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Zusammenfassung

Phaseniibergénge in Fliissigkeiten sind vertraute Vorginge aus unserem Alltagsleben, und
ihre theoretische Beschreibung ist wesentlich fiir ein tieferes Verstandnis dieser komplexen
Phénomene. In dieser Arbeit haben wir, um die Abhangigkeit des Phasenverhaltens einer
Substanz von ihren mikroskopischen Eigenschaften zu untersuchen, zur Weiterentwicklung
klassischer Fliissigkeitstheorien beigetragen und diese auf einfache Fliissigkeiten sowie
deren Mischungen angewandt. Einer der von uns verwendeten theoretischen Zugange
ist die Self-Consistent Ornstein Zernike Approzimation (SCOZA), eine mikroskopische
Fliissigkeitstheorie, die sehr prazise Resultate fiir die Koexistenzkurve liefert und sogar
im kritischen Bereich des Phasendiagramms erfolgreich bleibt. Diese Theorie wurde von
uns fiir eine Fliissigkeit von spharischen Teilchen erweitert, deren Paarwechselwirkung
sich aus einem Hartkugelanteil und einer Linearkombination von Yukawa Potentialen
zusammensetzt. Diese Erweiterung erlaubt es uns, realistische Modellpotentiale durch
eine geeignete Linearkombination von Yukawa- Potentialen darzustellen, und somit iiber
einfache Hartkugel-Yukawa Potentiale hinauszugehen: das Lennard-Jones und das Giri-
falco Potential fiir Fullerene stellen Potentiale von Systemen dar, die wir im Detail un-
tersucht haben. Wir haben zusitzlich mit der SCOZA erstmals eine quantitative Unter-
suchung des Phénomens der Doppelkritikalitat durchgefiihrt, die u.a. in Systemen mit
explizit dichteabhéngigem Potential auftritt. Weiters haben wir uns mit zweikomponenti-
gen Fliissigkeitsmischungen beschaftigt, die im Vergleich zu Einkomponentenfliissigkeiten
ein wesentlich reicheres Phasenverhalten aufweisen. Wir haben die SCOZA auf eine soge-
nannte symmetrische binare Fliissigkeit erweitert. Drei Typen von Phasendiagrammen,
die durch den Ort charakterisiert werden, wo die A-Linie (die kritische Linie von Ent-
mischungiibergingen) die Fliissig-Gas Koexistenzkurve schneidet, konnten identifiziert
werden, und lieferten eine quantitative Ergédnzung zu Untersuchungen mit einer Mean
Field Theorie. Diese bindre Mischung wurde anschlieflend in thermisches Gleichgewicht
mit einer porosen Matrix gebracht, die als erstarrte Fliissigkeit modelliert wurde. Der
notwendige Formalismus zur Beschreibung dieses teilweise erstarrten Systems wurde mit
einer Storungstheorie — der Optimized Random Phase Approzrimation — in Verbindung
mit dem sogenannten Replica Trick hergeleitet. In Ubereinstimmung mit Experimenten
beobachteten wir, dafl bereits eine sehr kleine Matrixdichte das Phasenverhalten der
Fliissigkeit drastisch verandern kann und konnten systematisch sowohl den Einfluf} der
externen Systemparameter (Matrixeigenschaften und Matrix-Fliissigkeit Wechselwirkung)
sowie der internen Systemparameter (Eigenschaften der Fliissigkeit) auf das Phasenver-

halten untersuchen.






Abstract

Phase transitions in fluids are practically ubiquitous in our everyday lives and their the-
oretical description is essential for a deeper understanding of these complex phenomena.
In an effort to gain more insight into the relationship between the microscopic proper-
ties of a fluid and its phase behavior we have contributed to a further development of
classical liquid-state theories and have applied them to simple fluids and their mixtures.
In particular, we have focused on the Self-Consistent Ornstein Zernike Approximation
(SCOZA), a microscopic liquid-state theory that is known to give highly accurate results
for the coexistence curves and that remains successful even in the critical region. We
have generalized the SCOZA to a fluid of spherical particles with a pair potential given
by a hard-core repulsion and a linear combination of Yukawa tails. This allows us to go
beyond the one-tail Yukawa potential by approximating realistic model potentials by a
suitable linear combination of Yukawa tails: Lennard-Jones and Girifalco potentials (for
fullerenes C,>¢p) characterize systems that were studied in detail. In addition, our gener-
alized SCOZA version allows us for the first time a quantitative study of the phenomenon
of double-criticality, that is observed in systems with explicitly density-dependent poten-
tials. Further work is dedicated to binary fluid mixtures: their phase behavior shows,
compared to simple one-component fluids, a much richer variety of phenomena. We have
extended the SCOZA to the case of a symmetric binary mixture: here the like-particle
interactions are equal, while the interactions between the unlike fluid particles differ from
the likes ones. Three archetypes of phase diagrams, characterized by the location where
the A-line (i.e. the critical line of demixing transitions) intersects the vapor-liquid co-
existence curve were identified, supplementing thus previous mean-field type studies in
a quantitative way. We have then brought this binary mixture in thermal equilibrium
with a porous matrix, which is represented by a frozen configuration of equally sized
particles. The necessary framework to describe such a partly quenched system has been
derived using the simpler Optimized Random Phase Approximation in combination with
the so-called replica trick. We observe — in qualitative agreement with experiments — that
already a minute matrix density is able to lead to drastic changes in the phase behavior of
the fluid. We systematically investigate the influence of the external system parameters
(due to the matrix properties and the fluid-matrix interactions) and of the internal system

parameters (due to the fluid properties) on the phase diagram.
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Chapter 1

Introduction

Phase transitions are practically ubiquitous in our everyday lives, ranging from very sim-
ple, commonplace events to rather complicated and sophisticated production processes in
industry where special knowledge of the phase diagrams of substances is required. There-
fore, the technological aspect of investigations in phase diagrams is of importance and

industrial developments and processes often rely on accurate and reliable phase diagrams.

Phase transitions belong to the most challenging and fascinating problems in physics.
The complexity of these phenomena, their large diversity (such as transitions from liquid
to gas, from the conducting to the superconducting phase, from a paramagnet to a ferro-
magnet, demixing separations in mixtures and others), and the discovery of new phases
(such as quasi-crystals or superfluids) has attracted the interest of condensed matter sci-
entists in this research field. One of the central challenging questions is: How do the
microscopic properties of a system influence its phase behavior and its critical phenom-
ena? During the past decades significant contributions to describe phase transitions have
been proposed in theoretical and computational physics. Meanwhile, theoretical concepts
in combinations with computational tools can be considered as complements to experi-
mental techniques: on the one side they are able to reproduce experimental results with
high accuracy and contribute thus to a deeper insight into these phenomena; on the other
side they might be more economical than experiments and are able to indicate, whether it
is worthwhile to push experiments in a direction where difficult experimental conditions
are to be expected. They can sometimes even predict results which are barely accessible

in experiment (such as matter under extreme conditions).

The discontinuities in physical behavior, which occur when a system undergoes a
phase transition, have claimed the attention of scientists for many years. It was rec-

ognized already in the 19th century that the discontinuities are associated with the in-
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teractions between the microscopic particles of the system. Thus it became necessary
to develop a statistical mechanical treatment of phase transitions [1]. The first steps in
this direction were done in the fundamental works of van der Waals and Weiss who ex-
plained phase transitions in fluid and magnetic systems with mean field theories. Further
progress was achieved by Landau in his phenomenological explanations which provide
insight into the detailed character of the discontinuities. In 1944 the modern era in phase
transitions started when Onsager found an exact statistical mechanical solution for the
two-dimensional Ising model. His solution showed that previous ‘classical’ theories were
unreliable in their quantitative predictions and stimulated a closer investigation of the

true behavior near discontinuities.

Particular interest has been focused on phenomena associated with critical points such
as that of gas-liquid equilibrium, or the Curie point in ferromagnetic materials. In the
critical region, anomalies in thermodynamic functions are observed which result in the
divergence of such thermodynamic quantities as specific heat, compressibility, etc. These
critical fluctuations are very difficult to handle theoretically and much effort has gone
into this. Starting in the 1960’s considerable progress towards a greater understanding of

critical phenomena was made by introducing the ideas of renormalization group theory [2].

In the present work we intend to contribute to a deeper understanding of phase transi-
tions. Various concepts were proposed over the last decades to describe these phenomena
from a theoretical point of view: One of them is the above mentioned renormalization
group theory which is the most successful tool to study cooperative phenomena in statis-
tical mechanics and has lead to a deeper understanding of phase transitions and critical
phenomena. However, it it not able to predict non-universal quantities (such as the
location of the critical point). Computer simulations represent another access to the
problem [3]. For a given interparticle potential they provide ‘quasi’ exact results — apart
from finite size effects induced by the finite size of the simulation cell. These effects be-
come obviously more severe in the critical regions where long-range fluctuations occur.
Sophisticated techniques are meanwhile available to cope with this problem. In this work
we have chosen another theoretical approach, namely microscopic liquid-state theories
that are based on statistical mechanics [4]. The aim of these theories is to predict the
thermodynamic and structural properties of a fluid from the presumed knowledge of the
forces between the fluid particles. So once the interparticle forces are fixed, the theory

should be able to determine the phase behavior (including criticality) of the system.

In this work we have focused on the phase behavior of fluids. Over the past decade
much evidence was found that the fluid states, gas and liquid, possess many structural

similarities and that both are quite distinct from the solid state. Hence, it is not surprising




that the same theoretical approach can be used to describe both the liquid, the gas and the
supercritical fluid. In this work we will be exclusively concerned with the phase behavior
of fluids and their mixtures, i.e. we restrict our investigations to that part of the entire
phase diagram that includes liquid-gas transitions and liquid-liquid demixing transitions
in mixtures omitting the determination of the melting line that would require in addition

other theoretical approaches like e.g. classical density functional theory.

Apart from the one-component fluid we also study the properties of fluid mixtures; here
new phenomena are encountered that are not present in pure substances. According to
the Gibbs rule now up to four phases can be observed simultaneously and the way these
phases can coexist often leads to rather complex phase diagrams. The phase behavior
is mainly triggered by two mechanisms (and their interrelation): first, there is the size
difference of the particles of the two components and their (partial) penetrability; second,
there is the chemical influence, expressed via the set of the three interatomic potentials.
Depending on the relative sizes of the particle species and the properties of the interaction

forces a large variety of different types of phase behavior can be observed [5].

We shall exclusively consider simple classical liquids with interparticle potentials, that
can be considered as realistic models of a fairly large number of real fluids. ‘Quasi-
experimental’ data for these systems are available from computer simulations (either
Monte Carlo or Molecular Dynamics simulations). Comparison of these data with those
from sophisticated microscopic liquid-state theories has shown that these theories produce
results for systems well inside the liquid-state region that are practically indistinguishable
from the simulation data. However, the accuracy of these approaches begins to decrease as
one leaves the liquid-state region and approaches the liquid-gas coexistence curve and/or
the critical region. In particular, the shape of the coexistence curve and the location of
the critical point is not reproduced correctly and the critical exponents are not the exact
ones. Some theoretical approaches even fail to converge in the critical region, so that the
liquid and vapor branches of the coexistence curve remain unconnected. To overcome
this highly unsatisfactory situation two microscopic liquid-state theories have been de-
veloped in the past years that cope with the problems encountered in the critical region
and near the phase boundaries: one is the self-consistent Ornstein Zernike approximation
(SCOZA) [6], the other one is the hierarchical reference theory (HRT) [7] that merges

concepts of renormalization group theory with liquid-state theories.

The first part of this work is dedicated to the SCOZA which was proposed by Stell
and Hgye already in the 1970s; the OZ relation is supplemented with a generalized mean
spherical ansatz (GMSA), introducing in the MSA relation a density- and temperature-

dependent function which is determined by enforcing consistency between the different
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thermodynamic routes. Although introduced nearly thirty years ago its first numerical
implementation was - due to substantial numerical problems - successfully realized only a
few years ago in 1996 [8]: a reformulation of the SCOZA partial differential equation made
an access to subcritical temperatures possible. Ever since, the SCOZA has been applied
only to a few discrete and continuum systems restricted in the latter case to hard-core
Yukawa systems. However, these results showed in an impressive way that this theory
remains successful even in the critical region: it is able to predict critical temperatures
within 0.6% (or even less) and to reproduce the exact value for the critical exponent /3

very accurately.

The obvious success of the SCOZA has motivated us to contribute to its extension:
further development of the SCOZA and its application to a larger variety of systems are
summarized in the first part of this work. In the case of continuum fluids the SCOZA
has been solved up to now only for hard-core Yukawa systems. This restriction can be
traced back to the fact that the SCOZA is based on the semi-analytic MSA solution
which is available for multi-component hard-core multi-Yukawa systems. In this work
we have generalized the SCOZA to one-component fluids with hard-core multi-Yukawa
interactions. This modification considerably increases the variety of systems that can now
be studied: several realistic interactions can be modeled by a suitable linear combination
of Yukawa tails, like the Lennard-Jones (LJ) fluid modeling the interaction between rare
gas atoms and the Girifalco potential being a spherical approximation of the interaction
between fullerene molecules like e.g. Cgo. In particular, the latter system has become
of great interest in the last years (for an overview see [9]) because the pair potential
differs significantly from the LJ one: the ratio of the width of the attractive well to the
equilibrium distance is much less for the Cgy-Cgg intermolecular potential than for the
LJ one, furthermore the repulsive wall of the Cgy-Cgo interaction is much stiffer. Since
the phase behavior depends in a very sensitive way on the nature of the forces the phase
behavior was expected to be completely different from that of rare gas atoms. It was even
speculated that Cgy might be a substance with no liquid phase at all. The SCOZA, being
known to yield reliable and accurate results for the coexistence curves even in the critical
regions, confirmed that Cgy should possess a liquid phase. Comparison with previous
simulation results illustrated once more that the SCOZA yields reliable predictions even

in the critical region.

Using the SCOZA we have also studied another phenomenon that has become of inter-
est in the last years: increasing experimental evidence is found that some pure substances
exhibit in addition to the usual liquid-gas transition a second liquid-liquid transition [10]

so that two critical points occur. This phenomenon is usually referred to as double




criticality and was observed experimentally in systems where the interaction potential
is anisotropic. In a first approximation this interaction can be replaced by an effective
spherically symmetric pair potential by averaging over the angular degrees of freedom,
leading thus to a density-dependent pair potential. Studies with a simple van der Waals
theory, more refined theories and computer simulations showed that a non-monotonic
density-dependence of the interaction range leads to a second liquid-liquid transition [11].
However, discrepancies were found between computer simulation results and theoretical
data. The SCOZA, giving highly accurate results for the phase diagram (even close to the
critical point), represents an ideal tool to investigate quantitatively these phenomena. We
have made a detailed study of phase diagrams for hard-core Yukawa systems introducing
a density-dependent Yukawa screening length. We were able to locate the range of the
system parameters were double criticality was observed, and, by carefully varying these
parameters, we could shift the location of the two critical points. For selected parameters
we could even merge them leading thus (as we could see from an analysis of the critical

exponent) to a tricritical point.

Finally, we have generalized the SCOZA to a binary symmetric mixture: here the
interaction between like particles is equal, only the interaction between the different par-
ticle species is different; phase diagrams were calculated for various system parameters.
Despite its simplicity this model system shows a very rich variety of phase behavior and
interesting phenomena can be observed such as a critical end point or a tricritical point
that is not present in a general binary mixtures. Three different types of phase diagrams
can be distinguished, classified by the location where the A-line (the critical line of the
demixing transitions) intersects the first order vapor-liquid coexistence curve. As already
shown in a qualitative mean field study [12] the sequence of these types of phase diagrams
is triggered by a microscopic parameter, i.e., the interaction ratio of the unlike to the like
interactions. In contrast to conventional liquid-state theories we are able to obtain results

even in the critical regions.

The second part of this work is dedicated to a more realistic problem: we have brought
the above mentioned binary symmetric mixture in contact with a porous matrix of immo-
bile particles, realized in our case by a frozen liquid configuration of hard-sphere particles
of the same size as the fluid particles. This model is a simple representation of a scenario,
which has become during the past decade of technological relevance: Fluids in contact
with porous media are encountered in many technological applications such as catalysis,
adsorption, enhanced oil recovery or gas purification. Therefore, investigations of fluids
that are in equilibrium with a disordered matrix have become during the past years a very

challenging field in liquid state physics [13]. Experimental and theoretical studies revealed
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that a porous matrix (even if it occupies only a minute fraction of the volume) can have
a substantial influence on the phase behavior of the liquid: *He and Ny in high-porosity
aerogel [14] are two examples where the near-critical liquid-vapor (LV) curve is narrowed
drastically under the influence of a matrix. The effects become of course richer and more
interesting in the case that the fluid is a binary mixture: for example, experiments on
a 3He-*He mixture inside a highly porous silica-gel or a porous gold matrix have shown
a drastic modification of the superfluid transition [15]. A deeper understanding of these
obviously very complex effects is all the more desirable as it might help to predict prop-
erties of materials of technological relevance. However, in these rather complex systems
the combined influence of pore structure, randomness, wetting phenomena, capillary con-
densation, etc., on phase separation is not yet satisfactorily explained. Disentanglement
of the role of these various factors can, however, be made by studying well defined model
systems, amenable to either theoretical analysis or computer simulations, in which these

factors can be varied in a controlled way.

Such a theoretical approach is followed in the present work for a model of a symmetric
binary mixture adsorbed in a porous matrix formed by immobile particles modeled as
hard spheres. From the theoretical point of view, the main problem in the description of
such a system lies in the double average required for the calculation of thermodynamic and
structural properties: one average is taken over the configurations of the liquid, keeping
the matrix particles in fixed positions, the second average is then taken over different
matrix configurations. The first steps to solve this complex problem were proposed by
Madden and Glandt [16] who derived cluster expansions for the distribution functions;
integral-equations for the correlation functions, that are similar to the Ornstein-Zernike
equations in standard liquid state theory, have been presented. In subsequent work,
Given and Stell have applied the replica method (introduced originally in the theory of
spin glasses [17]) to this problem [18] and have thus provided a powerful tool on which
many of the present day approaches in this field are based. The replica trick exploits a
mathematical isomorphism between a partly quenched system and a limiting case of a
corresponding equilibrium system which consists of the now mobile matrix particles and of
s noninteracting identical copies of the liquid: the properties of the quenched system are
obtained by considering the limit s — 0 of the properties of the equilibrium system, which,
in turn, can be treated by standard liquid state theories. Given and Stell presented in their
work the (now correct) formulation of the so-called replica Ornstein-Zernike equations,
the counterpart of the Ornstein-Zernike equations in standard liquid state theory: they

relate the liquid-liquid, the liquid-matrix and the matrix-matrix correlation functions.

Based on the replica formalism, we have generalized a thermodynamic perturbation




theory - the Optimized Random Phase Approximation (ORPA) - to the binary case. From
a detailed and systematic investigation we have found that now the transition between
the different types of phase diagrams is not only triggered by the ratio of the unlike to
the like interactions as this is the case for the bulk fluid. In addition, we could show, that
the transition between the different types of phase diagrams can also be triggered by the
parameters governing the matrix-matrix and matrix-fluid interactions. Our results are

confirmed quantitatively by grand canonical Monte Carlo simulations [19].

This work is organized as follows: in the first part we summarize in sect. 2.1 briefly
the statistical mechanics foundations of microscopic liquid-state theories, we define the
structure functions and their relationships with thermodynamic quantities. In sect. 2.2
we give a brief overview over two classes of microscopic liquid-state theories: integral
equation theories and perturbation theories and discuss especially those approximations
that are related to this work: the MSA and the ORPA. In chapter 3 basic thermodynamic
concepts and quantities necessary to describe phase equilibria and stability conditions are
introduced and the different types of phase diagrams that occur in a binary symmetric

fluid are schematically illustrated.

The second part is dedicated to the SCOZA: in sect. 4.1 we first give an overview over
thermodynamically self-consistent liquid-state theories putting emphasize on the presen-
tation of the SCOZA; In sect. 4.2 we then formulate the SCOZA for a one-component
hard-core multi-Yukawa fluid and present results for the Lennard-Jones fluid, for fullerenes
and for systems with explicit density-dependent potentials. The SCOZA for a binary sym-

metric fluid is formulated in sect. 4.3 where also results are presented.

In the third part of the work we investigate the phase behavior of a binary symmetric
fluid in a disordered porous matrix. We give a brief overview over the development in
this field in sect. 5.1, present our model system in sect. 5.2, and summarize the formulae
of structural and thermodynamic properties in sect. 5.3. In Sect. 5.4, finally, we describe
the results: comparison is made between simulation results and ORPA predictions and
trends in the variation of the phase diagrams induced by the different system parameters

are discussed.







Part 1

Basics of Liquid-State Theory






Chapter 2
Theoretical Concepts

The aim of statistical mechanics is to provide a macroscopic description of a system based
on its microscopic properties. Starting with a given interparticle law of force of a certain
fluid model one should be able to derive its structural and thermodynamic properties and

to determine the type of phase equilibria that will be encountered in the system.

The central quantity in liquid-state theory that provides the link between the micro-
physics and macrophysics of a fluid is the so called pair distribution function g(r). Tt
measures the degree of correlation between the particles separated by a distance r and
thus describes the structure of a fluid. In fact, basic thermodynamic quantities as the
pressure or the internal energy from which all other thermodynamic quantities, relevant
for the determination of phase coexistence, can be determined, are expressible in terms
of this function. On the other hand, the pair distribution function itself is a functional of
the interparticle potential. However, to calculate g(r) for a given interaction potential is
a complex and unsolvable problem and some simplifying assumption must be made for an
approximate determination of the pair distribution function and hence of the structure.
These approximation schemes include on the one hand integral equation theories (IETs)
where an integral equation, in which ¢(r) is the unknown function, has to be solved.
Another group of approximation schemes are the perturbation theories, which represent
generalizations of the theory of van der Waals and calculate thermodynamic and structural

properties as perturbation to those of the well known hard-sphere reference system.

In the following chapter we will first briefly introduce some basic definitions of the
structural functions and their relationships with thermodynamic quantities; then some
approximation schemes of liquid-state theory will be presented. Emphasis will be put

on those concepts that are used in the present work: the mean spherical approxima-

11



12 Theoretical Concepts

tion (MSA) and the Lowest-Order vy-ordered Approximation (LOGA) or the equivalent
Optimized Random Phase Approximation (ORPA).

2.1 Structure functions

2.1.1 Radial distribution function

We define the structure functions in the canonical ensemble. So we consider a macroscopic
system of N identical particles, enclosed in a volume V' at a given temperature 7. The
potential energy of the system is assumed to be given by Vy(r"), where we use the

notation r¥ = {ry,ry,...,ry} for the positions of the N particles.

Then the one-particle density, that is defined as the ensemble average over the local

particle density
plr) =3 6(r — ) (2.1)
1s
N N
= <Z 6(1‘ — I'Z)> = m / . / eiﬁVN(r’rQ """ rN)dST'Q e d37"N, (22)
=1 )

where § = 1/kgT is the inverse temperature, kp the Boltzmann constant, and
Qn(V,T) = / e BWEN Pr L ey (2.3)

the configurational integral. For a homogenous system it follows that p{!)(r) = % = p.

Similarly, the probability of finding any two particles in the volume elements d®r; and

d®ry at v and Ty, irrespective of the positions of the other particles, is given by [20, 4]
2) B d? [ / / —BVn(r Bro| Brd? 9 4
PN (1'1,1'2) ra ro = QN V T .aA°TN ra-To, ( . )

where p(r1, 1) is called the two-particle density. The factor N(N — 1) takes account
of the indistinguishability of the particles. For an ideal gas, Vy(r") = 0, the two particle

density reduces to
1

P (01, 12) = (1 = ). (2.5)

The (dimensionless) pair distribution function & (r1, ) is defined in terms of the two-

particle density as

(2)
N (1‘1,1‘2)
- ) (rQ). (2.6)

1%
gg\?)(rlarZ) ( )
PN
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If the system is both homogeneous and isotropic then g](\?) (ri,ry) is a function only of

the distance r = |r; — ry| - called the radial distribution function and simply written
as ¢g(r). A more illustrative interpretation of the definition (2.6) is the following: given
a reference particle at the origin then g¢(r) is the factor by which the mean number of
particles, 4wr?drpg(r), in a spherical shell of radius r and thickness dr centered around the
reference particle deviates from the ideal gas value, 47r2drp, due to interactions between
the particles. If the repulsion between two particles is large at small distances, ¢ — 0
as r — 0. For distances » much larger than the range of the interaction potential, the
particles become uncorrelated and the pair distribution function approaches the ideal gas
limit (2.5)

g(r) —1-— % for r — oo, (2.7)

or, in the thermodynamic limit g(r) — 1. In a typical simple liquid ¢(r) is for large
distances an oscillating function around 1 and shows for short and intermediate distances
a series of peaks (see fig. (2.1)) which correspond to first neighbors, second neighbor shells,

etc. and express the short range order that exists in a liquid.

5

a(n

rlc

Figure 2.1: Typical pair distribution function of a hard-core system.

Let us assume in the following that the particles interact through central pair forces,
thus

VN(I'N) :Z¢(Tij), ’I“i]‘ = |I'i—I'j|, Z,] - {]_,N}, (28)

i<j
where ¢(r) is the pair potential. Then thermodynamic properties can be expressed as

integrals over g(r) via three different routes [4].
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One of them is the internal energy route according to which the excess (over ideal)
part of the internal energy U®" can be written as
vue 1

¥ = & (W) =270 [ oo (). (29)

In the second route the equation of state is obtained as an average over the virial

P
% = 1- 3% <XZ: riViVN(rN)>

= 1- gﬂﬁp/g(r)r%'(r)dr (2.10)

and therefore it is known as the virial route. The third possibility can be derived in the

grand canonical ensemble and reads

(N = (N))?) = phoTxr, (2.11)

L N

is the isothermal compressibility of the system. Eq. (2.11) is known as the compressibility

1+p/(g(r)—1)d3r:

where

equation.

