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Abstract

In the past years, the interest in computational Grids has increasingly grown
in the scientific community as a mean of enabling the application developers to
aggregate resources scattered around the globe for solving large-scale scientific
problems. Developing applications that can effectively utilise the Grid, how-
ever, still remains very difficult due to the lack of high-level tools to support
developers.

For instance, existing available performance analysis tools target single
application execution, which is not sufficient for efficient performance tuning of
parallel applications. The most popular performance metrics such as speedup
or efficiency, for instance, require repeated execution of the application for
various machine sizes, for which no automatic tool support exists so far.

The thesis proposes a new directive-based language called ZEN for com-
pact specification of wide value ranges for arbitrary application parameters,
including problem or machine sizes, array or loop distributions, software li-
braries, interconnection networks, or target execution machines. The ZEN
directives are problem independent and offer a fine-grained scope that does
not change the semantics of the application, nor does it require any appli-
cation modification or special preparation. Irrelevant or meaningless experi-
ments can be eliminated through a constraint mechanism. Additionally, the
ZEN directives can be used to specify a wide range of performance metrics to
be collected from the application for arbitrary code regions.

Based on the ZEN language, the thesis proposes a novel experiment man-
agement tool called ZENTURIO for automatic experiment management in
the context of large-scale performance and parameter studies on the Grid.
ZENTURIO offers automatic cross-experiment analysis and visualisation sup-
port based on the application performance and output data which are well-
organised in a public domain data repository. In contrast to existing parameter
study tools, ZENTURIO requires no special preparation of the application
and does not restrict the parameterisation to input files or to global input
arguments.



ZENTURIO has been designed as a distributed service-oriented architec-
ture based on the latest state-of-the-art Web and Grid services technologies.
The thesis illustrates how a service-oriented architecture facilitates the inte-
gration of a broad set of tools and enables a range of useful tool interoperability
scenarios. A variety of novel Web technology adaptations for Grid computing
are presented, which anticipated several standardisation efforts currently still
under way within the Global Grid Forum.

ZENTURIO designs an optimisation framework that integrates general-
purpose heuristics for solving NP-complete performance and parameter opti-
misation problems in a wide search space specified using the ZEN language.
New optimisation problems can be easily instantiated by simply providing the
appropriate objective function, for instance a performance metric using the
ZEN language. As a case study, a genetic algorithm is applied on scheduling
various types of Grid applications.

The thesis proposes a new hybrid approach for scheduling new classes of
workflow Grid applications, which combines static scheduling as an optimisa-
tion problem with dynamic steering based on the Grid resource availability. In
addition, this is the first scheduling approach that formally handles recursive
loops that are often encountered in scientific workflows.

The thesis presents a variety of real-world experiments that validate the
research topics addressed.
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Introduction

Before 1990, the world-wide Internet network was almost entirely unknown
outside the universities and the corporate research departments. The common
way of accessing the Internet was via command line interfaces such as telnet ,
ftp, or popular Unix mail user agents like elm, mush, pine, or rmail. The
usual access to information was based on peer-to-peer email message exchange
which made the every day information flow slow, unreliable, and tedious. The
advent of the World- Wide Web has revolutionised the information flow though
the Internet from the obsolete message-passing to the world-wide Web page
publication. Since then, the Internet has exploded to become an ubiquitous
global infrastructure for publishing and exchange of (free) digital information.

Despite its global success and acceptance as a standard mean of publishing
and exchange of digital information, the World-Wide Web technology does not
enable ubiquitous access to the billions of (potentially idle) computers simul-
taneously connected to the Internet providing petaflops of estimated aggre-
gate computational power. Remote access to computational power is highly
demanded by applications that simulate complex scientific and engineering
problems, like medical simulations, industrial equipment control, stock port-
folio management, weather forecasting, earthquake simulations, flood man-
agement, and so on.

Nowadays, the common policy of accessing high-end computational re-
sources is through manual remote ssh logins on behalf of individual user
accounts. Similar to the World-Wide Web that revolutionised the informa-
tion access, the computational Grids are aiming to define an infrastructure
that provides dependable, consistent, pervasive, and inexpensive access to the
world-wide computational capabilities of the Internet [65]. In this context,
computational Grids raise a new class of important scientific research oppor-
tunities and challenges regarding, e.g.,:

• secure resource sharing among dynamic collections of individuals and in-
stitutions forming so called Virtual Organisations [65];
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• solving large-scale problems for which appropriate local resources are not
available;

• improving the performance of applications by increasing the parallelism
through concurrent use of distributed Grid computational resources;

• course-grain composition of large-scale applications from off-the-shelf pre-
installed software components;

• exploiting (or stealing) unused CPU cycles from idle (e.g., desktop, PC
laboratory) computers to increase the overall compute power;

• intelligent distribution and replication of large data files close places where
subsequent computations will take place;

• incorporation of semantic Web technologies [42}.

1.1 Motivation

In the past years, the interest in computational Grids has increasingly grown
in the scientific community as a mean of enabling application developers to
aggregate resources scattered around the globe for solving large-scale scientific
problems. Developing applications that can effectively utilise the Grid, how-
ever, still remains very difficult due to the lack of high-level tools to support
developers.

This thesis-aims- to-meet various-aspects with respect-to~integratedtool-
development for efficient engineering and execution of applications on the
Grid.

1.1.1 Performance Tuning

Computational Grids have the potential to harness remote high-performance
platforms for the efficient execution of scientific applications. Existing par-
allel applications that leverage the currently successful parallel programming
standards [40, 145], however, require to be tuned to the characteristics of each
particular parallel architecture in order to achieve high-performance. The com-
piler technology has proven to be inefficient in transparently parallelising the
applications which still rely on the manual user support. Existing performance
tools offer help for advanced analysis of single experiments only, which is not
sufficient for efficient application performance tuning.

In a traditional approach, the performance tuning of parallel applications
is a multi-experimental cyclic process. The most popular performance metrics,
such as efficiency or speedup, require the investigation of numerous problem
and machine sizes for, e.g., various compiler options and data or control flow
distributions. This process involves many cycles of code editing, compilation,
execution, data collection, performance analysis, and data visualisation, which
is tedious and error-prone to be managed manually. To this date there is
no support for automatic cross-experiment performance analysis of parallel
applications.



1.1 Motivation 21

1.1.2 Parameter Studies

In the last decade, large-scale parameter studies have become feasible through
the appearance of parallel compute engines with multi-gigabyte memories and
terabyte disk farms. Such parameter studies require repeated invocation of the
same application on a variety of input data sets combined with appropriate
organisation of the output data files for subsequent analysis and visualisation.
Existing parameter study tools like Nimrod [2] or ILAB [178] require special
preparation of the application, which is usually the main obstacle for a tool
in achieving wide acceptance. The application developers are in general very
reluctant in changing their applications to the peculiarities of each tool and
prefer to write special purpose scripts hard-coded for their specific parameter
studies, instead of using general purpose tools that can give them enhanced
graphical interfaces and fault tolerance support.

1.1.3 Optimisation

Exhaustive performance and parameter studies describe the complete evolu-
tion of the performance metric or the output parameter under evaluation as a
function of the indicated input parameters. While such studies provide invalu-
able information on the application behaviour, they often produce an overflow
of data which is irrelevant for further studies. In many cases parameter spaces
become so large that they are impossible to be exhaustively traversed. Often
the users are only interested in finding parameter combinations that optimise
a certain performance metric or an output parameter, rather than conducting
the complete set of experiments for all parameter combinations. This is typi-
cally an NP-complete problem that requires heuristic-based approaches. The
performance tuning and the scheduling of applications are two such typical
NP-complete optimisation tasks. There are currently no tools to support the
users in defining and solving general NP-complete optimisation problems for
scientific applications on the Grid.

1.1.4 Scheduling

Fine-grained performance analysis and tuning, as is usually performed on
traditional parallel computers, is often unrealistic to be applied to world-
wide course-grain computational Grid infrastructures. The problem of high-
performance execution of scientific applications gets shifted from fine-grained
performance analysis and tuning to appropriate scheduling onto the available
computational Grid resources.

Application scheduling in a classical approach is an NP-complete optimisa-
tion problem [165]. The scheduling search space which exponentially depends
on the (potentially unbounded) number of resources and tasks and can achieve
particularly huge dimensions on the Grid which have not been previously ad-
dressed. In addition, the static scheduling as an optimisation problem has to
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be enhanced with steering capabilities that consider the dynamic availability
of the Grid resources over space and time.

The workflow model originating from business process modelling [173] is
gaining increased interest as the potential state-of-the-art paradigm for pro-
gramming Grid applications. While business process workflows are in most
cases Directed Acyclic Graphs (DAG) that consist of a limited number of
nodes, scientific workflows that implement Grid applications often require
large iterative loops that implement a convergence behaviour or a recur-
sive problem definition. There is currently no systematic formal approach
to scheduling workflow Grid applications that combines classical DAG opti-
misations with recursive loop handling.

1.1.5 Parametrisation Language

One reason why there is no tool support for automatic experiment manage-
ment regardless the ultimate goal (i.e., performance studies, parameter stud-
ies, optimisations) is the lack of appropriate languages to define experiments.
Currently each user takes own ad-hoc approaches in defining value ranges for
relevant application parameters by writing hard-coded scripts that serve a
very specific experimental purpose. Moreover, existing performance and pa-
rameter study tools [4] that offer some support for automatic experiment man-

agement , approach-the parameter-specification-problem-in-a-similar ad-hoc-
manner through special-purpose external scripts that force the developers to
export application parameters to external global variables. Other tools [178]
that aim for a more flexible parameter specification through graphical anno-
tations are restricted to input files.

The limitations of the existing parameter specification approaches can be
summarised as follows:

1. the parameter specification is restricted to input files or program argu-
ments;

2. only global variables or program arguments can be expressed;
3. local variables cannot be parameterised;
4. parallelisation strategies (e.g., array and loop distributions) or other ap-

plication characteristics cannot be expressed;
5. the parametrisation forces the user to perform undesired modifications

and adaptations of the application;
6. there is no formal approach to define a general-purpose experiment spec-

ification language.

1.1.6 Instrumentation

Program instrumentation is a common task that all the performance analy-
sis tools need to perform for measuring and collecting run-time application
data. The instrumentation technologies developed so far have the following
drawbacks:
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1. source code instrumentation [12, 134] forces the user to manually insert
probes in the application which, apart from being tedious to perform,
often introduces undesired source code modifications that are bound to
the profiling library used;

2. compiler instrumentation through external flags as performed by most
commercial compilers has serious limitations in the specification of fine-
grained local source code regions for which to the collect performance
data;

3. dynamic instrumentation [24] and
4. binary rewriting [82] do not perturbate the original source code, but are

limited to binary exécutables, impossible to be reversibly mapped to the
original source code. In addition, the portability of these technologies is
very critical;

5. object code wrapping [23] is limited to pre-compiled software libraries.

1.1.7 Portability

The set of tools available on each individual platform is usually heterogeneous
in functionality and the user interface provided. Before using a new parallel
system, the users must in most cases learn and familiarise themselves with
new tools with different functionality and user interfaces. This requires (often
unnecessary) extra time and effort and can be a major deterrent against using
more appropriate computer systems. The main reason for tools not being
available on a large set of platforms is their limited portability.

1.1.8 Tool Interoperability

The cooperative use of software tools can significantly improve the applica-
tion engineering process. For instance, an experiment management tool can
make use of a performance monitor for cross-experiment performance analy-
sis and tuning. Or else, the use of on-line performance tools in conjunction
with correctness debuggers can significantly improve the performance steer-
ing process by applying on-the-fly program modifications based on the on-line
performance data analysis.

Unfortunately, most of the tools supporting different phases of the applica-
tion engineering process cannot be used in cooperation to further improve the
user efficiency, because they are insufficiently integrated into a single coherent
environment. The main reason for the lack of interoperability between tools
are the incompatible monitoring systems and the critical (not isolated) plat-
form dependencies. Each tool requires special preparation of the application
which is in most cases the main incompatibility cause.

1.1.9 Stateful Grid Services

The Grid community has acknowledged the Web services [170] as the funda-
mental technology for building service-oriented infrastructures for the Grid.
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The stateless Web services standards designed for business process modelling
have, however, fundamental limitations in modelling Grid resources that are
by definition stateful. While there are present approaches that aim to define
new standards for modelling stateful resources with Web services [163, 67],
there are little efforts that analyse and validate their appropriateness.

1.2 Goals

This thesis addresses the motivating problems outlined in the previous section
in the context of a novel experiment management tool developed in the frame
of an open architecture for tool development on the Grid.

1.2.1 ZEN Directive-based Language

The thesis proposes a new directive-based language called ZEN [123, 127] for
the specification of arbitrary application parameters through annotations of
arbitrary application files. The so called ZEN directives are language indepen-
dent comments with a well-defined syntax that do not change the semantics
of the application source files, as they are ignored by the compilers that are
unaware of their semantics. The1 scope of the ZEN directives can be global
or restricted to arbitrary code regions, which allows local fine-grained pa-
rameterisation. Simple macro-processor-based string replacement semantics
of the ZEN directives insure that the language is not specific to any partic-
ular scope and can express new problems that were not thought during the
language design. Invalid experiments can be filtered through parameter con-
straints. Performance directives are introduced to specify the metrics to be
measured and computed for fine-grained code regions, without altering the
application source code with instrumentation probes. The directive-based ap-
proach ensures flexible parameterisation that does not require any source code
modification or adaptation.

1.2.2 ZENTURIO Experiment Management Tool

The thesis proposes a novel general-purpose experiment management tool
called ZENTURIO [124, 128] applied to performance and parameter studies
of parallel and Grid applications. ZENTURIO uses the ZEN directive-based
language to define potentially large value ranges for arbitrary application pa-
rameters, including program variables, file names, compiler options, target
machines, machine sizes, scheduling strategies, or data distributions, without
intruding in the source code or force the application developer to perform
any modifications. A graphical User Portal enables the user to easily create,
control, and monitor large sets of experiments. An Experiment Generator
service parses application files annotated with ZEN directives and generates
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synthetic experiments based on the semantics of the directives encountered.
An Experiment Executor service retrieves a set of experiments and automat-
ically compiles, executes, and monitors them on the target machine. Upon
the completion of each experiment, the output files and performance data are
automatically stored into an Experiment Data Repository for post-mortem
multi-experiment performance and parameter studies. An Application Data
Visualiser portlet of the User Portal has been designed to automatically query
the database for performance and output data required for user analysis. A
wide set of diagrams [57] are provided to visualise the variation of any perfor-
mance metric or output parameter as a function of arbitrary ZEN-annotated
parameters.

1.2.3 Optimisation

ZENTURIO provides a modular framework for solving customisable perfor-
mance and parameter NP-complete optimisation problems to be flexibly in-
stantiated by the user [129].

1. The optimisation problem is specified by providing an objective function
that must implement a well-defined problem independent interface. As case
studies, ZENTURIO instantiates the objective function for three optimi-
sation problems:
a) application-specific analytical prediction function for single static

workflow scheduling;
b) random function for simulated independent task-set scheduling;
c) performance metric for performance tuning of parallel applications.

The performance metric is specified by a ZEN performance directive
and measured through experiment execution;

2. General purpose heuristics are employed to surf the search space defined
through ZEN directives for an experiment that maximises the objective
function. ZENTURIO illustrates a generic encoding of the heuristic search
engine based on genetic algorithms and targets various others (including
subdivision, simplex, simulated annealing, BFGS, or EPSOC methods) as
future work.

1.2.4 Dynamic Workflow Scheduling

The workflow model has emerged as the potential state-of-the-art paradigm
for programming Grid applications. On the other hand, the static scheduling
as an NP-complete optimisation problem is not enough for efficient execution
of applications in a dynamic Grid environment, where resources often change
load and availability. Existing ad-hoc approaches either do not address the
workflow scheduling as an optimisation problem or are restricted to Directed
Acyclic Graph-based workflows that cannot handle loops. This thesis proposes
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a novel hybrid approach for dynamic scheduling of Directed Graph-based work-
flow applications that dynamically adapts the optimised static schedule to the
heterogeneous and changing Grid resources.

1.2.5 Service-oriented Grid Architecture

The main reason why each computing platform has its own heterogeneous
set of tools is their limited portability. In addition, the tools are designed as
stand-alone and cannot be used in cooperation to improve the user efficiency
in the application engineering process. The thesis addresses the portability
and interoperability issues through a distributed multi-layered service-oriented
architecture [97, 98] with the following design principles:

1. The platform dependencies are isolated within stand-alone distributed ser-
vices and sensors exporting a platform independent API. The client end-
user tool is therefore decoupled from the intimate hardware and operating
system dependencies which significantly increases the tool portability;

2. A set of general-purpose services for the Grid have been identified and
realised;

3. The recommendation that every platform vendor implements a core set
of tool services with a platform independent API significantly eases the
tool development and multi-platform availability;

4. The functionality of each tool is no longer implemented by a single mono-
lithic tool that acts as a big black-box. Enabling light-weight portals easily
to be installed and managed on local client machines significantly simpli-
fies the Grid usage;

5. The services are designed such that they can be concurrently accessed
by multiple clients. This enables multiple tools interoperate by sharing
the common services which possibly monitor the same target application
processes;

6. An asynchronous event framework enables the services to notify the clients
about interesting application and system events. Events are important for
detecting important status information about the system and the appli-
cation and can be used to avoid expensive continuous polling.

Beyond the provision of an open framework for tool development, the
thesis presents various practical scenarios how interoperable use of software
tools can significantly improve the productivity in the application engineering
process [98, 132].

1.2.6 Stateful Grid Services

The thesis contributes with several proposals for enhancement and adaptation
of the Web services technology for implementing services that model stateful
Grid resources [125, 128]:
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1. definition and implementation of the Factory design pattern for on-the-fly
service instantiation on remote sites;

2. design and implementation of a Registry service for high-throughput ser-
vice lookup;

3. definition of service compatibility for functionality-based service discovery;
4. adaptation of existing standards for publication of transient service im-

plementations;
5. service lifetime modelling;
6. comparative analysis and benchmarking of existing service-oriented Grid

architectures [126, 128].

1.3 Outline

Chapter 2 presents the Grid architectural model which represents the foun-
dation on top of which the concepts presented in this thesis are developed.

Chapter 3 presents a complete formal specification of the ZEN directive-
based language used to specify application parameters and performance met-
rics.

Chapter 4 is devoted to a detailed description of the ZENTURIO experi-
ment management tool, with particular focus on the tool functionality.

Chapter 5 describes the open service-oriented architecture for interoper-
able tool development, in the frame of which the ZENTURIO experiment
management tool has been designed. The set of sensors, the Grid services, the
event framework, and several prototype on-line tools, together with various
tool interoperability types and scenarios are presented in detail.

Chapter 6 presents the ZENTURIO optimisation framework validated by
three case studies: workflow scheduling, throughput scheduling, and perfor-
mance tuning of parallel applications.

Chapter 7 illustrates practical experiments performed on real-world appli-
cations in all the fields addressed by the ZENTURIO experiment management
tool: performance studies, parameter studies, and scheduling as an optimisa-
tion problem.

Chapter 8 outlines the most relevant related work in all the fields touched
by the thesis: experiment management, performance studies, parameter stud-
ies, tool interoperability, and scheduling.

Chapter 9 summarises the thesis contributions and gives an outlook to the
future research.
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2.1 Introduction

The mostly used attempt to define Grid computing [65] is through an analogy
with the electric power evolution around 1910. The truly revolutionary devel-
opment was not the discovery of electricity itself, but the electric power grid
that provides standard, reliable, and low-cost access to the associated trans-
mission and distribution technologies. Similarly, the Grid research challenge
is to provide standard, reliable, and low-cost access to the relatively cheap
computing power available nowadays.

Definition 2.1. A computational Grid was originally defined as a hardware
and software infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabilities [65]. With the
time, the Grid concept has been refined and better formulated, e.g., as a per-
sistent infrastructure that supports computation-intensive and data-intensive
collaborative activities that spawn across multiple Virtual Organisations (VO).

The natural starting point in building computational Grids is the existing
world-wide Internet infrastructure that aggregates a potentially unbounded
number of resources. Analogous to the World-Wide Web that provides ubiq-
uitous access to the information over the Internet, the computational Grids
explore new mechanisms for ubiquitous access to computational resources and
quality of service beyond the best-effort provided by the Internet protocol (IP).

There are two recognised architectural approaches for building large-scale
Grid infrastructures:

1. Service-Oriented Architectures (SOA) [78] are based on an aggregation of
portable and reusable programs called services that can be accessed by
remote clients over the network in a platform and language independent
manner.
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Definition 2.2. A service is a self-contained entity program with a well-
defined platform and language independent interface that does not depend
on the context or the state of other services.

A service-oriented architecture offers significant advantages on the Grid:
a) it increases the portability and facilitates the maintenance of the sys-

tem, by isolating platform dependent services to appropriate sites ac-
cessible under a well-defined platform independent API;

b) it enables light-weight clients which are easy to be installed and man-
aged by unexperienced users;

c) it decouples the clients from the rest of the system and allows the users
to move, share, and access the services from different Grid locations.

2. Peer-To-Peer Architectures (P2P) [120} are an aggregation of equivalent
programs called peers situated at the edges of the Internet that provide
functionality and share part of their own hardware resources (e.g., process-
ing power, storage capacity, network link bandwidth, printers) with each
other through network contention without passing through intermediate
entities. The strength of peer-to-peer architectures is the high-degree of
scalability and fault tolerance.

The tool development and integration framework presented in this thesis
is build on the foundation of a service-oriented architectural model that is the
scope of the remaining part of this chapter.

2.2 Distributed Technology History

The realisation of service-oriented architectures for building distributed Grid
infrastructures is the outcome of a long track of research and industry expe-
rience on distributed services and component technologies.

Distributed applications require a protocol which defines the communi-
cation mechanism between two concurrent remote processes. Traditionally,
there have been two communication protocol models for building distributed
applications: message passing/queuing and request/response. While both mes-
saging and request/response models have their individual advantages, either
one can be implemented in terms of the other. For example, messaging sys-
tems can be built using lower-level request/response protocols, which was the
case of the Microsoft's Distributed Computing Environment (DCE) [139]. For
the (Sun) Remote Procedure Call (RPC) [144] applications, the synchronous
request/response design style is usually a natural fit.

In the 1980s, the communication protocol models focused on the network
layer, such as the Network File System (NFS) [27] developed originally by Sun
Microsystems (which most networked Unix systems currently use as their
distributed file system) and Microsoft DCE RPC applications on Windows
NT.
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In the 1990s, the object-oriented community pushed for an Object RPC
(ORPC) protocol that links application objects to network protocols. The
primary difference between ORPC and the proceeding RPC protocols is that
ORPC codifies the mapping of a communication end-point to a language-level
object. This mapping allows the server-side middleware locate and instantiate
a target object in the server process. The Common Object Resource Broker Ar-
chitecture (CORBA) [107] designed by the Object Management Group (OMG)
and the Microsoft's Distributed Component Object Model (DCOM) [21] have
dominated and competed for many years for an ORPC protocol industry
standard. Although CORBA and DCOM have been implemented on various
platforms, the reality is that any solution built on these protocols are largely
dependent on a single vendor implementation. Thus, if one were to develop a
DCOM application, all the participating nodes in the distributed application
would have to be running a flavour of Windows. In the case of CORBA, ev-
ery node in the application environment would need to run the same Object
Request Broker (ORB) product. While there are cases when CORBA ORBs
from different vendors do interoperate, that interoperability does not extend
into higher-level services such as security and transaction management. Fur-
thermore, any vendor specific optimisations in this situation is lost.

Other efforts such as the Java Remote Method Invocation (RMI) [80] from
Sun Microsystems enhanced with the Jini [50] network awareness are bound
to the Java language and fail to fulfill the language independence required
by the Grid computing. The Enterprise Java Beans (EJB) [140] server-side
component technology for the Java 2 Enterprise Edition (J2EE) platform
failed to become a standard due to incompatible data formats, limited network
transport layer security, the use of non-Web-based communication protocols,
and the lack of semantic information in the data representation.

2.3 Web Services

In the year 2000, a consortium of companies comprising Microsoft, IBM,
BEA Systems, and Intel defined a new set of XML (eXtensive Markup Lan-
guage) [81] standards for programming Business-to-Business (B2B) applica-
tions called Web services [78], which are currently being standardised under
the umbrella of the World Wide Web Consortium (W3C) [170]. The motiva-
tion behind the Web services is to solve existing barriers between traditional
Enterprise Java Beans businesses collaborating in electronic transactions such
as incompatible data formats, security issues, Web access, and semantic in-
formation. Web Services are a technology for deployment and access of busi-
ness functions over the Web that compliments existing standards like J2EE,
CORBA, DCOM, RMI, or Jini, which are technologies for implementing Web
Services.
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Fig. 2.1. The interoperable Web services stack.

Definition 2.3. A Web service is an interface that describes a collection of
operations of a service (see Definition 2.2) that are network-accessible through
standardised XML messaging.

2.3.1 Web Services Stack

The interoperability between Web services is based on a three layer Web
Services Stack [100], depicted in Figure 2.1.

1. The Hyper Text Transfer Protocol (HTTP) is a bottom simple and
firewall-friendly RPC-like protocol that is the current de-facto standard
for Web communication over TCP/IP;

2. The Simple Object Access Protocol (SOAP)1 [141] is the XML-based mes-
sage passing standard for communication between remote Web services
using both message passing and request/response communication models
on top of HTTP. SOAP is open to additional underlying network proto-
col bindings beyond HTTP, such as CORBA HOP (Internet Inter ORB
Protocol), FTP (File Transfer Protocol), MQ (Message Queuing), RMI,
or SMTP (Simple Mail Transfer Protocol). However, in contrast to the
popular belief, Web services do not mandate the use of SOAP for Web
services communication;

3. The Web Service Description Language (WSDL) [31] is the XML standard
for the specification of Web services interfaces, analogous to the CORBA
Interface Definition Language (IDL). A WSDL document is commonly
divided into two distinct parts [100]:
a) service interface is the abstract and reusable part of a service defini-

tion, analogous to an abstract interface in a programming language,
that can be instantiated and referenced by multiple service implemen-
tations. A service interface consists of the following XML elements:

i. wsdl: types contains the definition of complex XML Schema
Datatypes (XSD) [171] which are used by the service interface;

1 This naming is a mistake because the protocol has nothing to do with accessing
objects.
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ii. wsdl :message defines the data transmitted as a collection of log-
ical parts (wsdl:parts - e.g., input arguments, return argument,
and exception messages), each of which being associated with a
different type;

iii. wsdl:operation is a named end-point that consumes an input
message and returns an output message and a fault message (cor-
responds to a Java class method);

iv. wsdl : portType defines a set of abstract operations (corresponds
to a Java interface definition);

v. wsdl : binding describes the protocol and the data format for the
operations of a portType;

b) service instance2 part of a WSDL document describes an instanti-
ation of a Web service. A Web service instance is modelled as a
wsdl:service, which contains a collection of wsdl:port elements
(i.e., usually one). A port associates one network endpoint (e.g., URL)
with a wsdl : binding element from a service interface definition.

A common practice is to define the service interface in a separate abstract
interface WSDL document which is further included into the instance
WSDL document through an import element.

2.3.2 Web Services Publication

The Universal Description, Discovery and Integration (UDDI) [164] is a spec-
ification for distributed Web-based information registries of business Web ser-
vices. The WSDL interface and the URL address of persistent Web services
are typically published in a centralised UDDI service repository for remote
discovery and access. The UDDI best practices document [35] requires that
the interface part of the WSDL document be published as a UDDI tModel
and the instance part as a businessService element (i.e., as URLs - see
Figure 2.2). The businessService UDDI element is a descriptive container
used to group related Web services. It contains one or more bindingTemplate
elements which contain information for connecting and invoking a Web ser-
vice. The bindingTemplate contains a pointer to a tModel element which
describes the Web service meta-data. An accessPoint element is set with
the SOAP address of the service port.

The Web Services Inspection Language (WSIL) [10] defines a distributed
Web service discovery method, which is complementary to the UDDI cen-
tralised approach. A WSIL document is an XML file that contains references
to Web services, which are URLs to instance WSDL documents.

2.3.3 Web Services Security

The Web Services Security Language (WS-Security) [9] describes enhance-
ments to the SOAP messaging that provide quality of protection through

2 The service implementation term used by IBM in [100] is to our opinion wrong.
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Fig. 2.2. Publishing a Web service into a UDDI service repository.

message integrity (through XML digital signature), message confidentiality
(through XML encryption), and single message authentication. These mech-
anisms can be used to accommodate a wide variety of security models and
encryption technologies, including the Public Key Infrastructure (PKI) [13]
(see Section 2.4).

2.3.4 Web Services Run-time Environment

The Web services technology omits on purpose to specify any run-time envi-
ronment that implements the service-oriented architecture based on XML doc-
ument exchange. Java is currently the most popular programming language
supported by high-level Web services implementations due to its platform
independent interpreted object code design. Figure 2.3 illustrates the most
common run-time architectural model implemented by existing Web services
toolkits for Java [51, 59, 70, 114, 153].

Following the CORBA RPC-based model, advanced implementation toolk-
its completely shield the client application from the underlying XML-based
technologies. Existing tools transform / generate the WSDL description of
the Web service into / from a (Java) interface definition which is understood
by the (Java) clients. Automatically generated proxies that export the Web
service interface in the client implementation language perform automatic
parameter marshaling and (SOAP) message routing.

The Java implementation of the SOAP-based communication infrastruc-
ture can be based either on the synchronous JAX-RPC (Java API for XML-
based RPC), or on the asynchronous JAXM (Java API for XML messaging)
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Fig. 2.3. Web services runtime environment.

standard APIs designed by Sun Microsystems. In this context, each remote
call from a Java client to a Web service is mapped onto one SOAP JAX-
RPC / JAXM message. Additionally, the Web Services Invocation Framework
(WSIF) [48] allows the invocation of WSDL-described services independently
of the underlying (SOAP) protocol implementation.

Similarly to the Enterprise Java Beans component model, Web services
typically run within a hosting environment, such as the Java 2 Enterprise
Edition (J2EE) [58], JBoss, Tomcat [106], Sunl, Weblogic [118], or Web-
sphere [11], which is an HTTP server and servlet engine responsible for de-
ploying and managing the service lifecycle. The Web service functionality is
encoded using a Java class that implements the service WSDL interface and
deployed using the hosting environment specific tools. Upon receiving a mes-
sage at the network endpoint of the hosting environment, a SOAP RPC /
Message router (servlet) unmarshals the message and forwards it to a Java
RPC / Message provider. The Java provider loads the Java class specified in
the SOAP message (if not already loaded) that implements the Web service
and invokes the appropriate method. The results of the method are returned
to the SOAP router which marshals and transfers them to the requesting
client.

2.4 Grid Security Infrastructure

The Grid architectural model described in this chapter implicitly assumes the
use of the Grid Security Infrastructure (GSI) [68] as the de-facto standard
for authentication and secure communication across the applications and the
services over the Internet. GSI has the following main characteristics:

1. Public Key Cryptography [13] based on private and public key pairs is the
fundamental technology used for encrypting and decrypting messages;

2. Digital Signatures are employed for insuring data integrity over the net-
work;
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3. X.509 Certificates are used for representing the identity of each Grid user
required for authentication. An X.509 certificate includes four primary
pieces of information:
a) Subject Name which identifies the person or the object that the cer-

tificate represents;
b) Public Key that belongs to the subject;
c) Certificate Authority (CA) that has signed the certificate which certi-

fies that both the public key and the subject name belong to the same
trusted subject;

d) Digital Signature of the named certificate authority;
4. Mutual Authentication insures that the two parties involved in communi-

cation trust each other certificate authorities;
5. Secure Private Keys promote the encrypted store of the user private key

exclusively on the local personal computer (i.e., laptop) or on crypto-
graphic smartcards;

6. Single Sign-On restricts the user authentication to one single password
(keyboard) specification during a working session;

7. Proxy Cryptography creates a new private and public key pair digitally
signed by the user, that temporarily represents the user Grid identity.
This allows the true private key of the user be uncrypted for a minimum
amount of time, until the signed proxy is generated;

8. Delegation allows remote services to behave on behalf of the client through
the creation of remote proxies that impersonate the user (see Figure 2.4).

The GSI cryptography can be applied at two layers in the service-oriented
Grid architecture proposed in this chapter:

1. network layer for communicating with remote light-weight sensors over
the Secure Socket Layer (SSL) protocol;

2. message layer for secure communication across Grid services based on the
Web Services Security Language for signing and encrypting XML SOAP
messages, as introduced in Section 2.3.4.

Administration Site Local Host Grid Site 1 Grid Site 2

Fig. 2.4. The GSI single sign-on and proxy delegation chain of trust.
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Security at the message layer is more powerful than the security at the net-
work layer due to the data encryption at a higher level of abstraction (i.e., it is
easier to read a credit card number from an ASCII SOAP message than from a
network packet). A higher degree of security can be achieved through authen-
tication and data encryption at both network and message layers, however,
at accumulated security overhead costs.

2.5 Globus Toolkit

Since 1995, the Globus Toolkit (GT) [64] is developing middleware technology
aimed to support and ease the development of high-level Grid infrastructures
and applications with special focus on high-performance scientific computing.

The Globus Toolkit Version 2 (GT2), which has been the most successful
and stable Globus release at the time this research has been carried out,
provides the following three categories of fundamental services for building
Grid infrastructures:

1. Resource Management Services for executing applications on remote Grid
sites, which comprise:
a) Globus Resource Allocation Manager (GRAM) [38] that provides a

single standard interface for allocating and using remote comput-
ing resources on top of existing job schedulers like Condor [108],
Load Sharing Facility (LSF) [179], Maui [34], Portable Batch System
(PBS) [166], Sun Grid Engine (SGE) [152], or simple Unix fork;

b) Dynamically-Updated Request Online Coallocator (DUROC) [39] that
employs multiple GRAM services for multiple Grid site resource co-
allocation. The lack of resource reservation functionality is the main
limitation that hinders DUROC of being largely and effectively used
in realistic Grid environments;

GRAM and DUROC use the Resource Specification Language (RSL) to
formulate resource requirements;

2. Information Services represented by the Monitoring and Discovery Service
(MDS) [61] that comprises:
a) Grid Resource Information Service (GRIS) that provides information

about a particular Grid resource using an underlying sensor (like the
Network Weather Service (NWS) [176] for CPU and network informa-
tion);

b) Grid Index Information Service (GIIS) that provides hierarchical
means of aggregating GRIS services for a coherent Grid system image
and efficient high-performance resource query support;

3. Data Grid Services represented by the:
a) Global Access to Secondary Storage (GASS) [18] libraries and utili-

ties which simplify the porting and running of applications in a Grid
environment by installing a transparent distributed file system that
eliminates the manual login to remote Grid sites;
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b) GridFTP [5] which is a high-performance, secure, reliable data trans-
fer protocol optimised for high-bandwidth wide-area networks, based
on the highly-popular Internet FTP protocol;

c) Globus Replica Catalogue [149] which is a mechanism for maintaining
a catalogue of data-set replicas;

d) Globus Replica Management [149] which is a mechanism that ties to-
gether the Replica Catalogue and the GridFTP technologies for re-
mote management of large data-set replicas.

The Globus Replica Catalogue and the Globus Replica Management are ser-
vices oriented towards the Data Grid and therefore excluded from the com-
putational Grid architectural model presented in this chapter.

Despite its enormous success in the user Grid research community, GT2 on
its own suffers from substantial integration and deployment problems, which
is mostly due to the C language-based implementation platform. The Java
Commodity Grid Kit (CoG) [168] adds a layer on top of GT2 that exports
a platform independent Java interface to the Globus services. GT2 and Java
CoG, augmented with GSI and Web services support represent an excellent
starting point for implementing higher-level Grid architectures, like the model
described in this chapter.

2.6 Grid Architectural Model

Figure 2.5 illustrates a three-tier service-oriented architecture which repre-
sents the foundation for the tool development and Grid integration scope of
this thesis.

1. The Machine Layer is represented by the set of computational resources,
also called for brevity reasons machines, interconnected through the con-
ventional Internet technology that builds in aggregation the physical
(hardware) Grid.

Definition 2.4. The set of computational resources managed by one host-
ing environment and one single Globus Resource Allocation Manager ser-
vice (introduced in Section 2.5) is called Grid site.

The machine layer is augmented with a thin set of monitoring sensors
that may run on every single Grid machine.

Definition 2.5. A sensor is a small light-weight background program, of-
ten also referred as daemon, that monitors and collects low-level intimate
information about running processes and the underlying computational re-
sources. It additionally exports and provides remote access to this infor-
mation by means of a well-defined platform independent API.

Isolating platform dependencies within sensors under a portable API re-
duces the effort of porting n services onto m platforms from n x m to
n + m.
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Fig. 2.5. The Grid architectural model.

The Grid Services Layer largely consists of a set of distributed services
that provide generic high-level functionality for advanced tool develop-
ment, composition, integration, and interoperability. In contrast to the
Web services designed to model persistent and stateless business processes,
the Grid services need to model transient and stateful Grid resources.

Definition 2.6. A Grid service is a Web service enhanced with standard
interface support for expressing lifecycle, state, and asynchronous events
required for modelling and controlling dynamic, stateful, and transient
Grid resources.

A Grid site can host multiple Grid services that can be remotely accessed
using Web services XML-based document exchange. In this model there
are two persistent Grid services that are required to exist in a Grid envi-
ronment:
a) Factory for creating transient Grid service instances on arbitrary re-

mote Grid sites;
b) Registry for flexible up-to-date management and high-throughput dis-

covery of transient Grid services.
The Application Layer is represented by the end-user applications or soft-
ware tools, built through the course grain workflow orchestration (see
Section 2.8.2) of the underlying Grid services. The Grid software tool ap-
plications are typically represented by graphical user portals or simple
batch script front-end programs.
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2.7 Stateful Grid Services

The Grid community has generally acknowledged the Web services as the
de-facto standard technology for the realisation of the service-oriented Grid
architectures. The Open Grid Services Architecture (OGSA) [62] is the generic
broad architectural model currently being denned within the Global Grid Fo-
rum [30] that defines design mechanisms to uniformly expose Grid services
semantics, to create, name, and discover transient Grid service instances, to
provide location transparency and multiple protocol bindings for service in-
stances, and to support integration with underlying native platform facilities.
Extensive efforts in both Grid [163] and Web [67] communities currently at-
tempt to define a widely accepted standard for building OGSA-compliant
interoperable Grid services.

The Grid service concept in Grid computing is associated with the idea
of modelling stateful resources, which translates into the ability of providing
three extensions that are not covered by the standard Web services technology:
lifecycle, state, and asynchronous events. Examples of target stateful resources
include executing applications, data repositories, Factories for creating Grid
service instances, or Registries of existing service instances.

The current Web services standards are purposely focused on stateless
service modelling and do not intend to specify any standard means for ex-
pressing the service state. While there have been several attempts in the Grid
community that- aimed to standardise the specification of state within Grid
services [163, 67], there has been no widely accepted standard by the time the
work presented in this thesis has been carried out.

There can be distinguished two orthogonal alternatives of modelling state
within Grid services:

1. Encapsulation uses the Java Beans model of accessing and manipulating
the service state through get and set interface methods. In this model
illustrated in Figure 2.6(a), a stateful Grid service specialises the state-
less Web service with methods concerning service state and lifetime. The
advantages of the encapsulation model is the natural object-oriented de-
sign that facilitates specialised extensions through inheritance. The main
disadvantage is the poor fault tolerance due to the one-to-one associa-
tion between the resource modelled and the Grid service as a single point
of failure. The encapsulation approach has been taken by the currently
obsolete Open Grid Service Infrastructure (OGSI) standard [163].

2. Delegation interposes a stateless Grid service between the client and the
driver that manages the stateful resources (see Figure 2.6(b)). While the
implementation of the Grid service is stateless, the interface of the ser-
vice is stateful. The state of the service within the service interface is
represented by the context [25] that identifies and maps a request to an
existing stateful resource (for instance by providing its reference handler).
The main advantage of the delegation model over encapsulation is the high
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Fig. 2.6. Stateful Grid service design alternatives.

degree of fault tolerance due to the m to n association between the state-
less Grid service and the modelled resource (i.e., multiple Grid services
can be used for accessing a stateful resource). The task of providing fault
tolerance is naturally deferred to the specialised resource driver. The dele-
gation approach has been taken by the Web Services Resource Framework
(WSRF) [67] specification.

2.8 Grid Applications

This section presents three concrete Grid application models which are the
subject of the performance, parameter, and optimisation analysis problems
addressed by this thesis.

2.8.1 Single-Site Applications

The single-site Grid applications, where a Grid site has been defined in Defi-
nition 2.6, are typically represented by sequential and tightly coupled parallel
applications. This section deals with the specification of the parallel applica-
tion model that is the subject of the multi-experimental performance studies
addressed by this thesis.

A parallel application consists of a set of distributed memory processes.
Each process executes a program which is divided in sequential and parallel
regions, as illustrated in Figure 2.7. A process may dynamically fork, syn-
chronise, and terminate threads during its execution. All the threads of the
process share the same address space. In a sequential region only one thread
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Fig. 2.7. The parallel application execution model.

of the process is active. In a parallel region several threads may be active
and execute simultaneously. Depending on the language implementation, the
threads may be spawned at the beginning of the program or at the beginning
of each parallel region. At the end of the parallel region, the active threads
may be synchronised, for instance through a barrier synchronisation or a join
operation. Following the parallel region, all the parallel threads except the
one that continues to execute the sequential region are either terminated or
stopped. A stopped thread can be resumed by a subsequent parallel region or
terminated at the end of the program execution. The threads active within
the same process exchange data through a common shared memory. The dis-
tributed memory processes exchange data through generic Send and Receive
message passing operations, executed either by the sequential processes or by
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the parallel threads. All the parallel processes and all the threads are termi-
nated at the end of the parallel application execution.

