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Abstract.

The contribution of this thesis is at the place where interactive 3-D computer graphics and
distributed systems meet. Virtual Environments are concerned with the convincing simulation of a
virtual world. One of the most promising aspects of this approach lies in its potential as a way of
bringing people together, as a virtual meeting place.

To overcome current restrictions in network performance and bandwidth, techniques that have
already been used for improving the rendering performance for virtual reality applications can be
adopted and enhanced. In this context, we develop the concept of the Remote Rendering Pipeline,
that extends the traditional rendering pipeline for interactive graphics to include the network
transmission of geometry data. By optimizing the steps of the Remote Rendering Pipeline, and
combining these improvements, a system that is better prepared to deal with complex and
interesting virtual worlds emerges.

After a discussion of the state of the art in the fields of interactive 3-D graphics and distributed
virtual environments, the Remote Rendering Pipeline is introduced, a conceptual model of
rendering in distributed systems. Its elements are discussed in the following chapters: the demand-
driven geometry transmission protocol, a strategy for managing partially replicated geometry
databases for virtual environments; an octree-based level of detail generator; smooth levels of
detail, a novel data structure for incremental encoding and transmission of polygonal objects; and
a modeling and rendering toolkit for directed cyclic graphs allowing a compact representation of a
large class of natural phenomena.



Kurzfassung.

Der Beitrag dieser Dissertation liegt dort, wo sich interaktive dreidimensionale Computergraphik
und verteilte Systeme überschneiden. Virtual Environments beschäftigen sich mit der glaubhaften
Simulation von virtuellen Welten. Der vielversprechendste Aspekt dieser Methode ist die
Möglichkeit, Menschen in virtuellen Umgebungen zusammenzuführen.

Gegen die derzeitigen Beschränkungen in Netzwerkdurchsatz und -bandbreite können Algorithmen
angepaßt und erweitert werden, die bereits für interaktive Graphik erfolgreich eingesetzt werden. In
diesem Zusammenhang wird das Konzept der Remote Rendering Pipeline vorgestellt, einer
Erweiterung der traditionellen Rendering Pipeline, die eine Netzwerkübertragung der Graphikdaten
miteinschließt. Die Optimierung der Abschnitte dieser Pipeline ergibt ein Graphiksystem, das
komplexe und interessante virtuelle Welten darstellen kann.

Nach einer Erörterung des Standes der Forschung in den Bereichen interaktive dreidimensionale
Graphik und verteilte virtuelle Welten wird die Remote Rendering Pipeline vorgestellt, ein
konzeptuelles Modell für verteilte graphische Systeme. Die Elemente dieser Pipeline werden in den
folgenden Kapiteln beschrieben: das bedarfsgesteuerte Geometrie-Übertragungs-Protokoll, eine
Strategie zur Verwaltung von teilweise replizierten geometrischen Datenbanken; ein Octree-
basierter Detailstufengenerator; Smooth Levels of Detail, eine neue Datenstruktur für die
schrittweise Codierung und Übertragung von polygonalen Objekten; und ein Modellierung- und
Darstellungs-Softwarewerkzeug für gerichtete zyklische Graphen, die eine kompakte Darstellung
einer wichtigen Klasse von natürlichen Phänomenen gestattet.
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1. Introduction

1.1 Virtual Reality, the Universe, and Everything

Virtual Reality has been the darling of the media for a couple of years now, and has long replaced
artificial intelligence as the most popular buzzword haunting the computer corners of press and TV
networks. We see many interesting applications emerge, such as architectural walk-throughs,
surgical planning, scientific visualization and computer games.

   

(a) (b)

   

(c) (d)

Figure 1: Examples for virtual reality applications: (a) architectural walk-through of a historic site,
(b) planning system for eye surgery, (c) virtual wind tunnel, (d) educational software

While all the interest has helped to attract attention and gather funds for research in the field,
overexpectations and hype have also seriously hindered common understanding of the technology,
and led to a confusing and inconsistently used vocabulary.
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Allow us therefore to start with a very brief tour of the field we are interested in, and introduce a few
essential terms that will help us in explaining the work presented in this thesis, focused on Virtual
Reality, Interactive 3-D Graphics, and Virtual Environments.

Virtual Reality is used - unfortunately - to describe everything from computer games to CAD
packages. In our opinion, this term is strongly connected to the concept of immersion of a person
into a simulated surrounding produced by a computer. The goal is to make the synthesized
experience created by presenting artificial stimuli to the human senses convincing enough to achieve
a „suspense of disbelief“, ultimately making the real and virtual surrounding indistinguishable.

Virtual Reality should really be considered a user interface technology. A lot of research has been
devoted to hardware at the interface between humans and computer: Head-mounted displays,
stereoscopic vision, spatial sound, position and orientation trackers and data gloves are only a few
prominent examples. In this context, a lot of human factors must be considered. Some of the
ergonomic issues involve the presentation of computer graphics, which builds the bridge to the
second area.

Interactive 3-D Graphics is concerned with the generation of images by a computer in real time,
which is anything between 10 and 50 frames per second, depending on the application. This
requirement is doubled if a stereoscopic display has to be supported. An insufficient frame rate or
high latency of response to user interaction destroys immersion and may even lead to simulator
sickness, but fortunately many applications allow to trade frame rate for image quality.

Traditionally computer graphics has focused on the quality of images, culminating in photo-realistic
image synthesis. The increasing power of computer systems has made it possible to create three-
dimensional animated images in real-time, but with the available computing power grow the demands
of applications. It is easy to see that raw hardware muscle will never satisfy the performance goals,
so smart algorithms are needed that better manage the available resources and fundamentally reduce
the effort of 3-D rendering.

Virtual Environments are concerned with the convincing simulation of a virtual world. This task
does not only involve computer graphics, but also a lot of other complex issues including animation,
modeling and authoring, interaction, manipulation and navigation, autonomous agents and artificial
intelligence, and distributed systems providing support for a large number of human users. The
complexity of bringing all this issues together into a functioning whole involves sophisticated
methods of software engineering and systems design, which is the challenge of research in virtual
environments.

1.2 What this thesis is about

The contribution of this thesis is at the place where interactive 3-D graphics and distributed systems
meet. One of the most promising aspects of virtual environments lies in its potential as a way of
bringing people together, as a virtual meeting place. Participation of multiple users requires the
employment of a distributed system, which is inherently more complex than an application designed
for a single user. A lot of work has been done investigating issues in distributed virtual
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environments, focusing among others on animation, interaction, concurrency, and network
topologies. However, we feel that a particular shortcoming of current systems has been rather
neglected, namely the conflict between the ever-growing size of databases holding the geometric
description of the 3-D objects populating the virtual world, and the painfully limited bandwidth
available for distributed virtual environments.

Problem statement

Networked applications involving 3-D graphics, but especially virtual environments, require shared
access to geometry databases describing the objects that must be displayed. Such databases
representing virtual worlds can become very large if objects involve a lot of detail and the world is
composed of a large number of objects. We may build large and powerful servers to manage these
virtual worlds, but the typical desktop computer used for displaying the virtual world is not as
powerful.

In order to generate images of the virtual world, the geometric models of the visible objects must be
available locally at the computer that performs the rendering. Therefore most applications involve a
distribution step where the geometry database is copied into the local domain (main memory, hard
disk). Either this step is carried out off-line (e. g., CD-ROM distribution of a computer game), or the
data is downloaded over a network. One associated problem is that the size of the virtual world may
exceed the capacity of the computer’s storage, so the scalability of virtual worlds is restricted. Even
worse is the problem that network connections are notoriously slow, and the situation rapidly
deteriorates with the growth of the Internet and the inadequate performance of network commodities
such as modems. Slow connections and long download times mean that applications are not fit for
interactive usage. Apart from being annoying to the user, the illusion of immersion into a virtual
world is destroyed.

Solution that help to streamline this process of geometry database distribution allow for larger
amounts of data to be handled: We can have more detailed objects, and we can handle more objects
simultaneously, so that virtual worlds can be more realistic. Beyond the ability to simply handle
three-dimensional data faster, a new type of application suddenly comes into reach: We can start
thinking of a continuous 3-D Internet, a true Cyberspace [72].

Proposed solutions

To overcome the problems restricting the use of geometry data in networked applications,
techniques that have already been used for improving the rendering performance for virtual reality
applications can be adopted and extended to reduce bandwidth needs and improve network related
performance. In this context, we develop the concept of the Remote Rendering Pipeline, that
extends the traditional rendering pipeline for interactive graphics to include the network transmission
of the data to be rendered. By optimizing the steps of the Remote Rendering Pipeline, and combining
these improvements, a system that is better prepared to deal with complex and interesting virtual
worlds emerges.

As a prerequisite to the work presented in this thesis, chapters 2 and 3 discuss the state of the art in
interactive 3-D graphics and distributed virtual environments, respectively. Chapter 4 introduces the



INTRODUCTION 14

Remote Rendering Pipeline, whose elements are discussed in detail the following chapters. Chapter 5
explains a strategy for managing partially replicated geometric databases for virtual environments
called the demand-driven geometry transmission protocol. Chapter 6 discusses an octree-based level
of detail generator. Chapter 7 deals with a novel data structure for incremental encoding and
transmission of polygonal objects called smooth levels of detail, chapter 8 outlines a modeling and
rendering toolkit for directed cyclic graphs allowing a compact representation of a large class of
natural phenomena. Conclusions are drawn in chapter 9, and chapter 10 lists relevant references.

1.3 Individual publications about this work

Results of this work have been previously published by the author. The following papers describe the
preliminary outcome of the work:

• D. Schmalstieg, M. Gervautz: Towards a Virtual Environment for Interactive World Building.
Proceedings of the GI Workshop on Modeling, Virtual Worlds, Distributed Graphics (MVD’95),
Bonn (Nov. 1995)

• D. Schmalstieg, M. Gervautz: Implementing Gibsonian Virtual Environments. Proceedings of the
Thirteenth European Meeting on Cybernetics and Systems Research, Vienna, Austria, April 1996.
Republished in: Cybernetics and Systems - An International Journal (ed. R. Trappl), Vol. 27, No.
6, pp. 527-540, Taylor & Francis, Washington DC (1996)

• D. Schmalstieg, M. Gervautz, P. Stieglecker: Optimizing Communication in Distributed Virtual
Environments by Specialized Protocols. In: Virtual Environments and Scientific Visualization’95
(ed. M. Göbel), Springer Wien-New York (1995)

• D. Schmalstieg, M. Gervautz: Demand-Driven Geometry Transmission for Distributed Virtual
Environments. Computer Graphics Forum (Proceedings EUROGRAPHICS), Vol. 15, No. 3,
pp. 421-433 (1996)

• D. Schmalstieg, G. Schaufler: Incremental Encoding of Polygonal Models. Proceedings of the
30th Hawaii International Conference on System Sciences (HICSS-30), Maui, Hawaii, USA, Vol.
V, pp. 638-645, Jan. 7-10 (1997)

• D. Schmalstieg: An Octree-Based Level of Detail Generator for VRML. Proceedings of the ACM
SIGGRAPH 2nd Symposium on VRML, pp. 127-133, Monterey CA, Feb 24-27 (1997).

• D. Schmalstieg, G. Schaufler: Smooth Levels of Detail. Proceedings of IEEE Virtual Reality
Annual International Symposium (VRAIS'97), pp. 12-19, Albuquerque, New Mexico, March 1-5,
(1997)

• D. Schmalstieg, M. Gervautz: Modeling and Rendering of Outdoor Scenes for Distributed
Virtual Environments. Proceedings of ACM Symposium on Virtual Reality Software and
Technology 1997 (VRST'97), pp. 209-216, Lausanne, Switzerland, Sep. 15-17 (1997)
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2. Interactive 3-D Graphics

2.1 Motivation from human factors

In producing the illusion of a virtual world, the most important contribution is certainly being made
by the visual component. Ideally, we would like to be able to produce images that always match or
exceed the limits of human visual perception in all aspects. Unfortunately, limitations in the
performance of the image generators we employ for this task defeat this goal. The ever-increasing
demands of applications make it unlikely that this situation will ever change significantly. Working
solutions require us to trade off image fidelity for graphical complexity and performance of the
application. In doing so, it is vital to understand those human factors that dominate the perception of
interactive 3-D computer graphics [35].

Visual acuity denotes the degree to which visible features can be perceived, and is commonly
measured as the angle subtended at the eye. On-axis resolution is around 1 arc minute; rendering
graphical features that fall below the threshold of perception would be wasteful, and the effort could
be used better elsewhere.

The human field of view is limited to about 180 degrees horizontally and 120 degrees vertically.
These are the biological constraints on the visible portion of the environment, which are usually
further restricted by display systems. Again, putting effort in displaying graphics outside the field of
view is a waste of performance.

Latency is the time measured from the setting of an input until the corresponding output is
manifested. Many factors contribute to latency: input devices, software architecture, rendering time,
display scan-out. For the rendering portion of the system, latency is typically taken as the time after
the eyepoint is set until the last pixel of the corresponding frame is scanned out by the display device.
Excessive latency can lead to over-compensation and control oscillations induced by the user.

A sufficiently high frame rate is necessary to fool the human eye into seeing a continuous and
smooth motion. Generally, most displays have refresh rates close to or above the flicker limit (60-
80Hz) of the human visual system, so the display itself introduces no significant problems. However,
the time it takes to generate an image by the image generator is bound to scene complexity. Low
frame rates make motion choppy and are especially problematic when rapid motion is possible as
with a head-mounted display. Furthermore, latency is increased since a low frame rate means a
longer time until the next image can be presented.

Constant frame rates are desirable as variations in frame rate tend to distract the user from the task
at hand. Variable frame rates also cause temporal inaccuracies because the change in frame rate
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affects the latency. An unanticipated change in latency leads to a frame not being displayed at the
time it was planned for, and results in jerky motion.

2.2 The rendering pipeline

On most current image generators, rendering is implemented as a pipeline (see Figure 2) that usually
includes the following stages:

• Database traversal is typically done on the host CPU and can become a bottleneck if the traversal
is unable to keep the graphics pipeline full.

• Polygon processing includes vertex transformations, lighting calculations and 2-D triangle setup.
On very low end image generators, this stage is performed by the host CPU, but the trend goes
towards geometry processors that are specialized for this job.

• Pixel processing involves operations such as depth buffer testing, anti-aliasing, texturing, and
alpha blending. Most of these operations require access to memory, e.g. for looking up texture
values, which can have great impact on the performance. Pixel fill rates can also depend on the
size of the primitives being rendered because of the per-primitive setup effort.

Figure 2: The rendering pipeline

2.3 Performance of the rendering system

Maximizing frame rate and image quality becomes a problem of making the best use of the each
available stages and avoiding bottlenecks. The remainder of this chapter discusses methods and
techniques that aim to achieve optimal performance, and also take into account the relevant human
factors.

Reduction of geometric complexity

The usual measure for scene complexity is the number of geometric primitives of which the scene is
composed. As there is a hard limit on this number imposed by the hardware, any reduction of
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geometric complexity is desirable. We are primarily interested in such simplifications that cannot be
perceived by the human user due to the biological limitations mentioned in section 2.1. If the
simplification cannot be concealed, there usually is a trade-off in image fidelity versus frame rate that
has to be resolved. The most important methods for reducing geometric complexity are visibility
processing (section 2.4), levels of detail (section 2.5), and the relatively new field of image based
rendering (section 2.6).

Optimizing runtime rendering

Besides reducing the load on the rendering system, it is also necessary to ensure efficient use of the
available capacity. This involves tuning the geometric database to avoid suboptimal structures in the
data. Some of the measures are relatively simple: Many pipelined image generators are optimized for
triangle strips sharing adjacent triangles. Restructuring polygonal data in long strips helps to boost
performance. As switching graphics mode and graphical attributes (such as color or shading)
involves a performance penalty, the data should be presorted by type and mode if possible to avoid
changes in the state of the image generator. Transformations that are important for the modeling
process can hurt performance during rendering. Preprocessing allows all static transformation to be
eliminated. Many animations do not depend on run-time parameters, so they can be precomputed and
simply replayed at run-time, thus saving computation time.

Beyond these simple optimizations, there are performance issues that require more sophisticated
techniques, in particular latency management (section 2.7) and management of large geometric
databases (section 2.8).

2.4 Visibility processing

In the early days of raster graphics, a lot of attention has been paid to algorithms that resolve the
problem of visibility of opaque surfaces. With the invention of the z-buffer, a relative brute force
solution replaced all other methods in workstation-class image generators on the merit of its efficient
hardware implementation. However, the virtual environments we would like to render today are
composed of so many geometric primitives that resolving occlusion with the help of a z-buffer alone
is infeasible. We rather have to compute as accurately as possible those portions of the scene that are
actually visible, and let the hardware deal with this subset. Backface culling is a trivial example.

This task of visibility processing is carried out by the host CPU, and can be divided into two phases:
Visibility preprocessing is an off-line task that computes data that can later be used in the visibility
culling at run-time to quickly eliminate large portions of the scene that are certainly invisible.

The simplest way of visibility culling is culling on the viewing frustum. The problem here is to not let
the rendering/clipping process do the work, but rather to rapidly discard the portion of the scene that
lies outside the viewing frustum. A thoughtful spatial organization of the geometric primitives in the
scene is necessary, which is usually done by grouping spatially coherent primitives into objects.
Hierarchical bounding volumes can be used to sort out the invisible geometry. Naylor proposed to
use a binary space partitioning (BSP) tree for the scene that can be efficiently intersected with a
viewing frustum of any shape [53].
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Virtual environments can broadly be categorized into sparse (i. e. most of the geometry within the
viewing frustum can at least partly be seen, up to the virtual horizon), and densely occluded (such as
building interiors where most of the geometry contained in the viewing frustum is hidden behind
walls and other large occluders).

