped the hats on the superonformalanti�elds, but it is lear from the ontext whih set of variables is meant.



Chapter 6
Rigid Symmetries anddynamial onservation laws
We now turn to the omputation of the anti�eld dependent loal BRSTohomology modulo the world-sheet exterior derivative d at negative ghostnumber Hg;2(sjd), g < 0. As already explained in the introdution theorresponding loal BRST ohomology groups Hg(s) are those with g < 2.They will give us the dynamial onservation laws, rigid symmetries andnontrivial Noether urrents of the models under onsideration. This is astandard result of loal BRST ohomology in the anti�eld formalism [83℄(for a reent review see [30℄). It is not surprising that the loal BRSTohomology enodes also the onstants of motion, sine the Koszul-Tatedi�erential implements the equations of motion expliitly.
6.1 The ohomologial analysis for g < 2The strategy to �nd solutions to s! = 0 is to expand the loal funtionswith ghost number g into parts with de�nite anti�eld number!g = !0g + !1g + : : : :Every suh deomposition neessarily starts with an anti�eld independentpart, sine there are no anti�elds with negative or vanishing anti�eld num-ber. Using the deomposition of the BRST di�erential with respet to theanti�eld number introdued in hapter 5s = Æ +  +�k>0skstarting with the Koszul-Tate di�erential Æ, agh (Æ) = �1 the oyle on-dition s!g deomposes intoÆs0g = 0; !00 + Æ!10 = 0; : : : (6.1.1)