Now three routes are available to determine the equation of state 3P/p starting from
the pair distribution function. One of them leads to the pressure directly via the virial
equation (2.10). We will use the notation Py for the pressure obtained in this way. The
second possibility is given via the compressibility equation (2.11). Integrating PXLT with
respect to the density along an isothermal path yields the pressure. In the following, we
will denote the pressure obtained in this way by Po. The third route is based on the
excess internal energy U®® as given by the energy route (2.9). U®® is related to the excess

(over ideal) Helmholtz free energy F°* by the equation

_— 8/8F6:E
U _< 35 )V. (2.13)

Thus SF* can be obtained by integrating U®” with respect to the inverse temperature

along an isochore. By differentiating F'** one obtains the excess (over ideal) pressure via

ew _ oFer\  , (0F°/N
o (25) (2L »

T

We will use the notation Pg for the pressure obtained via the energy route.
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If the exact g(r) were known from some liquid-state theory, then the value of the pres-
sure obtained via the virial, the compressibility and the energy equation should be the
same, i.e. P, = Po = Pg. The theory is then called thermodynamically self-consistent.
However, integral equation or perturbation theories only yield, as a consequence of the
approximations in their concepts, an approximate g(r) and thus are, more or less, ther-
modynamically inconsistent. So the liquid-vapor coexistence curves obtained from the
different routes will not coincide, with different values of the critical point parameters.
E. g., the MSA is known to be highly inconsistent [21]: the curve of diverging com-
pressibility falls well inside the liquid-vapor coexistence curve obtained from the energy
route. Liquid-state theories that enforce thermodynamic consistency will be presented in
chapter 4.1.

2.1.2 Total correlation function

We introduce the so called total correlation function h(r) by subtracting from the pair

distribution function its ideal gas value
h(r) = g(r) — 1. (2.15)
Thus A(r) — 0 for r — oo.

In order to describe the correlation between density fluctuations dp(r) = p(r) — (p(r))

at r and r’ we introduce the density-density correlation function

L(r,r') = (6p(r)dp(r')) . (2.16)
By inserting the local particle density (2.1) it follows that
P(ex') = i) (5,1) + o ()5 (r — 1) = o () (1) (2.17)

in the homogeneous isotropic case we obtain T'(r) = p?h(r)+ pd(r). The Fourier transform

of I'(r) is known as the static structure factor
'k ~
S(k) = Tl) _ 1+ ph(k), (2.18)
p
where the Fourier transform is defined as
h(k) = / h(r)e=*r By (2.19)
The k£ = 0 limit of S(k) is thus related to the isothermal compressibility (2.11)
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2.1.3 Ornstein-Zernike relation

The Ornstein Zernike (OZ) relation [22] defines the direct correlation function ¢ (ry, ry)

in terms of the total correlation function ~®)(ry,r,)
A (ry,1y) = P (ry, 1) + / drip® (r3)e® (ry, r3)h® (13, 13). (2.21)

The name direct, correlation function for ¢ (r;,ry) can be motivated as follows: solving
the OZ equation (2.21) iteratively, leads to

W (e, rs) = D(ry, 1) + / drp® (r3)c® (r1, 1) (1, 12) (2.22)
[ [ dridrto® () (1) (1, 1) (3, 1) O s, 12) +

Thus the total correlation between two particles is given by the direct correlation plus an

indirect correlation mediated via an increasing number of intermediate particles.

For a homogeneous isotropic fluid the OZ relation takes the form
h(r) = e(r) + p / dre(r')h(|r — 1']), (2.23)
which has a simpler form in Fourier space
~ R
1+ ph(k) = (1 - pé(k)) . (2.24)

So from the compressibility equation (2.11) it follows that

1

c0)=1— ———.
pel0) pkpT xT

(2.25)

Thus ¢(0) is finite and hence ¢(r) is a short ranged function even at the critical point
where the correlation length of density fluctuations and the isothermal compressibility

diverges.

2.1.4 Extension to mixtures

The definitions and relations presented in the previous subsection for a one-component
fluid can be generalized in a straightforward way to multi-component fluids. Since we will
also be concerned with the thermodynamics and the phase behavior of binary mixtures

we will briefly summarize these basic relations.

We consider a homogeneous isotropic fluid consisting of m components and particle

numbers N;, i =1,...,m. p; = % denotes the partial number density of the i species,




Structure functions 17

p = >.; p; the total number density and x; = % is the mole fraction (or number concen-
tration) of the i component in the mixture. Thus ¥, z; = 1 The structure of the fluid is
described by the set of 2m(m — 1) radial distribution functions {g;;(r)}, which satisfy the
symmetry relations g;;(r) = g;i(r). These functions have the following meaning: given a
particle of species i at the origin then 4wr?drg;;(r)p; is the mean number of particles of
species 7 found in a distance r apart. The radial distribution functions satisfy the sym-
metry relations g;;(r) = g;;(r). Similarly to eq. (2.18) one can define the partial structure

factors as
Sij (k) = A /!L’Z'II,’j(SZ'j + l‘il‘jpibij (k), (226)

where h;;(r) = ¢;;(r) — 1. The multicomponent OZ equations read
hij(T) = cij(r) + Z Pk / d3r'cik(|r - I‘I|)hkj(7",), (227)
k=1

where the ¢;;(r) are the direct correlation functions between particles of species i and j.

Hence,
,/l‘il‘j(si]‘ - p.’BZLE]é”(k) = (S_l)_‘ y (228)
ij
where the matrix notation S = (.S;;) was introduced.

The generalization to mixtures of the internal energy route reads

Ue:L‘
v QWZZpipj/gij(r)¢ij(r)r2dr (2.29)
i

and of the compressibility route

1 1
7:1——5 i0iCii (0). 2.30
oknTxr P PipPj ]( ) ( )

Equivalent results for the partial direct correlation functions are

OB _
—V/PiP; (a—ﬂ> = dij — pci;(0), (2.31)
Pi ) VT pi;

where ; is the chemical potential of species i.

Appropriate linear combinations of the structure factors S;; that correspond to the
correlations between fluctuations in the density and concentration have been introduced
in [23] and will be presented in the following. We will restrict the considerations to
the simpler binary mixture where the number concentrations of the two components are

zi=xand 29 = 1 — .
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We define the fluctuations of the total density as

0p(r) = dpi(r) + dpa(r), (2.32)

where dp;(r) = p;(r) — p; is the fluctuation of the local density of particle species i around

its average value p;. Similarly, we define the concentration fluctuation

e(r) = 200 0) ; 10pa(r) (2.33)

Then the following structure factors express the correlations between total density fluc-
tuations, concentration fluctuations and the cross correlations between density and con-

centration fluctuations:

Svn(k) = %7:7'“50 20p) (Ir — 1)) = Sui(k) + Saa(k) + 2512(k) (2.34)
Scc(k) = pFT[(6c-dc) ([r — )] = 23511 (k) + 22S90(k) — 22122512 (k)
Snc(k) = FT[(6c-dp) (Ir —x')] = 22511 (k) — 21522(k) + (22 — 21)S12(k),

where FT [-] denotes the Fourier transform of the expression in the brackets. The gener-
alization of eq. (2.20) to the binary mixture case are the following relationships between
the long-wavelength limits of the structure factors defined in (2.34) and thermodynamic

properties [23]

Scc(0) = NET/ (g%c;) (2.35)
Snn(0) = PkBTXTﬂL(SQS(;C,EJO) (2.36)
Syc(0) = —dSce(0), (2.37)

oV )
ONi) PT\N;

where G is the Gibbs free energy, and § = p(v; — vs). v; = ( is the partial

molar volume of species 1.

2.2 Liquid-State Techniques

We have shown in the preceeding subsection that the pair distribution function g(r)
plays a central role in liquid-state theories since once this function is known thermo-
dynamic quantities can be calculated. In order to determine g(r) for a system with a
given interatomic pair potential some approximation must be made. In this section we
will present those liquid-state approximations that are relevant for our work, the MSA

and the LOGA/ORPA. They represent examples of two different approximate schemes,
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namely integral equation theories (IETs) and perturbation theories (PTs). In the follow-
ing we will briefly introduce the basic ideas of these two groups of liquid-state theories, a
more detailed description (including the derivation of those relations) can, f. i., be found
in [4].

2.2.1 Integral Equation Theories

From a cluster expansion of g(r) [4] it follows that

g(r) = e—ﬁ¢(r)+h(r)—0(r)+E(7‘), (2.38)

introducing the so-called brigde function E(r). Eq. (2.38) can be considered as an exact
closure relation to the OZ equation if the exact E(r) were known. Then we have a set
of two equations in the two unknowns ¢(r) and h(r) for a given pair potential ¢(r). An
approximate closure relation is obtained by introducing either an approximation for E(r)
or, instead of assuming an approximation for F(r), one could also derive an approximate
closure relation to the OZ equation from exact relations of statistical mechanics, intro-
ducing simplifying assumptions; this leads to a functional relation between h(r) and ¢(r),

including the pair potential ¢(r), i.e.

F(c(r), h(r), ¢(r)) = 0. (2.39)

So h(r) and ¢(r) are then determined by solving the OZ integral equation (2.23) supple-

mented by some closure relation (2.39).

Various closure relations have been derived by using diagrammatic expansions or func-
tional Taylor expansions [4], like e.g. the well known Percus-Yevick (PY) closure relation

which assumes that
o(r) = (1 _ 66¢(7")) g(r). (2.40)

For a hard-sphere (HS) fluid with interaction potential

0 r<o

o(r) = { : (2.41)

0 r>o

where o is the HS diameter it follows from (2.40), (2.41) and (2.38) that

cr) = 0 r>o0o
glr)y = 0 r<o. (2.42)




20 Theoretical Concepts

The second relation, the so called core condition is exact and expresses the fact that the
HSs are not allowed to overlap. The OZ equation (2.23) with the closure relation (2.42)
is analytically solvable (see e.g. [4]).

Another approximation, that is very frequently used due to its semi-analytic solubility
for pair potentials like the HS Yukawa potential [24], charged HSs [25], dipolar HSs [26],
sticky HSs [27] and a generalized HS Yukawa potential [28] is the mean spherical ap-
proximation (MSA). The conventional MSA is only applicable to systems where the pair
potential consists of a hard-core (HC). So, let us assume in the following a HC potential

with HC diameter o and some tail

o(r) = { : (2.43)

From cluster expansion [4] it follows that the asymptotic behavior of the direct corre-

lation function is given by
c(r) = =po(r) for r — oo. (2.44)

Thus ¢(r) behaves at long range as the interparticle potential. The approximation in the
MSA scheme is the assumption that the relation (2.44) is valid also for short distances.
So the MSA reads

cr) = —pw(r) r>o
gr) = 0 r<o. (2.45)

In the case of a pure HS interaction the MSA reduces to the PY approximation.

2.2.2 Perturbation Theories, LOGA /ORPA

The basic idea of PTs is a separation of the pair potential into a harsh, short-ranged
repulsion and a smoothly varying long-ranged attraction. It is known that the repulsive
part mainly determines the structure of a fluid while the attractive part plays a minor role
and can therefore be treated as a perturbation of the repulsive reference system leading
to (small) corrections of the thermodynamic and structural properties [29]. Furthermore,
it is rather convenient to approximate the repulsion by the infinitely steep repulsion of
the HS potential, since the HS fluid represents a reference system whose structural and

thermodynamic properties are known with great accuracy.
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Thus in the spirit of a perturbation theory one can regard - in the simplest approx-
imation - a fluid as a system of HSs that move in a uniform attractive background. In
this approximation one arrives at the famous van der Waals equation. Higher order ap-
proximations can be obtained by expanding the Helmholtz free energy either in powers
of the strength of the perturbation (A-expansion) or in powers of the interaction range

(v-expansion) [4].

The perturbation theory which is used in the present work, the LOGA/ORPA [30, 31,
32], is applicable to fluids (and their mixtures) where the interactions between particles
are pairwise additive. It assumes that the pair potential ¢;; between particles of species
¢t and j is split up into

Gij (1) = Griij(r) + Dpiij(r), (2.46)

where ¢,;;(r) is the pair potential of the reference system and ¢,.;(r) is the attractive
perturbation. Since in the present work we consider exclusively HC interactions it is most
obvious that the ¢,,;;(r) are represented by HS potentials characterized by HS diameters
0;j. This defines the ¢,.;;(r) apart from finite variations inside the core. In the case where
¢r.i;(r) is not a HS potential, the softness of the potential can be taken into account via

the Weeks-Chandler-Andersen ‘blip’-function expansion [33].

The separation of the potential leads naturally to the decomposition of all the corre-
lation functions
hig(r) = hasig (r) + Py (r) (2.47)
and
Cij(r) = erij(r) + cpi(r), (2.48)

where h,.;;(r) and ¢,,;;(r) are the correlation functions of the reference fluid and hy;;(r)
and c,,;;(r) are the corrections to the correlation functions of the reference system due to

the attractive interaction. For convenience we define the matrices C, = ( /pipjcp;ij) and
C = (\/pipjcr;ij) .

In the random phase approximation (RPA) one assumes that

Cpsif (1) = —Bp;i (). (2.49)

However, this approximation does not guarantee that g;;(r) vanishes inside the HC as it
should in an exact theory. This means that geometrical exclusion effects are not treated
correctly. On the other hand, in this framework, there is a flexibility in the choice of ¢,;;(r)
that can usefully be exploited: It is clear that eq. (2.46) does not define the perturbation

uniquely for » < oy;. For this physically inaccessible region, the perturbation can be
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chosen to have any finite functional form. Thus the perturbing potential ¢,,;(r) inside
the hard core (r < ;) can be varied to obtain the so called optimized potential. We thus
obtain the LOGA/ORPA which is formulated via the two relations:

Cpsij (7") = —ngp;ij(r) for r> Oij (250)
and the perturbation potential inside the core is chosen so that

gp;ij(r) = hp;ij(T) =0 for r< Oij- (251)

It can be shown that the excess (over the ideal gas) free energy of the system is given
in the RPA by

T = ARPA — A: + AHTA + Aringa (252)

where A% is the excess free energy density of the reference system, Agry is the so called

A= -

high temperature approximation
1
Anra =53 pip; /d37“9r;ij (r)pyj (r)- (2.53)
]

and A, ing = Aping[Cp] is a functional being the sum of composite ring diagrams [29] which
is found to be given by

c | — 1 3 . - \-1 - ~\-1
Aring [G] = —m/d k(tr (Goll = C) ™) + Indet ((1 - ©)(1 - C) )) (2.54)
where ‘tr’ and ‘det’ denote the trace and determinant of a matrix and the matrix | is the

unit matrix.

Using the RPA expression for the free energy, Arps = Arpa[C,], that is a functional
of the perturbation part of the direct correlation functions c,,;(r) one can show that [34]

SARPA 2§,
= i 07 [Grei hopeii(1)] 2.55
o) = g (7)) (2.5%)
In particular, gc“:_zp(:) = 0 for r < 0y; if the core condition is fulfilled. This relation points

out that the solution of the OZ equations along with the LOGA/ORPA closure rela-
tion (2.50) and the core condition (2.51) is equivalent to a minimization of the functional

with respect to variations of the ¢,.;;(r) inside the core region.

As shown in [35] the expression for the free energy (2.52) can be rewritten with the

help of the OZ equations (2.27) and Parseval’s theorem as follows:

1 1
A -
ARP — AT + 5 ; pipjcp;ij(k)‘kzo - 5 ;picp;ii(r) =0
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1 3 ~ -
ST /d k (Indet(1 - €) — Indet(1 - C)) . (2.56)

From the integral equation point of view, the solution of the LOGA/ORPA may also
be viewed as a solution of the OZ equation with the closure relation (2.50) and the core
condition (2.51). It is therefore similar to the MSA, the only difference is the exact
treatment of the hard-sphere reference system in the LOGA/ORPA.




Chapter 3

Phase Coexistence

3.1 Phase Behavior and Stability Conditions

3.1.1 One-component System

A typical phase diagram of a one-component substance in the P-T and T-p plane is shown
in fig. (3.1). The liquid phase exists only in the small part of the entire P-p-T space that
is bounded above by a critical point where coexisting vapor and liquid become identical
and below by a triple point. Above the critical point there exists only a single fluid
phase and there is a continuous path from the gas via the fluid to the liquid phase as
indicated in the figure. This is not the case for the transition from liquid to solid that
does not end at a critical point. Consider moving along the gas-liquid coexistence line
in the direction of increasing temperature, then the difference in density between the gas
and the liquid decreases continously to zero and becomes zero at the critical point. The
density difference Ap = p; — p, between the coexisting liquid and gas phase, which is
nonzero below the critical temperature, is called the order parameter of the gas-liquid

coexistence transition.

In general, the conditions for coexistence of two phases in contact with each other [36,
37] are
T=T1, P=P, pu=y, (3.1)

where the primed and unprimed quantities 7', P, are the temperature, pressure and
chemical potential of the two phases. The first condition expresses thermal equilibrium,
the second mechanical equilibrium and the third material equilibrium between two phases.

From the Gibbs rule it follows that a one-component system cannot have more than three

24
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Figure 3.1: Left: Phase diagram of a one-component system in the P-T plane. The indices
‘t’ and ‘¢’ indicate the triple and critical point. The gas-liquid coexistence curve ends at a
critical point. So there is a continuous path from the gas to the liquid phase as indicated
by the dashed line. Right: Gas-liquid coexistence curve for a one-component substance
in the T-p plane. The indices ‘t’ and ‘c’ indicate the triple and critical point. The order

parameter of the gas-liquid transition, Ap = p; — p,, vanishes at the critical point.

coexisting phases and that the coexistence of three phases can only appear at a single
point, the triple point.

The coexistence curves in the T'—p plane can be determined by expressing the chemical
potential and the pressure as functions of the density at fixed temperature 7" and solving
the coupled set of equations

up, T) = plp,\7T) (3.2)
P(p,T) = P(p.T) (3-3)

for p and p'. This route was chosen in the present work. Equivalent routes are the well-
known Maxwell construction see fig. (3.2) and the common tangent construction for the

Helmholtz free energy per volume F'/V as a function of the density.

The condition of phase stability for a one-component system is

82F> <8P> 1
<8V2 N NV )rn Vxr

meaning that the pressure cannot decrease with increasing density. The points where

x7 diverges define the so-called spinodal line that separates the stable from the unstable
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\Y

Figure 3.2: Van der Waals construction to determine phase equilibria along an isotherm
(ABDEFG). The shaded areas enclosed by the curve linking BDEF and the dashed line
are equal and indicate the Maxwell construction. B and F are points of the liquid-vapor
coexistence curve (binodal) - full line, D and E points of the spinodal line, where xr = oo
corresponding to a local maximum and minimum of the isotherms - dotted line. The
binodal and spinodal curve touch each other at the critical point C. Along the curves BD
and EF the system is metastable (xr > 0), while it is mechanically unstable along the
curve DE (xr < 0).

region. In the stable region, where x7 > 0, the system can exist in a single phase while
inside the other region the free energy can be lowered by phase separation into two phases

with different density. Thus the single phase gets unstable and phase separation occurs.

3.1.2 Binary Mixtures

The phase behavior of binary mixtures is of course much richer than that of a simple one-
component substance. Depending on the relative sizes of the two particle species and the
strength of their interactions one observes a large variety of different phase diagrams [5]. A
systematic study of the different phase diagram topologies was performed by Konynenburg

and Scott by using the van der Waals equation of state [38]. Even for the simple case of
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equally sized particles they identified not less than 12 different types of phase diagrams
distinguished by the presence and absence of three-phase lines and azeotrope lines, by the

number of critical lines and by the way the critical lines terminate.

The conditions for phase equilibrium generalize to the case of a two-component system

with concentrations x; = z and x5 = 1 — & by requiring that
T = Tla P = Pla H1 = /'Llla H2 = /l’l2 (35)

At an azeotropic point two phases with the same composition are in equilibrium, hence
additionally to the usual coexistence conditions the condition x = x' must be fulfilled.
According to the Gibbs rule up to four phases can coexist in a binary mixture; four phases

coexist in a point and three phases can coexist along a line (triple line).

The conditions of phase coexistence and phase stability are expressible in terms of the
Gibbs free energy (. Similarly to the common tangent construction for the Helmholtz
free energy F' in the one-component case, the concentrations x and z’ of two coexisting
phases at a given temperature 7" and pressure P can be obtained via a common tangent
construction of the Gibbs free energy as a function of x. The concentration of two coex-
isting phases at fixed pressure P can be reported in a T' — x diagram. Various types of

diagrams are distinguishable depending on the number and loci of the critical points [5].

For a given composition, density and temperature, a fluid mixture can be present in
a single homogeneous phase only if thermodynamic stability is satisfied. In contrast to
a one-component system where only mechanical stability, expressed via xr > 0, must
be satisfied, a fluid mixture must have both mechanical (or liquid-vapor) stability and

material (or liquid-liquid) stability. The latter is expressed via

2
(a_g) > 0. (3.6)
ox T.Pp

If this condition is not satisfied then the Gibbs free energy can be decreased - while
keeping temperature and pressure constant - by phase separation into two phases of

different compositions: this phase separation is called demixing transition.

While the first kind of instability where xr diverges and which forces the fluid to
phase separate into two phases of different densities is associated with a divergence of
Snn(0) (see (2.36)), the material instability corresponds to a divergence of the correlation
length of concentration fluctuations and thus Scc(0) (see eq. (2.35)). The spinodal line
of a mixture is thus located at those points where either Sce(0) or Syy(0) or both

diverge. In the case in which a mixture is mechanically unstable, but materially stable,
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i.e. at an azeotropic instability, Scc(0) remains finite and Syx(0) diverges leading to
a separation into two phases of different densities but equal compositions. So it follows
from (2.26) and (2.34) that at an azeotropic instability hi5(0) = : (ﬁu(()) + BQQ(O)) and
Scc(0) = zyxo. Furthermore, from eq. (2.37) it follows that v; —vy, = 5 (7111(0) - BQQ(O)).
From eqs. (2.35- 2.37) one sees that a divergence of Sc(0) also causes a divergence of
the other structure factors, so it is not straightforward to distinguish in the general case
of a binary mixture the two kinds of instability. The situation is different in the case of

a so-called binary symmetric mixture (see section 4.3.4).

In the following we will restrict our investigations to this simpler model system.

3.1.3 Binary Symmetric Fluid

In the binary symmetric mixture the like-particle interactions are identical (¢1;(r) =
¢oa(r) Vr), while the unlike interactions are different from the like ones (¢io(r) #
¢ii(r),1 = 1,2). We further assume that the functional form of the like and unlike inter-

actions is equal. Only the strength is different, i.e.,

du(r) = ¢n(r) (3.7)
G12(r) = agn(r), (3.8)

where « is the relative strength of interactions between particles of dissimilar and similar
species.

Due to the symmetry of the potentials one obtains symmetry relations for the struc-

tural and thermodynamic properties, like for instance

hii(r;T,p,z) = hoo(r;T,p, 1 —x)

hio(r; T, p,z) = hio(r; T, p, 1 — )
(T, pyx) = po(T,p,1— ) (3.9)
P(T,p,z) = P(T,p,1—1x) etc. (3.10)

Although such a model system seems rather artifical and does not allow the description
of an experimentally observed phase behavior ! it shows already a rather rich variety of
phase behavior and offers insight into the link between the microscopic description of a

system and its phase behavior. The advantage of this simple model is the fact that its

L An example for a realistic system with such a symmetry are mixtures of d,l-optical isomers. However,

liquid-liquid separations in these systems have not been reported so far (see page 524 of [38]).
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interactions are characterized by only a few parameters, namely the interaction strength
ratio a and the parameters of the pair potential ¢;: they trigger the phase behavior of the
system, so that a systematic investigation of their influence is still within reach. On the
other hand - despite the simplicity of the model - the phase diagrams show nevertheless
a much richer variety than those of a one-component system and interesting phenomena,

like the existence of triple points, critical lines, critical end points and tricritical points.

From the different possibilities to present phase diagrams, we have chosen in this work
presentations in the T'— p — x space, their projections onto the T' — p plane and their

isothermal slices leading to phase diagrams in the p — z plane.

In the work we restrict ourselves to the determination of those coexisting phases where
the number of species 1 and species 2 particles is equal, i.e. we consider only those phase
equilibria where 2/ = 1 — z. In that case four different types of phase diagrams can be

observed that belong to two classes.

1. The first class, where the similar species interaction is favorable, i.e. a < 1, is
characterized by the presence of a critical line of demixing transitions (the so called
A-line). For a given density there is a critical point of the demixing transition (critical
consolute point) at some finite temperature T.. The symmetry of our system implies
that this critical point is located at x = 1/2. Above this temperature one observes a
homogeneous mixture of 1 and 2 particles (x = 2’ = 1/2) - the so called mixed fluid
(MF) - while below T, the liquid separates into a 1-rich phase with concentration x

and a 2-rich phase whose concentration is 2/ = 1 — x - the so called demixed fluid
(DF).

2. The second class, where o > 1, is characterized by the absence of a critical line and

the absence of demixing transitions.

A system of the first class exhibits in addition to these demixing transitions also
liquid-vapor transitions as a one-component fluid. Depending on the interplay of these
two types of phase transitions one can distinguish three types of phase diagrams that will
be presented in the following. One of them is shown in fig. (3.3).

In the following we will use a simpler two-dimensional representation of the phase
diagram which is obtained by the projection of the two high-density branches of the
three-phase line along the x direction onto the x = 1/2 plane and omitting the demixing
curves. Only the critical line of the demixing transitions (A-line) will be shown. Owing

to the symmetry of the system, the coexisting phases of the two high density branches of
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Figure 3.3: Phase diagram of type IT (see text) of a binary symmetric fluid in the T—p—x
space. The phase diagram is symmetric with respect to the x = 1/2-plane. Red curves:
demixing transitions. Green curve: A-line. Light blue curve: VMF transition. Dark blue
curve: VDF/MFDF transitions.

the three phase line have the same density and thus their projections yield only one line.
Using this representation, fig. (3.4) shows a schematic drawing of the three different types
of phase diagrams of class 1. The three types differ in the way the second order transition

associated with demixing merges into the first order liquid-vapor (LV) transition:

Type I: Fig. (3.4a) shows the situation when the A-line approaches the LV coexistence
curve well below the critical point. In that case the A-line intersects the first order
LV curve at a critical end point (CEP). At the CEP, a critical liquid coexists with a
noncritical vapor. Above the CEP temperature a vapor and a homogeneous liquid of

intermediate density coexist becoming identical at the LV critical point. At higher
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densities, as one crosses the A-line, the fluid demixes. The full line below the CEP

temperature is a triple line where a gas, a 1-rich and a 2-rich liquid coexist.

Type III: In fig. (3.4c) the A-line intersects the LV line at the LV critical point. In that
case the first order transition between the vapor and the mixed liquid is absent
and the A-line ends at a tricritical point where three phases become critical at the
same time: a vapor, a l-rich liquid and a 2-rich liquid. So two order parameters,
namely Ap = p; — p,, where p; and p, are the coexisting liquid and vapor densities,
and Ax = x — 2’ = 2x — 1 vanish at the same time. The tricriticality is a specific
feature of the symmetric model. In a general binary fluid tricriticality does not

occur (see [38]).

