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Chapter 1

Introduction

The data for the present research were provided by Univ.-Prof. Dr. Kinga
Howorka of the Department of Biomedical Engineering and Physics, Gen-
eral Hospital of Vienna. This medical data base contains data of diabetic
patients like personal properties, data of medical check-ups and laboratory
data. These data were collected over a period of more than 12 years.

The aim of our survey is to get a better understanding of how the values of
different medical variables, especially those of HbA1c, influence the severity of
late complications, such as kidney failure, retinopathy or high blood pressure
(cf. Howorka, 1996).

However, the patients’ data have been collected during medical check-
ups and are mainly used for the patients’ therapies. Therefore they are
very inhomogeneous. Considering the development and usage of the data
base it is obvious that the length of the time period between two check-ups
of a single patient differs which causes heavy problems when analyzing the
data. Moreover there are lots of missing values because different medical
parameters were measured at different times.

In Chapter 2 we propose ways to solve these problems in order to sta-
tistically analyze the diabetes data. In Chapter 3 and 4 we introduce the
methods which are used for multivariate and time series analysis. Further,
in Chapter 5, we present in detail the results that are delivered by these
methods and summarize our conclusions in Chapter 6. The data sets and
variables used for statistical analysis are described in detail in Appendix A.

Throughout this work we will use the statistical software package .
itself can be downloaded from the webpage http://cran.r-project.org. The
listings of the algorithms can be found in Appendix B.
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Chapter 2

Preparations

In this chapter we briefly introduce the diabetes data set and give a summary
of the problems which occurred while preparing the data for further statistical
analysis and of how we cope with these problems.

2.1 Data Facts

The medical data base provided by Univ.-Prof. Dr. Kinga Howorka of the
Department of Biomedical Engineering and Physics, General Hospital of Vi-
enna, contains data of diabetic patients. The data base has been generated
with the data base program Paradox 7.0 . It contains more than 130 tables
where the patients’ data like personal properties (e.g., gender, age), data of
medical check-ups (e.g., blood pressure, weight) and laboratory data (e.g.,
blood and urine values) are stored. The data were collected from 1988 until
2000.

Our present research is based on a group of 852 patients whose data
are mainly stored in two tables of the data base, namely “laborbef.db” and
“routine.db”. In order to be able to refer to a single patient we will use the
same number which has already been assigned to the patient in the medical
data base. Because we do not take all patients of the data base into account
the patients’ numbers which are displayed in various plots range from 1 to
1198. Moreover in both tables there should also be a primary key for each
observation as a one-to-one representation, i.e., for each observation the pair
of date and the number of the patient should be unique. However, there are
two cases where the date is missing and which we omit for further analysis.
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Another important thing worth mentioning is that the data base contains
personal information. Therefore it is only possible to publish data that is
anonymous.

2.2 Problems of Real Life Data

First of all we may question if the data gathered at the beginning, e.g., in
1988, are comparable with the data gathered later. We may think about the
changing standards of blood analysis in laboratories or of the different ways
how the medical check-up is done. Therefore we restandardize the value of
HbA1c according to the reference ranges for different time periods (for details
see Section 2.3).

As we have mentioned above, the whole medical information is stored in
many different tables, e.g., there is one for the medical check-ups (routine.db),
one consists of the laboratory data (laborbef.db) and another one contains the
retinopathy data (retino.db).

Considering the development and usage of the data base it is obvious
that each patient has a different number of medical check-ups and also the
length of the time period between two check-ups differs which causes heavy
problems when analyzing the data.

Moreover there are lots of missing values. Neither the laboratory data,
e.g., the blood or urine values, nor the data of the medical check-ups, e.g.,
blood pressure or weight, were gathered in the same way for all patients.
That means, for example, that on one hand blood pressure and weight were
never measured from some patients. On the other hand blood values, like
HbA1c, Cholesterol or Triglyceride, and urine values may be measured for
one patient at different times.

In order to do further statistical analysis we merge the two tables, “labor-
bef.db” and “routine.db”, in order to obtain one large data set. Unfortu-
nately, this leads to further problems: the values of HbA1c and blood glucose
are sometimes measured twice because they are recorded in the table “labor-
bef.db” as well as in the table “routine.db”. When looking at one patient we
sometimes observe the value of HbA1c twice a day. In some cases we observe
it only once because the value is missing in one of the former tables. In
other cases an equal value is recorded twice but the date differs a few days.
This happens, for example, if the patient first goes to the laboratory and a
few days later to the medical check-up. Then the same value of HbA1c is

3



recorded on different days. The same is true for the values of blood glucose.
In order to illustrate the problems mentioned above the original values

of the medical parameter HbA1c of some patients are plotted in Figure 2.1.
The horizontal time axis represents 12 years.

Considering for example the time series of patient “171” we note that
at least one value is missing at the beginning, indicated by the missing line
between the second and third value. Moreover, we recognize that at the
beginning of the last third the parameter of HbA1c is measured twice but
the values are different.

Looking at patient “154” in Figure 2.1 we see at the beginning of the
last third that the time period between two measurements is very long with
respect to those of other patients which means that patient “154” had no
medical check-ups in-between.

Furthermore the patients’ series start at different times (for example, see
the time series plot of patient “87” in Figure 2.1 compared to, e.g., patient
“77” or “131”).

2.3 Restandardization of HbA1c

When speaking about the value of HbA1c, denoted by zij, i = 1, . . . , Ij and
j = 1, . . . , 4, where Ij is the total number of observations in the period j
given in Table 2.1, we refer to the patients’ blood value which was measured
by the laboratories and stored in the medical date base. Furthermore we had
four reference ranges for the different periods of time

[`j, uj] together with µj :=
`j + uj

2
, j = 1, . . . , 4, (2.1)

where `j and uj denote the lower and upper limit of the reference range in
the period j (cf. Table 2.1).

In order to compare the values of HbA1c, zij, between two different peri-
ods, we transform them to get a common reference range [`, u] and a common
mean µ = (`+u)/2, where ` and u denote the common lower and upper limit
of the reference range. There are many ways to do this, e.g., taking the mini-
mum `min = min{`1, `2, `3, `4} or the mean ¯̀= (1/4)

∑4
j=1 `j of all four lower

limits `j as common lower limit `. We choose the fourth reference range
[`4, u4] of Table 2.1 as common reference interval because people, like dia-
betic patients or therapists, who daily have to deal with HbA1c values make
use of the values of the latest period.
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Figure 2.1: Original Data of the Variable HbA1c
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Table 2.1: Reference Ranges of HbA1c

j period `j uj µj

1 ≤ 1988-12-31 3.7 5.8 4.75
2 1989-01-01 to 1994-12-31 3.4 6.1 4.75
3 1995-01-01 to 2000-05-31 4.2 6.6 5.40
4 ≥ 2000-06-01 4.1 6.0 5.05

Therefore we get the transformed values of HbA1c, denoted by z∗ij, using
the following linear transformation Tj for each of the first three periods:

z∗ij := Tj(zij), j = 1, 2, 3, (2.2)

where

Tj(z) = (z − µj)
µ4 − `4

µj − `j

+ µ4, j = 1, 2, 3. (2.3)

We easily see that the above transformations Tj satisfy the following:

Tj(`j) = `4

Tj(µj) = µ4

Tj(uj) = u4, j = 1, 2, 3. (2.4)

However, another way would be to use centered values of HbA1c, denoted
by z′ij, instead of the absolute values zij, i.e.,

z′ij := zij − µj, (2.5)

and afterwards apply a transformation T ′
j similar to Tj to obtain common

lower and upper limits for all four periods. This approach is not considered
in the following survey.

2.4 The Area Under the Curve (AUC ) Algo-

rithm

Nevertheless the data show the following three dimensional structure: For
each patient and each medical variable there is a time series.
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For the subsequent multivariate analysis we shrink the time axis to get a
data matrix where we only have one value for each patient and each medical
variable. One possible way of shrinking is the slightly modified Area Under
the Curve-algorithm (AUC ):

AUC :=
1

tn − t1

(
(t2 − t1)

x1 + x2

2
+ . . . + (tn − tn−1)

xn−1 + xn

2

)

=
1

2(tn − t1)

(
(t2 − t1)x1 +

n−1∑

i=2

(ti+1 − ti−1)xi + (tn − tn−1)xn

)
,

where the pair (ti, xi), i = 1, . . . , n, is the i-th measurement of a specific
medical variable, denoted by xi, at date ti and n the number of available
medical check ups of each patient. This statistic is often used in medical
surveys (cf. Howorka et al., 1997, 1998b) and is a weighted mean where the
observations are weighted by the length of the time interval between them.

There are some remarkable properties of AUC : when using AUC to es-
timate the location parameter we do not loose as much information as we
would when using the mean or the median because it is weighted by the
length of the time interval. Furthermore it does not matter if a variable
were measured twice a day. Moreover, assuming equidistant time points, we
obtain approximately the mean.

Applying AUC to our data set, we obtain a data matrix but, unfortu-
nately, there are still missing values because for a few patients some medical
variables were never measured by the laboratory or during a medical check-
up.

7



Chapter 3

Nonlinear Estimation by
Iterative Partial Least Squares

The NIPALS (Nonlinear Estimation by Iterative Partial Least Squares) al-
gorithm was introduced by H. Wold in 1966 as an alternative method for
principal component analysis (PCA). This algorithm and related methods,
all based on the idea of the so-called “criss-cross” or “alternating” regression,
were summarized by the name NILES (Nonlinear Estimation by Iterative
Least Squares) procedures (cf. Wold, 1966).

In the book of Tenenhaus (1998) a version of the NIPALS algorithm is
presented which is also suitable for data matrices with missing values. This
slightly modified algorithm yields a decomposition into principal components,
but it neither omits all the observations with missing values nor has to es-
timate the missing values for PCA. We will go into more details in Section
3.1.1.

An overview of the NIPALS algorithm and related topics can also be
found in Geladi and Kowalski (1986) or in Kavšek (2002).

3.1 The NIPALS Algorithm

As mentioned before, the NIPALS algorithm was developed as an alternative
algorithm for the calculation of principal components. Therefore we will first
outline the main ideas of PCA.

The aim of PCA as well as of NIPALS is to derive a decomposition of
a given data matrix X. Let us suppose that the n × m data matrix X is

8



centered, i.e.,
∑n

i=1 xij = 0, j = 1, . . . , m, and has rank r. Then we consider
the following model

X = TP> + ε

=
k∑

`=1

t.`p
>
.` + ε, (3.1)

where the matrix T has dimension n × k, the matrix P m × k and k ≤ r
is the number of components. The elements tij of the matrix T are called
scores and the elements pij of P are called loadings . During this section the
vector t.` denotes the `-th column of the matrix T and p.` the `-th column
of the matrix P with ` = 1, . . . , k. We note that in Equation (3.1) each of
the outer products t.`p

>
.` of the two vectors t.` and p.` are approximations

of the data matrix X of rank 1. The n × m matrix ε represents the error
which will be made if we take less than r components to approximate the
data matrix X. This error term will be equal to 0 if and only if we use as
many components k as the rank r of X, i.e., if and only if k = r.

Hence, using PCA or NIPALS to decompose the matrix X, we want to
deduce k components (preferably k < r) which contain as much information
of the data stored in the matrix X as possible. The way this decomposi-
tion is done in PCA is completely different to that applied by the NIPALS
algorithm.

The main idea of classical PCA is to transform each observation of the
centered data matrix X, i.e., each row of X. We obtain this linear orthog-
onal transformation by using the side condition that the variation of the
transformed data is maximized in each component. This leads to a spectral
decomposition which is implemented in the statistical software package
either as eigenvalue decomposition or as singular value decomposition.

Contrary to NIPALS , where each component is derived after the other,
classical PCA yields all principal components at once. It is important to know
how many components we have to choose in order to get a good representation
of the original data matrix X. This is done by statistical tests, rules of
thumb or graphically by the so-called screeplot . All methods depend on the
proportion of the variation of each component on the total variation. For
further detailed information on classical principal component analysis see
Mardia et al. (1979) or Everitt and Dunn (2001).

Now Wold (1966) proposed the following iterative algorithm which only
uses simple regressions to derive k principal components of a centered data
matrix X:

9



Step 0: First of all, we put

X(0) := X. (3.2)

For each component `, ` = 1, . . . , k, we compute the following steps,
where Steps 2 to 5 are iterated for each `:

Step 1: Select a column j of X(`−1), e.g., the first one, as starting value
for t.`:

t.` := x
(`−1)
.j , with j = 1. (3.3)

Step 2: Perform the following regression of X(`−1) on t.` with the model

X(`−1) = t.`p
>
.` + ε1

yielding the least squares (LS) solution

p>.` :=
t>.`X

(`−1)

t>.`t.`

. (3.4)

Step 3: Normalize p.`:

p.` :=
p.`

‖p.`‖
. (3.5)

Step 4: Perform the following regression of the transposed model, namely
of (X(`−1))> on p.`,

(X(`−1))> = p.`t
>
.` + ε2

yielding the LS solution

t.` :=
X(`−1)p.`

p>.`p.`

= X(`−1)p.` . (3.6)

The equality in (3.6) holds because we have normalized p.` in (3.5).
Step 5: Stopping rule
One possible stopping rule is to calculate the norm of the vector of differ-

ences between the current t.` and the t.` of the previous iteration and look
whether it is smaller than a given tolerance level or not. If it exceeds our
tolerance limit then Steps 2 to 5 will be repeated, otherwise we will keep t.`

and p.` as the final values or as best approximation of X(`−1) and go to Step
6.