48
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This deomposition is useful, sine every nontrivial solution of s! = 0 isuniquely (up to s-exat terms) haraterized by its anti�eld independentpart !0g . This is a standard statement of homologial perturbation the-ory [28℄ but is intimately tied to the ayliity of the Koszul-Tate di�erential,Hk(Æ) = 0 for k > 0. This again is usually a onsequene of ertain regularityonditions of the equations of motion. One might wonder, if these standardregularity onditions are ful�lled in the present ase and indeed they are not.But fortunately the anti�elds whih do not ful�ll the regularity onditionsdo not ontribute at the ghost numbers relevant for the omputations in thissetion. Thus the deomposition still makes sense in our ontext. This willbe disussed in more detail when the isomorphism between the ohomol-ogy groups of the bosoni models and their supersymmetri ounterparts isestablished.In this setion we determine the solutions up to anti�eld number 1 byonsidering the ondition !00 + Æ!10 = 0: (6.1.2)This will already give us the nontrivial solutions to the Noether urrentsand the rigid symmetries. We will expliitly alulate the orrespondingohomology groups Hg(s), g < 2, for a simpli�ed model, namely under theassumption that the funtions Di oinide with a subset of the oordinate�elds XM = fX�;Dig = fX�; yig. In fat, this is a rather mild assumption,sine it an be ahieved by a target spae oordinate transformation. Wewill make this more expliit in setion 6.2.6.1.1 Solution at g = 0The solutions of the BRST ohomology Hg;2(sjd) at negative ghost num-bers orrespond one-to-one to dynamial loal onservation laws [83℄. Atghost number �2 these are the dynamial onservation laws of seond orderrepresented by on-shell losed (n � k)-forms (n denotes the dimension ofthe manifold), whih are not weakly loally exat.1 The orresponding loalBRST ohomology group is H0(s).As in the omputation of the ation the starting point will be the mostgeneral funtion with ghost number 0 at most linear in the anti�elds. Takinginto aount that the onformal weight has to be zero this reads!0 = !00 + !10!00 = f(XM)!10 = �(A�i f i + ���i Mf iM ) + ��( �A�i �f i + ��i � M �f iM ) + "���i gi + �"��i �gi:1Topologial onservation laws are loally but not globally d-exat.
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Using the freedom of subtrating trivial parts from !0 arising from Æ!2�1and restriting to the ase desribed above, i.e.,��Di = 0; �jDi = Æjione �nds the most general solution to (6.1.2) as!̂0 = f(yi)� ��A�i � �� �A�i � "���i + �"��i � �if: (6.1.3)In fat to extrat the integrand of the solution it is neessary to ompleteit to a full solution of the oyle ondition. This an be done easily byobserving that the form of the solution suggests a dependene on the speialombination of �elds and anti�eldsŷi = yi � �A�i + �� �A�i + "���i � �"��i + ���C�;whih is a BRST singlet, sŷi = 0. Thus any funtion of ŷi is a solutionto the ohomology at ghost number zero and we onlude that there existin�nitely many seond order onservation laws f(ŷi). Here one remark isin order. Expanding the funtion f(ŷi) in anti�eld number one gets up toanti�eld number one (6.1.3). At anti�eld number 2 one gets a term linearin the anti�eld for the U(1) ghost �if(yi)C� and a term quadrati in theanti�elds for the gauge �elds �i�jf(yi)A�j �A�i . In the bosoni ase this isalready the whole story (see setion 7 in [39℄) and gives the desired inte-grand2, but in the supersymmetri ase the ombinations "���i and �"��i havevanishing ghost number and onformal weight. Thus they an ontributeeven nonpolynomially, whih is indeed the ase for arbitrary funtions of ŷi.6.1.2 Solution at g = 1At ghost number 1 the ohomology group H1(s) yields nontrivial Noetherurrents and global (\rigid") symmetries. In partiular, we will obtain thetarget spae isometries of the models under onsideration.The most general loal funtion with ghost number 1 independent ofanti�elds and with vanishing onformal weight is!01 = �A0(1;0) + ��A0(0;1) + ��A0(0;0) + ���� �A0(0;0)+"A0(1=2;0) + �"A0(0;1=2) + CiB0i(0;0)where the A's and B's do not depend on ghosts and anti�elds and thesubsripts (m;n) indiate their onformal weights. The part of !1 withagh (!1) = 1 an be expanded into powers of supersymmetry ghosts!11 = 0!11+ 1!11+ 2!112The integrand has also a physial interpretation. It generates rigid symmetries of ofthe proper solution to the master equation via the antibraket [84℄.
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with 0!11 = ���A1(1;1) + ���A1(1;0) + � ���� �A1(1;0) + ����A1(0;1) + �� ���� �A1(0;1)+�CiB1i(1;0) + ��CiB1i(0;1)1!11 = �"A1(3=2;0) + ���"A1(0;3=2) + ��"A1(1;1=2) + ��"A1(1=2;1)+��"A1(1=2;0) + �� ���"A1(0;1=2) + "��C1(1=2;0) + "���� �C1(1=2;0)+�"��C1(0;1=2) + �"���� �C1(0;1=2) + "CiB1i(1=2;0) + �"Ci �B1i(1=2;0)2!11 = ""C1(1;0) + �"�"C1(0;1) + "�"C1(1=2;1=2)where the A's, B's and C's have anti�eld number 1 as is indiated by the su-persripts. These are all possible ontributions, sine there are no anti�eldswith vanishing onformal weight. Using the freedom to subtrat s-exatpiees s(� ~A1(1;0) + �� ~A1(0;1) + " ~A1(1=2;0) + �" ~A1(0;1=2))we remove the terms ""C1(1;0), �"�"C1(0;1) from 2!11 and the terms ��"A1(1=2;0),�� ���"A1(0;1=2) from 1!11.As in the omputation of the ation the analysis will be based on thedeomposition of the BRST di�erential into de�nite degree with respet tothe supersymmetry ghosts. We expand the part of s with anti�eld number0 in supersymmetry ghosts, i.e. = 0 + 1 + 2:The simplest piee in this deomposition 2 ats nontrivially only on �, �� andCi. In the equations above we have used that 2 !01+Æ 2!11 = 0 immediatelyimplies A0(0;0) = �A0(0;0) = 0;sine there are no anti�eld dependent terms ontaining "�" and �"���" that anompensate their ontributions. Furthermore, we an immediately onludethat there are no mixed terms "���� and �"�� as well as � ���� and ���� in !01.Thus we are left with the following anti�eld dependent terms0!11 = ���A1(1;1) + ���A1(1;0) + �� ���� �A1(0;1)+�CiB1i(1;0) + ��CiB1i(0;1)1!11 = �"A1(3=2;0) + ���"A1(0;3=2) + ��"A1(1;1=2) + ��"A1(1=2;1)+"��C1(1=2;0) + �"���� �C1(0;1=2) + "CiB1i(1=2;0) + �"Ci �B1i(1=2;0)2!11 = "�"C1(1=2;1=2)
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Next we onsider the equation2( 0!01) + 1( 1!01) + Æ ( 2!11) = 0Using for A0(1=2;0) and A0(0;1=2) the expressionsA0(1=2;0) =  MfM (X) A0(0;1=2) = � M �fM (X);we �nd A0(1;0) = DXMfM (X)�  M N�NfM (X)A0(0;1) = �DXM �fM (X)� � M � N�N �fM (X)Furthermore, usingC1(1=2;1=2) = (F �MKM + ��iKi + ��i MKiM + ���i � m �Kim)where we subtrated the trivial part ÆKT (���i��j K̂ij) thereby rede�ning KiMwe �nd that the following equations have to be ful�lledB0i � Æi;MKM = 0�fM � fM + 2GMNKN � ÆM;iKi = 0�M �fN � �NfM +
MNKKK � ÆN;iKiM � Æi;MÆN;n �Kin = 0: (6.1.4)In order to save some writing we have introdued the Kroneker symbolÆM;i, whih should not be onfused with the Koszul-Tate di�erential. It isuseful to introdue the following ombinations of the oeÆient funtions fand �f f+M = fM + �fM f�M = fM � �fM :Then one obtains by symmetrization and antisymmetrization of the lastequation in (6.1.4) the following onditionsLKGMN = �Æi;(NKiM) � Æi;(MÆN);n �Kin + Æi;(N�M)KiLKBMN = �[Mf 0+N ℄ + �[MÆN ℄;iKi � Æi;[NKiM ℄ � Æi;[MÆN ℄;n �KinB0i = Æi;MKMwith LK denoting the usual Lie-derivative along KLKGMN = KK�KGMN + (�MKK)GKN + (�NKK)GMKand where f 0N is given by f 0+N = fN � 2BNKKK :
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From these results it follows thatA1(1;0) = 0 �A1(0;1) = 0C1(1=2;0) = 0 �C1(0;1=2) = 0:Next we turn to ontributions ontaining U(1) ghosts. Using the followingexpressions for the oeÆient funtions ditated by the onformal weightondition B1i(1=2;0) = ���jBji �B1i(0;1=2) = ��j �BjiB1i(1;0) = A�jbji + ���j MbjiM �B1i(0;1) = �A�j�bji + ��j � M�bjiMone �nds �MB0i = (ÆM;j)Bji �MB0i = �(ÆM;j) �Bji�MB0i = (ÆM;b)bji �MB0i = �(ÆM;b)�bji :This implies that B0i (X) is a funtion of the yi's only, B0i (X) = B0i (y).The other terms give only trivial ontributions. Thus one ends up with thefollowing terms in the anti�eld dependent part of the solution0!11 = ���A1(1;1) + �CiB1i(1;0) + ��CiB1i(0;1)1!11 = ��"A1(1;1=2) + ��"A1(1=2;1) + "CiB1i(1=2;0) + �"Ci �B1i(0;1=2;)2!11 = "�"C1(1=2;1=2)where B1a(1;0); B1a(0;1); B1a(1=2;0); B1a(0;1=2;); C1(1=2;1=2) are given in the equationsabove. To determine the omplete solution we make the general ansatz forthe anti�eld dependent part A1(1;1)A1(1;1) = X�MHM(0;0) +  �MHM(1=2;0) + � �MHM(0;1=2) + F �MHM(1=2;1=2) +��iGi(1=2;1=2) + ��iGi(1;1=2) + ���iGi(1=2;1) +A�iGi(0;1) + �A�iGi(1;0) +D��iGi(0;1=2) + �D���iGi(1=2;0) + �DA�iGi(0;0) +D �A�i �Gi(0;0) (6.1.5)where the oeÆient funtions ontained in (6.1.5) are onstrained by their
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onformal weights to be of the formHM(0;0) = HMHM(1=2;0) =  NHNMHM(0;1=2) = � N �HNMHM(1=2;1=2) = FNhNN +  N � KhNKM + �ih MiGi(1=2;1=2) = FNGNi +  N � KGNKi + �jG ijGi(1;1=2) = D � MPMi +DXM � NPMNi +  M N � KPMNKi+FM NQMNi + �j MQMji + �jQ ijGi(1=2;1) = �D M �PMi + �DXM N �PMNi + � M � N K �PMNKi+FM � N �QMNi + �j � M �QMji + ��j �Q ijGi(0;1) = �DXM �RMi + � M � N �RMNiGi(1;0) = DXMRMi +  M NRMNiGi(1=2;0) =  MgMiGi(0;1=2) = � M�gMiGi(0;0) = Gi�Gi(0;0) = �GiWe still have the freedom to remove trivial parts by using the nilpotenyof the Koszul-Tate di�erential. To this end we examine how the oeÆientfuntions are rede�ned under ! ! ! � ÆKT !̂, where!̂ =  �M ���i ĤMi + � �M��i �̂HMi + F �M ���i � NĤNMi + F �M��i N ~̂HNMi+F �MF �NĤ[MN ℄ + F �M��i ~̂HMi + ��i ��j N ĜNij + ��i ���j � N �̂GNij+��i��j Ĝ[ij℄ + ��i��j Ĝ(ij)(1;0) + ���i ���j Ĝ(ij)(0;1) + ��i ���j Ĝij(1=2;1=2)+A�i��j Ĝij(0;1=2) + �A�i ���j Ĝij(1=2;0) +A�i �A�j ~̂Gij(0;0)+D��i��j Ĝij(0;0) + �D���i ���j �̂Gij(0;0) + C�i F i(0;0):Th oeÆient funtions ontained in this expression are onstrained to beof the form Ĝ(ij)(1;0) = DXM ĝM (ij) +  K Lĝ[KL℄(ij)Ĝ(ij)(0;1) = �DXM �̂gM (ij) + � K � L �̂g[KL℄(ij)Ĝij(1=2;1=2) = FN ~̂gNij + �k ~̂gkij +  K � L ~̂gKLijĜij(0;1=2) = � K �̂FKijĜij(1=2;0) =  KF̂Kij
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~̂Gij(0;0) = ~̂GijĜij(0;0) = ĝij�̂Gij(0;0) = �̂gijF i(0;0) = F i:This indues the following rede�nitions of the oeÆient funtions in (6.1.6)HM ! HMHNM ! HNM + ÆN;iĤMi�HNM ! �HNM � ÆN;i �̂HMihNM ! hNM + 4GNKĤ[MK℄ � ÆN;i ~̂HMih Mi ! h Mi � 2ÆN;iĤ[MN ℄hNKM ! hNKM � ÆN;iĤKMi � ÆK;i �̂HNMi + 2
NKLĤ[ML℄GNi ! GNi � 2GNM ~̂HMi � 2ÆN;jĜ[ij℄G ij ! G ij + ÆM;j ~̂HMiGNKi ! GNKi �
NKM ~̂HMi � ÆK;j ĜNij � ÆN;j �̂GKijPMi ! PMi � 2GMN �̂HNi � ÆM;j ĝjiPMNi ! PMNi � 
MNK �̂HKi � 2ÆN;j ĝM (ij) + ÆMj �̂FNjiPMNKi ! PMNKi �RNMLK �̂HLi � 
NKL �̂HMLi�2ÆK;j ĝ[MN ℄(ij) + ÆM;j ~̂gNKijQMNi ! QMNi � 
NKM �̂HKi � 2GMK �̂HNKi+ÆM;j ĜNji + ÆN;j ~̂gMijQMji ! QMji + ÆK;j �̂HMKi + ÆM;k ~̂gjkiQ ij ! Q ij + ÆM;j �̂HMi�PMi ! �PMi � 2GMNĤNi + ÆM;j �̂gji�PMNi ! �PMNi � 
NMKĤKi + 2ÆN;j �̂gM (ij) � ÆMjF̂Nji�PMNKi ! �PMNKi +RKLNMĤLi � 
KMLĤNLi+2ÆK;j �̂g[MN ℄(ij) + ÆM;j ~̂gKNji�QMNi ! �QMNi +
KNMĤKi � 2GMKĤNKi+ÆM;j �̂GNji � ÆN;j ~̂gMji�QMji ! �QMji + ÆK;jĤMKi � ÆM;k ~̂gjki�Q ij ! �Q ij � ÆM;jĤMi
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RMi ! RMi + ÆM;j ~̂GjiRMNi ! RMNi � ÆM;jF̂Nij�RMi ! �RMi + ÆM;j ~̂Gij�RMNi ! �RMNi + ÆM;j �̂FNijgMi ! gMi + ÆM;j �̂gij�gMi ! �gMi � ÆM;j ĝijGi ! Gi +F i�Gi ! �Gi +F iwhih allows us to remove ertain parts of the funtions ourring in A1(1;1).Choosing, aording to the deomposition HNM = ÆN;�H�M + ÆN;iHiM ,ĤMi = �HiMwe see that we an remove HiM from the ohomology. In the same way weremove without loss of generality �HiM by the appropriate hoie of �̂HMi.Furthermore we remove hiM , h �i , hi Mk , h�iM , hijM , Gj ik , G jin , Gjki, Pji,�Pji, Qk ij , �Qk ij , �Rji, R ji� , Rj i� , R[jk℄i, �R�ji, �Rj i� , �R[jk℄i and �Gi. Thus theoeÆient funtions take the following formHNM ! ÆN;� H�M�HNM ! ÆN;� �H�MhNM ! ÆN;� h�MhiM ! ÆM;j hijhNKM ! ÆN;�ÆK;� h��MGNKi ! ÆN;�ÆK;� G��iPMi ! ÆM;�P�i�PMi ! ÆM;� �P�iQMji ! ÆM;�Q�ji�QMji ! ÆM;� �Q�ji�RMi ! ÆM;� �R�iRMNi ! ÆM;�ÆN;� R[��℄i�RMNi ! ÆM;�ÆN;� �R[��℄i;where for simpliity we keep the old symbols for the new funtions. This
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imposes the following onditions on the funtions0 = B0i + ÆM;iHM0 = (fM � �fM ) + 2GMN HN + ÆM;i Gi0 = (�NfM � �M �fN ) + 
MNKHK + ÆM;iÆN;� �R� i � ÆN;iRMi0 = (�MfN � �NfM )� 
NKMHK � 2GMK ÆN;� H�K�ÆM;�ÆN;i �P�i + ÆM;i gNi0 = (�M �fN � �N �fM ) + 
KNMHK + 2GMK ÆN;� �H�K�ÆM;�ÆN;i P�i + ÆM;i �gNi0 = �K�[M �fN ℄ +RKLNMHL +
K[M jL ÆN ℄;� �H�L�PK[MiÆN ℄;i � ÆK;iÆ[M;�ÆN ℄;� �R��i0 = �K�[MfN ℄ �RNMKLHL �
[M jKLÆN ℄;� H�L� �PK[MiÆN ℄;i � ÆK;iÆ[M;�ÆN ℄;� R��i0 = �ÆK;iÆM;� h�K + hikÆK;kGKM � ÆM;j G ji0 = h(jk)0 = 
MNj hij � ÆL;iÆM;�ÆN;� h��L � ÆM;�ÆN;j Q�ij � ÆM;jÆN;� �Q�ij0 = ÆM;�ÆN;iH�N + ÆM;j �Q ji0 = ÆM;�ÆN;i �H�N + ÆM;j Q ji0 = 2GK(MÆN);� h�K +
K(MN)HK � Æ(M;i GN)i0 = 2GMLÆN;�ÆK;� h��L + ÆM;�
NKL h�L +HL�L
NKM+ÆN;� 
LKMH�L + ÆK;�
NLM �H�L�ÆM;iÆN;�ÆK;� G��i � ÆK;iQMNi � ÆN;i �QMKi0 = 12 HR�RRNMLK � ÆN;� RMRLKH�R + ÆL;�RNMRK �H�R+ÆN;�ÆL;�
MKR h��R � ÆL;i PMNKi � ÆM;i �PKLNi (6.1.6)where the last equation has to be antisymmetrized in M $ N and K $ L.We will now work out these onditions and remove simultaneously obound-ary terms. Sine h[ab℄ an be removed by a oboundary term the equationsh(ij) = 0 ÆK;iÆM;� h�K � hikÆK;kGKM + ÆM;j G ji = 0require hmi = G ji = 0Furthermore
MNj hij � ÆL;iÆM;�ÆN;� h��L � ÆM;�ÆN;j Q�ij � ÆM;jÆN;� �Q�ij = 0ÆM;�ÆN;iH�N + ÆM;j �Q ji = 0ÆM;�ÆN;i �H�N + ÆM;j Q ji = 0
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require h��i = Q�ij = �Qj�i = 0H�i = �H�i = Q ji = �Q ji = 0Again we introdue the following ombinations for the f 'sf+M = fM + �fM f�M = fM � �fM ;where f�M is determined by(fM � �fM ) + 2GMN HN + ÆM;i Gi = 0:Exploiting the freedom to rede�nefM ! fM + �M f̂ + ÆM;iĝi�fM ! �fM + �M f̂ + ÆM;i �̂giwe an remove Ga by an appropriate hoie of ĝa� �̂ga. Still we are left withthe freedom to rede�ne f+M . From the third equation of (6.1.6) we obtain bysymmetrization and antisymmetrization and the use of the seond equationLHGMN = Æ(M;iÆN);� �R i� � Æ(N;iRM)iLHBMN = ��[Mf 00+N ℄ + Æ[M;iÆN ℄;� �R i� � Æ[N;iRM ℄i; (6.1.7)where f 00M = fM + 2BMK HK :Symmetrization and antisymmetrization of the fourth and �fth equation of(6.1.6) yieldsLHGMN = 2GK(M ��N)HK � ÆN);� H K� ��Æ(M;�ÆN);i �P�i + Æ(M;i gN)i;LHBMN = ��[Mf 00+N ℄ � 2GK[M ��N ℄HK � ÆN ℄;� H K� �+Æ[M;�ÆN ℄;i �P�i � Æ[M;i gN ℄i;LHGMN = 2GK(M ��N)HK � ÆN);� �H K� �+Æ(M;�ÆN);i P�i � Æ(M;i �gN)i;LHBMN = ��[Mf 00+N ℄ + 2GK[M ��N ℄HK � ÆN ℄;� �H K� �+Æ[M;�ÆN ℄;i P�i � Æ[M;i �gN ℄i; (6.1.8)i.e., they are of the same struture as (6.1.7). We will thus be able to reduethe number of independent oeÆient funtions by omparing (6.1.7) with



