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Abstract

Tracking user movements is one of the major low-level tasks which every Virtual Re-
ality (VR) system needs to fulfill. There are different methods how this tracking may
be performed. Common tracking systems use magnetic or ultrasonic trackers in dif-
ferent variations as well as mechanical devices. All of these systems have drawbacks
which are caused by their principles of work. Typically, the user has to be linked to
a measurement instrument, either by cable or, even more restraining for the user, by
a mechanical linkage. Furthermore, while mechanical tracking systems are extremely
precise, magnetic and acoustic tracking systems suffer from different sources of distor-
tions. For this reason, an optical tracking system has been developed which overcomes
many of the drawbacks of conventional tracking systems.

This work is focused on stereoscopic tracking that provides an effective way to
enhance the accuracy of optical based trackers. Vision based trackers in general fa-
cilitate wireless interaction with 3D worlds for the users of a virtual reality system.
Additionally, the proposed tracker is very economic through the use of standard sensor
technology that will furthermore reduce cost. The proposed tracker provides an ac-
curacy in the range of sub-millimeters, thus it meets the requirements of most virtual
reality applications. The presented optical tracker works with low frequency light and
is based on retro-reflective sphere shaped markers illuminated with infrared light to
not interfere with the user’s perception of a virtual scene on projection based display
technology systems in environments with dim light. In contrast to commercial optical
tracking systems, the outcome of this work is operating in real-time. Furthermore, the
presented sytem can make use of very small cameras to be applicable for inside-out
tracking.

This work presents novel approaches to calibrate a stereoscopic camera setup. It
utilizes the standard equipment used for commercial optical trackers in computer ani-
mation, but contrarily to calibration methods available today, it calibrates internal and
external camera parameters simultaneously, including lens distortion parameters. The
calibration is very easy to use, fast and precise.

To provide the robustness required by most virtual reality applications, human mo-
tion needs to be tracked over time. This has been often done with a Kalman filter
facilitating a prediction of motion which may not only enhance the frequency of the
tracking system, but may also cope with display lags of complex virtual scenes or with
acquisition or communication delays. A new filter formulation is presented that may
also be used with non-optical based trackers providing the pose of an object with six
degrees of freedom.

Finally, some extensions to natural landmark tracking are presented using a contour
tracking approach. First experimental results of an early implementation are shown,
detecting a human pointing gesture in environments with different lighting conditions
and backgrounds. Perspectives are given how this method could be extended to 3D
model based hand tracking using stereoscopic vision.



Kurzfassung

Das Verfolgen von Benutzerbewegungen ist eine der grundlegenden Aufgaben, die
von jedem System für Virtual Reality (VR) bereitgestellt werden muß. Es sind un-
terschiedliche Methoden bekannt, wie diese Verfolgung durchgeführt werden kann.
Gebr̈auchliche Trackingsysteme verwenden magnetische oder Ultraschall-Sensoren
in verschiedensten Varianten sowie mechanische Hilfsmittel. Allerdings weist jedes
dieser Syteme Nachteile auf, die in ihrem Funktionsprinzip begründet sind. Fast alle
Techniken erfordern eine Verbindung des Benutzers mit einer Meßstation, entweder
durch Kabel oder, was den Benutzer noch mehr in seiner Bewegung einschränkt,
durch eine mechanische Verbindung. Während mechanische Systeme außerordentlich
präzise arbeiten, werden magnetische und akkustische Trackingsysteme von unter-
schiedlichen Sẗorquellen beeinflusst. Aus diesem Grund wurde ein optisches Track-
ingsystem entwickelt, das nicht die bekannten Nachteile konventioneller Syteme
aufweist.

Diese Arbeit konzentriert sich auf die Verwendung stereoskopischer Trackingver-
fahren, die unter anderem sehr effektiv die Genauigkeit optisch basierter Systeme
verbessern. AufComputer-Visionbasierte Tracker erm̈oglichen im allgemeinen eine
kabellose 3D-Interaktion. Zudem ist das vorgestellte System aufgrund der Verwen-
dung von Standard-Sensor-Technologie sehr wirtschaftlich.

Das beschriebene Trackingsystem bietet eine Genauigkeit im Submillimeter-
bereich und erf̈ullt somit die Anforderung der meisten VR-Anwendungen. Der
beschriebene optische Tracker arbeitet mit langwelligem Licht und basiert auf der Ver-
folgung reflektierender Kugeln, die mit infrarotem Licht beleuchtet werden. Der ver-
wendete Wellenl̈angenbereich erm̈oglicht, dass die Wahrnehmung des Benutzers von
einer virtuellen Szene bei Verwendung von projektionsbasierten Ausgabegeräten und
ged̈ampftem Licht nicht gestört wird. Im Gegensatz zu kommerziellen Systemen ar-
beitet das Ergebnis dieser Forschungsarbeit in Echtzeit. Desweiteren können mit dem
vorgestellten System sehr kleine Kameras verwendet werden, so dass es für inside-out
Trackingaufgaben anwendbar ist.

Diese Arbeit zeigt neue Ansätze f̈ur die Kalibrierung einer stereoskopischen Kam-
eraanordnung auf. Verwendet werden gebräuchliche Kalibrationsgeräte kommerzieller
optischer Systeme aus der Computeranimation, aber im Gegensatz zu den heutzu-
tage zur Verf̈ugung stehenden Kalibrierungsverfahren werden hier interne und externe
Kameraparameter gleichzeitig kalibriert, was auch die Linsenverzeichnung mit ein-
schließt. Diese Kalibrierung ist einfach anzuwenden und arbeitet schnell und präzise.

Um eine hohe Zuverlässigkeit zu bieten, die von den meisten VR-Anwendungen
vorausgesetzt wird, muss die menschliche Bewegungüber die Zeit hinweg beobachtet
werden. Das geschieht häufig mithilfe eines Kalmanfilters, wodurch eine Vorhersage
der Bewegung erm̈oglicht wird. Dies erḧoht nicht nur die Frequenz des Trackingsys-
tems, sondern gleicht auch Verzögerungen bei der Darstellung komplexer virtueller
Szenen oder Verz̈ogerungen bei der Datenkommunikation aus. Eine neue For-



mulierung der Filtergleichungen wird vorgestellt, die auch für nicht-optisch arbeit-
ende Tracker einsetztbar ist und die Lage eines Objektes mit sechs Freiheitsgraden
bestimmt.

Schließlich folgen einige Ausführungen zur Verfolgung einer Bewegung auf der
Grundlage von natürlichen Merkmalen, wobei das vorgestellte Verfahren die Kon-
turen eines Objektes verfolgt. Erste experimentelle Ergebnisse einer Implemen-
tierung zum Erkennen einer menschlichen Zeigegeste in Umgebungen mit unter-
schiedlichen Lichtverḧaltnissen und Hintergründen werden vorgestellt. Perspektiven
werden aufgezeigt, wie diese Methode auf dreidimensionales modellbasiertes Hand-
Tracking mithilfe stereoskopischen Sehens ausgeweitet werden kann.
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Chapter 1

Introduction

TRACKING human motion offers many fascinating possible applications, ranging
from character animation for computer games and computer generated films to

interaction with robots and human centered computer interfaces. There is also a lively
interest in human motion tracking for non-civil applications, like the tracking of sol-
diers in the field. The application considered throughout this dissertation is related to
human motion tracking for natural interaction in virtual environments. Virtual worlds
are amazing because artificial objects may be percieved and manipulated, and they
react like real objects so that users are familiar with the way objects can be grabbed,
moved, and dropped. These interaction techniques are known from daily life and thus
natural. However, there are only few trackers for designing virtual environment inter-
faces and most of them require cables or heavy hardware worn by the user. This thesis
concerns the development of a new tracking device enabling the user to interact with
virtual worlds, free from cables and cumbersome hardware. The focus of this work is
on vision based tracking. Small hand-held tools can be designed for specific input op-
erations related to the considered application. These tools may be observed and tracked
with cameras, facilitating wireless, precise, direct, and natural 3D manipulations of a
virtual scene.

The presented optical tracking system was thus examined for its naturalness of
interaction. Therefore, over two-hundred employees of a german car manufacturer
have for one week had the opportunity to test an early version of the presented op-
tical tracker for planning assembly processes at the responsive workbench (see Fig.
1.1). Besides the optical tracking, the engineers were provided with other input tech-
nologies, namely space ball and magnetic tracker. After accomplishing a pre-defined
dismantling-task, they were asked about their preferred device. Almost three-quarter
of these test persons (71.2%) preferred the optical tracker. As these users were not
familiar with handling any of these 3D interaction devices, this is quite significant,
and confirms the ease of using new optical tracking devices for data input of virtual
environment user interfaces.

The technique of tracking human motion with optical sensors is not new and much

1



Chapter 1 Introduction

Figure 1.1: Virtual assembly using video-based interaction techniques

research has been done and is still going on in this area. The creation of cinematic
special effects is not imaginable without optical tracking technology. Recording in-
dividual motion is extremely expensive and cumbersome today. In the future, optical
trackers will allow realistic character motion for applications like games, movies or
multi media to be available for desktop use in the medium term. The development of
movie production technology will be similar to that of music production. Here, ex-
pensive studio technology was used until the late 1980s, while today everybody can
produce professional recordings with inexpensive personal computers and MIDI de-
vices. Through interfaces like FireWire, anyone can produce professional films with
consumer cameras. In near future, artificial 2D or 3D augmentations will help design-
ing interactive movies and may be aligned with the real captured environment which
makes human motion tracking necessarily more important.

1.1 Problem Statement

There is a wide range of optical based tracking methods, but there are only few sys-
tems that are reliable and near product stage so that the community of virtual reality
interface designers is able to make use of them. Commonly used optical trackers of
human motion capture for computer animation do not meet the real-time constraints
of virtual reality applications. Those systems store either a captured image sequence
of moving objects or a sequence of cluster centers obtained through hardware im-
plemented segmentation of marker images. Afterwards, the images of markers are
matched through user intervention to obtain an initial pose for tracking, which is then
done off-line. During motion capturing those optical tracking systems provide high
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update rates (over 200 Hz) with extremely high accuracy, but also at high cost. Since
real-time tracking of the human pose is not a must for computer animation applications
new tracking technology needs to be developed.

Recently, inertial sensors with low drift were introduced to track motion for virtual
environments, but nevertheless, additional sensors are needed to refresh the system
with global position data. This could be done using e.g. optical trackers. Therefore,
optical tracking provides high accuracy at low-cost due to the fact that more and more
cameras are sold at a low price. Connected with a standard PC one can make use of
image processing to extract data for tracking human motion in real-time. However, it is
well known that image processing is quite computational expensive so that highly so-
phisticated algorithms are not applicable in real-time. Nowadays, real-time computer
vision uses short and fast algorithms to track motion either by using artificial land-
marks or even less restraining by tracking natural features. In order to manage high
frequency motion capture, the tracking system developer should be very careful in
choosing the landmarks being tracked. For segmenting natural landmarks more com-
putational time is needed. As a consequence, trackers that utilize natural landmarks are
less reliable. Many algorithms have been published recently on natural feature track-
ing, but since object recognition is still an unsolved problem for real-time processing,
those systems are mostly capable to track certain frames after initialization given an
approximate object pose. It is obvious that there is need for a real-time tracking system
that is able to perform a self-initialization, that offers a reliable tracking with high pre-
cision and high update rate, and that can be used in different application environments
where dim light is a rule rather than an exception.

This work presents procedures and underlying mathematics for the development of a
new optical tracking system. The first implementation of the optical tracking system
proposed in this thesis has been developed during the authors work at the Computer
Graphics Center (ZGDV) in Darmstadt and was presented at CeBit’98, Eurograph-
ics’99 and Siggraph’99. Extensions to finger tracking and the development of a bar
calibration method have been made during his stay at the Vienna University of Tech-
nology.

The central thesis of the work is that:

Stereoscopic tracking provides an effective way to enhance the accu-
racy of optical based trackers in applications of outside-in and also
inside-out tracking. Vision based trackers facilitate wireless interac-
tion with 3D worlds for the user by designing an unobstusive user
interface. All this is achieved using standard sensor technology to
furthermore reduce cost.
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1.2 Proposed Solutions and Chapter Layout

This thesis will address the problem of optical tracking for interaction in virtual envi-
ronments. It presents new techniques for tracking human motion in three-dimensional
space. This concerns a novel approach for calibrating stereoscopic optical sensors. The
proposed method can be considered partly self-calibration and partly photogrammet-
ric technique. Furthermore, this work introduces a generic solution of motion tracking
and prediction for trackers that provide the pose of an object with rotation and trans-
lation. The third contribution proposes the resulting optical tracker for virtual reality
applications usable in different application contexts.

This work presents two developments in the field of optical tracking applications.
The first is a tracking method based on active or passive markers for simultaneous
head and hand tracking. Rigid bodies and infrared light are used to provide a reliable
tracking system even applicable in environments where the light is often dim. The
second tracking application considers non-rigid objects, namely the human hand. New
methods are presented for non-appearance based hand tracking due to the creation of
a 3D hand model. It will be shown how this hand tracking approach can be extended
to incorporating natural landmarks.

The thesis is concerned with the construction of a stereoscopic tracker and its appli-
cation to wireless and natural interaction with 3D worlds.Chapter 2 presents a review
of motion tracking technology for virtual environments and discusses the shortfalls of
current trackers.Chapter 3 introduces a minimal parameterized rotation representa-
tion for rotations in three-dimensional space. A comprehensive discussion about the
shortfalls of typically used rotation models such as quaternions is given.Chapter 4
explains the fundamentals of camera calibration and presents two novel approaches to
stereoscopic camera calibration. Both approaches focus on an easy-to-use calibration
procedure that brings stereoscopic computer vision applications out of the lab and into
practical use, since only a few instructions to the user are necessary to perform this
calibration. Calibration is no longer an error prone task.Chapter 5 discusses motion
kinematics of rigid bodies and shows how motion with 6 Degrees of Freedom (DoF)
can be tracked and predicted using an appropriate Kalman filter formulation. Up to
the author’s knowledge, no such formulation has previously been presented for pre-
dicting tracker data. The results are very promising with respect to accuracy.Chapter
6 presents a new optical tracker for tracking rigid and non-rigid objects. Further-
more, examinations are presented how the tracker can be extended using natural land-
marks. Details are given on optical tracking development, describing different stages
of implementation and application contexts. Discussions strengthen the use of artifi-
cial landmarks for human motion tracking and test implementations for natural feature
tracking emphasize the problems remaining for ongoing research. Finally,Chapter 7
concludes this work by discussing the forthcoming of the presented work and giving
perspectives for future work.

The research for this work contributes to several fields of three-dimensional com-
puter vision and optical tracking technology development. Publications of this work
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have stimulated the research on natural interaction and stereoscopic tracking for vir-
tual environments. Different versions of the developed tracking system are currently
in use at ZGDV in Darmstadt, Germany, at the University of Münster, Germany, at
Ewha Womans University Seoul, South Korea, at the Vienna University of Technol-
ogy, Austria, and at the University of Augsburg, Germany. Application-related ar-
ticles have been published by some of these institutes [MSK99, KCC+01]. A re-
implementation of and extensions to the proposed tracking system were developed
and published [RPF01]. A similar optical tracker was created by Mulder and Liere
[MvL02] and Chunget al. [CKKP01].

1.3 Individual Publications about this Work

Elements from this manuscript have apperared in the following publications [DW98,
Dor99a, Dor99b, DUS01].

• K. Dorfmüller and H. Wirth. Real-Time Hand and Head Tracking for Virtual En-
vironments Using Infrared Beacons. In: N. Magnenat-Thalmann, D. Thalmann
(Eds.)Modelling and Motion Capture Techniques for Virtual Environments.In-
ternational Workshop, CAPTECH’98, Geneva, Switzerland, November 1998,
Proceedings LNAI 1537, pages 113-127. Springer Verlag, Heidelberg, 1998.

Republished in:

J.L. Encarnaç̃ao (Ed.), Selected readings in computer graphics 1998.
Veröffentlichungen aus dem INI-GraphicsNet 9. Fraunhofer IRB Verlag,
Stuttgart, 1999.

• Klaus Dorfm̈uller. An Optical Tracking System for VR/AR-Applications. In:
M. Gervautz A. Hildebrand, D. Schmalstieg (Eds.)Virtual Environments ‘99,
Proceedings of the 5th EUROGRAPHICS Workshop on Virtual Environments,
June 1999, Vienna, Austria. Springer ComputerScience, Vienna, 1999.

Republished in:

J.L. Encarnaç̃ao (Ed.), Selected Readings in Computer Graphics 1999.
Veröffentlichungen aus dem INI-GraphicsNet 10. Fraunhofer IRB Verlag,
Stuttgart, 2000

• An extended version of the previous paper with focus on inside-out tracking is
published in:

Klaus Dorfm̈uller, Robust Tracking for Augmented Reality using Retroreflective
Markers. Computers & Graphics 23(6)1999, pages 795-800. (A. Hildebrand,
M. Gervautz (Guest Editor), Special Issue on Augmented Reality)

Republished in:
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J.L. Encarnaç̃ao (Ed.), Selected Readings in Computer Graphics 1999.
Veröffentlichungen aus dem INI-GraphicsNet 10. Fraunhofer IRB Verlag,
Stuttgart, 2000

• Klaus Dorfm̈uller-Ulhaas and Dieter Schmalstieg,Finger Tracking for Interac-
tion in Augmented Environments, Proceedings of the 2nd ACM/IEEE Interna-
tional Symposium on Augmented Reality (ISAR’01), pages 55-64, New York
NY, Oct. 29-30, 2001.

Other more application and project related publications:

• Klaus Dorfm̈uller and Heike Ziegler,Video Based Interactions in Virtual Envi-
ronments, Computer Graphik topics 1/98, Fraunhofer Gesellschaft, Darmstadt,
Germany, 1998.

• Klaus Dorfm̈uller and Axel Hildebrand,Evaluation of Interaction Technolo-
gies for Virtual Assembly Processes, Computer Graphik topics 1/99, Fraunhofer
Gesellschaft, Darmstadt, Germany, 1999.
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The Science of Motion Tracking in
Virtual Environments

VIRTUAL environments (VE) immerse users in a fantastic world and enable them
to take advantage of the interaction metaphors humans are used to for manipulat-

ing objects. Within non-desktop virtual reality (VR) applications, users are animated
to physically move around and to explore the virtual world. A new view provides an-
other perspective of the scene, obtaining new details and thus new information about
the objects placed in the virtual world. Typically, head movements are the simplest
form of interaction that a well designed application supports. Thus, the most fasci-
nating applications in virtual environments are highly interactive. Observing humans
using entertainment applications, we see that users want to touch objects and manipu-
late them like children do in exploring the real world.

In order to enable users to move and to interact in this fashion, the virtual reality in-
terface needs precise information about where users stand and in which direction they
are looking. This is due to fact that each view of a user is comparable to a virtual cam-
era and its images need to be calculated and displayed with high frequency and low
latency to not cause motion sickness when viewed through a head mounted display
(HMD). These are some of the requirements a tracking sensor has to fulfil to be ac-
cepted by the community of virtual reality user interface designers. Thus, developing
a motion tracker is a highly sophisticated task and different tracking principles do exist
using acoustic, optic, magnetic or inertial sensors. In fact, the future of tracking tech-
nology is likely in hybrid tracking which means that different sensors are combined
to overcome the disadvantages each sensor has and to get an ultimate solution for the
tracking problem. It is not surprising that an ultimate tracker does not exist since the
requirements of each VR application are so different. Within augmented reality (AR)
there are some applications that operate indoors, while others operate outdoors. The
latter poses the strongest requirements on tracking technologies. Mostly needed is a
lightweight, untethered, and wide-range tracking system with very high angular and
translational accuracy, high frequency and low latency. It should work in tunnels, at
night, on cloudy and rainy days, and why not underwater for an augmented reality
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dive? It is clear that no tracking system can cope with all of these requirements. Com-
mercially available tracking systems try to address a broad market and are designed
to fulfil the most frequent needs arising in a typical laboratory. Outside the lab, the
tracking system often does not meet the requirements. The ceiling might be too high
for mounting a tracker, there could be too bright or too dim lights which makes it more
or less impossible to use optical trackers. Interferences with metal or in the ultrasonic
spectrum could hinder the work of a magnetic or an acoustic tracker, respectively.
Much research has been done in recent years to develop tracking systems which are
not prone to such application environments, but so far no fully satisfactory system has
been developed.

This chapter gives a survey of tracking systems currently available on the market
and in laboratories of research institutes. It rather emphasizes the advantages and dis-
advantages of each tracking technology and examines the potential of optical tracking
in the field of wireless, high precision and low cost tracking than provides a complete
survey about tracking technology.

2.1 Virtual and Augmented Reality

The history of virtual reality goes back to the early 60’s and is older than most people
realize [PT93]. Ivan Sutherland proposed the Ultimate Display in1965 which im-
merses humans inside a 3D computer generated world, indistinguishable from reality
[Sut65]. In1968, Ivan Sutherland implemented the first virtual reality system using
wireframe graphics and the first head-mounted display (HMD). This HMD built by
Sutherland and his team consists of three main components: The HMD itself, a scene
generator and a tracking system. The scene generator produced a simple wireframe
cube which could be looked at using the HMD. Due to the mechanical tracking mech-
anism used, this HMD was known as “the sword of Damocles”, because it hung with
bars from the ceiling. These bars also supported the enormous weight of the HMD
[Sut68]. Further developments were done in1970by Sutherland and his team at the
University of Utah. The HMD was no longer monoscopic but displayed stereoscopic
images instead. For tracking purposes, gyroscopes were attached to the HMD and
consequently, the HMD felt more stable and less heavy.

About the same time, Boeing was experimenting with Augmented Reality (AR).
Augmented Reality rather supplements the real world with virtual objects than replaces
the real world by the virtual world with a computer-generated synthetic environment.
The idea of Boeing was to help the mechanic working on the engines of a plane. AR
facilitates to see inside the engine and the computer can point out certain parts.

In 1977, the first glove device for controlling a computer was developed. One of
the first commercial gloves was the dataglove invented by Thomas Zimmermann and
Jaron Lanier from the later VPL. In the1980’s, VR captured the imagination of the
popular press and government funding agencies [BBH+90, FMHR86]. Jaron Lanier
and Jean-Jacques Grimaud founded VPL in1983. VPL was one of the first companies
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to start building equipment for Virtual Reality. In1988, thePowerGlovefor Nintendo
Home Entertainment System was developed. ThePowerGlovemarketed by Mattel
became a best-selling toy in 1989 and 1990.

In 1993, SGI announced theirReality Engine, a computer graphic engine capable
of running VR applications with significant computer power. About the same time,
augmented reality had been tested at different locations to help with the repair of com-
plex equipment. Looking at the actual object, the computer gives clues about the
different parts and the inside of the object [FMS93]. In the same year, Cruz-Neira
proposed the CAVE as a good example for projected reality [CNSD93]. In1995the
semi-immersive responsive workbench with its horizontal or slanted display has come
into use [KBF+95a].

Today, potential VR applications include architectural walk-through [Bro86], sim-
ulation [SB92], training [LK95], entertainment [PST+96], and many others. In the
future we can expect to see an even wider use of large displays and wearable technol-
ogy. Also, some tasks depend heavily on the sense of touch and judging the touch,
weight or temperature of the object. Haptic feedback is still in the prototype stage and
more technology will be developed. Another trend is towards wireless tracking at low
cost.

This doctoral thesis will contribute to the subject of wireless tracking enabling a
new form of natural interaction allowing the user to leave the computer behind.

In the past two decades, we have seen that

• tremendous advantages in rendering 3D graphic objects have been made, but

• very little has changed in the way that typical users manipulate and view 3D
objects.

Since augmented reality offers a wide range of applications, including military bat-
tlefield applications, medical applications [ADOR01], maintenance [FMS93], assem-
bly [RSKM99], and even entertainment and broadcast applications [DGM+02], the
market for tracking technologies grows and new companies start up to develop new
tracking systems addressing the requirements of virtual and augmented reality. In the
last decade, companies as Intersense and 3rdTech were established, inspired by in-
novative research products of MIT and UNC Chapel Hill. ConstellationTM [FMP98]
and the HiBallTM [WBV+01] are commercially available from Intersense and 3dTech,
respectively. In addition, new output technology has been developed, includingeye-
glass displays[SRMA97, KTEU00],virtual retinal displays[PFV98] and projection
displays [BF02, RBY+98]. Furthermore, collaborative user interfaces and interaction
techniques are developed [SFH00, HFT+99] that pose new requirements on the track-
ing system including multiple user tracking or wireless interaction.

One can expect that tracking technology will improve and it is only a question of
time that many constraints will vanish, because they are solved by new technology.
However, with new display technologies and interaction techniques other constraints
still may continue to exist for some time.
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UI Designer

Tracking Device Developer
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Task to fulfil User Capabilities

Figure 2.1: The interplay between tracking requirements and capabilities

2.1.1 User interface design and tracking development

If anything distinguishes VR from other user interfaces (UIs), it is the 3D graphical
world and interactive devices. The UI designer of a virtual environment application
has to create the virtual world and choose interaction devices which are appropriate
for the users and the task they have to fulfill (see Fig. 2.1). However, UI designers
have to have good knowledge about available tracking technologies and the capabili-
ties each device provides. A UI designer has interaction metaphors in mind and tries
to realize them by currently available technology. New requirements arise by the in-
teraction techniques and the display technology chosen by the designer. From the
tracking device developer’s view, physical sensors provide different capabilities and
each sensor has its own drawbacks. The developer of a tracking system should be
very familiar with the newest technology of sensors. He has to select different sen-
sors to form a new hybrid in order to cope with the requirements UI designers have
faced, and mathematics and signal processing are used to blend the inputs of each
sensor in an optimal way. Generally, input devices of virtual environments may be
implemented in hardware or software. Either a virtual tool can be provided which can
for example be held in a dataglove, or real input devices may be created to improve
the interface and facilitate a haptic feedback. The latter sometimes uses position sen-
sors that are commercially available, but sometimes the UI designer is forced to create
new application specific input and 3D position devices that are more intuitive to use
[HG02, HPPK98, SES99]. Reports on tracking technology are mainly from the UI
designer’s perspective and emphasize the strengths and weaknesses each device cat-
egory has [Bat93, Fer91, MAB92]. Recently, Foxlin published an article facing the
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view of a tracking device developer [Fox02]. An excellent review of the physics and
mathematics of a tracker and the capabilities it supports is given herein.

2.1.2 Tracking technology applications

One of the main goals in human computer interaction (HCI) is to provide an inno-
vative user interface which allows the user to manipulate an application in a natural
way known from daily life, following the so-called naturalness principle of interac-
tion. Tracking technology can be seen as an input device for a 3D user interface of a
virtual reality application and should be designed in a way that users can easily inter-
act with the virtual scene. One of the statements of this dissertation is that a tracking
system should support the user as far as possible, so if the system could transmit fur-
ther information, useful for object selection and others, it would be profitable for user
interface design.
Humans have four senses involved in the perception of virtual environments:

• optical sense

• auditory sense

• sense of touch

• olfactory sense

Mainly, VR interfaces provide visual, acoustic and tactile information. Applications
with smell or taste are rare. Tracking technology is mainly used in the following
application areas of VR interfaces:

• audio rendering: headphones are tracked to produce spatialized sounds that aug-
ment the user’s perceiption

• navigation: movement of self about the world for exploration and wayfinding

• haptic feedback: vibrations of the input device, device blocks movement of the
user

• manipulation, movement and selection of objects: changing the state of objects,
pick, drag & drop-type interaction, sufficient for simple composition/assembly
type tasks

• avatar and character animation: limbs of a human or animal body are tracked
to animate virtual characters during real-time movie productions or avatars for
multiplayer work environments
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If one only considers tracking, haptic feedback is not an issue of most systems. How-
ever, haptic feedback is sometimes needed, and if mechanical equipment is created
to let the user feel force and the roughness of objects, tracking can easily be solved
using the control parameters of the exoskeleton for instance. From the user interface
designer’s point of view, the naturalness principle and task analysis will indicate the
choice of VR tracking technology in those application areas. The designer should ex-
amine the way of interaction and the task user’s have to fulfil and take care about the
following application issues:

• the complexity of manipulations

• haptic feedback

• navigation requirements

• limbs and body parts involved

• realistic audio feedback

Within augmented reality, objects could be either real or virtual. Assembling or main-
tenance applications make use of real objects used in a real environment. Virtual
graphics are usually used just to annotate the real scene. Other education based learn-
ing applications involve virtual objects to interact with in a more stringent manner
[KS02]. Considering theStudierstubeenvironment [SFH00], haptic feedback is avail-
able through tablet and pen. Exoskeletons that make a haptic feedback possible are
currently rather a topic of virtual reality than of augmented reality and would decrease
the freedom of movement. Since force feedback is still in a prototype stage, it is not
further considered in this chapter.

2.1.3 Display technology

As display technology poses new requirements on tracking technology, this section
summarizes available output technology for virtual and augmented reality applications.
Then, it examines the requirements of the respective environment.
In VR, we may distinguish three categories of output devices:

1. full-imersive

2. non-immersive

3. semi-immersive

Full-immersive displaystransfer users into an artificial world. Visually, users do only
perceive the virtual world, not the real world. The user’s movement is tracked and the
user’s view is updated accordingly. Separate images for left and right eye are rendered
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Figure 2.2: The responsive workbench

and displayed through the virtual reality engine. Head mounted displays (HMDs) fall
into this category of full-immersive output devices.
Non-immersive displaytechnology uses displays for monoscopic vision. For example,
LCD panels or standard monitors belong to this category. Such display technology is
mostly used for desktop VR applications. Desktop VR usually supports monoscopic
vision and does not give true 3D depth perception. When used with shutter glasses, it
is assumed that the head is centered in front of a monitor so that the user’s peripheral
vision is still in the real world. The strongest appeal of desktop VR is low cost.
Examples forsemi-immersive displaysare the CAVE or the responsive workbench.
The responsive workbench allows several users at the same time to view a virtual
world with shutter glasses. It provides a true 3D depth impression, but users can
also see each other in the real world, thus, it is semi-immersive. Figure 2.2 shows a
user wearing shutter glasses at the responsive workbench. The CAVE technology uses
shutter glasses as well. Several users are present in a room. The sides of this room
are used as projection screens and show the virtual world. As within the responsive
workbench environment, only one user has a perfect view. The head of this person is
usually tracked and the view is updated accordingly.

Immersive worlds are advisible when the user’s task involves continuous motion,
complex spatial co-ordination, depth of field interpretation and egocentric views. Full-
immersive displays have strong demands on the tracking systems latency, which is the
mean time delay after a motion until the corresponding data is transmitted. If latency is
too high wearing a HMD, it can impair adaptation and the illusion of presence [HD87],
and can cause motion discomfort or sickness [PCC92]. Augmented Reality uses see-
through HMD systems to blend real and virtual worlds together. There are two options
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to realize the fusion of reality and virtual reality: Either a video see-through HMD,
which uses one or two head-mounted cameras to provide the user’s view to the real
world, or an optical see-through HMD, where partially transmissive optical combiners
placed in front of the user’s view can be used. One may expect that the former has to
meet the same requirements of the tracker’s latency.

One of the strongest requirements on tracking in AR is the registration problem.
Objects in the virtual and real worlds must be properly aligned with respect to each
other. In addition, sub-pixel accuracy is desired when viewed through a HMD. As
shown recently by different researchers [Azu95, Fox02], the dynamic registration er-
ror which is caused by latency of a tracker and the rendering system is significantly
reduced by applying predictive tracking techniques. Predictive tracking can be im-
plemented through an extended Kalman filter or alternatively through the Levenberg-
Marquardt algorithm [Lev44, Mar63, PTVF99].

Beside immersive VR, one of the most commercially used variants of VR isDesk-
top VR. The game industry is the biggest industry usingDesktop VRin a commercial
manner. One may claim that 3D computer games are not VR, but the difference is
less than it was one decade before, and we may expect that both areas will merge at
some future time. A precise 3D tracking system addressing this low-cost market is
also still missing. The company SpaceTec has developed theRingMousefor this low-
cost segment. However, the update rate of the mouse position was rather slow and an
integration into 3D computer game interfaces does not exist.

This dissertation will contribute to the development of a low-cost tracking system,
usable withinDesktop VRand semi-immersive VR and AR applications. One of
the future perspectives is the integration of the resulting tracking system for human
motion capture applications into a commercial product like3D Studio MaxTM .

This is why a short excursion of human motion capture and its tracking technology is
given in the next section.

2.2 Motion Capture in Movie Productions

Motion capture for animation purposes involves measuring an object and its orientation
in physical space, then recording that information in a computer-usable form. Objects
of interests are mainly elements of a movie scene including human and non-human
bodies, facial expressions or camera and light positions. Once the data is recorded,
animators can use the motion data in order to control elements in a computer generated
scene.

Motion capture for animation distinguishes

• real-time motion capture devices: Produced data can be used interactively with
minimal transport delay to provide real-time feedback regarding the character
and quality of the captured data.
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• non-real-time motion capture devices

The scene elements being controlled by the motion capture data should be as geo-
metrically similar as possible to their real counterparts to maintain the integrity of the
data. Only a few amount of data can be changed after the capture process. Some
success is obtained by using inverse kinematics and constrained forward kinematics.
Thus, motion capture is driven by post-processing, while real time motion estimation
is only required for a few applications. For animation purposes it is good to have a
real-time tracker, but it is not really necessary. With virtual environment applications,
real-time is a hard constraint and post-processing and replay of an interaction is often
not needed. As a matter of fact, animators can profit by the progress in tracking tech-
nology for VR [WR00]. As real-time feedback for animators will be more and more
available in the future, animation and VR will fuse in the area of motion capture.

For the pupose of character animation there are mainly two options for motion
capture. On the one hand, magnetic motion capture systems are used that measure
the magnetic field of a source. Products are still the same as used in VR. Examples
of magnetic motion capture systems include Ascension BirdTM and Flock of BirdsTM

and Polhemus FastrackTM and UltratrakTM . As within virtual environments, these
trackers operate in real-time and can provide 15 to 120 samples per second depending
on the numbers of used sensors. The typical magnetic motion capture session is run
much like a film shooting, but the interaction volume and freedom of movement is
limited so that performers have to be familiar with the constraints of the tethers. It is
the lack of magnetic tracking devices that they are sensitive to interference caused by
metal in the environment. The advantages of magnetic trackers are more or less the
same as in VR. It is their robustness that is their great advantage since these devices
have been successfully used in a variety of tracking applications ranging from military
applications to film productions.

On the other hand, optical motion capture systems are of increasing interest for
computer animators. Full body motion capture may use four to six high-speed digital
cameras. Each camera is equipped with an IR pass filter placed on the camera lens and
infrared LEDs for illuminating the markers. The markers are small spheres covered
with reflective material like Scotch BriteTM . The images captured by the cameras are
of good contrast, similar to a situation at night when reflective material of a persons
sportswear is highly reflecting the floodlight of a car.
A typical optical motion capture session starts with a cumbersome calibration step
of camera setup and marker configuration setup worn by the performer. The second
step consists of sequence acquisition of either marker image centroids or a 1-bit video
depending on the optical tracking system. Afterwards, the recorded motion data must
be post-processed or tracked. Several problems can occur in the tracking process,
including marker swapping, missing or noisy data and false reflections.

