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Abstract

The topic of this thesis is the trifocal tensor, which describes the relative orientation (or epipo-
lar geometry) of three uncalibrated images. So it plays the same role for three images as the
fundamental matrix plays for two. The trifocal tensor is a homogenous valence-(1,2) tensor,
which means that it can be represented as a 3×3×3 cube of numbers. It is of particular interest
because of the following properties:

– The trifocal tensor can be determined linearly from corresponding points and lines in three
images; the latter are not useable for the fundamental matrix. Consequently the trifocal ten-
sor provides a tool to determine the relative orientation of three images without requiring approxi-
mate values. This orientation can be used to initialize a subsequent bundle block adjustment.
Furthermore, the chances of running into critical configurations for determining the trifocal
tensor is much smaller than for two images and the fundamental matrix. The only practically
relevant critical configuration for computing the trifocal tensor happens if all corresponding
image features arise from a common plane in space.

After determining the trifocal tensor, the basis vectors and rotation matrices of the relative
orientation of the three images can be extracted easily if the interior orientation of the images
is known. If the interior orientation is unknown, but the same for all three images, then, in
general, this common interior orientation can be retrieved also.

If n > 3 images are given, then many unrelated trifocal tensors are computed. Before all n im-
ages can be used simultaneously, the individual basis vectors and rotation matrices derived
from the unrelated tensors must be transformed into one common system.

– The transfer relations associated with the trifocal tensor can be used to transfer the content
(points and lines) of two source images into the other one (the target image). If the target
image is a real image, the transferred position of features can be used to initialize a matching
technique in the target image. If the target image is virtual with a given orientation, then the
transfer relations can be used to form the content of this new image by transferring pixel by
pixel. This process is called novel view synthesis or image formation.

In this thesis we concentrate on the first issue of determining the trifocal tensor.

Each triple of points provides 4 equations, called trilinearities, which are linear in the tensor
elements and each corresponding triple of lines provides 2 linear equations. Since the tensor
is made up of 27 elements, at least 7 points, 13 lines or a proper combination are needed for a
direct linear solution of the trifocal tensor.

There are, however, some drawbacks associated with this linear solution. The trifocal tensor
is made up of 27 elements, but it only has 18 degrees of freedom. Consequently its elements
have to satisfy 8 internal constraints, besides the fixing of the scale ambiguity, to represent a
valid trifocal tensor. These constraints are in generally not satisfied by the direct linear solution.
Another drawback is that the direct linear solution does not minimize the errors in the original
point and line measurements (so-called reprojection error) but some other quantities (so-called
algebraic error).

These drawbacks can be prevented by determining a valid trifocal tensor by minimizing re-
projection error. The so-called Gauss-Helmert model provides a general environment for such
constrained adjustment tasks. The determination of a valid trifocal tensor in the Gauß-Helmert
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model can be done basically in two ways: By parameterizing the tensor using its 27 elements
and introducing the 8 internal constraints together with the scale fixing, or by using an alterna-
tive parameterization for the trifocal tensor that has 18 degrees of freedom.

Several sets of constraints and alternative parameterizations have been proposed over the years
and the most important ones are reviewed in this thesis. Most of these constraints and param-
eterizations are derived from the so-called tensorial slices, which are 3×3 matrices that can be
sliced out of the tensor. Due to their great importance these tensorial slices are investigated
thoroughly in this thesis. Using these tensorial slices we derive two new sets of constraints
together with a simple geometric interpretation, and also a new alternative parameterization
for the trifocal tensor.

For computing a valid trifocal tensor by minimizing reprojection error in the Gauß-Helmert
model it is important to have a consistent representation for the trifocal tensor. The param-
eterization using the projection matrices proposed by Hartley is the simplest way for such a
consistent representation. This parameterization is applicable as long as (i) not all three projec-
tion centers coincide and (ii) the first projection center is different from the other two.

If all image features arise from a common plane in space, the trifocal tensor can not be com-
puted uniquely. Therefore the minimum thickness of the object points used to compute the trifo-
cal tensor is investigated; i.e. what is the minimum deviation of the object points from a com-
mon plane, so that the computation is still possible? This investigation will be done empirically
for different image configurations and different numbers of corresponding points. In these in-
vestigations we further consider the effect on the computed tensor if the internal constraints
are considered or neglected, and if algebraic error or reprojection error is minimized.

The findings of these empirical investigations can be summarized in the following way: For
image configurations with strong geometry, like in the case of convergent terrestrial images or
in the case of aerial images, the direct linear solution (algebraic error without constraints) for
the trifocal tensor and the valid tensor from the Gauß-Helmert model (reprojection error with
constraints) are practically the same. Concerning the minimum thickness unexpected small
values were found already for 10 point correspondences. If the number of points increases, the
minimum thickness gets even smaller. For the mentioned configurations and 15 point corre-
spondences the computation of the trifocal tensor is still successful for a minimum thickness of
the object points of about 1% of the camera distance (normal angle camera with assumed noise
in the images of 1 pixel).

For image configurations with weak geometry, like collinear projection centers with congruent
viewing directions, much more point correspondences are required and the direct linear solu-
tion fails more often for small thicknesses of the object points than the valid solution from the
Gauß-Helmert model.

