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Abstract

In this thesis a quantitative test of time-dependent density functional the-
ory (TDDFT) for a two-electron system in a parabolic potential, driven by
an external linear polarized laser field is performed. The full Hamiltonian
of the interacting two-electron system is separable in center of mass and
relative coordinates. The Schrödinger equation reduces to a stationary prob-
lem in the relative coordinate containing the Coulomb force, whereas the
time-dependence of the system is shifted completely to the center of mass
motion. The time-dependent electron density, the dipole moment and time-
dependent occupation numbers of this separable problem constitute the refer-
ence physical quantities to be compared to the approximate TDDFT solution.
The TDDFT solution is obtained by employing the time-dependent, self-
interaction corrected adiabatic local-spin-density-approximation (ALSDA-
SIC) . The system is discretized on a non-equidistant grid by applying a
generalized pseudo-spectral method. The time-propagation of the TDDFT
system is efficiently solved by a split-operator technique. As initial state
of the system we study different choices: the spin-singlet ground state, the
triplet ground state and arbitrary coherent superpositions of singlet states.
For the first two choices the so-called harmonic potential theorem (HPT)
applies, stating that the initial densities are rigidly shifted in time according
to the classical solution of the center of mass coordinate, i.e. the density
does not suffer distortions. Whereas for the spin-singlet ground state HPT
in ALSDA-SIC is satisfied and the dipole moments, of exact and TDDFT
calculation show excellent agreement, problems arise for propagation of the
triplet ground state. In this case the error of the dipole moment increases
after the switch-off of the laser pulse and the shape of the density is distorted.
In the case of a superposition of states as initial state ALSDA-SIC fails, the
exact dipole moment can not be reproduced by the TDDFT calculation.
Based on the harmonic two-electron system the problem of calculating many-
particle observables within TDDFT is approached. As a first step in this
direction state-to-state transition probabilities (occupation probabilities) in
TDDFT are defined by the projection of the time-dependent Kohn-Sham
Slater determinant onto either Kohn-Sham configuration state functions or
exact eigenstates of the system. The overall shape of TDDFT occupation
numbers compared to exact ones is in accordance for systems satisfying the
HPT. TDDFT transition probabilities have, however, no asymptotic well
defined limit, i.e. after the swith-off of the laser pulse TDDFT occupation



probabilities show oscillations ("spurious cross channel correlations" known
from time-dependent Hartree-Fock). For weakly correlated systems, however,
average over the oscillations give final occupations in good agreement with
exact calculations. For one-dimensional systems an exact Kohn-Sham scheme
is realized. For arbitrary initial states in the absence of an external laser field
occupation probabilities of TDDFT with the exact exchange-correlation po-
tential are calculated. It is not possible to extract occupation probabilities
by the simple projection approach for arbitrary initial states.
Due to the deficiencies of the simple TDDFT projection mechanism to de-
fine state-to-state transition probabilities different combinations of TDDFT
with other many-body theories are proposed and examined. In spirit of
many-body perturbation theory a time-dependent perturbation approach to
transition amplitudes is formulated. The time-dependent Kohn-Sham system
serves as the unperturbed system. The first-order correction to the TDDFT
transition amplitude turns out to be divergent. Resummation of this diver-
gent series can be circumvented by means of a variational approach. Im-
provements of TDDFT results can, however, not be achieved.
As an alternative a functional integral approach is tested. The many-particle
propagator can by means of an operator-identity be rewritten as a functional
integral over one-particle propagators. The functional integral is approxi-
mated by the stationary-phase method, resulting in a set of Kohn-Sham like
equations. The effective potentials in those equations are functionals of a
generalized density depending on propagated initial and final state. Only in
some non-generic cases this method can improve on TDDFT results.
A new functional to calculate state-to-state transition probabilities is pro-
posed which directly depends on the time-dependent density. This new ap-
proach does not show the shortcomings of the projection approach which only
depends implicitly on the density. First promising results of the this density
functional applied to one-dimensional Kohn-Sham models are presented.



Zusammenfassung

In dieser Arbeit wird ein quantitativer Test der zeitabhängigen Dichtefunk-
tionaltheorie (TDDFT) präsentiert. Das System, das unseren Untersuchun-
gen zugrunde liegt, ist ein parabolischer Zwei-Elektron Quantenpunkt, der
durch ein linear polarisiertes äußeres Feld getrieben wird. Der Hamilton-
Operator dieses wechselwirkenden Zwei-Elektron Systems ist in Massenmittel-
punkts- und Relativkoordinaten separierbar. Die Schrödinger Gleichung
zerfällt in ein stationäres Eigenwertproblem in der Relativkoordinate, die
Coulomb-Wechselwirkung beinhaltend, und in ein zeitabhängiges Problem
in der Massenmittelpunktskoordinate. Zum Vergleich der exakten mit der
TDDFT Lösung dienen physikalische Größen, wie die zeitabhängige Dichte,
das Dipol-Moment und Besetzungswahrscheinlichkeiten. Die TDDFT Rech-
nung wird durch die adiabatische lokale Spin-Dichtefunktionaltheorie real-
isiert, wobei eine Korrektur der Selbstwechselwirkung berücksichtigt wird
(ALSDA-SIC). Das System ist auf einem nicht-äquidistanten Gitter dis-
kretisiert, wobei eine generalisierte pseudospektrale Methode verwendet wird.
Die Zeitpropagation erfolgt durch eine effiziente Split-Operator Methode.
Verschiedene Anfangszustände werden betrachtet. Neben dem Spin-Singlet
und Spin-Triplet Grundzustand werden auch beliebige kohärente Überlager-
ungen von Eigenzuständen studiert. Wählt man einen Eigenzustand als
Anfangszustand, gilt das sogenannte Theorem des Harmonischen Potentials
(HPT), das besagt, dass die ursprüngliche Dichte durch das äußere Feld ohne
Verformung nach der klassischen Bewegungsgleichung des Massenmittelpunkts
verschoben wird. Während im Falle des Singlet-Grundzustandes die Über-
einstimmung von exakter und TDDFT Lösung ausgezeichnet ist, treten für
den Triplet-Grundzustand Probleme auf. Nach Abklingen des äußeren Feldes
erhöht sich der Fehler im Dipol-Moment und die Dichte weist Verformungen
auf. Trifft die Wahl des Anfangszustandes auf eine beliebige kohärente
Überlagerung, so scheitert ALSDA-SIC, selbst das Dipol-Moment kann mit
ALSDA-SIC nicht reproduziert werden.
Ein Hauptbestandteil dieser Arbeit ist die Berechnung von Mehrteilchen-
Erwartungswerten mit TDDFT. Ein erster Schritt in diese Richtung erfolgt
durch die Definition von Übergangswahrscheinlichkeiten (Besetzungswahr-
scheinlichkeiten) zwischen einzelnen Zuständen in Form von Projektion der
zeitabhängigen Kohn-Sham Slater-Determinante auf stationäre Kohn-Sham
Zustände einer bestimmten Konfiguration. Für Systeme, die dem HPT unter-
liegen, stimmen derartige Besetzungswahrscheinlichkeiten im groben Verlauf



sehr gut mit exakten Wahrscheinlichkeiten überein. Derartig berechnete
TDDFT-Übergangswahrscheinlichkeiten haben aber keinen wohldefinierten
zeitlich asymptotischen Grenzwert, sie weisen selbst nach Abklingen des
Laserpulses Oszillationen auf. Diese Oszillationen bleiben auch bei Projek-
tion der Kohn-Sham Slater-Determinante auf exakte Eigenzustände beste-
hen. Der Mittelwert dieser Oszillationen stimmt für schwach korrelierte Sys-
teme aber sehr gut mit exakten Übergangswahrscheinlichkeiten überein.
Für eindimensionale Systeme wurde ein "exaktes" Kohn-Sham System real-
isiert. Kohärente Überlagerungen wurden so im exakten Austausch-Korrela-
tions Potential propagiert. Selbst für diese "exakte" Kohn-Sham Rechnung
können jedoch keine Besetzungswahrscheinlichkeiten durch Projektion eruiert
werden.
Um diese Mängel von TDDFT bezüglich der Berechnung von Übergangs-
wahrscheinlichkeiten zu beheben, werden Kombinationen von TDDFT mit
verschiedenen anderen Methoden vorgeschlagen und getestet. Eine zeitab-
hängige Störungstheorie im Sinne von M0ller-Plesset wird vorgeschlagen, in
dem das zeitabhängige Kohn-Sham System als ungestörtes System fungiert.
Es stellt sich jedoch heraus, dass die Korrektur erster Ordnung zum Über-
gangsmatrixelement divergiert. Resummierung der divergenten Störungsreihe
kann durch ein Variationsverfahren umgangen werden, es ergeben sich aber
keine Verbesserungen zur TDDFT Lösung.
Eine mögliche Alternative stellen Pfadintegralmethoden der Vielteilchen-
systeme dar. Mit Hilfe einer Operatoridentität kann der quantenmechani-
sche Vielteilchen-Zeitentwicklungsoperator als ein Funktionalintegral über
Einteilchen-Propagatoren geschrieben werden. Lösung dieses Pfadintegrals
durch die Methode der stationären Phase resultiert in einem Set von selb-
stkonsistenten Kohn-Sham ähnlichen Gleichungen. Das effektive Potential
in diesen Gleichungen ist ein Funktional eines verallgemeinerten Dichteoper-
ators, der von vorwärtspropagiertem Anfangs- und rückwärtspropagiertem
Endzustand abhängt. Nur für spezielle Bedingungen kann eine selbstkonsis-
tente Lösung gefunden werden, Verbesserungen der TDDFT Übergangswahr-
scheinlichkeit können jedoch nicht erzielt werden.
Ein neues Dichtefunktional zur Berechnung von Übergangswahrscheinlich-
keiten wird vorgeschlagen, das direkt von der zeitabhängigen Dichte abhängt.
Dieses Funktional ist von den Mängeln der Projektionsmethode befreit. Erste
vielversprechende Resultate durch Anwendung auf eindimensionale "exakte"
Kohn-Sham Systeme werden präsentiert.



Chapter 1

Introduction

In the last decades the progress in experimental techniques made it possi-
ble to reach electric laser fields exceeding the Coulomb field of the nucleus.
This electric field regime is highly non-perturbative, so that traditional per-
turbative methods to calculate observables such as transition or ionization
probabilities fail. Many laser-atom interactions are explained in the so-called
single active electron approximation [1]. In laser-induced processes like higher
harmonics generation or double ionization of Helium [2], however, electron
correlation often plays a crucial role [3, 4]. Time-dependent density func-
tional theory (TDDFT) [5] is often seen as an alternative to describe cor-
relation effects and simultaneously account for the matter-field interaction
non-perturbatively. Recent studies of double ionization yields within state of
the art TDDFT approximations [6] failed to reproduce characteristic features
of the ion yield, underlining the problems of present-day approximations of
TDDFT.
There are two independent sources of error in TDDFT approximations. One
crucial ingredient is the approximation of the time-dependent exchange-
correlation potential which, if an exact expression was known, would deter-
mine the exact time-dependent electron density of the system. The second
critical item is the calculation of two-body (or n-body) observables from the
density, a problem which is decoupled from the approximation of exchange-
correlation potentials. Questions how to properly define state-to-state tran-
sition amplitudes within TDDFT seem to have been hardly ever raised, let
alone answered.
In this work we present a critical case-study with the goal to shed light
onto the difficulties involved in calculating many-body observables within
TDDFT. Our rather simple model consists of two interacting electrons in a
harmonic potential driven by a linear polarized laser field. The exact quan-
tum mechanical solution of this problem is known.

8



Related systems served already in the past as benchmark systems to test
the quality of diverse approximation techniques. The two-electron quantum
dot was studied in its stationary form [39, 41, 40]. to test the quality of
different exchange correlation potentials of ground-state density functional
theory. Recently a system was studied, where the harmonic well suffers
time-dependent oscillations in the confining strength [48]. Focus of this work
was the comparison of the exact time-dependent exchange-correlation po-
tential (which was calculated backwards from the exact density) to usual
present-day approximations. Other works relying on the harmonic system of
time-dependent confining strength checked on the validity of the virial theo-
rem within TDDFT [50, 51] and focused on memory effects [51], i.e. showing
that the exact exchange-correlation potential is generally strongly nonlocal
in time.
The laser-driven two electron quantum dot obeys the so-called harmonic
potential theorem (HPT) [106], stating that only rigid shift motion of the
density, i.e. no distortion of the shape, is supported by the Hamiltonian
when the propagation starts from a stationary state. This exact property
of a time-dependent many-body system has to be maintained also in the
TDDFT system which results in necessary and sufficient conditions of the
exchange-correlation potential upon transformation into a moving reference
frame. The adiabatic local spin-density approximation (ALSDA) satisfies
this condition. In this work we will directly test if the HPT is satisfied in
the self-interaction corrected ALSDA (ALSDA-SIC). Propagation from the
singlet and the triplet ground state will be performed and the results are
compared to the exact solution.
To allow for a more general dynamics of the density we also study propa-
gation from a coherent superposition of eigenstates. These systems are not
subject to the HPT and therefore do not support the rigid density transport,
but also allow for distortions of the density.
The main questions we want to address in this thesis and which are studied
by means of our two-electron model are the following: What kind of observ-
ables can be legitimately calculated from TDDFT? Is it possible to calculate
cross-sections or state-to-state transition amplitudes within TDDFT? Must
TDDFT calculations be limited to the prediction of single-particle operators?
If it should be the case, can one find suitable modifications allowing access
to other quantities?
The proper definition of transition amplitudes within mean-field approaches
is a well known problem since the early days of time-dependent Hartree Fock
(TDHF). The intuitive way to define transition amplitudes would be the
following. Choose an initial state and propagate it self-consistently within
TDDFT (or TDHF). The transition amplitude is defined by projection of



the propagated wavefunction onto appropriate channel (final) states. One
deficiency of such a definition is, that even in the limit of times long after
the interaction period, oscillations in the obtained transition amplitudes are
observed. This so-called "spurious cross-channel correlation" [58] originates
from the restriction of the wavefunction to a single Slater determinant. The
cross-channel correlations will be studied for singlet and triplet ground state
propagation as well as for arbitrary initial states. In the latter case we will
introduce a one-dimensional model system for which the exact exchange-
correlation potential can be constructed. For arbitrary initial states the sim-
ple projection approach to define state-to-state transition amplitudes within
TDDFT fails.
Due to the deficiencies of the projection approach we introduce combinations
of TDDFT with other many-body approaches. Several authors [60, 63, 67, 68]
proposed a functional integral approach to solve the problem of defining tran-
sition amplitudes in mean-field theories. This method is based on a functional
integral formulation of the many-body S-matrix and involves the stationary
phase approximation of this functional integral. Initial and final states in this
approach are fixed and one tries to calculate a self-consistent mean-field which
connects initial and final states. The approximate dynamics will therefore
depend on the observable to be calculated, namely on the nature of measure-
ment to be performed at a given time. The time-dependent self-consistent
Kohn-Sham potential of TDDFT or the Hartree potential of TDHF should
provide a good starting point for the iterative scheme. We test this method
in order to calculate state-to-state transition amplitudes, but only in a few,
non-generic cases convergence of the self-consistent solution can be achieved.
Another method we explore is time-dependent perturbation theory. To im-
prove on TDDFT transition probabilities a time-dependent perturbative ap-
proach in spirit of M0ller-Plesset [122, 123] will be tested, which, however,
turns out to be divergent. Resummation of this divergent series can be
circumvented by means of a variational approach. The connection of the
variational approach with perturbation theory will be established. The vari-
ational approach was initially introduced in collision theory for purely formal
reasons [69] and was later applied to improve on TDHF transition amplitudes
[73, 74]. Application of this variational approach to TDDFT does, however,
not yield the desired improvements.
In contrast to the implicit density functionals involving the time-dependent
Kohn-Sham orbitals we propose an alternative approach to calculate state-to-
state transition probabilities directly from the time-dependent density. The
new method will be tested on the one-dimensional two-electron quantum dot.
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This thesis is organized as follows: In chapter 2 the model system is in-
troduced and the exact solution is presented. The TDDFT method and the
exchange-correlation potentials used in this work are presented in chapter 3.
In chapters 4 and 5 the quality of ground-state DFT of the singlet- and triplet
ground state is assessed. Existing approximations to the pair-correlation
functions in DFT are compared to exact results. In chapter 7 one-particle
observables such as dipole-moment and expectation values of the momentum-
operator are calculated and discussed in the light of the HPT. In chapter 8
the transition probabilities within TDDFT are defined and the results for
the singlet ground state- propagation are presented and analyzed. Chapter
9 exposes the problems related to the propagation of the triplet ground state
within TDDFT. A time-dependent configuration interaction method which
finds application in the case of the exact propagation of a coherent super-
position of states is explained in chapter 10. The failure of ALSDA-SIC to
propagate a coherent-superposition of states is documented in chapter 11. An
implementation of an "exact" Kohn-Sham scheme for one-dimensional model
systems is highlighted in chapter 12. The functional integral approach is ex-
amined in chapter 13. Combinations of TDDFT with perturbation theory
are presented and examined in chapter 14. Chapter 15 introduces a vari-
ational approach to improve on transition matrix elements of the TDDFT
projection approach. A functional to calculate state-to-state transition prob-
abilities which explicitly depends on the time-dependent density is proposed
and tested in chapter 16. A brief summary is given in the conclusions. The
appendix gives detailed information about the discretization techniques ap-
plied in this work (appendix A), analytical results to expand spherical har-
monics of the center of mass and relative angular coordinates within a series
of spherical harmonics of one-particle angular coordinates (appendix B), de-
tails to calculate matrix-elements in the configuration interaction approach
(appendix C), a configuration interaction analysis of the eigenstates involved
in our calculations (appendix D) and analytic results to relate the Carte-
sian to the spherical eigenfunctions of the harmonic oscillator (appendix E).
Atomic units h = m = e = 1 are used throughout.
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Chapter 2

Model systems

Three-dimensional harmonic two-electron quantum dot
In this thesis we study different two-electron models. Our major study relies
on a three-dimensional harmonically confined two electron system which is
driven by an external time-dependent electric field. The total time-dependent
Hamiltonian of this three-dimensional two-electron quantum dot is given by

H(t) = - \ (pi2 + P22) + y (n2 + f2
2) + - r ^ r r - (rl + f2) • E(t) , (2.1)

Z Z p i — T2\

where fî and Pi are the coordinates and momenta of electron i (i — 1,2). The
electric field is denoted with E(t). The electrons are interacting via Coulomb
force. The confining strength u can be varied and therefore different corre-
lation regimes can be explored. For w < l the Coulomb interaction i^z^n
dominates and the system is strongly correlated. In the case of u ~ 1 we are
in the regime of weak to intermediate correlation.

One-dimensional two-electron model systems
In relation with the propagation of an arbitrary coherent superposition of
states we are also studying one-dimensional model-systems. Compared to
the three-dimensional case for those systems it is much simpler to construct
the "exact" time-dependent exchange-correlation potential. In chapter 12
we will consider the field-free propagation of a one-dimensional two-electron
quantum dot given by the Hamiltonian
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and a one-dimensional model of the helium atom

(2.3)

b is a parameter commonly introduced to allow the electrons to bypass each
other without passing through a singularity. We set the parameter b = 0.7408
in order to get a ground state energy for the model helium atom that is close
to the ground state energy of the three-dimensional helium atom. Those one-
dimensional systems were used in the past to study the double-ionization of
helium [152] and to test a multi-configurational time-dependent Hartree-Fock
method [153].

2.1 Exact Solution of the parabolic 2-electron
quantum dot in external laser field

In this section present the exact solution of the Schrödinger equation

(\v2i + y tf - fi • £(*)) + î ^ i ^ j I *(rl,rj,t)

(2.4)
of the three-dimensional harmonic two-electron quantum dot. The polariza-
tion of the laser pulse is chosen along the z-axes, so that E(t) = ezE(t). The
pulse shape is chosen as sine squared with total pulse duration r and the
field oscillates with the frequency up, so that the amplitude E(t) is

E(t) = Ao sin (upt) sin2 ( — j (2.5)

Introducing center of mass (c.o.m.) coordinates R = (fi +f2)/2 and relative
(internal) coordinates f= f\ — r% the Hamiltonian of eq. (2.4) separates as

Hcm(t)

where m = | and M = 2 denote the reduced masses. The wavefunction
^(ri)^)*) can therefore be separated in c.o.m. and relative coordinates

, s 2 ) , (2.7)
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where x(sii S2) denotes the part of the wavefunction related to the spin de-
gree of freedom. In this work singlet and triplet states will be considered.
In the case of the spin-singlet state the spin-part of the wavefunction, x>
is antisymmetric against particle exchange, therefore the orbital part of the
wavefunction 4>(f, t) has to be symmetric against inversion f —>• — f (the c.o.m.
coordinate R is symmetric in particle exchange, therefore also $(.R, t)). For
spin-triplet states with symmetric spin-part of the wavefunction we have to
impose <p(—f, t) = —<j>(r,t).