There are two emerged standards that implement in conjunction this hy-
brid distributed and shared-memory parallel application model:

1. Message Passing Interface (MPI) [145] for explicit message passing be-
tween processes on distributed memory architectures;

2. Open Multi Processing (OpenMP) [40] for implicit compiler-based paral-
lelisation on shared memory architectures.

Figure 2.8 displays the typical scenario for executing parallel single-site
applications on the Grid:

1. query resource information about the remote parallel computers and the
underlying hardware and software configurations (e.g., CPU speed, mem-
ory size, disk size, compiler, software libraries) required to execute the
application. Such a parallel computer represents a computational Grid
site;

2. transfer the parallel application to the remote Grid site using the GridFTP
file transfer protocol. Remotely running a (C or Fortran) parallel appli-
cation is bound to difficult software dependencies, such as shared library
availability, or non-standard compiler and link options. The easiest so-
lution for solving such complex remote dependencies is to locally build
static binary executable code compatible with (and potentially even opti-
mised for) the remote architecture and operating system. In cases when
the transfer of the source code to the remote Grid site cannot be avoided,
the next execution steps are required;

3. configure the application source code for the target architecture, typically
by forking a remote auto-configure program (e.g., GNU Autoconf [71])
using GRAM;

4. build (i.e., compile and link) the application, typically by forking a make
command on the remote execution site front-end using GRAM;

1 Ic

1. query resources

Application 12. transfer
(Jode I

3. configure
4. build
5. execute

User Site

MDS I

GridFTP

SOAP

Application
Cods

GRAM

Execution Site

Autoconf

make

execute

Fig. 2.8. Execution model of parallel applications on the Grid.
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5. execute and monitor the application using GRAM, typically configured to
interact with an available bàck-end job scheduler [108, 91, 179, 166, 152].
Automatic I/O file staging is automatically performed using the GASS
functionality.

2.8.2 Workflow Applications

Workflow modelling is a well established area in computer science that has
been strongly influenced by business process modelling work [173]. Recently,
the Grid community has generally acknowledged that the orchestration of Grid
services in a workflow represents an important class of loosely-coupled appli-
cations suited for programming large-scale Grid environments. The Grid ser-
vices are usually wrappers around off-the-shelf applications (often also called
components) that solve a well-defined atomic problem.

There is currently a large amount of research in the Grid community
devoted to the specification of workflows application models, that range
from low-level scripting languages [44, 101, 113, 154], to high-level abstract
XML [92, 94, 167, 8, 49, 56, 89, 102], and user friendly graphical inter-
faces [19, 28, 52, 121]. The definition a new Grid workflow model is there-
fore beyond the tool development scope of this thesis. Rather, a low-level
workflow model is adopted which is believed to constitute the minimal but
sufficient foundation to which any higher-level workflow specification needs to
be compiled.

Definition 2.7. A workflow application is modelled by a Directed Graph
(DG) A = (Nodes, Edges), where Nodes is the set of workflow tasks and Edges
the set of directed task dependencies. Workflow tasks are classified into two
distinct categories: Nodes = NodesJS U NodesFT:

1. Job Submission, denoted as JS(z) G Nodes , where z is the abstract
machine where the JS task executes;

2. File Transfer, denoted as FT(z\,Z2) G Nodes , where z\ and zq are the
source, respectively the destination abstract machines of the transfer.

Let succ(N) denote the set of successors of one task N G Nodes:

Ns G succ(N) <=$> 3 (N, Ns) G Edges.

Similarly, let pred(N) denote the set of predecessors of one task TV G Nodes:

Np G pred(N) <=> 3 (-Np, N) G Edges.

If pred(N) = (j>, where (f> denotes the empty set, then N is a start task. Simi-
larly, if succ(N) = <f> then N is an end task. Additionally, the set of predeces-
sors and successors of rank p of a task N are referred as:

predF(N) = pred(... pred(N)),
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respectively:
sucif(N) = succ(... succ(N))

(p calls). Two tasks N\ and 7V2 are independent iff $ p such that N\ G
predP(N2) V Ni G suc<f(N2).

A JStask is modelled as a single-site Grid application, as described in Sec-
tion 2.8.1, remotely allocated and manipulated using GRAM. A FT task uses
the GridFTP high-performance network communication protocol to physi-
cally transfer a file between two (i.e., source and destination) Grid sites. GSI
is employed for control flow task authentication as well as GridFTP control
and data channel security.

A workflow can have an arbitrary number of start and end tasks. Work-
flow graph edges model pure control flow dependencies. In contrast to other
traditional workflow approaches, the data communication is represented as
separate FT workflow tasks and not as weights that annotate the graph edges.
This representation looks more appropriate for data Grid workflows, where
users often replicate data to locations with high-bandwidth access, without
binding file transfers to immediate computation. Input and output file staging
is modelled through FT workflow tasks having pre-defined fixed (instead of
abstract) source, respectively destination machines.

2.8.3 Parameter Studies

Parameter studies, also known as parameter sweeps, are large sets of indepen-
dent experiments that represent the same application executed on a different
input parameter configuration. The scope of the parameter studies is to anal-
yse the evolution of important output results as a function of various input
parameter values.

Parameter studies can be modelled as a specialisation of the workflow
model A = (Nodes, Edges) introduced in Definition 2.7, where:

1. the set of tasks exclusively consists of JS tasks: Nodes = Nodes ;
2. the set of FT (i.e., file transfer) tasks is empty: NodesFT — (j>;
3. the set of tasks dependencies is empty: Edges — <j>.

File staging is assumed to be performed off-line to the file systems of the
Grid sites available to the parameter study.
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Existing parameter study tools provide support to specify value ranges for
application parameters of interest, e.g., by means of external scripting lan-
guages [1], or through graphical annotation of input files [178]. All these
approaches, however, force the user to export the application parameters to
global input files or program arguments, which often requires undesired source
code adaptation for using the tool.

Additionally, there are no tools that combine the experiment specifica-
tion and management with cross-experiment performance analysis. All the
currently existing performance tools are restricted to single experiment anal-
ysis, which is not enough for efficient application performance tuning, that is
inherently a multi-experimental process.

Under this motivation, the ZEN language addresses the parameter specifi-
cation problem for performance and parameter studies using a directive-based
approach [123, 127]. So called ZEN directives are program comments that can
be inserted in any source file to specify value ranges for arbitrary application
parameters. The advantage of the directive-based approach over an external
script is the ability to specify experiments at a more detailed granularity (e.g.,
associate local scopes to directives, restrict parametrisation to specific local
variables, evaluate different scheduling alternatives for individual loops, or
various distribution options for local parallel arrays). Moreover, the ZEN di-
rectives do not require source code modification and do not change the seman-
tics of the code, as they are ignored by language processors that are unaware
of their semantics. The ZEN directives are designed as language independent
and therefore can be applied in the context of any programming language.
Constraint directives are introduced to control and avoid meaningless exper-
iments that could be generated by the cross product of the parameter sets
defined. The scope of the ZEN language is not restricted to parameter stud-
ies. ZEN performance directives allow the user to specify a wide variety of
performance metrics to be collected for arbitrary program regions.
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3.1 ZEN Sets

An important goal in designing the ZEN language was to express wide value
ranges for application parameters using a compact and practical syntax. For
this purpose, this section introduces a special stand-alone language construct
called ZEN set.

Definition 3.1. A ZEN set is a totally ordered set of (integer or real) numbers
or strings, with a well-defined syntax and a well-defined evaluation function e,
defined by the Equation 3.1. An element of a ZEN set is called ZEN element.

The ZEN sets have the following regular expression-based syntax:

zen-set
elem-list
elem

num

comp-elem
low
up
stride
number

integer
real
zen-num-set
num-list
zen-string

is
is
is
or
is
or
is
is
is
is
is
or
is
is
is
is
is

"{" elem-list "}"
elem [ "," elem ]*
num
comp-elem
low.up{: stride]
number
(zen-num-set \ zen-string)-\-
number
number
number
integer
real
[+|-]?[0-9]
[+|-]?[0-9]+"."[0-9]*
"{" num-list "}"
num [ "," num ]*
([>{},:] 1 "\f 1 "\>" 1 "V

Let • denote the string concatenation operator, also referred in the follow-
ing using one blank character. Let V denote the power set and R the set of
real numbers. The semantics (i.e., the concrete set of elements) of a ZEN set
is given by the evaluation function:

/ n \

e : zen-set -> V(R U string), e I ( J e/em» I = (Jë(eZemi), (3.1)

where string denotes an arbitrary string, V(string) denotes the set of strings,
and the function ë is denned in Figure 3.1.

Informally, an elem construct of a ZEN set can be expressed as:

1. a regular real number (see Example 3.2, Equation 3.2);
2. a low:up:stride pattern evaluated to a sequence of numbers ranging from

low to up with the increment stride (see Example 3.2, Equations 3.4
and 3.6). The stride is optional and has a default value of one, therefore:
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e : elem -» ^(K U string),

{low+k* stride | k e [0-"ft~'d°"
>]} , e is low:up:stride;{ {low

{e},
X,

e(e) = ^ {e}, e is number,
e is (zen-num-set | zen-string)+,

(zen-num-set \ zen-string) + = zen-string1 {numu,..., num\ni } • • •
zen-stringp {numpi,..., numpnp} zen-stringp+1,

X = {ës(zen-string1) m .. .ës(zen-stringp) np es(zen-stringp+1) |

V (m, . . . ,np) € e({numii,... ,numini}) x . . . x e({numpi,... ,numpnp})},

ê • strino -, strina ê (s) - I *' V e € { V ' \ { ' V } ' ^ : >> e ^ S;

£ s . string -, string, es{s) - j . ^ c . ^ ^ ^ s = S( \ c S r ) v c 6 {1>._ .{<) .}I>. . t> , } .

F ig . 3 .1 . The ZEN set element evaluation function.

e(low:up) = e(low:up:l);

3. a composite element comp-elem that alternates multiple sets of numbers
denoted as zen-num-set, with multiple ZEN strings denoted as zen-string.
The composite element is evaluated to a set of ZEN elements by computing
the cross product of the zen-num-sets and replacing each zen-num-set with
the corresponding tuple element (see Example 3.2, Equations 3.7, 3.9, 3.11,
and 3.13). The zen-string elements must obey the syntax defined by the
evaluation function £s in Figure 3.1, which can be informally translated
to the following rules:
a) commas inside a zen-string must be prefixed by one ' \ ' character

which distinguishes them from the value delimiters of a zen-num-set:

e(stringi \, stringr) = stringi , stringr,

where ' , ' ^ stringi A ' , ' ^ stringr (see Example 3.2, Equations 3.8,
3.10, 3.11, 3.12, and 3.13);

b) braces inside a zen-string must be prefixed by one ' \ ' character which
avoids zen-num-sets inside zen-strings:

ë(\{numi\,... \ , numn\}) = {numi,..., numn}

(see Example 3.2, Equations 3.8 and 3.10);
c) colons inside a zen-string must be prefixed by one ' \ ' character which

allows the pattern low:up:stride be a zen-string:

e(low\ : up\ : stride) = low : up : stride

(see Example 3.2, Equations 3.5, 3.10, and 3.12).
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Example 3.2 (ZEN set evaluation examples).

• Numerical value set enumeration:

e({l,2,3}) = {1,2,3}; (3.2)

• Alphanumerical (i.e., ZEN string) value set enumeration:

e({a,b,c}) = {a,b,c}; (3.3)

• Numerical value ranges using the low:up:stride pattern:

£ ( { l : 1 0 : 2}) = {1,3,5,7,9}; (3.4)

• The low:up:stride pattern as ZEN string through colon escape:

£({1\ : 10\ : 2}) = {1 : 10 : 2}; (3.5)

• Mixed numerical enumeration and low:up:stride value range:

£({0,1 : 10 : 2,11}) = {0,1,3,5,7,9,11}; (3.6)

• Function parameter variation:

e({/oo({10,20,30})}) = {/oo(10), /oo(20), /oo(30)}; (3.7)

• Inner zen-num-set avoidance through brace, and comma escape:

e({/oo(\{10\, 20\, 30\})}) = {/oo({10,20,30})}; (3.8)

• Array distribution variation [88]:

£({BL0CK({4 : 12 : 4}),CYCLIC({8,16})}) =

{BL0CK(4), BL0CK(8), BL0CK(12), CYCLIC(8), CYCLIC(16)}; (3.9)

• Inner zen-num-set avoidance through brace, colon, and comma escape:

£({BL0CK(\{4\ : 12\ : 4\})\, CYCLIC(\{8\,

{BL0CK({4 : 12 : 4}), CYCLIC({8,16})}; (3.10)

Two-dimensional matrix index annotation through comma escape:

£({.4({0 : 10 : 5}\ , {4 : 12 : 4})}) = {,4(0,4), 4(0,8), A(0,12),

,4), ,4(5,8), ,4(5,12), ,4(10,4), ,4(10,8), A(10,12)}; (3.11)

One-dimensional matrix index annotation through comma and colon es-
cape:

e ({X({0:10:5}\ ,4 \ :12\ :4)}) =

{A(0,4 : 12 : 4), ,4(5,4 : 12 : 4), ,4(10,4:12:4)}; (3.12)
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• Loop scheduling variation [40]1:

£({STATIC\, {4, 8}, DYNAMIC\, {1 : 4}}) = {STATIC, 4 , STATIC, 8 ,

DYNAMIC,! , DYNAMIC, 2 , DYNAMIC, 3 , DYNAMIC, 4}. (3.13)

The total order of the ZEN elements, denoted by the operator -<, in a ZEN
set zen-set = U"=i e^m* is given by the following ordering rules:

1. The order of the comma-separated elements is the enumeration order (see
Example 3.2, Equations 3.2, 3.3, 3.7, 3.10, and 3.13):

/ n \

V elemi, elenij G e I [ J eleny, , V i , j 6 [l..n], deny, < elenij <=$> i < j ;
\i=2 )

2. The element order specified by a low:up:stride value range pattern is the
element sequence from low to up with the increment stride (see Exam-
ple 3.2, Equations 3.4, 3.6, 3.12, and 3.13):

V e,, ej S e(low:up:stride), e* -< ej <=>•

ei = low + h* stride A ej = low + kj * stride A kt < kj ;

3. The cross product tuples are ordered lexicographically (see Example 3.2,
Equations 3.9, 3.11, and 3.13):

(m \ / np

(J numu I x ... x e j (J numpj

stringi n\... stringp np stringp+\ -< stringi n[... stringp n'p stringp+i

<̂ => 3 i £ [l..n] such that (V j G [l..i - 1] : rij = n'j) A rii -< n-.
Definition 3.3. Let (A, -<) and (B, -<) denote two totally ordered sets with
the same ordering operation x . The union of the totally ordered sets A and
B is the totally ordered set (A U B, -<) obtained by appending B\A to A:

y a,beAUB, a<b <=> aGA A be B\A V

(a,b&A V a,beB\A) A a X b.

The total order of ZEN sets is used by the ZEN index constraint directive,
which will be introduced in Section 3.7.

1 To avoid any potential confusion and allow the reader distinguish between com-
mas as set element delimiters and commas as regular characters of a string, the
ZEN elements have been underlined.



52 3 The ZEN Experiment Specification Language

3.2 ZEN Directives

Definition 3.4. A ZEN directive is a comment line that starts with the prefix
ZEN$.

The characters that mark the beginning (and eventually the end) of a
comment are the only programming language specific features of ZEN. Ex-
ample 3.5 shows six sample ZEN directives valid, in descending order, in the
context of the following programming languages: Fortran90, Fortran77, C++
(or Java), C, Lisp, and shell scripting language.

Example 3.5 (Sample ZEN directives in various programming languages).

!ZEN$ A = { 1, 2, 3 }
CZEN$ A = { 1, 2, 3 }
//ZEN$ A = { 1, 2, 3 }
/*ZEN$ A = { 1, 2, 3 }*/
;ZEN$ A = { 1 , 2, 3 }
#ZEN$ A = { 1, 2, 3 }

The ZEN language defines four categories of directives:

1. Substitute directives (see Section 3.5) and
2. Assignment directives (see Section 3.4) assign a ZEN set to an application

parameter. Each ZEN element of the ZEN set represents an experimental
value for the corresponding parameter;

3. Constraint directives (see Section 3.7) define boolean conditions over mul-
tiple ZEN variables which restricts the set of possible experiments to a
meaningful subset;

4. Performance directives (see Section 3.8) are used to request a wide variety
of performance metrics for specific code regions.

Every ZEN directive d, except the assignment directive, is associated with
a scope denoted by scope(d), which refers to the code region to which the
directive is applied.

Definition 3.6. A ZEN variable is an arbitrary application parameter defined
by a ZEN substitute or a ZEN assignment directive. A ZEN variable is a
sequence of characters that must obey the following syntax constraints:

1. equality and blank characters must be prefixed by a \' character, which
distinguishes them from the assignment character and eventual neighbour-
ing blank characters in a ZEN directive (e.g., count\=4 in Example 7.2);

2. arithmetical (+, —, *, /, %, "), relational (==, !=, <, >, <—, >=), and
logical(!, &c&t,\\) operators, as well as left and right parentheses must be
prefixed by a \' character, which distinguishes them from the parenthe-
ses and the operators of a ZEN constraint; (e.g., BL0CK\(4\) in Exam-
ple 3.11);
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In the following, several definitions which express the semantics of the
ZEN directives are presented.

Definition 3.7. The value set of a ZEN variable z, denoted by Vz, is the
totally ordered ZEN set (S, -<) associated with z:

where the value function e and the operator -< have been defined in Section 3.1.

The need for the total order of the value set will be addressed in Section 3.7.

Definition 3.8. An arbitrary file Z (e.g., source, input data, makefile) aug-
mented with a set of ZEN directives is called ZEN file, denoted as Z(zi,..., Zn),
where Zi are the ZEN variables defined by the ZEN directives ofZ,\/ie [l..n].
A ZEN file instance denoted as ZT(a,... ,en), where e; e V21, V i 6 [l..n],
is an instantiation of the ZEN file Z, obtained by instantiating each ZEN
variable with one ZEN element from its value set.

Informally, a ZEN file represents a parameterised application file. A ZEN
file instance instantiates each application parameter of the ZEN file with one
concrete parameter value. For instance, Example 3.10 illustrates an excerpt
of a ZEN file that is denoted as Z(NUM_THREADS(4)).

In the cases when the ZEN variables are irrelevant, the ZEN files and the
ZEN file instances will be simply denoted as Z, respectively ZI.

3.3 ZEN Transformation System

The generation of the ZEN file instances described by a ZEN file is performed
by the ZEN Transformation System depicted in Figure 3.2. The ZEN Trans-
formation System can be seen as a source-to-source language processor. The
scanner and parser modules examine the ZEN directives and construct an
abstract syntax tree representation of the ZEN file. The code generator is
different from a conventional compiler unparser, as it commonly generates a
possibly large number of ZEN file instances. The code generation rules are
specified by the semantics of the ZEN directives that annotate the ZEN file.
The number of the ZEN file instances is given by the cardinality of the value
set of the ZEN file which will be defined in Section 3.6.

ZEN
File Scanner Parser Abstract

Syntax Tree
Code

Generator

Fig. 3.2. The ZEN Transformation System.
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The ZEN variables can be of three different types: integer, real and string.
Introducing the integer and real types along side string (which otherwise would
have sufficed) is motivated by the value set constraints which will be described
Section 3.7.

Definition 3.9. The type r of a ZEN variable z is determined by the ZEN
Transformation System in the parsing phase based on the values of the asso-
ciated ZEN elements, as follows:

"integer", V e G V2, e is integer,
T(Z) — ^ "real", V e G V2, e is number A -> ( V e G V2, e is integer);

"string", V e G V2, e is zen-string A -i (V e € V2, e is number).

3.4 ZEN Substitute Directive

The ZEN substitute directive employs a conventional macroprocessor-based
string replacement mechanism to overwrite application parameters with value
instances of interest within ZEN files. This is expressed by assigning a ZEN set
to a ZEN variable. This directive is commonly employed to examine various
language-specific parallelisation patterns, like e.g., problem and machine sizes,
data distributions, or work scheduling strategies. The scope of the global sub-
stitute directive comprises the entire ZEN file where the directive is defined.
The global substitute directive has the following syntax:

substitute-directive is SUBSTITUTE zen-var = zen-set
zen-var is (r-\+\*/%"~"=<>!&\|\(\): \t\r\n\f]|"\="|

» \ I » I» \ _» j» \ *» I» \ /» I» \ M » I» \ A» |» \ » I» \ J » |

"\ <"|"\ >"|"\ < = T \ >=TV"P'\&&"r'\H"l

The ZEN Transformation System replaces all the occurrences in the en-
tire file of the name of a ZEN variable z with one element e G V2. It is the
task of the user to verify that the global substitution produces a correct out-
come. Eventual erroneous substitutions usually produce subsequent faulty file
compilations or faulty application executions.

Example 3.10 (OpenMP parallel region).

!ZEN$ SUBSTITUTE NUM_THREADS\(4\) = { NUM_THREADS({1:4}) }
!$0MP PARALLEL NUM_THREADS(4)

!$0MP END PARALLEL

OpenMP [40] is a directive-based language which represents the de-facto
standard for programming shared memory architectures (see Section 2.8.1).
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One typical optimisation problem for OpenMP applications is to determine
the optimal number of threads which execute a parallel region, expressed by
the NUM.THREADS clause of the PARALLEL directive. The global ZEN substitute
directive illustrated in Example 3.10 substitutes the string NUM.THREADS(4)
with the ZEN elements from the set:

VNUM.THREADS(4) = {MUM.THREADS(i) | V i G {1,2,3,4}}.

As a result, four ZEN file instances are generated, each one executing the loop
using a different number of parallel threads. Note that the code shown in this
example is semantically valid for both ZEN-aware and ZEN-unaware compilers
(i.e., that understand or ignore the ZEN directives). The OpenMP parallel
regions generated within each ZEN file instance are depicted in Figure 3.3.

File Instance (ZX)
2T(NUM.THREADS ( 1 ) )
-ZI(NUM_THREADS(2))
ZX(NUM_THREADS(3))
ZX(NUM.THREADS (4) )

Generated Code
!$0MP PARALLEL NUM-THREADS(l)
!$0MP PARALLEL NUM_THREADS(2)
!$0MP PARALLEL NUM.THREADS (3)
!$0MP PARALLEL NUM.THREADS(4)

Fig. 3.3. The file instances generated by Example 3.10.

3.4.1 Local Substitute Directive

It often occurs in practice that the user needs to apply a parameter substi-
tution to a specific restricted code region, for instance to a certain OpenMP
loop from a file that contains many other loops. The local ZEN substitute
directive restricts the scope of the global version to a specific region of the
ZEN file through the following syntax:

local-subst-dir is SUBSTITUTE zen-var = zen-set BEGIN
code-region
END SUBSTITUTE

The local substitute directives can be nested.
High Performance Fortran (HPF) [88] is a directive-based language de-

signed in the late 1990s to improve the productivity of writing data parallel
programs. Despite failing the general acceptance in the scientific community
due to the lack of performance delivered compared to MPI, HPF deserves
further attention as a high-productivity paradigm for programming next gen-
eration computing architectures [147].

To examine the scalability of HPF programs, the user commonly varies the
number of parallel processors expressed through a PROCESSORS directive. The
HPF code shown in Example 3.11 defines an 8 x 8 two-dimensional processor
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array. The local ZEN substitute directive dl causes the replacement of all the
occurrences of the string "P(8,8)" with every element in the associated value
set:

VP(8,8) = { P ( 8 ) 2 ) ,P(8 ,4) ,P(10,2) ,P(10,4) ,P(12,2) ,P(12,4) ,

P(14,2) ,P(14,4)} .

Example 3.11 (HPF array and independent loop distributions).

dl: !ZEN$ SUBSTITUTE P\(8,8\) = { P({8:15:2}, {2,4» } BEGIN
!HPF$ PROCESSORS P(8,8)

dl: !ZEN$ END SUBSTITUTE

d2: !ZEN$ SUBSTITUTE BL0CK\(4\) = { BLOCK({4:10:2}),
CYCLIC({10,20}) } BEGIN

!HPF$ DISTRIBUTE A(BLOCK(4)) ONTO P
d2: !ZEN$ END SUBSTITUTE

d3: !ZEN$ SUBSTITUTE A\(i\) = { A(i), B(I(i)) } BEGIN
!HPF$ INDEPENDENT, ON H0ME(A(i))

d3: !ZEN$ END SUBSTITUTE
DO i = 1, N

ENDDO

Beyond the specification of appropriate machine sizes, the array distribu-
tion is another non-trivial optimisation that can significantly influence the
overall performance of the parallel HPF applications. The local ZEN substi-
tute directive d2 in Example 3.11 defines a ZEN variable BLOCK (4) with the
value set:

yBL0CK(4) = {BL0CK(4),BLOCK(6),BLOCK(8), BLOCK(10),

CYCLIC(10),CYCLIC(20)}.

Every ZEN element represents a potentially good array distribution that sub-
stitutes the original BLOCK (4) distribution.

The ZEN substitute directive can be similarly employed to examine dif-
ferent options of the HPF REDISTRIBUTE directive.

The HPF ON and the ON HOME directives allow the programmer to control
the distribution of the computation across the processors of a parallel ma-
chine. The ON HOME directive requests the work distribution of a parallel loop
be derived according to an array section provided as argument. Such loops
often contain references to array elements that are distributed using various
irregular patterns for which is hard to figure out the optimal distribution of
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iterations. Example 3.11 defines an HPF INDEPENDENT loop which accesses
the elements of two arrays A and B. The local ZEN substitute directive dZ
specifies two different schedules for the loop iteration i: the processor A(i) and
the processor B(I(i)). The local substitute directive insures that the string
A(i) is replaced only in the INDEPENDENT directive and not further in the
parallel loop.

3.4.2 Homonym ZEN Variables

Appropriate scheduling of parallel loops is another critical optimisation de-
cision for OpenMP parallel programs. Example 3.12 contains two OpenMP
parallel loops for which various scheduling strategies are examined by means
of ZEN directives.

Example 3.12 (OpenMP loop scheduling).

d l : !ZEN$ SUBSTITUTE STATIC = { STATION,{1,10:100:10},
DYNAMIC\,-Cl,10:100:10} }

!$0MP PARALLEL DO SCHEDULE(STATIC) NUM_THREADS(4)

d2: !ZEN$ SUBSTITUTE STATIC = { GUIDED } BEGIN
d3: !$0MP PARALLEL DO SCHEDULE(STATIC) NUM.THREADS(4)
d2: !ZEN$ END SUBSTITUTE

The global ZEN substitute directives dl examines STATIC and DYNAMIC
scheduling strategies combined with different chunk sizes for all the parallel
loops of the ZEN file. STATIC scheduling means that the iterations are as-
signed to all the parallel threads (i.e., four in this example) statically, before
the parallel loop starts its execution. DYNAMIC scheduling means that each
thread dynamically receives a new set of iterations after it finishes the iter-
ations assigned [40]. The chunk size indicates the number of loop iterations
to be scheduled atomically. The directive dl replaces the original OpenMP
scheduling clause STATIC with every ZEN element e G VSTATIC in different
ZEN file instances.

The local ZEN directive d2 has the scope restricted to the parallel loop
directive d3. The GUIDED scheduling means that the iteration space is divided
into scheduling pieces, where the size of each successive piece is exponentially
decreased [40].

One can notice in this example that the ZEN directives dl and d2 define
two ZEN variables that have identical name STATIC. Despite their identical
name, the two ZEN variables are distinct, each one having its own scope and
value set. Intentionally or not, such situations often happen in practice and
need special care which is the subject of this section. In this example, keeping
the default STATIC distribution for both parallel loops, as also a semantically
proper ZEN variable naming (i.e., STATIC), may be of importance for the user.
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Definition 3.13. If the textual name of two or more ZEN variables in a ZEN
file is identical, these ZEN variables are called homonyms.

The impact of the homonym ZEN variables on the semantics of the global
and local ZEN substitute directives is as follows:

1. No homonym global ZEN substitute variables are allowed within one ZEN
file;

2. A local ZEN substitute directive di with a ZEN variable 2,, defined in the
scope of any global or local ZEN substitute directive dj with an associ-
ated ZEN variable Zj, where z* and Zj are homonym (i.e., v{zi) = V(ZJ))

augments the value set of Zj as follows:

where the union of two totally ordered value sets has been defined in
Definition 3.3.

A ZEN variable z is therefore characterised by the:

1. textual name denoted in the following as v{z);
2. ZEN directive d which assigns a value set Vz to z\
3. ZEN file Z which contains the directive d.

The following conventions for naming ZEN variables hold for the remainder
of the thesis:

1. if no homonym ZEN variable has been defined, the plain textual name of
the ZEN variable is used;

2. if other homonym ZEN variables have been defined, the ZEN variable is
referred through its textual name subscripted with a unique ZEN directive
identifier.

Therefore, the directive d2 from Example 3.12 defines the following value
set for the ZEN variable STATICd2:

VSTATICd2 = VSTATICdl y { G U I D E D } .

The substitute directive must be used with care, as it might replace unde-
sired occurrences of the ZEN variable in the corresponding scope. For instance,
if the variable D in Example 3.14 must be substituted in a given scope, then
every occurrence of this character would be replaced, even in keywords such
as DO or END. This problem is particularly critical for shortly named variables
(e.g., one character long) that are commonly used by the programmers (even
as global external variables), which are problematic or simply inconvenient to
be renamed. To overcome this limitation and give the user extra flexibility,
the ZEN assignment directive is introduced.
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3.5 ZEN Assignment Directive

The ZEN assignment directive is used to insert assignment statements into
ZEN files. Its purpose is to indicate all the values of interest for a specific pro-
gram variable, which must be denned in the context of the directive location
in the ZEN file. Formally, a ZEN assignment directive assigns a ZEN set to a
ZEN variable using the following syntax (where zen-var has been defined in
Section 3.4 and zen-set in Section 3.1):

assign-directive is ASSIGN zen-var = zen-set

The ZEN Transformation System, introduced in Section 3.3, textually re-
places a ZEN assignment directive with a statement which assigns one element
e € Vz to the ZEN variable z. The assignment statement must conform to the
syntax of programming language in which the ZEN file is written. For exam-
ple, if the ZEN file represents a C program, the assignment statement must
adhere to the C language syntax. The ZEN Transformation System does not
apply any type checking or examine whether the (ZEN) variable has been de-
clared in the scope of the directive. An eventual "variable not found" syntax
error will be detected by a subsequent compilation of the ZEN file instance.

Example 3.14 (Shortly named ZEN variables).

INTEGER D, i
s: D = 50
d: !ZEN$ ASSIGN D = { 2**{6:12} }

DO i = i , D

The ZEN assignment directive d in Example 3.14 assigns seven values to a
ZEN variable D that represents the upper bounds of the immediately following
DO loop:

VD = {2* *6,2 * *7,2 * *8,2 * *9,2 * *10,2 * *11,2 * *12}.

Note that the code is semantically valid for both ZEN-aware and ZEN-unaware
compilers. The ZEN-aware compilers replace the ZEN directive with an as-
signment statement that assigns one element e € VD to the (ZEN) variable
D. In this example the default assignment s becomes redundant and is sub-
ject for compiler dead-code elimination. Also note that using a substitution
in place of the assignment directive would also replace the character D in the
keyword DO which would produce an erroneous program.

3.6 Multi-Dimensional Value Set

It is clear that one ZEN directive implies a number of ZEN file instances
equal to the cardinality of the value set defined. This section describes how
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multiple ZEN directives defined within a single ZEN file impact on the ZEN
file instances generated.

Definition 3.15. The multi-dimensional value set ofn distinct ZEN variables
zi,...,Zn, denoted as V(zi,. ..,Zn), is the cross product of their value sets:

The value set of a ZEN file Z(z\,..., Zn), denoted by V(Z(z\,..., Zn)), or
simply by Vz, is the entire set of ZEN file instances generated from the multi-
dimensional value set of its ZEN variables:

V(Z{zu ...,zn)) = {ZI(elt ...,en)\y(e1,...,en)€ V ( z i , . - . , *„ )} .

For instance, Example 3.12 defines two ZEN directives dl and d2, whose
multi-dimensional value set is given by the cross product of their value sets:

V(STATICdi,STATICd2) = VSTATICdl x VSTATIC"2,

with the cardinality:

|V(STATICdl)STATICd2)| = |VSTATICdl| x |ySTATICd2| = 22 x 23 = 506.

Definition 3.16. A ZEN application, denoted by A(Z\,. ..,Zn), or simply
by A, consists of a set of ZEN files Z\,..., Zn. A ZEN application instance,
denoted by AT(ZIi,..., Zln), or simply by AX, is a set of ZEN file instances
which instantiate each ZEN file of the ZEN application:

AT(ZTU..., ZIn) = {Zli G VZi | V i S [l..n]} .

Prom an informal perspective, a ZEN application represents a Grid ap-
plication annotated with ZEN directives that confirms to one of the models
presented in Section 2.8.

Definition 3.17. The value set of a ZEN application, denoted in the follow-
ing by V(A(Zi,..., Zn)) or simply by VA, is the set of application instances
generated by the cross product of the value sets of its constituent ZEN files:

, •••, Zln) e VZl x . . . x VZn}.

3.7 ZEN Constraint Directive

The plain cross product of the value sets often produces a large number of ZEN
element combinations that have no useful practical meaning. The consequence
can be a dramatic increase in the number of experiments and the time needed
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to conduct them, for instance in the context of a parameter study. The ZEN
constraint directive is introduced with the purpose of filtering the meaningless
or irrelevant the parameter combinations from the multi-dimensional value set.

Similarly to the substitute directive, the ZEN constraint directives can
have global and local scopes. The local ZEN constraint directives can also be
nested. The syntax of the ZEN constraint directive is as follows:

global-constraint is CONSTRAINT type b-expr
b-expr is bool-expr(zen-var-list)
type is VALUE

o r INDEX

local-constraint is CONSTRAINT type b-expr BEGIN
code-region
END CONSTRAINT

The term b-expr refers to a boolean expression which contains constants
and ZEN variables as operands. The set of arithmetical operators allowed in
a b-expr is: {+, —, *, / , %, "} , the set of relational operators: {==, ! =, <, >
, < = , > = } , and the set of logical operators: {!,&&, | | } . The symbols % and
denote the modulo, respectively the power operators. The operators assume
the standard mathematical associativity which can be overwritten by using
parentheses. The arithmetical operators have precedence over the relational
operators, which have precedence over the logical operators. An arithmetical
operation over a set of integers produces an integer result. An operation over
a set of mixed integer and real numbers produces a real result.

There are two types of ZEN variables that can appear in a ZEN constraint:

1. local ZEN variables that must be defined in the scope of the ZEN con-
straint;

2. external ZEN variables that must be globally defined in a different ZEN
file, referred by prefixing the ZEN variable with the ZEN file name followed
by a colon (see Example 7.15).

A ZEN constraint directive denoted as d, which defines the boolean ex-
pression bool-expr(zen-vari, ..., zen-varn), holds for every ZEN variable in
the scope of the directive with the name in { zen-vari, ..., zen-varn } . If
there exist homonym ZEN variables in the scope of the directive with the
name in { zen-vari, ..., zen-varn }, the following set of constraints is gener-
ated:

{bool-expr[zu ...,Zn) | V {z i , . . . , Zn} C scope(d),

such that v(zi) = zen-vari, V i e [l..n]},

where v(zi) is the textual name of a ZEN variable, as defined in Section 3.4.2.
The ZEN constraint directive defines two types of constraints, which de-

pend on the type of the ZEN variables involved (see Definition 3.9):
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1. value set constraint defines a boolean expression over a set of ZEN vari-
ables of type integer and real (see Section 3.7.1);

2. index domain constraint defines a boolean expression over a set of ZEN
variables of any type, including string (see Section 3.7.2).

3.7.1 Value Set Constraint

The value set constraint, indicated by the VALUE clause of the ZEN constraint
directive, defines a boolean expression over a set of ZEN variables of types
integer and real. The type of a ZEN variable has been defined in Definition 3.9.

Definition 3.18. Let zi,...,Zn denote a set of ZEN variables. The tuple
( e i , . . . , en) € VZl x . . . x V2" is called value-valid iff the following condition
holds:

valid(e1,...,en) <=> a(IIju...jm(ei,... ,e„.)) = true,

V a : VzJi x . . . x Vzi™ —> boolean a value set constraint, where:

{zh>---izjm} c {zi,---,Zn}, V jk € [l..n], V k 6 [l..m] A m < n.

The notation ITjl!...jm(ei,... ,en) denotes the projection of the tuple ele-
ment ( e i , . . . , en) from the n-dimensional space VZl x . . . x VZn onto its m-
dimensional subspace VZji x . . . x VZj™.

Informally, a tuple ( e i , . . . , e„) € VZl x . . . x V2" is value-valid iff it satisfies
all the value set constraints defined across any subset of the ZEN variables
involved. A value set constraint is evaluated by instantiating each ZEN vari-
able Zi with the corresponding ZEN element e, from the tuple, V i e [l..n].
All the invalid tuples are eliminated from the multi-dimensional value set.

Example 3.19 (Value set constraint).

INTEGER D, P, i
!ZEN$ ASSIGN P = { {8:16:4}**2 }
D = 50
!ZEN$ ASSIGN D = { 2**{6:12> }
DO i = 1, D
!ZEN$ CONSTRAINT VALUE D~3 / P < 40000000

In Example 3.19, the ZEN variable D defines the powers of 2 from 26 to
212. The ZEN variable P defines the square numbers from 22 to 82 with the
stride 2:

VD = {2**6 ,2**7 ,2**8 ,2**9 ,2**10 ,2**11 ,2**12} ;

Vp = {8**2,12**2,16**2}.

The value set constraint directive filters the ZEN elements from the cross
product VN x V^, such that the boolean expression defined yields true (see
Figure 3.4):
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Fig. 3.4. The value set constraint defined by the Example 3.19.

V(D,P) = {{eu e2) | — < 40000000, V e ^ V*, V e2 € V F | .

Assuming that D represents the size of a three-dimensional array and P the
number of the available processors onto which the array is distributed, the
constraint restricts the value set to those combinations which need less than
40MB on each processor.

3.7.2 Index Domain Constraints

While the value set constraint boolean expression is meaningful to be defined
over a set of ZEN variables of types integer and real, it is problematic to
comprise ZEN variables of type string. For this reason, the value set of a
ZEN variable has been defined as a totally ordered set (see Definition 3.7)
that associates a well-defined index to each ZEN element, as specified by the
following definition.

Definition 3.20. The index domain of a ZEN variable z, denoted by Xz, is
the totally ordered set of elements Iz = (<S, <), where:

S = {i G N* \i< \VZ\}

andN* denotes the set of positive natural numbers (i.e., non-zero). The total
order of elements in 2Z is the natural element order. The value function of a
ZEN variable z is the total bijective function:

•d:lz-> Vz,

which associates each element i?(i) S Vz with an index i € Xz such that:

V i, ii, i2 S lz, i\<i <i

The index function:

is the inverse of the value function.
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The ZEN directives defined by Example 3.19 shown in the previous section
define the following index sets and value functions:

1D = {1,2,3,4,5,6,7};
tiD : XD -» VD, tiD{i) = 2 i + 5 ;
lp = { 1 2 3}-
dp : lp U'Vp\ tip(i) = (8 + 4 • (* - I))2 .

The index domain constraint, indicated by the INDEX clause of the ZEN
constraint directive, defines a boolean expression over the index domains of
the ZEN variables involved.

Definition 3.21. Let z\,...,Zn denote a set of ZEN variables. The tuple
(e i , . . . , e„ ) G VZl x . . . x V2" is called index-valid iff the following condi-
tion holds:

valid{&-1(e1)t...1d-1(en)) ^=> ß (nh ^(^(ei),. . . .iT1^))) = true,

where /?j1,...,jm(i?~1(ei),... ,'d~1(en)) has been defined in Definition 3.18,
V ß : Vz« x . . . x VZim —» boolean an index domain constraint, where:

tei »••• 12.7m } C {zi,...,Za}, V j k e [l..n], V fc€ [l..m] A m < n.

Informally, a tuple (tf ~ x ( e i ) , . . . , •d~1(en)) Ê P 1 X . . . x 2 > is index-valid
iff it satisfies all the index domain constraints defined across any subset of the
ZEN variables involved. An index domain constraint is evaluated by instanti-
ating each ZEN variable Zi with the index of the corresponding ZEN element
ei from the tuple, V i G [l..n]. All the invalid tuples are eliminated from the
multi-dimensional value set.

Example 3.22 (Local index domain constraint).

!ZEN$ CONSTRAINT INDEX Input l == Outputl BEGIN
!ZEN$ SUBSTITUTE Inpu t l = { Input{l :100} }
0PEN(UNIT=2, I0STAT=I0S, FILE='INPUT1', STATUS='OLD')
!ZEN$ END SUBSTITUTE

!ZEN$ SUBSTITUTE Outputl = { 0utput{l :100} }
0PEN(UNIT=2, I0STAT=I0S, FILE='Output l ' , STATUS='NEW')
!ZEN$ END SUBSTITUTE
!ZEN$ END CONSTRAINT

Parameter studies [1, 178] are applications that are executed for different
input parameters to examine their effect on the corresponding output results.
In a typical scenario, the output parameter values are written to a distinct
output file for every experiment. Example 3.22 gives a scenario how ZEN di-
rectives can be employed to manage such parameter studies. The local ZEN
substitute directives are used to specify the different input and output data
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Fig. 3.5. The index domain constraint defined by the Example 3.22.

files to be used in each experiment. The local ZEN constraint directive as-
sociates every input file with a correct output file which avoids invalid input
and output file combinations (see Figure 3.5):

yinputi = { I n p u t i | v i € [1..100]},
Jlnputl = {j | V i G [1..100]},
tfinputi : J I n p u t l -> VIn"utl, tfinputl(i) = Inputi;
voutputi = {Outpu t i | y i e [1..100]},
joutputi = {j | y i e [1..100]},
tfoutputi : ̂ u t p u t l -» VOutPutl, i?Outputi(i) = Outputi;
V(Inputl, Outputi) = {(Inputi, Outputi) | V i G [1..100]}.