There are only few publications about the technical details of optical motion cap-
ture technology [BC00, LSB99, Lee01]. Some give a survey about motion capture and
the tracking systems available on the market, e.g. [Del98]. Recently, a book about
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motion capture was published [Men00] which concerns the set-up of markers and the
interface to animation software. However, this book is rather written from the point of
view of an animator than of an optical tracking developer. Companies working on op-
tical tracking technology for motion capture do not give any insight into their products.
Thus, for the animator, it could be a cumbersome and time-consuming procedure to
set up a motion tracking environment without the possibility to get more details about
the technology used by the optical tracker.

This doctoral thesis will support the understanding of motion capture technology
and gives hints how this technology could be further improved.

2.3 Motion Tracking Requirements and Constraints

The design of a VR application has to be carried out within the constraints of available
technology. When evaluating a VR interface, it is very important to consider the most
important constraints of tracking systems, given as:

• latency

• update rate

• jitter

• resolution and range

• accuracy

Latency is the delay between the movement of an object tracked by the system and
the registration of this displacement noticed by the tracking device. If the latency
is greater than 50ms it will be recognized by the user and may e.g. cause nausea
and vertigo in combination with HMDs. Update rate is the frequency of the tracking
system, i.e. how often the tracking data is updated by the system. Typically, this
frequency is between 50 and 60 updates per second. Resolution and range is dependent
on the technology of the tracking device. Jitter is the noise in the tracker output. It is
perceived by the user as image shaking when the tracker is actually still. Accuracy
is also an important factor and is given by the manufacturer either with relative or
absolute accuracy specifications. Usually, if the tracker moves farther away from the
tracker’s coordinate system, the precision will decrease.

Foxlin [Fox02] distinguishesstatic anddynamicconstraints of tracking systems.
Staticerrors arise while the tracked object is still and dynamic constraints are given
during movement of the object. Static errors concern thespatial distortionof the
tracker, which is the repeatable error at different poses in the working volume. His
definition of jitter is the same as explained previously and is categorized as a static er-
ror. Finally,stability or creepis another static property which is defined as a variation
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of the output as well. In contrast to jitter, these variations are too slow to be seen as mo-
tion. For example, optical trackers are sensitive to temperature which may cause small
drifts in pose estimation.Dynamicconstraints are the latency of the tracker and the
latency jitterdefined as variations of latency. Finally, Foxlin concerns dynamic errors
other than latency in this category. This includes overshoots computed by prediction
algorithms for instance.

These constraints are important when hardware products for the development of
an optical low-cost tracker are surveyed. In addition, algorithms have to be chosen
offering a precise pose estimation and reducing latency.

2.4 Input Devices and Motion Tracking Technology

There is the need to distinguish aninput devicefor virtual environments from 3D track-
ing systems. The latter can be used for data input, whereas an input device is defined
more general. Input is concerned with recording and entering data into the computer
system and issuing instructions to the computer. Therefore, an input device can be de-
fined as a device that, together with appropriate software, transforms information from
the user into data that a computer application can process. As previously mentioned,
devices may be implemented either in hardware or software or a combination of both.
Input devices can map user’s real world actions to their counterparts in their virtual
presence either faithfully withlow gainor can behigh gain. With high gain devices, a
small movement is amplified to empower the user’s movement for navigation. Typical
low gain devices are 3D trackers used to implement a direct interaction. A movement
of one meter in the real world is reported as a movement of one meter in the virtual
world. TheSpaceMouseor Spaceballare devices that operate withhigh gain, because
the force given through pressure towards the ball exerts an influence on the speed or
gradient of movement. These input devices are also categorized asisotonic devicesthat
do not provide a direct mapping between the degree of force exerted by the user and
the movement of the control, whereasisometric devicesprovide this mapping. Most
VR devices are isotonic. Another property that distinguishes 3D input devices is the
data they transmit or measure. Data can either be reportedrelativewith respect to the
previous position and orientation, orabsolutewith respect to a global world or tracker
coordinate system.

In order to survey motion tracking technology, we have to consider the type of
physical measurement unit used by the system. The measurement unit typically in-
cludes one or multiple sensors operating on different kinds of measurement principles.
If different sensors are used while one sensor overcomes the lack of another sensor,
we denote the tracking system as ahybrid tracking system. Figure 2.3 shows the tax-
onomy of tracking sensors mostly used in the last decade for the purpose of 3D pose
estimation.

The first category aremechanical sensors. In order to track an object, a physical
connection to the object is made. These sensors are often similar to a robot arm and
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Figure 2.3: Taxonomy of mostly used tracking sensors

consist of a jointed structure with rigid links. The displacement of the object can be
easily measured using e.g. potentiometers or optical encoders. Mechanical encoders
are available with extremely good precision and fast response and are not susceptible
to jitter. However, they tend to encumber the movement of the user and the biggest
problem with mechanical arm trackers is the restricted area of operation. The first
HMD was tracked mechanically by Sutherland and his team [Sut68].

In order to measure the acceleration along three axes of an object in Euclidean
space, it is necessary to have threeaccelerometers. Each accelerometer is mounted
perpendicular to one of the axes. The moving parts are made very small and light to
reduce their moment of inertia. A proof mass is suspended by a hairspring taking up
all backlashes. The motion of three springs corresponding to each axis records the
acceleration. However, since gravity affects the proof mass, the accelerator does not
directly measure the acceleration. Even if the accelerometer is resting on a table, it
reports an acceleration facing upward and in the oposite direction than gravity works.

Foxlin [Fox93] introduced the use ofgyroscopesto human motion tracking. It was
around 1990 that a new class of smaller and cheaper gyroscopes known as coriolis
vibratory gyroscopes (CVGs) became available. Before, gyroscopes were built with
spinning wheels and were too large for human motion tracking. In contrast, the CVG
is a mechanical gyro which requires no spinning mass. Inside a CVG, there is a proof
mass made to oscillate at high frequency while the vibration of the proof mass is used
to determine the angular velocity. The name Coriolis of the notion coriolis vibratory
gyroscopes has its origins in the measurement of theCoriolis force. From Coriolis
force, which is perpendicular to the direction of the oscillating proof mass, the angular
velocity can be determined.

The general principle ininertial tracking is to measure the acceleration on masses
(accelerometers) and the orientation by vibration of oszillating masses (gyroscopes).
The position of a moving sensor can be derived by double integration of the linear
accelerometer output whereas orientation is determined by single integration of the
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angular velocity rates. Integration causes the actual positions and orientations to be
sensitive todrift, and have to be re-calibrated periodically. The advantages of inertial
tracking is that it allows the user to move in a comparatively large working volume and
work effectively sourceless.

Another sensor is thegeomagnetic compasswhich is cheap and measures an ab-
solute orientation corresponding to the earth’s magnetic field. However, the accuracy
of magnetic compasses in many environments is poor. Another method that works
geomagnetically is calledgyrocompassingand makes use of the spin of the earth. The
spin axis of this mechanically working gyroscope aligns itself towards true north and
is more accurate than the geomagnetic compass. However, this technology is currently
too large for human motion tracking.

Magnetic trackershave been invented in 1975 by Kuipers of Polhemus Navigation
Sciences. Magnetic trackers generate magnetic fields by a source of three orthogonal
coils of wire. In order to get three orthogonal magnetic dipole fields not influencing
each other, the coils of wire are activated in sequence. Magnetic trackers have been
developed using AC magnetic field coupling [RBSJ79] or quasi DC fields [Blo89].
Each technology requires a special sensor to measure the magnetic field attenuation,
the strength and direction of the magnetic field. A magnetic tracker allows several
body parts to be tracked simultaneously and is not sensitive to the line of sight prob-
lem. It will also function correctly if objects come between the source and the detector.
Magnetic trackers are widely used in a broad range of human-machine interface appli-
cations. However, they are inaccurate and suffer from latency problems, distortion of
data, and they can be thrown off by large amounts of metal or other electromagnetic
fields in the surrounding work area. In addition, the sensor must be placed within a
restricted range from the source and thus, magnetic trackers have a limited work area.

An earlyacoustic trackerhas been introduced within the development of the sec-
ond version HMD by Sutherland and his team [Sut68]. Ultrasonic trackers are widely
available today in many commercial products and can be very inexpensive. Ultrasonic
tracking devices consist of three high frequency sound wave emitters in a rigid constel-
lation from the source. Three receivers placed in a rigid arrangement are worn by the
user in order to determine the pose with 6 degrees of freedom (DoF). The other way
round, using emitters worn by the user and receivers somewhere on a fixed location
is also possible. There are two ways to calculate position and orientation. The first is
called “phase coherence”. The range is determined by measuring the phase shift be-
tween the transmitted signal of a continuous-wave source and the signal detected at the
microphone. As long as the distance travelled by the target is less than one wavelength
between updates, the system is able to update the position of the target. The “phase
coherence” method enables continuous measurement without latency, but it measures
only relative distance changes [MAB92]. In addition, the signal received is often dis-
turbed by one or more reflected signals. The second method is known as “time of
flight” (TOF) ranging, which measures the time for sound, emitted by the transmitters
at a certain point of time to reach the sensors. The drawback of this method is its
latency and a low update rate. Ultrasonic trackers have a restricted working volume
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Figure 2.4: Taxonomy of optical trackers

and must have a direct line-of-sight from the emitter to the detector. In general, ul-
trasonic trackers are affected by temperature and pressure changes and occlusions of
transmitters or sensors in the presence of humans.

In the past,optical trackersprovided an alternative to the frequently used magnetic
trackers, because they were fast, accurate, and even wireless and available at low-
cost. There is a manifold of different algorithms and hardware used in current optical
tracking systems available either on the market or evaluated in research labs. In order
to achieve a framework for discussion on optical tracking, the hardware of optical
trackers is categorized as depicted in Fig. 2.4. In general, optical trackers can be
distinguished by the constellation of optical sensors. This means in particular, either
optical sensors are positioned in the environment and oriented towards the object being
tracked, known asoutside-intracking. Or, alternatively, the configuration of sensors
is inside-out. Here, optical sensors are placed on the object being tracked and looking
outward capturing some features in the environment. The object pose determined by
the latter technique is the inverse pose estimated by the former. Outside-in tracking
is widely used in human motion capture, especially if multiple body parts or joints
are being tracked. Optical gesture recognition, hand-, head-, face-, and human-body
tracking applications require this kind of optical sensor constellation. This is due to
the fact that tracking systems should be unobstrusive and should not tether the user
through wires. Specifically, if non-rigid objects or multiple non-occluding objects
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are tracked simultaneously, outside-in tracking is the right choice. For applications
that require only a few rigid objects being tracked, inside-out tracking may be the
choice. For example, an inside-out sensor configuration is preferable for augmented
reality applications, since users have to wear equipment for visualization purposes in
any case. Only the pose of the head being assumed to be rigid needs to be tracked.
Additionally, one of the perspectives of inside-out tracking is that it can cover a wide
area. However, nothing can be said in general about the accuracy achieved by one of
these constellations of sensors. Accuracy mainly depends on the quality of the lens,
resolution of the sensor and the image size of the projected rigid object. The object
size is not a property that can be used directly to estimate accuracy. In both scenarios
one has to take care that projected features are widespread over the image planes of
the optical sensors.

Furthermore, illumination is a critical problem in optical tracking applications. Of-
ten the environment poses constraints on the illumination and due to dynamic light
sources e.g. monitors, projectors and sunlight, it cannot be assumed to be static. Light
sources on the ceiling, different lighting conditions in the corners of a lab and the dy-
namic sensitivy of the camera sensor make it necessary to use specific image process-
ing algorithms to get rid of illumination problems [NF02]. Indeed, using daylight or
natural illumination provided by the environment is one option chosen by many optical
tracking developers, but feature detection in presence of dynamic lighting conditions
are glossed over by many researchers. Another option is to illuminate the environment
in a spectrum of higher or lower wavelength than humans perceive. The advantage
is its independence of low lighting conditions within environments where projectors
are used, because there is only a negligible interference in the light spectrum as long
as no sun light shines through windows. The choice of ultraviolet illumination is not
recommended due to the damage to one’s health.

Another possibility is to use structured light projected onto an object’s surface to
be able to easily detect and track features. A projector behaves like a camera but
the other way round, as it emits light. If the configuration of camera and projector is
rigid, the system can be calibrated with respect to each other and afterwards, 3D points
of an object are estimated using calibration data and a triangulation procedure. This
technique using structured light is widely used within reconstruction applications, but
it is not yet transferred to tracking applications.

In addition, optical tracking systems differ in the amount of cameras being used.
However, if more than one camera is used this does not imply that the tracking sys-
tem makes use of stereoscopic vision or multiple view geometry as described e.g. by
[Fau93, HZ00]. Stereo vision can be applied even using only one camera. An image
obtained by a moved camera can be seen as an image from a second camera observing
the scene. However, two camera applications have advantages in scenes where objects
are non-rigid or if the observed object is moving. This is due to the 3D position es-
timation which is directly available at any moment, if the configuration between the
cameras is rigid and calibration data are known. Thus, the pose and the structure of
a rigid object can be determined at any time, assuming correlations between images
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are known. Monoscopic vision needs information about the structure of a rigid object
in order to calculate pose. In fact, monoscopic vision assumes the presence of rigid
objects with at least four coplanar points and known planar coordinates in order to
estimate pose, either using artificial landmarks [ART, SHC+96, KKR+97] or natural
landmarks [Beh99, NYC+99, SFZ00]. Not surprisingly, stereoscopic vision has ad-
vantages in precision, especially if the baseline between cameras is small (compare
Sec. 4.5.7, Fig. 4.20), and even more in the presence of noise. This has been found in
many experiments during the progress of this dissertation.

Previously mentioned optical trackers use artificial or natural landmarks in order
to keep track of the reliability of the system. Using artificial landmarks, the design of
a fiducial is up to the tracking developer and thus can be more easily detected than nat-
ural features whose structure and texture are defined by the environment. To get rid of
the tracking problem in the absence of known structure, partly known structure is as-
sumed which means that some features are assumed to be part of lines [JN01, ZF91] or
within planes [SFZ00]. Other systems that track points without knowing correspond-
ing 3D positions are also available using e.g. pixel flow [NYC+99]. Such techniques
work reliably only if no moving objects are in the scene. A more elaborate natu-
ral feature tracker could be developed to track arbitrary scene points by using stereo
vision techniques. One criterion for selecting scene points might be the quality of
texture available from their surroundings or vertices of edges detected in the image
plane. With stereo vision, the structure of selected scene points can be estimated and
tracked from frame to frame. A refinement of the scene structure is achieved through
tracking of a few selected features over several frames using e.g. a Kalman filter and
a similar approach to the structure and motion estimation described by Azarbayejani
and Pentland [AP95]. Features of non-rigid objects can be detected through predic-
tion. Thus, those points are no longer used for tracking and object pose refinements.
The main advantage of stereoscopic tracking is its ability to initialize object structure
by triangulation which makes the assumption of scene parts having specific structure
unnecessary.

Finally, the sensors used for optical tracking make the systems operate differently.
We can distinguish tracking systems using nonimaging sensors such as quad-cells
[KRC97], lateral effect photo diods (LEPDs) [WAB+90] or laser diods from those
using CCD or CMOS sensors. Quad-cells and LEPDs are pure analog sensors that
determine the centroid of all light in the field of view. Kimet. al. [KRC97] have
proposed an optical constellation-based approach which makes use of quadcells
instead of lateral effect photodiode cameras. Quad-cells are extremely simple and
inexpensive optical direction-sensors which eliminate the need for lenses and optical
distortion these cause. Such techniques suffer from reflections and other light sources
which cause the centroid to be shifted in the direction of the error source. Similar to
acoustic ranging methods, optical ranging techniques are used by laser diods in which
the time of propagation of a light beam is used to measure the distance from a laser
diode to a reflecting target. Such systems are accurate but very expensive and can only
track one target at a time.
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Optical tracking has many advantages, because

1. it provides a wireless interaction

2. high accuracy measurements are available at even low cost

3. it has a reasonable update rate for many VR applications

4. additional tracking objects do not require additional sensors if an outside-in con-
stellation is used

The disadvantages of optical trackers should not glossed over. Optical tracking

1. suffers from occlusion (line of sight problems)

2. is computational expensive

3. poses requirements on the environment, e.g. on illumination of the environment
and on scene constraints used for tracking

It is emphasized here that a purely optical tracker cannot cope with all constraints a
VR environment poses. In case of the responsive workbench application developed for
testing the tracker implemented during the work of this doctoral thesis, the line of sight
problem did not become important since the construction of the responsive workbench
limits users in their movements so that a tracking is almost always possible. However,
this does not hold for many other applications, like human motion capture for character
animation. It is left to future work to integrate inertial sensors for hybrid tracking in
order to cope on the one hand with line of sight problems of optical trackers, and on
the other hand with drift problems of inertial trackers.

This work is focused on CCD sensors, because image processing techniques can
be applied. It is based on fiducals to provide high accuracy measurements and to im-
plement a reliable optical tracking system. Natural features are in the focus of future
work, since the robustness of the system is important for issuing a really usable tracker.
Stereo-vision trackers are of better accuracy and provide direct triangulation of a single
correlating point, thus it is in the focus of this research. The illumination is currently
based on infrared-light since the tracking should function in projected reality applica-
tions, but nevertheless it is not restricted to infrared light if further image processing
techniques are used. The tracking is evaluated for inside-out and outside-in configu-
rations. Mostly applicable is an outside-in constellation, since head and hand motion
are estimated by the system simultaneously and techniques of real-time human motion
capture are extended to non-rigid object tracking.
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Chapter 3

The Shortcoming of Typical Rotation
Models

MOTION of a rigid body in three dimensional space is considered a transforma-
tion including translation and rotation. Translation has three degrees of freedom

(DoF) and can be represented as a linear function. Rotations represented as matrices
are also linear functions if applied to a point in space. However, a rotation matrix is not
a minimal rotation respresentation. A rotation matrix is defined to be orthonormal and
thus, a rotation has only 3 DoF. Using three parameters to represent a rotation results
in nonlinear functions and in addition singularities are obtained through the use of a
three parameter representation.

Around 1985, quaternions have been introduced to computer vision [Hor86, FH86,
WS91] and computer graphics [Sho85, BCGH92, Sho94, Bar95]. Quaternions have
4 DoF and are free from singularities. They have been found useful for interpola-
tions of rotations e.g. for robotics and animation applications. However, recently
many researchers claim that they are not satisfied with quaternion representations e.g.
[Gra97, Gra98, LS99], especially if derivatives of rotations known as angular velocities
are needed. A quaternion uses four parameters to represent a 3 DoF rotation, which
means that there is always a direction of change in calculating the partial derivative
that includes a transformation that is not a rotation. If a rotation is changed in the di-
rection of its partial derivative, the quaternion gets non-unit length and does no longer
represent a rotation. A re-normalization can be performed, but the result is not exact
and numerically instable.

Another unsatisfying property of quaternions arises with rotations of angles of
more than360◦. For example a rotation of380◦ has the same quaternion represen-
tation as a rotation about20◦. This may cause an animation that generates in-between
frames to stop rotating at20◦, whereas the object should follow a380◦ rotation.

In the field of motion tracking we are concerned with similar problems of the
quaternion representation as within animation. Consider once again the example of
a rotating object. If a quick motion of an object is captured, the rotation of the ob-
ject being tracked at a certain moment may represent the angular velocity of the object
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movement. Indeed, an angular velocity of380◦ is completely different from an angular
velocity of about20◦. As a matter of fact, a motion prediction algorithm predicting a
rotation after time∆t/2, where∆t is the time interval of a frame the angular velocity
was calculated for, we obtain a predicted rotation near10◦ in the latter case whereas
the better result of a rotation prediction is near190◦.

Furthermore, the extrapolation of motion needed for motion prediction requires
the computation of partial derivatives. As previously mentioned, quaternions are nu-
merically unstable and a frequent normalization is required to ensure the validity to
represent a rotation. In case of optimization (e.g. data fitting problems), iterative al-
gorithms are required in order to converge to an optimal solution. If the used rotation
model is a quaternion representation, the algorithm needs more iterations than for other
representations, due to a frequent normalization and due to the fact that after normal-
ization the result is close to the true derivated rotation, but not as precise as it could be
if another rotation representation would have been used.

Since quaternions are four dimensional, additional equations are required. The
Jacobian matrix is no longer a3 × 3 matrix, but it becomes a4 × 4 matrix. Since
pose estimation demands the calculation of the inverse Jacobian, it is obvious that this
computational expensive operation should be kept as small as possible and an over-
parameterized representation should be omitted.

In this chapter, a minimal rotation representation that has its origins in mechanics is
introduced and is known as theexponential map. Since the reader may be familiar with
quaternions, the representation used in this dissertation is derived from quaternions and
it will be seen that both are closely related. The representation is similar to an axis-
angle representation, whereas the angle is coded by the length of the rotation axis.
Using an exponential map has several advantages. That is, it is singularity free, the
parameters of the rotation axis are exactly proportional to the angle, the differentiation
of the rotation matrix is simplified, and last but not least, rotations of angles more than
360◦ can be represented using a longer three-dimensional vector, since the length of
the 3D rotation vector can range up to infinity.

The following is organized as follows. We start with a short summary of typically
used rotation models in Sect. 3.1. Then, basic properties of quaternions are recapitu-
lated in Sect. 3.2. Thereupon, the foundation is given to follow the derivation of the
Rodrigues formulafrom the basis of quaternions in Sect. 3.3. Section 3.4 introduces
the exponential mapand provides a rotation vector to rotation matrix conversion by
applying theRodrigues formulain Sect. 3.4.1. We do not want to miss the geomet-
ric aspects of the Rodrigues formula, which are examined in Sect. 3.4.2 and provide
the solution to many rotation problems throughout this dissertation needed for camera
calibration and motion tracking and prediction. Finally, it is shown how to compute
the three-dimensional rotation vector from rotation matrices in Sect. 3.4.3. Sect. 3.5
concludes this chapter.
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3.1 Rotation Representations

There are many ways of representing rotations in 3D. What is wanted from a repre-
sentation is to be able to specify the orientation in order to rotate points, as well as
to be enabled by a representation to compose subsequent rotations. Futhermore, it
may be useful to convert between different representations. On the one hand, this may
be established because VR/AR systems may expect the sequential rotation input of a
tracking sensor in a specific representation. On the other hand, each representation
has its own pros and cons. There are different ways to specify and perform a rotation,
these methods include:

• Euler angles

• Axis and angle

• Rotation matrices

• Unit quaternions

• Exponential maps

If orientations are specified by amounts of rotation about the three principal axes
(calledEuler angles), the order of specification is important. Since interpolation of
rotations using Euler angles is computational expensive and not intuitive, the quater-
nion representation has been introduced [Ham53] using a rotation axis and a rotation
angle. The definition of quaternions make use ofEuler’s theorem: “Every spatial ro-
tation leaves a line of fixed points: The rotation axis.” Quaternions are well known as
a representation that works fine for interpolating rotations. However, we have seen in
the introduction of this chapter that the selection of a rotation representation depends
strongly on the application. In the case of a three-dimensional rotation, we are not able
to choose a representation which is optimal in any case. Commonly used are conver-
sions between different representations using the advantages of a representation in a
specific application context.

Given the problem of choosing among different representations, it is important to
ask if the representation satisfies the following requirements [MN78]:

1. Is the representation unique?Does every representable rotation have a unique
representation? Do we have a one-to-one mapping between the representation
and the geometric interpretation?

2. Is the representation complete?Does every geometric rotation admit a represen-
tation?

3. Is the representation minimal?Is the number of parameters used in the repre-
sentation minimal?
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4. Is the representation smooth?If the geometric rotation varies smoothly, then its
representation also varies smoothly.

Thus, the quaternion is a 4D vector which is not a minimal representation in sense
of a 3D rotation of an object. Having a minimal representation is sometimes useful if
rotations are extrapolated, because one dimension is saved estimating the Jacobian of
the rotation. If a quaternion representation is used, an additional constraint equation
is introduced through the use of the four-parameter representation. Using only a 3D
component vector for rotations may also be less time consuming when calculating
the inverse of a Jacobian matrix, however, several kinematic parametrizations exist to
represent orientation angles [Fel00].

Another way of representing a 3D rotation is to specify anaxis of rotationwith a
unit length vectora, and anangle of rotationθ in radians, as it is being used by expo-
nential maps. In contrast to quaternions, these two components are jointly specified as
a single 3D vectorω = θa. The angle of rotation is the length ofω, and the axis of
rotation is determined by normalizationa = ω/θ.

To prevent misunderstandings, it should be clarified here that the quaternion is not
the representation of a rotation axis and angle. We can use this intuitive representation
to convert an axis and angle into a quaternion, which is on the one hand a unit length 4D
vector and on the other hand another representation of a rotation. It is often explained
that a quaternion may be considered a rotation vector and a rotation angle, but this is
not exactly correct due to the conversions that have to be performed.

This theoretical part is essential for understanding the exposition about motion
kinematics in Chap. 5. The main focus in this section is on emphasizing the coherency
between different rotation representations and understanding their drawbacks and ad-
vantages within the context of a motion tracking application.

3.2 Quaternions

Quaternions have been found useful in computer graphics [Sho85, BCGH92, Sho94,
Bar95] and in robotics and computer vision [Hor86, FH86, WS91]. Quaternions are
4 × 1 unit real vectors among which a multiplication is defined to turn that vector
into a noncommutative field. This noncommutative field can be easily constructed
using complex numbers. Therefore, the quaternion is devided into a real parts and
an imaginary partv. Using this notation, a quaternion( q1, q2, q3, q4 )T can be
denoted as a pair( v, s )T wherev is the vector( q1, q2, q3 )T . In order to form
the noncommutative field, three imaginary vectors are defined which form the base of
a coordinate system. The vectorv specifies the factors given by real numbers used for
a linear combination of the imaginary basis vectors. The imaginary vectorsi, j and
k are so defined that a scalar multiplication of them is noncommutative and that the
length of each basis vector is

√
−1. This leads us to the following definition:

i2 = j2 = k2 = −1 (3.1)
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ij = k (3.2)

ji = −k (3.3)

The quaternionq, or more precisely the vectorv can be specified with respect to these
imaginary base vectors as

q = q0 · i + q1 · j + q2 · k + s

wheres = q4.
Futhermore, two properties of quaternions are considered here due to the necessity

to understand further mathematic transformations. In the following theconjugateof
a quaternion and theproduct of two quaternions is given. The product is used to
combine two rotations and it can be easily verified that the product of quaternions does
not commute. This is not surprising considering the definition of the imaginary base.

The conjugate of a
quaternionq = ( v, s ) q̄ = ( −v, s )

The product of two
quaternionsq andq′ qq′ = ( v×v′ +sv′ +s′v, ss′−vT v′ )

It has been shown in [Sho85] that quaternions are well suited to interpolate between
two instant rotations. However, it should be mentioned here that quaternions are not
optimal. Consider the requirements given at the beginning of this chapter, a quaternion
is not a minimal representation of a rotation. In addition, each orientation of an object
can actually be represented by two quaternions. By multiplying the original quaternion
with−1, we obtain an alternative solution. Furthermore, the rotation of about360◦ and
0◦ degrees has the same representation using quaternions. For animation or tracking
purposes using angular velocities, this could be a very undesirable property.

3.3 Deriving theRodrigues Formulafrom Quaternions

It was around the same time as Hamilton worked on the discovery of quaternions when
in 1840 Rodrigues proposed a geometrical construction which determines the orien-
tation of two successive rotations given by axis and angle. Rodrigues was the one
who introduced half-angles in the study of rotations, and the well-known conversion
between axis-angle representations and quaternions is a result of the research of Ro-
drigues. Hamilton himseld re-discovered geometrically the results of the Rodrigues
construction [Alt89]. The multiplication rule of rotations given through the Rodrigues
construction is identical with the multiplication rule of Hamilton’s quaternions. We
will now re-discover the relations and require an algebraic definition, known as the
Rodrigues formula.
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Theorem 1(Rodrigues formula)The rotation matrixR can be estimated by the
exponential of a skew-symmetric matrix, created by the elements of a unit
rotation axisa and a rotation angleθ. Given a three-dimensional unit vector
a = ( ax, ay, az )T , the following relation holds:

R = eã = cos(θ)I3 + sin(θ)ã + (1− cos(θ))aaT (3.4)

whereã is a skew symmetric matrix

ã =

 0 −az ay

az 0 −ax

−ay ax 0

 (3.5)

eã can be derived from the definition of theexponential of a matrix. The exponential
of a MatrixM can be created using Taylor series, whereM is am ×m matrix,Im is a
m×m identity matrix andMn denotes the multiplication ofn matricesM.

eM = Im +
1

1!
M+

1

2!
M2 + · · ·+ 1

n!
Mn (3.6)

In the following, theorem 1 will be derived using the definition of quaternions and
show how the axis-angle representation relates with quaternions. Theorem 1 leads us
to the rotation matrix which is directly computed from the rotation axis and angle.

Proof: It is assumed that the following transformation holds between axis-angle
representations and quaternions: Every unit quaternion represents a unique rotation in
space. A unit quaternion can be expressed as

q = (sin(θ/2)a, cos(θ/2))T (3.7)

wherea = (ax, ay, az)
T denotes an arbitrary unit vector. This quaternion represents

a rotation ofθ about the vectora. Now, let p = (px, py, pz) denote the Cartesian
coordinates of a 3D point in space. Let us assume that we wish to rotatep by θ about
the vectora to p′. A rotation of angleθ about a unit vectora can be achieved by pre-
and post-multiplying the quaternion representationm of the vectorp by quaternionq
and its conjugatēq, respectively.

m′ = qmq̄ = (v, s)T (p, 0)T (−v, s)T

=
(
v × p + sp,−vT p

)T
(−v, s)T

= (−(v × p)× v − s(p× v) + s(v × p) + s2p + (vT p)v,

−s(vT p) + (v × p)T v + s(pT v))T

This equation can be significantly simplified. The scalar part of this quaternions accu-
mulates to zero using−s(vT p) + s(pT v) = 0, and(v× p)v = 0. For the vector part,
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we have−s(p× v) + s(v × p) = 2s(v × p) and(v × p)× v = (vT v)p− (vT p)v.
As a result of this rotation, we obtain:

p′ = (s2 − vT v)p + 2s(v × p) + 2(vT p)v (3.8)

Using Eq. 3.7, we have:

p′ =
(
cos2(θ/2)− sin2(θ/2)

)
p

+ 2 cos(θ/2) sin(θ/2)a× p

+ 2 sin2(θ/2)aaT p

This can be further simplified using the following trigonometric half-angle identities:

cos(θ) = cos2(θ/2)− sin2(θ/2)

sin(θ) = 2 cos(θ/2) sin(θ/2)

(1− cos(θ)) = (1− cos2(θ/2) + sin2(θ/2)) = 2 sin2(θ/2)

Finally, theRodrigues formulais derived from a quaternion representation:

p′ = cos(θ) p + sin(θ) a× p + (1− cos(θ)) aaT p

= Rp

whereR is defined as specified by theorem 1. Notice thata × p may be expressed
using the skew-symmetric matrix̃a by matrix-vector multiplication,a× p = ãp.

3.4 Exponential Maps

In the previous examination it was assumed thata is of unit length. Now, a new
representation is introduced whereθ can be derived from the length of a vectorω. This
representation is no longer an axis-angle representation, because the rotation angle is
coded by the parameterization of a three dimensional vector. The relation ofω anda
is given byω = θa. The angle of rotationθ is defined by the length of vectorω, hence
θ = ‖ω‖ =

√
ω2

x + ω2
y + ω2

z and its direction is that of the rotation axis. A unit length
rotation axis may be computed bya = ω/θ.

3.4.1 Determination of the rotation matrix

Using this modification of the axis-angle representation, the unit quaternion is defined
as

q = (v, s)T =

(
sin(θ/2)

θ
ω, cos(θ/2)

)T

(3.9)

The Rodrigues formulacan be derived by substitution of Eq. 3.9 in 3.8. This for-
mula is very important for understanding the following sections of this chapter. The
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latter proposed axis-angle representation is often used for estimating the derivatives
of a rotation, which has to be done for inverse kinematics, dynamic simulation, and
optimization.

TheRodrigues formulaof a vectorω, where the value ofθ is defined by the length
of the vectorω, is given by

R = cos(θ)I3 +
sin(θ)

θ
ω̃ +

1− cos(θ)

θ2
ωωT (3.10)

whereω̃ is defined as a skew symmetric matrix similar to Eq. 3.5.

Equation 3.10 has an alternative representation which can often be found in the litera-
ture [ZF92, Fau93].

An alternative representation of theRodrigues formulais given by

R = I3 +
sin(θ)

θ
ω̃ +

1− cos(θ)

θ2
ω̃2 (3.11)

This can be easily verified, knowing that

ω̃2 =

 ω2
x − θ2 ωxωy ωxωz

ωxωy ω2
y − θ2 ωyωz

ωxωz ωyωz ωz − θ2

 = ωωT − θ2I3 (3.12)

A simple substitution of Eq. 3.12 in the last term of Eq. 3.11 shows that Eq. 3.10 and
Eq. 3.11 are equal.

1− cos (θ)

θ2
ω̃2 =

1− cos (θ)

θ2
ωωT − I3 + cos (θ)I3

After this analytical part of rotation representations (it has been introduced a rotation
model consistent of an axis and angle), we will examine more geometrically the con-
truction of the rotation matrix as can be derived from theRodrigues formula. This
geometrical interpretation may be important to extend the rotation model based on ro-
tation vectors to angular velocity vectors as it may be essential for dynamic motion
analysis. This extension is trivial if the following section is pursued with attention.

3.4.2 Geometrical construction of theRodrigues formula

Figure 3.1 depicts a 3D rotation in space( x, y, z ) by an angleθ about an axis of
rotationω. For convenience, the origin of coordinatesO is placed onω. The rotation
axis is defined by three directors:ωx, ωy, ωz, at least one of which must be nonzero.
These numbers may be scaled by a nonzero factorθ which is the rotation angle and
through which the vector may be normalized to obtain a unit rotation axis.
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Figure 3.1: Change in a vector by an incremental rotation

The rotation takes an arbitrary pointP into P ′. The center of rotationC is defined
by projectingP on the rotation axis. Theplane of rotationCPP ′ is normal to that
axis atC and is shown in Fig. 3.2. The radius of the rotation is vectorr of magnitude
r from C to P .

The vectorsω × P andω × ω × P are coplanar to each other and coplanar with
the plane of rotation. In Figure 3.2 the pointP is translated in the direction of the
normalized vectorω × P by the scalarr sin (θ) and by scalarr(1 − cos (θ)) in the
direction of the normalized vectorω × ω × P . This shows that a rotation of a point
P to P ′ can be expressed by a simple translation. Performing this translation in the
directions ofω × P andω × ω × P gives:

P ′ = P + r sin (θ)
ω × P

‖ω × P ‖
+ r (1− cos (θ))

ω × ω × P

‖ω × ω × P ‖

ω xω xP

r

P’

P

ω xP

C

r sin(   )θ

θ

θr (1−cos(   ))

Figure 3.2: The plane of rotation
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Using the euclidean norm property of vector cross-products, we obtain

‖ω × ω × P ‖ = ‖ω‖ · ‖ω × P ‖ · sin(π/2)

= θ2 · ‖P ‖ · sin(φ) (3.13)

From Fig. 3.1 it can be derived thatr = ‖P ‖ · sin(φ), whereφ is the angle between
the rotation axis defined byω and the vectorP . Thus, Eq. 3.13 simplifies even further
to

‖ω × ω × P ‖ = θ2r (3.14)

Substitution of Eq. 3.14 andθ = ‖ω‖ in Eq. 3.13 yields

P ′ = P +
sin (θ)

θ
ω × P +

1− cos (θ)

θ2
ω × ω × P

This is indeed of the formP ′ = R · P , whereR is defined as in Eq. 3.10.
Now, we are familiar with the subject of rotation matrix creation using an axis-

angle representation as it is used by the exponential map. But how can we retrieve the
three directorsωx, ωy andωz from a rotation matrix? It is this inverse problem which
often needs to be solved and is examined in the next section.