The internal motion of the electrons is governed by a time-independent
Hamiltonian. The time-dependent external potential only affects the c.o.m.
part. The Schrödinger equation for the relative coordinates therefore reduces
to a stationary problem (with Dirichlet boundary conditions at infinity)

= Erel<f>(r). (2.8)
2m/ 2 |T

Since the time-dependence of 4> only consists of an overall phase-factor (4>(f, t) •
(p(f)e~lErelt), it will be omitted in the following. We separate eq. (2.8) in
spherical coordinates, (j)[f) = <Pi''° Y^"(f2r). The radial equation becomes

1 d2 1(1 + 1) mruj2
 2 1

~ ^ + 2mrr
2 + 2 T + r

(r) . (2.9)

According to the symmetry relations of the spherical harmonics YJm(—fi) =
(—l)iyjTn(i7) solutions <pi,k(r) with even angular momentum quantum number
I belong to the spin singlet state, solutions with odd angular momentum I are
triplet states. We introduce the principal quantum number n := 2(k — l) + l,
so that in the limit of vanishing Coulomb potential the energy reduces to
the harmonic oscillator energy e^i = oj(n(k, 1) + 3/2) . The singlet-ground
state is therefore characterized by the quantum numbers n = 0 and I = 0,
the triplet-ground state by n — 1 and 1 = 1.
A solution of eq. (2.9) by standard Frobenius power series method is not
possible [38], since the Frobenius ansatz leads to an irreducible three-term
recursion formula. Nevertheless eq. (2.8) can be analytically solved for a
discrete set of oscillator frequencies u [39]. We decided to solve eq. (2.9)
numerically, to generate solutions for arbitrary u>. To this end we apply a
generalized pseudo-spectral method [85],[86],[87]. This method employs a
non-equidistant Gauss-Legendre grid. The grid is denser at the origin to
reliably represent the Coulomb singularity at the origin. The method is
explained in detail in appendix A.
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The Schrödinger equation of the c.o.m. part reads

-2R-Ë(t)\ $(R,t) = i%-
2M 2 v 'J v ' ' dt

(2.10)
and includes the external driving potential.
In this work we will study different initial states. For the spin-singlet and
triplet initial state, the c.o.m. part of the wavefunction is identical and
$(/?, 0) at t = 0 is fixed as the ground state of the harmonic potential and
reads

^ V (2.11)

with ß — VMU. We will also study the propagation of a coherent superpo-
sition of c.o.m. eigenstates.
Since the laser pulse is polarized in ^-direction, the time-dependent part of
the c.o.m. problem is only reflected in the z-coordinate. We therefore sepa-
rate the wavefunction $(R,t) into the product $(R,t) = <&x(X,Y) • $(Z,t).
The time dependent problem therefore reduces to solve the one-dimensional
harmonic oscillator driven by an external force 2E(t). The time-evolution
operator therefore is formally given by

U(t, 0) = exp {Ikjlk} (2.12)

The Feynman propagator for the forced oscillator [53] is given by

K(Z1,0,Z2,t) = ß. e*3" , (2.13)
/ 2 ( t )

where Sd denotes the classical action of the forced oscillator

/o

*E(t>) sin (o;(t-f)) dt'

"IF So So E(tf)E(s)sin ("(* ~ t')) sin(^s)ds dt'] . (2.14)

The time-dependent part <&(Z, t) of the wavefunction of the c.o.m. system at
time t > 0 is

poo

$(Z,t)= K(Zu0,Z,t) $(Zut = 0) dZx . (2.15)
J — OO

For the triplet and singlet ground state the wave-function is therefore
1/2

$(Z, t) = \-^=) J K(Zlt 0, Z, t) e - ^ dZx . (2.16)
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For special choices of the pulse shape E(t) the Fourier-like integrals in eq.
(2.14) can be calculated analytically. The calculation of the propagated
ground-state eq. (2.16) then results in solving Gaussian integrals, which have
analytical solutions. For arbitrary pulse shape E(i) the numerical solution
of eq. (2.16) for several times t is time-consuming. We therefore apply a
numerically very efficient split-operator technique to solve the Schrödinger
equation of the Z-component.
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Chapter 3

Time-dependent density
functional theory

3.1 Brief review of the extended Runge-Gross
theorem

The basics underlying the time-dependent density functional theory (TDDFT)
is the Runge-Gross theorem [5], which is the extension of the Hohenberg-
Kohn theorem [11] of ground state density functional theory to the time-
dependent case. It states that for a fixed initial many-body wavefunction
|^o) and a given two-particle interaction there exists a one-to-one mapping
between the time-dependent external one-particle potential Vext(t) and the
time-dependent density n(t). As in the ground state density functional theory
[12] the practical use consists in constructing a non-interacting many-particle
system of the same density as the interacting system, giving rise to the so-
called time-dependent Kohn-Sham equations. The non-interacting Kohn-
Sham system is determined by a local potential VKS (basically the exchange-
correlation potential) that incorporates all the exchange-correlation effects
of the fully interacting system and is obtained by the density-derivative of
the action [9]. The Runge-Gross theorem applies to systems evolving from
the same initial state \^Q). The unique local potential VKS in this case is
a unique functional of the time-dependent density n(t) and the initial state
|^o)- In the case that the system evolves from a many-particle ground state
l^o), the initial state |^o) is determined by the initial ground state density
no according to the Hohenberg-Kohn theorem. In this special case, the time-
dependent local potential VKS only has functional dependence on the density.
For initial states other than the ground state, the Rünge-Gross theorem ap-
plies to systems evolving from the same state. In particular, the interacting
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many-particle system and the non-interacting Kohn-Sham system have to
evolve from the same initial state. Van Leeuwen [10] extended the Runge-
Gross system to different initial states. The interacting many-particle system
(reference system) evolves from |^o) in an external potential Vext{t) pro-
ducing the time-dependent density n(t). Having a many-particle system of
different particle-interaction (this includes also the case of non-interacting
particles) with initial state |$o) 7̂  l^o) but the same density n(0) and initial
current dtn(t)\t=o as the interacting many-particle system, the density n(t) of
the reference system can always be reproduced by an external, local potential
Vext(t). For fixed particle-interactions of both systems, the external potential
Vext(t) is uniquely (up to a purely time-dependent constant) determined by
the density n(t) and both initial states |^o) and |$o)-
For the non-interacting time-dependent Kohn-Sham system this implies that
the exchange-correlation potential Vxc is a functional.of the density n(t) and
both initial states |\I>o) a nd |^o)- The Kohn-Sham system can be realized
by many different initial states |$o), all giving rise to mutually different
exchange-correlation potentials and time-dependent Kohn-Sham orbitals (ex-
tended Runge-Gross theorem).
Little is known about the initial-state dependence of the exchange-correlation
potential [114, 115, 116]. It was shown that the whole initial-state depen-
dence can be traced back to a history-dependence of the system (memory-
effects) [115]. Only a few approximations to exchange-correlation poten-
tials containing history dependence exist and suffer of different deficiencies.
They are either restricted to the linear-response regime [117] and violating
the harmonic potential theorem (to be introduced in chapter 6), replacing
TDDFT by time-dependent current density functional theory [119, 120], or
are numerically difficult and expensive to implement [118]. In our studies
we therefore will rely on the Adiabatic Local Spin Density Approximation
(ALSDA) which, however, disregards memory effects. It will be demon-
strated that for the parabolic quantum-dot evolving from the ground state a
self-interaction corrected version of ALSDA provides an excellent exchange-
correlation potential. For an arbitrary initial state (coherent superposition
of states) ALSDA fails to reproduce the correct density and memory effects
will become important. In chapter 12 we study one-dimensional two-electron
model-systems in singlet states propagating from a coherent superposition of
ground and excited states. For this system it is possible to construct the ex-
act exchange correlation potential, i.e. including all initial-state and history
dependence. In this context we are also studying different realizations of the
Kohn-Sham system. In the first case initial states of exact and Kohn-Sham
system are identical. The second case applies to two different initial states,
but reproducing the same initial density. We will show that for the problem
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of extracting occupation probabilities from TDDFT Kohn-Sham Orbitals the
choice of the Kohn-Sham initial state is not critical.
In the following chapter we are introducing the Kohn-Sham equations within
the Adiabatic Local Spin-Density Approximation with Self-Interaction Cor-
rection (ALSDA-SIC) which is used in the major part of this thesis.

3.2 Time-dependent Kohn-Sham equations
The time-dependent Kohn-Sham scheme of spin density functional theory
involves solving self-consistently the Schrödinger like equations

^ftt) (3.1)

for the non-interacting single-particle orbitals $J)CT of spin projection a = |
, downarrow in the time-dependent Kohn-Sham potential Va[n^, ni\(f, t), which
is a functional of the electron spin-densities

3=1 3=1

where Na is the total number of electrons of spin projection a and we de-
fined orbital densities by n^a = |$7>|2. The total density of the system
is n(r, t) = n^(f,t) + n^(f, £). The Kohn-Sham potential is decomposed
into the external potential Vext(f, t), the Hartree-potential and the exchange-
correlation potential Vxc

vCT\.lb}i '•'{IK1 ) L) — vext\i i >>) i / I ,1«' T >'xc,trl'tJ.» ' lTJv ' t / • Vû-°/

In our case the external potential is

„. .2

P-z E(t) . (3.4)

The exchange correlation potential is, in principle, a universal functional of
the densities and the initial states (for a given particle interaction it is in-
dependent of the external potential Vext). Since the functional dependence
of Vxc on ri[ and nj is not known, in practice it has to be approximated.
The aim of our work is to quantitatively test one of the standard approx-
imations by applying it to an exactly solvable problem. We employ the
so-called adiabatic local spin density approximation (ALSDA), where the
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exchange-correlation potential is approximated by the functional derivative
of the exchange-correlation energy of the homogenous spin-polarized electron
gas.

5 E L J D * M (3.5)

The ALSDA exchange correlation potential is local in space and time and
does not include memory effects. The LSD A energy functional consists of
the exchange energy of the homogenous electron gas plus a correlation term,
for which we chose the Vosko Wilk Nusair(VWN) correlation energy [151]

One deficiency of this exchange correlation potential is that it does not
have the proper long range (Coulomb tail) behavior, since it includes self-
interaction. The next step of improvement is to correct for the self-interaction
of the Coulomb potential and the exchange correlation energy of each sin-
gle orbital [88]. The self-energy corrected (SIC) exchange correlation energy
reads

ESJC[ni, nT] = E%DA[nlt «îl " £ £ (3ÈfD >W, 0] + J[n,)(7]) , (3.7)

with the Hartree energy

lffPn-^>.. (3.8)
The exchange-correlation potential Vxc,a

 m the Kohn-Sham scheme is usu-
ally defined by a functional derivative of the expression of the exchange-
correlation energy with respect to the spin-densities nCT. In the case of eq.
(3.7) E^c is also depending on the orbital densities nJi<7, which poses prob-
lems to determine an exchange-correlation potential VXCt(X in the usual sense.
A solution to this problem was first proposed by Perdew and coworkers [88]
in defining an orbital dependent self-energy corrected exchange correlation
potential through

Orbital dependent effective potentials, however, imply that the orbitals are
no longer orthogonal to each other and the conventional Kohn-Sham proce-
dure is not applicable. To circumvent this problem often a different approach
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is used, the optimized effective potential (OEP) method [89] which yields an
integral-equation for an orbital independent exchange correlation potential.
Usually an approximated solution to this integral equation is used, proposed
by Krieger, Li and Iafrate (KLI-OEP) [90, 91, 97, 98]. The OEP method was
also generalized for the time-dependent case [103], for which no adiabatic
approximation has to be made. The resulting system of coupled differen-
tial equations including memory integrals is too complex to solve even for
one-dimensional systems. Like the static OEP it rather serves as a tool to
construct approximations of the time-dependent exchange-correlation poten-
tial starting from an appropriate approximation of the exchange-correlation
action integral. For currently used adiabatic approximations and the Hartree-
Fock functional of the action-integral, however, memory integrals in the time-
dependent OEP approach vanish. In the case of the exchange correlation
energy of eq. (3.7) it was shown [100], that time-dependent OEP and the
adiabatic approximation in the time-independent KLI-OEP approach yield
the same orbital independent exchange correlation potential.
In our two-electron problem always different spin-projection can be assigned
to the electrons. Therefore only one spin-orbital per spin projection is occu-
pied (Na = 1 and na = ni)(T for a =f, j ). In this special case the exchange-
correlation potential of eq. (3.9) only depends on the spin-densities na and we
do not face the problem of non-orthogonal Orbitals. The KLI-OEP formal-
ism based on the self-interaction corrected exchange correlation functional
eq. (3.7) reduces to eq. (3.9) for one occupied spin-orbital.
In this thesis we consider different choices of initial states for eq. (3.1). In
the simplest case the initial state <&CT)i(£ = 0) is fixed as the self-consistently
calculated ground state satisfying the Kohn-Sham equation

(3.10)
where Vn(f,t) denotes the Hartree potential Vnif, t) = / dr' j i . In the
case of two particles, the ground state is achieved by occupying the lowest
spherical symmetric spin-orbital of each spin-projection (singlet-state), we
therefore make the spherical symmetric ansatz

$ T i = $ 1 1 = <î>n(f^ (3 1 "H
| , l 1)1 " \ / ' \ w /

Solving eq. (3.10) with the ansatz of eq. (3.11) self-consistently, we get a
converged exchange correlation potential V^c

IC(f, 0) for the occupied ground
state, the converged ground state orbitals and (vacant,virtual) higher excited
Kohn-Sham spin-orbitals with angular momentum 1 = 0. To get excited
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Kohn-Sham spin-orbitals $fc,j(f) = ^feiy,m(fî) with / > 0, we solve the
eigenvalue problem of eq. (3.10) for $k,i with the self-consistently calculated
correlation potential V^C

IC of the ground state occupation. The resulting
Kohn-Sham spin-orbitals

^ V (3-12)

constitute an orthonormal basis set. We introduce the principal quantum
number n := 2(k — 1) + / of the Kohn-Sham orbitals. For vanishing Coulomb
force the energy of the orbitals of quantum numbers n, / would then reduce
to the harmonic oscillator energy EUii = u(n + 3/2).
In this work the initial state is not restricted to the ground state and we also
consider arbitrary initial states composed of not necessarily identical spin-
orbitals $^1. The initial state and the resulting time-dependent Kohn-Sham
orbitals $ati(r,t) are expanded in terms of the basis given by eq. (3.12)

which allows for an efficient Suzuki-Trotter like split-operator propagation of
the initial state [144, 145]. For an overview of possible different propagation
schemes for time-dependent Kohn-Sham equations and detailed comparison
of different methods see the recently published work [146]. Since our prob-
lem is cylindrically symmetric only angular momentum projection quantum
numbers m — 0 will appear in the expansion. Defining

Va(f, t) = -ezE(t) + Vx
sJC(r, t) - Vx

sJC(r, 0) + VH(f, t) - VH(r, 0) (3.14)

the propagated Kohn-Sham orbital wavefunctions are given by

$ffii(f, t + At) ~ e-i^I1e-i^(f"'t+At/2)At//ie-i^1$CT,i(f, t) + O(At3) . (3.15)

The problem one encounters is that the potentials Va(f, t + At/2) has to be
evaluated at time t + At/2, whereas the wave-function and therefore V^J^
are only known at time t. The simplest solution to this problem would be to
evaluate the potential V^ at time t, whereas the known external field E is
taken at the midpoint t + At/2. The error will be generally increased to be
of the order of At2. A computationally expensive method to determine the
self-consistent potential at t + At/2 would be a predictor-corrector method
or as an alternative to extrapolate V^ from time t to t + At/2. Details
of those improved methods can be found in references [146] and [147]. A

22



computationally cheap and efficient method, put on theoretical grounds in
reference [147], is to evaluate the exchange-correlation potential V^ at
time t, but instead of determining the potential with the density n(t), the
functional V^JJ? is evaluated with the half-way propagated density resulting

from the first part of the split-operator propagation e~% 2« . An estimate
[147] shows that this method reduces the error to the order of O(At3). In
chapter 7 we show that this method reduces the absolute error by a factor of
10 compared to the simple method of evaluating V^f with n(t).
Numerical calculations are performed on a grid using a generalized Gauss-
Legendre pseudo-spectral method [85],[86],[87]. In this approximation the
wavefunction is represented on a non-uniform grid of the radial and angular
coordinates, allowing for higher grid-point density for the dominant part of
the wavefunctions. In principle also an equidistant grid would be appropriate
for the harmonically confined system, so that in some sense we overshoot
the mark. We are, however, seeking to apply this method to the case of
more realistic systems, like helium, involving Coulomb potentials. For these
systems it will be indispensable to have a high grid-point density at the origin
to represent the Coulomb singularity. The non-equidistant grid with fewer
grid-points at large distances from the origin allows to explore the Coulombic
tail of the potential, keeping the total number of grid-points at manageable
size.
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Chapter 4

The singlet ground state

The exactly soluble parabolic two-electron quantum dot already served in the
past as a benchmark system to test ground state DFT. Detailed quantitative
studies were performed [40, 41] in order to test different exchange correlation
potentials for the singlet ground state density and energy. With the knowl-
edge of the exact ground state density of a two-electron singlet ground state
it is also possible to calculate the corresponding exact exchange-correlation
potential. This exact exchange correlation potential was compared with one-
particle approximations (LDA exchange only, LDA Wigner, LDA Ceperley-
Alder, LDA SIC and also non-local general gradient approximations, Hartree
Fock)[40, 41]. In reference [41] also a detailed study of the ground state
in dependence of the correlation strength (oscillator frequency u>) was pre-
sented. All those studies show that self-interaction corrected LDA is in good
agreement with the exact solution. Generalized gradient approximations
are of minor importance. This observation motivates the choice of our ex-
change correlation potential used (LSDA SIC). Since the above mentioned
works extensively studied the quality of DFT calculated ground state den-
sities and energies upon different choices of exchange correlation potentials,
we will not represent detailed studies on this subject. Some comparisons
of DFT and exact densities in different correlation regimes are nevertheless
presented to demonstrate the quality of the exchange-correlation potentials
used for ground state and forthcoming time-dependent calculations.
Other studies calculated the exchange correlation hole of the ground state of
the two-electron quantum dot [42, 43, 44]. Comparison of exact exchange-
correlation holes to that calculated within DFT approximations were so far
not presented. A comparison of these functions will be presented in the fol-
lowing chapter.
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4.1 The singlet ground state density

The singlet ground state density of a two-electron parabolic quantum dot is
defined as

n(fi) = n(ri) = 2 / dr2 | \Kfi,f2)|2 > (4-l)

where \& denotes the ground state of Hamiltonian eq. (2.4) without external
field E(t). The singlet ground state density is spherically symmetric. Due
to the separability of the problem and the special Gaussian like form of the
center of mass ground state function eq. (2.11) it is possible to reduce eq.
(4.1) to one single integral. After performing some analytical manipulations
one arrives at

o f>
- - 9 = e-
n v71"

roo

/ r<j>2(r) e - ^ a / 4 s[nh(ß2
rir)dr , (4.2)

Jo

where <j>{r) = y°'° - ^ denotes the ground state of the internal Hamiltonian
of eq. (2.8) and accordingly </?o,o is the ground state of the radial Schrödinger
equation (eq. (2.9)). The density can therefore be calculated by a single nu-
merical integral. Figures 4.1 to 4.3 show a comparison of the exact density
and the self-consistently calculated DFT density using LSDA-SIC in differ-
ent correlation regimes. For ui = 1 (figure 4.1) the exact density is very well
produced, plotting r2n(r) almost no difference between exact and DFT den-
sity can be seen. The situation gets worse if one considers smaller oscillator
strength. At u> = 0.01 the exact density shows a pronounced minimum at
the origin, which is due to electron correlation (see figure 4.2). DFT in the
LDA-SIC is not able to reproduce the minimum. For the even stronger cor-
related system at u = 0.0023 (figure 4.3) the DFT with LSDA-SIC manages
to produce a minimum at the origin. Nevertheless the DFT density is in very
poor agreement with the exact result. Other local density functionals tried
did not give relevant improvements.

4.2 Definition of the pair correlation hole
Internal particle distribution functions are determined via the diagonal el-
ements of the reduced density matrix [19]. For the special case of a two-
electron system the reduced second-order density matrix equals the absolute
square of the wavefunction ^ ( r u ^ ) = ^ ( ^ I , ^ ) ! 2 - The pair correlation
function h(ri,f2) is defined as [14]

P2(ruf2) = -n(fi)n(f2)[l + h(fuf2)] , (4.3)
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Figure 4.1: Singlet ground state densities n(r) and r2n(r) of the 2-electron
parabolic quantum dot for u = 1: Shown is a comparison of the exact
density (red) and the self-consistent DFT density (green) using LSDA-SIC
with correlation potential of Vosko, Wilk and Nusair [151].

0 10 20 30
r [a.u.]

10 20 30
r [a.u.]

Figure 4.2: Comparison of exact (red) and DFT (green) singlet ground state
densities n(r) and r2n(r) of the 2-electron parabolic quantum dot for u = 0.01
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Figure 4.3: Comparison of exact (red) and DFT (green) singlet ground
state densities n(r) and r2n(r) of the 2-electron parabolic quantum dot for
u = 0.0023

and describes the non-factorizable part of the reduced two-particle density
matrix. We therefore get

n(fi)n(f2)
- 1 =: g(fi,f2) - 1 • (4.4)

In eq. (4.4) we defined the pair-correlation function ^(r i ,^) which is of-
ten used and has the interpretation of a conditional probability. The quan-
tity g(f[,r2)n(f2)dr2 gives the expected number of electrons in the volume
dfi around 7%, given that there is an electron at the reference position f[.
One defines the pair-correlation hole or exchange-correlation hole (or Fermi-
correlation hole) as

= n(f2)/i(f1,r2) = - n(f2) . (4.5)

/ •

The pair correlation function h(f[,f2) has to satisfy the following sum rule

2)/i(fi,r^)dr2 = - 1 Vrl , (4.6)

which follows directly from

n(fi) = 2 f p2(flt r2)dr2 . (4.7)
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The sum rule of eq. (4.6) is one of the few exact properties known for the
correlation function and constitutes a stringent test on approximations. Eq.
(4.6) can also be interpreted as the normalization condition of a charge dis-
tribution with total charge —1. This charge-distribution depends on the
reference point fi. Attention should be drawn to the fact, that in contrast
to h(fi,f2) the exchange-correlation hole pxc(ri,r2) is not symmetric in ex-
change of fi and f2.
The Hartree Fock two-particle density matrix for a closed shell is p2

F{fi, fi) =
n(fi)n(f2)/4 and therefore factorizable. The pair-correlation function is sim-
ply h{f\, f2) = — ̂ . In analogy to the exchange part of the total energy one
defines an exchange hole (Fermi hole) which is given as the Hartree-Fock
solution of the pair correlation hole as

px(ri,r2) = . (.4.8)

The density n(f2) in eq. (4.8) denotes the exact density (in Hartree-Fock
the density does not necessarily equal the exact density), only the functional
form of the exchange (Fermi) hole is taken from Hartree-Fock theory. The
exchange hole Pz(fi,f2) is independent of the reference point fi. The differ-
ence between the Hartree-Fock exchange hole and the total pair-correlation
hole is then defined as the correlation (Coulomb) hole

Pc(n,r2) := pXc{n,f2) - px(fi, f 2 ) . (4.9)

4.3 The pair correlation hole in DFT
The pair correlation function defined in eq. (4.4) is, as every other quantity
in spin DFT, a functional of the spin densities. It is of crucial importance in
DFT since the exchange-correlation energy can be calculated via the coupling
constant integral of the pair-correlation function. Therefore it is mostly the
coupling constant integrated pair-correlation function which is studied in
literature. Reference [27] gives a pedagogical overview of this subject. The
coupling constant average of the pair correlation function is defined as

g(ri,r2) := j d\gx{fur2) , (4.10)

where gx is the pair correlation function of the system with electron-electron
interaction A/|fi — F2| under the constraint that the electron density is fixed
at the physical full coupling strength A = e2 = 1 (in a.u.). The exchange

28



correlation energy is then given by

E,c - \ f & J&SŒ&&WIÀ) - 1] . (4.11)

One often defines a Kohn-Sham exchange correlation hole

PxcS(ri,r2) := n(f2)[g(fuf2) - 1] , (4.12)

where in contrast to the exchange-correlation hole pxc defined in eq. (4.5)
in eq. 4.12 at the right hand-side the coupling constant integrated pair-
correlation function g enters. Since the density is kept fixed at the phys-
ical coupling strength A = 1 during the variation of A, the Kohn-Sham ex-
change correlation hole pfff equals the coupling constant averaged value of
the exchange-correlation hole pxc

/ x
xc

o
f2) = / d\px

xc{ruf2) . (4.13)

The exchange correlation energy can be interpreted as a resulting interaction
of the density with its hole charge-distribution

n n ^ ^ . (4.14)

Following the spirit of LDA, approximations of pair-correlation functions
generally rely on the homogeneous electron gas. The construction of approx-
imations of the hole-functions is difficult, since not even for the homogeneous
electron gas they are accurately known [88]. In developing approximations
to the exchange-correlation holes one differentiates between electron pairs
of different or alike spin projection. Because of the Pauli exclusion princi-
ple, electrons with parallel spins would avoid each other even if they were
non-interacting. This leads to the concept of the Fermi (exchange) hole.
Electrons with antiparallel spins do not feel Pauli's exclusion principle and
are only kept apart through the Coulomb interaction (Coulomb or correlation
hole). In the latter case the behavior of many-body wavefunctions at small
interparticle distances is governed by the Coulomb interaction. This gives
rise to the so called called cusp conditions [15, 16, 17, 18], an ingredient for
the construction of most approximations to Coulomb hole functions.
In general Fermi and Coulomb hole depend on the Spin-polarization £ =
(ri| — ni)/n of the system. Interpolations of the correlation functions between
the totally spin-polarized £ = ±1 and totally unpolarized £ = 0 homoge-
neous gas are given in [151] and originally in reference [25]. Accurate studies
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of the homogeneous electron gas also resolve the correlation functions with
respect to spin-projection, defining hole functions of alike pJT(rl, r), p\}{f[, r)
or different spin-projection and p^(fi,r). The spin-resolved hole
function p£T(ri, r) is then related to the probability of finding an electron of
spin-projection | at distance r from f\, provided that there is an electron of
spin i at the reference point r\.
Most of the analytical models for the pair-correlation function are deduced

o
a_o
le
"2
8

exact pc

PW92 pc

GP Pc
GSB pTi

-2

Figure 4.4: Correlation hole pc(0, f) at reference point r\ = 0 for the singlet
ground state of the quantum dot with frequency u — 1: Shown are the exact
correlation hole corresponding to eq. (4.9) (red line), parameterizations of
the coupling-constant integrated pc of Perdew-Wang [26] (green, PW) and of
Gori-Giorgi Perdew [30] (blue, GP) and the parameterization of correlation
hole at full coupling strength pc of Gori-Giorgi Sacchetti and Bachelet [29],
where pj.1 (cyan, GSB) and \{p\*> +pJT) (magenta, GSB).

for the coupling constant averaged functions [26, 30]. We are interested in
the pair-correlation function at full coupling-constant strength, in view of the
calculation of two-particle observables. A scaling relation of hole functions
between integrated and full coupling strength is known for the homogeneous
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electron gas [26]

gc(kF -r;rs)= ( 1 + rs— \ gc(kF • r;rs) , (4.15)

where kp = (3n2ny^3 and rs = (4vrn/3)~1/3 are deduced quantities of the
homogeneous density n, r denotes the distance from the reference point. The
correlation function of the homogeneous electron gas is translational invari-
ant with respect to the reference point and spherically symmetric around the
reference point. Relation eq. (4.15) would, in principle, make it possible to
deduce the hole function at full coupling strength from a given approximation
for an integrated pair-correlation function. In practice, however, this is quite
difficult and introduces errors. Most parameterizations of the correlation
functions of the homogeneous electron gas (of Perdew type [24, 25, 26, 29, 30])
are built from the short- (cusp-condition) and non-oscillatory long-range be-
havior of the correlation function. An interpolation between those two limits
is built under various constraints as the sum rule of eq. (4.6), the energy sum
rule (related to eq. (4.14)) and forcing cancellation of singularities at r —> 0
resulting from the long-range behavior of the correlation function. Those
constraints change slightly for the correlation hole at full coupling strength.
Cancellation of the singularities at r —• 0 is no longer satisfied, if one applies
eq. (4.15) on a parameterized gc and one gets qualitatively wrong results. An-
alytical representations of pair-correlation functions at full coupling strength
are rare [29].