From these empirical investigations we come to the conclusion that minimizing reprojection er-
ror and considering the internal constraints is actually not necessary if the image configuration
has a strong geometry – especially if one is only interested in initial values for a subsequent
bundle block adjustment. However, if a general tool for providing such initial values is aimed
for, which does not have any restrictions on the image geometry and also handles weak con-
figurations, then the Gauß-Helmert model minimizing reprojection error must be applied.
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Kurzfassung

Das Thema dieser Arbeit ist der Trifokal-Tensor, der die relative Orientierung (oder Epipo-
largeometrie) von drei unkalibrierten Bildern beschreibt. In diesem Sinne ist der Tensor eine Er-
weiterung der Fundamental-Matrix, welche die relative Orientierung von zwei unkalibrierten
Bildern beschreibt. Der Trifokal-Tensor ist ein homogener Tensor der Stufe 3; dem gemäß kann
er als 3×3×3 Zahlenwürfel dargestellt werden. Aufgrund der folgenden Eigenschaften ist die-
ser Tensor von besonderem Interesse:

– Der Trifokal-Tensor kann in linearer Weise aus gegebenen Punkt- und Linienkorresponden-
zen in drei Bildern bestimmt werden; letztere sind für die Bestimmung der Fundamental-
Matrix nicht verwendbar. Aus diesem Grund stellt der Trifokal-Tensor ein Werkzeug für die
Bestimmung der relativen Orientierung von drei Bildern dar, für das keine Näherungswerte benö-
tigt werden. Diese so gefundene Orientierung kann dann als Startwert für eine anschließen-
de Bündelblockausgleichung verwendet werden. Weiters ist die Wahrscheinlichkeit auf eine
gefährliche Konfiguration zu treffen, die keine eindeutige Bestimmung des Tensors erlaubt,
wesentlich geringer als für zwei Bilder und ihre Fundamental-Matrix. Die einzige praktisch
relevante gefährliche Situation entsteht nur dann, wenn alle korrespondierenden Bildpunkte
und -linien von einer gemeinsamen Ebene stammen.

Nachdem der Trifokal-Tensor bestimmt wurde, können die Basisvektoren und Rotationsma-
trizen der relativen Orientierung der drei Bilder einfach extrahiert werden – wenn die innere
Orientierung bekannt ist. Ist diese unbekannt, aber ident für alle drei Bilder, so kann diese
gemeinsame innere Orientierung ebenfalls im Allgemeinen bestimmt werden.

Sind n > 3 Bilder gegeben, so werden mehrere unzusammenhängende Trifokal-Tensoren
berechnet. Bevor alle n Bilder gemeinsam weiterverarbeitet werden können, müssen die ein-
zelnen unzusammenhängenden Basisvektoren und Rotationsmatrizen in ein gemeinsames
System transformiert werden.

– Die sogenannten Transferbeziehungen, die sich aus dem Trifokal-Tensor ableiten lassen, kön-
nen verwendet werden, um den Inhalt (Punkte und Geraden) von zwei Quellbildern in ein
anderes Bild – das Zielbild – zu transferieren. Falls dieses Zielbild eine echtes Bild ist, dann
können die transferierten Positionen verwendet werden um ein Matching-Verfahren zu star-
ten. Falls dieses Zielbild eine virtuelles Bild mit gegebener Orientierung darstellt, dann kann
der Inhalt dieses neuen Bildes mit Hilfe der Transferrelationen Pixel für Pixel aus den beiden
Quellbildern aufgebaut werden. Dieser Vorgang wird im Englischen als novel view synthesis
oder image formation bezeichnet.

In dieser Arbeit wird der erste Punkt – die Berechnung des Trifokal-Tensors – näher behandelt.

Jedes Triple von korrespondierenden Punkten liefert 4 Gleichungen, die sogenannten Trilinea-
ritäten, welche linear in den 27 Tensorelementen sind. Jedes Tripel von korrespondierenden
Geraden liefert 2 lineare Gleichungen. Demzufolge benötigt man mindestens 7 Punkte, 13 Ge-
raden oder eine passende Kombination um den Trifokal-Tensor direkt bestimmen zu können.

Mit dieser direkten linearen Lösung für den Trifokal-Tensor sind allerdings ein paar Nachteile
verbunden. Der Trifokal-Tensor besteht zwar aus 27 Elementen, jedoch besitzt er nur 18 Frei-
heitsgrade. Aus diesem Grund müssen die Tensorelemente 8 interne Bedingungen erfüllen, ne-
ben der Festlegung des Tensormaßstabes, um einen gültigen Trifokal-Tensor zu repräsentieren.
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Diese Bedingungen werden im Allgemeinen von der direkten linearen Lösung nicht erfüllt. Ein
weiterer Nachteil ist, dass die direkte lineare Lösung nicht die Fehler in den originalen Bild-
beobachtungen minimiert (die sogenannten Residuen), sondern den sogenannten algebraischen
Fehler.