3.4.3 Determination of rotation vectors

If the rotation matrixR is given, the extraction of the rotation amountθ and the rota-
tion axisω/θ is often required. The following matrix property may help solving this
problem:

Every quadratic matrixA can be decomposed as the sum of a symmetric part
1
2
(A+ AT ), and a skew-symmetric part, the matrix1

2
(A− AT ):

A =
1

2
(A+ AT ) +

1

2
(A− AT ) (3.15)

Consider theRodrigues formulain Eq. 3.10, we may ascertain the property that the
skew-symmetric part ofR is sin(θ)

θ
ω̃. Using this, we may denote the skew-symmetric

part of the matrixR as:

1

2
(R− RT ) =

sin(θ)

θ
ω̃ (3.16)

Sinceω̃ is a skew symmetric matrix, Eq. 3.16 leads us to the following equation, where
ω = (ωx, ωy, ωz)

T .

ω =
θ

2 sin θ

 r32 − r23

r13 − r31

r21 − r12

 (3.17)
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The angleθ is obtained by the trace of the rotation matrixR, which is trace(R) =
r11 + r22 + r33. Using theRodrigues formulaof Eq. 3.11 and the property of̃ω2

(compare Eq. 3.12) leads us to following three equations forr11, r22, andr33.

r11 = 1− 1− cos (θ)

θ2
(ω2

x − θ2) (3.18)

r22 = 1− 1− cos (θ)

θ2
(ω2

y − θ2)

r33 = 1− 1− cos (θ)

θ2
(ω2

z − θ2)

Thus, using the trace ofR, we may apply the following transformations in order to
solve forθ.

r11 + r22 + r33 = 3− 1− cos (θ)

θ2
(ω2

x + ω2
y + ω2

z − 3θ2)

⇔ r11 + r22 + r33 − 1 = 2− 1− cos (θ)

θ2
(2θ2)

⇔ 1

2
(r11 + r22 + r33 − 1) = 1− (1− cos (θ))

⇔ 1

2
(r11 + r22 + r33 − 1) = cos (θ)

⇔ cos−1

(
1

2
(r11 + r22 + r33 − 1)

)
= ±θ

One issue is the sign of angleθ. If the sign is reversed, so isω. Thus, principally it
is possible to selectθ ≥ 0 if no constraints are placed on the direction of the rotation
axis.

The above formula are prone to numerical instabilitiy for angles near0◦ and180◦

and undefined ifsin (θ) = 0. This implies thatθ is 0 or k · π. Consider the case
θ = 0, the resulting rotation is a null-Rotation andω = 0. Whenθ = k · π, it is more
complicated to obtainω. Therefore, we may use Eq. 3.18 and perform the following
transformation.

r11 = 1− 1 + cos (π)

θ2

(
ω2

x − θ2
)

= 1− 2
ω2

x

θ2
+ 2

⇔ r11 − 1

2
= 1− ω2

x

θ2

⇔ ω2
x = θ2

(
1

2
(r11 + 1)

)
⇔ ωx = ±θ

√
1

2
(r11 + 1)

ωy andωz are obtained in a similar fashion. However, one may ask for the sign of
ωx, ωy andωz. In order to solve this problem, we consider once again theRodrigues
formulagiven in Eq. 3.11. The second term withsin (θ) is 0, hence, we may derive
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the signs ofω from Eq. 3.12. If we do not have any constraints for the direction ofω,
we may chooseωx to be positive. Then, the sign ofr12 for instance specifies the sign
of ωy sincer12 is only dependent on productωxωy. The sign ofωz is derived similarly
by r13 which is dependent onωxωz.

3.5 Conclusion

The intention of this chapter was to emphasize the shortcoming of quaternions for the
use of motion tracking applications. A rotation model was introduced, known as ex-
ponential maps, which fulfills all of the motion tracking requirements with regard to
non-singularity, large angular velocities, and a minimal rotation representation with 3
DoF. Since a three-dimensional rotation vector is easily converted to an axis-angle rep-
resentation and the same holds for quaternions and vice versa, we can easily convert
between the two representations and may use the advantages each representation pro-
vides in a specific application context. Some researchers claim that a three parameter
representation induces singularities either through their definitions or the calculations
of Jacobian matrices. It is shown in Chapter 5 by examining motion kinematics that
singularities can be easily omitted by applying the rule ofde l’ Hospital in order to
obtain a smooth derivation.
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Chapter 4

Camera Calibration

MUCH work has been done in the field of photogrammetry and more recently in
computer vision concerning camera calibration. The main contribution of this

chapter to camera calibration is an easy-to-use, fast, reliable and precise approach to
stereoscopic camera calibration. The final approach proposed in this thesis can be
categorized as a calibration being partly photogrammetric and partly self-calibration.
This work is a comprehensive study on monoscopic and stereoscopic camera calibra-
tion and concludes with two practical examples and evaluations. To anticipate one of
the final results of this chapter, the expected remaining error of a relative measured
distance of1022 mm is about0.1 mm and its standard deviation is around0.4 mm.

Camera calibration is the most crucial part in the development of an optical track-
ing system. The constraints used to calibrate the cameras need to be chosen carefully.
One distinguishescamera intrinsicor internal andcamera extrinsicor external pa-
rameters. The former expression denotes variables that are dependent on the optics
while the latter is used for parameters describing the spatial pose of the camera. A
camera calibration includes the estimation of both, internal and external parameters.
Most popular for calibrating a camera is the use ofcalibration patternsor calibra-
tion grids, and they are quite useful for the calibration of a monoscopic camera setup
[Bro71, Fai75, Fau93, Tsa87, Zha99]. However, calibration grids should be moved
through the whole interaction volume and the backprojection of the calibration grid
onto the camera should cover the whole image plane in order to obtain reliable and
accurate results. It is clear that for VR applications with interaction volumes of several
cubic meters, the calibration grid becomes too cumbersome because of its dimensions.
In addition, if more than one camera is calibrated, the grid is often not viewable from
the other camera positions and orientations. Alternatively, there are many researchers
working on auto-calibration methods in order to avoid the onerous task of calibrating
cameras using special calibration objects [Har94, MF92]. Auto-calibration can be seen
as the process of determining internal parameters directly from multiple uncalibrated
images. This provides a great flexibility despite unknown motion and changes in some
of the internal parameters. Due to the minimal constraints on the observed scene such
algorithms use, precision is not the strength of such techniques and degenerate config-
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urations of camera poses may arise. In fact, there is always a trade-off using one of
these techniques.

What is proposed here is a combination of both approaches to calibrate a stereo
rig so that enough constraints are available to determine the camera’s pose and its
projection parameters with high precision. Effort was made that these mathematical
constraints do not require users to move large calibration objects or to carry out a
cumbersome procedure. We first consider monoscopic calibration techniques to see
how 3D objects including points and planes project onto the camera’s image plane,
and we examine a widely used single camera calibration technique proposed by Zhang
[Zha99]. The gold standard algorithm for calibration purposes includes a first esti-
mation of the camera parameters using a linear least-squares method, followed by a
non-linear least-squares algorithm to refine the camera parameter values. The final
calibration technique proposed in this chapter for stereo camera calibration follows
allusively the gold standard algorithm due to the fact that a linear closed form solu-
tion is not available and a slightly different method has to be used. This chapter also
shows the evolution of a stereoscopic calibration implementation and examines the
strengths and weaknesses of each of the two different approaches that are considered.
The first implementation is based on an infrared beacon being waved around. A com-
plete reconstruction of the stereo rig including intrinsic and extrinsic parameters and
additionally the structure of beacon positions are obtained through this approach. The
final procedure uses a rigid bar or wand carrying two markers on the extremities (see
Fig. 4.1). The advantage of the latter approach is that the calibration is free from ar-
bitrary scale. Most important is the fact that the length of the bar provides a contraint
to perform radial re-distortion of the lens, so that the final accuracy of this calibration
lies in the range of sub-millimeters.

Both methods implemented in this dissertation have in common that internal and
external camera parameters are determined simultaneously. Each calibration is easy
to use, and they differ only in accuracy. Calibration is no longer an error prone task
and it is now possible to apply the calibration easily after reassembling the lens or the
reconfiguration of the stereo rig.

Calibration methods using a wand to calibrate the cameras are well known from
commercial products of motion tracking companies asViconTM or QualisysTM , for
example. The procedure those companies use in order to calibrate multiple cameras is
mostly unclear to the user. The author had the opportunity to ask one of the develop-
ers of a motion tracking system fromQualisysTM . He was told that intrinsic camera
parameters are calibrated in advance. For using the motion tracking system in the cus-
tomer’s setup, it is necessary to carry out a small camera calibration determining the
external camera parameters. The calibration equipment such a method typically uses
is depicted in Fig. 4.1. It consists of an angle iron which is fitted with four retro-
reflective sphere markers to indicate four known 3D world positions. The angle iron
is used to specify the world coordinate system the measurements are related to. A
wand is carrying retro-reflective sphere markers on its extremities that are fixed with
a known distance between them. It is possible to estimate extrinsic parameters and
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Figure 4.1: A wand and an angle iron fitted with reflective sphere markers

intrinsic camera parameters simultaneously including radial lens distortion using the
equipment shown in Fig. 4.1. This will be examined more detailed in Sect. 4.5.8.
The most common method to calibrate multiple cameras is to calibrate each camera
independently to estimate intrinsic camera parameters, followed by an external cali-
bration procedure. Commercial systems are of the following form: Cameras are fitted
with lenses and encased in special camera housings. The internal camera calibration
is done with a calibration method using Tsai’s calibration grids. This error prone task
is perfomed by the supplier of the optical tracking or measuring system. The external
calibration is dependent on the camera constellation and is performed by the customer.
In case a different lens is needed, the cameras need an internal re-calibration for which
the cameras must be sent to the manufacturer.

This method cannot be recommended for the use within VR applications, because
regarding the considered application, different dimensions of interaction volumes are
required that demand lenses of different focal lengths. Also a calibration that per-
formes both, internal and external camera calibration, by a closed-form calibration
method will enhance the resulting accuracy. This is the main statement of this chapter
and will be evaluated by experimental results on real data in the last section.

4.1 Taxonomy of Camera Calibration

In general, camera calibration techniques can be roughly classified into two categories:
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Figure 4.2: Apparatus to calibrate a camera with Tsai’s method. The calibration pattern
undergoes a precisely known translation while the plane has to be kept parallel.

1. Photogrammetric calibration: A calibration object whose geometry is known
with high precision in 3D space is observed by the cameras in order to perform
the camera calibration. A classical and well-known calibration is the one of Tsai
[Tsa86] (see Fig. 4.2). A plane undergoing a precisely known translation is
used in this estimation process. This approach requires an expensive calibration
apparatus and as well a great deal of care in performing this calibration, because
those techniques usually rely on high precision measurements. Thus, in practice,
such calibration steps of computer vision systems are unpopular, cumbersome
and time-consuming processes.

2. Auto-calibration: Techniques in this category do not use any calibration ob-
ject. Such techniques assume a static scene. Therefore, if a camera is moved
with fixed internal parameters, correspondence between three images are suf-
ficient to recover both the internal and external parameters. This technique
allows to reconstruct 3D structure and is related to thestructure from mo-
tion problem. Approaches in this category do not provide the same precision
and robustness as photogrammetric camera calibration methods, because there
are many parameters to estimate and one cannot always obtain reliable results
[Bou98, Fau93, HZ00, NHBP96].

The classical Tsai calibration method is not considered in this dissertation, since
photogrammetric camera calibration is more flexible today than it was one decade be-
fore. Photogrammetric calibration today requires solely a planar grid that is moved
through the space and no longer the use of an expensive calibration apparatus. How-
ever, those calibration grids can become uncomfortably large as they must be moved
through that space where measurements are taken after calibration. Both, photogram-
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metric and auto-calibration, require a mathematical camera model that fits physical
projection properties of an optical system as best as possible.

4.2 Introduction to Camera Models

If we say “we see something from a certain perspective”, it means that we see things in
relation to each other. That is what exacty the italian artists have done in the 15th cen-
tury in the Renaissance epoch. Filippo Brunelleschi, an architect, has demonstrated the
perspective construction in 1413, searching for a procedure to reproduce the propor-
tions of churches and public buildings of Florence. We will now consider, nearly 600
years later, the projection of a 3D scene space onto a 2D image plane. We start with
the most specialized and simplest camera model, which is the basic pinhole camera
and which was known ascamera obscurain the 15th century.

Beginning with this classical pinhole model, we will then generalize this model
step by step. As previously mentioned, we distinguishintrinsic andextrinsicparam-
eters . Intrinsic camera parameters are maintained by a matrixK called thecamera
calibration matrix whereas the projected image of a 3D scene is described by the
camera projection matrixP. The camera projection matrix contains extrinsic camera
parameters like rotation and translation, the information loss of the third dimension
resulting from projection, and the intrinsic parameters given byK. For simplifications,
it is assumed in the next section that the camera coordinate system is aligned with the
world coodinate system. Thus, the extrinsic parameters become an identity transfor-
mation first, and will be generalized in section 4.2.5.

4.2.1 The basic pinhole camera

The pinhole model is the simplest approximation that is suitable for many computer
vision and computer graphics applications. A pinhole camera performs aperspective
transformation. Consider Fig. 4.3 where certain properties of a pinhole camera model
are depicted. A pinhole camera contains the following properties:

• image planeΠ

• optical axis, also known as theprincipal axis

• focal pointC, also called theoptical centeror thecenter of projection

The lens is positioned perpendicularly to the optical axis at the focal pointC. The
focal lengthf is a parameter of the lens.

Now, we will consider how a point in space projects on an image plane. Let the center
of projection be the origin of an Euclidean coordinate system, and consider the image
planeΠ atZ = f . A point in space with the coordinatesM = (X, Y, Z)T is mapped
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Figure 4.3: The basic pinhole model

to the point on the image planem where the line joining the pointM to the center of
projection meets the image plane. Indeed, this line is anoptical ray.
By similar triangles (see Fig. 4.4),

X

u
=

Z

f
,

Y

v
=

Z

f
(4.1)

one simply derives the following projection property, that the pointM = (X, Y, Z)T

is mapped to the pointm = (f · X/Z, f · Y/Z, f)T on the image plane. Obviously,
if we observe the image of the scene on the image plane, we typically ignore the third
dimension and thus, we obtain the following equation which describes thecentral
projection mappingfrom world to image coordinates.

M =

 X
Y
Z

 7−→ m =

(
u
v

)
=

(
f ·X/Z
f · Y/Z

)
(4.2)
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Figure 4.4: Similar triangles of a pinhole camera model
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The central projection can also be expressed using homogeneous coordinates . If the
world and image points are represented by homogeneous vectors denoted asm̌ and
M̌ , respectively, then central projection is very simply expressed as a linear mapping.
Eq. 4.2 may be written in terms of matrix multiplication as

X
Y
Z
1

 7→
 f ·X

f · Y
Z

 =

 f 0
f 0

1 0




X
Y
Z
1

 (4.3)

The point in space is extended to a vector in four-dimensional space where the fourth
component is set to one. Note, this projection does not work if the homogeneous
vectorM̌ corresponding to a 3D point in spaceM is not mapped to a plane in 4D,
where the fourth component is one. In the following of this chapter it is assumed that a
homogeneous vector is mapped to this plane before applying a projection. The matrix
in Eq. 4.3 may be denoted withP and is called thecamera projection matrix. Now, we
can compactly write Eq. 4.3 as:

m̌ = PM̌ (4.4)

Thecamera projection matrixP contains the camera intrinsic parameters, here solely
the focal length valuef , that are also stored by thecamera calibration matrixK. The
matrixP can be expressed in terms of the matrixK as:

P =

 f
f

1

 1 0
1 0

1 0

 = K [I3|0] (4.5)

The matrix[I3|0] represents a matrix divided up into a3 × 3 block which contains
the identity matrix and a vector, here the three-dimensional zero vector. Normally the
matrixP contains also the external camera parameters. For simplification, it is assumed
here that the camera is located at the origin of a Euclidean coordinate system with the
principal axis of the camera pointing straight down theZ-axis.

The use of the matrixP for projection expresses the fact that the relationship be-
tween image and space coordinates is linear in projective coordinates. Thus, a camera
can be considered as a system that performs a linear projective transformation from
theprojective spaceP3 into theprojective planeP2. Instead of dealing with nonlinear
equations, we can use the linear relation and the power of linear algebra. Indeed,radial
lens distortioncan be considered as an internal camera parameter, which expresses a
non-linear mapping. In fact, this parameter can be seen as a mapping between distorted
2D image points and undistorted 2D image points. Thus, it can be applied right after
the mapping fromP3 to P2. Note that camera calibration matrixK does not contain all
of the intrinsic camera parameters, but all parameters that are responsible for the 3D
to 2D mapping are stored herein.
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4.2.2 The principal point offset

The point where the optical axis meets the image plane is referred to as the principal
point. In practice, we cannot assume that the origin of coordinates in the image plane
is at the principal point. Given an image of a camera, the origin is most times located at
the top left corner, but one would expect that the center of projection is nearly centered
in front of the camera sensors. Thus, the principal point is often located somewhere
around the center of an image, but note that this need not be so. Hence, we have to
add a translation to each image coordinate according to the coordinates of the principal
point (u0, v0)

T .

M =

 X
Y
Z

 7→ m =

(
f ·X/Z + u0

f · Y/Z + v0

)
(4.6)

This formula may be expressed as a linear equation using homogeneous coordinates:

M̌ 7→ m̌ =

 f ·X + Zu0

f · Y + Zv0

Z

 =

 f u0

f v0

1

 [I3|0] M̌ (4.7)

From Eq. 4.7 we see that we may graduate the camera calibration matrixK to:

K =

 f u0

f v0

1

 (4.8)

4.2.3 Non-uniform scaling

The sensors of a camera can have non-squared dimensions. Due to this and additional
properties of the electronics of acquisition, we get the extra effect of nonequal scale
factors in both axis directions of the image plane. Therefore, we rewrite the camera
calibration matrix as

K =

 α u0

β v0

1

 (4.9)

If we assume that we have only non-squared sensors with dimensionssx andsy and
there is no additional source like sampling errors of digital-analog converters which
cause a non-uniform scaling of the image coordinate axis, we may substitutef/sx

andf/sy for α andβ, wheref is the focal length of the lens expressed in meters[m]
andsx,sy is expressed in meters per pixel[m/pixel]. Generally, the resulting scale
parametersα,β can be interpreted as the size of the focal length in horizontal and
vertical pixels, respectively.
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Figure 4.5: Affine projection. The sensor plane and the lens are depicted here to be
non-coplanar. If the lens and sensor planes are still assumed to be parallel, the (u, v)
coordinate axes of the camera image are no longer perpendicular to each other. A skew
parameter is introduced to cope with this situation.

4.2.4 The skew parameter

A skew may result from different properties of the image acquisition unit. One prop-
erty that causes this skew is that the image plane corresponding to the sensor plane of
a camera is not necessarily perpendicular to the optical axis. In practice, the camera’s
image plane is represented by the sensor plane of the physical camera which may not
be mounted coplanar to the lens (compare Fig. 4.5). The orientation of the lens is
important, since the radiance of an object as depicted by Fig. 4.5 may pass the optical
lens and irradiates a patch on the sensor. This patch is in the best case a circle and in
the worst case a skew ellipse. In Fig. 4.5, the irradiance patch drawn as an ellipse is
not aligned with the orientation of the sensor plane.
The camera calibration matrix is extended with an additional parameter which is re-
ferred to as theskew parameter.

K =

 α s u0

β v0

1

 (4.10)

For precise optical systems the skew parameter will be very close to zero. The camera
calibration matrix has 5 degrees of freedom and the parameters contained inK are
called theinternal camera parametersor theinternal orientation of the camera.

4.2.5 Camera transformation

In general, points in space will be expressed in terms of theworld coordinate sys-
tem. Figure 4.6 depicts this situation. The world and camera coordinate system is
given in Euklidean space with unit axesX − Y − Z and unit axesX ′ − Y ′ − Z ′,
respectively. The world coordinate frame is related to the camera coordinate frame
by rotation and translation, using a3 × 3 rotation matrix and a 3D translation vector.
A point M = (X, Y, Z) given in world coordinates can be transformed to a point
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Figure 4.6: Rotation and translation of the camera coordinate system

M ′ = (X ′, Y ′, Z ′) relating to the camera coordinate system as follows. IfR specifies
the rotation matrix between world coordinate system towards the camera coordinate
system and the camera center is given in world coordinates as a vectorC, then the
relation of a point in world coordinatesM and a point in camera coordinatesM ′ is:

M ′ = R(M −C) (4.11)

If M is given in homogeneous coordinates, we can write

M̌ ′ =

[
R −RC
0 1

]
M̌ (4.12)

Assuming that a poinťM = (X, Y, Z, W ) given in homogeneous coordinates is pro-
jected on a plane withW = 1, the mapping between a point in spaceM̌ and a point
m̌ on the camera’s image plane is given by

m̌ = PM̌ where P = KR[ I | −C ] (4.13)

for which the calibration matrixK is of the form of Eq. 4.10. The rotation and transla-
tion do not depend on the internal camera parameters and are referred to as theexternal
camera parametersor exterior orientation. Each, the orientation as well as the trans-
lation, has 3 degrees of freedom. In fact, a camera of the form of 4.13 will be called a
finite projective cameraand has 11 degrees of freedom. Note that we may also write

P = K[R | t ] (4.14)

instead ofP = KR[I | − C ] wheret = −RC. This is used whenever the camera
center is modelled not explicitely.
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Figure 4.7: Radial distortion

4.3 Lens Distortion

So far we have assumed that the lens performs ideal central projection, as a pinhole
camera does. The previous linear mapping with matrixP works correctly only for
those points on the image plane that are colinear with the optical center and the point
in 3D space. But this does not hold in practice for real lenses. A typical lens performs
distortion of several pixels which a human observer does not notice looking at a general
scene. It is obvious that a compensation for the distorted image is necessary when we
use a camera for measurement purposes. There are many different possibilities how to
model lens distortion. In photogrammetry, the most important deviation is generally
a radial distortion (compare Fig. 4.7) and second, ade-centeringwhich displaces the
principal point from the optical axis. The de-centering distortion has a radial and a
tangential component [HS96, HS97, Sla80]. Another error component that arises from
imperfect lens design and manufacturing isthin prism distortion. We will consider
here onlyradial distortionandradial de-centeringsince these distortion components
are the most important. By considering this distortion, a more realistic camera model
is obtained, good enough for precise measurement purposes. The reader is referred to
[Bro71, Fai75, Sla80, WCH92] for more elaborated models.

Radial distortion and de-centering can in most cases be treated as rotational sym-
metric and are therefore approximated using polynomials. We may distinguish be-
tween ideal and real image coordinates. Ideal image coordinates are nonobservable
and distortion free, whereas real image coordinates are observable and distorted coor-
dinates.
Let (uu, vu) be the ideal pixel image coordinates and(ud, vd) the corresponding real
observed image coordinates. Similarily,(xu, yu) and (xd, yd) are the ideal and real
normalized image coordinates, respectively. A normalized image coordinate is inde-
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pendent from focal length, non-uniform-scaling, skew and so on, and it is related to
the non-normalized image coordinates by: uu

vu

1

 = K

 xu

yu

1

  ud

vd

1

 = K

 xd

yd

1

 (4.15)

whereK is the camera calibration matrix as given by Eq. 4.10. Note, for simplification
it is assumed that the center of radial distortion is the same as the principal point,
though these need not coincide exactly. In practice, this assumption does not influence
the overall accuracy.

The actual projected point with normalized coordinates(xd, yd) is related to the
ideal point expressed with normalized coordinates(xu, yu) by radial displacement.
Radial lens distortion is modelled as a polynomial expression in dependence of a radial
distancer. Let us assume this polynomial approximation of radial lens distortion is
given byL(r). To be exact, the functionL(r) is defined only for positiver. This is
assured if we makeL dependent ofr2 instead ofr. Another positive effect is that we
prevent the computationally expensive operation of taking the square root. Thus, the
distortion is modelled as(

xd

yd

)
= L(r2)

(
xu

yu

)
(4.16)

where r is the radial distancer =
√

x2
u + y2

u. The functionL(r2) is the Taylor expan-
sion given by

L(r2) = 1 + κ1r
2 + κ2r

4 + κ3r
6 + . . . where L(0) = 1 (4.17)

Consider the polynomial expression1 + κ1r
2, whereκ1 can be positive or negative. In

caseκ1 < 0, we obtain a pincushion-like distortion, and ifκ1 > 0, we get a barrel-like
distortion (compare Fig. 4.7).
We may now express the radial distortion with respect to image pixel coordinates by
applying the camera calibration matrixK similar to Eq. 4.15.

ud = u0 + αxd + syd (4.18)

vd = v0 + βyd

Substitution of Eq. 4.16 in Eq. 4.19 using the first two parametersκ1 andκ2 of L(r2)
yields e.g. forud

ud = u0 + αL(r2)xu + sL(r2)yu (4.19)

= u0 + αxu + αxu(κ1r
2 + κ2r

4) + syu + syu(κ1r
2 + κ2r

4)

From Eq. 4.15, we know that

uu = u0 + αxu + syu

vu = v0 + βyu
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Thus, we can simplify Eq. 4.20 to

ud = uu + (uu − u0)
(
κ1r

2 + κ2r
4
)

(4.20)

and after similar computations forvd

vd = vu + (vu − v0)
(
κ1r

2 + κ2r
4
)

(4.21)

The modelling of lens distortion as in Eq. 4.16 expresses the fact that a point given in
world coordinates is projected on the camera’s image plane and then distorted to co-
incide with the measured image point. This direction is generally used during camera
calibration. However, we do not have a direct solution to the inverse problem of lens
correction which is needed for the back-projection problem, where the line of sight
from image coordinates is recovered. Solving Eq. 4.20 and Eq. 4.21 foruu andvu is
numerically unstable. We may obtain an approximated solution by performing a few
iterations on

ud,i+1 =
ud,i + u0

(
κ1 r′2i + κ2 r′4i

)
κ1 r′2i + κ2 r′4i

(4.22)

vd,i+1 =
vd,i + v0

(
κ1 r′2i + κ2 r′4i

)
κ1 r′2i + κ2 r′4i

(4.23)

whereud,0 = ud, vd,0 = vd, r′i =
√

x2
d,i + y2

d,i, and(xd,i, yd,i)
T = K−1(ud,i, vd,i)

T .

After n iterations we yielduu ≈ ud,n andvu ≈ vd,n. The numbern is dependent on
the accuracy typically in subpixels and could be implemented using a combination of
error threshold and maximum number of iteration limit.

4.4 Monoscopic Camera Calibration

Photogrammetric camera calibration can be categorized by the used scene constraints.
To ensure the availability of those scene constraints, the environment is augmented
with a calibration object. Calibration objects can provide either a 3D location of each
grid point in relation to the world coordinate system, which is typically the coordinate
system of the calibration grid (compare left side of Fig. 4.8 and Fig. 4.2), or they
supply 2D plane coordinates with regard to an arbitrarily oriented calibration grid in
multiple image frames (compare right side of Fig. 4.8).

The classical Tsai method is of the form of a 3D calibration grid, because it is
assumed that a plane undergoes a known motion in space. Typically, the plane is
moved parallel and in multiple steps either closer to or more distant from the camera
optics. The problem besides the expensive calibration apparatus is the difficulty to
ensure a planar motion which is an error prone task. Other 3D calibration objects as
depicted in Fig. 4.8 are using two or three planes so constructed that they are positioned
perpendicular to each other.
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P H
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Figure 4.8: Relation of homographies and calibration grid

A photogrammetric calibration today needs only a planar grid to be moved more
or less arbitrarily in front of the camera’s optics. The advantage is that the whole
volume where measurements are taken after calibration can be more easily covered.
The calibration grid can be easily constructed by printing a pattern with a laser printer
and attaching the sheet of paper on a moveable planar surface. The only disadvantage
that may become a problem in some applications is the arbitrary scaling factor included
in the estimated camera parameters which cannot be determined from a plane that
undergoes an unknown motion.

In case of a 3D calibration grid, we can solve for thecamera projection matrix
P and may then estimate thecamera calibration matrixK. In case of having solely
a 2D calibration grid, we are forced to capture multiple images of a moving grid. In
each frame, grid points on the calibration pattern are related to projected grid points
on the camera’s image plane through a homographyH. Thecamera calibration matrix
K can be estimated using a few sophisticated computations. Incidentally, a homogra-
phy can also be used for tracking purposes [SFZ00]. Now, we will first consider the
estimation of thecamera projection matrixP. Then we will show how thecamera
calibration matrixK can be computed fromP. Thereafter, it is shown how to estimate
a homography. And finally this section concludes with a calibration using a moving
2D calibration grid. This includes the determination ofK from multiple homographies
H, and the computation of lens distortion parameters.

4.4.1 Calibration by determination of the camera matrixP

The determination of the matrixP follows the typical computer vision principle by first
computing a solution of an overdetermined system by minimizing the algebraic error
using a linear least squares method and then proceeding to the final result minimiz-
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ing a geometric error with non-linear least squares techniques and using the previous
computation as an initial estimate. We start with the linear estimation of thecamera
projection matrixP.

Suppose we know sufficient correspondences between a 3D PointM (e.g. on a
3D calibration grid) and its imagem on the camera’s image plane, so that the matrixP
can be determined1. The matrixP is a3× 4 matrix following the propertym̌ = PM̌
for all measurements and 3D scene points. Note that this is an equation involving
homogeneous vectors, thus the three-dimensional vectorsm andPM are only equal
up to an arbitrary scaling factor.

If 3D scene points and the corresponding image points are given in homogeneous
coordinates ašM = (X,Y, Z, 1)T andm̌ = (u, v, 1)T , respectively, we obtain two
linear independent equations from a single measurement.

u(p31X + p32Y + p33Z + p34) = p11X + p12Y + p13Z + p14

v(p31X + p32Y + p33Z + p34) = p21X + p22Y + p23Z + p24 (4.24)

whereP =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34


Equation 4.24 can be rewritten as[

X Y Z 1 0 0 0 0 −uX −uY −uZ −u
0 0 0 0 X Y Z 1 −vX −vY −vZ −v

]
p = 0 (4.25)

wherep is a 12D vector made of the entries ofP

p = (p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34)
T

We may rewrite this asAip = 0, whereAi is now a2 × 12 matrix provided by the
measurementmi and the corresponding scene pointM i. From a set ofn point cor-
respondences, we obtain a2n × 12 matrix A by stacking up the equations for each
correspondence.

It is necessary to have 11 equations to solve forP, since the matrixP has 12 entries,
and 11 degrees of freedom ignoring scale. Since each point correspondence leads to
two equations, at a minimum51

2
such correspondences are required to solve forP.

In practice, each measurement contains noise, so it makes no sense to use only one
of two equations provided by the sixth measurement. Instead, we use the equations
of each measurement we can get from a set of 3D scene points. In addition to the
imprecise measurements, the 3D space points are not given exactly. Therefore, it is
recommended to haven ≥ 6 points and an overdetermined solution. Herewith, the
algebraic or geometric error may be minimized. In the case of algebraic error, the
approach is to minimizeε = min (‖Ap‖) subject to some normalization constraint.
For this purpose, it is common to set either‖p‖ = 1 or ‖p3‖ = 1, wherep3 is the

1The problem of how many correspondences are really needed will be resumed later.
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vector(p31, p32, p33)
T , namely the first three entries in the last row ofP. The residual

Ap is known as thealgebraic error. If we use the first constraint, we can apply the
singular value decomposition(SVD) for estimation of the matrixP. The solution of
matrixP is well known to be the rightsingular vectorof A associated with the smallest
singular valueor equivalently, theeigenvectorof ATA associated with the smallest
eigenvalue. For more details about singular value decomposition and eigen analysis
the reader is referred to [GL96, HZ00, PTVF99].

Algorithm 1 A linear least-squares solution forP
1: For each correspondencemi ↔M i compute the matrixAi from Equation 4.31.
2: Assemble then 2× 12 matricesAi into a single2n× 9 matrixA.
3: Obtain the SVD ofA. The unit singular vector corresponding the smallest singular

vector is the solutionp.
4: The matrixP is determined fromp.

Unfortunately, Algorithm 1 is numerically unstable since some of the entries ofA are
given in world coordinate units, some are in pixels and some are combinations of both.
Thus, we may perform a data normalization before applying the SVD on matrixA.

4.4.2 Data normalization

For numerical robustness, some kind of data normalization is important to be carried
out. The 2D points in the image planem are approximately normalized in the follow-
ing way:

1. The points are translated so that their centroid is at the origin.

2. The points are then scaled isotropically so that the average RMS (root mean
squared) distance from the origin is equal to

√
2.

If we consider points in 3D spaceM i, the data normalization is a little more problem-
atic. In case the variation in depth of the points from the camera is relatively slight
it makes sense to carry out some data normalization similar to the 2D case of image
points.

1. The centroid of the points is translated to the origin.

2. The points are then scaled isotropically so that the average RMS distance from
the origin is equal to

√
3 (so the “average” point has coordinates(1, 1, 1, 1)T ).

This method is suitable for a compact distribution of points such as the positions of the
black squares on the calibration grid shown in Fig. 4.8.

Now we may improve Algorithm 1 for better numerical robustness as follows:
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Algorithm 2 Estimation of the camera projection matrixP
1: Use a similarity transformationT1 to normalize the image points, and a second

transformationT2 to normalize the space points. Suppose the normalized image
points arem̌i = T1mi, and the normalized space points areM̌i = T2M i.

2: Linear Least Squares Solution: Form the2n × 12 matrix A by stacking the
equations 4.31 generated by each correspondenceM̌ ↔ m̌. Write p for the
vector containing the entries of the matrixP̂. A solution ofAp = 0, subject to
‖p‖ = 1, is obtained from the unit singular vector ofA corresponding to the
smallest singular value.

3: Non-Linear Least Squares Optimization: Minimize the geometric error over
P based on a maximum likelihood criterion using the linear estimate as starting
values, ∑

i d(m̃i, P̂M̌ i)
2

e.g. using an iterative algorithm such asLevenberg-Marquardt.
4: The camera projection matrix for the original (unnormalized) coordinates is ob-

tained fromP̂ as
P = T−1

1 P̂T2.

4.4.3 Decomposition of the camera projection matrtixP

In order to calibrate a camera, a decomposition of the camera projection matrixP can
be useful. Most easily, the camera center can be determined fromP making use of the
property:P C = 0. Thus,C may be obtained from SVD ofP as the right singular
vector associated with the smallest singular value. Furthermore, the camera projection
matrix is of the following form:

P = KR[I | −C ] = [KR | − KRC ] (4.26)

We know from Eq. 4.26 that the left hand3 × 3 submatrix ofP, equal toKR, is non-
singular. LetM be the left3×3 submatrix ofP, one decomposesM as a productM = KR
whereK is upper-triangular of the form of Eq. 4.10 andR is a rotation matrix. To solve
M = KR for R, we may use the RQ matrix decomposition. Details about QR matrix
decomposition can be found e.g. in [GL96, PTVF99].