Figures 4.4 and 4.5 show a comparison of the correlation hole and differ-
ent approximations relying on the homogeneous electron gas at two different
reference points (for details see figure captions). We choose the weakly corre-
lated system at u — 1, since for higher correlated systems in the local density
approximation not even the densities can be reliably reproduced. The ap-
proximative parameterizations of the pair-correlation hole have been worked
out with the exact density. The reference point in figure 4.4 is chosen as the
origin of the quantum dot. Around this special point the correlation hole
shows spherical symmetry. The best agreement with the exact result gives
the parameterization of Perdew and Wang (PW02) [26], which is surprising,
since it is a parameterization of the coupling-constant integrated correla-
tion hole. The construction of the different correlation functions [26, 29, 30]
examined in our analysis is quite similar. Per se they do not differ much
in the considered density range. In contrast to parameterizations of the
coupling-constant integrated correlation function [26] (PW) and [30] (GP),
the correlation function at full coupling strength of Gori-Giorgi Sacchetti and
Bachelet [29] (GSB) is spin-resolved, i.e. gives different parameterizations for
g\^ and g^. Since we are considering a 2-electron system in a singlet state,
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Figure 4.5: Coulomb correlation hole pc(fi,fi — r) at reference point rx =
0.512, where r*2 = f\ — f is varied collinearly to r l . Shown are the exact
correlation hole of eq. (4.9) (red line), parameterizations of the coupling-
constant integrated pc of Perdew-Wang [26] (green, PW) and of Gori-Giorgi
Perdew [30] (blue, GP) and the parameterization of correlation hole at full
coupling strength pc of Gori-Giorgi Sacchetti and Bachelet [29] \{p]} +pJT)
(magenta, GSB).
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the correlation function of opposite spins p]} should be the proper one. How-
ever, figure 4.4 rather suggests that the averaged form \{p]} + p[^) gives the
right order of magnitude. This is not consistent and reveals the problems in
applying results of the homogeneous electron gas to. highly inhomogeneous
systems.
Figure 4.5 shows results for a reference point other than the origin (at dis-
tance r\ = 0.512 from the origin). The exact pair-correlation hole is no
longer spherically symmetric around the reference point, a behavior which
no approximation relying on the homogeneous electron gas can reproduce.
The pair correlation functions of the homogeneous electron gas only depend
on the local density of the reference point and on the distance between ref-
erence and observation point. Therefore the approximated correlation holes
only differ slightly for the two reference points.
We also performed studies of the pair-correlation hole with self-interaction
correction (SIC) [88]. In contrast to reference [88] we treat exchange exactly.
This alters the expression for the self-interaction corrected correlation hole:

pSIC(n,r = |fk - r2\) = PeMfiUWir) ^ ^

(4.16)
where pc(n^(fi), n^f i ) ; r) stands for an approximate parameterization of the
correlation hole of the homogeneous electron gas. In our treatment the den-
sity dependent term, which usually breaks spherical symmetry in SIC does
not appear. In the original SIC approach [88] this term comes from the cor-
rection of Coulombic self-interaction, which is already taken care of in the
exact exchange approach. Figure 4.6 shows the self-interaction corrected ex-
change hole of the spin-resolved parameterization of Gori-Goirgi, Sacchetti
and Bachelet (GSB) [29] and the self-interaction corrected coupling-constant
integrated parameterization of Perdew and Wang (PW) [26] in comparison
to the exact result. The self-interaction corrected parameterization PW is
in good agreement with the exact correlation hole. The self-interaction term
of the orbital densities was evaluated for total spin-polarization £ = 1. In
the GSB approach the self-interaction part was evaluated by taking the cor-
relation hole of alike spins p}), whereas the basic term of the total density
was taken as \(p}} + PV')- I n the case of the reference point at distance
r\ = 0.512 from the origin (see figure 4.7) the self-interaction correction only
leads to a slight improvement and can not compensate for the deficiencies of
the parameterizations of the homogeneous electron gas.

Besides the correlation functions based on the homogeneous electron gas
there exists another type of functionals based on Hartree-Fock second-order
reduced density matrices, functions of the Colle-Salvetti type [31]. Lee, Yang

33



0.01

0

"g -o.oi
CO

£ -0.02

J2 -0.03

.2 -0.04

~g -0.05

S -0.06

-0.07

exact pc

SIC-PW p,
SIC-GSB p\

c
SIC

-4 -3 -2 -1 0
r [a.u.]

Figure 4.6: Coulomb correlation hole pc(0, r) at reference point r\ = 0 for the
singlet ground state of the quantum dot with frequency u = 1: Shown are the
exact correlation hole corresponding to eq. (4.9) (red line), parameterizations
of the coupling-constant integrated pc of Perdew-Wang [26] (green, PW) and
self-interaction corrected correlation hole at full coupling strength pc of Gori-
Giorgi Sacchetti and Bachelet [29] (blue, SIC-GSB).
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and Parr transformed the empirical Colle-Salvetti correlation energy formula
into a nowadays extensively used Kohn-Sham energy functional [32] (LYP). A
detailed study of Colle-Salvetti type correlation functions, optimized to give
the exact correlation energy of helium, was performed for helium [35] and it
was argued that results obtained based on it were inaccurate and not well
founded. Most of the known exact constraints of pair correlation functions
are violated. Recently a improved functional was proposed [33] and tested
for the two-electron parabolic quantum dot and helium [34]. Those function-
als possess a variety of free parameters to tune. Gradients of the density are
included in the functional, resulting in correlation functions which go beyond
the spherical symmetry around the reference point. Whereas an additional
self-interaction correction of the energy functional gives good correlation-
energy estimates, really convincing results for correlation holes could not be
achieved.
The considered correlation holes all gave reasonable correlation energies, a
few percents off the exact solution. The correlation energy is determined by
the spherically averaged coupling-constant integrated correlation hole. Most
of the errors of available functionals and parameterizations are therefore av-
eraged out in considering energies. If one is interested in two-particle ob-
servables, existing approximations of the correlation function are not reliable
and would introduce considerable deviations from exact properties.

35



0.02

o 0.01

I o
<£ -0.01

1 -0.02

I -0.03
Is
"g -0.04

S-i

° -0.05°
-0.06

exact pc

SIC-GSB ps
c
IC -

I I I

-4 -3 -2 -1 0
r [a.u.]

1

Figure 4.7: Coulomb hole pc(0, r) at reference point r\ = 0.512 for the singlet
ground state of the quantum dot with frequency u = 1: Shown are the exact
correlation hole corresponding to eq. (4.9) (red line), parameterizations of
the coupling-constant integrated pc of Perdew-Wang [26] (green, PW) and
self-interaction corrected correlation hole at full coupling strength pc of Gori-
Giorgi Sacchetti and Bachelet [29] (blue, SIC-GSB).
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Chapter 5

The triplet ground state

5.1 The exact triplet ground state density
The triplet ground state of the harmonic dot has relative angular momentum
quantum number I = 1, since the internal part of the wavefunction has to be
antisymmetric with respect to the inversion of the interparticle vector f =
f\ — f2. The symmetry relations of the spherical harmonics with respect to
space-inversion l̂ m(—f2) = (—l)'y^m(fi) therefore allow only for odd angular
momentum quantum numbers for spin triplet systems. The c.o.m. part of
the wavefunction for triplet and singlet ground state is identical (L = 0,
N = 0). Before touching upon the problem of how to treat the spin triplet
ground state within density functional theory, we construct the exact triplet
ground state density. The exact triplet ground state wavefunction is given
by

according to eq. (2.9) and eq. (2.11). The function (fito(r) satisfying the
radial equation of the internal degree of freedom with / = 1 is generally only
given on a numerical grid. To simplify the notation we skip the indices in
fifl in the following. The total electron density is given by the integral

n(fi) = 2J<

= 2 (-?= ) / dr2 [ ™y :VJYi(^r) ) e-f'^+W . (5.2)
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Figure 5.1: Triplet ground state density in the y = 0 plane for u = 1

With the use of appendix B.I and some straight-forward calculations one
arrives at

n(fi) = 4-^=
V5TT

r2
2F2

2(n,r2) - dr2

with

where Pj(cos0r) denotes the Legendre Polynomial of degree /. The exact
electron density therefore has a spherical harmonic component of I = 2 and
is therefore no longer radially symmetric. Figure 5.1 shows the triplet ground
state density in the y = 0 plane.
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5.2 The DFT solution of the triplet ground state
In this section we construct the triplet ground state density within DFT.
The triplet ground state, as the energetically lowest lying state of a given
symmetry class, can be calculated by means of the Kohn Sham formalism
[22]. The Kohn-Sham Hamiltonian is often of lower symmetry than the
original full many-body Hamiltonian. This problem only comes into play if
eigenstates of the system of total angular momentum greater than L = 0 are
considered, as it is the case for the triplet ground state with total angular
momentum L — 1.
For a general state of well defined total angular momentum L, the total
electron density always has the form [108]

(5.5)
z=o

Each approximation of the exchange correlation potential therefore should
maintain the correct form of the density. An approximation which fulfills
this requirement and is often applied (for practical purpose) is the spherical
average of the exchange-correlation and Hartree potentials, yielding Kohn-
Sham orbitals of good angular momentum quantum numbers. The errors of
this approximation have been studied for a only small number of systems.
Janak and coworkers [112] studied the energy difference of spherical sym-
metrized and angular dependent Kohn-Sham potentials (LDA, no correlation
included) of some atoms. The energy differences were negligible compared to
the error of LDA. Surprisingly, the ground-state energies of the non-spherical
average were slightly higher in energy (which was related to the coulomb self-
interaction in LDA). In LDA spherical-average or total angular dependence
of the Kohn-Sham potential gives essentially identical ground state ener-
gies. Using non-local functionals (generalized gradient approximations) it
was shown for some atomic systems and diatomic molecules [113] that the
non-spherical averaging gives generally better energy results.
Fertig and Kohn [108] constructed the exact exchange correlation potential
for the triplet ground state of an two-electron harmonic dot with harmonic
particle interaction. They could show that the unique exchange correla-
tion potential has contributions of spherical harmonics of all even orders.
Depending on the particle interaction, the approximation of spherically av-
eraging the effective Kohn-Sham potential may introduce big discrepancies
in the energies and densities. So far not examined is the influence of the
spherical average on the density profile within existing approximations of
the exchange correlation potential. In the following we are comparing densi-
ties of LSDA-SIC calculations of spherical and non-spherical average to the
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exact densities.
In the case of the spherical averaged effective Kohn-Sham potentials, the
two Kohn-Sham orbitals involved are chosen as the Os : n\ = 0, l\ = 0 and
lp : ri2 = 1, h = 1 (the lowest lying one-particle states producing a state of
relative angular momentum 1 = 1). Corresponding to eq. (5.5) the density
obtained via the spherical averaged Coulomb potential has only contribu-
tions oil = 0 and 1 = 2. In the case of the non-spherical averaging the Oslp
configuration is chosen as initial guess from which the self-consistency loop
is started.
A decision one has to take in LSDA concerns the spin-polarization of the
Kohn-Sham orbitals. The spin part of the triplet ground state can be either
totally spin-polarized ( | î î ) or ||J.)) or of the symmetric spin-compensated
form -75(|jî) + lî-l))- The exact exchange-correlation functional should take
care of the choice and always give the same energy and density. Approximate
functionals, however, give rise to two different results. In the following we are
considering the spin compensated case in view of the harmonic potential the-
orem, which should be satisfied in the case of spin-compensated LSDA-SIC
(see chapter 6). In the case of the spherical-averaging we therefore have to
deal with two different spherical symmetric effective Kohn-Sham potentials.
The two effective Kohn-Sham potentials obtained without spherical average
show different angular dependence. Whereas the effective potential creating
the lp orbital is almost spherically symmetric, the effective potential giving
rise to the initially Os-related orbital shows a pronounced spherical harmonic
component of / = 2. A comparison of the exact and DFT triplet ground
state densities shows that LSDA-SIC overestimates the spherical-symmetric
component of the density (component with I = 0) at the origin (see figure
5.2). The 1 = 0 component of the density obtained by spherical average of the
effective Kohn-Sham potential or by no averaging shows no significant differ-
ence. Comparing the / = 2 component of the exact (red line) and LSDA-SIC
densities (see figure 5.3) a considerable difference of the components corre-
sponding to spherical average (blue line) and no average (green line) can
be seen. Both DFT approximations of the density underestimate the non-
spherical part of the triplet ground state density, spherical average, however,
gives a slightly better result. Compared to the exact value of E = 4.5151 the
energy of the triplet ground state obtained by spherical average is E = 4.3489
and is slightly better than the energy obtained by no spherical average which
is E = 4.3271. The violation of eq. (5.5) of the non-spherical averaged Kohn-
Sham calculation is very small. The I = 4 component of the density is 2
orders of magnitude smaller than the I = 2 component. Similar to previous
works [108] higher angular momentum components fall off rapidly. In figure
5.4 we show a comparison of the integrated density n(z) := J dx f dy n(f) for
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Figure 5.2: Comparison of density components of I = 0 of exact (red)
and non-spherical average DFT (green) solution for the triplet ground state
density of u = 1. The density component obtained by spherical averaging
of the Kohn-Sham potential shows no significant difference compared to the
non-spherical average.
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0.12 -
exact
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Figure 5.3: Comparison of density components of I = 2 of exact (red), non-
spherical (green) and spherical average DFT (blue) solution for the triplet
ground state density of u = 1.
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Figure 5.4: Comparison of reduced density n(z) = f dx J dy n(f) of exact
(red) solution, DFT without spherical average (green) and DFT with spher-
ical average (blue) for the triplet ground state density of u = 1.

exact and DFT results. Both DFT solutions (spherical average and no aver-
aging) exhibit the double peak structure of the exact density. The spherical
average shows a more pronounced local minimum and is, as already observed
in the angular component analysis, in better agreement with the exact solu-
tion. Both different DFT densities will serve in chapter 9 as initial state for
the time-dependent problem.
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Chapter 6

Harmonic potential theorem

In this chapter we will introduce an exact condition of a many-body sys-
tem in a parabolic potential, the so-called Harmonic Potential Theorem
(HPT). This exact property of a time-dependent many-body system will
give constraints on the TDDFT counterpart, in particular constraints on the
exchange-correlation potential. We will study upto which extend those exact
constraints are fulfilled for current approximations of exchange-correlation
potentials. The HPT [106] is valid for a system of iV-interacting particles in
a harmonic potential of total Hamiltonian

where K denotes a generalized spring constant and is a symmetric, positive-
definite tensor of rank three. V(fî — fj) denotes an arbitrary particle in-
teraction potential. The HPT states that the density n(f, t) of a system of
interacting particles in a harmonic potential with Hamiltonian HQ and sub-
ject to an additional uniform electric field E(t) is rigidly transported under
the equation

n(f,t) = no(f-x(t)) , (6.2)

provided that it evolves from an initially stationary state satisfying //o^o =
^0*0 at t = 0 with density no(f). x(t) is the classical solution of

S(t) = -K • x(t) + E(t) . (6.3)

The initial density of the system is therefore rigidly displaced. No distortion
of the density in time takes place. In other words, every excitation of the
system is an excitation of the center of mass part of the system, there is no
energy transfer to the internal (relative) degrees of freedom of the system.
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This statement is independent of the particle interaction.
The time-dependent wavefunction consists of the displaced initial (station-
ary) state ^o(ri — x(t),r2 — x(t),...,Fjv — x(t)) and suffers an additional
time-dependent phase-shift given through

dx -*
-Œot - iNS{t) + iN— • RCM (6.4)

where RCM = jj X)j=i ^j IS the center of mass operator and

S(t) = jT Q^t') - \m • K • x(t')) dt'. (6.5)

S(t) is equivalent to the classical action for the motion of the center of mass.
The HPT Theorem is proved by changing the reference frame and rewriting
the Schrödinger equation (Ho + NRCM • E(t))^ = i-§i^f in an accelerated
frame which moves according to x(t) {x(0) — 0) with respect to the original
reference frame. This corresponds to the Kramers-Henneberger Transforma-
tion [107].
The HPT constitutes a stringent test on many-body approximations, since
it is one of the few exact properties known for a inhomogeneous electron
gas. It therefore should also apply to TDDFT. General approximations for
the exchange correlation functional, however, do not fulfill the HPT [106].
Restricting the initial-state to the many-body ground state Vignale [105] de-
rived a simple symmetry property of the exchange correlation potential which
is a necessary and sufficient condition for satisfying the HPT: The exchange-
correlation potential observed from the accelerated Kramers-Henneberger
frame has to transform by

Vxc[n'](r,t) = Vxc[n](f+ x(t),t) , (6.6)

where n' and n are the densities in the accelerated and rest frame respec-
tively. Since in ALDA the functional dependence of the exchange-correlation
potential is local in space and time, eq. (6.6) is fulfilled by ALDA.
The generalization to spin-density functional theory is straight-forward. In
order that the HPT is satisfied the exchange-correlation potentials of the two
different spin-degrees of freedom have to transform in an accelerated frame
in correspondence with eq. (6.6) by

Vcr.xcK,n'J(r,t) = VcrtXC[nhni](f+ x(t),t) . (6.7)

Therefore also ALSDA satisfies the HPT. It is less obvious, if a self-interaction
corrected ALSDA in the OEP treatment would satisfy the HPT. In ALSDA-
SIC treated within the OEP approach also orbital densities are involved. In
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the case of 2 electrons with opposite spins the orbital densities are equivalent
to the spin-densities of the system, therefore eq. (6.7) will be satisfied in
this special case. For spin-compensated triplet or singlet states the HPT is
therefore fulfilled within ALSDA-SIC.
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Chapter 7

One-particle observables -
time-dependent dipole moment

In this chapter we study the accuracy of our TDDFT approach in comparing
one-particle observables of the TDDFT and exact calculation. The one-
particle observables relevant for the system under consideration are the time-
dependent dipole moment (Z) = ($!(t)\zi + ̂ ^(i)) and the expectation
value of the momentum in ^-direction (Pz) — (ty(t)\pZti + pZt2\^(t)). The
dipole moment is defined without ambiguities within DFT, since it is entirely
determined by the density through

(Z)=Jdfz-n{f);. (7.1)

In the case of the harmonic potential also the expectation of the momentum
in ^-direction can be written as functional of the time-dependent density:

(Pz) = J dr-^ • n(r);. , (7.2)

In the special case of the harmonic oscillator the expectation of the Z and
Pz are connected via (Pz{t)) = ft(Z(t)). It will be shown that this exact
relation also holds for the TDDFT system.

7.1 The dipole moment starting from the sin-
glet ground state

In this chapter we analyze the quantitative errors of TDDFT reflected in
the dipole expectation value introduced in eq. (7.1) starting from the sin-
glet ground state of the harmonic 2-electron quantum dot. We analyze two
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Figure 7.1: Comparison of the dipole moment of exact and TDDFT approach
for the weakly correlated system at u = 1. Shown are the exact dipole mo-
ment (red line) and the absolute error (green line) (Z{t))exact- (Z(t))TDDFT.
Note the different scale of the axes. The relative error of the TDDFT versus
exact result is of the order of 0.1 percent. Parameters of the laser pulse: max-
imal field amplitude AQ = 0.3, driving frequency UJP = 0.884, pulse duration
r = 90

systems of different correlation strength, characterized by the oscillator fre-
quency u and different driving fields E(t). Generally we can state that
the TDDFT result stands in almost perfect agreement with the exact result
starting from the singlet ground state, therefore illustrating the validity of
the HPT within ALSDA.
Figure 7.1 and 7.3 show the time dependent dipole moment and the difference
of TDDFT and exact calculation for the weakly correlated system of oscilla-
tor frequency u = 1 and the more correlated system at u = 0.01. In case of
figure 7.1 the laser pulse has driving frequency up = 0.884, field amplitude
AQ = 0.3 and pulse length r = 90. The frequency of the laser pulse is chosen
to be near the resonance. For this system the DFT ground state density is in
excellent agreement with the exact ground state density, as analyzed in chap-
ter 4.1 (see figure 4.1). Figure 7.1 shows the exact dipole moment (red line)
and the error (green line) {Z)TDDFT - (Z)^0-^ of the TDDFT calculation.
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Note the different scales of the ordinates. Plotting TDDFT and exact dipole-
moment in one figure, the difference between both propagations could not be
resolved. The relative error in the dipole-moment of the TDDFT propaga-
tion is of the order of 0.1 percent. We used a time-step of At = 1.165 10~2

in our calculations. This demonstrates the validity of the HPT. Additionally
to the dipole moment, we directly checked the time-dependent density. The
propagated density shows no deformations and, as stated by HPT, is only
rigidly shifted in ^-direction by the amount of the corresponding dipole mo-
ment. The HPT is therefore perfectly fulfilled by ALS,DA if starting from the
singlet ground state. We also checked on the second non-trivial one-particle
observable, the time-dependent expectation value of the momentum opera-
tor in z-direction defined in eq. (7.2). The exact relation (Pz(t)) = -^(Z(t))
between momentum expectation value and dipole expectation also holds in
our TDDFT approach (not explicitly shown in figure 7.1). The error of the
momentum expectation in TDDFT is comparable to the error of the dipole
moment.

The discrepancies of TDDFT and exact dipole-moment are very small,
nevertheless we will comment on the origin of the error. The error is not
due to the approximation of the exchange-correlation potential, rather to
the propagation method used to solve the non-linear Kohn-Sham equations.
Initially the error is small and directly follows the dipole-moment. After the
laser-pulse is switched off the error amplifies, like in a positive feedback loop.
As already mentioned in the general survey of our numerical realization of
TDDFT in chapter 3 we used a Suzuki-Trotter like split-operator method
[144, 145] to propagate our initial Kohn-Sham orbital (see eq. (3.15)). In
order to propagate the Kohn-Sham orbital from t to t + At one would need
the exchange-correlation potential evaluated for the density at time (and
therefore Kohn-Sham orbitals) t + At/2. A simple solution to the problem
would be to evaluate the electric field E at the mid-point t + At/2, whereas
the exchange-correlation potential is determined at time t (method 1). This
method increases the error from order O(At3) to O(At2) . Recently it was
proposed [144] to evaluate the exchange-correlation potential not with den-
sity n(t) at time t, but performing the first step of the split-operator method
and building the exchange correlation potential from this transient density
(method 2). This should decrease the error and reestablish an order 2 method
[144]. In our treatment this does not require an additional numerical effort
and is simple to implement. Figure 7.2 shows the difference in performance of
both methods, where the same step-width At was used in both calculations.
The final error can be reduced by a factor of 10 by using method 2.
For the strongly correlated system of tu = 0.01 we chose the following laser pa-
rameters: maximal field amplitude Ao = 0.045, driving frequency up = 0.097,
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Figure 7.2: Comparison of the absolute error of the dipole moment for two
different split-operator methods. Method 1 (red line) evaluates the exchange-
correlation functional with the density at time t. Method 2 (green line) builds
the exchange-correlation potential with the density obtained by performing
the first propagation step of the split-operator (for details see eq. (3.15) of
chapter 3). The error is significantly reduced in performing method 2, which
actually does not increase the computational effort. The same time-step
width is chosen (At = 2.33 10"2).

49



-t-s

V

O

exact dipole moment
0.02

- 0.01

S-H

2

- -0.01

200 300
Time [a.u.]

