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Besonders hervorheben möchte ich Herrn Prof.Weinrichter, der mir jederzeit mit Rat und Tat zur Seite
stand.

Weiters bin ich Herrn Prof.Bonek sehr dankbar, weil er mir meine Dissertationsarbeit ermöglich hat.

Für die äußerst aufschlußreichen wissenschaftlichen Diskussion mit Herrn Prof.Rupp bin ich ebenfalls
sehr dankbar.

Ebenfalls bin ich meinem Zimmerkollegen Markus Herdin und meiner Kollegin Biljana Badic zu Dank
verpflichtet. Ihre hilfreichen Kommentare und Lösungsvorschläge haben mir sehr geholfen.
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Zusammenfassung

In der vorliegenden Arbeit wird dasBitfehlerverhalten von Mehrantennensystemenuntersucht, wobei
der Schwerpunkt der Arbeit auf derBerechnung von Bitfehlerabscḧatzungen liegt. Leider sind die
untersuchten Funk-Systeme so komplex, daß geschlossene Ausdrücke für die exakte Bitfehlerrate nicht
extistieren.

Die Arbeit umfaßt zwei Themenschwerpunkte:Uncodierte undRaum-Zeit codierte Daten-Übertrag-
ung überr äumlich korrelierte, echo-freie Funkkanäleunter der Verwendung vonoptimalen Empfäng-
ern. Die räumliche Korrelation wird mit dem so genannten W-Modell eingebracht, wobei Funkkanal-
Meßdaten zur Bestimmung der Modell-Parameter verwendet werden.

UncodierteÜbertragungssysteme: Bereits für die einfacheren, uncodiertenÜbertragungssysteme ist ei-
ne obere Bitfehler-Schrankedie einzige einfache Möglichkeit, die Bitfehlerrate abzuschätzen. Diese
obere Schranke ist einfach die Summe über alle paarweisen Fehlerwahrscheinlichkeiten. Dabei stellt
sich heraus, daß das Bitfehlerverhalten mittels einer geringen Anzahl vonFehlertypen vollständig be-
schrieben werden kann. Die abgeleitete obere Schranke wirdfür verschiedene uncodierte Systeme mit
Simulationsergebnissen verglichen. Es zeigt sich, daß dieobere Schranke unterhalb einer Bitfehlerwahr-
scheinlichkeit von zirka

����
die Simulationsergebnisse sehr genau widergibt.

Um dieDiversitätsordnung und denPerformance-Verlust, verursacht durchr äumliche Korrelation ,
beziffern zu können, wird die obere Schranke für hohes Signal-Rauschleistungs-Verhältnis abgeschätzt.
Damit wird eine extrem einfache Beurteilung des Fehlerverhaltens durch Angabe der Steigung und der
horizontalen Lage der Bitfehlerratenkurven möglich.

In weiterer Folge wird dasoptimale Vorcodierungsfilter für minimalen Performance-Verlust her-
geleitet, mit dem der Einfluß der räumlich Korrelation kompensiert werden kann. Das Verhalten des
vorcodierten Systems in korrelierten Kanälen kommt dem Systemverhalten ohne Vorcodierung in unkor-
relierten Kanälen sehr nahe.

Raum-Zeit codierteÜbertragungssysteme: Den zweiten Schwerpunkt bilden Raum-Zeit codierteÜber-
tragungssysteme, wobei in groben Zügen die selben Themenschwerpunkte wie für uncodierte Systeme
diskutiert werden. Auch für solche Systeme wird einobere Schrankefür die Bitfehlerwahrscheinlichkeit
berechnet, die für alle untersuchten Codes und alle Korrelationstypen relativ gut dem simulierten Bitfeh-
lerverhalten entspricht. Mit Hilfe der Signaldistanzen und der oberen Bitfehler-Schranke zeigt sich, daß
es Raum-Zeit Block Codes gibt, bei denen dasFehlerverhalten von Mehrfachsymbolfehlern domi-
niert wird (MIMO Paradoxon) . Diese Verhalten steht im diametralen Gegensatz zu den Verhältnissen
bei der Datenübertragung in Systemen mit einzelnen Antennen beim Sender und beim Empfänger.

Mittels der Bitfehler-Abschätzung bei hohem Signal-Rauschleistungs-Verhältnis wird dieDiversitäts-
ordnung und derLeistungsverlust infolge räumlicher Korrelation der Antennenfelder quantitiv ab-
geschätzt.

Ebenso wie für die uncodierten Systeme, wird auch hier einoptimales Vorcodierungsfilter hergeleitet,
welches die Auswirkungen der räumlichen Korrelation lindert.

Zusätzlich wird eineuntere Schranke für die Bitfehlerwahrscheinlichkeit hergeleitet, die f¨ur alle un-
tersuchten Codes gilt und in unkorrelierten Kanälen fast exakt mit den Simulationsergebnissen überein-
stimmt. Im allgemeinen kann damit eine Eingrenzung der Bitfehlerrate von unten und oben her erzielt
werden.
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Abstract

In this thesis theerror performance of multiple antenna systemshas been investigated. Our focus lies
on theanalytical calculation of performance measures. Unfortunately, due to the difficult framework
and the rather unpredictable behavior of the signal distances in randomly varying channels a closed form
solution of the exact error performance could not be derived. However, tight performance bounds have
been found that can be used to get important performance parameters.

This thesis consists of two main parts concerning theuncodedand thespace-time block coded data
transmission over spatially correlated, frequency flat Multiple Input / Multi ple Output (MIMO)
channelsusingMaximum Likelihood receivers. The spatial correlation is modelled by the so-called
W-model, where measured data are used to determine the modelparameters.

Uncoded MIMO-systems: Even for uncoded systems, the only simple to calculate performance measure
is a union bound, which is simply the sum over all pairwise error probabilities. In this thesis it is
shown that the error performance can be described by a few so called Error Types (ETs). The results
of the corresponding union bound are compared with simulation results for different system parameters,
i.e., number of transmit antennas, number of receive antennas, modulation formats, and for spatially
uncorrelated and correlated MIMO-channels. The derived union bound is tight for Bit Error Ratio (BER)
values below

����
for all systems investigated.

By means of this bound ahigh Signal to Noise Ratio (SNR) approximationfor the BER vs. SNR
performance is calculated. With this approximation thediversity order of the system and a so-called
performance lossdue to fading correlation can be figured out. Especially, theloss due to spatial correla-
tion can be quantified. Using two parameters, the slope and the horizontal position of the BER vs. SNR
curves, the error performance can be fully described in the high SNR range.

An optimal precoder, which minimizes the correlation induced power loss, is presented. For the
example discussed in this thesis the error performance applying the optimal precoder in correlated fading
is even better than the performance of the standard system inthe low SNR range in uncorrelated fading
channels.

Space-time block coded MIMO-systems: The second main part of this thesis is devoted to the calculation
of performance measures for space-time block coded data transmission. In principle, we follow the same
analysis as for uncoded systems. First, it is shown that for some channel typesmultiple instead of single
errors dominate the error performance in MIMO systems (MIMO paradoxon). In deriving the
union bound the ET concept is applied also. The calculated union bounds are compared with simulation
results for several codes and several channel correlation types. It turns out that the union bound is tight
for BER values of

����
and below.

Once again, ahigh SNR approximation of the union bound is calculated, to determine thediversity
order and thepower lossin case of correlated channels.

An optimal precoder for correlated fading is derived. Simulation results show that the precoder effec-
tively mitigates the loss induced by correlated fading.

In addition, an extraordinarily tightlower bound of the BER is derived that allows for a two-sided
bounding of the BER vs. SNR performance from below and from above. Several code examples as-
sess the tightness of the lower bound, where, for uncorrelated channels, an almost exact performance
approximation is achieved.
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Chapter 1

Introduction

In the last decade mobile communication has become a very important part of human life. The demand on
having everything mobile has increased substantially. Apart form voice calls, nowadays video streaming,
video calls, Internet surfing are mobile too. These applications need high data rates to make them fast
and thus comfortable. In the future this trend will go on, andtherefore investigating techniques that offer
higher data rates is of utmost importance.

One of the most promising new data communication method makes use of multiple antenna elements at
the transmitter and/or at the receiver. In this thesis we focus on such systems, which are called Multiple
Input / Multiple Output (MIMO) systems in the literature. InFig. 1.1 a MIMO system with�� transmit
antennas and�� receive antennas is shown.�	
 ��  is the channel impulse response between the� -
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Figure 1.1: MIMO system with�� transmit antennas and�� receive antennas.

th transmit antenna and the�-th receive antenna. The enormous research interest in these systems is
justified by recently published impressive results on the high channel capacity of such systems [1][2].
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MIMO Channel Capacity:

The ergodic (mean) channel capacity [1][2] vs. the mean Signal to Noise Ratio (SNR) for several MIMO
systems with 2�2, 4�4, 8�8 transmit and receive antennas and a Single Input / Single Output (SISO)
system for uncorrelated Rayleigh fading are shown in Fig.1.2. The increase in channel capacity for
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Figure 1.2: Ergodic channel capacity vs. mean SNR for several MIMO systems (2�2, 4�4, 8�8) and a
SISO system for uncorrelated Rayleigh fading.

MIMO systems compared to a SISO system is quite impressive. The channel capacity for the SISO
system at SNR=10dB is approximately 2.95 bit /channel use. A2�2 MIMO system almost doubles the
capacity (5.6 bit / channel use), a 4�4 MIMO system obtains more than 10.9 bit / channel use and a
8�8 MIMO system promises the seven fold capacity (21.7 bit / channel use) at the same SNR value.
These improvements have attracted a lot of research interest in the last years, due to the huge increase in
the MIMO capacity compared to a SISO system. One of the most important field in the research area of
MIMO systems is how to exploit this promised increase in channel capacity in an efficient way. There are
a lot of approaches, which can mainly be subdivided into investigations concerning uncoded and coded
MIMO systems.

Uncoded MIMO Systems:

Uncoded MIMO transmission systems are also called systems with “Spatial Multiplexing”. “BLAST”
[4], is the most prominent realization of an uncoded MIMO system. The acronym BLAST stands forBell
LA yeredSpaceTime. It is an efficient method to transmit uncoded symbols from each of the�� transmit
antennas. As shown in Fig. 1.3,independentdata streams are transmitted over each transmit antenna.
The MIMO channel delivers a superposition of the transmit signals to the receiver. As it can already be
seen in Fig. 1.3, the transmitter complexity is very low and the main part of the signal processing has to be
done at the receiver. The receiver has to regain the transmitted symbols from the mixed received symbols.
The maximum symbol rate of�� � �� symbols per channel use is achieved and the transmitter is very
simple to implement. The main disadvantage is its limited performance, which strongly depends on the
utilized receiver. Several receiver strategies can be applied:

-) ML - detection,
-) MMSE -, ZF - detection,
-) BLAST nulling and canceling.
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Figure 1.3: Uncoded MIMO transmission system with�� independent data streams.

The ML (Maximum Likelihood) receiver (Sec. 3) achieves the best performance, but needs the most
complex detection algorithm. A maximum diversity order of� � �� can be achieved. Obviously, in
uncoded MIMO systems the transmit diversity is only�� � �

and thus the total diversity� is equal to
the receive diversity�� , which is at most�� for spatially uncorrelated channels (Sec. 2.2).

Assuming full knowledge of the MIMO channel at the receiver,the ML receiver calculates all possible
noiseless receive signals by transforming all possible transmit signals by the known MIMO channel
transfer matrix� . Then the receiver searches for that signal calculated in advance, which minimizes
the Euclidean distance to the actually received signal. Theundisturbed transmit signal that leads to
this minimum distance is considered as the most likely transmit signal. Note that the above described
detection process is optimum for white Gaussian noise.

Due to the exhaustive search within the complete signal alphabet, this receiver is very complex. There
exist approximate receive strategies, which achieve almost ML performance and need only a fraction of
the ML complexity [9] [8] [7].

MMSE (Minimum Mean Square Error) and ZF (Zero Forcing) [4] receiver strategies belong to the group
of linear receivers. The ZF receiver completely nulls out the influence of the interference from signals
coming from other transmit antennas. Then each data stream is separately detected. The detection
(quantization) is performed in the same way as in SISO systems. The disadvantage of this approach is
that due to canceling the influence of the signals from other transmit antennas, the noise may be strongly
increased and thus the performance may heavily degrade. Dueto the separate decision of each data
stream, the complexity of this algorithm is much lower than in case of an ML receiver. The diversity
order for ZF receivers in spatially uncorrelated channels is only� � �� � �� � �

[10].

The MMSE receiver compromises between noise and signal interference and minimizes the mean squared
error between the really transmitted symbol and the detected symbol. Thus the results of the MMSE
equalization are the transmitted data streams plus some residual interference and noise. After MMSE
equalization each data stream is separately detected (quantized) in the same way as in the ZF case. The
complexity is almost equal to the complexity of ZF receivers, but the performance is better.

BLAST receivers apply a “Nulling and Canceling” or a “Decision Feedback” strategy. Such receivers are
similar to the “Nulling and Canceling” multiuser detectorsexplained in [3] or to “Decision Feedback”
equalizers in frequency selective fading SISO channels [27]. In principle, all received symbols are equal-
ized according to the ZF approach (“Nulling”) and afterwards the symbol with the highest SNR (that can
easily be calculated with the knowledge of the MIMO channel)is detected by a grid decision. The
detected symbol is assumed to be correct and its influence on the received symbol vector is subtracted
(“Canceling”). This procedure is iterated until all symbols are detected. Instead of the ZF “Nulling”
approach also an MMSE equalizer can be used. Then the term “Nulling” is not quite adequate. The
complexity of such receivers is higher than in case of ZF or MMSE receivers, but still much lower than
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in case of ML receivers. The performance of these nulling andcanceling receivers lies in between the
performance of linear receivers (ZF and MMSE) and ML receivers.

Coded MIMO Systems:

Another transmission strategy is based on Space Time Coding(STC) [56] [57] [58], which is a more
elaborate and thus also more complex way to perform reliabledata transmission over wireless MIMO
links. STC is especially useful if the channel is only known at the receiver and not at the transmitter.
STC is understood as a redundant transmission of symbols that are correlated (repeated) in time and/or
in space over several transmit antennas. Hence, redundancyis introduced in space and time and therefore
the information symbol rate of such systems is lower than in uncoded systems but the error performance is
better. The loss in symbol rate�� can be compensated by using a higher modulation format (transmitting
more bits per symbol) and thus the same bit rate as for uncodedsystems can be achieved, which is actually
the adequate performance measure. In spite of the higher modulation format, the performance of coded
systems is usually better than for uncoded systems!

There are several approaches to implement STCs: Space Time Trellis Codes (STTCs), Space Time
Block Codes (STBCs), Space Time Turbo Codes and so on. A spacetime trellis encoder with 3 input
bit streams I�, I� and I� , two transmit antennas and at least one delay element per bitstream is shown
in Fig. 1.4. The coefficients a


	 , b

	 and c


	 shown in Fig. 1.4 determine the performance of the coded
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Figure 1.4: Space time trellis encoder.

system. Therefore, these coefficients have to be chosen in anoptimal way. Considering only the first
input bit stream I� in Fig. 1.4 for example, it can be seen that the correspondingpreprocessing is actually
a convolutional encoder as used in a SISO system. However, inMIMO systems the information of input
stream I� is distributed over all (in this case 2) transmit antennas and over more then one time slot. Due
to this spreading of the input information in the spatial andtemporal domain, such systems achieve high
diversity and good performance. The main disadvantage of such systems is the high receiver complexity.
The optimal receiver for such a code is the well known Vector Viterbi decoder [27]. For low data rates
and few delay elements the receiver complexity is not to high, but if the information bit rate and/or
the encoder memory grows, the number of trellis states increases exponentially and thus the complexity
reaches the limits of nowadays processors very soon. An alternative are STBCs, that need a much lower
decoding complexity compared to STTC. More about STTCs can be found in [5] [6].

A very simple space time block coding system is shown in Fig. 1.5. Here, the space time block encoder
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Figure 1.5: Space time block coding system for 4 transmit and4 receive antennas.

is rather a signal mapping than an encoding. Therefore, the input symbols are not that widely spread over
the spatial and temporal domain as in the case of STTCs. However, the encoder and decoder complexity
is much lower than with STTCs. In general all receivers (ML, ZF, MMSE, ...) that are used in uncoded
systems can also be used for STBCs with some modifications. For a special case of STBCs, namely the
orthogonal STBCs [51] [49], even a matched filter and a separate “grid decision” afterwards, which is
easy to implement, leads to the optimum performance. There is a lot of literature on the topic of space
time block coding and a lot of different code-design strategies have been proposed.

Scope of this Thesis:

Apart from complexity, a very important characteristic of asystem is its Bit Error Ratio (BER) perfor-
mance. Frequently, performance evaluations are done by simulations, which are very time consuming at
high SNR values. For this reason and to get more insight into the behavior of MIMO systems, analytical
performance approximation or bounds of the resulting BER values are of great interest.

The aim of this thesis is to provide an analytical expressionof error bounds and to get BER approxima-
tions for uncoded and space time block coded MIMO systems utilizing ML receivers for frequency flat
MIMO channels.

The analysis of the BER performance helps to understand, which system parameters influence the system
performance essentially and which parameters are of minor importance. With this knowledge some
important conclusions for an optimum design strategy can bedrawn.

The rest of this thesis is organized as follows: The system model and the essential properties of the MIMO
channel are presented in Chapter 2. Additionally, the SNR definition used in this thesis is explained in
some detail.

Chapter 3 covers uncoded MIMO systems. A union bound for the BER vs. SNR performance is derived
for spatially uncorrelated and correlated MIMO channels using ML receivers. A high SNR approxi-
mation of the union bound is derived, which helps to specify the diversity order and allows a simple
comparison of the error performance achievable in uncorrelated and correlated channels. The simulated
performance is compared to the derived union bound and to thehigh SNR approximation for several
MIMO systems with different modulation formats. The diversity loss and the power loss due to spatial
channel correlation is specified. Additionally an optimal precoding filter is derived that improves the
error performance in correlated fading.

Chapter 4 deals with space-time block coded MIMO systems. A union bound for the BER vs. SNR
performance is derived for spatially uncorrelated and correlated MIMO channels using ML receivers.
A high SNR approximation of the union bound is derived, whichhelps to specify the diversity order
and allows a simple comparison of the error performance in uncorrelated and correlated channels. The
simulated performance is compared to the derived union bound and to the high SNR approximation for
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several codes with different modulation formats. The diversity loss and the power loss due to spatial
channel correlation is also specified. An optimal precodingfilter is derived in order to improve the
performance in correlated fading. Additionally, a lower bound for the BER is calculated. This lower
bound is an extraordinary tight performance measure in caseof uncorrelated channels. Together with
the calculated union bound a new joint bounding technique ofthe BER from below and from above is
derived.

Essential insights and important conclusions are summarized in Chapter 5.

Some supplements and details can be found in the Appendix.



Chapter 2

Transmission System and Channel Model

2.1 System Model

2.1.1 Uncoded Data Transmission

The system model for uncoded data transmission is shown in Fig. 2.1
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Figure 2.1: System model for uncoded transmission over frequency flat MIMO channels.

and can be described mathematically by:� � � � � � � (2.1)� � �� � �� � � � ��� � is the receive symbol vector,� is the MIMO channel transfer matrix,� �� �  � � � �  �! � is the transmit symbol vector and� � �� � �� � � � ��� � is the additive noise vector.
Note that the system model implicitly assumes a flat fading MIMO channel, i.e., the channel impulse
response between transmit antenna j and receive antenna i�	
 ��  � �	
 " ��  and thus the transfer function#	
 �� $  is frequency flat." ��  denotes a Dirac impulse. Therefore, in the following the delay variable� is omitted and the complex-valued flat fading channel coefficients are denoted by�	
 . The MIMO
channel matrix� consists of�� % �� channel coefficients�	
 . The way in which the realizations of the
channel matrix� are modeled, is discussed in Sec. 2.2.

Throughout this thesis, it is assumed that the transmit symbol vectors are uncorrelated: E&��' ( � P) *,
where P) denotes the mean signal power of the used modulation format at each transmit antenna. This
implies that modulation formats with identical mean power on all transmit antennas are considered. The

7



8 2.1. SYSTEM MODEL

entries of the noise vector� are independent identically complex Gaussian distributedrandom variables
with zero mean and variance+ �� : � , - �� .�/ �� 0 + ��  (2.2)

2.1.2 Coded Data Transmission

The system model for space-time block coded transmission issimilar to the model for uncoded transmis-
sion shown in Fig. 2.1 and can be described by:1 � � 2 � 3 � (2.3)1 � �� � �� � � � ��4! 5  is the receive symbol matrix,2 � ��� �� � � � ��4! 5  is the transmit symbol
matrix or space-time block code matrix and3 � �� � �� � � � ��4! 5  is the additive noise matrix.�6� �
denotes theNumber ofOccupiedTime Slots of the code matrix2. The setup of the space-time block
code matrix can be seen in Fig. 2.2. In principle, here the system model for uncoded transmission is
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Figure 2.2: Setup of the space-time block code matrix2.

extended to more than one time slot. The properties of�	 and�	 for coded transmission are the same as
for � and� for uncoded transmission. Note that�	 is independent from�
 for all � 7� � . In contrast,�	 is
not independent from�
 . This is obvious, because in general codes incorporate correlation between the
transmit symbols, e.g. by calculating parity symbols. Summarizing, within one transmit symbol vector�	 the symbols are uncorrelated, but different symbol vectorsof the code matrix are strongly correlated.
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2.2 Channel Model

In order to get practically useful results in Sec. 3 and Sec. 4, a realistic channel model has to be used.
There are a lot of possibilities to model the MIMO channel in the temporal and in the spatial domain. In
the following, the models used in this thesis are explained.

2.2.1 Temporal Channel Modelling

The temporal behavior of the channel is very important for a reliable transmission schemes. For example,
Closed Loop Schemes (CLS) [25] [26] [22] [23] rely on more or less slowly fading channels, because the
feedback information is no more reliable if the channel changes too fast and thus the transmitter cannot
be informed about the actual channel parameters.

However, for analytical error performance bounds, the temporal model is not that important. The em-
phasis here lies on spatial correlation of the channel coefficients. Nevertheless some specifications are
necessary. The temporal behavior of the MIMO channel is modeled by block fading. The channel is
assumed to be constant for the duration of the transmission of one data symbol. After each transmission
of a data symbol, the channel changes arbitrarily. A data symbol is a single symbol vector for uncoded
transmission and a code matrix for space-time block coded transmission. This temporal behavior is
called block fading or quasi static fading [29]. It is an appropriate approximation of a slow fading chan-
nel using some form of frequency hopping or time interleaving. More about the temporal behavior of
MIMO channels can be found in [12].

2.2.2 Spatial Channel Modelling

In this thesis, two different spatial channel models are of interest. In general, we can distinguish between
spatially uncorrelated and spatially correlated channels.

2.2.2.1 Spatially Uncorrelated Channels

Spatially uncorrelated channels are modeled by a random matrix � with independent identically dis-
tributed (i.i.d.) complex Gaussian entries with zero mean and unit variance:� , - �� .�!/ �� 0 � (2.4)

This frequently used model is called i.i.d. model, first mentioned in [1] [2].

Such a MIMO channel can be observed in scenarios, where the antenna elements are located far apart
from each other and a lot of scatterers surround the antenna arrays at both sides of the link. Due to the
limited space at the mobile station, the antenna elements are often densely spaced and thus, in realistic
MIMO transmission systems, i.i.d. channels might rarely beobserved even in indoor environments. For
this reason it is necessary to use correlation models.

2.2.2.2 Spatially Correlated Channels

In most cases, the MIMO channel transfer coefficients are correlated. The antenna array at the Base
Station (BS) is quite often mounted above rooftop and therefore the number of scatterers around it is
small. Therefore, there are only some distinct waves impinging at the antenna array and thus the received
signals at the various receive antennas at the BS are highly correlated.
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In principle, correlated MIMO channels can be modeled in twoways. There are geometrically-based [30]
[20] and statistically-based [19] [28] channel models. In this thesis the focus lies on statistical models.
A very simple and appropriate approach is to assume the entries of the channel matrix� to be complex
Gaussian distributed with zero mean and unit variance with complex correlations between all entries�	

[19]. The full correlation matrix can then be defined as:89 � E

:;;;;<;;;;=
>�>'� > �>'� � � � > �>'�!>�>'� >�>'� � � � >�>'�!

...
...

. . .
...>�! >'� >�! >'� � � � >�! >'�!

?;;;;@;;;;A 0
(2.5)

where
>	 denotes the i-th column vector of the channel matrix� . Knowing all complex correlation

coefficients, the actual channel matrix� can be modeled as:� � �> � >� � � � >�!  with �>�� >�� � � � >��! � � �89  BC D � (2.6)D is an i.i.d. ��� % ��  � �
random vector with complex Gaussian distributed entries with zero mean and

unit variance. In the following this model is calledfull correlation model. The big disadvantage of this
model is the huge number of parameters necessary to describeand generate correlated channel matrices� . The number of parameters is��� % �� �.
Due to the drawback of a huge number of parameters, another correlation model has been introduced,
namely the so-called Kronecker model [14] [15] [16] [19]. Inthis model it is assumed that the transmit
correlation and the receive correlation can be separated and characterized by the transmit correlation
matrix 8� � E

9 &�� � E ( 0
(2.7)

and the receive correlation matrix 8� � E
9 &��' ( � (2.8)

Accordingly, correlated MIMO channel matrices� are generated as:� � �F
tr�8� 8� �G�H I8 �G�� J� 0

(2.9)

where the matrix
H

is an i.i.d. random matrix with complex Gaussian entries with zero mean and unit
variance. With this approach the large number of model parameters is dramatically reduced, namely to��� � ��� . The full correlation matrix simplifies to

89 KL MN� � 8� O 8� (Eqn. 2.5), and therefore
this model is called Kronecker model. A big disadvantage of this correlation model is that MIMO chan-
nels with relatively high spatial correlation cannot be modeled adequately, due to the limiting heuristic
assumption

89 KL MN� � 8� O 8� . Further details, on this topic can be found in [21], [28] and[11].

This deficiency of the Kronecker model led to a novel channel model invented by Werner Weichselberger
[28] [11]. In the following this novel approach is called W-model. The advantage of this method is
that the number of parameters is not too much increased compared to the Kronecker model (in fact������ %�� ���� ), but the modeling error with respect to measured channel characteristics is substantially
decreased [28]. MIMO channel realizations according to theW-model are calculated as:� � P� I QR S HJ P�� � (2.10)S

denotes the element wise product of matrix elements.P� andP� are the receiver and transmitter
eigenbasis, which can be interpreted as a characteristic ofthe structure of scatterers around the receive
and the transmit antenna array.

QR
denotes the element wise square root of

R
,
R

being a power coupling
matrix, which describes the average coupling between the receiver and the transmitter eigenbasis. The
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entries of
R

can easily be estimated from MIMO measurements [11]. The matrix
H

is an i.i.d. random
matrix with complex Gaussian distributed entries with zeromean and unit variance. In contrast to the
Kronecker model, in the W-model only the eigenbasis of the transmit (receive) correlation matrixP�
(P� ) is assumed to be independent of the receive (transmit) antenna weights.

Note that this model is a generalization of the Kronecker model. Thus, a Kronecker modeling of MIMO
channels can also be done with this model by specializing

R
. In this case, the power coupling matrix

R
of the W-model can be calculated from the parameters of the Kronecker model by:

R � �TU��	V � W� K	
XYYYYZ W� K � % W� K � W� K � % W� K � � � � W� K � % W� K �!W� K � % W� K � W� K � % W� K � � � � W� K � % W� K �!

...
...

. . .
...W� K �� % W� K � W� K �� % W� K � � � � W� K �� % W� K �!

[\\\\] � (2.11)

Here, W� K 	 and W� K 	 denote the eigenvalues of the (measured) receive correlation matrix
8� and the

transmit correlation matrix
8� defined in Eqn. (2.7) and Eqn. (2.8).

Note that for all spatial models the same normalization is used:

E
9 &tr

I�'�J ( � ��̂	V � � !̂
 V � E
9 &_�	
 _� ( � �� �� � (2.12)

Therefore, the correlation matrix
89

for the full correlation model, the correlation matrices
8� and

8�
for the Kronecker model and the power coupling matrix

R
have to be normalized appropriately.

Because of the essential advantages of the W-model discussed in detail in [28] and the fact that this model
is also capable to realize Kronecker MIMO channels, it is thepreferred channel model in this thesis.

In Sec. 3 and Sec. 4, correlated MIMO channels are used to investigate the performance of various
systems. Therefore practically relevant model parametersare needed. In order to use realistic chan-
nel parameters, model parameters are extracted form MIMO channel measurements, which have been
performed at our Institute. In the following important measurement parameters are listed:

carrier frequency 5.2 GHz
bandwidth 120 MHz
transmit antenna arrayvirtual 20�10 antenna array with 0.5W inter element spacing
receive antenna array 8 element Uniform Linear Array (ULA) with 0.4W inter element spacing

More details about the measurements can be found in [24] [13]. Some measurements have been per-
formed at the 3rd floor of our Institute, where a lot of scenarios has been investigated. A detailed map of
the 3rd floor of our Institute is shown in Fig. 2.3. As can be seen in Fig. 2.3 the position of the 20�10
virtual transmit antenna array denoted by TX has been fixed for all measurements. Several positions
of the receive antenna array have been considered and are denoted by RX. At each RX position three
distinct measurements have been performed, where the 8 element receive ULA has been looking in three
different directions. These directions are indicated by three arrows labeled with D1, D2 and D3 at the
left hand side of Fig. 2.3. An example for the notation of a measurement scenario is “14D3”. 14 stands
for RX position 14 and D3 denotes that the receive arrays broadside is looking in direction 3.

In the following it is explained how the model parameters areextracted from the measurement data. The
channel transfer coefficients have been measured between the virtual 20�10 transmit array and the 8
element ULA at the receiver at 193 frequency values. With thelarge virtual transmit array, it is possible
to find 130 distinct realizations of an 8 element transmit array. For example, one realization is produced
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Figure 2.3: Detailed map of the 3rd floor of the Institute of Communications and Radio-Frequency
Engineering.

by taking the 1st to the 8th element of the first row (out of 10 rows) from the virtual transmit antenna
array. The second realization refers to the positions 2 to 9 of the first row and so on. Taking into account
all rows, 130 so-called spatially distinct realizations can be found. Note that the inter element spacing
is 0.5W for each realization. Taking into account the 8 element ULA at the receiver, 130 realizations of
an 8�8 indoor MIMO channel matrix can be obtained for every frequency bin. 193 so-called frequency
realizations for each spatial realization are available and thus in total 130%193 = 25.090 realizations of an
8�8 MIMO channel matrix are obtained, which is considered to bea sufficiently large ensemble.