4.4.4 Calibration by determination of homographiesH

We will now consider a more flexible calibration requiring solely a planar calibration
grid to be moved around in front of the camera as depicted on the right side of Fig.
4.8. A calibration of this form estimates the homographiesH between each view of
the calibration grid and its projected image on the camera’s image plane. Then, the
homographies provide enough constraints to extract camera specific parameters. We
start with a robust detemination of homographiesH, then we proceed to the extraction
of camera parameters and conclude with the estimation of radial lens distortion.
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Consider a calibration grid as depicted in Fig. 4.8. All reference points on the
grid are coplanar, and without loss of generality we assume that the model plane is on
Z = 0 of the world coordinate system. Then, if the columns ofP are denoted aspi,
the image of a point on the plane withZ = 0 is given by

m̌ =

 u
v
1

 =
[

p1 p2 p3 p4

]
X
Y
0
1

 =
[

p1 p2 p4

] X
Y
1

 (4.27)

If we do not model the camera center explicitely, we may substituteP = K [ R | t ] in
Eq. 4.27. From this, we have u

v
1

 = K
[

r1 r2 t
] X

Y
1

 (4.28)

whereri denotes theith column of the rotation matrixR. The productK
[

r1 r2 t
]

can be expressed asa3× 3 homography matrixH defined up to a scale factor. So if an
image of the model plane (calibration pattern) is given, a homography can be estimated
as follows. In the following, slightly changing the notation, we still useM to denote
a point on the model plane, but the coordinates areM = [ X, Y ]T sinceZ = 0 and
M̌ = [ X, Y, 1 ]T . Equation 4.28 may be rewritten as

m̌ = HM̌ where H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.29)

The3×3 matrixH is the homography between points located on the calibration pattern
and the corresponding points on the image plane. Similar to the determination of the
camera projection matrixP in Eq. 4.24 of Sect. 4.4.1, the left and right side of Eq.
4.29 is only equal up to arbitrary scale and provides two equations.

u(h31X + h32Y + h33) = h11X + h12Y + h13

v(h31X + h32Y + h33) = h21X + h22Y + h23 (4.30)

Thus, we obtain the following linear transformation:[
X Y 1 0 0 0 −uX −uY −u
0 0 0 X Y 1 −vX −vY −v

]
h = 0 (4.31)

wherep is a 9D vector made of the entries ofH and has 8 degrees of freedom

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
T

When we are givenn point correspondencesm ↔ M , we haven above equations,
which can be collected in a2n × 9 matrix L. In fact, we have to solve the equation
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Lh = 0, where the solution is well known to be the right singular vector ofL associated
with the smallest singular vector. Because some of the elements ofL are constant, some
are in pixels, some are in world coordinates, and some are multiplications of both, the
matrix L is poorly conditioned numerically. Thus, it is necessary to perform a data
normalization as described in Sect. 4.4.2.

In order to estimate the homographyH more precisely, a similar algorithm to the
Algorithm 1 should be applied to minimize the geometric error. The algorithm is not
reprinted here, because it is completely analogous to the estimation of the camera
projection matrixP but with fewer parameters, namely nine. Thus, we need at least 4
points on a plane to solve forH. In practice, as a rule of thumb, the number of point
measurements should exeed the number of unknowns by a factor of five for a good
estimation (compare [HZ00] p.169).

4.4.5 Determination of camera calibration matrixK

Assume we have estimatedn homographiesHi for 0 ≤ i ≤ n. In the following, we try
to determine the intrinsic camera parameters using the matricesHi.

A common approach, if camera intrinsic parameters are unknown but constraints
are given depending on the camera calibration matrix, is to produce an image of the
absolute conic. The reader is referred to [HZ00, Fau93] for the definition and more
details about theabsolute conic. Theabsolute conicis given as

K−TK−1 =


1

α2 − s
α2β

sv0−u0β
α2β

− s
α2β

s2

α2β2 + 1
β2 − s(sv0−u0β)

α2β2 − v0

β2

sv0−u0β
α2β

− s(sv0−u0β)
α2β2 − v0

β2

(sv0−u0β)2

α2β2 +
v2
0

β2 + 1

 (4.32)

whereK−T is used to denote the matrix(KT )−1 = (K−1)T . SinceK contains six un-
knowns (including arbitrary scale) and theabsolute conicis a symmetric matrix having
six entries,K is exactly given by theabsolute conic.
An image of the absolute conic is obtained from the property that

H = λK [ r1 r2 t ] (4.33)

by left side multiplication ofHT , whereλ is a scaling factor

HTH = λ (K [ r1 r2 t ])T K [ r1 r2 t ]

⇔ HTH = λ[ r1 r2 t ]TKTK [ r1 r2 t ]

⇔ HTK−TK−1H = λ[ r1 r2 t ]T [ r1 r2 t ] (4.34)

Consider the right side of Eq. 4.34, there are two properties we may derive from the
orthonormality constraint of rotation matrices.

1. Sincer1 is perpendicular tor2 the scalar product is zero

rT
1 r2 = 0 (4.35)

not affected by scaleλ.
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2. Another constraint for orthonormal matrices is that the column vectors are of
unit norm. This may be expressed by using the scalar product asrT

1 r1 = 1 and
rT

1 r1 = 1. Since both scalars are affected by scaleλ, we have only one condition

rT
1 r1 = rT

2 r2 (4.36)

If the homographyH is made of the row vectorsh1, h2, and h3, so thatH =
[h1, h2, h3], we may rewrite the constraints given in Eq. 4.35 and 4.36 by substitu-
tion of Eq. 4.34 as

hT
1 K

−TK−1h2 = 0 (4.37)

hT
1 K

−TK−1h1 = hT
2 K

−TK−1h2 (4.38)

Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters2,
we can only obtain 2 constraints on the intrinsic parameters. Now, let

B = K−TK−1 =

 b11 b12 b13

b12 b22 b23

b13 b23 b33


Note thatB, the image of the absolute conic, is symmetric. We may rewrite Eq. 4.37
and 4.38 as:[

hT
1 Bh2

hT
1 Bh1 − hT

2 Bh2

]
= 0 (4.39)

If H is given as in Eq. 4.29, we may decompose Eq. 4.39 as[
h11h12 h12h21 + h11h22 h21h22

h2
11 − h2

12 2(h11h21 − h12h22) h2
21 − h2

22

. . .

h12h31 + h11h32 h22h31 + h21h32 h31h32

2(h11h31 − h12h13) 2(h21h31 − h22h32) h2
31 − h2

32

]
b = 0

whereb is made of the entries ofB

b = (b11, b12, b22, b13, b23, b33)
T

If we haven images taken of the calibration grid, we can stackn such equations and
we obtain a2n× 6 matrixV which is of the following form

Vb = 0 (4.40)

The solution is exact if three views are taken of the calibration grid. In order to be
more robust with regard to Gaussian noise, more than three views are recommended.

2We have 6 extrinsic parameters because we have 3 parameters for rotation and 3 for translation.
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If n ≥ 3, the solution is obtained with SVD and is well known as the right singular
vector corresponding to the smallest singular value.
The matrixB made of the vectorb describes the image of theabsolute conic. Once
the matrixB is estimated ( but only up to scaleλ), we can compute the camera intrinsic
parameters (see e.g. [Zha99] p.673).
Note, the extrinsic parameters for each calibration grid rotation and translation can be
estimated from the homographyH applying the determined camera calibration matrix
K. However, the matrix obtained from this operation will produce a matrix that does not
fit the orthonormality constraint. A solution to this problem can be found in [Zha98].

4.4.6 Solving for radial lens distortion

Lens distortion can also be solved linearly. For the moment, modelling lens distor-
tion can be seen as a minimization of the remaining error on the camera image plane
between ideal and measured image points. Let us denote the ideal pixel image coordi-
nates as(uu, vu), the corresponding real observed image coordinate as(ud, vd), ideal
normalized image coordinates as(xu, yu), and real normalized image coordinates as
(xd, yd), similar to Sect. 4.3. The ideal coordinates can be estimated either by apply-
ing the homographiesH on the grid points or by estimating a camera projection matrix
made of the components ofK and external parameters as previously determined, and
using this matrix for projection of plane reference points. The result should be close to
the ideal point, and the residual between ideal and real image coordinates is used for
estimating the lens distortion parameters. We consider here only the first two parame-
tersκ1 andκ2.
From

ud = uu + (uu − u0)
(
κ1r

2 + κ2r
4
)

(4.41)

vd = vu + (vu − v0)
(
κ1r

2 + κ2r
4
)

(4.42)

we have[
(u− u0)r (u− u0)r

2

(v − v0)r (v − v0)r
2

](
κ1

κ2

)
=

(
ud − uu

vd − vu

)
(4.43)

Assume we havem image points captured in one image and we have acquiredn image
frames, then we can stack all equations together to obtain in total2mn equations. In
matrix form we have

Dk = d with D =

[
(u− u0)r (u− u0)r

2

(v − v0)r (v − v0)r
2

]
(4.44)

wherek = (κ1, κ2)
T andd = (ud − uu, vd − vv)

T .

The linear least-squares solution is given by the pseudo inverse ofD:

~k = (DTD)−1DT ~d (4.45)
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The following algorithm was proposed by Zhang [Zha99] to calibrate a single camera
by taking multiple views of a 2D calibration grid. It is shown in his paper that a
calibration from only two views is possible by adding a constraints = 0. However, in
order to obtain reliable results, it is recommended to take more than three views. The
calibration technique is summarized in Algorithm 3. Note, there may be additional

Algorithm 3 Calibration by usingn views of a 2D calibration grid
1: Compute the homographiesHi for 0 ≤ i ≤ n andn ≥ 3 as described at the

beginning of Section 4.4.4.
2: From the2n × 6 matrix V generated by stacking the equations of the two or-

thonormality constraints for each homographyHi, a solution ofVb = 0, subject
to ‖b‖ = 1, is obtained from the unit singular vector ofV corresponding to the
smallest singular value.

3: Compute the camera calibration matrixK and the extrinsic camera parameters for
each homographyHi.

4: Estimate initial values for radial lens distortion as shown in Section 4.4.6 by using
SVD.

5: Non-Linear Least Squares Optimization:Refine the parameters by minimizing
the geometric error based on a maximum likelihood criterion using the previous
linear estimates as starting values,∑

i

∑
j d(m̃ij, f̂(K, κ1, κ2,Ri, ti, M j))

2

e.g. using an iterative algorithm such asLevenberg-Marquardt.

algorithms to calibrate a single camera, but these techniques either assume a reduced
camera calibration matrixor make use of stereoscopic vision, so that thefundamental
matrix is estimated. In the following section, we examine the properties of stereoscopic
vision includingfundamentalandessential matrix.

4.5 Stereoscopic Calibration

The use of stereoscopic images is motivated by the human visual system. The two
impressions of our eyes provide information about the depth of objects at any mo-
ment. This is an important information that facilitates uneducated observers to learn
structure information of objects. Humans’ depth impression is not only caused by the
availability of two eyes, though, it is the most important source for providing depth
information. Likewise, through the movement of the humans’ visual system informa-
tion of structure depth is perceived. Thus, an optical system has two possibilities to
use stereoscopic vision. Either multiple cameras are positioned so that 3D information
is directly obtained through triangulation at any moment, this constellation is referred
to asstereo rig, or only a single camera is used which is moved through the surround-
ing scene. Herewith, 3D information is obtained through triangulation between two or
even more successive views. The latter approach assumes a static scene.
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In this section we study the fundamentals of epipolar geometry. Linear methods are
presented to estimate the fundamental matrix, to extract the external camera parameters
from the essential matrix and to backproject points measured from multiple image
planes to 3D space. Those principal procedures are introduced before the explanation
of the proposed stereo calibration methods in order to get familiar with the concepts of
stereoscopic computer vision. The techniques described at the beginning of this section
are used in the final calibration algorithm to quickly compute an initial estimate for a
non-linear calibration process refining the initial camera parameters.

4.5.1 Epipolar geometry

Now, let us consider the properties of two-view projective geometry. We know that a
point on the image plane together with the camera centerC leads to a ray in three di-
mensional space. This situation is depicted on the left side of Fig. 4.9. Using a second

6

Epipol-Punkte

Z

X
Y

ray

u
v

Z‘ Y‘

u‘

v‘

C‘C baseline

epipole e epipole e‘X‘

Figure 4.9: The epipolar line

view non-colinear with the principal axis of the first camera, this ray is projected on
the second camera’s image plane as shown on the right of Fig. 4.9. This line is called
theepipolar line and is useful with respect to the problem of finding correlations be-
tween two views. Once a feature in one image plane is detected, the corresponding 3D
scene point belongs to a ray in space as depicted in Fig. 4.9. The corresponding image
point in the second view belongs to the epipolar line due to the fact that the epipolar
line is the projection of the ray in space on which the 3D scene point is located. Thus,
the epipolar line in the second view provides a limited one-dimensional search space
for the location of a corresponding point. Let us connect the center of both cameras
through a line. This line is called the baseline intersecting the image planes at a point
e ande

′
which are called theepipoles.
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Figure 4.10: The epipolar pencil

All epipolar lines intersect at theepipole. A point in space and the baseline define the
epipolar plane. Each epipolar plane contains the baseline, therefrom we have a one
parameter family, the pencil of epipolar planes as illustrated in Fig. 4.10. On the image
planes, we have a pencil of epipolar lines.

The epipolar geometry between two views is essentially the geometry of the inter-
section of the image planes of both cameras with the pencil of epipolar planes.

4.5.2 The Fundamental Matrix

Let us express the properties of epipolar geometry more mathematically using linear

algebra. In Fig. 4.11 we see that the vectors
−→

C ′M ′,
−→
C ′C and

−→
CM are coplanar. This

9
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Figure 4.11: The epipolar plane
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relationship can be expressed as

−→
C ′M ′

T
( −→

C ′C ×(
−→

CM)
′
)

= 0 (4.46)

where(
−→

CM)
′

is the vector
−→

CM expressed in the second camera coordinate system.
Consider the image pointm in the first camera’s image plane and the pointm

′
in

the second camera’s image plane. Both can be constructed by projection of a point in
spaceM (= M

′
) on the image planes of each camera, whereM is the point in space

expressed in the first camera’s coordinate system andM
′
expressed in relation to the

second camera, and so

m̌ = K [I3 |0 ] M̌ = KM = K
−→

CM (4.47)

m̌
′

= K
′
[I3 |0 ] M̌

′

= K
′
M

′
= K

′ −→
C ′M ′ (4.48)

The vector
−→

CM is located in the first camera coordinate system whose origin is atC.
We have to relate this vector with the second camera coordinate system.

(
−→

CM)
′
= R

−→
CM (4.49)

whereR is the rotation from the first to the second camera coordinate system. Substi-
tution of Eq. 4.49 in Eq. 4.46 yields

−→
C ′M ′

T
( −→

C ′C × R
−→

CM

)
= 0 (4.50)

If we resolve Eq. 4.47 and Eq. 4.48 with respect to the 3D vectors
−→

CM and
−→

C ′M ′, we

obtain
−→

CM= K−1 m̌ and
−→

C ′M ′= K
′−1 m̌

′
whereupon Eq. 4.50 results in

(K
′−1 m̌

′
)T

( −→
C ′C × R K−1 m̌

)
= 0 (4.51)

Let us denote
−→
C ′C = t and let us use a skew-symmetric matrixt̃ to replace the cross

product by matrix multiplication. After some additional matrix operations to change
order, we obtain an important equation

m̌
′T K

′−T t̃ R K−1 m̌ = 0 (4.52)

where

t̃ =

 0 −tz ty
tz 0 −tx
−ty tx 0
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From this algebraic transformation, we have seen that two corresponding points on
respective image planes fulfil the condition of Eq. 4.52. This relationship is linear,
thus a3× 3 matrixF can be used. Hence, Eq. 4.52 can be rewritten as

m̌
′TFm̌ = 0 (4.53)

The matrixF is the algebraic representation of epipolar geometry and is known as the
fundamental matrix. The fundamental matrix has rank 2 and is a homogeneous matrix
with 7 degrees of freedom. With the substitution ofF in Eq. 4.52, we have obtained
Eq. 4.53 which is sometimes called the Longuet-Higgins equation after the inventor
[LH81].

From Fig 4.11, we have seen that a pointm in the first image plane corresponds
to a line l

′
in the second image plane. A correlated image pointm

′
belongs to this

epipolar linel
′
. This correspondence pointm

′
on the second image plane in turn

corresponds to an epipolar linel on the first image plane, wherem belongs to. This
condition is expressed analytically as follows

l
′

= Fm̌ (4.54)

l = FT m̌
′

(4.55)

whereF is the fundamental matrix. This can be easily verified:

For any pointp belonging to the epipolar linel, the following relationship holds:

p̌T l
′
= 0 (4.56)

Let p be the image pointm
′
. The epipolar linel

′
can be replaced byFm̌ as given in

Eq. 4.54 and we obtain the conditioňm
′TFm̌ = 0 for calculating the fundamental

matrix that represents the epipolar plane.
The properties of the fundamental matrixF are summarized as follows:

• F has rank 2 and has 7 degrees of freedom

• Definition: F is defined as
F = K

′−T t̃ R K−1

• Correspondence:If m andm
′
are corrsponding points, then:

m̌
′TFm̌ = 0

• Epipolar lines:
l
′
= Fm̌ is the epipolar line corresponding tom.

l = FT m̌
′
is the epipolar line corresponding tom

′
.

• Epipoles: For the epipoles, the following relation holds:
Fe = 0
FT e

′
= 0
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4.5.3 Determination of the fundamental matrixF

This section describes the computation of the fundamental matrix given a set of point
correspondences between two images. There are different methods for computing the
fundamental matrix, but the most simple method is the 8-point algorithm, expressing
the fact that at least a set of eight point matches are necessary to determineF. The
advantage of the algorithm is its simplicity of implementation. However, there are
algorithms providing better results using the geometric distance in contrast to the alge-
braic distance used within this approach. The reader is referred to the book of Hartley
and Zisserman [HZ00] to see more elaborated estimation techniques. To our prob-
lem of camera calibration, this algorithm provides an initial parameter configuration
as well as a satisfying precision as shown later in Sect. 4.5.8.

Hartley has shown that for the 8-point algorithm there is a necessity to perform
a data normalization in advance, otherwise this method is extremely susceptible to
noise [Har95]. The data normalization performed is similar to that proposed in Sec-
tion 4.4.2. The 8-point algorithm for computing the essential matrix (for details about
the essential matrix see Sect. 4.5.4) was introduced by Longuet-Higgins in [LH81].
In this paper, the essential matrix which is closely related to the fundamental matrix is
used to compute the structure of a scene from two views with calibrated cameras. The
introduced algorithm has the great advantage that it is linear. If 8 point matches are
known, then the solution of a set of linear equations is involved. If the data is not exact,
because of noise in the point coordinates, and with more than 8 point matches, a linear
least squares minimization problem must be solved. Similar to the calibrated case,
the fundamental matrix may be used in order to reconstruct the scene from two uncali-
brated views, instead of two calibrated ones, but only up to a projective transformation.
A previously shown, the fundamental matrix is defined by the equation

m′TFm = 0 (4.57)

for any pair of matching pointsm′ ↔ m in two images. Given a sufficient number
of point correspondencesm′ ↔ m (at least 8), Eq. 4.57 can be used to compute the
unknown matrixF. Let m̌ = (u, v, 1)T andm̌

′
= (u′, v′, 1)T , each point match

gives rise to one linear equation in the unknown entries ofF, where

F =

 f11 f12 f13

f21 f22 f23

f31 f32 f33


Equation 4.57 may be rewritten in terms of known coordinatesm andm′ and the
unknown part made of the entries ofF:

uu′f11 + uv′f21 + uf31 + vu′f12 + vv′f22 + vf32 + u′f13 + v′f23 + f33 = 0 (4.58)

Denote byf the 9D-vector, made up of the entries ofF in row-major order. Then Eq.
4.58 can be expressed as a vector inner product.

(uu′, vu′, u′, uv′, vv′, v′, u, v, 1) f = 0
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From a set ofn point matches, we obtain a set of linear equations of the form

Af =

 u1u
′
1 v1u

′
1 u′1 u1v

′
1 v1v

′
1 v′1 u1 v1 1

...
...

...
...

...
...

...
...

...
unu

′
n vnu

′
n u′n unv

′
n vnv

′
n v′n un vn 1

f = 0 (4.59)

The fundamental matrixF, and hence the the solution vectorf , are defined only up to
an unknown scale, since matrixA is made of a homogeneous set of equations. For a
solution to exist, matrixA must have at most rank 8. For this reason, and to avoid the
trivial solutionf = 0, we make the additional constraint‖f‖ = 1. An alternative is
to setf33 = 1 and to solve a linear least squares minimizaton problem. This problem
may be solved using the SVD , similar as considered in algorithm 1. The least-squares
solution forf is thesingular vector corresponding to the smallestsingular value
of A, that is, the last column ofV in A = UDVT . The solution vectorf minimizes
‖Af‖ subject to the condition‖f‖ = 1. Under these conditions, it is possible to find
a solution to the equations collected inA with as few as 8 point matches. With more
than 8 point matches, we have an overspecified system of equations.

An important property of the fundamental matrix is that it is singular. In fact,F has
rank 2. If the fundamental matrix is not singular, then computed epipolar lines are not
coincident. Since the matrixF computed with SVD using Eq. 4.59 will not have rank
2, we should enforce this constraint. A method to do this is to replace the matrixF by
the matrixF’ which minimizes the Frobenius norm‖F− F’‖ subject to the condition
detF’ = 0. A simple way to do this is to apply the SVD to the matrixF, which is
in particularF = UDVT , whereD is the diagonal matrixD = diag(r, s, t) satisfying
r ≥ s ≥ t. ThenF’ = Udiag(r, s, 0)VT minimizes the Frobenius norm.

Now, the complete suggested 8-point algorithm can be applied as follows:

Algorithm 4 The 8-point algorithm with data normalization
1: Normalization: Each image point is transformed with a normalizing transforma-

tion matrixT andT′ consisting of a translation and scaling as previously described
in Section 4.4.2.

m̂i = Tmi m̂′
i = T′m′

i (4.60)

2: Linear solution: ComputêF from the singular vector corresponding to the small-
est singular value of̂A, whereÂ is composed from the matcheŝmi ↔ m̂′

i as
specified in Eq. 4.59.

3: Singularity constraint: Apply the SVD to F̂ and calculateF̂
′

with F̂
′

=

Û ˆdiag(r, s, 0) V̂
T
, wherer ands are the two greatest singular values withr ≥ s

andÛ andV̂ are the orthonormal matrices obtained from the SVD ofF̂.
4: Denormalization: The resulting fundamental matrixF which corresponds to the

original input datami ↔m′
i is obtained byF = T′T F̂

′
T.
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4.5.4 The Essential Matrix

Theessential matrixwas introduced by Longuet-Higgins [LH81]. One of many useful
ranges of application is the estimation of relative camera motion. For stereo calibration
purposes, the essential matrix offers the determination of extrinsic camera parameters,
i.e. the rotation and translation between the position and orientation of each cam-
era. The essential matrix is a specialization of the fundamental matrix in the case of
normalized image coordinates. Normalized image coordinates are obtained through a
transformation with the corresponding camera calibration matrix similar to the trans-
formation used in Sect. 4.3. The essential matrix is defined as

E = t̃R (4.61)

and can be determined from the fundamental matrix. The essential matrix has five
degrees of freedom, due to the overall scale ambiguity3. Once the camera calibration
matricesK, K

′
and the fundamental matrixF are known, the essential matrixE is given

as

E = K
′TFK (4.62)

Because we want to determine rotation and translation from one camera to the other,
let us define the projection matrices as:

P = [I3 |0 ] P
′
= [R | t ]

The rotation and translation can be determined by factorizing theessential matrix.
Suppose that the singular value decomposition of the essential matrixE is

E = U diag(1, 1, 0) VT (4.63)

The rotation and translation are given by

R = UWVT or R = UWTVT

t = u3 or t = −u3

whereu3 is the last column ofU, and

W =

 0 −1 0
1 0 0
0 0 1


This leads us to a four-fold ambiguity, that means we have four possible combinations
of translations and rotations giving four possibilities forP

′
= [R | t ] which are

1. P
′
= [UWVT |u3 ]

3Six degrees of freedom for rotation and translation are reduced to five
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2. P
′
= [UWVT | −u3 ]

3. P
′
= [UWTVT |u3 ]

4. P
′
= [UWTVT | −u3 ]

This projective ambiguity can be solved by looking at the geometric interpretation
of the projection matrices. Obviously, the difference between the first two solutions
is that the direction of the translation vector is reversed. The first and third projection
matrices are related by a180◦ rotation of the second camera about thebaseline, the line
joining the two camera centers. The four-fold ambiguity is illustrated in Fig. 4.12. The

Figure 4.12: The four possible combinations of translations and rotations

correct pair will have the data points in front of both cameras. This case is highlighted
in Fig. 4.12. Thus, testing with a single point to determine it being in front of both
cameras is sufficient to decide which combination ofR andt is valid. The procedure
to determine the right configuration is as follows:

1. Take a test point from data

2. Backproject the test point to find 3D location

3. Determine the depth of 3D point in both cameras

4. Choose the camera pair that has a positive depth for both cameras
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4.5.5 Backprojection to 3D

Backprojection aims to reconstruct the 3D coordinates of a scene pointM from two
image measurementsm andm

′
. Backprojection is also known as3D similarity recon-

struction or triangulation . We assume here that the cameras are internally calibrated
like for the estimation of the essential matrix. Since there are errors in the measured
image coordinatesm andm

′
, there will not be a point in spaceM which exactly

satisfiesm̌ = PM̌ andm̌
′
= P

′
M̌ . Also the image points do not satisfy the epipolar

constraintm̌
′TFm̌ = 0. Indeed, two rays corresponding to a matching pair of image

pointsm andm
′
will meet in space if and only if the points satisfy the epipolar con-

straint. In case of noise, a method that finds themidpoint of the common perpendicu-
lar to the two rays in space is not suitable for projective reconstruction, since concepts
such as distance and perpendicularity are not valid in the context of projective geome-
try and thus, such a method is notprojective-invariant. A projective-invariant solution
would estimate the 3D pointM as a maximum likelihood estimate which minimizes
the reprojection error using the supplied camera geometry and its projection properties
given as:

m̌ = PM̌ and m̌
′
= P

′
M̌

Because only image distances are minimized, such a method is projective-invariant.
In the following a simple linear solution to the triangulation problem is given which
is unfortunately also projective-invariant, but nevertheless, this linear method often
provides acceptable results, it is fast and easy to implement, and it is easily generalized
to triangulation when more than two views of a point in space are available.

For each projectionm of a point in spaceM , we know that the cross-product of
m = (u, v, 1)T and the projection of a point in spacePM̌ should be zero. The residual
is known as the reprojection error which is going to be minimized. Thus, we have

m̌×
(
PM̌

)
=

 0 −1 v
1 0 −u
−v u 0

 p1

p2

p3

M̌ = 0 (4.64)

wherepi is theith row of the camera projection matrixP. Writing this equation out
gives three equations

v(p3M̌)− (p2M̌) = 0

u(p3M̌)− (p1M̌) = 0

u(p2M̌)− v(p1M̌) = 0

where two are linearly independent. We may use the first two of these three equations
in order to obtain a linear equation of the formAM̌ = 0. The matrixA can be com-
posed from two camera projection matricesP andP

′
and the image coordinatesm and

66



Chapter 4 Camera Calibration

m
′
as

A =


vp3 − p2

up3 − p1

v
′
p
′
3 − p

′
2

u
′
p
′
3 − p

′
1


The solution is found as the unit singular vector corresponding to the smallest singular
value ofA.

4.5.6 Depth of points

It has just been shown how a point is backprojected into 3D space. In this section we
will determine the depth of a point in space with respect to a camera (compare Fig.
4.13). LetP be written asP = [M |p4 ], wherep4 is the fourth row of the camera pro-
jection matrix, the last row ofM denoted asm3 points in the direction of the principal
axis. We would like to define this vector in such a way that it points in the direction
towards the front of the camera. Since the camera projection matrixP is only defined
up to sign, this leaves an ambiguity in the direction ofm3.

M

m3C

m3MT

Figure 4.13: The depth of a point can be considered as a scalar product

Consider the projection matrixP when a 3D point is expressed in world coordinates.
The following equation introduces a variablek that is either+1 or−1, expressing the
fact of the direction.

P = k K [R | − RC ] = [M |p4 ] (4.65)

We know that a rotation matrixR is defined to be orthonormal for which the require-
ment holds det(R) = 0. The matrixM is defined asM = kKR and thus, the sign ofk
is given by the determinant ofM since negative scaling induced by camera calibration
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matrixK is also inadmissible. As a result we obtain the direction of the principal axis
directing towards the front of the camera as

v = det(M)m3 (4.66)

The signum function may be used to determine the sign ofk in order to let the principal
axis facing in front of the camerak = sign(det(M)). As shown in Fig. 4.13 the scalar
product may be used to determine the depth of a point in space.

Let m3 direct towards the front of the camera, this leads us to sign(det(M))m3.
The resulting vector should be normalized so that the scalar product of this normalized
vector with a point in spaceM determines the depth with respect to the units of the
camera coordinate sytem. By applying the scalar product, we obtain the depth of a
point in spaceM given the first three entries of the third row ofP by

depth(M , m3) =
sign(det(M))MT m3

‖m3‖
(4.67)

4.5.7 A single moving point calibration

The first presented camera calibration resumes the research of Azarbayejani and Pent-
land. The authors proposed in [AP95] a method to recover scene structure and camera
motion from image sequences of rigid motion. Besides the structure of an object, the
different camera positions and orientations are determined as well as the focal length
of the optical system. These parameters are estimated from feature correspondences
tracked through an image sequence. They use an extended Kalman filter for an op-
timal estimation of these parameters up to an arbitrary scaling factor. The proposed
technique is related to the well known problem ofstructure from motion.

Another application of their method concerning the problem of stereoscopic cam-
era calibration was published in [AP96]. The positions of two cameras are considered
here as a movement of one camera. An extension to the previous implementation was
made with regard to an additional focal length value for the second camera which was
added to the state vector of a Kalman filter process in order to calibrate the cameras.

The idea of using only one point to calibrate the cameras has inspired the author
because such a calibration would be very easy to perform, since calibration data may
be entered by just waving a flashlight around. In contrast to large calibration grids
that have to be moved under known translation, a calibration using a single moving
point would not be as error prone as Tsai [Tsa86] related calibrations. Indeed, the
constraints provided by a single moving point are not comparable to multiple views
of a planar pattern. Nevertheless, there was the need to develop a calibration that
brings stereoscopic tracking out of the lab and into practical use. Surprisingly to many
computer vision experts, it will be seen from experimental results that this calibration
provides even reliable results.

All in all there are three coordinate systems, one for each camera and one coor-
dinate system referred to as world coordinate system. The coordinate systems were
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defined to be left-handed and the camera model used is slightly different to the pre-
viously described pinhole model due to the fact that the Z-axis is going out of the
image plane, but the image points are defined to be located atZ = 0. The calibration
considered here is a three step approach which works as follows:

1. To get an estimation of internal camera parameters, each camera is pre-calibrated
for which the technique introduced by Tsai [Tsa86] is used. His method is aimed
at determining the external position and orientation relative to the object refer-
ence frame as well as the effective focal length, radial lens distortion and image
scanning parameters. This technique was applied to obtain the internal parame-
ters only. The parameters used for a later described initialization are the effective
focal lengthf , the lens distortion coefficientκ1, the origin in the image plane
(Cx, Cy), the uncertainty scale factorsx and the horizontal and vertical pixel
size in frame bufferd′x, d

′
y. For more details see [Tsa86]. This calibration step is

time-consuming and needs to be performed accurately, thus the internal camera
calibration is done only once at the time the cameras are fitted with their lenses,
as the configuration of the cameras remains the same afterwards.

2. The second calibration step is very easy to perform because an adaptive cali-
bration method4 is used similar to the method proposed by Azarbayejani and
Pentland [AP95, AP96]. The final system can adaptively calibrate a stereo rig
by tracking a single moving point acquired from each of the two cameras. As
a result, the calibration data may be entered by just waving a flashlight around.
The internal parameters from calibration step 1 are needed as initial values. The
result is a calibrated camera system where 3D points are given in the right cam-
era frame. A detailed description of this technique is given below.

3. Finally, the user has to move an infrared beacon to three predefined positions of
the world coordinate system. Applying two cross product operations to the two
input vectors and, at last, a normalization yields the coordinate system for the
world coordinate system.

This adaptive calibration is based on the iterated extended Kalman filter (IEKF).
To apply this filter, the state vector is defined in Eq. 4.68 and consists of the relative
orientation, the inverse focal lengths and the structure parameters.

s =
(
T ,RL→R, βL, βR, αL

1 , . . . , αL
N

)
(4.68)

The conversion between the left and right camera coordinate systems is given by ex-
trinsic camera parametersT andRL→R for translation and rotation5. The inverse focal
lengthsβL, βR are the only intrinsic camera parameters determined by this calibration
approach, but forthcoming research may extend this state vector with a correction of

4Adaptive means here that camera parameters are altered to get better estimated ones which requires
no knowledge on the user’s side.

5RL→R designates the rotation from the left to the right camera coordinate system.
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projection
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point distance
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Figure 4.14: The calibration idea

the pre-estimated lens distortion. The structure parametersαL
i designate the distance

of the points from the left camera’s image plane and are used to reconstruct the 3D
structure of the curve the user produced by waving around an infrared beacon. In or-
der to get a good initial state vectors0, the intrinsic parameters are set accordingly
to the output of the first calibration step. The extrinsic parameters and the structure
parameters are roughly estimated.

The computational approach of this adaptive calibration is shown in Fig. 4.14.
First, all measured image points are transformed to their supposed undistorted loca-
tions according to Tsai’s method. Then, a 2D image point is back-projected to a 3D
point usingαL

i and the pre-calculated focal length as the internal orientation. Second,
a transformation into the other camera coordinate system is applied to the 3D point us-
ing the relative orientation and translation. Finally, the 3D point is projected onto the
second camera image plane using the internal orientation of the corresponding cam-
era. The perspective projection can be mathematically described as Eq. 4.69, where
the center of projection has the coordinates(0, 0,− 1

β
) in the camera reference frame,

(X, Y, Z) describes a point in the camera coordinate system,β = 1
f

is the inverse focal
length and(uu, vu) is the projected undistorted point localized at the image plane.(

uu

vu

)
=

(
X
Y

)
1

1 + βZ
(4.69)

With regard to this camera model, the above mentioned computational approach shown
in Fig. 4.14 can be mathematically described. First, the inverse projection is given by
Eq. 4.70, where(uL

u,i, v
L
u,i ) for 1 ≤ i ≤ n is an undistorted image point corresponding
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Figure 4.15: The calibration working cycle

to a 3D point(XL
i , Y L

i , ZL
i ) in the left camera reference frame. The depth information

is given byαL
i . Later, it is shown that the value ofαL

i is altered to get the mean
correct undistorted position(XL

i , Y L
i , ZL

i ). This different meaning justifies the use of
a different designationαL

i andZL
i . XL

i

Y L
i

ZL
i

 =

 uL
u,i

vL
u,i

0

+ αL
i

 βLuL
u,i

βLvL
u,i

1

 (4.70)

Second, the 3D point transformation from the left to the right camera frame is given by
Eq. 4.71, whereP L is a 3-D point in the left camera frame,RL→R andT is the relative
orientation and translation of the right camera frame with respect to the left camera.
P R = (XR, Y R, ZR) is the obtained point located in the right camera frame.