10



Step 6: Calculate the residuals and return to Step 1 to compute the next
component:

X(`) := X(`−1) − t.`p
>
.` . (3.7)

The NIPALS algorithm delivers a decomposition of the n×m data matrix
X into an n × k matrix T of scores and an m × k matrix P of loadings
according to the model (3.1) which are at least approximately equal to those
obtained by principal component analysis.

We note that all t.` as well as all p.`, ` = 1, . . . , k, are orthogonal to
each other like in classical principal component analysis. This is achieved by
the LS regressions in (3.4) and (3.6) and the calculation of the residuals in
(3.7). Moreover the p.` are normalized to length one because of (3.5) as this
is required in PCA.

Further we remark that both LS solutions of the multivariate regressions
in (3.4) and (3.6) can also be obtained by simple regressions without inter-
cept. We do not need to estimate an intercept because we assume that the
data has been centered. The j-th coordinate pj`, j = 1, . . . , m, of the `-th
loadings vector p.` is the regression coefficient of the regression of the j-th

column x
(`−1)
.j of the matrix X(`−1) on the scores vector t.`. Respectively, the

same is true for t.` in the second case. Furthermore, as p.` is normalized in
(3.5), we can interpret the coordinates ti`, i = 1, . . . , n, of t.` as length of the

projection of the i-th row x
(`−1)
i. of X(`−1) onto the one-dimensional linear

subspace engendered by the vector p.`.
However, because of these regressions, first the regression of the columns

x
(`−1)
.j , j = 1, . . . ,m, of the matrix X(`−1) in (3.4) and then the regression

of the rows x
(`−1)
i. , i = 1, . . . , n, of X(`−1) in (3.6), Wold (1966) called this

principle “criss-cross” or “alternating” regression. Hence, the NIPALS al-
gorithm estimates the parameters of a non linear model–in fact bilinear–and,
according to Tenenhaus (1998), the word “partial” comes from the fact that
the algorithm uses the whole data and only one part of the parameters,
namely those which are obtained by the regression before, to calculate the
other ones.

Anyway, the iteration of the NIPALS algorithm usually stops quite soon
in practical situations, which means that the convergence of t.`, ` = 1, . . . , k,
is achieved.

Furthermore let us consider that we compute only the first component
and assume that the NIPALS algorithm converges to the fixed point t.1 to
see how the algorithm works. We also note that t>.1t.1 in (3.4) and ‖p.1‖ in
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(3.5) are scalars. Then we can rewrite Equation (3.4) and get

c1p
>
.1 = t>.1X , (3.8)

where c1 := t>.1t.1. Further we also rewrite Equation (3.6) which yields

c2t.1 = Xp.1 , (3.9)

where c2 := ‖p.1‖. We remark that the vector p.1 in Equation (3.9) is the
same as in Equation (3.8). Therefore we have to multiply the left side of
Equation (3.9) by the factor c2. Now we substitute Equation (3.9) into (3.8)
and get

c1c2p
>
.1 = p>.1X

>X .

The above equation can be transformed into

(X>X − CIm)p.1 = 0 , (3.10)

where C := c1c2 and Im is the m×m identity matrix. We can also substitute
Equation (3.8) into (3.9), respectively, to obtain

(XX> − CIn)t.1 = 0 .

Moreover we note that X>X is proportional to the estimated covariance
matrix of the data and that Equation (3.10) is the eigenvalue/eigenvector
equation used in the classical calculation of principal components.

3.1.1 The NIPALS Algorithm for Missing Values

The NIPALS algorithm for missing values, presented in the book of Tenen-
haus (1998), is a modified version of the original NIPALS algorithm and
delivers an approximation of the scores vectors t.` and the loadings vectors
p.`, ` = 1, . . . , k. As we have mentioned above, we neither need to estimate
the missing values before applying the algorithm nor we need to omit the ob-
servations with missing values. Moreover the NIPALS algorithm for missing
values yields estimations of the missing values of the data matrix X.

The main idea of the NIPALS algorithm for missing values is to use only
the existing values of the data matrix X. Therefore, rewriting the model
(3.1), we obtain the following for one element xij of the data matrix X:

xij = t>i. pj. + εij

=
k∑

`=1

ti`pj` + εij , (3.11)
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for i = 1, . . . , n and j = 1, . . . , m.
Compared to the above definition of the NIPALS algorithm the following

changes are made.
We replace (3.4) by the following:

Step 2∗: For j = 1, . . . , m calculate

pj` :=

∑
{1≤i≤n : xij and ti` are available} x

(`−1)
ij ti`∑

{1≤i≤n : xij and ti` are available} t2i`
. (3.12)

We note that it is also possible that the obtained vector p.` in (3.12) contains
missing values, i.e., one or more pj` cannot be calculated because neither
values xij nor ti` are available for the same i.

Hence, the Euclidean norm in (3.5) has to be newly defined by

‖p.`‖2
new :=

∑

{1≤j≤m : pj` are available}
p2

j` (3.13)

and (3.5) is replaced by
Step 3∗:

pj` :=
pj`

‖p.`‖new

, (3.14)

for all available pj`.
Consequently, we replace (3.6) by:

Step 4∗: For i = 1, . . . , n calculate

ti` :=

∑
{1≤j≤m : xij and pj` are available} x

(`−1)
ij pj`∑

{1≤j≤m : xij and pj` are available} p2
j`

. (3.15)

Moreover we note that (3.15) cannot be simplified in the same way as (3.6)
because some additional values xij may be missing.

As mentioned in Section 3.1, the LS solution of the multivariate regres-
sion of Step 2 in (3.4) or of Step 4 in (3.6) is the same as performing simple
regressions without intercept yielding a least squares solution of each co-
ordinate of p.` or t.`, ` = 1, . . . , k. This is also done in (3.12) and (3.15)
whereas only the existing values are taken into account. This means, we
only use those pairs {(ti`, x(`−1)

ij ) : 1 ≤ i ≤ n, xij and ti` are available} and

{(pj`, x
(`−1)
ij ) : 1 ≤ j ≤ m,xij and pj` are available} to estimate the regres-

sion parameter pj` or ti`, respectively.

13



It is obvious that if we use a full data matrix X with no missing values,
both, the NIPALS algorithm and the above one, which is modified in order
to be able to cope with missing values, will deliver the same results.

Furthermore, considering the model (3.11), we can easily estimate the
missing values of the data matrix X:

x̂ij := t>i. pj. =
k∑

`=1

ti`pj` . (3.16)

This means, we assume that the missing values are exactly in accordance
with the model (3.1) or (3.11), respectively.

Nevertheless we have to make sure that neither a complete row nor an
entire column of the data matrix X is missing because we do not get any
estimations of these values. If this is the case we will have to omit these rows
or columns before applying the NIPALS algorithm for missing values.

However, the NIPALS algorithm for missing values usually delivers good
approximations of the scores vectors t.` and the loadings vectors p.`, ` =
1, . . . , k, if the data matrix X does not consist of too many missing values.

3.2 Simulation

In this section we present the results of our simulations. First we check
whether the principal components delivered by the NIPALS algorithm ap-
proximate the original data are as good as those delivered by the function
princomp. Then we do the same comparing the original NIPALS algorithm
and the NIPALS algorithm for missing values. The listing of the used algo-
rithms is attached in Appendix B.

In both cases the data are multivariate normally distributed with mean
vector 0 and a given covariance matrix S. Instead of choosing an arbitrary
covariance matrix first and scaling the simulated data matrix afterwards, we
use a correlation matrix from the beginning. Assuming that the used data
matrix is n×m we have an m×m correlation matrix S. The elements of S
are computed according to the following formula:

sij := 1− γ(|i− j|) i, j = 1, . . . ,m, (3.17)

where γ(.) is defined by

γ(h) :=

{
C(3

2
h
a
− 1

2
(h

a
)3) : h ≤ a

C : h > a .
(3.18)
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The function γ(.) in (3.17) and (3.18) is called spherical variogram and is
used in geostatistics (cf. Journel and Huijbregts, 1978). The parameter a is
called the range and C is the sill . In our simulations we choose a := m− 1
and C := 1. Therefore all sij, i, j = 1, . . . , m are between zero and one with
sii = 1, for all i = 1, . . . , m, and s1m = sm1 = 0.

Anyway we simulate a 500×6 data matrix X that is multivariate normally
distributed with mean vector 0 and correlation matrix S as described above.

In order to compare the resulting approximation of the simulated data
matrix X we compute k principal components, especially a 500 × k scores
matrix T and a 6 × k loadings matrix P , applying the function princomp
and the NIPALS algorithm. (However, the function princomp delivers all
principal components at once, in this case, we take only the first k ones.)

With each algorithm an approximation X̂
(`)

, ` ∈ {PCA,NIPALS}, of the
originally simulated data matrix X is calculated according to the model (3.1).

Then we subtract the approximated data matrix X̂
(`)

, ` ∈ {PCA,NIPALS},
from the original X. This yields two error matrices, denoted by E(PCA)

and E(NIPALS). In order to compare the results we compute four different
statistics of each error matrix, namely for ` ∈ {PCA,NIPALS},

(a) e
(`)
Frobenius := tr(E(`)>E(`)) = tr(E(`)E(`)>) , (3.19)

(b) e(`)
max := maxi=1,...,500, j=1,...,6| e(`)

ij | , (3.20)

(c) e(`)
mean := avei=1,...,500, j=1,...,6| e(`)

ij | , (3.21)

(d) e
(`)
median := medi=1,...,500, j=1,...,6| e(`)

ij | , (3.22)

where E(`) = (e
(`)
ij ) with ` ∈ {PCA, NIPALS} and tr(A) denotes the trace of

an arbitrary square matrix A. The functions max (.), ave(.) and median(.)
denote the maximum, the mean and the median, respectively.

In (3.19) we compute the Frobenius norm of both error matrices, which

is the sum of squares of all elements e
(`)
ij of E(`), ` ∈ {PCA,NIPALS}. Next,

in (3.20), the maximum absolute value gives the largest deviation between
the approximated data and the original one. Finally, in (3.21) and (3.22),

we calculate the mean and the median of | e(`)
ij |, i = 1, . . . , 500, j = 1, . . . , 6,

respectively.
Moreover we determine the relative errors

erel, a :=
e(PCA)

a − e(NIPALS)
a

e
(PCA)
a

,
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a ∈ {Frobenius, max, mean, median} . (3.23)

This is done a hundred times. Afterwards we take the mean of the
absolute errors, e(PCA)

a and e(NIPALS)
a , and of the relative error, erel, a, a ∈

{Frobenius, max, mean, median}, and also compute the standard error (s.e.)
of the mean according to the formula:

s.e. :=
s√
n

, (3.24)

where s denotes the standard deviation and n the number of simulations
(100).

The mean errors for different numbers k of components along with their
standard errors, given in parentheses, are printed in Table 3.1 and 3.2.

Table 3.1: Mean and Standard Error of e(PCA)
a and e(NIPALS)

a

a Components princomp NIPALS

Frobenius 2 25.1929(0.0484) 25.1929(0.0484)
3 17.8970(0.0345) 17.8970(0.0345)
4 13.3932(0.0287) 13.3951(0.0289)
5 8.8661(0.0248) 8.8746(0.0259)

Maximum 2 1.8464(0.0155) 1.8463(0.0155)
3 1.2606(0.0125) 1.2606(0.0125)
4 1.0527(0.0111) 1.0514(0.0108)
5 0.7540(0.0087) 0.7587(0.0091)

Mean 2 0.3627(0.0007) 0.3627(0.0007)
3 0.2595(0.0006) 0.2595(0.0006)
4 0.1876(0.0005) 0.1876(0.0005)
5 0.1166(0.0006) 0.1167(0.0005)

Median 2 0.3006(0.0008) 0.3006(0.0008)
3 0.2176(0.0007) 0.2176(0.0007)
4 0.1476(0.0006) 0.1476(0.0006)
5 0.0810(0.0010) 0.0809(0.0010)

We note that the mean errors in Table 3.1 comparing princomp and NI-
PALS are of the same order, which is also true for their standard errors, and
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Table 3.2: Mean and Standard Error of erel, a

a Components Mean Relative Error

Frobenius 2 −2.65× 10−08(1.72× 10−09)
3 −9.26× 10−08(1.22× 10−08)
4 −1.41× 10−04(2.15× 10−05)
5 −9.41× 10−04(2.57× 10−04)

Maximum 2 3.39× 10−05(1.86× 10−05)
3 2.17× 10−05(2.55× 10−05)
4 7.26× 10−04(1.96× 10−03)
5 −7.04× 10−03(4.84× 10−03)

Mean 2 −4.60× 10−07(5.51× 10−07)
3 5.98× 10−07(1.32× 10−06)
4 −1.57× 10−04(2.20× 10−04)
5 −6.04× 10−04(1.86× 10−03)

Median 2 2.73× 10−05(2.85× 10−05)
3 −5.55× 10−05(5.68× 10−05)
4 −2.96× 10−04(8.66× 10−04)
5 −7.61× 10−04(5.61× 10−03)

decrease with increasing number k of components. This is, because the orig-
inal data will be approximated better and better if we take more and more
components. Moreover the mean relative errors in Table 3.2 nearly vanish
and are not significantly different from zero. This confirms the results of our
example in Section 3.3.