400 500 600
-0.02
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approach for the weakly correlated system at u = 1. Shown are the exact
dipole moment (red line) and the absolute error (green line) (Z(t))exact —
(Z(t))TDDFT. Parameters of the laser pulse: maximal field amplitude AQ =
0.045, driving frequency u>p = 0.097, pulse duration r = 244

pulse duration r = 244. In the case of u = 0.01 the difference of the dipole
moment of the exact calculation and the TDDFT calculation is also in the
range of 0.1 percent. The ratio of exact to TDDFT solution never gets neg-
ative, showing an accurate description of the zeros of the dipole moment.
The accuracy of the dipole moment is independent of the degree of correla-
tion of the system and is restricted by the propagation technique involved.
This is only true for the system driven from a stationary state (Harmonic
Potential Theorem). In a forthcoming chapter we will also study systems
propagating form initial states different to stationary states. The quality of
TDDFT calculations will dramatically decrease for such initial states.
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Chapter 8

Occupation probabilities within
TDDFT

8.1 Overview

In this chapter we attack the problem of calculating time-dependent many-
particle observables within TDDFT. There are two independent possible
sources of errors in TDDFT calculations. The first crucial ingredient is the
time-dependent exchange correlation potential which determines the quality
of the time-dependent electron density. A second independent source of error
concerns the unknown functionals to calculate many-body observables such
as occupation probabilities, ionization yields etc. In principle those quantities
can be determined as a functional of the electron density. For the ionization
yield approximations to this functional exist: absorbed density flux in an
absorbing boundary of the system or partitioning of space in two regions
representing the bound and ionized part of the density [6]. It is, however,
not straight-forward to extend these approximations to state-to-state transi-
tion amplitudes.
The state-to-state transition amplitudes (S-matrix elements) are defined as
the matrix elements of the long-time limit of the evolution operator U be-
tween a fixed initial state |$j) and a final state

Si,/ = lim <*/!«/(*, -*)|*i> (8.1)
I—»OO

The evolution operator satisfies the integral operator equation

U(t, t0) = 1 - i f drH(T)U(T, t0) (8.2)
Jto

with the initial condition U(to,to) = 1, H{t) denotes the time-dependent
system Hamiltonian. In our studies we restrict ourselves to Hamiltonians of
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the form H(t) = HQ + Vext(t) with the stationary Hamiltonian HQ and some
time-dependent external one-particle potential Vext(t) which is switched on
at time t = 0 and switched off at t = T. The S-matrix in this case reduces
to

Sitf = (*,\U{T,0)\*<) = <*/l*iCn> , (8.3)
and the channel states |$j) and |<&/) are eigenstates of the stationary Hamil-
tonian Ho and we introduced the propagated state $j(T)) := U(T, 0)|$i). In
the case of the harmonic oscillator the indices i and / therefore stand for the
set of quantum numbers i := [N^, L^, rJTel, Z*rf] and / := [N^, L^, nf

rel, l
f
rel]

characterizing the final and initial states. For the angular quantum num-
ber of the c.o.m. system we will introduce the notation of capital letters
(Lcm = S, P, -D,...), for the relative angular quantum number we use lower
case letters (lrei = s,p,d,...). Evaluating the S-matrix at times t > T only
changes the general phase. The physical observable,^ invariant with respect
to changes in the phase, is the state-to-state transition probability and is
given by the square of the S-matrix

P(iJ)(t) = \Sij\
2(t) = \(^f\U(t,0)\^i)\

2 t>T. (8.4)

P(i, f) is constant for t > T. To study the dynamics of the system we will
also study time-dependent occupation probabilities at times t < T.
One aim of this thesis is to find functionals to approximate state-to-state
transition amplitudes and probabilities within TDDFT, a problem which to
our knowledge has so far not been attacked. This problem is decoupled
from the challenge of finding new approximations to exchange-correlation
functionals. In this work we propose different functionals to calculate S-
matrix elements within TDDFT. The proposed functionals will depended
implicitly on the time-dependent density and involve the time-dependent
Kohn-Sham orbitals.
In spirit of time-dependent Hartree-Fock a first approximation for transition
amplitudes would be to take the Slater determinants of Kohn-Sham orbitals
as approximation to the full many-body wavefunction. Although the Kohn-
Sham orbitals have a priori no physical meaning, they can be viewed as
zeroth order approximation to the many-body wavefunction in terms of a
coupling constant perturbation theory [124, 125]. Our approximation to the
transition matrix element therefore implies to approximate the correlated
initial |$i) by a Kohn-Sham Slater determinant |$D F T) = In^m^nylmJ,).
For the ground state we have |$j) ~ |0s0s). The second approximation is to
replace the exact time evolved state |$i(£)) in eq. (8.3) by the evolved Kohn-
Sham determinant ^TDDFT(t). The transition amplitude then is calculated
by

c ($f\*TDDFT(t)) (8.5)

52



A delicate question arises at this point: Which are the appropriate chan-
nel states $/ to project on the time-dependent Slater determinant? Do we
project onto Slater determinants best suited to mimic the exact stationary-
states of the system, or do we project onto the real eigenstates of the system
Hamiltonian Ho? In the following chapters we are comparing both possibil-
ities of final states. Since the total angular momentum and total angular
momentum projection are good quantum numbers in our system the final
states will in both cases be chosen as configuration states of well defined to-
tal angular momentum. We therefore distinguish to possible approximations
to calculate transition amplitudes one consists in projecting onto Kohn-Sham
configuration states of well defined angular momentum \riilin2l2Ltot Mtot),
the other in projecting onto exact states \Nrcm^cm^reX^rei^tot)

(8.6)

(8.7)
Siif{t) ~ (n.kn^Ltot Mtot\V

TDDFT(t))
~ (NcnLvnTlralraLtat Mtot\*

TDDFT(t))

Inherently connected to the choice of the optimal channel state will be the
problem of the so-called spurious cross-channel correlation (oscillations in the
transition amplitudes at asymptotic times) first diagnosed and analyzed in
time-dependent Hartree-Fock studies. In table 8.1 we clarify the notation of
different final and initial states used in the following sections.

Table 8.1: Notation of the different initial and final states used in our pro-
jection approach: The exact states and DFT configuration states are defined
as states of well defined angular momentum Ltot and angular momentum
projection Mtot. We restrict our studies on states of Mtot = 0, this quantum
number will therefore be omitted. The total angular momentum number
Ltot will be omitted if it can be deduced without any ambiguities from the
coupling of the two involved angular momenta.

states
exact

DFT

DFT configuration
state functions

quantum numbers
NanLcmnreilreiLtotMtot

77.1/17711712/2^2

nih^hLtotMtot

notation
Lern = S, P, D, ...
lrei = s,p,d,...
Ltot=S,P,D,...
h = s,p,d,...
l2 = s,p,d,...
h = s,p,d,...
l2 = s,p,d,...
Ltot = S,P,D...
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8.2 Projection onto Kohn-Sham configuration
states

For the following considerations we will evolve the Kohn-Sham system from
its singlet ground state. We build a time-dependent Slater-determinant de-
noted with tyTDDFT(t) of the time-propagated Kohn-Sham orbital $0(fi,t)
which initially was in the Kohn-Sham ground state $o(fi). tyTDDFT(t) is
now treated as the time-dependent many-body wavefunction. The delicate
question arising in TDDFT is how to choose the appropriate channel state
onto which we project the time-dependent Kohn-Sham Slater-determinant
tyTDDFT(t). The first method to calculate transition probabilities is to project
the time-dependent Kohn-Sham determinant onto stationary Kohn-Sham
Slater-determinants, approximating the wave-functions of exact stationary
states. The exact eigenstates of the harmonic two-electron quantum have
well defined total angular momentum. We therefore construct configuration
state functions \nil\n2l2LM) of well-defined total angular momentum L and
angular momentum projection M built up from Kohn-Sham single-electron
orbitals In^m*). Since we start out with M = 0 which is preserved by the
time-dependent perturbation, we only have to consider configuration states
with total M = 0. The symmetrized coordinate-space part of the singlet
configuration state function reads [156]:

\nilin2h, L0) :=

-m\L0) |niZim)i ® \n2l2 -m)2 nx ^ n2

— m lim\L0) \n2l2 — m)i <

— m\L0) \nil1m)1 <g> |niZi -m)2 ni = n2

and l\ =

(hml2 — m\LO) denotes the Clebsch-Gordon coefficient.
In correspondence with eq. (8.6) the time-dependent occupation probabil-

ity of the configuration state \nil\n2l2, LO) of the TDDFT Slater-determinant
is then defined as

Since in our numerical approach the time-dependent Kohn-Sham orbitals
|$(t)) are expanded in the orthonormal basis of the stationary Kohn-Sham
orbitals In^rai) of the ground state occupation, the overlap integral in eq.
(8.9) is simple to calculate. The asymptotic limit (after the perturbation
of the laser pulse) of eq. (8.9) can then be interpreted as transition- prob-
ability. In projecting onto the Kohn-Sham ground state configuration state
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Figure 8.1: Comparison of ground state occupation probability of exact
calculation (red) and TDDFT calculation (green) in the LSDA-SIC approx-
imation for a confining frequency u = 1. Parameters of the laser pulse:
maximal field amplitude AQ = 0.3, driving frequency UJP — 0.884, pulse
duration r = 90
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Figure 8.2: Comparison of occupation probability of first excited state with
total angular momentum L = 1 of exact calculation (red) and TDDFT
calculation (green)
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Figure 8.3: Comparison of occupation probability of second excited state
Ncm=2,Lcm=2,nrei=Q,lrei=0 with total angular momentum L = 2 of exact
calculation (red) and TDDFT calculation (green)

function |0s0s) we therefore get a first guess of the ground state occupation
probability within the TDDFT approach which we compare to the ground
state occupation probability of the exact propagation. Figure 8.1 shows the
comparison of exact versus TDDFT ground state occupation for the weakly
correlated system of confining strength u> = 1. The parameter of the laser
pulse are chosen the same as in chapter 7.1. We see that the overall shape of
the ground state occupation is very well described by our TDDFT approach
of eq. (8.9). The laser pulse is switched off at t = 90. After that the ex-
act system shows a ground state occupation probability of about 66 percent.
Most of the missing population resides in the first excited state (see figure
8.2).

The TDDFT occupation probability is oscillating around the exact transi-
tion probability for times t > 90 in the absence of an external perturbation.
These oscillations (named 'spurious cross-channel correlations') are known
from the time-dependent Hartree-Fock calculations [58]. They are relics from
the highly non-linear nature of Kohn-Sham (or TDHF) equations, which lack
the principle of superposition.
After the excitation through the laser field, the system is in a coherent super-
position of eigenstates of the unperturbed exact Hamiltonian. If one develops
this coherent superposition in a basis (in the configuration state-functions),

56



200 300 400
Time [a.u.]

500 600

Figure 8.4: Comparison of ground state occupation probability of exact
calculation (red) and TDDFT calculation (green) in the LSDA-SIC approx-
imation for a confining frequency u = 0.01. Parameters of the laser pulse:
maximal field amplitude AQ — 0.045, driving frequency up — 0.097, pulse
duration r = 244

0.4

0.35 -
CO

te
d

ex
ci

CO
T—1

'S
a

_o

uo

o

0.3

0.25

0.2

0.15

0.1

0.05

0

exact
\(0slpL=l\y(t)TDDFT)\2

100 200 300 400
Time [a.u.]

500 600

Figure 8.5: Comparison of occupation probability of first excited state with
total angular momentum L = 1 of exact calculation (red) and TDDFT
calculation (green)
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which is not the eigenbasis, the occupation probabilities of this new basis
states will necessarily oscillate. It should therefore not be astonishing that
the TDDFT occupation probability calculated via projection onto the Kohn-
Sham basis shows oscillations at asymptotic times. It is tempting to think
that these oscillations should vanish if one projects onto the correct channel
state (exact eigenstates of the system). This is, however, not true for a prop-
agation through time-dependent Kohn-Sham equations. The time-evolved
Kohn-Sham orbitals do not reliably represent the wavefunction but only the
density. In general, this 'spurious cross-channel correlations' will therefore
persist also when projecting onto the eigenstates of the system.
In the case of the weakly correlated system of u> = 1 the exact and the DFT
ground state wavefunction (Slater-determinant of ground state Kohn-Sham
orbitals) have an overlap of 98.6 percent (see appendix D). The oscillations
in the ground state occupation probability have an amplitude of around 7
percent. They therefore can not be damped out by projecting onto the ex-
act eigenfunction. The projection onto the exact eigenstate will result in a
shift of the TDDFT ground state occupation. The same will be true for the
occupation of the first excited state, for which exact and the configuration
state function \0slpL = 1 0) of Kohn-Sham orbitals have an overlap of 98.1
percent.
Also in the case of strong correlation reliable results for occupation proba-
bilities can be achieved. Considering the two-electron system with confining
frequency of u = 0.01 the LSDA-SIC fails to reproduce the correct ground-
state density profile (see figure 4.2). The exact and DFT ground state have an
overlap of 83 percent (see table D.5 in appendix D). Nevertheless the occupa-
tion probabilities obtained by the TDDFT projection approach yield results
in accordance with the exact solution. Figures 8.4 and 8.5 show a compari-
son of exact versus TDDFT results for the ground and the first excited state.
As in the weakly correlated case the TDDFT occupation probabilities show
cross-channel correlations after the switch-off of the laser pulse. Average over
those oscillations results, however, in accurate transition probabilities. The
parameters of the laser pulse in the case of the weakly confined quantum
dot are: maximal field amplitude AQ = 0.045, driving frequency u>p = 0.097,
pulse duration r = 244 .
In the following we will return to the weakly correlated system of u = 1.
Regarding the second-excited state Ncm=2, Lcm=2, nre/=0, lrei=0 of total
angular momentum L = 2 the situation is different (see figure 8.3). The
exact state needs at least 2 configuration-state functions of Kohn-Sham or-
bitals to be reliably represented (see tables of appendix D), \0s2dL = 2 0)
and \lplpL = 20). Projection of the TDDFT wave-function onto each single
configuration state-function therefore will not give a good approximation to
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the occupation of the excited state. As can be seen in figure 8.3 the occupa-
tion probability for both configuration-state functions are equal in size and
of the order of 1/2 of the exact occupation probability of the lowest state of
total angular momentum L = 2. In the case that a single configuration-state
function of Kohn-Sham orbitals is a bad representative of an exact eigen-
state \NcmLcmrireilrei) of the system one therefore has to choose a different
channel state to project on. The projection has to be performed onto the
exact eigenstate of the system (or a linear combination of configuration-state
functions significantly contributing to the exact eigenstate). How this is done
is explained in the following section.

8.3 Projection onto exact eigenstates
In the last chapter we observed that for calculating occupation probabilities of
states which are not well represented by a single configuration, projection of
the time-dependent TDDFT wavefunction onto a configuration state function
of Kohn-Sham orbitals is not the appropriate method. In correspondence
with eq. (8.7) we therefore define the occupation probability by projecting
the TDDFT wave-function onto exact eigenstates liV^L^nreilreiLM) of well
defined total angular momentum:

PiN^L^rirJ^NM-t) := \(NcmLcmnrellreiNM\^TDDFT(t))\2 (8.10)

Starting from the singlet ground state with nrei = lTei = 0 the only states in-
volved during time will be excitations of the center of mass. The total angular
momentum equals the angular momentum of the center of mass, the angu-
lar coupled states |iVcmLCTnnre//T.e/LM) are therefore trivial and characterized
by \NcmLcm0s). The numerical implementation of eq. (8.10) is not straight
forward. It is tricky to calculate the 6-dimensional integrals involved in the
overlap (NcmLcm0s\1&TDDFT(t)). As already mentioned in the first chapters
we have developed a stationary as well as time-dependent configuration in-
teraction (CI) code in the basis of Kohn-Sham configuration state functions.
We therefore have the expansion of the 'exact' (converged result of the CI ap-
proach) eigenstates of the system in terms of Kohn-Sham configuration state
functions. The overlap integral eq. (8.10) is then therefore straight forward
to calculate.

In figure 8.6 we show a comparison of occupation probability of singlet
ground state for the two different TDDFT projection-approaches proposed.
Since the TDDFT-system starts from the DFT ground state, the overlap of
exact and TDDFT wave-function at initial time t = 0 is not equal to unity
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Figure 8.6: Comparison of occupation probability of singlet ground state
of the two different TDDFT approaches proposed. The time-dependent
TDDFT Slater-determinant is once projected onto the Kohn-Sham ground
state (green line) and onto the exact, correlated ground state (blue line).

but 99.3 percent. Because of this large overlap the two approaches yield simi-
lar results. The cross-channel correlations are slightly damped by projecting
onto the exact ground state but still are present. Hence, they can not be
cured by projecting onto the exact eigenstates. Averaging over cross-channel
correlations to define time-independent transition probabilities after switch-
off of the perturbation yields a better result for the projection onto the DFT
ground state. The projection onto the exact ground state therefore gives no
improvement of the transition probability.
Based on a converged time-dependent CI calculation we observe that

\{0S0s\VTDDFT(t))\2 = Vt. (8.11)

The exact ground state occupation of the TDDFT wavefunction equals the
projection of the total correlated wavefunction onto the Kohn-Sham ground
state. The equality was observed in any regime of correlation. This ob-
servation demonstrates anew that the calculations are satisfying the HPT.
At time t = 0 the TDDFT calculation starts out with the DFT ground
state \tyTDDFT(0)) = |0s0s), the exact calculation propagates from the ex-
act ground state \\&e*<"*(0)) = |050s), and the equality {0S0s\VTDDFT(t)) =
(0s0s|^exac*(t)) at time t = 0 is evident. The HPT states that the wave-
functions are subject of a rigid translation, the exact wavefunction as well as
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the Kohn-Sham Orbitals. Starting out from an overlap integral and at later
times shifting either one or the other wave-function-rigidly should yield in
both cases the same overlap. This manifestation of the HPT only holds for
the ground state. If one chooses, however, as initial state a different eigen-
state of the system, as an example \tyexact(Q)) = |lPOs) for the exact and
\VTDDFT(0)) = |0slp) for the DFT system the equality (lP0s\VTDDFT(t)) =
(lpOs\yexact(t)) should hold.
Figure 8.7 shows a comparison of occupation probability for the first excited
state of exact calculation and TDDFT wavefunction projected onto the ex-
act first excited state. The overlap of DFT configuration state |0slp) with
the exact first excited state |lPOs) (center of mass mode is excited) is 99.0
percent. A comparison of figure 8.7 to the figure 8.2 (where the TDDFT
wave-function is projected onto the DFT configuration state |0slp)) shows
that projection onto the exact state gives slightly better results during the
time of the perturbing laser pulse. Oscillations of the occupation probability
at times around 50 are in better agreement with the exact occupation proba-
bility. For the transition amplitude, however, we find the result in accordance
to the ground state transition. Defining the transition amplitude by averag-
ing over the cross-channel correlations gives a better and very accurate result
for the projection onto the DFT configuration state. We therefore state that
if TDDFT configuration states have a large overlap with the exact eigen-
states of the system the most accurate transition amplitudes are obtained
by projecting the TDDFT Slater-determinant onto DFT configuration state
functions and averaging over the cross-channel correlations.
The story changes dramatically when observing occupation probabilities of
eigenstates which need two or more DFT configuration state functions to be
built up. We restrict ourselves to the weakly correlated system of u = 1 and
draw our attention onto the occupation of the exact second excited state of
angular momentum Lcm = 2 (denoted as \2D0s)). In this case the TDDFT
wave-function has to be projected onto a linear superposition of relevant
configuration state-functions, or onto the exact state. Figure 8.8 shows that
projection onto the exact state \2D0s) gives excellent transition probabilities.

In the case of a weakly correlated system the method of projecting the Slater-
determinant of time-dependent Kohn-Sham orbitals onto either exact eigen-
states or Kohn-Sham configuration state-functions seems promising. The
method of averaging over the cross-channel correlations is not rigorously jus-
tified, nevertheless it yields very accurate transition probabilities in the case
of the driven ground state of the harmonic two-electron quantum dot. Despite
this first success it should be pointed out that within the proposed projection
mechanism it is not possible to define a well behaving transition amplitude
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in the asymptotic limit of large times after the perturbation responsible for
the transition is switched off. It was not possible to find appropriate channel
states to project onto the TDDFT Slater-determinant which would give sta-
tionary occupation numbers after the perturbation vanished. We will show
in the following that the situation will become worse if we consider more
complex systems, i.e. the triplet ground state and .systems which are not
subject to the harmonic potential theorem.
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Chapter 9

Propagation of the triplet ground
state

In this chapter we assess the quality of TDDFT propagating the triplet
ground state in an external laser field. As discussed in chapter 6 also the
triplet ground state is subject to the harmonic potential theorem. In the
case of a symmetric spin-part of the wavefunction with antiparallel spins
(lîD+llî)) the HPT should hold for ALSDA-SIC. The evolution of the triplet
ground state, being the first excitation of angular momentum (nrei = 1,
lrei = 1) of the internal (relative) degree of freedom and the ground state of
the center of mass (iVc, = 0, Lçm = 0) is strongly related to the evolution
of the singlet ground state. The time-propagation is only reflected in the
center of mass (c.o.m.) part of the wavefunction, which is equal for singlet
and triplet ground state. The time-dependent dipole moment is only related
to the c.o.m. degree of freedom, hence identical for either singlet or triplet
ground state as initial state. The second "invariant" of singlet or triplet
ground-state propagation in an external field is the occupation of the ground
state.

9.1 Dipole moment
In chapter 5 we have studied the performance of DFT with LSDA-SIC for
the triplet ground state. We have found that the DFT triplet ground-state
density obtained by spherical average of the effective Kohn-Sham potential is
in better accordance with the exact density compared to the density obtained
by not applying the spherical average. The latter has, however, the property
to be stationary if propagated in time with the full angular dependence of the
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Kohn-Sham potential. Our studies show that the initial state obtained by
the full angular dependence of the effective Kohn-Sham potential gives better
results in terms of the HPT. Starting with the triplet ground state obtained
by spherical average the density undergoes deformations since the initial
state is not Kohn-Sham eigenstate of the effective potential of full angular
dependence. The distortions of the density at the beginning of the laser pulse
are rather small but increase with time. For the following considerations we
therefore propagate the initial state obtained by the full angular dependence
of the Kohn-Sham potential.
Before analyzing the quality of the triplet ground-state propagation within

ALSDA-SIC we consider an ALDA (adiabatic local density approximation)
TDDFT calculation without inclusion of a self-interaction correction. The
HPT is fulfilled in this case. Both Kohn-Sham orbitals are propagated in the
same exchange-correlation potential

Vx
A

c
LDA[n] = S E * W . • (9.1)

on
Figure 9.1 shows the exact dipole moment and the error of the ALDA cal-
culation. Comparing the error of the ALDA dipole moment of the triplet
ground state to that of the singlet ground state (see figure 7.1) we observe
a slight increase. Nevertheless the error stays moderate and ALDA gives an
excellent dipole moment. The densities are rigidly transported according to
the HPT.
We now turn to the ALSDA-SIC and include a self-interaction correction to
the exchange-correlation potential. As discussed in chapter 6 ALSDA-SIC in
principle satisfies the necessary and sufficient conditions to fulfill HPT if the
spin-compensated two-electron system is considered. In the case of the triplet
ground-state the ALSDA-SIC yields different exchange-correlation potentials
for the different Kohn-Sham orbitals

J \r — r \ ' ona

(9.2)
Figure 9.3 shows the error of the TDDFT dipole moment. A comparison of
figure 9.3 with the error obtained by ALDA (see figure 9.1) shows that the
error in the dipole moment increases drastically in the case of the ALSDA-
SIC. After the laser pulse is switched off at times t > 90 the error increases
and becomes comparative in size to the dipole moment. The time-step in
the split-operator propagation was chosen as At = 4.76 10~3. Further de-
crease of the time step did not improve the result. To assess the error of
the time-dependent density figure 9.4 shows snapshots of the reduced den-
sity at different times. The points in time at which the reduced density is
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Figure 9.1: Time-dependent dipole moment of exact calculation (red line)
and error of TDDFT ALDA calculation (green line) starting from the triplet
ground state. The time-step in this calculation is At = 4.76 10~3. Parame-
ters of the laser pulse: maximal field amplitude AQ = 0.3, driving frequency
ujp — 0.884, pulse duration r = 90
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Figure 9.2: Comparison of triplet ground-state occupation probability of the
exact (red line) and TDDFT ALDA (green line) calculation. The initial
state was obtained without spherical averaging of the exchange-correlation
potential (see chapter 5).
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Figure 9.3: Time-dependent dipole moment of exact calculation (red line)
and error of the ALSDA-SIC TDDFT calculation (green line) starting from
the triplet ground state. The time-step in this calculation is At = 4.76 10~3,
further decrease did not yield any improvements. The dots mark the points
in time at which density snap-shots are made, which are shown in the sub-
sequent figure. Parameters of the laser pulse: maximal field amplitude
AQ = 0.3, driving frequency up = 0.884, pulse duration r = 90
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Figure 9.4: Reduced densities n(z) = f dx J dyn(f) at different times t. The
points in time t are marked in figure 9.3 with the corresponding color.
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plotted are marked in figure 9.3. Whereas the HPT is still fulfilled until
the maximum peak amplitude of the laser pulse is reached (at time t = 55
green line), violations of the HPT can be observed after switching off the
pulse. The density is no longer rigidly transported, but gets deformed. The
propagation is stable for times as long as the laser pulse is active. The free
propagation of the coherent superposition after the switch-off of the laser
pulse is not handled satisfactory in the ALSDA-SIC. In the next section we
study time-dependent occupation probabilities to analyze the failure in more
detail.