P R = T + RL→RP L (4.71)

Finally, the perspective transformation for the right camera is given in Eq. 4.72: XR

Y R

1 + βRZR

 =

 1 0 0
0 1 0
0 0 βR

P R +

 0
0
1

 (4.72)

To obtain the undistorted position in the right image plane and an inhomogeneous re-
sult, the first and second components of the resulting vector are divided by the third
(see Eq. 4.69). The calibration procedure works according to Fig. 4.15. After ini-
tializing the state vectors, a data set of 100 image points is collected. With access to
the state vector, it is possible to transform the image point measurements of the left
camera to the right camera image plane. A comparison of the transformed and
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Figure 4.16: The iterative calibration
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the measured image points can be used for altering the state vectors with the
IEKF until convergence is achieved. Afterwards, the system contains an arbitrary scal-
ing factor. However, after the third calibration step, three 3D positions of the world
coordinate system are known and the scaling factors can be computed.

At the top of Fig. 4.16, the images of both video cameras are shown, including the
last 100 points captured by each camera. In the middle of this figure one can see the
iterative calibration. The first image in the second row shows the left measurements
again. In the second image, second row, the samples taken by the right camera and the
initialization step with the projection to the camera’s image plane are displayed. Then,
the iteration is bringing the calculated measured points closer to the real measured
points by altering the state vectors. At the bottom of this figure, the state correction
over 40 iterations is shown. From this plot it can be seen that the state vector is nearly
adjusted after ten iterations. In practice, the iteration finishes if the residual of the
estimated measurement obtained from the state vector and the real measurement is
below a given threshold. In the following the experimental results obtained from this
calibration method are discussed.

Experimental results

The accuracy of the system is evaluated with respect to the remaining pixel error ob-
tained from the residual of a projected point in 3D space and the corresponding mea-
surement in the image plane. This experiment was done using a small baseline between
the cameras as is often needed for inside out tracking, and a large baseline required for
outside in tracking. The second experiment measures the depth precision of a point in
space using a small parallax of the cameras.

Let us consider a 3D point in space corresponding to a marker position. The pro-
jection of this marker can be measured on each camera’s image plane. Using both
corresponding image measurements and assuming that the cameras are calibrated with
the technique described above, the 3D position of the marker can be determined as
described in Sect. 4.5.5. This estimated 3D marker position can be projected again on
the camera image planes. In case the rays used to reconstruct the 3D marker position
meet exactly in space, the projection of the position in space exactly coincides with
the measurements. In practice, these rays do not meet in space and the projection of
the estimated point in space differs from the measurement. The length of this residual
is measured in the following experiment.

The first constellation of the cameras uses a small baseline of about25 cm distance
between the cameras. A marker is moved through a volume of1.5 m× 1.5 m× 1.5 m
and in mean distance from camera centers of about1.5 m. The movement of the marker
was controlled by hand and it was tried to produce a rectangular distribution of marker
positions in the volume previously specified. The first plot shown in Fig. 4.17 con-
tains the following information. The length of the residual vector of the real and ideal
measurement is computed. For each real measurement we obtain an error component,
the length of the residual which can be drawn using a third dimension. Since different
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Figure 4.17: Pixel accuracy

errors may be obtained at nearly or theoretically at the same image position, mean er-
rors are calculated. A grid is drawn to visualize intermediate values. The calibration
was done only by applying step 2 of the calibration method described above. Hence,
the radial lens correction was not determined. Due to the small parallax of the cameras
and a similar orientation, correlating image points are located nearly in the same areas
of the image plane. For example, if a projected marker position is located in the lower
left area of the first camera’s image plane, the correlating point is nearly within the
same area of the second camera’s image plane. If the features in both image planes are
measured close to the border area of the camera image planes, then the error caused by
lens distortion is huge and the reconstruction error is maximized which can be seen in
both plots of Fig. 4.17. The radial lens distortion can be recognized as a strong rise of
the error function near the border area of the image planes. The average pixel accuracy
is nearly the same for both image planes which is less than 0.4 pixels.

The second part of this experiment uses a larger sized baseline of about3 m. The
cameras are oriented with nearly90◦ to each other. By moving a marker around,
images of 1661 3D points were obtained on the two camera image planes. The entire
working volume was about2.2 m× 1.5 m× 1.2 m. The upper plot of Fig. 4.18 shows
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Figure 4.18: Pixel accuracy

that the mean error of the projection onto the left camera image is on the average 0.374
pixels. A similar diagram is obtained for the right camera image and is depicted in the
lower plot of Fig. 4.18. The mean error of the projection on the right camera image
is on the average 0.372 pixels. Contrarily, a point measured in the border area of one
camera is not compulsorily located in the border area of the other camera, too. In fact,
due to the90◦ rotation between the cameras and the larger baseline, a marker captured
at the border area in one camera is often located near the principle point of the other
camera. Thus, an error caused by radial lens distortion is reduced by this constellation
and cannot be recognized in contrast to the first part of this experiment. The evaluation
of the gained data on pixel error is also divided into four diagrams. Figure 4.19 shows
the mean pixel error inx− and y-direction of the first and second camera’s image
plane devided into ten different ranges starting from pixel 0 and ending at pixel 749.
The middle of the picture is at pixel 378 inx-direction and at pixel 242 iny-direction.
In the worst case, pixel errors of about2.3 pixels arise and in best case, the mean error
is about 0.3 pixels. Pixel errors for augmented reality application should be below one
pixel, but optical tracking even strikes for a goal that has pixel accuracies of about0.1
pixels. The reason why radial distortion like Tsai’s calibration method proposed for
step 1 was omitted here is the cumbersome procedure often rejected by the user.
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Figure 4.19: Mean pixel error

The second evaluation has been done for examinating the relative position accuracy
in 3D. It should be mentioned here that the resulting precision depends on the camera
equipment and the quality of the calibration. A pocket rule was used carrying two
markers at its extremities. The system should ideally report a one meter difference.
The relative precision of the system has been measured with its extreme values of2
and6 mm using an entire working volume of2.5 m× 1.5 m× 1.2 m.

For inside out tracking purposes it would be interesting how accurate a point in
3D space can be measured if the baseline is small. The parallax was chosen to be
again25 cm. Known positions in the area of30 cm to 400 cm in depth were measured
in 10 cm steps (see Fig 4.20). The reconstruction of a marker position in 3D space
by using only one camera lacks the achieved precision in depth (errors in depth are
typically around20%). It can be seen from the plots of Fig. 4.20 that a stereo based
approach can improve the accuracy. With the calibration presented in this section, a
maximum error of2.5 cm in the range of 4 meters having a relative camera distance
of 15.5 cm is achieved. The plots depicted in Fig. 4.20 show that objects in the closer
field of view can be located with a high precision rate.
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Figure 4.20: Depth precision of measurements after calibration

Discussion

The calibration presented in this section has great advantages with respect to the sim-
plicity of just waving a marker or flashlight around to calibrate the stereo rig. The
calibration can be perfomed by non-educated users. Just a few simple instructions
given to the user may be sufficient to let him/her calibrate the cameras in different
working environments. If more accuracy than in the experimental results is desired,
using a first step radial correction would improve the accuracy drastically. The main
disadvantage obtained from this approach is the mathematically under-determination
of projection equations. An initial estimate of the state vector containing the external
and internal camera parameters as well as the structure information is needed to be
able to calibrate the stereo rig. The quality of this calibration methods depends on the
quality of initialization. A different configuration of the cameras, for example left and
right cameras being swapped, can cause the calibration not to converge. Using a single
point for calibration does not provide sufficient constraints to find a linear solution for
the calibration parameters, though, an initial estimate is needed for a non-linear least
squares estimation like for the Kalman filter used here. Another problem that occurs
is related to the quaternion rotation model used for the Kalman filter process. But
given the nature of a quaternion representation, which uses four variables to represent
a value with three degrees of freedom, direct estimation of the quaternion is not rec-
ommended. However, a 3-parameter incremental rotation can be used in the (I)EKF
to estimate interframe rotation as introduced by Azarbayejani and Pentland in [AP95].
The proposed incremental rotation quaternion is a function of three angular velocity
parameters:

δq =
(
ωx/2, ωy/2, ωz/2,

√
1− ε

)
(4.73)

ε =
(
w2

x + w2
y + w2

z

)
/4 (4.74)

However, this relationship does provide difficulties ifε becomes greater than one, be-
cause the quaternion may be undefined in this case and the square root for the last
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term of the quaternion becomes an imaginary number. Such a rotation model is not
recommended.

4.5.8 Bar-calibration

The final stereoscopic calibration is based on a calibration bar used to calibrate the
cameras simultaneously, estimating internal and external parameters. The optical
tracking system utilizes a similar configuration as optical tracking systems for hu-
man motion capture with an infrared light source positioned near each camera, retro-
reflective markers, and an infrared pass filter attatched to the lenses. The optical system
uses wide-angle lenses and suffers extremely from radial lens distortion. Figure 4.21
depicts the wand wearing retro-reflective markers on its extremities. The wand should

Figure 4.21: Calibration bar

be moved through the entire working volume and spinned around by the grip. That way
it is assured to the greatest possible extent that the marker positions are widespread.

In contrast to the previous approach using only a single point to calibrate the cam-
eras, this calibration should overcome the disadvantages so that initial camera parame-
ters can be determined linearly and refined with a nonlinear least squares optimization
method. The calibration follows a two step approach:

1. First, find an initial estimate for the stereo camera calibration. Determine the
internal parameters, the focal length values for both camerasf1 andf2 and the
principal point offsetsu0,1, v0,1 andu0,2, v0,2, and the external parameters, the
rotationR and the translationt between the cameras.

2. Second, refine the initial parameter values with Levenberg-Marquardt.

The idea is to first assume a unit aspect ratio and a zero skew for each camera calibra-
tion matrix to obtain a linear solution to the calibration problem and then modelling
and alternating these parameters with nonlinear optimization. It will be seen later that
a robust linear solution will not be available, so a slight modification is performed to
achieve reliable results. The basic procedure to estimate initial calibration parameter
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Algorithm 5 The basic wand calibration procedure
1: Track the 2D marker movements and other reflections on the camera’s image

plane.
2: Find the two longest paths of possible marker motion for each camera image plane,

assuming that no other reflections or markers are moved through the entire work-
ing volume in a similar manner as the calibration bar.

3: Create two possible correlation sets consisting of a matching between the first
marker image in the first image plane and the first marker image in the second
image plane. Thus, for the remaining second marker image in the first image
plane the second marker image corresponding to the second camera is matched.
The second correlation set is obtained from the second matching possibility, which
relates the first marker in the first camera image with the second marker in the
second image.

4: Determine the fundamental matricesF1 andF2 corresponding to the matching sets
using the normalized 8-point algorithm described in Sect. 4.5.3.

5: Recover the focal length values from fundamental matricesF1 andF2 to obtain the
internal and external camera parameters described later.

6: Calculate the reprojection error for each parameter set by backprojecting the mea-
surements as described in Sect. 4.5.5 and again projecting the estimated 3D points.
From this, ideal measurements are obtained. The residual between ideal and real
measurements is calculated and used as the reprojection error.

7: From these two estimated parameter sets, use those values as internal and external
camera parameters whose reprojection error is minimal and below a predefined
threshold.

values is illustrated by Alg. 5. When starting with this calibration procedure, cam-
era parameters are unknown so that the epipolar constraint cannot be used for marker
matching. Thus, the matching problem of markers for uncalibrated cameras is hard
to solve due to the fact that no information about the images of markers is available
to distinguish them from each other. A retro-reflective marker produces only a bright
spot on the cameras’ image planes. The method proposed here exploits the charac-
teristic movements of the calibration bar to exclude the markers attached to the wand
from other reflections or markers. The remaining ambiguity comprises two matching
possibilities and is solved by evaluating the reprojection error. The extraction of the
focal length value and the external camera parameters from the fundamental matrix
was omitted so far. Let us consider a linear technique to solve this problem.

The properties of the fundamental matrixF examined in Sect. 4.5.2 have shown
that the fundamental matrix can be computed from internal and external camera pa-
rameters. Assuming a simple pinhole camera model where the only unknown internal
camera parameters are the focal length values of each camera, the fundamental matrix
provides enough information so that focal length values can be obtained. It was first
shown by Hartley [Har92] how the focal length values can be extracted from the fun-
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damental matrix. Bougnoux [Bou98] proposed a very simple formula to extract the
focal length values from the fundamental matrixF

f 2 = − p
′T ẽ

′
diag(1, 1, 0) F p pT FT p

′

p′T ẽ′ diag(1, 1, 0) F diag(1, 1, 0) FT p′ (4.75)

wherep andp
′
are the principal points in the two images andẽ

′
is the skew-symmetric

matrix made of the components of the epipolee
′
. It is assumed that the scaling of

the camera calibration matrixK is uniform and the skew is zero. The equation for
extractingf

′
is similar to Eq. 4.75 and is given by reversing the roles of the two images

and transposingF. A procedure to find an initial estimate for the camera parameters of
a stereoscopic setup could be implemented as depicted in Alg. 6. However the direct

Algorithm 6 Determination of intrinsic and extrinsic camera parameters using funda-
mental matrixF

1: Extract the focal length values from the fundamental matrixF for each camera
assuming a pinhole model with no skew, uniform scale, and known principal points
as given in Eq. 4.75. The camera matrices are of the following form

K =

 f 0 0
0 f 0
0 0 1


2: From camera matricesK andK

′
, compute the essential matrix as given in Eq. 4.62.

3: Recover the rotation and translation between the cameras from essential matrixE
as described in Sect. 4.5.4 using SVD and a simple test for one data point to solve
the projection ambiguity.

use of this algorithm is not recommended for stereoscopic calibration. Assuming we
obtain good data and a good guess of the principal point, it is assured thatf 2 andf

′2

are positive. In practice this does not always pertain and negative values can result so
that the solution forf andf ′ are imaginary numbers. In addition, there is an intrinsic
degeneracy included in this method [NHBP96].

From the previous algorithm it could be learned that imaginary values can result if
the principal points are far-off the true position. The second approach for this wand
calibration is based on a random variation of the principal points following the rules
of a simulated annealingapproach to find a global optimum. This method uses the
amazing phenomenon of slowly cooling systems to find a minimum energy state. This
is the principle to form a perfect crystal. The minimization is based on the Boltzmann
probability distribution which expresses the probability that the system has energyE

Prob(E) = e−E/kT

whereT is the temperature of the sytem andk is the Boltzmann’s constant. For a
detailed explanation of a simulated annealing optimization, the reader is referred to
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Algorithm 7 Simulated annealing procedure to estimate the intrinsic and extrinsic
camera parameters

1: Create a set of four parameters containing the initialu- andv-values of the princi-
pal points. These values are variegated by the simulated annealing process.

2: Set a maximum variation band foru- andv-directions of the principal points (±40
pixels are used).

3: Set the maximum increment for a simulated annealing parameter variation (5 pix-
els).

4: Specify an energy function that is the function calculating the reprojection error
from the parameter set (see Alg. 8).

5: Apply the simulated annealing to obtain a parameter set having a minimum energy.

[PTVF99, SHB99]. Simulated annealing does not guarantee to find the global opti-
mum, but the result is most often close to this optimum. We can understand the energy
of a system as the cost of a parameter configuration which has to be optimized. The
cost or the energy in the considered calibration application is replaced by an error
function. The idea of this calibration approach is to find an initial solution using a
simulated annealing process and then refine the parameters using classical nonlinear
minimization methods such as Levenberg-Marquardt.

Algorithm 7 illustrates the simulated annealing approach for stereoscopic camera
calibration. It is assumed that the principal points are near the center of the camera’s
image. Thus, the centers of the camera image planes are used as initial estimates for a
simulated annealing process that allows a variation of these parameters in a predefined
range of±40 pixels. The reprojection and bar-length error is calculated accordingly to
Alg. 8. The simulated annealing process allows a variation of principal point config-
urations so that for some instances the resulting error is far from being optimal. This
enables the parameter set to move from a local optimum to a global optimum. Due
to the fact that the calculation of the cost value related to a principal point parameter
set is computational expensive, Alg. 7 takes several minutes to converge. In fact, the
time needed to perform the cost function depends highly on the number of measure-
ments. This is an undesirable property and is solved by taking one hundred randomly
chosen point correspondences to calculate the fundamental matrixF and another set of
one hundred point correspondences to calculate the reprojection and bar length error
as previously explained in Alg. 8. This simple procedure ensures to be nearly inde-
pendent of the numbers of measurements and to converge to a global optimum in an
admissible period of time.

With the previously described method external parameters are estimated through
the epipolar geometry up to a scale factor which is determined from the true length of
the bar. The scaling factor is given by

scale=
real bar length

mean bar length
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Algorithm 8 Estimating the energy of a simulated annealing parameter configuration
1: Extract the focal length values from the fundamental matrixF using Eq. 4.75.
2: if one of the focal lenth values is imaginarythen
3: Return an infinitely high energy
4: else
5: Determine the essential matrixE as given in Eq. 4.62.
6: Recover the rotation and translation between the cameras from essential matrix

E as described in Sect. 4.5.4 using SVD and a simple test for one data point to
solve the projection ambiguity.

7: Calculate the reprojection error for each parameter set as shown in step 6 of
Alg. 5.

8: Calculate the residual using the true length of the calibration bar and the esti-
mated distance.

9: Return a weighted sum of the reprojection error and the error of estimated bar
lengths.

10: end if

where the real bar length value is obtained by the difference of the real marker po-
sitions. By the mean bar length it is meant that the difference between all observed
marker positions is calculated using the outcome of the calibration. The following
transformation ensures that the mean measured bar length corresponds to the real bar
length.

t = t · scale

Once an initial stereoscopic camera parameter configuration has been estimated,
a non-linear parameter refinement is used to improve the initial estimate. The
Levenberg-Marquardt method is used to minimize a function similar to the following
expression

N∑
i=1

( |‖A−B‖ − ‖Ai −Bi‖| (4.76)

+ ‖f 1,i − a(K1, κ1,1, κ2,1, Ai)‖+ ‖f 1,i − a(K1, κ1,1, κ2,1, Bi)‖

+ ‖g2,i − b(K2, κ1,2, κ2,2,R, t, Ai)‖+ ‖g2,i − b(K2, κ1,2, κ2,2,R, t, Bi)‖ )

whereA andB indicate the two marker positions located on the bar.Ai andBi are the
estimated marker positions of theith view with respect to the first camera coordinate
system.aj,i andaj,i are the corresponding marker images on thejth camera image
plane. The functionsf() andg() are dependent on the respective internal and external
camera parameters and are used to estimate the expected measurements. This formula
is a minimization function of the reprojection and bar length error and is expected to
be zero in the absence of noise and under the assumption that the camera model fits the
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Figure 4.22: Reprojection of estimated 3D points - coordinate axis are given in pixes.

real projection. To cope with lens distortion, the first two terms of the Taylor seriesκ1

andκ2 are used. The center of this radial distortion is assumed here to coincide with
the principal point.

Experimental results

To find an initial estimate for the camera parameters Alg. 7 has been used. A calibra-
tion bar was moved through the entire working volume of about2.5 m×1.8 m×2.5 m
and249 views of this moving calibration bar were captured. Since the calibration bar
is made up of two markers we have in total498 point correspondences. The algorithm
converges after20 minutes if all measurement points are taken to calculate the cost
function. If only one hundred randomly chosen measurements are taken, the result is
available after15 to 30 seconds. For this fast version of Alg. 7 the measurements taken
by the cameras are shown in Fig. 4.22 as blue dots and are overlayed by green dots
that are the reprojections of estimated 3D points in space obtained from the results of
the fast version of Alg. 7. The coordinate system shown is related to the center of the
camera image planes. The image planes are of size640× 480 pixels.

Figure 4.23 allows to compare the fast version of Alg. 7 with the slower variant.
We see that the remaining error is slightly less for the right plot of Fig. 4.23. The right
plot is closer to a gaussian function where for most measurements the error is expected
to be below1 to 2 mm when measuring the true bar length of1022 mm. A gaussian
distribution can not be seen in the case of the left plot of Fig. 4.23, but what can be
seen from it is that in the worst case, the error in bar length measurements is about
6.5 mm. That is nearly the same worst case error obtained from the slower algorithm.
In the following it will be examined if the fast algorithm is good enough for providing
an initial estimate for camera calibration.

The estimated parameters resulting from both versions were passed to the non-
linear parameter refinement done with a Levenberg-Marquardt algorithm. The camera
calibration matrices used are now more complex and model non-uniform scaling and
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Figure 4.23: Histograms showing 50 bins for the remaining bar length error in milime-
ters (bar length= 1022 mm). Left: fast version of Alg. 7, where 100 points are
randomly chosen at each iteration step to calculate the reprojection error.Right: slow
version of Alg. 7 using all2 · 498 measurements

skew. Additionally, lens distortion parameters are used. The state vector consists of
the following entries:

• camera calibration matricesK1, K2 whereK is given by

K =

 α s u0

0 β v0

0 0 1


• the rotation values relating the two camera viewsωx, ωy, andωz used for apply-

ing Rodrigues formula. The extraction of these values from rotation matrixR is
described in Chap. 3.

• the 3D translation vectort relating the two camera views

• the lens distortion parametersκ1 andκ2 for each camra view

The initial state vector is obtained by using the outcome of Alg. 7. Previously non-
estimated parameters like lens distortion parameters and skew are set to zero. The
internal scaling parametersα andβ are initialized with the focal length valuef . The
Levenberg-Marquardt algorithm has been applied using this initial estimate and Eq.
4.76. After convergence of this non-linear least squares method the remaining bar
length error is illustrated in Fig. 4.24. In both cases the expectation value for errors in
bar length is around0.1 mm. The standard deviation is0.4 mm in both cases. Except
for the outlier seen in Fig. 4.24, the worst case measurement error is close to one
millimeter. Figure 4.25 shows with green dots the ideal image points and in blue the
really observed measurements. The location of the green dots is obtained by a radial
re-distortion of the real measurements. It can be seen that the lenses suffer from a
barrel-like distortion.
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Figure 4.24: Histogram plots showing the remaining bar length error inmm. Left:
Bins are drawn after applying non-linear least squares using the values of the faster al-
gorithm.Right: Bins drawn after convergence using the output of the slower algorithm
or initialization. The scaling of the axis between left and right plot is different due to
the outlier position seen in the plots.

4.6 Conclusion

This chapter has examined camera calibration for monoscopic camera setups and
stereoscopic vision systems. The focus of this chapter was on easy-to-use calibra-
tion approaches that bring computer vision applications out of the lab and into hands
of uneducated users. It becomes more and more important that optical trackers can
mostly self-calibrate the optics. A self-calibration in the traditional sense is not suit-
able since scene constraints are not always available and the achieved accuracy does
not meet the requirements of virtual reality applications. Classical photogrammetric
calibration often needs parameters of the lens, the camera, and of the camera acqui-
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Figure 4.25: Corrected placement of measurement using radial distortion parameters
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sition unit as initial values. For stereoscopic camera calibration, a closed solution to
camera calibration is needed, since lenses may be changed by the user and projective
geometry may change since temperature changes. The final approach presented in this
chapter provides a simple-to-use and fast procedure for stereoscopic camera calibra-
tion. The experimental results have shown that even high precision can be obtained
using this calibration approach. Extensions to the current method can use multiple
reference points on the calibration bar to strengthen the estimation of lens distortion
parameters.
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Chapter 5

Motion Kinematics, Tracking, and
Prediction

MANY computer graphics and computer vision applications require the extrap-
olation of motion data. Predicting motion does enhance real-time computer

graphics in applications like collision detection, user tracking, real-time rendering,
and many more. A good motion tracker should have the ability to predict motion to
compensate for the delay which is defined as the time difference between the specific
moment motion occurs and the time motion is displayed by the VR rendering sys-
tem. This chapter presents a technique for tracking and predicting rigid body motions.
The proposed method is used for an optical tracking system, but may also be used for
predicting the pose of magnetic or other trackers that provide rotation and translation
with six degrees of freedom. An extended Kalman filter (EKF) approach is introduced
based on the fact that the pose of the rigid body is uniquely described if three points of
the object are known. Three points can be easily derived if a rotation and translation
is provided by the tracker through translation of three linear independent vectors such
as the columns of the rotation matrix. Relative motion parameters are estimated by the
EKF. These are angular velocity, translational velocity, and translational acceleration.
Those parameters can be predicted, facilitating the computation of predictive rotation
and translation values.
The difference of the proposed predictive filter formulation to commonly used formu-
lations is mainly described by the following two issues:

1. There is one category of motion predictors that treat rotation and translation
independently by minimizing a function similar to the following expression:(

R− R̂
+

t− t̂
+

)
= 0 (5.1)

whereR̂
+

and t̂
+

are a predicted rotation matrix and translation vector, respec-
tively. The residual between predictive and real measurements should be zero in
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the absent of noise. However, the error perceived by an observer of a rigid body
motion is made by the residual of predicted and really observed points located
on the rigid object being tracked. Thus, the best way to track motion is to reduce
the error between predictive and real values of at least three tracked points by
minimizing: M 1 − M̂ 1(R, t)+

M 2 − M̂ 2(R, t)+

M 3 − M̂ 3(R, t)+

 = 0 (5.2)

whereM̂ i(R, t)+ is theith predicted point located on the object. Using such a
filter formulation has two advantages. First, each equation is in the same way
dependent on the rigid bodies’ rotational and translational values, so that param-
etersR andt of the rigid body pose are not estimated independently from each
other. Note that a false estimated rotation can cause the translation to be dif-
ferent from an expected one in order to obtain a better match of the final object
point positions. The second advantage as can be seen later is that the prediction
of the state vector is linear which is not the case for trackers accumulating the
rotational measurements with the state vector of a Kalman filter.

2. The second category of motion predictors relating to the proposed prediction
method are mostly used in computer vision applications, measuring a fixed
amount of points or lines on the object. The measurement function of a Kalman
filter uses a static number of measurement equations. The more equations are
used, the more precise is the result obtained from the Kalman filter. This induces
two problems. First, using more equations than necessary will slow down the
calculation of the predictive pose. Second, for a moment some measurements
will not be available due to occlusions that may occur. The proposed method
can cope with this situation because it is not directly dependent on the amount
of point measurements being tracked. It rather uses a linear pose estimation ap-
proach to calculate the rotation and translation from multiple points and then
uses three points as input for the EKF.

The extended Kalman filter formulation of rigid body motion is generally applicable
using different trackers. For example, the proposed EKF may be used for magnetic
trackers as shown in Fig. 5.1. Magnetic trackers provide rotational and translational
information. As previously mentioned this may be used as input for a functionF1

calculating three arbitrary points located in the coordinate system of the rigid body.
Angular velocityω, translational velocityv, and translational accelerationa are fil-
tered from these measurements and could be predicted through an EKF. A function
F2 could use these incremental velocity and acceleration values to calculate the global
predicted pose resulting inR+ andt+.
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Figure 5.1: Connecting the proposed EKF formulation with classical trackers

The application we consider throughout this dissertation is stereoscopic optical
tracking. Figure 5.2 shows how measurements on the camera image planes can be
used as indirect measurements for the proposed EKF.

First, functionF1 backprojects the measurements to 3D space as described in Sect.
4.5.5. MethodF2 calculates the rotation and translation of a rigid body given multiple
3D point measurements corresponding to known ideal 3D points of the rigid body. It
was shown by Arunet al. [AHB87] and Umeyama [Ume91] how two 3D point sets
are related by rotation and translation. Umeyama has refined the closed-form solution
introduced by Arun for the case of false matches. After rigid body’s rotation matrix
R and translation vectort have been estimated, three imaginary points on the rigid
body can be computed to provide the input for the proposed EKF. Motion kinematics
as described later in Sect. 5.1 and 5.2 are used to predict the velocity and angular
values of the rigid body. ModuleF4 transforms each 3D object point to be measured
corresponding to the predicted pose of the rigid body using the estimated prediction
values of the EKF. FunctionF5 is a projection of predicted object points in 3D space
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Figure 5.2: Predicting the measurements on the image planes of a stereo rig
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on the camera image planes.
Much work has been done recently for determining 3D motion and structure of

moving rigid objects in computer vision [WHA89, BC91, AP95]. The extraction of
motion and shape parameters of a moving rigid 3D object from a 2D image sequence is
often named thestructure from motion problem. However, the number of unknown pa-
rameters is directly related to estimation performance and data requirements. If many
parameters are unknown, like if structure parameters are unknown, the estimation pro-
cess can be delicate and difficult. If fewer parameters, e.g. only kinematic parameters
are involved, like in [ASHP93, ZF91], the estimation process is more robust and appli-
cable for real-time tracking. Most motion estimators are based on EKF which has been
the subject of much recent work [ASHP93, Azu95, BC86, FMP98, WB97, YC90], but
it should be mentioned that other approaches like the Levenberg-Marquardt technique
do exist that provide better and faster convergence under some circumstances (com-
pare [WAH93]). Since Kalman filtering is robust for measurements that suffer from
noise, it is in the focus of this chapter.

The goal of the following is to understand motion with as littlea priori knowledge
as possible. Therefore, we start in Sect. 5.1 with a simple translational motion and de-
rive kinematic parameters most readers will be familiar with. A more general motion
allows a rigid body to rotate. This rotation results in much higher complexity of rigid
body motion than simply translational motion does. It can be seen in Sect. 5.2 that
the velocity of a point located on the rigid body is conditional upon the rotation of the
tracked object. This mathematical and mechanical essay concludes with a generalized
kinematic motion approximated with Taylor expansions. Section 5.3 will use only a
few terms of the Taylor series to introduce a linearized motion model with constant
angular velocity and constant translational acceleration. It will be seen in this chapter
that this simplified model is good enough to predict motion precisely. A proof of a
closed form solution to the proposed motion model is given for completeness. Then,
a brief introduction to the extended Kalman filter is given in Sect. 5.4. The EKF filter
formulation used for rigid body tracking is presented in Sect. 5.5 where implementa-
tion details are given. The closed form solution previously introduced and proofed is
the base of the EKF formulation. Experimental results on simulation data are presented
in Sect. 5.6.

5.1 Kinematics of Translative Rigid Body Motion

So far, we have considered motion without its relation to time. Tracking motion esti-
mates for instance the difference in position delivered by a position tracker with respect
to time in order to perform a prediction based on this input data. This section deals
with the basic properties of translative motion kinematics as far as its understanding is
necessary for the development of a motion estimator.

Objects can be rigid or nonrigid. Nonrigid objects range from articulated bodies,
like robot manipulator, to continuously deformable objects, like clouds. The following
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of this chapter will focus on rigid objects and study the kinematics of rigid bodies.
The subject ofkinematicsis the description of motion. Kinematics is concerned with
the motion of the parts without considering how the influencing factors (force and
mass) affect the motion. Therefore, kinematics deals with the fundamental concepts of
space and time and the quantities velocity and acceleration derived therefrom. Hence,
kinematics will not take into account the effects of gravity, this is part of the subject
kinetics.

Motion is spatial change in space which obviously needs certain time to be per-
formed. Motion can only be described in relation to an observer whose position is
located in the reference frame. The position of a pointP in the reference frame is
specified by its coordinates and summarized by the time-dependent local vectorp(t).
The curve in space described by the motion over time of pointP is thetracking curve.
This curve is depicted in Fig. 5.3 with respect to a global coordinate system. To track
and predict the motion of a rigid body, we have to have amotion modelwhich best fits
the real motion measured in future time described by the tracking curve. In order to
set up such a motion model, some basic conceptions and equations of mechanisms are
introduced.

x
y

z

p(t)

P

tracking curve

Figure 5.3: The spatial curve of a pointP over time is thetracking curve

Thedisplacementis the change of an object point with respect to the reference frame.
Thetranslational velocityof a pointP is defined as the rate of displacement that is the
change of position in time.

v(t) = lim
∆t→0

∆p

∆t
=

dp

dt
= ṗ (5.3)

If an object is moving at a constant speed without rotation, we may assume a very sim-
ple motion model and are able to reconstruct the position of the object by integrating
the velocity over time. The current object position for an object moving on a straight
line with constant velocity is given by

P = p(t) = p(t0) +

∫ t

s=t0

vs ds (5.4)
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wheret0 is the time the object begins to move,t is the current time andvs is the instant
velocity at times.
The translational acceleration of a pointP is the rate of change of velocity in time.
This is the derivative of the velocity which is for its part the derivative of the position
ṗ and thus, the acceleration is the second derivation of the actual position denoted by
p̈.

a(t) = lim
∆t→0

∆v

∆t
=

dv

dt
= p̈ (5.5)

If an object is moving at a constant acceleration, as it would be if acted on by a constant
force, the velocity for an object moving on a straight line with constant acceleration
may be obtained by:

v(t) = v(t0) +

∫ t

t0

as ds (5.6)

wheret0 is the time the object begins to be accelerated,t is the current time andas is
the instant acceleration at times.

If motion of an object is not affected by constant acceleration, we may define the
derivative of the acceleration. The change of acceleration in time is sometimes called
a physical jerk. It is clear that we may repeat this differential operation until we reach
infinity to obtain the most precise motion model for translational motion. This is what
we do if we want to approximate the motion of an object in creatingTaylor series.
It is explained later that we cannot estimate all of these derivations. But it will be
shown that a simplified linearized motion model fits well for the application of motion
tracking in virtual environments.

The actual state of motion may be described with respect to different coordinate
systems. We will distinguish two types of coordinate frames, theabsoluteor world ref-
erence frameand therelativeor local reference frame. Within anabsolute coordinate
frame, the origin of the coordinate system undergoes no acceleration and the orienta-
tion of the coordinate system does not change in time. Each coordinate system which
is fixed such that no translation and change in orientation will occur is an absolute
coordinate frame. Coordinate systems influenced only by the movement of the earth
may for the most mechanic applications approximately be viewed as absolute refer-
ence frames. The Kalman filter explained in this chapter estimates relative motion, but
if absolute coordinate transformations are known which are provided by most trackers
relating the tracker coordinate system to the object being tracked, predictions of object
pose given in relative coordinates can be easily transformed to absolute coordinates.

5.2 Kinematics of 6 DoF Rigid Body Motion

A rigid body has six degrees of freedom (6 DoF) in three-dimensional space. The pose
of a rigid body in space is uniquely described by the pose of a marked triangle. Each
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Figure 5.4: Translation and rotation of a rigid body

vertex of this triangle has three degrees of freedom. We have 9 equations relating the
verteces in framet andt + 1, but 3 equations are fixed because the distances between
the verteces of the triangle cannot change.

The general motion of a rigid body can be described as the combination of a trans-
lational motion∆P of any eligible reference point and a pure rotation∆φ around this
reference point. The rotation∆φ is independent of the choice of the reference point in
contrast to the translation∆P . Figure 5.4 shows this situation. Note that the end pose
of the transformed triangle in both figures is the same. If the triangle is rotated about
a 3D pointA or an alternative pointB, the orientation of the triangle is the same, but
to bring the triangle in the right pose, a different translation∆A or ∆B is needed,
depending on the reference point chosen.

In Fig. 5.5, the vector
−→
CP connects the reference pointC of the rigid body with an

arbitrary pointP on the object. The length of this connecting vector is constant during
movements since the object is rigid. Only its direction may change in time due to a
rotation of the rigid body. The actual position of a pointP on the rigid body may be

expressed using the vector to the reference pointC and the vector
−→
CP fixed in the

local reference system of the object.