Figure 3: Visibility culling of a building interior from [22]. Left is the unpruned model, right shows the portion
visible from the observer

Airey [1] first proposed to make use of the structure of densely occluded environments by employing
Potentially Visible Sets (PVS). The environment is decomposed into cells. The criterion for the
decomposition into cells is that the visible portion of the scene should be roughly the same from any
viewpoint within a cell. This is usually approximately equivalent to the rooms of a building that are
interconnected only by doors, windows, stairs, and hallways. Any such opening is referred to as a
portal. The method precomputes a subdivision into cells, builds the cell adjacency graph, and
associates with each cell a PVS, which is a conservative overestimate of the actual visible portion
that can be efficiently computed. The geometry associated with the PVS is then rendered, and a
standard z-buffer is used to resolve exact visibility. Airey used a shadow volume BSP buffer to
estimate the PVS. Teller and Sequin [85] have taken this concept further and found an analytic
solution to the portal-portal visibility problem. Using linear programming, they compute a complete
set of cell-to-cell and cell-to-object visibilities (compare Figure 3). This approach is computationally
intensive.

Therefore Luebke and Georges [45] propose a variant that works without visibility preprocessing:
At runtime, they compute 2-D bounding boxes of the portals projected to screen space. During the
traversal of the cell adjacency graph, as each successive portal is traversed, its bounding box is
intersected with the aggregate culling box using only a few min-max comparisons. The content of
each cell is tested for visibility through the current portal sequence by comparing the screen-space
projection of each object’s bounding box.

Greene, Kass & Miller [31] developed an algorithm called hierarchical z-buffer visibility that works
well not only for densely occluded environments, but also for environments that have open spaces.
The algorithm uses an octree in object space. The scene is rendered by recursively traversing the
octree front to back. Before the geometry associated with a particular node in the octree is rendered,
its visibility is estimated by testing the cube associated with the octree node for visibility. This test is
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further accelerated by a z-pyramid maintained in image space. Using the octree and the z-pyramid as
auxiliary data structures, the algorithm is able to exploit simultaneously object space and image space
coherence, and temporal coherence for animated walk-throughs as well. However, today’s hardware
does not fully support the features required by the algorithm, and it has to rely on software
rendering.

Coorg and Teller [14] present a spatially and temporally coherent visibility algorithm that exploits
properties of the scene by distinguishing large occluders from occludees. The algorithm works
entirely in object space, using fast conservative visibility tests. It uses an octree-based subdivision,
and eliminates large portions of the model without touching most invisible polygons.

Another class of visibility algorithms deals with the reduced problem of 2 ½ D visibility, that is
representative for all environments where the user’s movement is constrained to a plane (such as
walking on a single floor of a building). Yagel and Ray [89] present a visibility algorithm for cells
based on a regular grid subdivision in 2-D. They classify the cells (grid elements) as open, occluded,
or containing a wall, and compute approximated eye-to-cell visibility. Schmalstieg and Tobler [73]
developed an algorithm that is based on a 2-D triangular mesh. The edges of the triangles can be
elevated and interpreted as walls. They propose a recursive algorithm that can be rapidly executed at
run-time and exploits spatial coherence by yielding not only the PVS but also exact visible portions
of the walls. This algorithm lends itself especially for low-end platforms that do not have 3-D
hardware acceleration.

Visibility computation is generally restricted to walk-throughs of static environments, because they
include a heavy preprocessing stage that constructs an auxiliary spatial data structure. Sudarsky and
Gotsman [83] make a fist attempt to include dynamically moving objects by introducing temporal
bounding volumes that can be used for incremental updates of the spatial data structure.

2.5 Levels of detail

In very large virtual environments it is commonly the case that many objects are very small or
distant. The size of many geometric features of these objects falls below the perception threshold or
is smaller than a pixel on the screen. To better use the effort put into rendering such features, an
object should be represented at multiple levels of detail (LODs). Simpler representation of an object
can be used to improve the frame rates and memory utilization during interactive rendering. This
technique was first described by Clark already in 1976 [13], and has been an active area of research
ever since. The important questions for the application of levels of detail are: What strategy to use
for selecting an appropriate level of detail for each object? How to best stage the transition between
two successive levels of detail? And how to create good levels of detail for an original high-fidelity
geometric object?
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Figure 4: Three levels of detail for a “Romulan warbird” spaceship

Level of detail selection

There is no unique way to characterize the best selection of levels of detail for a group of objects
comprising a scene, since human perception and aesthetics are hard to catch in a single formula.
Instead, heuristics are used. Simple heuristics use the distance of the object from the observer or the
size projected to the screen as a measure for the LOD. Unfortunately, these static heuristics do not
adapt to variable load on the graphics pipeline: If too many complex objects are close to the
observer, an overload can neither be detected nor avoided, and if rendering load is low, the image
generator may be idle. Therefore, reactive level of detail selection is employed by flight simulators
and real-time rendering toolkits such as Performer [61] with adaptive level of detail selection
according to the time required by the last frames. However, such a strategy still fails to guarantee
bounded frame rates, since sudden changes in the rendering load can be underestimated. Funkhouser
and Sequin attacked this problem with a predictive selection algorithm [22] formulated as a
cost/benefit optimization problem: What selection of levels of detail for each objects produces the
best image while the accumulated cost for rendering each objects stays below the maximum capacity
of the image generator at the desired frame rate? They use a cost heuristic based on the polygon and
pixel capacity of the image generator, and a benefit heuristic constructed as a weighted average of
factors such as the object’s size, accuracy, and importance. The optimization problem is a variant of
the well-known knapsack problem and can be incrementally and approximately solved with tractable
computation effort for every frame.

Level of detail switching

For the use of levels of details, one may not neglect the issue how to stage the transition between
two successive representations. The simplest way to do the transition is hard switching: At some
point, the simpler model replaces the more complex model. This meets the performance goal, but can
cause visual popping which may be disturbing. Instead of simply switching the models, for a short
transition period they can be drawn blended together. This substantially reduces the popping effect,
but temporarily increases the rendering load while both models are being drawn. Yet superior to
blending is geometric morphing of one object into another. While this approach has certainly the best
visual and performance effect, it works only for levels of detail with well-defined geometric
correspondences.

Level of detail generation

The principal challenge of level of detail generation is to develop a way that takes a detailed model as
input and automatically simplifies its geometry, while preserving appearance as good as possible.
While in principle level of detail generation is relevant for complex models composed of any type of
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geometric primitive, in practice almost exclusively polygonal models are used [15], so research has
focused on this class.

Certain aspects are important in the classification of an algorithm that performs the task of polygonal
simplification:

• Local vs. global: Local techniques operate on individual primitives such as vertices, adjacent edge
segments or use some polygon characteristics. They are more apt to fulfill requirements related to
small features such as a local preservation of shape. Global techniques attempt to optimize the
polygon mesh based upon more general, high-level features of the model.

• Error bounds: Some of the methods guarantee user-controlled error bounds on the quality of the
simplified objects according to some metric (such as the maximum distance between the surface
of the original and the simplified model).

Besides these fundamental consideration, level of detail generation algorithms can be distinguished
by algorithmic principles:

Mesh simplification algorithms work with polygonal meshes, often triangle meshes. Local
operations on the surface of the object are performed, with a stress on the preservation of important
visual features such as shape and topology. As an input, these algorithms expect topologically sound,
manifold meshes. Unfortunately, this criterion is often not met by models generated with CAD
packages, which leads to all sorts of practical problems. These algorithm also put more weight on
feature preservation, for example, the simplification ratio is bound by the requirement of not
reducing the genus of the object. The best results are achieved for smooth, organic objects that are
over-tessellated, such as models obtained from a 3-D scanner.

The decimation algorithm by Schroeder, Zarge & Lorensen [74] analyses the vertices of the original
model for possible removal based upon a distance criterion. A local re-triangulation scheme is then
used to fill the hole resulting from the removed vertex.

Turk’s re-tiling method [87] optimizes a triangle mesh by introducing new vertices to form a new
representation. The new vertices are uniformly distributed on the surface of the original object. The
original vertices are then iteratively removed, and the surface is locally re-triangulated to best match
the local connectivity of the surface.

Hoppe et al. [36] present a triangular mesh simplification process which was based upon their
surface reconstruction work. This technique introduced the concept of an energy function to model
the opposing factors of polygon reduction and similarity to the original geometry. The energy
function, used to provide a measure of the deviation between the original and the simplified mesh, is
minimized to find an optimal distribution of the vertices.

Vertex clustering algorithms ignore topology in both input and output data. As a result, the
algorithms perform robustly for degenerate input data, and can achieve arbitrary high compression
for any kind of geometry. On the downside, the generated artifacts are much more severe, and local
features are not preserved so well.

The fundamental idea of vertex clustering is to reduce the number of vertices of a polygonal model
(usually a triangle mesh). Due to perspective distortion individual vertices of an object move closer
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together on the screen as the distance to the observer increases until they finally fall into one pixel.
By creating a cluster of such close vertices and replacing all cluster members by a representative
vertex, the number of vertices is reduced. The set of triangles is modified to include only the vertices
in the new set. In the course of that process, triangles will degenerate to lines or points and can be
removed. Therefore the set of triangles is reduced as well, and any such intermediate data set can be
used as an individual LOD.

Several selection criteria have been presented to choose the vertices that are to be clustered.
Rossignac and Borrel [64] propose a simple, yet efficient uniform quantization in 3-D. Schaufler and
Stürzlinger [66] use a hierarchical clustering method.

Reconstruction algorithms do not try to simplify the original object, but rather aim to build a new
object from scratch that is gradually refined to better approximate the original object.

DeHaemer and Zyda [18] combine two approaches for approximation of quadrilateral meshes
topologically equivalent to regular grids. One approach tries to fit polygons to the original mesh by
recursively subdividing them. The other approach starts with a polygon of the original mesh and tries
to grow it by merging it with its neighbors until a fitting threshold is exceeded.

He et al. [34] propose to sample and low-pass filter the object into multi-resolution volume buffers
and apply the marching cubes algorithm to obtain a triangular mesh. This method is very robust and
has the advantage that it can also deal with non-polygonal (e.g. CSG) input models. However, the
resulting meshes are still over-triangulated as a result of the marching cubes algorithm.

Progressive representations take the idea of reconstruction algorithms a step further by representing
the original object by a series of approximations that allow a near-continuous reconstruction and can
be encoded incrementally in a very compact way.

Lounsbery et al. [44] transform polygonal objects a multi-resolution data set of wavelet coefficients
derived from a triangular mesh with subdivision connectivity. Levels of detail can easily be
constructed by omitting higher order detail coefficients in the reconstruction process. [19] presents a
method to transform an arbitrary mesh into an equivalent one with the required subdivision
connectivity. This work is taken further in [10] to include colored meshes and support progressive
reconstruction of the model.

The progressive meshes introduced by Hoppe [37], based on edge collapse operation, yields a
lossless, continuous-resolution representation for triangular meshes. The representation is generated
as a sequence of repeated edge collapses, and is simply inverted in the progressive reconstruction
process. The order of applied operation is determined by adopting the mesh simplification method
from [36]. A similar approach that is also based on edge collapse operations is presented in [63].

Terrain

A specialized problem worth discussing is the representation and simplification of terrain. Digital
terrain is generally represented using an elevation model or height field of sample points, effectively a
two-dimensional discrete function. Often the sample points are arranged in a regular grid. Such data
is easily obtained from sources such as satellite range images and exhibits excessive detail. For
speedy rendering, a triangulation of the sample points with a low polygon count must be obtained.
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Such triangulation schemes can roughly be categorized into regular subdivisions and triangular
irregular network (TIN) models. For a survey, see [17]. Interactive rendering is best achieved by
using multi-resolution subdivisions, so that levels of detail can be selected at run-time individually for
different regions of the terrain. [20] outlines how real-time management of multi-level terrain data
can be achieved. Recent work by Lindstrom et al. [43] proposes a scheme for computing continuous
levels of detail for a regular subdivision height field that can be computed incrementally at run-time
and supports a user specified error threshold.

2.6 Image based rendering

The relatively new field of image based rendering tries to take advantage of the observation that
while the complexity of geometry in a scene is potentially unbound, the complexity of images (of a
given resolution) is finite and can easily be estimated in advance for guaranteed rendering
performance. Display algorithms typically require modest computational effort and are apt for low-
cost and entertainment devices. Furthermore, the source of images can be computer models or
digitized photographs, with the option of mixing the two together.

The most established technique that falls in that area is texture mapping, which simulates detail by
mapping images (often defined using bitmaps) onto flat surfaces. Partially transparent textures can be
used to simulate geometry with complex outlines. The widely available hardware-support makes
texture mapping the most popular choice for visually rich virtual environments. However, the
disadvantage of artifacts stemming in the finite resolution of texture maps cannot fully be overcome
by sampling strategies such as mip-mapping [21]. Texture mapping is complemented by environment
mapping, to capture the light entering a scene from outside in a special texture map, a technique
which is also available in hardware now.

A relative straight extension of texture mapping for the purposes of virtual environments are
billboards [61]. Radially or spherically symmetric objects such as trees can be approximated by a
single texture-mapped polygon, which is always oriented to face the observer.

Maciel and Shirley [48] introduced the concept of an impostor: An image of an object in the
approximate direction of the observer is presented in place of the object itself by rendering it as a
texture map onto single polygon. Schaufler extended this concept to the dynamic generation of
impostors at run-time [67], rather than as a preprocessing step: The impostor is generated by finding
a screen-aligned rectangle surrounding the object and rendering the object into a corresponding
rectangular frame buffer using graphics hardware. The resulting image is read from this buffer and
used to define the texture on the impostor rectangle.

Subsequently, Schaufler and Stürzlinger [69] and Shade et al. [75] concurrently developed a
hierarchical image cache that uses the concept of impostors to accelerate the rendering of very large
polygonal scenes up to an order of magnitude: The scene is decomposed into cells by a hierarchical
spatial data structure such as an octree or a BSP tree. This data structure is traversed depending on
the projected size of the cells, and a cache of impostors for each node is created and updated as
required by an error metric on the validity of the impostor.



INTERACTIVE 3-D GRAPHICS 24

The first proposal to build hardware that supports this idea is Talisman [86]. Aimed at the low-end
image generator market, this architecture discards the concept of a frame buffer in favor of small
image layers that at are composed on the fly at full rendering speed. During the composition process,
a full affine transformation is applied to the layers to allow translation, rotation and scaling to
simulate 3-D motion. Temporal image coherence is exploiting by re-using the image layers in a way
similar to impostors.

Image based rendering for rendering polygonal scenes as outlined above are probably the most
sophisticated acceleration tools suitable for the class of scenes categorized as sparse earlier. Beyond
polygonal scenes, some work has recently been published that attempts purely image based
rendering, so that the notion of geometric complexity is completely abandoned.

Chen and Williams [11] proposed to synthesize a dynamic view of the environment from a set of
environment maps that are composed by image warps. Regan and Post [60] developed a hardware
featuring multiple frame buffers that are combined by evaluating depth values. Re-rendering of
objects can be delayed until the an object’s view becomes too erroneous.

Quicktime VR [12] is an attempt to use cylindrical or spherical image maps that are warped in real
time to simulate camera panning and zooming. The method works very efficiently on low-
performance platforms and is now successfully used in entertainment products. A similar approach
based on plenoptic modeling is presented in [51].

A new approach to model the appearance of objects without the use of explicit geometry was
simultaneously introduced by Levoy and Hanrahan [42] as the light field and Gortler et al. [30] as the
lumigraph. The object’s appearance is represented a 4-D function, which is a subset of the plenoptic
function describing the flow of light from all directions in all directions. This function is sampled to
synthesize an image from any given viewpoint.

2.7 Managing latency

All effort to reduce rendering complexity to fit the maximum capacity of the image generator at the
target frame rate can easily be defeated by a suboptimal utilization of the hardware. In particular, the
rendering process is constantly facing deadlines in the form of refresh cycles for the display device. If
the rendering is not completed before the scan-out of the new frame starts, a whole frame’s time is
lost, so it is essential to complete rendering timely in order to keep the graphics system occupied.

One way to achieve this is to make use of both host CPU and graphics processor. A typical setup of
the pipeline for the CPU includes an application task (simulation, modification of the scene graph), a
database task (scene graph traversal, visibility culling, level of detail selection) and a draw task
(transferring data to the graphics subsystem). As with any pipeline, these tasks should take even time
slices to achieve a maximum utilization, and should furthermore be tuned to meet the refresh cycle
deadlines. This goal can be defeated by dynamic shifts in the load of individual stages. However, if
any stage always picks up the latest available instance of the pipelines data, the pipeline is at least
kept from stalling.
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One limiting factor in this setup are the fixed time slices enforced by the refresh cycle of the display.
This factor was criticized by Bishop et al. in [4]. They proposed frameless rendering, where
individual random pixel are updated rather than frames, and always use the latest viewpoint
information, which is particularly suitable for immersive systems employing head-tracking. However,
current image generators do not support this approach. Mazuryk, Schmalstieg and Gervautz [50]
proposed a simple scheme that trades traditional double buffering in favor of a copy/zoom operation
supported by 2-D bit block transfer hardware, which is a standard component of today’s image
generators. New frames can be presented independently of the refresh cycle, and the zoom operation
can be used to compensate pixel-dominated rendering overload for low-cost image generators. This
approach can be combined with 2-D image deflection to reduce dynamic viewing errors in head-
tracked displays. This approach was further refined by Schaufler, Mazuryk and Schmalstieg in [68]
by replacing 2-D image deflection with the more capable 3-D image deflection on the basis of
dynamic impostors.