Chapter 6. Rigid Symmetries and dynamial onservation laws 59
(6.1.8). Furthermore the equations for C1(1=2;1=2) (6.1.5) give the followingidenti�ations HM = �KM ) f 0+ = f 00+Gi = Ki; �K i� = �R i� KMi = RMiTo omplete the solution we make the following ansatz for A1(1;1=2) andA1(1=2;1)A1(1;1=2) = � �MAM(0;0) + F �MAM(1=2;0) + ��iAi(1=2;0)+��iBi(1;0) + ���iBi(1=2;1=2) +A�i E i(0;1=2) +D��i E i(0;0)A1(1=2;1) =  �M �AM(0;0) + F �M �AM(0;1=2) + ��i �Ai(0;1=2)+��i �Bi(1=2;1=2) + ���i �Bi(0;1) + �A�i �E i(1=2;0) + �D���i �E i(0;0)The oeÆient funtions ontained in the expression above areAM(0;0) = AMAM(1=2;0) =  NANMAi(1=2;0) =  NANiBi(1;0) = DXMBMi +  M NBMNiBi(1=2;1=2) = FMbMi + �jb ij +  M � NbMNiE i(0;1=2) = � MEMiE i(0;0) = E i�AM(0;0) = �AM�AM(0;1=2) = � N �ANM�Ai(0;1=2) = � N �ANi�Bi(0;1) = �DXM �BMi + � M � N �BMNi�Bi(1=2;1=2) = FM�bMi + �j�b ij +  M � N�bMNi�E i(1=2;0) =  M �EMi�E i(0;0) = �E iFollowing the proedure for A1(1;1) we remove trivial parts by onsidering theKoszul-Tate part of the BRST transformations ofA2(1;1=2) = F �M ���i ÂiM(0;0) + ��i ���j Âji(0;0) +A�i ��j B̂ji(0;0)+��i ���j B̂ji(1=2;0) + ���i ���j Ê(ji)(0;1=2)A2(1=2;1) = F �M��i �̂AiM(0;0) + ��i ��j �̂Aji(0;0) + �A�i ���j �̂Bji(0;0)+��i ���j �̂Bji(0;1=2) + ��i��j �̂E(ji)(1=2;0):
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The oeÆient funtions are again independent of ghosts and anti�elds andonstrained by the onformal weight indiated in the subsript brakets(m;n). Going through the same steps as desribed in detail for A1(1;1) andC1(1=2;1=2) one �nds the orresponding equations, whih are of the same stru-ture as (6.1.4) and (6.1.4). For A1(1;1=2) they expliitly read0 = B0i + ÆM;iAM0 = (fM � �fM ) + 2GMN AN + ÆM;i E i0 = (�NfM � �M �fN ) + 
MNKAK�ÆM;iÆN;� E�i + ÆN;i BMi0 = (�MfN � �NfM )� 
NKMAK � 2GMK ÆN;� A�K+ÆM;iANi + ÆN;iÆM;� b�i0 = �K�[MfN ℄ �RNMKLAL � 
[M jKLÆN ℄;� A�L+Æ[N;ibM ℄Ki + ÆK;iÆ[M;�ÆN ℄;� B��i0 = ÆM;iÆN;� A M� + ÆN;j b ji :The analogous equations for A1(1=2;1) are0 = B0i � ÆM;i �AM0 = (fM � �fM )� 2GMN �AN + ÆM;i �E i0 = (�NfM � �M �fN )� 
MNK �AK+ÆM;iÆN;� �B�i � ÆN;i �EMi0 = (�M �fN � �N �fM )� 
KNM �AK + 2GMK ÆN;� �A�K�ÆM;i �ANi + ÆM;�ÆN;i �b�i0 = �K�[M �fN ℄ �RKLNM �AL +
K[M jLÆN ℄;� �A Ln�d[M;i�bKjN ℄i � ÆK;iÆ[M;�ÆN ℄;� �B��i0 = ÆM;iÆN;� �A M� � ÆN;j �b jiComparing the equations above with the the relevant equations for A1(1;1)leads to the following identi�ationsHM = AM = � �AM Gi = E i = �E iRMi = �BMi = �EMi R�i = �B�i = �E�iH �� = A �� �H �� = �A ��gNi = ANi �gNi = � �ANi P�i = ��b�i �P�i = �b�iR��i = �B��i �R��i = �B��i PKMi = �bMKi �PKMi = bKMiThus the omplete result !01 + 0!11+ 1!11+ 2!11 up to anti�eld number 1
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reads!01 = (�DXM + �� �DXM )12 f+M � (�DXM � �� �DXM )GMNHN�(� M N + �� � M � N)12 �Nf+M+(� M N � �� � M � N)�N (GMKHK)+12 (" M + �" � M)12 f+M � 12 (" M � �" � M)GMNHN � CiÆM;iHM
0!11 = ���(X�MHM +  �M NÆN;�ÆM;�H �� + � �M � NÆN;�ÆM;� �H ��+F �M(FNÆN;�ÆM;�h �� +  N � KÆN;�ÆK;�ÆM;�h���)+��i (FNGNi +  N � KÆN;�ÆK;�G��i)+��i (D � MÆM;�P�i +DXM � NPMNi+ M N � KPMNKi + FM NQMNi)+���i ( �D MÆM;� �Pmi + �DXM N �PMNi+ � M � N K �PMNKi + FM � N �QMNi)+A�i ( �DXMÆM;� �R�i + � M � NÆM;�ÆN;� �R��i)+ �A�i (DXMRMi +  M NÆM;�ÆN;�R��i)+ �D���i MgMi +D��i � M�gMi��CiA�j (�jÆM;iHM) + ��Ci �A�j (�jÆM;iHM )1!11 = ��"� � �MHM + F �M NÆN;�ÆM;�H �� + ��i NgNi���i (DXMRMi +  M NÆM;�ÆN;�R��i)����i (FMÆM;� �P�i +  M � NPNMi)�A�i � NÆN;� �R�i�+��"��  �MHM + F �M � NÆN;�ÆM;� �H �� � ��i � N�gNi���i (FMÆM;�P�i �  M � N �PMNi)+���i ( �DXMÆM;� �R�i + � M � NÆM;�ÆN;� �R��i)+ �A�i NRNi�+"Ci���j (�jÆM;iHM)� �"Ci��j (�jÆM;iHM)2!11 = "�"�� F �MHM + ��iGi + ��i NRNi + ���i � NÆN;� �R�i�where the oeÆient funtions have to ful�ll the equations (6.1.7) and (6.1.8)and the remaining equations of (6.1.6). In fat it turns out that the numberof independent oeÆient funtions an be redued, sine (6.1.7) and (6.1.8)are of the same struture and the higher order di�erential equations in (6.1.6)(i.e., the sixth and seventh equation in (6.1.6)) turn out to be derivatives ofthe generalized Killing equations. We will not work this out for the generalase but instead investigate a spei� example in the next setion.
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As a �nal remark we note that the solution given above is de�ned onlyup to rede�nitionsf+M ! f+M + �Mf + ÆM;agaP aMN ! P aMN � 2ÆN;b ĝ (ab)MP aMNK ! P aMNK � 2ÆK;b ĝ (ab)[MN ℄ + ÆM;b ~̂g abNKQ aMN ! Q aMN + ÆN;b ~̂g abM�P aMN ! �P aMN + 2ÆN;b �̂g (ab)M�P aMNK ! �P aMNK + 2ÆK;b �̂g (ab)[MN ℄ + ÆM;b ~̂g baKN�Q aMN ! �Q aMN � ÆN;b ~̂g baMwhih alter the solution by a oboundary.