Type II: The intermediate situation is shown in fig. (3.4b) where the A-line approaches
the LV coexistence curve slightly below the LV critical point. As in type I one finds
a LV critical point and as in type III a tricritical point. Additionally this type is
characterized by a triple point where — to be correct - four phases coexist: a vapor,

a mixed liquid at intermediate density, a 1-rich and a 2-rich liquid at higher density.

In a mean field study [12] it was shown that the transition between the different types of

phase diagrams is triggered by the parameter a.

Another type of phase diagram has been observed in grand canonical Monte Carlo
(GCMC) simulations of a binary symmetric fluid inside a porous matrix (pg = 0.05, « =
0.7,y = 3.5 - see chapter 5 for the definitions of these parameters) [39], in which the A-line
intersects the LV critical line at a CEP on the vapor side (see fig. (3.5)). So above the
CEP temperature one finds a four-phase line, where 1- and 2-rich phases of lower density
coexist with 1- and 2-rich phases of higher densities. In the simulations the constraint
of equal particle numbers was replaced by imposing equal chemical potentials for both
species. So the demixed fluid phase that is observed comprises either a homogeneous
1-rich or 2-rich phase, which are - due to the symmetry - indistinguishable. Thus if the
coexisting 1- and 2-rich phases are regarded as a single liquid phase (the demixed fluid)

the ‘four-phase’ line would not violate the Gibbs rule.

Similar archetypes of phase diagrams (and sequences of these) are encountered in
systems with completely different interatomic potentials: as examples we list here the
Heisenberg fluid [40] (a fluid where the particles interact via hard-core and a Heisenberg-
type interaction of their dipolar moments) and the Stockmayer fluid [41] (a fluid where the

particles carry dipolar moments and interact - in addition - via Lennard-Jones potentials).
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Figure 3.4: Schematic representation of the three types of phase diagrams of class 1
introduced in the text (from [12]). The phase diagrams are projections of the three-
dimensional T" — p — x phase diagrams onto the x = 1/2-plane. The full curve is the
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Figure 3.5: Schematic representation of the fourth type of phase diagram of class 1, that
was observed in the GCMC studies of a binary symmetric fluid inside a porous matrix [39].

The full curve is the liquid-vapor boundary. The dashed curve is the A-line.

Both, in the case of a binary mixture in the bulk and confined in a disordered porous
matrix we have calculated the phase diagrams by equating, at a given temperature 7T,
the pressure, P, and the chemical potentials, pu;, of the coexisting phases. The general

equilibrium conditions read

/'Lz(pal‘aT) = Ml(plal‘laT) Z:172 (3]_]_)
P(p,z,T) = P(p,2',T), (3.12)

where the thermodynamic states of the coexisting phases are given by (p,x) and (o', 2').

In the following we use the symmetry relations expressed in egs. (3.9) and (3.10).

First the azeotrope line 2 is obtained by solving the set of equations

pi(p,x =1/2,T) = p(p,x =1/2,T) = p(p',x = 1/2,T)
P(p,x=1/2,T)=P(p,x =1/2,T). (3.13)

For the V-MF and the MF-DF transitions we proceed in two steps. First we determine
the phase diagram of the demixing transition, i.e. we search for two coexisting states
with concentrations x and 2’ = 1 — z. Due to the symmetry eq. (3.10) p' = p and due to
eq. (3.9) equations (3.11) reduce to solving at a given temperature 7 and density p the
equation

/‘Ll(pamaT) :/I’Q(pal‘aT)a (314)

2Tt follows from the van der Waals study of [38] (see eq. (21) of this reference) that an azeotropic

behavior in a binary symmetric mixture can only appear at z = %
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which defines the line z(p) of the second order demixing transition - if it exists. Along
this line the chemical potentials of the two species are equal by construction and denoted

by u(p, z(p),T). In a second step the solution of the two equations,

plp,x=1/2,T) = plp,z(p),T) (3.15)
Plp,x=1/2,T) = P, x(p),T) (3.16)

gives the density of the V or MF, p, and that of the DF, p/, with concentrations z(p') and

1 —z(p), in equilibrium.
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Chapter 4

Self Consistent Liquid-State
Methods

4.1 Introduction

As was pointed out already in Chapter 2.1.1 integral equation and perturbation theories
suffer from a lack of thermodynamic consistency: that is, different routes to thermody-
namics yield different results. Thus several integral equation theories have been modified

in such a way that consistency between different routes is enforced.

One of these approaches is the generalized mean spherical approximation (GMSA)
which is an extension of the MSA. It was introduced by Waisman [42] to improve the PY
solution of hard spheres. He modified the PY ansatz ¢(r) = 0 for r > o, by assuming a
form of a Yukawa tail for ¢(r) outside the HC, i.e.

K
c(r)y === for r>o. (4.1)
r

Waisman derived an analytic solution of the OZ equation supplemented by the exact core
condition and the closure relation (4.1). Based on this analytic solution he chose the
parameters K and z in order to fit the thermodynamics of this model to computer simu-
lation data, parameterized in terms of the Carnahan Starling (CS) equation of state [43].
The radial distribution function so obtained considerably improved the PY one. Wais-
man’s analytic solution was extended by Hoye and Stell [44] to the case when the direct
correlation function is a linear combination of two Yukawa tails.

A A
c(r) = Dealr—o) f 27200 {50 >0, (4.2)
r r
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If one interprets the first Yukawa term as corresponding to the MSA closure relation for
c(r) outside the core for a system with the pair potential 3¢(r) = —4Le *1("?) then the
second term can be viewed as a correction term as in the Waisman parameterization of
c(r) for hard spheres. Again there are two parameters A, and 2z available either to fit
thermodynamically consistent quantities, as given by computer simulation, or to satisfy
the thermodynamic self-consistency relation without any further thermodynamic input.
So this is a possibility to improve the MSA whose main deficiency is the substantial lack
of thermodynamic consistency while retaining its great advantage of analytic solubility
for hard-core Yukawa (HCY) systems.

A similar GMSA scheme was developed by Stell et al. for ionic and dipolar fluids [45]:
There it was called a self-consistent Ornstein Zernike approximation (SCOZA) since self-
consistency among the three thermodynamic routes (i.e. virial, energy and compressibility
route) was enforced. However, in contrast to the SCOZA in its present version that we
will introduce below, thermodynamic consistency was achieved by fitting the available
GMSA parameters to some external set of data either given by a prescribed equation of
state or obtained from computer simulations. In contrast, in the SCOZA with which we
will be concerned below no supplementary thermodynamic or other input is necessary.

Thus this scheme is entirely self-contained.

The thermodynamic consistency relations can be expressed in the form

BP _ PP )
p p
by _ BPp (4.4)
p p

However, in most applications of liquid-state theories the first consistency relation is

B@PV> 1
- 4.5
( op ) pPksTxT (4.5)

where x7 is the isothermal compressibility obtained from the compressibility route. This

rather expressed as

is done in thermodynamically self-consistent integral equation approaches, like e.g. the
modified hypernetted-chain (MHNC) theory [46]. In this approach the OZ relation is

solved with the closure relation
g(r) = e~ PO =clr)+E(r) (4.6)
where the bridge function E(r) is approximated by that of a suitably chosen HS reference

system assuming the universality hypothesis of the bridge functions [46]. The E(r) are

either obtained from the Verlet-Weis parameterization of the pair distribution function or,
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alternatively, by the PY bridge function. The HS diameter is chosen to enforce equality

of the compressibility via the virial and the compressibility route (4.5).

Other thermodynamic self-consistent closure relations use so called ‘mixed closure’
relations, i.e. they interpolate in a functional form between two different conventional
closure relations. In this interpolation scheme a mixing function f,(r) with an adjustable
parameter « is introduced that is chosen so that consistency is enforced. One of these
approaches is the Rogers Young (RY) approximation [47] that interpolates between the
PY and the HNC approximation. Its closure is given by

efa(P)[h(r)—c(r)] _ 1>
fa(r)
An appropriate form for f, would be e.g. f,(r) =1—e %" ie. for r =0 the PY solution

g(r) = e P <1 + (4.7)

is obtained that is more appropriate for short-ranged forces, while in the limit r — oo
one obtains the HNC closure that is accurate for long-ranged potentials and uses the
approximation that F(r) = 0. The RY approximation yields excellent results for purely
repulsive systems.

Another self-consistent ‘mixed closure’ integral equation theory is the HMSA [48],
that interpolates between the HNC and the SMSA and is more suitable for systems with

attractive potential than the RY approximation. Its closure is given by

a(r)h(r)—c(r)—¢a(r)] _
B LN ws
where
. ¢(7") - ¢(Tm) r< T
mmﬂ—{o e (4.9)

is the repulsive part of the potential and

mm={¢mﬂrgm (4.10)

é(r) r>rm
the attractive one; r,, denotes a suitably chosen separation distance, in general it is the
position of the minimum of the potential. For the mixing function f,(r) one can assume

a function as the one used above. In both approaches the parameter « is varied until
eq. (4.5) is satisfied.

The MHNC, GMSA, and HMSA yield accurate thermodynamics and predict accu-
rately the liquid and vapor branches of the coexistence curves [9, 49], but they fail to
converge close to the critical point, leaving the two branches unconnected [50] and esti-

mates for the critical point parameters can only be obtained by extrapolation.
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The two probably most promising approaches at the moment that circumvent these
problems are the hierarchical reference theory (HRT) [7] and the thermodynamically self-
consistent Ornstein Zernike approach (SCOZA) both of them providing very accurate
predictions for the thermodynamics, the phase diagrams and the critical behavior. Espe-
cially in the critical region, where the accuracy of integral equation theories and pertur-
bation theories decreases dramatically (they do not succeed in reproducing the shape of
the coexistence curve and the location of the critical points correctly) or their solution

fails, both theories remain highly accurate and successful.

The SCOZA was proposed already some time ago by Hgye and Stell [51, 52], but it
was only recently that it could be solved numerically for a model system and results of

remarkable accuracy were obtained [8].

The theory has been formulated in different versions, all of them building directly upon
the MSA closure and combining it with the requirement of thermodynamic consistency [6]
thus removing the main deficiency of the MSA. In the different versions one or more
state dependent functions are introduced in the MSA relation between ¢(r) and —S¢(r);
and this (or these) function(s) is (are) determined in such a way that thermodynamic
consistency via different thermodynamic routes is ensured, thus leading to (a) partial
differential equation(s) (PDE) for this (these) parameter(s). The various versions of the
SCOZA differ in the choice of these adjustable parameters.

The most comprehensive concept of this theory proposed in [51, 52| ensures self-
consistency between the virial, the energy as well as the compressibility route. Due to
the complexity its numerical solution was implemented for a hard-core one-Yukawa fluid
(HC1Y) only recently by Caccamo et al. [49]. (In their contribution this version of the
SCOZA is actually called GMSA!, while the designation SCOZA therein refers to another
version of the SCOZA.) In this contribution the closure relation to the OZ equation is

g(r) =0 for r<o
_ (111)

c(r) = —po(r) + K&~—— for r >0,
where o is again the HC diameter and K and z are adjustable state-dependent parameters
to ensure thermodynamic consistency. The numerical solution of this approximation was

not obtained by solving a PDE but through an iterative procedure.

The version of the SCOZA with which we will be concerned in the following con-

tains only one state dependent function A(p, ) which appears as a proportionality factor

!The term GMSA comprises a family of approximations, all of which have the common feature of
supplementing the —3¢(r) term in the direct correlation function with additional Yukawa terms. The

amplitudes and ranges of these Yukawa terms are adjusted to yield thermodynamic self-consistency.
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between ¢(r) and the direct correlation function ¢(r) outside the core, and enforces con-
sistency only between the compressibility and the energy route. This closure relation
amounts to setting

g(r) =0 for r<o

c(r) = Alp, B)¢(r) for r>o,
where A(p, 3) is a function of the thermodynamic state (p,3). The condition on g¢(r),

(4.12)

the so-called core condition, is exact, while the expression for ¢(r) is an approximation
and implies that ¢(r) has the same range as the potential - an ansatz that is usually
referred to as the OZ approximation, thus the name self-consistent Ornstein Zernike
approximation. In contrast to the MSA, where A(p, 5) = —f, here A(p, 3) is not fixed a
priori but is instead determined so that thermodynamic consistency is ensured between
the compressibility and the energy route. The advantage of this simple recipe is that the
solution of the OZ equation together with the closure relation (4.12) is the same as for
the MSA problem.

This scheme of the SCOZA was already proposed in [52] where equations for solving
the self-consistency problem were derived. Preliminary results for a three dimensional
lattice gas for supercritical temperatures indicated that SCOZA could produce accurate
results [53]. However, results were limited to supercritical temperatures since the numer-
ical solution of the SCOZA PDE of [52] was found to be unstable when proceeding to

temperatures below the critical point.

The first numerical results below T, were obtained by Dickman and Stell for a three-
dimensional nearest neighbor lattice gas [8]. In contrast to the original (numerically
unstable) PDE used in [52], where the Helmholtz free energy was used as the quantity
to solve for, these authors have used the following PDE as basis for the SCOZA equa-
tion: assuming that the thermodynamics stems from a unique Helmholtz free energy the

consistency condition can be expressed as

0 1 0%u
— = p—os, (4.13)
aﬁ Xred 8p2
where x"®? = pkpTxr is the reduced isothermal compressibility given by the fluctuation
theorem and u = % is the excess (over ideal) internal energy per volume given by the

energy equation. Eq. (4.13) supplemented by the closure relation eq. (4.12) and the OZ
relation yields a PDE for A(p,$). Using the analytic structure of the solution of the
OZ equation with the closure relation (4.12) for the system they investigated, Dickman
and Stell were able to express 1/x™? in closed form in terms of u and to derive a PDE

of diffusion type for 1/x"*. The numerical solution procedure of this PDE was refined




42 Self Consistent Liquid-State Methods

in subsequent work by Pini et al. [54]. Pini developed an unconditionally, accurate and
efficient solution algorithm, using his experience from previous work on the HRT: although
this theory, that is based on renormalization group, is conceptually different from the
SCOZA( for an overview see [7]), it also results in the numerical problem of solving a

non-linear PDE of diffusion type.

In [8] Dickman and Stell considered the lattice gas (or the equivalent Ising model)
in three dimensions with nearest neighbor interactions on various cubic lattices. The
predictions were remarkably accurate, e.g. the values of T, were obtained within 0.2%
of best estimates and other critical properties agreed within 1-2% of the best numerical
estimates. Also the various effective critical exponents, that are defined as the slopes of

curves of logarithmic plots, e.g.

dl _
off _ @108 X1 , (4.14)
dlogt
where £ = T;CTC, were investigated, and it was found that they were close to the esti-

mated exact form unless very close to the critical point. Further numerical results for the
three-dimensional lattice gas by Borge and Hgye [55] and Pini et al. [54] confirmed this
picture: above the critical temperature the theory yields the same critical exponents as
the spherical model but this regime is very narrow, so that thermodynamics and effective
exponents are in good agreement with the true critical behavior until the temperature
differs from its critical value by less than 1%. On the coexistence curve (i.e. below T¢),
on the other hand, the exponents are neither spherical nor classical and turn out to be
very accurate: e.g. the curvature of the coexistence curve is described by # = 0.35 which
is near to the exact value of 5 ~ 0.326 [56]. Borge and Hgye [55] also investigated the
influence of the interaction range and they found that the effective critical exponents away

from the critical point vary with this range.

An analytic study of the SCOZA critical exponents and the scaling behavior in three
dimensions was given by Hgye et al. [57]. It was seen that standard scaling is not fulfilled,
but rather a generalized form of scaling. In this study the SCOZA subcritical exponents

for a three-dimensional system were determined to be
f="7/20,yv="7/5«a=-1/10, (4.15)

which are in remarkable agreement with the exact values [ ~ 0.326,7 ~ 1.24, a0 ~
0.11 [56], despite the fact that SCOZA does not incorporate renormalization group ideas.

On the other hand, the supercritical exponents are spherical ones

v=2,0=5a=0, (4.16)
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so the indices above do not fulfill the standard scaling relations. Thus, SCOZA fails in
a very narrow regime of |t| < 107 in the vicinity of the critical point which is also the
error in 7, for the Ising model. However, outside this region results turn out to be very

accurate.

After the first applications of the SCOZA to lattice systems, it was extended subse-
quently to continuum systems, too [58, 59, 60, 61]. In particular, in the case when u

red wwithin the closure rela-

in eq. (4.13) can be written in closed form as a function of x
tion (4.12) the numerical solution of the SCOZA is substantially simplified leading to a
PDE for u. This is actually the case for the HCY fluid, where one can make use of the
extensive semi-analytic MSA studies available. So it is not surprising that the SCOZA for
continuum fluids has been solved numerically up to now only for the hard-core 1-Yukawa
(HC1Y) [58, 59] and hard-core 2-Yukawa (HC2Y) fluid [60, 61]. The general case has to

be solved fully numerically.

In [58] the accuracy of the SCOZA approach remained somewhat unclear due to the
uncertainty of the available simulation results. But it was already seen that the top of
the coexistence curve was flattening, having a shape that is similar to the one of real
fluids. In this paper the closure relation of eq. (4.12) was used, implying that the HS
contribution to ¢(r) vanishes outside the core, so that the treatment of the HS reference
system coincides with the Percus-Yevick approximation. Alternatively, these authors also
incorporated a more accurate HS theory by using a Yukawa tail that is non zero at 5 =0

to reproduce the CS equation of state.

In subsequent work [59] the treatment of the HS reference part was improved by
adding to ¢(r) in (4.12) a non-vanishing contribution cys(r) outside the core. However, the
Verlet-Weis parameterization [62] of cys(r), which is the most popular parameterization
for the HS structure functions reproducing with high accuracy simulation data, is not
convenient for the formulation of the analytic part of the SCOZA. Instead the Waisman
parameterization was used, where the function cys(r) outside the core is assumed to have

a one-Yukawa form

g(r) =0 for r<o
c(r) = A(p, B)o(r) +Knsm for r > o;

r

(4.17)

the amplitude Kyq and range zyg are determined in such a way to reproduce CS thermo-
dynamics. The reason why one chooses the Waisman parameterization for the HS part of
the direct correlation function is a purely technical one: the mathematical formulation of
the SCOZA for a ¢(r) of 2-Yukawa form is still convenient since analytic studies for the

case when ¢(r) is a linear combination of two Yukawas [44, 63, 52] are available.
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These two approaches for the HS part - the two Yukawa ¢(r) and the one Yukawa ¢(r)
that reproduces CS behavior at 5 = 0 - were found to make little difference. In [59] also a
new set, of simulations was performed to check the SCOZA results and again the accuracy
of the thermodynamics, the critical data and the coexistence curve was remarkable: the
critical temperature and density predicted by SCOZA agreed with simulation results to
about 0.6 %. Another application of the 2-Yukawa version of the SCOZA is to take both
Yukawa terms to represent the interaction. This was actually done in order to parame-
terize a Lennard Jones (LJ) fluid mimicked by a hard-core two Yukawa interaction [60]
and, furthermore, to investigate the effect of competing interactions on the liquid-vapor
transition [61]. In the latter study the 2-Yukawa tail was assumed to be attractive at

short distance and repulsive at long distance.

Since results for the three-dimensional lattice gas and the HC Yukawa fluid have
confirmed that the SCOZA remains highly accurate even in the critical region, it was
of interest to develop the SCOZA for other fluid and lattice gas systems and to test
its general accuracy more precisely in various situations. Work in this direction has
been done: the formulation of the SCOZA has been generalized to D-dimensional and
continuous spins [64]. However, so far numerical results are not available. As a further
test of its accuracy the SCOZA was compared with exact results for the Ising model in
one and two dimension [65, 66]. In the latter case comparison with the exact Onsager
solution in zero magnetic field with nearest neighbor interaction was made. A special
feature in this case is that SCOZA as the MSA does not give a true phase transition in
two dimensions, i.e. the singularities are smeared out. This deficiency of the SCOZA
is due to the Ornstein Zernike ansatz which does not include a long-range part of the
direct correlation function that would be necessary in the critical region. According to
this approximation the critical exponent 7 is found to be 0 instead of the exact value
of n ~ 0.006 in three dimensions; thus the behavior of the total correlation function is
distorted which decays as h(r) ~ f(r/€)/r®=2t" for r > 1, where d is the dimension and
¢ the correlation length. However this deficiency is only crucial in the vicinity of the
critical point, where f(r/€) is constant rather than exponentially decaying. Despite this
deficiency, also in the two-dimensional case numerical results were again convincing. The
temperature where the specific heat has a maximum was found almost precisely at the

exact critical point temperature.

Good results have also been obtained when generalizing the SCOZA to a disordered
system like the site diluted random field Ising model [67], and it has recently been applied
to the spin-1 model [68] and the g-state Potts model [69]. Furthermore a binary mixture
model has been studied within the SCOZA by A. Dickman and Stell [70]: the decorated




SCOZA for a One-Component Fluid 45

model, that is isomorphic to the lattice gas model.

The purpose of the work presented in this chapter is to extend the SCOZA to a larger
class of continuum fluids. First, we have generalized the SCOZA to a one-component
fluid with hard-core multi-Yukawa interaction. The theoretical formulation is given in
section 4.2.1. The advantage of this generalization is the opportunity that several realistic
interactions can be approximated very accurately by a linear combination of Yukawa tails,
like the LJ potential or the short ranged Girifalco potential that describes the interaction
between Cgy molecules. Results for the LJ fluid are presented in section 4.2.2 and for
fullerenes in section 4.2.3. We have further discovered the existence of two critical points
in a hard-core Yukawa fluid whose interaction range is density-dependent; these results are
summarized in section 4.2.4. Further the SCOZA was generalized to the binary symmetric

mixture.

4.2 SCOZA for a One-Component Fluid

In our investigations we have chosen the version of the SCOZA proposed recently by
Pini et al. [59] given by the closure relation eq. (4.17). For the interaction between the
particles these authors have chosen a hard-core Yukawa (HCY) pair potential which has
been of interest in the last years [9, 49] due to several reasons: first, for this simple model
one has available semi-analytic theories [42, 71, 44, 63, 52, 24]. Thus the formulation of
the MSA, the GMSA and the SCOZA is particularly simplified for the HCY fluid. This
is not the case for other pair potentials like the square well fluid where the solution has
to be obtained fully numerically. Second, this simple potential comprises the two key
features that mimic a more realistic potential: a highly repulsive core and an attractive
tail. The latter is required to observe first order liquid-gas phase transitions and liquid-gas
criticality. Third, the potential parameters can be chosen so as to provide more realistic
potentials like a solvent-averaged interaction potential between poly-electric or colloidal
particles. Furthermore, the HCY potential comprises as special limiting cases the adhesive
HS system [27] (when the Yukawa tail is infinitely deep and the screening length infinitely
large) and charged HSs (when the screening length z is set to 0).

However, the HCY potential fails to mimic realistic interactions, the strength of the
attractive tail being largest at the infinitely high hard-core repulsion. The LJ interaction
on the other hand represents a smoother, more realistic potential, but is less convenient
for the study by the SCOZA than is the HCY fluid. Nevertheless one can retain the

mathematical conveniences of the HCY fluid while studying a more realistic interaction
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by making use of the fact that the LJ tail may be very well approximated by a linear
combination of two (or more) Yukawa tails [72]. If the hard-sphere reference system is
treated in the Waisman approximation by an additional Yukawa tail as in eq. (4.17) this
requires the solution of the OZ equation with a direct correlation function ¢(r) of a three

(or more) Yukawa form outside the core.

The OZ equation along with the MSA closure (i.e., the core condition for the pair
distribution function and a direct correlation function that is of Yukawa form outside the
core) has been solved semi-analytically via two different approaches. Waisman [42] has
used the so called Laplace transform technique [73]. His solution for a one-Yukawa form
of ¢(r) was simplified in subsequent work [71] and generalized to the case when ¢(r) is a
linear combination of two Yukawas by Hoye and Stell [44, 63, 52]. The other approach
was introduced by Hgye and Blum [24]. It applies a method of Baxter [74] which is
based on the Wiener-Hopf factorization of the Fourier transforms of the direct correlation
functions by introducing so called factor functions. In this approach the generalization of
the solution from a one-Yukawa tail to the multi-Yukawa form of the direct correlation

function is straightforward and considerably easier than for the Laplace transform route.

While the formulation of the SCOZA for a one-Yukawa fluid presented in [58, 59] is
based on the first approach, we found it more convenient to use the latter approach for
the case when the interaction potential is a linear combination of three or more Yukawa
tails. In their analysis Hoye and Blum reformulated the problem as a system of nonlinear
equations for the coefficients of the factor functions. For the most general case of multi-
component, multi-Yukawa fluid mixtures Arrieta et al. [75] have cast these equations into
a form suitable and more convenient for numerical calculations and provided a general,
direct solution algorithm. We refer to the expressions presented in their contribution
(omitting in the subsect. 4.2.1 the latin indices in the formulas which denote the com-
ponents of a multi-component mixture); at the beginning we briefly summarize analytic

results relevant for our formulation of the SCOZA.

4.2.1 Formulation of the Theory

Following Baxter’s factorization method it can be shown that under certain conditions [76]

the OZ relation is equivalent to the equations

arre(r) = —Q'(r) + p /0 T QUQ (r + t)dt (4.18)
omrh(r) = —Q'(r) + 27p /Ow(r —Dh(|r — Q) dt,




SCOZA for a One-Component Fluid 47

where the factor function Q(r) has been introduced. From eqs. (4.18) and from the closure

relation
h(r) = —1
") e 57 (4.19)
c(r) = Yo K, r>o,
it follows that Q(r) must have the form
"1
Q(r) =Q%r) + > —D,e#(r=o) (4.20)
v=1 ~V
where
a . 9 . n 1 —zy(r—o) __
Q(r) = { s(r—o)+b(r—o)+3 - Oy (6 1) O<r<o o (21)
0 o<r
with yet undetermined coefficients a, b, C, and D,,.
One further introduces the quantities
G, = 2,9(z,)e™? = z,,/ re’z"(’""’)g(r)dr, (4.22)

where g(z) denotes the Laplace transform of rg(r). Inserting the form of Q(r) in eqgs. (4.18)
and using the closure relation (4.19) permits to express the unknown variables a, b, C,, as
functions of D, and G, and to derive a system of 2n nonlinear equations for the 2n

unknowns G, and D,

> AYG. DD, + Y AYD.D, + APD, + AP =0 v=1,...,n (4.23)
=1 =1

3

BYG,D.G,+Y BYG, D,

T=1 T=1
+Y BYD,G,+Y BYWD, +BPG,+BY =0 v=1,...,n, (4.24)
T=1 T=1

where
AW = 9orK,, (4.25)

while the remaining coefficients A and B() are temperature independent. Their ex-
plicit expressions are given in Appendix A of [75]. They are calculated from the system

parameters p, 2z, and o.