2.8 Managing large geometric databases

For very large scenes, interactive rendering also involves a number of issues in database
management, for the sheer size of the involved data sets. Conservative use of main memory can
enable handling of larger geometric databases. While memory is gradually moving away from being
the most limiting factor in large-scale applications, this constraint is readily replaced by the limited
bandwidth of network connections such as the Internet, that are essential in distributed virtual
environments. Slow network transmission of large geometric data sets interferes with the
responsiveness requirements of interactive 3-D applications.

An important aspect is the paging if geometry and texture from the secondary storage into memory.
An implementation should take care of:

• Achieving full I/O bandwidth by arranging the data so it can be fetched from the secondary
storage in large chunks rather than small items.

• Minimizing impact on frame rate by either dividing the I/O task over multiple frames, or running it
as an asynchronous process that does not interfere with the main rendering task.

• Accurate prediction and timing to avoid situations where the required data is unavailable, and
rendering must be stalled.

Funkhouser, Sequin and Teller [22] present an application capable of presenting an interactive walk-
through of a database much larger than memory. The data is pre-loaded by predicting the users
movements and reducing the required data based on visibility considerations for building interiors.

For networks, progressive level of detail representations as discussed above allow to make instant
use of partially transmitted data. A related topic is geometry compression: Data sets can be
transmitted in a compressed form, then expanded at the receiver for more rapid rendering. The first
step in this direction was made by Deering [16], who proposed a compression scheme for triangular
meshes based on generalized triangle strips, including normals and colors. Taubin and Rossignac [84]
introduce a procedure they call topological surgery, which transforms a triangular mesh into an
alternate representation based on spanning trees for triangle strips and vertices, that can be encoded
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in an extremely compact form and yields high compression rates. Levoy [41] proposed to combine
JPEG compression of animated sequences with simple polygonal rendering data to yield higher
compression ratios for digital movies.

2.9 Summary

Interactive 3-D graphics is a rapidly evolving field inside computer graphics. While traditionally,
computer graphics has focused on the quality of images alone, the real-time requirements of
interactive applications make it necessary to employ all sorts of trade-offs to maintain frame rates
and satisfy ergonomic needs. Techniques such as visibility processing, levels of detail, image based
rendering, and the management of latency and large geometric databases make it necessary to adopt
methods not only from computer graphics, but also from real-time systems, databases, networking
and many other domains. Despite the many shortcomings that current implementations have, the
importance of interactive 3-D graphics is certain to grow at an enormous pace.
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3. Distributed Virtual Environments

3.1 Introduction

Traditional symbolic user interfaces devices limit the amount of information exchange between user
and machine. Since we interact with the real world through highly developed skills such as our visual
system, providing an interface that uses human skills - rather than relying on artificially created
interaction techniques that suit computers better than the humans - has the potential of dramatically
increasing the usability of the medium computer.

Advances in cost and performance of certain key technologies such as graphics accelerators and
networks have established virtual environments as an increasingly popular new medium. As can be
seen from Figure 5, there is much more to virtual environments than fast graphics: Components such
as simulation, interaction or animation each involve a large body of knowledge of their own. The
software engineering effort of assembling these components into a working whole makes virtual
environment system architectures a fruitful area of investigation.

VEs

AnimationInteraction

Real-time 
Rendering

SimulationMulti-Sensory- 
I/O

Figure 5: Virtual environment building blocks

If we are building virtual environments, we have to consider several important design issues:

• Applications: To provide for concurrent access to a diverse range of activities, virtual
environments should allow multiple, concurrent applications. Applications should rather be
considered tools that are available in the virtual world, and it should be possible to bring new
tools into the environment.
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• Worlds: Different task should be supported in the virtual environment, and clearly an environment
cannot be optimal for very diverse needs (e.g. an adventure game and an architectural design
application). Consequently, multiple, concurrently available virtual worlds should be supported,
although this certainly complicates the design. If both multiple applications and worlds are
possible, the assignment of features to applications and/or worlds becomes an issue of itself. In
general, one can state that more flexibility is better.

• Users: A question must be found to the issue how the user is represented in the virtual
environment. The visual representation of the user in the world as seen by other concurrent users
is often called avatar. Snowdon and West [81] state that there are no essential, logical differences
between users and applications, since both are external to the system itself, but have an active
manifestation within the virtual world.

We can conclude that the execution of a virtual environment must support the simulation of a large
number of independently executing units (avatars, agents, tools, etc.), so an object-oriented database
is a natural choice. Because of their active behavior, we call the entities in this database actors.
Managing a database of actors can be very different to maintaining a traditional database with
predominately reactive objects.

3.2 Fundamentals of Distributed Virtual Environments

In this chapter, we focus on distributed virtual environments, since the contribution of this thesis
falls into that area. A distributed virtual environment is one that executes concurrently on multiple
computers (nodes) connected over a network. While the integration of the necessary ingredients for
a virtual environment is by itself a challenge, adding the aspect of distribution and concurrency
obviously further complicates the task. However, good solutions require distribution for two
reasons:

1. Reaching the necessary performance is usually impossible without the use of concurrently
executing units. Should a single unit of hardware (e.g. a CPU) perform inadequately, more
hardware can be devoted to the task. Probably more important still is the notion of concurrently
and independently executing units that function as an ensemble [26]. In the context of virtual
environments, this has been called the decoupled simulation model [76], It allows independent
execution of communicating tasks such as simulation and rendering. A good example of such an
approach is the Performer library [61] that distributes execution to multiple tasks and occupies
multiple CPUs if available.

2. While distributed execution is optional for single user systems, it becomes mandatory as soon as
multiple users are to be supported. Each user has to use his or her own console and I/O hardware,
so the distribution is inherent. Multi-user applications have a much larger potential ranging from
games to computer supported cooperative work, and also better fit the idea of virtual
environments as a new electronic medium: People communicate with each other via a virtual
environment.
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Network properties

The actors in the simulation must communicate to carry on the simulation. Problems arise when two
communicating actors are located at separate nodes on the network executing the distributed
simulation. The network is intrinsically slow and the cause of severe problems: Latency introduced
by sending messages over the network is at conflict with the need for concurrent execution. The
limited and unpredictable bandwidth places limits on the number of messages that can be exchanged
and affects the scalability in the size of the participating network nodes and actors. Most of the work
discussed in this chapter is concerned with the optimization of the network aspect of virtual
environments.

Furthermore, in any distributed system there is often the need to have replicated information.
Consistency of these items must be addressed despite the shortcomings of the network connection.

Persistence of the actors in the simulation has been neglected in early virtual environments. Still most
systems are initialized from a fixed configuration, and there is no means to have an environment that
continues to exist and evolve over time (much like today’s networked information systems like the
World Wide Web).

Little effort has been made to achieve geometric or geographic continuity. If multiple virtual
environments coexist in the same network, it either impossible to migrate between the environments
or the only option are portals that „beam“ the user to the destination such as in VRML [56] or
DOOM [38]. Few systems support geometric continuity, most notably RING [24] and NPSNET
[47].

Network data characteristics

It is important to understand the characteristics of the data that is transmitted over the network. We
distinguish two varieties with fundamentally different properties:

Simulation data appears in small units (typically a few 10 or 100 bytes), but in large numbers. An
example are position updates that are sent to remote nodes to inform other users that an actor has
moved. A simple protocol would only require an actor identifier plus a tuple of coordinate values per
packet, but if N actors move through a shared virtual environment simultaneously, and simulation
fidelity requires M updates per second, then N*M packets are generated per second.

Model data consists of the geometric model of the actor (e.g. a polygon mesh), and a description of
the actors behavior. The latter is optional: some virtual environments do not support active actors
other than the users’ avatars; other virtual environments may only know a fixed set of actors whose
behavior is built into the application, so an identifier of the actor’s class suffices to determine its
behavior. More powerful virtual environments allow to formulate arbitrary behavior using a scripting
language, for example the behavior of actors in VRML 2.0 [3] can be written in Java [39]. Both
geometry and scripts can take up considerable space. The transmission characteristics for model data
is different from simulation data: The actor takes substantial time to transmit even on fast networks,
but transmission is relatively infrequent compared to simulation updates as the model data is used for
longer periods of time. Simple systems even require that all model data is available before the virtual
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environment starts executing, so model data never gets transmitted under time-critical conditions (for
example, in DOOM [38] and earlier instances of SIMNET [8].

Different strategies give best results for these two types of data, but the constrained nature of the
network dictates one objective: „Avoid communication that is not strictly necessary.“ [81]. Work
that attempts to meet this goal centers around the issues of replication and network topology, which
are discussed in the following section.

3.3 Network design

Replication means maintaining local copies of remote actors. The requirement to render what is
currently visible from the user’s viewpoint makes it necessary to replicate at least those actors
contained in the viewing frustum. The need for a local copy of any currently visible actor also places
the fundamental limit on scalability of the virtual environment: Each node must have the capacity to
store the actors visible to the user and keep them up to date. If local density exceeds these capacities,
the simulation goals cannot be met [25]. Fortunately, environments that involve a very large actor
population typically also simulate a vast space, so for most applications this never happens [47].

Network topology

Otherwise, scalability is mostly affected by the network topology. In the following, we give a short
review of the relevant approaches:

• Unicast. Reality Built For Two [5], VEOS [7], and MR Toolkit [77] are based on unicast peer-
to-peer designs. A separate unicast message is sent to all other nodes for every state change. The
O(N2) complexity of message exchange quickly saturates the network, and a large number of
nodes is impossible.

Figure 6: Peer-to-peer unicast network topology. In this example, large circles represent network nodes, each
one occupied by one user. The small circles with numbers represent the avatars of other users (nodes) that must
be simulated and displayed locally. Arrows indicate the flow of update information according to the individual
needs for local simulation.

• Broadcast. SIMNET [8] and VERN [6] use broadcast messages to send updates to all other
nodes at once. In that way, only O(N) messages are sent over the network, but every local node
must constantly process all messages from all other nodes, so the size of the environment is
severely limited by the capabilities of the least powerful node.
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Figure 7: Peer-to-peer broadcast network topology

• Multicast. NPSNET [47] and DIVE [9] employ multicast to send update messages to a subset of
participating workstations. The general idea is to map entity properties to multicast groups, and
send entity updates only to relevant groups. For example, NPSNET partitions the world into 2D
hexagonal cells each of which is represented by a multicast group. Actors send updates only to the
multicast group representing the cell in which they are located, and listen only to multicast groups
representing cells that can be seen from the current viewpoint.

Figure 8: Peer-to-peer multicast network topology (assuming that a separate multicast group exists for each
node)

• Client-Server. RING [24], BrickNet [78], DVS [29] and WAVES [40] are client-server systems.
Users invoke clients connected to message servers. Clients do not send messages directly to other
clients, but instead send them to servers that forward them to other clients and servers
participating in the same distributed simulation. A key feature in client-server design is that
servers can process messages before propagating them to other clients, culling, augmenting, or
altering the messages.



DISTRIBUTED VIRTUAL ENVIRONMENTS 32

Figure 9: Client-server network topology

Discussion

There has been a long-lasting battle between the advocates of client-server and peer-to-peer network
topologies for the purpose of distributed virtual environments. While a central server obviously
makes issues such as consistency much easier, it also easily becomes a bottleneck. However, only a
server enables persistence. For example, the geometric description of actors must come from
somewhere in the first place, and assuming a priori distribution is obviously not a viable option. Even
systems that claim to be strictly peer-based have hidden server components (e. g., NPSNET, that
refer to Internet servers to download model data [47]). Furthermore, strictly peer-based systems
cannot guarantee a continuous evolution of a virtual world: when the last participating user leaves
the virtual environment, it ceases to exist.

While peer-based design avoid the potential bottleneck of a central resource, naive networking
schemes such as broadcasting fail because they overload the network. This inefficiency can be
partially overcome by the use of multicast, but there are problems that remain: Not all networks (e.g.
modem connections) support multicast. Besides, there is a trade-off in the choice of the size of
multicast groups that affects scalability and performance: Large multicast groups mean that too many
actors are associated with the multicast group, and the involved overhead in message processing by
the nodes becomes intractable. Small multicast groups mean that actors often change the relevant
multicast group by crossing the borders of the associated region, and the overhead of joining and
leaving multicast groups becomes intractable.

The best compromise appears to have a hybrid system design like the one proposed by Funkhouser
[25]: Users invoke a client to connect to a server that manages the region in which the user resides.
The servers communicate in a peer-style via multicast. As servers do not move, multicast
membership does not change. Client-server communication can be connection-less using datagrams,
so that users frequently changing servers does not affect performance. The only remaining problem is
that of local density of actors for which a sort of load balancing would be necessary [81]. Our own
virtual environment that serves as a testbed for the Remote Rendering Pipeline is based on such a
hybrid design [70].
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3.4 Local simulation

The frequency of exchanging simulation updates can be further reduced by local simulation of actors
in order to lower the load on the network. If the behavior of a remote actor is known or partially
known, it can be computed, and simulation updates from the remote node can be delayed until the
actor’s real state deviates from them simulated state. The interval of the updates can be extended by
allowing a small difference in the state of local and remote actor.

This idea has been successfully used in the simulation of vehicles in NPSNET [46]: Dead reckoning
means extrapolation of a vehicle’s position according to current position, speed, and acceleration.
Only if a vehicles position (controlled by a human or artificial driver) deviates significantly from the
simulated extrapolation, an update is sent. The authors report a large reduction in network
utilization. The idea has been further improved by Singhal and Sheridon [79], who use a more
sophisticated extrapolation scheme based on position history, and apply their protocol to actors other
than vehicles.

Roehl [61] argues that the idea of local simulation should be extended beyond simulation of position.
The problem here is to identify behaviors that are easily formalized into simple algorithm apt to local
simulation, and that apply to a large number of tasks so that their use is beneficial. We believe that
this will be an important field for future work.

3.5 Summary

We have elaborated on the design and implementation of distributed virtual environments. Virtual
environments are complex software systems that require a flexible design to support applications,
worlds, and users. These requirements - in particular support for multiple users - lead to the
implementation of a virtual environment as a distributed system. Issues that must be addressed
include persistence, consistency, continuity, performance and scalability. A discussion of popular
system designs and network topologies is given, along with the most relevant techniques for
improving performance and optimal utilization of the network.
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4. An Overview of the Remote Rendering Pipeline

4.1 Introduction: What is Remote Rendering?

Networked multi-user virtual environments require that users share a common scene over a network
[29, 47, 70]. Examples include networked walkthroughs of large information spaces (buildings,
databases, ultimately a 3-D Internet?) and interactive applications such as immersive cinema,
networked games and computer supported cooperative work.

A virtual environment requires efficient rendering of the three-dimensional objects forming the
simulated world. In a distributed virtual environment, the work is divided between processes. One
process will maintain the actor database and run the simulation, whereas another is responsible for
rendering. These processes will often run on separate CPUs or workstations, which creates the need
for Remote Rendering. In multi-user systems, this is always required, independent of network
topology.

Given today’s typical hardware setup with high-speed CPUs, fast system buses and comparatively
slow network transmission, it is very reasonable to assume that the network is the most constrained
resource of the whole system. We therefore have to develop new strategies for the visualization of
distributed geometry databases, with the overall goal of minimizing bandwidth consumption on the
network, and we can afford to devote substantial computational resources to the task.

Three distinct models for distributed graphics are in use today:

1. Image-based: Rendering is performed by the sender, and the resulting stream of pixels is sent over
the net (e.g. digital TV, X pixmaps).

2. Immediate-mode drawing: The low-level drawing commands used by drawing APIs are issued by
the application performing the rendering, but not immediately executed, but sent over the network
as a kind of remote procedure call. The actual rendering is then performed by the remote CPU
(e.g. distributed GL [54], PEX in immediate mode [65]).

3. Geometry replication: A copy of the geometric database is stored locally for access by the
rendering process. The database can either be available before application start (kept on local
harddisk, such as seen in computer games like DOOM [38] and networked simulations such as
NPSNET [46]), or downloaded just before usage, such as current VRML browsers do [33].

Variations of geometry replications are now commonly used for networked VR applications.
However, several severe problems constrain the usability of the method: Low network throughput
and large database sizes are responsible for long download times. As the data has to be shipped to
the user at some point, this problem is always present. Making the user wait for more than a couple
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of seconds destroys immersion and makes many interactive applications completely useless.
Furthermore, extended waiting periods mean that a download process cannot be invoked frequently,
so exploratory behavior of 3-D data spaces becomes impossible. This prohibits the exploration of
large, continuous virtual worlds.

4.2 Geometry management with the Remote Rendering Pipeline

As an improved conceptual model for Remote Rendering, we introduce the Remote Rendering
Pipeline. A rendering pipeline describes the way that geometric data takes from modeling to the final
image. We generalize this idea to include additional stages required by a distributed system (Figure
10).