Thus, 100 ZEN file instances are generated (instead of 100 x 100 = 10000),
each of them reading the data from and writing the data to different input
and output files.

3.7.3 Multi-Dimensional Value Set

The following definition redefines the multi-dimensional value set, initially
introduced in Definition 3.15, to take the ZEN constraints into consideration.

Definition 3.23. The multi-dimensional value set of a set of ZEN variables
z\,... ,Zn is defined as the set of tuples that are both value-valid and index-
valid:

..,en)eV* x . . . x V*" |

t»aZid(ei,...>en) A valid(d-^d),...,^-1 (en))}.

3.8 ZEN Performance Directive

For performance-oriented program development, the user commonly requires
information about the performance of specific code regions, such as the overall
execution time, the number of cache misses, the communication time, the
synchronisation time, or the floating-point operations per second. The ZEN
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language supports the specification of performance metrics to be measured
for specific code regions through the ZEN performance directive.

In contrast to the other ZEN directives that have general applicability,
the ZEN performance directive is only meaningful in the context of parallel
applications, following the shared and distributed processing model introduced
in Section 2.8.1. The parallel programming paradigms supported are MPI,
OpenMP, and HPF.

The scope of the ZEN performance directive can be global for the entire
ZEN file or can be limited to a local code region:

BEGIN

The ZEN performance directive defines two clauses associated with two
sets of mnemonics:

1. Code region mnemonics (cr-mnem), associated with the CR clause, define
the code regions within the scope of the directive that are going to be
instrumented;

2. Performance metric mnemonics (pm-mnem), associated with the PMETRIC
clause, define the performance metrics to be measured for the indicated
code regions.

Definition 3.24. A code region CR is a quadruple that associates a ZEN
application A, a ZEN file Z, a start line number ls, and an end line number
le:

• Cn=(A,Z,ls,le),

where ls,le G N*. A performance measurement, denoted by A4, is an associ-
ation between a performance metric and a code region:

M = (pmjmnem, CR).

Let d £ Z denote a ZEN performance directive that specifies a set of n
code regions and p performance metric mnemonics: The set of performance
measurements defined by d and denoted as A4(d) is given by to the cross
product of the two mnemonic lists:

M(d) = \^J pm.mnem^ x I M M {r \ r is cr.
i=l V = 1 r€scope{d)

Informally, a global performance directive d collects performance metrics
for all the code regions of the ZEN file that contains d. The code region
types are specified in the CR clause and the performance metrics in the PERF
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clause of d. The local performance directive restricts the performance metrics
and the code regions to the corresponding local scope. The local performance
measurement directives can also be nested.

The implementation of the ZEN performance directive is based on the
SCALEA [161] instrumentation engine and overhead analysis tool built on
top of the Vienna Fortran Compiler [15]. SCALEA supports approximately
50 code regions (e.g., CR_P = whole program, CR_L = all loops, CR_0MPPA = all
OpenMP parallel loops) and 40 performance metric mnemonics (e.g., ODATA
= data movement, OSYNC = synchronisation, 0DATA_L2 = number of level
2 cache misses) for the OpenMP, MPI, and HPF programming paradigms.
A complete list of the code regions and the performance metric mnemonics
supported is given in [158].

Example 3.25 (ZEN performance directive).

d i : !ZEN$ CR CR_P, CR_0MPPA PMETRIC WTIME, ODATA

CR.OMPPA: !$0MP PARALLEL NUM_THREADS(4)

CR.OMPPA: !$0MP END PARALLEL
d2: !ZEN$ CR CR.OMPPA PMETRIC L2_DCM, OCRTP BEGIN

CR.0MPD0: !$0MP PARALLEL DO NUM_THREADS(4)

CR_0MPD0: !$0MP END PARALLEL
d2: !ZEN$ END CR

Example 3.25 is an excerpt of a hybrid OpenMP and MPI parallel pro-
gram that defines one global ZEN performance directive dl, one local ZEN
performance directive d2, the entire program code region CRJ>, and two lo-
cal OpenMP parallel loops CRJDMPPA and CRJDMPDO. The metrics specified by
the two ZEN performance directives are the wallclock time WTIME, the data
movement ODATA (i.e., the MPI communication time), the level two data cache
misses L2_DCM, and the control of parallelism (i.e., OpenMP fork, join, loop
scheduling, and barrier). The following set of performance measurements are
generated by this example, given the directive nests displayed:

M{dl) = {(WTIME, CRJ>), (WTIME, CRJDMPPA), (WTIME, CR.0MPD0),

(ODATA, CR_P), (ODATA, CRJDMPPA), (ODATA, CRJDMPDO)};

M{d2) = {(L2_DCM, CRJDMPDO), (OCTRP, CRJDMPDO)}.

Definition 3.26. Let A4{A) denote the set of a performance measurements
of a ZEN application defined through ZEN performance directives:

M{A) = {M(d) | V d e Z, V Z £ VA} .
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An experiment is a tuple (AT, M) that associates a ZEN application instance
AT G VA with a target execution machine M. A performance data is a func-
tion which quantifies each performance measurement for one experiment:

5M : M(A) x VA -» K.

A performance study experiment is a triplet (AI, M, ÔM(M(A) X AI)) where
AT € VA and 6~M (M (A) x AT)) is the image of the performance data function
projected to the subdomain /A(A) x AT.

Informally, a performance study experiment associates an experiment with
the complete set of performance data collected from the application, as spec-
ified by the complete set of ZEN performance directives.

3.9 Parameter Study Experiment

This section uses the opportunity to define a parameter study experiment as
natural side-effect of the formalism presented in this chapter.

Definition 3.27. An output parameter is a tuple (Zo, pattern), where pattern
is a unique pattern that prefixes the output parameter within the output file
Zo. Let OV(A) denote the set of output parameters of a ZEN application A.
An output data is a function:

e : OV(A) — R.

A parameter study experiment is a tuple: (AT,Im(e)), where AT G VA, and

Im(e) = t(OV(A))

is the image of the output data function.

Definition 3.27 illustrates that the target execution machine of a parameter
study experiment is irrelevant.

3.10 The Experiment Generation Algorithm

The ZEN constraints act as a filter over the cross product of all the ZEN
variable value sets of a ZEN application. This section introduces an efficient
algorithm for generating the valid tuples of ZEN elements, as defined by the
multi-dimensional value set in Definition 3.23. The problem is described by
the following input and output data of the algorithm:

Input: 1. n ZEN variables: z\,...,Zn with the value sets VZ l , . . . , V2" ;
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2. p (value set and index domain) constraints:

7i : Vu x . . . x Vi,, 7i = log-expr(Vn, •••, Vi,),

7p : Vpi x . . . x Vpq, 7p = log-expr(Vpi, • • •, VP9), where

{Vn>...,Vi,}c{VJV..,V*»})

Output: V(zi,...,Zn).

An algorithm which tests according to Definition 3.23 all the p constraints
for all the tuples of the cross product Vi x . . . x Vn, has a mathematical
complexity of Ö (p • n°), where o denotes the average cardinality of the value
sets.

This complexity can be reduced by shifting the focus from the value sets
to the ZEN constraints, which are likely to be defined over a smaller subset
of ZEN variables. By doing so, the invalid tuples are filtered from the very
beginning which avoids further unnecessary and redundant constraint tests.
The complexity of the algorithm is reduced to ö(pn°), where n is represents
the average number of ZEN variables in a ZEN constraint logical expression.
Obviously, the improvement is due to the fact that n < n.

Definition 3.28. Let Si , , . . . , S i r, S^ , . . . , Sjs denote r + s arbitrary sets,
(i/i!,..., vir) e S*, x .. . x Sir and (v^,..., vJ3) € Sjl x .. . x Sjs. The com-
position operation (g> between two tuples is defined as follows:

j j j

l<u<r A l<w<s,Vi„=vjm,
3 Siu=Sjw€{Sil,...,Sir}n{Sjl>...,%.},
l<u<r A 1 <w <s, such that viu ^ vjw,

(vkl,...,vkt) G Skl x . . . x Skt,

v»! , . . . , v i r ) = n i x i r ( v k l ,...,

The composition operator <g> has the following properties:

1. commutativity: A ® B = B ® A;
2. associativity: A ® (B ® C) = (A ® B) <8> C;
3. idempotency: A ® A = A;
4. neutral element: A <S> ( ) = A;



70 3 The ZEN Experiment Specification Language

5. (Ç,®) is an Abelian group, where G = S^ x ... x Skt-

Lemma 3.29. Let z\,...,z„. denote n ZEN variables and let 7 1 , . . . , 7P denote
p (value set or index domain) constraints over the n ZEN variables (log-expr
denotes a logical expression):

71 : Vu x . . . x Vi„, 71 = log-expr(Vii,..., Vlg),

7p : Vpi x . . . x VPg, 7p = log-expr(Vpi,..., Vpq),

{V P 1, . . . ,V P 9 }C{V 2 1 , . . . ,V Z "} ;

and

ti e Vu x . . . x Vi,, 71 (ti) = true;

tp € Vpi x . . . x Vpq, 7p(*p) = true.

Then t\ © . . . © tp is valid (i.e., valid{t\ © . . . © tp)).

Proof. Case 1: t\ © . . . © tp = ( ). The empty tuple is obviously valid.

Case 2: t\ © . . . © tp ^ ( ). Assuming that t\ © . . . ffi tp is not valid, according
to the Definition 3.23 there exists a constraint:

' 7^ : Vhl x . - . x V / , , - » boolean,

such that 7/1 (t/,) = false, where th = ^ , , . . . ,h g ( t i®. ..®'tp). Since 7 1 , . . . , 7 P

are all the constraints defined, then 7/, £ {71 , . . . , 7 P } , which contradicts
one of the p constraints.

Algorithm: The experiment generation algorithm works according to the
workflow depicted in Figure 3.6, where:

• 7i is the cross product of the value sets of the ZEN variables referred by
the constraint 71:

h = Vu x . . . x Vig;

• . . .
• Ip is the cross product of the value sets of the ZEN variables referred by

the constraint 7P:
Ip = Vpi x . . . x Vpg;

• Ei are the valid tuples that fulfil the constraint 71:

Ei = { ( e n , . . . , e i , ) € Vu x . . . x Vi, I 7 i ( e n , . . . , e\q) = true);
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Fig. 3.6. The experiment generation algorithm dataflow.

Ep are the valid tuples that fulfil the constraint 7P:

Ep = { (e p i , . . . , epq) e Vpi x . . . x Vpg | 7P(ePi,• • •, epq) — true};

/ i s the multi-dimensional value set of the ZEN variables not referred by
any ZEN constraint:

/ = {(ih,...,iix) G Vz'i x . . . x V2'* | V 7 m : V2"1* x . . . x V2"1« -> boolean

A {V 2 ' i , . . . , VZI* } n {V2"n,. . . .V*"1»} = 0};

S is the multi-dimensional value set, obtained by applying the composition
operator to the valid tuple elements of the cross product E\ x . . . x Ep x / :

V ( e n , . . . , e i , ) G £ i A . . . A ( e p i , . . . , ep,) € £„} .

Based on the Lemma 3.29, the tuples belonging to the set E are valid,
therefore, V(zi, ...,z„,) = E.

Example 3.30 (Constraint evaluations).

!ZEN$ ASSIGN A = { 1 : 100 }
!ZEN$ ASSIGN B = { 1 : 100 }
!ZEN$ ASSIGN C = { 1 : 100 }
!ZEN$ CONSTRAINT VALUE A == B
!ZEN$ CONSTRAINT VALUE B == C

Example 3.30 defines three ZEN variables with the same value set:

VA = VB = Ve = {» | V i e [1..100]}.

The dataflow multi-dimensional sets computed by the experiment genera-
tion algorithm according to the Figure 3.6 are as follows:
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I1=VAx VB;

I2 = VBx Ve;

Ex = {(a, b) | V a £ VA A V b G V s A a = b};

E2 = {(b,c) | V b G V s A V c G Ve A & = c};

£ = { ( a , & , c ) | V a e V 4 A V i e V 8 A V c G V e A a = fc = c},

where:

(0,6) ® (&,c) = (a,&,c), V a G V-4 A V6G V s A VcG V e .

Since | / i | = | /2 | = 104 and \Ei\ = \E2\ = 102, the experiment gener-
ation algorithm evaluates 3 • 104 constraints. In contrast, a straight-forward
algorithm, which evaluates both ZEN constraints on all the tuples of the cross
product Ax B xC according to the Definition 3.23, performs 2 • 106 constraint
evaluations.

3.11 On-line Application Analysis

The performance and parameter study experiments described in Sections 3.8
and 3.9 assume that the performance and the output parameter data is avail-
able post-mortem (or off-line) after the experiments have completed. This
restriction is often critical for the users who need to get access to intermedi-
ate data values on-the-fly, as the experiments progress. The Grid computing
that defines applications running on unreliable resources is especially prone
to such situations, for instance in a typical application steering scenario.

Often users are interested in being notified of important events that are
specific to their application, e.g., when a certain variable changed its value or
when a specific performance metric exceeded a critical threshold. To meet this
requirement, the ZEN language has been extended with event directives for
the specification and the collection of on-line events and data from the running
experiments. The event directives proposed in this section are part of a more
general event framework which will be presented in detail in Section 5.4.

3.11.1 ZEN Event Directive

Using the ZEN event directive, the user can request to be informed of well-
defined application run-time status. The ZEN event directive has the following
syntax:

zen-event is EVENT ident [ FILTER bool-expr ] [ SAMPLE rate }
ident is string

The directive defines the following three clauses:
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1. EVENT defines the event identifier ident which must be an arbitrary unique
string for an application;

2. FILTER is an optional clause that filters the events to those which satisfy
the associated boolean expression. The syntax of the filtering condition
defined over a set of program variables is identical to the one defined
by the ZEN constraint directive in Section 3.7. The directive assumes no
semantic analysis to examine whether the program variables referred by
the boolean expression are valid within the run-time evaluation scope of
the filtering condition. An eventual "variable not found" error will be
produced by a subsequent ZEN file compilation.

3. SAMPLE is an optional clause which determines the directive applicability
mode, as follows:
a) procedural mode is selected by omitting the SAMPLE clause. Whenever

the program counter reaches the directive at runtime, an event of type
ident is generated if the filtering condition yields true. The variables
involved in the filtering condition must be valid within the scope where
the directive is defined;

b) threaded mode is selected by introducing the SAMPLE clause which spec-
ifies the rate (in samples per second) at which the filtering condition
shall be evaluated. If the filtering condition yields true, an event of
type ident is generated. In the threaded mode the variables involved
in the filtering condition must be global.

Example 3.31 (ZEN event directive).

!ZEN$ EVENT N1000 FILTER N > 1000 SAMPLE 1

Example 3.31 defines a ZEN event directive operating in the threaded
mode, which generates an event of the type N1000 if the program variable TV
is greater than 1000. The variable N must be global and is sampled every
second.

3.11.2 ZEN Performance Directive

For on-line performance analysis of parallel applications, the ZEN performance
directive introduced in Section 3.8 has been extended with three extra clauses
for expressing performance events:

global-perf is CR cr.mnem-list PMETRIC pmjmnem-list
{ EVENT ident ] [ SAMPLE rate ] [ FILTER bool-expr ]

local-perf is CR crjmnem-list PMETRIC pm.mnem-list
[ EVENT ident ] [ SAMPLE rate } [ FILTER bool-expr } BEGIN
code-region
END CR

The semantics of the three additional (and also optional) clauses are as
follows:
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1. EVENT defines the event type;
2. SAMPLE is an event parameter which defines the rate at which the per-

formance metrics specified by the directive are periodically sampled. No
sampling is done if this clause misses (i.e., post-mortem analysis). The
measurement unit is samples per second. For each measurement, an event
of type ident is generated if the boolean expression specified by the FILTER
clause yields true (or misses). The sampling rate defines the expiration
time of each event;

3. FILTER defines a filter as a boolean expression over the performance met-
ric mnemonics specified by the directive. The performance mnemonics
referred by the boolean expression must be present within the PMETRIC
clause. An expression evaluation occurs at run-time at the rate specified
by the SAMPLE clause. If the expression yields true, an event of type ident
is generated.

The implementation of the online clauses of the ZEN performance directive
uses the Process Manager sensor for the dynamic instrumentation of running
processes, which will be described in Section 5.2.2.

Example 3.32 (Online ZEN performance directive).

!ZEN$ CR CR_P PMÈTRIC ODATA, WTIME EVENT comm SAMPLE 4
FILTER ODATA > WTIME / 2

Example 3.32 illustrates a global ZEN performance directive which mea-
sures the execution time and the communication time of the entire program.
The two metrics are sampled four times per second. An event of type comm
is generated if the communication overhead ODATA dominates (i.e., is greater
than half of) the wallclock execution time WTIME.



ZENTURIO Experiment Management Tool

ZENTURIO [124, 128] is a tool designed to automatically generate and con-
duct large number of experiments in the context of large scale performance
and parameter studies on cluster and Grid architectures. ZENTURIO has
been designed as a distributed service architecture illustrated in Figure 4.1,
compliant with the service-oriented Grid infrastructure model presented in
Chapter 2.

User
Application
Compilation
Execution
Machine

Legend Q Web Service

( ^ FactoryService

Q Portiet

[ ] Data Repository

Job Scheduler

....._• Deploy Service

» Control and Data Flow

— — • Asynchronous Events

Fig. 4.1. The ZENTURIO experiment management tool architecture.
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ZENTURIO uses the ZEN directive-based language defined in Chapter 3 to
annotate arbitrary application files and specify value ranges for any problem,
system, or machine parameter, including program variables, file names, com-
piler options, target machines, machine sizes, scheduling strategies, and data
distributions. The functionality of the ZENTURIO experiment management
tool described in this chapter is restricted to post-mortem cross-experiment
performance analysis and parameter studies. The ZEN performance directives
introduced in Section 3.8 are used to indicate the performance metrics to be
measured and computed.

The entry point for a user is a graphical User Portal (see Section 4.1)
which normally resides on the local client machine (e.g., laptop). Through
the portal, the user creates or loads a ZEN application which is subject to
a large-scale performance and parameter study automatically conducted by
ZENTURIO.

The experiment management functionality of ZENTURIO is achieved
through the cooperative use of various distributed Grid services. The Service
Repository (see Section 5.3.2) is a database that contains persistent implemen-
tations of Grid services. The Factory (see Section 5.3.4) is a service in charge
of creating service instances on arbitrary Grid sites using the implementation
information from the Service Repository. The Registry (see Section 5.3.5)
manages an up-to-date list of existing transient Grid service instances and
provides a variety of advanced high-throughput service discovery operations.
The Service Repository, the Factory, and the Registry are generic Grid ser-
vices that are fundamental to the tool integration framework which will be
addressed in Chapter 5.

After a ZEN application has been properly input, ZENTURIO automati-
cally generates, executes, controls, and monitors the experiments on the target
Grid site automatically. The User Portal uses the Registry to locate an Exper-
iment Generator service, preferably on the local Grid site. If the Experiment
Generator resides on a different site, the application files are packed into a
ZIP [45] archive and sent to the destination site using the GridFTP protocol.
If no Experiment Generator service is found, an instance is created using the
Factory service. The Experiment Generator parses the ZEN files, instruments
the application according to the ZEN directives encountered, and generates
the corresponding set of experiments.

After having generated one experiment, the Experiment Generator trans-
fers it to the target execution Grid site, where an Experiment Executor service
resides. If no Experiment Executor service is found, an instance is created
using the Factory service. The Experiment Executor is a generic service re-
sponsible for compiling, executing, and managing the execution of multiple
experiments. Upon the completion of each experiment, the Experiment Ex-
ecutor automatically stores the experiment output and the performance data
into a well-defined PostgreSQL [83]-based Experiment Data Repository (see
Section 4.4). The users can remotely access the data stored in the reposi-
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tory via the User Portal or manually formulate SQL queries for post-mortem
performance analysis and visualisation.

It is usual in practice that the end-users cannot stay online for the entire
duration of the performance or parameter study, for instance when submitting
a large suite of experiments over night or when travelling. For this reason, the
ZENTURIO architecture has been designed such that the Experiment Gen-
erator is the only service with which the User Portal interacts. Once the user
has submitted a ZEN application, the Experiment Generator maintains the
complete information about the application and the associated experiments.
This allows the users to disconnect the portals from the Grid without loos-
ing the contact information to their experiments. The users can subsequently
open the portal at any time from arbitrary Grid locations, connect to the
Experiment Generator, retrieve the status of the experiments, and perform
the desired performance analysis or the parameter visualisation studies.

All the methods of the Experiment Executor and the Experiment Gener-
ator services are provided in both synchronous (blocking) and asynchronous
(non-blocking) mode. Asynchronous methods return an asynchronous receipt,
on behalf of which synchronous methods can be invoked to poll for available re-
sults. Such asynchronous methods, which are part of the general event frame-
work presented in Section 5.4, are crucial for implementing highly-responsive
clients that do not block upon calling long running synchronous methods. All
the services provided by ZENTURIO, as well as the Experiment Data Repos-
itory can be accessed concurrently by multiple clients, which is a key feature
for providing scalable Grid infrastructures.

4.1 User Portal

The User Portal is a client application that enables user friendly graphical
access to the functionality provided by ZENTURIO. The User Portal is a small
light-weight program easy to install and manage on the local machine (e.g.,
laptop), which hinders the end-users by the complexity from the underlying
Grid environment.

The User Portal can operate in three modes:

1. Online Grid is the standard mode of operating in a Grid infrastructure,
as presented at the beginning of this chapter. The user must first authen-
ticate using the GSI credentials (see Secure 2.4), which returns a limited
proxy required for secure communication with any remote Grid service.
GRAM [38] and DUROC [39] are the job schedulers used in this mode;

2. Online Cluster accommodates a simplified instance of the ZENTURIO in-
frastructure on the local cluster front-end. The Grid services are replaced
by ordinary Java objects, while the GSI security comprising the user au-
thentication are disabled. The local job scheduler (e.g., [108, 91, 179, 166,
152] that manages the cluster nodes is used in this mode;
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3. Offline employs the User Portal for post-mortem analysis and visualisa-
tion based on the data already stored into the Experiment Data Reposi-
tory (i.e., by previous experiments executed by ZENTURIO in the online
mode).

The User Portal consists of four portlets for interacting with the user w.hich
will be described in the following sections. A snapshot of the User Portal main
frame conducting a real application is depicted in Figure 4.2.

4.1.1 ZEN Editor

The ZEN editor provides a user friendly graphical interface that facilitates
the annotation of ZEN files with ZEN directives by hiding syntactic language
details (e.g., escape \ characters). The local directive scopes (i.e., of sub-
stitute, constraint, and performance directives) are easily indicated through
mouse-based code region selection. An important task of the ZEN editor is
to provide a centralised display of all the directives inserted in various ZEN
files. Additionally, the total number of experiments implied by the ZEN di-
rectives inserted is provided. This online information is useful for tuning the
application parameter space to a reasonable size before generating the full set
of experiments. A snapshot of the ZEN editor is illustrated in Figure 4.3.

4.1.2 Experiment Preparation

The Experiment Preparation portlet of the User Portal depicted in Figure 4.4
assists the user in the specification of a suite of experiments for performance
or parameter study purposes through the following inputs:

1. ZEN application represented by a list of files which can are individually
selected from arbitrary local directories. These are categorised into:
a) ZEN files to be processed by the ZEN Transformation System (see

Section 3.3), which are further classified as follows:
i. ZEN source files that require performance instrumentation us-

ing the SCALEA instrumentation engine based on the source-
to-source Vienna Fortran Compiler [15]. The implementation is
therefore limited to Fortran 90 source files. Additionally, a ZEN
source file instance requires the compilation of the ZEN applica-
tion instance using a back-end (Fortran 90) compiler.

ii. ZEN script files or input files that do not require any compilation
of the ZEN application instance. This information is used by the
Experiment Executor in optimising the compilation of the entire
experiment suite.

b) Regular files that do not contain ZEN directives and therefore are not
processed by the ZEN Transformation System;



4.1 User Portal 79

System Application Experiment

% Applications

9 • ZEN Files
O /home/radu/APPS/wpp3DFFT/run.pbs
.J /home/radu/APPS/wppSDFFT/makerile
3 /home/r»duyAPPS/wpp3DFFr/FLauncher_sl$.f

O /home/radu/APPS/wppSDFFT/FLauncher.f
O /home/radu/APPS/wpp3DFFi7mymacras.h

41 Regular Files
O /home/radu/APPS/wpp3DFn7FLaunctter.slfdése
3 /home/radu/APPS/wpp3DFFT/wpi)3DrTT.c

O Compilation Command: mike
3 Compilation Directory: /hame/radu/APPS/wpp3DFFT
.J Execution Command: runpbs
3 Execution Directory /home/radu/APPS/wpp3DFFT
J Micfilnt: null

©• 0 Experiment 86
& t Experiment 87
©- • Experiment 88
9" ft Experiment 89
0- 0 Experiment 90
©• S Lxpeiiinei.i 9 t
O 0 Experiment 92
^ 0 Experiment 93
c- # Experiment 94
©• • Experiment 95
o- f j Experiment 96
9 9 Experiment 97

STORED
START
READY
READV
STORED
READV
COMPILIXO
READY
READY
READY
READY
READY
RUNNING

9 • /hom^/radu/APPS/wpp3DFFT/run.pbs
ZEN Variable

nodes - 1
ppn=4
nprocs
yPIRUN

ZEN Value
nodes\-4
ppn\=4
16
$MPICH CM.RUN

9 • /home/radu/APF5/wpp3DFFT/makerile
1 ZEN Variable
SCÛLEÀ

9 •

0 /hom

r •

ZEN Value
yhome/radu/SOFTysisprofiling.mpich.gm

/home/radu/APre/wpp3DFFT/FLaun
ZENVanaoie

problemslzG

ZEN Variable
NPIHOME

ZEN Value
2"7

chtr.r

1 ZEN value
/opt/loc al/mpichj3m

/home/radu/APPS/wppîDFFr/invmaaos.h
ZEN Variable

^ # Experiment 98
&* 9 Experiment 99
&• # Experiment 100

ZEN Value
a##_

START
READY

KEAOY

Fig. 4.2. A snapshot of the User Portal.
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Fig. 4.3. A snapshot of the ZEN editor.
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Fig. 4.4. A snapshot of the Experiment Preparation portlet.

Input and output file staging in the online Grid mode is achieved through
the GASS [18] functionality and is automatically handled by the GRAM [38]
resource manager;

2. compilation directory and the compilation command;
3. execution directory and the execution command;
4. Grid site where to execute the experiments;
5. back-end batch scheduler to be used;
6. output files for parameter study purposes.

After receiving all the inputs, the Experiment Preparation portlet auto-
matically contacts the Registry for an available Experiment Generator service
(preferably on the local site or on the execution site to minimise file transfers)
that generates the experiments. If no Experiment Generator service is found,
a transient instance is created using the Factory. If the Experiment Generator
resides on a remote Grid site, the ZEN application is packed in a ZIP archive
and transferred using the GridFTP protocol.

4.1.3 Experiment Monitor

The Experiment Monitor portlet uses the Experiment Executor service to re-
motely compile, execute, control, and monitor experiments running on the
target Grid site. The user interface of the Experiment Monitor is displayed in
the right panel of the User Portal depicted in Figure 4.2. Upon the selection
of a ZEN application in the Experiment Preparation left panel, the corre-
sponding set of experiments are automatically displayed in the right panel.
The experiments of a ZEN application can be submitted for execution either
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individually, or on a collective basis. Each experiment is displayed accompa-
nied by its status highlighted using a different colour. Upon clicking on an
experiment, all the ZEN variable instantiations that describe the experiment
are expanded. A filtering capability allows the user to select, display, or search
for a subset of experiments according to specific ZEN variable instantiations.

As part of the Experiment Monitor, an event listener (thread) receives
notifications from the Experiment Executor about changes in the status of
individual experiments. This is a light-weight and highly responsive mecha-
nism for providing a consistent up-to-date view of the generated experiments
and their status, which avoids unnecessary expensive polling. This function-
ality is part of the more general ZENTURIO event framework, which will be
presented in detail in Section 5.4.

Figure 4.5 displays the state transition diagram of an experiment executed
with ZENTURIO. The state diagram has one initial state start and two final
states stored and fail. After being created by the Experiment Generator, the
experiment is initialised in the start state. If the Experiment Executor site is
different from the Experiment Generator site, the experiment goes through
the optional transfer state, during which it is copied to the target execution
site. If an experiment (i.e., the associated application instance) needs compi-
lation after being copied to the execution site, it goes through the compiling
state. If the experiment is part of a binary (already compiled) ZEN applica-
tion, it skips the compiling state and goes directly into the ready state. The
ready state specifies that the experiment is ready for execution. From this
state, the experiment can go either into the waiting state, if the execution is
postponed (e.g., through reservations), or into the queued state, if the exper-
iment is submitted to a batch job scheduler. If the experiment is forked, it
goes directly into the running state. After the experiment has completed, the
state changes to terminate. The final state stored indicates that the experi-
ment (including the output files and the performance data) has been stored
into the Experiment Data Repository. If an erroneous operation takes place
(e.g., compilation or execution error) during any of the states or if the exper-
iment is explicitly killed, the experiment goes in to the failed state. From the
terminated, stored, and failed states an experiment can change to the ready
state, if réexécution is desired (e.g., in case of casual non-deterministic faulty
executions).

Fig. 4.5. The experiment state transition diagram.
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4.1.4 Application Data Visualiser

ZENTURIO defines two types of output data for an experiment which are
automatically stored into the Experiment Data Repository for post-mortem
analysis:

1. performance metrics (e.g., execution time, synchronisation, communica-
tion) which are specified through ZEN performance directives (see Sec-
tion 3.8);

2. output results which are retrieved from the output files indicated by the
user in the experiment preparation phase (see Section 3.9).

The Application Data Visualiser portlet has been designed for post-
mortem analysis through automatic query of the performance and the out-
put data stored in the Experiment Data Repository. The data can be either
tabulated into ASCII files or graphically represented using on the ASKALON
visualisation package [55] which provides various linechart, barchart, piechart,
and surface diagrams.

Figure 4.6 shows a snapshot of the Application Data Visualiser for con-
structing a cross-experiment performance visualisation diagram. The top-left
panel displays the list performance metrics computed (e.g., barrier, collective
communication, control of parallelism) which can be selected for visualisa-
tion. The performance metrics can be organised in two different tree-based
visualisation hierarchies:

1. Metric-to-Region (shown in Figure 4.6) displays on the first tree level the
complete list of the metrics computed. The next tree levels below the
metric level display the region hierarchies for which each parent metric
holds;

2. Region-to-Metric displays the complete hierarchy of code regions for which
the performance metrics have been collected. The leaves of the tree rep-
resent the performance metrics which have been measured for the parent
(sub-)region.

Upon the mouse selection of a metric, the top-right panel of the Applica-
tion Data Visualiser dialog-box displays the affiliated source code region (if
this information is available). The bottom panel displays the complete set of
ZEN variables that annotate the ZEN application. Every ZEN variable has an
associated list box that contains its complete value set. To generate a visuali-
sation, the user must select a subset of experiments and map ZEN variables to
visualisation axis by instantiating ZEN variables with appropriate ZEN ele-
ments. The mapping of the ZEN variables to the visualisation axis is obtained
by introducing two special ZEN elements to each value set:

1. Wildcard indicates that the ZEN variable is selected as a visualisation
axis. The ZEN elements of the ZEN variable are displayed on the axis
in the order given by the index domain function (see Definition 3.20). A
number of n wildcard selections define an n + 1-dimensional visualisation.
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Fig. 4.6. A snapshot of the Application Data Visualiser for performance studies.

The current implementation is limited to three wildcard ZEN variables,
but can be easily extended. To exactly control the axis onto which the
values of a wildcard ZEN variable are mapped, three wildcard flavours are
supported: WildcardX, WildcardY, and WildcardZ (i.e., the ZEN variable
is displayed on the X, Y, respectively Z axis);

2. ANY matches any value and indicates that the ZEN variable is irrelevant
for the visualisation and should be ignored. A typical case for an ANY
selection is when the ZEN variable is bound via a ZEN constraint to
another ZEN variable which has received a wildcard.

The X, Y, and Z axis names are pre-defined for each ASKALON visual-
isation diagram. Single or multiple selection of metric-region pairs is allowed
for visualisation. Upon a single metric selection, the metric represents one
fixed pre-defined axis in the visualisation diagram. Upon a multiple metric
selection, the metric visualisation axis must be indicated through a metric
wildcard selection in the dialog-box menu (i.e., Visualisation menu item). If
no metric wildcard is indicated, only the last selected metric is visualised.
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Figure 4.7 displays a similar Application Data Visualiser dialog-box used
for parameter study purposes to visualise the output results across multiple
experiments. The performance metric panel is replaced with a list of applica-
tion output files, which includes the standard output and the standard error
streams. An output result is specified by selecting an output file and intro-
ducing a unique pattern that prefixes the output result within the output file,
as formally specified in Section 3.9. This pattern is used to extract the output
result from the output file of each experiment involved in the visualisation.

Application Data Visualiser — Application: bw JJJ
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price =

„ _ _ _ _

OK

ZEN Variables

VUldCardX •

VWIdCardY •

VWIdCardZ •

ANY •

bond% coupon
pkernbw.fdû

bond%end
pkernbw.f90

delta t
pkernbw.f90

nr steps
pkernbw.fdO

Fig. 4.7. A snapshot of the Application Data Visualiser for parameter studies.
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4.2 Experiment Generator

The Experiment Generator is a Grid service in charge of generating the ex-
periments from an input ZEN application, as specified in Chapter 3. The
architecture of the Experiment Generator is displayed in Figure 4.8. Each
ZEN file of the ZEN application is first parsed using the scanner and parser
modules of the ZEN Transformation System which produce an abstract syn-
tax tree as presented in Section 3.3. The abstract syntax trees of all the ZEN
files are given as input to the ZEN Constraint Evaluation Algorithm which
generates the set of valid ZEN element tuples, as presented in Section 3.10.
The valid ZEN element tuples determine the set of valid ZEN application
instances, whose constituent ZEN file instances are generated using the un-
parser module of ZEN Transformation System. A ZEN application instance is
the foundation of an experiment, as formally defined in the Definitions 3.26
and 3.27.

The SCALEA [159] instrumentation engine, which provides a complete
Fortran 90 OpenMP, MPI, and HPF front-end and unparser, is used to instru-
ment the application for performance metrics based on the ZEN performance
directives. The Experiment Generator has been designed as a separate service
to isolate the platform dependencies and the proprietary components of the
Vienna Fortran Compiler [15] on which the SCALEA instrumentation engine
is based. The Experiment Generator typically runs as a pre-installed Grid
service that serves remote experiment generation requests through a portable
platform-independent API.

The Experiment Generator provides an API to logically insert ZEN direc-
tives into the abstract syntax tree of each parsed ZEN file in cases when it is
not practical to insert the directives manually. This feature is important when
a large number of ZEN variables are required to annotate the ZEN applica-
tion, for instance in the case of large-scale Grid scheduling problems which
will be discussed in Sections 6.2 and 6.4.

The Experiment Generator provides four methods for generating experi-
ments for a ZEN application:
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Fig. 4.8. The Experiment Generator architecture.
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1. synchronous, by means of a single method call. This approach is rather
primitive since the synchronous invocation can be very expensive and
produces blocking (i.e., non-responsive) clients;

2. iterative, the next experiment being returned by an iterator upon syn-
chronous request. This method is compliant with the pull event model
(see Section 5.4);

3. asynchronous, each experiment being sent to the client using an asyn-
chronous callback as soon as it is generated. This method is compliant
with the push event model (see Section 5.4);

4. random, by instantiating each ZEN variable (or a subset of them) with
a random ZEN element. This method is required by the optimisation
heuristics that will be presented in Chapter 6.

Additionally, for Grid applications submitted using the GRAM or DUROC
job schedulers (i.e., ZENTURIO running in online Grid mode), the Experi-
ment Generator transfers the experiments to the target Grid execution sites
using the GridFTP protocol. In the case of DUROC, the experiments are
copied to multiple destination Grid sites, which are read from the RSL de-
scription of the application.

4.3 Experiment Executor

The Experiment Executor is a generic service with a high-level interface for
executing and managing experiments on target Grid execution sites. The Ex-
periment Executor has been designed as a stand-alone Grid service indepen-
dent of ZENTURIO that can be deployed for experiment management pur-
poses within other infrastructures too. The Experiment Executor assumes a
properly installed application on the target execution site(s).

The current implementation supports interfaces to the following batch job
schedulers:

1. fork [148] for single processor machines which host both the Experiment
Executor service and the running experiments.

2. Condor [108], LoadLeveler [91], Load Sharing Facility (LSF) [179], Maui [34],
Portable Batch System (PBS) [166], Sun Grid Engine (SGE) [152] for
dedicated workstation clusters. This configuration is employed by ZEN-
TURIO in the online cluster mode. The Experiment Executor resides on
the cluster front-end and must receive a job submission script compliant
to the job batch scheduler used to execute the cluster experiments;

3. GRAM [38] and DUROC [39] for executing remote experiments on a
single, respectively multiple Grid sites. This configuration is employed
by ZENTURIO in the online Grid mode. The Experiment Executor may
reside on arbitrary Grid sites and must receive an RSL script to execute
the experiments.

The Experiment Executor provides functionality to:
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• add and remove experiments;
• compile experiments;
• execute experiments;
• retrieve the status of experiments;
• subscribe for experiment status change notification callbacks, according to

the push event model that avoids the polling overhead (see Section 5.4).
• terminate experiments;
• stage-in input data files from specific Grid sites;
• stage-out experiment output to indicated Grid sites (i.e., standard output,

standard error, any output file, and performance data);
• retrieve all the experiments associated with a certain application (option-

ally restricted to a certain state);
• set the maximum number of experiments that are concurrently executed.

This feature allows the user to restrict the number of experiments simul-
taneously submitted to the cluster queue to a decent pre-defined number,
or to control the number of experiments concurrently forked on the same
(SMP) machine (i.e, normally one on single processor machines);

• the number retries in case of faulty executions. This feature is a crucial for
improving the fault tolerance, as often the execution of large number of
experiments on cluster and Grid architectures is prone to non-deterministic
failures due to unpredictable underlying resource management support;

• store the experiment-specific data (i.e., ZEN variables and ZEN elements),
output files, and performance data into the Experiment Data Repository.

All the operations provided by the Experiment Executor service can be
applied on individual or collective basis, by providing appropriate input filters
(e.g., all the experiments belonging to an application).

4.4 Experiment Data Repository

ZENTURIO stores post-mortem information about the ZEN application and
the associated experiments into a common Experiment Data Repository. The
Experiment Data Repository has been designed as a relational database im-
plemented on top of PostgreSQL [83]. Upon the completion of each experi-
ment, the Experiment Executor stores the descriptive information about the
experiment (i.e., the ZEN variable instantiations), the standard output, the
standard error, the performance data, and the output files, depending on the
experiment type. In the case of large output files, the URL location to the
GASS file system is stored. The Experiment Data Repository enables various
users and tools to interoperate by exchanging post-mortem performance and
output data from previous experiments. Figure 4.9 displays the UML diagram
that models the Experiment Data Repository relational schema.



Application

•name : String

1

1..*

SourceFlle

-name : String
-location : String
-contents : String

1
1..*

CodeRegion

•startPosX : Integer
•startPosY : Integer
•endPosX : Integer
•endPosY : Integer
-type : String
•unit : String

ZENEIement

•value : String
•index : Integer

I 1. . '
1

Version

D : Integer

<
1

1..*

ZENVariable

-name : String
-valueSet : String

1 0..' •

0..*

0..1

rimingMetrlcs

Experiment

-info : String
-compileCommand : String
-execCommand : String
-stdout : String
-stderr : String

Output File

•name : String
•contents : String
•location : String o..-

0..*

ReglonSummary

-computationalNode : String
-processID : Integer
threadlD : Integer

-codeRegion : Integer
-parentRegion : Integer
-codeRegionGroup : Integer
-numberCalls : Integer
-numberSubs : Integer
•codeRegionID : Integer

0..*

•name : String
value : Double

1.1

_ * <
1 1

0..*

1
0..*

Temporal Overheads

-name : String
-value : Double

Hardware Metrics

•name : String
-value : Double

Fig. 4.9. The Experiment Data Repository schema definition.



Tool Integration

As applications get larger and more complex, the use of software tools be-
comes vital for tuning application parameters, identifying performance leaks,
or detecting program defects. Extensive efforts within academia and industry
over the last decade have resulted in a large collection of tools for practi-
cal application engineering. Available tools of broad interest include program
source and structure browsers, editors, static program analysers, performance
predictors, optimisation compilers, execution control and monitoring environ-
ments, sequential and parallel debuggers (providing deadlock detection and
deterministic message replay mechanisms), data and execution visualisers,
performance analysers, or various program tracers.

Despite of all these huge efforts in the tool development to ease the parallel
program development, the user acceptance in the scientific community has not
been achieved. Most users still base their application development activities on
manual source program instrumentation and a tedious, error-prone, and time
consuming instrumentation - compilation - link - execution - data collection
- data analysis cycle. There are two reasons for this unfortunate situation:

1. Portability. Most of the existing application tools are not available on
multiple parallel platforms, primarily because of their limited portability.
When using a new parallel system the user must in most cases learn and
familiarise with new tools with different functionality and user interfaces.
This requires additional (often unnecessary) time and effort and can be a
major deterrent against the use of more appropriate computer systems.