Diese Nachteile kann man beseitigen, wenn man einen gültigen Trifokal-Tensor über die Mi-
nimierung der Bildresiduen berechnet. Das sogenannte Gauß-Helmert Modell stellt eine all-
gemeine Umgebung für derartige bedingte Ausgleichungsaufgaben dar. Die Berechnung eines
gültigen Trifokal-Tensor im Gauß-Helmert Modell kann in zwei Arten realisiert werden: Indem
der Trifokal-Tensor durch seine 27 Elemente repräsentiert wird und die 8 internen Bedingungen
gemeinsam mit der Festlegung des Maßstabes zusätzlich ins Gauß-Helmert Modell aufgenom-
men werden; oder indem der Trifokal-Tensor durch eine andere alternative Parametrisierung,
die genau 18 Freiheitsgrade hat, dargestellt wird.

Verschiedene Gruppen von Bedingungen und unterschiedliche Parametrisierungen wurden
in der Vergangenheit publiziert, und die wichtigsten davon werden in dieser Arbeit zusam-
mengefasst. Die meisten dieser Bedingungen und Parametrisierungen leiten sich aus den so-
genannten Tensorschnitten ab. Dabei handelt es sich um 3×3 Matrizen, die aus dem Tensor
sozusagen herausgeschnitten werden können. Aufgrund ihrer hohen Bedeutung werden diese
Tensorschnitte in dieser Arbeit sehr genau untersucht. Mit ihrer Hilfe werden zwei neue Grup-
pen von Bedingungen, die auch eine einfache geometrische Interpretation erlauben, und eine
neue alternative Parametrisierung für den Trifokal-Tensor hergeleitet.

Um nun einen gültigen Trifokal-Tensor im Gauß-Helmert Modell über die Minimierung der
Bildresiduen berechnen zu können, ist es wichtig eine konsistente Repräsentierung für den
Tensor zu besitzen. Die von Hartley vorgeschlagene Parametrisierung mit Hilfe der Projekti-
onsmatrizen ist die einfachste Möglichkeit für solch eine konsistente Repräsentierung. Diese
Parametrisierung ist anwendbar solange (i) nicht alle drei Projektionszentren zusammenfallen
und (ii) das erste Projektionszentrum verschieden von den anderen beiden ist.

Wenn alle Korrespondenzen in den drei Bildern von einer gemeinsamen Ebene stammen, dann
kann der Trifokal-Tensor nicht eindeutig bestimmt werden. Aus diesem Grund wird in dieser
Arbeit die minimaler Dicke der Objektpunkte untersucht; d.h. was ist die minimal notwendi-
ge Abweichung von einer gemeinsamen Ebene, sodass der Trifokal-Tensor immer noch er-
folgreich berechnet werden kann? Diese Untersuchung wird empirisch anhand verschiedener
Bildkonfigurationen und unterschiedlicher Punktanzahl durchgeführt. In diesen Untersuchun-
gen werden weiters die Unterschiede im berechneten Trifokal-Tensor behandelt, die entstehen
wenn die internen Bedingungen berücksichtigt werden oder nicht, und wenn algebraische Feh-
ler oder Bildresiduen minimiert werden.

Die Erkenntnisse dieser empirischen Untersuchungen können wie folgt zusammengefasst wer-
den: Für Bildkonfigurationen mit guter Geometrie, wie im Fall von konvergenten terrestrischen
Aufnahmen oder im Fall von Luftbildern, stimmt die direkte lineare Lösung (algebraischer
Fehler ohne Bedingungen) für den Tensor praktisch mit dem gültigen Tensor, der im Gauß-
Helmert Modell (Bildresiduen mit Bedingungen) geschätzt wird überein. Für diese Konfigura-
tionen mit guter Geometrie wurden auch erstaunlich geringe minimale Dicken bereits bei der
Verwendung von 10 korrespondierenden Punkten gefunden. Nimmt die Anzahl der Punkte zu,
so wird auch die minimale Dicke kleiner. Für die erwähnten Konfigurationen und 15 Punkttri-
pel war die Berechung des Tensors für eine minimale Dicke von etwa 1% der Aufnahmeentfer-
nung immer noch erfolgreich (Normalwinkel Aufnahmen und angenommenes Bildrauschen
von 1 Pixel).
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Für Bildkonfigurationen mit schwacher Geometrie, wie im Fall von kollinearen Projektions-
zentren mit zusammenfallenden Blickrichtungen, ist eine deutlich größere Punkteanzahl ist
notwendig und die direkte lineare Lösung versagt viel häufiger bei kleinen Objektdicken als
die gültige Lösung übers Gauß-Helmert Modell.

Diese empirischen Untersuchungen führen uns zum Schluss, dass für Konfigurationen mit gu-
ter Geometrie die Minimierung der Bildresiduen und die Berücksichtigung der internen Bedin-
gungen eigentlich nicht notwendig ist – besonders dann nicht, wenn man nur an Näherungs-
werten für eine anschließende Bündelblockausgleichung interessiert ist. Benötigt man jedoch
ein allgemeines Werkzeug, das Näherungswerte für die Bildorientierungen liefert und keine
Einschränkungen an die Bildkonfiguration setzt und auch bei schwächerer Geometrie funktio-
niert, so ist die Lösung übers Gauß-Helmert Modell zu realisieren.
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Chapter 1

Introduction

1.1 Overview

The topic of this thesis is the trifocal tensor, which describes the epipolar geometry (or relative
orientation) of three uncalibrated images, just like the fundamental matrix does for two. The
trifocal tensor is of particular interest because of the following properties:

– The trifocal tensor can be determined linearly from corresponding points and lines in three
images. Compared to the separate linear determination of the respective three fundamental
matrices from the same data, which however can only use corresponding points, the linear
determination of the trifocal tensor should be more stable, as it can use also lines, and all
image correspondences are used at once. Furthermore, the chances of running into critical
configurations for determining the trifocal tensor is much smaller than for the fundamental
matrix. The only practical relevant critical configuration for computing the trifocal tensor
happens if all corresponding image features arise from a common plane in space.