6.2 Global symmetries6.2.1 Simpli�ed ationFor further disussion we shall assume in the following that the funtionsDi oinide with a subset of the �elds XM . We denote this subset by fyigand the remaining X's by x�,fXMg = fx�; yig; Di = yi: (6.2.9)In fat, this assumption is a very mild one beause, exept at stationarypoints ofDi(X), (6.2.9) an be ahieved by a �eld rede�nition XM ! ~XM =~XM (X) (\oordinate transformation in X-spae"), where this rede�nition issuh that eah nononstantDi(X) beomes one of the ~X's. Indeed, onstantDi give only ontributions to the Lagrangian whih are total derivatives andan thus be negleted, at least lassially; nononstant Di an be assumedto be independent by a suitable hoie of basis for the gauge �elds and maythus be taken as ~X's, at least loally (e.g., if D1 = D2, the Lagrangiandepends only on the ombination A1m + A2m whih an be introdued as anew gauge �eld).It is now easy to see that the Lagrangian (4.1.14) an atually be sim-pli�ed by setting the �elds  i; F i; �i; �i to zero. Indeed, owing to (6.2.9),the lassial equations of motion for �i and �i yield  i = 0 and F i = 0,respetively. The latter equations are algebrai and an be used in the La-grangian. Then the Lagrangian does not ontain �i and �i anymore andthe only remnant of the gauge multiplets are the terms e"mnyi�mAin. Thisreets that the gauge multiplets arry no dynamial degrees of freedomsine the world-sheet is 2-dimensional. Of ourse, the BRST transforma-tions given in setion 3.2 must be adapted in order to provide the gauge
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symmetries of the simpli�ed Lagrangian: those �elds that are eliminatedfrom the ation must also be eliminated from the transformations of theremaining �elds using the equations of motion of the eliminated �elds. Thisonly a�ets the supersymmetry transformations of yi and Aim. The newsupersymmetry transformation of yi is then simply zero owing to the �eldequation for �i ( i = 0). This is not in ontradition with the supersymme-try algebra beause the equations of motion for the Aim give �myi = 0 (ofourse, after eliminating the �elds  i; F i; �i; �i, the supersymmetry algebraholds only on-shell). The latter also shows that the �elds yi arry no dy-namial degree of freedom. The new supersymmetry transformation of Aimis more ompliated and arises from the original one by using the equationsof motion for F i and  i to replae �i and �i, and then setting F i and  i tozero.6.2.2 Nontrivial global symmetriesLet us now disuss the nontrivial global symmetries of the ation (4.1.14)as obtained from the BRST ohomology in the spae of anti�eld dependentloal funtionals with ghost number �1. This ohomology feels of ourse thepartiular ation, for the latter enters the BRST transformations of the anti-�elds through the Euler-Lagrange derivatives of the Lagrangian. We presentnow the resulting global symmetries for the simpli�ed form of the ationarising from the Lagrangian (4.1.14) by eliminating the �elds  i; F i; �i; �ias desribed above, assuming (6.2.9). The nontrivial symmetries3 are gen-erated by the following transformations,�hmn = 0���m = 0�XM = HM ; Hi = Ki(y); H� = V �(X)� �� =  ����V �(X)�F� = F ���V �(X) + 12 � � �����V �(X)�Aim = biM (X)�mXM + " nm aiM (X)�nXM � ÆjkAjm�iKk(y)��nmn� �ai�(X) + i2 � �m ��[�bi�℄(X)+ i2 � �m� ��[�ai�℄(X) (6.2.10)where HM , aiM and biM have to solve the following generalized Killing vetorequations, LHGMN = �2Æi(Ma iN)LHBMN = �2�[MpN ℄ � 2Æi[Mb iN ℄ (6.2.11)3A global symmetry is alled trivial in this ontext when it is equal to a gauge trans-formation on-shell.
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for some funtions pM(X) (LH is the standard Lie derivative along HM , ÆiMis the Kroneker symbol, i.e., ÆiM = 1 if M = i and ÆiM = 0 otherwise).Note that the pM do not our in the �-transformations; however, they doontribute to the orresponding Noether urrents.The equations (6.2.11) are atually the same as the equations whihalso determine the symmetries of bosoni string and D-string ations [38{40, 42℄, spei�ed for (6.2.9). In absene of gauge �elds (no Aim, yi, Ki;fHMg � fV �g), they readLVG�� = 0; LVB�� = �2�[�p�℄ : (6.2.12)These equations had been already disussed in [87, 88, 90℄. The �rst equa-tion (6.2.12) is just the standard Killing vetor equation for G�� . Hene, thesolutions of equations (6.2.12) are those Killing vetor �elds of G�� whihsolve the seond equation (6.2.12) (for some p�).The situation hanges when gauge �elds are present. Then equations(6.2.11) read for M;N = �; �:LVG�� = �Ki�iG��LVB�� = �Ki�iB�� � 2�[�p�℄ (6.2.13)where LV is the Lie derivative along the vetor �eld VM given by V i = 0,V � = V �(X). The remaining equations (6.2.11) just determine the funtionsaiM and biM , ai� = �LHG�i ; aji = �2LHGijbi� = LHB�i � �ip� ; bji = 2LHBij : (6.2.14)Here we have used that pi and the parts of aji resp. bji whih are antisym-metri resp. symmetri in i; j an be set to zero without loss of generality(the orresponding ontributions to � an be removed by subtrating trivialglobal symmetries from �).The global symmetries are thus ompletely determined by equations(6.2.13). Note that these equations reprodue (6.2.12) for Ki = 0, exeptthat now G�� and B�� depend in general not only on the x� but also on theyi. Hene, in general V � and p� also depend on the yi. For the disussionof equations (6.2.13), the yi may be viewed as parameters of G�� and B�� .Solutions to equations (6.2.13) with Ki = 0 an thus be regarded as solu-tions to equations (6.2.12) for some G�� and B�� involving parameters yi.The global symmetries with Ki = 0 are thus analogous to the symmetriesof ordinary superstrings and orrespond to isometries of the (parameter-dependent) metri G�� . In ontrast, solutions to (6.2.13) with Ki 6= 0 haveno ounterparts among the solutions of (6.2.12). Suh solutions may bealled \dilatational" solutions, beause in speial ases they are true dilata-tions, as we will see in the example below (further examples an be foundin [38, 39, 42℄).
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Finally we note that the solutions to equations (6.2.13) ome in in�nitefamilies and that, as a onsequene, the orresponding ommutator algebraof the global symmetries is an in�nite dimensional loop-like algebra. Thishas been observed and disussed already in [38, 39℄ and is an immediateonsequene of the fat that the ation depends on the Aim only via their �eldstrengths [89℄. All members of a family arise from one of its representativesby multiplying the funtions V �(X), Ki(y), p�(X) of that representativewith an arbitrary funtion of the yi. One an diretly verify that this makessense: if V �(X), Ki(y), p�(X) is a solution to equations (6.2.13), thenanother solution is obtained by simply multiplying V �, Ki, p� by the samearbitrary funtion of the yi. As the yi are onstant on-shell (by the equationsof motion for the Aim), this in�nite dimensionality of the spae of globalsymmetries has no pratial importane, i.e., in order to disuss the globalsymmetries it is suÆient to onsider just one representative of eah family.

6.3 ExampleTo illustrate the results presented above, we speify them for a simple lassof models, whih were treated already in [38, 39℄ for the purely bosoniase. These models are haraterized by Lagrangians ontaining only oneU(1) gauge �eld Am and the following hoies for the bakgroundGyM = 0; G�� = f(y)��� ;By� = 0; B�� = B��(y); (6.3.15)leading toe�1L = �12 hmn�mx��nx�G�� + 12 "mn�mx��nx�B��+�m(nm) ��nx�G�� � 14 �m(nmC)�n � �G��+ i2  �m�m �G�� � i4  �(m�) ��my �yB��+12 "mn(�mAn � �nAm)y; (6.3.16)where the assumption fXMg = fx�; yg is taken into aount. As shown in[38, 39℄, in this ase the general solution of equations (6.2.11) is (modulorede�nitions orresponding to trivial global symmetries)V � = �12 K(y)[ln f(y)℄0x� + r�(y) + r[��℄(y)���x�a� = �V �0f(y)���; ay = 0b� = �12 (K(y)B0��)0x� �B0��V � ; by = 0p� = K(y)B0��x� + 2B��V � ; (6.3.17)where a prime denotes di�erentiation with respet to y:0 � ��y :
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K(y), r�(y) and r[��℄(y) are arbitrary funtions of y and orrespond tofamilies of dilatations, translations and Lorentz-transformations in targetspae, respetively. For two reasons the dilatations are speial. Firstly, asdisussed already above, they have no ounterpart among the global sym-metries of the ordinary superstring on a at bakground. Seondly, theyan map solutions to the lassial equations of motion with vanishing �eldstrength �mAn��nAm to solution with non-vanishing �eld strength. This isin sharp ontrast to the translations and Lorentz-transformations and mosteasily seen from �y = K(y), using that the �eld strength is related to yby the equations of motion through f 0(y) � "mn�mAn + : : : where � isequality on-shell. An analogous reasoning shows that the latter propertyof `dilatational symmetries' extends to more ompliated bakgrounds forwhih solutions to (6.2.13) with Ki 6= 0 exist.