Missing Values

In the same way we compare the results obtained by the NIPALS algorithm
and the NIPALS algorithm for missing values.

Again we simulate a 500×6 data matrix X that is multivariate normally
distributed with mean vector 0 and the same correlation matrix S as be-
fore. Additionally 15% of the data are randomly chosen and set to NA (Not
Available).

Then k principal components of the full data matrix are calculated by
the NIPALS algorithm and also k principal components of the data matrix
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with missing values are computed by the NIPALS algorithm for missing
values. Afterwards we obtain two error matrices, denoted by E(NIPALS) and
E(NIPNA), in the same way as before by subtracting the approximated data

matrix X̂
(`)

, ` ∈ {NIPALS ,NIPNA}, from the original one X. Again we
get absolute errors, e(NIPALS)

a and e(NIPNA)
a , and are also able to calculate a

relative error, e
(miss)
rel, a , according to the formula

e
(miss)
rel, a :=

e(NIPALS)
a − e(NIPNA)

a

e
(NIPALS)
a

,

a ∈ {Frobenius, max, mean, median} . (3.25)

In the same way as before, this is done a hundred times. The mean errors
for different numbers k of components along with their standard errors, given
in parentheses, are displayed in Table 3.3 and 3.4.

Table 3.3: Mean and Standard Error of e(NIPALS)
a and e(NIPNA)

a

a Components NIPALS NIPALS for M.V.

Frobenius 2 25.3380(0.0433) 27.4483(0.0517)
3 18.1030(0.0352) 21.9209(0.0482)
4 13.6193(0.0363) 19.2817(0.0539)
5 9.1788(0.0326) 17.3349(0.0582)

Maximum 2 1.8691(0.0166) 2.6524(0.0437)
3 1.2699(0.0120) 2.5284(0.0425)
4 1.0573(0.0102) 2.5629(0.0438)
5 0.7559(0.0084) 2.5953(0.0431)

Mean 2 0.3648(0.0007) 0.3874(0.0007)
3 0.2626(0.0005) 0.2974(0.0006)
4 0.1918(0.0006) 0.2424(0.0006)
5 0.1244(0.0007) 0.1924(0.0007)

Median 2 0.3023(0.0008) 0.3140(0.0009)
3 0.2202(0.0006) 0.2300(0.0007)
4 0.1524(0.0007) 0.1693(0.0007)
5 0.0913(0.0012) 0.1126(0.0010)

We note that, as before, the mean errors of the NIPALS algorithm in
Table 3.3 decrease with increasing number k of components, but compared
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Table 3.4: Mean and Standard Error of e
(miss)
rel, a

a Components Mean Relative Error

Frobenius 2 −0.0833(0.0009)
3 −0.2110(0.0020)
4 −0.4162(0.0035)
5 −0.8900(0.0070)

Maximum 2 −0.4261(0.0241)
3 −1.0092(0.0389)
4 −1.4471(0.0479)
5 −2.4727(0.0681)

Mean 2 −0.0620(0.0007)
3 −0.1326(0.0012)
4 −0.2637(0.0021)
5 −0.5503(0.0063)

Median 2 −0.0387(0.0016)
3 −0.0444(0.0021)
4 −0.1116(0.0036)
5 −0.2476(0.0151)

to them the mean errors of the NIPALS algorithm for missing values are
significantly larger in each case. This causes the negative relative errors in
Table 3.4. However, considering the NIPALS algorithm for missing values,
the mean of e(NIPNA)

max stays approximately constant for all numbers of compo-
nents whereas the mean of e(NIPNA)

mean decreases in the same way as that of the
NIPALS algorithm. The latter effect can also be found when looking at the
mean of e

(NIPNA)
Frobenius but it becomes most obvious when analyzing the mean of

e
(NIPNA)
median as the median is robust against outliers. (Note that the maximum

absolute value in (3.20) only considers the extreme values of the error matrix
E(`), ` ∈ {NIPALS ,NIPNA}.)
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3.3 An Example

In this section we give an example to get a better understanding of how
the NIPALS algorithm works and missing values are estimated. As NIPALS
is an alternative algorithm for principal component analysis (PCA) we will
compare its results to those of other algorithms for PCA. As example we use
the euro86 data set which is described in Appendix A in detail.

In Appendix B the implemented versions of both NIPALS algorithms are
printed.

First we calculate the principal components of the euro86 data set using
the NIPALS algorithm introduced in Section 3.1 and then we compare its re-
sults to those delivered by the function princomp of . For the classical PCA
we use the function princomp, which performs an eigenvalue/eigenvector
decomposition of the estimated covariance matrix, instead of the function
prcomp that obtains the principal components by a singular value decompo-
sition of the data matrix X. At last we remove some elements of the euro86
data and replace them by “NA” (Not Available). Then we calculate the prin-
cipal components with the NIPALS algorithm for missing values introduced
in Section 3.1.1 and compare the results. This will give us an idea of how
the missing values are estimated.

As mentioned above, in contrary to the NIPALS algorithm all principal
components are deduced at once by the function princomp. The number of
components to be used for explaining the data set and further analysis is
decided afterwards. The importance of each component is decreasing with
increasing index. The decision of how many components we should choose
can be done graphically by the so-called screeplot . The screeplot shows the
proportion of each component on the total variation, i.e., for each scores
vector t.` we calculate

Var(t.`)∑k
`=1 Var(t.`)

=

∑n
i=1(ti` − t̄.`)

2

∑k
`=1

∑n
i=1(ti` − t̄.`)2

` = 1, . . . , k , (3.26)

where Var(t.`) denotes the empirical variance and t̄.` the mean of each scores
vector t.`. We note that if the scores are derived by classical principal com-
ponent analysis the following equation will hold:

Var(t.`) = λ` ` = 1, . . . , k ,

where λ` is the `-th eigenvalue of the estimated covariance matrix Ĉov(X) of
the data. Therefore for reasons of comparability also as many components as
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are returned by the function princomp have to be calculated by the NIPALS
algorithm.

To present the results gained with either of the algorithms we choose the
well-known biplot (cf. Gower and Hand, 1996). This plot is a two dimensional
approximation of the original data. In this graphic both, the observations and
the variables of the two dimensional approximation of the data matrix X, are
printed. After an additional scaling each observation is represented by the
first and second scores vector t.1 and t.2 and each variable is approximated
by the first and second loadings vector p.1 and p.2. This representation of the
data has some remarkable properties. The inner product of the two vectors
(ti1, ti2)

> and (pj1, pj2)
> approximates xij, i = 1, . . . , n and j = 1, . . . , m.

Furthermore the cosine of the angle between the two vectors (pi1, pi2)
> and

(pj1, pj2)
> approximates the correlation between the i-th and j-th variable of

X, i, j = 1, . . . , m.
When computing principal components with different algorithms the com-

ponents sometimes differ by the multiplicative factor −1. Therefore, in order
to compare both biplots , we change the direction of the first scores and load-
ings vector obtained by the function princomp, i.e., we multiply them with
the factor −1.

As input of the algorithms we use mean-centered and scaled data matri-
ces, the maximal number of iterations to be performed is set to 10 and as
tolerance level of the precision of the scores vectors we choose 10−4. Practice
has shown that in general 10 iterations are sufficient to get quite a good
result. Still, with a higher number of iterations and a lower tolerance level
more exact components would be gained but the difference will normally
only show up in the third or fourth decimal places which has no impact on
practical surveys.

Now we calculate the principal components of the euro86 data set using
the NIPALS algorithm. The biplot of the first and second component is
shown in Figure 3.1. They explain 68% of the total variation of the euro86
data set. The screeplot of the results of the NIPALS algorithm is displayed
in Figure 3.2. It shows a high importance of the first component followed by
the components 2 to 7 with successive decreasing importance. The increasing
value of component 5 is due to the algorithm.

Compared to the above biplot the function princomp yields principal
components that are only slightly different (cf. Figure 3.3). The first and
second component explain again 68% of the total variation of the data set.
The corresponding screeplot of the function princomp is shown in Figure 3.4.
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Figure 3.1: Biplot of NIPALS for euro86
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Figure 3.2: Screeplot of NIPALS for euro86
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Figure 3.3: Biplot of princomp for euro86
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Figure 3.4: Screeplot of princomp for euro86
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A first glance at the biplots shows an outlier: Albania (al). This suspect is
proved by further investigation. Its impact on the size and direction becomes
clear when we apply the NIPALS algorithm once more and look at the biplot
of the euro86 data set reduced by the observation Albania (cf. Figure 3.5).
In this case the first and second component explain 58% of the total variation
of the remaining data set (cf. Figure 3.6).

Figure 3.5: Biplot of NIPALS for euro86 without Albania (al)

The same behavior can be found when applying princomp to the euro86
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Figure 3.6: Screeplot of NIPALS for euro86 without Albania (al)
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data set without Albania (cf. Figure 3.7). Again the first and second com-
ponent explain 58% of the total variation (cf. Figure 3.8).

Figure 3.7: Biplot of princomp for euro86 without Albania (al)

The change in the importance of the components calculated with either of
the algorithms is striking (cf. Figures 3.2 and 3.6 for the NIPALS algorithm
and Figures 3.4 and 3.8 for the function princomp).

We note that in the case of the reduced data set the NIPALS algorithm
really gives components of decreasing importance. While the first result
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Figure 3.8: Screeplot of princomp for euro86 without Albania (al)
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with Albania shows great importance in the first and second component but
only minor importance in components 3 to 5, there is a shift of importance
mainly from the second towards components 3 to 6. So, in the case of further
analysis, if we first decided to use five components (i.e., 94% of the total
variation) when working with the contaminated data set, we would now,
after the removal of Albania, revise our decision and also take the sixth
component into account (i.e., 95% of the total variation, instead of only 90%
for components 1 to 5).

As the function princomp and the NIPALS algorithm give similar results
the interpretations of the first and second principal component are valid for
both.

The first principal component of the euro86 data set without Albania
(al) has in its negative part female and male life expectation as the only
influence. In this region we find the rich countries: the northern European
countries (nl, n, s, sf, dk, b) but also Switzerland (ch), Spain (e), Greece (gr),
Germany (d), Great Britain (gb), France (f) and Italy (i). Opposed to it, in
the positive part, the infant mortality has strong influence along with baby
underweight. This makes sense as better life circumstances reduce the cases
of infant mortality. There we find the poor countries: the eastern European
countries like the Soviet Union (su), Yugoslavia (yu), Romania (ro), Poland
(pl), Hungary (h), Czechoslovakia (cs), Bulgaria (bg) and Eastern Germany
(ddr), but also Portugal (p).

The second principal component is expressed by high values of calories
per day and a higher percentage of women in the negative axis and high
population growth combined with women in the right age for giving birth and
many inhabitants per doctor in the positive part. Again many inhabitants
per doctor reduce the life quality whereas higher portions of calories are a
sign of wealth. It is also well-known that in poor countries the population
grows faster than in developed countries where it even decreases.

Moreover the variables life expectation of men and women are positively
correlated, so are population growth and inhabitants per doctor. On the
other hand either of both life expectations and the variable infant mortality
are negatively correlated.

The differences between the first two components of the euro86 data set
without Albania calculated with the function princomp and the NIPALS
algorithm are shown in Figure 3.9.

Now, assuming that the values of the variables population growth and
inhabitants per doctor of the observation Albania (al) are missing, we replace
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them by NAs (Not Available). After centering and scaling of the data set,
in order to obtain principal components we apply the NIPALS algorithm for
missing values. The biplot of the first and second components is shown in
Figure 3.10. They explain 63% of the total variation of the euro86 data set
with missing values. The corresponding screeplot of the NIPALS algorithm
for missing values is displayed in Figure 3.11. We note that in this case the
importance of each component decreases with increasing index.

Furthermore we are able to estimate the missing values according to
(3.16). The estimated and original values are compared in Table 3.5.

Table 3.5: Estimated and Original Values of Albania

estimated original

pop growth 1.18 1.80
inhab/doc 856.50 2100.00

We obtain the estimated values in Table 3.5 by applying the inverse cal-
culation of the standardization. The big differences between the estimated
and original values result from the fact that Albania appears to be an out-
lier. However, although the estimates of the variables population growth
and inhabitants per doctor are smaller than the original values, they are still
greater than the values of all other observations.
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Figure 3.9: Scatterplot of princomp versus NIPALS in the First and Second
Component for euro86 without Albania (al)
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Figure 3.10: Biplot of NIPALS for euro86 with Missing Values of Albania
(al)
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Figure 3.11: Screeplot of NIPALS for euro86 with Missing Values of Albania
(al)
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Chapter 4

Time Series Analysis

In this section we present the methods which are used for the statistical time
series analysis of the diabetes data in Chapter 5.