Extracting the channel parameters for a 4�4 MIMO channel, only the first four rows of the 8�8 channel
matrix discussed above are considered. Each of these rows consists of 8 elements, where again only
the first four are used. Thus, a distinct 4�4 matrix out of each 8�8 matrix is extracted. In order to
obtain the model parameters for the W-model, the correlation matrices

8� and
8� have to be calculated

according to Eqn. (2.7) and Eqn. (2.8) by averaging over all realizations of� at a specific receiver
location. Applying an eigenvalue decomposition to the correlation matrices

8� and
8� , the eigenbasesP� andP� are obtained. Having calculated the eigenbases, the power coupling matrix is obtained by

[31]: R � E
9 &�P'� �P�  S �P��� EP E� ( (2.13)

For the investigations in Sec. 3 and Sec. 4, moderately and strongly correlated 4�4 MIMO channels
are of primary interest. For this reason, the scenarios 14D3and 1D3 were chosen to extract the model
parameters corresponding to strongly correlated and moderately correlated MIMO channels. The model
parameters in case of moderate correlation (scenario 1D3) and strong correlation (scenario 14D3) are
provided in Appendix D.
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2.3 SNR-Definition

In this thesis the error performance of uncoded and coded transmission is investigated in terms of BER
vs. SNR. Therefore, it is worth to say a few words about the SNRdefinition. It is reasonable to define
the mean SNR as the ratio of thetotal received signal power to the total noise power:

SNR� E
9 K` Ka b _� _��_� _�� c � (2.14)_� _� denotes the l2-norm operator. The expectation is with respect to the channel matrix� , the noise�

and the transmit symbol vector�. Due to the independence of� and�, Eqn. (2.14) is equivalent to

SNR� E
9 K` & _� � _�� (
E
a &_� _�� ( � E

9 K` :<=��U	V � ddddd
�!U
 V � �	
  
 ddddd

� ?@A
E
a e��U	V � _� 	 _� f � (2.15)

The last step in the numerator expansion holds, because of the independence of� from � and because
the vector symbols� are assumed to be independent as mentioned in Sec. 2.1. Due tothe assumption of
white noise (Sec. 2.1), the denominator is equivalent to�� + �� and thus we get:

SNR� ��U	V � �!U
 V �E
9 &_�	
 _� ( P)�� + �� � (2.16)

P) denotes the mean signal power of the used modulation format at each transmit antenna. With the
normalization of the MIMO channel matrix defined in Sec. (2.2.2.2), the final result for the mean SNR
is obtained:

SNR� �� �� P)�� + �� � �� P)+ �� � (2.17)

Note that the SNR definition is symbol based. Other authors [18] prefer bit based definitions:

SNRg	h � SNR
ld �_i _ 0

(2.18)

where _i _ denotes the size of the symbol alphabet of the modulation format.





Chapter 3

Uncoded Data Transmission

In this section the error performance of uncoded MIMO transmission systems is investigated. Only
optimal ML receivers are considered.

3.1 The Maximum Likelihood Detection Rule

Let’s remember the detection rule of an ML receiver:j�k l � argmin	 & _� � � �	 _�� ( 0
(3.1)

i.e., the ML receiver performs an exhaustive search for thatvector symbol�	, which leads to the smallest
distance between the received symbol vector� and��	. Exhaustive search means that the whole symbol
alphabet

i�!
has to be checked. In order to perform this search, the channel matrix � has to be known.

In practical systems the channel matrix� has to be estimated [38][39][40][41]. Throughout this thesis
perfect channel knowledge at the receiver is assumed.

Now, consider the case, when�	 is sent and the ML detector decides in favor of the erroneous symbol �
 .
The probability for this erroneous decision (Pairwise Error Probability - PEP) can be calculated as:

P��	 m �
  � P�_� � � �	 _�� n _� � � �
 _��  � (3.2)

Inserting� � � �	 � � yields:

P��	 m �
  � P�_� �	 � � � � �	 _�� n _� �	 � � � � �
 _�� � P�_� _�� n _� ��	 � �
 o pq rst uv �� _��  0
(3.3)

wherew	 K
 is called the symbol difference vector. This inequality canbe further simplified to:_� _�� n _� w	 K
 � � _���' � n �w	 K
 ' �' � �' ��w	K
 � ��' � n w	 K
 ' �' �w	 K
 � �' �w	K
 � w	 K
 ' �' � � �' ��w	 K
 ' �'�w	 K
 n x � y &�' �w	 K
 (o pq rzt uv (3.4)

The next step in this derivation is to determine the statistics of {	 K
 . � is a random vector with i.i.d.
complex Gaussian entries (see Sec. 2.1).� is linearly transformed by the matrix� and the vectorw	 K
 .

15
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A linear transformation does not change the Gaussian distribution and therefore�' �w	 K
 is complex
Gaussian too. Then, the real part operation turns the complex Gaussian distribution into a real Gaussian
distribution. The mean|zt uv of {	 K
 is:|zt uv � }a &x� y &�' �w	K
 (( � �

(3.5)

and the variance of{	 K
 is+ �zt uv � }a &x� y &w	 K
 ' �' � ( x� y &�' �w	 K
 (( � � � � � x+ ��w	 K
 ' �'�w	 K
 � (3.6)

The dots indicate that the derivation is quite lengthy but straight forward. Now, the complete statistics of{	 K
 is known and therefore the so-called Pairwise Error Probability (PEP) can be calculated:

P��	 m �
  � P�{	 K
 ~ �w	 K
 ' �' �w	K
  � �Tx�+ �zt uv �st uv � 9� 9stuv��� y BC I ���t uv JC ��
� �Tx�+ �zt uv ��st uv � 9� 9st uv y BC I ���t uv J C �� � ��x� ���t uv � �� ��t uv��t uv y BC �C ��
� Q �w	K
 ' �'�w	 K
+zt uv � � Q

XZ w	 K
 ' �'�w	 K
Tx+ �� w	 K
 ' �'�w	 K
 []� Q

XZ� w	K
 ' �'�w	 K
x+ �� [] � Q

XYZ ���� ��� 	 K
x+ �� [\] � PEP	 K
 (3.7)

This derivation leads to the very important definition of theEuclidean distance between the images of
the symbol vectors�	 and�
 observed at the receiver:��� 	 K
 � w	 K
 ' �'�w	 K
 � _�w	K
 _�� � ��	 � �
 ' �' � ��	 � �
  � (3.8)

The subscript� at

��� 	 K
 indicates that the distance of the vectors is considered at the receiver. The
distance of signal vectors at the transmitter is defined as:��� 	 K
 � w	 K
 ' w	 K
 � _w 	 K
 _�� � ��	 � �
 ' ��	 � �
  � (3.9)

As can be seen in Eqn. (3.7) the Euclidean distance at the receiver governs the statistic of the PEP. For
this reason in the following section, the distance properties of receive signals stemming from different
transmit vectors are investigated.
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3.2 Signal Distance Properties: SISO versus MIMO - Systems

In this section important differences in the behavior of MIMO systems compared to SISO (Single Input
Single Output) systems with respect to signal distance characteristics are discussed.

3.2.1 Signal Distances in wireless SISO-Systems

The system model for uncoded wireless MIMO systems (shown inSec. 2.1) can be easily adapted to
describe SISO systems by using scalars instead of vectors and matrices1. In the SISO-case the system is
described by � � �  � � � (3.10)

Applying the framework derived above, the distance at the receiver results in:��� 	 K
 � � � Q E�E� � � Q  � _� _� _ � Q _� � _� _� ��� 	 K
 � (3.11)

This implies that the squared distances between all signal points at the receiver are only scaled values of
the squared distances at the transmitter. Actually, the channel only rotates and scales the signal configu-
ration. The following conclusions can be drawn:

-) The smallest (largest) distance of distinct signals at the transmitter leads to the smallest (largest)
distance at the receiver.

-) The distance of different signals at the receiver is zero,only if either the distance at the transmitter
is zero or the channel coefficient vanishes, that is_� _� � �

.

The first property is very important for the calculation of the total error performance (BER vs. SNR
curve) of SISO systems. Due to the non-linear Gaussian Q-function only the signal points with the
smallest distance values determine the error performance at high SNR. Contributions of distances that
are approximately twice the smallest distance can be neglected completely. Therefore, only the signal
point configuration at the transmitter has to be investigated to find a very good performance approxi-
mation. These ideas lead to the very famous Nearest NeighborApproximation (NNA) [27]. For this
approximation only the distances to the nearest neighboring signal points

��� K� �
and the average num-

ber of nearest neighbors�� �
are of essential interest:�� � �� �

Q

XYZ ���� ��� K� �x + �� [\] � (3.12)��
is the approximate symbol error probability of a SISO-system.

Unfortunately, matters are much more complicated in MIMO systems.

3.2.2 Signal Distances in MIMO-Systems

Here, the distance properties of uncoded MIMO systems are analyzed, which are extremely different
compared to the SISO case. The difficulties arising in MIMO systems can be easily and illustratively
explained by an example. In order to operate with two-dimensional plots, some restrictions have to be
made. In the following, a 2�2 (�� � x and�� � x) MIMO system with BPSK modulation (+1,-1) is
considered. Nevertheless, the distance properties observed in this special case, also apply to all uncoded
MIMO systems of any dimension. Note that the channel coefficients of the channel matrix� in this

1As mentioned in Sec. 2.1 only flat fading channels are considered.
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Figure 3.1: Signal distortion and the corresponding distances for uncoded MIMO systems (� �).
example are real-valued. In the following, three figures show the behavior of the distances at the receiver
for different channel realization�� , where each channel is normalized to tr(�'� � � )=2. In the left plot
of each figure, all (four) transmit symbol vectors� �	� 2 (labeled by “+”-marker) and the modified symbol
vectors� �	�� � � � � �	� at the receiver (labeled by “�”-marker) can be seen. In the right plot of each figure
the squared distances at the receiver

��� �K� , ��� �K� and

��� �K� for the transmit symbols� ��� � ��� � �,� ��� � �� � �, � ��� � ��� � and� ��� � �� � are compared to corresponding distances at the transmitter
(

��� �K� � �,

��� �K� � � and

��� �K� � �). Note that the subscripts 1 (2) at��� � at the vertical (horizontal)
axis of the left plot of each figure denotes the first (second) symbol of the vector�� . This is also true for��� � and ���� . Actually, ��� � �  � and ���� �  �.
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Figure 3.2: Signal distortion and the corresponding distances for uncoded MIMO systems (� �).
2Note that  ¡t¢ £  t. This is only an alternative notation in order to improve thereadability in the presented figures in

Section 3.2.
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Figure 3.3: Signal distortion and the corresponding distances for uncoded MIMO systems (� �).
The three different channel matrices are chosen as:� � � � �� �¤¥ �¦ � �¥¦§¥� �¥¤�x � �¤ �¥� � � � � � ���¥¦¦¨ � �xx�¥�� ��¤�¤ �� ���¥� � � � � � �� �x��� �� ���¤¨����x �� � ��x¨¨ �
Fig. 3.1 shows the signal constellations at the transmitter� �	� (labeled by “+”-marker) and at the receiver� �	�� � � � � �	� (labeled by “�”-marker) in the left plot. In the right plot three groups of bars can be seen:
The right bar in each group indicates the squared distances at the transmitter and the left bar in each group
shows the squared distances at the receiver. Both plots are drawn for the channel matrix� �. As can be
seen in Fig. 3.1,� � is a well behaved channel since the distances at the transmitter and the receiver are
almost equal. The signal constellation map is only rotated by the MIMO channel. This special MIMO
channel behaves very similar to a SISO channel. Examples forwell behaved MIMO channels are:

-) � � *: The signal constellation diagram remains unchanged:� � �� � � � � � �.

-) The channel matrix is a unitary matrix� � P : The signal constellation diagram is rotated, but the
distances remain unchanged. Note that the channel used in Fig. 3.1 is almost unitary:�'� � � � *.
Then, the distance at the receiver results in:

��� 	 K
 � w'	 K
 � ' �w	 K
 � w'	 K
 P ' Pw	 K
 � w'	 K
 w 	 K
 ���� 	 K
 .
Fig. 3.2 shows the signal constellations at the transmitter� �	� (labeled by “+”-marker) and at the receiver� �	�� � � � � �	� (labeled by “�”-marker) in the left plot. In the right plot three groups of bars can be seen.
The right bar in each group indicates the squared distances at the transmitter and the left bar in each
group shows the squared distances at the receiver. Both plots are drawn for the channel matrix�� . In
Fig. 3.2, it can be seen that due to the influence of the specificchannel matrix�� the signal constellation
diagram is extremely distorted. The signal map is not only a rotation and scaling like in the SISO case.
The signal configuration is completely changed. All transmit signal distances transfer to completely dif-
ferent distance values at the receiver! For example, the distance between the symbols� ��� and� ��� can
even become zero, if two of the four channel coefficients vanish:��� �K� � w'�K��' �w �K� � �� xE�' � �� x� � � �_��� _� � _��� _�  � � � (3.13)

Due to the small values of��� and��� in the channel matrix�� , the distance

��� �K� becomes very small:��� �K� � � �_� ��¤�¤ _� � _� ���¥� _�  � � �x� �¥ (see Fig. 3.2).
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Fig. 3.3 shows the signal constellations at the transmitter� �	� (labeled by “+”-marker) and at the receiver� �	�� � � � � �	� (labeled by “�”-marker) in the left plot. In the right plot three groups of bars can be
seen. The right bar in each group indicates the squared distances at the transmitter and the left bar in
each group shows the squared distances at the receiver. Bothplots are drawn for the channel matrix��. Interestingly, the largest distance at the transmitter (between� ��� and� ���, ��� �K� � �), becomes the
smallest distance at the receiver! This is an important peculiarity of the MIMO channel. Even worse,
both entries of the symbol vectors� ��� and � ��� are different from each other, therefore this crossover
event (� ��� m � ���) corresponds to a double error. For such double errors the distance between two
signals at the receiver may even vanish, in spite of the fact that the power of every channel coefficient is
far away from zero! It is sufficient that��� �K� � w'�K��' �w �K� � ��x � xE� '� ��x � x� � � �_� �� � � �� _� � _��� � ��� _�  � � 0

(3.14)

such that this system shows catastrophic error performance! It is easy to see, how the channel coefficients
have to be set up, in order to get zero distance

��� �K� , namely:��� � � �� � �
and��� � ��� � �

.

Summarizing the MIMO distance properties:

-) The signal constellation diagram may be heavily distorted, due to the matrix multiplication of the
transmit signal vector with the channel matrix� .

-) The largest distance at the transmitter may become the smallest distance at the receiver.

-) The distance at the receiver can be zero, even if the power of every channel coefficient is far away
from zero.

Due to these facts a simple NNA is hard to derive and thereforein the following a simpler performance
measure namely a union bound is derived.
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3.3 Union Bound for the BER

In this section we focus on the derivation of a tight union bound for the BER in spatially uncorrelated
and correlated MIMO channels. The essential derivations have already been published in [35]. First, we
treat the general case and then an illustrative example willshow some interesting details.

The union bound for the BER is simply calculated by summing upall PEPs. If the symbol vector�	
is transmitted all crossover events are taken into account and thus the probability of deciding on an
erroneous symbol vector can be upper bounded by:�� �� � �	  © ª« ª¬!v̂  Bv ® t PEP	 K
 � (3.15)

Actually, we are interested in the mean performance and not only in the performance if�	 is transmitted.
Averaging over all possible transmit symbols�	 (Eqn. (3.15)) leads to:�� � E	 ¯�� �� � �	 ° � ª« ª¬!	̂V � �� �� � �	  � ��	  � �_i _�! ª« ª¬!	̂V � �� �� � �	 © �_i _�! ª« ª¬!	̂V � ª« ª¬!v̂  Bv ® t PEP	 K
 � (3.16)

Note that Eqn. (3.16) implicitly assumes that the transmit symbol vectors occur equally likely (
� � 	  ��± _i _�! ). The right hand side of Eqn. (3.16) is the union bound for thevector symbol error probability.

For arriving at the union bound for the BER, a further derivation step is necessary. For each crossover
event�	 m �
 a different number of scalar symbols (note the difference tovector symbols) and thus a
different number of information bits is erroneous. For thisreason, a so-called weighting factorQ² 	 K
 is
introduced. This factor turns the vector symbol error probability into the BER, by counting the number of
erroneous bits�³´ 	 K
 in the numerator and the number of transmitted bits per symbol vector ld�_i _ ��
in the denominator: Q² 	 K
 � �³´ 	 K


ld �_i _ �� � (3.17)

Therefore, we get:

BER © �_i _�! ª« ª¬!	̂V � ª« ª¬!v̂  Bv ® t Q² 	 K
 PEP	 K
 � (3.18)

The final essential task that is still to do, is the calculation of the PEP	 K
 . As can be seen in Eqn. (3.7), the
PEP is governed by the Euclidean distance at the receiver

��� 	 K
 . Therefore, the statistics of the distance
has to be calculated and then we average over the Gaussian Q-function with respect to the distance. To
this end, a new random vector is defined:µ	 K
 � �w	 K
 � (3.19)

A linear transformation of a complex Gaussian random vector/ matrix results again in a complex Gaus-
sian random vector / matrix and therefore the random vector

µ	 K
 is complex Gaussian distributed with
the following first and second order moment:¶·tuv � E

9 ¯�w	 K
 ° � ¸ 08 ·tuv � E
9 &�w	 K
 w'	 K
 � ' ( � (3.20)
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Therefore,

µ	 K
 can be modeled as:
µ	 K
 � T8·tuv D 0

(3.21)

whereD is an independent complex Gaussian distributed vector of entries with zero mean and unit vari-
ance and

8·tuv reflects the spatial correlation of the channel matrix� . Then

��� 	 K
 can be written as:��� 	 K
 � µ'	 K
 µ	 K
 � D' 8·t uv D � (3.22)

In the following case spatially uncorrelated MIMO channelsand spatially correlated MIMO channels are
considered separately.

3.3.1 Spatially Uncorrelated Channels

For uncorrelated channels,
8·tuv degenerates to a scaled unity matrix:8·tuv � w	 K
 ' w	 K
 *�� 0

(3.23)

where*�� is the unity matrix of dimension�� . Hence, Eqn. (3.22) simplifies to:��� 	 K
 � ��� 	 K
 I_¹ � _� � _¹� _� � � � � � _¹�� _�J � (3.24)

The sum over�� squared magnitudes of independent complex Gaussian randomvariables with the
same variance

��� 	 K
 is a newº� distributed random variable withx�� degrees of freedom. Thus, the
Probability Density Function (PDF) of

��� 	 K
 is:» ¼C� t uv ��  � ��� ������ 	 K
 �� ½ ���  y� �¾C! t uv � (3.25)

Now, we know the PDF of the squared Euclidean distance

��� 	 K
 at the receiver, but actually we are
interested in the mean error performance. The mean PEP is calculated as:

PEPi.i.d.	 K
 � E
9 :;<;=¿ XYZ ���� ��� 	 K
x + �� [\] ?;@;A � � �À ¿ �� �x+ �� � ��� ������ 	 K
 �� ½ ���  y� �¾C! t uv ��

(3.26)

� Á� � |	K
x Â�� �� ���̂VÀ � �� � � � ÃÃ � Á� � |	 K
x Â �
with |	 K
 � ���� ��� 	 K
�+ �� � ��� 	 K
 �

The superscript i.i.d. is used to distinguish the PEPs for uncorrelated and correlated channels. The
integral is taken from [36]. As it can be seen in Eqn. (3.26), apart from�� , the only essential parameter,
which determines the PEP is

��� 	 K
 . Investigating

��� 	 K
 for all crossover events can help to simplify the
summation in Eqn. (3.18).

Definition 3.1 A so-called Error Type (ET) is defined as the set of all crossover events of transmit vec-
tors, which have the same key-parameters. Key-parameters are entities, which fully describe the prop-
erties of crossover events and thus the corresponding ET. The key-parameters of an ET are

��� 	 K
 and��³´ 	 K
 for the uncorrelated case.(The key-parameter for the correlated case are the set of eigenvaluesW �	 K
 �Ä and��³´ 	 K
 (defined further ahead) .) Therefore an ET is fully describedby these two parameters
and they do not depend on the crossover event itself. Therefore, new indices are introduced for each ET
indexed byÃ:

��� and ��³´ � . The number of crossover events belonging to the ETÃ , which fulfill the
conditions

��� � ��� 	 K
 and��³´ � � ��³´ 	 K
 , is denoted byÅ� .
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At this point, it may be useful to concretize these definitions by means of a simple example. Let’s
consider a 4�4 MIMO system with BPSK modulation (+1,-1).

For the moment, let us consider a single antenna system focusing on the modulation format. The differ-
ence variable isÆ	 K
 �  	 �  
 and thus the squared distance at the transmitter is

�� �³ Ç �L �� 	 K
 � ÆE	 K
 Æ	 K
 .
For BPSK

�� �³Ç �L �� 	 K
 is either 0 or 4. In case of a single transmit antenna and BPSK the corresponding
number of bit errors is either 0 or 1. In Tab. 3.1 the key - parameters of a single antenna system with
BPSK modulation are listed. Note, that there are two different symbols (+1,-1) and thus the total number

ETÃ �³Ç �L � �� �³ Ç �L �� � Å �³ Ç �L �� � �³ Ç �L �³´ �
ET

� �³Ç �L � 0 2 0
ET

��³Ç �L � 4 2 1

Table 3.1: ET table for a single antenna system with BPSK modulation.

of crossover events isx % x � �, which can also be identified in Tab. 3.1 as the sum over the column
valuesÅ �³Ç �L �� .

Having shown the ETs in a system with one transmit antenna andBPSK modulation3, the ETs of a
system with four transmit antennas are analyzed in the following by means of combinatorics. Due to 4
transmit antennas the key-parameters of the ETs can be calculated as:��� � � w'	 K
 w 	 K
 � Æ	 K
 ��E Æ	 K
 �� � Æ	 K
 �xE Æ	 K
 �x � Æ	 K
 �¥E Æ	 K
 �¥ � Æ	 K
 �� E Æ	 K
 �� � �� �³Ç �L �� � �� � �� �³Ç �L �� � �x � �� �³Ç �L �� � �¥ � �� �³Ç �L �� � �� Å� � » � % IÅ �³Ç �L �� �� % Å �³Ç �L �� �x % Å �³Ç �L �� �¥ % Å �³Ç �L �� �� J�³´ � � � �³Ç �L �³´ � �� � � �³Ç �L �³´ � �x � � �³Ç �L �³´ � �¥ � � �³Ç �L �³´ � ��  � (3.27)» � is defined further ahead.

�� �³Ç �L �� � �È � Æ	 K
 �È E Æ	 K
 �È  is the distance corresponding to theÈ-th
transmit antenna.� �³Ç �L �³´ � �È is the number of bit errors andÅ �³Ç �L �� �È the frequency of theÃ-th
BPSK-ET corresponding to theÈ-th transmit antenna and thus to theÈ-th position inw	 K
 . The equations
above show the calculation of the key-parameters for a system with four transmit antennas (Tab. 3.2)
based on the key-parameters of the system with one transmit antenna (Tab. 3.1). In Eqn. (3.27), there
are five possible values for

��� � namely 0, 4, 8, 12 and 16, which are caused by crossover eventshaving
no symbol error, one symbol error, two symbol errors, three symbol errors and four symbol errors. Note
that the “positions” of the non-zero entries (erroneous symbols) in vectorw	 K
 are not relevant in the i.i.d.
case, i.e., for examplew	K
 � �� � x � andw	K
 � �x � � � are equivalent. One question is still open,
namely how often a specific error constellation occurs. Thiscan be answered by the aid of binomial
coefficients. Due to the four transmit antennas, there are four transmit symbols, which can be correctly
detected (Æ	 K
 �È  � �

, ET0�³ Ç �L �) or wrongly detected (Æ	 K
 �È  � Éx, ET1�³ Ç �L �). Hence, from
the combinatorics point of view, there are four possible positions in vectorw	 K
 to “place” Æ	 K
 �È  � �
(corresponding to ET0�³ Ç �L �) or Æ	 K
 �È  � Éx (corresponding to ET1�³ Ç �L �) (Tab. 3.1). How oftenÆ	 K
 �È  � �

(ET0�³ Ç �L �) occurs on these four possible positions in vectorw	 K
 is denoted by�� and thus
the number of possible constellations» � having �� times Æ	 K
 �È  � �

(ET0�³ Ç �L �) arranged over the
four possible positions ofw	K
 is denoted by» � and can be calculated with:» � � � ��� � � � Ê�� Ê �� � ��  Ê (3.28)

3In the following called BPSK-ETs.
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For

��� � equal to 0 all symbols must be correctly detected and therefore each position in vectorw	 K

is Æ	 K
 �È  � �

corresponding ET0�³ Ç �L �. Thus, there is only one possibility to arrange four timesÆ	 K
 �È  � �
(ET0�³ Ç �L �) on four possible positions (�À � �):» À � � �� � � � � (3.29)

For

��� � equal to 4, one symbol is detected erroneouslyÆ	 K
 �È  � Éx (ET1�³ Ç �L �) and the other symbols
must be correctÆ	 K
 �È  � �

(ET0�³ Ç �L �). Thus,� � � ¥ and the possible number of constellations to
arrange three timesÆ	 K
 �È  � �

(ET0�³ Ç �L �) on four possible positions is:» � � � �¥ � � � � (3.30)

For the remaining distances

��� � equal to 8, 12 and 16 the number of possible constellations are:» � � � �x � � § » � � � �� � � � » Ë � � �� � � �
(3.31)

Note that each of the two BPSK-ETs have frequencyÅ �³Ç �L �� =2 and therefore the total frequency of
having a specific constellation ofÆ	 K
 �È  (BPSK-ETs) in vectorw	 K
 , i.e., for example the first position
of the difference vectorw	 K
 is Æ	 K
 �� � �

corresponds to ET0�³ Ç �L �, the second isÆ	 K
 �x � Éx
(ET1�³ Ç �L �), the third isÆ	 K
 �¥ � Éx (ET1�³ Ç �L �) and the fourth isÆ	 K
 ��  � �

(ET0�³ Ç �L �), isx % x % x % x � �§
. This resulting frequency has to be multiplied with the number of possible constellations» � (according to Eqn. (3.27)) of the BPSK-ETs leading to the same overall distance

��� � and to the same
number of bit errors�³´ � . Thus, for example the resulting entire frequencyÅ� of ET2 is

§ % �§ � ¤§.
The total list of key-parameters for the four antenna systems is:

ETÃ ��� � Å� �³´ �
ET0 0 16 0
ET1 4 64 1
ET2 8 96 2
ET3 12 64 3
ET4 16 16 4

Table 3.2: ET table for a uncoded MIMO system. uncorrelated fading; BPSK;�� � �.

The above explained way of finding Tab. 3.2 seems to be rather complicated but it is actually very
simple. To substantiate the general explanations, I will now show the detailed calculations for ET2 given
in Tab. 3.2. To get a distance

��� � equal to 8, two symbols in the transmit symbol vectors�	 and �

have to be different. Therefore, the corresponding difference vectorw	 K
 consists of two zeros and two
non-zero terms of value two. The positions of these values inthe vectorw	 K
 are irrelevant.

First, let’s calculate the number�³´ of bit errors in case of ET2. Due to Gray coding of the symbols,
two erroneous symbols lead to two erroneous bit and thus�³´ � � x (see Tab. 3.2).

Secondly, the frequencyÅ� of crossover events, which have the same distance

��� � � � and the same
number of bit errors�³´ � is calculated. Due to the BPSK modulation, we know that each of the two
BPSK-ETs of Tab. 3.1 has the frequencyÅ �³ Ç �L �� � x. Thus, a specific constellation ofÆ	 K
 �È , i.e., for
example the first position of the difference vectorw	K
 is Æ	 K
 �� � �

corresponding to ET0�³ Ç �L �, the
second isÆ	 K
 �x � Éx (ET1�³ Ç �L �), the third isÆ	 K
 �¥ � Éx (ET1�³ Ç �L �) and the fourth isÆ	 K
 ��  � �
(ET0�³ Ç �L �), has the frequencyx % x % x % x � �§

. (According to the expression in the brackets of the
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second equation in Eqn. (3.27). The number of possible arrangements» � of Æ	 K
 �È (BPSK-ETs) in the
difference vectorw	 K
 , which leads to

��� � � � and�³´ � � x, results in:» � � � �x � � § � (3.32)

The number of possible arrangements» � of Æ	 K
 �È  (BPSK-ETs) multiplied by the frequency of oneÆ	 K
 �È  (BPSK-ETs) arrangement results in the entire frequency forET2: Å� � �§ % § � ¤§ (according to
Eqn. (3.27)).

The sum over all frequency valuesÅ� in Tab. 3.2 is 256, which is equal to the total number of crossover
events, because with BPSK modulation and�� � � the number of different transmit vectors isx� � �§
and thus the number of crossover events is

�§� � x¨§.

Note that matters become more difficult if a higher modulation format is applied. In such a case the
combinatorial problem to find the ETs and the corresponding key-parameters can be solved by means of
multinomial coefficients [42].

An alternative way to find the table of ETs is an exhaustive computer search. This search should also
be subdivided in the two parts discussed above. First focusing on the investigation of the ETs for a
system with one transmit antenna and afterwards applying this knowledge to the case with more transmit
antennas. In this way a lot of computation time is saved, due to the symmetries of the signal constellation
maps. Nevertheless, the effort of the search can be very high, if higher modulation schemes are involved.
Think of an�� � � system with 256QAM modulation, wherex¨§� % x¨§� � x¨§Ì � �����¦ % �� �Í
crossover events exist. For such cases the first step (investigation of the ETs for a system with one
transmit antenna) can be very helpful.

Summing up the PEPs for all crossover events results in the double sum in Eqn. (3.18). Due to the
introduction of the ETs, the summation over all crossover events can be reduced to the sum over all ETs
and thus Eqn. (3.18) reduces to:

BER © �Î !̂�V � ² � PEPi.i.d.� with ²� � Å�_i _�! �³´ �
ld �_i _ �� � (3.33)

where PEP� denotes the PEP for the k-th ET and�´� is the number of distinct ETs. In the special case
shown above,�´� is 4. ET0 is not counted as an error type since it corresponds to a correct detection.

By applying Eqn. (3.33), the union bound for the BER for the specific example summarized in Tab. 3.2
can be written as:

BER © �Î !̂�V � ² � PEPi.i.d.�� §�x� �
ld �x � PEPi.i.d.� � ¤§x� x

ld�x � PEPi.i.d.� � §�x� ¥
ld�x � PEPi.i.d.� � �§x� �

ld �x � PEPi.i.d.�� PEPi.i.d.� � ¥ PEPi.i.d.� � ¥ PEPi.i.d.� � PEPi.i.d.� � (3.34)

The union bound derived in this section, is compared to simulation results for several MIMO systems
and modulation formats in Sec. 3.4.