In this task model, the local data held in the main memory of the remote site doing the actual
rendering becomes a geometry cache, while the full geometry database is held at another site, the
master site. In the following, we discuss the components of the Remote Rendering Pipeline in more
detail.

Figure 10: The stages of the Remote Rendering Pipeline

Modeling stage: This stage is performed off-line and strictly speaking not part of the pipeline
executed at run-time. It has been included to provide a more complete picture of the process. The
output of the modeling stage are the geometric models whose images are finally displayed at the end
of the pipeline. Note that the modeling stage involves more than just creating the artistic input for the
virtual environment. For example, levels of detail must be precomputed to be able to perform level of
detail rendering in later stages.

Geometry database: The geometry database is the collection of the geometric models of all actors in
the virtual environment. This database is maintained at the master site, and is usually never fully
passed on to later stages of the pipeline. Therefore it can be potentially very large, unaffected by the
capacities at the remote site.

Networking stage. The networking stage is a process executed at the master site. Its job is to
transmit the required data to the remote site on demand. Note that there is a loop back from the
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remote site for the purpose of issuing request for particular pieces of geometric data as they become
necessary. Because of this loop, the model is not strictly a pipeline, but these requests are just
steering information negligible in size compared to the geometry data stream moving downstream.

Geometry cache. The geometry cache holds local copies of geometric data from the geometry
database for immediate rendering. The goal is to keep its content at all times equivalent to the
portion of the virtual environment visible to the observer. All the techniques described in this thesis
aim at improving performance so that this goal can always be met.

Rendering stage: This last stage is equivalent to the conventional rendering pipeline described in
chapter 2. It starts with a rendering preprocess stage, sometimes also called the database traversal
stage. During this traversal, geometric primitives that must be rendered are sent to polygon
processing stage, followed by the pixel stage that generates the final image. Other important tasks
performed in rendering preprocess are visibility culling and level of detail selection. During the
rendering preprocess, it is also checked whether the content of the geometry cache may lack visible
items or items that are likely to become visible in the near future, and request for these items are
issued. Care is taken that the right requests are made, so that necessary items are always available
timely, but usually no useless requests place stress on the network.

4.3 Exploiting task-related knowledge for optimization

A fundamental idea of this thesis was to optimize the stages of the Remote Rendering Pipeline by
exploiting all sorts of knowledge about the virtual environment and the relevant tasks. Loss of
information generally makes tasks less efficient, either because the information must be reconstructed
or approximated, or because algorithms must be brute-force compared to what would be possible
using more information. More sophisticated solutions can be found by identifying unused information
in the task. A good example would be the use of coherence in computer graphics [32].

The contribution made in this thesis consist of the theoretical concept of the Remote Rendering
Pipeline, and of practical measures to implement it. The latter can be assigned to three layers of
increasingly high level information:

1. Data layer. This is the simplest layer on which we operate. We assume that the data we operate
comes in the form of polygonal models. This fact is used to compute levels of detail in two
varieties: standard (discrete) levels of detail (chapter 6), and smooth levels of detail (chapter 7).
The data is then transferred partially, and in case of smooth levels of detail, also incrementally
over the network, so that higher degree of parallelism between rendering and networking is
realized, and the pipelined architecture is better exploited.

2. Environment layer. We make use of the nature of interaction of multiple users in a large virtual
environments by introducing the demand-driven geometry transmission protocol (chapter 5), to
make efficient use of the geometry cache introduced in the previous section.

3. Modeling layer. When modeling a geometric object, the designer uses a lot of information that is
not represented in the resulting model. We try to preserve some of this information for a special
class of objects with fractal structure by modeling and rendering them as directed cyclic graphs
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rather than as collection of primitives (chapter 8). While this is certainly a special case, the natural
phenomena that can be modeled in that way are useful for many outdoor environments.
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Figure 11: Relation of the projects to the stages of the pipeline

Figure 11 shows the relation of the contributions outlined in this thesis to the stages of the Remote
Rendering Pipeline. The next four chapters give the details of the research work that was carried out
for the purpose of this thesis.
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5. Demand-Driven Geometry Transmission

5.1 Introduction

For the purpose of demand-driven geometry transmission, we attempt to optimize transmission of
geometry data in a client-server system. As detailed in chapter 4, the transmission of geometry data
for a scene as a whole has several drawbacks. We therefore aim at the development of a method for
more fine-grained network transmission, that works incrementally. If the required data is delivered
over the network „just in time“ for the rendering process, both intractable setup times and elevated
storage requirements can be significantly reduced.

We also consider the typical use of levels of detail for the rendering of objects. As only one level of
detail of a given object can be displayed at any time, we can further improve performance by
considering single levels of detail as the unit of transmission instead of complete objects.

5.2 Data management

In our system, the server stores the data for a virtual environment, composed of objects that are
arranged spatially. The client allows the user to display and navigate this VE database. For this
purpose, the client needs only those data items, that are actually being displayed (Figure 12).
Consequently, there is no need to transmit the whole database from the server and store it at the
client. It is sufficient if the client has the data for those objects available that are contained in its area
of interest (AOI). We have decided to use spherical AOIs rather than the viewport itself, because
rapid head movement as possible with head-mounted displays cannot change the set of objects in the
AOI so rapidly.

Thus by restricting the geometry transmission to the data that is actually required for display, we can
gain significant savings in network bandwidth and local memory requirements, allowing to handle
more complex, more interesting data sets. Note that the visible data set is dependent on the
viewpoint of the observer, which changes over time, and on it the visible data set. If the system is
able to deliver the data just in time for display, there are no visible differences over a non-distributed
virtual environment that has all data available locally.

The set of objects contained in the AOI changes as either objects or the client itself move. To keep
the area of interest up to date regarding the objects contained within, the client can request data from
the server. The selection of the data is up to the client, so various strategies for data management are
possible. To perform the task of requesting data, the client has to know about the objects that are
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contained within its AOI. Again, we do not want to require the client to know about all objects in the
environment, for tracking the objects in the AOI is sufficient.

Figure 12: A distributed geometry database: A server stores geographically dispersed objects (small white
circles). Each client’s view is limited to an AOI (large circles). If AOIs overlap, clients can see each other (small
black circles)

The server monitors the AOI for every connected client and periodically sends updates regarding the
activity of contained objects as appropriate. If an object moves into the AOI or the user moves the
AOI near an object, the object has to be newly introduced to the client (send object info), that cannot
know about this object otherwise. From then on, it is sufficient to send updates if the position of the
objects changes. Figure 13 shows some cases.

Figure 13: The server updates the client on activity within its AOI, if objects (a) or the client (b) move. To
reduce network traffic, only those messages are sent that cannot be deduced by the client independently.

This scheme requires the server to remember the set of object infos that have been transmitted to the
client. The task is not too complicated for the server because the set changes incrementally.

The distributed nature of the rendering process should be transparent to the user. In particular, the
image presented to the user should be smoothly animated and updated at a sufficiently high and
constant frame rate. This goal is defeated by variations in scene complexity (many objects, complex
objects) and in network throughput. Rendering complexity is managed by a rendering engine capable
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of displaying LODs. With the help of the LOD datastructure, a strategy was developed that also
compensates for the shortcomings of network transmission.

The fundamental idea is to consider these LODs instead of complete object as the unit of network
transmission. Objects can be displayed even if not all of their (LOD-)data is available. Only those
LODs that are needed for rendering must be available locally at the client. As the user moves his
viewpoint, or simulated objects (e.g. vehicles) change their position, the selection of LODs changes.

Transmission of even a coarse LOD takes time, and this delay must be compensated for, or the data
will not be available when needed. Therefore prefetching is adopted. When the LOD selection
algorithm decides to switch to a certain LOD, the prefetching module requests the next finer level.

In cases when prefetching fails, an available coarser LOD can be displayed instead (graceful
degradation), trading a continued constant frame rate for a decrease in image fidelity. Such a
degraded image can be progressively improved in phases of reduced activity by downloading the
missing LODs (progressive refinement).

The time-critical part of acquiring the data is most important, but storage requirements may not be
neglected. To keep the size of the client’s database cache (i.e. memory available for geometry data)
from overflow, we must dispose unneeded objects. If an object leaves the AOI, it is deleted and
memory is freed.

For a particular client, the representations of other users (avatars) appear just like ordinary objects. If
a client changes position, it has to transmit the new position to the server, which not only has to
know the client’s current position to monitor the client’s AOI, but also has to update the other
clients on the new position.

A more detailed discussion of the client’s strategy is given in section 5.4.

5.3 Geometry Data Structure

In order to make use of the hardware support for interactive rendering, we must model the virtual
environment object database as a collection of polygonal datasets. VR applications have two
additional important requirements:

• Interactive rendering of large scenes in real time requires that the objects of which the scene is
composed are modeled with levels of detail (LOD). At runtime, the fidelity of each object can be
chosen independently from the available LODs, so that the polygon budget for a frame is not
exceeded [23]. In the next section it will be shown that the LODs can also be used to optimize
network usage.

• A flat datastructure (e.g., a simple array of triangles) is not sufficient. For efficient manipulation
and high-level animation of a dynamic environments, a directed acyclic graph (DAG) is well
suited. Its hierarchical structure allows flexible manipulation of the data as needed by VR
applications [82].
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Figure 14: Car modeled with levels of detail. The model is divided in LOD geometry and a “trunk” (shown in
gray). Most of the data is hidden in the LODs, while the trunk is generally only a control structure.

We divide this datastructure into two parts: the subgraphs below a level-of-detail node (LODs) and
the trunk (i.e. the graph from the root down to and including all LOD nodes, but not below). Figure
14 shows an example. For network transmission of such geometry graphs, the separation allows to
transmit the trunk before the LODs, and then “mount” the LODs on the trunk. Note that not all
LODs have to be available in order to display the object. The trunk plus a single LOD is sufficient to
display the object, although not in every desired fidelity. Note that in most cases, the trunk will only
be a very small data structure composed predominantly of “organizing” nodes such as groups and
transformations, while the LODs contain the bulk of the data (polygons, color, ...).

The database of the server is a flat collection of objects. Each object is composed of a geometry
representation (trunk plus LODs), and a matrix defining the object’s position and orientation. In the
next section we will show how a “view” (subset) of this database is kept at the client.

5.4 Strategy of the client

In this section, we give details on the strategy for management of geometry data, as exercised by the
client.

Prefetching

To compensate the delay introduced by the network transmission, we use prefetching to anticipate
the requirements of the renderer. The already available level of detail algorithm can be used for this
purpose, only with a different parameter - a finer LOD is already selected “earlier” than needed for
rendering (when still relatively far away). Objects that are approached will be displayed with
increasing resolution, so the next finer LOD is a good guess for prefetching (Figure 15).

This scheme is not unfailable: as the strategy assumes high frame to frame coherence in the data set
being displayed, violations of this assumption lead to the failure of the prefetching efforts. If either
the user moves too fast, or objects move too fast, the data needed for display at the appropriate
resolution cannot be made available in time.
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Figure 15: A prefetching strategy. As an object moves through the AOI (see arrow), it traverses multiple zones
indicating which LOD of the object is displayed. The next finer LOD is always requested one zone in advance to
compensate for network delay.

Even worse are applications that allow sudden changes in the visible set: objects that appear out of
nothing or change their representation into a more complex shape. The same applies to abrupt
changes of the user’s viewport and position, including “teleport” functions and the initialization
phase when no data at all has been transmitted to the client. Furthermore, if the network itself works
unexpectedly slow, it may simply not allow to transmit as much data as estimated.

Graceful degradation

If timely delivery of the required LOD data cannot be achieved for one of the reasons mentioned
above, the client can use a coarser version of the object instead. For immersive applications,
displaying a degraded image (even bounding boxes may suffice in some cases!) is far better than
stalling display update. A coarser LOD of the object under consideration should usually be available.
The most frequently used metric is distance between object and observer or projected size of the
object on the screen. Both metrics change slowly for typical applications, so that the display
gradually switches from coarser to finer LODs, generally giving the server enough time to transmit
the next LOD. If time is not sufficient to do so, the next coarser LOD can be displayed a little longer,
even though it may not have the adequate resolution according to the heuristics.

Note that graceful degradation can fail if there is a total network overload or breakdown, that makes
it impossible to send even the coarsest LODs in time, but this should rarely happen.

Progressive refinement

In some situations the client may be able to store and display a scene at high resolution, but network
is so slow that the data cannot be transmitted in time. To deal with this problem, we make use of the
fact that as the observer is approaching an object, the objects representation is updated with
consecutively finer LODs. We can therefore issue requests so that the LODs of an object are always
transmitted in order from coarser to finer. (If – optimally – the data from a coarser LOD can at least
partially be reused in a finer LOD, the total amount of data for an object is decreased.)
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If a degraded version of an object is being displayed after some coherence-destroying activity, and
the situation improves (user standing still, not a lot of movement), the time can be used to
complement the missing data and gradually switch to a higher resolution of LODs for the objects in
question.

However, if high activity is continuing, it may be more necessary to get coarse approximations of
new objects or objects with only very coarse representation first. By executing data transmission out
of order (using a priority queue), the more important data items can get expedited transmission.
Priority is computed from the difference between available and desired LOD, if this value is the same
for multiple pending transmission, the one with the lower level of detail is selected.

Figure 16: Suppressing oscillation. Fetching and discarding object data can lead to unwanted oscillating activity
(a) that can be suppressed by a “safety” zone (b)

Cache size and replacement

For a conventional rendering LOD algorithm, the upper bound on the number of primitives that are
selected is given by the maximum number of primitives that the rendering system can process. If we
combine this method with networking, another restriction has to be taken into consideration: the
available memory works like a cache.

Naturally, the cache size is limited, so the active data set must exceed  neither the renderer’s
processing capacity nor the cache size. As a typical workstation has ample memory, the graphics
processing power is usually the more restrictive factor. However, for video game consoles and set
top boxes this may be different. With a different setup, it may be necessary to modify the strategy so
that the memory is filled with more objects, but in coarser representation.

The cache replacement strategy is governed by the LOD algorithm. It determines what items of the
data set are currently needed. One LOD of a particular object is a unit data item of the cache
algorithm. There are two possible units that can be selected for deletion from the cache: One LOD
(of one object), or one object (with all LODs of that object that are present). While replacement of
individual LODs allows a more fine-grained data management, handling objects as a whole is simpler
and therefore faster.
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We opted for discarding objects completely if they are not needed anymore, mainly for simplicity. An
alternative is to discard single LODs in the opposite order of acquisition (finest resolution –
consuming most memory – first), so to keep memory footprint as small as possible.

Discarding objects when they leave the AOI may lead to unwanted oscillating effects if the object
continues to move near the border of the AOI. As a countermeasure, the AOI region has to be
chosen sufficiently large so that geometry is not immediately discarded when the object becomes
invisible. Furthermore, the AOI used for determining leaving objects is slightly larger than for
entering objects, so to increase the distance an object must travel to “come back” once it has left
(Figure 16).

5.5 Protocol design

The design of the network protocol not only determines performance of the network module, but
also the capabilities and semantics of the application. Our aim was to design an application-layer
protocol that interoperates with the VR application.

The best way to discuss the resulting protocol is to examine the protocol units that the protocol is
composed of. An overview is given in table 1. We can separate these into three groups: connection
management, avatar control, and geometry transmission [71]. We can further distinguish whether the
message is sent by client or server (“o” for “origin” column in Table).
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Message O. Parameters Comments

Connection management

init connection c→s client id
position
orientation
AOI data
avatar data
connect info

Building up the connection: client
registers with a unique client ID; states
his initial position/orientation and size
of AOI; uploads user’s geometric
description (avatar). Other connection-
management information are not of
interest for this discussion.

kill connection c→s client id disconnect

Avatar control

update client pos c→s position
orientation

client tells its new position to server, so
server can compute set of obj. in
client’s AOI

update object pos s→c obj id
position
orientation

server updates client on new position of
a moving (animated) object to allow
correct selection of LODs

Geometry management

request geometry c→s obj id
lod no

client decides a specific LOD is
needed, and requests it by specifying
object ID and LOD

transmit geometry s→c obj id
lod no
data

server answers request of client for data
and sends geometry data, identified by
object ID and LOD

transmit objectinfo s→c new obj id
data

server updates client on object set
contained in client’s AOI (without
request!) by informing on a new object
and associated info (number of LODs,
size, ...)

kill object s→c obj id delete obj. that has disappeared, e.g.
destroyed

update AOI c→s AOI data change AOI data (size), e.g,. if the
client becomes overloaded

Table 1: Protocol units

5.6 Implementation

We have implemented a prototype of the system as outlined in the previous chapters to obtain
experimental data on how the algorithm and protocol perform. The implementation was done on SGI
workstations using C++ and Open Inventor. A discussion on some of the design decisions that have
been made is given in this section.
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Graph traversal

When a request for a particular LOD reaches the server, the referenced object’s geometry graph is
traversed and packaged (Figure 17): The traversal is performed in preorder/depth first (multiple
referenced nodes in a DAG are only visited once).

Figure 17: Traversal and packaging of a LOD request. The graph is traversed, but for every LOD node only
one child is selected. The resulting data is collected and packaged for network transmission

When a LOD node is reached, the required child is determined. This child subgraph is linearized and
added to a buffer. Upon completion of the traversal, the buffer contains a list of items that together
make up the requested data. The content of the buffer is transmitted to the client, where it is
unpacked. The client traverses the trunk of the graph (remember that the trunk is always transmitted
before the first LOD), and unpacks one item of the buffer for every LOD node encountered. As the
order of traversal is well-defined, the data is automatically put in the right place.