9.2 Occupation probabilities
In the case of the ALDA without self-interaction correction the TDDFT cal-
culation gives, as in the singlet ground-state propagation, occupation prob-
abilities in accordance to the exact result. Figure 9.2 shows a comparison of
exact and ALSDA calculation of the triplet ground-state occupation.
In the last section we observed that by adding the self-interaction correction
the HPT was no longer fulfilled and the error in the dipole moment was
increasing. The failure of ALSDA-SIC for the triplet ground-state propa-
gation will also be manifested in the occupation probabilities. Figure 9.5
shows the occupation of the triplet ground state of the Kohn-Sham Slater
determinant as a function of time in comparison to the exact result. As long
as the laser is active, the TDDFT occupation probabilities for the triplet
ground-state propagation perform equally well as in the singlet case. The
cross-channel correlations at times t > 90 suffer an additional drift, which
is not observed in the case of the singlet ground-state occupation. At times
t > 120 the TDDFT calculation breaks down. The problem seems not to
be due to the propagation technique of the split-operator method. Evaluat-
ing the exchange-correlation potential at mid-points, as discussed in section
7.1, reduced the time-step for converged results from Ai = 1.83 10~4 to
At = 4.67 10~3. The results in both converged cases are equal.
To study the dynamics of the ALSDA-SIC system in more detail, we exam-

ined the development of each time-dependent Kohn-Sham orbital. Figures 9.6
and 9.7 show a projection of the time-dependent Kohn-Sham orbitals |$t(^))
and |^»|(i)) onto the Kohn-Sham triplet ground-state orbitals |$t(0)) ~ |0s)
and 13^(0)) ~ \lp) . At times t > 90 we observe that part of the occupation
of |0s) is shoveled from |$|(£)) into |$TW) an(^ vice-versa. At times t > 130
the Kohn-Sham orbitals change their role, so that \$i(t)) becomes the orbital
with dominant |0s) component. This interchange, not observed in the case
of the ALDA propagation, causes the break-down of the propagation. The
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Figure 9.5: Comparison of triplet ground-state occupation probability of the
exact (red line) and TDDFT ALSDA-SIC (green line) calculation. The initial
state was obtained without spherical averaging of the exchange-correlation
potential (see chapter 5).

driving force of this break-down is due to the Coulombic part of the self-
interaction correction. The effective Kohn-Sham potentials are dominated
by the external potential and the Hartee potential

t) ~

t) c V

, t) + J ^r^dr'

, t)

(9.3)

(9.4)

Initially when the external laser field is small the densities nCT(t) are only
slightly shifted from the ground-state densities, the propagation is stable. As
the amplitude of the laser pulse increases Vext{t) is the dominant part of the
effective potential and the Hartree potential can be neglected. After switch-
off of the laser pulse the spin-densities nCT(t) are far from equilibrium, as can
be seen from the expectation of the dipole moment. The dynamics of the
system is dominated by the Hartree potentials. Small numerical errors in the
propagated densities na{t) are reflected asymmetrically in the effective Kohn-
Sham potentials Va of eq. (9.3). This asymmetry results in an amplification
of the error like in a positive feedback loop and the propagation of the Kohn-
Sham orbitals breaks down.
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Figure 9.6: Time-dependent occupation of the
bital of the time-dependent Kohn-Sham orbitals
(green line) of the ALSDA-SIC calculation
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Figure 9.7: Time-dependent occupation of the |$|(0)) ~ \lp) Kohn-Sham or-
bital of the time-dependent Kohn-Sham orbitals |$t(£)) (red line) and
(green line) of the ALSDA-SIC calculation
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Chapter 10

Time-dependent configuration
interaction

In this chapter we introduce the method of time-dependent configuration
interaction (CI) based on Kohn-Sham orbitals. This method is introduced
with the goal to compare TDDFT calculations to 'exact' solutions of the
many-particle Schrödinger equation in the case that the Hamiltonian is no
longer separable (for example helium in an external laser field). For those
systems the CI calculation provides a reference calculation to be compared,
for example, with TDDFT calculations.The method will also prove useful for
the harmonic two-electron quantum dot. Choosing an initial state which is
not an eigenstate of the harmonic oscillator but a coherent superposition of
eigenstates, the Hamiltonian stays separable and the problem can in principle
be solved in just taking care of the center of mass motion. In the following
chapter we will study occupation probabilities of arbitrary initial states and
want to compare them to occupation numbers from TDDFT calculations.
For this purpose it is necessary to expand the exact eigenstates in product-
functions of Kohn-Sham orbitals. For strongly correlated states (small u) it
is, however, computationally demanding, since one has to calculate several
overlap integrals (6-dimensional integrals). It will therefore be useful to use
a configuration approach. Once the basis expansion has converged, it can be
directly compared to the TDDFT calculations.
The CI method is a basis-expansion method, where the correlated many-body
wavefunctions are expanded in a product basis of one-particle orbitals. In
view of the application we will construct our product-basis from Kohn-Sham
one-particle orbitals In^rai) provided by solution of the time-independent
Kohn-Sham equation with ground state occupation eq. (3.10). Concentrating
the analysis only on singlet states with anti-symmetric spin part of the wave-
function the coordinate-space part of the product functions of Kohn-Sham
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orbitals has to be symmetrized. In addition we construct basis-functions
of well defined total angular momentum L (configuration state functions),
which is a good quantum number in the system we are going to study. The
symmetrized coordinate-space part of the singlet configuration state function
is therefore characterized by the pair of one-particle (Kohn-Sham) quantum
numbers (n\,l\,n2, h) and the total angular momentum and angular momen-
tum projection (L, M) and reads [156]:

\nilin2l2, LO) := <

-m\L0) |niZim)i <8> \n2l2 -m)2 nx ^ n2

—m li m\L0) \n2l2 — m)i ® |niZira)2] or l\ ^ l

(l\m I2 —m\L0) denotes the Clebsch-Gordon coefficient. We restrict our
considerations to total angular momentum projection M = 0, since our ini-
tial states and time-dependent perturbation are chosen such way that no
higher components of M come into play. In taking all possible combina-
tions of configurations and angular momentum quantum numbers the basis
{\7iil1ri2l2, LO)} becomes complete. In practice the basis will be truncated.
The total two-electron wavefunction ^(t) is expanded into the basis of con-
figuration state functions

o,(n1J1,n2,l2,L;t)\n1l1n2l2,L0) , (10.2)
L

where the sum extends over all possible two-particle configurations and an-
gular momenta of the truncated basis. In our calculations we implemented
different truncated basis sets which can be systematically enlarged. One can,
for example, restrict each single-particle momentum quantum number li and
main quantum number n* to be smaller than a defined values lmax and nmax.
Also the total angular momenta involved can be restricted to Lmax.
To simplify the notation we introduce the symbol / :— (ni, h,n2,l2, L) denot-
ing the set of quantum numbers of a configuration-state function. The short
notation for eq. (10.2) then simply reads |^(£)) = Yliai{^)V)- The time-
dependent two-electron Schrödinger equation in an external one-particle po-
tential V(f, t) is then transformed into a system of coupled equations which
reads

ijtaj(t) = eiai(t) + J > , ( * ) ((I'\Vext(t)\I) + (I'\Vee\I) - (I'\VXC\I)) (10.3)
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where e/ = eni^ + €n2,h is just the sum of the Kohn-Sham energies of the
configurations entering in configuration state /. The matrix elements in-
volved in eq. (10.3) are matrix elements with respect to the configuration
state functions of eq. (10.1) (denoted with $/(ri,r*2) in coordinate space)
of the external time dependent perturbation (time-dependent laser-field in
dipole approximation)

(I'\Vext(t)\I) = yyrfr1df2$*/(f1)f2)(yea:t(f1)+yea:t(f2))$/(n)r2) , (10.4)

the matrix element of the exchange-correlation potential

(I'\VKS(t)\I) = J Jdndr^^r^V^in) + VKS(f2))^(fuf2) ,
(10.5)

where VKS{r) = VH(r) + Vx
s
c
IC(r) is the sum of Hartree potential and ex-

change correlation potential (including self-interaction correction terms to
the Hartree potential) of the ground state occupation, and the Coulomb-
matrix element

= J J ,-. ]_ , r2) . (10.6)

Whereas the matrix elements eqs. (10.4) and (10.5) are one-particle matrix
elements (see appendix C.2), the Coulomb matrix element of eq. (10.6) is
a two-particle matrix element, involving a 6-dimensional integral. In the
appendix C.I we will introduce a numerically efficient way to calculate the
Coulomb-matrix elements.

The set of coupled differential equations eq. (10.3) is solved by means of
a Runge-Kutta method. The initial conditions of eq. (10.3) may be either
chosen as a configuration-state function, setting one specific ai(t = 0) = 1, to
a superposition of Kohn-Sham configuration state functions (as we will study
in the free propagation starting from a coherent superposition of eigenstates)
or to the "exact" eigenstate of the system. For the latter we have to solve
the time-independent Schrödinger equation

e/a7(0) + $>. , (0) {(J\Vext(t)\I) + (J\Vee\I) - (J\VXC\I)) = £a/(0) (10.7)

by solving the eigenvalue equation of the matrix (J\Vext(t) + Vee — VXC\I) +
£ISJ,J- This provides the 'exact' total energy eigenvalues E and the corre-
sponding expansion of the exact eigenfunctions in terms of the configuration-
state functions (and hence in Kohn-Sham orbitals). The exact ground state
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Figure 10.1: Comparison of ground state occupation of exact (red line) and
CI calculation of different numbers of configuration states. Parameters of the
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energy is approached monotonically from above wheri increasingly more con-
figurations are added. The ground state energy of 161 configurations is
Eo = 3.7339, with 5053 configurations we obtain EQ = 3.7308 as compared
to the exact value of Eo = 3.7301. Also the wavefunction itself converges
monotonically. As a measure for convergence we have studied the overlap
of the CI wavefunction with the DFT ground state compared to the overlap
of the exact wavefunction with the DFT ground state. Starting with 116
configurations the overlap is 0.99258, with 5053 configurations we find an
overlap of 0.99290 in comparison to the exact overlap of 0.99295.
Figures 10.1 and 10.2 demonstrate the convergence properties of the CI ex-
pansion in the case of the laser driven two-electron quantum dot. Plotted is
a comparison of ground state occupation probabilities of the exact calcula-
tion and CI calculations of different numbers of basis-states included. Con-
vergence was reached for approximatively 6000 two-particle basis functions
with maximal total and one-particle angular momentum quantum number
of L = 10. The maximal one-particle principal quantum number involved is
n = 8. It is observed that the convergence of the ground state occupation
is not monotonie in that the final value of the occupation is first underesti-
mated, increasing the number of configuration it is overestimated to finally
converge to the exact result (see figure 10.1). The occupation of the first
excited state approaches the correct result in a monotonie way.
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Chapter 11

Free propagation of coherent
superposition of DFT orbitals

The Kohn-Sham equations (eq. (3.10)) are highly non-linear and therefore
violate the superposition principle. In this chapter we are studying the per-
formance of TDDFT in propagating a coherent superposition of eigenstates
in the absence of an external perturbation. We start out with a coherent
superposition of Kohn-Sham orbitals as initial state and propagate this state
within TDDFT. On the other hand we propagate the initial state exactly.
This can be done by expanding Kohn-Sham configuration state functions in
the exact eigenbasis of the system. The overlap integrals of DFT configura-
tion state functions with exact eigenfunctions are lengthy to calculate with
increasing angular momentum quantum numbers involved. In appendix D
we give some numerical values of overlap integrals of the weakly and highly
correlated quantum dot, for u = 1 and u = 0.01 respectively. In order to
have a benchmark to test TDDFT calculations for Helium we developed a
time-dependent configuration interaction (CI) method (see chapter 10). The
exact propagation of a coherent superposition can be easily handled with our
CI code.
The initial condition of the time-dependent Kohn-Sham orbitals are cho-
sen as coherent superposition of 2 different stationary Kohn-Sham orbitals
|ni, h, 0), \n2, h, 0), (ni ^ n2 V h ^ l2)

= a\nx, h, 0)

= I*Î(0)> (11.1)

where a,ß e M., a2 < 1. Solving the time-dependent Kohn-Sham equations
within the basis of static DFT orbitals (see chapter 3) we therefore are able to
calculate straightforwardly occupation probabilities of 2-particle DFT con-
figuration states (see eq. (8.8)) according to eq. (8.9) . Initially only the
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Figure 11.1: Comparison of time-dependent dipole moment of exact and
TDDFT calculation for a coherent superposition. The initial state is for both
TDDFT and exact calculation the product-function of the single-particle
Kohn-Sham orbital |$(0)) = ^ | l s 0 ) + ^ | l p0 ) . Confining strength u = 1.

occupation probabilities

P(nu h, 0, n2, h, 0, t = 0) = 2a2(l - a2)
P(ni,li,0, ni,li,0, t = 0) = a4 and

= 0) = (1 - a2)2

(11.2)

(11.3)

(11.4)

are different from zero. It can not be expected that the system evolves within
the subspace of the initially occupied configuration states.
In the following analysis we restrict ourselves to the weakly correlated system
of confining strength u = 1. TDDFT calculations for initial states to which
HPT applies were very promising in this correlation regime. The initial state
under consideration is the singlet state constructed from a superposition of
the ground state and first excited Kohn-Sham orbital

(11.5)

Figure 11.1 shows a comparison of the time-dependent dipole moment of
TDDFT and exact (converged CI) calculation of the initial state of eq. (11.5).

77



Initially the dipole moment of both calculations are in accordance. After the
first half cycle, however, the two calculations show considerable discrepan-
cies. Initially the frequency of the oscillations in the dipole moment is well
described by TDDFT, after the first cycle, one observes a shift to a lower
frequency in the TDDFT dipole moment. The performance of TDDFT is
therefore considerably degraded if one chooses an initial condition which is
not subject to the HPT.
The situation becomes even worse when comparing the occupation numbers
of TDDFT and exact calculation. Figure 11.2 shows a comparison of occu-
pation numbers of DFT configuration state functions for the exact (CI) and
the TDDFT calculation for the initial condition of eq. (11.5). Since TDDFT
and exact calculation start out from the same initial state, the projection
of the TDDFT and of the exact wavefunction onto the DFT configuration
states |0s0s) and |0slp) are equal at time t = 0 but diverge thereafter. Since
the coherent superposition is a pure superposition of the center of mass mode
(OS,1P,2D and 25), the difference of the energies involved correspond to the
frequencies of 2UJ and UJ. Those frequencies are reflected in the occupation
probabilities of the DFT configuration states of the exact wavefunction (red
and blue line), the dominant frequency is 2a>. The occupation probability of
the DFT configuration states of the TDDFT wave-function, however, shows
a major frequency component of u, which is the oscillation frequency of the
dipole moment (see figure 11.1).
The comparison of the dipole moment of exact and TDDFT propagation
shows that the density is not correctly propagated in the present TDDFT
approach. The shape of the time-dependent densities of exact and TDDFT
calculation are different (not shown here). One could therefore argue that
the failure of calculating occupation probabilities for states which are not
subject to the HPT is due to the wrong exchange correlation potential used,
which is not able to reproduce the right density. In the following chapter we
will, however, demonstrate that even if the exact exchange correlation po-
tential was known, it would not be possible by our simple projection method
to construct reliable occupation probabilities.
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Chapter 12

Exact Kohn-Sham scheme

In this chapter we will show the results of a realization of an 'exact' time-
dependent Kohn-Sham scheme. For the special case of a singlet two-electron
system the exact exchange correlation potential can be determined, there-
fore providing all the prerequisites needed to calculate the exact Kohn-Sham
Orbitals. In the last chapter we observed that in the case of starting from
a coherent superposition as initial state ALSDA-SIC fails to reproduce the
density. Also the projection mechanism to calculate state-to-state transi-
tion amplitudes failed. The reason of failure can lie in the wrong exchange-
correlation potential, or may indicate a more fundamental difficulty. To
answer this principal question we performed propagations of coherent super-
positions of states in the exact time-dependent exchange correlation potential
[158].

12.1 Construction of the exact exchange-correlation
potential

In the case of a two-electron singlet system it is possible to construct the
exact time-dependent exchange correlation potential [48]. For simplicity of
notation it is derived for the one-dimensional problem, generalization to 3
dimension is straight forward. The two electrons are considered to occupy
both the same orbital. The Kohn-Sham equations reduce to a single one-
particle equation for the doubly occupied orbital (ßQ(x,t)

The density of the system is just given by n(x,t) — 2\(f>0(x,t)\2. The Kohn-
Sham orbital can be decomposed into a unitary complex function ex^x^ and
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a real function and thus rewritten in terms of the density.

4>o{x,t) =
ln(x,t)

(12.2)

The constraint that Vxc(x,t) should be a real function results in an ordinary
differential equation in x which determines the phase f(x,t) of the orbital in
terms of the exact density up to the initial conditions for f(x,t = 0) and its
derivative

and an explicit equation for the exchange correlation potential in terms of
the exact density and the phase

Vxc(x,t) = -
ld2ln[n(x,t)]
Ï"

1
dr2

din [n(x, t)]

dx

df(x,t)2 df(x,t)

-Vext(x,t)

dx dt
(12.4)

In the static limit equation (12.4) reduces to

1 d2ln [n{x)\ din [n(x)]

dx
- Vext{x) - VH{x) (12.5)

which corresponds to the exchange correlation potential that recovers any
density n(x) of a static problem as its ground-state density. As a consequence
the first four terms in equation (12.4) correspond to the exchange correlation
potential of a system which has the density at time t as a ground-state density
and the last two terms are the corrections due to the time-dependence of the
phase. This causes computational problems. If the density has a node at
a finite point x, it usually means that the static potential is diverging at
that point x. For the exchange correlation potential to be finite the phase
f(x, t) has to cancel this infinity which numerically is not feasible. Also an
initial state whose density has a node would account for a divergent exchange
correlation potential. Hence we are forced to restrict our studies to cases
where no nodes arise in the density over time.

12.2 One-dimensional model system
We study two different one-dimensional model two-electron systems [152,
153]. The first system is characterized by the one-dimensional harmonic
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oscillator potential Vext(x) = \w2x2 (u = 0.25), the second system un-
der consideration is a 1-dimensional helium atom with the model potential
Vext(x) — — / I .2 • The time-dependent Schrödinger equation of these sys-
tems is given by

dt l j 2 ' ^/{xi-x2y + b

(12.6)
where b is a parameter commonly introduced to allow the electrons to bypass
each other without passing through a singularity. We set the parameter
b = 0.7408 in order to get a ground-state energy for the model helium atom
that is close to the ground-state energy of the three-dimensional helium atom.
The partial differential equation 12.6 is discretized on a two-dimensional
equidistant spatial grid and solved by means of a Runge-Kutta algorithm. For
details see reference [158]. The exact solution provides us the exact density
n(x,t), from which we are able to construct the exact exchange correlation
potential.

12.3 Propagation of a coherent superposition
First we consider the propagation from a coherent superposition of exact
eigenstates of the one-dimensional harmonic quantum dot. The exact system
starts from a superposition from the exact ground-state |0) and exact first-
excited state |1)

(12.7)

The time-propagation of the exact state \^(t)) is therefore given by

, (12.8)

where EQ and E\ denotes the exact energy eigenvalue of the ground and first
excited state. The exact initial |^(0)) state gives rise to a initial density
n(0) and hence an exact exchange-correlation potential Vxc(0) according to
eq. (12.5). The initial Kohn-Sham orbital \(f>o) is then given by the ground
state of the Kohn-Sham equation with Vxc(0). Exact and Kohn-Sham sys-
tem therefore start from different states \^(t = 0)) and |<E>(£ = 0)) = |0o0o)
respectively, which have, however, the same density n(0). The overlap of the
different initial states is ($(t = 0)|*(0)> = 0.736. The Kohn-Sham orbitals
|</>o) are propagated with the exact exchange correlation potential resulting
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Figure 12.1: One-dimensional quantum dot with u = 0.25. Shown is a
comparison of the exact ground-state occupation probability (blue) and oc-
cupation probabilities for TDDFT via projection of the Kohn-Sham Slater-
determinant onto the ground state Kohn-Sham configuration (red) and onto
the exact ground state (green). The exact exchange correlation poten-
tial was used. Initial state is a coherent superposition of exact states:
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Figure 12.2: Same as in figure 12.1 but for the first excited state.
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from the exact density n(t) (see eq. (12.4)), therefore the densities n(t) of
exact and Kohn-Sham scheme are identical. We then tried to calculate
occupation probabilities within TDDFT by the projection method we intro-
duced in chapter 8. Figures 12.1 and 12.2 show a comparison of exact and
TDDFT occupation probabilities for the quantum dot of the ground state and
first excited state respectively. The projection of the TDDFT wave-function
(Slater-determinant of Kohn-Sham Orbitals) onto the exact ground state (de-
noted with (0ezact | <£(£)), green line) of the system oscillates around the exact
ground-state occupation value of 0.5. Projection onto the product function of
Kohn-Sham ground-state orbitals (denoted with (QDFT\$(t))) does not give a
reliable occupation probability. In the case of occupation of the first excited
state both TDDFT occupation probabilities fail (see figurel2.2 ). Figures
12.3 and 12.4 show the results for the one-dimensional Helium model. In
this case, not even the ground-state occupation oscillates around the exact
result.
Even with the knowledge of the exact exchange-correlation potential the pro-
jection mechanism of time-dependent Kohn-Sham Slater-determinants onto
either exact or Kohn-Sham configuration states does not provide reliable oc-
cupation probabilities. The problems in determining occupation probabilities
for a propagation of a coherent superposition in the three-dimensional case
of the harmonic oscillator therefore is not only due to the incorrect exchange-
correlation potential.
As already mentioned in the general overview of TDDFT in chapter 3 there
exist different time-dependent Kohn-Sham schemes starting from different
initial states (with the same density as the exact system), all in principle
reproducing the exact time-dependent density of the system [10]. The time-
dependent Kohn-Sham orbitals and hence approximate many-body wave-
functions are different for different fixed Kohn-Sham initial-states. The qual-
ity of our projection mechanism therefore would rely on the choice of the
initial state.
In the following we are considering therefore exact and Kohn-Sham system
propagating from the same initial state. The initial state is chosen as the
exact Kohn-Sham ground state. \^{t = 0)) = |0DFT) of the one-dimensional
quantum dot. The Kohn-Sham system is propagated with the exact time-
dependent exchange-correlation potential. Figure 12.5 shows a comparison of
ground-state occupation probabilities of the exact wave-function (blue line)
and TDDFT occupation probabilities by the projection-method. The Kohn-
Sham Slater-determinant was projected onto the exact (green line) as well as
the DFT ground state (red line). For comparison the projection of the exact
wave-function onto the DFT ground state is plotted (magenta line). It is not
possible to deduce any reasonable ground-state occupation probability based
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on the projection-method of TDDFT results. As can be seen directly from
the figure also time-average over the oscillations of the different occupation
probabilities of TDDFT would give wrong results. The discrepancy of the
projection of exact and TDDFT wavefunction onto the DFT ground state is
not as large as in the case of the quantum dot of chapter 11. In particular
both projections have the same frequency components, which was not ful-
filled in the case of ALSDA-SIC (see figure 11.2).
Those studies of a simple one-dimensional model systems demonstrated that
even with the knowledge of the exact exchange correlation potential it was
not possible to reliably construct occupation probabilities based on the pro-
jection of Kohn-Sham Slater-determinants onto either exact or DFT channel
states. We tested the projection-method onto different Kohn-Sham schemes
starting either from the same initial state of exact and Kohn-Sham propa-
gation or from different initial states but the same initial densities. In both
cases the results are rather dispiriting.
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Figure 12.5: One-dimensional quantum dot with u = 0.25: Shown is a com-
parison of the exact ground-state occupation probability (blue) and occu-
pation probabilities for TDDFT via projection of the Kohn-Sham Slater-
determinant onto the ground-state Kohn-Sham configuration (red) and onto
the exact ground state (green). Also the projection of the exact time-
dependent wavefunction onto the Kohn-Sham ground state is given (ma-
genta). The exact exchange correlation potential was used. Initial state:
Kohn-Sham ground state for both systems
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Chapter 13

Functional-integral approach to
transition matrix elements

In chapter 8 some progress was made in calculating time-dependent occu-
pation probabilities within TDDFT where a projection method was pro-
posed. The Slater-determinant of the time-dependent Kohn-Sham orbitals
was projected either onto Kohn-Sham configuration state functions or exact
eigenfunctions of the system under consideration. At asymptotic times after
switch-off of a perturbative laser field we observed oscillations of the occupa-
tion probabilities obtained by our projection method. We showed that these
oscillations persist by projecting onto exact eigenstates of the unperturbed
Hamiltonian. It was not possible to find appropriate channel states to project
on to obtain a time-independent transition amplitude at asymptotic times.
In other words, we failed to define a state-to-state transition matrix element
(or S-matrix) within TDDFT by usual means.