The inverse reduced isothermal compressibility calculated via the fluctuation theorem

is found to be

1 a\?
=1—pc(k=0)=|— 4.2
—a=1oeik=0= (5] (4.26
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where ¢(k) denotes the Fourier transform of ¢(r). The expression for a in terms of the

quantities GG, and D, is obtained from

4
a=A"(1+ M) — FBUN (4.27)

with

n
M= =3 Sp{MOD: + (1= MOe ) f, }

=177

= 1 a a —Zr0
N = Z;p{L5>DT+(1—L5>e ") fr}
fT — —PGTDT; (428)

where the quantities M@ L{® A° and B° are again calculated from p, 2, and o and are

compiled in Appendix A of [75].

The second system of equations (4.24) is linear in D = (Dy,..., D,) for given G =

(G1,...,G,) and can be rewritten as
> 0,.D;, =Q, (4.29)
=1
with
O,.(p,G) = BYG,G, + BYG, + BYG, + BY (4.30)
and
Q.(p,G) = -BYG, — BY. (4.31)

Solution of this system of n linear equations yields D(p, G). This result can then be

inserted into (4.23) which becomes a set of n coupled nonlinear equations in the G.

We now consider a fluid of particles interacting via a spherically symmetric pair po-
tential ¢(r) given by
+oo r<1
o(r) = { (4.32)

w(r) r>1"
where the hard-sphere diameter o has been set to unity and the attractive tail w(r) < 0

is given by a linear combination of Yukawa tails

e—z,,(r—l)

w(r) = —eéc,,f. (4.33)

We enforce consistency between the compressibility and energy route to the thermody-

namic properties. The reduced isothermal compressibility via the compressibility route is
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given by (4.26). On the other hand the excess (over ideal) internal energy per unit volume

calculated via the internal energy route is found to be

UV =u = 27rp2/ drr*w(r)g(r) (4.34)
1
= —27rp262 cyﬂ.
v=2 Ry

Both x"*¢ and u are related to the Helmholtz free energy density g = f = fid 4 feo,

where fi and f¢® are the ideal and excess parts of the free energy density. Thus

Ou _ & 9pf* 9 ( 9puT) 9 (1 (4.35)
opr "o o5 s\ op ) T 95\l |
where " = ‘9(1;% is the excess chemical potential. In general eq. (4.35) is not fulfilled

for approximate ¢(r) as obtained, for instance, by conventional integral equation and

perturbation theories [4]. In the approach considered here this consistency is enforced.

The OZ equation together with the thermodynamic consistency relation eq. (4.35) is

supplemented with the following closure relation

g(r) =0 for r<1

C(’I“) = CHS(T) + K(p, 5)11)(7«) for r > 1, (436)

where K (p, ) is a function of the thermodynamic state. The closure resembles to the
one used in the LOGA/ORPA where K (p, 3) = —f is fixed. Here, K(p, 3) is not given a
priori but is determined so that thermodynamic self-consistency is obtained between the
compressibility and the energy route. Using the semi-analytic formalism (outlined above)

this consistency requirement leads to a PDE for . This will be shown in the following.

For mathematical conveniences we choose the Waisman parameterization for cys(r) [42,
71] which ensures a highly self-consistent description of the thermodynamic properties of
the HS part. It assumes a Yukawa form for cys(r) outside the hard-core
e—21(p)(r=1)

cus(r) = Kl(p)f for r>1 (4.37)

where K (p) and z1(p) are known functions of the density (see Appendix A of [59]). These
expressions guarantee that both compressibility and virial route yield the CS equation of
state [43] for HS. Using eqs. (4.33, 4.37), eq. (4.36) becomes

g(r) =0 for r<1

-z r—1 —zp(r—1 438
c(r) = Kﬂp)% — K(p,B)eXn_,c,c ; " for r> 1. (4.38)
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We use now the analytic results presented above to derive a relation between x™¢ and u,
leading to a PDE for u. Using eq. (4.26), eq. (4.35) yields
da 0 0?
a Oadu u (4.39)

a is given by eqs. (4.27, 4.28) as a function of D and G; inserting the solution D(p, G) of
the linear system eq. (4.29) yields a(p, G) and thus

a = Oa aGl/ ou 82u

a3~ P53 4.40
(2m)’ (z; 0G, Ou > B pap2 (4.40)

or ; y

U U

Blpu)gs =055 441
(p, u)ﬁﬁ (p) 902’ ( )
once that a, ,93—5,, and aacu,, have been determined as functions of p and u (see below). B

and C' are given by

a < Oa 0G,
B =2 4.42
Clp) = »p.
Thus we now have derived a PDE for u(p, ).
What remains is to determine a, 886?1, and aaGu" as functions of p and u. First of all we

introduce n nonlinear equations F;(p,u, G) = 0. Their solution gives G, (p,u). The first

equation is linear and is the energy equation (4.34)

n Gz/
u+2rp’e Y c,— =0 (4.43)
v=2 v
or formally written as
Fl(p,U,GQ,...,Gn) =0. (444)

To establish the remaining n — 1 nonlinear equations we make use of eqs. (4.23 — 4.25).
Expressions for the K, in eq. (4.25) are obtained by comparison of eq. (4.19) with the

closure relation (4.38)

R = Ki(p) (1.45)
K, = —K(p,B)ec, for v=2,....n
and thus
AW = 27K, (p) (4.46)
AV4)C“ = Agl)c,, for v,u=2,...,n. (4.47)
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The second nonlinear equation is relation (4.23) for v = 1 with the solution D(p, G) of
eq. (4.29), inserting relation (4.46)

n ANVG D, (p,G)Di(p, G) + X0 ADD, (p,G)Di(p, G)
+AP D, (p, G) + 21K, (p) = 0, (4.48)

or, formally written as

Fy(p, G) = 0. (4.49)

Further equations are obtained from eq. (4.23) for v > 1, inserting D(p, G), the solution
of eq. (4.29) and eliminating the unknown function K (p, 8) in the coefficients AX via the
relations (4.47) (for v =2, u > 2) i.e.,

(£, AYG.D.(p,G)Da(p, G) + 50, A D.(p, G)Dap, G)
+A45 Dy (p, G)} ¢~

{Z0o ABGD-(p, G)D,(p. G) + 7=y AG)D- (0, G) Dulp. G)
+APD,(p, G)} ez =0

for n=3,...,n (4.50)
or formally written as
F3(p7 G) =0
F.(p,G) = 0
(4.51)

For given p and u the G are determined in the following way: the coupled set of nonlinear

equations (4.44, 4.49, 4.51) is solved numerically via a Newton-Raphson technique using
dF,
3G,
D are obtained by numerical solution of the linear system (4.24).

explicit expressions for the Jacobian matrix J = ( ) In each step of the iteration the

The analytic Jacobian matrix .J is given by

2co 2Cn
0 27mp 2mp”
OF» OF5 OF»
oG oG T oG,
J=| o oG : : (4.52)
OFy OF, OFy,

0G1 0G>2 e oG,
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where
oF, (1) ) 0D, 0D,
G) = A/D,D AVG, —
8Gu(p7 ) ul = p 1+7;1 71 8Gu 1+ 8Gu —+
& oD oD oD
AP (=D, + D, =1 | + AP L 4.53
2 Ad G Dt D | 4 56, (4.33)
and similar relations for the partial derivatives of the other nonlinear functions F3, ..., F,.

(p, G) required in (4.53) are obtained by implicit differen-

tiation of eq. (4.29)

" 9D, aQ,, n a()
T=1 I
= —( #I,G,,+B#I,)Dﬂ(p,G) (4.55)
- {Z (BYG: + BY) D.(p,G) + BY ’} Oy
T=1

0, denotes the Kronecker delta given by

1 f =
S = orR=re (4.56)
0 otherwise

Solution of the nonlinear equations via the procedure described above yields the G as
BG,,

functions of p and u. We now calculate the derivatives %5 (p, u) required in the coefficient
B(p,u) in eq. (4.42). They are determined by implic1tly differentiating equations F| =
0,...,F, =0 with respect to u

96y 1

ou
0G 0

" =TG- ] (4.57)

Finally, the 5% (p, u) are obtained from (4.27),
da

= A° —4B° 4.
oG, G, oG, (4.38)
where

oM n g oD L Of

_ oA L y@9P e 9
G, TZIZZP{ ~ag, T M )SGM}
ON &1 oD of

- —pd 2T (1 ple)gmary LT
e ;z”{TaG#Jr( ~5a,

3

of, 2T 0D,

acf: _ 22p<5mp el ) (4.59)
1 T
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with D = D(p, G(p, u)) and {522 (p, G(p, u))}.

The PDE (4.41) is a quasilinear diffusion equation that has been solved numerically
by an implicit finite-difference algorithm [77] described in detail in [54] in the region
(B,p) €10, Br]x[0, po]. The integration with respect to f starts at § = 0 and goes down to
lower temperatures. At each temperature the set of nonlinear equations (4.44, 4.49, 4.51)
is solved giving {G,(p,u)}: to ensure rapid convergence the values of the {G,(p,u)}
obtained at the previous temperature step in the solution algorithm of the PDE are taken
as initial guess for the solution of the system of nonlinear equations. In the next step
{D.,(p,u)}, a(p,u), gg‘: (pyu)}, {BGU (p,w)} and {222 (p,u)} are determined to calculate
the coefficient B(p,u). The boundary conditions are the same as in [59]: for p = 0 one
obtains from eq. (4.34)

u(p=10,8)=0 V3. (4.60)

For the boundary condition at high density py (we have set py = 1 in the calculations) we
make use of the so-called high temperature approximation (HTA) [4] according to which

the excess Helmholtz free energy per unit volume is given by

o (p, B —27rp/ ) gus(r)rdr VB (4.61)

This approximation becomes more accurate for high densities so that for a sufficiently large
value of the density py a boundary condition based on the HTA should be reasonable. If
we use the HTA at p = py one obtains for the reduced compressibility

0%u 0%u

a—pg(Po,ﬁ) = a—pg(poaﬁ =0) Vg (4.62)

The initial condition u(p, 5 = 0) can be determined by taking into account that for 8 = 0
the direct correlation function ¢(r) coincides with that of the HS gas. Thus K, = 0 for
v=2,...,n,yielding D,(p, =0) =0 for v = 2,...,n. Hence, eq. (4.29) reduces to

O0.Dy=Q, for v=1,...,n. (4.63)
For v =1 this leads to 0u(Ga( 0)
Di(p, 3 =0 (Gilp, f =0) 4.64
pf=0)= O11(Gi(p, 8 =0)) ( )
where G (p, 5 = 0) is obtained from the known quantity v, (p, 5 = 0) that was introduced
in the Laplace transform technique (see Appendix A of [59]) via

21 A-1

Gi(p,8=0) = PPy p—— (4.65)
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where
A= (2—\/6_1—71(P,5:0))m
. 1 Z1 — 2 —z
01_221<Zl+2+€ >
1 (2422 -4 o
n= 221 (4"‘221—2% te
(1+ 2n)?
with 7 = £p being the packing fraction. From eq. (4.63) for v # 1 one obtains
Gl =) = D10 =0) (B Gi(p. 5 =0) +BY)) + BY o
v\pP, P = = - :
Di(p, B =0) (B)Gi(p, 8 = 0) + BY)) + BY
and thus . 0
u(p, =0)=—-2mp’> ¢, ”(p’f =0) (4.68)
v=2 v

The unphysical region inside the spinodal curve is determined by checking the sign of a
given in (4.27): in the forbidden region a becomes negative. The boundary conditions on

the spinodal used here are the same as those in [59]

u(ps;, B) = us(ps,) =12, (4.69)

where pg, (i = 1,2) are approximates for the spinodal densities on the discrete density
grid at a given temperature. Their values are determined by locating the change of sign
of a. ug(p) is the value of the excess internal energy per unit volume where X—ld = 0. This
value is determined by solving the set of equations

a(p,Gq,...,G,) = 0
FZ(pJGla"'aan) =0

Folp,Gy,...,Gy) = 0 (4.70)

with respect to G4, ..., G, providing again the analytic Jacobian matrix of this nonlinear
system. Inserting the solutions Gi(p),...,G,(p) in the energy equation (4.34) yields
us(p)-

Once u(p, ) has been determined by solving the PDE (4.41) the pressure P and the

chemical potential p are obtained by integrating 6(’98—; and ‘98% with respect to [ from
JpP ou
bP _ —U+ p=— (4.71)

B dp
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and 95 5
gon _ 9t (4.72)
ap op
where we have taken as integration constants at § = 0 the CS values for SP and Su
L+n+n" =7
BP(p,B=0) = p—
(1—mn)
8n — 9In? — 3n3
Bu(p,f=0) = Inp+ (4.73)

3
(1—n)
Alternatively, 5P and Su can be obtained by integrating, respectively, ﬁ and —— with

PX
(am?) 1
8p T Xred
86u> 1
= i 4.74
( ap - pXred ( )

Both paths lead to the same thermodynamics due to the thermodynamic consistency

respect to the density from

enforced by eq. (4.35). However, the latter route has a serious drawback: in order to
reach the high density branch of the subcritical isotherms, that is separated from the low-
density branch by the spinodal, one has to circumvent the forbidden region via a path

‘around’ the coexistence curve.

4.2.2 Lennard-Jones fluid

The 12-6 Lennard Jones interaction describes surprisingly good the interaction between
rare gas atoms. The attractive r ¢ term represents a dipole-induced dipole interaction be-
tween the rare gas atoms, while the 7='2 term is an approximation for the harsh repulsion
at short range that has its origin in the overlap of the outer electron shells. Structural and
thermodynamic properties of this model system have been extensively studied in the last
decades using both computer simulations and theoretical approaches. For an overview

over these results see e.g. [4, 9].

Using the formalism developed in the preceeding section we are now able to study,
within the framework of the SCOZA, the liquid-gas phase behavior of a LJ fluid that is
modeled by a hard-core multi-Yukawa fluid. This system has already been investigated
by Pini et al. [60] using a simpler version of the SCOZA. In an effort to enable a direct
comparison of their results we will first use their fit to the LJ potential. In their study
the LJ potential was approximated by a hard-core two-Yukawa potential

A€

_ 1= —z1(r—o)
w(r) - e .

A2 astr) (4.75)
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Here o is the zero and € the well-depth at the minimum of the LJ potential

wo-w((2)- ) o

The parameters A; = 1.6438¢0, z; = 14.70° !, Ay = 2.030 and 2, = 2.690 ! are chosen to
fit the LJ potential (see fig. (4.2)).

In contrast to the route chosen in [60] where the HS contribution to the direct cor-
relation function is treated in an approximate way to avoid the introduction of a third
Yukawa tail we use here the closure relation (4.36) where the HS direct correlation func-
tion is given in the Waisman parameterization by an additional Yukawa term. So we deal

here with a direct correlation function of a three-Yukawa form outside the core.
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p* T*

Figure 4.1: Coexistence curve of the hard-core two-Yukawa fluid mimicking a LJ-fluid
(see text). Right: coexistence curve in the density-temperature plane. Solid line: binodal
curve, dashed line: spinodal curve. Left: Coexistence curve in the chemical potential-

temperature plane. All quantities are in reduced units (u* = op/e).

The numerical solution of the PDE (4.41) with the initial condition and the boundary
conditions has been performed on a density grid with Ap* = 1073 and a temperature
grid AB* = 1075, In order to locate the critical point accurately AS* is decreased when
approaching the critical point and afterwards increased back to the initial value. The

critical point (pf, T¥) is located by the vanishing of the inverse compressibility ﬁ At
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subcritical temperatures the region enclosed by the spinodal is excluded. The coexistence

curve is determined by equating the chemical potential and the pressure

w(py, T%) = p(py, T7)
P(py, T%) = P(p;,T7), (4.77)

where pj and pj are the densities of the coexisting gas and liquid. The values for the critical
density and temperature obtained in the different approaches are compared in Tab. (4.1)
with the predictions of the versions of the SCOZA of [60] and the MC simulation results
present, therein. The coexistence curve in the temperature-density plane and chemical
potential-temperature plane is given in figs. (4.1). The curves are hardly distinguishable
from the ones of the version of the SCOZA reported in [60] where the HS part of ¢(r) is
treated by a Yukawa form whose range coincides with that of the repulsive contribution

to the tail potential.

| MC  SCOZA SCOZA* SCOZA®
pr [0.310(1) 0306 0307  0.304
Tr|1.205(1) 1305 1304  1.293

Table 4.1: Critical density and temperature for the hard-core two-Yukawa fluid mimicking
a LJ-fluid (see text). MC simulation from [60]. SCOZA results for three-Yukawa c(r).
*x: SCOZA results using 2-Yukawa c(r) of eq. (2.17) of [60]. o: SCOZA results using
2-Yukawa c(r) of eq. (2.1) of [60].

As a further application of the formalism developed in the preceding section we have

fitted a three-Yukawa interaction by means of a point by point, least squares procedure

o0 r<o
r)= —z9(r—o —z3(r—o —z4(r—o ) 478
¢(r) {Cle(e 2£ ) oy 3£ L (1= ) 4; )) - (4.78)

to a HC LJ potential

oo r<o

o (r) = 4 <(%)12 B (£)6> re o (4.79)

r

see fig. (4.2). The difference between the HC LJ-potential and the fitted potential is not
distinguishable on the scale of the figure. For the fitting we have chosen 1000 points

2 all of the points were equally weighted:;

starting at » = 1 and spaced proportional to r
so we have provided more fitting points at lower values of . The parameters were found

to be 250 = 13.446, 230 = 3.482, z40 = 1.317 and c;0~! = 2.351, ¢, = 0.910.

The coexistence curve for this model potential is given in fig. (4.3).
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rlc

Figure 4.2: Full line: Hard-core three-Yukawa interaction potential. The parameters -
specified in the text - are chosen to fit a hard-core Lennard Jones potential. Dashed line:
HC2Y fit of Pini et al. [60] to the LJ potential.

1.2

T*

0.8

Figure 4.3: Coexistence curve for the hard-core three-Yukawa interaction fluid that mimics
a hard-core LJ fluid in the temperature-density plane. Solid line: binodal curve; dashed
line: spinodal curve. Critical point at (pf, T¥) = (0.296, 1.245).
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4.2.3 Fullerenes

The most studied case among the fullerenes is the Cgy molecule which consists of 60
carbon atoms held together by covalent bonds on the surface of a truncated icosahedron.
The molecules themselves interact with each other by van der Waals forces. Up to now,
most studies have focused on the solid phase (see [78] and references therein). At low
temperature Cgy crystallizes in an FCC lattice with orientationally ordered molecules.
This orientationally ordered phase is known to be only stable below 250 K, while at room

temperature the molecules undergo hindered rotations.

The LV phase transitions and the critical point of Cg, fall into a temperature regime
that is much higher, where the Cgg molecules can be considered to rotate freely. Thus in
this temperature region - in which we are interested in this study - one can ignore the
internal structure of the Cgq molecules and treat each molecule as if it were a sphere with a
uniform surface density. This rigid sphere approximation was assumed by Girifalco [79] in
order to derive a central analytic pair potential between the Cgy molecules. As interaction

between pairs of carbon atoms on different molecules he assumed a LJ-like potential

o(r) = —% + %, (4.80)
where the values of A and B are known from studies on graphite (A4 = 32:107%%ergem®, B =
55.77 - 107 %ergem!?). In the smeared out spherical approximation, Girifalco [79] has
shown that the interaction between two fullerene molecules with N carbon atoms can be
integrated over the two interacting spheres and leads to an analytic effective interaction

potential of the form

1 1 2 1 1 2
¢r) =—a s(s—1)3 T s(s+1)3 g] +h [s(s —1)? - s(s+1)%  s10| (481)

2 2
Here s = -, a = f;Rﬁ‘;,ﬁ = glgRi, N and R are the number of carbon atoms (N=60 for

Cgo) and the diameter, respectively, of the fullerene molecules.

Molecular dynamic (MD) simulations [78] have been carried out both for the spheri-
calized Girifalco potential with only one interaction site and the full 60-site model where
the interaction between two Cgy molecules is represented as the sum over the interactions
between all of the carbon atoms on one molecule with those of the other, the interaction
between pairs of carbon atoms on different molecules being described by eq. (4.80). In
this study it was confirmed that the center-of mass pair distribution function g(r) for the
full 60-site model is nearly identical with that obtained from the Girifalco potential. Thus
the use of the central pair potential - which represents an enormous simplification - was

justified for subsequent studies.
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Figure 4.4: A comparison of the 12-6 LJ potential (solid line) and the Girifalco potential
for Cgo (dashed line). The potential energy is expressed in units of the well depth, the

range in units of the zero of the potential.

As can be seen in fig. (4.4), the Girifalco pair potential differs significantly from the LJ
one. In the figure both potentials are drawn in reduced units to enable a comparison of the
shape. From this figure the following differences become evident: the ratio of the width of
the attractive well to the equilibrium distance is much less for the Cgo-Cgo intermolecular
potential than for the LJ one. This is immediately clear, since the interaction range is
determined by the C-C interaction range, while the diameter of the repulsive core is fixed
by the size of the Cgy molecule. Furthermore we see that the repulsive wall of the Cgq-Cgg
interaction is much stiffer. In fact the well depth of the intermolecular interaction (at

3218 K) is two orders of magnitude larger than that of the interatomic C-C interaction.

Since the Cgo pair potential differs in many respects from that of smaller molecules
the liquid-vapor phase behavior of Cgy was expected to differ qualitatively from that of
a simple fluid like argon. Further, since the liquid range expressed by 7./T; (where T,
is the critical point temperature and T} the triple point temperature) depends in a very
sensitive way on the nature of the intermolecular forces [4] it was even speculated that
Cgo might be a substance with no liquid phase at all [80, 81]. A similar situation occurs
in a very short ranged HCY fluid where it has been seen that the liquid phase disappears
for large values of the decay length [82, 83].

Up to now, several attempts have been made to clarify this situation. Phase diagrams

have been determined both with theoretical calculations and simulations, but the first
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results were rather controversial [84, 80, 81]. While MD simulations combined with the
thermodynamic self-consistent HMSA and the entropic freezing criterion (see below) [84]
predicted the existence of a liquid phase in a narrow temperature range of approximately
200 K (from ~ 1800 K to 2000 K), in other simulation studies [80], based on the Gibbs
ensemble Monte Carlo technique, the freezing line was found to pass slightly above the
(metastable) critical point of the LV binodal, thus implying that the Cgo does not exist

in a stable liquid phase and that direct sublimation occurs from the solid to the vapor.

Since both studies have been made for exactly the same system, namely the Girifalco
potential, these controversial results were rather puzzling and stimulated a series of other
theoretical and computer simulation investigations. Further theoretical studies for the
Girifalco potential were based on density functional theory (DFT) [85], on the MHNC
theory [86], the HRT [87]; computer simulation investigations were based both on the
Girifalco potential [88, 89] and on a more refined ab initio potential [90]. All these studies
have confirmed that Cgy should possess a stable liquid phase and that this liquid phase
is confined to a rather small temperature range compared to the value of the estimated
critical temperature (the latter feature being a consequence of the very short ranged
interaction potential between the Cgy molecules). It should be noted here, that it is
still an unsettled question whether this liquid phase exists experimentally: in this high

temperature range the Cgy molecules might not be stable.

Recently, also the phase behavior of C,>7o fullerenes was studied [91] theoretically,
and it was found that Cyy also possesses a stable liquid phase and that the temperature
range where this phase exists is wider and the critical point occurs at higher temperatures

than in the case of Cgy.

Since the SCOZA is known to remain highly accurate in the critical region, it is
of interest to apply this theory to the calculation of the phase behavior of the C,>g
fullerenes using the central Girifalco potential and to compare the results with those of
previous studies. The parameters of the potential eq. (4.81) for the different fullerenes are
taken from [91] and are given in table (4.2). Fig. (4.5) shows the fullerene potentials in
reduced units. It becomes visible that the interaction range decreases for the higher order
fullerenes. So one might speculate that the liquid range of the higher order fullerenes is
even smaller and this is exactly the behavior that we found when using the SCOZA; this

result is in contrast to previous results presented in [91].

In an effort to apply our SCOZA scheme to the Girifalco potential, we have approx-
imated the harsh repulsion of this interaction by a HS interaction ¢(r) = oo for r < Ry,

where Ry is the equilibrium distance between two fullerene molecules; the attractive tails
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R Ry €/kg o 6
Ceo | 0.71 0.9599 3218 74.94  135.95
Cro | 0.762 1.011 3653 66.7 79.23
Cr | 0.7991 1.048 3808 59.2 52.87
Css | 0.8401  1.0890 4081 53.56  35.42
Cog | 0.8981(®)  1.1468(®) 4467  46.83(@H  20.74

Table 4.2: Parameters for the Girifalco potential for different fullerenes C',, n = 60, 70,
76, 84 and 96. R is the diameter of the fullerenes, R, is the point of zero potential, €
is the depth of the potential «, 8 are given in the text; distances are expressed in nm,
temperatures in K, and « and 3 in units of 107 and 10™'® erg, respectively. (a): values

taken from [92] and correcting the values from [91]. (b): correcting a misprint of [92].

were fitted by a linear combination of 3 Yukawas. Thus we are dealing again with a pair
potential of HC3Y form

00 r < Ry
r)= —zo(r— —zg(r— —z4(r— . 482
¢( ) {016 (e 2(r Rg) . 023 3(7" Rg) . (1 . 02)3 4(7" Ro)) r> RO ( )

The values of the fit parameters ¢y, ¢z, 22, 23 and z; are summarized in table (4.3) for the

c1/ Ry Co 29 R 23Ry 24 Ro

Ceo | 1.7458 0.9209 45.1889 7.4129 2.1648
Cro | 1.8906 0.8322 42.7205 9.0618 3.1977
Cre | 1.8817 0.8347 44.4324 9.3274 3.2635
Css | 1.8444 0.8521 47.0927 9.3752 3.1930
Cog | 1.8503 0.8438 49.2079 9.9826 3.4078

Table 4.3: Parameters of the fitted HC3Y potential for the different fullerenes. See text
and equation (4.82).

different fullerenes. We have then solved the SCOZA and have thus determined the phase
diagram and the critical data. The critical point parameters for Cgy are summarized in
table (4.4) together with other theoretical results and simulation results. It should be
noted that only the SCOZA and the HRT are able to access the critical region, whereas
the other theories are not able to approach the critical point: thus in these cases the
critical point parameters have been obtained by extrapolation. Our value for the critical
point temperature 7, is in good agreement with the simulation results of [84, 88, 89] and

the value of the critical density agrees with the simulation results of [80, 88, 89].
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Figure 4.5: The Girifalco potential for the different fullerenes in reduced units.