P = C+
−→
CP , where ‖

−→
CP ‖ = const. (5.7)

The velocity of the pointP of a rotating rigid body is obtained by taking the derivative
of the localization vectorP .

vP (t) =
dC

dt
+

d
−→
CP

dt
= vC(t) + v−→

CP
(t) (5.8)

The velocityvC(t) is free from rotation, sinceC has been chosen to be the reference
point and coincides with the origin of the rigid body’s local coordinate system. Thus,
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Figure 5.5: The vector
−→
CP in the local coordinate system of a rigid body

vC(t) is the translational velocityv(t) of the rigid body and Eq. 5.9 can be rewritten
as:

vP (t) = v(t) + v−→
CP

(t) (5.9)

To achieve the final equation, we may consider the velocity of the vectorv−→
CP

(t).
The local coordinate system is depicted in Fig. 5.6. The only difference of velocity

betweenC andP is a rotation of
−→
CP by angleθ∆t around the unit rotation axisa.

This rotation can be viewed along the unit rotation axisa and is depicted on the right
hand side of Fig. 5.6. The translation of the pointP during the time∆t is ∆P . We
may obtain this vector using theRodrigues formulasimilar to Eq. 3.11. The Rodrigues
formula needs a little modification with respect to the different rotation angle which is
θ∆t and use of the unit length axisa. Thus, the Rodrigues formula becomes

R = I3 + sin(θ∆t)ã + (1− cos(θ∆t))ã2

and can be used in the following equation to estimate∆P :

∆P =
−→

CP ′ −
−→
CP= R

−→
CP −

−→
CP= (R− I3)

−→
CP

=
(
sin (θ∆t)ã + (1− cos(θ∆t))ã2

) −→
CP

The velocityv−→
CP

is defined to be the derivative of
−→
CP . Here, the above equation for

∆P is substituted and the rule ofde l’ Hospital is used to calculate the limes.

v−→
CP

(t) =
d

−→
CP

dt
= lim

∆t→0

∆P

∆t
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Figure 5.6: The local coordinate system of the rigid body, whereC was chosen to be
the origin. The velocity of pointC and pointP is the same up to a rotation ofP around
C.

= lim
∆t→0

(
sin (θ∆t)ã + (1− cos(θ∆t))ã2

) −→
CP

= lim
∆t→0

(sin (θ∆t)ã)
−→
CP

= lim
∆t→0

(θ cos (θ∆t)ã)
−→
CP

= θ · ã
−→
CP= θa×

−→
CP

If the angular velocityω(t) is defined asθa, the velocity of pointP which results
solely from rotation is

v−→
CP

(t) = ω(t)×
−→
CP

and creates a right-hand system, as can be seen on the right side of Fig. 5.6. Now we
have derivedEuler’s velocity formulawhich is given by

vP (t) = v(t) + ω(t)×
−→
CP (5.10)

Note that the time argument has been added to emphasize that the velocities and the

angular velocity are all instantaneous. Let us replace
−→
CP by p(t) andvP (t) by ṗ(t).

For the sake of clarity, we write the time arguments as a subscript. Equation 5.10 can
therefore be rewritten as:

ṗt = vt + ω̃tpt (5.11)

The solution for Eq. 5.11 is very difficult to achieve for a general motion. The gen-
eral motion of a pointp on a rigid body may be estimated as mentioned before by
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using Taylor series in order to approximatevt andωt. This would give the following
equations:

vt =
n∑

i=0

vi
(t− t0)

i

i!
(5.12)

= v0 + v1∆t + v2
(∆t)2

2
+ · · ·+ vn

(∆t)n

n!

ωt =
m∑

i=0

ωi
(t− t0)

i

i!
(5.13)

v0, ω0 are known as the translational and rotational velocity andv1, ω1 are the transla-
tional and rotational acceleration parameters.v2, ω2 are the physical jerk. In practice
it is sufficient to approximate the motion of a rigid body by the first or the first two
terms of theTaylor series. As long as∆t is small, this linearized kinematic model fits
well.
Azuma argues in his doctoral thesis [Azu95], p. 122: “Much like including additional
terms in a Taylor series, these derivatives theoretically should improve the velocity
estimates. However, that is true only if accurate measurements or estimates of those
higher derivatives are available. . . . In practice, it is only possible to estimate
at most one derivative above what the sensors directly detect, because numerical
differentiation is a noisy operation.”

Optical sensors are very precise in position estimation in contrast to other sensors, like
magnetic or accoustic trackers (compare Chapt. 2). Good experience has been done
by estimating the second order term of the postion that is really measured. No jitter
results when predicting the pose of the rigid body. Adding more terms would increase
the amount of jitter and the higher computational cost would not be justified.

5.3 A Linearized Kinematic Motion Model

We will now develop a closed form solution for a motion with constant angular and
translational velocity. One can think of it as the second order Taylor expansion ofvt

and the first order expansion ofωt. Herewith, the angular velocity and the translational
acceleration are constant and we have the following equations:

ωt = ω

vt = v + a∆t

whereω denotes the constant angular velocity,v denotes the translational velocity at
t = t0, a is the constant translational acceleration and∆t is the time intervalt−t0. The
movement of a point with these properties are given by the following theorem, which
represents a important formula for the EKF formulation presented in this chapter:
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Theorem 2:The trajectory of a pointP located bypt is given in the case
of constant angular velocity and constant translational accelerationa, by the
following equation:

pt = Wp0 + Vv + Aa (5.14)

whereW, V andA are given as:

W = I3 +
sin(θ)∆t

θ
ω̃ +

1− cos(θ)∆t

θ2
ω̃2 = eω̃∆t (5.15)

V = I3∆t +
1− cos(θ∆t)

θ2
ω̃ +

θ∆t− sin(θ∆t)

θ3
ω̃2 (5.16)

A =
∆t2

2
I3 +

θ∆t− sin(θ∆t)

θ3
ω̃ +

(θ∆t)2 − 2(1− cos(θ∆t))

2θ4
ω̃2 (5.17)

In the following the proof for this theorem is given:

Proof: The pointpt is expressed in the local reference system of the rigid body.
The reference system and thus the point positionpt is rotating abouteω̃(t−t0) during
the time interval∆t = t− t0 .

pt

p0

tx

R Integration

Figure 5.7: Definition of an intermediate positionxt

Now, an intermediate point positionxt (compare Fig. 5.7) is introduced which is
located betweenp0 andpt. The positionxt can be obtained on the one hand by inverse
rotation starting at pointpt and on the other hand by integration of the velocity vectors
starting at point positionb~p0.
Recapitulating this, a pointpt at timet given in the local object coordinate system can
be transformed to the point positionxt as explained before by

xt = e−ω̃(t−t0)pt (5.18)

The reconstruction of the positionxt by integration needs the instant velocities. The
velocity at point positionxt can be estimated as

ẋt = e−ω̃(t−t0)ṗt − ω̃e−ω̃(t−t0)pt (5.19)
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knowing that

ω̃e−ω̃(t−t0) = e−ω̃(t−t0)ω̃ (5.20)

results using Eq. 5.11 in

ẋt = e−ω̃(t−t0) (ṗt − ω̃pt) = e−ω̃(t−t0)vt (5.21)

Sincevt is approximated by the second order Taylor expansion, Eq. 5.21 becomes

ẋt = e−ω̃(t−t0) (v + a(t− t0)) (5.22)

The position of pointxt can now be expressed with respect to the point positionp0 by
integrating the velocitẏxt.

xt = p0 +

∫ t

t0

e−ω̃(s−t0) (v + a(s− t0)) ds (5.23)

The rotation of the velocity vector in Eq. 5.24 results since the direction has been
calculated in the previous local coordinate system of the rigid body. Let us estimate
the positionpt using the definition ofxt. Herewith, the pointp0 becomespt using the
definition ofxt.

pt = eω̃(t−t0)xt = eω̃(t−t0)p0 +

∫ t

t0

eω̃(t−s) (v + a(s− t0)) ds (5.24)

Equation 5.24 can be rewritten as

pt = Wp0 + Vv + Aa (5.25)

whereW = eω̃(t−t0) andV andA are given by the following expressions:

V =

∫ t

t0

eω̃(t−s) ds

=

∫ t

t0

I3 +
sin(θ(t− s))

θ
ω̃ +

1− cos(θ(t− s))

θ2
ω̃2 ds

=

∫ t

t0

I3 ds +
1

θ2

∫ 0

θ(t−t0)

− sin (z) dz ω̃

+
1

θ2

[∫ t

t0

1 ds−
∫ 0

θ(t−s)

cos (z) dz

]
ω̃2

= I3s|tt0 +
1

θ2

[
− cos (z)|0θ(t−t0)

]
ω̃ +

1

θ3

[
θs |tt0 − sin (z)|0θ(t−t0)

]
ω̃2

= I3∆t +
1− cos (θ∆t)

θ2
ω̃ +

θ∆t− sin (θ∆t)

θ3
ω̃2
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and

A =

∫ t

t0

eω̃(t−s)(t− s) ds

=

∫ t

t0

[
I3 +

sin(θ(t− s))

θ
ω̃ +

1− cos(θ(t− s))

θ2
ω̃2

]
(t− s) ds

=
(t− t0)

2

2
I3 +

(t− t0) + 1
2
ω̃(t− t0)

2

θ2
ω̃ − sin(θ(t− t0))

θ3
ω̃

−1− cos(θ(t− t0))

θ4
ω2

=
∆t2

2
I3 +

θ∆t− sin(θ∆t)

θ3
ω̃ +

(θ∆t)2 − 2(1− cos(θ∆t))

2θ4
ω̃2

where∆t = t− t0.

5.4 A Brief Introduction to the Extended Kalman Fil-
ter

In this section, the extended Kalman filter (EKF) (see [May82]) is adapted to the prob-
lem of motion tracking. First, a brief introduction to the Kalman filter is given. Full
details about the Kalman filter are beyond the scope of this dissertation. For more de-
tails, the reader is refered to [Kal60, May79, May82]. Then the Kalman filter will be
used to solve the addressed tracking problem.

The problem addressed by the Kalman filter will be formulated as the problem of
parameter estimation: How does one obtain the required information from a set of
noisy measurements? While tracking a rigid body, the motion of the rigid body is
modelled as the behavior of adynamic systemwhere a set of variables evolves with
respect to time. These variables are called thestate vectorof a dynamic system. In
practice, we cannot measure the state variables directly. Usually, the state variables are
functions of these measurements which are corrupted by white noise. If we denote the
state vector at timet by st, the evolution of the state vector is described by

st+1 = h(st) + nt (5.26)

wherent is the vector of random disturbance of the dynamic system usually modelled
as white noise. The functionh(s) is a set of linear or nonlinear equations which
performs apredictionof the state vector. This prediction step may be somehow noisy
due to the model of prediction which is often inaccurate and due to the fact that the
currently used state vector is only an approximation of the unknown true values. In the
application of rigid body tracking, the unknown motion of an object is tracked using
a linearized motion model, which is only an approximation of the true motion. The
resulting inaccuracies are assumed to be accurately described by additive white noise.
The Kalman filter models this uncertainty by a multi dimensional Gaussian probability
distribution. Assuming a white noise leads to the following two properties:

99



Chapter 5 Motion Kinematics, Tracking, and Prediction

1. The expectation value ofnt is a zero vectorE(nt) = 0.

2. The covariance matrix at timet is given byQt = E(ntn
T
t ).

The covariance matrixQt is internally used for calculating theMahalanobis distances
during the Kalman filter process. In practice, the system noise covariance matrixQt

is usually determined on the basis of experience and intuition. For instance, a smaller
value of the state vector’s error variance is more reliable for the estimated state vector
and the used motion model.

In order to model a dynamic system with a Kalman filter, two things are inevitable.
This is on the one hand a functionh(s) that performs a prediction of the state variables.
On the other hand, we need a function that has to be minimized. That is usually the
residual vector between the real measurement vector and an expected measurement
vector which is determined on the base of the current state variables. This function is
dependent on the current measurementxt and on the estimated state vectorst. It is
expected that this function, denoted byf , leads to a zero component vector, denoted
by x′

t, if the measurement is noise free.

f(x′
t, st) = 0 (5.27)

However, in practice, the measurements that can be made contain random errors. This
random noise is assumed to be white noise and the real observed measurementxt is
described by

xt = x′
t + ηt (5.28)

Due to this additive white noise the expectation value has to be the zero component
vectorE(ηt) = 0. It is assumed that noise included in one measurement is indepen-
dent of noise of another measurement.

E(ηtη
T
i ) =

{
Ληt

i = t
0 i 6= t

(5.29)

Ληt
describes the covariance matrix of measurement noise at timet.

If either h(st) is a non linear function or the relationf(xt, st) betweenst andxt

is not linear, the so-calledextended Kalman filter(EKF) can be applied. The EKF is a
modification of the standard Kalman filter towards nonlinear systems. The EKF uses
linear Taylor approximations of the state equationh(ŝt−1) at the previous state estimate
ŝt−1, where thê·-notation indicates an estimate, and it performs an approximation of
the measurement equationf(xt, ŝt|t−1) at the corresponding predicted stateŝt|t−1. The
subscript(t | t − 1) indicates that this state vector is the current state vector at time
t, but it is determined by prediction at timet − 1. However, this linearization causes
some disadvantages one has to keep in mind. By using the EKF, the convergence to a
reasonable estimate may not be achieved if the initial guess of the state vector is poor
or the covariance matrices do not fit the dynamic system.

The extended Kalman filter equations are given as follows:
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1. Initialization:

P0|0 = Λs0 ŝ0|0 = E(s0)

2. Time Update (Prediction):

ŝt|t−1 = ht(ŝt−1) (5.30)

Pt|t−1 =
∂ht

∂st

Pt−1
∂ht

∂st

T

+ Qt−1 (5.31)

3. Measurement Update (Correction):

Kt = Pt|t−1M
T
t

(
MtPt|t−1M

T
t + Λξt

)−1
(5.32)

ŝt = ŝt|t−1 − Ktf
(
xt, ŝt|t−1

)
(5.33)

Pt = (I− KtMt)Pt|t−1 (5.34)

where

Mt =
∂f
(
xt, ŝt|t−1

)
∂st

and Λξt =
∂f
(
xt, ŝt|t−1

)
∂xt

Ληt

∂f
(
xt, ŝt|t−1

)
∂xt

T

To sum up, the basic steps for Kalman filter formulation is to define a state vector
s and a measurement vectorx. Then, a functionh(s) used in Eq. 5.30 is needed that
performs a prediction of the state vector. Finally, a functionf(x, s) has to be found
that relates the state vector with observed measurements. The following steps are sim-
ply fulfilled by supplying equations to calculate the derivatives of these two functions.
Initialization of the state vectors, the covariance matrix of state parametersP of mea-
surement noiseΛξt, and of system noiseQt are strongly dependent on the application
and have to be estimated by intuition, observations and experimental results.

5.5 Implementation of Motion Tracking

There are different possibilities how to solve the tracking problem when rotation and
translation data are used as sensor data input. Often the translational data and the
rotational data are treated independently and stored in the state vector of a Kalman
filter process. Herewith, the residual between the current sensor data and the rotation
and translation components stored in the state vector are minimized. This leads to the
following problem: The estimated rotation is a blending between the current measure-
ment of the sensor rotation input and the predicted measurement determined by use of
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the predicted state vector. The same blending would have been done for the translation
data. The rendering process e.g. of an AR system would combine the rotational and
translational data for displaying the virtual object on its measured position. The user’s
perception would mostly recognize the offset between a real and a virtual object, thus,
a combination of rotation and translation. However, this relation is not modelled by
most Kalman filter applications. It is recommended in this dissertation that a rela-
tive movement of at least three 3D points should be modelled in order to enhance the
accuracy of a predicted rigid body motion.

The used state vector holds the following variables

st =
(

ωt vt at

)T
(5.35)

whereωt is the constant angular velocity,vt is the translational velocity, andat is the
constant translational acceleration. There are two reasons why the global rotation and
translation are not kept within the state vector. One reason is that the global rotation
and translation may be calculated using the previous sensor measurement and perform-
ing a relative movement with respect to current velocity and acceleration parameters.
In fact, adding the global rotational component would over-dimensionalize the state
vector equations and would induce a nonlinear relation modelled by the functionh(s),
a situation we want to avoid.. It is emphasized once again that the tracking method
used here is minimizing the residual between 3D points rather than minimizing the
residual of the rotation and translation input independently. In theory, translation and
rotation are independent. In practice, the estimation of the rotational parameters can be
improved if translation is modelled within the kinematic motion model so that rotation
is no longer independent of the translation of the rigid body. Another advantage given
by this filter formulation is its application in optical tracking. Since a rigid body is
uniquely described when three 3D points are available, three 3D points are needed to
be measured at timet. The filter formulation foresees a set of six 3D measurements
in the measurement vector, where three variables denote the current measurements at
time t and three variables give the previous measurements at timet− 1. This formula-
tion leads us to the estimation of relative motion.
The measurement vector is given as

xt =
(

P 1 P 2 P 3 P ′
1 P ′

2 P ′
3

)T
(5.36)

In case only rotationalRt and translational datatt are available from the sensor, these
three 3D points may be calculated using three non-coplanar vectors, for instance the
unit vectors of the coordinate systeme1 = (1, 0, 0)T , e2 = (0, 1, 0)T , ande3 =
(0, 0, 1)T . The points needed for the measurement vector are then obtained by the
following transformation.

P i = Rtei + tt (5.37)

For prediction of the state vector, the EKF uses the following equation:

ŝt|t−1 = ht(ŝt−1)
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Since the rotation parameters have been omitted from the state vector, the state predic-
tion is a linear function and can thus be simplified as

ŝt|t−1 = Htŝt−1

whereH is a matrix and is given as

H =

 I3 0 0
0 I3 I3 ∆t
0 0 I3

 (5.38)

From Theorem 2, the following function which is minimized by the Kalman filter, may
be derived.

f
(
x′

t, ŝt|t−1

)
=

 WP 1 + Vv + Aa− P ′
1

WP 2 + Vv + Aa− P ′
2

WP 3 + Vv + Aa− P ′
3

 = 0 (5.39)

This function is a residual between the measurement determined by using the motion
model applied with the state vector and the current measurement. If the state vector
and the motion model is exact and the measurement does not include any noise, this
function accumulates to a nine-dimensional zero vector. Functionf(x, s) is a non-
linear function since the matricesW, V, andA are nonlinear expressions. In order to
apply the EKF algorithm, it is necessary to compute the derivatives off(x, s) with re-
spect tox ands. The motion model used in this Kalman filter application is similar to
that used by Zhang [ZF92] where derivatives to the proposed motion model are given.
However, this publication does not provide a solution for the singularities included in
the obtained derivative equations. In the following, a solution to this problem is given.
The derivative∂f

∂x can be computed as:

∂f

∂x
=

 W −I3 0 0 0 0
0 0 W −I3 0 0
0 0 0 0 W −I3

 (5.40)

Singularities occur due to the derivative with respect tos:

∂f

∂s
=

 ∂f1

∂ω
V A

∂f2

∂ω
V A

∂f3

∂ω
V A

 (5.41)

where

∂fi

∂ω
=

∂(WP i)

∂ω
+

∂(Vv)

∂ω
+

∂(Aa)

∂ω
(5.42)

Here, the derivatives of matricesW, V, andA are needed and determined as follows:
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∂(WP i)

∂ω
= −sin(θ∆t)

θ
P̃ i +

θ∆t cos(θ∆t)− sin(θ∆t)

θ3
(ω̃P i)ω

T

+
θ∆t sin(θ∆t)− 2(1− cos(θ∆t))

θ4
(ω̃(ω̃P i))ω

T

+
1− cos(θ∆t)

θ2

[
−˜̃ωP i + (ωT P i)I3 − P iω

T
]

∂(Vv)

∂ω
= −1− cos(θ∆t)

θ2
ṽ +

θ∆t sin(θ∆t)− 2(1− cos(θ∆t))

θ4
(ω̃v)ωT

+
3 sin(θ∆t)− θ∆t(2 + cos(θ∆t))

θ5
(ω̃(ω̃v))ωT

+
θ∆t− sin(θ∆t)

θ3

[
−˜̃ωv + (ωT v)I3 − vωT

]
∂(Aa)

∂ω
= −θ∆t− sin(θ∆t)

θ3
ã +

3 sin(θ∆t)− θ∆t(2 + cos(θ∆t))

θ5
(ω̃a)ωT

+
4(1− cos(θ∆t))− (θ∆t)2 − θ∆t sin(θ∆t)

θ6
(ω̃(ω̃a))ωT

+
(θ∆t)2 − 2(1− cos(θ∆t)

2θ4

[
−˜̃ωa + (ωT a)I3 − aωT

]

Even if ω = 0, the derivatives are not defined sinceθ becomes zero. We may
cope with this property if the limes nearω = 0 can be determined. Most terms of
the derivative becomes zero sinceω becomes zero. For the others, the limes ofθ
becoming zero is calculated by applying the rule ofde l’Hospital:

lim
θ→0

∂(WP i)

∂ω
= lim

θ→0
−sin(θ∆t)

θ
P̃ i = lim

θ→0
−∆t · cos(θ∆t)

1
P̃ i = −∆tP̃ i

lim
θ→0

∂(Vv)

∂ω
= lim

θ→0
−1− cos(θ∆t)

θ2
ṽ = lim

θ→0
−cos(θ∆t)∆t2

2
ṽ = −∆t2

2
ṽ

lim
θ→0

∂(Aa)

∂ω
= lim

θ→0
−θ∆t− sin(θ∆t)

θ3
ã = lim

θ→0
−∆t3 cos(θ∆t)

6
ã = −∆t3

6
ã

So far, the filter formulaton is complete and we may perform some experiments with
simulated data to evaluate a successful working of the EKF.

5.6 Experimental Results

Let us consider a rigid object moving with constant angular velocity and constant trans-
lational acceleration. A MatLabTM application has been implemented that simulates
measurements of rigid body motion. For a first experiment, let us assume the constant

104



Chapter 5 Motion Kinematics, Tracking, and Prediction

angular velocity of a moving object is given byω = (0, 0, 0.02)T and the constant
acceleration is given bya = (0, 0, 0.001)T . The translational velocity of the previ-
ously introduced motion model is not constant, but linear, so the velocity accumulates
over time tovt = vt−1 + a∆t. The initial velocity motion of a rigid body is assumed
to bev0 = (0, 0, 0.2)T . The time between successive frames is taken to be constant
for simplification and defined as∆t = 20 ms. Figure 5.8 (a) shows this experimental
rigid body motion. Three points located imaginarily on the rigid body are displayed
with different color circles. Ten time steps of this rigid body motion are captured. A
Kalman filter assumes that the measurements may be perturbed by white noise. The
measurements of the second experiment we may consider are rectangular distributed.
In contrast of using a gaussian distribution we will see how the Kalman filter will
behave if the error induced is different from white noise. The range for varying the
angular velocityω is ±10−3, for varying the translational velocity is±10−2 and fi-

−10 1
−1

0
1

0

10

20

30

40

50

60

x axis

z 
ax

is

y axis

(a)

−2
0

2

−2
0

2

0

10

20

30

40

50

60

x axisy axis

z 
ax

is

(b)

Figure 5.8: Motion simulation of a rigid body. (a) The rigid body is translated and
rotated so that the origin is still moved on a straight line. (b) The measured translation
and rotation of the rigid body is corrupted by noise. The origin of the rigid body’s
coordinate system is no longer located on a straight line, causing the coordinate system
to be enlarged in x-y direction.
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nally the translational acceleration is perturbed in the range of±10−5. A motion of
a rigid body suffering from this random noise is depicted in Fig. 5.8 (b). The EKF
formulation was applied to the artificial 3D point data of Fig. 5.8 (a) and (b). The
kinematic parameters are extracted by the filter and predicted for∆t = 20 ms. Figure
5.9 shows the prediction of angular velocity, where (a) is obtained using ideal and (b)
using corrupted data. It can be seen in Fig. 5.9 that for both cases the EKF converge
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Figure 5.9: Prediction values of angular velocity. (a) Ideal measurement data are used.
(b) Corrupted data are used. After three iterations, the prediction of the rotational
velocity is stable and converges to the true valuesω = (0, 0, 0.02)T .

to the true values of the angular velocity after three iterations. After three iterations
the covariance matrixP has been adapted to the specific motion of the rigid body and
the angular velocity can be precisely predicted. In the first case the angular velocity is
preciselyω = (0, 0, 0.02)T and for the second case it is close to these values.

The translational velocity is predicted as illustrated in Fig. 5.10. Remember that
the translational velocity is not constant. In the underlying motion model it is linear
which can be seen in Fig. 5.10 (a) after three iterations for the valuevz. Noise does
not influence the convergence of the Kalman filter. Of the other plots derived from
this motion prediction experiment, Fig. 5.11 depicts the prediction of translational
acceleration.
The following experiment shows how the filter behaves if the sampling rate is of low
frequency. Shannon’s sampling theorem says, the measurement or sampling frequency
should be at least twice the true target motion. We now assume an abrupt change of
target motion of the rigid body at time frame10. For such generated measurements
the sampling does not fullfil the previously mentioned requirements for the cange of
direction from frame9 over 10 to 11 (compare Fig. 5.12). The rigid body motion
shown in Fig. 5.8 are supplemented with an abrupt change in motion defined by the
following kinematic vectorsω = (0.005, −0.01, −0.02)T , v = (0.2, 0.1, −0.2)T

anda = (0.001, 0.0008, −0.001)T . This situation is shown in Fig. 5.12. It can be
seen in Fig. 5.13 and Fig. 5.14 that the filter realigns after three to four iterations. The
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Figure 5.10: Prediction of translational velocity. (a) Ideal measurement data are used.
(b) Corrupted data are used. After three iterations, the prediction of the translationasl
velocity is stable. The velocity is a linear functionvt = vt−1 + a∆t what can be seen
by the value ofvz.

translational acceleration is more sensitive to this abrupt change and needs around five
iterations. If the sampling frequency is not high enough, the resulting predicted pose
results in overshoots as can be seen in frame11 of Fig. 5.15. Thus, it is crucial that the
tracker fullfils this sampling theorem.
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Figure 5.11: Prediction of translational acceleration. (a) Ideal measurement data are
used. (b) Corrupted data are used. After three iterations, the prediction of the transla-
tional acceleration is stable. It can be seen that the translational acceleration is more
sensitive to noise than e. g. translational velocity.
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Figure 5.12: Simulation of a sudden change of direction. The motion data of a rigid
body are corrupted by noise. From frame 9 to 10 the direction of motion is abruptly
changed to evaluate the behavior of the EKF for a too low sampling rate.
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Figure 5.13: Prediction of angular velocities. The behavior of the EKF for frames 1 to
9 is similar to the previously carried out simulation. From frame 9 to 11 the prediction
of the angular velocity is unstable.
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Figure 5.14: Prediction of translational velocity and acceleration. (a) Translational
velocity (b) Translational acceleration. It can be seen that translational velocity and
-acceleration are more sensitive to noise than angular velocities. The filter is stable
only after frame 13.
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Figure 5.15: Overshoots of predicted rigid body rotation and translation. When calcu-
lating the global rotation (a) and global translation (b) of the rigid body using the state
vector of the EKF, overshoots in frames 10 to 12 for (a) and in frames 9 to 13 for (b)
can be recognized.
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5.7 Conclusion

A motion tracking method was presented using a linearized motion model which is
appropriate for rigid body motion if frequent measurements are available from the
tracker. The motion prediction was evaluated using simulated data. Future work will
test how the filter behaves for real data. Also it is left to future work to develop a
motion predictor modelling rotation and translation independently and to compare the
resulting prediction values with the filter formulation proposed in this chapter. Math-
ematically, an error minimization based on points in the coordinate sytem of the rigid
body should provide better results compared to the perceived pixel error when viewed
in a VR scene than minimizing rotation and translation. This statement will be proofed
and evaluated by future work. Data achieved from an optical tracker can also be com-
pared with magnetic trackers using this motion estimator. The extended Kalman filter
formulation is the core of an optical tracker since it provides the predicted pose of
a rigid body so that computational time can be saved for segmentation and matching
problems. In addition, an EKF enhances the robustness and can also be used for sensor
fusion if hybrid tracking [Azu95, WB97, FMP98] is of interest.
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Chapter 6

Optical Tracking Applications

Realtime interaction is one of the essential objectives of virtual reality and augmented
reality applications and should be provided in a proper manner. The way of interacting
with virtual objects should be intuitive. Furthermore, the interaction should not tether
the user, and it should be robust and precise. VR-systems commonly use magnetic
trackers, which suffer from electrical interference caused by included magnetic cur-
rents and eddy patterns initiated by metallic objects and external sources of radiation
like computer monitors or projectors. In addition, wire-based trackers limit the range
of user interaction. Stereoscopic tracking as presented in this chapter provides wireless
interaction at low cost and is more accurate than any other approach for user tracking
using non-optical sensors or a single camera.

This chapter will focus on several optical tracking applications implemented in the
course of this dissertation. The chapter is devided into two main parts. The first part
focuses on a stereoscopic tracker using rigid bodies for 3D interaction. An applica-
tion and implementation details for an outside-in tracker is given in Sect. 6.1. Section
6.2 evaluates how far methods implemented for outside-in tracking can be used for
an inside-out tracker. Some examinations have already been presented in Chap. 4 for
the case of a stereo camera rig that was calibrated having a small baseline. The sec-
ond part of this chapter concerns non-rigid body tracking and its application for hand
tracking. First, a marker-based finger tracker is presented in Sect. 6.4. Finally, Sect.
6.5 introduces a markerless contour tracking approach and discusses the strengths and
weaknesses and future perspectives of this method.

6.1 Responsive Workbench Environment

A responsive workbench is used to present virtual environments three-dimensionally
and in a way that enables users to work in an environment they are accustomed to.
A video based tracking system was developed for this environment with emphasis on
precision and wireless interaction. Within the workbench environment, depth percep-
tion of a virtual scene, direct manipulation with grab and release gestures, and head
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Figure 6.1: The responsive workbench environment – objects are perceived as being
above the display surface

tracking can overcome many disadvantagesdesktop VRapplications have.
A horizontal or tilted workspace is a well known environment many profession-

als like engineers, architects, and physicians are familiar with. The perspective of the
image projected on the display surface is calculated such that the user perceives the
objects as being above the display surface (compare Fig. 6.1). This is because the
computer renders two pictures for the left and the right eye per frame, respectively.
The images are displayed in sequence and are synchronized with shutter glasses the
user has to wear. These glasses are see-through so the user perceives the virtual en-
vironment as being integrated in his or her normal environment. Because of this, a
responsive workbench is a semi-immersive display as stated in Chap. 2. Apart from
the movements of the user’s hand for direct manipulation of objects, the user’s head
has to be tracked as he or she moves around the table, so that the computer can calcu-
late the correct perspective projection for the two viewpoints. Therefore, the glasses
are equipped with an infrared emitter to be able to be tracked.

The authors’s research group at ZGDV started working with the responsive work-
bench using a magnetic tracking system (Polhemus FASTRACK), with which se-
vere calibration and distortion problems (mainly caused by the metal in the table and
electro-magnetic emissions of the projector) were encountered. At the time acoustic
trackers did not have a sufficient range to track the whole area of a projection table like
the Barco’s BARON. This promoted the development of an optical tracker which was
the first version of the system described in this thesis. One further reason to consider
an optical tracking system was the fact that the calibration of an optical tracking sys-
tem should be mostly automated, as described in Chap. 4. In contrast, the calibration
of a magnetic tracking system is a time-consuming, and, if not performed very care-
fully, error-prone task. As described by Zachmann [Zac97], with this kind of tracking
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Figure 6.2: Camera position at the responsive workbench

system, measurements have to be taken whith the tracker positioned at specific points
in space to get known reference coordinates. Based on these, the correction may be
calculated. With this system, the minimal error in a volume like the CAVE was4 cm
with the average error being7 cm.

The operation of the tracking system is, on the one hand, defined by the physical
constraints the responsive workbench imposes on the system. The table itself is about
2 m × 2 m large and1.2 m high, the display surface is about1.36 m × 1.02 m large.
That means that a volume of about3 m× 3 m× 1.5 m above and in front of the table
(width× depth× height) has to be observed.

The lighting conditions around the responsive workbench have to be subdued as
the brightness of the projection itself is limited. This limits an optical tracking system
to using infrared light, in which case one has two possibilities to choose from: either
the system may use active infrared beacons, or the tracking area has to be illuminated
with infrared light while the objects to be tracked are fitted with reflective markers.
For the first prototype the first approach was selected because it was easier to realize.
Let us first examine the beacon based tracking system before the system is extended to
a more elaborated passive marker tracking.

In order to enable the users to walk around three sides of the responsive workbench,
the camera positions were restricted to the far sides of the table, to the left and to the
right of the projector. Figure 6.2 illustrates the constellation of the cameras at the
responsive workbench. Mounting the cameras closer together (e.g. both on top of
the projector cover) would create accuracy problems as the 3D position of the beacon
can be best calculated when the cameras are arranged with a convergence angle of
between 60 and 120 degrees between them (compare Fig. 6.3). While a small angle
between the cameras yields a good correlation between the images and thus facilitates
segmentation, the angle used in this setup yields better 3D position reconstruction and
minimizes occlusion problems. In Fig. 6.3 one can see that the cameras are positioned
in such way that a beacon attached to the shutter glasses and a beacon worn by a
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left Camera right Camera

Figure 6.3: Simultaneous head and hand tracking

hand-held device are in the cameras’ field of view so that the beacon positions can be
triangulated and can be tracked simultaneously.

Another requirement was that the system should work with minimal mechanical
calibration, i.e. the camera position should not be restricted to specific mounting points
as it is not always possible to use these and keep them aligned all the time, like, for
example, when transporting the table. The accuracy of the system should be less than
1 cm, as otherwise display errors (distortions of the perspective) would be too big and
precise interaction with objects displayed on the responsive workbench would not be
possible.

6.1.1 System setup

To fulfil the constraints described before, the optical tracking system consists of the
following components: Two cameras positioned at the far side of the workbench, in-
frared pass filters, shutter glasses equipped with infrared light emitting diodes powered
by additional battery packs, and a hand-held tool where batteries are located in a box
used as the grip of the pointing device. Diodes are positioned at the head of this
pointer. The complete setup excluding the computer, frame grabber board and cables
for connecting the cameras is illustrated in Fig. 6.4.

In order to observe the interaction volume as described before, wide-angle lenses
were mounted on the cameras. First examinations were done with COSMICAR
C418DX lenses of4.8 mm focal length. However, those lenses suffer from a huge
radial lens distortion and in addition, the sharpness of beacon images is very poor. The
final configuration for2/3′′ CCD cameras uses8 mm CLS-813 lenses. For the final
tracking setup the RJM TV 1,5/4 wide angle lens with4 mm focal length for1/3′′

CCD cameras was used which yielded satisfactory accuracy.
To avoid errors induced by the determination of beacon positions taking left and

right images asynchronously, the cameras should be synchronized. Externally syn-
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Figure 6.4: The tracking system equipment

chronized cameras are used from which the left and right images are acquired at the
same time. The first type of camera utilized was the simple interlaced camera PULNIX
TM-560. A better camera for optical tracking, however, is the progressive scan cam-
era DMP-60H13 from Imagingsource. For such analog cameras a specialized board
for frame grabbing is needed. Since those cameras supply only gray level values, a
colour frame grabber can be used to acquire the images of up to three cameras syn-
chroneously. Therefore, each camera is attached to one colour channel of the frame
grabber.