The above described problem is well known from nuclear reaction time-
dependent Hartree-Fock calculations [58]. Several similar methods based on
a functional integral approach were proposed to circumvent the problem of
cross-channel correlation [60, 61, 62, 63, 67] Starting point is the S-matrix
defined as the matrix elements between initial |$i) and final |<&/) state of the
long-time limit of the interaction-picture evolution operator S:

Sitf = <$/|S|$i) = lim ($f\U0(0, T)U(T, -T)U0(-T, 0)|^> , (13.1)
T—>OO

where Uo(O, r) denotes the time-evolution operator in the Schrödinger picture
corresponding to the field-free many-body Hamiltonian
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t=-T

t = 0

Figure 13.1: Time evolution for the 5-matrix in the interaction picture for a
perturbation starting at t = — r and ending at t = +r: The system starts out
from the initial state |$j) and is evolved backwards in time to t = — r with the
perturbation turned off. At time t = —r perturbation sets in (in our case a
time-dependent electric field E(t)), the state is forward propagated according
to the Hamiltonian including V(t) to t = +r. Backward propagation to t = 0
in the perturbation-free case V(t) = 0 closes the time-loop.

and U(0,T) the propagator in the case of a time-dependent perturbation
V(t) = Y2i v(u, t) corresponding to the Hamiltonian H = Ho+V(t). The per-
turbation potential is supposed to be zero at asymptotic times lim^-oo V(t) =
lim^oo V(t) = 0. The channel states |$j) and |$/) are eigenstates of Ho.
The mean-field method introduces two independent approximations. The
channel functions |$j) and |$/), solutions of a stationary many-body prob-
lem, have to be approximated in practice by a single Slater-determinant, or
a sum of a few determinants. The second major approximation concerns
the many-body propagators U and UQ. In this method U is rewritten by
Hubbard-Stratonovich representation [59] as a functional integral over an
auxiliary mean field a(f, t), thereby involving only a one-body Hamiltonian.
The many-body evolution operator is decomposed into a superposition of an
infinite number of one-body propagators. The functional integral is then ap-
proximated by the method of stationary phase. The mean field cr(r,t) which
renders the phase stationary is given by

«-
where p denotes the one-particle density operator. Rather than a mean
potential, a(r, t) is a mean density of the system. |$i(£)) (I$/W)) denotes
the initial (final) state propagated forward (backward) in time according to
the Hamiltonian Ha(t) = ^2tha , where h^i)a denotes a Hartree-like one-
body Hamiltonian. cr(r, t) is treated as source in the Hartree-like term of
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ha• , rather than the electron-density n(r,t). The one-body Hamiltonians
ha which determine the time-evolution

are given by

Eqs. (13.3), (13.4) together with (13.5) constitute a self-consistency problem
for a(f, t), |<&i(t)) and | $/(£)). Due to the definition of the S-matrix in the
interaction picture the time t in eqs. (13.5) and (13.3) has to be varied in a
loop from t = 0 to t = —r (V(i) — 0), where the external perturbation V(t)
starts, to t = +T (end of the perturbation) and back to t = 0 (V(t) = 0).
Figure 13.1 shows a sketch of the time cycle.
Unlike TDDFT, where the exchange-correlation potential possesses an initial
state dependence, in the mean-field approach a(r, t) also depends on the fi-
nal state |$/). cr(r,t) is deduced self-consistently to 'connect' initial to final
state.
So far, in the derivation of eqs. (13.5) and (13.3) neither exchange effects
(particle statistics) nor two-body correlations have been taken into account.
The inclusion of exchange effects is possible but cumbersome [60], since it in-
corporates second order corrections to the stationary phase approximation.
This could be circumvented by introducing a non-local mean field a. Ex-
change effects would already be accounted for in the zero order stationary
phase approximation. Choosing single Slater-determinants as channel states
the resulting equations are similar to time-dependent Hartree-Fock equations,
with a Fock-like contribution, which is non-local in space. In the following
we propose a slightly different approach, closely connected to TDDFT where
locality in space can be maintained.

Adapted to our original problem, we approximate the channel states |<3>i)
and |$/) through single Slater-determinants of stationary Kohn-Sham or-
bitals. Eqs. (13.3) and (13.4) then reduce to one-particle Hartree-like equa-
tions. The similarity to the time-dependent Kohn-Sham equations is tempt-
ing to introduce exchange and correlation effects by addition of the Kohn-
Sham exchange-correlation potential. The exchange correlation potential
is then treated as a functional of the mean field a rather than the elec-
tron density, in analogy to the original mean field approach. In this case
the self-consistency problem can be solved in a sequence of time-dependent
Kohn-Sham like equations. In addition we introduce in analogy to the spin-
densities of TDDFT mean fields for spin up aT(f,t) = Re [ }
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Figure 13.2: Shown is the time-dependent dipole moment of the TDDFT
result (red) and the converged mean-field result (blue). Also shown is the
electric field (green). Parameters of the laser pulse: maximal field amplitude
AQ = 0.23, driving frequency up = 0.804, pulse duration r = 43. The time
axes corresponds to the time loop of figure 13.1. t = —21.5 denotes the point
where the laser pulse is turned on. At the end of the laser pulse (t = 21.5)
the time-propagation is reversed, therefore producing the cusp in the dipole
moment.

and spin down <jj = Re \ (L (!fiTif(t)) f w n e r e P\ ( Pi ) denotes the spin-
projection of the density operator. The total mean field then decomposes
into a = (7f + ai- This allows us to use the spin-density dependent self-
interaction corrected ALDA exchange correlation potential. In contrast to
the original mean-field approach, the present Kohn-Sham like approach can
not be deduced rigorously by means of the Hubbard-Stratonovich represen-
tation and contains an heuristic aspect.
We apply the proposed approach to the model system of two electrons in the
harmonic oscillator. We denote the final (initial) channel state of the singlet
system by |$/) = \<p\,<f>lf) (\$i) = |</>J, </>;•)), where ^ denotes a one-particle
orbital of configuration (n, I, m) of the final spin-up electron. The mean fields
then are given by

a(f, t) = (13.6)
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and the Hamiltonian of eq. (13.5) is replaced by

f*f^r\ ~ E{t)z + Vxc[ahai]{r>t] • (137)

Eq. (13.7) together with eq. (13.6) are solved self-consistently by means of
an iterative scheme. As a first guess for a(f, t) we start out with the den-
sity n(f,t) of the TDDFT problem, the first trial |$i(t))(1) is the TDDFT
propagated state. The second iteration is a TDDFT backwards propagation
of the final state \$f(t))^ with a(f,t) calculated through eq. (13.6) with
the instantaneous \$f(t))W and \$i(t))W of the first iteration. The third
iteration is a forward propagation of |$j) with a calculated from the instan-
taneous |<&j(i))(3) and \$f(t))W and so on. The S-matrix element is then
calculated through Sij — (<£>/|<I>i(£)), where T denotes the time t = 0 after
going through the whole time-loop of figure 13.1.

Figures 13.2 and 13.3 show results of a converged calculation. The time-
dependent laser field is symmetric against time-reversal and of pulse length
r = 43, driving frequency u>p = 0.804 and peak field amplitude AQ = 0.23.
The frequency of the confining parabolic potential was chosen as u> = 1. Fig-
ure 13.2 shows the time-dependent dipole moment of the TDDFT calculation
(red line), which serves as initial guess of the iteration cycle. The time axes
in figures 13.2 and 13.3 is chosen conform to figure 13.1. The system starts
out from the DFT ground state at time t = 0 and is backwards propagated
in time to time t — —21.5 where the laser pulse sets in. The wavefunction
is propagated forward in time for the duration of the pulse until t = 21.5.
At this instant the wavefunction is propagated backwards to the initial time
t = 0. Because of the time-reversal at t = 21.5 the dipole moment shows
a cusp at this instant in time. In figure 13.2 also the converged result of
the dipole moment is shown (blue line), which is slightly different from the
TDDFT result and is hence no longer in accordance with the exact dipole
moment. The time-dependent density in this mean-field approach therefore
depends on the question which is posed and no longer describes the evolu-
tion of the exact density. Choosing a different final state would alter the
result of the density. Figure 13.3 shows the development of the occupation
numbers within the functional-integral approach. The initial TDDFT occu-
pation is shown (red line) as well as the result of the first iteration (green
line) and the converged (result). From the converged occupation probability
the transition amplitude after the end of the pulse can be deduced, which
is defined as the occupation probability at the end of the time-loop at time
t = 0 which in this case would be |(0s0s|$i(£ = 0))|2 = 0.6. The exact
ground-state transition probability is 0.663, the original TDDFT transition
amplitude oscillates around this exact value, the average over the oscillations
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Figure 13.3: Time-dependent ground-state occupation probability of the ex-
act (black line), th TDDFT calculation (red line),the first iteration (green
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Figure 13.4: Shown is a comparison of ground-state occupation probabilities
of the exact solution (black), of the original Hartree-like functional integral
approach (time-dependent Hartree result in red, the converged functional
integral result based on eq. (13.5) in green) and TDDFT based approached
(converged functional integral result based on eq. (13.7) in blue)
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would yield the same quantity. The functional integral approach, although
rigorously defining a transition amplitude, does not improve on the TDDFT
results averaged over the cross-channel correlations.
Moreover we face convergence problems of the functional integral approach.
Convergence could not be reached for the general case, only in the case of
symmetric laser pulses E(t) = E(—t) and equal initial and final state. The
case of different final and initial states gives two different results for Sij of
forward and backward propagations (($/|$i(t)) or ($/(0)|$i) respectively).
To compare or modified approach relying on eq. (13.7) to the original Hartree-
based approach calculations have been performed according to eq. (13.5). We
observe that the new approach including exchange-correlation effects gener-
ally gives better transition probabilities (see figure 13.4 for a comparison
of the ground-state occupation probabilities). Averaging over cross-channel
correlations of pure TDDFT or Hartree results gave identical results which
are in the case of the system satisfying the HPT in excellent agreement with
exact transition probabilities.
Besides the approach of defining well-behaved transition amplitudes via the
Hubbard-Stratonovich operator identity and stationary phase method there
exists another class of proposed methods to define transition amplitudes
which relies on variational principles [74, 73, 71]. A recent published re-
view article [71] gives an overview of those methods. Basic idea is to pose a
Frenkel's variational problem for an expectation value of a given observable
with general action-like functionals. These methods should provide equations
of motion best suited to the observable to be measured. In some sense the
dynamics of the approximated system will depend on the observable which is
measured, which is also the case of the mean-field method described in this
chapter. A connection of those variational methods to the stationary phase
mean-field method was established [71]. Depending on how one restricts the
variational space of wave-functions different methods can be derived. It could
be shown that the time-dependent Hartree-Fock approximation appears as
the best mean-field equation for predicting averages of single-particle observ-
ables (within this variational approach). For many-body observables like
transition probabilities other mean-field equations can be derived, similar
to those obtained by the functional integral approach applied in this work
[71, 72]. Those coupled-channel equations have not been solved, the varia-
tional functional, however, served to improve time-dependent Hartree-Fock
transition amplitudes [72, 74]. Those functionals for improving transition
matrix elements of a given mean-field approximation are very similar to the
perturbative approach we study in the next chapter.
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Chapter 14

Perturbation theory

Although wavefunctions built from Kohn-Sham orbitals do not possess a rig-
orous physical meaning we demonstrated in chapter 8 that in some cases
they can serve to reliably represent many-particle wavefunctions. Occupa-
tion probabilities obtained by projecting the Kohn-Sham wavefunctions onto
Kohn-Sham configuration state functions, however, show cross-channel cor-
relations and it is not possible to define a S-matrix with a proper asymptotic
time limit. Nevertheless the Kohn-Sham wavefunctions can serve as a basis
for perturbation theory [121]. Connections of DFT with various perturbation
approaches exist and in some cases were applied. In the following we will
give an overview of existing combinations of perturbation theory and density
functional theory.

14.1 Combination of DFT and perturbation ex-
pansions

Different combinations of ground state density functional theory and pertur-
bation theory can be found in the literature. The major part of perturbation
theories in DFT seeks after the construction of implicit density function-
als, i.e. exchange-correlation energy functionals which depend explicitly on
occupied and unoccupied Kohn-Sham orbitals. Formally this perturbation
approach is solved by a coupling-constant perturbation theory of Görling
and Levy [124, 125], the practical use of which is limited. A related theory
[137] consists in a combination of many-body perturbation theory (MBPT)
[122, 123] and DFT for ground-state energies, which was recently proposed
[134, 135, 138]. The second-order orbital energy functional of MBPT serves
as an approximated energy functional for the optimized-effective potential
method (OEP)[89, 90, 91]. Given a total energy functional depending explic-
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itly on single-particle orbitals, the OEP method provides the variationally
best orbitals that minimize the total energy expression, under the constraint
that the one-particle orbitals are solutions of Kohn-Sham equations with a
local exchange-correlation potential. It was demonstrated that in principle
the exchange-correlation potential obtained from second order MBPT via
the OEP method is divergent at large distances [131, 132, 133]. In numer-
ical implementations with finite-basis set representation those divergencies,
however, do not appear [136]. Another study simulated the perturbation se-
ries of the exchange-correlation theory to all orders [130]. For some systems
this series turned out to be divergent. Improvements of the energies com-
pared to the OEP exchange only case could, however, be demonstrated for
the helium isoelectronic series [134]. Moreover the exchange and correlation
potentials obtained from this approach show the correct qualitative behavior
and are in excellent agreement with potentials obtained from very accurate
many-body wavefunctions [140]. A connection of this MBPT OEP approach
to the second order Görling-Levy coupling-constant perturbation theory was
established [137]. These methods, however, are restricted to improve only
the total energy and the exchange-correlation potential and provide no per-
turbation expansion for the wavefunctions.
A different method is to improve energies obtained from a conventional DFT
calculation by performing Rayleigh Schrödinger perturbation theory. Studies
on different simple molecules (water molecule, LiH, HF) indicate that many-
body perturbation expansions based on DFT-orbitals (of different exchange-
correlation potentials) are all divergent [141]. In the best case an oscillatory
behavior of the energy with respect to the exact energy as a function of the
order of the perturbation theory is observed. The general case shows diver-
gence of the perturbation series, i.e. the error increased with the order of the
perturbation-parameter.
For the time-dependent regime perturbation theory only served so far for
formal considerations [127, 128, 9, 126]. In the following the performance of
first-order time-dependent perturbation theory will be studied in the case of
the laser-driven harmonic two-electron quantum dot. We seek to improve on
the TDDFT transition-matrix element.

14.2 Time-dependent perturbation theory
Thinking of the time-dependent Kohn-Sham Hamiltonian as unperturbed
Hamiltonian of the total many-body system one is led to apply perturbation
theory in order to keep track of the residual Coulomb interaction, which
is not described through the mean field Hamiltonian. In spirit of many-
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body perturbation theory one therefore takes as 'unperturbed Hamiltonian'
the sum of the one-particle Kohn-Sham Hamiltonians of the time-dependent
system

HKS[ny,nl](?i) (14.1)
i=l,2

i=i,2

and is therefore a functional of the time-dependent density. The perturbation
V = H — Ho to the total Hamiltonian of eq. (2.4) then results as

V(fuf2,t) = Vee{r„ r2) - J2 [VH[n}(fht) + Vx
s
c
IC[nhn^n,t)} , (14.2)

i=l,2

where the interaction potential Vee(f 1,7*2) = ,- \- , is the Coulomb-potential.
Aim of the perturbation approach is to expand the exact time-evolution
operator U(t, to) satisfying

U(t, t0) = 1 - i [ H(T)U(T, to)dr (14.3)
•/to

with the initial condition U(to,to) = 1 in terms of the Kohn-Sham evolution
operator Uo(t, t0)

U0(t, t0) = 1 - i f H0(T)U(T, to)dr (14.4)
Jto

with Uo(to,to) = 1. It should be noted that already the unperturbed Hamil-
tonian HQ(t) is time-dependent. The perturbation expansion of the evolution
operator is then given by [75]

00

U(t,t0) = Uo(t,to) + J2un(t,to) with (14.5)
n = l

Un(t,t0) = (~i)n fdTndTn-1...dT1Uo{t,Tn)V(Tn)UO(Tn,Tn-1)...
Jt>Tn>Tn-l>..>T1>t0

The aim is to calculate the first-order correction to the Kohn-Sham transi-
tion matrix element we defined in chapter 8 by the projection mechanism
($f\U0(t,to)\$i) = ($/|$i(£)), where |$j) = \®i{t0)) denotes the initial state
of the Kohn-Sham system and

:= \U0(t,to)[m]*i) (14.6)
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is the self-consistently propagated Kohn-Sham wavefunction. The evolution
operator is a functional of the time-dependent density rii(t) of the propagated
initial state. The final state |<3>/) in chapter 8 was either chosen as a Kohn-
Sham configuration state function, or an eigenstate of the exact Hamiltonian
at t < tQ. Due to the complexity of the numerical implementation of the
perturbation approach the final state |<3>/) has to be restricted to a Kohn-
Sham configuration state. The first-order corrected Kohn-Sham transition
probability then reads

-t f
Jto

- i fdT(*f{T)\V(T)\*i(T)) , (14.7)
./to

where |<&/(r)) := C/O(T, to)[ni(r)]|$/(r)) denotes the backwards propagated
final state. The state | $ / ( T ) ) is not propagated self-consistently but by the
Hamiltonian H0[rii(T)] of the forward propagated initial state |$i(r)). In
addition to the solution of the time-dependent Kohn-Sham equations one
therefore has to store the wavefunction |$i(r)) in the time-interval r e [to,t\.
In a second step the final state |$/(r)) is propagated backwards in the self-
consistent field of |$i(r)) and the matrix-elements ($/(r)|V(r)|$i(r)) have
to be evaluated at each time-step.

For a first estimate of the magnitude of the first-order correction the case
of 'forward-scattering' is examined. We start from the ground state of the
two-electron parabolic dot. The final state at time t is chosen as the forward
propagated initial state at time t: |$/) = <&*(£)). Eq. (14.7) then reduces to

($f\U(t,t0)\$i)~l-i f dT^TH^T^Cr)) , (14.8)
Jto

because | $ / ( T ) ) = |$i(r)) for all r € [to,t]. The first order correction involves
therefore the Hartree-energy since ($i(r)|Ke|$j(r)) = |^//[n(r)]. Neglecting
the correlation part in Vj?c

IC the matrix element ($i(r)| Z)j=i,2 K^ /C(^)l*i( r))
EH\P>{T)\- Therefore eq. (14.8) becomes

(^f\U(t,t0)\^) *1 + U fdTEH[n{r)) , (14.9)
1 Jto

the first order correction is therefore proportional to the time integral of the
Hartree-energy. In the case of the harmonic quantum dot the Coulomb energy
does not change in time, the integral in eq. (14.9) therefore grows linearly with
t. The first order-correction to the transition probability therefore diverges
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Figure 14.1: Shown are Kohn-Sham ground-state occupation probabilities of
forward propagated initial state |$i(0)) = |0s0s) and backwards propagated
final state Uo(T,tf)\$f(tf) = Uo(r,tf)\0s0s). Further shown is the overlap of
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Figure 14.2: Shown are the time-dependent matrix-elements of the Coulomb-
interaction (red line) and the exchange-correlation potential V^/C[n|] of one
spin-component (red line). The matrix elements are of the same order of
magnitude during the whole time-interval. The first order correction in the
perturbation series therefore diverges.
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quadratically with t. In the case of forward scattering one is tempted to
interprète eq. (14.9) as a Taylor expansion of

(<S>f\U(t,t0)\$i) ^ 1 .eXp j + ^ y dTEH[n(r)]\ , (14.10)

truncated after the first order contribution of the exponent. Indeed eq.
(14.10) can be derived by means of a variational principle [69] we will intro-
duce in a forthcoming chapter. Eq. (14.10) therefore only explores a trivial
phase effect and does not contribute to an improvement of the transition
matrix element.
The choice of the final state in the 'forward scattering' is pathological in the
sense that the first order term in most cases will result in a transition am-
plitude greater than one. In the following therefore a different choice of the
final state will be made. It will be demonstrated, however, that nevertheless
the first order correction is divergent. The final state is chosen as the DFT
ground state so that |$/(£/)) = |$i(£o)) = |0s0s). We consider the weakly
correlated system of u = 1 The system is propagated in the laser pulse with
parameters identical to those of chapter 8: maximal field amplitude A) = 0.3,
driving frequency u>p = 0.884, pulse duration r = 90. Figure 14.1 shows the
ground-state occupation of the forward propagated initial state as well as
the backwards propagated final state. The overlap |($/(T)|<E>J(T))|2 stays at
around 60 percent for the entire time-interval. In figure 14.2 we show the
absolute value of the matrix-elements of the Coulomb-interaction Vee and
the exchange correlation potential V^C

IC, which are comparable in magni-
tude during the whole time-period. Since in the integral determining the
first-order correction the sum Yli=i 2^xcCfô) enters the perturbation series
for the transition-matrix element diverges linearly with time t. Calculations
of the one-dimensional Helium model introduced in section 12.2 also show a
diverging first-order correction (not shown).
As in the case of forward scattering diagrams of different order of perturba-
tion theory could be resummed resulting in a phase similar to eq. (14.10),
which in the general case will be complex. It is, however, a delicate ques-
tion which diagrams to choose in the resummation. In the case of stationary
many-body perturbation theory the expansion is in principle divergent and
in general the inclusion of higher order diagrams does not necessarily improve
the result [139].
In chapter 15 we will introduce a variational approach which circumvents the
problem of resummation and the choice of the physically correct diagrams
and yields an expression which in the case of forward scattering reduces to
eq. (14.10).
First order Rayleigh-Schrödinger perturbation theory is therefore in general
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not a suitable tool to improve on TDDFT transition probabilities. The prob-
lems of perturbation expansions in the inter-particle potential observed for
ground state density functional theory seem to be even worse when time-
dependent systems are considered.

101



Chapter 15

Variational approach

In chapter 14 we developed a first-order time-dependent perturbation theory
in which the time-dependent Kohn-Sham Hamiltonian was used as the "un-
perturbed" Hamiltonian. We observed that the first-order correction to the
state-to-state transition matrix element was linearly divergent in time. Re-
summation of diagrams of different order may result in a complex phase, but
it is per se a difficult and delicate task to decide which diagrams to resum.
In this chapter we will introduce a variational approach, initially proposed as
purely formal tool in the theory of atomic collisions [69] which later served
to improve on time-dependent Hartree-Fock calculations for transition prob-
abilities [70, 72, 73, 74]. First-order time-dependent perturbation theory can
be derived by means of this variational approach. An approximate expression
for the transition matrix element which would correspond to a resummation
of different higher order terms of the perturbation series can be derived by
additional constraints on the variational functional [69, 70].