3.3.2 Spatially Correlated Channels

For spatially correlated channels (correlation characterized by the W-channel model) the correlation
matrix

8·tuv defined in Eqn. (3.20) can be written as:8·tuv � E
9 &�w	K
 w'	 K
 � ' ( � P�E

9 &� QR S HP�� w	 K
 w'	 K
 P E� � QR S H' ( P'�
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 �� 0 W �	 K
 �� 0 � � � 0 W �	 K
 ��� P �' 0
(3.35)

and the eigenvalues can be calculated as:W �	 K
 �Ä � IIw	 K
 � P� J S RÄ J P� ' w	 K
 E 0
(3.36)

where
RÄ denotes the m-th row of the power coupling matrix

R
. The number of non zero eigenvalues

of
8·tuv is denoted by�� Ï

. Hence, in the correlated case Eqn. (3.22) changes to:��� 	 K
 � _¹ � _� W �	 K
 �� � _¹� _� W �	 K
 �� � � � � � _¹�Ð Ñ _� W �	 K
 ��Ð Ñ � (3.37)

The sum over independent random variables corresponds to the product of the characteristic functions
[27]. Since the random variables_¹ 	 _� follow a º�-distribution with two degrees of freedom, the charac-
teristic function of

��� 	 K
 is Ò¼C� t uv �� $  � �Ð ÑÓÄV� �� � � $ W �	 K
 �Ä � (3.38)

Applying a partial fraction expansion of Eqn. (3.38), the PDF of

��� 	 K
 is easily obtained by the inverse
Fourier transform of

Ò¼C� t uv ��� $ , resulting in:» ¼C� t uv ��  � �Ð Ñ̂ÄV � IW �	 K
 �Ä J�Ð Ñ ���Ð ÑÔ¬ B¬ ®Õ IW �	 K
 �Ä � W �	 K
 �� J y� �Ö ¡t uv ¢Õ � (3.39)

Note that for the partial fraction expansion it is assumed that all eigenvalues are different, which is indeed
the case for “measured” power coupling matrices

R
, but can eventually be a problem for synthetic

R
matrices. Then, with Eqn. (3.7) the mean PEP results in:

PEPW	 K
 � E
9 :;<;=¿ XYZ ���� ��� 	 K
x + �� [\] ?;@;A � �Ð Ñ̂ÄV � IW �	 K
 �Ä J�Ð Ñ ���Ð ÑÔ¬ B¬ ®Õ IW �	 K
 �Ä � W�	 K
 �� J � �À ¿ �� �x+ �� � y� �Ö ¡t uv ¢Õ ��
� �x �Ð Ñ̂ÄV � IW �	 K
 �Ä J�Ð Ñ ���Ð ÑÔ¬ B¬ ®Õ IW �	 K
 �Ä � W �	 K
 �� J XZ� � ���� W�	 K
 �Ä�+ �� � W �	 K
 �Ä [] � (3.40)

The integral has the same structure as the integral in Eqn. (3.26). As it can be seen in Eqn. (3.40) the
relevant parameters, which influence the PEP are the eigenvalues W�	 K
 �Ä (m=1, 2, . . . ,�� Ï

). Therefore,
in principle we continue in the same way as in the case of an uncorrelated channel: Again, we list all
ETs with their key-parameters in a new table quite similar toTab. 3.2. The only difference is that there
are now�� Ï

parametersW�	 K
 �Ä (m=1, 2, . . . ,�� Ï
) instead of the single parameter

��� � . In the correlated
case of the 4�4 MIMO system with BPSK modulation, there are 40 ETs (�´� � ��) and therefore the
table is postponed to the Appendix E. Due to the dependency ofthe eigenvaluesW �	 K
 �Ä on the power
coupling matrix

R
(Eqn. (3.36)), the tables listing the ETs and their corresponding key-parameters are

different for distinct spatially correlated channels. Note that this table shown in Appendix E has been
found by an exhaustive computer search.

The union bound for the BER, taking into account all 256 crossover events, again can be written as the
weighted sum over all ETs:

BER © �Î !̂� ² � PEPW� ² � � Å�_i _�! �³´ �
ld �_i _ �� � (3.41)

The union bound derived in this section, is compared to simulation results for several MIMO systems
and modulation formats in Sec. 3.4.
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3.3.3 High SNR Approximation of the BER

In order to get more insight into the BER performance and to compare the results for uncorrelated and
correlated channels, it is helpful to derive a high SNR approximation for the PEPs. With these approx-
imations for the PEPs, a high SNR approximation for the unionbound for the BER can be calculated.
This approximation highlights the importance of the diversity degree and quantifies the power loss due
to channel correlation.

First, we focus on the PEP. The principle of calculating a high SNR (low + �� ) approximation is quite
simple. Essentially, a Taylor series expansion of the PEP formula is performed. The first term of the
series, which dominates at high SNR is taken as an approximation of the true PEP.

Remember the Taylor series of a functionÅ �×  around the point×À is defined as:Å �×  � �̂�VÀ �× � ×À � Å �� � �×À � Ê 0
(3.42)

where the superscript��  denotes the n-th derivative ofÅ �× . The PEP for the i.i.d. model and for the
W-model are functions of+ �� and therefore at high SNR the PEPs are approximated around+ �� � �

. For
small+ �� , the first non-zero term of the Taylor series, i.e., the term with the lowest exponent, is the most
important one. In the following we consider uncorrelated and correlated channels separately.

3.3.3.1 Spatially Uncorrelated Channels at high SNR

Investigating the PEP for uncorrelated channels it turns out that the first non-zero term of the Taylor
series has the exponent�� and thus the high SNR approximation of the PEP can be calculated as:

PEP
	 Ø	 Ø¼ Ø�Ù	ÚÙ	 K
 � �+ �� ���� Ê �Û ��PEP	 Ø	 Ø¼ Ø	 K
Û �+ �� �� � dddddÜ C¬ VÀ � � + ����� 	 K
 ��� �� ���̂VÀ ��� � �� ÃÃ �o pq r��GÝ¬� �¬� � � + ����� 	 K
 Þ�� ���

(3.43)
with Þ�� � ß�� ���̂VÀ ��� � �� ÃÃ �à ��G��

(3.44)

Due to Eqn. 3.43 the PEP mainly depends on�� and

��� 	 K
 . �� determines the slope and

��� 	 K
 Þ��
determines the horizontal shift of the PEP vs. SNR curve. Thus, it is easy to specify the diversity� of
such an uncoded MIMO system. Diversity� is defined as the negative slope of the PEP vs. SNR curve
(in double logarithmic scale) according to [27]:� � � áâã

SNRä� Û �log�ÀPEPÛ �log�ÀSNR 0
(3.45)

where the SNR is inversely proportional to the noise variance + �� (see Eqn. (2.17)). Therefore, the slope
for the PEP vs. SNR is the negative slope of the PEP vs.+ �� and we get:�	Ø	 Ø¼ Ø � áâãÜ C¬äÀ Û �log�ÀPEP

	 Ø	 Ø¼ Ø�Ù	ÚÙ	 K
 Û �log�À+ ��  � �� � (3.46)

Note that in the derivation of Eqn. (3.46) the high SNR approximation for the PEP is used.
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A high SNR approximation for the union bound for the BER is easily obtained by inserting the high SNR
approximation of the PEP into Eqn. (3.33):

BER
	 Ø	 Ø¼ Ø�Ù	ÚÙ © �Î !̂�V � ² � � + ����� � Þ�� ��� � �+ �� �� �Î !̂�V � ² ����� � Þ�� �� � (3.47)

By defining a new distance: ��	 Ø	 Ø¼ Ø � �¬���Î!U�V � åæ�¼C! æ Ý¬� �¬� 0
(3.48)

the high SNR approximation for the union bound for the BER canbe written as:

BER
	 Ø	 Ø¼ Ø�Ù	ÚÙ � � + ����	 Ø	 Ø¼ Ø ��� 0

(3.49)

For the high SNR approximation of the union bound for the BER the same properties as for the high
SNR approximation for the PEP are valid, i.e., the slope of the BER vs. SNR curve and thus the diversity
is �� and the horizontal position of the curve is determined by

��	 Ø	 Ø¼ Ø.
3.3.3.2 Spatially Correlated Channels at high SNR

In this section essentially the same derivation as for the uncorrelated case is done for correlated channels.
Investigating the PEP, it turns out that the first non-zero term of the Taylor series has the exponent�� Ï
and thus the high SNR approximation of the PEP results in:

PEPç�Ù	ÚÙ	 K
 � �+ �� �Ð Ñ�� Ï Ê �Û�Ð Ñ PEPç	 K
Û �+ �� �Ð Ñ � dddddÜ C¬ VÀ� � + ����ç 	 K
 ��Ð Ñ �Ð Ñ ���̂VÀ ��� Ï � �� ÃÃ �o pq r��GÝ¬Ð Ñ �¬Ð Ñ � � + ����ç 	 K
 Þ�Ð Ñ ��Ð Ñ0
(3.50)

with Þ�Ð Ñ � ß�Ð Ñ ���̂VÀ ��� Ï � �� ÃÃ �à ��G�Ð Ñ
(3.51)

and a new effective distance

��ç 	 K
 :��ç 	 K
 � ¬Ð Ñ �����Ð ÑÓÄV� W �	 K
 �Ä � ¬Ð Ñè
det

I8 ·tuv J 0
(3.52)

The PEP mainly depends on�� Ï
and the geometrical mean of the eigenvaluesW �	 K
 �Ä (È=1,2, ... �� Ï

).
The last part of Eqn. (3.52) only holds if

8·tuv is regular, otherwise the determinant is zero.�� Ï
determines the slope and

��ç 	 K
 and theW �	 K
 �Ä determine the horizontal position of the PEP curves. Thus,
according to [27] the diversity�ç of such an uncoded MIMO system in correlated fading is:�ç � áâãÜ C¬äÀ Û �log�ÀPEPç �Ù	ÚÙ	 K
 Û �log�À+ ��  � �� Ï � (3.53)

A high SNR approximation of the BER union bound is easily obtained by inserting the high SNR ap-
proximation of the PEP (Eqn. (3.50)) into Eqn. (3.41). By defining a new distance

��ç the high SNR
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approximation of the union bound for the BER results in:

BERç �Ù	ÚÙ � � + ����ç ��Ð Ñ
with

��ç � �¬Ð Ñ��Î!U�V � åæ�¼Cé æ ÝÐ Ñ �¬Ð Ñ � (3.54)

The high SNR approximation of the BER - union bound has the same properties as the high SNR ap-
proximation for the PEP, i.e., the slope of the BER vs. SNR curve and thus the diversity is�� Ï

and the
horizontal position of the BER vs. SNR curve is determined by

��ç .

3.3.4 Discussion

At this point, I want to emphasize the differences and similarities of the performance of uncoded wireless
transmission systems in uncorrelated and in correlated MIMO channels. One very interesting observation
is the fact that the diversity order, that is the slope of the BER vs. SNR curve at high SNR according to
the definition in [27], is the same for correlated and uncorrelated channels in case of�� Ï � �� . This
holds, if at least one element in each row of

R
is non-zero. If one row is completely filled with zeros,

then a diversity loss of order one is observed, two zero-rowsin
R

cause a diversity loss of two and so on.
Hence, a diversity lossêë due to correlation is defined asêë � �� � �� Ï � (3.55)

Note that the diversity definition in [27] is tailored to highSNR and therefore does not say much about
the observed diversity or slope of the BER vs. SNR curve at moderate values of SNR. Actually, the slope
of the BER vs. SNR curve at reasonable SNR values (or BER values) is of more practical interest than
the slope at SNR=ì . Nevertheless, with the definition according to [27], correlated and uncorrelated
MIMO channels have the same diversity order (if�� Ï � �� ).

For correlated channels with�� Ï � �� no diversity loss occurs. However, the detrimental influence of
spatial channel correlation shows up in a so-called power lossêÇ . Due to the same diversity, the BER
vs. SNR curves of correlated and uncorrelated channels are in parallel, but horizontally shifted. This
shift of the BER curve towards higher SNR due to channel correlation is called power lossêÇ and can
easily be calculated as: êÇ � ��

log�À ���	 Ø	 Ø¼ Ø��ç � � (3.56)

A simple explanation how the spatial channel correlation and thus the matrix
R

influences thediversity
loss is given above. The influence of the matrix

R
on thepower lossis not that simple to explain. In

the following I will show what properties the matrix
R

should have, to achieve a power loss as small
as possible. Due to Eqn. (3.54) the distance

��ç æ for each ET should be as large as possible. To get

large distances, it is important to have well balanced and large eigenvaluesW �	 K
 �Ä . This is achieved, if the
matrix

R
is well balanced. This corresponds to large signal distances and thus to small power losses.

The best balanced matrix
R

is a matrix, where all entries are identical. With such an ideally balanced
matrix

R
, the W-model degenerates to the i.i.d. model. In this case, there is no spatial correlation and

thus the best possible system performance (no power loss) isachieved.
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3.4 Examples and further Discussion

In this section the simulated BER performance, the union bound for the BER performance and the high
SNR approximation of the BER performance is shown for several MIMO systems, for various modula-
tion formats and for some correlation types.

3.4.1 Uncoded 4í4 MIMO system with BPSK modulation
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Figure 3.4: BER vs. SNR performance of a uncoded 4�4 MIMO system with BPSK modulation.

Starting with the 4�4 MIMO system with BPSK modulation, the simulated BER vs. SNRcurve is com-
pared with the union bound and the high SNR approximation fordifferent correlation types (uncorrelated,
1D3, 14D3) in Fig. 3.4.

In Fig. 3.4 the simulated BER vs. SNR curves are the solid lines, the union bounds are the dashed lines
and the dashed-dotted lines are the high SNR approximations. The red curves (labeled by�-marker)
correspond to uncorrelated channels, the green curves (labeled byî-marker) correspond to the moderate
correlation scenario 1D3 and the blue curves (labeled byï-marker) correspond to the high correlation
scenario 14D3.

A comparison of the simulation results with the union boundsshows that the bounds are tight for BER
values of approximately

���� and below. On the other hand, the high SNR approximations aretight only
at BERs below approximately

���ð
.

3.4.1.1 Performance degradation due to spatial correlation

The high SNR approximations according to Eqn. (3.49) and (3.54), shown in Fig. 3.4 are far away from
the true performance at moderate SNR values, but at very highSNR even these approximations become
tight and thus they are good indicators for the slope and the horizontal shift of the BER vs. SNR curves
and thus for the diversity order and the coding gain (or powerloss) of specific transmission schemes.
Even in the case of high spatial correlation the matrices

R
have no rows filled with zeros only and thus
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the slope of the BER vs. SNR curves are always equal to�� . The only detrimental influence of spatial
correlation is a power loss, which can be calculated with Eqn. (3.56). The power loss for the BER vs.
SNR curve corresponding to correlation scenario 1D3 is 2.43dB and for 14D3 it is 4.75dB at high SNR.
These values also show up in Fig. 3.4.

3.4.1.2 Tightness of the union bound

In the following I will explain, why the union bound is strictly above the true BER performance at low
SNR and why it is so tight at high SNR. Let’s focus on the simpleexample first discussed in Sec. 3.2.2. To
simplify matters further, an ideal channel matrix is assumed that does not change the signal constellation
map and thus the error performance only depends on the noise:� � � � �. The ML-receiver decides in

s1

s3 s4

s2s1

s2

s1

s3 s4

s2s1

s2

Figure 3.5: Exact decision regions (left plot) and the overlapping integration areas (right plot). BPSK
modulation,�� � x, � � *.
favor of � �,�� ,�� or �� , if the receive vector� lies in the white, orange, yellow or green decision region
shown in the left plot of Fig. 3.5. Therefore, an error occurs, if � � is transmitted and the receive vector� lies outside of the white decision area. The exact probability of having such an error can be calculated
by integrating the shifted PDF of the noise (the two dimensional Gaussian PDF of the complex noise
variable� is shifted to the point� �) over these three areas (yellow, green, orange):�� �� �  � �� ��� _� �  � �� ��� _� �  � �� ��� _� �  0

(3.57)

where the error probabilities
�� ��	 _� �  are the integrals over the corresponding areas. This exact proba-

bility is upper bounded by the sum over the PEPs:�� �� �  © PEP�� � m ��  � PEP�� � m ��  � PEP�� � m ��  � (3.58)

In the left plot of Fig. 3.5 the so-called integration areas can be seen. Under integration area I denote
the area over that the shifted noise PDF is integrated to get the PEPs. For example, calculating the
PEP�� � m ��  the integration extends over the green area (right plot). Asshown in the right hand plot of
Fig. 3.5 applyingunion bound techniques, the so-called integration areas are overlapping and thus some
parts of the areas are considered twice or even more often. Inprinciple this overlapping of integration
areas is the reason why the union bound overestimates the error probability.
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Note that even the PEPs themselves are union bounds for the exact error probabilities at low SNR:�� ��	 _� �  ~ PEP�� � m �	  at low SNR� (3.59)

For high SNR, where the overlapping does not essentially contribute to the integration result, these PEPs
almost exactly approximate the true values:�� ��	 _� �  �

PEP�� � m �	  at high SNR� (3.60)

In the following, I will show graphically, by means of an example, the influence of these multiple in-
tegrations in the union bound approximation. In the left plot of Fig. 3.6 it is shown that for low SNR�� ��� _� �  is strictly smaller than the PEP�� � m �� . Due to the high noise variance the area of the first
quadrant substantially contributes to the PEP�� � m ��  but not to the exact error probability

�� ��� _� � .
I.e. the integral over the first and the second quadrant (PEP�� � m �� ) is considerably larger than the
integral over the second quadrant (

�� ��� _� � ) only. Thus the PEP overestimates the exact error probabil-
ity. The lower noise variance (high SNR; SNRÙ	ÚÙ � � %SNRñNå ) in the right plot of Fig. 3.6 shows that
integrating over the first and the second quadrant (as it is done for the PEP) delivers approximately the
same error probability as integrating over only the second quadrant (as it should be done for the exact
error probability). Therefore, the PEP and the exact error probability are almost equal. Note that���	
denotes the�-th entry of the noise vector�. Also for the mathematical point of view, the PEP and the

Figure 3.6: 2-D shifted noise PDF for low SNR (left plot) and high SNR (right plot) for 4QAM modula-
tion.

exact error probability are approximately equal for high SNR (low + �� ):

PEP�� � m ��  � ¿ Á �+ �� Â (3.61)�� ��� _� �  � ¿ Á �+ �� Â � ò¿ Á �+ �� Âó� (3.62)
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3.4.2 Uncoded 2í2 MIMO system with 16QAM modulation

The results for a second example, namely a 2�2 MIMO system with 16QAM modulation, are shown in
Fig. 3.7. Note that in Fig. 3.7 the simulated BER vs. SNR curves are the solid lines, the union bounds are
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Figure 3.7: BER vs. SNR performance of a uncoded 2�2 MIMO system with 16QAM modulation.

the dashed lines and the dashed-dotted lines are the high SNRapproximations. The red curves (labeled
by �-marker) correspond to uncorrelated channels, the green curves (labeled byî-marker) correspond to
the moderate correlation scenario 1D3 and the blue curves (labeled byï-marker) correspond to the high
correlation scenario 14D3. As can be seen in Fig. 3.7 the achieved slope of the BER vs. SNR curve is�� (maximum slope), due to the well behaved matrices

R
. The calculated power losses for the scenario

1D3 and 14D3 are 1.57dB and 2.89dB at high SNR. In this case theunion bounds are not so tight as in
the previous example. The reason for this effect is the strong overlapping of the integration areas due
to the large number of ETs (�´� =574) and the small number of receive antennas�� . Additionally, the
influence of the overlapping of the integration areas decreases very slowly with increasing SNR and thus
a perfect tightness of the union bound as in the previous example does not show up in Fig. 3.7.



34 3.5. OPTIMAL PRECODING

3.5 Optimal Precoding

In Fig. 3.4 and in Fig. 3.7 it can be seen that the BER performance degrades if the MIMO channel is
spatially correlated. This loss can be measured by the diversity lossêë and the power lossêÇ defined in
Sec. 3.3.3. In order to mitigate the detrimental effect of spatial correlation, a linear precoding filterô can
be introduced at the transmitter. The main goal of this approach is to show what kind of improvement
could be obtained if such a rather involved signal processing of the transmit signal is applied.

With this precoding matrix, the resulting system model results in:� � �ô� � � (3.63)

With this modification of the transmit signal, the correlation matrix
8·tuv defined in Eqn. (3.20) results

in: 8·tuv �ô  � P�diag�W �	 K
 �� �ô 0 W �	 K
 �� �ô 0 � � � 0 W �	 K
 ��� �ô P �' 0W �	 K
 �Ä �ô  � IIw	 K
 � ô� P� J S RÄ J P� ' ô Ew	 K
 E (3.64)

Now, the distance

��ç 	 K
 , the total effective distance

��ç and the power lossêÇ depend on the prefilterô
and thus they are denoted by

��ç 	 K
 �ô , ��ç �ô  andêÇ �ô .
The optimal prefilterôNõ h minimizes the power loss4:ôNõ h � argãâö÷ ¯êÇ �ô ° � argãøù÷ &��ç �ô ( � argãâö÷ b�Î !̂�V � ² �

det�8 ·æ �ô  c (3.65)

with the side constraint (power constraint):

tr
Iô'Nõ hô Nõ hJ � �� � (3.66)

This constraint assures that no power amplification due to the precoding matrix occurs. This minimiza-
tion problem has to be solved for each type of uncoded MIMO system separately, due to the specific
entities²� , �´� . Therefore, in the following I will focus on the simplest uncoded MIMO system,
namely a 2�2 system with BPSK modulation. For this system and for the spatial correlation scenario
14D3, the ETs and their corresponding key-parameters are listed in the Tab. 3.3. In the last column of

ET W �� �� W �� �� �³´ � Å� ��ç � ��� �
0 0 0 0 4 0 0
1 6.8640 1.1565 1 4 2.8175 4
2 6.7277 1.1390 1 4 2.7682 4
3 3.4735 0.9960 2 2 1.8600 8
4 23.7098 3.5951 2 2 9.2325 8

Table 3.3: ET table for a uncoded MIMO system. Correlation scenario 14D3; BPSK;�� � x.

Tab. 3.3 the distances for the i.i.d. case are shown. The power loss for this correlation scenario is 2.8dB
and no diversity loss is observed. With the knowledge of the ETs and the corresponding key-parameters,
the minimization problem can be written as:ôNõ h � argãâö÷ b �̂�V � �W �� �� �ô  % W �� �� �ô  c � argãâö÷ ¯ú �ô ° (3.67)

4Using Eqn. (3.56), Eqn. (3.54) and Eqn. (3.52)
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and the side constraint is
tr

Iô' ôJ � x � (3.68)

Such an optimization problem can be solved by the Lagrange multiplier technique [43] by solving the
following equations: û �ô 0 W � ú �ô  � W % tr Iô' ôJÛû �ô 0 WÛô � �

(3.69)Ûû �ô 0 WÛ W � �
But even in this simplest possible case (2�2, BPSK) the optimization problem is still too complex to be
analytically solved.

Therefore, I have solved the optimization problem numerically by using a gradient algorithm, which is
explained in the following: In the first step a prefilter matrix ô is chosen randomly. Then the gradient is
approximately calculated by: Ûú �ô Ûô � üú �ô üô 0

(3.70)

whereú �ô  is defined in Eqn. (3.67). In order to approach the minimum, iterations with small stepsü� are performed as: ô	ý � � ô 	 � ü� üú �ô üô (3.71)

At each step the matrixô	ý � is normalized such that the side constraint is fulfilled. Then the next
iteration starts and the gradient ofú with the updated matrixô	ý � is calculated and so on. Performing
enough iterations, the Algorithm approaches to a local minimum. Actually, we want to find the global
minimum and therefore the iteration algorithm is repeated 10000 times, i.e., 10000 random start values
are considered. Thus, I guess that the probability of findingthe global minimum is quite high. The result
of this search for the optimum precoder matrixôNõ h with 10000 random start values is shown in the
histogram in Fig. 3.8. There are three cluster points, i.e.,three local minima. The local minimum leading
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Figure 3.8: Histogram of the power loss after optimization.
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to the smallest power loss is supposed to be the global minimum. The global minimum corresponds to
a power loss of 0.2dB. The modified key-parameters of the ETs are listed in Tab. 3.4. As it can be seen

ET W�� �� W �� �� �³´ � Å� ��ç � ��� �
0 0 0 0 4.0000 0 0
1 10.1606 1.5809 1.0000 4.0000 4.0079 4
2 10.1106 1.5725 1.0000 4.0000 3.9873 4
3 13.1983 2.0010 2.0000 2.0000 5.1390 8
4 27.3440 4.3058 2.0000 2.0000 10.8507 8

Table 3.4: ET table for a precoded MIMO system. Correlation scenario 14D3; BPSK;�� � x.

from the table, the distances are much better than without precoding and approximately as good as the
distances for the i.i.d. case (last column). This result also shows up in the BER vs. SNR curves shown
in the Fig. 3.9. In Fig. 3.9 the black curve is for spatially uncorrelated fading, the blue curve for the
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Figure 3.9: BER vs. SNR curves for a precoded 2�2 MIMO system using BPSK modulation.

correlation scenario 14D3 without precoding and the red curve is for the correlation scenario 14D3 with
optimal precoding. The interesting result is that the precoded MIMO system performs even better in
spatially correlated channels in the low SNR regime than theuncoded system performs in uncorrelated
channels. In the high SNR domain both curves are almost identical. The calculated power loss predicts
a performance difference of 0.2dB that will only show up at very high SNR. This gain at low SNR was
also observed in [44], although the authors do not use the optimal criteria in their paper.



Chapter 4

Space-Time Block Coded Data
Transmission

In this section we focus on the analytic calculation of the BER-performance of standard Space-Time
Block Codes (STBCs) in quasi static, frequency flat Rayleighfading. Spatially uncorrelated and spatially
correlated MIMO channels will be considered. At the beginning I will summarize the fundamentals
of space-time block coding. Then a tightunion bound for the BER is derived. Sec. 4.3 covers the
derivation of a very tightlower bound for the BER. In the last section results of several STBCs using
various modulation formats are presented and discussed.

4.1 Fundamentals of Space-Time Block Codes

As mentioned above, the scope of this thesis are standard STBCs. In this context the term “standard”
means that I do not take into account codes designed especially for fast fading, frequency selective fading
or other advanced coding techniques, which do not fit into thesystem model introduced in Sec. 2.1. The
current thesis also does not cover the performance calculation of space time trellis codes [5], concatenated
codes [47] and space time turbo codes [48]. In the following we are only concerned with STBCs.

First let’s repeat some basic definitions: The code word difference matrixþ	K
 and the corresponding
distance matrixÿ	K
 are defined as:þ	K
 � 2	 � 2
 0 ÿ 	 K
 � þ'	 K
 þ 	 K
 0

(4.1)

where2	 and 2
 are two valid STBC matrices. The symbol rate�) is defined as the number of in-
dependent symbols� � � transmitted in one code block divided by the number of occupied times slots�6� � : �) � � � ��6� � � (4.2)

Additionally, it is pointed out what we understand under single, double, ... and multiple symbol errors:
STBC words defined further ahead are functions of the transmitted information symbols:2 � � 0  � 0 ���0  � �5�
A single symbol error occurs if the code matrix2 � � 0  � 0 ���0  � �5  is transmitted and the receiver decides
in favor of the code matrix2 � � �� 0  � 0 ���0  � �5  with  �� 7�  �. In general, single symbol errors between two
valid code matrices are errors where only one information symbol (out of� � � symbols) is erroneous. If
two symbols (out of� � � symbols) in two valid code words are different, then we speakof double symbol
errors. An example for a double symbol error is:2 � � 0  � 0 ���0  � � 5  is transmitted and2 � �� 0  �� 0 ���0  � �5 
is decoded. Multiple symbol errors are all errors except forthe single symbol errors. Note that, according

37
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to the above definition, we speak of single symbol errors, even if more than one entry of the difference
matrix is non-zero, since in general each information symbol  	 shows up in more than one position in
an STBC matrix! The number of non-zero entries in the difference matrix corresponds to the number of
entries in which this symbol shows up in the STBC matrix.

4.1.1 Space-Time Block Coding Techniques

In the following two special subsets of STBCs are distinguished, namely orthogonal and non-orthogonal
STBCs. Additionally, their corresponding properties are explained.

4.1.1.1 Orthogonal Space-Time Block Codes

O-STBCs are defined as:

Definition 4.1 A STBC (defined by the entire set of code words
�

) is called orthogonal if and only if the

distance matrix is a scaled identity matrix:ÿ	K
 � Á_ � �  �� _� � _ � �  �� _� � � � � � ddd � �5 �  �� � 5 ddd�Â *1

for all possible code word indices� 0 � .

The most prominent representative of an O-STBCs is the Alamouti code [49]. The Alamouti STBC is
defined by the following code word matrix:2 � �  � � E� �  E� � 0

(4.3)

i.e., the symbols � and  � are transmitted from antenna 1 and 2 in the first time slot and� E� and  E�
are transmitted from antenna 1 and 2 in the second time slot. Considering only one receive antenna
(�� � �

), the received signal vector corresponding to two successive time slots can be written as:�� � >� 2 � ���� � ��  � �� �� � ��  �  � � E� �  E� � � �� � ��  (4.4)

An equivalent notation is � � �� E� �o pq r��
� � ��� � ���E�� ��E�� �o pq r9 � �  � � �o pq r` � � � �� E� �o pq r�a � (4.5)

In this notation the transmission system behaves as a (2�2) uncoded MIMO system with a strongly
structured virtual channel matrix: � � � � ��� � ���E�� ��E�� � � (4.6)

Applying a matched filter�'� at the receiver, we get:�'� Q� � �'� � � � � �'� � � I_� �� _� � _� �� _�J � � �'� � (4.7)

1A similar definition holds for “STBCs from the generalized orthogonal design”. For these codes the distance matrix is
always diagonal:� t uv £ 	 t uv but not necessarily a scaled identity matrix.
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As it can be seen, after matched filtering the signal vector�'� Q� results in the noisy transmit vector�
multiplied by a channel dependent gain factor

I_� �� _� � _� �� _�J, i.e., the receiver can detect (quantize)
the symbols � and � independently. In this way, the ML performance is achieved with strongly reduced
receiver complexity. Additionally, it is easy to recognizethat a diversity order of two is achieved, since
the factor in front of the symbol vector� consists of twice the squared magnitude of independent random
variables representing two independent paths. These two properties (full diversity and ML detection by a
linear matched filter) are generally valid for O-STBCs. The disadvantage of O-STBCs is a loss in symbol
rate, since O-STBCs with symbol rate�� � �

(full rate) only exist for�� � x. For higher values of�� ,
O-STBCs only exist with symbol rates�� ~ �

. Summarizing the properties of O-STBCs, we get:

-) Very simple ML decoding algorithm

-) O-STBCs always achieve full diversity order of� � �� ��
-) The achievable symbol rate is one for�� � x only. For higher�� the symbol rate is smaller than 1.