2. Interoperability. Most of the tools cannot be used cooperatively to further
improve programming efficiency, mainly because they are insufficiently
integrated into a single coherent environment. Existing integrated tool
environments [33, 175] comprising several tools do offer some degree of
interoperability. They do, however, have the disadvantage that the set
of tools provided is fixed, typically decided by the initial project objec-
tives. The resulted tools interact through internal proprietary interfaces
which can not easily be extended. The outcome is in fact not an interop-
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érable tool-set, but a more complex monolithic tool which combines the
functionality of the integrated tools, but lacks true interoperability and
extensibility.

Based on the type of analysis performed, one can distinguish between two
types of software tools:

1. Offline tools completely separate the run-time data collection from the
data analysis phase. Run-time data analysis is typically performed post-
mortem after the application has completed. The ZENTURIO experiment
management tool presented in Chapter 4 is a typical offline tool example.

2. Online tools collect and analyse the data on-the-fly during the execution
of the application using special purpose monitoring systems.

There are two fundamental reasons why most of the run-time tools cannot
be cooperatively used by the program developer on the same application:

1. Run-time tools use different instrumentation techniques. While offline
tools can easily solve this problem by means of standardised trace data
formats [76] or common data repositories [60, 160], online tools suffer
from incompatible complex run-time monitoring systems. Most tools re-
quire special preparation of the application with specialised compilation
and link flags, which leads to undesired conflicts and makes the interop-
erability impossible.

2. At inception, tools are not considered or designed for interoperability.
Most tools are designed and built as stand-alone applications and can
only be used in isolation. Tool interoperability is a complex issue that has
to be considered as a major objective when the tools are first designed
and cannot simply be added as an afterthought.

The thesis solves the offline tool interoperability problem by proposing a
common Experiment Data Repository for sharing performance data, as de-
scribed in Section 4.4. The reminder of this chapter focuses on the online tool
interoperability problem.

5.1 Design

The ZENTURIO architecture presented in Chapter 4 has been designed in the
context of a more general tool integration framework depicted in Figure 5.1.
The framework [97, 98, 131] defines a three-tier service-oriented architecture
for interoperable tool development that instantiates the abstract Grid archi-
tectural model defined in Chapter 2 through the following concrete layers:

1. Monitoring Layer represents the platform dependent part inherent to (al-
most) every tool implementation. The purpose of the monitoring layer
is to provide support for online tool development. It consists of a set of
light-weight sensors distributed across all the individual machines that
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Fig. 5.1. The ZENTURIO tool integration framework architecture.

build in aggregation the Grid machine layer. The sensors typically extract
and monitor low-level hardware and software features specific to every
platform and operating system. The isolation of platform dependencies
under a monitoring layer that exports a portable API reduces the effort
of porting n tools onto m platforms from n * m to n + m;

2. Grid services layer consists of an open set of high-level portable Grid
services that can be dynamically deployed and instantiated on arbitrary
Grid sites, as introduced in Section 2.7. The Grid services facilitate the
tool development and enable the interoperability through the concurrent
service use;

3. Tool layer consists of the end-user software tools, represented either by
graphical user portals, or by simple batch front-end programs.

The functionality of a tool developed within this framework is no longer
stored within a single monolithic front-end application acting as a black-box,
as it has been traditionally done so far. Instead, the functionality is exposed
and distributed amongst many small and reusable Grid services, often orches-
trated in a loosely-coupled workflow. The tool interoperability is achieved by
two design properties of this service-oriented architecture:
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1. The Grid services can serve concurrent requests coming from potentially
different remote clients (i.e., user portals representing potentially different
end-user tools);

2. The monitoring sensors can simultaneously be called by multiple Grid
services. This allows multiple clients concurrently monitor and manipulate
the same physical processes and target machines.

Another important objective of the framework proposed in this chapter is
to provide an extensible architecture open to further integrations and develop-
ments. Extensibility is related to the following three aspects in the proposed
architecture:

1. Add new services to the environment. This translates to the ability to in-
corporate new Grid services and to add new tools to the framework. The
Web services technology clearly separates the service interface specifica-
tion from the service implementation which facilitates the addition of new
services. The incorporation of new services requires the publication of their
WSDL interface and (JAR file) implementation into the (UDDI) Service
Repository, as specified in Section 5.3.2. The service implementation must
allow multiple clients concurrently access and invoke operations with no
knowledge of their mutual existence, which enables new client tools be
naturally integrated on top of the existing Grid services;

2. Extend existing components with new functionality. Extending existing
services with specialised versions through delegation is not only supported
but encouraged by the framework. Since the Web services technology
does not adhere to the object-oriented design principles, the extensibility
through inheritance is not possible at the WSDL service interface level.
Extensibility through inheritance is, however, possible at the Java class
service implementation level;

3. Implement new tools based on the existing services. The tools implemented
within the framework will interoperate indirectly through the common
service use, as will be described in Section 5.7.1.

5.2 The Monitoring Layer

The Monitoring Layer consists of an open set of sensors that run on the
target Grid machines and provide low-level information about the application
processes and the system resources required for online tool development. The
sensors can be remotely accessed through à portable platform-independent
API developed on top of the light-weight Globus I/O library [66] and the
Grid Security Infrastructure introduced in Section 2.4.

The design of the monitoring layer has been motivated by the following
limitations of the SCALEA compiler-based instrumentation engine used by
the ZENTURIO experiment management tool:
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1. the compile-time instrumentation can be applied only once, prior to the
application execution;

2. the application needs special preparation through specific compilation and
link library options;

3. the performance analysis is done post-mortem based on the data stored
in an Experiment Data Repository;

4. in order to interoperate, all the performance analysis tools will largely
need to base their instrumentation run-time system on SCALEA.

The remainder of this section presents a general purpose instrumentation and
monitoring sensor called Process Manager which aims to complement these
limitations by using the dynamic instrumentation technology.

5.2.1 Dynamic Inst rumentat ion

Dynamic instrumentation is a non-conventional instrumentation technology
based on the insertion of binary code snippets at run-time into an already
executing program. Dynamic instrumentation has several unique characteris-
tics that make it suited for tool interoperability since it does not conflict with
other existing instrumentation technologies:

1. it requires no advanced preparation of the application program, like special
compilation options or link libraries;

2. it allows the instrumentation of binary programs compiled from any pro-
gramming language, even of proprietary applications for which the source
code is not available;

3. the instrumentation snippets can be inserted and removed from the code
at any time which keeps the intrusion minimum.

The Dyninst [24] C++ library provides a machine independent interface for
run-time code patching using the (platform-dependent) dynamic instrumen-
tation technology.

Figure 5.2 illustrates the basic mechanism used by the dynamic instrumen-
tation to insert code snippets into a running process. The machine instruc-
tion code is inserted into the process by replacing an instruction located at
the desired instrumentation point with a branch to a code snippet called base
trampoline. The base trampoline saves and restores the process state before
and after executing the instrumentation code. The specific instrumentation
code is contained within a mini trampoline that can be inserted either before
or after the relocated instruction.

The main limitation of the dynamic instrumentation is the exclusive fo-
cus on binary executable object code. While the compilation for debugging
purposes (i.e., usually the -g compilation flag) produces binary code that
largely matches the source code, the compilation for high-performance exe-
cution usually generates a highly optimised executable that can no longer be
uncompiled to the original source code. The limitation becomes even more
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critical for high-level parallel programming languages like HPF and OpenMP,
for which the dynamic instrumentation cannot be used for computing high-
level language metrics associated with specific language directives. Moreover,
porting the Dyninst library on different operating systems (and even upgrad-
ing it to different system and compiler versions) is a hard challenging task
that critically impacts the implementation reliability and availability.

The source code instrumentation performed by SCALEA remains therefore
of important value that is kept within ZENTURIO along side the dynamic
instrumentation. The framework is open to the integration of further sensors
like those provided by the SCALEA-G [162] Grid performance tool.

5.2.2 The Process Manager

The Process Manager sensor is a light-weight daemon (implemented in C++)
in charge of controlling and instrumenting running application processes on a
single machine. The Process Manager provides two mechanisms for connecting
to an application process required to perform dynamic instrumentation:

1. create a process by providing the complete execution command and the
input arguments;

2. attach to an existing process by providing the operating system process
identifier.

The Process Manager serves instrumentation requests coming from remote
Grid services, in particular from the Dynamic Instrumentor service which will
be described in Section 5.3.7. Typically the Process Manager sensors do not
communicate with each other, however, there may be special cases when such
interaction is required (see Section 5.2.3).

The functionality offered by the Process Manager can be classified into
five categories which are implemented by four threads as shown in Figure 5.3
and described in the reminder of this section.
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The information functions provide structural information collected from the
running application processes. This includes the object code structure of each
process and (global) variable values. The information is extracted from the
binary exécutables and is complementary to the source code information, if
available. Since retrieving the object code structure is a rather intrusive oper-
ation to be repeatedly invoked, the Process Manager extracts and caches the
entire object structure through one single call after attaching to a running
application. The cache is refreshed whenever a running process issues a UNIX
system call exec that overwrites the entire process images, or when a dynamic
shared library is loaded.

The object code structure of a process largely matches the original source
code in the case when the application is compiled for debugging purposes
(e.g., typically using the -g compiler option). In the case of highly optimised
applications, however, the mapping from the binary executable to the source
code becomes impossible due to complex irreversible compiler optimisation
transformations.

Manipulation Functions

The manipulation functions are primarily used for dynamically injecting in-
strumentation probes into running application processes so that information
about their execution may be gathered.

The Run-Time Instrumentation Library is a UNIX shared library [148]
designed to ease the instrumentation of running application processes with
high-level probes. The library is dynamically loaded by the Process Manager
into the address space of each monitored process at run-time which enables
the instrumentation of unmodified binary exécutables. The run-time instru-
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mentation library provides the following probe types, hierarchically depicted
in Figure 5.4:

1. Timers (i.e., wallclock, user, and system time) are associated with a set
of start and stop instrumentation points;

2. Counters are inserted before or after any set of instrumentation points.
There are two types of counter increments that can be provided:
a) constant (e.g., usually one, in case of function call counters);
b) type size used for counting the size of data structures (e.g., number of

bytes passed as argument to various functions);
3. Traces are generated by inserting instrumentation probes that generate

selective focused trace information;
4. Notifications insert probes that generate asynchronous events which are

sent by the Notification thread to the subscribers using the push event
model (see Section 5.4);

5. Breakpoints stop the application process whenever the program counter
reaches a certain instrumentation point.

The Process Manager provides one instrumentation function for each probe
type, which is responsible for generating and inserting the appropriate binary
instrumentation snippets into the running process using Dyninst. Each in-
strumentation probe inserted into a running process is identified by a unique
handler that can be used to remove the probe if it is no longer needed. Be-
fore instrumenting the application, the Process Manager checks whether the
requested probe has been previously inserted and, if so, it returns the already
allocated handler, thus avoiding instrumentation redundancy and minimising
the intrusion.

Data Collection

The online performance data collected by the instrumentation probes is stored
in a memory segment that is shared between the Process Manager and the ap-
plication process. From this shared memory, the performance data is sampled
by the data collection thread with minimum overhead and forwarded to the
tool (or to an Aggregator service - see Section 5.3.8) for online performance
analysis via an asynchronous notification callback. Each performance metric
has its own associated online sampling rate which is specified as part of the
instrumentation request.

Tracing

The tracing thread collects selective trace information generated by the ap-
plication trace probes associated with certain instrumentation points. To sim-
plify the implementation, a simple trace data format has been used that is
sufficient for the development of the prototype tools that validate the frame-
work (see Section 5.6). The trace data contains the following fields, which are
currently restricted to the function level instrumentation granularity:
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1. function name in which the instrumentation point is located;
2. location of the instrumentation point (function entry, exit, or call);
3. argument list to the function (if a function entry or a call point);
4. return value of the function (if a function exit or a call point);
5. address of the instrumentation point (needed to distinguish between dif-

ferent calls to the same function);
6. timestamp when the trace has been generated.

As the trace data could get infeasibly large to be stored in the shared memory,
it is periodically appended to a FIFO (First In First Out) file (or pipe) [148]
from where it is (albeit less efficiently than the performance data) collected
by the Process Manager.

Notification

The Notification is a light-weight sleeping thread that is awaken through
UNIX signals [148] by the notification probes when certain events happen
during the process execution. As the signals can only achieve process synchro-
nisation (not communication), the information that describes the occurring
events is stored in a special data structure within the shared memory segment
(i.e., between the Process Manager and the executing process). The monitored
application process and the Process Manager synchronise their access to this
data structure by means of a UNIX semaphore [148]. This additional synchro-
nisation is required since multiple simultaneous events may overwrite the data
structure or exhaust the shared memory segment before the asynchronous no-
tification thread manages to consume and forward the events to the requesting
tool. There are three types of notifications handled by the framework:

1. Arrival at the instrumentation point;
2. Load or unload of a shared library by trapping the dlopen UNIX system

call [148]. This notification is used by browsing tools to provide an updated
view of the application object code structure (see Section 5.6).

3. Status change (e.g., started, stopped, running, terminated) that allows
the tools to dynamically monitor and react upon any modification in the
application status. The stopped state is usually caused by a correctness
debugger and augments the experiment state transition diagram presented
in Figure 4.5 (see Chapter 4).

5.2.3 Dynamic Instrumentation of MPI Applications

The Process Manager sensor has been designed for dynamic instrumentation
of generic processes, with no particular focus on any programming paradigm.
The use of higher level parallel programming paradigms, however, require
extensions to the existing functionality. This section presents a specialisation
(through C + + inheritance) of the Process Manager sensor to support MPI
parallel applications.
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The challenge in creating an MPI application for dynamic instrumenta-
tion is the need to obtain the identifiers of all the MPI processes, which have
to be created through the Process Manager on each individual machine. Al-
though MPI provides a standard interface of communication between parallel
processes, it does not standardise the mechanism in which the parallel applica-
tions are created [145]. Currently each MPI implementation provides its own
customised flavour of the mpirun command which starts an SPMD (Single
Program Multiple Data) program across the nodes of the parallel machine 1 .
The MPI-2 [116] specification aims for a standardisation of the mpirun com-
mand which is named mpiexec, unfortunately it contains only advises rather
than a full portable script to be adopted by all MPI implementations. The
MPI Forum argues that the range of the environments is so diverse (e.g.,
there may not even be a command line interface to invoke mpiexec) that MPI
cannot mandate such a universal mechanism.

Since a universal MPI application start-up is not possible, this section
chooses the widely spread MPICH [79] implementation for a case study. The
technical scenario of creating an MPICH application for dynamic instrumen-
tation is depicted in Figure 5.5. The client (i.e., the Dynamic Instrumentor
service described in see Section 5.3.7) requests that the Process Manager cre-
ate an MPI application by invoking the (MPICH specific) mpirun command.
The Process Manager appends the - t execution flag to the mpirun arguments
that executes the command in the test mode. The result returned by the
mpirun test command represents the list of machines (i.e., processors of the
parallel machine) where the MPI processes will be started. The last entry in
this list is the master process that has to be executed by the Process Manager
on the local machine which will subsequently spawn the remaining MPI slave
processes. The Process Manager appends the -p4norem flag when executing
the master command, thereby preventing the master process from starting
the slave processes automatically. Instead, the master process returns to the
Process Manager the command required to manually start the slave processes
on different machines. The Process Manager delegates this task to its coun-
terpart running on the same machine where the slave has to be started. This
is the only situation when direct communication between Process Managers
is required.

After being created, all the MPI processes must be resumed so that the
slaves can acknowledge their creation to the master within the MPI_Init func-
tion. As most of the tools require that the application be halted immediately
after its creation, a breakpoint is inserted at the end of the MPI.Init function
of each process. A call to PMPI_Comm_rank is dynamically inserted before this
breakpoint to retrieve the MPI process identifier within the MPI_COMM_WORLD
communicator.

1 For Multiple Program Multiple Data (MPMD) applications, the use of the stan-
dard library call MPI.COMM.SPAWN defined by the MPI-2 [116] standard solves the
problem in a portable manner.



100 5 Tool Integration

Dynamic Instrumentor

1. createMPlApplication

Process
Manager

4. create slave I Process
| Manager

2. create 3. run slave command 5. create

Master
6. acknowledge creation

Machine 1 Machine 2

Fig. 5.5. Starting an MPI(CH) application for dynamic instrumentation.

The implementation of this start-up mechanism raises an interesting I/O
buffering problem for which the dynamic instrumentation as a general run-
time code patching approach enables a very interesting and effective solution.
When given the -p4norem flag, the MPI.Init implementation of MPICH uses
the C language printf command to write the master output that indicates
how to start the slave processes (see Figure 5.5). Since the standard output
of the master is redirected to a FIFO file (or pipe) [148] by the Process Man-
ager, no output will be received until the output buffer is flushed. Rather than
modifying the MPICH source code (which for other proprietary MPI imple-
mentations may not even be available) to explicitly flush the buffer after the
offending printf and rebuild the whole MPICH library (thereby forcing the
use of a customised library version), the Process Manager forces the flush at
run-time by dynamically inserting a call to f flush (stdout) on-the-fly using
Dyninst. This enables the implementation to work on an original and unmod-
ified MPICH library.

Dynamic instrumentation of the new MPI-2 MPI_Comm_spawn_multiple
and MPI_Comm_spawn routines, required by the Multiple Program Multiple
Data (MPMD) programming model, allow newly spawned MPI processes be
discovered at run-time and instrumented.

The dynamic instrumentation technology enables the framework to pro-
file MPI library calls with ease. The generic profiling and tracing operations
of the Process Manager can be easily focused on the MPI library routines.
The profiling interface defined by the MPI standard is of no benefit to ZEN-
TURIO. It is sufficient to apply the profiling and tracing operations to the
PMPI.-prefixed calls directly, without using the MPI.-prefixed wrappers. Fur-
thermore, apart from the MPI application start-up which unfortunately is not
fully standardised, all the metrics and tools developed can be applied on any
(even proprietary) MPI implementation.
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int PMPI_Init(int arge, char **argv)

// proprietary implementation

• * - )

int PMPI_Send(void »buff,
int count,
PMPI_DataType datatype,
int dest,
int tag,
MPI_Comm comm)

{

// proprietary implementation

Fig. 5.6. Dynamic MPI library profiling.

5.3 The Grid Services Layer

The design and development of the middle Grid services layer within the tool
integration architecture depicted in Figure 5.1 pursues the following goals:

1. the services provide a broad high-level and platform independent func-
tionality required for tool development;

2. the services can be accessed concurrently and independently by multiple
clients which is essential for tool interoperability;

3. the services can be easily instantiated on arbitrary remote Grid sites re-
quired for efficient deployment on the Grid;

4. there are flexible and efficient means for discovering the services.

The Grid community has acknowledged the Web services as the de-facto
ground technology for building service-oriented Grid architectures [62]. The
Web services, however, only mandate the use of XML documents for express-
ing interfaces and interactions between stateless Web services. In contrast,
Grid services that model stateful Grid resources require enhancements to the
basic Web services technology with functionality regarding state data (includ-
ing lifecycle) and asynchronous notifications, as introduced in Section 2.7.
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Despite the extensive efforts in the research and industry arena, there is
still no widely accepted standard for modelling stateful Grid resources using
the Web services technology. The OGSI [163] standard proposed by the Global
Grid Forum has failed to be acknowledged by the Web services community
due to the object-oriented approach of modelling Grid services based on in-
heritance, lifecycle encapsulation, and service state as WSDL elements, that
were not in-line with the stateless Web services principles. The delegation ap-
proach addressed by the WSRF [67] has been recently been proposed within
the Organisation for the Advancement of Structured Information Standards
(OASIS) [119], with a final specification and a compliant implementation yet
to be realised.

The thesis exploits this transitory period as an opportunity to provide its
own contribution through the specification and implementation of several orig-
inal Web services extensions for the Grid within the Global Grid Forum [30}.

5.3.1 Web Application and Services Platform (WASP)

The Web Application and Services Platform (WASP) [153] from Systinet is the
Web services toolkit used to implement the Grid services layer in ZENTURIO,
since it proved to be the fastest, the most robust, and the most easy to use
product from a range of other implementations (including Apache Axis [70],
Glue [51], IBM's Web Services Toolkit (WSTK) [59], and Sun's Web Services
Developer Pack (WSDP) [114]) which have been evaluated in the year 2001.

The WASP Web services runtime environment for Java is compliant with
the Web services model described in Section 2.2. The WSDL interface of each
Web service is automatically generated using WASP-specific tools and is there-
fore implementation specific. Every Web service is designed and implemented
by one Java class, deployed within, and executed by, the WASP hosting envi-
ronment. Upon the deployment of a Web service, a Web service instance with
an associated WSDL document are automatically generated by WASP. The
general structure of a WSDL document has been presented in Section 2.2.
Each automatically generated WSDL document of a Grid service deployed
within the WASP hosting environment contains one service interface and one
service instance section. The service interface has exactly one portType which
is homonym to the Java class that implements the service. Each Java method
is mapped to one portType operation. The service interface is represented by
exactly one service element which contains one port that defines the URL
address of the SOAP portType network protocol binding.

Figure 5.7 depicts the state transition diagram of a Grid service deployed
within the WASP hosting environment. Offline is the initial state and indi-
cates that the service is not in memory, but will be loaded by the Java RPC
Provider (and transferred to the state Enabled) when a request arrives. In
the Active state the service is processing one or more clients. The state Stop-
ping indicates that a request to stop the service has been issued, but some
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incoming request

incoming request last active
request ends

last active
request ends

(" Stopped^)—

disable() disable ()

hosting environment shutdown

Fig. 5.7. The state transition diagram of the WASP-based Web services.

requests are still in process. A service in the state Stopped remains in mem-
ory but rejects all the incoming requests. Disabled means that the service is
not in memory and cannot receive any requests. The transitions between the
states are performed by the hosting environment either automatically (see
the transitions marked with italicised text), or through explicit calls to the
WASP administration service (see the transitions marked with typewriter
style text).

5.3.2 Service Repository

The Universal Description, Discovery, and Integration (UDDI) [164] is a spec-
ification for distributed information registries of persistent business Web ser-
vices.

One essential difference between business and Grid services, which in
makes the use of UDDI in a Grid environment inappropriate, is the service
lifetime. While a static UDDI registry (i.e., a database) is suitable for pub-
lishing information about static and persistent business Web services, it is
certainly inappropriate for storing information about dynamic and transient
Grid services.

In addition, publishing Grid services implementations in a Grid environ-
ment is crucial, as one cannot assume that the implementation code is avail-
able on the originally unknown remote site where the service instance would
be desired. While compiled programming languages raise severe portability
problems (especially due to unstandardised linkers and incompatible shared
library dependencies), this issue is feasible for interpreted portable Java byte
code in which the ZENTURIO Grid services are implemented.

This section proposes a slightly modified use of UDDI as a Service Repos-
itory for publishing Grid service implementations in a dynamic Grid envi-
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ronment (transient Grid service instances are published within a specialised
Registry service that will be described in Section 5.3.5). The UDDI model pre-
sented in Section 2.3.2 requires that the interface part of the WSDL document
be published as a UDDI tModel and the instance part as a businessService
element (i.e., as URLs). The businessService UDDI element is a descrip-
tive container used to group related Web services. It contains one or more
bindingTemplate elements which contain information for connecting and in-
voking a Web service. The bindingTemplate contains a pointer to a tModel
element which describes meta-data of a Web service. An accessPoint element
is set with the SOAP address of the service (port).

In contrast, the ZENTURIO Grid services use the UDDI businessService
element to publish service implementation information of transient Grid ser-
vice instances. The accessPoint element of a bindingTemplate is assigned
the value of the URL to the JAR package that implements the Grid service.

The WSDL service interfaces and the service implementations are man-
ually published by the users in the UDDI Service Repository. A notification
mechanism compliant with the newest UDDI Version 3 specification can be
used to inform the clients when new services are registered.

The Registry (see Section 5.3.5) and the Factory (see Section 5.3.4) are the
only persistent services in ZENTURIO for which two entries corresponding
to the service implementation and the existing (arbitrary in number) service
instances are published in the UDDI repository. The distinction between the
service implementation and a persistent service instance is made based on
the accessPoint URL syntax. Persistent Factory instances have a standard-
ised URL derived from the host name and a pre-defined port number (i.e.,
http://hostname:port/Factory/).

5.3.3 Abstract Grid Service

Figure 5.8 displays a hierarchical classification of the ZENTURIO Grid ser-
vices, following the inheritance and state encapsulation model described in
Section 2.7. Each service is a specialisation of the Abstract Grid Service that
defines and partially implements the common functionality required by all
the ZENTURIO Grid services. The Abstract Grid Service implements the
Producer and Consumer interfaces that describe the push events of the generic
event framework presented in Section.5.4.

The inheritance hierarchy is, however, only materialised at the Java imple-
mentation level, since the Web services technology does not adhere to object-
oriented design principles. Each automatically generated WSDL document
of a WASP-specific Grid service contains one single portType operation that
merges the functionality of all the super-classes within the class hierarchy (see
Section 5.3.1).

The Abstract Grid Service provides the following set of generic operations:



«interface»
Producer

+subscribe()
+unsubscribe()

Event

•type
•time stamp
•producer (URL)
•consumer (URL)
-description
•sequence number
-body

«interface»
Consumer

+notify()

ZENTURIO Grid Service

-WSDL
-URL

+getURL()
+setState()
+setTerminationTime()
+initialise()
+reset()
+getLoad()

Factory

<-create()

Registry

-serviceList

+register()
+unregister()
+lookup()

Experiment Generator

-applicationList
experimentList

fgenerateExperimentsO
removeApplicationQ

Ï
Experiment Executor

-applicationList
•experimentList

ftransfer()
fcompileQ
fexecute()
fstore()
fkillQ

Filter Instrumentation

+getlnformation()
•perfomanceMetricO

+trace()
fbreakpoint()
fnotify()

Aggregator

i-prepareForFDataO

pi

H
re
O

CD
—t
<

Fig. 5.8. The ZENTURIO Grid services hierarchy.
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1. retrieve the URL of the WSDL file, constructed using the URL network
location of the hosting environment plus a suffix path that uniquely iden-
tifies the service instance;

2. set and control the service state within the hosting environment;
3. retrieve and set the service soft-state termination time;
4. register the service with all the available Registries (retrieved from the

UDDI Service Repository) and set the leasing time (see Section 5.3.5);
5. initialise the service after the transition from the state Offline to the state

Enabled;
6. reset the service by eliminating all the state information when the service

is changing to the Disabled state;
7. retrieve the load (in percentage) of a service.

The operations two and three implement the lifecycle of the ZENTURIO Grid
services based on the WASP-specific API and the state transition diagram
described in Section 5.3.1 and illustrated in Figure 5.7. The operations five
to seven describe abstract state information and must be specialised by each
ZENTURIO Grid service. Explicit service termination can be achieved by
providing a termination time equal or prior to the current time. Destroying
a Grid service requires to undeploy it from the hosting environment. A softer
destroy method changes the service state to Disabled instead of undeploying it.
A subsequent recreation of the service uses the existing disabled instance and
changes its state to Offline, which avoids extra deployment and undeployment
overhead.

The ZENTURIO Grid services are either persistent or transient. The Fac-
tory and the Registry are persistent services, while the others are transient.
All the services can be accessed concurrently by multiple clients, which is an
essential feature for interoperability in a Grid environment.

Each service method has a synchronous and an asynchronous version. The
asynchronous version has the Async suffix and returns immediately an asyn-
chronous receipt. Synchronous methods can be invoked against this receipt
to check whether the asynchronous method has completed (optionally with a
waiting timeout argument), or to get the return result, any input or output
parameter, and any exception that may have been raised. This asynchronous
method invocation style can be regarded as implementing the pull event model
(see Section 5.4).

5.3.4 Factory

Each hosting environment that runs on every Grid site contains by default one
persistent Factory service, which implements the factory abstract concept or
pattern. The Factory is a generic service that creates and deploys (Java) Grid
services of any type, which are previously packaged as JAR files. The Factory
searches in the (UDDI) Service Repository for a service of a given type (i.e.,
as a businessService name - see Section 2.3.2). If such a service is found,
the Factory creates a Grid service instance through the following steps:
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1. get the URL of the service implementation (represented as an accessPoint
element - see Section 5.3.2);

2. download the corresponding JAR package;
3. deploy the service in the same hosting environment in which the Factory

resides;
4. initialise the service instance;
5. register the instance with all the Registry services (retrieved from the

UDDI Service Repository);
6. set a leasing time equal to the service termination time;
7. return the URL to the WSDL file of the service instance.

The clients use this URL to retrieve the WSDL file and dynamically bind
to the service through build-time generated proxies. Before searching for a
service, the Factory examines within the hosting environment whether an
instance of the same type has been previously destroyed and disabled. If such
an instance is found, the Factory changes its state to Offline, thus saving
expensive download, package, and deployment overhead (see Figure 5.7).

5.3.5 Registry

As opposed to other distributed service technologies (e.g., Jini lookup ser-
vice [50] or CORBA Naming and Trading services [107]), the Web services do
not provide any standard network-aware means of locating transient services
(the limitations of UDDI have already been emphasised in Section 5.3.2). The
Web services architecture [172] introduces the concept of Discovery Agent,
but leaves its design and implementation unspecified.

The Registry is a persistent service which maintains an updated list of
URLs to the WSDL files of the registered Grid service instances. The service
URLs are organised in special purpose hashing tables for fast high-throughput
service discovery. There may be an arbitrary number of persistent Registries
residing on any Grid site which must be registered within the UDDI Service
Repository. The Registry grants leases to the registered services similar to the
Jini built-in leasing mechanism. If a service does not renew its lease before
the lease expires, the Registry deletes the service from its internal service
list. This is an efficient mechanism to cope with dynamic transient services
and network failures. A leasing time of zero seconds explicitly unregisters the
service. An event mechanism informs the clients (e.g., the user tools) about
new Grid services that registered with the Registry, or when the lease of
existing services has expired. Thereby, the clients are always provided with a
dynamically updated view of the Grid services environment. The Registry is
a generic service that operates on Abstract Grid Services and, therefore, can
be used to register and discover services of any type within ZENTURIO.

The Web Services Inspection Language (WSIL) [10] defines a distributed
Web services discovery method which is complementary to the UDDI cen-
tralised approach. WSIL defines an XML document that contains URL ref-
erences to existing Web service instances (i.e., instance WSDL documents).
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Each Registry service generates upon request one similar WSIL document
which contains references to the registered transient Grid service instances.
The WSIL document receives an associated creation timestamp that deter-
mines the validity of the data.

The Registry provides three types of methods for performing lookup op-
erations:

1. White pages provide service discovery based on the service URL;
2. Yellow pages support service discovery based on the service type, com-

pared against the (unique in WASP) portType of each service. As de-
scribed in Section 5.3.1, the WSDL document of each WASP-deployed
Grid service contains one single portType with the same name as the
Java class that implements the service;

3. Green pages perform discovery based on the service functionality using
the compatibility operator between two WSDL interfaces described in
Section 5.3.6.

5.3.6 WSDL Compatibility

Functionality-based service discovery is a key feature in a Grid environment for
which the Web services technology does not provide any standard support. An
instance WSDL document W\ is denned to be compatible with W2 (denoted
as Wi D W2) iff:

1. the set of portType names2 of Wi instantiated by the service element
is a superset of the corresponding set of W2;

2. for each portType of W2 instantiated by the service element, the set of
operation names is a subset of the corresponding set of Wi;

3. two operations with the same name are identical (i.e., have identical
parameterOrder, input, output and fault messages).

The Web services compatibility operator is reflexive, antisymmetric, and
transitive.

5.3.7 Dynamic Instrumentor

The Dynamic Instrumentor is a Grid service for dynamic run-time instru-
mentation of running parallel applications based on the functionality of the
Process Manager sensor described in Section 5.2.2, augmented to apply on a
distributed multiple process basis. The Dynamic Instrumentor provides the
following four categories of operations:

1. Information Operations are based on the Process Manager information
functions which include the retrieval of the application object code or
the inspection of variable values. Because it is an expensive operation at

qnam.es in the WSDL specification and terminology [31].
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the Process Manager level, the Dynamic Instrumentor service retrieves
the object code only once during the lifetime of a process (i.e., when the
process is created or attached) and caches it for serving further requests;

2. Performance Metric Operations are based on the Process Manager ma-
nipulation functions, but operate at a higher level of abstraction, e.g.,
count number of function calls, compute the execution time of a function,
count the number of bytes passed in a function parameter. On top of the
generic performance metrics, a specialised MPI Dynamic Instrumentor
builds MPI-specific metrics which include:
a) the number of messages sent;
b) the number of I/O operations (based on the MPI-IO [156] standard);
c) the time spent in communication (i.e., by timing the routines from

the MPI_Send and MPIJlecv family);
d) the time spent in I/O operations;
e) the time spent in synchronisation (i.e., MPI_Barrier);
f) the number of bytes sent and received in communication;
g) the number of bytes involved in I/O operations;

3. Function Trace Operations request that the entry, the exit, and the call
points of a user, a system, or a library function are logged;

4. Notification Operations request that the client (i.e., the tool) be notified
(using the push event model - see Section 5.4) when certain events (e.g.,
instrumentation point reached, shared library loaded, process forked or
exited) occur in the application;

5. Breakpoint Operations request the insertion of normal or conditional
breakpoints. Since a breakpoint only stops'the process when it is reached
by the program counter, a typical use is in conjunction with a Notification
probe (see Section 5.2.2) that informs the client where such an breakpoint
event has occurred (rather than reporting only a process status change).

5.3.8 Aggregator

When dealing with parallel applications, frequently the first step in process-
ing the collected (performance) data (by the Process Manager data collection
thread) requires a reduction step for better data understanding. The Aggrega-
tor is a generic Grid service that takes large amounts of data and, through the
use of a chosen aggregation function, reduces it to more manageable quanti-
ties. The Aggregator supports reduction over time or across processors using
a variety of aggregation functions including mean, total, variance, sum, max,
or min. A more specialised metric for parallel processing is the load balance
defined as the ratio between the mean and the max value. A value of one
indicates the perfect load balance and a value of zero indicates the worse case
load balance.

The Dynamic Instrumentor provides an Aggregator service when request-
ing from several Process Managers to collect dynamic performance data from
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a parallel application. The Aggregator specialises both the Consumer inter-
face for receiving data from the Process Manager (upon subscription), as the
Producer interface for sending data to the client tool. Both interfaces are part
of the push event model described in Section 5.4.

5.4 Events

The Grid Monitoring Architecture (GMA) [157] that emphasises the need of
application and resource monitoring through asynchronous event notifications
has been widely acknowledged within the Grid community. ZENTURJO de-
signs and implements a generic event framework which largely confirms to the
GMA, but has a broader scope not limited to performance events.

Definition 5.1. An event is a timestamped data structure generated by a sen-
sor and sent by a producer to a consumer. An event producer is a Grid service
that implements the Producer interface and uses sensors to generate events.
An event consumer is a Grid service (usually a thread within the client appli-
cation) that implements the Consumer interface (see Figure 5.8).

Sensors can be stand-alone like the Process Manager or embedded inside pro-
ducers. Up-to-date information about the existing producers and consumers
is maintained by the Registry service.

5.4.1 Representation

The ZENTURIO event representation combines the two approaches proposed
by the GMA [157] with some subtle modifications that make the specification
clearer. An event consists of two parts:

1. The event header is the standard part of the event structure that comprises
the following fields:
a) event type is an identifier that refers to a category of events defined

by an event schema;
b) timestamp indicates when the event has been generated. If the events

are buffered, the elements in the event body may contain additional
timestamp information. The timestamp representation uses the GMA
standard proposal [157];

c) event producer (URL);
d) event consumer (URL);
e) sequence number;
f) expiration timestamp;

2. The event body represents the effective information carried by the event.
It consists of the following four fields, where the last three are optional:
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a) homogeneous container of elements where every element refers to a
single event. The structure of an element (i.e., the type) is denned by
an event schema;

b) element description (textual);
c) measurement unit;
d) accuracy.

The ZENTURIO event architecture depicted in Figure 5.9 supports three
types of interactions between producers and consumers, as specified by the
GMA:

1. public/subscribe (PS) is a generalisation of the push model where the ini-
tiator can be either the producer or the consumer. The initiator searches
in the Registry service for the other party (producer or consumer) and
registers for (the production or the consumption of) events. The producer
sends events to the consumers until the initiator unsubscribes. The con-
sumers subscribe for events to the producers by specifying the following
inputs:
a) event type that uniquely identifies the category of events desired;
b) event consumer (i.e., URL of the WSDL file) that specialises the

Consumer interface which receives the asynchronous notifications;
c) event parameters specify the properties (characteristics) of the events

to be sent to the user (e.g., process identifier for which status events
must be sent). The event parameters describe an event and are there-
fore included within the event schema (i.e., as data members);

d) filter specifies under which conditions an event must be sent (e.g.,
minimum value for a CPU load event);

e) subscription expiration time;
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Fig. 5.9. The ZENTURIO event architecture.
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2. query/response (QR) generalises the pull model. The initiator is the con-
sumer and the event is sent in a single response any time after the event
has been requested;

3. notification (N) is a slight specialisation of the push model. The producer
transfers the events to the consumer in a single notification with no pre-
liminary subscription.

Figure 5.10 depicts the generic event classification within ZENTURIO
based on several event types. Table 5.1 displays the producers and the sen-
sors for the event types supported by ZENTURIO. Table 5.2 gives a detailed
description of the event types and their use within ZENTURIO.

Event Type

Application Status

Process Status
Thread Status
Network Status

Site Status
Service Status

Application Performance

Process Performance

Thread Performance

Network Performance
Site Performance

Service Performance

Producer
Experiment Executor
Experiment Generator
Dynamic Instrumentor
Dynamic Instrumentor
Dynamic Instrumentor

SCALEA-G
SCALEA-G

Abstract Grid Service
Registry

Aggregator
Dynamic Instrumentor

Aggregator
Dynamic Instrumentor

Aggregator
Dynamic Instrumentor

SCALEA-G
SCALEA-G

Abstract Grid Service

Sensor
Experiment Executor
Experiment Generator

Process Manager
Process Manager
Process Manager

netstat
ping

Abstract Grid Service
Registry

Process Manager
SCALEA

Process Manager
SCALEA

Process Manager
SCALEA

NWS
NWS

Abstract Grid Service
Table 5.1. The event implementation support in ZENTURIO.

5.4.2 Implementation

Events require support for asynchronous messaging which is not explicitly
supported by the Web services specification. The most recent extended Web
services architecture specification draft [172] mentions asynchronous messag-
ing as an additional feature to be incorporated, while it is not clear who will
provide a concrete specification (e.g., another W3C group, a vendor-specific
implementation). The Web services standards, however, do include mecha-
nisms on which asynchronous operations can be based. For instance, the Web
services operations can be of type one-way, in which case no SOAP response
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Fig. 5.10. The event hierarchy in ZENTURIO.
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Event Type | Producer | Consumer
service
state
new

service
authentication

failed
out of

disk space
compilation

error
fie transfer

error
condition

true
application

performance
new

experiment
experiment

status
scheduler

down
scheduler

unsupported
service

load
compilation

error
execution

error
Repository
store error
Repository
access error

Registry

Registry

Abstract
Grid Service

Exp. Generator,
Exp. Executor

Exp. Generator,
Exp. Executor

Exp. Generator,
Factory

Exp. Executor

Dynamic
Instrumenter

Exp. Generator

Exp. Generator,
Exp. Executor
Exp. Executor

Exp. Executor

Exp. Generator,
Exp. Executor
Exp. Executor

Exp. Executor

Exp. Executor

Exp. Generator,
Exp. Executor

User
Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal
User

Portal

Sensor
Registry

Registry

Abstract
Grid Service

Exp. Generator,
Exp. Executor

Exp. Generator,
Exp. Executor
Exp. Generator

Exp. Generator
Instrum.
Process

Manager
Exp. Generator

Exp. Generator,
Exp. Executor
Exp. Executor

Exp. Executor

Exp. Generator,
Exp. Executor
Exp. Executor

Exp. Executor

SCALEA

Exp. Generator,
Exp. Executor

Parameters
type,
site
type
site

identifier,
app.

metric, app.,
sample rate

app-,
ZEN vars

app-,
ZEN vars

site,
sample rate

Filters

bool-expr

bool-expr,
max, min

max/min
load

Event Elements|lnteraction|
status

(up/down)
service type,

URL
user

name
site

ZEN file,
message

site

value

experiment

experiment
status
site,

scheduler
site,

scheduler
no. apps,
no. exps.

experiment,
message

experiment,
message

experiment,
message

site,
message

PS,
QR
PS,
QR
N

N

N

N

PS

PS

PS,
QR
PS,
QR
N
N
N

PS,
QR
N

N

N

N

Table 5.2. Overview of the supported ZENTURIO events.
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is generated and only a HTTP notification is sent back. Moreover, WSDL
defines operations of type Notification that allow an endpoint to send a mes-
sage, however, it omits to define a network protocol binding for it (this will
be solved in WSDL 1.2).

ZENTURIO implements the query/response events using the WASP-
specific asynchronous methods with the Async suffix, as described in Sec-
tion 5.3.3.

The implementation of the publish/subscribe and the notification inter-
actions (both based on the push event model) are based on one-way Web
services operations that reverse the roles of services and clients. The client
takes the role of a service that receives one-way notification callbacks by im-
plementing the Consumer WSDL interface. The implementation is based on
WASP-specific embedded servers that allow one client to start a hosting envi-
ronment as a separate thread. Although the declared purpose of this WASP
feature is rapid prototyping, the embedded server enables synchronous or one-
way callbacks. The SOAP address of the embedded server where the callbacks
must be sent is given to the producer service during the event subscription.