15.1 Interrelation of the perturbation theory
and the variational approach

In this section we introduce a variational approach for the transition ma-
trix element. It will be demonstrated that this variational method and the
first-order perturbation theory are inherently connected. We use a slightly
different derivation as originally proposed in [69].
The basics underlying the variational approach consists in an action-like func-
tional, the stationary value of which yields the transition matrix element

Sij(tf) = ^,\U(tf,to)\^i) = <*/!*«(*/)> , (15.1)
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where U(t,to) (see eq. (14.3)) denotes the evolution operator according to
the full Hamiltonian of eq. (2.4). The generalized action functional which
yields the transition matrix element is given by

d
(15.2)

in which the wavefunctions |^j) and |\I>/) satisfy the initial and final condi-
tions

|*i(«o)> = |*«> and |*,(t,)> = I*,) . (15.3)

Variation of the functional with respect to the time-dependent wave-functions
|\I>i) and |^ / ) and keeping only linear terms in the variation results in

tf

to
H-i±

dt

H — i—
dt

(15.4)

Partial integration of the last term in eq. (15.4) and taking into account the
boundary conditions of the variation S^^to) = 0 and o^f(tf) = 0 yields

SVi(t) ) dt, (15.5)

where the arrow at the top of the operator ^ denotes that the time-derivative
acts on the left side onto ^/(t). The stationary value of the general action in-
tegral is hence reached in the case that ^i{t) and \P/(£) satisfy the Schrödinger
equations

H\%(t)) = ijt\Vi(t)) with

H\Vf(t)) = « | with

(15.6)

(15.7)

and the stationary value of the action equals the transition-matrix element

= Su{t{) = (^f(tf)\%(tf)) . (15.8)

For states $j and <&/ not satisfying the exact Schrödinger eqs. (15.6) and
(15.7) but which differ little from the exact solution \&j and \I// respectively
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the functional J(<I>i, $/) of eq. (15.2) yields an improved transition matrix-
element Sij(tf) which differs from the exact value of Sij(tf) by a second
order quantity.
According to the decomposition of the Hamiltonian H in chapter 14 the total
Hamiltonian H is split off into the Kohn-Sham Hamiltonian of eq. (14.1) and
a time-dependent perturbation:

HKS[nlinl]{ff
i) + V(f1,f2,t) (15.9)

i=l,2

with V(fi,f2,t) being the perturbation defined in eq. (14.2). The solution
corresponding to the "unperturbed" Kohn-Sham Hamiltonian JZ i=12 HKS{fi)
is the Slater determinant of the time-dependent Kohn-Sham orbitals |$i(£)) =
j4|</>ij(£)<^(£)) and for the back-wards propagated state |$/(£)) = A\4>f^(t)4>f,i(t))
with the initial and final conditions \$i(t0)) = |<&j) and |<&/(£/)) = 1$/) re-
spectively. A denotes the operator which anti-symmetrizes the product wave-
functions. The initial and final states are chosen as a product of stationary
Kohn-Sham orbitals. The improved transition matrix-element according to
eq. (15.2) hence is

$,/(*/) ^<*/(t/)|*i(t/)>-» f dt{*f(t)\v(?i,r2,t)\*t(t)) , (15.10)
Jto

which equals the result eq. (14.7) of the first-order perturbation theory ob-
tained in chapter 14.

15.2 Phase-invariant variational approach
In time-dependent density functional theory the exchange-correlation poten-
tial 14c[n-f, n±](t) is only determined up to an arbitrary purely time-dependent
potential V(t). The improved transition amplitude of eq. (15.10) is, however,
not invariant under changing the potential from V(fi,f2,t) to V(fi,f2,t) +
V(t). To get an improved expression for an approximated value of the S-
matrix invariant with respect to changes of the potential by a purely time-
dependent potential the original functional eq. (15.2) is extended to [69]

where the wavefunctions \Pi and ̂ / are multiplied by purely time-dependent
functions fi(t) and f/(t) with the additional condition fi(t0) = //(£/) = 1 .
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The functional of eq. (15.11) is in first turn varied with respect to wave-
functions. The procedure is the same as in the case of the simpler functional
of eq. (15.2). The functional of eq. (15.11) gets stationary with respect to
variations in |\&j) and |\P/) if |\I>i) fulfill the modified Schrödinger equations

H\9t(t)fi(t)) = i^|*«(t)/i(*)> with \%(tQ)fi(to)) = |*,) (15.12)

| with !*/(*/)/,(*/)> = |*/X15.13)

In a second step the functional is varied with respect to the functions / /
and fi. The request that the functional is stationary determines the purely
time-dependent functions

Introducing eqs. (15.14) and (15.15) in the modified Schrödinger eqs. (15.12)
and (15.13) they reduce to the original eqs. (15.6) and (15.7). The stationary
functional of eq. (15.11) gives the transition amplitude. Introducing the
stationary values of// and /j of eqs. (15.14) and (15.15) into the functional of
eq. (15.11) we obtain as in the case of section 15.1 an approximate expression
for the transition matrix element [69] which yields

exp
<*/(t)l*i(*)> I '

(15.16)
as in the previous section <&i and $/ denote the forward and backward prop-
agation of the Kohn-Sham Slater determinants in the Kohn-Sham Hamilto-
nian. The quantity in the exponent is generally complex, so that eq. (15.16)
does not describe a trivial phase effect. This raises the question of the uni-
tarity of the S-matrix, which should satisfy £ \ \Sij(tf)\2 = 1. It is not clear
if eq. (15.16) preserves the unitarity condition, this point requires further
investigation. Eq. (15.16) differs from the exact transition amplitude by a
second order quantity. In contrast to eq. (15.10) the expression of eq. (15.16)
is invariant with respect to changes of the exchange-correlation by a purely
time-dependent potential V(t).
An alternative derivation of the approximative transition amplitude of eq.
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(15.16) uses a single variation with respect of to ^ and <£/ of the functional
[70]

= jf '
The connection of the perturbation theory to the variational approach, how-
ever, is less obvious in this formulation. Searching for the time-dependent
wavefunctions which render the effective action eq. (15.17) stationary un-
der the constraint that the wavefunctions are Slater determinants yields the
time-dependent Hartree-Fock equations [70]. From this variational point of
view Kohn-Sham Slater determinants are therefore not best suited. Never-
theless the functional of eq. (15.16) applied to the Kohn-Sham determinants
may yield an improvement over the transition amplitudes obtained by the
TDDFT projection approach.

In our analysis we restrict ourselves to time-symmetric laser pulses with
E(t) = E(T — t). The pulse parameters are chosen in accordance to chapter
13 as: maximal field amplitude AQ = 0.23, driving frequency u>p = 0.804,
pulse duration r = 43. In contrast to the perturbation approach of chapter
14, where the backwards propagation of the final state has to be performed
in the self-consistent Hamiltonian of the forward propagated initial state, in
the variational approach we are free to choose the Hamiltonian. One choice,
in accordance with the the perturbation theory is the self-consistent Kohn-
Sham Hamiltonian of the forward propagated initial state. As an alternative
the final state is backwards propagated self-consistently. In the following
final and initial state are chosen as the DFT ground state |0s0s).
As it is the case for the time-dependent Hartree-Fock Hamiltonian the Kohn-
Sham Hamiltonian violates the time-reversal symmetry. In contrast to the
full many-body Hamiltonian including a symmetric laser pulse with E(t) =
E(T — t) the Kohn-Sham Hamiltonian of the self-consistently propagated
initial state HKS[no](t) is no longer symmetric against time-reversal, i.e.
HKS[rio](t) T̂  HKS[rto](T — t). Backwards propagation in the self-consistent
Hamiltonian of the forwards propagated state therefore will lead to dif-
ferent wavefunctions. Figure 15.1 demonstrates this fact and shows the
time-dependent ground-state occupation of the forward propagated initial
state versus the ground-state occupation of the backwards propagated fi-
nal state. Not only is the backwards propagated state $/(£/ — t) differ-
ent from the forward propagated $i(i), but also the backwards propagated
states $/(£) generated from different final times tf are distinct. Surprisingly
we observe |$/(0)) = |$j(i/)) Vi/ (initial conditions |$/(£/)) = |0s0s) and
|<E>i(0)) = |0s0s), i.e. the backwards propagated state $/(0) equals the for-
ward propagated state at final time $i(£/). The Kohn-Sham Hamiltonian, no
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Figure 15.1: Shown are the ground-state occupation of the exact (green) and
Kohn-Sham wavefunction (red) in comparison to the ground-state occupation
of the backwards propagated |0s0s) Kohn-Sham orbital which is propagated
in the self-consistent field of the forward propagated Kohn-Sham orbital from
different end-times t = 50 (blue) and t = 47.5 (green).
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Figure 15.2: Ground-state occupation of the exact (green) and the Kohn-
Sham wavefunction (red) and final occupation probabilities of the variational
approach at different times tf of eq. (15.16)

107



longer symmetric with respect to time-reversal symmetry, nevertheless pre-
serves the quality that the final states of backward and forward propagation
are identical.
Figure 15.2 shows the exact and TDDFT ground-state occupation probabil-
ity and the result of the variational approach of eq. (15.16) at different final
times tf. The variational approach results in occupation probabilities which
are distinct for different final times tf. The reason of the oscillations lies in
the real part of the exponent of eq. (15.16) which in the case of the harmonic
quantum dot is oscillating with respect to tf. Those oscillations imply either
an increase or decrease of the TDDFT transition amplitude ($y(t/)|$i(tf)).
Unfortunately the corrections do not chancel the oscillations in the TDDFT
transition amplitude. The amplitude of the cross-channel correlations are
even higher than those of the pure TDDFT calculation.
We also performed calculations by self-consistent backward propagation of
the final state. No substantial difference to the former results could be ob-
served. The cross-channel correlations persist and are enlarged in comparison
to the TDDFT result. The transition amplitudes for fixed final time tf only
differ little upon the choice of the Hamiltonian of the backward propagation.
The general conclusion we can draw from these studies is that variational ap-
proaches based on functionals of the form of eq. (15.10) to calculate transition
amplitudes are not suited to improve on TDDFT results.
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Chapter 16

Density functional for
state-to-state transition
amplitudes

In chapter 8 we have introduced a projection method to define state-to-
state transition amplitudes within TDDFT. In this approach the Kohn-Sham
wavefunctions are interpreted as many-body wavefunctions and are projected
either onto Kohn-Sham configuration state functions or onto exact eigenfunc-
tions of the system to obtain state-to-state transition amplitudes. The tran-
sition probabilities obtained this way show cross-channel correlations after
the switch-off of the external field and have no well defined asymptotic limit.
Attempts to correct the oscillating transition amplitudes by combination
of TDDFT with other many-body approaches such as the functional inte-
gral approach, many-body perturbation theory and the variational approach
failed. The functionals proposed in chapter 8 to calculate the S-matrix within
TDDFT (see eqs. (8.6) and (8.7)) depend on the time-dependent Kohn-Sham
orbitals and are not directly deduced from the time-dependent density. These
functionals are implicit density functionals, i.e. they are implicitly depending
on the density via the Kohn-Sham orbitals.
In this chapter we introduce a new functional to deduce the S-matrix which
explicitly depends on the time-dependent density. It will be shown that the
S-matrix obtained this way has a well defined asymptotic limit, i.e. time-
dependent occupation probabilities after switch-off of the laser pulse do not
show cross-channel correlations and are stationary.
We restrict the following considerations to two-electron systems. The gen-
eralization to more electrons is, however, straight forward. Starting point
is the expression of the exact time-dependent wavefunction in terms of the
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time-dependent S-matrix:

^ 2 u r 2 ) , (16.1)

where the S-matrix for arbitrary times t is defined as

(16.2)

and U(t, 0) denotes the exact time-evolution operator, |$j) denotes the initial
state and the sum in eq. (16.1) includes all possible final states |$/), which are
eigenstates of the full many-body Hamiltonian. The time-dependent density
is therefore given by

n(f, t) = J2 Su(t)S},ti{t)p<pif(f, r) (16.3)

where pjj, (f, r) denotes the diagonal element of the generalized one-particle
reduced density matrix defined by

P^/(ri,f2) = j dr<b),{rur)<S>f{r2,r) . (16.4)

Defining the time-dependent transition density matrix by

TfAt) = S},ti(t)Sfii(t) (16.5)

the time-dependent density is given by

n(f,t) = X>>/WP/'!/(r>"0 = Tr [T(t)pM(r)} . (16.6)

Knowing the reduced density matrix pjj,(r,r) and the time-dependent den-
sity n(r,t) (either from an exact calculation or a TDDFT calculation) it
should therefore be possible to deduce the transition probabilities Tfj(t) =
|*Sr/ti(i)|

2 by inversion of eq. (16.6). Our primary interest therefore lies in
the diagonal elements of the transition density matrix Tpj(t) at times after
the switch-off of the external perturbation t > r. For those times the exact
wavefunction is in a coherent superposition of different final states and the
transition density matrix evolves as

Trj(t + At) = Tf,j(t) exp{-i(Ef, - Ef)At} , (16.7)
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hence it only depends on the energy difference of the exact energy eigenval-
ues Ef. To extract the transition probabilities Tjj{i) a time-average of the
density and eq. (16.6) is performed which yields

n(r,t) = - !_ fnif^dt' = £pW (f,f)_L_ ~f Tf,j{t')dt' . (16.8)
1 T JT JJ, r T JT

The time-integral over the the transition matrix Tfj(t) reads

- i - fTf,j(t')dt' = -^-Tf,j(T) f Texp{-i(Er - Ef)At}d(At) ,

(16.9)
which for a time window At = t — r satisfying At\Ef — Ef\ 3> 2ir reduces to

In the long-time limit we therefore get

n(f) = lim / n(r, t') dt' = £ pff{r, v) TfJ(r) , (16.11)
t-xjo l ~ T JT f

from which we can determine the transition probabilities Tfj(r) by inver-
sion of the density matrix Pjj(f,r). Eq. (16.11) constitutes the read-out
functional of the transition probabilities in dependence of the time-averàged
density n(f).
In a practical calculation the sum in eq. (16.11) is truncated to a few final
states / = 0,..., nf. The problem consists in evaluating the diagonal elements
of the reduced density matrix Pfj(r, r) at rif+l distinct points rj z = 0,..., nf,
so that the matrix Rfi := p\ Afltfl) does not become near singular and is
invertible. The state-to-state transition probabilities then become

nf

i=0

We test this new density functional to calculate state-to-state transition am-
plitudes by means of the one-dimensional two-electron quantum dot with the
Hamiltonian of eq. (2.2). We use the exact time-dependent density n(x,t)
in order to deduce the transition probabilities from the laser-driven ground
state. In this way errors of the exchange-correlation potential can be ruled
out and the quality of the proposed functional for state-to-state transition
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probabilities can be directly assessed. The sum in eq. (16.11) is truncated af-
ter the second excited state, so that we take final states with c.o.m. quantum
numbers / = 0,1,2 into account. In figure 16.1 we the exact time-dependent
occupation probabilities of the ground and the first excited state compared
to the transition probabilities obtained by inversion of

/ t l X , L I — / l l \ J b . L )LLb — 7 I ) c r l X . Ju I ± f f \ L I I1U.XOI
\ ' / J. __ / \ > / / j r r• j \ J / J iJ \ / \ /

to read out approximate values Tfj(t) of the transition probabilities. At
large times Tfj(t) approaches the exact transition probability. The validity
of the proposed approach is therefore illustrated.

In the special case of the harmonic oscillator only final states with energy
differences of multiples of the frequency u come into play. Therefore it is
sufficient to restrict the time-average of eq. (16.6) to the period At = 2-K/U
involving the smallest possible energy difference of exact eigenstates. We
therefore get a different time-average of the density, denoted with n(x, t),
than that obtained by eq. (16.13). The new functional of the time-averaged
density n(x, t) in this special case reads

1 pt+At/2

n(x, t) = — n(x, t')dt' = J2 P/!/(*> *) Tfj(t) (16.14)
A t Jt-At/2 j

The transition probabilities Tfj(t) obtained by inversion of eq. (16.14) are up
to computational inaccuracies stationary. The transition probabilities Tfj(t)
obtained by inversion of eq. (16.13) approach Tfj(t) at large times. Figure
16.2 shows exact occupation probabilities in comparison to transition prob-
abilities obtained by eq. (16.14) in the case of the ground-state propagation
of the one-dimensional two-electron quantum dot in an external laser field.
The exact transition probabilities and the counterpart obtained by the den-
sity functional coincide within the graphical resolution.
In the following analysis the density functional approach is tested in the case

of the propagation of a coherent superposition of eigenstates in an external
laser field. This arbitrary initial state, not subject to the HPT, explores a
more complicated dynamics. In addition to the translation the shape of the
density gets modified. As demonstrated in chapter 12 for the "exact" Kohn-
Sham scheme the projection approach completely failed to deduce reliable
occupation probabilities even in the absence of an external laser field. We
consider the initial state composed of the ground state and the first excited
state of the one-dimensional two-electron harmonic dot

. (16.15)
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Figure 16.1: Shown are the exact ground-state occupation (red) and the
occupation of the first excited state (green) compared to the transition prob-
abilities Tfj(t) obtained by inversion of eq. (16.13) (blue for the ground state
and magenta for the first excited state). The oscillator frequency is u = 0.25.
Parameters of the laser pulse: maximal field amplitude AQ = 0.07, driving
frequency uip = 0.1839, pulse duration r = 168
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Figure 16.2: Shown are the same quantities as in figure 16.1, however, for
the inversion of eq. (16.14). The transition probabilities of the exact calcula-
tion and those obtained by the proposed density functional agree within the
resolution of the plot.
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Figure 16.3: Shown are the exact ground-state occupation (red) and the
occupation of the first excited state (green) compared to the transition prob-
abilities Tfj(t) obtained by inversion of eq. (16.14) for the propagation of a
coherent superposition (blue for the ground state, magenta for the first ex-
cited state). The transition probabilities of the exact calculation and those
obtained by the proposed density functional coincide within the graphic's res-
olution. Parameters of the laser pulse: maximal field amplitude AQ = 0.03,
driving frequency UJP = 0.1839, pulse duration r = 168

As in the previous case of the ground-state propagation we take the exact
time-dependent density n(x, t) to evaluate eq. (16.14). Figure 16.3 shows the
exact occupation probabilities of the ground state |0) and the first excited
state |1) in comparison to the transition probabilities obtained by inversion
of eq. (16.14). The agreement is perfect within the resolution of the plot.
Small errors in the transition probabilities are due to numerical errors and
the the truncation of the sum in eq. (16.14) to only three final states.
The results obtained in the case of the one-dimensional two-electron quan-
tum dot are promising. More complex systems as the one-dimensional helium
model are currently investigated. The drawback of the proposed density
functional is that in principle the diagonal elements of the exact reduced
one-particle density matrices p^j have to be known. In other words, the
knowledge of the exact stationary states of the system under consideration
is essential. The implications of approximating the density matrices p^ on
the usefulness of the proposed functional have to be studied. For systems
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in which many final states are occupied appropriate positions rj have to be
deduced in order to get invertible density matrices Rf.i = p\ Ari). In the case
of helium in external laser fields the important question arises how the con-
tinuum of electronic states should be treated within the proposed approach.
The promising results of the one-dimensional two-electron quantum dot are
encouraging to attack those open problems in the near future.
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Chapter 17

Conclusions

We presented a critical case study probing the quality of time-dependent den-
sity functional theory (TDDFT) applied to laser-matter interactions. Our
model consists of two electrons, which are interacting via Coulomb force and
confined in three dimensions by a harmonic oscillator potential. The elec-
trons interact with a laser pulse treated in the dipole approximation. The
dynamics of the system can be solved exactly and the exact results were used
to benchmark the performance of TDDFT.
As exchange-correlation potential we chose the self-interaction corrected local
adiabatic spin density approximation (ALSDA-SIC). The numerical integra-
tion of the time-dependent Kohn-Sham equations was performed on a grid
using a pseudo-spectral method for optimal discretization. We applied an
efficient split-operator method in the DFT energy representation of the un-
perturbed system.
The system evolves from different initial states. In a first study the singlet
and triplet ground states were considered as initial,states. As eigenstates
of the harmonic dot these initial states are subject to the harmonic poten-
tial theorem (HPT) which states that the initial density is rigidly shifted
without being distorted. The dynamics of the density satisfying the HPT
is completely determined by the classical motion of the center of mass. We
analyzed the time-dependent dipole moment and the time-dependent density
profiles of the TDDFT calculation and compared them to the exact solution.
The HPT is perfectly satisfied within ALSDA-SIC in the case of the propaga-
tion from the singlet ground state. Problems arise for the propagation of the
triplet ground state. While the HPT is satisfied for ALSDA, the numerical
propagation of the triplet state gets unstable in the case of ALSDA-SIC and
violations of the HPT are observed.
As a major part of this thesis we attacked the challenge of calculating many-
body observables within TDDFT. We introduced a simple projection ap-
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proach to deduce state-to-state transition probabilities within TDDFT. The
time-propagated Kohn-Sham Slater determinant is used as approximation of
the full many-body wavefunction and is projected onto appropriate channel
states. The channel states are either Kohn-Sham configuration state func-
tions or exact eigenstates of the system. The projection method was first
tested for the propagation of the singlet ground state. The overall behavior
of the occupation probabilities obtained by this projection approach are in
excellent agreement with exact results. After switch off of the laser-pulse
the occupation probabilities, however, suffer oscillations which also pertain
by projecting onto exact eigenstates of the Hamiltonian. Those oscillations,
named "spurious cross channel correlations" are known from time-dependent
Hartree Fock calculations for nuclear reactions. Averaging over those oscil-
lations results, however, in excellent transition amplitudes. In the case of
evolution from the triplet ground state the occupation probabilities are in
good agreement with exact results as long as the HPT is satisfied.
Further we considered the propagation from an arbitrary coherent super-
position of states in the absence of an external laser field. These systems,
not subject to the HPT, show more complex dynamics and allow for dis-
tortions of the time-dependent density. To simplify the comparison of exact
and TDDFT calculations we developed a time-dependent configuration in-
teraction method on the basis of Kohn-Sham configuration states to solve
the exact problem. ALSDA-SIC fails to reproduce the exact time-dependent
density and therefore also transition probabilities obtained within TDDFT
are wrong.
To study conceptional problems of the oversimplified TDDFT projection
approach in the case of arbitrary initial states we have introduced one-
dimensional model systems for which it is possible to construct an exact
exchange correlation potential. This way errors of the exchange-correlation
potential can be ruled out and the issue of determining state-to-state tran-
sition amplitudes within TDDFT becomes decoupled from the problem of
finding good approximations of the effective Kohn-Sham potential. Even for
those "exact" Kohn-Sham systems it was not possible to deduce reliable
occupation probabilities. For more complex systems the time-dependent
Kohn-Sham orbitals will in general be inadequate representatives for the
many-body wavefunctions.
Having analyzed the deficiencies of the TDDFT projection approach we have
tried to find improvements by combining TDDFT with other many-body ap-
proaches. We studied the performance of three different methods which,
however, turned out to be inappropriate to improve on TDDFT results. The
first method introduced relies on a functional integral representation of the
time-evolution operator and is known under the names of functional integral
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approach, mean-field method and stationary phase method. This functional
integral approach connects final and initial states through a self-consistent
density which acts as a source in the Hartree term. Unlike TDDFT or TDHF,
this density is depending on initial and final states. The technical implemen-
tation of this method results in a series of TDDFT-like calculations. Unfortu-
nately, converged results could only be generated in some special non-generic
cases.
In a second attempt we introduced a Mjzftler-Plesset like time-dependent per-
turbation theory in which not the pure Coulomb interaction but the difference
of Coulomb interaction and the effective Kohn-Sham potential was treated as
perturbation. The time-dependent Kohn-Sham system therefore acts as the
unperturbed system. First order perturbation theory of the state-to-state
transition amplitude turned out to be divergent. To circumvent the problem
of renormalization of this divergent series we adopted a variational approach.
The basis underlying the variational approach consists in an action-like func-
tional, the stationary value of which yields the transition matrix element.
This functionals should yield improved transition matrix elements if evalu-
ated for an approximate wavefunction. Improvement of TDDFT transition
amplitudes could, however, not been achieved. The cross-channel correla-
tions are even enhanced in this case.
The projection approach defines the S-matrix as a functional of the time-
dependent Kohn-Sham orbitals. A new functional to calculate the S-matrix
has been proposed which directly depends on the time-dependent density.
Within this new approach the S-matrix has a well-defined asymptotic limit
and occupation probabilities of different states are free of cross-channel cor-
relations. The functional was tested by means of the one-dimensional two-
electron quantum dot. Accurate transition probabilities could be determined
in the case of an arbitrary initial state. The implications of the application
of this new functional to more complex systems which also explore the con-
tinuum of electronic states have to be studied. The promising results of our
simple one-dimensional model are encouraging to attack those open problems
in the near future.
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Appendix A

The pseudo-spectral method

The aim of the pseudo-spectral method is to approximate a given function
f(x) denned in the interval x £ [—1,1] by the polynomial of degree N /N(X)
[81]. Choosing the Legendre Polynomials Pi(x), the exact function f(x) is
approximated by

N

f{x)~fN(x) = YjaiPi{x),- (A.I)
1=0

with the expansion coefficients ai

at = - f f(x)Pl(x)dx . (A.2)
on 7-1

The key point of the pseudo-spectral method is to require the approximation
to be exact on a set of points Xi, called collocation points

f(xt) = fN(xi). (A.3)

These points Xi are chosen as the abscissas of (Legendre-Gauss-) Lobatto's
Quadrature Formula.
The integral of a function g(x), x G [—1,1] over the whole of its specified
range can be approximatively calculated [84] by

f
/

1 N

g(x)dx = ^2wi g(xi) + RN+1 . (A.4)
i=o

The abscissas Xi for i = 1,.., iV — 1 of this quadrature are related to the the
(TV — 1) zeros of P^(x) and we define xo = —1, XN = 1- The corresponding
weights are given by

»' t L ' 1 N (A.5)
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The remainder Äyv+i is proportional to the 2iV-th derivative of g(x). Lo-
batto's quadrature therefore is exact for polynomials of degree 2iV — 1. The
expansion coefficients ai can be approximated by this quadrature rule through

N

a, = \ A yj- f(x)Pi(x) (A 6)

The function f(x) is therefore approximated by

N N N 1 N

1=0 i=0 1=0 l i=0

(A.7)
where gi(x) is the so called cardinal function and is defined by

N -

n.(r} — V s in- P,(r\P,(r\ (A R\

1=0 l

The requirement of the approximation to be exact at Xi, f(xi) = /N(XI), im-
plies that the cardinal functions have to satisfy gt{xj) = Sitj which explicitly
reads

N 1

\ " w. p,(x)Pi(x) = S- • (A 9)

This equation is the completeness relation for the Legendre Polynomials on
the discrete set of the collocation points {x^ and the condition of eq. (A.3)
is fulfilled.