After determining the trifocal tensor, the basis vectors and rotation matrices of the relative
orientation of the three images can be extracted easily if the interior orientation of the images
is known. If the interior orientation is unknown, but the same for all three images, then, in
general, this common interior orientation can be retrieved also.

– The transfer relations associated with the trifocal tensor can be used to transfer the content
(points and lines) of two source images into the other one (the target image). If the target
image is a real image, the transferred position of features can be used to initialize a matching
technique in the target image. If the target image is virtual with a given orientation, then the
transfer relations can be used to form the content of this new image by transferring pixel by
pixel. This process is called novel view synthesis or image formation.

A similar transfer can also be realized with fundamental matrices, but there the transfer of
lines as entities is not possible and the transfer of points can fail for certain configurations,
like collinear projection centers.

So there are many benefits in considering three images with their trifocal tensor compared
to pairs of images with their fundamental matrices. In this thesis we will concentrate on the
first issue of determining the trifocal tensor. Although in principle the trifocal tensor can be
determined linearly, there are some drawbacks associated with this direct linear solution.
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– A valid trifocal tensor satisfies certain internal constraints. The tensor obtained by the direct
linear solution does in general not satisfy these internal constraints and so does not represent
a valid trifocal tensor. Furthermore, depending on the number of point and line correspon-
dences, their distribution in space and the arrangement of the three images, chances are that
the redundant unconstrained elements of the tensor absorb some of the errors in the im-
age measurements and thereby return a severely disturbed tensor and thus a rather wrong
relative orientation of the three images.

– This direct linear solution does not minimize the errors in the original measurements (so-
called reprojection error) but some other quantities (so-called algebraic error). And therefore
we suspect that additional errors in the tensor elements are induced.

These drawbacks can be removed by determining a valid trifocal tensor by minimizing repro-
jection error. The so-called Gauss-Helmert model provides a general environment for such con-
strained adjustment tasks. For realizing the determination of the trifocal tensor in this model
we have to investigate the internal constraints of the trifocal tensor and find ways of intro-
ducing them in this model. This can be done either by considering the necessary number of
constraints explicitly or by using an alternative parameterization, which returns a valid trifocal
tensor in any case.

Some set of constraints and alternative parameterizations have been presented over the years.
We will review the most important ones and derive also new sets of constraints and a new
parameterization. As it turns out, the simplest way of realizing a valid trifocal tensor in the
Gauß-Helmert model is the parameterization using the projection matrices proposed in [Hart-
ley 1994a], which historically is one of the first parameterizations.

If all image features arise from a common plane in space, the trifocal tensor can not be com-
puted uniquely. Therefore it is interesting to investigate the minimum deviation from a com-
mon plane required to successfully determine the trifocal tensor. This investigation will be
done empirically for different image configurations and different numbers of corresponding
points. In these investigations we further consider the effect on the computed tensor if the
internal constraints are considered or neglected, and if algebraic error or reprojection error is
minimized.

1.2 Motivation

In this thesis concepts of two vision sciences photogrammetry and computer vision are applied.
The approaches taken in these two disciplines are guided by different interests and therefore
have different benefits and drawbacks. Consequently it is useful to outline the viewpoint of
each science individually.

1.2.1 The photogrammetric viewpoint

The main task of photogrammetry is the reconstruction of spatial objects using a set of images.
For the reconstruction the object is abstracted by a set of points and line-elements, out of which
lines and surfaces are formed. The 3D coordinates of these special object points and the line-
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and surface-belongings (the so-called topology) are to be determined. These coordinates have
to be related to a – in most cases – given global coordinate system.

In a geometric manner an image can be interpreted as the result of a central projection. In
photogrammetry the conventional mathematical representation of the central projection is the
following; see e.g. [Kraus 1997]

x = xp0 − c
r11(X − XZ) + r21(Y −YZ) + r31(Z− ZZ)
r13(X − XZ) + r23(Y −YZ) + r33(Z− ZZ)

y = yp0 − c
r12(X − XZ) + r22(Y −YZ) + r32(Z− ZZ)
r13(X − XZ) + r23(Y −YZ) + r33(Z− ZZ)

(1.1)

where X, Y, Z are the Cartesian coordinates of an object point. They may be known (control
point) or unknown (tie point). The Cartesian coordinates x, y of the corresponding image point
are observed. The principal distance c together with the coordinates of the principal point xp0 ,
yp0 form the interior orientation and are known by calibration in most cases. The coordinates
of the projection center XZ, YZ, ZZ and the elements ri j of a spatial rotation matrix R (from the
image- to the object-coordinate-system), constructed by three rotation parameters, make up the
the exterior orientation and are unknown in most cases. Altogether the representation (1.1) is
done using nine parameters in a non-linear way.