Level of detail node

The datastructure for a level of detail node must provide some measure on the subjective quality of
the individual LODs to select the right LOD.

Figure 18: LOD node traversal. If a LOD with the desired quality cannot be found, the next coarser one is used.

A simple solution is to use the index of the LOD node’s children correspond to quality. However,
this requires that the quality “distance” between successive LODs is at least roughly the same.
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We project the quality measure onto a finite and fixed length scale of (for example) 32 possible
grades, which can be used as indices for accessing each of the children. Thus not all 32 entries have
to accommodate a geometry subgraph For example, Figure 18 shows a LOD with children 0, 3, and
31 only.

The graph must be traversed for rendering and transmission. The desired quality measure is passed to
the traversal algorithm as a parameter. When the traversal reaches a LOD node, this measure is
compared with the indices of the available children, and if the desired child is not available, the next
available child with lower quality is chosen (Figure 18). We are able to handle a model containing
multiple LOD nodes with different numbers of children. Thus a reasonable combination of multiple
LOD nodes can be found independently of the model.

Software architecture

Our software architecture is divided into server and client programs (Figure 19) The server runs two
important software modules: the connection manager and the geometry database manager. Currently
we run both managers within a single UNIX process, but as their relationship is well-defined,
performance may be enhanced by building a decoupled system configuration in the style of MR [77]
running on a multi-processor machine.

Figure 19: Software architecture of client and server programs

The connection manager is responsible for dealing with the network. We use UDP sockets for
handling the network connections between client and server, which are bi-directional. As the name
suggest, this module implements connection management as shown in table 1.

The database manager stores a collection of objects forming the virtual environment. Objects can
either be controlled by a simulation, or they represent a user’s avatar, and are controlled directly by
the user. The database manager also keeps track of the client’s AOI and sends updates on objects
within the AOI as necessary.

The client has a  network and database manager, very similar to the one of the server. However, the
actions performed by the client are quite different. Before every frame, a LOD oracle is invoked to
find an appropriate level of detail for rendering. The oracle is also used to find out if any LOD must
be requested from the server.



DEMAND-DRIVEN GEOMETRY TRANSMISSION 48

For rendering, each object graph stored by the database manager is traversed and appropriate
rendering actions are performed for every node. The case where rendering traverses a LOD node,
but the prefetching has failed to provide the desired graph data, is automatically handled by the
traversal: the next coarser available level is used instead. The users actions, in particular viewpoint
changes, are passed to the database manager, that reacts appropriately.

5.7 Results

The protocol presented in this paper was implemented for test purposes. Picture 1 (see appendix)
shows a screen shot of the virtual environment with demand-driven geometry transmission system.
The window in the upper middle shows a bird’s eye view of the server. Two clients with their
respective areas of interest can be seen. The upper left and lower left windows give the 2-D and 3-D
view of the first client, respectively. Note the replicated geometry in the 2-D view and the levels of
details for objects in the 3-D view. The upper right and lower right window show the corresponding
view for the second client. Note that user’s can see each other, so the avatars are displayed in the 3-
D views (humanoid figures).

We constructed a virtual environment for test purposes by randomly placing objects on a plane. The
objects were procedurally constructed to contain multiple levels of detail with progressively less
primitives. Distant objects appear smaller because of perspective projection, so we decided to reduce
the number of primitives per LOD corresponding to a 1/x function where x is the LOD number. The
objects have 6 LODs. LOD selection was done based on the distance, where the radius of the AOI
was divided into uniform intervals. For our tests, we used a prerecorded walk-through sequence of
500 frames.
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Figure 20: Network load of demand-driven transmission with (solid) and without (dashed) LOD management

Comparing the total size of the virtual environment database to the transmitted data is not fair, since
the client’s area of interest contains a roughly constant number of objects (if we assume a uniform
distribution of objects), but the complete virtual environment can be made arbitrarily large. We were
rather interested in the comparison of demand-driven transmission with LOD management and
without (i.e. objects are always transmitted completely, including all LODs).
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Figure 20 shows the network load of the first 100 frames of the walk-through. The solid curve
shows the network load with and the dashed line without LOD management. Downloading complete
objects gives stronger load variations (when an object enters the AOI, all its data has to be
transmitted at once), while transmitting individual LODs tends to better distribute the effort.
Furthermore, high-resolution LODs of objects that never come close to the observer are not
downloaded, which explains why the load for transmission with LOD management is generally lower
than without.

We also wanted to see how the number of LODs would influence the performance for a fixed AOI.
Therefore we measured the total number of transmitted bytes for the walk-through sequence without
LOD management, and also with LOD management for an object with 3-20 LODs. (Note that
objects with more than 10 LODs are never used in practice.) We computed the total transmitted data
with LOD management as a fraction of the number without LOD management. The results show that
more LODs reduce the fraction of transmission, but the improvement drops significantly as more
LODs are added. For a realistic setting with 6-8 LODs for an object, the total reduction in network
traffic can be up to a factor of 3 compared to no LOD management (Table 2).

# LODs 3 4 6 8 10 20

load fraction(%) 53.8 48.3 39.6 36.8 34.4 27.6

Table 2: Savings of network load of demand-driven transmission with LOD management over always
transmitting complete objects. Results show remaining percentage of transmitted data using LOD management.

5.8 Summary

This chapter presents a strategy for managing network transmission of geometry data in distributed
virtual environments. In our client-server based approach, the client request geometry from the
server based on individual levels of detail instead of downloading complete objects or even entire
scenes. The approach is based on a limited area of interest that must be kept up to date. Load
variations are handled by prefetching, graceful degradation and progressive refinement. Results show
a significantly improved network performance.
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6. An Octree-Based Level of Detail Generator

6.1 Introduction and motivation

A rendering system that heavily relies on the use levels of detail to improve performance, such as the
one presented in chapter 5, naturally raises the question how the levels of detail for the objects are
generated. While today’s modeling software often supports control of the polygon count, relying on
external tools is often impractical when assembling virtual environments for a number of reasons
(such as the need to use models from sources that cannot provide levels of detail, such as simulated
or measured data, or simply models “grabbed” from free sources on the Internet). Besides, the
hierarchical structure of geometry models as described in chapter 5 is not generally supported.

Therefore, we decided to implement a level of detail generator we called LODESTAR to support the
modeling and assembly stage of our virtual environment system. VRML 1.0 [56] was chosen as the
input/output format, because it supports the desired hierarchical geometry structure, is compatible
with the Open Inventor toolkit used to implement the rendering portion of the system, and also
allows to make use of the momentum generated by the VRML effort, and the rapidly growing
number of resources (models, software etc.).

The contributions made by implementing the tool described in this chapter are both in the scientific
domain (a successful experiment with a new clustering algorithm as described below), and in the
software engineering domain (a practical guide how to deal with the problems encountered when
working with real geometric data from various sources rather than with idealized models often used
to evaluate level of detail generation algorithms.

6.2 Octree quantization for levels of detail

Real-world applications almost always involve ill-behaved data, and for very large scenes and slow
connections, it should be possible to produce very coarse approximations as well as moderately
coarse ones. The best choice under these circumstances are LOD generation methods that ignore the
topology of objects and force a reduction of the data set. This can be achieved by clustering multiple
vertices of the polygonal object that are close in object space into one, and remove all triangles that
degenerate or collapse in the process. Such an algorithm does not allow fine-tuned control of details,
but can robustly deal with any type of input data, and produce arbitrarily high compression. Previous
attempts at vertex clustering have been done with uniform quantization [64] or a binary tree [66].

We propose to use octree quantization [27] for vertex clustering. Octree quantization is superior in
quality to uniform quantization and in speed to binary trees. The three-dimensional spatial structure
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represented by an octree allows simple clustering operations on three-dimensional samples in linear
time. The method works well for colors (the three dimensions being the R, G, and B component),
and has been adapted for (x, y, z) vertex coordinate tuples in this work. In the following, we outline
the quantization method. We start by explaining how to create the octree data structure, and proceed
with details on how to identify clusters, and how to select the representative for each identified
cluster. Finally, we describe how to obtain the simplified model from the original model using the
octree as an auxiliary datastructure.

Building the octree

Octree quantization was originally developed to select the entries for a color lookup table that
optimally represent a given image. Instead of color pixels, we enter the vertices of the model into an
octree. Intermediate nodes of the octree represent subdivisions of the object space along the x, y, and
z direction. The goal is to place exactly one vertex in each subvolume. The octree is successively
refined by further subdivision of  leaf nodes when entering new vertices until this criterion is
satisfied. Theoretically, this can generate arbitrarily deep octrees, but in practice a certain octree
depth is never exceeded as the input data comes in finite precision floating point numbers.

When entering a new vertex, the octree is recursively traversed by comparing the coordinates of the
new vertex against the coordinates stored in the octree node, and traversing the link to the
appropriate child node until a leaf or a nil pointer is encountered. Three cases must be distinguished:

Case 1: The selected link is a nil pointer, so the corresponding subvolume is empty, and we can
simply create a new leaf node and store the vertex in that node (Figure 21).

Figure 21: Inserting a vertex into an empty subvolume

Case 2: The link points to a leaf node, and the new vertex is equal to the vertex stored in the leaf: No
new node is created, but the vertex counter of the existing node is simply incremented. Note that this
automatically sorts out doublets in the vertices, which are a major defect of many VRML models
found today, because only one copy of each vertex is finally output (Figure 22).
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Figure 22: Inserting an already existing vertex

Case 3: The link points to a leaf node, but the new vertex is not equal to the vertex stored in the leaf:
The leaf vertex and the new vertex fall into the same subvolume, so the octree must be subdivided in
that location. A new intermediate node is created, and the old leaf node and a new node containing
the new vertex are inserted as children of the new intermediate node (Figure 23).

Figure 23: Inserting a vertex into an occupied subvolume

Vertex clustering

The number of vertices is reduced by combining multiple close vertices into one cluster. For such a
cluster, a representative is chosen from the set of vertices represented by that cluster. This has the
advantage that no new vertex must be synthesized, and the original set of vertices can be kept
unchanged.

Vertex clustering is done by replacing leaf nodes that share an intermediate node as common parent
with that parent, setting the vertex count of the parent to the sum of the vertex counts of its children.
In selecting the cluster, the following criteria are relevant:

• From all clusters, select the one whose nodes have the largest depth within the octree, for they
represent vertices that lie closest together.

• If there is more than one such cluster, additional criteria can be used for the selection according to
the user’s preferences: Selecting the cluster that represents the fewest vertices will keep the error
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sum small. Selecting the cluster that represents the most vertices will tend to generate coarser
representations of finely tessellated areas with fewer vertices, but preserve small distinctive
features instead. Experiments show that this latter strategy usually produces better results.

Selecting the cluster representative

The remaining problem is which strategy to use to select the representative vertex from the vertices
in the cluster (Figure 24). To do so, we use three different heuristics with user defined weight. Let
the involved triangles be those triangles that have at least one vertex in the cluster.

Error area is an attempt to measure the change in the extent of the object’s surface: If a cluster of
vertices is replaced by a representative, the areas of most involved triangles change. The error area is
defined as the difference in the summed area of the involved polygons before and after the clustering.
The vertex that produces the smallest error area is chosen.

Figure 24: Different choices of the representative influence the area of the resulting triangle mesh

Error volume is an attempt to measure the object’s change in volume: For every involved triangle,
we construct the tetrahedron from the three original vertices and the potential representative. The
volume of such a tetrahedron is zero if one of the vertices is elected the representative. The summed
volume of all such tetrahedrons is taken as the error volume, and the vertex with the smallest error
volume is elected. One disadvantage of this approach is that all volumes are zero if the vertices lie in
a plane, so it is only useful in combination with another heuristic.

Figure 25: The error volume is computed from the tetrahedron with the original triangle ABC as a base and the
chosen representative R as the top

Weighted mean is an attempt to find the vertex that “best” represents the other vertices: An average
vertex is synthesized from the cluster as a weighted mean, where the weights are the vertex counts of
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the nodes in the cluster (remember that leaf nodes represent a single vertex, intermediate nodes
represent all leaves in their subtree). The vertex that is closest to the mean is chosen. Unfortunately,
this does not take into account any surface properties, and our experiments show that results using
this heuristic are visually not as appealing as the other two heuristics. Weighted mean was kept for
the sole purpose of handling indexed line sets (see below).

Computing the reduced triangle set

After the number of vertices has been reduced by the desired amount, the set of triangles associated
with the reduced vertex set must be reconstructed. For every triangle, its vertices are replaced by the
representative chosen for that vertex. This process may produce doublets (triangles with identical
vertices) for which only one instance is kept. Triangles may also collapse into lines, most of which
are identical to the edge of another triangle and can be discarded. The remaining lines are usually
important for the appearance of the model and are thus saved. Sometimes triangles collapse into
points, which are removed from the model.

6.3 Dealing with VRML specifics

Up to now we have silently assumed that the geometric model consists of an unstructured set of
triangles, and we have neglected in the discussion a variety of properties specific to VRML models.

Non-polygonal nodes

VRML models do not only consist of triangles or polygons, but also of other primitives like spheres
or text, and of context-defining nodes such as transformations. However, the essential structure of
VRML scenes is the IndexedFaceSet and its helper nodes Coordinate3, Normal,
TextureCoordinate2, and Material. Large amounts of geometric primitives are almost exclusively
specified using IndexedFaceSets, and therefore it is reasonable to concentrate on this node for level
of detail generation. Level of detail generation dealing with VRML geometry other than
IndexedFaceSets may become an interesting area for future research, but this is beyond the scope of
this work.

Scene graph structure and output format

VRML models and scenes are not “flat”, but are rather arranged in a hierarchical scene graph, so an
algorithm dealing with a single set of polygons is not sufficient. The simple yet effective solution that
was used in LODESTAR is to traverse the VRML model and apply the LOD generation to every
IndexedFaceSet individually, producing for each a new LOD node (details on how to deal with
multiple IndexedFaceSets are given in section 6.4).

LODESTAR replaces every IndexedFaceSet in the original file with a subtree containing the computed
LODs. This subtree contains a single LOD node. If the structure of the file requires that additional
nodes (such as bindings) are output, the whole structure is wrapped in an additional Separator. The
children of the LOD node are the IndexedFaceSets containing the computed levels of detail.
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If any triangles collapsed to lines are produced as a result of the clustering process, an additional
IndexedLineSet is generated to complement the IndexedFaceSet, and the resulting structure is
wrapped in a Separator.

Figure 26: An indexed face set is converted into a subtree with a single LOD node

Triangulation

As already mentioned, most level of detail algorithms including LODESTAR can only deal with
triangles as an input. The triangulation is necessary because after a vertex clustering operation, any
n-sided triangle (with n>3) almost certainly becomes non-planar. Therefore all n-sided polygons are
triangulated first by using the algorithm from [52]. As a side effect, all concave polygons are
removed from the model, which allows the use of algorithms that are simpler, more robust and
faster.

Figure 27: Degenerated quadrilaterals must be split

The exception are quadrilaterals, for which the error is often small and hence tolerable (i.e. non-
visible). It is necessary, though, to check any quadrilaterals for validity after a modification of its
vertices. Concave quadrilaterals or quadrilaterals which are distorted in space more than a user-
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specified threshold (measured as the maximum angle between the normals at the vertices) are split
into two triangles (Figure 27).

Triangulation increases the number of polygons and can involve a performance penalty. However,
most 3-D rendering engines triangulate all geometry internally [54], so with the use of triangle strips,
a performance penalty can be avoided. This consideration of course assumes that the renderer
detects and uses triangle strips, which unfortunately cannot be influenced from within a VRML file.

Lines

IndexedLineSets can be treated almost like IndexedFaceSets: Vertices are clustered with octree
quantization, and a new IndexedLineSet is constructed from the reduced vertex set for every level of
detail. The output is equivalent to the structure depicted in Figure 26, except that IndexedFaceSets
are replaced by IndexedLineSets. However, for IndexedLineSets the only applicable heuristic for
representative selection is weighted mean.

Bindings

Non-indexed bindings impose a one-to-one relationship between entries in the IndexedFaceSet fields
and the corresponding helper nodes. They cannot be maintained if multiple levels of detail are to
share the same materials, normals etc. Therefore non-indexed bindings are transformed into the
corresponding indexed bindings, and an index will be synthesized. In this case, an additional
MaterialBinding or NormalBinding is generated.

Range values

The selection of a LOD in VRML is performed by comparing ranges. A viewer switches to the next
LOD if the distance of the object to the viewpoint is greater than or equal to a specified value. For
satisfactory performance, the LOD generator has to compute reasonable range values.

Figure 28: A heuristic is used to compute the range values required for the LOD node

The next level of detail is computed by moving vertices from a cluster to a selected representative.
The maximum visible error introduced by this operation is equal to the maximum distance a vertex
can move in screen space due to a clustering operation (deviation). The goal is to compute LOD
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switching ranges in such a way that this maximum visible error does not exceed a user defined
threshold, that is specified as a percentage of the screen height.