Chapter 7
General solution for g < 4
7.1 On-shell ohomologyWe shall now de�ne and analyse an \on-shell BRST ohomology" H(�)and show that it is isomorphi to its purely bosoni ounterpart at ghostnumbers < 4, i.e., to the on-shell BRST ohomology of the orrespondingbosoni string model. The relevane of H(�) rests on the fat that it isisomorphi to the full loal s-ohomology H(s) (in the jet spae assoiatedto the �elds and anti�elds), at least at ghost numbers < 4,g < 4 : Hg(�) ' Hg(s): (7.1.1)This will be proved in setion 7.2.The analysis in this and the next setion is general, i.e., it applies toany model with an ation (4.1.13) (or, equivalently, (4.1.14)) provided thattwo rather mild assumptions hold, whih are introdued now. The �rstassumption only simpli�es the ation a little bit but does not redue itsgenerality: as we have argued already in [36℄, one may assume that thefuntions Di(X) whih our in the ation oinide with a subset of the�elds XM . We denote this subset by fyig and the remaining X's by x�,fXMg = fx�; yig; Di(X) � yi: (7.1.2)For physial appliations this \assumption" does not represent any loss ofgenerality beause it an always be ahieved by a �eld rede�nition (\targetspae oordinate transformation") XM ! ~XM = ~XM(X). The yi maybe interpreted as oordinates of an enlarged target spae leading to \frozenextra dimensions" [36℄. The seond assumption is that G��(x; y) is invertible(in ontrast, GMN need not be invertible). This is partiularly natural in thestring theory ontext, sine it allows one to interpret G�� as a target spaemetri. It is rather likely that our result holds for even weaker assumptions(but we did not study this question), beause the results derived in [39, 40℄for bosoni string models do not use the invertibility of G�� .67
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Let us remark that the isomorphism (7.1.1) is not too surprising, beauseit is reminisent of a standard result of loal BRST ohomology stating thatH(s) is isomorphi to the on-shell ohomology of  in the spae of anti�eldindependent funtions, where  is the part of s with anti�eld number 0 (see,e.g., setion 7.2 of [30℄). However, (7.1.1) is not quite the same statementbeause the de�nition of � given below does not take the equations of motionfor �, ��, � or �� into aount. Hene, (7.1.1) ontains information in additionto the standard result of loal BRST ohomology mentioned before: theequations of motion for �, ��, �, �� are not relevant to the ohomology! Thisis a useful result as these equations of motion are somewhat unpleasant,beause they are not linearizable (the models under study do not ful�ll thestandard regularity onditions desribed, e.g., in setion 5.1 of [30℄).7.1.1 De�nition of � and H(�)� is an \on-shell version" of s de�ned in the spae of loal funtions made ofthe �elds only (but not of any anti�elds). We work in the `Beltrami basis'and use the equations of motion obtained by varying the ation (4.1.13) withrespet to the �elds X,  , � , F̂ , �̂, �, �� and Am. The ovariant versionof these equations of motion an be obtained from the s-transformations ofthe orresponding ovariant anti�elds given in appendix C.2 by setting theanti�eld independent part (`Koszul-Tate part') of these transformations tozero. This gives the following \on-shell equalities" (�):F̂ i � 0 (7.1.3) i � 0 (7.1.4)� i � 0 (7.1.5)Dyi � 0 (7.1.6)�Dyi � 0 (7.1.7)�̂i � 2Gi�F̂� +  � � �
��i (7.1.8)�i � 2Gi�D � � +Dx� � �
��i + F̂� �
�i�+ � � � �R��i� (7.1.9)��i � �2Gi� �D � � �Dx� �
��i + F̂� � �
i��+ � � � � �R�i�� (7.1.10)F̂ � � �12  � � �
��� (7.1.11)�D � � �12 [ �Dx� �
��� + 12  � � � � �
���
���+ � � � � �R����℄ (7.1.12)D � � � 12 [�Dx� � �
��� + 12  � � � �
���
���+ � � � �R����℄ (7.1.13)
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F i � 2Gi�D �Dx� +Dx� �Dx�
��i � F̂�F̂ �
i���D � � � �
i�� +  � �D �
�i��Dx� � � � �R�i�� � �Dx� � �R���i�F̂� � � ��i
��� � 12  � � � � � ��iR���� (7.1.14)D �Dx� � 12 [�Dx� �Dx�
��� + F̂ � F̂ �
���+D � � � �
��� �  � �D �
����Dx� � � � �R���� + �Dx� � �R����+F̂ � � � ���
��� + 12  � � � � � ���R����℄ (7.1.15)where indies � of 
, R, � have been raised with the inverse of G��(x; y), and i, � i and F̂ i belong to the same supersymmetry multiplet as yi (the auxil-iary �elds F̂ i should not be onfused with the superovariant �eld strengthsF i of the gauge �elds). Note that the right hand sides of (7.1.8), (7.1.9),(7.1.10), (7.1.14) and (7.1.15) still ontain F̂�, �D � or D � �, whih are tobe substituted for by the expressions given in (7.1.11), (7.1.12) and (7.1.13),respetively. Furthermore, in (7.1.14) one has to substitute the expressionresulting from (7.1.15) for D �Dx�. Using Eqs. (7.1.3) through (7.1.15) andtheir D and �D derivatives, we eliminate all variables on the left hand sidesof these equations and all the ovariant derivatives of these variables. Fur-thermore, we use these equations to de�ne the �-transformations of theremaining �eld variables from their s-transformations. For instane, onegets �yi = 0 (7.1.16)�x� = (�D + �� �D)x� + " � + �" � � (7.1.17)� � = �D � � 12 ��[ �Dx� �
���+12  � � � � �
���
��� +  � � � � �R����℄+12 �� � + "Dx� + 12 �" � � �
���: (7.1.18)The �-transformations of �, ��, ", �", �, ��, �, �� oinide with their s-transformations. The ohomology H(�) is the ohomology of � in the spaeof loal funtions of the variables fu`; v`;WAg, where the u's and v's are thesame as in setions 3.3 and 4, while the W 's are given byfWAg = fyi; x�;Dkx�; �Dkx�;Dr �; �Dr � �; �r�; ��r���r"; ��r�"; Ci : k = 1; 2; : : : ; r = 0; 1; : : : g: (7.1.19)H(�) is well-de�ned beause � squares to zero,�2 = 0: (7.1.20)This holds beause the (ovariant) equations of motion of the �elds X,  ,� , F̂ , �̂, �, ��, Am and their ovariant derivatives transform into eah other
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under di�eomorphisms and supersymmetry transformations but not intothe equations of motion of �, ��, � or �� [as an be read o� from the s-transformations of the anti�elds X�,  �, � �, F̂ �, �̂�, ��, ��� and A�m inappendix C.2℄.7.1.2 Relation to H(�;W)� ats on the variables fu`; v`;WAg aording to �u` = v`, �WA = rA(W ).Furthermore, analogously to (4.0.2) one hasn� ; ��(��) oWA = L0WA ; n� ; ��(����) oWA = �L0WA ; (7.1.21)i.e., in the spae of loal funtions of the W 's the derivatives with respet to�� and ���� are ontrating homotopies for L0 and �L0, respetively. Hene,the same standard arguments, whih were used already in setion 4 yield thatH(�) is given by HdR(GL+(2))
H(�;W), where HdR(GL+(2)) reets thenontrivial de Rham ohomology of the zweibein manifold (see theorem 5.1of [79℄), while H(�;W) is the �-ohomology in the spae of loal funtionswith vanishing onformal weights made solely of the variables (7.1.19),H(�) = HdR(GL+(2))
H(�;W);W = f! : ! = !(W ); (L0!; �L0!) = (0; 0)g: (7.1.22)The fator HdR(GL+(2)) is irrelevant for the following disussion beauseit just reets det eam 6= 0 and makes no di�erene between superstring andbosoni string models.7.1.3 Deomposition of �To studyH(�;W) we deompose � into piees of de�nite degree in the super-symmetry ghosts and the fermions1. The orresponding ounting operatoris denoted by N , N = N" +N�" +N +N � (7.1.23)with N" and N�" as in (4.0.4) andN =Xr�0(Dr �) ��(Dr �) ; N � =Xr�0( �Dr � �) ��( �Dr � �) :Using the formulae given above, it is easy to verify that � deomposes intopiees with even N -degree,� =Xn�0�2n ; [N;�2n℄ = 2n�2n (7.1.24)1We are referring here to the variables (7.1.19) themselves, and not to the fermionsthat are impliitly ontained in these variables through ovariant derivatives.
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where, on eah variable (7.1.19), only �nitely many �2n are non-vanishing.For instane, (7.1.18) yields�0 � = �D � � 12 �� �Dx� �
��� + 12 �� � + "Dx��2 � = �14 �� � � � � �
���
��� � 12 �� � � � � �R���� + 12 �" � � �
����2n � = 0 for n > 1:7.1.4 Deomposition of �0We shall prove the asserted result by an inspetion of the ohomology of�0. To that end we deompose �0 aording to the supersymmetry ghosts.That deomposition has only two piees owing to the very de�nition of �0and N ,�0 = �0;0 + �0;1 ; [N" +N�" ; �0;0℄ = 0 ; [N" +N�" ; �0;1℄ = �0;1 :(7.1.25)�0;1 ats notrivially only on the fermions and their derivatives Dr � and�Dr � � with r = 0; 1; : : : . One easily veri�es by indution that �0;1 has thefollowing simple struture

�0;1Dr � = rXk=0�rk��k"Dr+1�kx��0;1 �Dr � � = rXk=0�rk���k�" �Dr+1�kx� (7.1.26)
7.1.5 H(�0;W) at ghost numbers < 5The oyle ondition of H(�0;W) reads�0! = 0; ! 2 W: (7.1.27)We analyse (7.1.27) using (7.1.25). To that end we deompose ! aordingto the number of supersymmetry ghosts,

! = kXk=k !k ; (N" +N�")!k = k!k : (7.1.28)
Note that k is �nite, k � gh (!). Hene, the oyle ondition (7.1.27)deomposes into�0;1!k = 0; �0;0!k + �0;1!k�1 = 0; : : : ; �0;0!k = 0: (7.1.29)We an neglet ontributions �0;1!̂k�1 to !k beause suh ontributions anbe removed by subtrating �0!̂k�1 from !. Hene, !k an be assumed to be
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a nontrivial representative of H(�0;1;W). That ohomology is omputed inappendix A.1 and yields!k = h(y; x; C; ["; �℄; [�"; ��℄) + �Dx�h�(y; x; ��; C; [�"; ��℄)+�� �Dx��h�(y; x; ����;C; ["; �℄)+���Dx� �Dx�h��(y; x; ��; ����;C) (7.1.30)where �0;1-exat piees have been negleted, and ["; �℄ and [�"; ��℄ denote de-pendene on the variables �r"; �r� and ��r�"; ��r�� (r = 0; 1; : : : ), respetively.The result (7.1.30) holds for all ghost numbers and shows in partiular that!k an be assumed not to depend on the fermions (Dr �, �Dr � �) at all.We now insert this result in the seond equation (7.1.29), whih requiresthat �0;0!k be �0;1-exat. At ghost numbers < 5 this requirement kills om-pletely the dependene of !k on the supersymmetry ghosts as we show inappendix A.2. The result for these ghost numbers is thus that, modulo �0-exat piees, the solutions to (7.1.27) neither depend on the fermions nor onthe supersymmetry ghosts,gh (!) < 5 : ! = �0!̂ + h(y; x; C; [�℄; [��℄)+�Dx�h�(y; x; ��; C; [��℄)+�� �Dx��h�(y; x; ����;C; [�℄)+���Dx� �Dx�h��(y; x; ��; ����;C): (7.1.31)Furthermore, (7.1.25) and (7.1.26) show that a funtion whih neither de-pends on the fermions nor on the supersymmetry ghosts is �0-exat if andonly if it is the �0-transformation of a funtion whih does not depend onthese variables either. Combining this with (7.1.31) one onludesg < 5 : Hg(�0;W) ' Hg(�0;W0); (7.1.32)where W0 is the subspae of W ontaining the funtions with vanishingN -eigenvalues, W0 = f! 2 W : N! = 0g:This subspae an be made very expliit. The only variables (7.1.19) withnegative onformal weights on whih a funtion ! 2 W0 an depend are theundi�erentiated ghosts � and �� [note: the only other variables (7.1.19) withnegative onformal weights are the undi�erentiated supersymmetry ghosts,but they annot our in ! 2 W0 by the very de�nition of W0℄. Sine �and �� are antiommuting variables and have onformal weights (�1; 0) and(0;�1), respetively, eah of them an our at most one in a monomialontributing to ! 2 W0. Hene, funtions in W0 an only depend on thosew's with onformal weights � 1 (as higher weights annot be ompensated
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for by variables with negative weights), and a variable with L0-weight (�L0-weight) 1 must neessarily our together with � (��). This yields! 2 W0 , ! = f(y; x; C; ��; ����; �Dx�; �� �Dx�; ��2�; �� ��2��): (7.1.33)Note that H(�0;W0) is nothing but the on-shell ohomology H(�;W) of theorresponding bosoni string model, sine elements of W0 neither dependon the fermions nor on the supersymmetry ghosts, and sine �0 redues inW0 to �0;0, whih enodes only the di�eomorphism transformations but notthe supersymmetry transformations.7.1.6 H(�) at ghost numbers < 4We shall now show that H(�;W) is at ghost numbers < 4 isomorphi toH(�0;W0), g < 4 : Hg(�;W) ' Hg(�0;W0): (7.1.34)Beause of (7.1.22) this implies that H(�) is isomorphi to its ounterpart inthe orresponding bosoni string model (reall that the fator HdR(GL+(2))is present in the ase of bosoni strings as well, and that Hg(�0;W0) is theon-shell ohomology of the bosoni string model). To derive (7.1.34), weonsider the oyle ondition of H(�;W),�! = 0; ! 2 W: (7.1.35)We deompose ! into piees with de�nite degree in the supersymmetryghosts and fermions,