First, in Section 4.1, we summarize the methods that we use to extract
proper time series from the diabetes data base. Then, in Section 4.2, we
describe the algorithm that delivers appropriate estimates of the missing
values. Last, in Section 4.3, some basic concepts of time series analysis are
presented and we describe the autoregressive model with exogenous variables
that will be fitted to the diabetes data.

4.1 Extraction of Time Series

In order to apply methods of time series analysis we first extract proper time
series from the diabetes data base.

As mentioned before, for each patient the medical parameters have been
gathered during medical check-ups and the time between two medical check-
ups varies. Therefore, considering a patient’s time series of a specific medical
parameter, e.g., the time series of HbA1c, the time between two measure-
ments is not constant.

Hence, in order to obtain equally spaced measurements in time, we divide
the year into trimester because the average of the patients had three check-
ups a year. For each medical variable of each patient we aim for getting a
time series with one measurement each trimester. For each single patient,
starting with that trimester that contains the first medical check-up, we
continue until the last check-up as described in the following. Considering
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only one medical variable first, if there are more measurements than one
during a trimester we will randomly take one value. This is done because of
statistical inference. If we took the mean instead this would lead to different
variances of the measurements of a parameter’s time series. If there is only
one measurement during a trimester we will take this one. Finally, if there
is no measurement during the trimester we put the value to Not Available
(“NA”). This is done for each medical variable.

Now the resulting time series which we obtain for each medical variable
of each patient after applying the above procedure are equally spaced in
time with exactly one measurement each trimester which either exists or is
NA. The way we cope with the NAs is described in detail in a later section
(cf. Section 4.2).

Anyway, we note that, considering one patient, all time series of different
medical variables start in the same trimester and have an equal number of
measurements. On the contrary, considering different patients, the time series
of the same medical variable may start in different trimester and may also
have a different number of measurements. Therefore, in order to compare
time series of different patients, we choose the trimester of the first medical
check-up of each patient as common starting value.

For further time series analysis we concentrate on those patients with
relatively “long” time series. Additionally we demand that the time series of
those medical variables that we have selected for further investigations only
have few missing values (see also Section A.3 for details).

4.2 Estimation of Missing Values

In this section let us consider only one single patient first. As mentioned
before, the time series of some medical variables may still contain missing
values. We now estimate these missing values taking the information of the
remaining medical variables into account. This method that makes use of
the correlative structure of the data is called First-Order Regression (FOR)
and is described in Rao and Toutenburg (1995).

Let X be the n × m data matrix of a single patient with m medical
variables and n trimester. We further pretend, only for the estimation of the
missing values, that the n measurements of each variable are independent.
Let

Ij := {i : xij is missing} , j = 1, . . . , m , (4.1)
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denote the index set of the missing values of x.j, where x.j is the j-th column
of the data matrix X. Further let I =

⋃m
j=1 Ij. Now the dependence of

any column x.j, j ∈ {1, . . . , m}, with the remaining columns is modeled by
additional regressions, i.e.,

xij = θ0j +
m∑

k=1
k 6=j

xikθkj + εij , i /∈ I . (4.2)

The missing values xij of X are estimated and replaced by

x̂ij = θ̂0j +
m∑

k=1
k 6=j

xikθ̂kj , i ∈ Ij . (4.3)

However, we note that when calculating x̂ij, with i ∈ Ij and j fixed, all
values xik, k ∈ {1, . . . , m} and k 6= j, have to exist.

Therefore in case of non disjoint sets of indices Ij we have to choose some
initial values. Hence, in order not to destroy a possible trend of the time
series of each medical variable, we propose the following: If the first or the
last value of the time series is missing we will replace it by the neighboring
value, i.e., by the value of the second trimester or the trimester before the
last, respectively. On the contrary, if k values xi+`,j, ` = 1, . . . , k, of the j-th
medical variable are missing in between, we will linearly interpolate them,
i.e.,

xi+`,j :=
xi+k+1,j − xij

k + 1
` , ` = 1, . . . , k . (4.4)

The procedure described above is applied to all remaining patients. For
each patient we now obtain m complete time series.

4.3 Autoregressive Moving Average Models

Generally a time series can be considered as a collection of random variables
indexed according to the order they are obtained in time. This collection is
usually referred to as a stochastic process and the observed values are referred
to as a realization of the underlying stochastic process.

The simplest kind of time series is the univariate time series

xt , t = 1, . . . , n , (4.5)
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which we use to introduce the basic concepts of time series analysis. In this
text the index t will vary over the integers or some subset of the integers.

For example let us consider a collection of uncorrelated random variables
wt with mean 0 and finite variance σ2

w. Such a generated time series is
called white noise. An important white noise series is Gaussian white noise,
wherein the wt are independent and identically distributed (iid) normal ran-
dom variables , with mean 0 and variance σ2

w.
When there are more than one jointly measured time series it will be useful

to consider the notion of a vector-valued time series xt = (x1 t, . . . , xmt)
>

which contains as its components m univariate time series.
In the case of the diabetes data we observe cross-sectional data yt`, where

yt` denotes the m-dimensional time series of the patient `, ` = 1, . . . , N . Each
time series yt` contains as its components the univariate time series yi,t,` of
m medical variables with i = 1, . . . , m, and we assume that time series of
different patients are independent.

4.3.1 Autocorrelation and Cross-correlation Function

The mean value function of a univariate time series xt, t = 1, . . . , n, is defined
as

µt = E(xt) . (4.6)

The lack of independence between two adjacent values xs and xt of the
same time series can be assessed numerically, as in classic statistics, using
the notion of covariance. Hence, the autocovariance function is defined as
the second moment product

γx(s, t) = E((xs − µs)(xt − µt)) , for all s and t. (4.7)

The autocovariance function measures the linear dependence between two
points on the same series observed at different times.

The preceding definitions of the mean and autocovariance functions are
completely general. However, in order to do some statistical inference, we
have to assume that a sort of regularity may exist over time in the behavior of
a time series. Therefore we introduce the concept of stationarity. A weakly
stationary time series has to fulfill the following properties: (i) the mean
value function µt in (4.6) is constant, i.e., it does not depend on time t, and
(ii) the autocovariance function γx(s, t) in (4.7) depends on s and t only by
their difference h = s − t, where h is called the lag . Now we are able to
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define the mean value and autocovariance function of a weakly stationary
time series as

E(xt) = µx (4.8)

and
γx(h) = E((xt+h − µx)(xt − µx)) , (4.9)

where, for convenience, we write γx(h) instead of γx(t + h, t). We note that
the autocovariance function satisfies γx(h) = γx(−h). The autocorrelation
function (ACF) of a stationary time series can be written as

ρx(h) =
γx(t + h, t)√

γx(t + h, t + h)γx(t, t)
=

γx(h)

γx(0)
. (4.10)

When several stationary time series are available, say, xt and yt, we often
would like to measure the predictability of the series yt from the series xt,
leading to the notion of the cross-covariance function of stationary time
series,

γxy(h) = E((xt+h − µx)(yt − µy)) . (4.11)

We note that the cross-covariance function satisfies γxy(h) = γyx(−h). The
scaled version of the above, called cross-correlation function (CCF) of sta-
tionary time series, is defined as

ρxy(h) =
γxy(h)√

γx(0)γy(0)
. (4.12)

Estimation

Assuming stationarity we are able to estimate the mean value function (4.8)
if it is constant by replacing the average over the population, denoted by E,
with an average over the sample, say,

x̄ =
1

n

n∑

t=1

xt (4.13)

and the theoretical autocovariance (4.9) by the sample autocovariance func-
tion

γ̂x(h) =
1

n

n−h∑

t=1

(xt+h − x̄)(xt − x̄) , h = 0, . . . , n− 1 , (4.14)
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with γ̂x(−h) = γ̂x(h). The estimator in (4.14) is generally preferred to the
one that would be obtained by dividing by n − h because (4.14) is a non-
negative definite function. We note that neither dividing by n nor n − h in
(4.14) yields an unbiased estimator of γx(h) (cf. Shumway and Stoffer, 2000;
Deistler and Scherrer, 1994).

The sample autocorrelation function of a stationary time series is defined,
analogously to (4.10), as

ρ̂x(h) =
γ̂x(h)

γ̂x(0)
. (4.15)

Further we can prove that if the series xt is a white noise process, then
ρ̂x(h) will be approximately normal with mean ρx(h) = 0 for all h 6= 0, and
the standard error reduces to

σρ̂x(h) =
1√
n

. (4.16)

Based on the above result, we obtain a rough method whether correlations
are statistically significant at some lags by determining whether the observed
peak in ρ̂x(h) is outside the interval ±z1−α/2/

√
n, where z1−α/2 denotes the

value of the (1− α/2) quantile.
The estimators for the cross-covariance function γxy(h) as given in (4.11)

and the cross-correlation function ρxy(h) in (4.12) are given by the sample
cross-covariance function of stationary time series

γ̂xy(h) =
1

n

n−h∑

t=1

(xt+h − x̄)(yt − ȳ) , h = 0, . . . , n− 1 , (4.17)

where γ̂xy(−h) = γ̂yx(h) determines the function for negative lags, and the
sample cross-correlation function

ρ̂xy(h) =
γ̂xy(h)√

γ̂x(0)γ̂y(0)
. (4.18)

Again we have a similar result as for the sample autocorrelation function.
The large sample distribution of ρ̂xy(h) is normal with mean zero and

σρ̂xy(h) =
1√
n

, (4.19)

if at least one of the processes is white noise.
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In case of cross-sectional data we propose the following modification of
the sample autocovariance function γ̂x(h) as given in (4.14) and define the
sample autocovariance function for cross-sectional data as

γ̂i(h) =
1

Nn

N∑

`=1

n−h∑

t=1

(yi,t+h,` − ȳi)(yi,t,` − ȳi) , h = 0, . . . , n− 1 , (4.20)

where ȳi = 1
Nn

∑N
`=1

∑n
t=1 yi,t,` and γ̂i(−h) = γ̂i(h), with i = 1, . . . ,m.

As above the sample autocorrelation function for cross-sectional data is
defined as

ρ̂i(h) =
γ̂i(h)

γ̂i(0)
. (4.21)

Similarly we modify the sample cross-covariance function γ̂xy(h) as given
in (4.17) and the sample cross-correlation function ρ̂xy(h) in (4.18) and define
the sample cross-covariance function for cross-sectional data as

γ̂ij(h) =
1

Nn

N∑

`=1

n−h∑

t=1

(yi,t+h,` − ȳi)(yj,t,` − ȳj) , h = 0, . . . , n− 1 , (4.22)

where γ̂ij(−h) = γ̂ji(h) determines the function for negative lags, and the
sample cross-correlation function as

ρ̂ij(h) =
γ̂ij(h)√

γ̂i(0)γ̂j(0)
. (4.23)

4.3.2 Partial Autocorrelation Function

Formally, for a stationary time series xt, t = 0, 1, 2, . . . , we define the partial
autocorrelation function (PACF) φhh, h = 1, 2, . . ., by

φ00 = 1 = ρx(0)

φ11 = corr(x1, x0) = ρx(1)

φhh = corr(xh − xh−1
h , x0 − xh−1

0 ) , h ≥ 2, (4.24)

where xh−1
t and xh−1

t−h denote the best linear predictors of xt and xt−h, respec-
tively, based on {xt−(h−1), . . . , xt−1} with t = h. We will go into detail later,
for now we only note that both (xh− xh−1

h ) and (x0− xh−1
0 ) are uncorrelated

with {x1, . . . , xh−1}. Because of stationarity the PACF φhh is the correlation
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between xt and xt−h with the linear effect of {xt−(h−1), . . . , xt−1} on each
removed.

Moreover we can interpret the PACF in the following way. To ease nota-
tion we assume that xt is stationary with mean zero. Let

εt = xt −
h−1∑

j=1

ajxt−j

and

δt−h = xt−h −
h−1∑

k=1

bkxt−k

be the two residuals where {a1, . . . , ah−1} and {b1, . . . , bh−1} are chosen so
that they minimize the mean square errors

E(ε2
t ) and E(δ2

t−h) .