The viewer must switch LODs if the maximum deviation s projected onto the screen is greater than
error range specified as a fraction of the height of the screen. Let rootsize be the extent of the cube
associated with the octree root (note that the actual size is computed from the local coordinates in
the octree modified by the current scale factor from preceding Scale or Transform nodes!) and depth
be the level of the octree corresponding to level of detail being computed:

s = rootsize ⋅ 3½ / 2depth-1

The height of the screen h is computed from the camera height angle alpha and the focal length f:

h = 2 ⋅ tan(α/2) ⋅ f

Given the desired errorrange (in percent), we can compute the maximum projected deferral ps as:

ps = errorrange/100 ⋅ h

Finally, from the relation d/s = 1/ps, we can compute the range d as

d = s / (errorrange/100 ⋅ 2 ⋅ tan(α/2))

To take into account the extent of the cluster, for the actual range one has to add the radius of the
bounding sphere of the cluster to d.

6.4 Joining nodes

Often VRML files are produced with primitive converters that generate many IndexedFaceSets in
sequence, each containing very few polygons. Computing levels of details for every IndexedFaceSet
of such a model has a tendency of ripping apart the model and produces useless LODs (see Figure
29), a problem also reported by [55].

Fortunately, most of these degeneracies can be cured with a very simple algorithm that joins
sequential IndexedFaceSets into one if possible. This algorithm does not even require knowledge of
the involved geometry but can operate in purely syntactical way on the VRML file. It does not work
in every case (this would require a deep analysis of both model structure and geometry), but it cures
most of the degeneracies that we have encountered so far, and even more importantly, it works very
fast.

Figure 29: The hull of the ship model was represented by many small IndexedFaceSets (one shown in upper
image). When computing LODs, the hull parts are modified individually, and undesirable holes appear. This
can be suppressed by joining nodes.
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For the components of a boundary representation (IndexedFaceSet, IndexedLineSet Material,
Normal, TextureCoordinate2, Coordinate3) and Separators, Groups and Bindings, subsequent nodes
of the same type are joined unless the second is tagged with DEF.

In case of multiple Separator or Group nodes, the sub-groups can be joined. In this process, the
components of a boundary representation that span multiple sub-groups are joined into one node of
that type, so a single IndexedFaceSet can be synthesized.

Example 1: Joining two Separator nodes with different Material sub nodes and possibly different
IndexedFaceSet sub nodes. Note that it is necessary to insert a new MaterialBinding so that the
synthesized Material node is put in correct relation to the synthesized IndexedFaceSet.

Separator {
  Material { diffuse 0.5 0.6 0.4 }
  IndexedFaceSet { coordIndex
                   [1,2,3,-1] }
}
Separator {
  Material { diffuse 0.3 0.3 0.3 }
  IndexedFaceSet { coordIndex
                   [4,5,6,-1] }
}

becomes

Separator {
  Material {
    diffuseColor [0.5 0.6 0.4,
                  0.3 0.3 0.3]
  }
  MaterialBinding { value
                  PER FACE INDEXED }
  IndexedFaceSet {
      coordIndex [1,2,3,-1,4,5,6,-1]
      materialIndex [0,1]
  }
}

Example 2: Joining two Separator nodes with possibly different Coordinate3 sub nodes and possibly
different IndexedFaceSet sub nodes: The algorithm also works with Coordinate3, Normal and
TextureCoordinate2 nodes:
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Separator {
  Coordinate3 { point
   [ 10 11 12, 13 14 15, 16 17 18] }
  IndexedFaceSet { coordIndex
                   [0,1,2,-1] }
}
Separator {
Coordinate3 { point [ 20 21 22,
             23 24 25, 26 27 28] }
IndexedFaceSet { coordIndex
                 [0,1,2,-1]}
}

becomes

Separator {
  Coordinate3 { point
    [10 11 12, 13 14 15, 16 17 18,
    20 21 22, 23 24 25, 26 27 28] }
  IndexedFaceSet { coordIndex
              [ 0,1,2,-1,3,4,5,-1] }
}

Trailing Separators

The joining algorithms works by traversing the scene graph bottom-up from the leaves, so that
joinability can be propagated upwards. To improve chances of joinability, trailing Separators are
removed (a Separator node on the end of a list is not necessary).

Separator {
  Separator { IndexedFaceSet {
             coordIndex [0,1,2,-1] }
  }
}

becomes

Separator {
  IndexedFaceSet { coordIndex
                   [0,1,2,-1] }
}

Limitations

The joining algorithm is a heuristic that was developed after studying the kind of degeneracies that
are commonly found. It only works for relatively simple cases involving direct relations between the
components of an IndexedFaceSet. Care must be taken that no other node such as a Transform is
present that forbids the joining.
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6.5 Implementation

The algorithm described in this work has been implemented under C++ and ported to a variety of
platforms, including multiple flavors of Unix, OS/2, and DOS. Because of the design decisions
outlined earlier, it runs very fast. It works reasonably robust on input files that do not exactly comply
to the VRML specification (such as some Inventor files). Furthermore, the software can be used as a
„cleanup“ filter for VRML files: As explained in section 6.2, the process removed doublets in the
vertices, colors etc., so invoking the program with the „no levels of detail“ option cleans up
redundant models. See the appendix for some sample results.

6.6 Results

The LODESTAR code was tested with a large number of models downloaded via the Internet. Here
we present a few quantitative results and images to give an impression of the performance of the
implementation. The „Enterprise“ model (10 LODs) was computed in 5.4 seconds and the „Galleon“
model (8 LODs) was computed in 7.8 seconds on an SGI Indy R4400/150 workstation.

LOD Triangles Range LOD Triangles Range
0 6343 36 5 1083 193
1 5020 42 6 553 355
2 3999 52 7 167 679
3 3182 72 8 51 1325
4 1960 112 9 16 2615

Table 3: „Enterprise“ model statistics

Figure 30: Three LODs of the enterprise mode (LOD # 0, 4, 8). If displayed in a size corresponding to the
computed ranges, the quality degradation is no longer visible
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LOD Triangles Line Range LOD Triangles Line Range
0 4698 0 1962 4 1478 8 12505
1 4142 0 2664 5 1478 8 12505
2 3686 0 4070 6 108 4 46122
3 2981 9 6882 7 24 0 90932

Table 4: „Galleon“ model statistics

Figure 31: Three LODs from the galleon model (LOD # 0, 4, 5)

6.7 Summary

We have presented an algorithm that produces levels of detail for polygonal objects. This algorithms
reads and writes VRML files and takes care of the particular needs of the hierarchical structure and
other advanced features of this format. It uses octree quantization to cluster vertices and thereby
reduces the number of vertices and faces in the model. Results show that the algorithm works
robustly and efficiently for a large class of models. It has successfully been used to assemble virtual
worlds for the system described in this thesis.
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7. Smooth Levels of Detail

7.1 Introduction and motivation

Frequently polygonal models are very large, exceeding rendering capacity and network throughput.
Adding levels of detail partly addresses the rendering problem, but makes overall model size even
larger. The reason for this problem is that the standard approach of representing polygonal data as
lists of vertices and triangles is not powerful enough. In this chapter, we present a data structure that
does not suffer from the mentioned shortcoming and fulfills the following requirements:

1. Smooth LODs. The model data structure should represent many levels of details (not only 3-6,
but hundreds or thousands of LODs), so that a continuous (or almost continuous) refinement of
the model is possible by repeatedly adding small amounts of local detail to the model.

2. Incremental decoding. Decoding of the smooth LODs should be incremental, i. e. the next finer
LOD should be represented as the difference to the current LOD. By reusing all the data from
the coarser LODs, model size can be kept small despite the large number of LODs.

3. Interactive LOD selection. The smooth LODs data structure should support selection and
rendering of any specific LOD in real-time allowing to vary the level of detail (both coarser and
finer) at interactive speeds (during rendering).

4. Incremental transmission. It should be possible to incrementally transmit the model over the
network, starting from the coarsest approximation and progressing to the original model. In
particular, rendering should be able to make immediate use of all the data received up to a
certain moment, and render a model not yet fully transmitted. This is important for progressive
refinement of large models that take an extended period to transmit, and allows continuous
operation in case of network failures.

5. Compact representation. It is preferred if the smooth LODs data structure introduces no
overhead in model size compared to the original, uncompressed polygonal model. Ideally, the
introduction of smooth LODs should yield compression instead of increasing the model size.

6. Variable resolution within the model. If the many LODs within the data structure have only
local influence on the appearance of the model, the corresponding details can be selected
individually, resulting in variable resolution within a single model. This is particularly useful for
models with a large extent (e.g. a ship model observed from its deck), where parts close to the
observer should have high fidelity, whereas distant parts can be represented by a coarse
approximation while avoiding cracks in the area of transition from one LOD to another.
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Our data structure is based on a binary tree that is created by hierarchically clustering vertices of the
original model, thereby constructing a cluster tree. Every clustering operation simplifies the model,
and therefore every node of the cluster tree represents a single level of detail. A linearization of the
tree in the inverse order of the clustering process yields a sequential representation of the data
structure that is suitable for network transmission. It also incrementally encodes the model, and
therefore fulfills our requirements 1, 2, and 4. The next section discusses the creation of this data
structure in detail.

7.2 Representing the model as a hierarchical cluster tree

Hierarchical clustering for LOD generation, as presented in [66], is based on the idea that groups of
vertices which project onto a sufficiently small area in the image can be replaced by a single
representative: a many-to-one mapping of vertices. As a consequence, the number of triangles is
reduced when the triangles’ vertices are replaced by their representatives from the reduced vertex
set, and collapsed triangles are filtered out. Repeated application of the clustering operation yields a
sequence of progressive simplifications (LODs). If exactly two clusters are combined in every step,
the result is a binary tree, the cluster tree.

Construction of the cluster tree

The cluster tree is built by successively finding the two closest cluster in the model and combining
them into one. The combined cluster is stored in a new node which has the two joined clusters as its
children. The process is repeated until only one cluster containing all the vertices remains, which is
the root of the cluster tree.

For each new cluster, a representative is chosen from the set of vertices in the cluster. More
precisely, we chose the representative to be one of the two representatives of the child clusters. The
distance of two clusters (used to find the closest clusters) is computed as the Euclidean distance of
the two childrens’ representatives. This value is also stored as the cluster size in the new cluster’s
node for further use. The process works as follows:

• Initialization: Form a cluster for each vertex, with the vertex serving as the representative

• Step 1: Find the two clusters with the closest representatives

• Step 2: Replace the two clusters identified in step 1 by a joint cluster, select a new representative

• Step 3: If more than one cluster remains, go to step 1

The cluster tree contains instructions for a continuous simplification of the model, and therefore can
be used to construct a sequence of smooth levels of detail. However, in its form described above, it
only stores the vertices of the model, but not the triangles. To use the cluster tree as an alternate
representation of the original polygonal model, the triangles must also be encoded and stored in the
cluster tree in a way so that the original model (or any desired level of detail) can be reconstructed
from the extended cluster tree alone.
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(a) (b) (c)

Figure 32: The clustering process: A mesh (a) is mapped onto a vertex cluster tree, which is used to group
vertices (b). From the reduced vertex set, a simplified model (c) is computed.

This is done by recording the events (changes) in the triangle database when two clusters are joined
(and consequently one representative vertex is eliminated). The inverse operation of these events can
be used to reconstruct the triangle database by reconstructing the cluster tree node by node. If the
events are appropriately recorded, the smooth LODs can be generated by a simple traversal of the
cluster tree in the inverse order of the clustering process with appropriate output.

Triangle event recording during clustering

When the clustering stage combines two clusters into one, those triangles which have at least one
vertex in the new cluster must be changed accordingly. For each such triangle, three cases can be
distinguished:

1. The triangle has one vertex in the new cluster, and this vertex is elected the new cluster
representative. Therefore, no change is made to the triangle at all, and the event need not be
recorded.

2. The triangle has one vertex in the new cluster, but this vertex is not elected the new cluster
representative. This vertex must be changed to the new cluster representative. A list (the update
list) of all such triangles is kept in the cluster node (Figure 33a).

3. The triangle has two vertices in the new cluster. Therefore it collapses to a line which is discarded
from the triangle set. A list (the collapsed list) of all collapsed triangles is kept in the cluster node
(Figure 33b).
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Figure 33: Two events in the triangle database during clustering are of interest for the reconstruction of the
original triangles: Collapsing triangles (a), and triangles whose vertices are updated (b).

The lists kept for events of type 2 and 3 make it efficient to perform the construction of the new
triangle list for each generated level of detail. Stepping from one LOD to the next is done by adding
only one vertex (adding one cluster, see Figure 34). The involved changes are small, so coherence
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between LODs is exploited by storing only the changes in the update list and collapsed list at each
node.

A cluster tree containing the cluster representatives and the information on triangles (update list and
collapsed list) completely encodes the information contained in the original model, plus instructions
how to create all intermediate levels of detail. In the next section, we describe basic operations on
the cluster tree.

- create all tr iangles(rep1, rep2, c)
  from collapsed_list
- modify all triangles (rep1, b, c)
  from update_list to (rep2, b, c)

rep2

rep1 = one_of(rep1, rep2)

- record all triangles (rep1, rep2, c)
  into collapsed_list
- record all triangles (rep2, b, c)
  in update_list

notation: triangle = (a, b, c)

(a) clustering

rep2

rep1

(b) cluster expansion

rep1 rep1

Figure 34: During the clustering, two vertex clusters are joined into one, and the effect on the triangles is
recorded (a). The inverse operation, cluster expansion, uses the recorded data to reconstruct the triangles (b).

7.3 Manipulation of the cluster tree

While the cluster tree has the desired property of efficiently representing the original model plus all
its levels of detail, it is not directly usable. For rendering, it is still necessary to reconstruct a vertex
list and triangle list (either for the original model or for a level of detail). A tree is also not suitable
for network transmission, it must be linearized first. Furthermore, a simple method for selecting an
arbitrary level of detail is required. Therefore, we define a number of basic operations on the cluster
tree, from which the required functions (linearization, model reconstruction, LOD selection, and
rendering) can easily be constructed.

Traversal of the cluster tree

During the hierarchical clustering process, the nodes of the cluster tree were generated in the order
of increasing cluster size. Traversal of the cluster tree is done in the exact inverse order of its
creation. A set of active nodes is maintained to reflect the current status of the traversal. Starting
with the root of the cluster tree, the algorithm processes the cluster tree node by node, in the order
of increasing cluster size. Every visited interior node is replaced by its two children. The following
pseudo-code sketches the algorithm:

activeNodeSet = root
while  not  empty(activeNodeSet)
  current = get node from activeNodeSet with biggest
            cluster size
  process current
  if ( not  isLeaf(current->left))
    add current->left to activeNodeSet
  if ( not  isLeaf(current->right))
    add current->right to activeNodeSet
endwhile
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Reconstruction of the polygonal model

The original polygonal model, consisting of a vertex list and a triangle list, can be reconstructed
using the cluster tree traversal function. The root introduces the first vertex. With every visited node,
one new vertex is introduced and added to the vertex list (the other child inherits the parent’s
representative). At the same time the triangle list is reconstructed by processing each visited node’s
collapsed list and update list. Every entry in the collapsed list introduces a new triangle into the
triangle list (reversing the process by which this triangle was collapsed and removed). Every triangle
in the update list contains the parent cluster’s representative, which must be replaced by the new
vertex mentioned above. When all nodes have been visited by the traversal, the original model has
been completely restored.

Selection of a LOD

The original model is only the most detailed version of a large number of LOD approximations. A
convenient way to select any desired LOD from the available range is to terminate when all nodes
belonging to a particular LOD have been visited. The desired LOD is specified as a threshold that is
compared to the cluster size contained in every node. A modified traversal algorithm no longer
continues until the active node set is empty, but terminates if the biggest cluster size of any such
node is smaller than the given threshold. The reconstructed  triangle and vertex lists up to that point
represent the desired level of detail and can directly be used for rendering.

Refinement

For refinement of the model, the fundamental operation is to switch from a given level of detail to
the next finer one. A particular LOD is defined by a list of active node in the cluster tree, and the
corresponding vertex and triangle lists. This is achieved by expanding the node which is selected for
refinement into its two successors, and using the information contained in that node to extend the
triangle list and vertex list. This is an incremental operation that typically  requires only a small
amount of processing and can be carried out at interactive speed. Selection of a LOD as previously
mentioned is nothing else than the repeated application of refinement, starting with a single vertex
and an empty triangle list.

Simplification

The inverse operation to refinement is simplification, which is used to switch from a given level of
detail to the next coarser one. Two nodes are clustered into their common parent node. One vertex is
removed from the vertex list, and references to that vertex in the triangle list are removed. Collapsed
triangles are filtered out,  which simplifies the model.

Linearization

The traversal can not only be used to reconstruct the model for rendering, but also to generate a
sequential version of the cluster tree suitable for network transmission. Nodes are visited in the same
order as for LOD selection, but instead of reconstructing the original model, the information
contained in the node is output into a sequential data stream. During that process, triangles and
vertices are automatically renumbered in the order in which they are visited, so that references
always point back to available valid indices and incremental decoding becomes possible.



SMOOTH LEVELS OF DETAIL 67

7.4 Transmission Protocol

Using the linearization operation introduced in the last section, it is very simple to create the stream
of packets required for network transmission. No redundant information is stored in the network
packages, so the requirement of compactness is satisfied by the network protocol, which actually
represents the smooth LODs model in less bytes than the original model (see section 7.7 for results).
Effectively, the protocol can be used as a compression method.

Recall that the following information must be encoded for every node in the cluster tree:

• the new vertex introduced by the refinement operation

• the update list encoding which triangles must be modified to contain the new vertex

• the collapsed list encoding which new triangles must be created when the new vertex is
introduced.