The entire event implementation in ZENTURIO is, however, WASP-
specific and therefore not portable across other Web services toolkits.

5.4.3 Filters

Filters can be either encoded inside the event producers (i.e., ZENTURIO
Grid services) or designed separately, as special kind of intermediaries.

Definition 5.2. An intermediary is a Grid service that insinuates between
a producer and a consumer during a push (i.e., publish/subscribe and noti-
fication) event notification. A filter is an intermediary which delivers to the
consumers a subset of the messages received from the producers.

An intermediary can be shared by multiple producers and consumers. The
event subscription method of the ZENTURIO producers can receive as input
(along with event type, consumer, and event parameters) an array of filters of
the Abstract Grid Service type. The filters are chained such that the first filter
receives the messages directly from the producer and the last filter delivers
the output messages to the consumer. This general method of chaining filters
is employed at certain latency costs (unless the deviated path through the
filter has a higher bandwidth than the direct path producer-consumer).

ZENTURIO implements an abstract template filter that specialises the
Abstract Grid Service and has exactly one producer and one consumer. Filters
can be easily plugged-in by specialising this abstract class and implementing
the filtering algorithm.
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5.5 Firewall Management

Firewalls are a critical topic in a Grid environment where geographically dis-
tributed Grid services need to transparently communicate through message
exchange across multiple administrative domains. This section describes the
pragmatic approach taken by ZENTURIO for traversing firewalls, however, a
proper solution that satisfies all the security constraints is beyond its scope.

The Web services hosting environment described in Section 2.3.4 offers
the advantage of a single entry point for accessing all the services through the
provision of an embedded SOAP dispatcher. Each ZENTURIO Grid service
has two associated communication ports that have to be remotely accessible:

1. synchronous service port is a property of the hosting environment and
therefore is common to all the services hosted on a Grid site;

2. asynchronous notification port is a state property that must be exposed
by each stateful Grid service.

All the hosting environments and the event consumers listening on open
site ports are responsible for authenticating every request using the Grid Se-
curity Infrastructure mechanisms (see Section 2.4).

The ZENTURIO experience identified two serious obstacles in deploying
large Grid infrastructures across different academic domains:

1. Independent (and in many cases not interacting) system administrators
usually restrict the access to the open ports to certain trusted adminis-
trative domains. Various scenarios defined by the community within the
Global Grid Forum, however, often require more flexibility. One frequently
mentioned requirement of the Grid users is mobility, i.e., the ability to
connect and use the Grid from arbitrary Internet locations (e.g., during
conferences), possibly from unknown IP addresses (e.g., received through
the Dynamic Host Configuration Protocol (DHCP) [142]) which are com-
monly rejected by any firewall;

2. To receive events at the client sites is usually impossible, the following
two scenarios being often encountered:
a) firewalls at foreign Internet sites outside the Grid infrastructure (e.g.,

where a demo is wanted) where it is impossible to ask the system
administrators for any firewall changes;

b) the use of the Network Address Translation [99] mechanism.

Table 5.3 displays the set of firewall ports that must be remotely accessible
within the Grid environment of ZENTURIO. The ZENTURIO experience
relieved that restricting the access to the set of open ports across n sites
requires the tight interaction of C\ pairs of system administrators which is
not scalable in a large Grid environment.



5.6 The Tool Layer 117

Port Type
GLOBUS.TCP-PORT-RANGE

GRAM Gatekeeper
GridFTP

MDS
NWS Slapd

NWS Nameserver
NWS Memory
NWS Sensor

NWS Forecast
SCALEA-G

Hosting Environment
Experiment Data Repository

Port Value
40000 - 40100

2119
2811
2135
2112
8090
8050
8060
8070

40600 - 40625
8080
5432.LJ.A.jJC/1 iiiiom» uaXiO. iLcpuoiLwiy jto^

Table 5.3. The open firewall ports in ZENTURIO

5.6 The Tool Layer

The ZENTURIO experiment management tool is the principal end-user tool
built within the tool integration framework presented in this chapter. The
ZENTURIO user portal is a thin client developed on top of the high-level
Grid services layer that makes use of the static instrumentation technology
provided by the SCALEA [161] performance tool and wrapped by the Ex-
periment Generator service. The tool interoperability is achieved through the
post-mortem share of the data stored into the Experiment Data Repository.

This section describes a complementary set of interoperable prototype
tools that use the dynamic instrumentation technology for online applica-
tion analysis. The key feature of the tool-set is the run-time interoperability,
achieved through the common use of the Dynamic Instrumentor and the Ag-
gregator Grid services on top of the shared Process Manager sensors. The
tools operate on unmodified executable files and can be used to monitor both
user and system functions even when there is no source code available. The
tools are generic and do not depend on any compilation options and linking
libraries, flags, or any other preparation step.

5.6.1 Object Code Browser

The Object Code Browser is a graphical browsing tool which displays the ob-
ject code structure of a given process retrieved from the application binary
executable file. In the case of MPMD parallel applications, the union of the
object structures of all the parallel processes is displayed. The Object Code
Browser can be used in cooperation with the other tools for selecting the in-
strumentation focus (see Section 5.7.2). The Object Code Browser subscribes
to the Process Manager for event notifications upon changes in the object
structure of the application that require the following display updates:



118 5 Tool Integration

1. fork: show the new process and its object structure;
2. exec: reload the modified process object-code;
3. dlopen: add the dynamic shared library to the list of application modules

displayed;
4. exit: delete the process from the parallel application process list;
5. status change: update the process execution status.

5.6.2 Function Profiler (Z.prof)

The Z-prof function profiler, analogous to the UNIX tool prof, displays the
call-graph profile data by timing and counting selected function calls. The
MPI flavour of the tool offers functionality to:

1. count:
a) the number of messages sent and received (from the MPI_Send and

MPI_Recv family);
b) the number of bytes sent and received;
c) the number of I/O operations (based on the MPI-IO [156] specifica-

tion);
d) the number of bytes involved in I/O operations;

2. time:
a) the communication routines;
b) the synchronisation routines;
c) the I/O routines.

Additionally, similarly to the UNIX administration tool top, the tool can
be configured to display the first n functions in terms of the invocation or '
the execution times. The information is provided online, as the application
executes. The refresh interval is determined by the input data sampling rate
indicated during the dynamic instrumentation.

5.6.3 Function Tracer (Z_trace)

Z.trace is an online tool that traces in the style of the UNIX software tool
t russ the functions executed by an unmodified executable binary application.
The tool does not differentiate between user, system, or library calls and does
not require source code information. However, in order to be able to extract
the function input and return arguments from the stack, the type information
is required to be present in the binary executable. Therefore, the application
needs to be compiled with appropriate flags (i.e., usually -g), otherwise only
the function name is returned. To manually provide the function signature to
the tracer is platform dependent and is not always a feasible solution. Since the
object code and the function set of most programming languages is rather large
and uninteresting (e.g., the smallest C++ program has about 1500 functions,
most of them located in the libc library), it is recommended that the tool
be focused on an interesting subset of functions or application modules. The
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algorithm callgraph.tracer
instrPunc = { }
Z.trace("main")

end algorithm

procedure Z.trace(func)
instrFunc = instrFunc + func
tracePoint(func.entry)
tracePoint(func.exit)
for each callPoint in func.callPoints

if(! callPoint.calee in instrFunc)
addNotification(callPoint)
addBreakpoint (callPoint)

end if
end for

end procedure

procedure Notify(callPoint)
Z.trace(callPoint)
removeBreakpoint(callPoint)
resume ()

end procedure

Fig. 5.11. The incremental callgraph tracing algorithm.

focus can be indicated either as an input configuration, or graphically using
the Object Code Browser (see Section 5.7.2).

Since the application object code is rather large, it is impractical and in-
efficient to pre-instrument all the application points with trace probes before
starting the execution. Rather, the functions are instrumented incrementally
before being executed, as sketched by the incremental callgraph tracing algo-
rithm in Figure 5.11.

1. Z.trace is the main function trace routine that inserts trace probes at
the function entry and all the exit points which have not yet been instru-
mented. Additionally, it inserts notification probes at all the call points to
trigger notification callbacks for each new function invocation that must
be traced too. Since the instrumentation is performed while the applica-
tion is running, each notification has to be combined with a breakpoint
that stops the process allows the tracer to instrument the new function
before executing it;

2. Notify is the callback triggered by the notification probes and the Pro-
cess Manager on behalf of the first invocation of each function. As a con-
sequence, the tracer instruments the new function with trace probes by
calling the Z_trace routine, removes the breakpoint, and resumes the pro-
cess.
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algorithm callgraph.coverager.
instrFuncs = { }
Z.cov("main")

procedure Z_cov(func)
instrFuncs = instrFuncs + func
addCounter(func.entry, rate)
addCounter(func.exit, rate)
for each callPoint in func.callPoints

if(! callPoint.calee in instrFuncs)
addNotification(callPoint)
addBreakpoint(callPoint)

endif
endfor

end procedure

procedure Notify (callPoint)
Z_cov(callPoint.calee)
removeBreakpoint (callPoint)
resume ()

end procedure

procedure DataCol(counter)
if(counter > 0)

deleteCounter(counter)
writer(counter.point has been hit)

end if
end procedure

Fig. 5.12. The incremental callgraph coveraging algorithm.

5.6.4 Code Coverager (Z_cov)

The Z-cov tool imitates the UNIX tool tcov to produce a test coverage anal-
ysis on a function basis. The tool counts the number of times the program
counter hits each instrumentation point. Z-cov is useful in practice for detect-
ing dead code due to, e.g., redundant conditionals, or obsolete functions.

Similarly to Z-trace, Z-Cov employs an incremental callgraph code cover-
aging algorithm sketched in Figure 5.12 that lazily instruments each function
just-in-time before its first execution:

1. Z.cov is the main instrumentation routine that computes the coverage of
one arbitrary function. Firstly, it inserts counters at the function entry and
all the exit points. Similarly to the incrémental tracing algorithm outlined
in Figure 5.11, the coverager inserts notification probes at each call point,
followed by a breakpoint that allows to instrument each function before
executing it for the first time;
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2. Notify is a callback from the Process Manager that trapped a call to
a function that has not yet been instrumented. As a consequence, the
coverager instruments the invoked function by calling the Z.cov routine,
removes the breakpoint, and resumes the process;

3. DataCol is the callback routine from the Process Manager that contains
the counting information. Each application point with a counter greater
than zero has been hit by the program counter and requires no more
instrumentation. The coverager therefore removes this instrumentation
which reduces the intrusion in the running process.

5.6.5 Sequential Debugger (Z_debug)

Z-debug is a traditional sequential debugging server in the dbx or gdb style
that provides the following functionality:

1. create and attach the process (i.e., operation required for dynamic instru-
mentation) ;

2. detach the process (i.e., disconnect and leave the process running);
3. manipulate the process state (i.e., stop, resume, terminate);
4. send a UNIX signal to the process;
5. read and write (global) variables;
6. insert and remove breakpoints at arbitrary instrumentation points;
7. insert and remove probes (i.e., counters, timers, traces, notifications) at

arbitrary instrumentation points;
8. delete and replace function calls;
9. retrieve the object code information;

10. display and manipulate the process stack.

5.6.6 Memory Allocation Tool (ZJVTAT)

Z.MAT is a memory allocation tool, inspired from Purify [82], that traces
the C memory allocation functions from the malloc and free family (i.e.,
malloc, realloc, calloc, memalloc, valloc, free). The tool provides the
following online functionality during the execution of the application:

1. display the memory allocation blocks;
2. display the totally allocated and the free heap size;
3. detect memory leaks (i.e., memory allocations with no corresponding free

calls) ;
4. detect erroneous memory free calls that have no corresponding mem-

ory allocations (such bugs are often difficult to track and produce non-
deterministic crashes);

5. display the amount of space allocated for the process data segment by
instrumenting the brk and sbrk system calls.
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The C++ new and delete memory allocation operators are compiled, e.g., by
the gcc compiler to built-in functions (i.e., __builtin_new and __builtin_delete),
which in turn call the malloc and the free memory allocation functions, fol-
lowed by calls to the structure constructor, respectively destructor.

5.6.7 Resource Tracking Tool (Z_RT2)

is a simple tool in the style of the UNIX icps that displays an online
a list of the resources allocated by an running process by tracking several
POSIX system calls:

1. open / close to display the open UNIX file descriptors;
2. shmget / shmctl to display the allocated UNIX shared memory seg-

ments;
3. msgget / msgctl to display the UNIX message queues;
4. semget / semctl to display the active UNIX semaphores;
5. sigaction to display the list of UNIX signals trapped by the process.

In addition, the tool displays a post-mortem list of warnings containing the
set of resources which have been allocated and not freed by the process.

5.6.8 Deadlock Detector (Z_deadlock)

Z-deadlock is a tool that dynamically instruments the blocking MPI receive
communication routines and checks for run-time inter-process communication
cycles based on the message source process identifier.

5.7 Tool Interoperability

An important objective of the tool integration framework described in this
chapter is the provision of an effective environment for tool interoperability.
This section first classifies the various types of tool interaction, then illustrates
several examples that demonstrate how synergy can be gained by interopera-
ble use of tools.

5.7.1 Classification

The framework distinguishes between two types of tool interactions:

1. Direct Interaction assumes direct communication between the tools and is
entirely determined by the tool design and implementation. This type of
interaction happens exclusively within the tool layer and is independent of
the underlying framework. For example, a performance tool may input the
performance data to a steering tool that checks for a specific bottleneck,
or a steering tool may directly ask a debugger to execute a command in
order to optimise the program execution (see Section 5.7.3);
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2. Indirect Interaction is a more advanced type of interaction that is trans-
parently intermediated by the framework via the Grid services and re-
quires no work or any particular knowledge from the tools. This scenario
occurs in practice when the ZENTURIO Grid services interact with each
other "behind the scenes" on behalf of the tools. The indirect tool inter-
action can be further classified as follows:
a) Co-existence when multiple tools operate simultaneously on different

parallel applications but share the same Grid service instances or sen-
sors (i.e., utilise the same Process Monitor to instrument different
application processes on the same machine);

b) Process Share when multiple tools attach and instrument the same ap-
plication process simultaneously. This type of interoperability has the
potential of creating a variety of interesting interoperability scenarios,
as described in the next sections;

c) Instrumentation Share when the tools share instrumentation probes
while monitoring the same application process in order to minimise
their intrusion. This interoperation is automatically handled by the
Process Manager sensor;

d) Resource Lock when the tools require exclusive access to a specific re-
source. For example, a tool (through the user credentials - Section 2.4)
can ask the Process Manager for a lock on a certain application re-
source (e.g., process, function) so that it may perform some accu-
rate timing. The Process Manager allows no other user to instrument
that resource, though the existing timers may be reused and sampled
through the instrumentation share interoperability type.

Figure 5.13 shows a screen-shot of four interoperable tools (i.e., clockwise
from top right: the Object Code Browser, Z.trace, Z.cov, and Z.prof) in-
strumenting and monitoring the same Mandelbrot MPI application instance.
The tools are independently instrumenting and monitoring various functions
within the same MPI process (i.e., host cama, pid 18462).

5.7.2 Interaction with a Browser

A common task for most run-time tools is to display the application resource
hierarchy. This includes the application source or object code structure (i.e.,
modules, functions, and instrumentation points), machines, processes, and
threads. Since it is implementation redundant that every tool independently
provides this functionality, the responsibility can be given to a single tool like
the Object Code Browser introduced in Section 5.6. Apart from displaying
the resource hierarchy of an application, the Object Code Browser can also
be used to specify which resources are to be used when another interoperable
tool is started.

The advantage of this interoperability is that tools such as Z.prof never
need to manipulate the list of application resources. By selecting a set of
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Fig. 5.13. A snapshot of the interoperable software tools.
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functions in the Object Code Browser and running Z.prof with no other
arguments, the selected functions will be automatically profiled.

5.7.3 Performance Steering

Performance optimisation is a non-trivial activity that typically consists of a
four phase cyclic process [103] (see Figure 5.14):

1. Performance Measurement and Data Collection when a performance pro-
filer is used to collect data from the application;

2. Analysis and Visualisation when performance analysis tools are used to
interpret the performance data. Visualisation diagrams may be optionally
employed if the analysis process is deferred to the end user;

3. Optimisation when the programmers choose various options to improve
the performance of their programs. This is the main task of the perfor-
mance steering tool;

4. Modification when the optimisations decisions taken at the previous step
are applied to the program.

Once these four stages have been completed, the performance tool again
evaluates the application performance and, if the result is still not satisfactory,
the cycle repeats.

There are two options in which such a steering tool can be realised:

1. static offline targets the application optimisation through repeated execu-
tion for various parameter instantiations. This technique will be addressed
in Chapter 6;

2. run-time online targets the application steering within one single execu-
tion. This scenario is approached in the proposed interoperability frame-
work as follows:
a) The Performance Monitor (e.g., Z.prof) collects the performance data

and presents it in an appropriate manner to the steering tool. It might
also highlight sources of performance bottlenecks;

Analysis

Performance
Monitor

performance
data

performance
data collection

Fig. 5.14.

Optimisation

Steering
Tool

Application }

debugging
commands

Modification

ueuugger

instrumentation

The Steering configuration.
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b) The Steering Tool decides whether an optimisation is required based
on the performance information received from the performance mon-
itor. If yes, it decides on the application modifications to be applied
and gives the debugger the appropriate commands;

c) The Debugger (e.g., Z.debug) modifies the run-time binary code ac-
cording to the commands received from the steering tool by inserting
or removing binary instrumentation snippets, or by tuning online vari-
able values using the dynamic instrumentation.

The run-time online performance steering can be of two types:
a) Interactive when the steering tool is replaced by the programmer who

drives the execution of the performance profiler, visualises and anal-
yses the performance data, takes optimisation decisions, and maps
them into debugger commands;

b) Automatic in which case the steering tool gives hints about the possi-
ble performance problems and generates alternatives to optimise the
program.

The use of the dynamic instrumentation enables the steering process to
take place dynamically within one application execution without restarting
the application every time a modification has been made. The interoperability
type between the three tools is mixed. The steering tool interacts directly
with the performance monitor and the debugger. The performance monitor
and the debugger interact indirectly, by concurrently manipulating the same
application process using the same Process Manager.

5.7.4 Just-in-time Debugging

Using a traditional low-level debugger to verify the correctness of a program
requires to execute and repeatedly stop the program to inspect its state. If
an incorrect program state is detected, all that is known is that a bug lies
somewhere between the last inspection point and the current execution point
(see Figure 5.15). For parallel programs the problem gets significantly mag-
nified due to their non-deterministic nature that leads to hardly reproducible
errors. Deterministic execution tools [137, 138], possibly in conjunction with
a checkpointing tool [109, 146], may help in reproducing the error. This cyclic
debugging method is, however, a time-consuming process since the problem
has to be repeatedly reproduced. The real bottleneck is the fact that tra-
ditional instruction-level debuggers offer too low-level support for spotting
erroneous program states and provide no information about their real cause.
Furthermore, the deterministic réexécution tools used to reproduce erroneous
program executions can be very time consuming for long program executions.

The just-in-time debugging concept attempts to eliminate the need of
deterministically reexecuting the program by using of an online high-level bug
detector to spot program defects in conjunction with a traditional low-level
debugger to fix the problems on-the-fly using the dynamic instrumentation.
Just-in-time debugging is an example of direct tool interaction.
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Fig. 5.15. The cyclic debugging states.
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Fig. 5.16. A just-in-time debugging scenario.

In the proposed framework, the Z.MAT memory access tool can be used
to detect memory access errors, like an attempt to deallocate a free memory
location. In the just-in-time debugging configuration depicted in Figure 5.16,
Z-MAT performs additional instrumentation that stops the application at the
exact location where a memory access error is detected. Additionally, Z.MAT
automatically invokes the Z.debug sequential debugger on the stopped process
which gives the user the opportunity to analyse the problem at the exact
location where it occurred and eventually pursue online corrections. In this
example, changing the memory block pointer or skiping/deleting the free
instruction are crucial for avoiding a highly probable crash.

5.7.5 Interaction with a Debugger

The interaction of software tools with a run-time interactive debugger requires
special care since the debugger severely interferes with the process execution.
The following two indirect interactions (i.e., process share) are of interest:

1. Consistent Display is an important task required by nearly any run-time
tool. This issue becomes problematic when multiple tools are concurrently
monitoring the same processes, since the display of each tool depends not
only on its own activity, but also on the actions of other tools. When a
visualiser like the Object Code Browser interoperates with a debugger,
the following sample interactions are possible:
a) if the debugger stops the program execution, the execution visualiser

needs to update its display in order to show this fact;
b) if the debugger changes the value of a variable, the (distributed array)

visualiser must update its display with the new value, for consistency;
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c) if the debugger loads a shared library in the application, or replaces
a call to a function, the Object Code Browser must change its code
hierarchy accordingly.

2. Timing is an important interaction can happen between a performance
tool and a debugger. For example, Z.debug could choose to stop a process
while the performance tool Z.prof is computing some timing operations.
In this situation, while the user and the system times stop together with
the process, the wallclock time keeps running. The framework takes care of
this situation through the Process Manager that automatically subtracts
from the wallclock counter the time during which the process has been
stopped by the debugger.

5.8 WASP versus OGSI

The ZENTURIO Grid services infrastructure has been designed and imple-
mented in the year 2001 based on the WASP toolkit, as described in Sec-
tion 5.3.1. In the year 2003, the Global Grid Forum has finalised the Open
Grid Services Infrastructure (OGSI) specification [163] that was aimed to be
the standard technology for building Grid services. The extensions added by
OGSI to the conventional Web services comprise standard means for man-
aging the service lifetime (including time modelling), service data elements
which expose service state within the WSDL portTypes of each service inter-
face, and a standard interface for light-weight notification events. The Globus
toolkit implements the OGSI specification within the Open Grid Services Ar-
chitecture (OGSA) [62} based on the Apache Axis [70] SOAP implementation.

Within this wide international effort, the thesis brings its contribution
by porting the ZENTURIO experiment management tool and the underlying
Grid services to this new technology [126, 129]. The reminder of this section
comparatively analyses various aspects that were substantially different in the
WASP and the OGSI-based implementations, in particular issues regarding
proxy management, service lifecycle, UDDI service repository, firewall man-
agement, Registry service, service throughput, and security.

5.8.1 Proxy Management

The ZENTURIO Grid services have been initially developed for the WASP
server and SOAP engine for Java. The service deployment from the WASP
to the OGSI-based implementation has been (in accordance with the Web
services principles) straight forward, by using the corresponding automatic
WSDL generation, packaging, and deployment tools.

Major difficulties have been encountered when porting the clients (i.e.,
the tools) which was mainly due to the different proxy management in the
two SOAP implementations (which is not standardised by the Web services
technologies). Interoperability between WASP-based clients and OGSI-based
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services was also not a feasible solution, since the goal was to use and validate
the OGSI extensions to the Web services (e.g., notifications, service data).

The proxy generation in WASP is dynamically generated at run-time dur-
ing the service lookup and, therefore, completely transparent to the user. In
contrast, the proxy generation for the OGSI Java clients is statically generated
at compile time using a special GSDL2Java (WSDL2Java in vanilla Axis) tool.
A limitation of this tool is that it generates not only stubs for transparent
remote invocation of the services, but also Java Bean implementations com-
patible with the Axis BeanSerializer for all the complex types that appear
as input or output arguments to the service methods. Each such bean con-
tains the set and get methods to access the private data members, a default
constructor, and additional bean (de)serialisation code. This means that the
implementation of each complex type present in a service interface has to be
a Java Bean, which is overwritten (or generated) by the stub generator.

This limitation is not imposed by WASP, which allows arbitrary non-
trivial implementations of the complex types that are defined in the WSDL
interfaces. The WASP serialisation is based on a Ref lection(De) Serial izer
which manages the default type (de)serialisation using a Java Beans intro-
spector that applies at run-time directly on the bean implementation class
provided by the user.

The initial implementation of the ZENTURIO Grid services contained
non-trivial implementations of several complex types to be (de)serialised (e.g.,
Experiment and ZEN-annotated Application classes). The code needed there-
fore to be redesigned, such that the stubs physically generated by Axis do
not overwrite the original implementation and remove the non Java Bean
methods. Two solutions have been considered to solve this problem:

1. ignore the Java Bean stubs generated for the complex types and paste the
serialisation code into the implementation using a macro-processing tool
(this method is simple but less neat);

2. reengineer the implementation in a class hierarchy, where the superclass
is the Java Bean that will be overwritten by the stub generator, and the
subclass contains the complex non Java Beans methods.

The second solution has been adopted which is neater, but requires a major
reengineering of the application class hierarchy.

5.8.2 Service Lifecycle

One major contribution of OGSI to conventional persistent Web services is
the standardisation lifetime management of transient Grid services (see Sec-
tion 2.7). Normally each conventional Web service hosting environment im-
plements its own state transition diagram which can be manipulated through
specific API (see Section 2.3.4). The problem is that the implementation of
transient services across various service containers is not portable.
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WASP provides two different instantiation models of runtime published
services and automatic lifetime management:

1. Shared instantiation is the usual instantiation method which shares one
instance of the remote object across multiple clients. The service lifetime
is controlled through WASP-specific TTL (Time-To-Live) routines as pre-
sented in Section 5.3.1 and Figure 5.7;

2. Per-client instantiation is a scheme through which the WASP hosting en-
vironment automatically creates a transient instance of a persistent ser-
vice for each separate client on behalf of its first service invocation. This
technique is similar with the WS-Context [25] standard for implementing
stateful services.

This was an interesting occasion to notice that, while following a differ-
ent development path than OGSI, existing advanced Web services toolkits like
WASP do provide advanced proprietary extensions for implementing transient
Grid services. The OGSI specification adds lifecycle as a property of Grid
service instances, by defining a standard API as part of the GridService
portType specification and by including termination time as a WSDL ser-
vice data element. This solution has the key advantage of being portable
across multiple OGSI-compliant implementations. Moreover, the service life-
time management is fully handled by the OGSI implementation toolkits which
substantially simplifies the development of new transient Grid services.

5.8.3 UDDI-based Service Repository

Section 5.3.2 has presented a custom centralised repository for publishing
persistent Grid services implementations based on the UDDI standard [164].
The generic WASP-based Factory service downloads the required service im-
plementation from the UDDI Registry (if necessary) and deploys the service
instance on-the-fly using the WASP runtime publishing tools. This run-time
on-the-fly service deployment technique could not implement in the OGSI-
based implementation that requires pre-deployment of persistent services be-
fore the hosting environment is started. Transient services are purposely de-
signed for runtime deployment, however, the corresponding byte-code and
WSDL interfaces need to be pre-deployed. This limitation is very critical in
a Grid environment, where new services need to be deployed on new sites at
run-time based on the dynamic resource availability.

5.8.4 Service Data

The OGSI most radical extension to the Web services is the ability to ex-
pose service instance state data for query, update, and change notification.
The OGSI approach introduces a serviceData child element to the WSDL
portType to describe stateful Grid services. Service data is an OGSI-specific
feature and therefore not supported by WASP and any other traditional Web
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services implementation. The ZENTURIO WASP-based implementation ex-
poses the Grid services state through Java Bean get and set methods, which
has the atomicity limitation exemplified in [163].

The service data elements exported by the OGSI-based ZENTURIO ser-
vices are enumerated in Table 5.4. The service data elements of the Registry
and the Factory services are implemented by the Globus toolkit as part of the
VORegistry, respectively the FactoryServiceSkeleton implementation (the
latter as an extension to OGSI).

Service
Experiment
Generator

Experiment
Executor

Registry

Factory

Service Data Elements
ZEN applications

last experiment generated
number of experiments

Experiment Data Repository (JDBC URI)
notification port
ZEN applications

number of experiments (submitted/
queued/running/terminated/stored)

Experiment Data Repository (JDBC URI)
notification port

registered services
notification port
created services

UDDI URL
notification port

Table 5.4. The ZENTURIO service data elements.

The service data elements were, however, one the major obstacles for the
OGSI adoption within the Web services community due to their native object
oriented roots that conflict with the stateless Web services principles.

5.8.5 Events

OGSI defines three different WSDL portTypes that aim to standardise
the push event specification: Notif icationSource, Notif icationSink, and
NotificationSubscription. Section 5.4 has presented the realisation of
the push events in WASP based on embedded servers. This approach is
also adopted by the Globus toolkit for the implementation of the OGSI
Notif icationSink portType. This was another interesting occasion to no-
tice that existing Web services toolkits offer solutions to implement the OGSI
extensions to Web services, although the declared objectives and development
paths are different. In addition, OGSI specifies an event subscription mecha-
nism on serviceData element changes, like those described in Table 5.4.

Support for the pull event model is standardised in OGSI by means of
findServiceData introspection on WSDL serviceData XML elements. This
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approach is completely orthogonal to the one taken used in WASP based on
asynchronous one-way methods (see Section 5.4).

5.8.6 Registry

Section 5.3.5 has presented an advanced WASP-based Registry service for
high-throughput white, yellow, and green page-based Grid service instance
discovery.

In order to save development time and also evaluate other implemen-
tations, the OGSI-based implementation of ZENTURIO incorporates the
VORegistry service provided by the Globus distribution. The uniqueness of
the VORegistry is the ability to publish Grid services as service data elements
with service lookup support through findServiceData introspections. As an
additional service data element, the VORegistry publishes a Web Services
Inspection Language (WSIL) [10] document containing a list of URLs to all
the services registered. The service lookup operations are based on standard
XPath [32] queries against the WSIL XML document. Subscriptions on service
data element changes provide support push event notifications.

A comparative service lookup throughput analysis for both the WASP
Registry and the OGSI VORegistry will be presented in Section 7.1.6.

5.8.7 Security

The user identity in the Grid Security Infrastructure (GSI - see Section 2.4))
is represented by a private and. public key pair plus an X.509 certificate.
The secure communication across Grid services is realised based on mes-
sage level WS-Security [9] standard that describes enhancements to SOAP
for message integrity through XML digital signatures, message confidentiality
through XML encryption, and single message authentication.

The Globus implementation of OGSI includes complete GSI support com-
prising proxy delegation techniques. The main limitation of the WASP PKI-
based security across pure Web services is the support for delegation. The
WASP-based Grid services employ the real user private (and public) key for
mutual authentication which may be a crucial security flow.

This limitation is critical in two situations in ZENTURIO which illustrate
two typical scenarios for which GSI enhancements have been thought:

1. When the Factory (running potentially with administration permissions)
creates a new Grid service, it is often natural to give to the newly created
instance the identity of the end-user that requested it. This requires that
the remote service instance has access to the user private key, which is
an unacceptable security risk. Through the GSI delegation mechanism,
the Factory provides the service instance with a proxy that impersonates
the user for a limited time interval that significantly reduces the security
risks;
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2. When multiple Grid services are chained in a workflow, they often need
to take the client role on behalf on the end-user. Similarly to the Factory
case, the proxy delegation achieves this goal with less security risks than
propagating the user private key on all Grid sites that host the services
from the workflow chain.

The GSI is employed by the WASP implementation too when talking to
the Globus services like GASS, GRAM, and GridFTP.

A small test performed for both WASP and OGSI-based implementations
shows an increase in latency of about two orders of magnitude with each
authenticated call, as opposed to the non-secure version (see Figure 5.17).
This high overhead is due to the additional message exchanges between the
client and the Grid service needed for performing the mutual authentication.

5.8.8 Summary

Table 5.8.8 presents a comparative summary of the various features which
have been comparatively analysed in the WASP and the OGSI-based imple-
mentations of ZENTURIO.

Despite the portability limitation, there are some clear advantages of the
WASP-based implementation compared to the OGSI-based prototype.

1. WASP generates stubs to remote services dynamically at run-time, which
avoids unnecessary compilation steps. OGSI Apache Axis generates stubs
statically at compile-time, which restricts the implementation of WSDL
complex structures to Java Beans;

2. The WASP-based Factory allows run-time on-the-fly service creation and
deployment. This cannot be achieved in the OGSI-based prototype which
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Functionality
WSDL interface

Grid Service
Registry
Factory

service creation
service lifetime

events

pull events
state introspection
UDDI Repository

security

stubs
input structures

service
throughput

registry
throughput

WSIF support

ZENTURIO WASP
single portType

Abstract Grid Service
yes
yes

dynamic, on-the-fly
WASP proprietary

WASP-specific
Producer/Consumer

asynchronous methods
Java Bean access methods

yes
SOAP XML message,

no delegation
run-time, dynamic
arbitrarily complex

200 req/sec, 100 int array
400 req/sec, 100 char string

Registry service
700 - 300 requests/sec.

no

ZENTURIO OGSI
OGSI-compliant

GridService interface
yes (VORegistry)

yes
static, pre-installed

OGSI-compliant
OGSI-compliant

NotificationSource/Sink
Service Data queries

WSDL findServiceData calls
no

SOAP XML message,
GSI delegation

static, compile-time
Java Beans only

100 req/sec, 100 int array
200 req/sec, 100 char string

VORegistry service
50-0.1 requests/second

yes

Table 5.5. WASP versus OGSI-based solutions to Grid services features.

restricts the transient service creation to pre-deployed services. This is a
severe limitation in a Grid environment where creating services dynami-
cally on unknown remote sites is mandatory;

3. ZENTURIO defines a novel use of the UDDI service repository for storing
implementations of transient Grid services;

4. The ZENTURIO WASP-based services provide a better service through-
put, which is important in a heavily used multi-client Grid environment
(see Section 7.1.7);

5. The ZENTURIO Registry service provides a much better throughput than
the OGSI VORegistry (see Section 7.1.6). The reason is the hash-based
service organisation of the WASP-based Registry, as opposed to the se-
quential XML-based service data document of the OGSI-based VOReg-
istry.



Optimisation Framework

Chapter 4 has introduced the ZENTURIO experiment management tool for
cross-experiment performance and parameter studies of parallel applications.
To achieve this goal, ZENTURIO performs an automatic exhaustive sweep
of the entire parameter space defined using the ZEN directives described in
Chapter 3.

With the emergence of Grid computing that aggregates a potentially un-
bounded number of resources, new classes of applications such as workflows
and parameter studies are being denned. The parameter space of such large-
scale Grid applications can easily achieve rather huge dimensions for which
the exhaustive parameter sweep performed by ZENTURIO is no longer fea-
sible. In general, a complete parameter sweep gives useful detailed insight on
the application behaviour, but also produces vast amounts of data that are
irrelevant for further studies. Often the user ultimate goal is to find param-
eter combinations that optimise a certain application behaviour, such as a
performance metric or an output result. Such optimisation problems are well
known as NP-complete [74] and require advanced heuristics.

ZENTURIO designs a generic optimisation framework [129] sketched in
Figure 6.1 that employs general purpose heuristic algorithms for solving NP-
complete performance and parameter optimisation problems for parallel and
Grid applications. The input to the optimisation framework consists of a ZEN
application and an objective function. The ZEN application defines through
ZEN directives a large parameter space impossible to be exhaustively ex-
plored. The ZEN application is given as input to a heuristic-based search
engine that attempts to find a ZEN application instance which maximises the
optimisation function. For the realisation of the search engine, general-purpose
heuristics like genetic algorithms are considered.

Definition 6.1. Let A denote a ZEN application which defines a search space
of size \VA\. The objective function to be maximised by the ZENTURIO op-
timisation framework has the following problem-independent signature:
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Fig. 6.1. The ZENTURIO optimisation framework design.

The objective function is the only module that depends on the target
back-end application which has to be separately supplied for each particular
optimisation problem. In the case of performance tuning of parallel applica-
tions, the objective function is the performance data defined in Section 3.8
(see Definition 3.26) and evaluated through experiment execution. In the case
of scheduling problems, the objective function can be implemented by a per-
formance prediction tool [54], or approximated through an application-specific
analytical function. The framework provides a generic objective function in-
terface (see Definition 6.1) that hides the internal problem dependencies, thus
keeping the search engine entirely generic.

Within the ZENTURIO architecture described in Chapter 4, the heuristic-
based search engine replaces the experiment generation algorithm which was
presented in Section 3.10 and encoded as part of the Experiment Genera-
tor service (using the random experiment generation method) described in
Section 4.2 (see Figure 4.8).

The following three concrete instantiations of the framework will be ad-
dressed in this chapter:

1. scheduling single Grid workflow applications in Section 6.2;
2. scheduling large sets of independent tasks for high throughput on the Grid

in Section 6.4;
3. optimisation of parallel applications, with special focus on scheduling on

heterogeneous Grid resources in Section 6.5.

The next section presents a problem-independent realisation of the op-
timisation search engine based on genetic algorithms. New general-purpose
heuristics like subdivision, simplex, simulated annealing, BFGS, or EPSOC
methods will be targeted in future work.
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6.1 Genetic Search Engine

Genetic algorithms [77] are a class of randomised optimisation programs which
mimic the natural evolution of individuals in a population. Genetic algorithms
use a vocabulary borrowed from natural genetics. Often individuals are called
chromosomes. Chromosomes are made of units called genes, arranged in linear
succession. Genes are located at certain places in the chromosome called loci.
The value of a gene which determines one character of an individual (such as
hair colour) is called allele. The genetic algorithms are iterative algorithms
that start from an initial population and use natural evolution operators on
the population individuals. The selection operator selects some better fit in-
dividuals from the population according to a fitness function. The selected
individuals then qualify for reproduction, crossover, and mutation with cer-
tain probabilities. As a result, a new population of more superior individuals
is obtained. The iterative process continues on the newly formed population
until a convergence criterion is fulfilled.

ZENTURIO employs a classical generational genetic algorithm sketched
in Figure 6.2. This section presents a generic encoding of the genetic search
engine that is independent of the objective function and therefore can be
applied to multiple optimisation problems. The optimisation function that
implements a generic API interface represents an application-dependent per-
formance metric or output result which has to be independently supplied.

algorithm genetic optimiser;
input: (1) ZEN application A;

(2) fitness function T;
(3) population size p;
(4) crossover probability pc;
(5) mutation probability pm ;
(6) maximum generation max-gen;
(7) steady state percentage;
(8) fitness scaling factor Cmuu\
(9) elitist model;

output: "best" ZEN application instance AT;

1. Initialise the population with individuals;
2. generation = 1;

repeat
3. Select and reproduce ZEN application instances;
4. Crossover ZEN application instances with probability pc;
5. Mutate each ZEN variable with probability pm;
6. generation = generation + 1;

until convergence criterion or steady state or generation > max-gen;
7. return the ZEN application instance with maximum fitness value.

Fig. 6.2. The generational genetic algorithm.
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Definition 6.2. Let A{z\,...,zn) denote a ZEN application, where Zi are
ZEN variables, V i € [l..n]. Let V* denote the value set of a ZEN vari-
able Zi (i.e., the set of possible parameter instantiation values). A gene is a
ZEN variable Zi. An allele is a gene instantiation, i.e., an element ei £ V2*.
The totally ordered set {z\,...,Zn) of all ZEN variables of A is a chromo-
some. The locus i of a gene Zi is given by its index within the totally ordered
set chromosome. An individual is a ZEN application instance AI(e\,..., e„),
where e» € V*, V i e [l..n]. The objective function, called in genetic terms
fitness function, has been defined in Definition 6.1.

6.1.1 Initial Population

The initial population of fixed size p is built by generating a random set of
ZEN application instances (i.e., by assigning random values to ZEN variables):

V = {AXi{eu ..., en) \ e, € V , V j e [l..n], V i e [l..p]}.

An appropriate population size p has to be experimentally determined for
each particular problem. Additionally, an interface for manually inserting ZEN
application instances in the initial population, which can significantly improve
the performance of the genetic algorithm, is provided.

6.1.2 Selection

The selection operator creates a new population by choosing the best ZEN
application instances for reproduction. Let V denote a population of cardi-
nality p and T its average fitness. The reminder stochastic sampling with
replacement [77] selection model that creates a new population:

in two steps, as follows:

1. V\ = U?=i U}=i^ clonej(AIi). This step is called expected value model
because it selects each application instance proportional with its fitness
value and eliminates stochastic sampling errors;

2. V2 = \Ji=iclonej(^Ij)' where s = \V\ - \Vi\, n £ [0,1] is a random
number such that:

^j < F(AXk)\

p / F(ALk) \

and \P\ denotes the cardinality of the set V. Informally, the population
places that remained empty in the first step are filled by simulating a
roulette wheel with slots proportional with the fractional part of each
individual fitness normalised against the average population fitness.
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6.1.3 Crossover

The crossover operator is used in genetic algorithms for performing quick
searches for local maxima. The algorithm employs a single point crossover
operator, defined by the random function:

© ^ V ^ x V ^ ^ x V4,

•4Xi(ei, . . . , g ® AL2{él, . . . ,< ) = (A1\,AT'2),

where:

AZ\ = Al\{e±, ...,er, e'r+1,..., e'n),

AI'2 = Al'zie1!,. ..,e

and r G [1, n — 1] is a random number (see Figure 6.3(a)).
Let V — {AJi,..., Aln} denote a population of ZEN application in-

stances. Let pc be the probability of crossover that has to be experimentally
determined for each individual problem. The subset of ZEN application in-
stances which undergo crossover is given by:

n

Vc={jAJ'i,

where:

AI\ =

and ri G [0,1] is a random number, V i G [l..n]. The crossover pairs are
randomly selected from Vc.

6.1.4 Mutation

The mutation operator enables the algorithm to jump to another search space
region which avoids local stagnation stages of the population. The mutation
operator applies gene-wise on ZEN application instances, according to the
function:

e : V-4 - » V ^ , e(AX(eu ...,en))= Al'(e[,..., e'n),

where:

e' = / <%' n < P m '1 \ei, n >pm,

pm is the (experimentally tuned) probability of mutation for a gene, r* € [0,1]
is a random number, and e" G V2* is a randomly selected allele, V i € [l..n].
A sample chromosome which undergoes a single gene mutation is illustrated
in Figure 6.3(b).
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Fig. 6.3. The genetic operators.