In order to give an estimate for the location of the freezing line we have used the
residual multi-particle excess entropy freezing criterion [93] according to which freezing
takes place when

AS = Sep — 59 =0, (4.83)
where the partial entropy resulting from the correlation between a pair of particles is
Sg = —=27p /OOO r*(g(r)Ing(r) — g(r) + 1) dr (4.84)
and s.; is the excess entropy per particle in units of the Boltzmann constant
Sew = g (u— f). (4.85)

The pair distribution function g(r) required in the integral (4.84) has been calculated
according to a stepwise algorithm based on Perram’s procedure proposed originally for
HSs [94]. Explicit formulae for its generalization to the HCY case can be found in the
Appendix D of [75]. Care has to be taken when the screening lengths of the Yukawa tails
are of different orders of magnitude as it is the case in our systems (see table (4.3)). For
implementing a numerically stable algorithm we had to reorder the summation over the
Yukawa tails occurring in these expressions. For the discretized pair distribution function
g(r) a grid space of 0.0050 was chosen and we have evaluated the integrand in eq. (4.84)
up to 200. We have checked that the extension of the integrand to higher values of r does
not change the value of the integral. The integral (4.84) was evaluated via the Simpson

rule.
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SCOZA HMSA MHNC HRT

T.(K) 1957 ~2050 ~1920 2138

pe[nm ] 0.432 ~0.56 0.50
MD MC GEMC NVT MC

T.(K) 1900+£100 1798+10 1920-1940 1980

penm?] | 0.56£0.06 042  0.4-045  0.44

Table 4.4: Critical parameters of the Girifalco potential for Cgy as predicted by SCOZA,
HMSA [84], MHNC [86], HRT [87], DFT [85], MD [84], MC [80], Gibbs ensemble Monte
Carlo (GEMC) [88] simulations and NVT Monte Carlo simulations (NVT MC) [89]. In
the MC study of [80] the critical point is a metastable one.

The coexistence curve, the spinodal line and the freezing line given by the SCOZA
are plotted in fig. (4.6). The triple point parameters, that are obtained by intersection
of the liquid branch with the freezing line, are given in table (4.5) together with other
results. While our value of the triple point density is reasonable when compared to the

other results, our triple point temperature is much lower than in the simulation studies.

SCOZA HMSA  MHNC HRT

T K] 1388 1774 1620 1979

pnm=] | 103 0944 100 0.848
MD MC GEMC NVT MC

T K] 1800 - 1500-1700 1880

pe[nm ™3] ~1 - 0.91-1 0.74

Table 4.5: Triple point parameters of the Girifalco potential for Cgy predicted by the
SCOZA, HMSA [84], MHNC [86], HRT [87], DFT [85], MD [84], MC [80], GEMC [88]
simulations and NVT MC simulations [89]. In the MC study of [80] no liquid phase and

thus no triple point was found.

The phase diagrams of the other fullerenes are shown in figs. (4.7) and (4.8); the critical
point and triple point parameters are compared with the results of Abramo et al. [91] in
table (4.6). Their results for C7y have been obtained by the MHNC theory and by GEMC
simulations, while those for the other fullerenes were approximated by assuming a law of
‘corresponding states’. The corresponding state behavior was motivated in the following
kT/e and p* = pR3 the Cgy and Cyg

interaction potentials look very similar and the critical point parameters differ by less

way: by introducing reduced units ¢/e,r/o, T* =
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Figure 4.6: T — p phase diagram for Cg, determined by SCOZA. Liquid-vapor coexis-
tence (solid line), spinodal (dotted line), freezing line (dashed line). Critical point at
(pe, T.)=(0.432nm3,1957K), triple point at (p;, T;)=(1.03nm > ,1388K).

than 1%. So the authors assumed that the critical point and triple point parameters
expressed in these reduced units should be the same also for the higher order fullerenes.
Table (4.6) summarizes the triple and critical point parameters for Crq,Crg,Cgq and Cgg

that have been obtained by applying this ‘corresponding state’ rule to these fullerenes.

The SCOZA values for the critical point temperature parameters of C7y are in good
agreement with the GEMC results, while the discrepancy with ‘corresponding state’ es-
timates is steadily increasing from Cyy to Cgs. This tendency is in agreement with the
final remark in [91] where the authors conclude that the corresponding state rule tends to
overestimate the critical point parameters. In the SCOZA the critical point temperature
increases from 1957K for Cgy to 2405K for Cgyg - since the depth of the potential increases
- and the critical point density decreases from 0.432nm =3 to 0.264nm=3. The temperature
range of the liquid phase expressed by T./T; decreases from 1.41 for Cgg, 1.38 for Crg, 1.36
for Crg, 1.33 for Cgy to 1.30 for Cyg while it is constant by definition for the ‘corresponding

states’ results.
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Figure 4.7: T — p phase diagrams for Cyy, Crs, Cgq, Cog determined by SCOZA. The
freezing line (dashed line), liquid-vapor coexistence line (solid line), spinodal (dotted

line).
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Figure 4.8: T — p phase diagrams of the fullerenes Cgy,Cr9,Cr6,Cs4,Cog obtained from

SCOZA. Temperature and densities have been scaled with their respective triplet point

values. The range of the liquid phase is decreasing with the number of carbon atoms.

pelnm =] | TIK] [ pulnm ] | TiIK] [ polom ] | K] | pulom ] | TilK]
SCOZA GEMC

Crn | 0.372 2113 0.879 1531 0.376 2140 0.88 1650

SCOZA ‘Corresponding state’ estimates

Crn | 0.372 2113 0.879 1531 0.36 2190 0.85 1703

Crm | 0.338 2159 0.789 1593 0.32 2284 0.77 1775

Csqs | 0.304 2268 0.702 1706 0.29 2448 0.68 1902

Cos | 0.264 2405 0.601 1849 0.24 2505 0.58 1947

Table 4.6: Critical- and triple point parameters for different fullerenes. Values for the

critical point and triple point parameters from GEMC simulation and by assuming the

law of ‘corresponding states’ are taken from [91].
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4.2.4 Double Criticality

Although the Gibbs rule does not exclude the possibility of the existence of more than
two fluid phases in a one-component substance, one usually finds at most two of them:
one at low density (the vapor) and a second one at higher density (the liquid), the two
phases becoming identical at a LV critical point. So an additional disordered phase and
an additional liquid-liquid transition that is common for mixtures, is unexpected for pure
substances. However, in recent experimental studies [10] evidence was found that in
addition to the usual vapor-liquid transition a second liquid-liquid transition might exist
in the supercooled region of certain fluids; this phenomenon is commonly referred to as

double criticality.

This phenomenon has been analyzed within a simple van der Waals model by Tejero
and Baus [95] and their results were confirmed qualitatively in a subsequent study by
Almarza et al. [11] by means of computer simulation, a perturbation theory and an integral

equation theory - the reference hypernetted chain (RHNC) theory.

In both studies a density-dependent inverse power interaction was considered, whose

exponent has a non-monotonic density-dependence. The proposed functional form was

+00 r<o
o(r;p) = N - (4.86)
—€ (;) r>ao
where the potential index is given by
0) -3
n(p) =3+ — 0 (4.87)

1—2ap+ ;a2p*

By tuning n(0) and « different types of critical behavior were obtained. In particular
phase diagrams with two critical points were found, one corresponding to a stable or
metastable (with respect to the liquid-solid transition) vapor-liquid transition and another
one corresponding to a stable or metastable liquid-liquid separation. The metastable
liquid-liquid critical point was found to lead to a shoulder in the liquid-solid coexistence

curve [95].

Due to the discrepancies that were found in [11] between computer simulation results
and theoretical results a more refined study of the phenomenon of double criticality with
a reliable theory is of course desirable. Since the SCOZA is known to be a highly accurate
theory even in the critical region it should be able to give quantitative predictions for the

phase diagram of a system with density-dependent pair potential.
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The HCY potential is the most comfortable potential for a study with the SCOZA.

So we consider here a system with density-dependent pair interaction of the form

+00 r<o

QS(?",p) = { _Ee—z(p)(r—a) r>aog ’ (488)

;
where the density-dependent screening length is assumed to be given by

zp0 — 1.6

. 4.89
1— %ap + %cﬂp? ( )

z(p)o =1.6 +

This density-dependence was motivated by eq. (4.87). So —if zg0 # 1.6 — z(p) is a non-
monotonic function of p which increases for zy0 > 1.6 from the zero-density limit zyo to
a maximum of (3290 — 3.2) at p = 2 and then decreases as shown in the fig. (4.9). For

290 < 1.6 the curve has a minimum at p = 2/a.

2,4 ; ‘
— 200:1.8
— 200:1.7
2,2 2,0=1.65

z(p)o
N

1,8 -

1,6 . | | | | | | | |
p*

Figure 4.9: Density-dependence of the screening length z(p) of the HCY potential of

eq. (4.88) as given by eq. (4.89) with a = 5.7vg, where vy = TS is the HS volume for

different zy values. Note the pronounced maximum in z(p)o for larger zyo values.

Since the compressibility equation (2.11) remains valid for density-dependent pair
potentials (see [96], page 342), the SCOZA scheme presented in section 4.2.1 can be
applied for such a system too. We only have to take account of the fact that due to two
critical points two nonphysical regions, where 1/x"¢ < 0, have to be excluded from the
solution of the PDE. The two different kinds of instability regions in the interval [0, po]

for given value of T' are shown in fig. (4.10).
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a>0 a<0

Figure 4.10: The different cases of the instability region where a < 0 (4.26) in the interval
0, po] for a given value of T for a density-dependent HC1Y fluid. The full lines denote
the stable regions where a > 0, while the dashed lines represent the unstable regions that

are excluded from the integration of the PDE.

A series of phase diagrams with varying « values has been generated for different
values of zp; it is shown in figs. (4.11) to (4.19). In the case zpo = 1.6 the potential
is density-independent, i.e. z(p)o = 1.6 and the phase diagram is shown in fig. (4.11).
For zpo0 > 1.6 a non-monotonic behavior occurs that becomes more pronounced as zj

increases.

A series of phase diagrams for z; = 1.80 is shown in figs. (4.12) and (4.13). The value

1,6

1,4

1,2

T*

0,8

0,6

Figure 4.11: Phase diagram of a fluid with a density-dependent pair potential given by
eqs. (4.88) and (4.89) for zpo = 1.6. Solid line: binodal curve; dashed line: spinodal

curve.
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Figure 4.12: The same as in fig. (4.11) for zoo = 1.8. Dotted line: metastable coexistence

curve.
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1,2

Figure 4.13: The same as in fig. (4.12) for zp0 = 1.8.
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Figure 4.14: The same as in fig. (4.12) for zp0 = 1.7.
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Figure 4.15: The same as in fig. (4.12) for zp0 = 1.69.
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Figure 4.16: The same as in fig. (4.12) for zp0 = 1.68.




Self Consistent Liquid-State Methods

76

0,4 0,6 08

0,2

p*

Figure 4.17: The same as in fig. (4.12) for zp0 = 1.67.
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Figure 4.18: The same as in fig. (4.12) for zp0 = 1.66. In the case the coexistence curves

are very flat near the critical point, the insets show details on a different scale.
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1,4

Figure 4.19: The same as in fig. (4.12) for zpo0 = 1.65.
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of « is increased from o = 0 (where z(p)o = 1.8) to a = 100vy; vy = 7%3 is the HS
volume. In the limit @ — oo the case z(p)o = 1.6 is recovered: so the phase diagram for

a = 100vy and zpo = 1.8 should be close to the one of fig. 4.11 (zp0 = 1.6).

If we consider the series zopo = 1.8 we observe one critical point and, as « is increased
from 0 to 3wp, that p} and T decrease. For a = 5.1y, a shoulder appears on the high-
density side of the liquid-vapor coexistence curve, which becomes more pronounced when
further increasing «, so that at o = 5.3vy a metastable critical point of a liquid-liquid
transition occurs, turning into a stable one at a = 5.5v5. At o = 5.7y the temperature
of the low-density critical point is lowered and at oo ~ 5.9v this critical point turns into a
metastable one. When further increasing « this critical point becomes a shoulder on the
low density side of the coexistence curve which gradually vanishes as o becomes larger.
The remaining single critical point shifts, as further increasing «, dramatically to smaller
p*-values. The parameters of the critical points are given in table (4.7). The density
difference of the two critical points is approximately p;, — p;; ~ 0.68 — 0.23 = 0.45 for
avy = 5.5 and remains nearly constant over the a-range where double criticality occurs.
Note the non-monotonic behavior of pj . and T3, as « is increased.

a/vy | pr 1% Pro 1%
010314 1.219
310267 1.033
5.110.231 0.894
5.310.230 0.883 | 0.679° 0.806°
5510.230  0.872 |0.681  0.853
5.710.232 0.863 |0.676  0.900
5.9 1 0.238% 0.855° | 0.668  0.948

6.1 0.658  0.995
6.3 0.648  1.041
9 0.514  1.522
20 0.275 1.801
100 0.308  1.390
00 0.306  1.392

Table 4.7: Parameters of the critical points (pf,T*) of a fluid with a density-dependent
pair potential given by eqs. (4.88) and (4.89) for zp0 = 1.8. Metastable critical points are
marked with a diamond.

A similar sequence of phase diagrams is found for zyo = 1.7; it is depicted in fig. (4.14).
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afve | pry T | e T
01]0.310 1.299
310283 1.185

5.510.259 1.070
5.7 10.260 1.062
5.9 10.262 1.055
6.1 ] 0.266 1.050
6.3 | 0.274 1.045 | 0.579 1.047

6.5 0.580 1.083
9 0.488 1.442
100 0.307 1.391

Table 4.8: The same as in table (4.7) for zpo = 1.7.

As we increase « the two stable critical points first appear now at a ~ 6.3y and the
difference of the critical point densities p7, — pi; ~ 0.58 — 0.27 = 0.31 is smaller than in

the previous case. The parameters of the critical points are given in table 4.8.

We have then produced further series of phase diagrams for zp0 = 1.69, 290 = 1.68, zy0 =
1.67 and zpo = 1.66 (see figs. (4.15)- (4.18)): in all cases two critical points were found for
different a-values, i.e., at a = 6.4vy, o = 6.55vy, @ = 6.7vy and o = 6.91vy, respectively.
For zy0 = 1.66 the two critical points are no longer well separated, the density difference
being now only p7, — p7; ~ 0.46 — 0.35 = 0.11. Furthermore the a-range, where double

criticality occurs is very limited compared to the previous cases.

If we further decrease zpo to 1.65 where only a weak p-dependence of the Yukawa
screening length z(p)o is observed (see fig. (4.9)) the two critical points merge, resulting

in a very flat coexistence curve for o = 7.14vy. A preliminary study of the critical exponent

200 | afvy Py, Pea  Pep — Pea
1.8 |55 0.230 0.681 0.451
1.7 163 0.274 0.579 0.305
1.69 | 6.4  0.282 0.559 0.277
1.68 | 6.55 0.295 0.537 0.242
1.67 | 6.7  0.311 0.504 0.193
1.66 | 6.91 0.353 0.460 0.107

Table 4.9: Density difference of the two critical points for different zy values.
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$ has shown that 8 ~ 1/4 - the value of a tricritical point that occurs when two order

parameters vanish at the same time [97].

To conclude the parameter o triggers the appearance and position of a shoulder on
the high- and low-density side of the coexistence curve, the existence of a metastable or
stable second critical point - if the 2z, value allows a second critical point - while zy triggers
the existence of two critical points and - if two critical points are present - their density
difference. Table (4.9) shows the density difference of the two critical point for different

2o values and fig. (4.20) the a-range where double criticality occurs as a function of z.

7 T T T T T 0,6
I T 105
6,5 [ + I
]{ 104
g 6— ++ ] 0’3%
) .
i + 10.2
551 + 10,1

C 1 I 1 I 1 I 1 I 1
1,6 1,65 1,7 1,75 1,8 1,85

Figure 4.20: Bars (lefthand-side scale): range of the values of & where double criticality
occurs as a function of zyo. Pluses (righthand-side scale): density difference of the two

critical points as a function of zyo.
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4.3 SCOZA for a Binary Symmetric Fluid

For the one-component Yukawa fluid the SCOZA provides very accurate predictions for
the thermodynamic properties and the phase diagrams as was demonstrated recently in a
comparison with Monte Carlo simulations [59]. As one can expect this promising approach
to be of similar accuracy in the case of fluid mixtures, it is of interest to study the
SCOZA for a simple model system, namely the binary symmetric fluid (see section 3.1.3)
that exhibits - due to the competition between fluid demixing and liquid-vapor phase

transition - already a rich phase behavior (see [12]).

4.3.1 Basics

Here we consider a binary symmetric HC1Y mixture. The expression for ¢;; is then

r>1"~

00 r<l1
d11(r) = { S = (4.90)

where zy is the screening length of the potential; the hard-sphere diameter o and the

interaction strength of the attractive tail €;; have been set equal to unity. Thus the usual

kTo
€11

can be identified as p;, p and kT. To describe the thermodynamic state of the system we

reduced quantities pf = p;03, where p; are the partial densities, p* = po? and T* =

further introduce the concentration of species 1, x = 2 and the packing fraction n = Zp.
P 6

For this system the closure relation to the OZ relations for a mixture (2.27) in the
MSA is

gij(r) =0 r<i1
{Ciﬂ'(r) = —Bgij(r) r>1" (4.91)

In the version of the SCOZA considered here the closure relation reads

gij(r) =0 r<il
{%'(T) )+ K gy(r)  r>1" (4.92)

introducing state dependent parameters K;j as multipliers of the ¢;;(r)-term of the MSA
outside the core. Further we add a second term that represents the pure hard-sphere
direct correlation function c/;°(r). The SCOZA closure (4.92) reduces to the one of the
MSA (4.91) if we fix KY = —j and set ¢ys = 0 for r > 1; in the SCOZA, in contrast, the
parameters K;j are not fixed a priori but instead are determined so that thermodynamic

consistency is partly fulfilled (see below). The HS parts of the direct correlation functions,
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CZH]-S(T), are independent of the attractive tails; the fact that the HS reference system
(0ij = 0=1) is a one-component system yields c}i*(r; p, ) = cus(r; p). Hence, we can use
again the Waisman parameterization [42] for cys with its mathematical conveniences.
The parameters K;j(ﬁ, p, z) are obtained by requiring that the compressibility and
energy route yield thermodynamically self-consistent results. The symmetry relations of

the system lead to

K%l(ﬁ,p,l‘) = K222(ﬁ,p,1—1') (493)
K212(67p71‘) = K212(67p?1_1‘) (494)

We introduce now an additional approximation for the K5’s which has been motivated by

the simpler MSA closure

Ky (B,p,7) = Ky*(B,p,2)
K212(B;P; 1- :C) = K%l(ﬁ,p, 1- l‘) = K222(ﬁ,p,l')
= K2(5apa IL’) = KQ(Bapv 1 - 1‘)7 (495)

reducing thus the number of unknown functions from three to one which will be denoted
by Ky(53, p, ). Thus the closure relations (4.92) read (i,j =1, 2)

0 r<l

9i(7) N N
cii(r) = Ky (B, p,x) =22 + Ky (p) = r>1. (4.96)

cia(r) = ak (B, p, 1) 2 4+ K (p) ) >

r (s

The SCOZA requires consistency between the compressibility route and the internal en-
ergy route. In the latter the relation between the structure and thermodynamic properties

of the system is provided by the excess internal energy (over the ideal gas) per unit volume,

U= U7ew, given as an integral over the pair potentials weighted by the radial distribution
functions (2.29), i.e.,
u = QWZpipj/qbij(r)gij(r)err (4.97)
ij

50 6722(1"71)
= —27rp2/1 — [m2911(7“) +22(1 — 2)ag(r) + (1 — :E)ng(r)] ridr

= —2mp’e™ (m2§11(22) +22(1 — 2)agia(22) + (1 — a:)QQQQ(ZQ)) ,
where ¢;;(z) denotes the Laplace transform of rg;;(r).

According to the compressibility route the thermodynamic properties are obtained
from the relations (2.31)

o 0B
! Op1

1-— plén(k = 0)
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0 _
P2 aﬁp/f = 1- P2C22(/<7 = 0)
0B N
= — k =
p1 9 pici2(k = 0)
OB s -
= — k=0). 4.98
P2 B P2C1a( ) ( )

In the case of thermodynamic consistency, i.e., if the thermodynamics stems from a unique

Helmholtz free energy density f = g one obtains with

"y a/Bfel’ afe:r _ ox afe:r B ox

the consistency conditions
Pu 0 (025f“> 0 (%u?)
op? o\ 0pt 98\ om
0/ .
= %(—Cll(lﬂ = 0))
0%u J/
o7 = sl on=0)
0% 0
= —(—¢ia(k=0)). 4.100
p10p2 35( Gz )) ( )

Due to the assumption introduced in eq. (4.95) that reduces the number of unknown
functions from three to one, only one PDE for the determination of this unknown function
is necessary. So instead of the coupled system of PDEs (4.100) we only need one PDE; we
have decided to use the following linear combination of the PDEs of (4.100) which leads

to the consistency relation between the internal energy route and the reduced isothermal

compressibility
Pu 3 (A2 )
o o \"0 T 0, T 203
0 1
= —(1—-- ipiCii(k =10
0 1
= — 4.101
85 (Xred> ’ ( )
with

1 1
1 08P
XTEd — (1 _ ;szpjél](k = 0)) = (%) . (4102)
)

The advantage of the resulting PDE is the fact that we can treat x just as a parameter,
i.e. the PDE can be solved independently for different values of x.

red

The task is now to express x™ as a function of u so that eq. (4.101) becomes a PDE

for the internal energy.
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4.3.2 Equimolar Binary Symmetric Mixture

First, we consider the simpler equimolar case. If we choose the parameter a > 1, i.e.,

the attraction between unlike particles is larger than between like particles, no demixing

transition occurs and the liquid-vapor transition is entirely situated in the z = % plane. We

thus restrict in the following our considerations to the special case where the concentration

of the two components is equal, i.e., p1 = py = £.
Due to the symmetry relation
1 1
hi(rspyw = 5) = hae(r; p,2 = 5) (4.103)
and introducing correlation functions h, c4
hi1 £h

hy = % (4.104)

+
co = 6”72612 (4.105)

the OZ equations decouple into two equations, each of them representing an OZ equation
of a pure fluid (denoted by + or -)

hi =cy + PC+ X hi. (4106)

The closure relations for the linear combinations of the correlation functions now read

hy(r)=—1 r<l1
’ - liae—22(—1) e—21(p)(r—1) (4.107)
ci(r) = Ky(B,py2) 52 —— + Ki(p)—— 1>1

r

and

h_(r)=20 r<l1
(r) o e2(r—1) . (4.108)
c(r) = Kx(B, p,x) 5" r>1

r

The analytic solution of the OZ equation with the closure relation (4.107) for the ‘4’-
system has been studied extensively in [44, 63, 52].

The closure relation for the ‘-’-system is characterized by a different core condition for
h_(r). Nevertheless, an analytic solution of the OZ equation with closure relation (4.108)
can be derived, either via the Laplace transform technique of via the factorization method

of Baxter [74]; details of the calculation can be found in Appendix A.

We now introduce ¢ = ((1;:2:))2 and the quantity

1
Xred '

f=01-n) (4.109)
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Thus eq. (4.101) becomes
2f Ofou _ Ju
A—nfouds " op (4.110)

In an effort to turn this relation into a PDE for u, f has to be expressed as a function of p

and u. According to Hoye and Blum [98] and sticking to the notation used in that article

the inverse compressibility via the fluctuation theorem for an equimolar fluid mixture is

1 1
= 1—==> pip;éij(k =0)
d iPjCij
Xre p Z’]

Lo~ (2), o

where we have used Ay = A, +A_ Ay = A, —A_and A_ =0 (see eq. (A.8) of Appendix
A). Using the analytic expression for A, given in [63], f can be written as [59]

2 2 + n v (v +
po Gl o) gosatiOfoot)

2t 22t 2% P P
4 (ZQ,Y2 21 ,Yl ) 12 (if)/? - ﬁf)/l

where the quantities 7;" and ;" are given by

vio= 2—\/_—ﬂ (4.113)
Us
Wi

o= 2 i L

Yo \/_ WO

The ratio
W1 . 4+222—Z§7‘2[;—1

Wo 202+ 2) oolf —1

(4.114)

depends on the integral,
I = 47rp/ drre=>20Dg. (1), (4.115)
1

the expression %1) is obtained from (4.114) and (4.115) by replacing the index 2 by 1. The

quantities 7; and o; depend only on the screening lengths z; and are given by

1 Zi -2 B
.= — ~Zi 4.116
“ QZZ' (ZZ + 2 te > ( )
1 (22422 —4 _
D = — | TF , =1,2). 4.117
; %<LM%_#+6) (i=1.2) (4117)

With (4.115) and with the definition of the integral

I~ = 47rp/ drre=>20=Dg_(r) (4.118)
1
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the excess internal energy per unit volume, u, eq. (4.97) can be rewritten as

u:—g (HQ'“I;+ 1;%). (4.119)
The partial derivative, %, appearing in eq. (4.110) now becomes
+ +
% = ai]; ag; + aij; agj . (4.120)
In order to determine the derivatives % and % we need additional analytic results. To

this end we use a further equation given in [59],

with
= /g Gt (4.122)
T = Jq— — :
oy
2
+ 2
yto= Vi
Vi vy
and A )
2i —z)m .
= B2 2Ty g (4.123)

2(2+2)0;

We write eq. (4.121) formally as G(z*,y™, p) = 0, or, with the expressions (4.122) for
" and y* inserted as Fi (7,7, p) = 0. A second equation can be derived as follows:
first, an analog equation to (4.121) including the unknown function K5 is obtained by

exchanging the indices 1 and 2, the quantities 7 and y* and replacing K; by K,2:

[4(2-va-a) (va-v) - 4]
(1@ 1) =0 = (- D) (- F+ 4 - )

384nz4 o 4
- m&% (y*—ah)". (4.124)

In the Appendix A it is shown that (A.40)

2
1 -« 1, _9\ [ 22+ 2 _ 5
6nK, 5 = (ZZZ —(y7) ) ( 7 op; (4(1 —a)(1—y7) — 22)> (4.125)
where , .
_ Z9 _ 1
y =1-—— =1-— 4.126
47, T Vo ( )
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and
‘/1 _4—|—22’2—Z%T2[7—1

Vo o 2Q2+2z) ool —1
Elimination of K, in egs. (4.124) and (4.125) yields the second equation

4(2- va—oo) (vi-v) -]
(4@ -4 (ot —a*) = (2 - 23) (22 - 2 +4(W)? - (@4)?)}

~ i et - (F - )

4(1— ) (1—y ) — 23 (4.128)

(4.127)

or schematically written as Go(z*,y™,y~, p) =0, or, Fo(v{", 7,72 , p) = 0 respectively.