The goal of the protocol was to encode the required information with as little data as possible. Our
protocol currently deals with vertices, triangles and surface materials and consists of four packets
types: VERTEX, TRIANGLE, MULTI, MATERIAL.

• VERTEX
Format: VERTEX(parent, x, y, z, update list):

A new vertex is introduced. One node of the cluster tree is replaced by its two children. The
coordinates of the representative of one of the new clusters are encoded in this package.

Parent cluster. The parent field indicates the cluster that is being split in two. Indices can only point
to already existing clusters, so they can have variable length: As the number of clusters increases,
more bits are needed to encode the index. This variable length encoding of indices saves 50% of the
bits needed for indices.

Vertex coordinates. The (x,y,z) tuple gives the coordinates of the new vertex. Details on the
encoding of the vertices are given in the next section.

Update list. VERTEX also encodes the update list associated with the parent node. Already encoded
triangles which contain the parent cluster’s representative can either continue to use that
representative or from now on use the new vertex. This information must be encoded to allow
updating of the triangles correctly. The update is simply the replacement of the parent cluster’s
representative with the new vertex within the triangle. One bit is sufficient to indicate for each
candidate triangle containing the parent cluster’s representative whether or not the update should
take place. These bits are compactly stored as a bit list.

A variable length bit list is used to encode these updates. Since the number of candidate triangles as
well as the order of the triangles given by their position in the global triangle list is known to both
sender and receiver, the update process is well defined.

• TRIANGLE
Format: TRIANGLE(vertex id, orientation)
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As the reconstruction of the object from the network data steam is the inverse operation of the
clustering stage, for every new vertex encoded by VERTEX, the triangles stored in the parent node’s
collapsed list must be re-introduced as new triangles. This is done by a sequence of TRIANGLE
packets. The triangle in question collapsed because new vertex and the parent’s representative were
clustered, so two of the original vertices are already known. The missing third vertex is encoded in
the packet as an index into the array of vertices. Like cluster indices, vertex indices can have variable
length.

The new triangle has either the orientation (new vertex, parent rep, vertex id) or (parent rep, new
vertex, vertex id), which is distinguished by the orientation bit.

• MULTI-TRIANGLE
Format: MULTI(duplicate flag, vertex id)

The clustering process may produce identical triangles that are not collapsed and consequently not
removed. These doublets were intentionally left in the data, because removing them would greatly
complicate the coding and decoding process. Instead, the MULTI package can introduce either 2 or
4 related triangles at once, which efficiently covers the most frequent cases produced by the
clustering algorithm. If the duplicate flag is zero, 2 triangles with either orientation (new vertex,
parent rep, vertex id) and (parent rep, new vertex, vertex id) are created. If the duplicate flag is one,
2 triangles of either orientation are created.

• MATERIAL
Format: MATERIAL(index)

While polygonal models always contain geometry, they may or may not contain materials or colors.
Our models consist of a small set of fixed materials, that can be encoded in an 8 bit index.  A
MATERIAL packet sets the current material of the following geometry to the new value until
another material package is encountered. As our models use only a few different materials, such
packets are relatively infrequent, and no further optimization efforts were taken. Material definitions
are distributed once to all participating sites. If required, material definitions can be given in the
header of the model. A more sophisticated shading support may include vertex colors for pre-shaded
(e.g., radiosity) models.

Packet format. Packets are headed by a variable length tag according to the frequency of the
individual packet types and their expected length. Table 5 summarizes the packets including their
parameters (field sizes in bits are given in parenthesis).

Packet Tag Fields

vertex 0 parent (variable) coordinates (s.
below)

update list (variable)

triangle 10 vertex id (variable) orientation (1 bit)

multi 110 duplicate flag (1 bit) vertex id (variable)

material 111 material id (8 bit)

Table 5: Protocol packets with parameters and sizes in bit
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7.5 Hierarchical precision encoding of vertices

About half the size of the model is due to the vertex coordinates. These are not effected by the
algorithms and therefore are not yet compressed. Deering argues that while coordinate data is
usually represented using floating point arithmetic, the finite extent of geometric models allows
representation using fixed point arithmetic [16]. To minimize errors resulting from lossy compression
via quantization, we have developed a hierarchical precision encoding scheme for the coordinate
data. Our method still yields compression ratios of 1:2 to 1:3.

For every ordinate, a neighborhood is chosen by defining a fraction of the object diameter. If the new
ordinate lies within the neighborhood of the corresponding ordinate of the parent cluster’s
representative, the ordinate is encoded with a relative offset to it. This offset is stored as a fixed
point value ("relative encoding"). As the new vertex is expected to be in the vicinity of the parent’s
representative, most of the ordinates can be encoded relatively, thus saving storage. If the ordinate is
not in the neighborhood, it is stored as an absolute (32 bit) single precision float (“absolute”
encoding).

Typically we define the neighborhood to be a quarter of the extent of the model (computed
separately for every axis), and consequently can bound the error to (1/4) * 1/(216) = 0.000004% of
the model extent. At this precision, we use either 8 or 16 bit values (many relative values are small,
and consequently 8 bit or less are sufficient).

Another method further reduces storage consumption: A special bit code indicates if the difference
to the parent’s ordinate is zero. In this case the specification of the 16 bit delta value can be omitted
(“null” encoding). Often CAD models have edges aligned to the axises of the coordinate system, so
this is frequently the case.

Note that while the use of fixed precision for relative encoding makes the compression scheme lossy,
the inaccuracies introduced can be controlled by the user by selecting the fraction of the model
extent which is to be considered as the neighborhood of parent vertices.

The distinction between the encoding variants is made by variable length tags. Table 5 gives an
overview of coordinate encoding.

Coordinate Tag Fields

relative16 0 16 bit fixed

relative8 10 8 bit fixed

null 110 (none)

absolute 111 32 bit float

Table 6: Protocol for encoding of coordinates
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7.6 Model reconstruction and rendering

Model reconstruction

At the receiver’s side, the geometric model must be reconstructed from the data stream. The cluster
tree is de-linearized by successive refinement operations (i. e. node expanding) operations, which
create child nodes from the data fields of the network packages. At the same time, a vertex list and
triangle list can be reconstructed. The reconstruction process is incremental and fast, which allows to
perform decoding and rendering in parallel, always displaying the best approximation possible with
the data received so far.

Rendering

The representation of the model as a cluster tree allows more than one way of rendering. The more
conventional approach is to take “snapshots” of the reconstructed triangle list after a certain amount
of data has arrived, thereby obtaining conventional, discrete levels of detail. In that case, the
reconstruction of the cluster tree can be omitted. The advantage is that the resulting LODs can be
used by an existing LOD renderer without any modification.

Interactive selection of smooth LODs

During initialization, the cluster tree makes it possible to select smooth levels of detail on the fly
during rendering, which is a more powerful method than simply creating a small set of LODs. In an
initial step, the LOD selection operation is used to create a triangle list for display.

For every successive frame, a new threshold is chosen according to the new viewpoint, and the
corresponding smooth LOD is selected. Depending on whether the new LOD is finer or coarser than
the previous one, refinement or simplification operations are used to modify the active node set, the
vertex and triangle lists. Usually only few manipulations are necessary, so the incremental LOD
selection runs at interactive speed.

The selection of smooth LODs from the cluster tree also works if the transmission is still incomplete,
because every partially created tree is consistent in the set of vertices, triangles and clusters. As soon
as new data arrives and is inserted into the tree, the model can be refined to incorporate the new
data, if desired.

Variable resolution within one object

The comparison of the cluster size against the threshold can also be made by estimating the cluster’s
projected screen size. This allows to make a different selection for every node, depending on the
distance of the cluster to the observer. The displayed model allows non-uniform simplification and
automatically adapts to the user’s position. Those parts of the object that are further away from the
observer will be displayed coarser than those that are near. Consequently, the polygon budget is
exploited more efficiently. However, neither cluster size nor update list can be precomputed any
more, but the incurred performance penalty can be kept within tolerable limits. This area is subject to
further work.
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7.7 Results and Comparison

Comparison of model sizes

Table 7 compares the sizes of models encoded as a smooth LOD packet stream as detailed in
section 7.4 to the original models (vertex list and triangle list) with and without levels of detail (see
Figure 37 for images). Every model is listed with its vertex and triangle count, the original object
size, computed from 12 byte per vertex and 6 byte per triangle, assuming 16 bit indices for vertex
references in triangles).

Model
name

# of
vertices

# of
triangles

object
size

LOD
size

smooth
LOD size

% of
obj.size

% of
LOD size

lamp 584 1352 13968 17712 6106 43.7 34.5

tree 718 1092 15168 20460 7288 48.0 35.6

shelf 1239 2600 30228 37188 12635 41.8 34.0

plant 8228 13576 179352 200154 89921 50.1 44.9

stool 1024 1600 21864 30528 8406 38.4 27.5

tub 3422 5404 73488 84906 26993 36.7 31.8

sink 2952 4464 62208 81558 23743 38.2 29.1

ball 1232 2288 28512 39420 14099 49.4 35.8

curtain 4648 8606 107412 109770 44334 41.3 40.4

Table 7: Comparison of model sizes - smooth LODs against conventional models (sizes given in bytes)

The next column (LOD size) lists the size of the model with 5 conventional LODs including the
original object (additional LODs only increase the triangle count, vertices are reused from the
original model with the approach described in section 7.3!). These values should be compared to the
size of the corresponding smooth LOD model (smooth LOD size), stored in the format given in
section 7.5. The size of the smooth LOD model is also given as a percentage of the original model
(% of obj. size) and level of detail model (% of LOD size).

Note that the smooth LOD model is always not only significantly smaller than the level of detail
model, but also smaller than the original model. As far as model size is concerned, smooth LODs
come for free!

Comparison of the visual effect

Our experience shows that the refinement of a model with smooth LODs is superior to the coarse-
grained switching between a few (typically 3-6) conventional LODs. However, such a subjective
statement is hard to prove formally. If we assume that image quality is roughly proportional to the
number of triangles used for display, we can compare smooth to conventional LODs by plotting
triangles available for rendering as a function of transmitted bytes for both methods. Figure 35 shows
two such examples.



SMOOTH LEVELS OF DETAIL 72

0%

20%

40%

60%

80%

100%

transmitted data

conventional LODs

smooth 

0%

20%

40%

60%

80%

100%

transmitted data

conventional LODs

smooth 

(a) shelf (b) plant

Figure 35: Comparison of visual effect of smooth vs. conventional LODs. We measured the quality as the
number of triangles available for a certain amount of data (1 notch on the x-axis ≈ 5 KB)

Figure 36: Comparison of the development stages of sample objects. The half of each image shows smooth
LODs, the right half conventional LODs for corresponding amounts of data. Black bars on the sides of the
images indicate the amount of triangles received and displayed.

The maximum triangle count is reached much earlier using the smooth LODs than using conventional
LODs because of the smooth LODs’ more compact representation (see the % of obj. size column in
Table 7). This difference is also obvious when comparing the obtained images. (compare Figure 36).
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Note that the roughly linear correspondence between transmitted data (x-axis) and available triangles
(y-axis) is very suitable for networked virtual environments, where an object is approached at
constant velocity, while its geometric representation is still being transmitted over a network of
constant bandwidth.

7.8 Using smooth LODs with demand-driven geometry transmission

Smooth LODs have a number of properties that makes them extremely well suited for use in
distributed virtual environments. In particular, they can easily be integrated with demand-driven
geometry transmission as presented in chapter 5. Instead of downloading separate and discrete
models for each level of detail of an object, the demand-driven geometry transmission algorithm
simply processes a smooth level of detail stream. There is only one minor modification required:
Level of detail selection algorithm are designed to pick one from a few - not more than 10 - discrete
representations. Smooth levels of detail have a large number (often in the thousands) of possible
levels of detail. While any selection algorithm principally works with such a large number of distinct
representations as well, the associated overhead of issuing requests for small items of geometry data
is too large. The advantage of a continuous stream would be destroyed by dividing the transmission
into small chunks. Therefore, it is better to treat the smooth LODs model like a conventional LOD
model by selecting a few of the possible models from the continuous stream and compute the
selected LOD in terms of their cost/benefit ratio. Geometry requests are only issued for these
selected LODs. The purpose of the continuous stream is not defeated in this way, since progressive
transmission and decoding can proceed as usual, it only stops when the desired quality is reached.
The only disadvantage is that a slightly better or worse than optimal LOD (according to the
cost/benefit heuristic) may be chosen, which - if done properly - cannot be perceived by the observer.

7.9 Summary

We have presented a new polygonal model representation called smooth LODs designed for
interactive rendering and transmission in networked systems. A hierarchical clustering method which
has been used to compute conventional simplifications of triangle meshes is extended to yield a
continuous stream of approximations of the original model. A very large, practically continuous
number of levels of detail is computed. The result can be represented in an extremely compact way
by relative encoding. The resulting data set is smaller than the original models without levels of
detail. If the data set is transmitted over a network, a useful representation is available at any stage of
the data transmission. The data set can be used to compute conventional levels of detail, or the
underlying hierarchical structure can be exploited to generate and incrementally update any desired
approximation for rendering at runtime.

When running real world applications on low cost systems, the constraint of using a coarse LOD
only if the difference to the high fidelity model is not noticeable is regularly violated because of
insufficient rendering performance (see Figure 36). Slow network connections such as Internet
downloads make the user wait for completion of transmission while the model is already displayed at
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full screen resolution. In these situations, our approach is clearly superior, because it makes new data
immediately visible (compare Figure 35) and finishes earlier due to its compact representation.

lamp tree shelf plant stool tub sink ball curtain

Figure 37: Models used for evaluation
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8. Interactive Rendering of Natural Phenomena Using Directed Cyclic Graphs

8.1 Introduction

Many real-time graphics and virtual reality (VR) applications aim to immerse the user in an outdoor
scenario composed to a large extent of natural phenomena a landscape, plants, trees, mountains and
so on. Some of the most successful virtual reality applications are based on outdoor settings, among
them flight simulators, tactical training systems, video games, and urban reconstruction projects.
Outdoor environments are typically flat and sparsely occluded, so the area that can be observed by
the user is rather large. Another desired characteristic is that the user should be able to move freely
over a large area without reaching an artificial border too fast. The environment should contain
plenty of detail (e. g. leaves on trees) even at close inspection to obtain a realistic impression. The
successful simulation of a large virtual environment represented with a high degree of fidelity
requires construction, run-time management, rendering, and network transmission of very large
geometric databases.

Traditionally, research has focused on the problem of real-time rendering of very large geometric
databases. Powerful rendering hardware for polygonal models has been developed for that purpose
[2]. In combination with texture mapping [21], level of detail (LOD) rendering [23], and scene
culling [24], even large scene databases can be rendered in real time.

Yet despite the power of state of the art graphics technology, the craving for even more realism
often defeats the purpose, because the large scene databases are difficult to handle. In particular, we
see three areas where improvement is needed:

1. Modeling: The construction of a large number of detailed models is extremely labor-intensive.
While models of artificial structures such as machines or buildings are relatively easily obtained
from CAD sources, this is not true for plants and other natural phenomena. The use of texture
maps (e. g. photographs) reduces modeling costs, but this shortcut becomes painfully obvious
when inspecting models at close-up. Instancing (i. e. using the same model multiple times) is also
easily detected and destroys the user’s believe in the virtual world.

2. Storage requirements: A very large geometric database requires lots of storage. Today’s typical
workstations have enough memory to store scene databases that by far exceed the capacity of the
image generator. However, if only a small portion of an extensive virtual environment is visible at
any time, and the application allows the user is to cover large distances, the actual database can
easily exceed memory capacity. Loading data from disk in real-time has its own set of problems
[24], so a compact representation that allows to hold all or a large portion of the scene database is
highly preferred.
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3. Networking: If the geometry database is to be distributed over a network, a compact
representation is even more essential. The rapid growth of Internet-based VR applications that
suffer from notoriously low and unpredictable bandwidth drives the desire for compact geometric
representations that can be transmitted in shorter time [16].

A solution to these problems lies in the use of procedural modeling and fractal geometry [49].
Procedural models allows the concise description of objects whose structure can be formulated as a
program, and is especially suitable for plants and trees. A very powerful class for that purpose are
Parametric Lindenmayer systems [57]. The algorithmic description is usually very compact, and can
easily be extended to yield a large number of different objects instead of a single one, making the
instancing of large populations effective. Creating a large scene from a very small data set is called
database amplification in [80].

Numerous methods for modeling and rendering of plants have been presented in the past, e. g. [28,
57, 58, 80, 88], but most are aimed at photorealism and do not produce images in real-time. Most
methods create an explicit geometric model from the procedural model as a preprocessing step to
rendering. Such a geometric model can be used for virtual reality applications, but does no longer
address the requirements regarding storage and networking. Some methods produce images without
the use of explicit geometric primitives [59], but they cannot make use of polygonal rendering
hardware. Special support for real-time applications with level of detail rendering is presented in
[88], but the approach is also not storage preserving.

8.2 Overview of our approach

In this work, we present a method for interactive rendering of natural phenomena modeled using
directed cyclic graphs. This method is an adaptation of the raytracing work by Gervautz and Traxler
[28]. In the domain of interactive rendering, we can make use of some unique properties if directed
cyclic graphs:

• Direct rendering of procedural models. Unlike other procedural modeling approaches for
interactive rendering, our models can directly be rendered, thereby creating geometry on the fly.

• Unified rendering of procedural and non-procedural models is possible.