! = nXn=n!n; N!n = n!n; (7.1.36)
with N as in (7.1.23) [atually there are only even values of n in this deom-position beause ! has vanishing onformal weights℄. The oyle ondition(7.1.35) implies in partiular �0!n = 0; (7.1.37)where we used the deomposition (7.1.24) of �. Hene, every oyle !of Hg(�;W) ontains a oyle !n of Hg(�0;W). Our result (7.1.32) onHg(�0;W) implies that this relation between representatives of Hg(�;W)and Hg(�0;W) gives rise to a one-to-one orrespondene between the oho-mology lasses of Hg(�;W) and Hg(�0;W0) for g < 4 and thus to (7.1.34).The arguments are standard and essentially the following:(i) When g < 5, !n an be assumed to be nontrivial in Hg(�0;W) andrepresents thus a lass of Hg(�0;W0). Indeed, assume it were trivial, i.e.,
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!n = �0!̂n for some !̂n 2 W. In that ase we an remove !n from ! bysubtrating �!̂n. !0 := ! � �!̂n 2 W is ohomologially equivalent to !and its deomposition (7.1.36) starts at some degree n0 > n unless it van-ishes (whih implies already ! = �!̂n). The oyle ondition for !0 implies�0!0n0 = 0 and thus !0n0 = �0!̂0n0 for some !̂0n0 2 W as a onsequene of(7.1.32) (owing to n0 > n � 0). Repeating the arguments, one onludesthat ! is �-exat, ! = �(!̂n+ !̂0n0 + : : : ) [it is guaranteed that the proedureterminates, i.e., that the sum !̂n + !̂0n0 + : : : is �nite and thus loal, be-ause the number of supersymmetry ghosts is bounded by the ghost numberand thus the number of fermions is bounded too beause ! has vanishingonformal weights℄.(ii) When g < 4, every nontrivial oyle !0 of Hg(�0;W0) an be om-pleted to a nontrivial oyle ! of Hg(�;W). Indeed suppose we had on-struted !n 2 W, n = 0; : : : ;m with ghost number g suh that !(m) :=Pmn=0 !n ful�lls �!(m) = Pn�m+1Rn with NRn = nRn [for m = 0 this isimplied by �0!0 = 0 whih holds beause !0 is a �0-oyle by assumption℄.�2 = 0 implies �Pn�m+1Rn = 0 and thus �0Rm+1 = 0 at lowest N -degree.Note that Rm+1 is in W (owing to �W �W) and that it has ghost numberg + 1 < 5 beause !(m) has ghost number g < 4. (7.1.32) guarantees thusthat there is some !m+1 2 W suh that Rm+1 = ��0!m+1, whih impliesthat !(m+1) := !(m) + !m+1 ful�lls �!(m+1) = Pn�m+2R0n. By indutionthis implies that every solution to (7.1.37) with ghost number < 4 an indeedbe ompleted to a solution of (7.1.35) [the loality of ! holds by the samearguments as above℄. If !0 is trivial in Hg(�0;W0), then its ompletion ! istrivial in Hg(�;W) by arguments used in (i). Conversely, the triviality of !in Hg(�;W) (! = ��) implies obviously the triviality of !0 in Hg(�0;W0)(!0 = �0�0) beause there are no negative N -degrees.
7.2 Relation to the ohomology of bosoni stringsWe shall now derive (7.1.1) and the announed isomorphism between the s-ohomologies of a superstring and the orresponding bosoni string model.Both results an be traed to the existene of variables f~u~̀; ~v ~̀; ~W ~Ag onwhih s takes a form very similar to � on the variables fu`; v`; wAg used insetion 7.1. In the `Beltrami basis' the set of ~u's onsists of: (i) ~u's withghost number 0 whih oinide with the u`; (ii) ~u's with ghost number �1given by the superonformal anti�elds X�M ,  �M , � �M , F �M , ��i , ��i ���i , A�i(reall that we have dropped the hats on these anti�elds) and all ovariantderivatives of these anti�elds plus the �A�i and all their �D-derivatives ( �Dr �A�i ,r = 0; 1; : : : )2; (iii) ~u's with ghost number �2 given by the anti�elds of the2The Dk �Dr �A�i with k > 0 do not ount among the u's beause the anti�eld independentparts of sDk �Dr �A�i and �sDk�1 �Dr+1A�i are equal (both are given by Dk �Dr+1yi). Rather,they are substituted for by the v's orresponding to the Dk�1 �DrC�i (k > 0) owing to
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ghosts, i.e., by ��, ���, "�, �"�, C�i and all their derivatives. It an be readilyheked that a omplete set of new loal jet oordinates in the Beltramibasis is given by f~u~̀; ~v ~̀; ~W ~A(0)g with ~v ~̀= s~u~̀ andf ~W ~A(0)g=fyi; x�;Dkx�; �Dkx�;Dr �; �Dr � �; �r�; ��r��; �r"; ��r�"; Ci;�r��; ��r���; �r��; ��r ��� : k = 1; 2; : : : ; r = 0; 1; : : : g: (7.2.38)Note that f ~W ~A(0)g does not only ontain the WA listed in (7.1.19), but inaddition the variables �r��, ��r���, �r��, ��r ���. The latter our here beausetheir s-transformations ontain no linear parts and an therefore not be usedas ~v's3. The ~W ~A(0) fulfull s ~W ~A(0) = r ~A( ~W(0)) +O(1) (7.2.39)where O(1) ollets terms whih are at least linear in the ~u's and ~v's. Asshown in [94℄, (7.2.39) implies the existene of variables ~W ~A = ~W ~A(0) +O(1)whih ful�ll s ~W ~A = r ~A( ~W ) (7.2.40)with the same funtions r ~A as in (7.2.39). Furthermore the algorithm de-sribed in [94℄ for the onstrution of the ~W ~A results in loal expressionswhen applied in the present ase. This an be shown by means of argumentssimilar to those used within the disussion of the examples in [94℄4.(7.2.40) implies that the s-transformations of those ~W 's whih orre-spond to the variables (7.1.19) an be obtained from the �-transformationsof the latter variables simply by substituting there ~W 's for the orrespondingW 's. For instane, this givessyi0 = 0; (7.2.41)sx�0 = �(Dx�)0 + ��( �Dx�)0 + " �0 + �" � �0 (7.2.42)where here and in the following a prime on a variable indiates a ~W -variable5.For instane, yi0 is the ~W -variable orresponding to yi and expliitly givensDk�1 �DrC�i = �Dk �Dr �A�i + : : : .3The other derivatives of the anti�elds ��, ���, ��, ���, suh as the ��k�r�� (k > 0), donot our among the ~W(0)'s beause they are substituted for by the ~v's orresponding to��, ���, "�, �"� and their derivatives (e.g., one has s�� = ����� + : : : ).4In the present ase, the suitable `degrees' to be used in these arguments are theonformal weights and the ghost number. Using these degrees one an prove that thealgorithm produes loal (though not neessarily polynomial) expressions: the resulting~W 's an depend nonpolynomially on the x�, yi and on the two partiular ombinations"���i and �"��i but they are neessarily polynomials in all variables whih ontain derivativesof �elds or anti�elds.5The onstrution of the ~W 's implies (�r�)0 = �r�, (��r��)0 = ��r��, (�r")0 = �r" and(��r�")0 = ��r�" beause the s-transformation of these ghost variables do not ontain any ~u'sor ~v's. This has been used in (7.2.42).
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by yi0 = yi + "���i � �"��i � �A�i + �� �A�i + ���C�i : (7.2.43)This very lose relation between s on the ~W -variables and � on the variables(7.1.19) would immediately imply H(s) ' H(�) if the ~W -variables (�r��)0,( ��r���)0, (�r��)0, ( ��r ���)0 were not present. Nevertheless the asserted isomor-phism (7.1.1) holds beause the onformal weights of the latter variables aretoo high so that they annot ontribute nontrivially to Hg(s) for g < 4. Toshow this we analyse H(s) along the same lines as H(�) in setion 7.1.The �rst step of that analysis givesH(s) ' HdR(GL+(2))
H(s; ~W);~W = f! : ! = !(w); (L0!; �L0!) = (0; 0)g: (7.2.44)This result is analogous to (7.1.22) and expresses that the zweibein gives theonly nontrivial ohomology in the subspae of ~u's and ~v's and that there isa ontrating homotopy for L0 and �L0 beause (7.2.40) impliesns ; ��(��) o ~W ~A = L0 ~W ~A ; ns ; ��(����) o ~W ~A = �L0 ~W ~A :
The onformal weights of ��0, ���0, ��0 and ���0 are (3=2; 0), (0; 3=2), (2; 0)and (0; 2), respetively.H(s; ~W) an be analysed by means of a deomposition of s analogous tothe �-deomposition in (7.1.24), using a ounting operator N 0 for all those~W 's whih have half-integer onformal weights,N 0 = N" +N�" +N 0 +N � 0 +N��0 +N���0 :The deomposition of s readss =Xn�0 s2n ; [N 0; s2n℄ = 2n s2n :
Next we examine the s0-ohomology. Analogously to (7.1.25) one hass0 = s0;0 + s0;1 ; [N" +N�" ; s0;0℄ = 0 ; [N" +N�" ; s0;1℄ = s0;1 :We now determine the ohomology of s0;1 along the lines of the investigationof the �0;1-ohomology in appendix A.1 by inspeting the part of s0;1 whihontains the undi�erentiated ghost ". That part is the analog of �0;1;1 in(A.1.2) and takes the form " Ĝ0�1=2. Ĝ0�1=2 ats nontrivially only on the  0,��0 and their (ovariant) derivatives aording toĜ0�1=2(Dr �)0 = (Dr+1x�)0 ; Ĝ0�1=2(�r��)0 = �(�r��)0
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We de�ne a ontrating homotopy B0 whih is analogous to the ontratinghomotopy B in appendix A.1,B0 =Xr�0 h(Dr �)0 ��(Dr+1x�)0 � (�r��)0 ��(�r��)0 i:Using B0 one proves that the funtions f 0r with r > 0 whih are analogousto the funtions fr in appendix A.1 an be assumed not to depend on thevariables (Dr �)0, (Dr+1x�)0, (�r��)0 or (�r��)0.6 In the ase r = 0 one getsthat f 00 does not depend on (�r��)0 or (�r��)0, simply beause the onformalweights of these variables are too large [f. the arguments in the text after(A.1.9)℄. This implies the analog of equation (A.1.11), with funtions f 0rand g0� whih may still depend on ( �Dr � �)0, ( �Dr+1x�)0, ( ��r ���)0 or (��r���)0.The dependene on these variables an be analysed analogously, using aontrating homotopy �B0 for these variables, along the lines of the remain-ing analysis in appendix A.1. One �nally obtains the following result forH(s0;1; ~W): s0;1! = 0; ! 2 ~W )! = h(y0; x0; C 0; ["; �℄; [�"; ��℄)+ �(Dx�)0h�(y0; x0; ��; C 0; [�"; ��℄)+ ��( �Dx�)0�h�(y0; x0; ����;C 0; ["; �℄)+ ���(Dx�)0( �Dx�)0h��(y0; x0; ��; ����;C 0)+ s0;1!̂(w); !̂ 2 ~W: (7.2.45)Hene, H(s0;1; ~W) is ompletely isomorphi to H(�0;1;W) (for all ghostnumbers). In partiular, the representatives do not depend on (�r��)0,( ��r ���)0, (�r��)0 or (��r���)0 [reall that the reason is that the onformalweights of these variables are too high; if, for instane, ��0 had onformalweights (1; 0) instead of (2; 0) it had ontributed to (7.2.45) analogously to(Dx�)0℄. This implies the results announed above: arguments whih areompletely analogous to those used to derive �rst (7.1.31) and then (7.1.34)lead tog < 4 : Hg(s; ~W) ' Hg(s0; ~W0); ~W0 = f! 2 ~W : N 0! = 0g: (7.2.46)Analogously to (7.1.33), the elements of ~W0 an only depend on those w's6For this argument it is important that there is a �nite maximal value r of r. In thease of the �-ohomology, r was bounded from above by the ghost number but now theghost number alone does not give a bound beause there are variables with negative ghostnumbers, the (�r��)0, (��r ���)0, (�r��)0 and (��r���)0. Nevertheless there is a bound beause!( ~W ) does not only have �xed ghost number but also vanishing onformal weights. Indeed,it is easy to show that this forbids arbitrarily large powers of " beause the (�r��)0 and(�r��)0 have ghost number �1 and onformal weights � 3=2.
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with onformal weights � 1, i.e.,!0 2 ~W0 , !0 = f(y0; x0; C 0; ��; ����; �(Dx�)0; ��( �Dx�)0; ��2�; �� ��2��):(7.2.47)Beause of (7.2.40), s0 takes exatly the same form in ~W0 as �0 inW0. Thisimplies (for all ghost numbers)H(s0; ~W0) ' H(�0;W0): (7.2.48)Beause of (7.2.46) and (7.1.34) (as well as (7.2.44) and (7.1.22)) this yields(7.1.1). (7.2.46) establishes also the equivalene between the ohomologiesof the superstring and the orresponding bosoni string at ghost numbers< 4 beause HdR(GL+(2))
H(s0; ~W0) is nothing but the s-ohomology ofthe bosoni string.