Then the PACF at lag h can be defined as the cross-correlation between εt

and δt−h, i.e.,

φhh =
E(εtδt−h)√

E(ε2
t )E(δ2

t−h)
. (4.25)

Relation Partial Autocorrelation Function and Best Linear Predic-
tor

Let us suppose that xt is a stationary time series and we want to predict
future values xn+m, m = 1, 2, . . . , based on given data {xn−(h−1), . . . , xn}.
Generally the minimum mean square error predictor of xn+m is xh

n+m =
E(xn+m|xn, . . . , xn−(h−1)) because the conditional expectation minimizes the
mean square error

E(xn+m − g(xn−(h−1), . . . , xn))2 , (4.26)

where g(xn−(h−1), . . . , xn) denotes a measurable function of the observations
xn−(h−1), . . . , xn. Linear predictors of the form

xh
n+m = a0 +

h∑

k=1

akxn−(k−1) , (4.27)

that minimize the mean square error (4.26) are called best linear predictors
(BLP).
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For a stationary process we have the following property. Given data
xn−(h−1), . . . , xn, the best linear predictor, xh

n+m = a0 +
∑h

k=1 akxn−(k−1), of
xn+m, for m ≥ 1, is found by solving

E(xn+m − xh
n+m) = 0

E((xn+m − xh
n+m)xn−(k−1)) = 0 , k = 1, . . . , h . (4.28)

The equations specified in (4.28) are called the prediction equations .
Now we consider one-step-ahead prediction and assume, to ease nota-

tion, that E(xt) = 0, which means a0 = 0. The BLP of xn+1 is, given
xn−(h−1), . . . , xn,

xh
n+1 = φh1xn + φh2xn−1 + . . . + φhhxn−(h−1) , (4.29)

where we have written ak in (4.27) as φhk in (4.29), for k = 1, . . . , h. Using
the prediction equations, the coefficients φh1, . . . , φhh satisfy

E((xn+1 −
h∑

j=1

φhjxn+1−j)xn+1−k) = 0 , k = 1, . . . , h ,

or
h∑

j=1

φhjγx(k − j) = γx(k) , k = 1, . . . , h . (4.30)

The prediction equation (4.30) can be written in matrix notation as

Γhφh = γh , (4.31)

where Γh = (γx(k − j))h
j,k=1 is an h × h matrix, φh = (φh1, . . . , φhh)

> is an
h× 1 vector, and γh = (γx(1), . . . , γx(h))> is an h× 1 vector.

Furthermore we can prove that the following equation holds:

φhh =
ρx(h)− ρ̃>h−1R

−1
h−1ρh−1

1− ρ̃>h−1R
−1
h−1ρ̃h−1

= ah , (4.32)

where ρh−1 = (ρx(1), . . . , ρx(h−1))>, ρ̃h−1 = (ρx(h−1), . . . , ρx(1))> and Rh

is the h×h matrix with elements ρx(i− j), i, j = 1, . . . , h (cf. also Shumway
and Stoffer, 2000; Hartung et al., 1998).

In the case of cross-sectional data we propose to use the results of the
sample autocovariance function (4.20) or the sample autocorrelation function
(4.21) in order to obtain estimators for the partial autocorrelation function
for cross-sectional data according to (4.31) or (4.32), respectively.
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4.3.3 Models

Now we proceed with the general definition of autoregressive moving average
(ARMA) models for stationary time series. As before, to ease notation, we
assume that the time series xt has mean zero. A univariate time series xt,
t = 0,±1,±2, . . . , is said to be ARMA(p, q) if xt is stationary and

xt = φ1xt−1 + . . . + φpxt−p + wt + θ1wt−1 + . . . + θqwt−q , (4.33)

with φp 6= 0 and θq 6= 0. In (4.33) wt denotes a white noise process with
σ2

w > 0. The parameters p and q are called the autoregressive and moving
average orders, respectively. If q = 0 the model is called an autoregressive
model of order p, AR(p), and if p = 0 the model is called a moving average
model of order q, MA(q).

Additionally we also require in (4.33) that φ(z) and θ(z) have no common
factors, where the AR and MA polynomials , φ(z) and θ(z), are defined as

φ(z) = 1− φ1z − . . .− φpz
p , φp 6= 0 , (4.34)

and
θ(z) = 1 + θ1z + . . . + θqz

q , θq 6= 0 , (4.35)

respectively, where z is a complex number.
Using the backshift operator B, defined as

Bxt = xt−1 , (4.36)

we can write the ARMA(p, q) model in (4.33) as

φ(B)xt = θ(B)wt . (4.37)

Further in order to obtain models that do not depend on the future and
are unique, we will require some additional restrictions on the model parame-
ters in (4.33). An ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be causal ,
if the time series xt, t = 0,±1,±2, . . . , can be written as a one-sided linear
process:

xt =
∞∑

j=0

ψjwt−j = ψ(B)wt , (4.38)

where ψ(B) =
∑∞

j=0 ψjB
j and

∑∞
j=0 |ψj| < ∞; we set ψ0 = 1.
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Moreover an ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be invert-
ible, if the time series xt, t = 0,±1,±2, . . . , can be written as

π(B)xt =
∞∑

j=0

πjxt−j = wt , (4.39)

where π(B) =
∑∞

j=0 πjB
j and

∑∞
j=0 |πj| < ∞; π0 is set equal to one.

In general we have the following property. An ARMA(p, q) model is
causal only if the roots of φ(z) lie outside the unit circle, i.e., φ(z) = 0 only
if |z| > 1. Analogously an ARMA(p, q) model is invertible only if the roots
of θ(z) lie outside the unit circle.

Anyway, considering a causal AR(p) process, one can prove that

φhh = 0 , for all h > p ,

whereas the ACF will never cut off. On the other hand, for an invertible
MA(q) process, we can prove that the PACF will never cut off, as in the case
of an AR(p) process, whereas the ACF cuts off after lag q. We summarize
these results in Table 4.1.

Table 4.1: Behavior of the ACF and PACF for Causal and Invertible ARMA
Models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off Tails off

after lag q
PACF Cuts off Tails off Tails off

after lag p

Vector-valued Models

The multivariate autoregressive model is a straight-forward extension of the
univariate AR model. Considering an m-dimensional vector-valued time se-
ries xt, t = 1, . . . , n, we define the multivariate autoregressive model of order
p with exogenous variables, ARX(p), as

xt = Γut +
p∑

j=1

Φjxt−j + wt , t = p + 1, . . . , n , (4.40)

45



where wt is an m-dimensional vector-valued white noise process and defined
by its covariance matrix

E(wtw
>
t ) = Σw . (4.41)

That means that wit and wjt, i 6= j and i, j ∈ {1, . . . ,m} may be correlated
but ws and wt, s 6= t, are uncorrelated. The matrices Φj, j = 1, . . . , p, are
the m×m transition matrices which express the dependence of xt on xt−j.
The matrix Γ is an m × r parameter matrix. The X in ARX refers to the
exogenous vector process which we have denoted here by ut. In the simplest
case of exogenous variables, for example, considering that xt has mean µ, we
can set r = 1, ut = 1 and Γ = α with α = (I −Φ1 − . . .−Φp)µ.

Using matrix notation, (4.40) can be written as

xt = Bzt + wt , t = p + 1, . . . , n , (4.42)

with B = (Γ,Φ1, . . . ,Φp) and zt = (u>t ,x>t−1, . . . , x
>
t−p)

>.
In this case the ordinary least squares (OLS) estimator for the matrix B

in the above multivariate regression model is

B̂ = (XZ>)(ZZ>)−1 , (4.43)

with X = (xp+1, . . . , xn) and Z = (zp+1, . . . , zn).
Further an estimator for the error covariance Σw is

Σ̂w =
1

n− p

n∑

t=p+1

(xt − B̂zt)(xt − B̂zt)
> . (4.44)

Anyway, we can easily extend the model in (4.40) to handle cross-sectional
data (cf. Anderson, 1978). The ARX(p) model for cross-sectional data is
defined as

yt` = Γut` +
p∑

j=1

Φjyt−j,` + wt` , t = p + 1, . . . , n , (4.45)

where, for ` = 1, . . . , N , cov(wt`) = Σw and ut` represents the r × 1 vector
of exogenous variables.

As before we can write this replicated ARX(p) model using matrix nota-
tion as

yt` = Bzt` + wt` , (4.46)
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for ` = 1, . . . , N and t = p + 1, . . . , n, where

zt` = (u>t`, y
>
t−1,`, . . . , y

>
t−p,`)

> (4.47)

and the matrix B is analogously defined as given in (4.42).
Similarly, as in (4.43), the OLS estimator of B in this case is

B̂ =




N∑

`=1

n∑

t=p+1

yt`z
>
t`







N∑

`=1

n∑

t=p+1

zt`z
>
t`



−1

, (4.48)

and an estimator of Σw is given, like in (4.44), as

Σ̂w =
1

N(n− p)

N∑

`=1

n∑

t=p+1

(yt` − B̂zt`)(yt` − B̂zt`)
> . (4.49)

If we additionally assume that the error process wt` is normally dis-
tributed, we can evaluate the uncertainty in the estimators. Then the large
sample standard error of the ij-th element of B = (bij), i = 1, . . . , m and
j = 1, . . . , r + pm, is

s.e.(bij) =
√

σ̂iicjj , (4.50)

where σ̂ii is the i-th diagonal element of Σ̂w and cjj is the j-th diagonal
element of 


N∑

`=1

n∑

t=p+1

zt`z
>
t`



−1

. (4.51)
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Chapter 5

Results

In this section we present the results of the principal component analysis
(PCA) and of the time series analysis of the diabetes data set.

First, in Section 5.1, we show the results of the NIPALS algorithm for
missing values applied to our diabetes data. Then, in Section 5.2, we sum-
marize the results of the time series analysis and fit an autoregressive model
with exogenous variables to our cross-sectional diabetes data.

5.1 Multivariate Analysis

Now, before applying the NIPALS algorithm for missing values, which is
described in detail in Section 3.1.1 to our diabetes data to obtain principal
components we give a brief summary what has happened to the data until
now.

First we restandardized the value of HbA1c (cf. Section 2.3 for details).
Then, applying the AUC algorithm, which is described in Section 2.4 to the
diabetes data set we got a data matrix with one average value for each medical
variable and each patient. Afterwards we used the function log(log(.)) to
transform the values of both kidney parameters because of their skewness.
All nine variables used are described in detail in Section A.2.

However, there are still some missing values which means that for a few
patients some medical variables were never measured by the laboratory or
during a medical check-up. Moreover, as mentioned in Section 3.1.1, we have
to omit all rows, i.e., all patients that only contain missing values. This yields
to a data matrix of 848 different patients (observations) and nine different
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medical parameters (variables) with 18% of the values missing.
After centering and scaling of the data set, in order to obtain principal

components, we apply the NIPALS algorithm for missing values. The biplot
of the first and second components is shown in Figure 5.1. They explain 36%
of the total variation of the diabetes data set. The corresponding screeplot
of the NIPALS algorithm for missing values is displayed in Figure 5.2. As
we can see in Figure 5.2 the variation of the components does not decrease
with increasing index. The peak of the sixth component (40%) is caused by
the patients with numbers “233”, “624”, “639”, “849” and “851”. Of these
patients only the blood pressure was measured once.

When looking at the biplot (cf. Figure 5.1) we can easily see some groups
of patients that seem to be outliers and need to be investigated further. For
the group of persons on the left side with the numbers “860”, “579” and
“586” only the medical variable HbA1c was measured once and all of them
do not suffer from diabetes. Further there is another group of patients on
the lower side with the numbers “519”, “875”, “393”, “575” and “345”.
The first four persons are also no diabetic patients. The body mass index
of patient “345” is extremely high (value: 131.5) which appears to be a
measurement error (cf. Section A.2). Moreover the patient “923” on the
right side with a high HbA1c and triglyceride level had only once a medical
check-up. Furthermore the average level of HbA1c of the patient “240” on
the upper side again is very high but his/her blood pressure is lower than
that of the mass of the observations.

However, if we take away the outliers described above and omit all non
diabetic patients as well as all patients that had less than three medical check-
ups we will get a data matrix of 502 patients and nine medical parameters
with 6% of the values missing.

After centering and scaling we again apply the NIPALS algorithm for
missing values once more to obtain principal components of our new diabetes
data set without outliers. The biplot of the first and second components is
displayed in Figure 5.3. They explain 54% of the total variation of the new
diabetes data set. The corresponding screeplot of the NIPALS algorithm
for missing values is shown in Figure 5.4. In contrary to the first screeplot
we note that in this case the importance of each component decreases with
increasing index.

The first principal component of the new diabetes data set without out-
liers is expressed in the positive axis by high values of both kidney parameters
followed by triglyceride, blood pressure and body mass index . The second
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Figure 5.1: Biplot of the Diabetes Data Set
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Figure 5.2: Screeplot of the Diabetes Data Set
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Figure 5.3: Biplot of the Diabetes Data Set without Outliers
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Figure 5.4: Screeplot of the Diabetes Data Set without Outliers
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principal component has high values of HbA1c and blood glucose as main
influence in its positive part. Opposed to it, in the negative part, again the
blood pressure has strong influence along with body mass index . Details can
be found in Table 5.1.

Table 5.1: The First Two Loadings p.1 and p.2 of the Diabetes Data Set

Variables p.1 p.2

trans HbA1c 0.22 0.56
Cholesterin 0.23 −0.12
Triglyceride 0.36 −0.08
BG 0.22 0.52
Mikroalbuminurie 0.39 0.19
Albuminexkr rate 0.47 0.20
RR syst 0.35 −0.37
RR diast 0.32 −0.33
bmi 0.34 −0.28

Anyway, the variables HbA1c and blood glucose are highly positive cor-
related as well as the systolic and diastolic pressure and also both kidney
parameters. Further either of the variables indicating the amount of glu-
cose in the blood, i.e., HbA1c and blood glucose, are positively correlated
with both kidney parameters. Moreover the variable body mass index and
the blood pressure parameters are also positively correlated which indicates
that a high body mass index value comes along with high blood pressure, i.e.,
overweight persons have high blood pressure. However, either blood glucose
parameter (HbA1c and blood glucose) are nearly uncorrelated with the blood
pressure parameters. This would mean that blood pressure does not influence
the value of HbA1c. Furthermore the blood pressure parameters seem to be
nearly uncorrelated with the kidney parameter.