• Good memory utilization: Direct rendering of the procedural model supplants the use of explicit
detailed geometry, and yields vast savings in storage, in particular if large populations are
instantiated. Database amplification can further be enhanced through the use of statistical
distributions and random numbers.

• Network bandwidth savings: The compact representation is also very suitable for network
transmission.

• High quality rendering: The problem of artifacts at close-up view is solved by providing actual
geometric detail, but without the penalty of elevated memory requirements. Inefficient rendering
can be prevented by still using levels of detail and impostors at medium and far ranges, where
quality degradation cannot be perceived.
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The remainder of this chapter discusses the details of our approach: Section 8.3 gives background on
the rendering of directed cyclic graphs. Section 8.4 pays attention to the issue of efficient rendering.
The discussion is complemented by details about a sample implementation using Open Inventor
(section 8.5), followed by examples and results (section 8.6).

8.3 Background: Rendering Directed Cyclic Graphs

In this section, we aim to give the reader an introduction to the formalism of PL-systems, and its
equivalent, directed cyclic graphs, as developed by Gervautz and Traxler. We also review the
implications of modeling and rendering directed cyclic graphs for interactive applications.

A brief introduction to PL-systems

PL-systems are commonly written as a grammar called a rewriting system, consisting of an alphabet
of modules (a symbol plus a set of parameters), a set of productions for every module that specify
how to derive valid expressions, and an axiom. Starting with the axiom, productions are concurrently
applied to the modules of an expression (hence the term parallel rewriting system) to derive new
expressions. Associated with each parameter is an arithmetic expression that is evaluated upon
application of a production, the result of the evaluation controls the selection of the production (if
there is more than one production for a particular module). Images are generated by interpreting an
expression geometrically, usually with a construction tools called turtle. Figure 38 shows a very
simple PL-system and the resulting model.

Instead of deriving an explicit geometric model, we use a representation equivalent to rewriting
systems based on graphs. This approach is enabled by a simple modification to conventional
modeling: extending a directed acyclic graph (DAG) to a directed cyclic graph (DCG). DAGs are
the standard approach for modeling geometry databases for interactive applications: A hierarchical
structure (tree) allows efficient definition and manipulation of properties such as material for
arbitrary parts of objects or scenes. For example, transformation nodes modify the object space
transformation matrix for all objects traversed after the transformation, allowing the construction of
articulated figures.

axiom: Worm (4)
productions for Worm(c):

if(c=0): Worm  → Cone
if(c>0): Worm  → Sphere Translation(1,0,0) Worm (c-1)

Figure 38: A very simple recursive model
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Actions such as rendering are applied to such a data structure by graph traversal. Allowing multiple
references to a subgraph enables instancing and turns a tree into a DAG. To represent recursive
structures, we allow cyclic references in the graph structure, thus creating a DCG.

Translating a rewriting system into a DCG

An expression-based PL-system can easily be translated into an equivalent DCG using the process
outlined in this section. We consider a form of rewriting system where symbols are divided into non-
terminals and terminals. Only non-terminals can be substituted, and the productions for every
variable require that there is at least one substitution that consists only of terminals. Only terminals
have a geometric representation. To get an expression that consists only of terminals (and can hence
be rendered), any remaining non-terminal is substituted according to the production that generates
only terminals.

The right hand side of every production is interpreted as a subgraph. Concatenated modules are
represented as children of a group node, that traverses all its children. For every non-terminal
module of the alphabet, exactly one selection node is created. Upon traversal, the selection node
traverses only one child as indicated by a parameter. The children of the selection node are the
subgraphs constructed from the right hand sides of the productions for that particular module.
Consequently, any non-terminal module in such a subgraph becomes a link to a selection node.
Recursive productions (of the form A → … A …) thereby create cycles in the graph; indirect
recursion is possible as well. The selection node for the axiom becomes the root.

The arithmetic expressions passed as parameters to the modules in the productions are translated
into separate nodes, the calculation nodes. In these nodes, the old value of a parameter is saved and
a new value for the parameter is computed from the given arithmetic expression, emulating the
behavior of a call by value parameter in a recursive procedure. The initialization of parameters at the
root of the graph is also done with calculation nodes. Calculation nodes evaluate the associated
functions only when they are visited upon traversal, so their behavior can be characterized as lazy
evaluation in terms of compiler technology. The example from Figure 38 is transformed into the
graph in Figure 39.

Traversal of the DCG

An important step in the rendering of graph-based models is the graph traversal. The order of
traversal is depth first and left to right (i. e. children of a group node are visited from left to right).
For every node, the appropriate behavior is called; for example, a rendering traversal will render
primitive nodes such as polygons or spheres, and for a group node simply traverse all its children. An
important concept is the accumulation of state during the traversal, for example, transformations
must be multiplied as they are encountered during the traversal. While the propagation of
accumulated state is usually desired while traversing deeper into the graph, it should not affect other
branches of the graph that are traversed later. Therefore, state is saved before performing depth
traversal, and restored when the traversal returns from the subgraph.

Such a graph traversal works well for DAGs, but the cycles contained in DCGs would lead to infinite
looping without special measures. Therefore, recursive models use a parameter-dependent selection
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node to branch into a terminating (i. e. cycle-free) subgraph after the desired number of recursions.
The selected child is functionally dependent on one or more parameters, that are modified and
evaluated during traversal. An obvious construction is to use one parameter as a counter of recursion
depth, and terminate when it reaches a specific value.

Figure 39: Simple recursive graph for the model shown in Figure 38

Database amplification with parameterized models

Using model represented with DCGs, database amplification is very easily possible. Parameterized
models allow the creation of a large and diverse population from a single model (Picture 2). A DCG
can be though of as a genotype of a species, with the initial settings of the parameters responsible for
the appearance of the phenotype. For example, a model of a fractal tree can be varied in the height of
the tree, the number of branches, the color and so forth. Position in the scene is just another
parameter affecting a translation node.

(200,200)

enumerator
  n = 1000
  tree( random [100m, 200m],

random [100m, 200m],
random [3m, 6m],
random [1m, 2m],
random [mid-green, dark-green]

        )

(x,y)

w

hc

tree(x,y,h,w,c)
(100,100)

Figure 40: Creating a forest by varying a tree
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A population can be generated with very little effort in computation and memory consumption by
creating the desired number of instance nodes that store initial values for the parameters of the model
and reference the model. This can be achieved even more efficiently by an enumerator node that
stores references and initialization data in arrays. For example, a forest can be created from a single
model as in Figure 40 (a more realistic scenario would use a small set of different tree species).

Parameters can either be user-specified (for better control over the scene), or generated from random
numbers. In that case it is only necessary to associate a unique seed value for the random number
generator with each model, so that the random numbers used for a particular model can be re-created
every time the model is traversed. Note that the random number generator must work cross-
platform, so that models have the same appearance on every platform.

A combination of user-defined and random values is often desirable: For example, the user may wish
to specify only the general appearance (height of a tree, peaks and valleys of a terrain model), and
leave the details to a statistical distribution of random numbers (crease angle of individual branches,
number of leaves on a twig, small variations in terrain height).

For distributed virtual environments, the demand-driven geometry protocol is adapted to work with
DCG models. Since the same basic rendering algorithm is used, this is straight forward. As models
are potentially instantiated many times, the model’s actual geometric description must only be
transmitted when the first instance of a species is encountered, later instances can be specified by
parameters only.

8.4 Efficiency of rendering

Levels of Detail

DCGs are particularly suited for level of detail rendering because of their self-similarity: Reducing
recursion depth yields an object that resembles the original object with fewer detail. This strategy
requires only the modification of a single initialization parameter instead of a complicated
simplification process, and only one model is required for multiple levels of detail. For example,
Picture 4 shows a simple sympodial branching structure. Note that the number of geometric
primitives increases exponentially. However, one should note that more sophisticated structures do
not show plain self-similarity that allows such a trivial level of detail configuration. In general, levels
of detail must always be hand-crafted by substituting simple primitives for complex sub-graphs,
which can be a labor-intensive process.

Dynamic Impostors

While detailed geometry is important at close range, image-based simplifications can be very efficient
at medium and far ranges. The use of dynamic impostors is ideal for that purpose: The rendering cost
for a large number of complex objects is reduced to rendering individual textured polygons, with the
exception of infrequent refreshes of the impostors. When an objects comes into close range, the
rendering automatically switches to rendering detailed geometry from the original procedural model,
so that no degradation in quality can be perceived. Since typically only few objects are close to the
observer, performance goals can be met.
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8.5 Implementation

A number of basic elements is required for the modeling/rendering system for DCGs, independent of
implementation language, platform, or even rendering method:

• data structures for nodes, including geometric primitives (polygon sets, simple solid bodies such
as spheres), materials, transformations; plus group, selection, and computation nodes

• a traversal mechanism that walks through a graph and calls appropriate functions for every node
encountered during the traversal to perform rendering, bounding box computation etc.

• global variables accessible by the nodes, that can be used as the parameters of the PL-system

• a stack for parameters to simulate local scope of recursive function calls

• support for evaluation of functional expressions in the calculation nodes

• a text-based file format for easy specification of models, so that models can be created without
using a compiler

All these features are not specific to fractal modeling, but rather are standard features of advanced
modeling toolkits. So it is not surprising that the Open Inventor toolkit from Silicon Graphics [82]
comes with all the elements listed above, and is well suited for our needs. Using a commercial toolkit
as a foundation also has the advantage that all the additional features combined in the toolkit are
readily available. We decided to stick to the rule that no feature that was already available in
Inventor should be re-implemented, so most of the work went into tweaking Inventor’s features to
work under circumstances not originally intended by the designers. The software resulting from this
effort is called RECURSIV.

Inventor has a well readable text-based file format. This file format was extended to accommodate
the extensions for modeling directed cyclic graphs, in particular the possibility to perform
computations on the variables (RecursionCalculator). Inventor’s reference mechanism (DEF/USE) is
employed for the cyclic references. The following is the RECURSIV file for the example from Figure
38.

RecursionCalculator { expression “c=4” } #init counter
DEF Worm RecursionSwitch {   #label called recursively
  expression “c>0”     #decide which child to traverse
  Cone {}                              #terminal child
  Separator {                        #recursive branch
    Sphere {}
    Translation { translation 1 0 0 }
    RecursionCalculator { expression “c=c-1” }
    RecursionSeparator { USE Worm }     #recursive call
  }
}
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8.6 Results

While modeling DCGs takes a little practice, we found that it is possible to achieve very appealing
results. Some examples are shown in the color section at the end of the text, including trees, terrain
and linear fractals (Picture 3).

To support our claims of improved memory usage and network utilization, in the following we list a
comparison of the sizes of some procedural models (uncompressed ASCII RECURSIV files) and their
conventional counterparts where every detail is explicitly stored. We did only consider geometry, not
color (color was fixed in both variants). In the binary file cones and cylinders were taken into
account as 7 floats (3 bottom, 3 top, 1 radius), individual vertices of triangles with 3 floats (x, y, z).

• The tree model (Picture 5) consists of 16884 cones, 13776 cylinders and 603 leaves (triangle
strips of length 4). The RECURSIV file uses 7556 bytes, while the binary file consumes 74076
bytes.

• The conifer tree, variant 2 (Picture 6, second from left) consists of 211 cylinders and 15600
cones. The RECURSIV file uses 7418 bytes, while the binary file consumes 442708 bytes.

• Terrain (Picture 7d) can be set to arbitrary resolution. A pure fractal implementation in RECURSIV
(only the edges of the terrain tile and the fractal dimension are explicitly specified) takes 3832
byte. A height field at resolution 1024x1024 (such as seen in the color) plate with 1 float per
height value takes 4MB.

It is easy to see how memory and network transmission time can be saved by using the procedural
models instead of their conventional counterparts. Note that these are only for one instance of a
given model. For example, the tree model is specified using only three parameters (height, average
branch length, branching frequency), all other details are generated from random numbers.

8.7 Summary

We have presented a simple extension to DAG based rendering toolkits for interactive rendering.
With the addition of cycles, PL-systems can be directly modeled and rendered as directed cyclic
graphs. Interactive design of natural phenomena and efficient representation of outdoor scenes,
especially for distributed virtual environments, are made possible by this approach.
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9. Conclusions

9.1 Critique of the Remote Rendering Pipeline

This thesis has presented a framework, called the remote rendering pipeline, aimed at the
improvement of performance of larger scale distributed virtual environments. The work introduces a
number of methods, that taken together allow more efficient management of geometric data in a
distributed virtual environment. These building blocks are

• a strategy for distributing data over the network on demand (demand-driven geometry
transmission), thus saving the effort for unneeded data;

• a tool for the generation of conventional levels of detail from the popular VRML file format, to
help the integration of standard Internet techniques with the virtual environment;

• a data structure for smooth levels of detail that allow to discontinue geometric object transmission
and reconstruction at any point in the data stream at the expense of quality, and also yields a
significant compression ratio over raw data;

• a modeling and rendering toolkit based on directed cyclic graphs that integrates with conventional
modeling approaches and allows extremely compact rule-based descriptions of natural phenomena
such as trees or mountains.

A central concept is demand-driven geometry transmission. Data of geometric objects is sent to the
users only as necessary, assuming a constant area of interest containing all the objects that the user
can see. Such a strategy makes virtual worlds scaleable to almost arbitrary size, since the limiting
factor is no longer the storage and rendering capacity of the client, but rather the data management
capability of the server from which the data is requested.

Since the server by itself can be a distributed system, free scalability can be achieved. The demand-
driven geometry transmission protocol itself is simple and readily implemented. It also makes the
clients relatively independent from the virtual world, since the protocol allows the client to decide on
the strategy for selecting the geometric objects, so a client can adjust the data rate according to its
own capacities.

Limitations of this approach include the assumption that the user’s behavior is relatively static (user
does not move faster than a given threshold, which is small compared to the size of the virtual
world), such as often found in vehicle simulation. Given such a behavior, not only demand-driven
geometry transmission but also dead reckoning methods can be used. Demand-driven geometry
transmission also works best in open spaces, such as outdoor scenarios. Although indoor worlds
work with the approach, performance could be improved more easily by using visibility computation.
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Furthermore, the method requires that the world is modeled as a collection of discrete objects. This
makes sense if one also wants to attribute objects with behaviors. However, often scenes or objects
are only available as unstructured collections of polygons. Very large and extended objects such as
buildings and roads that stretch through a large portion of the area of interest also break the elegance
of the algorithm. Finally, the mediation of all communication by a server introduces some latency
into the system.

Overall, demand-driven geometry transmission has proven to be a viable concept, and is certainly a
useful technique for future large-scale virtual environments, as acknowledged by recent commercial
trends.

The level of detail generator Lodestar was implemented to help the integration of various pieces of
the system. It demonstrates some important lessons learned when attempting to create such a tool
for use with real world data rather than the somewhat artificial examples often used as test cases for
new algorithms. Its worth and novelty lie in the use of octree quantization for vertex clustering, and
in the robust handling of all sorts of input data. It is used in the organization of data for the virtual
environment.

Smooth levels of detail have turned out to be a surprisingly simple, yet very effective method to
generate progressive approximations of polygonal objects. Among the benefits of this approach are
the simple implementation, robustness against degenerate data, high compression ratio and of course
all the virtues of progressive encoding, transmission, reconstruction, and rendering. Similar strategies
were published concurrently, and while they may be superior in certain qualitative domains (such as
guaranteed error bounds), no rival algorithm matches the strategy in simplicity and effectiveness.
Smooth levels of detail are also easily integrated with demand-driven geometry transmission into a
powerful system for the management of graphical database state.

Modeling and rendering of natural phenomena with directed cyclic graph is maybe the most
controversial of the proposed techniques. While the fictious „compression ratio“ of a model
represented as a DCG compared over its conventional counterpart is overwhelming, one may also
not overlook the shortcomings of the approach. On the side of the benefits, we can list that the
approach allows for a very broad class of procedural models to be represented, and it also appears to
be the only totally unified modeling framework for procedural and non-procedural models. However,
modeling of DCGs takes a lot of effort and requires understanding of the underlying model. The full
use of the approach only becomes apparent in the presence of excessive detail, but then the
performance penalty may be significant. Methods based on levels of detail and impostors can help to
control that, but the question remains if systems trimmed to the highest performance will ever be able
to tolerate the overhead involved in evaluating procedural models in real time. However, DCGs are
only one way of procedural computer graphics models. The more fundamental idea of using
procedural models to transmit instructions how to generate geometry rather than the geometry itself
is beneficial in any case, in particular with the rising popularity of interpreted cross-platform
languages such as Java.
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9.2 Future work

The virtual environment used as a testbed for the ideas that have been presented in this thesis is
continually evolving, but a lot of fine-tuning is still required for optimal performance.

Future work will extend the system to support a network of servers, in order to demonstrate the
feasibility of a very large virtual environment and move closer towards the vision of building
Cyberspace.
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Appendix: Pictures

Picture 1: Demand-driven geometry transmission system view (server and two clients)

Picture 2: Parameters allow to model very different leaves from one model

(a)      (b) 

Picture 3: Linear fractals can easily be modeled as directed cyclic graphs
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Picture 4: Recursion depth controls the development of a sympodial branching structure

(a)       (b) 

Picture 5: A monopodial tree at normal distance and a close-up view

Picture 6: Levels of detail for a tree are modeled by modifying sub-graphs



APPENDIX: PICTURES 92

 (a)   (b) 

(c)      (d) 

Picture 7: Detailed and diverse scenes can be modeled using directed cyclic graphs