A camera whose way of projecting can be described in the presented way is usually called a
pinhole camera model; see also section 5.1. Photographs made by real cameras deviate more or
less from an exact central projection due to errors of the lenses, film deformations or unflatness
of the CCD-sensor; i.e. the pinhole model is not sufficient to describe the reality. These devia-
tions are compensated by additional parameters including among others the radial distortion as
the most important one. They are introduced by additive terms in the equations (1.1).

The basic requirement for doing object reconstruction with a set of images is image orientation;
i.e. the estimation of the exterior and maybe the interior orientation of all the images. For
some of these tasks the reference to a global system of coordinates (absolute orientation) is not
necessary or this is done later: in other words, no or insufficient control features are available.
In such cases one works with the so-called relative orientation. This is the alignment of at least
two images in such a way that corresponding projection rays intersect in a point in space. The
underlying (local) coordinate system is fixed for example in the following manner: its origin
coincides with the projection center of a suitable image and the orientation of the axes of the
coordinate system of that image fix the orientation of the axes of the object system.

Whether one works with a global coordinate system or with a local one of relative orientation,
the equations (1.1) always give the fundamental relation between object point and image point.

Least-squares adjustment The observed image coordinates are subject to accidental errors.
For decreasing their disturbing influence on the estimated unknowns the number of observa-
tions is much higher than the number of unknowns. This results in an overdetermined system,
which is then solved by minimizing or maximizing a certain criterion. Any of the following
criteria is useful. The unknown parameters are estimated such that: (i) they are unbiased and
have least variance, the so-called best unbiased estimation, (ii) the sum of the squared residuals is
minimized, the so-called least-squares-estimation, or (iii) the probability for the given realization
of the observations is maximized, the so-called maximum-likelihood-estimation.
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The optimization of the chosen criterion is realized in a certain mathematical model, which con-
sists of a stochastical model and a functional model. The stochastical model describes the stochastic
properties of the observations; e.g. by their covariances or their probability density functions.
The functional model describes the functional relations between the observations and the un-
known parameters.

Two kinds of functional models are commonly used in geodesy: the Gauß-Markoff model, in
which each observation can be expressed in terms of the known and unknown parameters,
and the Gauß-Helmert model, in which only functions of the observations can be expressed in
terms of the parameters; see [Koch 1999] and also section D. If the observations are normally
distributed, then the unknown parameters which are estimated in these two models satisfy all
three criteria stated above.

In general, one works with a least-squares-estimation or least-squares-adjustment. But it is im-
portant to point out that such a least-squares-adjustment is a best unbiased estimation only
if the sum of the squares of the errors of the original observations is minimized (so-called re-
projection or residual error ) and not the sum of squares of some other quantities, which are
functionally dependent on groups of observations (so-called algebraic error).

A least-squares-adjustment based on the Gauß-Markoff model is also termed adjustment by
indirect observations, and if it is based on the Gauß-Helmert model, it is called general case of least
squares adjustment. The latter also allows the inclusion of constraints between the unknown
parameters. We see from equation (1.1) that the observed image coordinates can be directly
expressed functionally in the orientation parameters and the object coordinates. Therefore the
least-squares-adjustment of images based on the pinhole camera model can be done in the
Gauß-Markoff model, which in this case is also called bundle block adjustment.

In the course of such a bundle block adjustment the most plausible values for the unknowns
(object points, the exterior and under certain circumstances also the interior orientation of the
images) and their accuracies resp. co-variances are computed. But for such an adjustment linear
equations are needed. Since the equations of the central projection are non-linear, they have
to be linearized and the solution needs to be found iteratively. For this purpose approximate
values of the exterior (and under certain circumstances also for the interior orientation) of the
images are necessary. But in many cases the determination of these approximate values is quite
tedious.

1.2.2 The computer vision viewpoint

In computer vision central perspective images are also worked with and the pinhole camera
model is used, too. The tasks in computer vision that deal specially with the problem of im-
age orientation are again object reconstruction (called structure from motion) and further the in-
spection of dynamical processes (called 3d-dynamic-scene-analysis, motion from structure or active
vision); e.g. inspections in robotics applications or tracking of moving objects like cars.

Due to the highly non-linear character of equation (1.1) in computer vision the central perspec-
tive relation between object and image is not described with the 9 elements of the interior and
exterior orientation and relation (1.1), but a linear representation is aimed for. This which is es-
pecially necessary for the real time applications in active vision. This linear representation for
the central projection is achieved using projective geometry and is obtained in form of a 3×4 ma-
trix P – the so-called point projection matrix; see section 5.2. Projective geometry is very suited
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for representing the geometry of vision problems, because all basic geometric entities – points,
lines and planes – can simply be represented as vectors, the vector translation can be repre-
sented as a linear mapping and entities at infinity are naturally incorporated in the framework.
So also the mapping of 3D lines to image lines, which is rather hard to represent in the classical
notation of interior and exterior orientation, can be represented linearly using a 3×6 matrix Q
– the so-called line projection matrix, which is closely related to P; see section 5.3.

The benefits of using projective geometry go even further, as it also allows a linear representa-
tion for the relative orientation of two, three or four images1 by means of homogenous multiple
view tensors. The two bifocal tensors – essential matrix resp. fundamental matrix – represent lin-
early the relative orientation of two calibrated resp. uncalibrated images. The trifocal tensor is
the linear formulation of the relative orientation of three uncalibrated images and the quadri-
focal tensor the one of four uncalibrated images. Linear in this case means that the relations
representing the relative orientation of two, three and four images (i.e. the condition that the
back projection of the corresponding image points and lines intersect in space) are linear in
the respective tensor elements and multi-linear in the coordinates of the corresponding image
features.