To calculate the derivatives in (4.120) we need to express u as function of v, and 7, .
Using eqs. (4.113, 4.114, 4.126, 4.127) we obtain with

:: 4.129
%= T 22y — 22 (4.129)
b (2— JG—) -1
o= (2-va 722 (4.130)
022 (2= /175 ) =7
1—77) -1
ro- " () (4.131)
0202 (1 - 75) — T
(4.132)
and thus, via (4.119),
u=9(73,%p) (4.133)
where
g0 i) = L[ 022 v 0i) -1 +
2 2 0y 2—\/6?—7;_)—’@

-« ¢2(1—7_)—1 ) (154)

Summarizing, we therefore obtain a set of three coupled nonlinear equations
Fy(v98,0) =0

FZ (Vf—a’Y;a%_aP) = 0
u—g(v v ,p) =0 (4.135)
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For given values of p and u the zeros of these equations yield v;", 75 and v, in terms of

p and wu.

Eqs. (4.135) are solved numerically with respect to 7;",75 and 7, by a Newton-

+ o5t
Raphson method. The partial derivatives %, 88% are determined implicitly through

-1

afﬁr OF 1 OF" 1 0

o oy ov 0

8")/2 _ 8F2 BFQ aFQ 4 1
ou | | o o o 01 (4.136)
Oy dg dg

ou 0 vy Oy

Thus eq. (4.110) takes the form

ou 0%u
ou _ ou 4.1
B(p,u)7 3 C(p,u) o7 (4.137)
with
2f [af oOF,  Of aFI] OF,
Blp,u) = _ 2 4.138
(6, (1=n)? (07 075 073 07 | o, (4.138)

C( u) . aFl 8F2 _ 8F2 8F1 8g _ 8F1 8F2 8g
P P\ ong T o0 ) 0 o 0y, 0a |

All the partial derivatives in eqs. (4.138) are calculated at constant p and can be deter-

mined analytically using
aFl . 8G1 8x+

= tc. 4.139
oy (4.139)

The resulting expressions are evaluated at those values of 7;", 75 and ~v; which are solu-

tions of the system of nonlinear equations (4.135) for given values of p and wu.

The PDE (4.137) is a non-linear parabolic equation that was solved numerically as
explained in [54] on (5,p) € [0,8f] x [0, po]. The initial condition and the boundary
conditions of the PDE have been chosen as in [59]. For f = 0, we take g, = gus and

g— =0, hence
u(p,3=0) = —2mp° L ; a /oo drre=20 =g o (r) (4.140)
1
u(p=0,6) = 0 Vg (4.141)
a2u(p07 5) 82u(p0, 5 = 0)
= 4.142
o2 90 v (4.142)

In addition, u in eq. (4.140) can be determined analytically: in fact, for 3 = 0, v (p) is
known explicitly (see Appendix A of [59]). One can solve eq. (4.112) for v as a function
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of v, f and p. If we use the CS expression for x"*? to obtain f(3 = 0) then v5 (p, 3 = 0)
is known. Since K (p, f = 0) = 0 we obtain from eq. (4.125)

y (B=0)= —%zy (4.143)
and with eq. (4.126)
e N 2
7, (B=0) = 32+ ) (4.144)

This yields with eq. (4.133) u(p, 3 =0).

The unphysical region bounded by the spinodal curves where the compressibility di-
verges, i.e., where f vanishes, is excluded from the integration. Thus below the critical
temperature (5 > [3.) the PDE is solved in the low and high density physical region where
f > 0 separately with the additional boundary conditions

U(Psia 5) = US(PSi) 1= ]-7 27 5 > 50 (4145)

where pg, and pg, are approximates for the densities of the low and high-density branch
of the spinodal where f = 0. ug(p) - the value of the excess internal energy at density
p where the compressibility diverges - is determined in the following way: By setting
f =0in eq. (4.112) one obtains v;" = i (p, 75 ). Inserting this expression in eq. (4.121)
one obtains a nonlinear equation for 7. The solution of this equation allows one to
determine the value of v (p) when f = 0 thus yielding via the relation v;" = v, (p, v3)
the corresponding value of 7;"(p) for f = 0. If these values of v; (p) and 75 (p) are inserted
in eq. (4.128) one obtains a nonlinear equation for -, . Its solution inserted in eq. (4.133)

finally yields ug(p).

The pressure P and chemical potentials pq and us are obtained by integration of

OB 0 JpBf 0 0Bf Ou
- - = _Z 7 _ 77 4.146
95~ B om 0p 08 op (4.146)
OBz Ou
- 4.147
B om (4.147)
opr ou
(4.149)
with respect to 5. Thus
ou _ Ou o Ou _ Ofm _\9Bpe
o = Tap TUmWg, =y TU-DT,
_ B
= 5 (4.150)

In the last equation of (4.150) we set 2 = 1 and we have used p1(z = ) = pa(z = 1). For

the values of the thermodynamic quantities at 5 = 0 we have used the CS expressions.
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4.3.3 Results
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Figure 4.21: Coexistence curves of the equimolar hard-core Yukawa fluid with screening
length z0 = 1.8 in the temperature-density plane for different values of the interaction
ratio . From top to bottom: o« = 2,1.5,1.2,1.1,1.0,0.9.

We consider mixtures with different relative interaction strengths o ranging from o =
2, over a = 1 to a = 0.9. In the first case, & = 2, the unlike interaction dominates the like
interaction, for & = 1 the mixture reduces to a one-component system, while for oz = 0.9
the like interaction weakly dominates the unlike one. However, the dominance of the like
interaction, that triggers the demixing of the fluid mixture is still too weak to lead to a
demixing transition within the density and temperature range that is explored, hence the
coexisting vapor and fluid phases are both equimolar. In all calculations we set zo = 1.8.
Table (4.10) shows the values (pf, T7) of the critical points for the different v values and
fig. (4.21) shows the binodal curves. It appears that when « decreases the binodal curve
shifts downward with a decrease of the critical temperature from 7 = 1.843 at a = 2 to
Tr = 1.158 at a = 0.9, respectively. The influence of the variation of o on the critical

density p; is much smaller; in fact pi = 0.313 and p; = 0.314 at @ = 2 and a = 0.9,
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respectively. Similar tendencies have been reported in a study by Caccamo et al. in [99]
using the MHNC theory.

a\ 9 15 12 1.1 1 0.9
pr 10313 0314 0314 0314 0314 0.314
T 1843 1.529 1.342 1.280 1.219 1.158

Table 4.10: Critical densities and temperatures for the equimolar hard-core Yukawa fluid

for different values of the interaction ratio «.

0,9

08 0,85
T
|

T*
0,75

Figure 4.22: Coexistence curve of the equimolar hard-core Yukawa fluid with screening
length z = 2.45 and interaction ratio o = 0.90 in the temperature-density plane. Full line:
SCOZA results. Pluses: GEMC results from Caccamo et al. [99]. The interpolated esti-
mate of the critical point from MC results is given by a diamond. Statistical uncertainties

in the simulation are shown by horizontal bars.

In fig. (4.22) we compare the SCOZA binodal curve for & = 0.9 and screening length
zo = 2.45 with GEMC simulation results reported in [99]. The density of the coexisting
liquid phase is slightly overestimated both in the SCOZA and in the MHNC theory [99].
The MC and MHNC results bracket the SCOZA results. A similar behavior was reported

in [49] for the one-component fluid.
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4.3.4 General Binary Symmetric Fluid

If the unlike particle attraction is weaker than the like particle interactions, i.e., a < 1,
coexistence of phases of different compositions in the high-density region of the phase
diagram will appear. Thus we have to extend our considerations from the x = % case
to arbitrary values of x. Again we found it convenient to base the formulation of the
SCOZA on Baxter’s factorization method that has already been extended to mixtures
with arbitrary number of components [100] and applied by Blum et al. [98] to the case of
a mixture with Yukawa closure. Arrieta et al. have provided numerical solution algorithms

for (multi-)Yukawa [101, 75] multi-component mixtures.

Using Baxter’s factorization method the OZ equations for mixtures eqs. (2.27) become

(with the simplification 0; = 0; = 0)
2mreg(r) = —Q;(r) + Zpl/ Qu(t) Qi (r + t)dt (4.151)
2rrhi(r) = ~ Qi)+ 27 pr [ = Ohallr — ) Qutd

We use the latin indices to denote the m fluid components while Greek indices designate
the n different Yukawa tails. Summation over a latin and a greek index corresponds to a

summation over all components and Yukawa tails, i.e.,
o=> and Y =>. (4.152)
l =1 v v=1

If these equations are supplemented by the hard-core multi-Yukawa closure

hi' — —]_ <
ol e 157 (4.153)
Cij(r) = Zu I/Z] r r>o,
the factor functions must have the following form:
1
Qij(r) =QY(r)+>_ Z—Dyije*“(’"*"), (4.154)
with
Qij _ 2 .. _ 1 .. 7ZV(T70-) _
?j(r) _ { 2 (T U) + bzg(r U) + Zu Z Cz/zg (6 1) O<r<o . (4.155)
0 o<r

Following Arrieta et al. [75] one can show that the unknown coefficients a;;, b;;, C,;; can

be expressed in terms of G,;; = 2,;;(2,)e*? and D,;; which satisfy a coupled set of
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2m - m - n nonlinear equations

Z A'rymk;]lGTkmDTmlDVZl + Z A'rl/m]lDTmlDl/Zl + Z Ay]l vil T Ayz] =0

Tlmk Tim
(4.156)
Z BS/)mk:leTkmDijGuil + Z Bg,)mkijGTkmDij
Tlmk Tmk
+ Z BTuml]DTm]GVll + Z BTszg Tmj + Z Bz/lg vil + Bz(/z]) =0
Tim
1/:1,...,71 ,j=1,...,m
(4.157)
where the only energy-dependent coefficient in the above equation is
AI(IZ; - QWKVZ] (4158)

All other coefficients are calculated from the p;, z, and o, i.e., from the remaining system
parameters. Expressions for these coefficients are compiled in Appendix A of [75]. The
second system of equations, (4.157), is linear in D = {D,,;} for given G = {G,;;} and

can be written as

;n: OrvmijDrmj = Quij (4.159)
with
Orvmij(p, G %: mekz]GTkawl + Z BTllkz] Thm T Z mez] G + Bgu)ng (4.160)
and
Quij(p, G Z BG)Gy — BS). (4.161)

One can choose the order of the {D,;;} and {Q,;;} in the vectors D and Q in such a
way that the coefficient matrix O of the linear system (4.159) has a block diagonal form
consisting of m blocks of dimension m-n. For instance for the binary 2-Yukawa fluid
(m = 2,n = 2) one obtains

0-D=Q (4.162)




SCOZA for a Binary Symmetric Fluid 95

with
O11111 O21111 O119211 O212n1 0 0 0 0
O11121 O21121 Or1921 O21991 0 0 0 0
O12111 O22111 O12211 Oa2911 0 0 0 0
O O O O 0 0 0 0
o — 12121 O22121 O12221 O22001 (4.163)
0 0 0 0 O11112 O21112 O11212 - O21212
0 0 0 0 O11122 O21122 O11222 O21992
0 0 0 0 O12112 O2112 O12212 O22912
0 0 0 0 O12122 O22122 O19292  O29990
and
Q" = (Qui1, Qia1, Qa11, Qaa1, Qr12, Qr22, @212, Q299) (4.164)
D” = (D1, Da1y, Dig1, Daar, Diig, Dotz Digg, Dags) - (4.165)

Solving this system of m - m - n linear equations (4.162) yields D(p, G).

In the formulation of the SCOZA we will also need the derivatives 92 (p, G) which are
obtained via implicitly differentiating eq. (4.159)

0D, 00 0Q i
vmij G = Tym” G DTm' ; G — ) G
;OT i(p, G) 3G Z 8Gm 0, G)Drj(p, G) + 3G (p, G)

2
- (Z Bﬂt’srleVil + B/(u/)sm'j> Dusj(p, G)
1
(5 (558 Pt
™m k
~BY)} G (4.166)

Thermodynamic quantities required in the PDE of the SCOZA are the inverse reduced
isothermal compressibility and the internal energy. The inverse reduced isothermal com-

pressibility calculated via the compressibility route is given by (z; = p;/p) (see [75])

=1 =0 =Y () (4167)
=1==2 pipicii\k =V) =2 Tijl5~] > .
Xred P - ] - J o
where A
Aj = A°(1+ M;) — = B°N; (4.168)
g
with
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Nj = Z 23 me {L a)Drm] + (1 - L(a) 7ZTU)mej}
27
mej = ? ZkakaDTkj' (4169)

Expressions for M(®, L{®) A% and B® in terms of p;, 2, and o are compiled in the Appendix
A of [75]. Inserting the solution of the linear system D(p, G) in the expressions (4.169)
yields 4;(p, G).

The internal energy via the energy route (4.97) is given by

2 2
U= — Zp ($2G211 + CY.CU(l — .CU)GQIQ + CY.CU(l — l')Gng —+ (1 — x)2G222) . (4170)
2

If we consider the closure relation of the SCOZA (4.96) we set in eq. (4.153) for the
binary 2-Yukawa case (m = 2,n = 2)
K = Ki(p) Vij
Ko = f222 = Ky(p, @, )
K212 = Kggl = CYKQ(p, xZ, 6) (4171)

Inserting A;(p, G) (4.167) in the PDE

0 1 0%u
— =p— 4.172
66 <Xred> pap2 ( )
gives
0A; 0G5 Ou 0%
2 B = p—— 4.173
ij 2 MZ 0Grs Ou 08 "0p? (4.173)
or 5 52
U u
B — = — 4.174
(pr) 55 = Co) s (1174)
with
04; 0G
— 9 KTS 4.175
U) ;.TL‘] 2 ; aGurs au ( )
Clp) = »p.
We now have to determine A;, aaGA and 8GZ” as functions of p and u. In a first step we

determine G for a given value of p and u. To this end we establish a set of eight nonlinear
equations the solution of which gives G(p, u). The first one is the energy equation (4.170)
27 p?

u + —Zp (1‘2G211 + OéfL'(l — {L‘)G212 + CYl‘(l — l‘)GQQl + (1 — {L‘)QGQQQ) =0 (4176)
2
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or formally written as Fi(p, Ga11, Ga12, G291, G222) = 0. Further we consider eq. (4.156),
with the solution D(p, G) inserted, for v = 1, i,5 € {1,2} where A%; = 2rK(p) for
i,j € {1,2}, formally written as F;(p,G) = 0 for i = 2,...,5. The remaining three
equations are obtained from eq. (4.156) for ¥ = 2 and eliminating the unknown function

Ky (p, x,3) via the relations

A = A%,
AS, =A%)
A aAly. (4.177)

For given p and u the G are determined by solving the coupled set of eight nonlinear
equations via a Newton-Raphson technique using explicit expressions for the Jacobian.

The Jacobi matrix of the system of nonlinear equations in the G is given by

0 0 0 0 2mp2z?  2mplaz(l—z) 2mplaz(l-—z) 2mp*(1—x)?
22 29 29 22
OF> 0F, 0F, OF> OF> OF> OF> OF>
J = 0G111  0G112  0Gi21  0Gi22 9Gonn 0G212 0G221 0G222
- . . . . . . . . )
OFy OFy OFy OFy OFy OFy OFy OFy
0G111  0G112  0Gi21  0Gi22 9Gonn 0G212 0G221 0G222
(4.178)
where
8F2 (1)
oG (pa G) = Z A;wsrllDHSlDHl +
urs I
A(l) G 8l)TmlD D 8ljlll
Z Tvmkl1l™~ Tkm oG 11+ D oG +
Timk HTS prs
e aDrsz D OD1y A® OD1y 4179
> A G P + D G + Al G (4.179)
T urs urs urs

with D = D(p,G) and 22(p,u) of eq. 4.159 and (4.166) inserted and similarly for the

other functions Fj.

The G(p, u(p, 5 — AB)) from the previous temperature step in the solution algorithm
of the PDE are taken as initial values of the NR technique. In each step of the iteration,

for given G, the linear system (4.159) is solved yielding D(p, G). Then the derivatives

aD'rrnl
0G urs

inserted in the expression for J. Convergence in the NR method is achieved if the relative

(p, G) are obtained by solving the linear equations (4.166). These solutions are

difference of two successive values of G is less than 107'°. Furthermore it is checked
whether the solution is physical, i.e., if G2 = Ga. With this solution G(p,u) one
calculates D(p, u) (4.159), A;(p,u) (4.168, 4.169) and 22 (p,u) (4.166).
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The derivatives ;Gii - are obtained from (4.168) and are given by
0A; oM, 4 ON;
=AYV L Bl (4.180)
O0G urs T0G ;s 0% 7 OG s
where
= - ) Pm MTa + (1 - MTa € ZTG)—
0G s ; 22 %: 0G s OG rs
ON; 1 0D, o Ofrmi
— — 4 L) =T 1 — [la)g—zroy ZITm
Gy~ 2 r { P oG, T e g
8f j 2T oD ki
= = J T(SmT‘(S sD'r j GTm o . 4.181
G yurs 22 ; o ( " ok ’ G urs ( )
The derivatives a—%’f—s are obtained by implicitly differentiating the equations F; = 0 for
1=1,...,8 via
o -
0G112 0
ol =gt . (4.182)
e 0

Inserting the values of G(p, u), D(p, u) and ‘Zg—;:’j(p, G) in eqs. (4.180, 4.181) and in the
Jacobian J of (4.182) finally gives %(p, u) and %(p, u).

The PDE (4.101) is again a nonlinear diffusion equation, that was solved as in the one-
component case for different values of x on (3, p) € [0, Bf] x [0, po]. The initial condition
u(p, z, 8 = 0) is obtained by making use of the fact that the direct correlation functions
c;j coincide with those of a one-component HS gas and taking into account the results for

the one-component system. Thus with

Glij(pamaﬁ = 0) = Gl(pa

Gaj(p,x,0=0) = Gao(p,f=0) cf eq.(4.67) i,j=1,2 (4.183)

one obtains u(p,z, 5 = 0) from the energy equation (4.170). The boundary conditions
are those of egs. (4.60) and (4.62).

As in the one-component system we have to exclude the region where thermodynamic
stability requirements are not satisfied. In this unphysical region the fluid can no longer
be present in a single homogeneous phase and phase separation occurs. In section 3.1.2
the phase stability conditions of a general binary fluid were presented. We will specialize
these conditions in the following to the binary symmetric fluid. In that case we have

to distinguish between the following two types of instability: material and azeotropic
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instability. Material instability which leads to the separation into two phases of different
compositions is indicated by a divergence of Scc(0). On the other hand, azeotropic
instability where the fluid is mechanically unstable while remaining materially stable
leading to a separation into two phases of different density but equal compositions is
marked by a divergence of xr or Syy(0), while Scc(0) remains finite. The azeotropic
instability of a binary symmetric fluid occurs at x = 1/2 and for this concentration
6= p(vy —v2) = 5p (1311(0) - BQQ(O)) = 0. Thus Syn(0) = X" may remain finite even
if Scc(0) diverges. So material and mechanical instability can be distinguished in the
x = 1/2—plane [102].

Both criteria of mechanical and material instability, i.e. diverging Syx(0) or Scc(0)
have been merged into one criterion by Arrieta et al. [75] which we have used in our
calculations. In this criterion it is checked whether the ﬁij(O) become infinite so that one

of the structure factors is infinite. If
A(O) = (det ((S” + V PiPj ilij (0)))
_ 1/2 -
= (det (51] — \/PiPj Cl](O))) = det((sl] - Vpiijij) S 0 (4184)

—-1/2

(4.185)
the solution is considered unphysical where
= 00 1 1 1 .
Qij = /0 Qij(r)dr = éAjo'?’ _ ijoj _ XT: Z_72_ (Crz'jMT( ) frij) (4186)
with
b; = bo(l+ M)+ A°N; (4.187)
Crij = frije”"" — Dy, (4.188)

and eqs. (4.168) and (4.169). by is calculated from p and o (see Appendix A of [75]).

The boundary conditions on the spinodal lines are

u(ps, 3) = us(ps) (4.189)

where the density pg is the approximation for the spinodal density on the discrete density
grid at a given temperature. It is located at that point where A(0) changes sign and
becomes negative. ug(p) is the value of the excess internal energy where A(0) = 0. This

is determined by solving the set of eight nonlinear equations

A(0)(p,G) = 0
F(p,G) = 0 i=2,...,8, (4.190)
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for G using a Newton Raphson technique where the Jacobian of the nonlinear system is
provided. This Jacobian can be calculated in a straightforward way analogous to the one
of eq. (4.178). Inserting the solution G(p) in the energy equation (4.170) finally yields
us(p). For the system of the binary symmetric HCY fluid that we have investigated, three
cases of instability regions in the interval [0, pg] for a given value of x and T have to be
distinguished that are shown in fig. (4.23).

0 Po

Figure 4.23: The 3 different cases of the instability region on the interval [0, po] for a
given value of x and 7" for a HC1Y fluid. The full lines are the stable regions where
A(0) > 0, while the dashed lines represent the unstable regions that are excluded from
the integration of the PDE.

Once u(p, x, 3) has been determined the quantities relevant for the calculation of the

phase diagram, the pressure P and the chemical potentials u; (i = 1,2) are obtained by

integrating ag—ﬁp and 88% with respect to § from
0B ou 1—x0u
= — — 4.191
93 op T, or (4.191)
OBz ou x0u
= =77 4.192
op dp pox (4.192)
opP ou
- _ - 4.1
95 u+ pap (4.193)
(4.194)

with the CS values for 5P and [u; values for P and Su as integration constants at § = 0

L+n+n"—n’
(1—mn)°

8n —9n* — 3n®
Bui(p,z,3=0) = Inp; + 3
(1—n)

BP(p,x,8=0) =

(4.195)




SCOZA for a Binary Symmetric Fluid 101

4.3.5 Results

Figure 4.24: Phase stability line in the temperature-density plane for an equimolar HCY
mixture with o = 0.9 and zo = 0.8. Different line symbols are used for the density

regimes in which either y7 (full line) or Sc¢(0) (dashed line) diverges.

Fig. (4.24) shows the phase stability line of a binary symmetric fluid for z = 1/2.
Note that the stable phase is now and also in the following plots above the stability line.
In fig. (4.24) this line consists of two parts: along the low-density part up to densities
of ~ 0.76 the compressibility diverges whereas Sc¢(0) remains finite while for densities
larger than ~ 0.76 the behavior of xr and Sc¢(0) is reversed. The latter part of this
curve represents the critical consolution line - also called the A-line - while the low-
density part is a typical liquid-vapor spinodal. The threshold density p; that is separating
the two regimes is given by p; = 0.76. As seen in the figure the critical temperature
of the consolution points increases with increasing density. This can be understood in
the following way: since we consider the case v < 1, i.e. the unlike interaction is less
favorable than the like interactions, self-aggregation is the driving mechanism of liquid-
liquid separation and it is the stronger the higher one chooses the particle density since in
this case the particles approach each other closely enough to feel the strongest attractive

regions of the Yukawa potential.

A necessary condition for the mixture to be in equilibrium is given by the fact that
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the Gibbs free energy

G=U-TS+PV (4.196)

must have a minimum. Self-aggregation leads on the one hand to a reduction in the
entropy and thus to a positive contribution —7'S in the Gibbs free energy, on the other
hand to a reduction of the internal energy U. This latter contribution is less and less
negative the lower the density is for the reason given above. So by decreasing the density
the entropic part that favors a homogeneous fluid mixture plays a more dominant role
and leads to a cross over from the demixing phase separation regime to the liquid-vapor
phase separation regime.
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Figure 4.25: Phase stability lines in the temperature-concentration plane for a HCY
mixture with o = 0.65 and zo = 1.8. The point where yr diverges is marked by a
diamond. Everywhere else Sc(0) diverges (dashed line).

The spinodal line in the temperature-concentration plane is shown in fig. (4.25) for
two different values of the density. This figure shows that the curvature changes as
the density is varied. For the density p* = 0.89 all points of the instability line are
characterized by a divergence of Scc(0) while for p* = 0.25 Sce(0) diverges everywhere
except at © = 1/2 where yr diverges. The curvature change of the stability line as the
density varies is due to the following reasons: The concave phase stability line (at high
p*) can be explained with the same arguments as above when the increase of the critical
consolution temperature with the density was examined. It was argued that at higher
density the energetic contribution to the Gibbs free energy plays the dominant role. If we

leave the equimolar concentration the number of cross interactions decreases and since the
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like interactions are more attractive the internal energy of the homogeneous non-equimolar
mixture is smaller compared to that of the homogenous equimolar case with the same total
fluid density. So, less energy is necessary at x # 1/2 to bring the system from a demixed
state back to a homogeneous phase than in the equimolar case. Thus at high density the
stability curve decreases as one leaves the equimolar concentrations. The reverse behavior
is found, however, at lower densities, where the liquid-liquid spinodal curve increases when
one moves away from x = 1/2. This behavior is driven by the entropic contribution to G,

the entropy of mixing being maximal at the equimolar concentration.
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Figure 4.26: 3-dimensional view of the phase stability behavior of a HCY mixture with
a = 0.65 and zo = 1.8 in the T™ — p* — x space.

A three-dimensional plot of the phase stability behavior in the T* — p* — x space is
shown in fig. (4.26). Now, let us assume that we approach the phase stability boundary
from above on different paths. We fix the concentration z to 1/2, fix the density and
reduce the temperature until we reach the stability boundary. If we choose a density
above the threshold value p* > p; and reduce the temperature until we cross the stability
boundary where Scc(0) diverges, self-aggregation will take place and the fluid is going

to demix into a 1-rich and a 2-rich phase. For p < p}, where y; — oo the fluid becomes
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mechanically unstable and separates into a mixed liquid and vapor phase. By further
reducing the density the scenario will again change and the fluid will decompose into 3

phases: a homogenous vapor, a 1-rich and a 2-rich fluid.