Now we put together either of the three pairs of highly positively cor-
related variables to single parameters, i.e., we combine the variables HbA1c
and blood glucose to a new blood glucose parameter by taking the average of
the standardized variables and we do the same with both kidney and both
blood pressure parameters (for details see Table A.5 in Section A.2). Hence,
we get a data matrix of 502 patients and six medical parameters with 8% of
the values missing.
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Again we apply the NIPALS algorithm for missing values to our centered
and scaled data. The biplot of the first and second components is shown in
Figure 5.5. They explain 60% of the total variation of the data set. The
corresponding screeplot is displayed in Figure 5.6.

Figure 5.5: Biplot of the Reduced Diabetes Data Set without Outliers

The first principal component of the reduced diabetes data set is expressed
in the positive axis by high values of the triglyceride and kidney parameters
followed by a high body mass index and blood pressure. The second principal
component has high values of blood glucose as main influence in its positive
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Figure 5.6: Screeplot of the Reduced Diabetes Data Set without Outliers
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part. Opposed to it, in the negative part, again the variable blood pressure
has strong influence along with the body mass index . For details confer Table
5.2.

Table 5.2: The First Two Loadings p.1 and p.2 of the Reduced Diabetes Data
Set

Variables p.1 p.2

BG 0.24 0.78
Cholesterol 0.33 −0.01
Triglyceride 0.49 0.03
Kidney 0.49 0.34
BP 0.40 −0.38
BMI 0.43 −0.37

As we see in Figure 5.5 the body mass index is again highly positively
correlated with the blood pressure. As before the parameters of blood glucose
and kidney are also positively correlated, and the blood pressure is again
almost independent of the blood glucose level. This confirms our previous
analysis.

5.2 Time Series Analysis

For time series analysis we use the 6-dimensional cross-sectional data yt`,
t = 1, . . . , 30 and ` = 1, . . . , 19, which are described in Section A.3 and the
methods that we have developed in Section 4.3.

As mentioned before, the aim of this survey is to get a better under-
standing of how the values of different medical variables, like those of the
parameter HbA1c, influence the severity of late complications, such as kid-
ney failure. Therefore we are interested in using the remaining five variables,
HbA1c, Cholesterol, Triglyceride, Blood Pressure and BMI , to explain some
of the variation in the series of the parameter Kidney , denoted by Kt`.

In Figure 5.7 and Figure 5.8 the plots of the autocorrelation and partial
autocorrelation functions for each variable of the cross-sectional diabetes data
are displayed. Upper and lower dashed lines shown on the plots indicate
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±1.96/
√

570, so that upper values would be exceeded about 2.5% of the
time if the series were white noise (cf. also Section 4.3.1).

Figure 5.9 shows the plots of the cross-correlation functions for the pa-
rameter Kidney versus all other variables.

Let us first consider the plot of the cross-correlation function (CCF) for
the parameters Kidney and HbA1c. The CCF peaks at lag h = 13, showing
that the Kidney series measured at time t+13 trimester is associated with the
HbA1c series at time t. We could say the HbA1c series leads the Kidney series
by 13 trimester. The sign of the CCF is positive, which means, increases in
the HbA1c series at time t lead to increases in the Kidney series three to four
years later.

The plots of the cross-correlation functions for the Kidney series versus
the Cholesterol or Triglyceride series show no significant peaks, whereas the
values of the cross-correlation functions for the parameter Kidney versus the
variable Blood Pressure or Body Mass Index are positive with their maxima
about lag h = 0.

In order to fit an appropriate ARX model to the Kidney series we again
have a look at the plots of the autocorrelation and partial autocorrelation
functions in Figure 5.7 and 5.8, respectively. We note that the autocorrelation
function of the Kidney series tails off, whereas the partial autocorrelation
function cuts off after lag 4. This leads to the conclusion that, according to
Section 4.3.3, the Kidney series Kt` follows an AR(4) process.

However, some preliminary fitting yields to the result that the inclusion
of the Kidney parameter Kt−4,` is not significant. Therefore we fit an AR(3)
model to the centered data, that is,

Kt` = α + φ1Kt−1,` + φ2Kt−2,` + φ3Kt−3,` + wt` , (5.1)

where t = 4, . . . , 30 and ` = 1, . . . , 19.
The estimation was accomplished using the regression approach described

in Section 4.3.3. In this case, the fitted model is

K̂t` = 0.156 + 0.337(0.043)Kt−1,` + 0.220(0.044)Kt−2,`

+0.174(0.043)Kt−3,` + ŵt` , (5.2)

where σ̂2
w = 0.094. Each coefficient is highly significant, as seen from the es-

timated standard errors given in parentheses below each parameter estimate.
A Q-Q plot, displayed in Figure 5.10, of the residuals of the fit ŵt` however,
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Figure 5.7: Autocorrelation Function of the Diabetes Series
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Figure 5.8: Partial Autocorrelation Function of the Diabetes Series
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Figure 5.9: CCF between the Variable Kidney and all other Variables (Pos-
itive Lag Means the Respective Variable Leads Kidney)
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Figure 5.10: QQ-Plot of the Residuals ŵt` of the AR Model
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shows a slight departure from the standard normal distribution, especially
at the tails.

Hence, we are interested in using the remaining five variables, HbA1c,
Cholesterol, Triglyceride, Blood Pressure and BMI , to explain some of the
variation in the Kidney series Kt`. Therefore, using the residuals of the
fit ŵt`, we calculate the cross-correlation functions between the prewhitened
Kidney series and the other variables shown in Figure 5.11.

We note that, unfortunately, there are no significant values any more in
Figure 5.11. Nevertheless for our further analysis we take the largest values
of the different cross-correlation functions into account.

Considering the cross-correlation function (CCF) of the prewhitened Kid-
ney series and the HbA1c series (positive lag means HbA1c leads Kidney)
positive correlations are seen at lags h = 11 and h = 21. Moreover for the
CCF of prewhitened Kidney and Cholesterol we see correlations at lags h = 0
and h = 2, for the CCF of prewhitened Kidney and Blood Pressure at lag
h = 2 and for the CCF of prewhitened Kidney and Body Mass Index at lag
h = 7.

After some preliminary fitting, the final model uses the exogenous vari-
ables ut` = (1, Ht−11,`)

>, where Ht` denotes the HbA1c series, along with
an AR(3) model on the Kidney series Kt`. The inclusion of the particular
HbA1c at lag 21 and of the other variables at different lags, mentioned above,
yields to non significant parameter estimates. In this case the ARX model is

Kt` = Γut` + φ1Kt−1,` + φ2Kt−2,` + φ3Kt−3,` + wt` , (5.3)

where t = 12, . . . , 30, ` = 1, . . . , 19, Γ = (α, β) and ut` = (1, Ht−11,`)
>.

Again the estimation was accomplished using the regression approach
described in Section 4.3.3. In this case the fitted model is

K̂t` = −0.200 + 0.057(0.025)Ht−11,` + 0.348(0.051)Kt−1,`

+0.179(0.051)Kt−2,` + 0.161(0.049)Kt−3,` + ŵt` , (5.4)

where σ̂2
w = 0.098. Each coefficient is significant, as seen from the estimated

standard errors listed below each parameter estimate. Finally, an analysis of
the residuals ŵt` shows, except for a few outliers, that the model fits well. In
addition a Q-Q plot, displayed in Figure 5.12, shows no departure from the
Gaussian assumption, except for the few outliers.

Our general conclusion is that the value of the Kidney parameter depends
on those of the last year and an increase of the Kidney parameter is associated
with higher HbA1c values about four years ago.
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Figure 5.11: CCF between the Prewhitened Variable Kidney and all other
Variables (Positive Lag Means the Respective Variable Leads Kidney)
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Figure 5.12: QQ-Plot of the Residuals ŵt` of the ARX Model
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Chapter 6

Conclusions and Summary

In this work we presented two ways of analyzing our diabetes data which we
found the most suitable: first, the principal component analysis (PCA) and,
second, the time series analysis (TSA).

Our data consisted of many variables which could not be overlooked easily.
Therefore the first idea was to extract some components which concentrate
on the most important information of all these variables. This led to the
usage of principal component analysis. On the other hand the patients’ data
had been collected during medical check-ups over a time period of more than
12 years so that time series analysis was the second idea. Additionally we had
to deal with a lot of missing values which further complicated the analysis.

For principal component analysis we replaced the values of the medi-
cal variables which were obtained during that time for each patient by one
weighted average value. In order to get principal components and not to
loose too much information of the data we used the NIPALS algorithm for
missing values. Although we neglected the effect of time in this case, we were
able to detect groups of non diabetic patients and outliers.

Moreover, applying the NIPALS algorithm for missing values to our data,
we recognized three groups with positively correlated variables: the first
group contained the variables HbA1c and Blood Glucose, the second existed
of both parameters that determine the severity of kidney disease, and in the
third group we found the variables Blood Pressure and Body Mass Index as
well as Cholesterol and Triglyceride (two different types of blood fat).

The variables of the first and second group were positively correlated
whereas the variables of the third group seemed to be nearly independent of
the variables of the first and second group.
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Anyway, we may be surprised about the highly positive correlation of
HbA1c and Blood Glucose because the value of HbA1c represents an average
blood glucose level over the last few weeks whereas the value of Blood Glucose
measures the actual amount of sugar in the blood. We note, however, that
both values, HbA1c and Blood Glucose, which were used for the principal
component analysis are weighted averages.

For time series analysis we tried to fit an autoregressive model with ex-
ogenous variables to the cross-sectional data which we obtained by extracting
proper time series from our diabetes data. Hence, we modeled the time series
of the Kidney parameter using other variables, e.g., HbA1c, to explain some
of the variation in the Kidney series.

The final model used the HbA1c value which had been measured 11
trimester ago along with an autoregressive model of order three on the Kid-
ney series. Our general conclusion is that the value of the Kidney parameter
depends on those of the last year and an increase of the Kidney parameter
is associated with higher HbA1c values about four years ago.

Moreover, in order to perform a better fit of the model, it would also be
helpful to extend the model with further exogenous variables, like gender,
but this would exceed the purpose of this work.

Anyway, we mainly focused on the modeling of the Kidney series but it
would also be interesting to study other late complications like retinopathy.

Generally we think that handling the diabetes data as cross-sectional
data was the most suitable way and led to proper results. However, we
may think about another autocovariance function for cross-sectional data by
replacement of the “global” mean, ȳi, in (4.20) by the mean of each patient,
ȳi`, ` = 1, . . . , N . The procedure would be analogous for the cross-covariance
function. This might lead to different models.

As presented in this survey much has been done but still much more
analysis could be done on this diabetes data set.
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Appendix A

Data

In this section we present the different data sets used in this work.

A.1 The euro86 Data Set

The euro86 data set is collected from statistical year books and contains
demographic data of the European countries around 1986.

For the 25 European countries (the observations) 9 variables were col-
lected. In detail they are the average growth of population from 1986 to
2000, the percentage of women in the age to give birth (1985), number of
women per 100 men (1985), life expectation of women (1986), life expectation
of men (1986), infant mortality (1986), inhabitants per doctor (1981), daily
provided calories per person (1985) and percentage of infants born under-
weighted (1984). The variable names used in the various plots are reprinted
in Table A.1. A list of the abbreviations of the European countries (obser-
vations) is given in Table A.2.

One of the European countries, namely Albania (al), can easily be de-
tected as an outlier. Compared with the median of the European values it
has a 9 times higher population growth, a 4 times higher infant mortality,
further, a 4.5 times higher number of inhabitants per doctor and 20 percent
less calories per person provided daily.
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Table A.1: Variables of euro86 Data Set

1 pop growth 4 lifeexp f 7 inhab/doc
2 give birth 5 lifeexp m 8 calorie
3 women% 6 inf mort 9 baby underw

Table A.2: Observations of euro86 Data Set

a Austria h Hungary
al Albania i Italy
b Belgium irl Ireland
bg Bulgaria n Norway
ch Switzerland nl The Netherlands
cs Czechoslovakia p Portugal
d Western Germany pl Poland

ddr Eastern Germany ro Romania
dk Denmark s Sweden
e Spain sf Finland
f France su Soviet Union

gb Great Britain yu Yugoslavia
gr Greece

A.2 The Diabetes Data Matrix for Multivari-

ate Analysis

For multivariate analysis the diabetes data set is extracted from the medi-
cal data base provided by Univ.-Prof. Dr. Kinga Howorka and modified as
described in Chapter 2.