This linearity, however, is achieved for the price that these projective representations use more
elements than the corresponding conventional representation with the interior and exterior
orientation of the images. The homogenous multiple view tensor for n views is made up of 3n

elements but has only 11n− 15 independent elements (also called degrees of freedom). As a con-
sequence 3n − (11n− 15) constraints, which are generally non-linear, must hold between the
projective parameters of the linear formulation to represent a valid relative orientation of two,
three or four images; see table 1.1. As long as these tensors are computed from known interior
and exterior orientations of given images, this is not a problem, since then the constraints are
fulfilled anyway.

number of images number of constraints

2 2

3 9

4 16

Table 1.1: Number of constraints for the linear formulation of the relative orientation of two, three and four
uncalibrated images. Due to the homogeneity of these multiple view tensors, one of these constraints is the fixing
of the scale.

Estimating the multiple view tensors The fulfillment of the constraints constitutes a prob-
lem if such a tensor is to be determined for given image correspondences (points and/or lines)
which are subject to accidental errors. The great benefit of the linearity, which makes the whole
matter independent on approximate values, is only applicable if these constraints are neglected
and algebraic error is minimized. This is the total opposite to an optimal solution, which con-
siders the constraints and minimizes reprojection error by using the Gauß-Helmert model. The
Gauss-Markoff model is not applicable in this case because the above mentioned relations for
the intersections of the back projections of the corresponding image features are multi-linear
functions in the image coordinates.

1In section C it is shown, that for more than four images no such linear representation is possible.
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If the interior orientation of the images is known a-priori (especially for photogrammetric cam-
eras), then another drawback may arise when determining these tensors linearly. This knowl-
edge can not be used because it imposes additional non-linear constraints among the tensor
elements. This has the affect that each image is individually calibrated during the linear com-
putation. The quality of such self calibrations depends strongly on the image configuration and
the distribution of the object points and lines. For example the calibration and consequently the
linear determination of the tensors fails if all image correspondences arise from planar object
points.

On the other hand if the interior orientation of the images is absolutely unknown (e.g. for ama-
teur cameras, or for very old images or parts of images of unknown source) and the distribution
of the points and lines permits the calibration, this feature turns into a strong benefit.

Another drawback of these projective representations is that non-linear distortion is naturally
not included in this framework. This follows from the fact, that projective geometry is based on
mappings called collineations, which map straight lines to straight lines. In the presence of non-
linear distortion, however, the mapped line is no longer straight. Some strategies concerning
the inclusion of non-linear distortion parameters into the projective based framework, which
is not considered in this thesis, can be found in the literature; e.g. [Niini 2000] or [Fitzgibbon
2001].

1.3 Objective of the thesis

The optimal solution for the multiple view tensors requires the consideration of the actual
degrees of freedom. In the Gauß-Helmert model this can be established in two ways: (i) con-
sidering the necessary number of independent constraints or (ii) using an alternative param-
eterization for the multiple view tensors, which has the required degrees of freedom. If this
parameterization is minimal, i.e. the number of parameters is the same as the degrees of free-
dom, then no constraints need to be considered during the computation in the Gauß-Helmert
model.

For the essential and fundamental matrix the constraints were investigated many years ago,
e.g. [Rinner 1963], [Huang and Faugeras 1989] or [Hartley 1992], and are summarized in sec-
tions 6.1.3 and 6.1.2. Minimal parameterizations are presented in [Luong and Faugeras 1996]
and [Hartley and Zisserman 2001]. Also for the quadrifocal tensor constraints and parameteri-
zations are reported in the literature; see [Hartley 1998] and [Shashua and Wolf 2000].

The subject of this work are constraints and parameterizations for the trifocal tensor. The ten-
sor is made up of 27 elements and has 18 degrees of freedom, thus has to satisfy 9 constraints.
Several constraints (e.g. [Stein and Shashua 1998], [Papadopoulo and Faugeras 1998] ,[Canter-
akis 2000]) and parameterizations ([Hartley 1994a], [Torr and Zisserman 1997], [Papadopoulo
and Faugeras 1998]) are reported in the literature so far. In most cases their usage in the Gauß-
Helmert model, however, is limited due to one or more of the following reasons: They are

– not complete (< 9), like the set of [Stein and Shashua 1998]. Consequently no valid trifocal
tensor will result from the computation.

– not minimal (> 9), like the set of [Papadopoulo and Faugeras 1998]. Therefore a suitable
minimal subset of those constraints must be select for the Gauß-Helmert model, and it is not
clear on which criteria this selection should be based on.

6



– not valid for all image coordinate systems, like the set of [Papadopoulo and Faugeras 1998].
Depending on the image coordinate system it may happen that certain constraints are not
applicable. Although this problem can be solved by adapting the coordinate system, this
requires additional unnecessary attention during the computation.