As an illustrative example I show an O-STBC for�� � � and�� � ¥±� that is investigated further
ahead [52]: 2NMhÙ � XYYYZ  � � E� � E� � �  E� � � E� � �  E�  E��  � � �  �

[\\\] � (4.8)

4.1.1.2 Non-Orthogonal Space-Time Block Codes

Non-Orthogonal Space-Time Block Codes (NO-STBCs) are all other STBCs that do not obey the con-
straints given in Def. 4.1. The important properties of suchcodes are that they can achieve higher symbol
rates than O-STBCs, however they do not achieve the full diversity advantage and ML decoding is more
involved than for O-STBCs. Some NO-STBCs that are of specialinterest in the rest of this chapter are
listed below. The first and here most often used NO-STBC is thecyclic STBC [34]:

2Ý
 Ýñ	Ý � XYYYZ  �  �  �  � �  �  �  � �  �  �  � �  �  �  �
[\\\] 0

(4.9)

which offers�� � �
information symbol per time slot. The name cyclic comes formthe cyclically

shifted columns and rows in the code matrix2Ý
 Ýñ	Ý. Another NO-STBC is the so-called Extended
Alamouti (EA) code [46], which is also of interest in this thesis:

2´� � XYYYZ  �  E�  E�  � � � E�  E� � � �  E� � E� � � � � E� � E�  �
[\\\] � (4.10)

This code has also full rate�� � �
. It essentially consists of two independent pairs of the simple (2�2)

Alamouti code. The first Alamouti pair consists of the symbols  � and � and the second of � and � .
The last code discussed in detail in the current thesis is theso-called Double-Space Time Transmit
Diversity (D-STTD) code proposed in [45], which consists oftwo independent Alamouti code blocks

2ë ��� � ë � XYYYZ  �  E� � � E� �  E� � � E�
[\\\] 0

(4.11)

achieving a rate�� of 2 information symbols per time slot.
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4.1.2 Code Design Criteria

Code Design Criteria are on one hand very important in order to design good codes and on the other hand
to get more insight into the behavior of existing STBCs. In order to find meaningful design criteria, the
overall BER has to be calculated and afterwards conditions have to be found to minimize the BER. As it
is already known from the derivations in Sec. 3, the overall BER can be upper bounded by the sum over
all possible PEPs. Therefore, minimizing the total BER results in optimizing all individual PEPs. For
this reason, we start with calculating the PEP by following the same strategy as in Sec. 3.1 resulting in:

P�2	 m 2
  � P��1 � � 2	 �� n �1 � � 2
 ��  � P��3 �� n �� �2	 � 2
 o pq r� t uv �3 ��  0
(4.12)

This inequality can be further simplified to:

�3 �� n �� þ	K
 � 3 ��� �̂�V � ��� �E� n � �̂�V ��>�� þ 	 K
 � ���  �>�� þ 	 K
 � ��� '� �̂�V � ��� �E� n � �̂�V ��>�� þ 	 K
 � E� � ��� �E� � >�� þ 	 K
 þ'	 K
 >E� � ��� þ'	K
 >E� � ��̂�V � >�� þ 	 K
 þ'	 K
 > E� n � �̂�V � x � y &>�� þ 	 K
 �E� (o pq rzt uv (4.13)

��� is theÃ-th row of 3 and
>�� is theÃ-th row of � . Let’s assume for the moment

>� andþ	K
 to be
fixed and let’s focus on the statistics of{	 K
 with respect to the channel noise�� . Linear manipulations
do not change the Gaussian statistic and therefore{	 K
 is a real Gaussian random variable with mean:|zt uv � }a b ��̂�V � x� y &>�� þ 	 K
 � E� (c � �

(4.14)

and variance+ �zt uv � }a b ��̂�V � x� y &>�� þ 	 K
 � E� ( x� y &��� þ'	K
 >E� (c � � � � � x+ �� � �̂�V � >�� þ 	 K
 þ'	 K
 > E� 0
(4.15)

resulting in the following PEP (P�2	 m 2
  � PEP	 K
 ):
PEP	 K
 � P�{	 K
 ~ � ��̂�V � >�� þ 	K
 þ'	 K
 >E�  � Q

XYZ ���� U���V � >�� þ 	 K
 þ'	 K
 >E�x+ �� [\] � Q

XYZ ���� ��� 	 K
x+ �� [\] (4.16)

The squared distance at the receiver

��� 	 K
 is now defined by��� 	 K
 � ��̂�V � >�� þ 	 K
 þ'	 K
 > E� � ��þ	K
 �� � tr��þ	 K
 þ 	 K
 ' �'  � tr ��ÿ	 K
 � '  � (4.17)

The distance between the code matrices2	 and2
 at thetransmitter is defined as:��� 	 K
 � �þ	K
 �� � tr �þ 	 K
 þ 	 K
 '  � tr�ÿ 	K
  � (4.18)
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Obviously, the distance

��� 	 K
 at the receiver governs the error performance in Eqn. (4.16). In the follow-
ing the PEP is averaged with respect to the distance as a function of the channel parameters, in order to
get a mean PEP. For this reason, the statistics of the squareddistance has to be known. For this purpose,
we focus on uncorrelated quasi static Rayleigh fading channels. The distance at thereceiver can be
further simplified to:��� 	 K
 � ��̂�V � >�� þ 	 K
 þ'	 K
o pq r� t uv > E� � � �̂�V � >�� ÿ 	 K
o pq r� t uv � t uv ��tuv >E� � ��̂�V � >�� P 	K
o pq r� ¡t uv ¢æ ! � 	 K
 P '	 K
 >E�o pq r� ¡t uv ¢æ �� ��̂�V � > �	 K
 �� � � 	 K
 > �	 K
 �� E � Mt uv̂ñV � � �̂�V � ddd� �	 K
 �� Kñ ddd�o pq r� ¡t uv ¢�

W�	 K
 �ñ � Mt uv̂ñV � � �	 K
 �ñ W �	 K
 �ñ 0
(4.19)

where
� 	 K
=diag(W�	 K
 �� ,W �	 K
 �� ,...,W�	 K
 �M t uv ), theW�	 K
 �ñ are the eigenvalues of the so-called distance matrixÿ	K
 ,� 	 K
 denotes the rank ofÿ	K
 and the row vector

> �	 K
 �� �
=(� �	 K
 �� � �	 K
 �� ... � �	 K
 ��! ). Note that the multiplication>�� P 	 K
 does not change the Gaussian statistic of

>�� and therefore the random variables

� �	 K
 �ñ areº�
distributed withx�� degrees of freedom with variance 1. Their PDF is thus the sameas in Eqn. (3.25).
In order to get meaningful but not too complicated design criteria, the well known Chernoff bound [27]
is used to approximated the Gaussian Q-function:

Q�×  © y�� C G� � (4.20)

With this approximation, the union bound for the mean PEP results in2:

PEP��g�	 K
 © }9 :<=y� ¾C� t uv�� C¬ ?@A � }9 :<=y�U �t uv� B � ¡t uv ¢� Ö ¡t uv ¢��� C¬ ?@A � MtuvÓñV � }9 :<=y� � ¡t uv ¢� Ö ¡t uv ¢��� C¬ ?@A �Mt uvÓñV � �� � W �	 K
 �ñ�+ �� � ��� � Mt uvÓñV � Á� � W �	 K
 �ñ SNR��� Â ��� � (4.21)

Rewriting the above product we get:

PEP��g�	 K
 © � � �Mt uv̂ñV � W �	 K
 �ñ SNR��� � ��� � � � � � XZ �t uv ����Mt uvÓñV � W �	 K
 �ñ SNR��� [] �Mt uv �� � (4.22)

With this equation it is possible to formulate two code design criteria, namely on one hand for low SNR
and on the other hand for high SNR. The first design rule is suited for the low SNR regime where the
first two terms in Eqn. (4.22) are essential.

Design Rule 4.1For the low SNR regime the trace of the distance matrixÿ	K
 for all code pairs (� 0 � )

should be as larger as possible (Trace Criterion), since
UMtuvñV � W �	 K
 �ñ =tr( ÿ	K
 ).

The code design criterion described in Theorem 4.1 has been proposed first in [5].

The more widely known design criterion is suited for the highSNR domain, where the last term in
Eqn. (4.22) is the most important one leading to:

2Note that the modulation format has mean power�5 £ �
.
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Design Rule 4.2For the high SNR regime we have two aims: Firstly, the rank� 	 K
 of the distance matrixÿ	K
 should be as large as possible for all code pairs (� 0 � ) (Rank criterion). Having optimal rank, the

second aim is to maximize
ÔMtuvñV � W �	 K
 �ñ =det(ÿ	K
 ) for all code pairs (� 0 � ) (Determinant Criterion).

This code design criterion has been introduced by Tarokh [29].

The best one can do with respect to a good code design is to aim at both design criteria. For example, for
the code design in the high SNR domain theRankandDeterminant Criteriashould be maximized first.
If the code search results in more than one optimal solution with respect to these two criteria, then the
final optimum is that code, which maximizes theTrace Criteriontoo.

A further conclusion of the derivation above is that only theeigenvaluesW �	 K
 �ñ of the distance matrixÿ �	 K
 � govern the error performance of STBCs.

Additionally, aloose union boundfor the PEP can be found by neglecting the one-term in the bracket of
the last term in Eqn. (4.21) resulting in:

PEP��g�	 K
 © Mt uvÓñV � ÁW �	 K
 �ñ SNR��� Â ��� � XZ �t uvTÔMt uvñV � W �	 K
 �ñ��� SNR

[]�Mtuv �� � (4.23)

The factor in front of the SNR is called coding advantage3. The exponent in Eqn. (4.23) determines the
slope of the mean PEP vs. SNR curve and is called diversity gain.

3Note the slight difference between coding gain and coding advantage. In principle the term coding gain only exists in non
fading channels. In fading channels the coding theory only specifics a diversity gain and an coding advantage.
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4.1.3 Block Coding: SISO vs. MIMO

In this section I want to point out the main differences between SISO and MIMO block coding, to get a
feeling for the error mechanism in both cases.

4.1.3.1 Distance Properties

SISO Block Codes:

Consider first a simple repetition code, where the information symbols � to  � �5 are simply repeated
once: 2 � � �  � � � �  � �5  �  � � � �  � �5  � (4.24)

The distance between2 and another valid2 �
with2 � � � ��  �� � � �  �� �5  ��  �� � � �  �� � 5  (4.25)

(at the transmitter) is:��� � Áx dd � �  �� dd� � x dd � �  �� dd� � � � � � x ddd � �5 �  �� �5 ddd�Â � (4.26)

With channel gain� the distance at the receiver is simply��� � _� _� Áx dd � �  �� dd� � x dd � �  �� dd� � � � � � x ddd � �5 �  �� �5 ddd�Â � _� _���� � (4.27)

The distance at the receiver is simply a scaled version of thecode word distance at the transmitter and thus
code pairs that have the smallest (largest) distance at the transmitter, have the smallest (largest) distance at
the receiver too. In the following, this behavior is called theDistance Proportion Preservation Property.
The second interesting observation is that the distance at the receiver can become zero (

��� � �
) if and

only if the channel gain is zero (_� _� � �
). The third property is that the distance (irrespective whether it

is measured at the receiver or at the transmitter) of code word pairs with single symbol errors is always
smaller than the distance between code word pairs with double or multiple symbol errors. Therefore, we
can conclude that the error performance is governed by single symbol errors. These properties are not
new but useful in the following discussion.

O-STBCs:

In the following the distance properties of pairs of valid code words are discussed for O-STBCs. As
defined in Def. 4.1, O-STBCs have a scaled identity distance matrix for all code pairs:ÿ � Ádd � �  �� dd� � dd � �  �� dd� � � � � � ddd � �5 �  �� �5 ddd�Â * (4.28)

With this knowledge and the aid of Eqn.(4.17) and Eqn.(4.18)the distance at thetransmitter reads as:��� � tr �ÿ  � Ádd � �  �� dd� � dd � �  �� dd� � � � � � ddd � �5 �  �� � 5 ddd�Â (4.29)

and the distance at thereceiver:��� � tr��ÿ�' � I_� �� _� � _� �� _� � � � � � _��� �! _� J Ádd � �  �� dd� � dd � �  �� dd� � � � � � ddd � �5 �  �� �5 ddd�Â� I_� �� _� � _� �� _� � � � � � _��� �! _� J ��� (4.30)
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Comparing these distance equations with the distance equations for the SISO case, it can be seen that
O-STBCs have essentially the same properties as the block codes in SISO channels.

Thus, we can summarize the distance properties for block codes in SISO channels and O-STBCs:

-) Distance Proportion Preservation Property

-) Zero distance at the receiver is possible if and only if thechannel gain vanishes

-) Single symbol errors lead to the smallest distances at thereceiver

Due to property 3 it can be concluded that the BER performanceof such codes is governed by single
symbol errors.

NO-STBC:

For NO-STBC things are quite different. In fact, these threedistance properties cited above are not valid
in general. It is not easy to show that these properties are not fulfilled for the entire set of NO-STBCs.
Therefore, I will show two difference matrices for a simple NO-STBC as examples to illustrate these
different distance properties. Let’s discuss the following simple NO-STBC:2 � �  �  � �  � � 0

(4.31)

which could be used in a 2�1 MIMO system using BPSK modulation for example. Choosing the code
matrix 2 and2 �

in such a way that the difference matrix for a double symbol error results inþ� � 2 � 2 � � � x xx x � 0
(4.32)

the distance at the transmitter for this specific differencematrix is:��� � tr�ÿ �  � �§ � (4.33)

Choosing the channel vector
> � �� � �, the distance at the receiver is:��� � tr �>ÿ �>'  � � � (4.34)

Note that the distance at the receiver vanishes if and only if�þ � ¸ � (4.35)

A necessary condition for getting an all zero matrix as the result of a matrix multiplication is that both
involved matrices have to be singular, i.e., the determinant of each matrix is zero [50]. A vanishing
determinant is equivalent to the fact that the corresponding matrix is rank deficient.

Let’s consider a second difference matrix from the STBC defined in Eqn. (4.31). For a single symbol
error, with � erroneously, the difference matrix is:þ � � 2 � 2 � � � x �� x � � (4.36)

The distances at the transmitter and at the receiver are:��� � tr�ÿ ���	 K
  � � ��� � tr�>ÿ ���	 K
 >'  � � � (4.37)

With these two simple examples I have illustrated that the three properties, which are valued for SISO
block coding and O-STBCs, are not valid in case of NO-STBCs. The first property, Distance Proportion
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Preservation Property, says that if the distance of one codepair is larger than the other at the transmitter,
then it must also be larger at the receiver. Consider the two code pairs above, this is not true for the code
in Eqn. (4.31) and thus it is not true in general for the entireset of NO-STBCs.

The next property is that the distance at the receiver can become zero if and only if the entire channel gain
vanishes. Considering the first example (þ�), the distance at the receiver is zero, although the channel
gain is not zero:_� _� � _� �� _� � _� �� _� � x. Thus, the second property does not hold in this case.

The third property, the smallest distance corresponds to single symbol errors, is also not valid here, since
the distance at the receiver forþ� corresponding to a double symbol error is smaller (actuallyzero) than
the distance at the receiver in case of a single symbol error.

Therefore, we formulate a so-called MIMO-paradoxon:

The distance properties valid for block codes in SISO systems and for O-STBCs are in general not valid
for NO-STBCs and most important: large distances at the transmitter can be transformed into small
distances at the receiver.

Therefore, in case of data transmission over MIMO systems a fundamental question arises: What kind
of errors dominate the BER performance in case of NO-STBCs atvarious levels of SNR. This question
will be answered in the following section.

4.1.3.2 Dominating Errors

In this section we want to find out what kind of errors dominatethe BER performance of NO-STBCs.
Unfortunately, this cannot be solved in general. Therefore, we first focus on the simple example shown
in Sec. 4.1.3.1, Eqn. (4.31). As shown in Sec. 4.1.2 the PEPs strongly depend on the eigenvalues of the
distance matrix. Thus calculating the eigenvalues of the distance matrix can help to get more insight into
the BER performance of NO-STBCs. The eigenvalues corresponding to the single symbol error (differ-
ence matrixþ �, Eqn. (4.36)) areW���� � W ���� � x in this example, and the eigenvalues corresponding to

the double symbol error (difference matrixþ� , Eqn. (4.32)) areW ���� � �§
andW���� � �

. As it is already
known from Sec. 4.1.2, at low SNR the trace ofÿ determines the BER performance. Thus, in the low
SNR regime the single symbol error is dominating due to the small trace ofÿ � (tr(ÿ �)=4), whereas for
the double error case we have tr(ÿ�)=16. In contrast, in the high SNR domain a high rank ofÿ is impor-
tant and thus the double error case dominates the BER. In Fig.4.1 the PEPs vs. SNR corresponding to
the single symbol error and the double symbol error are plotted. For this purpose the PEP approximation
of Eqn. (4.21) is used. Fig. 4.1 confirms the expected behavior of the PEPs. The single symbol error
(þ �, blue line) dominates the BER at low SNR and the double symbolerror (þ� , black line) dominates
the BER at high SNR.

This behavior, namely that single symbol errors dominate the BER at low SNR and multiple symbol
errors dominate the BER at high SNR, has been observed for allNO-STBCs we have investigated. This
is not a prove in a mathematical sense, but it is an interesting empirical result that strengthens our general
claim and philosophy.

Moreover, Fig. 4.1 confirms the code design criteria derivedin Sec. 4.1.2. The PEP is minimized in the
low SNR domain if the trace of the distance matrixÿ is maximized. In the high SNR domain a high
rank ofÿ reduces the PEP.

In the following we show an alternative explanation why multiple errors can dominate the performance
in some SNR regions, which is based on the distance distributions of code word pairs at the receiver.
Once again, we focus on the simple code example presented in Eqn. (4.31). According to Eqn. (4.19) the
distance at the receiver isº� distributed with 4 degrees of freedom and a total variance of2 (W� � W� � x)
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Figure 4.1: PEP vs. SNR performance for the cyclic STBC. BPSKmodulation;�� � x, �� � �
.

for the single symbol error. The code word distance at the receiver for the double symbol error isº�
distributed with 2 degrees of freedom and total variance of 16 (W� � �§

). The PEP is the expectation
value of the Gaussian Q-function with respect to the distance

�
that means

PEP� � �À Q Á �x+ �� Â » ¼C �� �� 0
(4.38)

i.e., the Gaussian Q-function has to be multiplied by the PDFof the distance

�
and the area under the

weighted Q-function is the mean PEP. The distribution of thecode word distances at the receiver for a
single symbol error (þ �) and a double symbol error (þ�) is shown in Fig. 4.2. Including the Q-function4
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Figure 4.2: PDFs of the code word distances at the receiver for the cyclic code. BPSK modulation;�� � x, �� � �
.
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for different SNR values in a zoomed version of Fig. 4.2 for small values of

�
, leads to the curves in

Fig. 4.3. In Fig. 4.3 one can easily estimate the multiplication of the PDF and the Q-function simply by
looking at the curves. The resulting product has to be integrated over the entire range of

�
to find the

mean PEP. Let’s consider the Q-function for SNR=6dB and the two PDFs of the distance corresponding
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Figure 4.3: PDFs of the code word distances at the receiver for the cyclic code using BPSK modulation
and the Gaussian Q-function.

to a single symbol error and a double symbol error. The product of the black solid line and the blue
line is much higher than the product of the black solid line and the red line. Thus the integral over the
resulting product is also essentially larger for the product with the blue line and thus single symbol errors
dominate at low SNR (6dB). At 16dB SNR, where the dashed line is used as a weighting function for
the blue and the red line, the contribution of the red curve dominates and therefore double symbol errors
dominate the BER at high SNR (16dB).

A further general conclusion can be drawn, namely that essentially the distance distribution around
small distance valuesdetermines the error performanceat high SNR, which has already been observed
in [53].

4The unusual shape of the Q-function is due to the linear scaled vertical axis.
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4.2 Union Bound of the BER

In this section we derive a tight union bound for the BER performance of STBCs in spatially uncorrelated
and correlated MIMO channels. The essential results have already been published in [54]. First, all
derivations are performed for the general case and afterwards a simple example illustrates the results.

The union bound of the error probability
��

is simply calculated by summing up all PEPs as already
performed in Sec. 3: �� © �_i _� �5 ª« ª¬�5	̂V � ª« ª¬�5v̂  Bv ® t PEP	 K
 � (4.39)

Note that Eqn. (4.39) implicitly assumes that the code wordsoccur equally likely. In order to obtain a
union bound for the BER, a further step is necessary. For eachcrossover event2	 m 2
 a different num-
ber of symbols and thus a different number of bits are erroneous. For this reason, a so-called weighting
factor Q² 	 K
 is introduced. This factor turns the code word error probability into the BER, by counting the
number of erroneous bits�³´ 	 K
 in the numerator and the number of transmitted bits per code word, that
is ld�_i _ � � � , in the denominator: Q² 	 K
 � �³´ 	 K


ld �_i _ � � � � (4.40)

Then, we get:

BER © �_i _� �5 ª« ª¬� 5	̂V � ª« ª¬�5v̂  Bv ® t Q² 	 K
 PEP	 K
 � (4.41)

The final essential task to do, is the calculation of the exactPEP	 K
 . As can be seen in Eqn. (4.16), the PEP
is governed by the Euclidean distance

��� 	 K
 at the receiver. Therefore, the statistics of the distance has
to be calculated and afterwards the Gaussian Q-function hasto be averaged with respect to the distance
distribution. Due to the different methods to calculate thePDFs of the distances at the receiver, the two
spatial correlation types are considered separately.

4.2.1 Spatially Uncorrelated Channels

In this section, the union bound for spatially uncorrelatedchannels is derived. For uncorrelated channels,
the code word distance at the receiver is (Eqn. (4.19)):��� 	 K
 � Mt uv̂ñV � W �	 K
 �ñ � �̂�V � ddd� �	 K
 �� Kñ ddd� 0

(4.42)

whereW �	 K
 �ñ are the eigenvalues of the distance matrixÿ	K
 . Here, two cases are considered separately:
There are code pairs with distance matricesÿ	K
 that lead to� 	 K
 equaleigenvalues and matricesÿ	K
 that
have different eigenvalues, i.e., the eigenvalues of the distance matrix can be different from each other
or there can be two eigenvalues that are equal and additionally two different eigenvalues, and all other
combinations of eigenvalues.

In the case where all non-zero eigenvalues are equal, the distance

��� 	 K
 is º�-distributed withx� 	 K
 ��
degrees of freedom5: » ¼C� t uv ��  � � Mt uv �� ���W �	 K
 � Mt uv �� ½ �� 	 K
 ��  y� �Ö ¡t uv ¢ (4.43)

5The index� at � ¡t uv ¢� is omitted, because all eigenvalues are equal.
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Averaging over distances

�
in the Gaussian Q-function results in the mean PEP:

PEPi.i.d. �W �	 K
 � 0 � 	 K
  � � �À Q �� �x+ �� � � Mt uv �� ���W �	 K
 � Mt uv �� ½ �� 	 K
 ��  y� �Ö ¡t uv ¢ ��� Á� � |	K
x ÂMt uv �� Mt uv �� ��ñ̂VÀ � � 	 K
 �� � � � ÈÈ � Á� � |	 K
x Â ñ 0
with |	 K
 � � W�	 K
 ��+ �� � W �	 K
 � � (4.44)

The solution of the integral is taken from [36].

For other code pairs with a general set of eigenvalues ofÿ	K
 , we start with an example. Consider the

case whereW �	 K
 �� � W �	 K
 �� , then this eigenvalue is denoted byW ! �	 K
 �� , and if W�	 K
 �� � W �	 K
 �� , then this

eigenvalue byW ! �	 K
 �� (assuming� 	 K
 � �). Then, the distance at the receiver (Eqn. (4.42)) reads as:��� 	 K
 � W �	 K
 �� � �̂�V � ddd� �	 K
 �� K� ddd� � W �	 K
 �� � �̂�V � ddd� �	 K
 �� K� ddd� � W �	 K
 �� � �̂�V � ddd� �	 K
 �� K� ddd� � W �	 K
 �� � �̂�V � ddd� �	 K
 �� K� ddd�� W ! �	 K
 �� ���̂�V � ddd� �	 K
 �� K� ddd� � � �̂�V � ddd� �	 K
 �� K� ddd�� � W ! �	 K
 �� � � �̂�V � ddd� �	 K
 �� K� ddd� � ��̂�V � ddd� �	 K
 �� K� ddd��� �̂
"V � W ! �	 K
 �" � � �̂�V � ddd� �" �� ddd� 0

(4.45)

where� ���� summarizes the elements� �	 K
 �� K� and� �	 K
 �� K� for all Ã (Ã � �0 x 0 ���0 �� ) and� ���� summarizes the

elements� �	 K
 �� K� and� �	 K
 �� K� for all Ã (Ã � �0 x 0 ���0 �� ).

For general considerations we denote the number of different eigenvalues byy �	 K
 � and the frequency of
the #-th eigenvalue is denoted byÅ �	 K
 �" . Then, the distance at the receiver (Eqn. (4.45) can be rewritten
as: ��� 	 K
 �  ¡t uv ¢

"̂V � W ! �	 K
 �"
$ ¡t uv ¢% ���̂V � ddd� �" �� ddd� 0

(4.46)

where the elements� �" �� are a subset of the set of all elements� �	 K
 �� Kñ as explained in the example above.

Thus, the Characteristic Function (CF) of the squared distance

��� 	 K
 results in:Ò¼C� t uv �$ � �Ô  ¡t uv ¢"V � I� � � $ W ! �	 K
 �" J $ ¡t uv ¢% �� �
After a partial fraction expansion the CF can be written in the form::Ò¼C� t uv �$ �  ¡t uv ¢

"̂V � $ ¡t uv ¢% ��õ̂ V � & �	 K
 �õ "I� � � $ W ! �	 K
 �" Jõ �
Knowing the CF we can calculate the PDF of the squared distance by applying the inverse Fourier
transform on

Ò¼C� t uv ��$  resulting in:» ¼C� t uv ��  �  ¡t uv ¢
"̂V � $ ¡t uv ¢% ��õ̂ V � & �	 K
 �õ " �õ ���W ! �	 K
 �" õ �» � �Ê y� �Ö! ¡t uv ¢%



50 4.2. UNION BOUND OF THE BER

with

& �	 K
 �õ " �
:<=¼' ¡t uv ¢% ¬� ()¼�' ¡t uv ¢% ¬� () I� � ×W ! �	 K
 �" J $ ¡t uv ¢% ��  ¡t uv ¢Ô"V � Á ��ý�*! ¡t uv ¢% Â $ ¡t uv ¢% �� ?@Adddddd�V� BÖ ! ¡t uv ¢%�Å �	 K
 �" �� � » Ê�W ! �	 K
 �" $ ¡t uv ¢% �� �õ

Averaging over the distances in the Gaussian Q-function results in the mean PEP:

PEPi.i.d.� �W ! �	 K
 �" 0 Å �	 K
 �"  � � �À Q �� �x+ �� � » ¼C� t uv �� �� (4.47)

�  ¡t uv ¢
"̂V � $ ¡t uv ¢% ��õ̂ V � & �	 K
 �õ " �� � | �	 K
 �"x �õ õ � �̂ñVÀ � » � � � ÈÈ � �� � | �	 K
 �"x � ñ
with | �	 K
 �" � ���� W ! �	 K
 �"�+ �� � W ! �	 K
 �"

Investigating the eigenvalues ofÿ	K
 for all crossover events can help to simplify the summation in
Eqn. (4.41). According to Def. 3.1 the key-parameters determining the BER-performance are the eigen-
values ofÿ	K
 .
In order to show the entire calculation of the union bound forthe BER in all details, I will concretize
my investigations by focusing on one specific example. In this example, the cyclic code (�� � �)
defined in Eqn. (4.9) is used. BPSK is used as the modulation format. For most codes the Error Types
(ETs) and their corresponding parameters can only be found by an exhaustive search. Exceptions are
for example orthogonal codes, the cyclic code and the EA code, because their eigenvectors are the same
for all crossover events and therefore we can easily find analytic expressions for the eigenvalues. With
these expressions it is possible to list all ETs and the corresponding key-parameters in a similar manner
as it has been shown in Sec. (3.3.1). If an exhaustive search is used to find the key-parameters of the
various ETs, it is advantageous to utilize the symmetries ofthe underlying modulation format, in order
to save computation time. The ETs and their corresponding key-parameters of the cyclic code defined
in Eqn. (4.9) are shown in Table. 4.1. Here, the key-parameter of the ETs are: the sets of eigenvalues,

ETÃ W �� �� W �� �� W �� �� W �� �� Å� �³´ �Ã 0 0 0 0 16 0
1 4 4 4 4 64 1
2 16 8 8 0 64 2
3 16 16 0 0 32 2
4 36 4 4 4 32 3
5 20 20 4 4 32 3
6 16 16 16 16 8 4
7 32 32 0 0 4 4
8 64 0 0 0 4 4

Table 4.1: ET table for the cyclic STBC. BPSK modulation;�� � �.

the numberÅ� of crossover events leading to a certain ET and the corresponding number�³´ � of
different information bits. In this example it can be seen that the ETs with numberÃ=1,3,6,7,8 have
equal eigenvalues and therefore the PEPi.i.d. �W �	 K
 � 0 � 	 K
  given in Eqn. (4.44) is used to calculate the
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corresponding PEP. For the remaining ETs with numberÃ=2,4,5 the PEPi.i.d.� �W ! �	 K
 �" 0 Å �	 K
 �"  given in
Eqn. (4.47) is used. Due to only two different eigenvalues the PEP is governed by only four parameters

and therefore it is denoted by PEPi.i.d.� �W ! �	 K
 �� 0 Å �	 K
 �� 0 W ! �	 K
 �� 0 Å �	 K
 ��  instead of PEPi.i.d.� �W ! �	 K
 �" 0 Å �	 K
 �" .
Summing up the PEPs for all crossover events results in the double sum given in Eqn. (4.41). Due to the
introduction of the ETs, the summation over all crossover events can be reduced to a single sum over all
ETs and thus Eqn. (4.41) reduces to:

BER © �Î !̂�V � ² � PEPi.i.d.� 0
with ²� � Å�_i _� �5 �³´ �

ld�_i _ � � � 0
(4.48)

where PEPi.i.d.� denotes the PEP for the k-th ET and�´� is the number of distinct ETs. In the special
case of the cyclic STBC (�� � �) discussed here,�´� is 8 (ET0 is of no relevance, since it corresponds
to a correct code word detection).