In order to understand the demixing separation on a structural level we recall that for
r=1/2 (eq. 2.34)

Syn(0) = 2(S11(0) + S12(0))
Seel0) = 5 (5u(0) ~ Siw(0)). (4.197)

Thus from Sce(0) — oo [while Syn(0) < oo] it follows that S1;(0) — oo and S12(0) —
—o0, or equivalently, [ (gi2(r) — 1) d*r — —oo which means that gi5(r) < 1 at macro-
scopic distances. Therefore particles tend to surround themselves with like particles, and
avoid the presence of unlike particles in their neighborhood. This is the mechanism of

self-aggregation.

The different types of phase diagrams of a binary symmetric mixture (see section 3.1.3)
that where found in the mean field study of [12] were also recovered within the SCOZA. We
calculated the phase diagrams by solving the coupled set of equations (3.13) to (3.15) with
a Newton-Raphson technique. Fig. (4.27) shows a series of phase diagrams for zo = 1.8
and o = 0.65, 0.70, 0.75. Another series of phase diagrams is shown in fig. (4.28) for
zo = 2.5. The sequence of types of phase diagrams is the same in the two series, only the
critical points are shifted to lower temperature for zo = 1.8. The change of the type of
phase diagram is triggered by the parameter a. For the interaction parameter «, which
characterizes the ratio between the unlike and the like interactions we have chosen values
smaller than one: this guarantees, that, apart from the vapor-liquid transition, we shall
also encounter for sufficiently small o a fluid-fluid decomposition. As « is decreased the
A-line shifts to lower densities and the sequence of the types of phase diagrams is type I
— type II — type III. The three-dimensional phase diagram for zo = 1.8 and a = 0.70
(type II) is shown in fig. (3.3).

It becomes apparent from the figures that the SCOZA is able to get very close to the
tricritical point. This is in contrast to the ORPA results for a related problem presented

in the following chapter.
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Chapter 5

Fluid Mixtures in Porous Media

5.1 Introduction

In the previous section we have investigated the phase behavior of a binary symmetric
bulk fluid. As expected, we have found a much richer variety of phase diagrams than in a
one-component fluid. The system that we are going to treat in the following is even more
complex: we investigate a binary symmetric fluid that is confined in a disordered porous
material (matrix) and study, in particular, the influence of the properties of the matrix

and of the matrix-fluid interactions on the phase behavior.

Investigations of the properties of fluids in thermal equilibrium with a disordered
porous structure have become a very challenging field in liquid state physics [13] during the
past years and the number of experimental and theoretical studies in this field has largely
increased. Due to the importance of adsorption on porous materials in many technological
applications such as catalysis, gas separation, gas purification or others a large amount
of experimental data on gas adsorption on porous substrates have been accumulated over
the years [103]. Another point of interest in experimental research has been the study
of liquids adsorbed in porous media. Investigations have been focused on the influence
of the properties of the porous media on the critical behavior and on the process of
phase separation of a liquid adsorbed in this material. This research was motivated by
de Gennes [104] who suggested that binary mixtures adsorbed in porous media near the
critical point may be thought as experimental realizations of the random field Ising model
(RFIM) [105] — a spin model of random magnets. In this model the random field describes
the spatially varying preference of the pore network for the adsorption of one of the fluid

components.

109
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Experimental studies have revealed that a porous matrix (even if it occupies only a
small fraction of the volume) can have a substantial influence on the phase behavior of
the liquid: “He and Ny in high-porosity aerogel [14] are two examples where the near-
critical liquid-vapor (LV) curve is narrowed drastically under the influence of a matrix.
The effects become of course richer and more interesting in the case that the fluid is a
binary mixture: for example, experiments on a *He-*He mixture inside a highly porous
silica-gel or a porous gold matrix have shown a drastic modification of the superfluid

transition [15].

Stimulated by these experimental results, considerable effort has been dedicated in the
last decade to developing theoretical tools that allow the investigation of structural and
thermodynamic properties of liquids in quenched porous media. Experimental results in
dilute silica gels (porous materials with high porosity where the porosity can be as high as
99.9%) were interpreted by the RFIM. On the other hand, it has been argued that experi-
ments in Vycor (which is a glass with a fairly low porosity) can be interpreted in terms of
wetting phenomena in a confined geometry with no randomness [106]. Theoretical studies
of confined fluids have generally been limited to ‘single pore’ models with idealized pore
geometries, (e.g. fluids confined to narrowly spaced plane walls, cylindrical or spherical
pores [107]) which lack the ability to represent a truly disordered structure. In reality,
however, porous solids are often disordered, containing an interconnected network of pores
of various sizes and shapes. On the other hand, confinement in the pores plays no role
in the RFIM. Hence, both approaches do not seem sufficient to describe the vast variety
of phase behavior observed. Consequently, a more realistic continuum description for the
fluid /solid system was required which is able to comprise randomness, confinement and

connectivity between the pores.

Such an approach was proposed by Madden and Glandt [16] who modeled such a
system as a special binary mixture: the porous solid is modeled as a rigid arrangement
of particles that is not affected by the introduction of the liquid. The configuration
of the immobile matrix particles is assumed to have been formed by an instantaneous
thermal quench of a fluid in equilibrium at a higher temperature; that is, the quenched
particles are distributed according to an equilibrium ensemble at a higher temperature
in the absence of the fluid. The fluid particles (or annealed particles) that constitute the
second component are allowed to move in the volume that is not occupied by the matrix.
In contrast to a ‘standard’ two-component equilibrium mixture, there is no structural

response of the matrix to the particles in the fluid.

The main problem in the description of the system lies in the two successive averages

required for the calculation of thermodynamic and structural properties: one average is
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taken over the configurations of the liquid, keeping the matrix particles in fixed positions,
and the second average is then taken over different matrix configurations. The first steps
to solving this complex problem were proposed by Madden and Glandt, who derived
cluster expansions for the distribution functions; integral equations for the correlation
functions, which are similar to the OZ equations in standard liquid-state theory, have
been presented. In subsequent work, Given and Stell have applied the replica method
(introduced originally in the theory of spin glasses [17]) to this problem [108, 109, 18]
and have provided a powerful tool on which many of the present-day approaches in this
field are based. The replica trick exploits a mathematical isomorphism between a partly
quenched system and a limiting case of a corresponding equilibrium system, which consists
of the now mobile matrix particles and of s noninteracting identical copies of the liquid:
the properties of the quenched system are obtained by considering the limit s — 0 of the
properties of the equilibrium system, which, in turn, can be treated by standard liquid
state theories. Given and Stell presented in their work the (now correct) formulation
of the so called replica OZ (ROZ) equations, the counterpart of the OZ relations in
standard liquid state theory: they relate the liquid-liquid, the liquid-matrix, and the
matrix-matrix correlation functions. Finally, thermodynamic relations for such systems

have been presented by Rosinberg et al. [110, 111].

Integral equation theories which use approximate closures to the ROZ equations have
been applied to the calculation of pair distribution functions [112, 113, 114, 115]. Com-
parison with results from Monte Carlo simulations [113, 114] indicated that the approach
has an accuracy comparable to that of bulk liquid state theory. Further theoretical re-
search has focused on the phase behavior of fluids in disordered porous materials. Page
and Monson [116] observed in their Monte Carlo simulation of a Lennard-Jones fluid that
is confined in a rigid matrix of spherical obstacles a significant narrowing of the liquid-
vapor coexistence curve as well as the evidence of a second fluid-fluid phase transition
at low temperature. Kaminsky and Monson [117] and Ford and Glandt [118] applied a
mean-field theory to model systems and showed that both the critical temperature and
the critical density decrease with increasing matrix concentration. Kierlik et al. [35] have
applied an improved perturbation theory — the optimized cluster theory — to describe
phase diagrams of Lennard-Jones fluids. They observed that the liquid-vapor coexistence
curve was similar to that of a bulk fluid, although displaced and narrowed. Additionally,
the theory predicted the appearance of a second fluid-fluid transition at low temperatures.

Their results were compared with GCMC simulations in [119].

Recently, a formalism to treat systems containing partly quenched mixtures with elec-

trostatic interactions between various species [120] and to treat diatomic fluids adsorbed
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in porous matrices has been presented [121].

So far, only the phase behavior of one-component liquids in a porous medium has
been investigated, while practically no attention has been paid to describe binary liquids
in a porous matrix. However, a study of such a system is of interest due to the following
two reasons: first, similar to the homogeneous case, the step from a one-component to a
binary liquid offers - due to the increased number of parameters - a much richer variety.
A further important motivation to proceed to liquid mixtures is the fact that several

experiments have been made for such systems.

Using the replica trick we have generalized the formulation of the theory to the binary
mixture in a porous matrix (which represents a very special three-component system) [34,
122]: we have proceeded along similar lines as in the one-component case and derived the
ROZ equations which now consist of one decoupled equation for the matrix correlation
functions hgy and ¢y (as in the case of a one-component liquid) and a set of eight coupled
integral-equations for the set of the remaining correlation functions (vs. three coupled
equations in the case of a simple liquid). These equations can be solved along with
one of the standard liquid state closures (such as Percus-Yevick or hypernetted chain
approximation) using efficient numerical algorithms, like the one proposed by Lomba et
al. [113] for the simple one-component case. As a further closure relation we have also
considered the random phase approximation (RPA) — as already done by Kierlik and
co-workers [35] in the one-component case — along with an optimization criterion in the
closure relation (ORPA [31, 32, 29]), that guarantees that the pair distribution functions
vanish inside the core region. We show that the solution of the ROZ equations together
with the ORPA closure relation can be mapped on the solution of a variational problem:
a suitably defined functional (which turns out to be a second order contribution to the
free energy) is minimized with respect to variations of the direct correlation functions
inside the core region. The formalism arising from this route is rather complex even for

a simple closure relation like the ORPA.

In our investigations we applied the theory on the calculations of phase diagrams [19,
123, 124]. As in the bulk system we found three different types of phase diagrams depend-
ing on the values of the coupling strengths of the fluid-fluid and matrix-fluid interactions,
and the matrix properties. The transition between the different types of phase diagrams
was found to be not only triggered by internal parameters (i.e. parameters that charac-
terize the fluid-fluid interactions) but also by external parameters (i.e. parameters that
characterize the matrix and the matrix-fluid interactions). Similar as in the case of the
bulk fluid, one can produce - for a given matrix density - trends in the types of phase

diagram by varying the parameter «, i.e., the ratio of the unlike to the like interactions.
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In addition, we could show, that such trends can also be induced by varying the external

parameters, keeping the internal parameters fixed.

Due to the complexity of the system we have used a thermodynamic perturbation
theory - the ORPA - instead of the more sophisticated SCOZA that is up to now restricted
to the case of a bulk fluid due to its complex concept. The theoretical results were
compared with GCMC simulations and the ORPA was found to give - despite its simplicity
- (at least qualitative) information of how a variation of the system parameters influences

the phase behavior. Thus, systematic trends could be worked out on a qualitative basis.

The remaining part of this chapter is organized as follows: after a description of the
potentials that characterize our model in sect. 5.2, we present briefly, in sect. 5.3, the
ORPA which is used as a closure to the ROZ equations and collect the expressions (free
energy, chemical potential and pressure) that are necessary to calculate phase diagrams.
Section 5.4 describes the results: comparison is made between simulation results and
ORPA predictions and trends in the variation of the phase diagrams induced by the
different system parameters are discussed.

5.2 The System

The system we have studied is a symmetric binary HCY mixture in thermal equilibrium
with a disordered porous (hard-sphere) matrix of immobile particles realized by a frozen
configuration of particles of the same size as the fluid particles. A picture of this model
is shown in fig. (5.1).

All the interactions of the system can be written as [ = 1/(kgT)]

00 r<o
p®;;(r) = K

— D exp[—z(r — 0)] r>o
”

(5.1)

A value 0 of index 7 or j denotes the matrix particles, while 1 and 2 denote the two
components of the fluid. The diameter o is assumed to be equal for all interactions and

% is the screening length. The contact values Kj;; are parameterized as follows:

Ko =0 K=Ky (5.2)
Ky = aKy Ko1 = Koz = yKi. (5.3)
We define a reduced temperature via 7* = o/Kj; (in the following 7 is denoted by T).

Further system variables are the partial densities, p;, of species i, the concentration of
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matrix particle
(’quenched’ particle)

——— fluid particles of component 1 and 2
(’annealed’ particles)

Figure 5.1: Model of a binary fluid inside a porous matrix. The matrix particles are fixed;
the fluid particles are allowed to equilibrate in the rigid matrix structure. All particles

are of the same size.

species 1 of the fluid = p;/(p1+p2), the fluid density py = p; +p, and the matrix density
po (densities will be given in units of o throughout this chapter). In all calculations
presented here, unless otherwise stated, the potentials have been truncated at r. = 2.50,
and zo was chosen to be 2.5; this concerns both the simulations and the theoretical

calculations.

5.3 Thermodynamic Perturbation Theory

5.3.1 Replica Trick

A binary liquid inside a porous (one-component) matrix can be considered as a very special
three-component liquid, where the particles of the matrix are fixed in place and are not
affected by the mobile particles of the liquid. Physical quantities are hence obtained
by two successive averages: one average is taken over the degrees of freedom of the fluid
particles (where the positions of the matrix particles are kept fixed) and the other average
is performed over all possible degrees of freedom of the matrix particles. The actual
calculation of such averages turns out to be very difficult; to circumvent these problems,
Given and Stell have applied the replica method (introduced originally in [17]) to liquid-
state systems [108, 109, 18]: this method exploits a mathematical isomorphism between

a partly quenched system and a limiting case of a corresponding equilibrium system, that
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is usually denoted as the replicated system. We briefly demonstrate this trick for the case
of a binary liquid, using a canonical ensemble both for the matrix and the binary liquid.
For a given matrix configuration (the positions of the Ny matrix particles are denoted by
q™ = {q;}), and a given temperature Ty (3, = 1/kgT}), and volume V, the free energy
A is given by

—B1A(N1, Ny, V, Tl;qNO) = an(qNO)a (5.4)

Z(q™°) being the usual canonical partition function, i.e.,

Z(q"°) = /d3 Mid?s™2exp [~ B1 (Hor + Hoo + Hi1 + Hia + Ho)]. (5.5)

NI'NQ
The H;; are the configurational parts of the Hamilton functions describing the interactions
between matrix particles and particles of the liquid. The positions of the Ny (resp. N)
fluid particles of component 1 (resp. component 2) are denoted by r™ = {r;} (resp.

= {s;}). The free energy of the quenched system, A, where the matrix particles
are distributed according to a canonical ensemble at a temperature Ty (8y = 1/kgTy), is

obtained via averaging over the qV°, i.e.,

—5114 = _BIA(Nm Ny, Ny, V, Ty, To) = /d3qNoeXp [—50[{00((1%)] mZ(qNO)
(5.6)

where Z; is a normalizing factor. The logarithm in the above expression makes the

No!'Zy

calculation of the average very difficult. However, using the identity In z = lim,_,o dz*/dx

one obtains

7 £—>0§9 ]\}0! /d3qN°exp [—%Hoo(qNo)] [Z(qNO)]S] : (5.7)

The bracketed term in the above equation is denoted by Z'™P(s) and can explicitly be

A=

written for integer values of s as an iterated integral

Zrep (S) —

N0|(N1’)S(N’)s/dq Od’l"ll..-d TsldSIZ...d 832 exp[_/BOHOO(q 0)])(
exp[ 3 [ (0 rNi>+—fﬂ%(q#%,sgzﬂ] Y

exp[ zi;[Hf; )+ HE (e, 52)+H32(sg2)}]. (5.8)
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If we assume that the interactions between the particles of the system can be described
via pair potentials ®;;, then (5.8) is the equilibrium partition function of a system with

the following configurational part of the Hamilton function

S
H =3 ®o@q) + > > Oare) +
lJE{Ili?-,No} o=l zE{l,I.,J..,NO}
jef1,..., N1}
S S S
Z Z o2 (dis Sa) + Z Z Z DY (rau,rp;) +
a=1 i,] a=1p=1 i<j
ie{l,..., No} i,j€{1,....,N1}
jef, ..., No}
5 ~ < 5
Z Z Z O (rairssy) + D> D P55(Sai Ssy)
a=1p=1 a=1p8=1  i<j
16{1 ..... N1} i,j€{L,....,Na}
jeqL,..., No}
= Hy(q™) +
S
Z [H&(qNoargl) + Hey(a™,32) + Hyy (r3") + Hiy(r)",80°) + H§2(552)] (5.9)
a=1

®2? denotes the pair interaction between a fluid particle of component r in replica «
with a particle of component s in replica f3, r,; is the position of particle number j of
fluid component 1 in replica «, etc., and the system is characterized by the following pair

potentials

o6 (as, ra,y) = ®pi(qj ra,j)
P(dis Sarj) = Po2(dis Say)
P (Tairrsi) = 06aP11(Tay,Ts,)
) = 0asPi2(ra,i,ss,)
) = 6aP22(Sa,i,88,)- (5.10)

Tai, S8,

12(
22 (Sa i) SB8,j

(5.8) represents the canonical partition function of a fully equilibrated (2s + 1)-
component system, consisting of the matrix and of s identical copies (so-called replicas,
denoted by the Greek index) of the liquid mixture where the interaction of the liquid
particles has a very special feature: pairs of liquid particles interact only if they belong

to the same replica.

In the following we assume Ty = T; = T', hence

d d
_ — rep — rep
pA= Zs ?E% 352 ) = lim o =A™ ()] (5.11)
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Thus we have related the thermodynamic potential of the partly quenched system to the
limiting case of the thermodynamic potential of a fully equilibrated system. Structure
functions and further thermodynamic properties of the partly quenched system can now
be obtained from the corresponding quantities of the fully equilibrated replicated system
by special prescriptions, involving throughout limits s — 0: a complete set of these rules
are compiled in ref. [110]. E.g. the correlation functions of the partly quenched system
are obtained via

hij(r) = lim i (rss). (5.12)

Note that the limiting case s — 0 cannot be interpreted physically: firstly, a physical
interpretation of the replicated system as an equilibrium mixture of (s + 1) components
is only valid if s is an integer. Furthermore, although in the limit s — 0 the replicated
system becomes an equilibrium system containing only the quenched particles, we still
have nontrivial correlation functions describing the correlations between a pair of annealed
particles in the same replica and a pair of particles in different replicas. Instead, one must
envision the replica method merely as a mathematical tool which tells us how to relate
the thermodynamic potential of a partly quenched system to that of a fully equilibrated

system.

5.3.2 The structure
The replica Ornstein-Zernike equation

The structure of a binary liquid inside a porous matrix can be most readily determined via,
the ROZ equations that relate the fluid-fluid, matrix-fluid, and matrix-matrix direct ¢;;(r)
and total h;;(r) correlation functions. These relations are derived from the standard OZ
equations for the fully equilibrated (2s + 1)-component system, exploiting the symmetry
of the replicated system and taking the limit s — 0. So one finally arrives at the following

set of integral-equations where ® represents a convolution:

hoo = ¢oo0 + pocoo ® hoo (5.13)
ho; = c¢o1 + hor ® pocoo + prhir ® o1 — prhia @ con

h;; = ¢ +hy ® pocy; + phy ®cyy — phpy @ cpy

hiy, = cia+ho ® pocy; + prhiz @ ci1 + prhy @ ¢z — 2phis ® ¢y,

where the superscript T denotes the transpose of a vector and ® stands for a convolution.

The following matrix-notation has been introduced [122]
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0 h
pr = ( p1 ) hy = ( o ) Co1 = ( o ) (5.14)
0 po hoo Co2
. hiy hio [ Cu1 G2 . hiz hig | Gz Cus
h;; = Ci1 = h), = Ci2 = )
hia  hao Ci2 C22 his  hos Ci4 Co4

where hy3 (resp. hgy) is the (s — 0)-limit of the correlation function between particles of

species 1 (resp. 2) of different replicas. Further, hy4 is the (s — 0)-limit of the correlation
function between unlike particles of different replicas. Within the present framework
which describes fluids in contact with porous media, these functions are called ‘blocking

parts’ of the correlation functions denoted by
hiy =Mz, hiy=hu, iy =hy (5.15)

and
h(ﬁ = hi1 — hl{l? hi2 = hig — h?m h§2 = has — th (5-16)

are the so called connected parts of the correlation functions. Given and Stell [18] in-
troduced the two correlation functions hf; and hi-’j by their diagrammatic expansion. It
should be borne in mind that h{5", A1, hoy’, describe the correlation between particles of
different replicas which do not interact directly. They only interact indirectly through the
mediation of the quenched particles. So, the connected parts of the correlation functions
describe correlations between a pair of fluid particles that are transmitted through succes-
sive layers of fluid particles whereas the blocking parts describe correlations between fluid
particles blocked or separated from each other by matrix particles. Note that, though
the matrix particles are immobile, they tend to order the fluid particles on either side of
them and thus are capable of mediating correlations through a layer of matrix particles.
At very low matrix porosities, i.e. very high densities of the matrix, the volume accessible
to fluid particles is divided into small cavities. In this limit the functions hj; describe
correlations between fluid particles in the same cavity, whereas hfj describe correlations
between fluid particles in different cavities.

The ROZ equations (5.13) form a set of nine integral-equations, eight of them being
coupled.

Integral-equation closure relations

The ROZ equations can now be solved with one of the standard closure relations of
liquid state theory [4], such as the Percus-Yevick (PY) or the hypernetted chain (HNC)
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approximation. The method used here is a hybrid of the iterative Picard scheme and
the Newton-Raphson technique which was developed by Gillan [125]. The numerical
solution of the ROZ equations is based on an algorithm introduced by Labik, Malijevsky
and Vonka (LMV algorithm [126]), an extension of Gillan’s work, which was originally
proposed for solving numerically the OZ equations for homogeneous liquids (and mixtures)
and extended by Lomba [113] to the case of the ROZ equations. We have calculated the
correlation functions of the reference system by solving the ROZ equations along with the

PY closure.

The optimized random phase approximation

To close the ROZ equations we have chosen the ORPA (see section 2.2.2). Applying
the ORPA to the replicated system and taking the limiting case s — 0 one obtains the
properties of the partly quenched system.

The replicated system is now a (2s + 1)-component system with a very special set of
interatomic potentials ®;;(r). Most importantly, since the particles belonging to different
replicas do not interact, one has ¢13 = @14 = ¢o4 = 0. We assume that the matrix particles

are pure hard spheres; then the RPA closure relations read

rep rep
coo (158) = Cr;OO(r; s)
AP(ris) = P(rys) + P (r;s)  fori,j = 01,02,11,12,22 (5.17)
P (rys) = ca(r;s) for i,j = 13, 14, 24.
with ¢} (r;s) = —®p;(r), while the core conditions now read hy,;(r) = 0 for r < gy,

17 = 01,02,11,12,13. Since there is no risk of ambiguity, we can suppress in the following
the arguments r and k of the functions; the arguments are obvious from the following
notation: functions in k-space carry a tilde, while all other functions are in r-space.
Using the symmetry properties of the replicated system the expression for the excess free
energy (2.56) in the replicated system, (A™P)* = —SAXP(s)/V is given by

(Arep)* (5) = (A7) (s)+

1
~rep rep rep
E : pi € pzz +28 E : PipP;C pzy - 5 S E : picp;ii(s)
i=1,2 i<j i=1,2 0

=0,1 k=0 r=

/d3k {ln det [1 - (Nirep(s)] — Indet [1 - Cﬁep(s)]} , (5.18)

2(2m)3

where we have used the matrix notation C introduced in subsect. 2.2.2. Again, closer

investigation of the symmetry of the two matrices appearing in the above equation allows




120 Fluid Miztures in Porous Media

to derive the following identity which can be applied to both contributions of the above
integral
Indet |1 — C™(s)]
= (s=DIn{[l - pi (&7(s) = &5 ()] [1 — p2 (€22 (5) — &' (5))]
—p1p2 [ (5) — EF ()} +
1n{ [1 = potor ()] { [1 = pu&iP(s) = pa(s — DEF ()] x
(1= 0285 (5) = pals — VEL(5)] = prp2 [EF (s) + (s = DET () } —
spopr [E67 ()] [1 = padsy (5) — (s — DET(s)]” —
2spop1p2Cor (5)¢0z () (617 (5) + (s — )& (s)] —
spop (663 ()] [L = pi &P (s) — (s — DL (5))” } (5.19)
The free energy of the quenched system, A, is now obtained via A = lim,_, d%Arep(s)
(110, 35]
A* = A — A[C] + A|C,] +
1

3 [P%ép;n + 3tz + 20001801 + 2P0P2Cp02 + 2P1P25p;12]k:0 -
1

3 [p1Cpi11 + Pacpazl,—g (5.20)

where the functional A[C] is defined as follows

A = s [ {1 {0 = 06 (1= ) — o} -

! X
[1 = p1E§] [1 = pacse] — prpa [5,]°
[P1513 (1 = p2cGy) + p2Cau (1 — prc]y) + 2p1pacraciy + (5.21)
Po ~c ~ ~c ~ o~ o~
1= potoo (plCOI (1 = p2lhy) + paliy (1 — piciy) + 29192001002012) ]}

and A[C,] is obtained from the above expression by substituting the c;;’s by ¢,;;’s.

Finally one can show [34] that for the above expression of the free energy the following
relation holds

( . > (r) = 20y PiPj [9r;ij (1) + i ()] (5.22)

0Cpsij 2
which means that the minimization of the functional A*[C,] with respect to variations

of the ¢,,;(r) inside the core region is equivalent to the hard core condition. This fact

is in particular useful for the numerical solution of the ORPA: although, of course, the
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numerical solutions of integral-equations and of the minimization of the functional should
lead to the same results we found that — from the numerical point of view - in some cases

it can be more convenient to solve the minimization problem.

5.3.3 Numerical details

For the numerical solution of the ORPA we have discretized the correlation functions both
in r- and k-space, using typically 1024 grid-points and a mesh-size of Ar = 0.010. For
a given system, we first calculate the correlation functions h,,;; and c.,; of the reference
system by solving the ROZ equations (5.13) along with the Percus-Yevick (PY) closure
[4] using the LMV-algorithm [126] adapted to the present problem [113]. The iterative
algorithm is considered to be converged if the difference AI';; between two successive

values of the functions I';; = (h;; — ¢;;)r satisfies

> ATy ()" Ar < 1077, (5.23)

In eq. (5.23) the first summation is done over all pairs of indices while the second sum is

taken over all grid points of the r-mesh.