6.1.5 Elitist Model

Repeated crossover and mutation may lead to the elimination of the best ZEN
application instance, which could have negative impacts on the final solution.

Let Vc be a population at some generation G, AI% € VG the currently
best ZEN application instance (i.e.,T (AI%) > T {AX), V AI€VG), and
VG+I the next generation. The elitist model enforces to preserve the best
ZEN application instance across generations:

v , = -AI L)

where AI £ VG+I is a randomly eliminated individual. The elitist model may
lead to pre-mature convergence of the algorithm if not carefully applied.

6.1.6 Fitness Scaling

There are two problems with the selection method described in Section 6.1.2:

1. At the start of the algorithm it is common to have several super-
individuals (but globally average) that would dominate the later genera-
tions and lead to fast pre-mature convergence of the algorithm;

2. Late in the run, the population average fitness often gets close to the best
fitness. In this case, average and best members get equally represented in
the future generations and the survival of the fittest chromosome necessary
for improvement becomes a random walk among the mediocre.

Let J- denote the average population fitness. Linear fitness scaling defines
a new scaled fitness function for one ZEN application instance:
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where a and b are determined by solving the following system of equations:

a-T + b =~T
+ b — Cmult • ?•

The two equations insure two crucial aspects for proper genetic algorithm
convergence:

1. average scaled fitness T' is equal with the average raw fitness T because
each average ZEN application instance is expected to contribute with one
offspring to the next generation;

2. the best ZEN application instance Tmax is expected to contribute with
Cmult offsprings to the next generation. This reduces the gap between
super and average individuals in initial generations (which avoids pre-
mature convergence) and increases this gap in late generations (which
ensures strong competition necessary for continuous healthy survival and
improvement).

6.1.7 Convergence Criterion

For flexibility reasons, the algorithm defines three convergence criteria which
can be freely combined:

1. when a user-defined convergence criterion (defined by objective function
interface) is fulfilled (e.g., fitness value increases above threshold);

2. after a predefined maximum number generations;
3. when a steady state stagnation is achieved after which no further im-

provements are being made. The steady state is checked by examining
the fitness function of the best individual within a sliding window of a
predefined number of generations (i.e., percentage from the maximum
generation number).

6.2 Static Workflow Scheduling

Workflow modelling is a well established area in computer science that has
been strongly influenced by business process modelling work [173]. Recently,
the Grid community has become increasingly interested in this topic, as work-
flow applications define an important class of Grid applications for which sev-
eral development environments are currently being built [19, 52, 92, 94, 101,
113, 154, 167]. The workflow scheduling problem addressed in this section is
based on the workflow model presented in Section 2.8.2.

On computational Grids there are two distinct aspects related to the gen-
eral single workflow scheduling problem:
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1. static scheduling or initial (launch-time) scheduling targets the optimal
mapping of an entire workflow application onto a fixed set of resources.
This problem will be addressed in this section as an instantiation of the
ZENTURIO optimisation framework using genetic algorithms;

2. dynamic scheduling is a steering problem that adapts the workflow static
schedule to the dynamic availability of Grid resources, which will be ad-
dressed in Section 6.3. The workflow mapping onto the Grid resources
may change during the workflow execution.

The static scheduling of a workflow of n tasks onto m computational Grid
resources is a well known NP-complete optimisation problem of C(m") com-
plexity [165]. Since in practice Directed Graph (DG)-based workflow cycles
have either large iteration counts or depend on run-time application data,
it is problematic to consider them for static scheduling. Rather, the scope of
static scheduling is constrained to Directed Acyclic Graph (DAG)-based work-
flows. The constraint will be relaxed by the dynamic scheduling approach in
Section 6.3.

The following definition specifies the instantiation of the static workflow
scheduling problem within the ZENTURIO optimisation framework.

Definition 6.3. A ZEN variable (gene) z is an application parameter that
represents an abstract Grid machine. A ZEN application A(z\,... , 2„) =
(Nodes, Edges) implements a workflow as defined by Definition 2.7, where:

1. V JS{z) G Nodes = » z G {zu ..., z„};
2. V FT(z,z!) £ Nodes = » {z, z1} C {zu ... ,Zn}.

The value set V^ of a ZEN variable Zi represents the entire set of concrete
Grid machines. A workflow schedule or an individual is a mapping:

SA = S(A(zi,...,zn))=JX(e1,...,en), V e ^ V * , V i G [l..n].

Within AT, a job submission schedule is a mapping:

and a file transfer schedule is a mapping:

Finding the workflow schedule that maximises the objective function is the
static workflow scheduling problem.

Example 6.4 sketches an implementation of the workflow depicted in Fig-
ure 6.4 based the Java CoG package [7]. The workflow is defined as a ZEN
application denoted as A(zi,Z2,Z3,Z4,zs), where z\, z<2, 23, 24, and 25 are the
abstract machines where the workflow tasks are to be scheduled. The ZEN
directives that annotate the workflow define the set of possible concrete ma-
chines (with cardinality 100) that instantiate each abstract machine within a
workflow schedule.
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Example 6.4 (Java DAG-based workflow).

//ZEN$ SUBSTITUTE zl = { e{l:100> }
//ZEN$ SUBSTITUTE z2 = { e{l:100> }
//ZEN$ SUBSTITUTE z3 = { e{l:100} }
//ZEN$ SUBSTITUTE z4 = { e{l:100} }
//ZEN$ SUBSTITUTE z5 = { e{l:100} }

Task j s l = c rea teJSC'z l" ) ;
Task js2 = create J S ( " z 2 " ) ;
Task js3 = createJS("z3") ;
Task ft4 = createFTC'zl" , " z 4 " ) ;
Task js5 = createJS("z4") ;
Task ft6 = createFT("z4", " z l " ) ;
Task js7 = create J S ( " z 5 " ) ;
Task js8 = c rea teJSC'z l" ) ;

TaskGraph taskGraph = new TaskGraphlmpl();
t askGraph. add (jsl);

taskGraph.add(js2) ;
taskGraph.add(js3);

taskGraph.add(ft4) ;

taskGraph.add(js5) ;
taskGraph.add(ft6) ;

taskGraph.add(js7) ;

taskGraph.add(js8) ;

Dependency dependency = new DependencylmpK) ;
dependency.add(jsl, j s2) ;
dependency.add(jsl, j s3) ;
dependency.add(jsl, f t4) ;
dependency.add(js2, j s5 ) ;
dependency.add(js3, j s5 ) ;
dependency.add(ft4, j s5) ;
dependency.add(j s5, f t6) ;
dependency.add(js5, j s7 ) ;
dependency.add(ft6, j s8) ;
dependency.add(js7, j s8) ;
taskGraph.setDependency(dependency);

6.2.1 Genetic Static Scheduler

The static scheduler employs the general-purpose heuristics proposed by the
ZENTURIO optimisation framework. The following definition specifies the
instantiation of the genetic algorithm described in Section 6.1 for workflow
applications.
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Definition 6.5. Let A(zi,..., Zn) denote a ZEN application that represents a
workflow application as defined in Definition 6.3. A gene z is a ZEN variable
that represents an abstract Grid machine. An allele et € V2* is a concrete Grid
machine. The totally ordered set ({zi,..., Zn}, -<) builds a chromosome, where
the total order -< of genes in a chromosome (i.e., loci,) is fixed and respects
the (partial) node topological order:

Ni -< ^ => Ni<£ sued" (Ni).

Figure 6.4 illustrates two sample crossover and mutation operations for
the workflow application encoded in Example 6.4.

6.2.2 Schedule Dependencies

Definition 6.6. / / the same ZEN variable or abstract machine appears in the
definition of two distinct tasks (see Definition 2.7), it defines a static schedule
dependency (e.g., JSi(zi), FT4(zi, z4), FT6(z4, zi), JSs{zi) in Figure 6.4(b)).

A typical example is the abstract machine 24 in Figure 6.4(b), where the
task J5s(z4) stages in its input file from the machine z\ through the task
^74(21,24) and stages out its output file to the machine z\ through the task
FTQ{Z4,Z\). The mutation of a gene involved in a static schedule dependency
has the effect shown in Figure 6.4(b) for the abstract machine 2:4. Static sched-
ule dependencies can also be set between the JS tasks. In Figure 6.4(b) for in-
stance, the tasks JSi(zi) and JSg(zi) define a static schedule dependence that
restricts their schedule to the same concrete machine, i.e., S^fa) — $JS8(zi)-

Definition 6.7. Let JS\,. ..,JSm be a set of independent job submission
tasks, such that SjSt = . . . = Sjsm • A valid workflow schedule is obtained
by augmenting the original workflow application with run-time schedule de-
pendencies that prohibit two independent job submission tasks run on the same
machine concurrently:

Edges' = Edges U {(JSU JSi+1) | SJSi = 5yÄ+1> V i € [l..m - 1]}.

Figure 6.4(b) illustrates such a run-time schedule dependency between the
tasks JS2 and JS3, assuming that SJS2 = SJS3, which augments the set of
workflow edges as follows:

Edges' = Edges U {( JS2, JS3)}.

Lemma 6.8. Given a workflow schedule, to determine the optimum valid
schedule is an NP-complete problem.

Proof. If m independent tasks are scheduled on the same abstract machine,
there are m! possible run-time schedule dependencies. Scheduling p sets of m*
independent tasks each such that S(Nji) = ... = S(Njmi), V j 6 [l..p] is a
classical NP-complete scheduling problem [90].



6.2 Static Workflow Scheduling 145

Parents Offsprings

(a) Crossover.

(b) Mutation.

Fig. 6.4. The workflow genetic operators.
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Since in practice the number of computational Grid resources is normally
much larger than the number of workflow tasks, the probability of having
large sets of run-time schedule dependencies is low. In addition, since the
static scheduler is based on randomised heuristics, a random valid schedule
can be selected without altering the quality of the final solution. In the context
of the genetic algorithm, if a clone of an existing individual (i.e., identical
schedule) is produced as a result of crossover or mutation (not as an outcome
of selection), a different random valid schedule is selected, thus insuring the
population diversity necessary for improvement.

6.2.3 Objective Function

The objective function for the static scheduling problem is represented by
a performance metric to be optimised. The computation of workflow perfor-
mance metrics for scheduling purposes relies on existing prediction models for
each individual task, which is a difficult research topic [54] that goes beyond
the scheduling work targeted by this thesis.

Definition 6.9. Let N be an arbitrary task with the schedule SN- The pre-
dicted execution time of N onto S^ is approximated as:

N vsN'

where W^ stands for the work of task N and vsN for the speed of SN with the
following semantics:

1- WJS represents the number of floating point operations of task JS and vsJS

represents the performance rate of the machine SJS (e.g., as returned by
the UNPACK [47] benchmark);

2. WFT approximates the file size and vsFT the bandwidth of a single TCP
stream between e\ and e2, where SFT = (ei, 62).

Since the Grid workflows are used to model course grain composition of large
applications distributed over wide-area networks, the latencies between de-
pendent tasks can be safely ignored. Section 7.3.1 will present a concrete
instantiation of this rather trivial prediction model for a real world applica-
tion.

Definition 6.10. Let (Nodes, Edges) denote a workflow application. A work-
flow schedule is evaluated by constructing the Gantt chart that simulates the
workflow execution. The end timestamp of each workflow task N S Nodes is
recursively defined by the following function:

f 7%", pred{N) = (j>;
end : Nodes -» N, end{N) = 1 max r ̂ ( j ^ ) } + J%N, prediN) ^ <f>,

where N denotes the set of natural numbers.
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Fig. 6.5. Sample Gantt chart for the workflow depicted in Figure 6.4(b), assuming
that e2 = e3 (i.e., SJS2 = SJS3).

Figure 6.5 illustrates a sample Gantt chart for the workflow depicted in
Figure 6.4, assuming the run-time schedule dependency ( JS2, JS3) (i.e., SJS2 =
SJS3), where:

endiJSi) = rySi-

end( JS2 ) = end{ JSi ) + T%2 ;

end(JS3) = end(JS2) + T%3;

end(FT4) = end(JSi) + rffg^;

end(JS5) = max {end{JS2), end{JS3), end(FT4)} + TJSb;

end(FT6) = end(JS5) + T<^6
ei);

end(JS7) = end(JS5) + TfS7;

end(JS8) = max{end{FT6), end(JS7)} + T%a.

Definition 6.11. Let p = {N\,..., Np} denote a workflow execution path,
i.e., pred(Ni) = <j> A succ(Np) = <j> A (Ni,Ni+1) e Edges, V i S [ l . . p - 1]. / /
iVp is the task with the maximum end time and p is the shortest path to Np,
then p is called the critical schedule path:

1. end(Nv) = max (end(N)};
NeNodes A succ(N)=<]>

%• EvNep tff" ^ Evwep' tfr> V P' = (M. • • •. K) a workflow execution
path (i.e.,pred{N'1) = <f> A succ^) = <j> A (A^,^+ 1) e Edges, V i 6
[l..q - I}), such that end(Np) = end^).

Let A — (Nodes = Nodes U Nodes , Edges) denote a workflow appli-
cation, AZ(e\, ...,en) a workflow schedule, z = (J"=i ̂  the set of underlying
concrete machines of AI, and |z| the cardinality of the set z. In the following, a
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range of sample objective functions representing useful workflow performance
metrics are defined. Since the framework has been designed to solve maximum
problems, some of the workflow metrics that require minimisation had to be
subtracted from a large enough constant C.

• Makespan or execution time:

= C — TAI,

= end(Nv),

where {N\,..., Np} is the critical schedule path;
Speedup:

SAI =

VJSeNodesJS

where AL{ei,..., et) is the sequential workflow schedule on machine
• Efficiency:

S AI

Communication due to file transfer tasks on the critical path:

Cja= Y. Iff,

where p is the critical schedule path;
• Synchronisation due to task dependencies on the critical path:

= C-

where p is the critical schedule path;
Load Balance due to uneven work distribution:

t2{VJS€NodesJS\Sjs=e} ^JST
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= 1 indicates the perfect load balance and LBJU = 0 the worst
case load balance;
Total Overhead defined by the Amdahl's law [6]:

jseq

f
NePnNodesJS

Loss of Parallelism due to heterogeneity and task dependencies on the
critical path:

=C- LPAX,

= OAZ-CAZ- SYAZ
rreeq

- 1^ 1N - " U T '
N£pnNodesJS

• Efficiency + Execution time. Maximising efficiency combined with min-
imising execution time is a good metric for high throughput scheduling, in
the context of multiple workflows (super- or meta-scheduling).

These metrics can be instantiated for the workflow defined in Example 6.4
and depicted in Figure 6.4(b) as follows:

= end(JS8);

= end(JSs) ' w h e r e

— J- FT4 + X FT6 '

SYja =TAI- T?Sl - T%2 - T%& - 7 ^ e i ) - 1%,, where the workflow
path ( JS\, JS-2, JS5, FTe, JSs) is the critical schedule path, which assumes
that the following conditions hold:

max \ T ç̂ + T ç̂ , 7*2. , T̂ *i , T1^ \

The two remaining metrics (i.e., total overhead and loss of parallelism) derive
from these five.
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6.3 Dynamic Workflow Scheduling

The static workflow scheduling approach described in Section 6.2 suffers of
two limitations:

1. loops are not comprised by the DAG-based workflow model;
2. the Grid is not considered as a dynamic environment where the resources

can change run-time load and availability.

This section presents a hybrid dynamic scheduling algorithm that is based
on the repeated invocation of the static scheduler, as informally outlined by
the following execution steps.

1. The algorithm receives as input a DG-based workflow that may include
loops;

2. A cycle elimination operation transforms the DG-based workflow into a
DAG, by eliminating the edges oriented against the node topological order;

3. The generated DAG is given as input to the static scheduling algorithm
for optimised mapping onto the set of available Grid resources;

4. The mapping of the DAG completely defines a (static) workflow schedule
which is submitted for execution;

5. The workflow execution is monitored at well-defined scheduling events
generated at a frequency that depends on the load variation of the avail-
able Grid resources;

6. At each scheduling event, the execution of every running task is evaluated
according to the performance contract developed by the static scheduler
(see Definition 6.13). If the evaluation is negative, the task is selected for
migration and requires rescheduling;

7. Based on the workflow execution status, a new DAG is generated accord-
ing to the rules formally defined in Section 6.3.2;

8. The monitoring and the static scheduling algorithm are repeated at the
scheduling event frequency until the workflow execution has completed.

Definition 6.12. A task N G Nodes of the running workflow (Nodes, Edges)
can be at a certain time instance t in one of the states queued, running,
completed, or failed, denoted as state(N,t).

The reminder of this section formally defines the task migration conditions
(see Section 6.3.1 and the static DAG generation process (see Section 6.3.2).
The dynamic scheduling algorithm informally outlined so far is depicted in
Figure 6.6 in self-explanatory pseudo-code.

6.3.1 Task Migration

Let N be a submitted task, WN its underlying work assigned (i.e., floating
point operations for JS tasks, file size for FT tasks), 7^" its estimated execu-
tion time, and
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algorithm dynamic scheduler;
input: workflow: A = (Nodes, Edges);

cycle elimination: Ao = (Nodes, Edges — Edgesq^eued)
(Edgesqneued is defined in Section 6.3.2);

static schedule: AT = genetic optimiser(Ao);
submit workflow: execute(.4,.4Z);
repeat

t = sleep until next scheduling event;
select tasks for migration:

NodesMigr = {N € Nodes | state(N, t) = failed V
state(N, t) = running A PC(N,SN, t) > fN}

At = generate static DAG(A,AI,t,NodesMigr);
cancel(N), V N G NodesMigr)
static reschedule: AX = genetic optimiser (At);

until state(N, i) = completed, VJ /g Nodes A succ(N) = <j>;

Fig. 6.6. The dynamic scheduling algorithm.

start(N) = end(N) - Tff

its start timestamp, where end(N) has been defined in Section 6.2.3 (see
Definition 6.10).

Definition 6.13. The performance contract [169] of task N at time instance
start(N) < t < end(N) is defined as:

PC(N,SN, t) - " • (t-start(N))r

t) I

where WN(€) is the work completed by task N in the time interval \start(N), t].
The task N is migrated at time instance t iff:

PC(N,SN,t)>fN,

where fN is the performance contract elapse factor of task N.

Each task has a statically associated a performance contract elapse factor
fN (as part of the workflow specification) that represents a certain percentage
from the predicted task execution time T^".

There are two options for computing the work

1. through sensors hard-coded within each individual task. This approach
has the advantage of being precise, but requires code instrumentation
(i.e., either the source code, or the binary code based on the dynamic
instrumentation technology described in Section 5.2.1);

2. through standard online metrics (e.g., hardware counters [22]) provided
by the Dynamic Instrumenter service described in Section 5.3.7.

Upon migration, the workflow tasks are restarted (restart based on check-
pointing [109, 146] will be considered in future work).
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6.3.2 Static DAG Generation

Let (Nodes, Edges) denote a statically scheduled DG-based workflow running
at the time instance t. The dynamic scheduling algorithm outlined in Fig-
ure 6.6 is based on iterative invocations. of the (genetic) static scheduling
algorithm. The static DAG At = (Nodest, Edgest) given as input to the static
scheduler at scheduling event t is constructed using the following rules:

• Nodest comprises the executing tasks NodeSMigr that require migration
and the tasks NodeSQueued which are queued (properly running tasks like
7V3 in Figure 6.7 are eliminated):

Nodest = NodeSMigr U NodesQueued,

where:
r comprises the executing tasks that require migration due to

failures or performance contract violation:

NodesMigr = {N U Nodes pC | V Ne Nodes A state(N, t) = failed V
(state(N, t) = running A PC{N, SN, t) > fN)}

(e.g., see the tasks FT4 and JS5 in Figure 6.7, assuming that the task JS5
violated its performance contract), where:
NodespC comprises the tasks already completed which need to be resub-
mitted upon the migration of the task TV = JS(z) 6 NodesJS V N =
FT(z, z") G NodesFT due to the static schedule dependencies induced by
the machine z (the static schedule dependencies have been defined in Sec-
tion 6.2.2):

Nodes%c = {JS'(z)epredp(N)} U {FT(J, z) S pnuP(N)}

(e.g., see the task FTi(z\, 22) in Figure 6.7 which contains z-i as a static
schedule dependency to the task JSsfa));
NodesQueued comprises the tasks which are queued and have not yet been
submitted:

NodesQueued = {N€ succp(Ns) I V 7VS € Nodes A state(Ns) = running}.

The completed tasks which are part of workflow loops are therefore in-
cluded for the next iteration (e.g., see the tasks NI,N2,FTH,NQ in Fig-
ure 6.7);
Edgest comprises the edges that connect the subworkflow tasks from Nodest

and eliminate the workflow cycles:

Edgest = EdgesDAG - EdgesMigr - EdgesQueued,

where:
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Static DAG
Generation

PC(JS5, S(JS5), t)

N1
(queued)

N2
(queued)

_J
FT4(z1, Z2)
(queued)

\
JS5(Z2)
(queued)

«6
(queued)

_ l

Fig. 6.7. Sample static DAG generation, where the task 755 violates the perfor-
mance contract.

EdgesDAG comprises the entire subset of edges that connect the workflow
tasks from Nodesf

EdgesDAG = {(N, N') <E Edges | V Ne Nodest A ViVe Nodest).

The subset EdgesDAQ eliminates the edges which contain properly running
tasks that fulfil their performance contract (e.g., see the edges (N2, N3) and
(N3, N6) within the loop (Ni,N2, N3, N6, Nx) in Figure 6.7);
EdgesMigr eliminates the cycles within the loops which contain tasks
that require migration (e.g., see the edge (N\,FT4) within the loop
(NUFT4, JS5, N6, Ni) in Figure 6.7):

EdgesMigr = {(N, N1) € Edges | V N£ NodesQueued NodesMigr};

EdgesQueued breaks the remaining cyclic execution paths p by eliminat-
ing the edges that violate the node topological order (e.g., see the edge
(JS5, FT4) within the loop (FT4, JS5, FT4) in Figure 6.7):

EdgesQueued = {(Np, N1) \ V p = (Nlt..., Np,

6.4 Static Throughput Scheduling

Scheduling multiple (independent or parameter study) applications (referred
in the following as tasks) for high performance throughput is an important
optimisation problem on the Grid, which is well known as NP-complete [90].

The scope of this section is to illustrate an instantiation the ZENTURIO
optimisation framework for throughput scheduling of independent tasks. The
problem is approached as a specialisation of the static workflow scheduling ap-
proach presented in Section 6.2 using the model introduced in Section 2.8.3.
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Providing the appropriate optimisation (fitness) function relies on providing
appropriate prediction models for each independent task, for instance as in-
troduced in Definition 6.9.

Example 6.14 (Java independent task-set).

//ZEN$ SUBSTITUTE zl = { e{l:100} }
//ZEN$ SUBSTITUTE z2 = { e{l: 100} }
//ZEN$ SUBSTITUTE z3 = { e{l: 100} }
//ZEN$ SUBSTITUTE z4 = { e{l:100} }
//ZEN$ SUBSTITUTE z5 = { e{l:100} }

Task Nl = create J S C ' z l " ) ;
Task N2 = c r e a t e J S ( " z 2 " ) ;
Task N3 = c r e a t e J S ( " z 3 " ) ;
Task N4 = c r e a t e J S ( " z 4 " ) ;
Task N5 = createJSC ( z 5 " ) ;

TaskGraph taskSet = new TaskGraphlmplO;
taskGraph.add(Nl);
taskGraph.add(N2);
taskGraph.add(N3);
taskGraph.add(N4);
taskGraph.add(N5);

Dependency dependency = new DependencyImplO;
taskSet.setDependency(dependency);

Example 6.14 defines a set of five independent task as a ZEN application
A{zi,Z2,23, Zi, zs), where each ZEN variable z* represents the abstract machine
that hosts the task NitV i G {1,2,3,4,5}. There are no schedule dependencies
between the tasks. The ZEN directives define the set of possible concrete
instantiations (with cardinality 100) of each abstract machine.

The following definition specifies the generic instantiation of the ZEN-
TURIO optimisation framework and the genetic search engine for the static
throughput scheduling problem.

Definition 6.15. A ZEN application is an aggregation of n independent
tasks: A(zi, ...,2a) = (Nodes = {JSx(zi),..., JSn(zn)}, <f>). A ZEN variable
(gene) z\ is a parameter that represents an abstract Grid machine where the
task JSi executes. The value set V2* of a ZEN variable z* represents the entire
set of concrete Grid machines. An allele e* G V2" is a concrete machine of
the Grid. A task schedule is a function that maps each task onto a concrete
machine from the Grid:

S : Nodes -> V*.

An individual is a ZEN application instance AX(e\,..., e„), where S(N{) =
d, where et E V*, V i £•[!..n].
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The crossover and mutation operators for independent tasks can be graph-
ically represented as already illustrated in Figure 6.3.

Definition 6.16. Let V2 denote the full set of machines in the Grid, N a set
of tasks, and S : N —> Vz the task schedule function. The Gantt chart of N is
a function:

G : Vz -> V(N), Q(e) = {{N1:. ..,NP} \ S (Ni) = e, V i e [l..p]},

where V denotes the power set. The throughput fitness function is defined as:

v \
T: , F(AZ(e1,...,en))=C- max

e€{ei,...,en}

where Q{e) = {Ni,... ,NP} and C is a constant. Maximising the throughput
fitness function is the throughput scheduling problem.

Informally, with each individual there is associated a Gantt chart that
maps each task onto one Grid machine. The tasks scheduled on the same
machine are executed sequentially in irrelevant order. The machine with the
maximum execution time gives the schedule makespan that needs to be min-
imised. The fitness function is defined by the makespan subtracted from a
large enough constant C.

The throughput fitness function or the makespan for the five tasks illus-
trated in Example 6.14 can be expressed as:

e2, e3, elt
=C- max

assuming the following task schedules, also shown in the Gantt chart depicted
in Figure 6.8:

S{N{) = S(NA) = S{N5) = ev,
S(N2) = e2;
S(N3) = e3.

Time

N1

N2

N3

N4 N5e1

e2

e3

Machine

Fig. 6.8. Sample Gantt chart for the task set defined in Example 6.14.
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Past community research has already addressed the throughput schedul-
ing problem for parallel and Grid computing and developed a class of good
heuristic algorithms like Min-min, Max-min, and (X)Sufferage [112]. All of
these algorithms exhibit a complexity of O(T2 • M), where T is the number
of tasks and M the number of available machines (processors). On large com-
putational Grids that aggregate a potentially unbounded number of resources
and run a rather large number of concurrent tasks, this 0(n3) complexity
(where n stands for both unlimited task number and Grid size) is becoming
critical.

The genetic algorithm proposed by this section has the advantage of deliv-
ering potentially good-enough solutions significantly faster. Assuming a num-
ber of tasks n, a population size p < n, and a maximum generation number
g < n, the algorithm exhibits a complexity of O(p-g-n), where p• g represents
the number of visited search points. The experimental results reported in Sec-
tion 7.3.2 show that converging to good results requires p • g be of the same
order of magnitude as the number of tasks, which leads to an O(n2) complex-
ity. Obviously, the quality of the solutions delivered will be worse compared to
those provided by the previous heuristics. For instance for scheduling a set of
1000 tasks on a Grid consisting of 100 machines, the genetic algorithm obtains
solutions from 25% to 50% worse compared to those given by the Max-min
heuristic. The scope of the algorithm is, however, for larger problem sizes
(i.e., task number and Grid size) for which the Max-min heuristics become
impractical due to the large number of schedules to be evaluated.

6.5 Optimisation of Parallel Applications

Finding appropriate parameter combinations, often representing parallelisa-
tion options, that optimise a certain performance metric (usually minimise
the execution time) is known as performance tuning. The objective function
for performance tuning of parallel applications using the ZENTURIO optimi-
sation framework is represented by a performance metric (or an arithmetical
combination of multiple performance metrics) indicated through ZEN perfor-
mance directives (see Section 3.8).

Definition 6.17. Let A denote a ZEN application, A4 a performance mea-
surement as defined in Section 3.8 (see Definition 3.24), and M a target ex-
ecution machine. The objective function for performance tuning of parallel
applications is defined as follows:

T : VA -» R, T(AT) = 6M(M,A1),

where ÖM is the performance data defined in Definition 3.26.

Let C1Z denote the outermost code region of a ZEN application (i.e., the
entire application), as introduced in Definition 3.24, and M a target exe-
cution parallel machine. In the following, a few sample objective functions
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representing useful performance metrics to be tuned using ZENTURIO are
formally denned. Since some of the metrics require minimisation, they had to
be subtracted from a large-enough constant C.

• Execution Time:
F(AI)=C-ÖM(M,AI),

where M = (WTIME, CTZ) and WTIME denotes the wallclock time metric (see
Definition 3.24);

• Communication Time:

T(AT)=C-bM(M,AT),

where M = (COMM, CTZ) and COMM denotes the communication time metric;
• Speedup:

( ( )
j - 5M(M,AT(e))>

where M = (WTIME, CTZ), z is a ZEN variable that represents the applica-
tion machine size, e, eo S Vz, and AT(eo) represents the sequential version
of .4;
Efficiency:

where M = (WTIME, CTZ), z is a ZEN variable that represents the appli-
cation machine size, •d~1(e) is the machine size, e, eo G Vz, and
represents the sequential version of A;
Speed: [151]

where Mi = (WTIME,CTZ), M2 = (FPIS,CTZ), and FPIS denotes the float-
ing point instructions per second metric;
Average Speed: [151]

. 5M(M2,AT)

where Mx = (WTIME,CTZ), M2 = (FPIS,CTZ), z is a ZEN variable that
represents the machine size of A, e G Vz, and d~1(e) is the machine size;

• Scalability: [151]

1- , ,
{ei,e2) •dM{M,AI)

where M = (FPIS,CTZ), z\ and z2 are ZEN variables that represent the
problem size, respectively the machine size of A, e2, ê  £ VZ2, ld~1(e2) and
tf"1^) are the machine sizes of AT and AT', and AL\éx, ê ) is a reference
problem-machine size.
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6.5.1 MPI Grid Applications

Even though the tightly-coupled parallel programming paradigm introduced
in Section 2.8.1 contradicts with the loosely-coupled Grid model, it has been
employed for gaining initial experiences on executing existing parallel appli-
cations on the Grid. The MPICH-G library extends the MPICH [79] modular
design with a new globus communication device that enables transparent
GridFTP-based communication between MPI processes running on different
Grid sites, while using a local optimised (potentially native) MPI installation
for communication between local processes. The MPI application is submit-
ted to multiple Grid sites using the DUROC [39] co-allocator provided by
the Globus toolkit. MPICH-G [63] enables straight-forward transparent port-
ing of existing parallel MPI applications on the Grid by simply relinking the
compiled parallel application.

Optimising MPI applications for a heterogeneous set of Grid resources
raises complex load balancing problems which are difficult to meet due to the
low level of abstraction of the message passing paradigm (i.e., often called
fragmented programming).

6.5.2 High Performance Fortran on the Grid

High Performance Fortran (HPF) [84] allows to express array distributions
at a high-level of abstraction, while offering the programmer a single program
view which is not fragmented by low-level message passing library routines.
Special purpose HPF compilers, like the Vienna Fortran Compiler [15] are
used to translate a high-level HPF application into an MPI equivalent.

This section proposes a case study on applying the ZENTURIO optimi-
sation framework for static scheduling of ZEN applications containing one
single irregularly distributed two-dimensional HPF array. The complex load
balancing issues raised by the highly heterogeneous Grid infrastructure can
be effectively addressed through the HPF irregular distributions.

General Block Distribution

Let MAT(m, n) denote a two-dimensional matrix and PR0C(p, q) a two-dimensional
processor array.

Definition 6.18. Let Bx(p) and By(q) denote two one-dimensional distribu-
tion arrays, such that: 53?= i Bx* — m and S i=i BVi — n- The general block
data distribution of MAT is a function:

DISTR: [l..m] x [l..n] -> [l..p] x [l..q], DISTR(x,y) = (z,w),

where:
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2 - 1

J — 1

' v 2 / 6

£ac/i distribution array element Bxi,V i S [l-.p] ûid Byj,V j E [l--g] is a
ZEN variable annotated to specify the complete set of possible general block
distributions.

Example 6.19 (HPF general block array distribution).

!HPF$

INTEGER, PARAMETER m
INTEGER, PARAMETER n
INTEGER, PARAMETER p
INTEGER, PARAMETER q
REAL MAT(m, n)
PROCESSOR PROC(p, q)
INTEGER, PARAMETER :
INTEGER, PARAMETER :
INTEGER, PARAMETER :
INTEGER, PARAMETER :
INTEGER, PARAMETER :
SUBSTITUTE xl = { 0
SUBSTITUTE x2 = { 0
SUBSTITUTE yl = { 0
SUBSTITUTE y2 = { 0
SUBSTITUTE y3 = { 0
INTEGER, PARAMETER :
INTEGER, PARAMETER :

= 4
= 8
= 2
= 3

xl =
x2 =
yl =
y2 =
y3 =
m }
m }
n }
n }
n }

= 3
= 1
= 2
= 2
= 4
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

Bx(p) = (/ xl, x2 /)
By(q) = (/ yl, y2, y3

!ZEN$
!ZEN$
!ZEN$
!ZEN$
!ZEN$

!ZEN$

!HPF$ DISTRIBUTE MAT(GEN_BLOCK(Bx), GEN_BLOCK(By)) ONTO PROC
!ZEN$ CONSTRAINT VALUE xl + x2 == 4
!ZEN$ CONSTRAINT VALUE yl + y2 + y3 == 8

Example 6.19 defines the matrix MAT(m, n) which has both dimensions
distributed over the processor array PR0C(p, q) using the HPF general block
mapping arrays Bx(p) and By{q) (see Figure 6.9). The elements of the map-
ping arrays Bx{p) and By(q) are program constants which are annotated with
ZEN substitute directives that specify the complete set of general block dis-
tribution possibilities. A distribution of size zero on one processor controls the
machine size, since that processor will not take part in the computation. The
constraint directives insure that the sum of the general block mapping ele-
ments match the matrix rank in each dimension (see Definition 6.18). These
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Distributee Matrix MAT(4,8) Processor Array PROC(2,3)

Fig. 6.9. The default general block array distribution defined in Example 6.19.

ZEN annotations define a search space of possible array mappings of size
(m + l ) p - 1 • (n + I) 9" 1 (two orders of magnitude are eliminated by the two
constraints). The HPF and MPI models (improperly) consider the Grid as a
single parallel computer. The HPF PROCESSORS statement in this approach
represents the complete set of Grid machines (i.e., of cardinality p-q) organised
into a two-dimensional array PR0C(p, q).

A ZEN application annotated according to the Definition 6.18 (and ex-
emplified in Example 6.19) represents the input to the ZENTURIO optimisa-
tion framework. The realisation of the search engine is, e.g., as described in
Section 6.1 and requires no further attention. The only missing issue is the
instantiation of the objective function, which will be discussed in the following.

Definition 6.20. Let A denote a ZEN application (e.g., as sketched in Ex-
ample 6.19), C1Z the outermost code region (i.e., entire program), Mi =
(C0MP,CR) the computation performance measurement, M2 = (C0MM,CR) the
communication performance measurement (see Definition 3.24), and M a par-
allel machine. Let DISTR denote the (general block) distribution of array MAT.
The objective function can be approximated as follows:

where:

ÖM(MI,AX) = max
Vi6[l..p), Vj

SM(M2,AX) = max

{SM(Mi,AI(PROCi,-, DISTR))} ,

{6M(M2,AX(PROCij, DISTR))} ,

V i e [l..p], V j e [l..q], where AX(PROCij,DISTR) denotes the partition of
AX hosted by the machine PROCij according to the array distribution DISTR.

For static scheduling problems, the computation and the communica-
tion performance data, denoted as 5M (MI, AI(PRQCitj, DISTR)) respectively
5M (M2,AX(PR0Cij, DISTR)), could be approximated through application-
specific analytical prediction models. For instance, a Jacobi relaxation per-
forms the same computation repeatedly on all matrix elements, while the
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communication requires exchanging the boundary elements with all the neigh-
bouring processors. In case of the general block array distribution, these can
be analytically approximated as follows:

W
Bxi • Byj • —- • I;

= £(PR0Ci,j)+

..) + ß(PR0Ci,j,PR0Ci+1,j)

+By, • Se yB(pROC..moCij_i) + ß(PRoci,i,PROCi,i+1)

V i £ [l..p], V j <E [l..q], where:

• We = 5M(FP-INST, C1Z) is the work required to compute one matrix ele-
ment, expressed in floating point instructions;

• ve is the machine speed that computes the matrix element expressed in
floating point instructions per second (e.g., as measured by the LINPACK
benchmark [47]);

• / i s the number of iterations;
• Se is the size in bytes of a matrix element, i.e., Se = sizeof(e);
• £(PR0Cj,j) is the total latency of the communication with the four matrix

element neighbours;

i j ) = £(PR0Ciij,PR0Ci_i,j) +£(PROCi)-,-)PROCi+i(j)+

+ £(PROCi>J-,PROCij_i)-|-£(PROCiij,PROCi)i+i);

is the latency between the processors PROC^ and
PR0Cfc,i;
B(PR0Citj, PROCfcj) is the bandwidth between the processors PROC^ and

Indirect Distribution

The same technique presented in the previous section can be applied on the
more general indirect array distribution.

Let MAT(ra, n) denote a two-dimensional matrix and PR0C(p, q) a two-
dimensional processor array.

Definition 6.21. Let I(p,q) denote a one-dimensional distribution array,
such that I(i,j) < p • q, V » G [1 ••?>], V j G [l--ç]- The indirect data dis-
tribution of MAT is a function :

DISTR: [l..m] x [l..n] -> [l..p] x [l..q],

DISTR(x,y) = (l(x,y) mod m,
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The partition:

\ DISTR(k,l) = (i,j), V i G [O..p], V j G [Q..q]}

is called the distribution of MAT onto the processor PROCij. Each distribution
array element I(x,y), V i e [l..p], V j G [l--q], is a ZEN variable annotated
to specify the complete set of possible indirect array distributions.

Example 6.22 defines the matrix MAT(m, n) which has the elements indi-
rectly distributed across the processor array PROC(p, q) according to the map-
ping array MAP(m, n) (see Figure 6.10). The elements of the mapping array
MAP(m,n) are program constants which are annotated with ZEN substi-
tute directives that specify the complete set of possible indirect distributions.
These ZEN annotations define a search space of possible array mappings of
size (m • n)pg. The HPF PROCESSORS statement in this approach represents
the complete set of Grid machines (i.e., of cardinality p • q) organised into a
two-dimensional array PR0C(p, q).

The objective function can be equally expressed as in the context of the
general block distribution (see Definition 6.20).

For the Jacobi relaxation application with an irregular array distribution,
the computation and the communication performance data could be approx-
imated as follows:

W
ÖM(Mi,AI(PmCij,DISTR)) = iHATpwĉ l • —-;

IjLi E L i Ef=i (ß(PRociij,PRocfc,j))
pq

where |MATPRO(V t \ is the cardinality of the distribution of MAT onto the proces-
sor PROCjj.

«ar(4,4)
PROC(2,2)

Fig. 6.10. The default indirect array distribution defined in Example 6.22.
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Example 6.22 (HPF indirect array distribution).

PARAMETER m = 4
4
2

INTEGER,
INTEGER, PARAMETER n
INTEGER, PARAMETER p
INTEGER, PARAMETER q = 2
DIMENSION MATGn.n)

!HPF$ PROCESSORS PROCCp,q)
INTEGER, PARAMETER Mil =
INTEGER, PARAMETER M12
INTEGER, PARAMETER M13
INTEGER, PARAMETER M14
INTEGER, PARAMETER M21
INTEGER, PARAMETER M22

PARAMETER M23
PARAMETER M24
PARAMETER M31
PARAMETER M32
PARAMETER M33
PARAMETER M34
PARAMETER M41
PARAMETER M42
PARAMETER M43
PARAMETER M44

{ 1
{ 1

INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
SUBSTITUTE Mil
SUBSTITUTE M12

!ZEN$
!ZEN$
!ZEN$ SUBSTITUTE M13 = { 1
!ZEN$ SUBSTITUTE M14 = { 1
!ZEN$ SUBSTITUTE M21 = { 1
!ZEN$ SUBSTITUTE M22 = { 1
!ZEN$ SUBSTITUTE M23 = { 1
!ZEN$ SUBSTITUTE M24 = { 1
!ZEN$ SUBSTITUTE M31 = { 1
!ZEN$ SUBSTITUTE M32 = { 1
!ZEN$ SUBSTITUTE M33 = { 1
!ZEN$ SUBSTITUTE M34 = { 1
!ZEN$ SUBSTITUTE M41 = { 1
!ZEN$ SUBSTITUTE M42 = { 1
!ZEN$ SUBSTITUTE M43 = { 1
!ZEN$ SUBSTITUTE M44 = { 1

INTEGER MAPCm,n) = (/

!ZEN$ END SUBSTITUTE

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
C/
C/
U
U

BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

Mil, M12,
M21, M22,
M31, M32,

M13, M14
M23, M24
M33, M34

M41, M42, M43, M44
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!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!ZEN$ END SUBSTITUTE
!HPF$ DISTRIBUTE MAT(INDIRECT(MAP)) ONTO PROC



Experiments

This chapter presents a variety of experiments that use the ZENTURIO ex-
periment management tool for:

1. performance studies of several real-world OpenMP and MPI parallel ap-
plications, including:
a) an ocean simulation (see Section 7.1.1);
b) a material science kernel (see Section 7.1.2);
c) a photonic application (see Section 7.1.3);
d) a benders decomposition method of a financial application (see Sec-

tion 7.1.4);
e) two three-dimensional Fast Fourier Transform kernels (see Section 7.1.5);
f) two Grid services (see Sections 7.1.6 and 7.1.7);

2. parameter study of a financial application (see Section 7.2.1);
3. scheduling Grid applications as an optimisation and dynamic steering

problem, in particular:
a) a material science workflow application (see Section 7.3.1);
b) an independent task simulator (see Section 7.3.2).