For each patient we take nine variables for further analysis. HbA1c is the
abbreviation for a specific particle of the blood, namely the hemoglobin A1c
or glycosylated hemoglobin. The value of HbA1c–given as a percentage–is
the amount of glucose that sticks to the red blood cell, which is proportional
to the amount of glucose in the blood. It measures a person’s average blood
glucose level over the past few weeks. The value of HbA1c (trans HbA1c)
which we use during our survey is the restandardized one as described in
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Section 2.3.
We also take the values of cholesterol (Cholesterin) and triglyceride (Triglyc-

eride). Cholesterol is a type of fat produced by the liver and found in the
blood whereas triglyceride is the storage form of fat in the body. High triglyc-
eride levels may occur when diabetes is out of control.

The blood glucose level (BG) is the amount of glucose in a certain amount
of blood. The latter three parameters are noted in milligrams per deciliter,
or mg/dl .

Further we take two different kidney values into account both measuring
the amount of the protein Albumin in the urine. The first value, Mikroalbu-
minurie, is a concentration, measured in mg/l , whereas the second parame-
ter, Albuminexkr rate, is a rate, given in ng/min. Generally small amounts
of Albumin in the urine are called microalbumin. The condition in which
the urine has more than normal amounts of Albumin is called albuminuria.
Albuminuria may be a sign of kidney disease.

The blood pressure, both, the systolic pressure (RR syst) when the heart
pushes blood out into the arteries and the diastolic pressure (RR diast) when
the heart rests, are measured in mmHg .

The last variable is the body mass index (bmi) which is calculated by the
following formula:

bmi :=
weight in pounds× 703

(height in in)2

=
weight in kg× 10003

(height in cm)2
≈ weight in kg

(height in m)2
, (A.1)

where weight is the patient’s average weight which is delivered by the AUC
algorithm as described in Section 2.4 and height is the patient’s height. The
reference ranges of the body mass index are given in Table A.3.

Table A.3: Reference Ranges of the Body Mass Index

bmi ≤ 18.4 underweight
18.5 ≤ bmi ≤ 24.9 normal
25.0 ≤ bmi ≤ 29.9 overweight

30.0 ≤ bmi obese
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If one or both parameters are missing the value of the variable bmi will
be put to NA (Not Available).

The variable names used in various plots are reprinted in Table A.4.

Table A.4: Variables of the Diabetes Data Set

1 trans HbA1c 4 BG 7 RR syst
2 Cholesterin 5 Mikroalbuminurie 8 RR diast
3 Triglyceride 6 Albuminexkr rate 9 bmi

For further analysis we reduce the number of variables. Hence, we com-
bine the three pairs of highly correlated variables, namely HbA1c and blood
glucose, both kidney variables as well as both blood pressure parameters, to
three new variables by taking the average of the standardized variables. The
new variable names of the reduced diabetes data set used in the biplot are
listed in Table A.5.

Table A.5: Variables of the Reduced Diabetes Data Set

new variable old variables
1 BG trans HbA1c and BG
2 Cholesterol Cholesterin
3 Triglyceride Triglyceride
4 Kidney Mikroalbuminurie and Albuminexkr rate
5 BP RR syst and RR diast
6 BMI bmi

A.3 Cross-sectional Diabetes Data for Time

Series Analysis

For time series analysis we extract proper time series from the medical dia-
betes data base and modify them as described in Sections 4.1 and 4.2.

Hence, we get 6-dimensional cross-sectional data yt`, with t = 1, . . . , 30
and ` = 1, . . . , 19, which are stored in a 570× 6 matrix, one patient after the
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other. The first 30 rows are the measurements of the first patient according
to the order they are obtained in time, and so on.

These 19 patients have the following in common:

• All of them are diabetic patients; non diabetic patients have been ex-
cluded.

• Before applying the method described in Section 4.2 all time series of
the selected medical variables have less than ten missing values.

• We only choose persons for which measurements are available at least
during ten years. In order to obtain time series which have the same
number of measurements we only take the first ten years into account
(still, there are only few patients where we have observations for more
than ten years). Moreover we note that we have divided the year into
trimester; therefore the time parameter t ranges from 1 to 30.

The six medical variables we have selected are given in Table A.6.

Table A.6: Variables of the Cross-sectional Diabetes Data Set

1 HbA1c 4 Kidney
2 Cholesterol 5 Blood Pressure
3 Triglyceride 6 BMI

The value of the first variable, HbA1c, is the one that is delivered by the
restandardization as described in Section 2.3.

The variables Cholesterol and Triglyceride are equivalent to those used
before.

The values of variable 4, Kidney , corresponds with the values of variable
Mikroalbuminurie in Table A.4. We have transformed the values at each time
t, t = 1, . . . , 30, using the function log(log(.)) because of their skewness.

The value of the variable Blood Pressure is the average of the systolic and
diastolic pressure at each time t.

The value of the last variable, Body Mass Index (BMI), is calculated
according to (A.1) taking the patient’s weight at each time t. Unfortunately
the height of the female patient “189” is missing. In order to calculate the
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Body Mass Index we have estimated her height taking the average of all
female patients listed in the medical data base.

The data of all 19 patients used for time series analysis are plotted in
Figure A.1 to A.6. The horizontal time axis represents 10 years.
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Figure A.1: Time Series of the Variable HbA1c

74



Figure A.2: Time Series of the Variable Cholesterol
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Figure A.3: Time Series of the Variable Triglyceride
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Figure A.4: Time Series of the Variable Kidney
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Figure A.5: Time Series of the Variable Blood Pressure
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Figure A.6: Time Series of the Variable Body Mass Index
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Appendix B

Listing of the Algorithms

In this section we give a listing of the algorithms which have been imple-
mented in and used in this work.

B.1 The NIPALS Algorithm

f.nipals_function (X,k,it=10,tol=0.0001)
# function "f.nipals" calculates the principal components of a given
# data matrix X according to the NIPALS algorithm (cf. Wold, 1966).
# X...data matrix,
# k...number of components,
# it...maximal number of iterations per component,
# tol...(squared) precision tolerance for calculation of components
# date: 2002-05-11
{
cat("data matrix X: ",X,"\n")
# mean-centering of data matrix X
Xh <- scale(X,center=TRUE,scale=FALSE)
cat("Xh: ",Xh,"\n")
nr <- 0
T <- NULL
P <- NULL
for (h in 1:k){
cat("h = ",h,"\n")
th <- Xh[,1] # starting value for th is 1st column of Xh

ende <- FALSE
# 3 inner steps of NIPALS algorithm
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while (!ende){
nr <- nr+1
# LS regression for ph
ph <- t((t(th)%*%Xh) * as.vector(1/(t(th)%*%th)))
# normalization of ph
ph <- ph * as.vector(1/sqrt(t(ph)%*%ph))
thnew <- t(t(ph)%*%t(Xh)) # LS regression for th
prec <- t(th-thnew)%*%(th-thnew) # calculate precision
cat("actual precision: ",sqrt(prec),"\n")
th <- thnew # refresh th in any case
cat("th: ",th,"\n")
# check convergence of th
if (prec <= (tol)) {
ende <- TRUE

}
else if (it <= nr) { # too many iterations
ende <- TRUE
cat("\nWARNING! Iteration stop in h=",h," without

convergence!\n\n")
}

}
Xh <- Xh-(th%*%t(ph)) # calculate new Xh
T <- cbind(T,th) # build matrix T
cat("T: ",T,"\n")
P <- cbind(P,ph) # build matrix P
cat("P: ",P,"\n")
nr <- 0

}
return(T,P)
}

B.2 The NIPALS Algorithm for Missing Val-

ues

f.nipna_function (X,k,it=10,tol=0.0001,name="result")
# function "f.nipna" calculates the principal components of a
# given data matrix X according to the NIPALS algorithm for
# missing values (NA) (cf. Tenenhaus, 1998).
# X...data matrix,
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# k...number of components,
# it...maximal number of iterations per component,
# tol...(squared) precision tolerance for calculation of components
# name...name of the text file which contains all comments
# date: 2002-07-14
{
sink(paste(name,".txt",sep=""))
cat("data matrix X: ",X,"\n\n")
cols <- ncol(X)
rows <- nrow(X)
# mean-centering of data matrix X
Xh <- scale(X,center=TRUE,scale=FALSE)
cat("Xh: ",Xh,"\n")
cat("number of columns: ",cols,"\n")
cat("number of rows: ",rows,"\n\n")
T <- NULL
P <- NULL
for (h in 1:k){
nr <- 0
cat("h = ",h,"\n")
th <- Xh[,1] # starting value for th is 1st column of Xh
ende <- FALSE
#3 inner steps of NIPALS algorithm
while (!ende){

nr <- nr+1
ph <- rep(0,cols)
hnorm <- 0
prec <- 0
#LS regression of ph
for (l in 1:cols){
denom1 <- 0
flag <- FALSE
for (m in 1:rows){
if (!is.na(Xh[m,l]) & !is.na(th[m])){
ph[l] <- ph[l]+th[m]*Xh[m,l]
denom1 <- denom1+th[m]^2
flag <- TRUE

}
}
if (flag){
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cat("Entered loop to calculate LS regression of ph: \n")
cat(l,"-th coordinate: denom1 = ",denom1,"\n\n")
ph[l] <- ph[l]/denom1

}
else{
ph[l] <- NA

}
}
if (is.na(t(ph)%*%ph)){
cat("WARNING! There exists at least one element of ph=",

ph,"which is not available!\n\n")
}
#normalization of ph
for (q in 1:cols){
if (!is.na(ph[q])){
hnorm <- hnorm+ph[q]^2

}
}
ph <- ph/sqrt(hnorm)
#LS regression of thnew
thnew <- rep(0,rows)
for (i in 1:rows){
denom2 <- 0
flag <- FALSE
for (j in 1:cols){
if (!is.na(Xh[i,j]) & !is.na(ph[j])){
thnew[i] <- thnew[i]+ph[j]*Xh[i,j]
denom2 <- denom2 + ph[j]^2
flag <- TRUE

}
}

if (flag){
cat("Entered loop to calculate LS regression of thnew: \n")
cat(i,"-th coordinate: denom2 = ",denom2,"\n\n")
thnew[i] <- thnew[i]/denom2

}
else{
thnew[i] <- NA

}
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}
if (is.na(t(thnew)%*%thnew)){
cat("WARNING! There exists at least one element of thnew=",

thnew,"which is not available!\n\n")
}
#calculate precision
for (r in 1:rows){
if (!is.na((th-thnew)[r])){
prec <- prec+(th-thnew)[r]^2

}
}
cat("actual precision: ",sqrt(prec),"\n")
th <- thnew #refresh th in any case
cat("th: ",th,"\n")
#check convergence of th
if (prec <= (tol)) {
ende <- TRUE

}
else if (it <= nr) { #too many iterations
ende <- TRUE
cat("\nWARNING! Iteration stop in h=",h," without

convergence!\n\n")
}

}
Xh <- Xh-(th%*%t(ph)) #calculate new Xh
T <- cbind(T,th) #build matrix T
cat("T: ",T,"\n")
P <- cbind(P,ph) #build matrix P
cat("P: ",P,"\n")
nr <- 0

}
dimnames(T)[[2]]_c(1:(dim(T)[2]))
dimnames(P)[[2]]_c(1:(dim(P)[2]))
scores <- T
loadings <- P
sink()
return(scores,loadings)
}
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B.3 Simulations

In this section, as examples, we give the listings of the two algorithms which
are used to calculate the errors e(PCA)

max , e(NIPALS)
max and e(NIPNA)

max , along with

their relative errors, e
(1)
rel, max and e

(2)
rel, max. The results of the simulations are

described in detail in Section 3.2.

f.sim1_function (anz,num,k,s,flag=FALSE)
# function "f.sim1" creates "anz" matrices X of a multivariate
# normal distribution specified by the correlation matrix "s"
# with dimension n by number of columns of "s". For each X the
# principal components, especially a matrix of the scores and one
# of the loadings, are calculated by the functions "princomp(X)"
# and "f.nipals(X,k)" with "k" components. In order to compare
# the results a relative difference between the norms of the
# error matrices is calculated.
# anz...number of simulations
# num...number of observations of the data matrix X
# k...number of components that are calculated within the NIPALS
# procedure
# s...correlation matrix of the multivariate normal distribution
# flag...logical variable which determine wether the parameter in
# "mvrnorm(...)" is TRUE or FALSE
# date: 2002-08-17
{
begin <- date()
library(mass)
library(mva)
X <- NULL
X.pca <- NULL
X.nipals <- NULL
err.pca <- NULL
err.nipals <- NULL
a <- 0
b <- 0
res.pca <- NULL
res.nipals <- NULL
res.rel <- NULL
mittel <- 0
cols <- ncol(s) # number of columns of s
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if (k<cols){
for (i in 1:anz){ #starting the simulations

# creating a centered multivariate normal distributed
# data matrix X with correlation matrix s
X <- scale(mvrnorm(n=num, rep(0, cols), s, empirical=flag),

center=TRUE, scale=FALSE)
X.pca <- princomp(X) # PCA of X
X.nipals <- f.nipals(X,k) # NIPALS of X
# error matrix of PCA:
err.pca <- X - X.pca$scores[,1:k]%*%t(X.pca$loadings[,1:k])
# error matrix of NIPALS:
err.nipals <- X - X.nipals$T%*%t(X.nipals$P)
# maximum absolute value of error matrices:
a <- max(abs(err.pca))
b <- max(abs(err.nipals))
res.pca <- c(res.pca,a)
res.nipals <- c(res.nipals,b)
res.rel <- c(res.rel,((a-b)/a))