Inserting the parameters given in Table. 4.1 the union boundfor the BER of this cyclic code (�� � �)
can be written as:

BER © � %PEPi.i.d. �� 0 � � x %PEPi.i.d.� ��§ 0 �0 � 0 x� � %PEPi.i.d. ��§ 0 x� ¥x %PEPi.i.d.� �¥§ 0 �0 � 0 ¥�¥x %PEPi.i.d.� �x� 0 x 0 � 0 x� �x %PEPi.i.d. ��§ 0 � � �� %PEPi.i.d. �¥x 0 x� �� %PEPi.i.d. �§� 0 � � (4.49)

The union bound derived in this section is compared to the well known and commonly used, but rather
loose Tarokh union bound and to simulation results for this specific code using BPSK modulation in
Sec. 4.2.5.

4.2.2 Spatially Correlated Channels

Here, I will show a summary of the essential calculations to obtain the union bound of the BER perfor-
mance in spatially correlated channels. The channel correlation is modelled according to the W-model,
introduced in Sec. 2.2 Again, the code word distances at the receiver are the essential parameters de-
termining the BER and therefore I will start with calculating

��� 	 K
 in the case of spatial correlation
(Eqn. (4.17)):

��� 	 K
 � tr��ÿ 	 K
 � '  � >� Qÿ 	K
 >E 0
(4.50)

where
>� � �>�� >�� � � � >���  and

>�	 is the�-th row vector of� . The matrix
Qÿ 	 K
 is a block-diagonal

matrix including�� -times the matrixÿ	K
 : Qÿ 	 K
 = diag(ÿ	K
 ,ÿ	K
 ,...,ÿ	K
 ). The next step is to model the
statistical behavior of the vector

>
, which is done as follows:>� � D� Q8 �G�' 0

(4.51)

where
Q8' can be calculated as:Q8' � }' &>E>� ( � P E�+� � �+� P��+� 0

(4.52)

where P �+� � �µ �+� �K� µ
�+� � K� � � � µ

�+� �� K� � � � µ
�+� �K�! � � � µ

�+� �� K�!  0
(4.53)

and

µ
�+� � Kñ � µ� K� O µ� Kñ. O denotes the Kronecker product (in fact stacking weighted versions of

µ� Kñ). The vector

µ� K� is the Ã-th column vector ofP� and the vector

µ� Kñ is the È-th column vector
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of P� . Both matrices are defined in Sec. 2.2. The diagonal matrix
� �+� consists of power coupling

parameters$	 K
 : � �+� � diag�$ �K� 0 $ �K� 0 � � � 0 $ �K�� 0 � � � 0 $�! K� 0 � � � 0 $�! K��  � (4.54)

With these parameters the distance

��� 	 K
 can be written as:��� 	 K
 � D� Q8 �G�' Qÿ 	K
 Q8 �G� '' DE � D� P E�+� � �G��+� P��+� Qÿ 	K
 P E�+� � �G��+�o pq r, t uv P ��+� D E � (4.55)

Remember that the statistics of an i.i.d. complex Gaussian random vector does not change by a multipli-
cation with a unitary matrix. Eqn. (4.55) can be further simplified to:��� 	 K
 � � ¡t uv ¢Ð Ñ̂ÄV � _¹Ä _� W �Ä �, t uv 0

(4.56)

whereW �Ä �, t uv are the eigenvalues of- 	 K
 , the variables¹Ä are the elements ofD� and� �	 K
 �� Ï is the number
of non-zero eigenvalues of the matrix- 	 K
 . The matrix- 	 K
 can be written as:

- 	 K
 � XYYYYZ
� �� � �� � � � � ��!� � � � �� � � � � ��!

...
...

. . .
...� �! � � �! � � � � � �! �!

[\\\\] (4.57)

and

� � ñ � XYYYYZ
�$� �µ�� �ÿ 	 K
 µ E� ñ�$ ñ� � � � � �� �$��µ�� �ÿ 	 K
 µ E� ñ�$ ñ� � � � �

...
...

. . .
...� � � � � �$��� µ�� �ÿ 	 K
 µE� ñ�$ ñ��

[\\\\]
(4.58)

Now, it is possible to calculate the PDF» ¼C� t uv ��  of the distance at the receiver. According to Eqn. (4.56)��� 	 K
 is the sum over weighted, independentº� distributed random variables. The CF of the sum of
independent random variable is the product of the corresponding CF’s. Thus, the CF of the distance
��� 	 K
 at the receiver results in: Ò¼C� t uv �� $  � � ¡t uv ¢Ð ÑÓÄV� �� � � $ W, ¡Õ ¢t uv � (4.59)

Note, that� �	 K
 �� Ï � �� � 	 K
 , if the matrix
Q8' is non-singular.� 	 K
 is the rank ofÿ	K
 . The matrix

Q8'
is non-singular, if all elements of

R
are non zero (Eqn. 4.54). The maximum value of�� Ï � �� ��

is achieved, if and only if both matricesÿ	K
 , Q8' are regular. Applying a partial fraction expansion
to Eqn. (4.59), the PDF of

��� 	 K
 is easily obtained by the inverse Fourier transform of

Ò¼C� t uv ��� $ ,
resulting in: » ¼C� t uv ��  � � ¡t uv ¢Ð Ñ̂ÄV � ÁW, ¡Õ ¢t uv Â � ¡t uv ¢Ð Ñ ��� ¡t uv ¢Ð ÑÔ¬ B¬ ®Õ ÁW, ¡Õ ¢t uv � W, ¡¬ ¢t uv Â y� �Ö. ¡Õ ¢t uv � (4.60)
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Note, that for the partial fraction expansion it is assumed that all eigenvalues are different, which is
the case for “measured” power coupling matrices

R
, but can eventually be a problem for synthetic

R
matrices.

The mean PEP results in:

PEPW	 K
 � E
9 :;<;=¿ XYZ ���� ��� 	 K
x + �� [\] ?;@;A � � ¡t uv ¢Ð Ñ̂ÄV � ÁW, ¡Õ ¢t uv Â� ¡t uv ¢Ð Ñ ��� ¡t uv ¢Ð ÑÔ¬ B¬ ®Õ ÁW, ¡Õ ¢t uv � W, ¡¬ ¢t uv Â

� �À ¿ �� �x+ �� � y� �Ö. ¡Õ ¢t uv ��
� �x � ¡t uv ¢Ð Ñ̂ÄV � ÁW, ¡Õ ¢t uv Â� ¡t uv ¢Ð Ñ ��� ¡t uv ¢Ð ÑÔ¬ B¬ ®Õ ÁW, ¡Õ ¢t uv � W, ¡¬¢t uv Â

XYZ� � ����� W, ¡Õ ¢t uv�+ �� � W, ¡Õ ¢t uv [\] � (4.61)

The integral has the same structure as the integral in Eqn. (3.26). The superscript W in PEPW	 K
 indicates
that this PEP corresponds to the W channel model.

With the results for the exact PEP the general derivations are now finished and again the cyclic code
is considered as an example, in order to show all details necessary to calculate this union bound. For
spatially correlated channels, the key-parameters governing the BER are the eigenvalues of- 	 K
 . The
eigenvalues of- 	 K
 depend on the channel correlation type, e.g. 1D3,14D3, and therefore the ET-table
has to be constructed for each correlation type separately.Due to the large number of key-parameters,
the ET-tables for the correlation types 1D3 and 14D3 are shown in Appendix F.

Instead of summing up the contributions of all crossover events, only the weighted PEPs of the smaller
number of ETs are summed up:

BER © �Î !̂�V � ² � PEPW� with ²� � Å�_i _� �5 �³´ �
ld�_i _ � � � � (4.62)

where PEPW� denotes the PEP for the k-th ET and�´� is the number of distinct ETs.

The union bound derived in this section is discussed and compared to simulation results for this specific
code with BPSK modulation for several correlation types in Sec. 4.2.5.
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4.2.3 High SNR Approximation

In order to get a better insight into the BER performance and to compare the results for uncorrelated and
correlated channels, it is helpful to calculate a high SNR approximation for the PEPs. With these approx-
imations for the PEPs, a high SNR approximation for the unionbound for the BER can be calculated.
This approximation highlights the diversity degree and a so-called power loss due to channel correlation.

First, let us consider the PEP. The principle of calculatinga high SNR (low+ �� ) approximation is fairly
simple. A Taylor series expansion of the PEP formula is performed. The first term of the series, which
dominates the BER at high SNR is taken as an approximation of the true PEP.

Let’s remember the Taylor series for a functionÅ �×  around the point×À :Å �×  � �̂�VÀ �× � ×À � Å �� � �×À � Ê 0
(4.63)

where the superscript��  denotes the n-th derivative ofÅ �× . The PEP for the i.i.d. channel model and
for the W channel model are functions of+ �� and therefore the PEPs have to be approximated around+ �� � �

, in order to get a high SNR approximation. For small values+ �� , the first non-zero term of
the Taylor series, i.e., the term with the lowest exponent, is the most important one. In the following
uncorrelated and correlated channels are treated separately.

4.2.3.1 Spatially Uncorrelated Channels

There are two different PEP formulas (Eqn. (4.44) and Eqn. (4.47)) for the spatially uncorrelated channel.
The high SNR approximation of the PEP formula for equal eigenvalues (Eqn. (4.44)) reads as:

PEP
	 Ø	 Ø¼ Ø�Ù	ÚÙ	 K
 � �+ �� Mt uv ���� 	 K
 ��  Ê �Û Mt uv ��PEP	 Ø	 Ø¼ Ø	 K
Û �+ �� Mt uv �� � dddddÜ C¬ VÀ� � + ��W �	 K
 � � Mt uv �� Mt uv �� ���̂VÀ �� 	 K
 �� � �� ÃÃ �o pq r��GÝ ¡t uv ¢ ��t uv ¬� � � + ��W �	 K
 � Þ �	 K
 � � Mt uv ��

(4.64)

with Þ �	 K
 � � /0
Mt uv �� ���̂VÀ �� 	 K
 �� � �� ÃÃ �12

��G�Mt uv �� �
(4.65)

Due to Eqn. (4.64) the PEP mainly depends on� 	 K
 , �� and W �	 K
 �. � 	 K
 �� determines the slope andW �	 K
 � Þ �	 K
 � determines the horizontal position of the PEP vs. SNR curve.Therefore, the diversity that is
defined as the negative slope of the PEP vs. SNR curve or the slope of the PEP vs.+ �� curve according
to [27] is: �	Ø	 Ø¼ Ø � áâãÜ C¬äÀ Û �log�ÀPEP

	 Ø	 Ø¼ Ø�Ù	ÚÙ	 K
 Û �log�À+ ��  � � 	 K
 �� � (4.66)

Note that in the derivation in Eqn. (4.66) the high SNR approximation for the PEP is used.

The derivation for the PEP formula for different eigenvalues (Eqn. (4.47)) could be done in the same way
as in the previous case. But due to the complicate form of thisPEP formula, I describe another way, in
order to simplify the necessary calculation. By expressingthe Gaussian Q-function according to [53] by:

Q�×  � �� � 3 G�À y� (4CC 567C ¡8 ¢ �9 0
(4.67)
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I get the following result for the exact PEP:

PEP� �� � 3 G�À Ò¼C� t uv �� �� � :âö� �9+ �� � �9 0
(4.68)

where

Ò¼C� t uv is the Characteristic Function (CF) of the distance

��� 	 K
 . The CF can be expanded in a

power series and the integral could be calculated for all terms of the series. For a high SNR approxima-
tion of the PEP only the term with the lowest exponent for+ �� is of interest and therefore a high SNR
approximation of the CF is used and the integration in Eqn. (4.68) considers only the dominating term,
to come up with an high SNR approximation for the PEP:

PEP
	 Ø	 Ø¼ Ø�Ù	ÚÙ	 K
 � XZ +���t uvTÔMt uvÄV � W �	 K
 �Ä Þ �	 K
 � []

Mtuv ��
(4.69)

Comparing the two high SNR approximations for the PEP (Eqn. (4.64) and Eqn. (4.69)), it is easy to see
that they are almost identical. The only difference is that the eigenvalueW�	 K
 � in Eqn. (4.64) is replaced
by the geometric mean of the eigenvalues. The effective distance, irrespective of which type of PEP is
considered, can be defined as: ��	 Ø	 Ø¼ � 	 K
 � �t uv ���� Mt uvÓÄV� W �	 K
 �Ä (4.70)

A high SNR approximation for the union bound for the BER is easily obtained by taking only those ETs
into account, which have minimum diversity. Minimum diversity is achieved by ETs with minimum rank�Ä 	� . In the following the number of ETs, which have minimum rank is denoted by�Ä 	� . Then, the
high SNR approximation for the BER results in6:

BER
	 Ø	 Ø¼ Ø�Ù	ÚÙ © �Õt¬�̂V � ² � XZ +���Õt¬TÔMÕt¬ÄV � W �� �Ä Þ �� � []

MÕ t¬ �� � (4.71)

It is rather convenient to define a new distance parameter

��	 Ø	 Ø¼ Ø:��	 Ø	 Ø¼ Ø � �
�Õt¬ ¬�������Õt¬U�V � å æÁ �Õt¬TÔ �Õt¬Õ B * ¡æ ¢Õ Ý ¡æ¢Â �Õt¬ ¬� � (4.72)

With this new parameter, the high SNR approximation of the union bound for the BER can be written as:

BER
	 Ø	 Ø¼ Ø�Ù	ÚÙ � � + ����	 Ø	 Ø¼ Ø � MÕ t¬ �� 0

(4.73)

For the high SNR approximation of the union bound for the BER the same properties hold as for the high
SNR approximation of the exact PEP, i.e., the slope of the BERvs. SNR curve and thus the diversity is�Ä 	��� and the horizontal position of the curve is determined by

��	 Ø	 Ø¼ Ø.
6Note that we now focus on ETs instead of crossover events and thus the index; < = is replaced by> .
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4.2.3.2 Spatially Correlated Channels

In this section essentially the same derivation as for the uncorrelated case is done for correlated channels.
Investigating the PEP, it turns out that the first non-zero term of the Taylor series has the exponent� �	 K
 �� Ï
(number of non-zero eigenvalues) and thus the high SNR approximation of the PEP results in:

PEPç�Ù	ÚÙ	 K
 � �+ �� � ¡t uv ¢Ð Ñ� �	 K
 �� Ï Ê XZÛ� ¡t uv ¢Ð Ñ
PEPç	 K
Û �+ �� � ¡t uv ¢Ð Ñ [] ddddddÜ C¬ VÀ� � + ����ç 	 K
 �� ¡t uv ¢Ð Ñ � ¡t uv ¢Ð Ñ ���̂VÀ �� �	 K
 �� Ï � �� ÃÃ �o pq r��GÝ¬ ¡t uv ¢Ð Ñ �¬ ¡t uv ¢Ð Ñ � XZ +����ç 	 K
 Þ� ¡t uv ¢Ð Ñ []� ¡t uv ¢Ð Ñ0

(4.74)

with Þ� ¡t uv ¢Ð Ñ � /?0
� ¡t uv ¢Ð Ñ ���̂VÀ �� �	 K
 �� Ï � �� ÃÃ �1@2

��G� ¡t uv ¢Ð Ñ
(4.75)

where a new effective distance

��ç 	 K
 has been introduced:��ç 	 K
 � ¬ ¡t uv ¢Ð Ñ ������¡t uv ¢Ð ÑÓ�V � W ���, t uv 0 (4.76)

The PEP mainly depends on� �	 K
 �� Ï andW �� �, t uv (�=1,2, ...� �	 K
 �� Ï ). � �	 K
 �� Ï determines the slope and

��ç 	 K
 , and

thus the eigenvaluesW �� �, t uv , determine the horizontal position of the PEP curve. Thus, according to [27]
the diversity�ç of such a coded MIMO system in correlated fading is:�ç � áâãÜC¬äÀ Û �log�ÀPEPç �Ù	ÚÙ	 K
 Û �log�À+ ��  � � �	 K
 �� Ï � (4.77)

By defining a new distance

��ç the high SNR approximation of the union bound for the BER results in7:

BERç �Ù	ÚÙ � � + ����ç ��Ð ÑÕ t¬
with

��ç � �¬Ð ÑÕ t¬��Î!Õ t¬U�V � åæ�¼Cé æ Ý ¡æ¢Ð Ñ �¬Ð ÑÕ t¬ � (4.78)

Here,�� ÏÕt¬ denotes the minimum number of non-zero eigenvalues and�´�Õt¬ is the number of ETs,
which have this minimum number of eigenvalues. For the high SNR approximation of the union bound
for the BER the same properties as for the high SNR approximation for the PEP are valid, i.e., the slope
of the BER vs. SNR curve and thus the Diversity is�� ÏÕt¬ and the horizontal position of the curve is
determined by

��ç .

7Note that we now focus on ETs instead of crossover events and thus the index; < = is replaced by>.
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4.2.4 Diversity Loss and Loss of Coding Advantage due to Channel Correlation

At this point, I want to emphasizes the differences and similarities of the BER performance of coded
wireless transmission systems in uncorrelated and in correlated MIMO channels. One very interesting
observation is that the diversity order and thus the slope ofthe BER vs. SNR curve at high SNR (accord-
ing to the definition in [27]), for correlated and uncorrelated channels is the same, if�� ÏÕt¬ � �Ä 	��� .
This is at least the case for power coupling matrices

R
of the W-channel model with non-zero entries

only8. All matrices
R

extracted from measurement data have only non-zero entries(see Appendix D).
Hence, a diversity lossêë due to correlation can be defined asêë � �Ä 	��� � �� ÏÕt¬ � (4.79)

Note that the diversity definition in [27] does not say much about the really observed diversity or really
observed slope of the BER vs. SNR curve atmoderatevalues of SNR. Actually, the slope of the BER
vs. SNR curve at medium SNR values (or BER values) is of more practical interest than the slope at
SNR=ì . However, with the definition according to [27], correlatedand uncorrelated MIMO channels
have the same diversity order (if�� ÏÕt¬ � �Ä 	��� ).

For correlated channels with�� ÏÕt¬ � �Ä	��� no diversity loss occurs. However the detrimental
influence of spatial channel correlation shows up in a so-called power lossêÇ . Due to the same diversity,
the BER vs. SNR curves of correlated and uncorrelated channels are in parallel, but horizontally shifted.
This shift towards higher SNR due to channel correlation is called power lossêÇ and can easily be
calculated as: êÇ � ��

log�À ���	 Ø	 Ø¼ Ø��ç � � (4.80)

A simple explanation how the spatial channel correlation and thus the matrix
R

influences thediversity
loss is given above. The influence of the matrix

R
on thepower lossis not that simple to explain. In

the following I will explain what properties the matrix
R

should have, to achieve a power loss as small
as possible: Due to Eqn. (4.78) the distance

��çæ for each ET should be as large as possible. To get
large distances, it is important to have well balanced and large eigenvaluesW, ¡¬ ¢t uv . This is achieved, if the

matrix
R

is well balanced. Then the largest distances occur and thus the smallest power loss is observed.
The best balanced matrix

R
is a matrix, where all entries are identical. With such an ideally balanced

matrix
R

, the W-model degenerates to the i.i.d. model. Then, there isno spatial correlation and thus the
best possible performance (no power loss) is achieved.

8Note that there are other matricesA that lead to the propertyBÐ ÑCDE £ FÕt¬B� , but these matricesA are different for
different codes.
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4.2.5 Examples

In this section, I want to discuss our results regarding the BER vs. SNR performance of four different
codes specified in Sec. 4.1. The tight union bounds are compared to simulation results and to high SNR
approximations.

4.2.5.1 Cyclic Code

In Fig. 4.4 the BER vs. SNR performance of the cyclic code defined in Eqn. (4.9) for BPSK signaling in
a uncorrelated 4�4 MIMO system is shown. In this figure, the Tarokh union bound is the dashed-dotted
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Figure 4.4: BER vs. SNR performance of the cyclic STBC. BPSK modulation;�� � �� � �; uncorre-
lated MIMO channels.

green curve, the tight union bound according to Eqn. (4.49) is the solid blue curve and the simulated
performance is the dashed red curve. As it can be seen the Tarokh union bound9 is quite far from
the simulation results. This bound only reflects the behavior of the BER performance as a function of
the SNR. Our tight union bound is tight for BER values below

����
. The interesting s-shape of the

tight union bound comes from several contributions of different PEPs with different slopes. In order to
illustrate this fact, the dominating PEPs at low and at high SNR values corresponding to ET1 and ET8
listed in Table. 4.1 are shown in Fig. 4.5. As it can be seen, the flat slope of the BER curve at high SNR
results from ET8, which is a rank-one ET and corresponds to multiple symbol errors. At medium SNR
the performance is dominated by ET1, which is a full rank ET and corresponds to single symbol errors.
This flat slope of the BER curve is only visible for BER values lower than

���ð
and thus it is of no

practical relevance.

Now, let’s focus on the BER performance in correlated fading. The tight union bound (solid blue curves),
the high SNR approximation (dashed-dotted black curves) and the simulated BER vs. SNR performance
(dashed red curves) in correlated fading are shown in Fig. 4.6. The curves corresponding to uncorrelated
channels are labeled with aî-marker, the curves corresponding to correlation scenario1D3 are labeled

9The Tarokh union bound is in principle the same approximation as the tight union bound Eqn. (4.49). The difference is that
in the Tarokh bound the exact PEPs are replaced by the Chernoff bound approximation derived in Eqn. (4.21).



CHAPTER 4. SPACE-TIME BLOCK CODED DATA TRANSMISSION 59

−4 −2 0 2 4 6 8 10 12 14 16 18

10
−8

10
−6

10
−4

10
−2

10
0

SNR / dB

B
E

R

ET1
ET8
union bound

Figure 4.5: Influence of the dominating ETs on the BER vs. SNR performance of the cyclic STBC.
BPSK modulation;�� � �� � �; uncorrelated MIMO channels.

with a �-marker and the curves corresponding to correlation scenario 14D3 are labeled with a�-marker.
The tight union bounds approximate the simulated performance very well. The high SNR approximations
are obviously only valid for high SNR and they are only tight in this SNR domain. From the high SNR
approximations it is possible to draw the following conclusions: The slope of the BER curves at high
SNR is equal to the diversity order� � �� � � for all correlation scenarios, due to the rank one ETs.
Therefore, there is no diversity loss due to channel correlation. However, the calculated power loss isêÇ � § ��¤�G

and
¦ �¥¥�G

for the spatially correlated scenarios 1D3 and 14D3. It is interesting to note
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Figure 4.6: BER vs. SNR performance of the cyclic STBC. BPSK modulation;�� � �� � �; several
correlation types.
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that both correlation scenarios achieve almost the same performance at high SNR, but quite different
results for medium SNR. For the correlated case the flat slopeof the rank one ETs is already visible at
high BER values (low SNR - values).

In the following I will explain why the BER performance for the cyclic code for both correlation types
is very similar. The dominating ETs and the union bound for the BER are shown in Fig. 4.7 for the
scenario 1D3 and 14D3. In principal, the PEPs have the same shape as in the uncorrelated case, i.e., for
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Figure 4.7: Influence of the dominating ETs on the BER vs. SNR performance of the cyclic STBC in
correlated fading. BPSK modulation;�� � �� � �; a.) correlation type 1D3. b.) correlation type 14D3.

all correlation types the BER vs. SNR curves are flattening out at high SNR - values. In order to show
the influence of correlation it is better to display all dominating PEP curves in one figure (Fig. 4.8). In
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Figure 4.8: Comparison of the dominating ETs of the cyclic STBC in correlated fading. BPSK modula-
tion; �� � �� � �;

Fig. 4.8 the red solid lines are the PEP vs. SNR for ETs that dominate at high SNR (ET8 for uncorrelated,
ET12 for 1D3, ET9 for 14D3). The blue dashed curves are the PEPvs. SNR for ETs that dominate at
medium SNR (ET1 for uncorrelated, ET1 for 1D3, ET2 for 14D3).This curves are plotted for several
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correlation types: uncorrelated (î-marker), 1D3 (�-marker) and 14D3 (�-marker). Interestingly, the
effect of correlation is different for different ETs. For the correlation type 1D3 the shift towards higher
SNR for the ET that dominates at high SNR is larger than for theET that dominates at medium SNR.
The ET dominating at medium SNR is shifted by approximately 2dB SNR but the high SNR dominating
ET is shifted by almost 7dB. Thus, the flattening of the BER vs.SNR curve occurs already at high BER
values. For the correlation type 14D3 both ETs are shifted approximately by the same amount: 5dB
for the ET dominating at medium SNR, and 7.5dB for the ET dominating at high SNR. Therefore, the
flattening out of the BER curve occurs at lower BER values thanfor correlation type 1D3.

Note, that the performance of the ETs dominating at medium SNR deteriorates proportionally to the
amount of correlation, whereas the performance loss of the ETs dominating at high SNR is almost equal.
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4.2.5.2 Extended Alamouti Code

In this section, I will discuss the performance of the EA codedefined in Eqn. (4.10) with�� � � and�� � � using QPSK modulation. As already explained in the previousexample (cyclic code) the per-
formance of the code (the shape of the BER vs. SNR curve) can beexplained by means of the ET table.
For this reason, I have analyzed the�Ì � §¨¨¥§ possible distance matricesÿ	
 and the corresponding
sets of eigenvalues. Due to the structure of the code and the higher modulation format, there are all to-
gether only 20 different sets of eigenvalues (ETs) listed inTable 4.2, whereÅ� is the number of crossover
events leading to a certain ET and�³´ � is the corresponding number of different information bits.Note
that the minimum rank is 2 (only 2 non-zero eigenvalues), butthis rank deficiencies (full rank is 4) are
very seldom (only 2080 crossover events corresponding to ET5, ET9, ET17 and ET20 out of all possible
65536 crossover events have rank 2).

ETÃ W �� �� W �� �� W �� �� W �� �� Å� �³´ �Ã 0 0 0 0 256 0
1 2 2 2 2 2048 1
2 4 4 4 4 6144 2
3 6 6 6 6 8192 3
4 8 8 8 8 4864 4
5 8 8 0 0 1024 2
6 10 10 2 2 6144 3
7 12 12 4 4 12288 4
8 14 14 6 6 8192 5
9 16 16 0 0 768 4
10 18 18 2 2 3072 5
11 20 20 4 4 3072 6
12 10 10 10 10 3072 5
13 12 12 12 12 3072 6
14 16 16 8 8 768 6
15 18 18 10 10 1536 7
16 16 16 16 16 96 8
17 24 24 0 0 256 6
18 26 26 2 2 512 7
19 24 24 8 8 128 8
20 32 32 0 0 32 8

Table 4.2: ET table for the Extended Alamouti STBC. QPSK modulation; �� � �; uncorrelated fading.

According to Sec. 4.2, we can calculate a tight union bound, with the aid of the ET table. In Fig. 4.9 the
simulated BER vs. SNR performance (dashed red curve) is compared with this union bound (solid blue
curve). Here we can see, that the bound is tight for BER valuesbelow

����
. A diversity order of almost

8 shows up at high SNR.

Focusing on the ET table, we can see that there are two dominating ETs. As we already know, the product
of the non-zero eigenvalues determines the horizontal position of the BER vs. SNR curve (remember
design rule of Eqn. (4.22); high SNR approximation Eqn. (4.64) and Eqn. (4.69)). Considering first the
ETs with full rank, ET1 has the smallest product of eigenvalues and thus will strongly contribute to the
total BER performance. For the rank 2 ETs, ET5 has the smallest eigenvalues and therefore has the
strongest influence on the BER. Focusing on these two dominating ETs (ET1 and ET5), we can see how
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Figure 4.9: BER vs. SNR performance for the Extended Alamouti STBC. QPSK modulation;�� ��� � �; uncorrelated MIMO channels.

this BER performance in Fig. 4.9 evolves. The BER contributions due to the 2 dominating ETs and the
resulting union bound are shown in Fig. 4.10. ET1 dominates at medium SNR whereas ET5 dominates
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Figure 4.10: Influence of the dominating ETs on the BER vs. SNRperformance of the Extended Alam-
outi STBC. QPSK modulation;�� � �� � �; uncorrelated MIMO channels.

the BER performance at high SNR. The resulting slope of the BER curve stems from the superposition
of the BER contributions of ET1 and ET5. The ultimate slope corresponding to diversity�� �Ä	� � �
only is achieved in the limit of SNRm ì . In fact, this slope would only be visible at BER values of����� and below.

In Fig. 4.11 the simulation results (dashed red curves), theunion bounds (solid blue curves) and the high
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SNR approximation (dashed-dotted black curves) accordingto Sec. 4.2.3 for several correlation types
are shown. The spatial correlation types are: uncorrelated(î-marker), 1D3 (�-marker) and 14D3 (�-
marker). For these correlation types too, the union bounds are quite tight for BER values below

����
.
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Figure 4.11: BER vs. SNR performance of the Extended Alamouti STBC. QPSK modulation;�� ��� � �; several correlation types.

The slopes of the BER vs. SNR curves in the practical SNR rangeare different for different correlation
types, but for really high SNR (high SNR approximations) we can see that the slope of the curves are
equal. Therefore, we can conclude that the diversity order is �� �Ä	� � � irrespective of the correlation
type. Additionally we can determine a so-called power loss according to Eqn. (4.80). For correlation
type 1D3 we observe an SNR loss of 2.81dB and for 14D3 we observe a 4.91dB loss.

Fig. 4.12 shows how the union bounds are assembled by the dominating ETs (a.) for 1D3 and b.) for
14D3). Note, that for correlated MIMO channels the ET tablesare different. The main point is that in
case of correlated channels the eigenvalues of the matrix- (Eqn. (4.57)) are essential, instead of the
eigenvalues of the code word distance matrixÿ . For each correlation type we get a different ET table.
Due to the hugeness of these tables they are not listed here. It is not really relevant, which ET-numberÃ is used, but to show a correspondence to the uncorrelated case we use the same ET-numbers. For
correlated channels we again number the ET dominating at high SNR also by ET5 (although ET5 is
nowhere specified). In Fig. 4.12 we show how the dominating ETs are influenced by spatial correlation.
It can be seen why the slope is between�� �� � �§

(ET1) and�Ä	� �� � � (ET5). ET5 becomes
dominant at very low BER values and therefore for practical systems ET5 is not relevant. It is interesting
to note that the high SNR dominating ET (ET5) for the EA code (in contrast to the cyclic code) has
not much influence on the data transmission in the range of practically relevant SNR values (in spatially
correlated and uncorrelated channels).