– rather complicated to be incorporated in the Gauß-Helmert model, like the set of [Canterakis 2000]
and the minimal parameterizations of [Torr and Zisserman 1997] and [Papadopoulo and
Faugeras 1998]. For this limitation we have to consider that the constraints or the relations
involving the alternative parameterization must be linearized to be included in the Gauß-
Helmert model. Therefore and if we want to avoid numerical differentiation, the constraints
and parameterization should not be too complex.

The only parameterization so far that can be realized in the Gauß-Helmert model without diffi-
culties is the non-minimal parameterization using the projection matrices proposed in [Hartley
1994a].

The objective of this work is to investigate the constraints of the trifocal tensor and to derive
a minimal set of constraints, that can be included in the Gauß-Helmert model by explicit dif-
ferentiation. Two new minimal sets of constraints presented in section 7.6.3 are quite simple
compared to the only minimal set so far presented in the literature [Canterakis 2000]. They
are, however, not general applicable for all image coordinate systems – just as the set of [Pa-
padopoulo and Faugeras 1998].

We also investigate the ways the trifocal tensor can be parameterized and in section 8.3.4 we
derive a new non-minimal parameterization from which a minimal parameterization can be
obtained quite easily. Although this minimal parameterization is simpler than the other mini-
mal parameterizations of [Torr and Zisserman 1997] and [Papadopoulo and Faugeras 1998], its
implementation in the Gauß-Helmert model is still more complex than for the parameterization
using the projection matrices.

If all image features arise from a common plane in space, the trifocal tensor can not be com-
puted uniquely. Therefore it is interesting to investigate the minimum deviation from a com-
mon plane required to successfully determine the trifocal tensor. This investigation will be
done empirically for different image configurations and different numbers of corresponding
points. In these investigations we further consider the effect on the computed tensor if the
internal constraints are considered or neglected, and if algebraic error or reprojection error is
minimized.

1.4 Overview of the thesis

In the chapters 3 to 6 the basics, required to understand the properties of the trifocal tensor, are
presented in detail.

The basics of projective geometry are presented in chapter 3, followed by a short introduction
to tensor notation in chapter 4. Contrary to what we might expect from the name trifocal tensor
the usage of tensorial algebra is rather small throughout this work, therefore this introduction
is kept short.
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The single-view geometry is explained in chapter 5, including the pinhole camera model, the
point and line projection matrices, and the back projection of points and lines in the image to
projection rays and projection planes in space.

The two-view geometry is depicted in chapter 6, including the explanation of the relative orien-
tation of images, the epipolar geometry and the fundamental and essential matrix. This chapter
is closed by the description of homographies between two images induced by a 3D plane, and
correlations between two images induced by a 3D line. These two mappings between two
images will appear frequently when dealing with the trifocal tensor.

The three-view geometry follows in chapter 7, which is also the main chapter of this thesis.
First a derivation of the trifocal tensor is given, followed by an investigation of the tensor
properties. These are derived by considering the homographies and correlations associated
with the trifocal tensor; section 7.2. The trilinearities and transfer relations, which are the basic
relations involving the trifocal tensor, are described in section 7.3. The internal constraints are
explored in section 7.6 by reviewing existing sets and deriving new sets of constraints.

The computation of a valid trifocal tensor by minimizing reprojection error is the topic of chap-
ter 8. After reviewing existing ways of parameterizing a valid trifocal tensor a new parame-
terization for the trifocal tensor is presented in section 8.3.4. In section 8.3.5 all possible ways
of realizing a valid trifocal tensor in the Gauß-Helmert model are discussed critically, showing
that the simplest way is the parameterization using the projection matrices.

The results of empirical investigations showing the differences in determining the trifocal ten-
sor by minimizing algebraic error or reprojection error with or without considering the internal
constraints are presented in chapter 9. Here also the effect of almost planar object points is con-
sidered.

A summary and a conclusion given in chapter 10 close this thesis.
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Chapter 2

A few Words about Notation

In a rigorous way a distinction should be made between a geometric object – like a point, a line
or a plane – and its mathematical representation, which is usually a vector. However, for the
sake of simplicity and since all geometric objects, except for points, are of interest only in their
projective representation, this distinction is not performed within this thesis and all geometric
objects are addressed via their projective representation (a homogenous vector) in bold upright
font. If the Euclidian representation of a point is considered, then this is indicated in bold
slanted font.

Since we will deal with points and lines in 2D and 3D and further planes in 3D it is helpful
to recognize these objects directly by their symbolical representations. Therefore the following
notation was chosen, for a full summary on the used notation see section A on page 173:

2D objects:
points

represented as Euclidian vectors: lower case Roman font – slanted, e.g. e, p, x
represented as homogenous vectors: lower case Roman font – upright, e.g. e, p, x

lines
represented as homogenous vectors: lower case Greek font, e.g. α, λ, ρ

3D objects:
points

represented as Euclidian vectors: upper case Roman font – slanted, e.g. P, X, Z
represented as homogenous vectors: upper case Roman font – upright, e.g. P, X, Z

lines
represented as homogenous vectors: upper case Calligraphic font, e.g. L, R

planes
represented as homogenous vectors: upper case Greek font, e.g. Ω, Φ

Matrices:
Euclidian matrices (i.e. with fixed scale): upper case Sans Serif font – slanted, e.g. R

homogenous matrices: upper case Sans serif font – upright, e.g. C, P, I
identity matrix of dimension n: In

its column vectors: i1, i2, i3 for n = 3 and I1, I2, I3, I4 for n = 4
zero matrix of dimension n: 0n
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Chapter 3

Projective Geometry

In this chapter the basic principles of projective geometry as far as they are of concern to this
thesis are presented. Primarily this chapter is based on the introduction to projective geometry
found in [Hartley and Zisserman 2001].