The synchronization logic for the cameras is part of the frame grabber card. This
system is much cheaper and easier to synchronize than using two separate frame grab-
ber cards. Also experiments have been done using two digital cameras and two frame
grabber cards at two different computers. In this case, additionally to the hardware
synchronization where one camera runs in master and one camera in slave mode, the
software needs to be synchronized which is a non-trivial and cumbersome task. The
cameras used are sensitive for infrared as well as visible light. To block out the visible
light, infrared filters cutting off at about820 nm are used (see Fig. 6.5).

The Siemens LD 242 infrared LEDs used for the beacons emit infrared light at
950 nm and have a radiation angle of about±40 degrees. The radiation angle may

Infrared Light Visible Light

=+
100%

FilterCamera

1000 nm

Infrared Filter
820 nm

960 nm

550 nm

Figure 6.5: Infrared LEDs combined with infrared filters
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be a limiting factor for pose estimation because under some circumstances the beacon
may be visible for one camera only. To cope with this situation of active markers, two
infrared LEDs were used mounted on the shutter glasses and on the hand-held tool as
depicted in Fig. 6.6.

Figure 6.6: Two infrared LEDs are used to extend the radiation angle

The optical tracking system runs on a standard PC with a 300 MHz Pentium II
processor. For video capturing tasks, ELTEC’s PCEye2 frame grabber is used. This
PCI-board has been developed for analog video cameras. Besides acquiring the image,
the PC also performs the image processing tasks described below. The two position
values for head and hand, respectively, are transmitted to the computer running the VR
software over standard LAN.

6.1.2 The image processing pipeline

The optical tracker consists of the following image processing pipeline which is shown
in Fig. 6.7. A frame grabber acquires two images while the pipeline processes the last
available image data. The following pipeline step, the beacon detection, is operating in
two different modes. The first mode is a global search over the whole image data for a
detection of all beacon positions. If the system knows the last two calculated positions,
the second mode will do a local search since predicted positions have restricted the area
of interest. The next step is a 2D transformation from distorted image coordinates to
undistorted camera sensor coordinates. Afterwards, the epipolar constraint (see Chap.
4) will be used to get the correlated image points, and as a result out of this module,
we obtain the 3D locations.

The next step has to match the 3D beacon positions corresponding to the real bea-
cons indirectly attached to the head and hand. In the workbench scenario, it is as-
sumed that the model has an initial position, i.e. the user’s head is above the user’s
hand. Then, the output is a model withn degrees of freedom1 which consists of the
user’s head and hand and is transferred to the render system for interaction purposes.

1The currently used human model consists of two 3D positions
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Figure 6.7: The image processing pipeline

The image processing pipeline performs one further step in order to make the beacon
detection faster. The beacon positions predicted in this step will be back-projected to
both cameras’ sensor planes and then converted to distorted image coordinates. The
beacon detection algorithm will search in a local area close to the predicted positions.

6.1.3 Image processing tasks

To find the position of the user’s hand (respectively that of the pointer carrying the
infrared LED), the tracking system needs to perform a beacon detection after which
the center of gravity(ū, v̄) of the beacon image is calculated (see Eq. 6.1) where
F (j, k) is the brightness of a pixel at the image plane with position(j, k)).

ū =
1
K

∑J
j=1

∑K
k=1 jF (j, k)∑J

j=1

∑K
k=1 F (j, k)

v̄ =
1
J

∑J
j=1

∑K
k=1 kF (j, k)∑J

j=1

∑K
k=1 F (j, k)

(6.1)

To make the task of finding the beacon in imagei + 1 easier (for performance
reasons) after segmenting it in imagei, a vector based prediction algorithm is used
which makes a prediction of where the next position of the beacon in imagei + 1 will
most probably be, based on the distance the beacon travelled between imagei− 1 and
i. More elaborated prediction algorithms would use a Kalman filter (see Chap. 5), but
the approach for prediction is not in the focus of this section. A more comprehensive
treatment is given in Chap. 5. The area where the beacon will likely be in image
i + 1 is enclosed in a so-called tracking window, in which the algorithm searches for
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the beacon first and only reverts to searching the whole image if the beacon cannot be
found in the tracking window. The size of the tracking window is calculated to adapt
to the size of the beacon image. In the future, the system will be enhanced such that
velocity and acceleration will be taken into account. Reflections of the beacon on the
projection area of the table are allowed for by using only the uppermost beacon image
in the tracking window.

In the course of tracking the user, the two images of the beacons are moving around
the image space. There are cases where an unambiguous assessment of the meaning
of the beacon images is not possible because in one of the images one of the beacons
is above the other, while it is below the other one in the second image. In these cases,
the ambiguities can be resolved by using the epipolar constraint as described in Sect.
4.5.1. A vector is extended from the center of projection (COP) through the center of
one of the beacon images into 3D space in for example the left image. This ray is then
projected on the right image plane (see Fig. 6.8). In case the system worked without
errors, the projected ray on the right image plane would intersect with the image of the
respective beacon. As the two rays normally will not meet in space, the beacon image
nearest to the projected ray is assumed to be the corresponding one2. The position of
the beacon in 3D space is estimated by locating the middle of the minimal distance
between the two rays.

COP1

Ray 2
Ray 1

Hand

COP2

Image Plane 1

Image Plane 2

Hand

on Image Plane 2

Position of Beacon
tracking the Hand
in 3D Projection of Ray 1

Figure 6.8: Using the epipolar constraint

6.1.4 Simultaneous head and hand tracking

As the beacons used for tracking the user do not have any special features to distinguish
them from one another and as the tracking area captured by the two cameras has no
preference for any direction, the tracking system needs a model of how to distinguish
the different LEDs used to track the head and the hand of the user.

Under the precondition that both cameras are mounted in the same orientation (e.g.
top of camera upwards) and that the tops of the CCD chips are facing upwards, the

2This is not always correct, but with only two beacons in the image with no known distances between
them, a calculation of the correct beacon is not possible.
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system may make three assumptions about the spatial position and the usage patterns
of the infrared beacons by which it may determine which beacon tracks the head and
which the hand of the user: First, the beacon used to track the head is always working
while the beacon used to track the hand is only active when the user interacts with ob-
jects in the scene. Second, the starting position of the head tracking beacon is normally
above that of the hand tracking beacon and is beyond and above the volume used to
display the objects on the responsive workbench. Third, the head tracking beacon is
normally the first one working3.

By using these assumptions, the system is able to assign the meaning of the bea-
cons. After the initialization, the user is able to move around freely and even put his
hand over his head or move his head down into the image space (e.g. to have a closer
look at some virtual objects) where the hand tracking beacon normally is, while the
correct assignment of beacons is retained. Using the first assumption, the system is
even able to correctly differentiate head and hand tracking beacons when the head
tracking beacon is in object space while the hand tracking beacon goes off and on
again when the user grabs and subsequently releases virtual objects.

6.1.5 Application areas and examples

An optical tracking system like the one described here may be used in any setup from
the user sitting in front of a standard computer monitor (small volume of space), over
tracking user actions above a responsive workbench or in front of a projection screen
(medium volume), to using it in a CAVE setup (large volume, see [CNSD93]). While
all of these mentioned set-ups are possible, optical tracking systems show their greatest
benefits in applications where medium volumes of space have to be tracked (e.g. in
front of a projection screen, over a desk) and where the conditions described in Sect.
6.1 are fulfilled.

A tracking system fixed on the user’s hand enables the user to directly interact
with objects, either by relying on the optical feedback of the infrared pointer alone
or by attaching a virtual cursor to the tip of the pointer. Using the direct interaction
metaphor, one may categorize different types of interactions:

1. Simple tasks like grabbing objects and moving them around.

2. Tasks where additional manipulators (helper geometry like e.g. a 3D scale box)
are needed to enable the interaction and to give the user feedback about the effect
of the interaction.

3. Control tasks where the user interacts with user interface elements like buttons,
menus, sliders etc.

4. Multi-modal interaction, e.g. using video tracking and speech at the same time.

3This derives directly from the first assumption that the head tracking beacon is always active while
the hand tracking beacon only works when the user is interacting with objects in the scene.
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An optical tracking system like the one described here may be used for all of the
categories described above. Category one works by pointing to the object and then
turning on the infrared pointer. This attaches the object to the tip of the pointer. To
release the object again, the infrared pointer is turned off. Categories two and three
are variations of the first method. In category two, the user interacts with the helper
geometry in order to be able to scale, shear, and rotate objects. Features of the helper
geometry are grabbed (for example a resize box in the corner of the bounding box of
an object) and subsequently moved around. Finally, in the third category, the user uses
the pointer to either trigger the user interface elements or to grab the controls of user
interface elements like analog valuators (one-, two-, and three-dimensional valuators
are possible).

Generally, applications supporting this viewing and interaction model are appli-
cations where the user is accustomed to work with objects presented on a table or a
drawing board, like architecture, medicine, engineering etc. (see [WH97]).

6.1.6 Devices for 6 DoF tracking

An even wider range of applications can be supported if an optical tracker provides the
pose of the user’s head or hand with six degrees of freedom. Therefore, a prototype
for a new hand-held device was developed made up of three diodes, a switch, and
batteries for supplying power. As can be seen from Fig. 6.9, two diodes emit strong

Figure 6.9: Active marker device

light towards the camera viewpoint from which the picture was taken. For the third
diode, the viewing angle is near the maximum radiation angle and thus, only a small
amount of light is emitted towards the camera. In fact, the problem with active marker
devices is their limitation of freedom in rotation caused by this limited radiation angle,
as well as the necessity e. g. to attach heavy batteries to the hand-held tool or to the
shutter glasses, causing the glasses to slide from the user’s nose.

It is safe to say that passive marker tracking provides a more flexible and less
restraining environment making tracking more comfortable and unobtrusive. A simple
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Figure 6.10: Passive marker device

hand-held tool supporting interaction with 6 DoF is depicted in Fig. 6.10. A minimal
amount of three 3D positions derived from three markers are necessary to estimate the
pose of a rigid body using stereoscopic vision. In case the rigid body is fitted with
more than three markers, the pose of a rigid body is over-estimated and would be more
precise in presence of measurement noise. It is recommended for optical tracking
applications to use at least one additional marker to cope with occlusions and white
noise in the measurements.

The passive markers utilized for the proposed optical tracking setup are made up
of small spheres covered with reflective material like Scotch BriteTM . The material
is retro-reflective so that light emitted by a spot, positioned close to the camera lens,
is reflected towards the camera lens. A light source with ultimate perfection is a ring
spot that groups IR LEDs arround the camera lens. The University of Graz in Austria
has assembled such a ring spot for the purpose of optical tracking that can be seen in
Fig. 6.11.

Figure 6.11: Infrared spot light for retro-reflective marker tracking
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6.1.7 Pose estimation of a rigid body

To calculate the pose of a rigid body, at least three points are needed. Let us consider
a hand held tool as shown in Fig. 6.10 fitted with three retro-reflective markers. Those
landmarks have to be identified unambiguously, so the shape of the triangle forms an
unique rigid body. Figure 6.12 shows the marker locations atPa, Pb andPc. These
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Figure 6.12: A predefined triangle

three marker locations form a non-regular triangle, where‖a‖ 6= ‖b‖ 6= ‖c‖. After a
unique definition of the used triangle the lengths of the edgesa, b andc are used to
identify the vertices4.
The following algorithm is applied to solve this structure identification problem:
After applying linear geometry and the epipolar constraint, all calculated 3D values
acquired by the system are used to achieve the best fitting of the known structure of
the triangle. The goal of the algorithm is to find the object from a given 3D point
cloud. Therefore, the first step is to calculate the distancesdk between all 3D pointsP ,
which have passed the epipolar constraint within a predefined maximum error. Ifn is
the number of 3D points,(n− 1)! possible distances can be calculated. The following
mathematical expression can be read as:

For indexk starting from1 to (n− 1)! and indexi starting from1 to n− 1 and index
j starting from indexi + 1 to n the distancedk is calculated by‖Pi − Pj‖.
∀k : 1..(n− 1)!. ∀i : 1..n− 1. ∀j : (i + 1)..n. dk = ‖Pi − Pj‖

The second step calculates the differences between a measured distancedk and the
pre-known distances froma, b andc. These differences are stored inεak

, εbk
andεck

and denote the errors.

∀k : 1..(n− 1)!. εak
= |dk − ‖a‖|. εbk

= |dk − ‖b‖|. εck
= |dk − ‖c‖|

Thirdly, three setsA, B andC include all distances which fulfil an error thresholdε.

∀k : 1..(n− 1)!. A = {dk|εak
< ε}. B = {dk|εbk

< ε}. C = {dk|εck
< ε}

Finally, to find a good solution, the following instructions are carried out to determine
a structure model. First, each distance of setA is combined with each distance of set

4 The interaction device shown in Fig. 6.2 has 7.5cm, 10cm and 5cm side lengths.
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B andC. For such a combination, a cyclic path fromPa overPb to Pc and back toPa

has to be found. Second, the error should be the smallest value.

structure⇒
∀i : 1..|A|. dai

∈ A.

∀j : 1..|B|. dbj
∈ B.

∀k : 1..|C|. dck
∈ C.

∃path : Pa

dai7−→ Pb

dbj7−→ Pc

dck7−→ Pa.

∃εmin : min(|dai
− ‖a‖|+ |dbj

− ‖b‖|+ |dck
− ‖c‖|).

However, if two image points of one camera image plane are located close to the
epipolar plane, our system calculates two 3D points, whereas only one 3D point ex-
ists. Thus, this structure estimation algorithm has to decide which 3D point best fits
the predefined model. As video-based tracking systems suffer from some measure-
ment errors, the epipolar constraint described above cannot solve the correspondence
between left and right image points sufficiently. For example, when all three images
of the markers can be seen, the algorithm may select only two image points from the
left camera frame and three image points from the right image frame or vice versa.
This is because the path with the smallest error is always selected. The problem can
be solved if priorities are added to the algorithm. If the whole structurePa, Pb andPc

is formed by completely different image points, then the priority has the highest value.
Otherwise, the priority decreases according to the number of common image points.

After finding the structure of the rigid body, the rotation of the rigid body can be esti-
mated using two times the vector cross product.

6.1.8 Experimental results

In the following a short examination of the rotation accuracy is given. The interaction
device was used to effect rotations around the three coordinate axes in regard to the
projection plane. Figure 6.13 shows an experimental rotation of 90 degrees around the
x axis5.

The experiment starts by pointing towards the y-axis, then pointing to the z-axis
and returning to the origin. The second experiment starts by pointing to the y-axis
and performing a rotation of 180 degrees around the y-axis6. Finally, a rotation of 180
degrees around z is printed in Fig. 6.13. In these plots, the drawn curves are mostly
continuous. The system fails under specific circumstances, whenever the user moves
all three markers of the triangle cursor near the epipolar plane. This situation can be
seen in the right plot of Fig. 6.13, where the interaction device passes the epipolar
plane in iterations 170 to 190.

5 The x-axis is given by the width of the projection plane
6 The y-axis is given by the depth of the projection plane.
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Figure 6.13: Experimental rotations

There are different possibilies to solve this problem. One possibility is to use a third
camera. Alternatively, the device has to be fitted with a fourth marker. A prediction
of object motion using a Kalman filter as shown in Chap. 5 can be used to smooth
rotational parametric curves.

The final optical tracker implemented for this dissertation uses more than three
markers positioned in a non-coplanar fashion, so that the situation that the total amount
of markers is located near the epipolar plane is omitted. The estimation for such an
over-estimated rigid body pose is done as follows. First, the matching problem in
3D space is solved using anassociation graph(for more details see e.g. [BB82]). A
node in this graph indicates which measured 3D position can be associated with which
kind of model position. Since the shape of the rigid body poses some constraints
on the linkage between nodes, the association graph is not fully connected. Then,
the algorithm finds all cliques and tries to estimate the maximal clique for which the
residual between measured and ideal positions is below a predefined threshold. It
is clear that a marker occlusion does not hinder the work of this procedure as long
as three markers can be associated with the ideal marker positions and the error rate
matches the requirements. From that at least three point positions in 3D space may
be reconstructed using the triangulation algorithm proposed in Chap. 4. Afterwards,
the pose of the rigid body is determined through a linear least square approach using
a singular value decomposition as introduced by Arunet al. [AHB87] and Umeyama
[Ume91]. Finally, the pose should be refined using a nonlinear least squares approach
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for minimizing the geometric error measured on the camera’s image plane. However,
for saving computational speed this step is currently omitted.

6.2 Inside-Out Tracking for See-through HMDs

It is also feasible to apply the previously described stereoscopic system for inside-
out tracking. Modifications of the hardware setup are necessary, due to the need of a
lightweight and wireless tracking system. Beyond this, if retro-reflective sphere mark-
ers are still used, a smaller lightsource has to be created. Consumer video cameras
are frequently fitted with high-performance IR-LEDs for night-shots. These IR-LEDs
can be of good use for optical based head tracking using passive markers. As shown
in Chap. 4, the backprojection error after calibration using the constraints of a sin-
gle moving point is around 0.4 pixels. Since the tracker is able to achieve sub-pixel
accuracy by tracking six degrees of freedom, the system seems to be well applicable
within augmented reality applications. A possible scenario for using the described
optical tracking system within interactive augmented reality applications is shown in
Fig. 6.2. Two video cameras for an accurate position determination are mounted on

Figure 6.14: See-through HMD for inside-out tracking

the user’s head and are fitted with infrared filters. The system is able to track retro-
reflective landmarks, to determine the absolute orientation and position, and the pose
of an interaction device simultaneously.

In order to estimate the pose of the user’s head, the optical tracker uses a small
database storing the geometry of rigid bodies. Rigid bodies can be distinguished if
and only if they differ in geometry. At minimum one distance between two marker
clusters have to be different to be able to match rigid bodies. Let us consider an
example shown in Fig. 6.15. Images of the left and the right camera are shown.
The matching algorithm identifies two rigid bodies unambiguously, because of their
different shape. The picture shows tracking windows referred to the center of mass
for each rigid body. In addition, the pose is expressed with a color code: The shortest
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(a) (b)

Figure 6.15: Rigid-body identification

distance of the triangle shaped rigid bodies is that from the yellow to the red rectangle,
and the longest is that from the red to the green one. The camera distance to the
observed rigid bodies was about150 cm, and the lengths of the sides of the rigid bodies
are 5.2 cm × 6.4 cm × 8.7 cm and 5.1 cm × 7.4 cm × 10.0 cm. Both rigid bodies
differ only slightly in their measurements, but can nevertheless be distinguished by the
system. In fact, the epipolar constraint is used to match the marker images for both
image planes in 2D in order to reconstruct the 3D positions of the landmarks. However,
considering a situation where two points are located close to one epipolar line, the
only way to solve this problem is backprojecting both marker images to obtain two
3D points, whereas the real situation contains only one point in space corresponding
to one marker. A matching and least squares estimation by minimizing the residual
vector between the ideal and real points in space solves this problem in the higher
dimensional 3D space.

Such matching and least square estimation methods are computational expensive,
so a procedure is necessary storing knowledge of the motion of a rigid body. Hence, a
motion prediction for rigid bodies, for instance implemented with a Kalman filter, can
be a good choice, though, for some situations, a Kalman filter can have some unpleas-
ant properties. Consider an object that needs to be tracked over several frames. Once
the object has been located approximately, tracking it in subsequent images becomes
more efficient computationally. However, trackers based solely on Kalman filters are
often of limited use, because, as they are based on Gaussian densities which are uni-
modal, they cannot represent alternative hypotheses simultaneously [IB98]. For these
kinds of tracking systems, an initial process is often necessary to locate markers. Fur-
thermore the tracking gets an increasing uncertainty over time. This problem is mostly
avoided by the use of two video cameras, since the position and orientation of a rigid
body can be calculated within almost every frame. If the residual between the pre-
dicted pose of a rigid body and the pose estimated from measurements is higher than
a pre-defined threshold, the matching algorithm is reapplied to ensure the tracking of
the right rigid body and to cope with confusion if two rigid body motions are closely
related. More details on Kalman filtering is given in Chap. 5.

It should be emphasized here that previously described methods are applicable in
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a similar manner for inside-out as well as for outside-in tracking. Inside-out systems
offer a wide area tracking since the hardware is worn by the user. The greatest ad-
vantage of stereoscopic tracking with respect to accuracy, however, can be achieved
if the baseline between the camera is high so that triangulation of a point in space is
less influenced by the noise of the measurements. For that reason outside-in tracking
is considered for the remaining applications described in this chapter.

6.3 Interaction Techniques and Hand Tracking

It depends largely upon the tracking system what kind of interaction technique can
be provided. Be reminded that an input device as defined in Chap. 2 is more gen-
eral and offers a wider range of interaction with designed user interfaces compared to
mere six degrees of freedom trackers. At least a switch is profitable for many virtual
reality applications to select, grab, and release virtual objects. In the following, it is
examined how non-rigid bodies that have a higher amount of degrees of freedom, like
e.g. the human hand, can be tracked. From this, manipulative gestures can be derived
since parameters of finger pose can be used to determine a gesture and the intention
of the user. However, some interaction metaphors like communicative gestures may
cause learning and usability problems when users are unfamiliar with navigation and
manipulation controls. Thus, the designer of a VR application should strive to make
navigation and interaction match the user’s experience as far as possible which is an
implication of the naturalness principle.

Optical tracking systems performing hand tracking either use an appearance based
approach, where gestures are deduced from their visual images, or they use a real 3D
model based approach, where gestures are derived from the 3D hand model param-
eters. The latter approach is more interesting, supporting manipulative interaction in
virtual environments, whereas some appearance based approaches are more reliable,
but may support mostly communicative gestures. In the following, an optical finger
tracker is proposed for natural interaction in virtual environments. Approaches to ex-
tend the tracker for markerless tracking are finally given and show the perspective of
future work.

Optical tracking systems allow three-dimensional input for virtual environment ap-
plications with high precision and without annoying cables. Spontaneous and intuitive
interaction is possible through gestures. In the following, a finger tracker is presented
that allows gestural interaction and is simple, cheap, fast, robust against occlusion,
and accurate. It is based on a marked glove, a stereoscopic tracking system, and a
kinematic 3D model of the human finger. Within the depicted augmented reality ap-
plication scenario, the user is able to grab, translate, rotate, and release objects in an
intuitive way. The tracking system is demonstrated in an augmented reality chess game
allowing a user to interact with virtual objects. Experimental results are elaborated in
Sect. 6.4.5.
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(a) (b)

Figure 6.16: Manipulation of virtual objects by grab and release gestures: Natural
interaction is possible using the finger tracker described in this section together with
augmented reality displays. In this image, a user plays chess against the computer by
moving virtual chess men with his finger on a real board.

6.4 Marker-based Finger Tracking

In order to convey a sense of immersion, a virtual environment system must not only
present a convincing visual rendering of the simulated objects, but also allow to manip-
ulate them in a fast, precise, and natural way. Rather than relying on indirect (mouse)
or symbolic (keyboard) manipulation, direct manipulation of virtual objects is enabled
by employing tracking with six degrees of freedom (6 DoF). Frequently, this is done
via hand-held props (like flying mouse or wand) that are fitted with magnetic track-
ers. However, this technology can only offer limited quality because it is inherently
tethered, inaccurate, and susceptible to magnetic interference. Optical tracking has
early been proposed as an alternative. One main reason why optical technology is so
attractive is because it supports tracking of the human body without need for active
sensors, thus allowing interaction without use of props. In particular, the tracking of
hands is relevant, because it allows natural gesturing (compare Fig. 6.16). From a
human-computer interaction (HCI) perspective, gesturing is a complex form of input.
A useful taxonomy for gesturing was developed by Quek [Que94, Que95] (see Fig.
6.17).

Only intentional gestures are considered, which can be roughly categorized into
manipulative(object movement, rotation etc.) andcommunicative. While the expres-
sive power of gestures is mostly attributed to the communicative family of gestures,
it is the manipulative family that is mostly used in virtual environments. The reason
is that choreographing 3D events based on object manipulation is straightforward and
immediately useful, while the meaning of communicative gestures is often more sub-
tle and harder to exploit in applications. Also, communicative gesturing just like any
form of communication relies on a common language that first needs to be mastered
by the user before useful interaction is possible. One exception is the use of deictic
gestures that have a natural interpretation as acts of selection or indication, often used
as part of multi-modal input [Bol80]. We will now examine how gestures fit into an
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Gestures

Manipulative Communicative

Unintentional Movements

Hand/Arm Movements

Acts

Mimetic Referential Modalizing

Symbols

Deictic

Figure 6.17: Intentional hand and arm movements can be classified as manipulative
or communicative. Communicative gestures can be related to language (symbolic),
or non-linguistic acts. Mimetic acts simulate actions, while deictic acts refer to a
specific object. Symbolic gestures either stand for a referential action, or are used as
modalizers, often for speech.

interaction framework for VEs. We follow the 3D interaction taxonomies developed
by Hand [Han97] and Bowman [Bow00] that categorize interaction into viewpoint
control, selection, manipulation, and system control:

• Viewpoint manipulation in virtual environments is best performed with direct
head tracking [UAW+99]. Although both viewpoint manipulation with the
hands (e.g. [WO90]) and optical head tracking are relevant issues for some VE
systems, they are considered out of scope of this work.

• Manipulation of virtual objects (rigid objects, i.e. primarily translation and rota-
tion) is a core requirement of most VE applications. Obviously, a very efficient
method is direct manipulation with the hand in the same or a similar way as one
would do in reality, i.e. by manipulative gestures

• Selection always precedes manipulation, or otherwise it would be impossible to
manipulate more than one object. In reality, a user stretches out his or her hand
in the direction of the target object, then grabs it for manipulation. In terms of
a gesture tracking system, this behavior can be interpreted as a deictic gesture
followed by a grab, a mimetic gesture.

• System control describes all access to abstract functions that have no obvious
correspondence in the three-dimensional environment. Several researchers re-
port on the use of a language of gesture signs to directly access system functions
or issue commands. As mentioned, this has the disadvantage that the language
needs to be learned first. Moreover, recognition errors together with a lack of
feedback (remember there is not always an obvious visual representation of the
system state or command results!) can easily confuse and frustrate the user.
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Therefore, one often uses visible command representations, i.e. menus, for sys-
tem control. These not only provide visual feedback, they can also be accessed
and selected just like normal objects, which allows a unified approach to input
and separates input mode from the user interface.

To sum up, all input modes relevant for a general virtual environment can be pro-
vided by control of a 6 DoF cursor and a grab/select command. Here, it is proposed
to track the user’s index finger via retroreflective markers and use the tip as a cur-
sor. The select command is triggered by bending one’s finger to indicate a grab or
grab-and-hold (i.e. drag) operation.

The simplicity of this approach is also its power. While the potential of optical
tracking as a superior tracking technique is generally recognized, its complexity has
prevented widespread acceptance. Compared to magnetic trackers, optical trackers are
more complex, depending on a large variety of factors that can significantly influence
the results, like the video and frame grabbing hardware, use of markers or natural fea-
tures, fixed or variable environment and lighting conditions, computing power and so
on. As will become evident from the discussion of related work, these difficulties lead
to systems that are either not reliable enough, not suitable for virtual reality applica-
tions, or over-constraining on the environmental conditions.

In contrast, this simple approach is at a sweet spot in the space of possible optical
tracking approaches, allowing to develop a finger tracker that is fast, reliable, robust
against occlusion, cheap, and accurate, and that can be interfaced easily to any VE and
provides all necessary means of interaction through gestures. It combines natural and
unobtrusive interaction through gesturing with precise and general purpose interaction
in a mostly unrestrained virtual environment. Surprisingly, this particular approach
has not been tried yet.

In the following, related work is discussed in Sect. 6.4.1, followed by an overview
of the approach in Sect. 6.4.2, details on the used finger model in Sect. 6.4.3, and com-
puter vision algorithms in Sect. 6.4.4. The presentation is complemented by results in
Sect. 6.4.5.

6.4.1 Gesture based interaction methods

In this section, a brief overview of gesture based interaction methods is given that con-
sider the human hand. As mentioned before, gestures may be classified asmanipula-
tiveor communicative. The overview of the literature will concentrate on manipulative
gestures, since the interest lies in systems which allow to grab, translate, rotate, and
release virtual objects. The interested reader is referred to Pavlovicet al. [HP95] and
[PSH97] for a general survey of hand tracking methods and algorithms for hand ges-
ture analysis. This discussion is limited to those papers which have influenced this
work on finger tracking.

Considering the complexity of shapes of the human hand which may appear in
video images, the segmentation of the human hand can be figured out as the most
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crucial and time-consuming part a vision based system has to solve. In case of ma-
nipulative gestures, the tracking of the hand should operate in real-time. This is why
system developers apply constraints either for the environment or the appearance of
the human hand. Background and foreground constraints will be distinguished for
simplifying the segmentation process.

Background constraint systems are often using a uniform (uncluttered) back-
ground [RK93], [BT99], [KH95], [KHK+94], [CH88]. Other systems assume a static
or temporarily static background so that background substraction [ITK93], [SK98],
[WADP97] or segmentation by motion [KC96] can be performed. Unfortunately, us-
ing a controlled or known background is problematic or impossible in dynamic virtual
and augmented environments in which the scene changes over time.

Foreground constraint systems detect markers attached to the human hand
[COK93], [Mag93], [LH00] or classify the human skin color [Jen99], [OZ99],
[WSL00]. Such systems assume controlled and static lighting conditions and rely on
the assumption that no objects with similar color (e.g. skin/wood) appear in the image.
Projection-based virtual environments are typically used with dimmed light, leading
to a decrease in color dynamics, which results in difficulties in identifying the human
skin.

Template matching approaches for special hand features like the finger tips restrict
the hand in its flexibility of deformation since the finger tips should be visible in the
camera images [RK93], [OZ99]. Tracking with a Kalman filter can solve occlusion
problems only for a very short period of time. Therefore, a common approach is to
restrict the appearance of the hand to known depth values and to disallow other objects
to appear inside the interaction volume [UO99]. Finally, an infrared camera system
can be adapted to acquire optical signals at a controlled temperature for the human
hand [SKK00].

After image segmentation, the hand model plays a fundamental role in the tracking
process. We distinguish 3D hand models and appearance based models. 3D hand
models use articulated structures of the human hand to estimate the hand movements
[RK93], [KH95], whereas appearance-based models directly link the appearance of
the hand movements in visual images to specific gestures [BI94], [HH96], [SK98]. 3D
hand model-based systems often provide a higher flexibility, due to the estimation of
joint angles and a higher precision.

Finally, the form of output from the tracking process determines the scope of possi-
ble applications. We distinguish 2D systems [BI94], e.g. for controlling 2D user inter-
faces [SKK00], systems working in 3D by supporting relative 3D positions [Mag93],
[HH96] and systems which are using stereoscopic vision for most accurate, absolute
3D positions [RK93], [SK98], [UO99]. Obviously, only absolute 3D position is useful
for our application scenario.

Often not addressed is the necessity of tracking initialization which means that the
user is forced to move the hand to a known position while performing a specific pose.
Systems like [HH96], [RK93] need this initialization whenever the hand detection
algorithm looses track. Such an approach is not acceptable for spontaneous and natural
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interaction in virtual environments.

6.4.2 System overview

There was no human hand tracking system which fulfilled all requirements. Specifi-
cally, all purely natural-feature-based tracking systems are either not accurate for the
purpose of augmented reality or not independent from the environment or application.

To overcome these problems, the presented optical tracking consists of retrore-
flective markers operating with infrared light. The tracking system poses minimal
constraints to the environment and can be easily adapted for other virtual reality appli-
cations. The proposed design is intended for a fixed working area of reasonable size
(1-3m squared) where dextrous interaction can occur. A suitable workspace is defined
by the volume above a table - this is both useful in combination with back-projection
tables [KBF+95b] and augmented reality scenarios [RWW99], [HPM+01].

There should be minimal effort in the setup and maintenance of the system. Thus
it is a requirement that the system can be used without any special lighting or back-
ground. Moreover, a simple calibration procedure is necessary to allow quick installa-
tion of the system after location or environment have changed.

To allow for a relatively unrestrained environment, a marked glove is used for real-
time separation of the finger from the background. The glove is fitted with retroreflec-
tive markers which are illuminated by an infrared light source. A stereo camera pair
with infrared lenses filters out most of the background. The infrared light source is
co-located with the camera, so that light emitted in the direction of the retroreflective
markers is directly reflected towards the camera in a fashion similar as described in
Sect. 6.1.6.

After segmentation of the 2D marker locations, they are passed on to the marker
matching module, where markers are correlated using a method based on epipolar
constraints and a kinematic model of the finger. A motion estimator has been added in
order to smooth and predict the motion of the user’s finger. Therefore, the synthesized
3D position values are used as periodic measurements during a Kalman filter process.
The filter itself takes parameters of a linearized kinematic model such as velocity,
acceleration and angular velocities. These parameter values may be used in order to
predict a future pose of the user’s finger.

The used marker and finger model will be examined in more detail, and then the
relevant steps in computer vision processing required to transform images from the
camera into 3D model parameters will be discussed.

6.4.3 Markers and finger model

The intention of the finger tracker is to obtain enough information to robustly track the
position, orientation and pose of the user’s index finger. For real-time determination
of these parameters without the need to constrain environmental conditions, a resort

132



Chapter 6 Optical Tracking Applications

is using a marked (but untethered) glove. In the following, considerations regarding
shape and placement of these markers are described.

Possible marker shapes are shown in Fig. 6.18. Round or square reflector blips are
features of the surface, which is fine as long as the markers face the camera. However,
while interacting in virtual reality, hand and fingers are constantly rotated in space, and
markers will often be turned away from the camera. In this case, the blip would not
indicate the real position of the joint any more.

(a) (b) (c) (d)

Figure 6.18: Shape of markers - in contrast to round blips on the surface (a) that do
not always represent the joint position (cross) well if rotated away from the camera,
flat rings (b) are always centered at the joint, while convex rings (c) improve upon flat
rings in that they have better retroreflective properties. The final choice are displaced
balls (d) that suffer the least from self-occlusion of the fingers.

As an alternative solution, ring-shaped markers composed of small stripes of reflec-
tor material are wrapped around the finger joints. A section of the rings should always
face the camera independent of the rotation of the joint. After some experimentation,
the ring markers were modified to a have a convex rather than a flat surface. In that
way, a portion of the retroreflective surface of the marker will always be oriented to-
wards the camera, allowing for a higher amount of light to be reflected to the camera,
thereby making segmentation easier. Unfortunately, experiments showed that both blip
and ring makers suffer from the fact that the joint center cannot easily be determined
from the position of the markers due to self-occlusion of the fingers.

Therefore, finally displaced balls on the back of the finger (Fig. 6.19) were used
that have good retro-reflective properties and are not often significantly occluded by
the fingers themselves. The use of displaced balls was enhanced by connecting the
balls with short pieces of wire mounted to hinges in the balls to enforce a fixed known
distance between the balls. Dimensions of these wire rods were chosen to match the
distances between finger joints. While this “exoskeleton” looks awkward, it has the
great advantage that it follows the behavior of the finger as a kinematic chain, but with
easily detectable joint centers. Experiences confirmed that it does not affect finger
movement or interaction in any noticeable way.