In Fig. 4.13 the red solid lines show the PEP vs. SNR for ETs that dominate at high SNR (ET5) and
the blue dashed curves show the PEP vs. SNR for ETs that dominate at medium SNR (ET1). These
curves are plotted for several correlation types: uncorrelated (î-marker), 1D3 (�-marker) and 14D3 (�-
marker). Note that the power loss for different ETs is different, i.e., focusing on Fig. 4.13 it can be
seen that the curves for ET1 are almost equidistant. In contrast, the curves corresponding to ET5 do not
show this property. Comparing the correlation type 1D3 withthe uncorrelated case, it can be seen that
the power loss regarding ET5 is essentially higher than the power loss regarding ET1. Comparing the
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Figure 4.12: Influence of the dominating ETs on the BER vs. SNRperformance of the Extended Alam-
outi STBC in correlated fading. QPSK modulation;�� � �� � �; a.) correlation type 1D3. b.)
correlation type 14D3.

correlation type 14D3 with 1D3, it can be seen that the loss regarding ET5 is essentially smaller than the
loss regarding ET1.
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Figure 4.13: Comparison of the dominating ETs of the Extended Alamouti STBC in correlated fading.
QPSK modulation;�� � �� � �;
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4.2.5.3 Specific Orthogonal Code

In the following I will discuss the performance of a specific orthogonal STBC defined in Eqn. (4.8) using
4 transmit antennas. First we focus on all possible crossover events in order to find the ET table. The
result is listed in Table 4.3, where we can see that there are only ETs with full rank and equal eigenvalues,
as it is typical for all orthogonal codes defined in Def. 4.1.Å� is the number of crossover events leading to

ETÃ W �� �� W �� �� W �� �� W �� �� Å� �³´ �Ã 0 0 0 0 64 0
1 2 2 2 2 384 1
2 4 4 4 4 960 2
3 6 6 6 6 1280 3
4 8 8 8 8 960 4
5 10 10 10 10 384 5
6 12 12 12 12 64 6

Table 4.3: ET-table for the specific orthogonal STBC. QPSK modulation;�� � �; uncorrelated fading.

a certain ET and�³´ � is the corresponding number of different information bits.As it can be seen from
the ET table, there is only one dominating ET, namely ET1 withthe smallest eigenvaluesW ���	 � x. This
is one specialty of orthogonal codes, that it can be characterized fully by only one ET. This is contrary to
the previously discussed STBCs.

In Fig. 4.14 simulation results (dashed red curve), the union bound (solid blue curve), the high SNR
approximation (green solid curve) and the performance of the dominating ET (black dashed-dotted curve)
are compared. The union bound is tight for low BER values, like for all code examples considered up
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Figure 4.14: BER vs. SNR performance of a specific orthogonalSTBC. QPSK modulation;�� � �� ��; uncorrelated MIMO channels.

to now. The performance of the dominating ET coincides with the exact performance. Due to the high
diversity degree, the slope of the high SNR approximation isvery steep and the exact performance or the
union bound only shows this slope at very low BER values, which is not visible here.
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The influence of spatial correlation is shown in Fig. 4.15. The dashed red curves show the simulated
performance, the solid blue curves are the union bounds and the dashed dotted black curves are the high
SNR approximations. The spatial correlation types are: uncorrelated (î-marker), 1D3 (�-marker) and
14D3 (�-marker). The union bounds are tight for BER values below

����
, also for the spatially corre-
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Figure 4.15: BER vs. SNR performance of the Extended Alamouti STBC. QPSK modulation;�� ��� � �; several correlation types.

lated case. The high SNR approximations show that there is nodiversity loss due to spatial correlation.
Correlation only leads to a shift of the BER vs. SNR curves, corresponding to some power loss. The
power loss for scenario 1D3 is 2.98dB and 5.45dB for scenario14D3.

The performance of the dominating ET is compared to the unionbound and the simulation result in
Fig. 4.16. The performance of the dominating ET coincides with the exact performance, also for spatially
correlated channels.
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Figure 4.16: Influence of the dominating ETs on the BER vs. SNRperformance of a specific orthogonal
STBC in correlated fading. QPSK modulation;�� � �� � �; a.) correlation type 1D3. b.) correlation
type 14D3.
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4.2.5.4 D-STTD Code

The last code discussed in this thesis is the D-STTD scheme for 4 transmit antennas with�� � x infor-
mation symbols per time slot defined in Eqn. (4.11). Startingonce again with the ET table (Table 4.4),
we can see that all ETs have only rank 2. Therefore, there is only one dominating ET, that is ET1, due
to its small eigenvalues. Here,Å� is the number of crossover events leading to a certain ET and�³´ � is

ETÃ W �� �� W �� �� W �� �� W �� �� Å� �³´ �Ã 0 0 0 0 256 0
1 2 2 0 0 2048 1
2 4 4 0 0 7168 2
3 6 6 0 0 14336 3
4 8 8 0 0 17920 4
5 10 10 0 0 14336 5
6 12 12 0 0 7168 6
7 14 14 0 0 2048 7
8 16 16 0 0 256 8

Table 4.4: ET-table for the D-STTD code. QPSK modulation;�� � �; uncorrelated fading.

the number of different information bits. In Fig. 4.17 the simulation results (dashed red curve), the union
bound (solid blue curve), the high SNR approximation (greensolid curve) for the BER vs. SNR perfor-
mance and the performance of the dominating ET (black dashed-dotted curve) are compared. The union
bound is tight for BER values of

����
and below. The dominating ET approximates the performance

quite well.
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Figure 4.17: BER vs. SNR performance of the D-STTD code. QPSKmodulation;�� � �� � �;
uncorrelated MIMO channels.

In Fig. 4.18 the simulated BER vs. SNR performance (dashed red curves), the tight union bounds for
the BER vs. SNR performance (solid blue curves) and the high SNR approximation for the BER vs.
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SNR performance (dashed-dotted black curves) for D-STTD code (�� � �� � �) utilizing QPSK
modulation are shown. Several spatial correlation types are considered: uncorrelated (î-marker), 1D3
(�-marker) and 14D3 (�-marker) . The union bounds are also very tight for spatiallycorrelated channels.
The high SNR approximation indicates identical slopes for all correlation scenarios. The power losses
are 2.37dB and 4.59dB for the scenarios 1D3 and 14D3, respectively.
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Figure 4.18: BER vs. SNR performance of the D-STTD code. QPSKmodulation;�� � �� � �; several
correlation types.

In Fig. 4.19 the dominating ET for the correlation types 1D3 and 14D3 are shown. One interesting
observation is that the dominating ET is not that tight as forthe uncorrelated case.
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Figure 4.19: Influence of the dominating ETs on the BER vs. SNRperformance of the D-STTD in
correlated fading. QPSK modulation;�� � �� � �; a.) correlation type 1D3. b.) correlation type
14D3.
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4.2.6 Optimal Precoding

In the preceding section it has been shown that the BER performance of the system degrades, if the
MIMO channel is spatially correlated. This loss can be quantified by the diversity lossêë and even
more appropriate by the power lossêÇ defined in Sec. 4.2.3. In order to mitigate the detrimental effect
of spatial correlation, a linear precoding matrixô can be introduced at the transmitter. Then, the resulting
system model can be described by � � �ô2 � � (4.81)

With this modification of the transmit signal, the matrix- 	 K
 defined in Eqn. (4.57) can be redefined as:

- 	 K
 �ô  � � �G��+� P��+� Qÿ 	K
 �ô P E�+� � �G��+� 0
(4.82)

where
Qÿ 	 K
 �ô =diag(ôÿ	K
 ô' ,ôÿ	K
 ô' ,...,ôÿ	K
 ô' ). Note that- 	 K
 �ô  not only depends onô , but

also on the distance matrixÿ	K
 . In principle,ô can be optimized for eachÿ	K
 10. Obviously, improving
the PEP vs. SNR performance for one specificÿ� by a specific precoderô , can lead to a worse per-
formance of the PEP corresponding to other distance matrices ÿñ (È � �0 x 0 ���0 �´� H È 7� Ã). Thus, an
optimization ofô for one specific ET does not make sense. The optimal solution can only be found by
taking into account all distance matrices (all ETs). Thus, we have to find a cost function, which includes
all ETs.

In contrast to the approach in this thesis, in [55] the authors concentrate only on the distance matrix that
leads to the minimum distance. This is in general not the right way, as explained above. Fortunately, the
authors of [55] apply this precoder only to orthogonal codes, where the optimization of the ET corre-
sponding to the minimum distance, does not degrade the performance of the remaining ETs. However,
in general this is not true.

In order to find a performance measure, which takes into account the overall performance and can be
used to solve the entire optimization problem, I define a generalized power loss parameter according to
Eqn. (4.80): ê ��Ð Ñt �Ç � ��

log�À XZ ��	 Ø	 Ø¼ Ø Mt��ç �Ð Ñt [] 0
(4.83)

where� 	 � �� Ït ±�� and

��	 Ø	 Ø¼ Ø M t is the effective distance representing all ETs with rank� 	 in the i.i.d.
case: ��	 Ø	 Ø¼ Ø M t � �

�t ¬���Î! �tU�V � å æ�¼C! æ Ý ¡æ¢ �t ¬� � (4.84)

�´� Mt is the number of ETs with rank� 	. For example, for the cyclic code and� 	 � x, �´� Mt � x (see
Tab. 4.1).

��ç �Ð Ñt is the effective distance representing all ETs with�� Ït non-zero eigenvalues in the
correlated case: ��ç �Ð Ñt � �¬Ð Ñt �����Î! Ð ÑtU�V � åæI¼Cé æ Ý ¡æ¢Ð Ñ J¬Ð Ñt 0

(4.85)

where�´� � Ït is the number of ETs, which have�� Ït non zero eigenvalues. For example, for the cyclic
code and�� Ït � �, �´� � Ït � ¥ (see Tab. C.1 or Tab. C.2).

10In the following I will focus on ETs instead of crossover events, as it is often done in this thesis, and thus the index> is
used instead of; < = .
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With these definitions all ETs corresponding to a specific slope (�� Ït ) of the PEP curve can be charac-

terized by a single number, namely the power lossê ��Ð Ñt �Ç . In order to find a single measure assessing
the entire performance, I simple sum up all power losses, which results in the overall power lossêÇ I ññ:êÇ I ññ �ô  � �J K̂	 ê ��Ð Ñ t �Ç �ô  0

(4.86)

where�Ç l is the number of different power losses or slopes of PEP vs. SNR curves for the code under
investigation (e.g.�Ç l � � for the cyclic code).

At this point I want to explain what the overall power loss says about the cyclic code in correlated
channels. The PEP vs. SNR curves of the ETs of the cyclic code shows only four different slopes,
namely 4,8,12 and 16 BER decades / 10dB SNR. Summarizing the PEPs with slope 4 for the i.i.d. and
the correlated channel and calculating the SNR difference between these curves leads to the power loss
for the ETs with slope 4. This is also done for 8,12 and 16. The overall power loss is thus the sum over
all SNR shifts between the i.i.d. and the correlated channel. Therefore, it shows somehow the potential
of improvement, if the overall power loss is zero, the i.i.d.performance is achieved.

Note that the total power lossú �ô  does not say much about the performance of the entire system,but
it is merely used in the following as a cost function for the optimization problem. The “optimal” prefilter
can be found be solving the following minimization problem:ôNõ h � argãâö÷ b�J K̂	 ê ��Ð Ñ t �Ç �ô c � argã âö÷ ¯ú �ô ° (4.87)

with the side constraint:
tr

Iô'Nõ hô Nõ hJ � �� � (4.88)

This constraint ensures that the precoding matrix does not introduce any power gain. WithôNõ h the
individual power losses are jointly optimized. Note, that in Eqn. (4.87) all power losses are considered to
be equally important. This is an ad hoc approach and there might be chances for further improvements.

Unfortunately, this minimization problem has to be solved for each type of code separately. Therefore,
in the following I will illustrate the main results for the cyclic code utilizing a 4�4 MIMO system
with BPSK modulation. For this system and for the spatial correlation scenario 14D3, the ETs and
their corresponding key-parameters are listed in the Tab. C.2. With the knowledge of the ETs and the
corresponding key-parameters, the minimization problem can be written as:ôNõ h � argãâö÷ &ê ���Ç �ô  � ê �Ì�Ç �ô  � ê ����Ç �ô  � ê ��ð�Ç �ô ( � argãâö÷ ¯ú �ô ° (4.89)

with the side constraint
tr

Iô' ôJ � � � (4.90)

The above stated optimization problem can be solved by the Lagrange multiplier technique [43] by
solving the following equations:û �ô 0 W � ú �ô  � W % tr Iô' ôJÛû �ô 0 WÛô � �

(4.91)Ûû �ô 0 WÛ W � �
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Unfortunately, the problem is too complex to be solved analytically. Therefore, I have solved it numeri-
cally by using a gradient algorithm, which is explained in the following: In the first step a prefilter matrixô is chosen randomly. Then the gradient is approximately calculated by:Ûú �ô Ûô � üú �ô üô (4.92)

In order to approach the minimum, a small stepü� towards the negative gradient is performed:ô	ý � � ô	 � ü� üú �ô üô (4.93)

Then the matrixô	ý � is normalized such that the side constraint (power normalization) is fulfilled. Then
the next iteration starts and the gradient of the updated matrix ô	ý � is calculated and so on. Going
through enough iteration steps, the algorithm approaches alocal minimum. Actually, we want to find the
global minimum and therefore the iteration algorithm has been repeated 500 times, i.e., 500 random start
values ofô have been chosen arbitrarily. In this way, it can be assumed that the probability of finding
the global minimum is quite high. The surprising result of the optimum search with 500 random start
values is that always the same minimum is found. Therefore, Iconjecture that I have found the global
optimum!

Applying the optimum prefilter in data transmission simulations lead to the results shown in Fig. 4.20.
Here, the black curve corresponds to spatially uncorrelated fading, the blue curve corresponds to the
correlation scenario 14D3 without precoding and the red curve corresponds to the correlation scenario
14D3 with optimal precoding. The interesting result is thatin the low SNR regime the precoded MIMO
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Figure 4.20: BER vs. SNR performance for the precoded cyclicSTB coded system. BPSK modulation;�� � �� � �; correlation scenario 14D3; medium SNR.

system performs even slightly better in spatially correlated channels than the system works without
precoding and operating on uncorrelated channels. In the high SNR domain the i.i.d. performance is
better than the performance of the precoded system in correlated channels. Assessing the performance
difference by a single number is not really reasonable, due to the peculiar shape of the BER vs. SNR
curves. In Fig. 4.20 an SNR improvement of roughly 2 dB due to the optimal precoder can be seen. In
Fig. 4.21 the black curve corresponds to spatially uncorrelated fading, the blue curve corresponds to the
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Figure 4.21: BER vs. SNR performance for the precoded cyclicSTBC. BPSK modulation;�� � �� ��; correlation scenario 14D3; high SNR.

correlation scenario 14D3 without precoding and the red curve corresponds to the correlation scenario
14D3 with optimal precoding. Considering the union bounds (Eqn. (4.62)) shown in Fig. 4.21 at very
high SNR, a small power loss of 0.5dB compared to the uncorrelated case is visible, which results from
the power loss for the ETs with slope fourê ���Ç �ô Nõ h , which is 0.9dB. Note, that a different weighting
of the different power losses in Eqn. (4.89), can help to improve the optimization in different SNR
regions. For example, if the goal is to improve the BER at low SNR, the power loss for the slope 16 ETsê ��ð�Ç �ô Nõ h  should be weighted more. The curves shown in Fig. 4.22 have the following meaning: The
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Figure 4.22: Dominating ETs for the precoded cyclic STBC. BPSK modulation;�� � �� � �; correla-
tion scenario 14D3.
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red solid lines are the PEP vs. SNR for ETs that dominate at high SNR. The blue dashed curves are the
PEP vs. SNR for ETs that dominate at medium SNR. The curves foruncorrelated channels are labeled
by î-marker, the curves for correlated channels (14D3) and optimal precoding are labeled by (�-marker)
and the curves for correlated channels (14D3) without precoding are labeled by (�-marker). In Fig. 4.22,
it can be seen that the dominating ET at high SNR (red curve) with optimal precoding is almost equal
with the corresponding ET for the i.i.d. case. Thus, with respect to high SNR the improvement due
to precoding is quite substantial. The improvement of the ETdominating at low SNR is not that large,
but nevertheless a remarkable improvement of the overall BER performance due to precoding is visible.
As stated above, for practical systems it would be better to optimize for low SNR, i.e., to weight theê ��ð�Ç �ô Nõ h  more. I have shown here the principle way of finding optimal precoding filters for general
space time block coded systems, but finding solutions for special SNR domains is beyond the scope of
the current thesis.
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4.3 Lower Bound for the BER in case of STB coded MIMO System

In Sec. 4.2 a tight union bound for the BER for space-time block coded transmission is calculated.
Inspired by the so-called Nearest Neighbor Approximation (NNA) [27] used for the BER calculation in
Additive White Gaussian Noise (AWGN) and Single Input Single Output (SISO) channels, we derive
now a Minimum Distance Lower Bound (MDLB) for the case of space-time coded MIMO systems.

4.3.1 Nearest Neighbor Approximation

In the following we discuss the properties of the NNA for the SISO-AWGN case [27]. In the remaining
sections the generalization for the space time block coded transmission in MIMO systems is presented.

Let’s assume a very simple system model using an AWGN channel(� � �
):� �  � � 0

(4.94)

where� is the receive symbol, is the transmit symbol and� is the complex Gaussian distributed channel
noise with zero mean and variance+ �� .

The best way of clarifying important BER-properties is to consider an illustrative example. To do so, we
focus on a quite general, complex modulation format, namely16QAM. The modulation signal constel-
lation is shown in Fig. 4.23 (bit to symbol mapping is done by aGray code).
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Figure 4.23: Signal constellation map of a 16QAM modulationformat.

The exact Symbol Error Probability (SEP) can be written as:�L5 � ª« ª̂	V � ª« ª̂v  Bv ® t � � 	 m  
  � � 	  � (4.95)

_i _ is the size of the modulation alphabet,
� � 	 m  
  is the exact crossover probability and

� � 	  is the
probability of transmitting 	. In contrast, the NNA can be calculated in a much simpler way:�L5 © �� �

PEP��Ä 	�  � (4.96)�� �
denotes the average number of nearest neighboring symbols,

�Ä 	� is the distance between the
nearest neighbors and PEP is the pairwise error probability. Note that the PEP is not the exact crossover
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probability, since it neglects the influence of the other symbols and thus only two remaining symbols are
considered. This approximate crossover probability is calculated as if we would have BPSK modulation,
i.e., integrating over the entire opposite half plane.

Let’s focus on one specific symbol of the 16QAM map in order to show that the NNA is a upper bound
for the SEP

�L5 . For the symbol ð shown in Fig. 4.24 the exact symbol error probability is calculated
by taking into account all decision regions excluding the decision region for ð.

s1

0000

s2

0010

s3

1010

s4

1000

s5

0001

s6

0011

s7

1011

s8

1001

s9

0101

s10

0111

s11

1111

s12

1101

s13

0100

s14

0110

s15

1110

s16

1100

Re{si}

Im{si}

Figure 4.24: Decision regions for calculating the exact SEP.

In Fig. 4.25.a.) we can see the overlapping integration areas (decision regions) of the 16QAM modulation
and in Fig. 4.25.b.) the areas that are counted twice and the corresponding number of bit errors are shown.
In the course of calculating NNA for the symbol ð the integration areas are overlapping as shown in
Fig. 4.25.a.) and therefore some error probabilities are counted twice as shown in Fig. 4.25.b.). For this
reason the approximated SEP for the symbol ð is always larger than the exact symbol error probability.
This holds in a similar manner for all symbols 	 (�=1,...,16) and therefore the NNA in fact is a upper
bound for the SEP. The simulated SEP vs. SNR performance and the NNA for a uncoded transmission
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Figure 4.25: Overlapping integration areas for a 16QAM modulation.

over a AWGN channel using 16QAM are compared in Fig. 4.26. In Fig. 4.26 we can see that the NNA
is indeed a upper bound for the SEP for the entire SNR range forthe example of 16QAM modulation.
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Figure 4.26: SEP vs. SNR performance for uncoded transmission. AWGN channel; 16QAM modulation.

Now let’s focus on BERs. The exact BER can be calculated as:

BER � ª« ª̂	V � ª« ª̂v  Bv ® t �³´ 	 K

log� �_i _ � � 	 m  
  � � 	  � (4.97)

�³´ 	 K
 is the number of bit errors corresponding to the crossover event  	 m  
 . The NNA for the BER
is:

BER M �� � �
log� �_i _PEP��Ä 	�  � (4.98)

Due to the Gray mapping the number of bit errors corresponding to nearest neighbor symbols is one
and thus we have 1 over log� �_i _ in the above equation. Consider once again Fig. 4.25.b.). Some
decision regions are counted twice. Keeping in mind that forthe exact calculation some regions have
to be weighted by 2, 3 or 4, due to the distinct numbers of bit errors, the NNA, which counts some
regions twice underestimates the BER in the case of more than2 bit errors per symbol error. The region
corresponding to � is counted twice by the NNA, which is also done using the exactcalculation, because
of the two bit errors. The region corresponding to � is counted twice by the NNA, but is weighted by the
factor 3 using the exact calculation, because of three bit errors. This underestimation holds for all regions
and for all symbols 	 (�=1,...,16). Therefore the NNA is a lower bound for the BER. The simulated BER
vs. SNR performance and the NNA for an uncoded transmission over a AWGN channel using 16QAM
are compared in Fig. 4.27. In Fig. 4.27 we can see that the NNA is indeed a lower bound for the BER for
the entire SNR range for the example of 16QAM modulation.
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Figure 4.27: BER vs. SNR performance for uncoded transmission. AWGN channel; 16QAM modula-
tion.

Summary:

-) Nearest Neighbor Approximation is a upper bound for the symbol error probability.

-) Nearest Neighbor Approximation is a lower bound for the bit error ratio.
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4.3.2 Minimum Distance Lower Bound of the BER

4.3.2.1 Fundamentals

In this section I will generalize the NNA for the AWGN channel, discussed in Sec. 4.3.1, to the case
of space-time block coded transmission. Remember Eqn. (4.98), where we can see, which entities are
necessary to calculate the NNA. These entities are�� �

,
�±

log� �_i _ (which represents the number of
erroneous bits divided by the number of transmitted bits persymbol) and

�Ä 	� .

First, I will focus on the principle of calculating the MDLB and afterwards I will show a simple example
to illustrate the general theory. By applying this concept to MIMO systems, the following problem comes
up: The distances between space time block code words changedue to the distortion introduced by the
MIMO channel matrix. More details of MIMO distance properties have been discussed in Sec. 4.1.3.1.
The main point of Sec. 4.1.3.1 is that the smallest / largest distance at the transmitter (without channel
influence) isnot necessarily the smallest / largest distance at the receiver(with channel influence). I.e.,
theDistance Proportion Preservation Propertydoes not hold. For this reason we do not know the nearest
neighbors at the receiver beforehand. Therefore, we have tofind the minimum distance at the receiver out
of all crossover events. For this minimum distance crossover event, the error probability is calculated.
This error probability is weighted with the corresponding number of crossover events, which have this
minimum distance (equivalent to the number of nearest neighbors) and the corresponding number of bit
errors.

To concretize these ideas about finding a generalization of the NNA of the AWGN channel to a space-time
block coded MIMO system, we have to refresh the Error Type (ET) concept introduced in Def. 3.1. We
know that there are several ETs contributing to the BER performance. An ET is specified by the distance,
the number of bit errors and the frequency of these crossoverevents corresponding to the number of
nearest neighbors. For the generalization of the NNA we haveto find the minimum distance

��Ä 	� out
of the �´� (number of error types) distances

��� . Actually, we want to know the PDF» ¼Cæ ª¼CæV¼CÕ t¬ of
the minimum distance resulting from a certain ET, in order tocalculate an average error probability

�Læ .Additionally, we have to know, which ET leads to the minimum distance (in order to do the accurate
weighting) and the probability

�¼CæV¼CÕ t¬ of the case that the minimum distance results from a certain ET
with numberÃ . According to the above explanations the MDLB for the BER canbe calculated as:

BER M
�Î !̂�V � ² � �L æ �¼Cæ V¼CÕ t¬ with ²� � Å�_i _� � 5 �³´ �

ld �_i _ � � � � (4.99)

Remember thatÅ� is the frequency of crossover events, which correspond to ETÃ, �³´ � is the corre-
sponding number of bit errors,� � � is the number of independent symbols contained in a space-time
block code word and_i _ denotes the size of the modulation format.

The corresponding average error probability
�L æ can be calculated by averaging over all distances

���
that are equal to

��Ä 	� : �Læ � � �À Q �� �x + �� � » ¼Cæ ª¼CæV¼CÕ t¬ �� �� � (4.100)

The probability of having

��� � ��Ä 	� can be calculated as�¼Cæ V¼CÕ t¬ � � �À » ¼Cæ K¼CæV¼CÕ t¬ �� �� 0
(4.101)

where » ¼Cæ ª¼CæV¼CÕ t¬ � » ¼Cæ K¼CæV¼CÕ t¬�¼CæV¼CÕ t¬ 0
(4.102)
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In this way we can adapt the NNA to the MDLB for space-time block coded transmission.

Next, I want to present an illustrative way back from the MDLBfor MIMO systems to the NNA for
SISO systems. Remember that we know beforehand, that in the SISO the nearest neighbors always have
the same minimum distance and that the number of different bits corresponding to the nearest neighbors
is one (due to Gray mapping). Equivalently, we can say that always the same ET corresponding to the
nearest neighbor crossover event leads to the minimum distance, i.e., the distances of other crossover
events corresponding to other ETs are always larger. Therefore, the probability that the minimum dis-
tance comes form the ET corresponding to nearest neighbor crossover events is 1 and thus the BER is
equal to the NNA of Eqn. (4.98):

BER M
�Î !̂�V � ² � �Læ �¼CæV¼CÕ t¬ � ²� �Læ � �� � �

log� �_i _PEP��Ä 	�  � (4.103)

Example: Cyclic Code

The strategy how to calculate the MDLB according to Eqn. (4.99) presented above is probably not quite
obvious. Therefore I want to explain the essential steps to calculate the MDLB in more detail by means of
an example in a slightly different way. Note that for the calculation of the MDLB for this example we go
an alternative way compared to the strategy explained aboveand do not apply the results obtained above.
Going this alternative way, it becomes more clear that the MDLB defined above is a generalization of
the NNA. Additionally the alternative strategy allows us toverify the general expression in Eqn. (4.99).
To keep matters as simple as possible the cyclic STBC with 2 transmit antennas and one receive antenna
using BPSK modulation is considered in the following example.

The code words of this cyclic STBC are defined as:2 � �  �  � �  � � � (4.104)

For the different code word matrices2	, 2
 we can calculated the difference matricesþ	
 and the distance
matricesÿ	
 (Eqn. (4.1)). As already mentioned in Sec. 4.2 the eigenvalues of the distances matricesÿ	
 determine the BER performance. Therefore, we analyze all 16possible distances matricesÿ	
 to
find the error type table. Due to the specific structure of the code and the modulation format, there are
only 3 different Error Types (ET). The corresponding key-parameters are listed in Tab.4.5. Note that the
number of different information bits is denoted by�³´ � and the number of crossover events leading to
a certain ET is denoted byÅ� . Note that in contrast to the union bound calculation in Sec.4.2 the order

ETÃ W �� �� W �� �� Å� �³´ �Ã 0 0 4 0
1 4 4 8 1
2 16 0 2 2
3 0 16 2 2

Table 4.5: ET table for the cyclic STBC. BPSK modulation;�� � x.

of the eigenvalues is now in general of importance for the calculation of the PDFs of the distances and
therefore we have to distinguish between ET2 and ET3. The reason why we have to distinguish ET2 and
ET3 becomes more clear following the explanation regardingthe distance calculation (Eqn. (4.120)).
For the union bound ET2 and ET3 in Tab.4.5 would be summarizedto one ET with the sum frequencyÅ � � Å� � Å�.
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Using this code S, defined in Eqn. (4.104), the receive vector� can be calculated with:I � � �� Jo pq r� ! � I � �� � �� Jo pq r�! �  �  � �  � �o pq rN
� I � � �� Jo pq ra! � (4.105)

An equivalent description is:� � ��� �o pq r�
� � ��� � ��� �� � �� �o pq r9 � �  � � �o pq r` � � � ��� �o pq ra � (4.106)

In vector-matrix notation the above equations can be written as:� � � � � � � 0
(4.107)

where� � is called the virtual channel matrix, which depends on the channel and on the code! Eqn. (4.107)
essentially describes an equivalent virtual MIMO system with a highly structured (2�2) MIMO channel.

As already shown in Sec. 3 it is possible to visualize the symbol constellation at the transmitter� �	�
and at the receiver with� �	�� � � � � �	� by using real valued channel matrix entries. This simplification
is only introduced for reasons of visualizing. The calculations performed in the following (beginning
with Eqn. (4.108)) are obviously also valid for complex valued channel matrix entries. Fig. 4.28 shows
all 4 possible code words of the example code2 from Eqn. (4.104). Where the four possible symbol
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Figure 4.28: Signal constellation at the transmitter� �	�. cyclic STBC; BPSK modulation;

vectors are� ��� � ��� � �� , � ��� � �� � �� , � ��� � �� �� and� ��� � ��� �� . ���	 means the�-th
component of vector�. Therefore, the horizontal axis in Fig. 4.28 corresponds tothe binary symbol �
and the vertical axis in Fig. 4.28 to the binary symbol �.
Due to the multiplication of the symbol vectors� �	� with the virtual channel matrix� � the symbol
constellation is distorted by the transmission. An examplefor a symbol constellation at the receiver can
be seen in Fig. 4.29. In this example the symbols are stronglydistorted by a specific channel matrix. The
symbols labeled by “+” are the symbols at the transmitter� �	� and the corresponding symbols labeled
by “�” are the symbols at the receiver� �	�� . The colors denote the relationship, i.e., for example the red
symbol labeled by “+” belongs to the red symbol labeled by “�”.
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Figure 4.29: Signal distortion according to� � �: � �	�� � � � �� �	�. cyclic STBC; BPSK modulation.

Note that we already distinguished 3 different ETs. Focusing on this symbol constellation it is also
possible to identify 3 different ETs, which correspond to three different distances. These three distances
are shown in Fig. 4.30. As it has already been explained in thegeneral part of this section, we are
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Figure 4.30: Three relevant symbol distances at the receiver. cyclic STBC; BPSK modulation;� � �.
only interested in the minimum distance

�Ä 	� crossover event. Due to the channel distortion all, out
of the three distances can become the minimum distance depending on the specific channel realization.
Therefore it is necessary to distinguish three different cases, namely:

� � � �Ä 	� ,

�� � �Ä	� or

�� ��Ä	� .

In the following we derive lower bounds for the conditional BERs for the three different cases. Then
the BERs conditioned on the channel matrix are averaged withrespect to all channels, which fulfill the
condition

�	 � �Ä	� . Afterwards, the total probability theorem is used to mergethe three average lower
bounds for the BER together to get one overall lower bound forthe average BER.