7.1 Performance Studies

This section describes a set of cross-experiment performance studies using the
ZENTURIO experiment management tool on a variety of scientific parallel
applications.

The application parameters and the performance metrics of interest are
specified using the ZEN directive-based language specified in Chapter 3. The
ZENTURIO experiment management tool has been used to automatically
generate and conduct all the complete set of experiments and store the out-
put results and the performance data into the Experiment Data Repository,
as presented in Chapter 4. The Application Data Visualiser portlet of the user
portal introduced in Section 4.1.4 has been used to automatically formulate
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SQL queries and generate post-mortem visualisation diagrams that display
the variation of any (set of) performance data as a function of arbitrary ap-
plication parameters (i.e., ZEN variables).

Unless differently stated, the experiments have been conducted on an SMP
(Symmetric Multiprocessor) cluster that consists of 16 four-way Intel Pentium
III Xeon 700 MHz processors interconnected through both Fast Ethernet and
Myrinet network cards. The experiments have been submitted for execution
on the dedicated cluster nodes using GRAM [38] as the job manager and
PBS [166] as the back-end job scheduler.

7.1.1 Ocean Simulation

The Stommel model [150] has been thought with the purpose of explaining the
westward intensification of wind-driven ocean currents. This section presents
a performance study of a mixed OpenMP and MPI parallel Fortran90 imple-
mentation of the Stommel model.

The following parameters have been specified for this application through
ZEN directives:

1. The machine size consists of two dimensions:
a) The number of threads per SMP node are controlled by the NUMJTHREADS

clause of the OpenMP PARALLEL directive (see Example 7.1);
b) The number of SMP nodes are controlled through directives inserted

in the Globus RSL script as illustrated in Example 7.2.
Each MPI experiment has been submitted as a single GRAM job type
which allows to choose between various local communication libraries. The
count parameter in Example 7.2 is assigned a value equal to the number of
SMP nodes times the number of processors per node, which was necessary
for persuading GRAM to allocate the correct number of nodes. The shell
script scr ip t . sh used to start the MPI application (see Example 7.3)
sets the maximum number of MPI processes per node to one through the
MPI_MAX_CLUSTER_SIZE environment variable. One single MPI process per
SMP node leaves the intra-node parallelisation to the OpenMP compiler;

2. Two interconnection networks (i.e., Fast Ethernet and Myrinet) have been
examined by linking the application with the corresponding MPICH li-
brary. The MPI library implementations are indicated by annotating the
MPILIB variable in the application Makefile, as shown in Example 7.4.
The constraint directive makes the correct association between the im-
plementation specific MPI libraries and external MPIRUN ZEN variable
(defined in Example 7.3) which contains the path to the mpirun script
that starts the application;

3. The problem size has been varied by changing the grid (ocean) size and
the number of iterations, as shown in Example 7.5;

4. The performance metrics of interest for every experiment are the execu-
tion time and the communication overhead (i.e., the mnemonics WTIME
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and ODATA), which have been measured for the entire program and the
outermost OpenMP loop (i.e., the mnemonics CRJ3 and CR-OMPPA), as
shown by the ZEN performance directive in Example 7.1.

Example 7.1 (Source code excerpt).

!ZEN$ CR CR_P, CR.OMPPA PMETRIC ODATA, WTIME
!ZEN$ SUBSTITUTE NUM_THREADS\(4\) = { NUM_THREADS({1:4}) }
!$0MP PARALLEL NUM_THREADS(4)

!$0MP END PARALLEL

Example 7.2 (Globus RSL script).

(*ZEN$ SUBSTITUTE count\=4 = { count={l:10} }*)
& (count=4)

(jobtype=single)
(directory="/home/radu/APPS/STOMMEL_OMPI")
(executable="script.sh")
(stdin="st. in")
(stdout="st.out")

Example 7.3 (Shell script - script.sh).

#!/bin/sh
export MPI_MAX_CLUSTER_SIZE=1
cd $PBS_0_WORKDIR

nodes = 'we -1 < $PBS_NODEFILE'

MPIRUN = /opt/local/mpich/bin/mpirun

#ZEN$ ASSIGN MPIRUN = { /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun }
$(MPIRUN) -np $nodes -machinefile $PBS_NODEFILE omp_02_sis

Example 7.4 (Makefile).

MPILIB = /opt/local/mpich/lib

#ZEN$ ASSIGN MPILIB = { /opt/local/mpich/lib,

/opt/local/mpich_gm/lib }

#ZEN$ CONSTRAINT INDEX MPILIB == script.sh:MPIRUN

$(TARGET): $(TARGET).o
$(F90) $(TARGET).o -o $<3 -L$(MPILIB) -lmpich

Example 7.5 (Input data file - st.in).

!ZEN$ SUBSTITUTE points = { 200, 400 }
points points
2000000, 40000000
1.0e-9 2.25e-ll 3.0e-6
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!ZEN$ SUBSTITUTE i t e r s = { 20000, 40000 >
i t e r s

!ZEN$ CONSTRAINT INDEX points == i t e r s

Only nine ZEN directives have been included in three files of this applica-
tion to specify a total of 160 experiments:

\V{nodes=2, count=4, MPIRUN, NUM_THREADS(4), MPILIB,points, iters)\ = 160.

For a 200 x 200 problem size, the application does not scale (see Fig-
ure 7.1 (a)) which is explained by the excessive MPI communication (see Fig-
ure 7.1(b)). This problem size, however, scales well with the number of threads
on a single SMP node. For larger number of nodes, the number of threads
does not influence the overall performance due to the large MPI communica-
tion overhead that dominates the intra-node computation parallelised using
OpenMP. The same problem size scales much better over Myrinet (see Fig-
ure 7.1 (c)) which is due to the lower communication cost on the much faster
Myrinet interconnection network (compared to Fast Ethernet).

The 400 x 400 problem size shows a very reasonable scaling behaviour un-
til four SMP nodes (see Figure 7.2(a)). Using more than four SMP nodes no
longer decreases the execution time substantially. The reason is the increased
communication overhead and a decreasing ratio between the computation and
the communication times (see Figure 7.2(b)). For smaller number of nodes,
the computation to communication time ratio is high and, therefore, the intra-
node OpenMP parallelisation yields a satisfactory scaling behaviour. Increas-
ing the number of threads decreases the execution time as expected. Similarly,
this problem size scales well over the Myrinet network (see Figure 7.2(c)).

A second experiment was elaborated to show the number of nodes which
produce the lowest execution time for different problem sizes over Fast Ether-
net (see Figure 7.3(a)). The machine and the problem sizes have been anno-
tated as shown in the Examples 7.2 and 7.5. Employing four OpenMP parallel
threads per node yields the best performance for all experiments. The optimal
number of SMP nodes increases, as expected, with the problem size. The flat
parts of the curve are caused by load balancing problems on odd processor
counts due to an uneven array distribution.

A third experiment was conducted to examine the different OpenMP loop
scheduling strategies and their performance effects. The scheduling strategy
and the chunk size have been varied using a ZEN substitute directive, as
illustrated in Example 3.12 (see Section 3.4.2). The execution time of the
OpenMP PARALLEL region has been requested through one ZEN performance
behaviour directive as shown in Example 7.1. Figure 7.3(b) illustrates that
for the problem size examined, the STATIC scheduling performs better than
the DYNAMIC and the GUIDED strategies. The optimal chunk size is 50. Static
scheduling is superior because it implies the least runtime scheduling overhead.
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3 4 5 6 7

Number of SMP Nodes
- •• 1 Thread -«-2 Threads - * - 3 Threads —-4 Threads

(a) Fast Ethernet network.

4 5 6 7

Number of SMP Nodes

\-*-1 Thread -«-2 Threads -«-3 Threads - • - 4 Threads|

(b) Fast Ethernet network.

3 4 5 6 7

Number of SMP Nodes
- « - 1 Thread - ° - 2 Threads - • - 3 Threads —> - 4 Threads

(c) Myrinet network.

Fig. 7.1. The Stommel model performance results for various intra-node and inter-
node machine sizes (I), 200 x 200 problem size, 20000 iterations.
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3 4 5 6 7

Number of SMP Nodes

|- • - 1 Thread - « - 2 Threads -*-3 Threads —'-4 Threads

(a) Fast Ethernet network.

4 5 6 7

Number of SMP Nodes

|- • - 1 Thread - a - 2 Threads - « - 3 Threads - o - 4 Threads|

(b) Fast Ethernet network.

3 4 5 S 7

Number of SMP Nodes

|- • • 1 Thread - °— 2 Threads -*— 3 Threads —;-4 Threads!

(c) Myrinet network.

Fig. 7.2. The Stommel model performance results for various intra-node and inter-
node machine sizes (II), 400 x 400 problem size, 40000 iterations.



7.1 Performance Studies 171

400 500 600 700 800 900 ' 1000

Grid Size

(a) Various problem sizes, four threads,
20000 iterations.

10 20 30 40 50 60 70 SO 90 100

Chunk Size

-STATIC -»-DYNAMIC -»-GUIDED

(b) Various loop parallelisations, 200 x 200
problem size, 20000 iterations.

Fig. 7.3. The Stommel model performance results (III).

7.1.2 LAPWO

LAPWO is a material science kernel, part of the Wien2k package [20], that
calculates the potential of the Kohn-Sham eigen-value problem. This section
presents a performance study of a Fortran90 MPI implementation of LAPWO.

Several application parameters have been varied by means of ZEN direc-
tives.

1. The problem size is expressed by pairs of .clmsum and .s t ruct input
files, indicated in the lapwO.def input file (see Example 7.6). The ZEN
substitute directive is used to specify the file locations to the problem
sizes of interest, which correspond to 8, 16, 32, and 64 atoms;
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2. The machine size is controlled by the nodes=l and no_procs ZEN vari-
ables in the PBS script (see Example 7.7) used to submit the experiments
on the cluster. This performance study uses ZENTURIO in cluster mode
which bypasses GRAM. The ZEN variable nodes=l controls the number
of SMP nodes and no.procs indicates the number of MPI processes to
execute. Each node is filled with four MPI processes before allocating
a new node. The constraint directive ensures that the correct amount of
SMP nodes is allocated for each number of MPI processes. The PBS script
also assigns the path of the mpirun command to the MPIRUN environment
variable through a ZEN assignment directive;

3. The interconnection network is varied by annotating the MPILIB environ-
ment variable that specifies the path to the (Fast Ethernet or Myrinet)
MPI library in the Makefile used to build the application (see Exam-
ple 7.8). Shared memory has been used to communicate inside the SMP
nodes in case of the Fast Ethernet network. The ZEN constraint directive
ensures the correct association between the network specific MPI libraries
and the corresponding mpirun script;

4. The performance metrics measured are the execution time (i.e., the
mnemonic WTIME) and the communication time (i.e., the mnemonic ODATA)
for the entire program (i.e., the mnemonic CR_P). This is expressed by the
ZEN performance directive from Example 7.9.

Example 7.6 (Input data file - lapwO. def).

!ZEN$ SUBSTITUTE .125hour = {.125hour, .25hour, .5hour, lhour}
8,'ktp_.125hour.clmsum', 'old', 'formatted',0

20, 'k tp_.125hour .s t ruct ' , 'o ld ' , ' format ted ' ,0

Example 7.7 (PBS script - run.pbs).

#ZEN$ SUBSTITUTE nodes\=l = { nodes={l:40} }
#PBS -1 walltime=0:29:00,nodes=l:fourproc:ppn=4

cd $PBS_0_W0RKDIR

#ZEN$ ASSIGN MPIRUN = { /opt/local/mpich/bin/mpirun,
/opt/local/mpich_gm/bin/mpirun.ch_gm }

no_procs = 16

#ZEN$ ASSIGN no.procs = { 1:40 >
$(MPIRUN) -np $no_procs ../SRC/lapwO lapwO.def
#ZEN$ CONSTRAINT INDEX 4 * (nodes\=l -1) < no.procs &&

no_procs <= 4*nodes\=l && no_procs != 1

Example 7.8 (Makefile).

#ZEN$ ASSIGN MPILIB = { /opt/local/mpich/lib,

/opt/local/mpich_gm/lib }
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#ZEN$ CONSTRAINT INDEX MPILIB == run.pbs:MPIRUN
LIBS = . . . -lsismpiwrapper -L$(MPILIB) -lmpich

$(EXEC): $(OBJS)
$(F90) -o lapwO $(OBJS) $(LIBS)

Example 7.9 (Fortran source file excerpt - lapwO.F).

!ZEN$ CR PMETRIC WTIME, ODATA

Eight ZEN directives have been inserted into four ZEN files, based on
which a total of 320 experiments were automatically generated and executed
by ZENTURIO. Figure 7.4(a) shows the scalability of the application for all
the four problems sizes examined. The scalability of the algorithm improves by
increasing the LAPWO problem size (number of atoms). For a problem size of
8 atoms (i.e., . 125hour) LAPWO does not scale, which is partially due to the
extensive communication overhead with respect to the entire execution time.
Figure 7.4(c) shows the contribution of each computed overhead to the overall
execution time of each experiment. The unidentified overhead could not be
separated from the optimal execution time (i.e., sequential time divided by the
number of processes) because a sequential implementation of LAPWO could
not be run due to physical memory limitations. For 64 atoms (i.e., lhour),
the application scales well up to 16 processes, after which the execution time
becomes relatively constant.

The interconnection network does not improve the communication be-
haviour (see Figure 7.4(b)) because the blocking time of all the message re-
ceive operations dominates the effective transfer of the relatively small amount
of data across the processes.

7.1.3 Three-Dimensional Particle-In-Cell

The three-dimensional Particle-In-Cell (3DPIC) [75] application simulates
the interaction of high intensity ultrashot laser pulses with plasma in three-
dimensional geometry. This section presents a performance study of a For-
t r a n ^ MPI application of 3DPIC.

The following annotations have been performed.

1. The machine size is restricted to 1, 4, 9, 12, 16, 25, and 36 parallel
processes due to application encoding peculiarities. These have been ex-
pressed by the count argument of the GRAM RSL script shown in Ex-
ample 7.10. Based on the number of processes of one experiment, GRAM
allocates the correct number of dedicated SMP nodes using PBS. The job
type has been set to single which allows flexibility in choosing the local
interconnection network. The application is started using the shell script
illustrated in Example 7.11, which assigns to the MPIRUN ZEN variable
the path to the mpirun script;
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Fig. 7.4. LAPWO performance results for various machine sizes.
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2. The interconnection network is studied by annotating the application
Makef i l e as already shown in Example 7.8 (see Section 7.1.2). Similarly,
a constraint directive associates the mpirun command with the correct
MPI library.

3. The performance metrics of interest are the execution time and the com-
munication overhead, which are specified as already shown in Example 7.9
(see Section 7.1.2).

Example 7.10 (Globus RSL script - run.rsl).

(*ZEN$ SUBSTITUTE count\=4 = { count={l, l ,3,3,4,7,9} }*)
& (count=4)

(jobtype=single)
(directory="/home/radu/APPS/LAPW0/znse_6")
(executable="script.sh") )

Example 7.11 (Shell script - script .sh).

#!/bin/sh
cd $PBS_0_W0RKDIR
n = 'we -1 < $PBS_NODEFILE'
#ZEN$ ASSIGN MPIRUN ={ /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun.ch_gm }
$(MPIRUN) -np $n -machinefile $PBS_NODEFILE lapwO

Five ZEN directives have been inserted into four files to generate a total
of fourteen experiments. Figure 7.5(a) indicates a good scalability behaviour
of the 3DPIC application. The use of the Myrinet network yields about 50%
better performance compared to the Fast Ethernet, which is explained by
the reduced communication overhead (see Figure 7.5(b)). Figure 7.5(c) shows
a relatively low ratio between the application execution time (i.e., one full
pie) and the MPI overheads measured, which explains the good application
scalability. As a sequential version of this application was not available, the
unidentified overhead could not be separated from the optimal execution time.

7.1.4 Benders Decomposition

Benders decomposition is a method for structured optimisation, including
stochastic optimisation. This section addresses a performance study of a par-
allel HPF+ [14] implementation of the benders decomposition method em-
ployed in the context of a financial application (see Section 7.2.1). HPF+
directives are used to distribute the data across the SMP nodes of the cluster.
The HPF+ application is compiled into a hybrid OpenMP and MPI parallel
program using the SCALEA [161] instrumentation engine built on top of the
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Fig. 7.5. 3DPIC performance results for various machine sizes.
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HPF+ Vienna Fortran Compiler [15]. The translated program achieves intra-
node parallelisation through OpenMP directives and communication across
the SMP nodes through MPI calls.

The following parameters have been studied for this kernel through ZEN
directive annotation:

1. The machine size consists of two dimensions:
a) The number of SMP nodes is varied by the count=4 ZEN variable

in the Globus RSL script (see Example 7.12). Based on the count
RSL parameter, GRAM allocates the corresponding number of nodes
and uses an available local MPI implementation, which must be de-
fined by the user default shell environment. This experiment uses
MPICH on top of the p4 communication device over Fast Ether-
net. The MPI_MAX_CLUSTER_SIZE environment variable ensures that
the mpirun script starts only one MPI process per SMP node, which
leaves the intra-node parallelisation to the OpenMP compiler;

b) The number of threads per SMP node is controlled by annotating a
global configuration file (see Example 7.13). This information is used
by the application in the OpenMP Version 1 parallelisation that does
not employ the NWLTHREADS clause of a PARALLEL region, available
only with the version 2 of the standard. This is an example of flexibil-
ity which shows how ZENTURIO deals with less elegant or outdated
coding styles that does not constrain the non-expert users to learn
state-of-the-art programming or adapt the code to the newest specifi-
cations.

2. The performance metrics of interest for this algorithm are the execution
time, the MPI communication time, and the HPF+ inspector and executor
overheads [14], which were indicated using one ZEN performance directive
similar to the Example 7.9 (see Section 7.1.2).

Example 7.12 (Globus RSL script - run.rsl).

(*ZEN$ SUBSTITUTE count\=4 = {count={l: 10}}*)
& (count=4)

(jobtype=mpi)
(environment=(MPI_MAX_CLUSTER_SIZE 1) )
(directory="/home/radu/APPS/HANS")
(executable="bw_halo_sis")

Example 7.13 (Configuration file - bench, in).

!ZEN$ SUBSTITUTE threads = { 1:4 }
threads

Three ZEN directives have been inserted into two files which specify 40
experiments automatically generated and conducted by ZENTURIO. Fig-
ure 7.6(a) displays a good scalability of this code. Backward pricing is a com-
putational intensive application, which highly benefits from the inter-node



178 7 Experiments

MPI and intra-node OpenMP parallelisation. The overall wallclock time of
the application significantly improves by increasing the number of nodes and
the OpenMP threads per SMP node. Figure 7.6(b) displays a very high ratio
between the total execution user time (i.e., one full bar) and the HPF and
the MPI overheads, which explains the good parallel behaviour. This ratio de-
creases for a high number of SMP nodes, for which the overheads significantly
degrade the overall performance.

7.1.5 Three Dimensional FFT Benchmarks

The performance of parallel scientific applications is heavily influenced by
various mathematical kernels, like linear algebra software [174] that needs
to be individually optimised for each particular platform to achieve accept-
able high performance In this context, ZENTURIO has been deployed at the
Paul Scherrer Institute (Swiss Federal Institute of Technology - ETH Zurich)
for automatic benchmarking of three-dimensional FFT kernels required by a
group of physicists for solving large-scale partial differential simulations [122].
This section reports experimental results produced by this international syn-
ergy effort.

Let A(n, n, n) denote a three dimensional array. A three dimensional FFT
transform on the array A is defined as:

n—1 n—1 n—1

R — V^ V* V i Mxs+yt+zu) A V T « ? P fl) n - 11

s=0 t=0 «=0

where n = 2m and u = e2^ is the nth root of unity. The computation is
parallelised by distributing the x dimension of the cube onto the array of
available processors (see Figure 7.7). As a consequence, the computation over
the inner y and z dimensions can be performed in locally on each processor
in parallel independent loops given by the following first two equations:

s,t,z — 2-iu-ü W As,t,ui

Ds,y,z = Y;^0"ytCs,t,Z;
D sr^n— 1 xs n
&x,y,z — 2_,«=o w us,y,z-

The summation on the x axis, expressed by the last equation above, re-
quires redistribution of the matrix elements such that each processor can com-
pute its sum locally. This is done by rotating the cube around the z dimension
in an operation called transpose. Finally, a second reverse transpose operation
is required to rearrange the data to the original layout (see Figure 7.7).

This section presents a comparative analysis between two three-dimensional
FFT implementations, as follows.

1. FFTW [73] is a portable subroutine library for computing the Discrete
Fourier Transform in one or more dimensions of arbitrary input sizes, and
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Fig. 7.7. The parallel three-dimensional FFT computation.

of both real and complex data. Existing benchmarks [72] performed on
a variety of platforms show that the performance of FFTW is typically
superior to that of other publicly available FFT software, and is even
competitive with non-portable, highly optimised vendor-tuned codes. The
power of FFTW is the ability to optimise itself to the target machine
through some pre-defined codelets run by a planner function before calling
the real FFT;

2. wppSDFFT developed by Wes Petersen at ETH Zurich uses a generic
implementation of Temperton's in-place algorithm [155] for an n = 2m

problem size, with the particular focus of making the transpose faster. The
optimised algorithm pays a flexibility price, which restricts the problem
matrix size and the machine size to the powers of two.

Both applications are encoded as C MPI programs, which were wrapped by
a Fortran front-end with the purpose of using the automatic compiler-based
instrumentation provided by ZENTURIO and SCALEA. All the experiments
have been conducted on a single Intel Pentium III Beowulf cluster at ETH
Zurich, which comprises 192 dual CPU Pentium III nodes running at 500 MHz
with 1GB RAM, interconnected through 100 MBit per second Fast Ethernet
switches. The nodes are organised into 24 node frames interconnected through
1 GBit per second optical links.

The following three application parameters have been varied:

1. The problem size ranges from 23 to 28, which is expressed by the ZEN
variable problemsize in Example 7.14. Larger problem sizes could not be
run due to the limited amount of memory available on one cluster node.

2. The communication library is expressed by the MPIJÎ0ME ZEN variable
in the application Makef i l e (see Example 7.15). The communication li-
braries under comparative study are the LAM [26] and the MPICH (using
the P4 communication device) [79] MPI implementations. Shared memory
has been used for the communication within one SMP node.

3. The machine size ranges from 21 to 26 dual nodes, each node running two
MPI processes. The MPIRUN ZEN variable refers to the implementation
specific mpirun script which is not standardised by MPI. The constraint
directive insures the correct association between the mpirun script and the
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MPI library location, which is parameterised externally in the Makefile.
Larger machine sizes have been limited by the cluster queuing policy.

4. The performance metrics of interest are the total execution time and the
transpose time which were measured using the ZEN performance directive
illustrated in Example 7.14. The MPI communication overheads have been
measured using the SCALEA MPI wrapper library.

Since small FFT problems have extremely short execution times (i.e., order
of milliseconds), they are prone to perturbations coming from the operating
system or other background processes that run with low scheduling priority.
To avoid such consequences, each experiment is repeated for a long enough
time (i.e., five minutes) and the mean of all measurements is computed.

Example 7.14 (FFT Fortran wrapper - FLauncher.f).

problemsize=64

*ZEN$ ASSIGN problemsize = { 2**{3:8} }
minutes=5
call MPI_INIT(ierr)
call pre_measure(problemsize, minutes)

*ZEN$ CR wpp3dfft PMETRIC WTIME BEGIN

call to_measure()

*ZEN$ END CR
call post_measure()

call MPI_FINALIZE(ierr)

Example 7.15 (Makefile).

MPI_H0ME = /usr/local/apli/lam

#ZEN$ ASSIGN MPI.HOME = { /usr/local/apli/lam,
/usr/local/apli/mpich }

$(EXEC): $(0BJS)

$(MPI_HOME)/bin/mpicc -o $(EXEC) $(0BJS) $(LIBS)

Example 7.16 (PBS script - run.pbs).

#!/bin/sh
#ZEN$ SUBSTITUTE nodes\=l = { nodes\={2,4,8,16,32,64} }
#PBS -1 walltime=3600,nodes=l:ppn=2

nproc='wc $PBS_NODEFILE I awk '{print $ 1 } "
LAM_RUN="/usr/local/apli/lam/bin/mpirun -np $nproc wpp3DFFT"

MPICH_RUN="/usr/local/apli/mpich/bin/mpirun -nolocal
-np $nproc -macninefile $PBS_NODEFILE wpp3DFFT"

/usr/local/apli/lam/bin/lamboot -v $PBS_NODEFILE
MPIRUN=$LAM_RUN

#ZEN$ ASSIGN MPIRUN = { $LAM_RUN, $MPICH_RUN }
#ZEN$ CONSTRAINT INDEX MPIRUN == Makefile:MPIH0ME
$MPIRUN
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A total of six ZEN directives have been inserted into three application
files to express 72 experiments automatically generated and conducted by
ZENTURIO. Figures 7.8(a) and 7.8(b) display the speedup curves of the two
FFT algorithms, normalised against the lowest machine size executed (i.e., two
dual nodes), since a sequential experiment was not available. The speedup is
bad for small problem sizes for which large parallelisation deteriorates the
performance. Large problem sizes offer some speedup until a certain critical
machine size.

The explanation for the poor speedup curves is given by the large fraction
used by the transpose operation (i.e., region 2) and the MPI overheads (i.e.,
MPI_Sendrecvj:eplace routine used to interchange the elements in the trans-
pose) from the overall execution time, as displayed in Figure 7.9(a) (FFTW
shows similar overhead curves). It is interesting to notice that both algorithms
scale quite well until 16 dual nodes for a 28 problem size, after which the per-
formance significantly degrades. The reason is the fact that larger machine
sizes spawn across multiple cluster frames which communicate through 3 PCI
switches, 2 Ethernet, and 2 Fast-Ethernet wires that significantly affect the
transpose communication time. For small problem sizes, the execution time is
basically determined by the transpose overhead that naturally increases pro-
portional with the machine size (see Figures 7.10(a) and 7.9(b)). In contrast
to wpp3dFFT, FFTW shows an interesting behaviour of keeping the trans-
pose and the total execution time constant even for large machine sizes. The
explanation is given by the load balancing analysis which is explained in the
next paragraph.

ZENTURIO offers a series of data aggregation functions, comprising max-
imum, minimum, average, or sum, for metrics measured within the parallel
(MPI) processes or the parallel (OpenMP) threads of an application.

Definition 7.17. Let M denote a performance metric and Mi its measured
instantiations across all n parallel processes or threads of a parallel applica-
tion, V i s [l..n]. The load balance aggregation function for the metric M is
defined as the ratio between the average and maximum aggregation values:

max {Mi}
Vi€[l..n]

The wpp3dFFT kernel shows a good load balance close to one for all the
problem and the machine sizes examined (see Figure 7.12(b)), while FFTW
exhibits a severe load imbalance behaviour, the smaller problems are and the
larger the machine sizes get (see Figure 7.12(a)). The explanation is the fact
that FFTW in its planner function (that chooses optimised codelets for a
certain platform) also detects that a machine size is too large for a rather
small problem size to be solved. As a consequence, it decides to use only
a subset of the processors for doing useful computation and transpose, while
the remaining MPI processes simply exit by calling the MPIJinalize routine.
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This explains the even execution time for small problem sizes which was shown
in Figure 7.10(a).

Figure 7.11(a) shows a better performance of the LAM MPI implementa-
tion compared to MPICH for small problems and large machine sizes. Such
experiments are bound to exchanging large number of small messages dom-
inated by latencies, for which the LAM implementation seems to perform
better. Large problem sizes shift the focus from message latency to network
bandwidth, in which case both implementation perform equally well (see Fig-
ure 7.11(b)).

A complementary suite of experiments performed on a different cluster
using the technique already presented in Example 7.8 (see Section 7.1.2) shows
that the Myrinet high performance interconnection network (not available
on the ETH cluster) gives an approximate two fold improve in performance
compared to the Fast Ethernet (see Figure 7.10(b)).

A comparative analysis of the two FFT parallel algorithms shows, as ex-
pected, a better performance of wpp3DFFT compared to FFTW for large
problem sizes, which is due to the highly optimised wpp3DFFT transpose im-
plementation (see Figure 7.13(a)). For small problem sizes, FFTW performs
much better due to its intelligent run-time adjustment of machine size in the
planning phase (see Figure 7.13(b)). The metric in which the ETH physicists
are particularly interested is the ratio between the transpose and computation
time, the latter being defined as the difference between the overall execution
time and the transpose operation. This metric is comparatively displayed in
Figures 7.14(a) and 7.14(b).

7.1.6 Registry Service Throughput

Section 5.8 has presented a comparative analysis between the WASP-based
and the OGSI-based implementations of the ZENTURIO Grid services, which
includes a Registry service for transient service registration and discovery.
Both the WASP-based Registry (see Section 5.3.5) and the Globus VOReg-
istry provide a flat service organisation which is subject to scalability limita-
tions. The purpose of this section is to comparatively explore the responsive-
ness of these two alternative Registry service implementations under a heavy
service registration and client lookup load.

The scalability benchmark has been automatically conducted using ZEN-
TURIO by running both the client and the hosting environment on a four
processor 750 MHz SMP Sun-fire with 9GB memory, to avoid CPU contention
and network delays. The experiments have been specified by annotating the
benchmark client application with ZEN directives as shown in Example 7.18.
The following annotations have been performed:

1. The number of registered services from 100 to 1500 with the stride 100,
denoted by the ZEN variable svNo;

2. The number of concurrent clients from 100 to 15100 with the stride 1000,
denoted by the ZEN variable clnts;
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3. The number of requests per second served by the Registry have been mea-
sured by manually instrumenting the client with the SCALEA instrumen-
tation library.

These annotations specify a total of 15 x 15 = 225 experiments which were
automatically generated and conducted by ZENTURIO.

Example 7.18 (OGSI VORegistry benchmark client.).

svNo = 100;
//ZEN$ ASSIGN svNo = { 100 : 1500 : 100 }
f o r d n t i = 0; i <= svNo; i++) {

((Stub) factory)._setProperty(
ServiceProperties.INV0CATI0N_ID,

factory.createService(new CreationTypeO);

clnts = 100;
//ZEN$ ASSIGN clnts={ 100 : 15100 : 1000 }
fordnt j = 0; j < clnts.length; j++) {
new ThreadO { public void run() {

ExtensibilityType queryResult = registry,
findServiceData(QueryHelper.getXPathQuery(

"GridServiceRegistryWSInnspection
XPathExpr, namespaces));

}.start();

The WASP-based Registry offers an excellent throughput of approxi-
mately 600 requests per second for around 300 concurrent requests (see Fig-
ure 7.15(a)). As expected, the performance decreases to about 300 requests
per second in the case of 1500 concurrent clients. The number of registered
services does not influence the overall performance due to the hash-based
service organisation. The various peaks in the graph are due to the Java
management of this memory intensive application and the occasional garbage
collection invocations. The expectation is to see the same sustained perfor-
mance for higher number of services, until the memory limits are reached and
the Registry starts swapping. Since the experiments have been conducted on
the main file server of the Institute for Software Science, University of Vienna,
this extreme case has been omitted on purpose.

For the OGSI VORegistry, the throughput of the service lookup operations
based on f indServiceData XPath queries rapidly decreases with the num-
ber of registered services (see Figure 7.15(b)). The reason is the sequential
organisation of the service data elements into a single XML document, which
is clearly not a scalable approach for high-throughput delivery.
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7.1.7 Grid Service Throughput

During the testing phase of the OGSI-based ZENTURIO prototype on various
performance and parameter studies, a severe decrease in the responsiveness
of the overall Grid services coordination workflow compared to the WASP-
based version was clearly visible. The performance was particularly poor in
two situations:

1. when the Experiment Generator service generates experiments at a.high
rate and passes them immediately to the Experiment Executor service for
execution;

2. when many notification events are sent to the User Portal at the same
time as a result of multiple experiments changing state simultaneously.

This section aims to conduct a small automatic benchmark test using ZEN-
TURIO that compares the WASP and OGSI service throughput. The purpose
is not to perform a fair benchmark between the two SOAP implementations,
nor to debug their internals to detect the real cause of the performance bot-
tleneck, rather to highlight an existing OGSI performance bug.

The service throughput in requests per second has been measured for the
following three different SOAP invocations:

1. an array of 100 elements;
2. a string of 100 characters;
3. an array of 100 strings of 100 characters each.

There is no input argument to the requests (i.e, not an echo test), because
most of the real-world web applications will send small requests most of the
time. All the experiments have been performed on a four processor 750MHz
SMP Sun-fire with 9GB memory to avoid network delays and CPU contention
between the client and the hosting environment. The default serialisers and
SOAP encodings of each (i.e., WASP and Axis) SOAP engines have been used.
The array and the string structures have been pre-built on the server as static
data members. There is a start-up period of 100 transactions to ignore service
loading and other optimisation settings specific to each hosting environment.
The default own hosting environments provided by WASP and OGSI distribu-
tions have been used. For consistency, an additional test has been conducted
where both SOAP platforms are deployed within the Tomcat [106] hosting
environment. The same test has been also performed for vanilla Apache Axis
deployed in Tomcat. The hosting environments have been properly set-up to
accommodate the full amount of concurrent requests needed. The experiments
have been automatically conducted by ZENTURIO using a benchmark client
similar to the one shown in Example 7.18 (i.e., ZEN variable clnts).

The results depicted in Figure 7.16 show that WASP is doubling the
throughput offered by the Globus OGSI implementation. The object size and
the memory consumption are similar in both implementations (though WASP
has an overall memory usage slightly bigger). The performance differences are
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Fig. 7.16. Comparative sustained throughput results of WASP, OGSI, and vanilla
Axis services.
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due to a more mature streaming architecture offered by WASP which includes
interception, XML parsing, and SOAP message processing. As expected, OGSI
displays similar performance with vanilla Apache Axis, since it does not add
any overhead on top of the JAX-RPC serialisation. The Tomcat deployment
does not influence the results significantly, though for WASP it introduces
a slight overhead. The poor performance of the OGSI alpha-3 release (which
was the initial implementation platform that motivated the entire benchmark)
on manipulating arrays was due to a serialisation performance problem in the
underlying Axisl.l Release Candidate 2.

7.2 Parameter Studies

Even though the original idea of ZENTURIO was to support cross-experiment
performance studies of parallel applications, the general parameter specifica-
tion approach taken by the ZEN language enables straight-forward classical
parameter studies. A parameter study experiment has been formally defined
in Section 3.9.

7.2.1 Backward Pricing

The backward pricing kernel is a parallel implementation of the backward
induction algorithm which computes the price of an interest rate dependent
financial product, such as a variable coupon bond. The algorithm is based on
the Hull and White trinomial interest rate tree models for future developments
of interest rates [46].

The application is encoded such that it reads the input parameters from
different input data files. The parameter annotations for this study are per-
formed by inserting ZEN assignment directives in the source code immediately
after the input parameter read statements, as shown in Example 7.19. The
read statements become therefore dead-code and will hopefully be eliminated
through subsequent optimised compilation. The following four input parame-
ters have been varied for this application:

1. the coupon bond denoted by the ZEN variable coupon (i.e., from 0.01 to
0.1 with the increment 0.001);

2. the number of time steps over which the price is computed, denoted by
the ZEN variable nr.steps (i.e., from 5 to 60 with the increment 5);

3. the coupon bond end time, denoted by the ZEN variable bond'/.end. An
additional constraint directive guarantees that the coupon bond end time
is identical with the number of time steps;

4. the length of one time step, denoted by the ZEN variable delta_t (i.e.,
from 1/12 to 1 with the increment 1/12);

5. the total price is the output parameter of this application, whose variation
as a function of the four input parameters is the subject of the study.



196 7 Experiments

Example 7.19 (Backward pricing source file excerpt - pkernbw.J90).

readClO,*) nr_steps
!ZEN$ ASSIGN nr_steps = { 5 : 60 : 5 }

read(10,*) de l t a . t
!ZEN$ ASSIGN delta_t = { 0.08, 0.17, 0.25, 0.33, 0.42, 0.5,

0.58, 0.67, 0.75, 0.83, 0.92, 1 }

read(10,*) bond°/,end
!ZEN$ ASSIGN bondY/,end = { 5 : 60 : 5 }

!ZEN$ CONSTRAINT VALUE nr.steps == bond\%end

r e a d ( 1 0 , * ) b o n d / i c o u p o n

!ZEN$ ASSIGN bond \ ° / , coupon = { 0 . 0 1 : 0 . 1 : 0 . 0 1 >

Example 7.20 (Globus RSL Script - run.rsl).

+ (&

(*ZEN$ SUBSTITUTE gescher = { pc6163-c703.uibk.ac.at,

gescher.vcpc.univie.ac.at/j obmanager-pbs,
iris.gup.uni-linz.ac.at }*)

(*ZEN$ CONSTRAINT INDEX gescher == pkernbw.f90:bondY/.coupon/4*)

(resourceManagerContact="gescher")
(count=4)

(jobtype=mpi)

(directory="/home/radu/APPS/Backward/V1.0")
(executable="pkernbw")

A set of five ZEN directives have been inserted into one single source file
to specify a total of 1481 experiments that are automatically generated and
conducted by ZENTURIO. The experiments have been submitted onto the
target execution Grid site using DUROC. To speed-up the completion of this
rather large parameter study suite, the Globus RSL script has been annotated
with three Grid sites where to split the throughput of this large experiment
suite (see Example 7.20 and Figure 7.17):

Grid Site

Coupon Bond

pc6163-c703.ulbk.ac.at

0.01

gescher.vcpc .unMe.ac.at Iris.gup.uni-linz.ac.at

I
i

0.01 0.01

i i i I
0.01 0.01 0.01 0.01

I
0.01

1
0.01 0.01

Fig. 7.17. The constraint defined in Example 7.20.
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1. pc6163-c703.uibk.ac.at at the University of Innsbruck;
2. gescher .vcpc.univie.ac.at at the University of Vienna;
3. i r i s .gup .uni - l inz .ac .a t at the University of Linz.

The constraint directive specifies that the experiments which satisfy the con-
dition bond%coupon < 0.03 shall be scheduled on pc6163-c703.uibk.ac .at,
the experiments for which 0.04 < bond%coupon < 0.07 shall be scheduled on
gescher .vcpc.univie.ac.at, and the experiments having bond%coupon >
0.08 shall be scheduled on i r i s .gup.uni - l inz .ac .a t . By splitting the pa-
rameter study throughput onto three Grid sites, the completion time of the
whole experiment suite has been reduced by more than 50%. Section 6.4 will
present a throughput scheduling approach that could replace this manual
scheduling approach.

From the wide variety of visualisation diagrams automatically gener-
ated during this study, two samples are depicted in Figure 7.18. The three-
dimensional surface in Figure 7.18(a) shows the evolution of the total price as
a function of the number of time steps and the coupon, which can be explained
as follows:

1. the price decreases with the maturity (number of time steps x length of
time step), because the effect of discounting future payments increases
(i.e., EU 100 in 20 years are less then EU 100 in 10 years), but only if
the coupon is less than the interest rates (e.g., for 0.06, the coupon rate
is greater than the interest rates);

2. the price increases with coupon, because the higher the coupon rate is,
the higher the future payments are;

3. for very large maturities, the price linearly depends on the coupon only.

Figure 7.18(b) shows the price evolution by varying the number of time
steps and the length of one time step. The interpretation of the graph is as
follows:

1. the price decreases with the length of a time step, because a smaller pay-
ment number implies less money in the future;

2. depending on the number of time steps, the price may increase or de-
crease with the maturity, depending on how much the smaller number of
payments are compensated by smaller discount effects.

7.3 Scheduling

This section presents experimental results on two optimisation case studies
discussed in Chapter 6:

1. single workflow scheduling (see Section 7.3.1);
2. throughput scheduling of independent tasks (see Section 7.3.2).
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7.3.1 Workflow Scheduling

The scheduling algorithms formally presented in Sections 6.2 and 6.3 have
been applied in a Grid testbed consisting of 200 machines. To achieve a more
effective evaluation of the scheduler under difficult external conditions, ar-
tificial CPU and network perturbations have been introduced (to the data
delivered by NWS [176]) at random time intervals. As a consequence, the
performance of the CPU and network resources of the Grid testbed follows
an exponential distribution, with overloaded resources outnumbering the idle
high-performance ones (which will be likely the case in future large-scale World
Wide Grids).

WIEN2k

The pilot application for the workflow scheduling work is the WIEN2k [20] pro-
gram package for performing electronic structure calculations of solids using
density functional theory, based on the full-potential (linearised) augmented
plane-wave ((L)APW) and local orbital (lo) method.

The various programs that compose the WIEN2k package are typically
organised in a workflow, as illustrated in Figure 7.19. The realisation of the
workflow is compliant with the model presented in Section 2.8.2. The LAPW1
and LAPW2 tasks can be solved in parallel by a fixed number of so called
k-points, given as input parameter to the workflow orchestration program.

Reasonable accurate cost functions have been developed together with the
Wien2k physicists for the most critical workflow tasks. For instance, the fol-
lowing analytical formulas are used to approximate the number of floating
point operations of an LAPW1 and an LAPW2 k-point, respectively the file
size in bytes transferred between the LAPW1 and the LAPW2 k-point com-
putations (i.e., case.vector):

WLApwi =7-A-N2 + N3;

WLAPW2 = 10% • WLAPWI;

W12 = 200 • N • A,

where A represents the number of atoms, N represents the matrix size, and 7,
10, and 200 are scaling factors. The scaling factors of the cost functions have
been adjusted to match the real execution times by conducting exhaustive
multi-experimental performance studies with ZENTURIO on each workflow
task using the methodology presented in Chapter 4 and exemplified on several
real-world applications in Section 7.1.