Appendix A
Calulations
A.1 Cohomology of �0;1 in WIn this appendix we ompute H(�0;1;W) where �0;1 is given in (7.1.26). Theoyle ondition reads �0;1! = 0; ! 2 W: (A.1.1)We deompose this equation into piees with de�nite degree in the undif-ferentiated supersymmetry ghosts ". �0;1 deomposes into two piees, �0;1;0and �0;1;1, where �0;1;0 does not hange the degree in the undi�erentiated ",whereas �0;1;1 inreases this degree by one unit. �0;1;1 reads�0;1;1 = " Ĝ�1=2 ; Ĝ�1=2 =Xr�0(Dr+1x�) ��(Dr �) : (A.1.2)
! an be assumed to have �xed ghost number and is thus a polynomial inthe undi�erentiated ",

! = rXr=r "rfr ; (A.1.3)
where fr an depend on all variables (7.1.19) exept for the undi�erentiated". At highest degree in the undi�erentiated ", (A.1.1) implies �0;1;1("rfr) = 0and thus Ĝ�1=2fr = 0: (A.1.4)We analyse this ondition by means of the ontrating homotopyB =Xr�0(Dr �) ��(Dr+1x�) :

79
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The antiommutator of B and Ĝ�1=2 is the ounting operator for all variablesDr � and Dr+1x� (r = 0; 1; : : : ),fB; Ĝ�1=2g =Xr�0 h(Dr �) ��(Dr �) + (Dr+1x�) ��(Dr+1x�)i:Hene, (A.1.4) implies by standard arguments that fr is Ĝ�1=2-exat up toa funtion that does not depend on the Dr � or Dr+1x�,fr = Ĝ�1=2 gr + hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.5)where gr is a funtion that an depend on all variables (7.1.19) exept for theundi�erentiated ", [ �Dx; � ℄ denotes olletively the variables �Dr+1x�; �Dr � �,and [�"; �℄ and [�"; ��℄ denote olletively the variables �r+1"; �r� and ��r�"; ��r��,respetively (r = 0; 1; : : : in all ases). We shall �rst study the ase r > 0[the ase r = 0 will be inluded automatially below℄. (A.1.5) implies

r > 0 : ! = �0;1("r�1gr) + "r�1f 0r�1 + r�2Xr=r "rfr+"rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.6)where f 0r�1 = fr�1 � �0;1;0 gr :The exat piee �0;1("r�1gr) on the right hand side of (A.1.6) will be ne-gleted in the following, i.e., atually we shall examine !0 := !��0;1("r�1gr)in the following. However, for notational onveniene, we shall drop theprimes (of !0 and f 0r�1) and onsider now
r > 0 : ! = r�1Xr=r "rfr + "rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.7)

We have thus learned that, if r > 0, the piee in ! with highest degree inthe undi�erentiated " an be assumed not to depend on any of the variablesDr � or Dr+1x� (r = 0; 1; : : : ). As a onsquene, the �0;1-transformationof that piee does not depend on these variables either and �0;1! = 0, with! as in (A.1.7), implies Ĝ�1=2fr�1 = 0: (A.1.8)We an now analyse (A.1.8) in the same way as (A.1.4) and repeat thearguments until we reah an equationĜ�1=2f0 = 0 (A.1.9)
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where f0 is a funtion with onformal weights (0; 0) whih does not dependthe undi�erentiated " [note that fr has onformal weights (r=2; 0) beause"rfr has onformal weights (0; 0); if r had been zero, we had arrived at(A.1.9) immediately℄. The only way in whih f0 an depend nontrivially onthe variables Dr � or Dr+1x� (r = 0; 1; : : : ) is through terms of the form� � �f��(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄), ��" �f�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄), or�Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) [reall that the only variables (7.1.19) withnegative L0-weights are the undi�erentiated � and " and that � is an anti-ommuting variable℄. (A.1.9) implies f��(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0 andf�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0. We onludef0 = �Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄)+h0(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.10)We thus get the following intermediate result: without loss of generality wean assume ! = Xr "rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄)+�Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄): (A.1.11)The only part of �0;1 whih is ative on suh an ! is the part�̂0;1 =Xr�0 rXk=0�rk�(��k�" �Dr+1�kx�) ��( �Dr � �) :Note that �̂0;1 touhes only the dependene on the variables �Dr � �, �Dr+1x�and ��r�" (r = 0; 1; : : : ) and treats all other variables as ontants. Hene, for! as in (A.1.11), �0;1! = 0 implies�̂0;1hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) = 0 8r;�̂0;1g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0: (A.1.12)These equations are deomposed into piees with de�nite degree in the un-di�erentiated �" and then analysed using the ontrating homotopy�B =Xr�0( �Dr � �) ��( �Dr+1x�) :By means of arguments analogous to those that have led to (A.1.11) weonlude that we an assume, without loss of generality,hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) =Xq �"qhr;q(y; x; C; [�"; �℄; [ ���"; ��℄)+�� �Dx�gr;�(y; x; ����;C; [�"; �℄);g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) =Xq �"qh�;q(y; x; ��; C; [ ���"; ��℄)+�� �Dx�g�;�(y; x; C; ��; ����): (A.1.13)
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Sine the hr;q, gr;�, h�;q and g�;� do not depend on the fermions, they are�0;1-invariant. We have thus proved that (A.1.1) implies! = h(y; x; C; ["; �℄; [�"; ��℄)+�Dx�h�(y; x; ��; C; [�"; ��℄) + �� �Dx��h�(y; x; ����;C; ["; �℄)+���Dx� �Dx�h��(y; x; ��; ����;C) + �0;1!̂ (A.1.14)where the funtions on the right hand side (h, �Dx�h�, : : : , !̂) are ele-ments of W. Note also that the sum on the right hand side is diret: nononvanishing funtion h+ �Dx�h� + �� �Dx��h� + ���Dx� �Dx�h�� is �0;1-exatbeause the various terms either do not ontain variables Dr+1x� or �Dr+1x�at all, or they ontain Dx� but no ", or �Dx� but no �". Hene, our resultharaterizes H(�0;1;W) ompletely.
A.2 Derivation of (7.1.31)We shall show that (7.1.30) implies (7.1.31). The proof is a ase-by-asestudy for g = 0; : : : ; 4. Sine !k does not depend on the fermions andhas vanishing onformal weights, it an be assumed to ontain only termswith even N"-degree and even N�"-degree. Hene, it does not depend on thesupersymmetry ghosts if g = 0 or g = 1 whih gives (7.1.31) in these ases.If 2 � g � 4 the assertion follows from�0;0!k + �0;1!k�1 = 0; (A.2.15)whih is the seond equation in (7.1.29).g = 2: Only !k=2 an depend on the supersymmetry ghosts. One has!k=2 = "�"a(X) + �"���"�a(X)where a(X) and �a(X) are funtions of the undi�erentiated x� and yi. �0;0!2ontains for instane �(�")2a(X) and ��(���")2�a(X) beause �0;0" and �0;0�"ontain ��" and �� ���", respetively. If a 6= 0 or �a 6= 0, these terms are not�0;1-exat beause they do not ontain derivatives of an x�. We onludethat a = 0 and �a = 0 and thus that (7.1.31) holds for g = 2.g = 3: Again, only !k=2 an depend on the supersymmetry ghosts. Theterms in !k=2 depending on " or its derivatives are�"�2"a(X) + "�"��b(X) + "�"����(X) + "�"Cidi(X)+�� �Dx�"�"e�(X) + �(�")2f(X) + �2�"2g(X): (A.2.16)In addition there are analogous terms with �" or its derivatives. A straight-forward alulation shows that (A.2.15) imposesb = 0;  = 0; di = 0; e� = ��a; f = a; g = �12 a (A.2.17)
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where a = a(X) is an arbitary funtion of the yi and x�. Using (A.2.17) in(A.2.16), the latter beomes[�"�2"+ �� �Dx�"�"�� + �(�")2 � 12 �2�"2℄a(X)= �0["�"a(X)℄ + �0;1[��" ���a(X)℄: (A.2.18)This shows that all terms ontaining " or its derivatives an be removed from!k=2 by the rede�nition !0 = ! � �0["�"a(X) + ��" ���a(X)℄. Similarlyone an remove all terms ontaining �" or its derivatives. Hene, without lossof generality one an assume !k=2 = 0 whih implies (7.1.31) for g = 3.g = 4: Now !k=4 and !2 an depend on the supersymmetry ghosts. Onehas !k=4 = "3�2"a(X) + "2(�")2b(X) + �"3 ��2�"�a(X)+�"2(���")2�b(X) + "�"�"���"(X):The fat that �0;0�2" ontains �(1=2)"�3� implies a = 0. Analogously oneonludes �a = 0. The fat that �0;0�" and �0;0 ���" ontain ��2" and �� ��2�",respetively, implies b = 0, �b = 0 and  = 0.!2 is of the form PA(ghosts;Dx�; �Dx�)aA(X) where the PA either de-pend on " and its derivatives, or on �" and its derivatives. The omplete listof polynomials PA depending on " and its derivatives is���"�2"; ���(�")2; �2���"2; ��2�"�"; ��3�"2;�� �Dx��"�2"; �� �Dx��(�")2; �� �Dx���"�"; �� �Dx��2�"2;� ����"�2"; � ����(�")2; �� ��2��"�"; �� ����"�"; �2� ����"2; �� �Dx� ����"�";�Ci"�2"; �Ci(�")2; ��Ci"�"; �2�Ci"2; ����Ci"�"; �� �Dx�Ci"�"; CiCj"�";Starting with the terms"�2"���A1(X) + (�")2���B1(X) + "2���2�E2(X) (A.2.19)one �nds that (A.2.15) implies A1(X) = B1(X) = 2E2(X). Considering theterms "�"��2�B5(X) + "2��3�E1(X)+"�2"��� �Dx�A4;�(X) + (�")2��� �Dx�B4;�(X)+"�"���� �Dx�C4;�(X) + "2�2��� �Dx�E6;�(X); (A.2.20)one observes that the �0 transformation of these terms neither ontain ��k��or ��k�" terms nor U(1) ghosts. Thus they have to ful�ll (A.2.15) separatelyand one obtainsC4;�(X) = ���A1(X)B4;�(X) = ���B5(X) + ��A1(X)� 2E6;�(X)A4;�(X) = �2��E1(X)� 2E6;�(X):
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Eliminating the oeÆients one �nds that (A.2.19) + (A.2.20) an be ex-pressed by �0��(�")2(B5(X)�A1(X)) + �"�2"E1(X)+"�"��A1(X)� 2"�"�� �Dx�E6;�(X)�+�0;1�� ����" ���A1(X)� 2����" �Dx� ���E6;������" �Dx� �
���E6;��; (A.2.21)where we have used the on-shell equality (7.1.15). Next we onsider theterms involving derivatives of ��"�2"� ����A2(X) + (�")2� ����B2(X) + "�"�� ��2��B6(X)+"�"�� ����B7(X) + "2�2� ����E3(X) + "�"������ �Dx�C5;�(X); (A.2.22)whih implies via (A.2.15)B7(X) = 0; A2(X) = B6(X) = B2(X) = �2E3(X);C5;�(X) = ���A2(X): (A.2.23)Thus (A.2.22) an be written as�0 �"�"����A2(X)�� �0;1 ��"����� ���A2(X)� (A.2.24)and thus be removed from !2. In the last step we onsider ontributionsontaining U(1) ghosts, i.e."�2"�CiA3;i(X) + (�")2�CiB3;i(X) + "�"��CiB8;i(X)+"2�2�CiE4;i(X) + "�"����CiB9;i(X)+"�"Ci�� �Dx�C6;�i(X) + "�"CiCjB10;ij(X): (A.2.25)(A.2.15) imposes B10;ij(X) = B9;i(X) = B8;i(X) = 0. Furthermore wederive the onditionsA3;i(X) = B3;i(X) = �2E4;i(X) C6;�i(X) = ���A3;i(X): (A.2.26)Using the on-shell equality (7.1.14), (A.2.25) an be written as�0 �"�"CiA3;i(X)�+ �0;1��"Ci� ���A3;i(X)��"��� � �Dx�(
��i �
���G�i)A3;i(X)�: (A.2.27)Hene, as in the ase g = 3 one �nds that (A.2.15) implies !2 = �0(: : : ) +�0;1(: : : ) whih implies (7.1.31) for g = 4.