}
mittel <- mean(res.rel)
stderr <- (sqrt(var(res.rel)))/(sqrt(anz))
end <- date()
cat("starting time: ",begin," \n")
cat("stopping time: ",end," \n\n")
return(res.pca,res.nipals,res.rel,mittel,stderr)

}
else{
cat("Warning! The number of used components ",k," should be

smaller \n")
cat("than the number of columns of the covariance matrix ",

cols,"! \n\n")
}
}

f.sim2_function (anz,num,k,s,per)
# function "f.sim2" creates "anz" matrices X of a multivariate
# normal distribution specified by the covariance matrix "s"
# with dimension n by number of columns of "s". Some elements
# of the data matrix X are randomly set to "NA" according to the
# percentage given by the variable "per". For each X and each
# matrix with missing data the matrices of the scores and of
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# the loadings are calculated by the functions "f.nipals(X,k)"
# and "f.nipna(X,k)" with "k" components. In order to compare the
# results a relative difference between the norms of the error
# matrices is calculated.
# anz...number of simulations
# num...number of observations of the data matrix X
# k...number of components that are calculated within the
# NIPALS procedure
# s...covariance matrix of the multivariate normal distribution
# per...percentage of missing data
# date: 2002-08-17
{
begin <- date()
library(mass)
library(mva)
X <- NULL
Xna <- NULL
r.num <- 0
r.vec <- NULL
X.nipals <- NULL
X.nipna <- NULL
err.nipna <- NULL
err.nipals <- NULL
a <- 0
b <- 0
res.nipna <- NULL
res.nipals <- NULL
res.rel <- NULL
mittel <- 0
cols <- ncol(s) #number of columns of s
if (k<cols){
for (i in 1:anz){ #starting the simulations

#creating a multivariate normal distributed data matrix X
# with correlation matrix s
X <- mvrnorm(n=num, rep(0, cols), s)
Xna <- as.vector(X)
r.num <- trunc(num*cols*per)
r.vec <- sample(1:(num*cols),r.num)
Xna[r.vec] <- NA
Xna <- matrix(Xna,ncol=cols)
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X.nipals <- f.nipals(X,k) #NIPALS of X
X.nipna <- f.nipna(Xna,k) #NIPALS of Xna
#error matrix of NIPALS with NAs:
err.nipna <- X - X.nipna$scores%*%t(X.nipna$loadings)
#error matrix of NIPALS:
err.nipals <- X - X.nipals$T%*%t(X.nipals$P)
# maximum absolute value of error matrices:
a <- max(abs(err.pca))
b <- max(abs(err.nipals))
res.nipna <- c(res.nipna,b)
res.nipals <- c(res.nipals,a)
res.rel <- c(res.rel,((a-b)/a))

}
mittel <- mean(res.rel)
stderr <- (sqrt(var(res.rel)))/(sqrt(anz))
end <- date()
cat("starting time: ",begin," \n")
cat("stopping time: ",end," \n\n")
return(res.nipna,res.nipals,res.rel,mittel,stderr)

}
else{
cat("Warning! The number of used components ",k," should be

smaller \n")
cat("than the number of columns of the covariance matrix ",

cols,"! \n\n")
}
}

B.4 Time Series Analysis

f.acf_function (X,n,name="acf")
# The function "f.acf" calculates the autocorrelation
# of the time series that are stored in the the data
# matrix X.
# X...data matrix
# n...number of medical check-ups
# name...name of file
# date: 2002-09-12
{

88



rows <- nrow(X)
cols <- ncol(X)
store.name <- dimnames(X)[[2]]
G <- NULL
R <- NULL
for (j in 1:cols){
mean.x <- mean(X[,j])
g <- NULL
for (h in 1:n){

a <- 0
for (l in 1:(rows/n)){
for (k in 1:(n-(h-1))){
a <- a + (X[(((l-1)*n)+k+(h-1)),j]-mean.x)*

(X[(((l-1)*n)+k),j]-mean.x)
}

}
g <- c(g,(1/rows)*a)

}
G <- cbind(G,g)
R <- cbind(R,g/g[1])

}
dimnames(G)_list(0:(n-1),store.name)
dimnames(R)_list(0:(n-1),store.name)
sink(paste(name,".txt",sep=""))
cat("Matrix of Autocovariance: \n\n",G,"\n\n\n")
cat("Matrix of Autocorrelation: \n\n",R)
sink()
postscript(paste(name,".ps",sep=""),horizontal=F)
par(mfrow=c((ceiling(cols/2)),2))
for (j in 1:cols){
plot(cbind(0:(n-1),R[,j]),typ="h",xlab="LAG",ylab="ACF",

ylim=c(min(R[,j])-0.05,max(R[,j])+0.05))
title(dimnames(X)[[2]][(j)],line=-1)
abline(0,0)
abline((1.96/sqrt(rows)),0,lty=2)
abline((-1.96/sqrt(rows)),0,lty=2)

}
dev.off()
return(G,R)
}
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f.pacf_function (G,R,N,name="pacf")
# The function "f.pacf" calculates the partial autocorrelations
# using the autocorrelations calculated by the function "f.acf".
# G...matrix of autocovariances
# (result of function "f.acf")
# R...matrix of autocorrelations
# (result of function "f.acf")
# N...number of patients
# name...name of file
# date: 2002-09-13
{
rows <- nrow(G)
cols <- ncol(G)
store.name <- dimnames(G)[[2]]
P <- NULL
for (k in 1:cols){
p <- NULL
for (h in 2:(rows-1)){

M <- NULL
for (i in 1:h){
a <- NULL
for (j in 1:h){
a <- c(a,G[(abs(i-j)+1),k])

}
M <- rbind(M,a)

}
p <- c(p,lsfit(M,G[2:(h+1),k],intercept=F)$coef[h])

}
P <- cbind(P,p)

}
P <- rbind(R[1:2,],P)
dimnames(P)_list(0:(rows-1),store.name)
sink(paste(name,".txt",sep=""))
cat("Matrix of Partial Autocorrelations: \n\n",P)
sink()
postscript(paste(name,".ps",sep=""),horizontal=F)
par(mfrow=c((ceiling(cols/2)),2))
for (j in 1:cols){
plot(cbind(0:(rows-1),P[,j]),typ="h",xlab="LAG",ylab="PACF",

ylim=c(min(P[,j])-0.05,max(P[,j])+0.05))
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title(dimnames(P)[[2]][j],line=-1)
abline(0,0)
abline((1.96/sqrt(rows*N)),0,lty=2)
abline((-1.96/sqrt(rows*N)),0,lty=2)

}
dev.off()
return(P)
}

f.ccf_function (X,i,n,g,name="ccf")
# The function "f.ccf" calculates the cross-correlations
# of the time series that are stored in the data
# matrix X.
# X...data matrix
# i...number of column
# n...number of medical check-ups
# g...vector of variances
# name...name of file
# date: 2002-09-12
{
rows <- nrow(X)
cols <- ncol(X)
x <- X[,i]
y <- X[,-i]
store.name <- dimnames(y)[[2]]
var.x <- g[i]
var.y <- g[-i]
G.ccf <- NULL
R.ccf <- NULL
for (j in 1:(cols-1)){
mean.x <- mean(x)
mean.y <- mean(y[,j])
gx <- NULL
gy <- NULL
for (h in 1:n){

a <- 0
for (l in 1:(rows/n)){
for (k in 1:(n-(h-1))){
a <- a + ((x[(((l-1)*n)+k+(h-1))]-mean.x)*

(y[(((l-1)*n)+k),j]-mean.y))
}
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}
gx <- c(gx,(1/rows)*a)

}
for (h in (n-1):1){

b <- 0
for (l in 1:(rows/n)){
for (k in 1:(n-h)){
b <- b + ((y[(((l-1)*n)+k+h),j]-mean.y)*

(x[(((l-1)*n)+k)]-mean.x))
}

}
gy <- c(gy,(1/rows)*b)

}
G.ccf <- cbind(G.ccf,c(gy,gx))
R.ccf <- cbind(R.ccf,(c(gy,gx)/sqrt(var.x*(var.y[j]))))

}
dimnames(G.ccf)_list((-n+1):(n-1),store.name)
dimnames(R.ccf)_list((-n+1):(n-1),store.name)
sink(paste(name,"_ccf.txt",sep=""))
cat("Results of CCF for variable ",dimnames(X)[[2]][i],": \n\n")
cat("Matrix of Cross-Covariance: \n\n",G.ccf,"\n\n\n")
cat("Matrix of Cross-Correlation: \n\n",R.ccf)
sink()
postscript(paste(name,"_ccf.ps",sep=""),horizontal=F)
par(mfrow=c((ceiling((cols-1)/2)),2))
for (j in 1:(cols-1)){
plot(cbind((-n+1):(n-1),R.ccf[,j]),typ="h",xlab="h",ylab="CCF",

ylim=c(min(R.ccf[,j])-0.05,max(R.ccf[,j])+0.05))
title(paste(dimnames(X)[[2]][(i)],"(t+h) vs. ",store.name[j],

"(t)",sep=""),line=-1)
abline(0,0)
abline((1.96/sqrt(rows)),0,lty=2)
abline((-1.96/sqrt(rows)),0,lty=2)

}
dev.off()
return(G.ccf,R.ccf)
}

f.tsa_function (X,n=30,j=4,trend=c(TRUE,TRUE),I=NULL,H=NULL,
C=NULL,T=NULL,K=c(1:5),P=NULL,B=NULL)

# The function "f.tsa" estimates the parameters of
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# the diabetes series using an univariate
# autoregressive model with exogeneous variables
# of arbitrary order specified by the parameters of
# the function.
# X...data matrix
# n...number of medical check-ups
# j...number of the variable which is analysed
# trend...logical vector, indicates whether a linear trend is
# estimated or not
# exogenous variables:
# I...vector of input variables (e.g., gender,age,diabetes
# type,...), constant in time
# H...vector of lags of the variable "HbA1c"
# C...vector of lags of the variable "Cholesterol"
# T...vector of lags of the variable "Triglyceride"
# K...vector of lags of the variable "Kidney"
# P...vector of lags of the variable "Blood Pressure"
# B...vector of lags of the variable "BMI"
# date: 2002-09-14
{
rows <- nrow(X)
name <- NULL
Y <- NULL
Z <- NULL
LSE <- NULL
B.est <- NULL
E <- NULL
S <- NULL
B.se <- NULL
k <- rows/n # number of patients
X.new <- matrix(as.vector(X),nrow=n,byrow=FALSE)
# maximum lag:
r <- max(c(H,C,T,K,P,B))
# Y:
Y <- as.vector(t(X.new[((r+1):n),(((j-1)*k+1):(j*k))]))
# Z:
if (trend[1]){ # intercept
Z <- rep(1,length(Y))
name <- c(name,"trend")

}

93



if (trend[2]){ # linear trend
a <- NULL
for (i in (r+1):n){

a <- c(a,rep(i,k))
}
Z <- rbind(Z,a)
name <- c(name,"trend")

}
if (length(I[1,])!=0){ # input variables, if availale
Z <- rbind(Z,matrix(rep(as.vector(I),(n-r)),ncol=length(Y),

byrow=FALSE))
name <- c(name, rep("input",nrow(I)))

}
if (length(H)!=0){ # HbA1c, if available
for (i in 1:(length(H))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-H[i]):(n-H[i])),1:k])))
name <- c(name,"HbA1c")

}
}
if (length(C)!=0){ # Cholesterol, if available
for (i in 1:(length(C))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-C[i]):(n-C[i])),
(k+1):(2*k)])))

name <- c(name,"Chol")
}

}
if (length(T)!=0){ # Triglyceride, if available
for (i in 1:(length(T))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-T[i]):(n-T[i])),
((2*k)+1):(3*k)])))

name <- c(name, "Trigl")
}

}
if (length(K)!=0){ # Kidney, if available
for (i in 1:(length(K))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-K[i]):(n-K[i])),
((3*k)+1):(4*k)])))

name <- c(name, "Kidne")
}

}
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if (length(P)!=0){ # Blood Pressure, if available
for (i in 1:(length(P))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-P[i]):(n-P[i])),
((4*k)+1):(5*k)])))

name <- c(name, "BP")
}

}
if (length(B)!=0){ # Body Mass Index, if available
for (i in 1:(length(B))){

Z <- rbind(Z,as.vector(t(X.new[((r+1-B[i]):(n-B[i])),
((5*k)+1):(6*k)])))

name <- c(name, "BMI")
}

}
dimnames(Z) <- list(name,NULL)
# Estimation of B.est and E:
LSE <- lsfit(t(Z),Y,intercept=FALSE)
B.est <- LSE$coef
E <- LSE$res
# Estimaton of S and Standard Error:
S <- (1/(k*(n-r)))*(t(E)%*%E)
B.est <- cbind(B.est,sqrt(S*diag(solve(Z%*%t(Z)))))
return(r,X.new,Y,Z,B.est,E,S)
}
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