For reconstruction, a 3D finger model based on a kinematic chain of the finger
joints was employed that directly maps onto the markers. As the distance of the mark-
ers is known, the system is independent of the actual dimensions of the user’s finger
(within certain limits), while the soft glove’s material can be stretched to fit any user.
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Figure 6.19: Gloves fitted with retroreflective markers

The only remaining user specific parameter is the actual offset from the user’s finger
tip to the last marker in the chain which is used to determine the 6 DoF “hot spot”.
To enable a user to interact with his or her finger tip, this offset must be determined.
However, most users showed to be willing to accept that the actual hot spot is deviant
by a small amount from their finger tip, and interaction is not affected.

6.4.4 Computer vision processing

For performing the whole work cycle shown in Fig. 6.20, four tasks can be figured out
which are the important operations of the tracking procedure. These are calibration,
segmentation, marker matching, and motion estimation which includes the prediction
of the model. These operations will be described in the following sections excluding
the camera calibration that was discussed and evaluated in detail in Chap. 4.

Segmentation

The principal task the segmentation process has to perform is the estimation of the
center of gravity for each marker. The center of gravity is computed from the weighted
contributions of the pixels covered by the markers in the greyscale image. A threshold
based segmentation was implemented, because it is simple and able to work in real-
time. Pixel values which are above a given threshold are used to estimate the center
of gravity of the marker image. This segmentation is not satisfying for all purposes
as described above, but it works much faster than elliptic fitting algorithms. Later on,
using a Kalman filter should compensate for these errors in motion estimation.

Unlike ring markers, a spherical marker’s center of gravity generally matches the
joint center very well, which reduces uncertainty and improves the behavior of the
Kalman filter described in this section.
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Figure 6.20: Processing pipeline

Matching of markers

In addition to the segmentation, a mechanism is needed which correlates extracted
features of both images. Due to reflections on specular surfaces, noise can be included
in the list of segmented features and should be detected by the matching module.

Application of the epipolar constraint does not solve the complete problem of
matching, which is problematic if the corresponding feature for a marker in the first
image is not the feature which has the closest distance to the epipolar line in the sec-
ond image. This can lead to erratic matching that combines image features which are
not correlated in reality. Since the epipolar constraint module can not detect such am-
biguous cases based on the distance of a feature from the epipolar line, all matching
features which lie within a small neighborhood of the epipolar line must be considered
as candidates for 3D points.

Detection of correct 3D points and their assignment to finger joints is done by
analysis of the 3D position values that are retrieved with the previously described un-
certainty. By using knowledge about the distances between the markers on the user’s
finger and some further constraints, the system finds a solution:

• The first constraint is based on the assumption that the marker positions are
located approximately in one 3D plane. While it is indeed possible to move a
finger sideways to some degree, this constraint is sufficiently satisfied by the
rigid marker skeleton.
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• The second constraint is based on the unambiguous sequence of pre-known
marker distances.

search area

marker 3
marker 2

marker 1

marker 0

Figure 6.21: Marker matching

Figure 6.21 illustrates the procedure of marker matching. A random 3D marker posi-
tion is chosen. In the next step, the algorithm searches for a second marker position
which has been located close to the surface of a sphere with a radius determined by the
known marker distance. If no such marker position can be found, the algorithm starts
with another arbitrarily chosen 3D marker position. If a marker can be found close to
the sphere’s surface, a second sphere is used to find the third marker position and so
on. The procedure is successful if a full path including four markers has been found,
if the identified 3D locations are located within a given threshold to a 3D plane, and
if the shape of the polygon constructed from the joint positions is convex. One addi-
tional constraint which enhances the performance of the system is based on knowledge
retrieved from the motion prediction, which is described below in section 6.4.4.

Palm

pp
pp

x
z

y

0

1

2

3

Figure 6.22: Finger coordinate system

For the following sections, we assume a coordinate system defined by the finger
pose (Fig. 6.22). The finger is located in thexy-plane and the origin is at pointp0,
with thex-axis pointing in the direction ofp1.

As common for kinematic chains, the coordinate system forp1 is defined relative to
the reference frame ofp0. Analogously, the reference system ofp2 is defined relative
to p1. p3 is only necessary to define the direction of thex-axis in the reference frame
of p2.

In case the user’s finger is bent, the global rotation matrix of the finger at framei
can be calculated as follows

ex,i =
p1,i − p0,i

‖p1,i − p0,i‖
(6.2)
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ez,i =

[
p3,i − p0,i

]
× ex,i

‖
[
p3,i − p0,i

]
× ex,i‖

(6.3)

ey,i = ez,i × ex,i (6.4)

First, we calculateex,i as the norm of the vector fromp0,i to p1,i. Since all markers
should lie on a plane, we can usep3,i to define a second vector used to compute the
y- andz-axis of this coordinate system by applying the cross product of vectors. The
results are the base vectors of the global finger reference frame which can be combined
in a global rotation matrix at time framei. The vectorsex,i,ey,i, andez,i form the
columns of the matrix.

Ri =
(

ex,i ey,i ez,i

)
(6.5)

Modelling and estimating motion kinematics

For developing a robust finger tracker it is important to achieve good estimates of the
finger pose, even though measurements are imprecise and include distortions. Mea-
surements like the marker positions are assumed to contain white noise. The Kalman
filter used in this implementation is responsible for filtering the motion model param-
eter values. Whenever the system equations7 do not fit the real motion process well,
the residual between real motion and motion model will be interpreted as random sys-
tem noise. The Kalman filter as used in this implementation is rather a filter which
extracts a kinematic state from periodic noisy measurements than a predictor of future
marker positions used for speeding up the segmentation. The implementation is using
the Kalman filter in order to enhance the finger pose matching for the current frame.
The process of marker and finger pose matching consists of a minimal path search of
estimated 3D point distances and is known to be NP-complete. Searching only a small
number of markers does not really suffer from this fact, but even a moderate number
of falsely detected marker positions (reflections etc.) can quickly affect computational
performance of the search. The Kalman filter is a good tool to overcome this problem
by predicting new 3D marker positions. Based on this prediction, the algorithm can
directly select markers in locations likely to contain valid 3D points.

As mentioned before and shown in Fig. 6.22, the measurement vectorxi at time
framei includes the location of four 3D marker positions.

xi =
(

p0,i p1,i p2,i p3,i

)
(6.6)

These measurements are not correct due to noise from calibration and segmentation
errors. This noise is assumed to be white noiseηi added to the correct measurement
x′

i.

xi = x′
i + ηi (6.7)

Consider Fig. 6.23 for the transformation of marker positionsp0,p1,p2 andp3 from
time framei− 1 to time framei.

7In this case the motion kinematic equations.
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Figure 6.23: Marker transformation

For each point of the marker model a translationT i−1 and rotationRi−1 is per-
formed. This incremental and relative rotation is modelled using angular velocities
ω =

(
ωx ωy ωz

)T
. We are applying equation 6.8

q =
ωx

2
i +

ωy

2
j +

ωz

2
k +

√
1−

ω2
x + ω2

y + ω2
z

4
(6.8)

introduced by Azarbayejani and Pentland [AP95] to transform the angular velocities
into a quaternion representation of the rotationRi−1. For the translational as well as for
the rotational components it is assumed that each pointpj,i−1, j := [1..4] undergoes
a motion with constant angular velocity and with constant translational acceleration.
In other words, a linearized kinematic model is used for motion estimation, which is
simple and less computationally intensive than using the accurate model. However,
this linearization is only effective for a short period of time. Therefore, real-time
motion capturing is neccessary and the precision decreases with the frame rate. Using
this linearization, the translationTi−1 can be expressed as

T i−1 = vi−1 ∆t +
1

2
ai−1 ∆t2 (6.9)

wherev =
(

vx vy vz

)T
is the translational velocity,a =

(
ax ay az

)T
is the

constant translational acceleration and∆t is the time intervalti − ti−1. To estimate
the finger’s motion kinematics, the bending of joints has been modelled by applying a
rotationRα,i−1 for the first joint andRβ,i−1 for the second joint.Rα,i−1 is defined as a
rotation around thez-axis using the angleαi−1:

Rα,i−1 =

 cos(αi−1) − sin(αi−1) 0
sin(αi−1) cos(αi−1) 0

0 0 1

 (6.10)

The rotationRβ,i−1 is defined similarly.
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Consider once again the incremental transformation shown in figure 6.23, where the
rotation depends on the angular velocity and the translation depends on the transla-
tional velocity and translational acceleration as described before. As we assume to
have a linearized motion, we are able to calculate the new marker positions if we know
the following parameters collected in the state vector

si =
(

vi ai ωi αi βi

)T
(6.11)

The following equation expresses mathematically the marker movements, where the
“hat”(ˆ)-notation is used indicating estimated parameters.

p̂0,i = p0,i−1 + v̂ ∆t +
1

2
â ∆t2 (6.12)

p̂1,i = p̂0,i + R̂ip1,i−1 (6.13)

p̂2,i = p̂1,i + R̂iR̂α,i

(
p2,i−1 − p1,i−1

)
(6.14)

p̂3,i = p̂2,i + R̂iR̂α,iR̂β,i

(
p3,i−1 − p2,i−1

)
(6.15)

These equations can be seen as an estimation process of future measurements at time
framei while previous measurements given at time framei− 1 are known:

xi =
(

p0,i p1,i p2,i p3,i

)T
(6.16)

Whenever a new measurement is available, the Kalman filter is performing a correction
step (also calledmeasurement update) to keep the residual between measurements and
estimated measurements as low as possible by minimizing the error using a least square
approach. The functionf(x′

i, ŝi|i−1) which is dependent on the current estimated state
and the last measurement vector should be minimized and is given in equation 6.17.

f
(
x′

i, ŝi|i−1

)
=


p′

0 − p̂0,i

p′
1 − p̂1,i

p′
2 − p̂2,i

p′
3 − p̂3,i

 = 0 (6.17)

After measurement updatea new prediction can be performed. This step is also called
time update, because this procedure is projecting the current state foward in time. Con-
sidering our application context, a linear transformation of the state vector is applied
which is given by:

v̂i|i−1 = v̂i−1 + âi−1∆t

âi|i−1 = âi−1

ω̂i|i−1 = ω̂i−1

α̂i|i−1 = α̂i−1

β̂i|i−1 = β̂i−1

The strength of the Kalman filter is its feasibility to model noise, even allowing the
system to filter state values in noisy environments. The existence of noise is assumed
for two different processes.
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• The measurement includes white noise such that the expectation value is zero
E(ηi) = 0 and noise included in one measurement is independent from noise of
another measurement.

E(ηiη
T
j ) =

{
Ληi

i = j
0 i 6= j

(6.18)

Ληi
describes the covariance matrix of measurement noise at time framei.

• The filter models system noise that results from imprecise system equations.
For instance, the linearized kinematic motion model is not describing the real
motion. Thus, there is a difference between the linearized and the real motion
which can be modelled as white system noise similar to equation 6.18. We
denote the covariance matrix of system noiseQi.

Initialization ofP0|0, ŝ0|0, Q, andΛη0

Time Update:

ŝi|i−1 = H ŝi−1 (6.19)

Pi|i−1 = HPi−1H
T + Q (6.20)

Measurement Update:

Ki = Pi|i−1M
T
i

(
MiPi|i−1M

T
i + Λξi

)−1
(6.21)

ŝi = ŝi|i−1 − Kif
(
xi, ŝi|i−1

)
(6.22)

Pi = (I− KiMi) Pi|i−1 (6.23)

?

?
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xi

ŝi

ŝi−1

Figure 6.24: The extended Kalman filter

Figure 6.24 shows the complete extended Kalman filter process as applied for fin-
ger tracking purposes. As first step, an initialization of the filter is necessary. There-
fore, the covariance matrix of the state vectorP0|0, the state vector itself, the system
and measurement noise matrices need to be specified. Afterwards, the state vector and
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its covariance matrix can be projected forward in time using:

H =


I3 ∆tI3 0 0
0 I3 0 0
0 0 I3 0
0 0 0 I2

 (6.24)

The next step is to correct the state and covariance matrixPi whenever a new measure-
ment is available. Therefore, the Kalman gain matrixKi is calculated which is used as
a relative weighting of the trust in real measurements vs. the estimated system state.
Since equation 6.17 is non-linear, we have to apply the extended Kalman filter, which
requires calculation of the Jacobian matrixMi

Mi =
∂f
(
xi, ŝi|i−1

)
∂si

(6.25)

and the new measurement noise matrixΛξi
which is influenced by the derivative of the

functionf
(
xi, ŝi|i−1

)
.

Λξi
=

∂f
(
xi, ŝi|i−1

)
∂x′

i

Ληi

∂f
(
xi, ŝi|i−1

)
∂x′

i

T

(6.26)

6.4.5 Experimental results

Experiments with real sequences of marker based finger motions were done on a
Athlon 800 MHz processor using ELTEC’s PcEye2 frame grabber board and two PUL-
NiX TM-560 PAL cameras. The finger tracking operates in real-time with 25 frames
per second and an accuracy of0.5 to 2 mm in the range of one square meter. The
angular accuracy is difficult to analyze because it depends on the bending of the user’s
finger. Analyzing the jittering in rotational values having a bent finger, the angular
error is below one degree.

The tracking system was connected via sockets with theStudierstube[SFH00]
augmented reality system. The latency of the whole system is about 50 to 100 ms. This
latency can be compensated using predicted marker positions. However, the accuracy
of the system is reduced to5 mm precision while predicting 80 ms forward in time.

The application used for rendering is a virtual chess application where chess men
are displayed as virtual objects and the chess board is real. In order to grab a virtual
chess man the user has to move his finger to the middle of one square and intersect
the marker located at the finger tip with the virtual chess man and bend the finger in
order to grab the virtual object. While holding the finger bent, the user is able to drag
(translate and rotate) the chess man and release it by stretching out the finger. This kind
of interaction was found to be intuitive and easy to learn because it is similar to a real
grab gesture the user performs. Compare Fig. 6.16 (a) for an image of the collision of
the user‘s finger with a chess man and Fig. 6.16 (b) for an image while performing the
grab gesture and dragging the virtual object. In the fusion of real and virtual images
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there is one thing that is not perfect in regard to a fully immersive illusion of the user.
This is the incorrect placement of the virtual objects in regard to the real objects like
the human hand. Considering Fig. 6.25, the grabbed chess man should be located at

Figure 6.25: Fusion of the real and virtual world

the finger tip, but it appears on the palm. Future augmented reality systems should
handle occlusions of virtual objects. This may be solved by estimating depth values
of the real scene, however, this is a time-consuming reconstruction problem, which is
currently not solvable in real-time.

In regard to the robustness of the tracking, a source of problems of vision-based
tracking systems is occlusion. In this tracking environment the cameras are positioned
more or less orthogonal to each other. Thus, there is no need for the tracking system to
detect four markers in each camera image (see Fig. 6.26). In addition, marker positions

(left camera image) (right camera image)

Figure 6.26: Occlusions of markers

that are transiently lost can be estimated using the predicted marker positions of the
Kalman filter and finally, biological constrains can be exploited, based on the amount
of bending possible for fingers (a reasonable assumption is that the incremental angle
βi is half of the angleαi).

From these results can seen that a marker based optical finger tracker system pro-
vides high precision for three-dimensional input in virtual environments. It allows
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spontaneous and intuitive interaction through gestures and is simple, cheap, fast, and
robust against occlusions. The proposed tracking system does not need any initial-
ization for tracking and there is no need to adapt the finger model to different users,
since an “exo-skeleton” model fixed to a glove was used. The system is operating in a
relatively unrestrained environment. However, the main drawback is that the user has
to wear a cotton glove. We will examine the perspective of markerless tracking in the
next section.

6.5 Markerless Hand Tracking

The development of a hand tracker using solely natural features is of great interest
for many researchers for human computer interaction. It was previously shown in
Sect. 6.4.1 that current hand trackers use scene constraints to facilitate the detection
of human hand and realtime interaction in 3D space. Objects are not robustly detected
with respect to certain shape properties. A particular approach on which much research
is focused is a contour based tracking technique. Contour based approaches can also be
categorized as appearance based tracking, but in contrast to template based approaches,
they provide much more information. Shape models offer a learning principle of joint
or skeleton positions derived from contours as has been shown in [BMS00]. In the
following, we will consider the approach known asactive shape models, whereas a
principal component analysis provides information of valid object deformation. As an
example of hand tracking, the following of this section is focused on pointing gesture
tracking as depicted in Fig. 6.27. A contour as shown in Fig. 6.27 is fitted to certain
image features like edge gradients and directions in the presence of different lighting
conditions and dynamic backgrounds.

Figure 6.27: Tracking a pointing gesture
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6.5.1 An example of contour tracking

Point distribution models(PDMs) are known from statistics and can be used to reduce
higher dimensional spaces to lower dimensional ones by evaluating the eigenvalues of
eigen systems. Cootes [CT92] has applied this method to contour tracking and has
termed this approachactive shape models(ASMs), because of the dynamic flexibility
of a shape model. An instance of a model’s shape in time is given by the contour of
an object. The contour contains an infinitely large set of points lying for example on
the silhouette or on edges of an object. In practice, tracking an infinitely large set of
points is impossible, however, if the contour is approximated with splines (compare
left image of Fig. 6.28), control points or knots of splines may be used to describe the

Figure 6.28: Contour of a pointing gesture

shape of an object (compare right image of Fig. 6.28). A deformation of the shape is
then defined by the displacement of the control points. Let us define the shape of an
object (e.g. the silhouette of the human hand) as a vectorc containingn control points
denoted bypk.

c = (p1, p2, ...,pk, ...pn)T where pk = ( xk, yk )

It is obvious that the contour has dimension2n, becausen 2D are used. PDMs are
used to determine the variation of shapes. The underlying idea is the following: Each
control point of a contour has a specific semantic meaning so that one control point
is always located on the tip of the thumb for instance. Having different images of an
object including different states of deformation, the relative variation can be examined
based on eigen analysis. Relative means here that images of an object may only differ
in their specific value of deformation. If pictures are taken of a deformable object, it
often occurs that either the camera used to take the picture or the object itself under-
goes spatial motion. Observing a pointing gesture from different persons results in a
variation in shape. Taking images of this gesture under different viewing angles and
hand positions and indicating the silhouette of the gesture through a spline may result
in a random distribution of gestures located in the camera’s image frame as shown in
Fig. 6.29. To solve this problem, we align these object contours through a translation,
rotation and scaling so that the pose of the contour is best fitted to the pose and shape of
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Figure 6.29: Unaligned shape models of a pointing gesture

the mean contour. Then, the deformation of the shape model is defined as the variation
of the control points from a calculated mean contour. This mean contour is estimated
through a least s quares approach.

In order to align these object contours, each control point belonging to a contour is
transformed through a translation, rotation and scaling associated with the corrspond-
ing contour. Ifα is the relative angle of rotation between this particular contour and
the shape of the mean contour,s is the corresponding scaling factor and( tx, ty ) is the
2D translation vector, thekth control point may be transformed as:(

x′k
y′k

)
=

[
s cos α s sin α
−s sin α s cos α

](
xk

yk

)
+

(
tx
ty

)
(6.27)

Unfortunately, the mean contour is not known in advance. For a moment suppose the
mean contour̄c = ( x̄1, ȳ1, . . . x̄n, ȳn )T is known. The transformation parametersα,
s, tx, ty may be found by minimizing the following expression by using a least squares
approach.

ε = min
(
(c̄− c′

i)
T (c̄− c′

i)
)

(6.28)

wherec′
i is theith transformed contour made up of the entries( x′k,i, y′k,i ) given by Eq.

6.27. A linear solution to solve this motion parameter problem can be found in [CT99].
A procedure to estimate the mean contour is given by Alg. 9, where the superscript
denotes the number of iteration. Let us consider an example of shape description
using the silhouette of a pointing gesture. Two different models are considered in the
following. The first model is defined by the silhouette of the thumb and the index
finger (see Fig. 6.30 (a)). Remember that each point of this contour is related to a
specific position of the pointing gesture. A second shape model as shown in Fig. 6.30
(b) differs from Fig. 6.30 (a) by including the silhouette of the remaining fingers and
the palm. It is assumed that the remaining fingers are bent to be enclosed by the palm.
Applying Alg. 9 to a set of training images of pointing gestures annotated by control
points of a spline, these will converge after some iterations to a resulting mean shape.
The final alignment of control points and the resulting mean contour is displayed in
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Algorithm 9 Alignment of similar training shapes
1: j ← 0 {iteration counter}
2: Initialize the mean shape with the first contourc̄0 = c1

3: In a pairwise fashion, rotate, scale and transform each contourci to align with c̄0.
After transformation we are given a set of contoursc′0

i .
4: while mean has not convergeddo
5: Calculate the mean of the transformed shapes by using the following equations

corresponding to each component of a control pointpk.

x̄k =
1

n

n∑
i=1

xk,i ȳk =
1

n

n∑
i=1

yk,i

6: Transform the mean shapec̄j so that it aligns with̄c0. From that we may calcu-
late the corrected mean shapec̄j+1.

7: Transform each contourc′j
i to align with the adjusted mean̄cj+1. From that we

obtain transformed contoursc′j+1
i used in the next iteration.

8: j ← j + 1
9: end while

(a) (b)

Figure 6.30: Two different hand models

Fig. 6.31. For each contourci we may calculate the deviation with respect to the mean
shape as:

∆ci = ci − c̄ (6.29)

We may now determine the variation and co-variation of each landmark by calculating
the covariance matrix

C =
1

n

n∑
i=1

∆ci∆cT
i (6.30)

This matrix can be used for eigenvalue and eigenvector estimation, where the eigen-
vectorsei describe the direction of variation and the corresponding eigenvalueλi gives
the variance of deformation along this axis. Due to the amount of control points, the
covariance matrix has dimension2n × 2n and so the eigenvectors have2n entries. It
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Figure 6.31: Mean contour of the pointing gesture model

is clear from the definition of eigenvalue decomposition that the covariance matrix can
be reconstructed from eigenvectors and eigenvalues as:

C = UDUT (6.31)

whereD is a diagonal matrix containing the eigenvalues andU is an orthogonal matrix
made up of the eigenvectors ofC. The idea behind this eigenvalue decomposition is to
reject eigenvectors that are less significant for the description of a valid deformation,
so that the deformation of the shape model can be mostly described using the most
significant eigenvectors. Herewith, the dimensionality of this deformation problem is
reduced and thus, it may be possible to verify a valid deformation in realtime. The
eigenvectors and eigenvalues are obtained by solving the following linear equation:

Cei = λiei (6.32)

Thus finding the highest eigenvalues tells us where the variation in the model is most
likely to occur. The estimated eigenvectors provide a basis of a higher dimensional
coordinate system and are collected in the orthogonal matrixU.

U =
[

e1 ... e2n

]
(6.33)

A variation of shape can therefore be expressed by

c = c̄ + Ub (6.34)

where the components ofb indicate how much variation is exhibited with respect to
each of the eigenvectors.
If the eigenvalues of the diagonal matrixDwhere diag(D) = (λ1 . . . λn) are of decreas-
ing order, soλ1 ≥ λ2 ≥ . . . ≥ λn implies that eigenvectors belonging toU are ordered
in a fashion that eigenvectors with lower indices are more significant describing the
deformation than others with higher indices. Eigenvalues corresponding eigenvectors

147



Chapter 6 Optical Tracking Applications

of higher indices are close to zero, so that a valid deformation can be approximated
by linear combination of those eigenvectors with lower indices ofU. Thus, if we use
the firstt eigenvectors ofU, we may approximate a valid deformation by the following
formula:

c ≈ c̄ + Utbt (6.35)

whereUt = (e1 . . . et) contains the firstt < 2n eigenvectors with decreasing signifi-
cance andbt is at dimensional deformation vector describing the variation as a linear
combination of thet eigenvectors. One approach to findt is given by the choice of a
thresholdγ indicating the percentage of total deformation maintained by the resulting
approximation. The value oft can be determined from

t∑
i=1

λi ≥ γ · λtotal 0 ≤ γ ≤ 1 (6.36)

Let us consider the example of shape variation of a pointing gesture as depicted in Fig.
6.30 (a). Table 6.1 shows the relative contribution to total data variance of the first ten

Indexi (λi/λtotal) ∗ 100 Commulative total
1 73.2 73.2
2 10.3 83.5
3 6.0 89.5
4 3.6 93.2
5 2.1 95.2
6 1.0 96.3
7 0.8 97.0
8 0.5 97.5
9 0.5 97.9
10 0.4 98.4

Table 6.1: Relative contribution of the first ten principal components

eigenvectors. The value ofγ was chosen to be0.98, describing the fact that using a
linear combination of the first ten eigenvectors facilitates a reconstruction of more than
98%, in fact98.4% of the deformation seen in the training set.

Finally, a valid deformation using this compressed eigenvector basisUt is given
by the deformation vectorbt if the components ofbt are within3σi of the mean in
the direction of the corresponding eigenvector. The variance in the direction of an
eigenvector is given by the eigenvaluesλi so we might expect a “well-behaved” shape
if the components ofbt are in the following range:

− 3
√

λi ≤ bi ≤ 3
√

λi, (6.37)

148



Chapter 6 Optical Tracking Applications

Applying this observation to the previous example, we might generate deformations
along the first three principal components using the maximum deformation of±3λi.
This situation of maximum valid variation along the first three eigenvectors is depicted
in Fig. 6.32. It is obvious that±3λi is an unlikely factor and in practice we may

Figure 6.32: The first three modes of variation

expectbi to be smaller. From Tab. 6.1 it is obvious that89.5% of variation given
by the training set can be reconstructed using a linear combination of the first three
principal components shown in Fig. 6.32.

For tracking and shape fitting purposes theactive shape model(ASM) is introduced
using PDMs as the basis for modelling deformation. ASM is an approach for boundary
fitting, where a small iterative algorithm iterates towards the best fit by improving an
approximate fit as given by Alg. 10. Step 2 requires the calculation of boundary
normals. An example displaying the search paths for each landmark is depicted in Fig.
6.33.

Figure 6.33: Searching an approximate model fit using boundary normals. It seems as
if the background needs to be uniform, but this is not required.

In practice, the hand model as depicted in Fig. 6.30 (b) is more reliable than the
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Algorithm 10 Fitting an active shape model

1: Initialize an approximate fitc = ( x1, y1 . . . xn, yn )T

2: At each control point, search for the pixel with the highest intensity gradient in the
direction of the boundary normal. If there is a clear target, the landmark is moved
to this position, otherwise it is left where it is.

3: Align the contourc with the new target points using a pose fitting procedure. A
method to solve this linearly is given in [Ume91, CT99].

4: Determine the displacement vector∆c between the transformed contourc′ and
the target contour.

5: Now we may determine the deformation vector given the displacement vector∆c.
The transformed contour my be expressed asc′ ≈ c̄ + Utbt. The displacement of
landmarks∆c is added to the transformed shape asc′ + ∆c = c̄ + Ut(bt + ∆bt).
The deformation vector∆bt can be determined as

∆bt = UT
t ∆c

6: Setbt + ∆bt to a valid deformation vector and iterate from step 2 until change
become negligible.

one in Fig. 6.30 (a). The number of false convergations using Alg. 10 is in the for-
mer about ten percent less than for the hand model including only the silhouette of
the thumb and the indexfinger. In Fig. 6.34, various images of pointing gestures of
different persons under different illumination conditions are shown. The left column
of Fig. 6.34 illustrates the initial contour used as an approximate fit to pointing ges-
ture. For each row, the contour is initialized with the mean contour, but with different
initial scale, orientation and translation. The right column depicts the final contour
after convergation using Alg. 10. If the initial pose does not fit the real pose appro-
priately, Alg. 10 leads to an invalid contour as shown in Fig. 6.35. The time needed
for convergation of the proposed contour fitting procedure is highly dependent on the
quality of initialization. Typical convergation time values for initial contours that are
translated by 10 pixels and rotated by less than 5 degrees from the ideal contour are
around20 ms, achieved with a Pentium II 800 MHz processor.

6.5.2 Discussion of contour tracking with ASM

The deformation vectorbt of an ASM may be used as a parameter vector to distinguish
different gestures from each other as proposed by [Hea95]. The hand model as used
for ASM is a 2D shape model which can be classified as an appearance based hand
model (compare Sect. 6.4.1). Appearance based hand models are mostly usable for
communicative gestures and less for manipulative ones. One way to go one step further
in the direction of a real 3D model is proposed by the extension of an ASM to a 3D
spline based hand model as shown in [HH96, HCT95].
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Figure 6.34: Fitting an ASM to a pointing gesture

Figure 6.35: Convergation of an ASM leading to an invalid deformation vector
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But the main disadvantage of ASM which is its labor intensive placing of landmarks
for the construction of a training set becomes even more cumbersome if not impossible
in the case of 3D shape models. In [HH96] MRI data were used to generate training
images. Additionally, the control points were set automatically using a 3D mesh and a
blob based growing algorithm. It is not apparent from the paper if tracking is possible
when fitting the 3D mesh based model to the real image data. Mainly, the alignment
of 3D landmarks to 2D image information given by edges is not appropriate, since
each landmark has a specific spatial meaning and higher semantic features like joints
or fingernails have to be detected.

A method for 3D markerless hand tracking which deserves consideration could
be based on 2D ASM, where multiple cameras are used. The camera positions and
orientations are more or less rigid so that the shape of a hand gesture can be learned
collecting the training images of each camera. Landmarks of each camera image taken
at the same time are stacked in a contour vector. If we havem pictures of a gesture
taken simultaneously andn control points, the contour vector has dimension2 mn and
collectsm different contours related to each camera view. After training, once we have
detected the appearance of a hand gesture in one camera view, in another view there
can be expected only a certain shape. To derive a 3D hand model, the appearance of a
hand gesture in different camera views is analyzed and e. g. a skeleton based model
can be fitted to different silhouettes.

Up to now, merely the pose fitting of a contour was considered, allowing deforma-
tion. However, Alg. 10 has assumed that an approximate fit is given. The estimation
of an initial contour is the hardest problem of contour tracking and is very computa-
tional expensive. The problem addressed here is that of object recognition which is
a well known problem in computer vision and of high complexity. Algorithms like
Hough transformation or more elaborated methods like simulated annealing or genetic
algorithm approaches do exist, but nevertheless reliable results and detection under
realtime constraints are not obtained until now. Thus, most trackers assume an ini-
tial position and orientation of an object, from which point the tracking of contours
works unless the tracker looses the object. Then re-initialization is necessary. Re-
initialization is an undesired procedure while interacting with virtual environments.
Tracking with Kalman filters gives more robustness but is of an increasing uncertainty
if the pose of a shape model can not be verified at each time step. Tracking methods
like the Condensation algorithm [BI94] were proposed to track alternative poses of
detected shapes whose probability is not as high as other poses for a certain moment.
Tracking becomes more reliable by tracking also alternative poses, but this algorithm
is currently applicable only for nearly realtime applications.

6.5.3 Conclusion

Much further research is required for markerless hand tracking. Multiple cameras can
cope with some occlusion problems. Additionally, object recognition is a problem
which has to be examined well before contour fitting, however this problem is still
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unsolved. Detection of a cluster of moving pixels using certain scene constraints is
not to be understood as object recognition. The system should be able to verify at
each moment that it tracks a human hand and not e.g. a book held in hand. Therefore,
current markerless hand tracking can not be considered a method for practical use in
virtual environments, since scene constraints of currently existing trackers must always
pertain, and such trackers do not provide the accuracy and robustness necessary for
interacting with VR applications.
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Chapter 7

Closing Discussion and Future Work

THIS thesis has addressed the problems of tracking human motion for virtual and
augmented reality applications. It has introduced an optimal rotation model for

motion tracking, novel ideas on stereoscopic calibration, a tracking and prediction al-
gorithm, and the implementation of a new optical tracking system for natural interac-
tion in virtual environments. An approach of deformable contour models for real-time
tracking and the interpretation of hand postures were presented that allow pose esti-
mation of non-rigid objects solely based on natural landmarks.

The problems addressed in this work are far from being solved. As has been shown
in Chap. 2, trackers are based on currently available sensor technology. New physical
sensors will be invented in the future allowing the development of new tracking devices
that may overcome disadvantages currently available trackers have. Hybrid tracking
will be the future of human motion capture, but only few implementations have been
done until now. There is also a manifold of sensor combinations, but only little is
known about interrelations, interference and break offs of such systems. Optical track-
ing is in the focus of current research, not only for creating new hybrid trackers, but
also for nearly computer vision based tracking. Marker-based tracking seems to get
out of focus in optical tracking research, but as far as reliable marker-based trackers
still do not exist with respect to different lighting conditions, unique identifications,
matching of rigid bodies and precision, future work should be more concerned with
these problems. Recently, the international symposium on augmented and mixed real-
ity (ISMAR) 2002 has presented an own session for marker-based tracking. One may
claim that marker-based tracking must not be seen as a passing phenomenon.

Markerless tracking is based on scene constraints and fails if the scene does not
meet required assumptions. Deformable models as a principle for natural feature track-
ing have been presented in this work and were chosen due to their power and speed
at segmenting objects under normal environment conditions where few constraints can
be placed upon applications to simplify segmentation. By taking deformable models,
problems like object recognition are easier to handle, since shape information extracted
from camera images must not precisely fit an ideal shape.

Consider for instance the shape of a building. Edge information may be extracted
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Figure 7.1: Natural interaction with virtual characters

from the image of the building and related to ideal edge images of the building. Lens
distortion may cause a bad match of extracted edge information with the underlying
model of the building. As defomation of edges in the direction of a radial lens defor-
mation is allowed, the recognition will be more reliable. Indeed, one may re-distort a
radially distorted image before detecting edges, but this may take much computational
time and cannot be handled in real-time. Unfortunately, current implementations of
deformable models are mostly 2D, and more research is needed for three-dimensional
models. Three-dimensional defomable models will offer a wide area of applications
and may be a break-through for natural feature tracking in augmented reality applica-
tions.

Another interesting field of optical tracking is the development of an unobtrusive
user interface for human computer interaction. For more entertainment related appli-
cations, one might derive emotions and gestures directly from human motion and to
let virtual characters react to them in a natural way (compare Fig. 7.1). The long term
goal is to enable a face-to-face communication with the computer while users will not
notice that they interact with a computer. The proposed contour tracking approach
may be used as a starting point for tracking human motion. But as previously empha-
sized, one of the basic computer vision problems which is object recognition needs to
be solved and should work under different environmental conditions.

Concerning the presented optical tracker, future work will focus on a real-time
tracking system for human motion capture including multiple cameras and an interface
to 3D Studio MaxTM . A link of the tracker to an augmented reality system will allow
actors wearing see-through HMDs to play their role with real-time feedback, e.g. given
by virtual characters. It will also enhance coordination compared to today’s technique
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of putting duct tape on the floor to provide the actors with necessary spatial cues. In
order to enable human body tracking for character animation, the current tracker has
to be extended to a non-rigid human body model. A perspective is given from the
results of the finger tracker presented in this work due to the fact that the tracking
of a finger pose is a non-rigid body motion and thus, a subset of the kinematics of
the whole human body. Furthermore, future work will concentrate on hybrid tracking
extending the proposed Kalman filter formulation for multiple sensor input. Using
DSP and FPGA processors may enhance the frequency and latency of the proposed
tracker.

Another idea is to develop a more elaborated system for wide area tracking using
stereoscopic vision. Outdoor augmented reality may be one of the fascinating appli-
cations in this field. Currently inside-out trackers are most often purely monoscopic.
However, since objects can be detected in the near range of the moving user, stereo-
scopic tracking can improve the accuracy drastically. Also using stereoscopic tracking
does not pose the constraint that the observed scene has to be static.

To sum up, the methods presented in this work provide a strong basis for future
development and contribute to a new form of wireless and natural interaction with 3D
worlds allowing the user to leave the computer behind.
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