A.I Generalized pseudo-spectral method to solve
radial Schrödinger equation

In the following we consider a general radial Schrödinger equation

where the Potential Vi = l-^^ + Vext + 1/r includes the angular momentum
part, and the wavefunction is ^j(x) = ^^V^m(fi) . In the following the an-
gular momentum quantum number / will be omitted to simplify the notation.
Since the potential V(r) includes a repulsive Coulomb potential and the an-
gular momentum part a typical problem with the numerical realization of
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the Schrödinger equation lies in the choice of the grid. On the one hand
the potential V(x) exhibits a singularity at the origin r = 0, on the other
hand it may be a long-range potential. The choice of an equidistant grid
and an appropriate truncation of the r domain [0,oo) to some [rmin,rmax]
would result in a large number of grid points, which is computationally not
favorable. To overcome this problem the domain r 6 [0, rmax] is mapped on
the interval x e [—1,1] and a pseudo-spectral method is applied, to create a
non-equidistant grid. The mapping function is given by

1 + x IL
r(x) — L where a = . (A.11)

A X -\- Oi Tmax

The grid points of the mapped domain x are chosen as the collocation points
{x^ i = 0,..., N + 1 of the pseudo-spectral method explained in section A.
First we consider the mapping of the continuous Schrödinger equation. The
radial wavefunction cj){r) is mapped on <fr(x), the potential gets V(x) =
V(r(x)). The mapped Schrödinger equation therefore reads

~~n 77 T Î 3 ' 77 V? 3~9 (r\*C/l " " VaVT)k*c/ — £j(p\X) .

For computational reasons it is convenient to symmetrize the Schrödinger
equation by introducing the Ansatz <f>(x) = y/r'(x)f{x) [81, 83]. Eq. (A. 12)
with the mapping of eq. (A.11) then transforms to

In denning the function

A{x) = r'(x)f(x) =

we finally get the transformed Schrödinger equation

-\^)&^X)+^A^ = BA{X)- (A-16>

The next step in the numerical realization of the eigenvalue problem is to
discretize eq. (A.15) on the pseudo-spectral grid. According to eq. (A.7) and
(A.8) the function A(x) is approximated by the JV-th order polynomial

N

i=0
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where A(xi) is the vector representing the A(x) at the the collocation points.
Since the expansion of A(x) is exact at the (N — 1) collocation points, the
eigenvalue equation (A. 15) evaluated at those points determines the exact
values Ai. We arrive at the following linear matrix eigenvalue problem

(A.17)
The derivatives of the cardinal functions gj(x) can be calculated. Introducing
the matrix d^ the derivatives get [81]

with

j(2) _ J(2) _
a0,0 — aN,N — 24

Defining the quantity

Ai:= P Ï 7 ) = p (x) (A-23)

the discretized radial Schrödinger equation finally becomes

N

' " Lj- = E Ai . (A.24)

The discretized Schrödinger equation reduces to an eigenvalue problem of a
symmetric real matrix for the quantities Ai. To include boundary conditions
at xQ or XN the values of AN and Ao have to be specified and i in eq. (A.24) is
restricted to z = 1,..., iV — 1. For Dirichlet boundary conditions we require
AQ — AN = 0 and the sum in eq. (A.24) is truncated to the range j =
l,2,..,N-l.
Due to the special choice of the grid points, integrals over (f> are especially
easy to handle, using Lobatto's integral formula. The radial part of the
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orthonormalization integral J dfl Jr2dr^z,n(r)^v,n'if) f° r example gets

N

where A™'1 = p &•) • ^ ë e n e r a l radial integral involving
function f(r) is calculated by

(A.25)

and a

dr<t>{r)f{r) = / r'(x)^(ar)/(

(A.26)
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Appendix B

Spherical harmonics

B.I Transformation of spherical coordinates from
center of mass and relative coordinates to
one-particle coordinates

The aim of this section is to review the coordinate transformation of spher-
ical coordinates of the center-of mass and relative motion to single-particle
spherical coordinates.
Following reference [148] we start out from the solid spherical harmonic of
the center of mass system, which is defined through

where Rcm = ^ ^ and Y™ denotes the usual spherical harmonic. We want
to express T™ as a function of r\ and f2. Defining

\yh(ni)Yh{to2)]i,m •= Emitma(hl2mlm2\lm)^{Cl1)Y^(a2) (B.2)

and keeping in mind that T™ satisfies AcmTYl(Rcm,Qcm) = 0, and with
fixed f2 (r!) it also satisfies A1T[n(i?cm,ficm) = 0 {A2Tfl(Rcm, Çîm) = 0),
TpiRcm^cm) can be expanded in terms of r[1r%\Yll(ni)Yl2(Çl2)]i,m- The
expansion is given by

h, O^MtWrfaWkm » (B.3)
h,h=0

where G(h,l2,l) are the expansion coefficients to be determined. The sum
is restricted on li and l2 satisfying l\ +1 2 = I, this is because TJn(i2cm, Qcm)
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is homogeneous of degree I in Rcm, and therefore also together in r\ and r2.
Since the G(h, l2,1) are independent of f2i and f22, we choose 9\ = 02 = 4>i =

4>2 = 0 and therefore t a n ö ^ = 0. Noting that Yjm(O,O) = omfiyfi%±

(B.3) becomes

(B.4)
In the special case of Q\ = 02 = 4>i — 4>i — 0 we have #„„ = ^ ^ and with
the explicit form of the Clebsch Gordon coefficients the expansion coefficients
get

Proceeding along similar lines we also get the expansion of the solid spherical
harmonics as function of the relative coordinate f = f\ — r?

J2n1),Yl2(n2)}lim (B.6)

with
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Appendix C

Matrix elements in CI calculation

C.I Coulomb matrix elements
We want to calculate the coulomb matrix elements between Kohn-Sham con-
figuration states. For spin-singlet states, the symmetric coordinate part of
the configuration state functions is defined as [156]

\n1hn2l2, LO) :=

Z

-m\L0)
—m k m\L0) \n2l2 -

— m\L0)

\n2k ~m)2 ni ^ n2

or l± ̂  l

\nil2 —

(C.I)

nx = n 2

and h = I2 ,

where \langler\nlm) = ^yjm(fi) denotes the Kohn-Sham orbital. In the case
of spin-triplet states, the coordinate part of the Kohn-Sham configuration
state functions has to be antisymmetric with respect to particle exchange
and reads

\nihn2l2, LO) :=

-m\LO)
—m /1 m\L0) \n2l2 —

- m ) 2 m ^ n2

or l\ ^ l (C.2)

0 = ^2 and h — h

Only different configurations are allowed in the spin-triplet case. Coulomb
matrix elements between configuration state functions

yo).
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therefore involve the basic coulomb-matrix elements

/niZimin2Z2 - m i j^hf-\ n3hm3n4U - r a 3 \

Using the identity

00 1
4TT r<

with r< = min(ri,r2) and r> = max(ri,r2) one arrives at

1

\
Imax '

— m l
In - r2\

713/3777,3714/4 - 7 7 7 , 3 ) =

0 0 0 —mi m3 m
l2 I4 I
0 0 0 mi — ~ m

(C4)

with lmin = max(|/i — Z3|, |Z2 - Z4|) and lmax = min(/i + Z3, Z2 + Z4) and

1

mi m2 777, = (-1)h+h-m

/2TTT
(Z1777.1Z2777.2IZ —777.) (C.5)

denotes a Wigner-3j-symbol. Due to the properties of the Wigner-3j-symbols
reduce the number of addend, only addenda for which /1 + Z3 + Z =even,
h + Z4 + Z =even, 777-1 = ^̂ 3 + m are unequal to zero. The purely radial
integrals are given by

j r . (C.6)

In principle eq. (C.6) are easy to solve by means of the pseudo-spectral
method. One splits the integral into

dn dr2-^... = dn dr2-^... + dn / dr2-&...
Jo Jo i> Jo Jo ' 2 •'O Jri "1

(C.7)
In the pseudo-spectral method one therefore has to calculate two double
sums. Calculating matrix elements of a big number of configurations and tak-
ing all the angular momentum quantum numbers Z into account is a lengthy
task. We therefore propose a numerical method to calculate the integrals of
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eq. (C.6) in more efficient way. Our numerically faster algorithm tries to split
the double sum into a product of single sums. The term coupling both sums

is -7$T- In the numerical realization we discretize space into set of points
r

{ri,i = 1,...,N} in the radial direction. Therefore 4

of real symmetric matrices A(l):

c a n be s e e n as a set

Diagonalizing these matrices

T+T

N

(C.8)

(C.9)

the double sum can be reduced to N single sums, suitable to be numerically
parallelized. We noticed that with increasing k the eigenvalues a,k(l) get
smaller and smaller. The sum in eq. (C.9) therefore can be truncated at
a value n < N, further increasing the efficiency of the program. The total
Coulomb matrix elements of the symmetric (spin singlet) or antisymmetric
(triplet) configuration states can then be easily constructed. In the case of
mutually different configurations (n\,li) ^ (n2,l2) and (713,̂ 3) 7̂  (714,̂ 4) the
matrix elements only unequal to zero if 11 + 12 + 13 + IA — L — L' =even and
yields

LO
1

- r2

723/3714/4, L'O

! -m'\L'O)
m,m'

—m
in - r2

77.4/4 ~V(l ) db

' -W|L'O>
In -r2\

where the exchange term comes with a + sign in the spin-singlet case
and is subtracted in the spin-triplet case. In the case of only one pair of
equal configurations (only for singlet) (ni,li) = (n2,l2) or (n3,/3) = (7i4,/4)
the result of eq. (C.10) has according to the normalization of eq. (C.I) be
multiplied by a factor l / \ /2 , in the case that (ni, h) = (n2, l2) and (n3,13) =
(114,14) by a factor 1/2. In both cases the exchange term becomes equal to
the direct term.
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C.2 Matrix elements of one-particle observables

The matrix-elements of single-particle operators O between Kohn-Sham con-
figuration state functions are basically one-particle matrix elements. They
are equal to zero if both configuration state-functions have not at least one
common configuration. Assuming that (niJi) ^ (̂ 2,̂ 2) and (rii,li) ^
(n4,14) we only get matrix-elements different from zero if Z2+h+L—L' =even
and get

(
i=2,3

L 0 ) =

- m|Ô|n3/3 - m){lxml2 -m|L0)(ZimZ3 -m|L'O) . (C.ll)

Further selection rules depend on the one-particle operator in play. In the
spin-singlet case of one pair of equal configurations (ni,li) — (̂ 2,̂ 2) and
(ni, li) ^ (n4,14) the result of eq. (C.ll) has to be multiplied by y/2, due to
the normalization of the symmetrized configuration state functions. In the
case of (ni, h) = (n2, h) = (^4, ̂ 4) the factor becomes 2.
The dipole matrix element between two Kohn-Sham brbitals is calculated as
follows:

Selection rules for the dipole-matrix element therefore are |Zi — Z2| = 1.
Matrix-elements of the spherical-symmetric exchange correlation potential
are straight- forward to calculate and not given explicitly here.
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Appendix D

CI analysis of exact states

In the following we present some results of the expansion of some exact eigen-
states of the two-electron parabolic quantum dot in the basis of configuration-
state functions of Kohn-Sham orbitals introduced in chapter 8. We show
two cases of weak (a; = 1) and strong (u> = 0.01) correlated systems. The
following tables show the overlap of exact-wavefunctions with products of
Kohn-Sham orbitals \nilimiSiTijljmjSj}, the basic ingredient to calculate the
overlap with configuration state-functions. We performed the 6-dimensional
integrals partly analytically (angular momentum part). The results stand in
perfect agreement with a configuration interaction calculation in the basis of
Kohn-Sham configuration-state functions.
The tables are organized as follows. In the first column the quantum num-
bers of the considered product wavefunction \nilimiSirtjljmjSj) are listed.
The second column shows the overlap integral Cj of this wavefunction with
the exact wave-function |$) = \ricmlcmnreilrei). Since we are considering
spin singlet states, each product wavefunction with at least one different
pair of quantum numbers possesses a symmetric partner of exchanged quan-
tum numbers which has the same overlap with |<3>). This is accounted for
through the multiplicity a*. The third column gives the weight of the con-
figuration which is defined by fa = ^ a* • cf where the sum extends over
all states belonging to this configuration. The fourth' column shows the sum
of weights over all configurations considered so far. The last column gives
the energy of the configuration within LSDA-SIC which will be defined in
the following. A rigorous extension of DFT to higher excited states leaves
the Kohn-Sham regime (see the review article [157] and references therein).
Speaking of excitation energies in DFT one has to specify the approximation
for calculating them. We are solving the ground-state DFT problem, find-
ing the occupied ground-state Kohn-Sham orbital <3>o and vacant (virtual)
excited Kohn-Sham spin-orbitals $i<a (i stands for configuration riik) with
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spin-density 7ij)£r = |$i,CT|2- We define the energy of a certain configuration
of total density n = n\^ + n2,j. through the energy functional

i v 2 + y7*) n(f=) + J[n] + E^c[nlihnu] , (D.I)

where J and E^c are given by eq. (3.7) and (3.8). •
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Table D.I: n
nlllmln2l2m2

0 s 0 Os 0
1 pO 1 pO
l p l 1 p-1
2 sO Os 0

cmlcm^rellr
Ci

0.99295
-0.06096
-0.06096
-0.00019

ei : OsOs, u = 1
a{

1
1
2
2

weight

0.98595

0.01115
3.6-10-8

P c
> '-'exact — *•

/ / Ût | C% \

0.98595

0.99710
0.99710

5.731
energy

3.7195

5.5446
5.5776

Table D.2: nr 5, U) = 1 , - 4.731
Ci weight energy

0 s 0 1 p 0 0.70040 0.98112 0.98112 4.6051
1 p O 2 d O
1 p i 2 d - l

-0.05006
0.04335

2
4 0.01253 0.99365 6.4911

1 p 0 2 s 0 0.03482 0.00243 0.99608 6.4992
0 s 0 3 p 0 -0.02153 0.00092 0.99700 6.5211

Table D.3: n
n1hm1n2l2m2
0 s 0 2 s 0
1 pO 1 pO
1 p 1 1 p -1
2 d O 2 d O
2 d 1 2 d -1
2 d 2 2 d -2
0 s 0 Os 0
1 pO 3 p O
1 p 1 3 p -1
2 s 0 2 s 0
4 s 0 0 s 0

cm''crn^'rel''r

Ci

0.49409
-0.40092
-0.40092
0.05049
0.05049
0.05049

-0.07328
-0.02645
-0.02645
0.05016

-0.02967

ei : 2s0s, u = '
ai

2
1
2
1
2
2
1
2
4
1
2

weight
0.48824

0.48222

0.01275
0.00537

0.00429
0.00252
0.00167

L) & exact —

Z a iM 2

0.48824

0.97046

0.98321
0.98858

0.99287
0.99539
0.99706

5.731
energy
5.5776

5.5446

7.4560
3.7195

7.4661
7.4933
7.5033

Table D.4: nr : 2d0s, u = l, Eexact = 5.731
nxllmln2l2m2

1 pO 1 pO
1 p 1 1 p -1
0 s 0 2 d 0
l p O 3 f O
1 p 1 3 f-1
2 s O 2 d O

Ci

0.57181
0.28591
0.49368

-0.04137
0.03378
0.04947

ai

1
2
2
2
4
2

weight

0.49046
0.48744

0.00798
0.0049

£aiN2

0.49046
0.97790

0.98588
0.99078

energy

5.5446
5.5241

7.4459
7.4494
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Table D.5: ncmlcrnnTellTel : OsOs, u = 0.01, Eexact = 0.079205
niZ177l1n2/2^2
Os 0 0 sO
1 p O l pO
1 p 1 1 p - 1
1 p 0 3 p 0
1 p 1 3 p - 1
2 s 0 2 s 0
2 d O 2 d O
2 d 1 2 d -1
2 d 2 2 d -2
2 d 0 4 dO
2 d 1 4 d -1
2 d 2 2 d -2
0 s 0 4 s 0
0 s 0 2 s 0
3 p 0 3 p 0
3 p 1 3 p -1

Ci

0.82964
-0.29460
-0.29460
-0.07192
-0.07192
-0.09203
0.03211
0.03211
0.03211
0.01165
0.01165
0.01165

-0.01819
0.01189

-0.00838
-0.00838

ai

1
1
2
2
4
1
1
2
2
2
4
4
2
2
1
2

weight

0.68830

0.26037

0.03103
0.00847

0.00516

0.00136
0.00066
0.00028

0.00021

0.68830

0.94867

0.9797
0.98817

0.99333

0.99469
0.99535
0.99563

0.99584

energy

0.08079

0.09193

0.10788
0.10909

0.10632

0.12355
0.11067
0.09484

0.12308

Table D.6: n^
nilimin2I2TO2
Os 0 1 p O
1 p 0 2 d 0
1 p 1 2 d-1
2 s O l p O
3 p O 2 d O
3 p 1 2 d-1
0 s 0 3 p 0
3 f O 2 d O
3f 1 2 d-1
3 f 2 2 d -2
1 p O 4 d O
1 p 1 4 d -1
2 s 0 3 p 0
3 p O 4 d O
3 p 1 4 d -1

/ r> i / i • 1 nO o

Ci

0.537408
-0.23906
0.20703

0.166333
-0.074606
0.0646107
-0.112845
0.030975

-0.029204
0.023088

-0.036774
0.031847

-0.044932
-0.006019
-0.005213

(H
2
2
4
2
2
4
2
2
4
4
2
4
2
2
2

w = 0.01
weight
0.57761

0.28575
0.05533

0.02783
0.02547

0.00746

0.00676
0.00404

0.00013

Eexact — 0

E^tel2

0.57761

0.86336
0.91869

0.94652
0.97199

0.97945

0.98621
0.99025

0.99038

.08921
energy
0.08568

0.10646
0.09956

0.11488
0.08681

0.11418

0.11602
0.11564

0.13139
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Table D.7: n ^

l p O 1 pO
1 p 1 1 p -1
0 s 0 2 d 0
1 p O 3 f O
1 p 1 3 f-1
2 s O 2 d O
2 d O 2 d O
2 d 1 2 d -1
2 d 2 2 d -2
0 s 0 4 d 0
3 p O 3 f O
3 p 1 3 f-1
2 d O 4 d O
2 d 1 4 d - l
2 d 2 4 d -2
4 s O 2 d O
4 g O 2 d O
4 g 1 2 d - l
4 g 2 2 d -2
5 p O 3 f O
5 p 1 3 f-1
2 s 0 4 d 0
4 g 0 4 d 0
4 g 1 4 d -1
4 g 2 4 d -2
1 p 0 3 pO
1 p 1 3 p - l
3 p 0 3 pO
3 p 1 3 p - l
4 s O 4 d O

Icmnrellrel '• 2d0s,
Ci

0.440042
0.220021

+0.333194
-0.193443
0.157945
0.226296

-0.170619
0.085310
0.170619

-0.149903
-0.074242
0.060619

-0.036183
0.018092
0.036183
0.056297
0.029041

-0.026511
0.018746

-0.024457
0.019969

-0.035131
0.010567

-0.009647
-0.000782
0.014367
0.007183

-0.018949
-0.009474
-0.014405

at

1
2
2
2
4
2
1
2
2
2
2
4
2
4
4
2
2
4
4
2
4
2
2
4
4
2
4
1
2
2

w = 0.01,
weight

0.29045
0.22204

0.17463
0.10242

0.10189
0.04494

0.02572

0.00916
0.00633

0.00591

0.00279
0.00247

0.00078

0.00062

0.00054
0.00042

Eexact = 0.

0.29045
0.51249

0.68712
0.78954

0.89143
0.93637

0.96209

0.97125
0.97758

0.98349

0.98628
0.98875 •

0.98953

0.99015

0.99069
0.99111

09921
energy

0.09193
0.09188

0.10646
0.10582

0.10632
0.10904

0.12242

0.12355
0.12315

0.12224

0.12242
0.12333

0.13968

0.10788

0.12308
0.14006
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Appendix E

The different quantum numbers
of the harmonic oscillator

In the following we are considering the problem of a single electron in a
three-dimensional harmonic potential well. The Schrödinger equation

(E.I)

can be separated either in kartesian coordinates or in spherical coordinates.
This gives rise to two different sets of eigenfunctions pertaining to the energy
level En = u) (n + §) characterized either through the kartesian quantum
numbers \nx, ny, nz) with n\ + n-i + 713 = n or states due to a separation in
spherical coordinates of well defined angular momentum \n, I, m). The ques-
tion is how those states are interrelated. We have to find a unitary transfor-
mation within subspace of energy En to connect those two representations.
In the case of separation into kartesian coordinates the quantum numbers
ni, n2,1^3 denote the numbers of oscillator quanta in x, y and z direction, i.e.

a\ai\nun2,n3)=ni\ni,n2,n3) i = l,.. ,3, (E.2)

where at := ̂ *'+*fr (a! = VSE^ft) denotes the anihilation (creation) op-

erator ini-directionandi/|ni,n2)n3) = u (a\a,i + a\a,2 + a\a3 + §] |n1,n2,n3)
En\nun2,nz) The separation in spherical coordinates leads to eigenstates of
angular momentum I and angular momentum projection m:

H\n,l,m) = En\n,l,m) (E.3)

L2|n,/,m) = Z(/-t-l)|n,Z,m) (E.4)

L3|n, l,m) = m\n, l,m) . (E-5)
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According to Moshinsky [148] the state \n, I, m) can be constructed from the
vacuum state by application of the cartesian creation operators through

n,l,m) = Altn(rf • at)ü^T/)Tn(at)|O) , (E.6)

with the notation (a* • a*) := (Yli=iaiai)- A,n is a normalization constant
independent of m given by

Al'n ~ ]](n +]n + l + l)\\(n-l)\l •

Ti,m{f) denotes the solid spherical harmonic

U>rt(M). . (E.8)

T/m as a function of a\ has to be understood as an expansion of operators
Oj. In spherical coordinates we have

. (E.9)

Using the explicit expansion of P™ and turning into cartesian coordinates
we get

L *> J

(2/ — 4r»j: l-m-2kJ2k

fc=0

We therefore get explicitly

\n,l,m) = ( -
y (n + Z + l ) ! ! ( n -

^ (l-k)\k\(l-m
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