Example 7.21 illustrates a sample Java CoG task graph program [7] that
implements a fragment of the WIEN2k workflow application. The JS workflow
tasks lapwO, lapwl_l, and lapwl_2 run on the abstract machines (genetic
algorithm genes) lapwO_host, lapwl_hostl, respectively Iapwl_host2. The
FT tasks kl and k2 transfer the output files of LAPWO from lapw0_host
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Fig. 7.19. The WIEN2k workflow.

to the abstract machines lapwlJiostl and Iapwl_host2 where the LAPWl
k-points execute through static schedule dependencies (see Section 6.2.2).

Static Workflow Scheduling

The ZEN directives illustrated in Example 7.21 specify the possible instantia-
tion values (representing the concrete Grid machines) of each abstract machine
of the workflow. The parameter space defined by the ZEN directives is the
scope of the static scheduling search algorithm. One encoding of the search
engine based on genetic algorithms has been presented in Section 6.1. The
manual annotation of the workflow application with ZEN directives as illus-
trated in Example 7.21 is, however, impractical and of little use in large-scale
dynamic Grid environments. Instead, the static scheduler annotates the work-
flow program with ZEN directives using a special ZEN instrumentation API
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provided by the Experiment Generator service (see Section 4.2). The value
set of the concrete Grid machines that instantiates each ZEN variable or ab-
stract machine is the entire set of Grid machines obtained from the Globus
MDS [61]. Assuming a workflow that defines N abstract Grid machines and a
Globus MDS installation that returns a set of M concrete machine, the static
scheduling search space contains NM points.

Example 7.21 (Wien2k workflow excerpt).

//ZEN$ SUBSTITUTE lapwO.host = { machine-Ci:200} }
//ZEN$ SUBSTITUTE lapwl.hostl = { machine{l:200> }
//ZEN$ SUBSTITUTE Iapwl_host2 = { machine{l:200} }

Task lapwO = createJS("lapwO_host", "lapwO");
Task lapwl.l = createJS("lapwl_hostl", "lapwl 2");
Task lapwl_2 = createJS("lapwl_host2", "lapwl 1");
Task kl = createFT("kl",nlapw0_host11,"lapwl_hostl");
Task k2 = createFT("k2","lapwO.host","lapwl_host2");

TaskGraph taskGraph = new TaskGraphlmpK) ;
taskGraph.add(lapwO);
taskGraph.add(lapwl_l);
taskGraph.add(lapwl_2);
taskGraph.add(kl);
taskGraph.add(k2);

Dependency dependency = new DependencyImpl 0 ;
dependency, add (lapwO. get Id ( ) , k l . ge t ldO) ;
dependency.adddapwO.getldO , k2.getld()) ;
dependency.add(kl.getId(), lapw1_1.getId ( )) ;
dependency.add(k2.getId(), lapwl_2.getld()) ;

taskGraph.setDependency(dependency);

Figure 7.20 depicts the generational evolution of the population best in-
dividual (i.e., static workflow schedule) for several instantiations of the static
scheduling genetic algorithm applied on various WIEN2k problem size config-
urations. Even though the algorithm exhibits a steady smooth improvement
across generations (i.e., convergence to local minima through crossover, and
steep escapes from local minima through mutation), the quality of the result-
ing solutions is heavily influenced by several input parameters:

1. the population size;
2. the crossover probability;
3. the mutation probability;
4. the maximum generation number;
5. the steady state generation number;
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Fig. 7.20. Best individual evolution for various genetic static scheduler instances.

6. the fitness scaling factor;
7. the use of the elitist model.

A correct tuning of these parameters is crucial for the algorithm to quickly
convergence to high quality solutions. In a conventional approach, this requires
extensive manual experimental testing.

The genetic algorithm parameters have been tuned by conducting an ag-
gressive exhaustive performance study using ZENTURIO in cluster mode.
Seven ZEN directives that specify total of 2880 experiments have been in-
serted in the PBS script used by ZENTURIO to automatically generate and
submit the experiments on the Beowulf cluster (see Example 7.22).

An average-sized WIEN2k workflow of about 55 nodes (i.e., 10 parallel
k-points) has been used for this experiment. Every experiment represents an
instance of the static scheduling algorithm configured using a different genetic
parameter combination. Each static scheduling experiment annotates the ap-
plication with ZEN directives that define the possible instantiations of each
abstract machine, as already explained in Example 7.21. All the experiments
use the Grid resource information collected at the same time instance (i.e.,
Grid snapshot). This hierarchical experimental setup that applies the ZEN-
TURIO (exhaustive) performance-study tool on the ZENTURIO optimisation
search engine (instantiated for the static scheduling problem) is depicted in
Figure 7.21.
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Example 7.22 (Genetic algorithm parameter tuning - PBS script).

#!/bin/sh
#PBS -1 walltime=00:10:00:nodes=l

#PBS -N scheduler

size = 150
#ZEN$ ASSIGN size = { 50 : 200 : 50 }

crossover =0.9
#ZEN$ ASSIGN crossover = { 0 . 4 : 1 : 0.2}

mutation = 0.001

#ZEN$ ASSIGN mutation = { 0.001, 0.01, 0.1 }
generations = 500

#ZEN$ ASSIGN generations = { 100 : 500 : 100 }

convergence =0.2
#ZEN$ ASSIGN convergence = { 0.1, 0.2 >

scaling = 2
#ZEN$ ASSIGN scaling = { 1, 1.5, 2 }

elitist = T
#ZEN$ ASSIGN e l i t i s t = { T, F }
${JAVA> -DSIZE=${size} -DCROSSOVER=${crossover} . . .

The objective (fitness) function has been instantiated with the predicted
workflow execution time (makespan). The workflow makespan raises the max-
imum optimisation difficulty since it considers all workflow nodes in the eval-
uation (e.g., for optimising communication even better results were obtained
since only the FT tasks had to be considered). For the purpose of evalu-
ating the quality of the solutions produced by the algorithm, the workflow
makespan has been pre-measured offline on a set of idle (unperturbated) high-
performance Grid resources. This will be referred in the following as optimal
fitness To- Three metrics that characterise the performance of the genetic
algorithm are computed for each experiment:

1. precision P of the best individual
Fo, defined as:

compared to the artificial optimum

ZENTURIO (Exhaustive)
Performance and Pan

I
1
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Optimisation 1
(Genetic Static

Scheduler)

1
1 1
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Function

Evaluation 11
(Perf. Metric) . . .

Objective
Function

Evaluation 1p
(Perf. Metric)

imeter Study

I
ZENTURIO

Optimisation n
(Genetic Static

Scheduler)

ZEN Directive Annotations
(Genetic) Optimisation Parameters

[ ZEN Directive Annotations
Abstract Machine Parameters

I
1 I

Objective
Function

Evaluation nt
(Perf. Metric)

• . .

Objective
Function

Evaluation np
(Perf. Metric)

Fig. 7.21. Experimental setup for genetic static scheduler tuning.
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p = Tb T° . 100;
J o

2. visited points representing the total set of individuals (i.e., schedules)
which have been evaluated by the algorithm during the search process;

3. improvement I in the fitness !Fb of the last generation best schedule, com-
pared to the first generation best schedule Tf.

7 =

To attenuate the stochastic errors to which randomised algorithms are
bound, each scheduling experiment is repeated for 30 times and the arithmetic
mean of the results in each run is reported.

Due to the large search space (i.e., 1025 points) and difficult external
Grid conditions (i.e., exponential resource load distribution), large popula-
tions above 50 individuals are required for converging to good solutions (see
Figure 7.22(a)). As expected, the precision improves with the number of gen-
erations. Lower population sizes (e.g., 50) do not ensure enough variety in
the genes and converge pre-maturely. Larger populations (e.g., 200) converge
to good solutions in fewer generations, however, the number of visited points
may be unnecessarily large which increases the algorithm duration. The num-
ber of visited points (i.e., the schedules computed) required for converging
to good solutions is of the order of 104, which represents a fraction from the
overall search space of 1025 points (see Figure 7.22(b)). The improvement in
the best individual is remarkable of up to 700% over 500 generations for large
populations (see Figure 7.22(c)). A value of 20% from the maximum genera-
tion number is a good effective estimate for checking whether the algorithm
reached a steady state (see Figure 7.23(a)). The higher the crossover probabil-
ity, the faster the algorithm converges to local maxima (see.Figure 7.23(b)).
A correct low mutation probability is crucial for escaping from local max-
ima and for obtaining good solutions (see Figure 7.23(c)). In this experiment
the mutation probability had to be surprisingly low (i.e., 0.001%) due to the
rather large population sizes and genes per individual (i.e., 45). Higher muta-
tion probabilities produce too much instability in the population and chaotic
jumps in the search space, that do not allow the algorithm to converge to
local maxima through crossover. Fitness scaling is crucial smooth for steady
improvement over large number of generations (see Figure 7.24(a)) and pro-
duces about 10 fold improvement in solution. The use of the elitist model (see
Figure 7.24(b)) is beneficial due to the high heterogeneity of the search space
and delivers in average 33% better solutions.

As a consequence of this performance tuning experiment, the following
parameter configuration is used for the genetic algorithm within the current
Grid testbed:

1. population size: 150;
2. crossover probability: 0.9;
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Fig. 7.22. Genetic static scheduler tuning results (I).



206 7 Experiments

Generations

(a) Generation Percentage.

(b) Crossover Probability.

Population Size

(c) Mutation Probability.

Fig. 7.23. Genetic static scheduler tuning results (II).
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Fig. 7.24. Genetic static scheduler tuning results.

3. mutation probability: 0.001;
4. maximum generation: 500;
5. steady state generation percentage: 20%;
6. fitness scaling factor: 2;
7. elitist model: yes.

In this configuration, the algorithm constantly delivers 25% precision and a
remarkable 700% improvement in solution, by visiting a fraction (i.e., 5 • 104)
of the entire search space points. The most sensitive parameter that needs
be tuned to the workflow characteristics is the mutation probability (i.e.,
inversely proportional with the population size times the workflow size). The
other parameter values have to be tuned to the Grid resource characteristics
and are less dependent on the particular workflow.
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Dynamic Workflow Scheduling

The hybrid dynamic scheduling algorithm is based on the repeated invocation
of the static scheduler at well defined scheduling events, in attempt to adjust
the highly optimised static schedule to the dynamically changing Grid re-
sources. In this experiment, the scheduling events are generated at the same
frequency at which the artificial perturbations are introduced to the Grid
computational resources (i.e., a sequential loop busy waiting a random time
interval).

To evaluate the dynamic scheduler, three experimental WIEN2k workflow
instantiations (i.e., two DAG and one DG-based) that correspond to different
application input cases (i.e., the number of atoms and matrix size) with dif-
ferent parallelisation sizes (i.e., number of k-points) have been used. A static
value of 50% is used as the performance contract elapse factor of all the work-
flow tasks (see Section 6.3.1).

Figure 7.25(a) traces the static DAG makespan delivered by the genetic
static scheduler at consecutive scheduling events during the execution of each
experimental workflow. As the workflow tasks are scheduled, execute, and ter-
minate, the predicted static schedule makespan of the remaining DAGl and
DAG2 subworkflows obviously decreases with the number of scheduling events.
The abrupt decreases of the static makespan happen after the submission of
all the LAPW1 k-points (the most time consuming workflow tasks) which no
longer need to be considered by the static scheduler. The abrupt increases
of the makespan are due the LAPW1 tasks that violate their performance
contract which need to be reconsidered by the static scheduler for reschedul-
ing, migration, and restart. In the case of the DG-based workflow, the static
scheduler always receives the complete workflow as input, but with different
topological order of the nodes. This is the reason why the static makespan
does not decrease with the scheduling events.

Figure 7.25(b) traces the overall predicted dynamic workflow makespan at
consecutive scheduling events during the workflow execution. There are sev-
eral high peaks in the histogram which are due to severe high perturbations
applied to the machines running the LAPW1 k-points. As a consequence of
the performance contract violation, the scheduler migrated the critical tasks
to new machines at the next scheduling event, which drops the next predicted
makespan close to the original predicted value. Through migration, an esti-
mate improvement of about two fold in the overall makespan is achieved (see
Figure 7.26). Since the workflow referred as DAG2 represents a larger problem
size than DAGl, the benefit obtained through rescheduling and task migration
is higher. The final makespan of the DAG-based workflows is, however, about
twice as large as it was originally predicted by the static scheduler. While
most of the performance loss is the consequence of the task restarts (i.e., due
to duplicated file transfers and LAPW1 task computations), a fraction (i.e.,
about 10%) is due to genetic algorithm execution overhead. For the DG-based
workflow, the makespan of the entire workflow could not be estimated (i.e.,
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beyond the execution of one cycle), since the number of loops is statically
unknown. As a consequence, Figure 7.25 represents the DG makespan of one
workflow iteration only, which is successfully kept relatively constant through
task migration in two critical occasions.

Figure 7.26 compares the hybrid approach proposed against a lazy just-
in-time version of the dynamic scheduling algorithm that bypasses the static
scheduler [44]. The experiments have been performed on the same workflow
cases and under similar (logged) Grid conditions. Additional scheduling events
are generated upon the completion of each workflow task. At each task com-
pletion scheduling event, the dependent tasks are scheduled on the resources
that produce the lowest execution times (O(n) complexity). The overall work-
flow makespans obtained were in average 25% higher compared to the hybrid
approach. The reason is the fact that the (genetic) static scheduler was able
to find better workflow mappings by looking ahead at the entire workflow, as
opposed to the lazy just-in-time scheduling of individual tasks.

7.3.2 Throughput Scheduling

The genetic algorithm for static throughput scheduling of independent tasks
presented in Section 6.4 has been tested within a small simulator of Grid bro-
kerage and task set generation. Generally, such simulators offer a more flexible
and challenging testbed for appropriate algorithm validation. The uniform,
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the normal, and the exponential distributions have been used to generate the
work (i.e., floating point operations) of the task set, as well as the speed (i.e.,
floating point operations per second) of the resource set. The number of in-
dependent tasks used is of the order of 104 and the Grid size is of the order
of 103. This produces a huge search space of io30000 points and a complexity
of O(10n) for the classical algorithms from the Max-min family [112] which
become impractical.

The automatic creation of this large task set in Java is summarised in
Example 7.23. The rather large number of ZEN directives (i.e., 104) is au-
tomatically inserted into the Abstract Syntax Tree of the parsed ZEN file
through a special interface provided by the Experiment Generator, as already
introduced in Section 4.2.

Example 7.23 (Java task set generation).

TaskGraph taskGraph = new TaskGraphlmpl0 ;
for( int i = 0; i < 10000; i++) {

Task task = createTask("task" + i , "host" + i , f lopsO) ;
taskGraph.add(task);

}
taskGraph.setDependency(new DependencylmplO);

Similar to the genetic algorithm tuning for workflow static scheduling
presented in Section 7.3.1, the effectiveness of the algorithm for throughput
scheduling is explored for the following tunable input parameters:

1. population size;
2. crossover probability;
3. mutation probability;
4. maximum generation number;
5. steady state generation number;
6. fitness scaling factor.

The interesting parameter values have been specified by means of ZEN
directives that annotate the PBS script used to submit the experiments on a
Beowulf cluster, as already shown in Example 7.22. These annotations specify
a set of 1440 experiments which has been automatically generated and con-
ducted by ZENTURIO. In order to attenuate the stochastic errors to which
the randomised algorithms are bound, each experiment is repeated for 20
times and the arithmetic mean of the results in each run is reported.

An average population size of 200 individuals seems to be appropriate
for a good convergence of the algorithm. A lower population size does not
insure a large enough selection of individuals and causes pre-mature conver-
gence, while larger populations slow down the algorithm with no significant
improvement across generations. As expected, the quality of solution increases
with the number of generations. The crossover probability does not impact
the overall performance (see Figure 7.27(a)), however, a higher value insures
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fast convergence to local minima. A value of 20% from the maximum number
of generations seems to be an appropriate window size for checking whether
the algorithm reached a steady state, after which no more improvements are
being made. A low value of mutation is very effective in taking the algorithm
out of local minima (see Figure 7.27(b)). A high mutation probability causes
too much instability in the population due to chaotic evolution of individuals
that no longer manage to steadily improve to a global maximum. Fitness scal-
ing causes about four fold improvement in the quality of solution and must
always be used.

Crossover Probability

(a) Crossover versus steady state generation per-
centage.

(b) Mutation versus scaling factor.

Fig. 7.27. Sample genetic algorithm tuning diagrams.
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As a consequence of the tuning process, the following genetic algorithm
configuration parameters are used in the proposed simulated Grid testbed:

1. population size: 200;
2. crossover probability: 0.9;
3. mutation probability: 0.0001;
4. maximum generation: 500;
5. steady state generation percentage: 20%;
6. fitness scaling factor: 2.

The results of running the algorithm on 104 tasks and 103 Grid machines,
with normal, uniform, and exponential distributions of task floating point
operations (i.e., between 103 and 106 flops) and machine performance rate
(i.e., between 109 and 1011 flops per second), are summarised in Table 7.1. The
algorithm can produce an up to 5 fold improvement of the best individual over
500 generations, by visiting less than 25000 from the overall 1030000 points.

Tasks
uniform
uniform
uniform
normal
normal
normal

exponential
exponential
exponential

Grid
normal
uniform

exponential
normal
uniform

exponential
normal
uniform

exponential

Generation
500
446
500
357
385
500
500
402
368

Points
25000
22300
25000
17850
19250
25000
25000
20100
18400

Improvement
240,92
509,90
222,40
353,12
434,75
185,48
164,29
437,50
197,90

Percentage
100%
89,2%
100%
71,4%
77%
100%
100%
80,4%
73,6%

Table 7.1. Genetic search algorithm results for 104 tasks and 103 Grid size for
various task and Grid heterogeneity distribution testbeds.

Compared to the O(10n) complexity of the classical Max-min heuristic,
the genetic algorithm computes (9(25 • 107) task schedules and guarantees
real time response. However, unless a user-defined convergence criterion (e.g.,
completion deadline) is provided, the algorithm does not guarantee any quality
of solution. This could be further improved by combining the genetic algorithm
with task resource constraints like the Condor gangmatching [133].

Figure 7.28 shows the evolution of the makespan across the generations
for all the Grid and the task configurations studied. One can recognise on the
diagram two interesting behavioural patterns of the genetic algorithm:

1. smooth decreases of the makespan to local minima due to crossover;
2. big drops out of the local minima due to mutation.
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Fig. 7.28. Evolution of the best individual (makespan) across generations.
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Related Work

The work presented in this thesis is centred around four different research ar-
eas: scientific experiment management, performance studies, parameter stud-
ies, and scheduling as an optimisation task. The most relevant related work
in each of these areas will be outlined in separate sections of this chapter.

8.1 Experiment Management

The ZOO project [93] has been initiated to support scientific experiment man-
agement based on a desktop environment. A clear lifecycle of a scientific ex-
periment has been defined, which iterates through three steps: experiment
design, data collection, and data exploration. Experiments are designed by
using an object-oriented data description language. Input data are provided
through a special experiment database. A transformation mechanism maps
the contents of the database to application specific input and output files. In
contrast, ZENTURIO and the ZEN language do not restrict the parametri-
sation to input files, but enable the parameter specification within arbitrary
application files.

The Unicore project (Uniform Interface for COmputing REsources) [136]
facilitates the usage of supercomputers on the Grid by using modern browser
technology. Experiments have to be manually set-up, including source, in-
put, and output file staging, as well as and eventual compilation processes.
There is no support for experiment set specification and automatic experi-
ment management. Performance analysis is supported for single experiments
by providing an interface to the Vampir performance tool [117]. The Unicore
jobs can be manually organised in a directed acyclic graph comprising file
transfers and binary or script file executions (including compilation and link
tasks). The workflow jobs can be organised in groups. Automatic scheduling
is not addressed.
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8.2 Performance Study

The Paradyn parallel performance tools [95] supports experiment management
through a representation of the execution space of performance experiments,
techniques for the quantitative comparison of several experiments, and per-
formance diagnosis based on dynamic instrumentation: The experiments have
to be set up manually, whereas performance analysis is done automatically for
every experiment based on historical data harnessing [96]. Paradyn is based
on dynamic instrumentation which is difficult to apply for high-level program-
ming paradigms like OpenMP and HPF. In contrast, the ZEN performance
directives of ZENTURIO support compile-time instrumentation of arbitrary
source code regions and high-level language-specific performance overheads.

The National Institute of Standards and Technology (NIST) [36] developed
a prototype for an automated benchmarking tool-set to reduce the manual
effort in running and analysing the results of parallel benchmarks. A data
collection and storage module implements a central repository for the col-
lection of performance data. A visualisation module provides an integrated
mechanism to analyse and visualise the data stored in the repository. An ex-
periment control module assists the user in designing and executing the exper-
iments. In contrast to ZENTURIO, the experiment specification is restricted
to pre-defined parameters available through a special purpose graphical user
interface.

SKaMPI [135] provides a benchmarking environment for MPI applications
with the goal of analysing the runtime of the MPI routines. A pre-defined set of
measurements, machine, and problem size parameters can be controlled by the
programmer through a special-purpose planning script. A public performance
database allows the storage of the benchmark data and the interactive com-
parison of various MPI performance aspects across different implementations
and platforms. The project, however, focuses exclusively on benchmarking
various MPI implementations.

The Tracefile Testbed [60] is a new community repository for organising
the performance data of parallel applications. It allows the users to flexibly
search and retrieve the trace file metadata based on specific parameters such
as the computer platform used, the types of events recorded, or the class of
applications. The automatic execution of experiments and the automatic data
collection are not addressed.

The XPARE (eXPeriment Alerting and REporting) [43] tools are designed
to specify automated benchmark regression testings for a given set of perfor-
mance measurements of parallel applications. A historical panorama of the
performance metric evolution across software versions is provided. Apart from
software versioning, no other parametrisation is addressed.

The 1ST APART working group developed as part of Workpackage 3 [115]
a generic design of an automatic performance analysis system that defines and
categorises the performance analysis experiments.
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Automatically Tuned Linear Algebra Software (ATLAS) [174] is an empiri-
cal approach for automatic generation and optimisation of numerical software
for processors with deep memory hierarchies and pipelined functional units.
Benchmarking data is organised and stored in a special-purpose Performance
Database Server (PDS) [17]. The scope of ATLAS is, however, limited to
linear algebra software and comprises a pre-defined set of parameters and
optimisation metrics.

8.3 Parameter Study

Nimrod [2] is a tool that manages the execution of parameter studies across
distributed computers by hiding the low-level issues of distributing files to
remote systems, performing remote computations, and gathering results. A
parameterised experiment is specified by a declarative plan file which de-
scribes the parameters, their default values, and the commands necessary for
performing the work. Nimrod generates one job for each unique combination
of parameter values, by taking the cross product of all the values. The set
of possible parameter value combinations cannot be constrained. As a limita-
tion to the ZENTURIO approach, the parameterisation is restricted to global
variables which requires appropriate adaptation of the application. Remote
source code compilation is not addressed. Other research prototypes of the
tool include application specific interfaces for controlling parameters.

The ILAB [178] project controls parameter studies through graphical an-
notations of input files. Value sets can be specified by enumeration lists or by
min:max:inc patterns. Masking of parameter values is supported via PERL
scripts. Program variables cannot be controlled.

8.4 Optimisation and Scheduling

The Directed Acyclic Graph Manager (DAGMan) [154] is a meta-scheduler for
Condor [108]. DAGMan manages I/O data and control dependencies between
jobs at a higher level than the Condor scheduler. The DAG is specified by a
special input script where each node is described by a Condor submit descrip-
tion file. The concrete scheduling is based on Condor specific techniques such
as resource matchmaking and cycle stealing. Recursive workflow loops are not
supported.

The Pegasus [44] system advocates (but not yet implements) Artificial In-
telligence planning techniques to approach the workflow scheduling problem.
Workflows are restricted to DAGs based on the Condor DAGMan model.
Large workflows are reduced to more manageable quantities based on the
Chimera virtual data [69] availability. Heuristics for optimising workflow
schedules ahead of time are not considered. Rather, the workflow tasks are
scheduled randomly to the Grid sites where the virtual data is available.
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The AppLeS Parameter Sweep Template (APST) [29] uses the application-
level scheduling techniques developed by the AppLeS [16] project for efficient
deployment of parameter sweep applications over the Grid. The throughput
optimisation algorithms comprise Min-Min, Max-Min, and Sufferage heuris-
tics [112].

The GrADS project [41] continues the tradition of the AppLeS effort on
developing techniques for scheduling MPI, iterative, and master-worker ap-
plications on the Grid, with recent focus on DAG-based workflows [53}. Un-
like in ZENTURIO, DG-based workflow loops are not addressed. The static
scheduling is approached through Max-min, Min-min, and Suffrage heuristics,
typically used for throughput scheduling of independent tasks. Experimental
results with ZENTURIO [129] prove that the complexity of classical Max-
min-like heuristics are typically one order of magnitude higher than genetic
algorithms (O(n3) versus O(n2)). In [177], a simulated annealing algorithm
for static scheduling of ScaLAPACK MPI applications has been successfully
applied.

GridFlow [28] comprises a user portal and a set of services for global Grid
workflow management and local Grid sub-workflow scheduling. Simulation,
execution, and monitoring functionalities are provided at the global Grid level
on top of an existing agent-based Grid resource management system. At each
local Grid, sub-workflow scheduling and conflict management are processed
on top of an existing performance prediction based task scheduling system. A
fuzzy timing technique is applied for workflow management in a cross-domain
and highly dynamic Grid environment.

Nimrod/O [4] is a variation of the Nimrod parameter study tool that uses
a broad-range of heuristics for output parameter optimisations. Performance-
oriented optimisations; are not addressed and genetic algorithms are not used.

Nimrod/G [3] is a Grid-àware version of Nimrod enhanced with ad-hoc
techniques for throughput scheduling of parameter studies on multiple Grid
sites based on a user-defined budget and deadline functionality. The Nim-
rod/G scheduler is based on a computational economy model called GRACE
(GRid Architecture for Computational Economy) and does not target general
NP-complete optimisations.

The problem of scheduling task graphs through genetic algorithms has
been addressed in the past [104], however, restricted to homogeneous parallel
computers with limited number of processors.

In [143], a hierarchical genetic algorithm has been successfully applied for
automatic optimisation of HPF array distributions within Fortran 90 com-
pilers. The definition of the objective function is based on training set pre-
measurements.
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8.5 Tool Integration

The Annai [33] tool environment has been the outcome of the collabora-
tion between the Swiss Centre for Scientific Computing (CSCS) and NEC
in developing an integrated parallel application engineering environment for
parallel processing. Annai consists of an extended HPF compiler, a parallel
performance monitor and analyser, and a parallel debugger for distributed
memory parallel processors. While integration of different tools is achieved by
the specification of well-defined interfaces and communication protocols, fur-
ther extensions are only possible after rethinking, redesigning, and rebuilding
the whole system.

The Portable Parallel Distributed Debugger (p2d2) [86] developed by
NASA Ames Research Center promotes the idea of client-server tools, with
platform dependencies confined to the server back-end, and the client front-
end implemented in a portable manner. The debugger defines a server interface
that should be implemented by any vendor which allows third party front-end
clients be implemented in a platform independent manner.

The Tool-Set [111] integrated tool environment and the On-line Moni-
toring Interface Specification (OMIS) [110], both developed at the Technical
University of Munich, build on the ideas of p2d2 affirming that a monitor-
ing system should separate the application processes from the tools, thereby
encapsulating the platform dependencies. OMIS defines an open interface for
connecting run-time development tools in a distributed environment with the
tool interoperability as a major requirement. Neither p2d2 nor OMIS, how-
ever, build their ideas on top of modern Grid technologies such as Web ser-
vices.

DDBG/PDBG/TDBG [37] developed at the University Nova of Lisbon is
a suite of distributed debuggers integrated into a wider-scope problem solving
environment. DDBG has been interfaced to a graphical parallel programming
tool for high-level debugging of parallel programs, and a static analysis and
testing tool for controlled execution of previously generated testing scenarios.

The Parallel Tool Consortium (PTools) coordinated projects in the late
1990s with the purpose to define, develop, and promote parallel tools for scal-
able portable applications. These tools provide flexible open interfaces which
facilitate their integration and reuse, however, the possibility of integration
and interoperability has not been addressed.

The High Performance Debugging Forum (HPDF) [105] has defined within
the PTools umbrella a useful and appropriate set of standards relevant to
debugging tool development for high-performance computers.

The Dyninst [24] library developed at the University of Maryland exports
a platform independent API to the dynamic instrumentation technology pro-
vided by the Paradyn project for portable dynamic instrumentation of single
processes.

The Dynamic Probe Class Library (DPCL) [85] is an object based C++
class library that provides the tool developers with an advanced infrastructure
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for building parallel and serial tools based on the dynamic instrumentation
technology. DPCL allows the tool researchers focus on developing tools rather
than deal with compiler details or distributed infrastructure development.



Conclusions

9.1 Contributions

This section concludes the thesis by summarising the main contributions in
the areas of experiment management, optimisation, and tool integration in
Grid computing. In addition, it gives an outlook to a series of potential future
research directions.

9.1.1 Experiment Specification

A new directive-based language called ZEN [123, 127] has been designed to
specify the set of experiments which is subject to potentially large perfor-
mance, parameter, or optimisation studies. The so called ZEN directives are
program comments that annotate arbitrary application files and, therefore,
do not change the semantics of the code, as they are ignored by compilers or
interpreters which are not aware of their semantics.

The ZEN directives defined by the ZEN language can be summarised as
follows:

1. Substitute directives allow flexible specification of arbitrary application
parameters through string substitution semantics. The ZEN substitute
directives are useful for defining application parameters beyond ordinary
program variables, like array distributions, loop scheduling strategies, file
paths, compiler options, or target machines;

2. Assignment directives are used to parameterise program variables in cases
when the substitute directives are inconvenient or impossible to be used. A
typical case for using the assignment directives are the parameterisations
of variable with short names (e.g., N) for which the substitute directives
would also replace other equal but invalid string occurrences (e.g., in key
words like END);

3. Constraint directives are used to restrict the overall number of experiments
to a meaningful subset;
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4. Performance directives are used to the specify the high-level performance
metrics (i.e., OpenMP, MPI, and HPF-specific) to be measured and com-
puted for fine-grained code regions, without altering the application source
code with instrumentation probes.

The scope of the ZEN directives can be global or restricted to arbitrary code
regions.

The ZEN directive-based language presents the following advantages against
other existing ad-hoc scripting [2] or graphical [178] parameter specification
alternatives:

1. it does not require special preparation of the application, which is an
essential feature of a tool to achieve general acceptance;

2. it does not restrict the parametrisation to global variables to be exported
outside the scope of the source code;

3. it can parameterise arbitrary local variables with arbitrary (even equal)
names;

4. it can parameterise arbitrary application characteristics (e.g., parallelisa-
tion options) like array and loop distributions, software libraries, problem
and machine sizes, target execution machines, communication networks,
or compilation options;

5. it can apply at arbitrary fine-grained scopes within the application source
files.

The thesis illustrated a variety of real-world scenarios [122, 130] how a
wide set (e.g., thousands) of experiments can be expressed through a small
number (e.g., under 10) of short (e.g., under 50 characters) ZEN directives.

9.1.2 Experiment Management

The thesis proposes a general-purpose experiment management tool called
ZENTURIO [124, 128] applied for cross-experiment performance and param-
eter studies of parallel and Grid applications. ZENTURIO employs the ZEN
directive-based language to define wide value ranges for arbitrary application
parameters, including program variables, file names, compiler options, target
machines, machine sizes, scheduling strategies, or data distributions, without
altering the source code or requiring any application modification. A light-
weight graphical User Portal easy to be installed and managed enables the
user to create, control, and monitor the experiments as they progress from
arbitrary Grid locations (i.e., client sites). After the manual annotation of the
application with ZEN directives, ZENTURIO automatically generates and
conducts the complete set of experiments. Upon the completion of each ex-
periment, the performance and output data are automatically stored into a
relational Experiment Data Repository for post-mortem analysis. An Appli-
cation Data Visualiser portlet is used to automatically query the repository
and visualise the cross-experiment variation of any performance metric or
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output parameter as a function of arbitrary application parameters (i.e., ZEN
variables).

The multi-experimental performance analysis automatically performed by
ZENTURIO is a unique contributing research feature. The parameter study
support within ZENTURIO is a low hanging side-effect fruit of the general
experiment specification approach taken by the ZEN language.

The practical usefulness of ZENTURIO as a performance and parameter
study tool has been demonstrated on a variety real-world parallel applica-
tions [130]. Additionally, ZENTURIO has been installed and used for bench-
marking three-dimensional FFT kernels at the Paul Scherrer Institute (Swiss
Federal Institute of Technology - ETH Zurich) in Switzerland as part of an
international cooperation [122].

9.1.3 Optimisation

ZENTURIO proposes a novel optimisation framework [129] that employs
general-purpose heuristic algorithms to reduce the parameter space defined
through ZEN directives while searching for experiments that optimise a cer-
tain output parameter or a performance metric. The framework can be easily
instantiated for a wide variety of performance and parameter optimisation
problems by simply supplying the objective function to be maximised. The
platform dependency of the objective function is hidden under problem inde-
pendent interface. ZENTURIO illustrates a generic encoding of the optimisa-
tion search engine based on genetic algorithms and is open to other heuristics.

The following framework instantiations, all novel in the Grid computing
arena, have been illustrated as case studies:

1. Static scheduling of single workflow applications on the Grid using genetic
algorithms has been applied for the first time and demonstrated to provide
effective high-quality results. This feature has been successfully applied on
a real-world material science workflow application;

2. Throughput scheduling of large sets of independent tasks on the Grid us-
ing genetic algorithms has been demonstrated to have the potential of
converging to good results by visiting a number of search space points of
an order of magnitude lower than classical Max-min algorithms;

3. Optimisations of parallel applications by repeated experimentation using
a genetic search engine is a novel technique. A modular design enables to
supply the performance metric to be optimised by means of ZEN perfor-
mance directives. A concrete instantiation for load balancing HPF appli-
cations on heterogeneous Grid resources using irregular array distributions
has been formally described.
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9.1.4 Dynamic Workflow Scheduling

The thesis proposes a novel hybrid algorithm for dynamic scheduling of work-
flow applications on the Grid. The contributions of the new algorithm can be
summarised as follows:

1. it iteratively applies the static scheduling algorithm for optimised mapping
of entire DAG-based workflows on the Grid;

2. it defines a set of cycle elimination rules for run-time conversion of DG-
based workflows into DAG-based workflows, which are the subject to op-
timised static scheduling;

3. it defines rules for workflow task migration based on performance contract
violation;

4. simulated results of a real-world material science workflow execution
demonstrates that the algorithm outperforms existing lazy just-in-time
or random workflow scheduling approaches.

9.1.5 Tool Integration Design

The ZENTURIO experiment management tool has been designed within a
broad tool integration framework for interoperability which brings the follow-
ing design contributions [97, 98]:

1. A layered architecture that isolates the platform dependencies under a
portable API significantly increases the tool availability and portability.
The recommendation that each vendor provide the required set of platform
dependent sensors (and eventual services) under a platform independent
API significantly increases the cross-platform tool availability and there-
fore, the acceptance of new computing platforms in the user community;

2. The hardware and operating system dependencies which are inherent
to run-time tool development-are insulated within sensors exporting a
portable interface;

3. A broad set of high-level services and sensors that eases the portable tool
development has been designed and implemented:
a) A Process Manager sensor encapsulates the platform dependencies for

manipulation and dynamic run-time instrumentation of single pro-
cesses;

b) Experiment Generator service encapsulates the platform dependencies
(including proprietary software libraries) of the Vienna Fortran Com-
piler, on which the implementation of the ZEN performance directive
is based;

c) Experiment Executor is a general purpose service for remote execution
and management of experiments on the Grid interfaced to a variety
of batch job schedulers;

d) Dynamic Instrumenter service exports a platform independent inter-
face for low-level process management, on-the-fly run-time dynamic
instrumentation, and on-line performance data collection;
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4. The concurrent service access by multiple clients enables end-user tools
interoperate through the common use of services;

5. Light-weight clients or end-user tools which are easy to be installed and
managed are promoted. The client tool functionality is built through the
concurrent use of the underlying high-level Grid services;

6. Tool interoperability [98,132] has been classified and various scenarios that
can improve the application engineering process have been proposed and
prototyped. In this context, an SQL-based relational Experiment Data
Repository that enables post-mortem performance and output data ex-
change has been designed.

9.1.6 Web Services for the Grid

The thesis contributes with techniques regarding the use of the Web services
technology for modelling stateful Grid resources, which anticipated several
standardisation efforts currently still under way within the Global Grid Fo-
rum [125, 128].

1. Factory is a general purpose service for creating Grid service instances on
remote Grid sites;

2. Registry is a general purpose service for high-throughput service discovery
based on white, yellow, and green pages lookup operations;

3. The WSDL compatibility for testing whether two Grid services implement
the same functionality required for green pages lookup operations;

4. The UDDI standard for publishing persistent Web services has been re-
designed for accommodating transient Grid services implementations;

5. Service lifetime has been addressed based on the extensions provided by
existing Web services hosting environments;

6. An event framework compliant with the Grid Monitoring Architecture,
but not restricted to performance analysis, has been implemented based
on the Web services technology;

7. The emergence of new Grid standards has been continuously monitored
and comparatively evaluated against the own infrastructure, which gave
useful feedback to the community [126, 128].

9.2 Future Research

The following potential research directions are currently being considered for
future research:

1. New heuristics besides genetic algorithms for general-purpose optimisa-
tions will be comparatively studied, including subdivision, simplex, simu-
lated annealing, BFGS, or EPSOC methods;

2. Various optimisations of parallel applications on cluster and Grid archi-
tectures will be experimented, including parallelisation and scheduling;
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3. The static workflow scheduling algorithm will be studied for the optimi-
sation of other workflow metrics, in particular the efficiency;

4. A meta-scheduler for high-throughput scheduling of multiple workflows
will be developed;

5. Novel knowledge-based workflow specifications (currently addressed by a
parallel project at the University of Innsbruck) based on the semantic Web
and ontology infrastructures [42] will be targeted for efficient scheduling;

6. A language and platform independent workflow intermediate representa-
tion that can be interfaced to multiple front-end (e.g., XML) workflow
representations and back-end enactment engines (e.g., Globus CoG [7],
Condor DAGMan [154]) will be studied. This will allow the optimisation
and the scheduling techniques apply at a more abstract level (similar to
the compiler abstract syntax tree intermediate representation) which is
decoupled from the actual workflow representation and implementation;

7. Fine-grained performance analysis of single and multiple workflow appli-
cations will be studied and more appropriate Grid performance metrics
will be formulated;

8. The dynamic scheduling problem will be addressed for other classes of
applications, like parallel applications and parameter studies;

9. The fault tolerance will be addressed for all classes of Grid applications
with particular interest for workflow enactment engines;

10. Self-installing and self-healing issues advocated by the autonomie com-
puting vision [87] will be addressed for Grid applications;

11. Collaborative applications will be studied as a potentially new class of
applications that could benefit of the techniques developed in this thesis.



10

Appendix

10.1 Notations

Symbol
N
N*
R

3R+
[a,b]
[a..b]
<=>

—>
V
3

true
false

|
G

\s\
ns)

X

rips
A
V
U

n
\
c
-<

Description
Set of natural numbers
Set of positive natural numbers (non-zero)
Set of real numbers
Set of positive real numbers
Set of real numbers from o to b
Set of integer numbers from a to 6
If and only if (iff)
Implication
Function mapping
For all
Exists
True boolean value
False boolean value
Set restriction
Set membership
Empty set
Cardinality of set 5
Power set of S
Cross product
Projection operator from space S to subspace P
Logical conjunction
Logical disjunction
Set union
Set intersection
Set difference
Subset of
Totally ordered set precedence
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Symbol
d
z
S
e
e

Vz

lz

•d

r(z)
v(z)

scope(d)
7
®
M
en

6

ov
e
Z

ZT

zo
A

AT
e

Nodes
Edges

N
pred(N)
succ(N)

predFiN)
succP(N)
(iV!,7V2)

P
JS
FT

NodesJS

NodesFT

Q
SN

t
C

start(N)

Description
ZEN directive
ZEN variable
ZEN set
ZEN element
ZEN set evaluation function
Value set of ZEN variable z
Index domain of ZEN variable z
Value function
Index function
Type of ZEN variable z
Name of ZEN variable z
Scope of ZEN directive d
ZEN constraint function
Tuple composition
Performance measurement
Code Region
Performance data
Output parameter
Output data
ZEN file
ZEN file instance
Output file
ZEN application
ZEN application instance
Experiment
Set of graph nodes
Set of graph edges
Graph node or task
Predecessor of graph node iV
Successor of graph node N
Predecessor of rank p of graph node N
Successor of rank p of graph node N
Directed graph edge from node N\ to node iV2

Graph path
Job submission task
File transfer task
Set of JS tasks
Set of FT tasks
Gantt chart
Schedule of task N
Timestamp
Constant
Start timestamp of task N
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Symbol
end(N)

state(N, t)
flops

W
V

T
T
T
V
©

e
PC(N,SN,t)

IN
C
B

O(mn)

Description |
Termination timestamp of task N
State of task N at timestamp t
Floating point operations
Work
Speed
Execution time
Objective or fitness function
Average population fitness
Population of ZEN application instances
Crossover operator
Mutation operator
Performance contract of task N with the schedule SN at time instance t
Performance contract elapse factor of task N
Latency
Bandwidth
Algorithm complexity of mn
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