Starting with the first case, namely

� � � �Ä 	� , this is the case for a certain channel vector
> � or equiv-

alently a certain virtual channel matrix� � �. The symbol constellation for this case can be seen in
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Fig.4.31.a.). Now let’s derive a modified version of the NNA explained in Sec. 4.3.1. The modification
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Figure 4.31: Minimum distance

�Ä 	� for three different channel realization; a.)

� � � �Ä 	� for � � �, b.)
�� � �Ä 	� for � �� , c.)

�� � �Ä 	� for � �� ; cyclic STBC; BPSK modulation;

is, that not all nearest neighbors are considered, but only those nearest neighbors with the minimum
distance. Keeping this in mind we start calculating the lower bound for the BER (conditioned on

>
):

BER
l³� �>  � �� � �³´

log� �_i _PEP��Ä 	�  � (4.108)

At this point we have to determine the values for the unknown variables

�Ä 	� and�� �
in the above

equation. Obviously,

�Ä 	� is

� � in this case. The second unknown variable, the average number of
nearest neighbors�� �

, is also very easy to determine. Focusing on the symbol constellation shown
in Fig.4.31.a.), we can see that all symbols have 2 nearest neighbors with minimum distance, therefore�� � � x. The number of bit errors is 1 for this cross over event. Hence, we get:

BER
l³� �>  � x �xPEP�� �  � Q

XZ� ��� �>x+ �� [] � (4.109)

This method is repeated for the case, when

�� � �Ä	� holds. Once again the modified NNA is used to
calculated the lower bound for the BER, where the unknown variables are determined with the aid of
Fig.4.31.b.). Obviously,

�Ä 	� is in this case

�� . Focusing on� ���� we can see only one nearest neighbor
with minimum distance. This nearest neighbor has two different bits. The same holds for the symbol� ���� . For the symbols� ���� and � ���� all nearest neighbors appear at distances larger than the minimum
distance

�� . Therefore,�� � � �±� �� � � � � � � � �±x and�³´ � x. Thus we finally get:

BER
l³� �> � �x xxPEP���  � �xQ

XZ� ��� �> x+ �� [] � (4.110)

For the third and the last case, with

�� � �Ä	� , matters are quite similar to the second case and we get:

BER
l³� �>  � �xQ

XZ� ��� �>x+ �� [] � (4.111)

As explained some paragraphs above, the lower bounds for theconditioned BERs are averaged over all
channel realizations

>
for that

�	 � �Ä	� :

BER
l³� � } � ª�¼æV¼Õ t¬ � &BER

l³� �>( � ²� � �À Q �� �x + �� � » ¼Cæ ª¼CæV¼CÕ t¬ �� �� 0
(4.112)
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where² � � �
, ²� � �±x and²� � �±x. The last step for the calculation of the total lower bound, the

so-called MDLB, is to use the total probability theorem:

BEROPQR � BER
l³� �¼CBV¼CÕ t¬ � BER

l³� �¼CCV¼CÕ t¬ � BER
l³� �¼CSV¼CÕ t¬ 0

(4.113)

where
�¼CæV¼CÕ t¬ is the probability that

��� � ��Ä 	� with respect to all channel realizations. The final result
can be written as:

BEROPQR � �̂�V � ² � ß� �À Q �� �x + �� � » ¼Cæ ª¼CæV¼CÕ t¬ �� ��à �¼Cæ V¼CÕ t¬ 0
(4.114)

Inserting the key-parameters of Tab. 4.5 in Eqn. (4.99), we come to the same result as above with the
same weights²� , therefore this specific example verifies the general resultgiven in Eqn. (4.99). With
this simple example it becomes clear, that the MDLB is only a generalization of the well known NNA
and that in principle it is not too difficult to be found.

So far matters are fairly simple, but calculating the corresponding PDFs of the distances is quite chal-
lenging. As in Sec. 4.2, the distances and their statistic strongly depend on the channel model and thus in
the following spatially uncorrelated and correlated channel are considered separately. The corresponding
calculations and explanations can be found in the followingsections.

In general, for the calculation of the MDLB it is not necessary to investigate the symbol constellation
as shown in the example above. The essential points for calculating the MDLB can be summarized as
follows:

-) Find the ET table (ETs plus key-parameters).

-) Calculate the PDF of the distances:» ¼Cæ ª¼CæV¼CÕ t¬ .

-) Calculate the corresponding probabilities:
�¼Cæ V¼CÕ t¬ .

-) Apply the total probability theorem: Eqn. (4.99).
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4.3.2.2 Spatially Uncorrelated Channels

In order to calculate the distances corresponding to different ETs, we have to adapt Eqn. (4.19) to end up
with Eqn. (4.115). Here, we are no longer interested in crossover events but in ETs. Thus, the distance
corresponding to the�-th ET can be calculated as:��	 � ��̂�V � >� þ 	þ'	o pq r� t >'� � ��̂�V � >� ÿ 	opqr� t� t��t >'� � ��̂�V � >�P 	o pq r� ¡t¢æ

� 	 P '	 >'�o pq r� ¡t¢æ �� ��̂�V � > �	�� � 	 > �	�� ' � Mt̂ñV � � �̂�V � ddd� �	�� Kñ ddd�o pq r� ¡t¢�
W�	�ñ � M t̂ñV � � �	�ñ W �	�ñ 0

(4.115)

At this point the set of STBCs can be subdivided into two sets.

Code Set 1: STBCs corresponding to Code Set (CS) 1 are codes with the following property: The
eigenbasesP	 of the code word distance matricesÿ	 for different ETs is the same. Consequently, the
random variables

� �	�ñ are also independent of the ETs and thus

� �	�ñ � �ñ holds. Representatives of CS1
are for example: orthogonal codes (for example the code defined in Eqn. (4.8)), the Extended Alamouti
code defined in Eqn. (4.10) and the cyclic code defined in Eqn. (4.9).

Code Set 2:STBCs corresponding to CS2 are all codes that do not belong toCS1, i.e., the do not have
this advantageous property explained in the paragraph about CS1. A representative of CS2 is for example
the D-STTD code Eqn. (4.11).

In the following, I will show the calculation of the necessary PDFs of the random variables

��	 for the
general case and afterwards I will concentrate on the cycliccode as a simple example. For the general
derivation the following is assumed: Regardless, which STBC is considered, always the property of
CS1 is assumed, i.e., it is assumed that the random variables

� �	�ñ are independent of the ET and thus� �	�ñ � �ñ holds. Because of this assumption no error is made for codes belonging to CS1. For codes
belonging to CS2 this assumption causes an error in the resulting PDF. In spite of the error in the PDF,
the resulting BER approximation is still a lower bound. Thisholds, because although in this case the
random variables for different ETs are different and thus the resulting minimum distance will be smaller
than with the assumption of CS1. Therefore, the BER in reality is higher than using this assumption.
Hence, the BER in reality is larger than the calculated one and thus the resulting BER performance
approximation is still a lower bound.

Calculating the PDF of the distances

��� with

��� � ��Ä 	� :

As shown in Eqn. (4.115), the distance of theÃ-th ET is a weighted function (a linear function of

�ñ) of
the random variables

�ñ. In the following we introduce the short notation for the weighted sum (linear
function of

�ñ) given in Eqn. (4.115):

��� � Å� �� � 0 �� 0 ���0 ��! . We know that the random variables
�ñ are independentlyº� distributed withx �� degrees of freedom. Hence, the joint PDF of the random
variables

� � to

��! results in:» � B K�C KØØØK�¬! �� � 0 �� 0 ���0 ��!  � » � B �� �  » �C ���  ���» �¬! ���!  (4.116)

In order to calculate the PDF of the distance

��� from the joint PDF of the random variables

� � to

��! ,
we have to bring the distance

��� into play. The conditional PDF of the distance

��� can be calculated by
the aid of a linear PDF transformation according to the linear function Å� and the PDF of

� �11:» ¼Cæ ª� C KØØØK�¬! �T _�� 0 ���0 ��!  � U$æ ¯» � B �� �° 0
(4.117)

11It is not important, which random variableV � is used for the transformation.V B is only an arbitrary choice
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Due to the independency of the random variables

�ñ the joint PDF of the random variables

��� , �� to

��!
reads as » ¼Cæ K� C KØØØK�¬! �T 0 �� 0 ���0 ��!  � » ¼Cæ ª� C KØØØK�¬! �T _�� 0 ���0 ��!  » �C ���  ���» �¬! ���!  (4.118)� U$æ ¯» � B �� � ° » �C ���  ���» �¬! ���!  0
The desired PDF is obtained by averaging over the remaining random variables

�ñ (È 7� �
). Note that

the integral is not over the entire domain of valid values for

�� to

��! ((

�� 0 ���0 ��! ) plane), but only
over the regionW � of the (

�� 0 ���0 ��! ) plane where

��� � ��Ä 	� . The regionW � is determined by using
the other linear functions

��	 � Å	 �� � 0 �� 0 ���0 ��!  with � 7� Ã, which are the distances corresponding to
the remaining ETs. Obviously, if there are�´� different ETs, there are also�´� different distances and�´� different linear functions defining these distances. Hencethe PDF can be calculated as:» ¼Cæ K¼CæV¼CÕ t¬ �T  � �X æ » ¼Cæ K� C KØØØK�¬! �T 0 �� 0 ���0 ��! ��� 0 ���0 ���! � (4.119)

After showing the principal way of calculating the PDFs of the distances

��� with

��� � ��Ä 	� , I want to
concretize this algorithm for the cyclic code2 defined in Eqn. (4.104) with two transmit antennas and
one receive antenna using BPSK modulation:

Example: Cyclic Code for two transmit antennas

Remember the ETs (Tab. 4.5) an the distance calculation in Eqn. (4.115). Accordingly, we can find three
distances corresponding to the three different ETs:��� � W���� � � � W���� �� � � � � � � �� � Å� �� � 0 �� ��� � W���� � � � �§ � � � Å� �� � 0 �� ��� � W���� �� � �§ �� � Å� �� � 0 ��  (4.120)

Note that due to only one receive antenna, the random variables

�ñ areº� distributed with 2 degrees of
freedom: » � � �� ñ  � y�Y� + ��ñ  0

(4.121)

where+ ��ñ  denotes the Heaviside step function.

Starting with the calculation of» ¼CB K¼CBV¼CÕ t¬ �T , the joint PDF reads as:» ¼CB K� C �T 0 ��  � U$B ¯» � B �� � ° » �C ���  0
(4.122)

The PDF transform according toÅ� (Eqn. (4.120)) is a simple affine transformation:��� � � � � � � �� 0
(4.123)

therefore the conditional PDF of the distance

��� can be expressed as PDF of

� � as:» ¼CB ª� C �T _��  � �� » � B ÁT� � ��Â 0
(4.124)

Accordingly the joint PDF reads as:» ¼CB K� C �T 0 ��  � �� » � B ÁT� � ��Â » �C ���  � �� y��Z G��YC �+ �T ±� � �� y�YC + ���  0
(4.125)

Before evaluating the integral in Eqn. (4.119), we have to find the corresponding regionW � for that
��� � ��Ä 	� is fulfilled.
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For» ¼CB ª¼CBV¼CÕ t¬ , the realizations of

��� and

��� must fulfill the condition

��� ~ ��� and thus we get:� � � � � �� ~ �§ � ��� ~ ¥ � � (4.126)

At this point the distance equationÅ� is inserted in Eqn. (4.126). Note that we focus on the realizations
of the random variables (instead of the random variables). Therefore, the functionÅ� (regarding real-
izations) isT � � � � � � �� instead of

��� � � � � � � �� . More concrete, we insert

� � � Z� � �� in
Eqn. (4.126): �� ~ ¥ ÁT� � ��Â� �� ~ ¥ T��� ~ ¥ T�§ (4.127)

From the second condition

��� ~ ��� we get in the same way:�� n T�§ (4.128)

Therefore the desired PDF» ¼CB ª¼CBV¼CÕ t¬ �T » ¼CB K¼CBV¼CÕ t¬ �T  � �X B » ¼CB K� C �T 0 ��  ��� � �� y�Z G� � � Z G�ð
Z G�ð + �T ±� � �� + ���  ��� � T¥x y�Z G� + �T  �

(4.129)
For the remaining two distance-PDFs:» ¼CC ª¼CCV¼CÕ t¬ �T  and» ¼CS ª¼ CSV¼CÕt¬ �T , the calculation is very similar.
Therefore, the results of the two PDFs are shown in Eqn. (4.130) and Eqn. (4.131) without going into
details.

The PDF» ¼CC ª¼CCV¼CÕ t¬ �T  results in:» ¼CC K¼CCV¼CÕ t¬ �T  � �X C » ¼CC K� C �T 0 ��  ��� � ��§ y�Z G�ð � �� Z G�ð y�YC + �T ±�§+ ���  ��� � ��§ y�Z G� + �T  0
(4.130)

and» ¼CS K¼CSV¼CÕ t¬ �T  � �X
S » � B K¼CS �� � 0 T  �� � � ��§ y�Z G�ð � �� Z G�ð y�Y B + �T ±�§+ �� �  �� � � ��§ y�Z G� + �T  �

(4.131)
Having calculated these PDFs, we proceed with the calculation of the probabilities

�¼Cæ V¼CÕ t¬ according
to Eqn. (4.101): �¼CBV¼CÕ t¬ � � �À » ¼CB K¼CæV¼CÕ t¬ �T �T � � �À T¥x y�Z G� + �T �T � �x 0

(4.132)�¼CCV¼CÕ t¬ � � �À » ¼CC K¼CæV¼CÕ t¬ �T �T � � �À ��§ y�Z G� + �T �T � �� 0
(4.133)�¼CSV¼CÕt¬ � � �À » ¼CS K¼CæV¼CÕ t¬ �T �T � � �À ��§ y�Z G� + �T �T � �� � (4.134)

With these probabilities the desired PDFs according to Eqn.(4.102) result in:» ¼CB ª¼CBV¼CÕ t¬ � » ¼CB K¼CBV¼CÕ t¬�¼CBV¼CÕ t¬ � T�§ y�Z G� + �T  0
(4.135)
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(4.136)» ¼CS ª¼CSV¼CÕ t¬ � » ¼CS K¼CSV¼CÕ t¬�¼CSV¼CÕt¬ � �� y�Z G� + �T  0
(4.137)

Knowing these PDFs we can calculate the average error probabilities of the three ETs according to
Eqn. (4.100):�L B � � �À Q �� Tx + �� � » ¼CB ª¼CBV¼CÕ t¬ �T �T � � �À Q �� Tx + �� � T�§ y�Z G� + �T � Á� � |x Â� ò� � x Á� � |x Âó 0�L C � � �À Q �� Tx + �� � �� y�Z G� + �T �T � Á� � |x Â 0

(4.138)�LS � � �À Q �� Tx + �� � �� y�Z G� + �T �T � Á� � |x Â 0
(4.139)

with | � � �+ �� � � � (4.140)

Now we are almost done. By applying the total probability theorem Eqn. (4.114) we obtain the final
results:

BEROPQR � �̂�V � ² � ß� �À Q �� �x + �� � » ¼Cæ ª¼CæV¼CÕ t¬ �� ��à �¼Cæ V¼CÕ t¬ (4.141)� � b Á� � |x Â� ò� � x Á� � |x Âó c �x � �x e Á� � |x Â f �� � �x e Á� � |x Â f ��� �x Á� � |x Â� ò� � x Á� � |x Âó � �� Á� � |x Â �
In Fig. (4.32) the calculated MDLB is compared to simulationresults and the union bound calculated

according to the approach described in Sec. 4.2. As we can see, the MDLB underestimates the BER
vs. SNR performance compared to the simulation result, which is considered here as the exact or true
BER-performance. The union bound for this example is tighter than the MDLB. For other examples,
shown in Sec. 4.3.2.5, the MDLB becomes tighter or similar tight to the simulation results as the union
bound. With the MDLB and the previously calculated union bound Eqn. (4.48), a two-sided bounding
of the true BER vs. SNR performance is possible. For the special case that both bounds are tight, as for
most examples analyzed in this thesis, we can even specify the exact performance, at least in the high
SNR domain.
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Figure 4.32: BER vs. SNR performance of the cyclic STBC. BPSKmodulation;�� � x, �� � �
;

uncorrelated channels.

4.3.2.3 Spatially Correlated Channels

For spatially correlated channels the MDLB-calculation inprinciple is performed in the same way, but
distance calculations are slightly different compared to the case of spatially uncorrelated channels. In
order to calculate the distances corresponding to different ETs, we have to start with Eqn. (4.55). Again,
we are no longer interested in crossover events but in ETs. Thus, the distance corresponding to the�-th
ET can be calculated according to Eqn. (4.55) as��	 � D Q8 �G�' Qÿ 	 Q8 �G� '' D' � DP E�+� � �G��+� P��+� Qÿ 	P E�+� � �G��+�o pq r, t P ��+� D' � (4.142)

Taking into account that multiplying a Gaussian random vector by a unitary matrix does not change the
Gaussian statistic, we get: ��	 � �Ð Ñ̂ÄV � ddd¹ �	�Ä ddd�o pq r� ¡t¢Õ W �Ä �, t 0

(4.143)

where¹ �	�Ä are complex Gaussian random variables with zero mean and unit variance. For correlated
channels the eigenbases for different ET is different regardless of the specific code. The only exception
are orthogonal codes, which always have specific properties. For this reason an exact calculation of the
the distances and the corresponding PDFs in general is not possible. In order to make the calculation
of the MDLB feasible, the same assumption as for CS2 for uncorrelated channels is made, namely it
is assumed that the eigenbasis is the same for all ETs and therefore the realizations¹ �	�Ä � ¹Ä are
independent from the specific ET.

In principle all steps to calculate the necessary PDFs of allrelevant distances are the same as for uncor-
related channels. The difference in deriving the PDFs lies in some detail and therefore I will now show
the PDF-derivation for a specific example.
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Example: Cyclic Code for two transmit antennas

In this example, I will show some details of the PDF calculation for the cyclic code with two transmit an-
tennas and one receive antenna using BPSK modulation. For this correlated channel, scenario 14D3 with
strong spatial correlation has been chosen. The ET table is now different compared to the uncorrelated
case, because now we have different ET-key-parameters. Fortheuncorrelated case the key-parameters
are essentially the eigenvalues of the distance matrixÿ	 and for thecorrelated case the key-parameters
are the eigenvalues of the matrix- 	. We start by investigating all 16 crossover events to find themodified
ET table. Again, there are 3 different ETs and the corresponding key-parameters are listed in Tab. 4.6.
Note that the key-parameters for each channel correlation type are different! The number of crossover
events leading to a certain ET is denoted byÅ� and the number of different information bits is�³´ � .
The model parameters extracted from measurements performed in scenario 14D3 are:P� [ � � � �¦�¦§ �� �§¦¤� � � � ��¤¨§� �§¦¤� � � � ��¤¨§ � �¦�¦§ � 0

(4.144)R � I � ��¨ �§ ������ J � (4.145)P�[ degenerates to 1, because only one receive antenna is used.

ETÃ W ���, æ W ���, æ Å� �³´ �Ã 0 0 4 0
1 0.6064 7.3936 8 1
2 2.9560 0.0000 2 2
3 0.0000 29.0439 2 2

Table 4.6: ET table for the cyclic STBC. BPSK modulation;�� � x; correlation scenario 14D3.

Accordingly, we can find 3 distances corresponding to the 3 different ETs:��� � � �§�§� � � � ¦ �¥¤¥§ �� � Å� �� � 0 �� ��� � x �¤¨§� � � � Å� �� � 0 �� ��� � x¤ ���¥¤ �� � Å� �� � 0 ��  (4.146)

It is assumed that

� �	�� � � � and

� �	�� � �� as explained above. The random variables

�ñ are º�
distributed with 2 degrees of freedom:» � � �� ñ  � y�Y� + ��ñ  0

(4.147)

where+ ��ñ  denotes the Heaviside step function.

Starting with the calculation of» ¼CB K¼CBV¼CÕ t¬ �T , the joint PDF results in:» ¼CB K� C �T 0 ��  � U$B ¯» � B �� � ° » �C ���  0
(4.148)

The PDF transform according toÅ� (Eqn. (4.146)) is a simple affine transformation:��� � � �§�§� � � � ¦ �¥¤¥§ �� 0
(4.149)

therefore the conditional PDF of the distance

��� can be expressed by means of the PDF of

� � resulting
in: » ¼CB ª� C �T _��  � �� �§�§� » � B Á T� �§�§� � �x ��¤x§ �� Â 0

(4.150)
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Accordingly the joint PDF results in:» ¼CB K� C �T 0 ��  � �� �§�§� » � B Á T� �§�§� � �x ��¤x§ �� Â » �C ��� � �� �§�§� y��Z GÀ ØðÀð���� Ø�Í�ð YC �+ �T ±� �§�§� � �x ��¤x§ �� y�YC + ���  0
(4.151)

Before doing the integration according to Eqn. (4.119), we have to find the corresponding regionW � for
that

��� � ��Ä 	� is valid.

The realizations of

��� and

��� must fulfill the condition

��� ~ ��� and thus we get:� �§�§� � � � ¦ �¥¤¥§ �� ~ x �¤¨§� � ��� ~ � �¥ �¦� � � (4.152)

At this point the distance equationÅ� is inserted in Eqn. (4.152). Note that we focus on the realizations of
the random variables (instead of the random variables). Therefore, the functionÅ� (regarding realization)
is T � � �§�§� � � � ¦ �¥¤¥§ �� instead of

��� � � �§�§� � � � ¦ �¥¤¥§ �� . More concrete, we insert

� � �ZÀ ØðÀð� � �x ��¤x§ �� in Eqn. (4.152):�� ~ � �¥ �¦� Á T� �§�§� � �x ��¤x§ �� Â� ��¦�� �� ~ � �¨x� � T�� ~ � ���¦¨ T (4.153)

From the second condition

��� ~ ��� we get in the same way:�� n � ��¥�� T (4.154)

Therefore the desired PDF» ¼CB ª¼CBV¼CÕ t¬ �T  results in» ¼CB K¼CBV¼CÕ t¬ �T  � �X B » ¼CB K� C �T 0 ��  ���� �� �§�§� y�Z GÀ ØðÀð� � À Ø�À\Ë ZÀ ØÀ��� Z y�� Ø�Í�ð YC + �T ±� �§�§� � �x ��¤x§ �� + ���  ���� � ���¦¥ Iy�À Ø��ËÍ Z � y��Ø�ð� � Z J + �T  � (4.155)

For the remaining two distance PDFs» ¼CC ª¼CCV¼CÕ t¬ �T  and» ¼CS ª¼CSV¼CÕ t¬ �T  the calculation is very similar.
Therefore, the results of the two PDFs are shown in Eqn. (4.156) and Eqn. (4.157) without going into
details.

The desired PDF» ¼CC ª¼CCV¼CÕ t¬ �T  results in:» ¼CC K¼CCV¼CÕ t¬ �T  � �X C » ¼CC K� C �T 0 ��  ��� (4.156)� �x �¤¨§� y�Z G� ØÍËðÀ � �À Ø�À\Ë Z y�YC + �T ±x �¤¨§�+ ���  ��� � � �¥¥�¥ y�À Ø��ËÍ Z + �T  0
and» ¼CS K¼CSV¼CÕ t¬ �T  � �X

S » � B K¼CS �� � 0 T  �� � (4.157)� �x¤ ���¥¤ y�Z G�Í ØÀ��Í � ��Ø��Í� Z y�Y B+ �T ±x¤ ���¥¤+ �� �  �� � � � ��¥�� y��Ø�ð� � Z + �T  �
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Having calculated the necessary PDFs of the minimum distances, we proceed with the calculation of the
probabilities

�¼CæV¼CÕt¬ according to Eqn. (4.101):�¼CBV¼CÕ t¬ � � �À » ¼CB K¼CæV¼CÕ t¬ �T �T � � �À � ���¦¥ Iy�À Ø��ËÍ Z � y��Ø�ð� � Z J + �T �T � � �x �¥� 0
(4.158)�¼CCV¼CÕ t¬ � � �À » ¼CC K¼CæV¼CÕ t¬ �T �T � � �À � �¥¥�¥ y�À Ø��ËÍ Z + �T �T � � �¦¨§ � 0
(4.159)�¼CSV¼CÕ t¬ � � �À » ¼CS K¼Cæ V¼CÕ t¬ �T �T � � �À � ��¥�� y��Ø�ð� � Z + �T �T � � ��x¦x � (4.160)

With these probabilities the desired PDFs according to Eqn.(4.102) result in:» ¼CB ª¼CBV¼CÕ t¬ � » ¼CB K¼CBV¼CÕ t¬�¼CBV¼CÕ t¬ � � �§�¤� Iy�À Ø��ËÍ Z � y��Ø�ð� � Z J + �T  0
(4.161)» ¼CC ª¼CCV¼CÕ t¬ � » ¼CC K¼CCV¼CÕ t¬�¼CC V¼CÕ t¬ � � ���¨¤ y�À Ø��ËÍ Z + �T  0
(4.162)» ¼CS ª¼CSV¼CÕ t¬ � » ¼CS K¼CSV¼CÕt¬�¼CSV¼CÕ t¬ � ��x§� � y��Ø�ð� � Z + �T  0
(4.163)

Knowing these PDFs we can calculate the average error probabilities of the three ETs according to
Eqn. (4.100): �L B � � �À Q �� Tx + �� � » ¼CB ª¼CBV¼CÕ t¬ �T �T

� � �À Q �� Tx + �� � � �§�¤� Iy�À Ø��ËÍ Z � y��Ø�ð� � Z J + �T  �T� ��¨�¨ � Á � � | �x Â � � �¨�¨ � Á� � |�x Â 0�L C � � �À Q �� Tx + �� � � ���¨¤ y�À Ø��ËÍ Z + �T  �T � Á� � | �x Â 0
(4.164)�LS � � �À Q �� Tx + �� � ��x§� � y��Ø�ð� � Z + �T  �T � Á� � |�x Â 0
(4.165)

with | � � � �� + �� � ���¨¤ � � |� � � �� + �� ��x§� � � � � (4.166)

Now we are almost done. By applying the total probability theorem (Eqn. (4.114)) we obtain the final
result:

BEROPQR � �̂�V � ² � ß� �À Q �� �x + �� � » ¼Cæ ª¼CæV¼CÕ t¬ �� ��à �¼Cæ V¼CÕ t¬ (4.167)� � e��¨�¨ � Á � � | �x Â � � �¨�¨ � Á � � |�x Â f � �x �¥�� �x e Á� � | �x Â f � �¦¨�¦ � �x e Á� � |�x Â f � ��x¦x� � �¦�¤¦ Á � � | �x Â � � ���x¤ Á � � |�x Â 0
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Figure 4.33: BER vs. SNR performance of the cyclic STBC. BPSKmodulation;�� � x, �� � �
;

correlation scenario 14D3.

In Fig. (4.33) the calculated MDLB is compared to simulationresults and a union bound calculated ac-
cording to Sec. 4.2. As we can see, the MDLB underestimates the BER vs. SNR performance compared
with the simulation results, which are considered as the exact or true BER curves. In contrast to the
uncorrelated case, for the correlated case the MDLB is tighter than the union bound. Hence, with the
MDLB and the previously calculated union bound, a two-sidedbounding of the true BER vs. SNR per-
formance is possible. For the special case that both bounds are tight, as for most examples analyzed in
this thesis, we can predict the exact BER performance very precisely, at least in the high SNR domain.
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4.3.2.4 Hybrid Method to calculate the MDLB

As it has been shown in Sec. 4.3.2.2 and Sec. 4.3.2.3, the calculations of the PDFs for the ET-distances,
necessary to determine the MDLB, are rather complicated. The complexity of the calculation-algorithm
increases with increasing system complexity, i.e., with the number of transmit and receive antennas and
the modulation format. In order to circumvent lengthy derivations, I would like to propose a so-called
Hybrid Method, which combines both, the analytical calculation and numerical evaluations. Instead of
the conventional method of finding the BER by numerical simulations, where data are transmitted and at
the receiver the bit errors are counted, the analytical approach for calculating the MDLB (explained in the
previous section) is used. However, the tedious evaluations of the integrals are performed numerically.

The structure chart for theHybrid Methodis shown in Fig. 4.34.

input parameters: ET Table

averaging over N values of H

randomize H

d =f ( )       (i=1...n )i i

2
H ET

i’=argmin( )di

2

S sBER= BER+w Q( /2 )i’ di’ n

2 2
S

BER= BER/NS

Figure 4.34: Structure chart for the MDLB determination.

With this approach we can easily get a very good approximation of the BER performance (MDLB),
without performing difficult calculations. In some cases itis not necessary to get an analytical result, but
we only want a BER vs. SNR curve. For such cases, theHybrid Methodis a very powerful technique to
save a lot of computation time.

Obviously, the calculation of the union bound, which has been discussed in Sec. 4.2, is much easier
compared with the calculation of the MDLB. Nevertheless, this union bound can also be calculated
according to this hybrid method.
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4.3.2.5 Examples and Discussion

Note that for the following examples the union bounds and theMDLBs are not calculated analytically,
because of the huge calculation effort, especially for evaluating the MDLB. Instead, in this section the
Hybrid Methodis used to evaluate both bounds.

Cyclic Code:

The cyclic code for 4 transmit and 4 receive antennas using BPSK modulation, already discussed in
Sec. 4.2, is analyzed at this point. The cyclic code belongs to Code Set (CS) 1. Therefore, the eigenbasis
is the same for all ETs and a very accurate distance calculation is possible. The corresponding ETs are
listed in Table 4.1. In Fig. 4.35 the simulated BER vs. SNR performance (dashed red curve), the tight
union bound for the BER vs. SNR performance (solid blue curve) and the MDLB for the BER vs. SNR
performance (solid black curve) for this cyclic code (�� � �� � �) utilizing BPSK modulation for
uncorrelated MIMO channels are compared. As we can see in Fig. 4.35 the MDLB is extremely tight.
In this case and for all codes corresponding to CS1 the MDLB istighter than the union bound. As we
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Figure 4.35: BER vs. SNR performance of the cyclic STBC. BPSKmodulation; �� � �� � �;
uncorrelated channels.

can see, the lower bound and the union bound coincide for BER values of
����

and below. Obviously
if a lower bound and a union bound coincide, both bounds are tight. This result is confirmed by the
simulation results shown in Fig. 4.35.

In case of correlated fading all codes have distinct eigenbases for all ETs. Thus, an exact calculation of
the distances and their PDFs is not possible. For this reason, the tightness of the MDLB is much worse
compared with the case of uncorrelated fading. The simulated BER vs. SNR performance (dashed red
curves), the tight union bounds for the BER vs. SNR performance (solid blue curves) and the MDLB
for the BER vs. SNR performance (solid black curves) for thiscyclic code (�� � �� � �) utilizing
BPSK modulation are compared in Fig. 4.36 for several spatial correlation types: 1D3 (�-marker) and
14D3 (�-marker). As it can be seen in Fig. 4.36, for correlated channels the union bound is tighter
than the lower bound. Only for the BER below

���Ë
the lower bound and the union bound coincide.