Then we solve the ORPA by minimizing A (5.21) using the steepest-descent method
to obtain the correlation functions hy,;; and ¢p;. The advantage of this minimization
algorithm lies in the fact that an explicit calculation of the functional is not required;
we only need its derivatives, i.e. the hy,;;’s, which we easily obtain from the so-called
residual ROZ-equations [34]. Starting from an initial guess for the direct correlation
functions inside the core region (for instance, the simple RPA expression or the solution
at some lower density) we create with these gradients a sequence of new, improved direct
correlation functions until we obtain a minimum in the functional within a sufficient
accuracy. The step size in this search is triggered by a parameter £ which measures the
degree of violation of the core condition by the resulting perturbation parts of the total

correlation functions, Hy,;;(r) = rhpy;(r)

1/2
Ar} . (5.24)

62{[;:2 2 <Hp;0j(7"k)>2+ > > (Hp;z'j(rk)>2

k:ri<oo; 5,j=1,2:1<5  kirp<oyj

For each system the ROZ have been solved along isotherms separated by AT = 0.002
(0.0001 near critical regions) with a grid size in density of 0.005 and 0.0125 in concentra-

tion.
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5.3.4 Thermodynamic Properties

In order to calculate phase equilibria we have to equate the pressure and the chemical

potentials; in the following we present expressions for these quantities.

The chemical potentials p; = pid + [y + Hpyi are calculated as follows (‘ex’ denotes
the excess part over the ideal part, ‘id’): the reference parts are obtained via numerical

integration of the compressibility equation, i.e.,

OB . é
(T’l> = _"I’.[Cr?;ll]kZO - (1 - x)[cf§12]k:0
pf T,z,po0
OB e &
( a—’2> = —(1 — x)[cr;QQ]kZO - x[cr;12]k:0 (525)
pf T,z,po0
using as an integration constant at p; = 0 the Carnahan-Starling expression for the

excess chemical potential of a one-component system of hard spheres at packing fraction
n = (/6)poo” [118]

8 —9n*+3p?
(1=

Further, the ideal parts of the chemical potentials are given by Buld = Inp; (i = 1,2)

By = 0) =12, (5.26)

and for the perturbation parts of the u;’s one is able to derive closed expressions in the
version of the ORPA used in this contribution (which is equivalent to the MSA) within
the energy route [51]

- _ . 1
Bhipn = Ba — Bpiey = — [prrchar + polpor + (1 — x)cp;IZ]k:o + 2 [Cp;ll],«:() 3
- _ _ 1
Blipe =Bz — Bz = — [pf(l - x)cp;22 + PoCp02 + prL’Cp;m]k:O + B) [Cp;22]r:0 - (5.27)

The pressure, P = P9 + P™ 4 P, is calculated as follows: the ideal contribution is
BPY = p;; the reference part to the pressure is obtained via numerical integration of the

compressibility relation

( 8 ﬁ prex
Ipy

) = Py {xQ [55;11]1::0 +27(1 — 55)[51?;12]k=0 + (1 - x)2[55;22]k=0} ; (5.28)
T,l’,po

Note that the integration constants are irrelevant if one wants to determine only the phase

diagram.

Finally, the perturbation part of the pressure is calculated from the Gibbs-Duhem

relation

BP, = A" = Af + 3 Z Pitp;is (5.29)

i=1,2
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where the difference of the free energies is taken from (5.20).

Phase diagrams were determined from numerical solution of the equilibrium conditions
Egs. (3.11) — (3.12) as explained in section 3.1.3; these coupled non-linear equations were

solved via a Newton-Raphson procedure.

As we approach the critical or tricritical points the above systems of equations become
ill-conditioned. In all the phase diagrams presented in the following section we have
plotted the coexistence curves as far as reliable numerical solutions were available, the

open segments representing those regions where no numerical solution could be found.

For the determination of the critical temperature and density, 7, and p,., the results
were extrapolated under the assumption that the coexistence curve can be described by

a scaling type law and the law of rectilinear diameters, i.e.
p—pg = B(T —T.)° (014 pg)/2 = pe + A(T = T.) (5.30)

Eqgs. (5.30) were fitted to the coexistence curves by taking A,B, and [ as adjustable
parameters. Due to the well-known fact that the ORPA (being a conventional liquid
state theory) fails to describe correctly the critical region [7], the values of 3 (generally
between 1/3 or 1/2 depending on matrix density) obtained by the curve fitting should

not be considered as reliable estimates of a critical exponent.

5.4 Results

5.4.1 Comparison with simulations

The computer simulations, carried out for four different matrix densities py = 0, 0.05,
0.15 and 0.3 at = 0.7, y = 1, zo = 2.5, r. = 2.50, have been compared with ORPA
results (for technical details of the GCMC simulations we refer to [19] and references
quoted therein). The MC results are shown in fig. (5.2) by the symbols. In the range of
temperatures T ~ 0.7 - 0.8 one observes, for py = 0, a first order V-MF transition with
critical temperature T, ~ 0.72 — 0.73 and critical density p. ~ 0.35 and a line of second
order demixing transitions terminating at a tricritical point with temperature 7T}, ~ 0.73,
slightly higher than the critical temperature, and density p;. & 0.57. This diagram is
of type II. When the matrix density increases, the temperature range, within which the
equimolar liquid exists, decreases and the phase diagram evolves towards a type I diagram.

At po = 0.3 the phase diagram in the temperature range 0.49 — 0.52 reveals that (within
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Figure 5.2: Variation with matrix density p, of the phase diagram of a binary fluid
mixture in contact with a porous matrix (« = 0.7, y = 1 and zo = 2.5): comparison
between GCMC [19] and ORPA results. py = 0, 0.05, 0.15, and 0.30 (from top to bottom).
Symbols: GCMC simulations (diamonds: V-MF equilibrium; squares: V-DF or MF-DF
equilibrium; triangles: A-line). Lines: ORPA results (full line: V-MF, V-DF or MF-DF

coexistence curve; dotted line: metastable V-MF transitions; dashed line: A-line).
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Figure 5.3: Demixing transition of a binary fluid in contact with a porous matrix of
density pp = 0.15 (@ = 0.7, y = 1 and zo = 2.5): ps as a function of concentration x
for T = 0.62. The symbols denote GCMC simulations (diamonds: V-MF equilibrium;
squares: MF-DF equilibrium; crosses: first order demixing transition) the lines ORPA

results.

accuracy of the simulation results) the tricritical temperature, or possibly the temperature

of the critical end point, is close and slightly below the critical temperature (~ 0.51).

Comparison of the phase diagrams with ORPA results is also illustrated in fig. (5.2).
At py = 0 excellent agreement is obtained for the V-MF and MF-DF transition densities,
the fluid concentrations of the demixed phase and the A-line. This agreement deterio-
rates, however, with increasing py. Although in the ORPA the same sequence of types of
phase diagrams occurs as in the simulations and general trends (lowering of the critical
temperature and narrowing of the V-MF coexistence curve with increasing matrix den-
sity) are correctly reproduced, marked differences are observed on a quantitative level.
In particular, for py > 0.15, the critical temperature is found to be higher than in the
simulations; also the ratio of the critical to tricritical or end point temperature increases
with pg, while it remains close to 1 in the simulations. Furthermore, the critical density
shifts to lower values in contrast to the simulations where it remains nearly constant. On
the other hand, the concentrations of the demixed phase remain accurate even at a high
matrix density as illustrated in fig. (5.3) for py = 0.15. As noted in the previous section,

the determination of the equilibrium densities of the different phases in the simulations
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are affected by uncertainties of the order of 2-3 % for py # 0 and ~ 1 % for py = 0. In view
of these error bars the difference between the theory and the simulations at the higher
matrix densities is significant. The major source of error is likely to be found in the use
of the ORPA, in particular in that of the PY type closure to solve the ROZ equations for
the reference hard sphere system in the framework of the replica theory [114]. Differences
of similar size between simulation and ORPA results were observed in the one-component
case [119].

5.4.2 Variation of «

The variation of the phase diagram with « (ratio of the interaction strengths between
unlike and like particles) is shown in figs. (5.4)-(5.6) for the matrix densities py = 0 and
0.1. In the latter case the matrix-fluid interaction was either a pure hard sphere (y = 0)
or a hard sphere + Yukawa interaction (y = 1). For the bulk mixture we observe — in
qualitative agreement with the mean-field results of Wilding et al. [12] and subsect. 4.3.5
— variation of the phase diagram from type III to type II to type I as we increase «
from 0.65 to 0.90. At o = 0.9 no demixing transition could be observed down to a
temperature T = 0.55, below which the ORPA equations no longer could be solved.
At this temperature and « value a freezing transition is also possible and the demixing
transition does not exist anymore in the fluid phase. Over the range of o values considered
the critical temperature and density do not vary appreciably with a. An increase of the
matrix density from 0 to 0.1 (at y = 1) does not alter this behavior or the sequence of
phase diagrams (from type III to type I) but lowers T, and T;. by ~ 10% and shifts the
densities of the tricritical and CEP points to slightly lower densities. A change of y from
1 to 0 at fixed matrix density py = 0.1 lowers T, by ~ 10%, shifts p. from ~ 0.32 to ~ 0.26

and delays the appearance of the CEP as one increases a.

5.4.3 Variation of y

The variation with the parameter y (expressing the ratio between the fluid-fluid and the
matrix-fluid interactions) is shown in fig. (5.7) and (5.8) for the two cases py = 0.05,
a=0.7and py = 0.1, « = 0.73. A positive value of y represents an attraction between
matrix and fluid particles while a negative value represents a repulsion. For the lower
matrix density py = 0.05, the sequence of phase diagrams is found to be type III —
type II — type IIT when y decreases from positive to negative values. A V-MF transition

appears near y ~ 2 (a precise location cannot be found due to numerical problems in the
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Figure 5.4: Variation with « of the phase diagram of the binary fluid mixture in thermal
equilibrium with a porous matrix from ORPA. p, = 0: a = 0.65, 0.70, 0.75, 0.80 and 0.90
(from top to bottom); Full line: V-MF, V-DF or MF-DF coexistence curves; dotted line:
metastable V-MF transition; dashed line: A-line.
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Figure 5.5: The same as in fig. (5.4) for p = 0.1, y = 0: « = 0.68, 0.70, 0.72 and 0.80

(from top to bottom).
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Figure 5.6: The same as in fig. (5.4) for py = 0.1, y = 1: a = 0.65, 0.70, 0.73, and 0.75

(from top to bottom).
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Figure 5.7: Variation with y of the phase diagram of the binary fluid mixture in thermal
equilibrium with a porous matrix from ORPA. py = 0.05, « = 0.7: y = 3.5, 2, 1, 0, -1
(from top to bottom). Full line: V-MF, V-DF or MF-DF coexistence curves; dotted line:
metastable V-MF' transition; dashed line: A-line.
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Figure 5.8: The same as in fig. (5.7) for py = 0.10, « = 0.73: y = 2, 1, 0, -1 (from top to
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critical region as mentioned above) and exists only in a small range of y-values extending
roughly from 2 to —0.5. The phase diagram is again of type III for the more strongly
repulsive matrix-fluid interactions y = —1. A qualitatively similar behavior is observed
for the larger matrix density py = 0.1; here the type II phase behavior occurs at least for
0<y <2

The ORPA allows us to determine the metastable V-MF transitions (hidden below
the V-DF coexistence curve); these are marked in figs. (5.7)-(5.8) by dotted lines. From
fig. (5.7), it is apparent that, when the matrix is strongly attractive (y = 3.5), the A-line
(extended into the V-DF coexistence region) intersects the metastable first order V-MF

coexistence line at a density smaller than the (metastable) critical density, py MY, while
for the repulsive matrix-fluid interaction (y = —1) the intersection is observed for densities

larger than pY~™MF. As pointed out by Wilding et al. [12] in their mean-field study of
a symmetric binary bulk mixture these differences in the metastable equilibrium may be
of relevance for the dynamic properties of the system. Therefore, when, in the case of a
repulsive matrix, the fluid is quenched from a high temperature state into the coexistence
region slightly below the metastable critical point one can expect ”two-stage demixing”.
This means, the system will first separate into a V- and a MF-phase; then the equimolar
liquid will demix [12]. In contrast, for an attractive matrix (y = 3.5), the fluid will demix

and phase separate simultaneously (”one-stage demixing” [12]).

5.4.4 Variation of pg

The influence of the matrix density on the phase diagram of the mixture is shown in
figs. (5.9) and (5.10) for two values, 0 and 1, of the parameter y and o = 0.7. As discussed
in the comparison of simulation and theoretical results, in both cases, at py = 0, we have
a type II diagram characterized by a tricritical point (where the A-line of the second order
demixing transition terminates) as well as a triple point where the G, the L and the DF
coexist. As we increase pg, at y = 1 (attractive tail in the matrix-fluid interaction) the
tricritical temperature 7. decreases; at py ~ 0.3 the first order transition between the
MF and the DF has vanished, giving rise to a CEP at T¢, (type I phase diagram). It can
be observed that the existence of a CEP leads to a kink in the V-MF curve, clearly visible
in the ORPA data, a phenomenon which has been discussed in a simulation study of the
pure mixture in [127]. The situation is completely different if the matrix-fluid interactions
are hard sphere potentials (y = 0). We now arrive with increasing py at a type III phase
diagram; for py ~ 0.1 the V-MF transition becomes metastable and hidden below the
V-DF transition (type III phase diagram). As discussed in the previous subsection, the
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Figure 5.9: Variation with matrix density py of the phase diagram of the binary fluid
mixture in thermal equilibrium with a porous matrix from ORPA. y = 0, a = 0.7: py
= 0., 0.05, 0.10 and 0.15 (from top to bottom). Full line: V-MF, V-DF or MF-DF

coexistence curves; dotted line: metastable V-MF transition; dashed line: A-line.
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Figure 5.10: The same as in fig. (5.7) for y = 1, a = 0.7: py = 0, 0.05, 0.15 and 0.30
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metastable V-MF transition can lead to a "two-stage demixing”.

5.4.5 Variations of z and r.
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Figure 5.11: Variation with screening length z of the phase diagram of the binary fluid
mixture in thermal equilibrium with a porous matrix from ORPA. Parameters: y = 0,
a = 0.68, and py = 0.10. zo = 2, 2.5 and 3 (from top to bottom). Full line: V-MF,
V-DF or MF-DF coexistence curves; dotted line: metastable V-MF transition; dashed

line: A-line.

The change in phase diagram entailed by variation of the screening length z of the
Yukawa potential is shown in fig. (5.11) for py = 0.10, & = 0.68, and y = 0. A change
of zo from 2 to 3 mainly lowers the tricritical temperature and the critical temperature
of the metastable V-MF transition, but otherwise leaves the critical density and type of

phase diagram (type III) unchanged.
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Increasing the range of the Yukawa potential from r. = 2.50 (value at which most of the
ORPA calculations have been performed to allow comparison with the MC simulations)
to 8o raises the critical temperature while preserving the shape of the phase diagram (cf.

fig. (5.12)). We only observe a narrowing of the V-MF coexistence.
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Figure 5.12: Variation with cut-off radius r. of the phase diagram of the binary fluid
mixture in thermal equilibrium with a porous matrix from ORPA. Top curve: r. = 2.50;
bottom curve r, = 80. The other parameters are y = 1, a = 0.7, and py = 0.05. Full line:
V-MF, V-DF or MF-DF coexistence curves; dotted line: metastable V-MF transition;
dashed line: A-line.




Chapter 6

Conclusion and Outlook

The Self-Consistent Ornstein Zernike Approximation (SCOZA) is an advanced liquid-state
method that remains successful in the critical region; it enforces consistency between the
compressibility route and the energy route to thermodynamics. SCOZA is known to give

accurate results for the phase diagram and the critical behavior of a fluid.

We have generalized the formulation of the SCOZA to the case of a hard-core multi-
Yukawa fluid. This has enabled us to treat various systems with pair potentials that
can be parameterized in terms of linear combinations of Yukawa tails: the L.J potential
and the Girifalco potential that describes the interaction between fullerene particles. We
have calculated phase diagrams of these systems and compared the results with previous
theoretical and simulation studies. The comparison has shown that the SCOZA provides
very accurate estimates for the critical point parameters. The determination of the phase
diagrams of C,,>¢ fullerenes showed - in contrast to previous studies by Caccamo et al. [91]
- that the range of the liquid range decreases as one increases the size of the fullerene

molecules.

We have furthermore presented results for a HCY system with density-dependent
interaction range z(p). Such investigations should be of relevance for the phase transitions
in colloidal systems and liquid metals which are usually described by density-dependent
pair potentials. By varying the two parameters of z(p) that describe the height and
location of its maximum we generated a series of phase diagrams and observed different
types of critical behavior: in particular, phase diagrams with two critical points where
found, one corresponding to a stable or metastable gas-liquid transition, the other one
to stable or metastable liquid-liquid transitions. In the case when the two critical points
merge a preliminary study of the critical exponent 3 showed evidence that in this case a
tricritical point occurs. The development of the SCOZA done in this work offers for the
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first time to study these phenomena in a quantitative way. More detailed investigations

in this direction are currently done.

We have also generalized the SCOZA to a binary symmetric fluid. Mean-filed theory
predicts for this mixture the existence of three generic phase diagrams. These phase
diagrams are also obtained in the present study and the transition between these types
is found to be triggered by the parameter « - the ratio of the unlike to the like species
interaction. A comparison with MC studies is planned. We also consider the further
development of enforcing self-consistency between the energy route and the routes to the
partial compressibilities (eq. 2.31) which would require the solution of a coupled set of
three PDEs to be worth pursuing. Closer investigations of the critical behavior of binary

mixtures will be done in future work.

Furthermore, we have studied a binary symmetric mixture when it is in thermal equi-
librium with a disordered porous matrix. Results obtained within the framework of the
ROZ integral equation theory in combination with the ORPA closure have provided de-
tailed information on the influence of matrix density and parameters defining the inter-
actions between the particles of the binary mixture and between the mixture- and the
matrix-particles. The three types of phase diagrams that occur in the bulk mixture are
also encountered by the ROZ theory for both the bulk and the confined mixture. A ma-
jor achievement of this work is to supply a non-ambiguous correspondence between the
interactions in the partly quenched system (mixture plus porous matrix) and the type of
phase diagram to which they give rise. In the bulk binary mixture the change in phase
diagram is triggered by only one parameter (the parameter «). In the present system
the situation is more complex bringing into play a combination of several parameters «,
y (the ratio of matrix-fluid and fluid-fluid interactions) and the porosity (via pp). Small
changes in each of these parameters have been shown to lead to qualitative changes of the
phase diagrams. In particular, for a given fluid and matrix, it is apparent that the phase
diagram can be changed drastically by varying the porosity of the medium which is the
parameter most readily controllable in experiment. Comparison with GCMC simulations
and ORPA results showed that for low matrix densities the agreement is excellent and

that ORPA is able to predict - at least in a qualitative way - trends in the phase behavior.




Appendix A

On the Analytic Solution of the OZ

Equation for Yukawa Systems

We solve the Ornstein-Zernike equation
hr) = c(r) +p [ dr'e ) b (e = ') (A1)
supplemented by the closure relation

h(r) =0 for r<1
e(r) = K& for r > 1,

r

using two different approaches.

A.1 Baxter’s Factorization Technique

The first approach is based on the Wiener-Hopf factorization of the direct correlation
function introduced by Baxter [74]. He showed that the original OZ equation can be

rewritten as
re(r) = ~Q'(r) +2mp | oWt — rt (A.3)
rh(r) = =Q'(r) + 2mp /OR(T — t)h(lr — t)Q(t)dt, (A.4)

where (Q)(r) is the so-called factor function. Baxter then showed that ()(r) has the following
properties: Q(r) is a real, continuous function, Q(r) = 0 for r < 0 and Q(r) = 0 forr > R
if ¢(r) = 0 for r > R. He thus immediately obtained the PY solution for hard-spheres
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(e(r) =0 for r > 1). Hoye and Blum [24] showed that Baxter’s approach is also applicable
for an infinitely ranged c(r) of the form of a linear combination of Yukawas and derived
the analytic solution. They showed that from the form of ¢(r) outside the core (A.2) and
eq. (A.3) it follows that Q(r) must be of the form

Q(r) = Qo(r) +de ™" for r >0 (A.5)

where

(A.6)

QO(T):{(%)(7"2—1)+b(r—1)+c(e‘”—6_'z) 0<r<l1

1<r

with yet undetermined coefficients a, b, ¢ and d. We insert Q(r) given by (A.5) and (A.6)

into eq. (A.4). For r < 1 one then gets using the core condition

0 = —Qyr)+2mp [ (r=0)hllr — ) Qo(t) dt

v

=0 for r<1

+21p /000(7" —Oh(|r — t))de*dt
= —Qi(r) —2mpde ™ [ ub(we " du
0

= — (ar +b—z(c+ d)e*”) — 2mpde *"h(z), (A.7)

where ﬁ(z) is the Laplace transform of rh(r). By equating terms of equal r dependence

one gets
a = 0
b = 0
2(e+d) = 2mpdh(z). (A.8)

Using these coefficients for @ and inserting this function in eq. (A.3) one gets for r > 1

1
Ke*rD = dze* +27p / Q(t — r)Qp(t) dt
rSe———

=0 for r>1
—27rpdz/ Q(t —r)e *'dt
= dze 7" (1 —27mpq(2)), (A.9)

where

o) = [T Qe ar
= o(z) —1(2)e ? (A.10)
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with
c _, c+d
o2) = 2 2z
1
T(z) = —2—Zce_z. (A.11)
Therefore one obtains from (A.9)
K =dz (1 —2mpq(z)). (A.12)

We further need some expression for h(z). We take the analytic continuation of eq. (A.7)
for r > 1 and subtract it from eq. (A.4) for r > 1

rh(r) = zde™*" + 27rp/ (r —t)h(jr —t])Q(t)dt (A.13)
0
to obtain .
rh(r) = —zce ™" + 27Tp/ (r —t)h(lr —t])Q(t)dt. (A.14)
0
The last integral is just a convolution integral. So one obtains after Laplace transformation
~ z2C ~
- _ —Z2p=5 1 9 Al
h(s) = — e "¢ + 2mph(s)q(s) (A.15)
and therefore
(1 — 2mpg(2))h(2) = —e~%, (A.16)

2
For given h(z) eqgs. (A.16) and (A.8) are linear in ¢ and d. We introduce (1 = =)

I = 24ne*h(z)
= 2477/ re " Vg(r)dr, (A.17)
1

using the relation g(r) = h(r) which is valid for the ‘-’-system (cf. subsect. 4.3.2); solving
eqs. (A.16) and (A.8) for ¢ and d we obtain

I
= [—-14+—€e7%)d
¢ ( +2ze )
Lez

= el : Al
! (1+L(1—e)1) (A15)

Inserting this solution in eq. (A.12) yields a nonlinear equation for [

6nK = (1 5eT) - (A.19)
(1+ £(1—e))

For given K and z the solution of this nonlinear equation yields I and thus ¢, d, iz(z), u

etc.
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A.2 Laplace Transform Technique

The alternative route to the solution is based on the Laplace transform technique that
was applied by Waisman [42] to solve the OZ equation with core condition and a direct
correlation function of one-Yukawa form. His solution was subsequently simplified by
Hoye and Stell [71] and generalized to the case of two Yukawas [44, 63, 52].

We consider the core condition

h(r)=—e for r<1. (A.20)
and recover the original core condition (A.2) in the limit ¢ — 0. We introduce the
functions "

H(r) = ﬂ, C(r) = @ (A.21)
€ €
They satisfy the OZ relation
H(r) = C(r) + 5 [ d'C () H (jr = ') (A.22)
and the closure relations
H(r) = —1 for r<1
Nefz(rfl)
C(r) = K for r>1 (A.23)
r
with
- K ~
K=—, p=ep, 0n=en. (A.24)

€
Thus we recover a closure relation that has already been studied by the Laplace transform

technique. Waisman found the direct correlation function of this system inside the core

to be given by

1—e N ,cosh(zr) — 1
v

1
—C(r) = a+br + =fjar® + A
(r)=a+br 1 T 2rK z%e*

r<l (A.25)
where a,b and v = KI = f%ﬁezﬁ(z) satisfy a set of nonlinear equations. Following
similar lines as for the two-Yukawa c(r) in [44, 63] these equations can be rewritten as a
system of linear equations for a suitable choice of parameters: to this end we introduce

the variable

i 1+27\°
=92 /g — ~L with g = A2
g V= g with g (1_77), (A.26)

where the ratio % is given in terms of I = 247je*H(z) by eqs. (33) and (34) of [44] as

Vi _4—}—22—2’27[—1

Vo 2242 ol -1 (A.27)
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where
1 /2—-2
= — 2 A.28
? 2z (z +2 e > ( )
1 (22+22—4
= —|—-: . A.29
T 2z<4+2z—z2+6 ) ( )
The above mentioned linear system becomes then (compare with eq. (6) of [63])
A+(2-h)Vy = ¢
hA+Vy, = ¢ (A.30)
with
A = (=) (1~ pi(k=0)) (A.31)
2
= 1+ T
Z'Z
1
9 = (v+Va)’ - 122-
(A.32)
Solving the system (A.30) for V; gives
Vo = 4 (122 — x2> (Vg — z)° (A.33)
22 \4
where we defined
From the definitions (A.26) and (A.34) it follows
Vi i?
L _9_ N Se— A.35
NV o 39
By inserting the expressions (A.33) and (A.35) in eq. (36) of [44]
=~ 4z +2)%? Vi 2
bnK = ——V | — — A.36
77 52 0 <V0 a) ( )
where Lo )
(A4 2z2-2%)T (A37)
22+ 2)0
one obtains a nonlinear equation for the quantity x
= 2+ 2)%0?% /1 2
67K = % (122 _ x2> (42— vi—o)(vi—a) - )" (A.38)
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To obtain the corresponding equation for the original closure relation (A.2) we insert the
expressions (A.24) in eq. (A.38) and take the limit € — 0. In this limit one gets

I = 24677/ - M) _2477/ D () dr = 24ne*h(2)
q —
Vi
]___
1,2
r o— 11— 4% (A.39)
v
and thus ( 2207 (1
_(e+2)%0 2 2 2\ 2
677K—T<Zz —x>(4(1—a)(1—x)—z) . (A.40)

By expressing x as a function of I via the eqs. (A.34,A.26,A.27) one can show that
eq. (A.40) is equivalent to the previous formulation eq. (A.19).
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