Appendix B
Analysis of Bianhi identities
In this appendix we summarize briey the investigation of the Bianhi iden-tities for two-dimensional supergravity oupled to Maxwell theory. Thestarting point is the struture equation[DA;DBg = �TABCDC �RABÆL � FABiÆi; (B.0.1)where [�; �g denotes the graded ommutator, fDAg = fDa;D�g ontains theovariant derivatives Da and ovariant supersymmetry transformations D�,ÆL = (1=2)"ablab is the Lorentz generator and Æi are the U(1) generators(represented trivially in our ase). The \torsions" TABC , \urvatures" RABand \�eld strengths" FABi are generially �eld dependent and determinedfrom the Bianhi identities implied by (B.0.1). Using the onstraints (3.2.6)and (3.2.7) one obtains for the torsionsT��a = 2i(aC)��Ta�� = 14 S(a)��Tab� = i4 "ab(C�)��D�S; (B.0.2)where S is the auxiliary salar �eld of the gravitational multiplet. For theurvatures one obtains R�� = iS(�C)��Ra� = i2 (a�)��D�SRab = 14 "ab(S2 +D2S); (B.0.3)and the �eld strengths are given byF��i = 2i(�C)���iFa�i = (a)���i� : (B.0.4)
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The supersymmetry transformations of �i� and F iab turn out to beD��i� = i(a�C)��Da�i + i2 (�C)��"abF iba + i2 (�C)��S�iD�F iab = �(bDa�i)� + (aDb�i)� + 12 "abD�S�i+12 "abS(�)�Æ�iÆ: (B.0.5)Introduing the orresponding onnetion 1-forms and proeeding along thelines of [82℄ one identi�es the ovariant derivatives Da in terms of partialderivatives and onnetions, and the urvatures, �eld strengths and torsionswith two lower Lorentz indies in terms of the onnetions and the other�eld strengths. Owing to the onstraint Tab = 0 this yields the expression(3.2.3) for the spin onnetion. Furthermore one obtainsFabi = EanEbm(�nAim � �mAin � (�mn�i) + (�nm�i)� 2i(�m�C�n)�i)and the expression for Tab� an be used to express the supersymmetry trans-formation of the auxiliary �eld S asD�S = 4i(�C)��"nmrm�n� � i(mC)���m�S:The full BRST transformations (3.2.2), (3.2.4) and (3.2.5) are then obtainedby adding the Weyl transformations by hand and imposing s2 = 0 on all�elds. To ahieve this in an o�-shell setting, one introdues the super-Weylsymmetry on the gravitino and the gaugino and the loal shift symmetry ofthe auxiliary �eld S.



Appendix C
BRST transformations
C.1 BRST transformations of superonformal ten-sor �eldsThis appendix ollets the BRST transformations of the superonformaltensor �elds and orresponding ghost variables derived in setion 3.3. Thetransformations of the undi�erentiated �elds reads� = ��� � ""s�� = �� ���� � �"�"s" = ��"� 12 "��s�" = �� ���"� 12 �"����sCi = ���F i + ��"�i + ��"��i + "�"�̂isXM = (�D + �� �D)XM + " M + �" � Ms M = (�D + �� �D) M + 12 �� M + "DXM � �"F̂Ms � M = (�D + �� �D) � M + 12 ���� � M + �" �DXM + "F̂MsF̂M = (�D + �� �D)F̂M + 12 (�� + ����)F̂M + "D � M � �" �D Ms�̂i = (�D + �� �D)�̂i + 12 (�� + ����)�̂i + "�i + �"��is�i = (�D + �� �D)�i + (�� + 12 ����)�i + "D�̂i + �"F i + �"�̂is��i = (�D + �� �D)��i + (12 �� + ����)��i + �" �D�̂i � "F i + ���"�̂isF i = (�D + �� �D)F i + (�� + ����)F i � "D��i + �" �D�i � �"��i + ���"�iThe s-transformations of ovariant D or �D derivatives (of �rst or higherorder) of a �eld are obtained by applying D's and/or �D's to the transforma-tions given above, using the rules D� = ��, D�� = 0, D" = �", D�" = 0 et,
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as well as [D; �D℄ = 0. E.g., one getssDXM = (�D + �� �D)DXM + ��DXM + "D M + �"D � M + �" Ms �DXM = (�D + �� �D) �DXM + ���� �DXM + " �D M + �" �D � M + ���" � MsD �DXM = (�D + �� �D)D �DXM + (�� + ����)D �DXM+"D �D M + �"D �D � M + �" �D M + ���"D � MsD M = (�D + �� �D)D M + 32 ��D M + 12 �2� M+"D2XM + �"DXM � �"DF̂Ms �D � M = (�D + �� �D) �D � M + 32 ���� �D � M + 12 ��2�� � M+�" �D2XM + ���" �DXM + " �DF̂Ms �D M = (�D + �� �D) �D M + 12 �� �D M + ���� �D M+"D �DXM � ���"F̂M � �" �DF̂MsD � M = (�D + �� �D)D � M + ��D � M + 12 ����D � M+�"D �DXM + �"F̂M + "DF̂M
C.2 BRST transformations of superonformal an-ti�eldsIn this appendix we present the full s transformations of the superonfor-mal anti�elds assoiated with the matter and gauge multiplets, using thefollowing notation:GMN := H(MN)(X)Di := Di(X)
KNM := �KHMN (X)� �MHKN (X) + �NHKM (X)= 2�KNM �HKNM (HKNM = 3�[KHNM ℄)RKLMN := �M�[KHL℄N (X)� �N�[KHL℄M (X)= 12 (�K
LMN � �L
KMN ) = 12 (�M
KNL � �N
KML):
KNM and RKLMN enjoy the following properties:
KMN +
KNM = 
MKN +
NKM = 2�KGMNRKLMN = �RLKMN = �RKLNM ; �[JRKL℄MN = 0:
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The full BRST transformations of the undi�erentiated superonformal mat-ter anti�elds aresF �M = ��̂i�MDi + 2GMN F̂N +  K � N
KNM+(�D + �� �D)F �M + 12 (�� + ����)F �M � " � �M + �" �Ms �M = ��i�MDi + � N �̂i�N�MDi + 2GMN �D N+ �DXN K
KNM � F̂N � K
MKN �  K � N � LRKMLN+(�D + �� �D) �M + (12 �� + ����) �M + "X�M + �" �DF �M + ���"F �Ms � �M = ��i�MDi �  N �̂i�N�MDi + 2GMND � N+DXN � K
NKM + F̂N K
KMN +  K L � NRLKMN+(�D + �� �D) � �M + (�� + 12 ����) � �M + �"X�M � "DF �M � �"F �MsX�M = �2GMND �DXN �DXK �DXL
KLM + F̂K F̂L
MKL+D � K � L
MLK �  K �D L
KML+DXN � K � LRNMLK + �DXN K LRLKNM+F̂N K � L�M
KLN + 12  R K � N � L�MRKRLN+F i�MDi � ( N ��i � � N�i + F̂N �̂i +  N � K �̂i�K)�N�MDi+(�D + �� �D)X�M + (�� + ����)X�M+"D �M + �" �D � �M + �" �M + ���" � �MThe s transformation of the superonformal anti�elds for the gauge multipletread s��i = � M�MDi+(�D + �� �D)��i + 12 ������i + "��i � �" �A�is���i = � M�MDi+(�D + �� �D)���i + 12 �����i + �"��i � "A�is��i = �F̂M�MDi �  M � N�N�MDi+(�D + �� �D)��i + 12 (�� + ����)��i+"D��i + �" �D���i � "�"C�isA�i = �DXM�MDi+(�D + �� �D)A�i + ��A�i+�"D��i � "D���i � �"���i � �"�"C�is �A�i = �DXM�MDi+(�D + �� �D) �A�i + ���� �A�i+" �D���i � �" �D��i � ���"��i � ""C�isC�i = �D �A�i � �DA�i + (�D + �� �D)C�i + (�� + ����)C�iThe BRST transformations of ovariant derivatives of the ovariant anti�elds(suh as sDX�M ) are obtained from the above formulae by means of the rulesdesribed in appendix C.1.
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