Nevertheless, the lower bound helps us to bound the BER from below and from above. Note that in this
case the union bound is already tight for BER values below

����
in contrast to the lower bound.
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Figure 4.36: BER vs. SNR performance for the cyclic STBC. BPSK modulation;�� � �� � �; several
correlation types.

Extended Alamouti Code:

The EA code also belongs to CS1. The MDLB for this code is also an extraordinary tight performance
approximation. In Fig. 4.37 the simulated BER vs. SNR performance (dashed red curves), the tight
union bound for the BER vs. SNR performance (solid blue curves) and the MDLB for the BER vs. SNR
performance (solid black curves) for the Extended AlamoutiSTBC (�� � �� � �) utilizing QPSK
modulation are compared for uncorrelated MIMO channels. Itis essentially tighter than the union bound
in the low SNR range. For BER values of

����
and below the union bound and the lower bound coincide.
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Figure 4.37: BER vs. SNR performance for the Extended Alamouti STBC. QPSK modulation;�� ��� � �; uncorrelated channels.
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In Fig. 4.38 the simulated BER vs. SNR performance (dashed red curves), the tight union bounds for the
BER vs. SNR performance (solid blue curves) and the MDLB for the BER vs. SNR performance (solid
black curves) for the Extended Alamouti code (�� � �� � �) utilizing QPSK modulation are shown for
several spatial correlation types: 1D3 (�-marker) and 14D3 (�-marker). In contrast to the cyclic code,
the lower bound is also very tight in spatially correlated channels.
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Figure 4.38: BER vs. SNR performance for the Extended Alamouti STBC. QPSK modulation;�� ��� � �; several correlation types.

Orthogonal Code:

In Fig. 4.39 the simulated BER vs. SNR performance (dashed red curves), the tight union bounds for
the BER vs. SNR performance (solid blue curves) and the high SNR approximation for the BER vs.
SNR performance (solid black curves) for a specific orthogonal STBC (�� � �� � �) utilizing QPSK
modulation are compared for uncorrelated MIMO channels. Ingeneral, orthogonal codes belong to
CS1. Orthogonal codes have an additional nice property, namely that the distance matrixÿ is always
a weighted identity matrix. For this reason, the eigenbasisfor different ETs is the same and thus the
performance approximation is very tight for correlated fading too. As already explained the performance
of orthogonal codes can be calculated more easily in a different way, but in order to show that the more
general framework developed in this thesis holds also for this special case, I want to show results for the
orthogonal code defined in Eqn. (4.8) gained with this framework.

In Fig. 4.39 it can be seen that the MDLB is tighter than the union bound. The MDLB coincides with the
simulated performance in the entire SNR range.

In Fig. 4.40 the simulated BER vs. SNR performance (dashed red curves), the tight union bounds for the
BER vs. SNR performance (solid blue curves) and the MDLB for the BER vs. SNR performance (solid
black curves) for a specific orthogonal code (�� � �� � �) utilizing QPSK modulation are shown for
several spatial correlation types: 1D3 (�-marker) and 14D3 (�-marker).

D-STTD Code:

The D-STTD code discussed in this paragraph belongs to CS2, i.e., it has not the nice property of the same
eigenbasis for all ETs. In Fig. 4.41 the simulated BER vs. SNRperformance (dashed red curves), the
tight union bounds for the BER vs. SNR performance (solid blue curves) and the MDLB for the BER vs.
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Figure 4.39: BER vs. SNR performance for a specific orthogonal STBC. QPSK modulation;�� � �� ��; uncorrelated channels.
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Figure 4.40: BER vs. SNR performance for a specific orthogonal STBC. QPSK modulation;�� � �� ��; several correlation types.

SNR performance (solid black curves) for the D-STTD code (�� � �� � �) utilizing QPSK modulation
are compared for uncorrelated channels. In Fig. 4.42 the simulated BER vs. SNR performance (dashed
red curves), the tight union bounds for the BER vs. SNR performance (solid blue curves) and the MDLB
for the BER vs. SNR performance (solid black curves) for the D-STTD code (�� � �� � �) utilizing
QPSK modulation are compared for several spatial correlation types: 1D3 (�-marker) and 14D3 (�-
marker).

The lower bound for uncorrelated channels (Fig. 4.41) is quite tight compared to the results for correlated
channels (Fig. 4.42).
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Figure 4.41: BER vs. SNR performance for the D-STTD code. QPSK modulation; �� � �� � �,
uncorrelated channels.

For the correlated scenarios the MDLB becomes tight for BER values below
���Ì

. In the low SNR
domain the lower bound is tighter than the union bound, but for BER values below

����
the union bound

coincides with the simulated performance.
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Figure 4.42: BER vs. SNR performance for the D-STTD code. QPSK modulation; �� � �� � �;
several correlation types.

Summarizing the results shown in this section, we can say that the MDLB is an extraordinary tight
performance approximation for spatially uncorrelated channels. In case of correlated fading, the MDLB
is in some cases very loose. The first reason for the loosenessof this bound is that the calculated distance
PDFs are no longer exact and the second reason is that for correlated channels not only the minimum
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distance is of importance but also other crossover events should be considered. Due to the large number
of similar ETs and thus similar distances, not only the minimum distance is of essential importance, but
also distances that are not far away from the minimum distance contribute to the mean BER. Thus, for
correlated scenarios the union bound is better suited to approximate the BER performance of STBCs. In
spite of these deficiencies of the MDLB it is still a lower bound and together with the union bound it
provides a bounding of the BER performance from below and from above.



Chapter 5

Summary and Conclusions

At last I want to summarize the main results and conclusions of this thesis. The main scope of this thesis
was to find appropriate and tight performance measures for data transmission over MIMO systems that
can be given in closed form. The motivation for this work was to avoid time consuming data transmis-
sion simulations and to get more insight into the error mechanism. The derived performance measures
are calculated for frequency flat MIMO channels using ML receivers, where spatially uncorrelated and
spatially correlated channels have been investigated. Theso-called Weichselberger Model is used to
simulate spatially correlated MIMO channels. The parameters for this model are extracted from actual
MIMO channel measurement data.

In chapter 3, we start with the distance properties of uncoded MIMO systems. The essential difference
between MIMO and SISO systems are elaborated: The signal distances in SISO systems behave “good-
natured” in contrast to distances observed at the receiver of MIMO systems. ForSISO systems we can
summarize:

-) The smallest (largest) distance of signal pairs at the transmitter transforms to the smallest (largest)
distance at the receiver.

-) The distance of a signal pair at the receiver is zero only, if either the distance of the signal pair at
the transmitter is zero or the channel gain is zero, that is_� _� � �

.

These properties are essential in calculating the error performance of a SISO system. One very good and
simple-to-calculate BER performance approximation is theso-called nearest neighbor approximation,
which cannot be applied in a straightforward way to MIMO systems. In contrast, MIMO systems show
a much more involved distance behavior. ForMIMO systems the following properties hold:

-) The transmit signal constellation may be heavily distorted, due to the matrix multiplication of the
transmit signal vector with the channel matrix� .

-) The largest distance at the transmitter may be transformed into the smallest distance at the receiver.

-) The distance at the receiver can be zero, even if every channel coefficient is far away from zero.

The most common possible approach to approximate the BER performance is a union bound. A union
bound is simply the sum over all Pairwise Error Probabilities (PEPs). In the course of deriving this union
bound, I discovered that the performance of a MIMO-system can fully and more easily be described
by so-called Error Types (ETs). An ET is essentially the set of all crossover events that have the same
key-parameters. The key-parameters depend on the case which channel correlation type is considered,
i.e., whether the MIMO-channel is spatially uncorrelated or spatially correlated. This union bound is
compared with simulation results for several uncoded MIMO systems, i.e., for different modulation
schemes, different number of transmit and receive antennasand different correlation types. It turns out
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that the union bound is tight for BER values of
����

and below. In the low SNR range, the overestimation
of the BER by the union bound can be quite substantial.

In order to compare the results of different MIMO-systems ordifferent correlation types it is helpful to
find a high-SNR approximation, which specifies the position and the slope of the BER vs. SNR curve
for infinitely high SNR. In this way the error performance of asystem can be specified by two numbers,
the system diversity and the coding advantage. Comparing error performance curves for different cor-
relation types, this concept allows to specify a diversity loss and a power loss due to spatial correlation.
Interestingly, the high SNR approximation for uncorrelated and correlated channels, according to the pa-
rameters extracted from measurement data, show that no diversity loss occurs due to spatial correlation.
The influence of spatial correlation only shows up in a power loss, which can be quantified with the aid
of the high SNR approximation.

Furthermore, a new precoding filter that minimizes the powerloss is derived. This filter can be found
analytically by Lagrange multiplier techniques, but due tothe involved cost function, this optimization
problem is solved numerically. The derived optimum precoding filter is tested in simulations. The sur-
prising result of this investigation is that the performance of the precoded system in correlated fading
is even better than the performance of the standard system (without precoding) inuncorrelated MIMO
channels in the low SNR regime. For high SNR values the systemwithout precoding operating in uncor-
related fading is only slightly better than the precoded transmission performed over spatially correlated
channels.

The second main part of this thesis is the performance analysis of space-time block coded systems, de-
scribed in Chapter 4. Starting with the investigation of thesignal distances, I have found out that in
MIMO systems multiple errors can dominate the BER performance! I call this specialty of MIMO sys-
tems“The MIMO-Paradoxon” . This fact is in sharp contrast to block coded SISO systems, where only
single symbol errors dominate the performance. This MIMO paradoxon can be confirmed by looking at
the results of the union bound, where for some codes the ETs corresponding to multiple errors cause a
flattening out of the BER vs. SNR curve (e.g.: Cyclic Code, Extended Alamouti Code).

The tightness of the derived union bound is checked again by comparing it with simulation results. The
union bound is tight for BER values of

����
and below for all investigated codes and correlation types.

Our results show, that for some codes a flattening out of the BER vs. SNR curve occurs at high SNR.
This effect comes from rank deficient ETs corresponding to multiple errors. In most cases these rank
deficiencies occur quite seldom and thus the flattening out can only be observed at very low BER values,
so that it is practically not very relevant. In correlated fading it has been observed that the BER vs. SNR
curves show this flattening out at quite low to medium SNR values.

A high SNR approximation of the union bound is derived that allows to specify the diversity order and
the power loss of a system. As for uncoded systems, the analysis of the code performance, especially the
high SNR approximation, shows that no diversity loss due to spatial correlation of the MIMO channels is
observed, even though realistic parameters for the correlation model (extracted from measurement data)
are used.

Next, an optimal precoder adapted to the spatially correlated channel is derived. Unfortunately, the opti-
mization problem here is very complex and thus the optimization is solved numerically. Unfortunately,
the numerical solution is not easy either, mainly because ofthe large number of local minima. Including
the precoding filter in the coded data transmission simulations, some performance improvement can be
achieved, but it is by far not that large as in the uncoded case.

The last main point discussed in this thesis is the so-calledMinimum Distance Lower Bound (MDLB),
where only that Error Type (ET) is considered that suffers from the minimum distance out of all possi-
ble distances. This bounding principle is easy to understand and the results are very tight (tighter than
the union bound), but the calculation complexity is very high. Therefore, sometimes a so-called hybrid
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method is used to perform the nasty analytical calculationsnumerically. In the derivation of the MDLB
the entire set of STBCs is subdivided into two sets. For Code Set (CS) 1 (cyclic code, Extended Alamouti
code, orthogonal codes) an exact calculation of the distances and thus an extraordinary tight BER perfor-
mance approximation is achieved. For codes not belonging toCS1 (CS2) the resulting approximations
are not that tight. It is also possible to calculate the MDLB for correlated channels, but the results show
that, for this case, the MDLB is very loose for some codes and therefore the union bound is better suited
to characterize the BER performance of a MIMO-system than the MDLB (the union bound is tighter and
is easier to calculate). However, together with the union bound the MDLB allows a two-sided bounding
of the BER performance from above and from below, which may bevaluable in certain applications.

For practical applications we can say that in order to obtaina BER-performance characteristic of a
MIMO-system without performing time consuming data transmission simulations, the union bound is
the more appropriate means than the MDLB. This suggestion isbased on the fact that the union bound is
a lot easier to calculate and nevertheless it is quite tight.





Appendix A

Notation

� a boldface capital letter denotes a matrix� a boldface lower case letter denotes a vector- M .)/ �| 0 + �  matrix with independent identically distributed complex Gaussian entries
with mean| and variance+ � consisting of� rows and columns��� transpose operator��' complex conjugate transpose operator (Hermitian operator)��E complex conjugate operator

tr(.) trace operator applicable on matrices
det(.) determinant operator applicable on matrices
E
9 ¯�° expectation with respect to���� Frobenius norm operator_� _� l2-norm operatori

symbol alphabet of the modulation format_i _ size of the symbol alphabet
ld(.) base 2 logarithm�y ¯�° real part operator* denotes an identity matrixO Kronecker matrix productS

element-wise matrix product���	 �-th element of a vector
Q(.) Gaussian Q-function" �� Dirac impulse+ �� Heaviside step function
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Appendix B

Acronyms

BLAST bell layered space time
UMTS universal mobile telecommunication system
BS base station
BER bit error ratio
SNR signal to noise ratio
MIMO multiple input multiple output
SISO single input single output
CLS closed loop scheme
i.i.d. independently identical distributed
ULA uniform linear array
ML maximum likelihood
ZF zero forcing
MMSE minimum mean square error
STC space time coding
STTC(s) space time trellis code(s)
STBC(s) space time block code(s)
O-STBC(s) orthogonal space time block code(s)
NO-STBC(s) non-orthogonal space time block code(s)
STB space time block
MDLB minimum distance lower bound
ET error type
EA extended Alamouti
D-STTD double space time transmit diversity
BPSK binary phase shift keying
QPSK quadrature phase shift keying
16QAM 16 quadrature amplitude modulation
RX receive
TX transmit
PDF probability density function
NNA nearest neighbor approximation
PEP pairwise error probability
SEP symbol error probability
CF characteristic function
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Appendix C

Important Variables

R
power coupling matrix� channel matrix� � virtual channel matrix

n� number of transmit antennas
n� number of receive antennas
n6� � number of occupied time slots
n� � number of information symbols+ �� noise variancew difference vectorþ code word difference matrixÿ code word distance matrix� rank of the distance matrixÿ��� squared distance at the transmitter
��� squared distance at the receiver
n³´ number of bit errors
f� frequency of crossover events leading to theÃ-th error type
n´� number of error types
n
� Ï

number of non zero eigenvalues
D diversity order
Lë diversity loss due to spatial correlation
LÇ power loss due to spatial correlation2 code word matrix�� information symbol rate
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Appendix D

Model Parameters

Here, the model parameters for the W-model of two measured MIMO channels with 4 transmit and 4
receive antennas are shown.

Scenario 1D3 (moderate correlation):

P� � XYYYZ �� ���� � � � � �¨�¦� �� �§x§¦ � � � ��¨� � �� ���¨§ � � � �¥¨�¥ �� �¥¤ �¦ � � � ���¤¨�� �¨��¥ �� ����� � � � ���¦§ �� �§¦¥� �� ��¥¥x � � � ��¨�¤�� ����¤ � � � �¥�¨¨ �� ���§§ � � � ���� � �� �¥¨¦� � � � �¥¤¥� �� �¦¥x��� �x¦�� � � � �¥� �x �� �¦�¤� �� ��¦�� � � � �¥�¤¦ �� �¥��¨ � � � ��x¨x
[\\\]

R � XYYYZ � �§�¦¦ ¥ ��x� � x �x�¦¥ � �¨§§������¤ ���¥§� � �¨¦¤x � ��¥��� �¥ ��¦ � �x¤�¤ � ��§¦� � ��¨� �� �¦xxx � �§¥ �� � �¥¨x¥ � ����§
[\\\] (D.1)

P� � XYYYZ �� ��§¨� � � � ���¦� �� �§ ��§ �� �§¥¦� �� ����¤ � � � ���¨¦��� �¨�¥¦ � � � ��¨�� �� ��¦¤¦ � � � ���¨x �� �x� �� � � � �x¥§ � �� �¨¤���� �§�¤ � �� ��¨ �¥ � � � ���¦x �� �¥¤§¨ � � � ���¤� �� �¨¦¥¥ � � � ����x�� ����¥ � � � ��¦¥¦ �� ��x�� � � � �¥¤¥¦ �� �¨¥ �§ � � � ��¤x� �� �¥§�¨ � � � ��¤¨¤
[\\\]

Scenario 14D3 (strong correlation):

P� � XYYYZ �� ���¨§ � � � �¥�¤¨ �� �¦¨�� �� �¥�¤§ � � � �¥¥�¦ �� ��¥�¥ � � � �x� �¥�� �¥§¥¨ � � � �¥�� � �� ��¨¨� � � � �x �§§ �� �¨¨�x �� �¥�¤¥ � � � ��¤ �¤�� �¨x¨x � � � ��x �§ �� ���¥� � � � �x �¥� �� ��¨ �� � � � �¥¨x¥ �� �§¤¨x�� �¨��¤ �� ���§x � � � �¨¥¥� �� ���xx � � � �¨¥¥x �� �x§x� � � � �x�§�
[\\\]

R � XYYYZ ¤ �¥§�� ��¨�¤� � �¦�§� � �¥x¥����§¤� � �¥� �§ � �¥¥§¨ � ���§�� ��§¤� � �x��� � �x�¨ � � ��§¥§� ��¥� � � ���¤§ � ��§¥� � ��� �¦
[\\\] (D.2)

P� � XYYYZ �� ��¥¤¤ � � � ��¦�x �� �§x¨¨ �� �¨§¥ � �� ��x �� � � � �x¥x§�� ��¤¦¦ � � � ��¤¦¦ �� ��¤¨¦ � � � �¥ �¨¨ �� �¥�¥� � � � �x¤¨� �� ��¤¦¤ � � � �¥�¤��� �¨ ��� �� �¥��¦ � � � ��¦�� �� ��§x� � � � �¥¨¨¤ �� �§¦xx�� ��¤¥¨ � � � ���¤� �� �xx�x � � � �¨��§ �� ��¤¤§ � � � �¨¥� � �� �x¤¦¥ � � � ���¥¥
[\\\]
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Appendix E

Error Types for Uncoded MIMO Systems

In this section the Error Types (ETs) for a 4�4 MIMO system in spatially correlated fading with BPSK
modulation are tabulated. For every correlation type the corresponding ET table is different. Tab. E.1
and Tab. E.2 correspond to scenario 1D3 and 14D3.
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ET W�� �� W �� �� W �� �� W �� �� �³´ � Å� ��ç � ��� �
0 0.000 0.000 0.000 0.000 0 16 0 0
1 11.0960 3.1376 0.8910 1.9300 1 16 2.7816 4
2 11.3431 2.8631 0.8042 1.7903 1 16 2.6150 4
3 10.0675 2.7693 0.7891 1.7109 1 16 2.4769 4
4 9.5168 2.8113 0.8096 1.7126 1 16 2.4679 4
5 31.9519 8.5297 2.3572 5.3349 2 8 7.6514 8
6 20.5239 5.1545 1.4568 3.2249 2 8 4.7216 8
7 31.9301 8.0789 2.2234 5.0772 2 8 7.3460 8
8 21.8655 5.8023 1.6475 3.5716 2 8 5.2271 8
9 19.3190 5.0258 1.4304 3.1275 2 8 4.5652 8

10 26.9198 7.9856 2.2468 4.9171 2 8 6.9809 8
11 12.9264 3.4716 1.0333 2.1059 2 8 3.1435 8
12 21.8032 6.6593 1.9034 4.0571 2 8 5.7866 8
13 19.3600 6.0955 1.7537 3.7137 2 8 5.2653 8
14 10.8913 3.1860 0.9632 1.9253 2 8 2.8323 8
15 22.4008 6.3230 1.7972 3.8785 2 8 5.6055 8
16 12.2489 3.1757 0.9505 1.9300 2 8 2.9064 8
17 51.8992 12.9931 3.5531 8.2057 3 4 11.8413 12
18 41.1804 10.5459 2.9303 6.6010 3 4 9.5736 12
19 38.6289 10.2241 2.8614 6.3600 3 4 9.2075 12
20 47.2414 12.6465 3.4977 7.9079 3 4 11.3379 12
21 34.1530 9.4398 2.6758 5.8088 3 4 8.4136 12
22 19.6495 5.7809 1.7126 3.5140 3 4 5.1133 12
23 37.4027 12.0221 3.4142 7.3343 3 4 10.3011 12
24 11.8349 3.0421 0.9689 1.8248 3 4 2.8246 12
25 25.2368 6.7849 1.9732 4.1230 3 4 6.1093 12
26 29.2844 9.0509 2.6043 5.5070 3 4 7.8521 12
27 32.1396 9.6051 2.7395 5.8860 3 4 8.3996 12
28 41.7568 12.1362 3.4033 7.4940 3 4 10.6624 12
29 25.2372 6.9191 2.0118 4.2051 3 4 6.1996 12
30 11.5317 2.9438 0.9413 1.7689 3 4 2.7419 12
31 21.4525 5.7074 1.6713 3.5149 3 4 5.1787 12
32 35.6524 9.1338 2.5683 5.6718 3 4 8.2990 12
33 68.4632 17.4141 4.7743 10.9653 4 2 15.8060 16
34 48.2116 14.1540 4.0032 8.7105 4 2 12.4200 16
35 31.4808 8.7604 2.5569 5.3354 4 2 7.8318 16
36 49.2800 15.6165 4.4337 9.5387 4 2 13.4316 16
37 34.0327 9.2163 2.6645 5.6585 4 2 8.2926 16
38 11.2226 2.9465 1.0001 1.7393 4 2 2.7539 16
39 39.1280 10.3482 2.9675 6.3324 4 2 9.3396 16
40 54.3687 14.1946 3.9510 8.8712 4 2 12.8245 16

Table E.1: ET table for a 4�4 MIMO system in correlated fading for BPSK modulation (scenario 1D3).
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ET W�� �� W �� �� W �� �� W �� �� �³´ � Å� ��ç � ��� �
0 0.000 0.000 0.000 0.000 0 16 0 0
1 12.5765 2.8414 1.0663 0.2959 1 16 1.8324 4
2 11.8874 2.5624 0.8710 0.2830 1 16 1.6553 4
3 11.6918 2.5782 0.9183 0.2862 1 16 1.6777 4
4 11.7996 2.7136 1.0613 0.2886 1 16 1.7696 4
5 5.4916 1.8279 1.2295 0.4120 2 8 1.5017 8
6 38.9203 8.0499 2.3444 0.7230 2 8 4.8005 8
7 5.1637 1.3438 0.8076 0.3557 2 8 1.1882 8
8 11.3435 3.1279 1.7102 0.4540 2 8 2.2910 8
9 37.7662 7.8275 2.3002 0.7105 2 8 4.6883 8

10 6.0771 2.0744 1.3932 0.4297 2 8 1.6575 8
11 43.4362 8.9797 2.6451 0.7456 2 8 5.2664 8
12 9.6163 2.7892 1.6249 0.4411 2 8 2.0939 8
13 37.4087 7.9822 2.5449 0.7149 2 8 4.8278 8
14 41.9947 8.9374 2.7710 0.7827 2 8 5.3415 8
15 9.6079 2.7246 1.5643 0.4327 2 8 2.0517 8
16 40.9057 8.5092 2.5659 0.7199 2 8 5.0355 8
17 13.4199 3.2397 1.5259 0.6257 3 4 2.5383 12
18 18.3378 4.6659 2.2414 0.7091 3 4 3.4149 12
19 20.2730 5.1190 2.4020 0.7360 3 4 3.6803 12
20 13.6282 3.3915 1.6505 0.6381 3 4 2.6414 12
21 22.0605 5.1307 2.2220 0.6774 3 4 3.6128 12
22 82.3476 16.6719 4.4917 1.3035 3 4 9.4687 12
23 17.0342 4.7126 2.5171 0.7150 3 4 3.4669 12
24 88.1955 17.9850 4.9049 1.3863 3 4 10.1909 12
25 28.1241 6.7147 2.9210 0.7649 3 4 4.5322 12
26 22.3009 5.8822 2.8779 0.7873 3 4 4.1521 12
27 20.9469 5.5726 2.7698 0.7708 3 4 3.9732 12
28 16.2446 4.4173 2.3402 0.6922 3 4 3.2835 12
29 25.7976 6.2931 2.8552 0.7444 3 4 4.3099 12
30 85.2878 17.4199 4.7866 1.3553 3 4 9.9083 12
31 81.1668 16.4082 4.4094 1.2871 3 4 9.3241 12
32 20.2984 4.7234 2.0872 0.6505 3 4 3.3778 12
33 8.8518 2.8602 1.9514 0.7776 4 2 2.4896 16
34 43.5575 9.6055 3.4822 1.0902 4 2 6.3130 16
35 55.4691 12.5026 4.5945 1.2604 4 2 7.9607 16
36 14.2856 4.9445 3.2941 0.9058 4 2 3.8102 16
37 51.2074 11.6279 4.3681 1.2130 4 2 7.4946 16
38 144.5212 28.8946 7.3379 2.0893 4 2 15.9067 16
39 24.1627 6.0832 3.0843 0.8418 4 2 4.4199 16
40 41.5872 9.0465 3.2229 1.0509 4 2 5.9746 16

Table E.2: ET table for a 4�4 MIMO system in correlated fading for BPSK modulation (scenario 14D3).



Appendix F

Error Types for the Cyclic STBC
In this section, I show the ETs and the corresponding key-parameters for the cyclic code utilizing a 4] 4 MIMO system and BPSK modulation in spatially
correlated fading. For each correlation type the ET table isdifferent. Tab. C.1 and Tab. C.2 correspond to the scenario 1D3 and 14D3.

ET

^ _̀ abc ^ _ d abc ^ _ e abc ^ _ f abc ^ _ g abc ^ _ h abc ^ _ i abc ^ _ j abc ^ _ k abc ^ _̀ l abc ^ _̀̀ abc ^ _̀ d abc ^ _̀ e abc ^ _̀ f abc ^ _̀ g abc ^ _̀ h abc m n o p q p r ds p r dt p

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 16 0 0

1 18.431 12.496 8.829 4.563 4.147 2.888 2.523 2.317 2.267 1.409 1.242 1.179 0.671 0.553 0.322 0.200 1 64 2.01 4.00

2 69.941 24.676 18.048 17.638 11.123 8.020 4.895 4.826 4.737 2.882 2.276 1.371 0.000 0.000 0.000 0.000 2 32 7.78 10.08

3 27.901 18.834 8.851 8.690 5.409 4.950 3.024 2.512 2.126 1.424 1.240 0.763 0.000 0.000 0.000 0.000 2 32 4.12 10.08

4 68.513 17.434 11.172 10.977 4.780 2.925 1.727 0.994 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 16 6.58 16.00

5 50.853 37.554 16.081 9.883 9.833 6.037 4.558 2.843 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 16 11.12 16.00

6 64.482 47.604 20.262 15.998 12.552 12.395 7.685 5.738 4.157 3.598 2.599 2.346 1.150 0.573 0.334 0.207 3 32 4.50 8.94

7 154.602 39.271 24.734 12.954 10.763 9.121 4.188 2.558 2.395 2.271 1.458 1.186 0.692 0.554 0.322 0.200 3 16 3.49 6.93

8 28.415 18.015 9.553 8.484 8.014 4.803 4.539 2.865 2.683 2.541 2.237 1.602 1.350 1.239 0.852 0.660 3 16 3.49 6.93

9 73.723 49.985 35.316 18.254 16.589 11.554 10.095 9.268 9.068 5.636 4.971 4.718 2.684 2.213 1.289 0.801 4 8 8.05 64.00

10 101.707 75.108 32.162 19.766 19.666 12.075 9.116 5.686 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 4 22.24 32.00

11 273.852 69.656 43.861 19.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 2 63.22 64.00

12 44.890 11.786 6.957 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 2 11.02 16.00

Table F.1: ET table for a 4] 4 MIMO system utilizing the cyclic code defined in Eqn. (4.9) in correlated fading for BPSK modulation (scenario 1D3).
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ET

^ _̀ abc ^ _ d a bc ^ _ e a bc ^ _ f abc ^ _ g abc ^ _ h abc ^ _ i abc ^ _ j abc ^ _ k abc ^ _̀ l abc ^ _̀̀ abc ^ _̀ d abc ^ _̀ e abc ^ _̀ f abc ^ _̀ g abc ^ _̀ h abc m n o p q p r ds p r dt p

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 16 0 0

1 37.473 7.476 6.039 3.147 1.879 1.526 1.345 1.295 0.980 0.803 0.536 0.347 0.254 0.252 0.198 0.166 1 64 1.14 4.00

2 15.860 8.594 4.238 3.620 3.128 2.710 1.693 1.007 0.813 0.736 0.432 0.405 0.000 0.000 0.000 0.000 2 32 1.96 10.08

3 146.535 29.261 12.010 7.390 5.199 3.065 2.107 2.081 1.686 1.450 0.456 0.399 0.000 0.000 0.000 0.000 2 32 3.89 10.08

4 145.390 29.050 7.982 7.360 2.704 2.097 1.929 0.769 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 16 6.17 16.00

5 27.694 10.753 6.766 4.261 3.426 2.951 0.914 0.833 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 16 4.00 16.00

6 48.413 23.445 12.979 10.349 6.092 4.844 4.337 3.889 1.749 1.565 1.150 1.076 0.489 0.436 0.318 0.184 3 32 2.55 8.94

7 326.327 65.217 16.536 6.214 4.709 3.160 1.569 1.350 1.295 0.983 0.819 0.347 0.254 0.252 0.202 0.166 3 16 1.98 6.93

8 40.984 16.923 8.789 5.621 5.454 4.681 2.129 1.839 1.764 1.507 0.818 0.663 0.528 0.480 0.220 0.196 3 16 1.98 6.93

9 35.407 11.440 7.805 3.110 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 2 9.96 64.00

10 55.389 21.507 13.533 8.522 6.853 5.903 1.828 1.666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 4 8.01 32.00

11 578.084 115.578 29.351 8.357 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 2 63.63 64.00

12 149.894 29.904 24.156 12.589 7.516 6.106 5.383 5.180 3.922 3.212 2.145 1.388 1.017 1.008 0.794 0.666 4 8 4.56 16.00

Table F.2: ET table for a 4] 4 MIMO system utilizing the cyclic code defined in Eqn. (4.9) in correlated fading for BPSK modulation (scenario 14D3).
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