3.1 Introduction

As it is outlined in [Hartley and Zisserman 2001], geometry can be studied in two ways: an ap-
proach based on geometric primitives and an algebraic approach. In the first one no coordinates at all
are considered and all results are based on theorems and axioms and all proofs are carried out
only in terms of the geometric primitives like points, lines or planes. In the algebraic approach
the geometric primitives are associated with coordinates and algebraic entities; e.g. a point is
identified by a coordinate vector relative to some chosen coordinate basis. The advantage of
the second approach lies in its easy amenability, due to our familiarity with coordinates and
vectors since school days, and the easy possibility to derive algorithms and practical compu-
tational methods based on the results of this approach. Therefore we consider this algebraic
approach.

Practically speaking, the main advantage of using projective geometry is the possibility to deal
with points at infinity and to represent the translation of vectors as a linear transformation1.
This will allow the expression of the central perspective relation between object points and
corresponding image points by a single matrix multiplication.

Projective geometry is not limited to the planar case only, but can be studied in any dimension
even with other fields of numbers than the real numbers IR. Since for this thesis the planar case
is the most important, which is also readily accessible since it can be easily visualized, we will
start with this case and then give a few notes for the three and n-dimensional case.

1A transformation σ(x) is termed linear, if it holds: (i) σ(λ · x) = λ ·σ(x) (for any scalar λ) and
(ii) σ(x + y) = σ(x) +σ(y).
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3.2 The projective plane IP2

In the Euclidian 2D space IR2 a point x is identified by a 2D column vector x = (x, y)>2. A 2D
line λ passing through the point x can be written as ax + by + c = 0. So we can represent this
line by the column vector λ = (a, b, c)>. The components of λ have the following meanings:
nλ = (a, b)> is the normal vector of the line and |c|/|nλ| is the perpendicular distance of the
line to the origin, where c = −n>λ x.

It is easy to see that the very same line can be represented also by the relation
(ka)x + (kb)y + (kc) = 0 and thus by the vector k(a, b, c)> for any non-zero scalar k. These
two vectors, which differ only by their scaling, are considered as equivalent. Vectors with this
property are called homogenous vectors. Consequently, although λ has 3 elements it only has
2 degrees of freedom. Considering this homogenity we actually may not write λ = (a, b, c)>,
because the symbol ’=’ is misplaced, and thus in the following we will write

λ ∼

 a
b
c

 ∼
(

λH
λO

)
(3.1)

whenever homogenous vectors are involved; ’∼’ emphasizes that the vector on the left and/or
right side can be multiplied with any non-singular scalar anytime. Nevertheless, we will use
’=’ sometimes, to emphasize that the scale of a projective quantity is initialized by a specific
relation. The separation of a projective vector p in a homogenous part ’pH’, which does not
depend on the distance to the origin, and a Euclidian part ’pO’, which does, was suggested by
[Brand 1966] and will be helpful in some of the following applications. Both parts can appear
as scalars (being pH or pO) or as vectors (being pH or pO).

Now, if we address the 2D point x with the vector x

x =
(

x
y

)
→ x ∼

 x
y
1

 ∼

 u
v
w

 ∼
(

xO
xH

)
(3.2)

we see that the incidence relation ax + by + c = 0, that x lies on λ, can be expressed as

λ>x = 0. (3.3)

And we see, that x is also a homogenous vector with 2 degrees of freedom, since it holds
a(kx) + b(ky) + c(k·1) = 0. This leads to the following (simplified) definition of the projective
space IP2 (in other words the projective plane):

Definition 3.1 (The projective plane.) The projective space IP2 consists of a set of points P, a set of
lines L and an incidence relation (3.3), that defines whether a point x lies on a line λ. Each of both sets is
represented by the set of homogenous vectors (x resp. λ) of IR3\{0}. The zero vector 0 must be excluded
from IR3 since it does not correspond to any valid point or line.

2Rigorously x = (x, y)> just represents the vector of components or vector of coordinates with respect to some

arbitrarily chosen vector basis B̃ = [b̃1 , b̃2], where ˜ symbolizes a vector in space – IR2 in this case. The vector x̃ in

space corresponding to the vector of components x is obtained by x̃ = B̃x. However, if the vector basis is chosen
to be the canonical basis (i.e. b̃1 = (1, 0)> and b̃2 = (0, 1)>), then the vector of components x will be the same as the
vector in space x̃ and thus allowing a simpler notation. So in this thesis always the canonical basis will be assumed
for defining a particular space.
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If x ∼ (u, v, w)> ∼
(
x>O , xH

)> is a general homogenous or projective vector of a 2D point x,
then the corresponding vector x in IR2 is obtained by (provided w 6= 0 resp. xH 6= 0):

x ∼

 u
v
w

 ∼
(

xO
xH

)
→ x =

(
u/w
v/w

)
=

1
xH

xO (3.4)

Since points x and lines λ of IP2 are represented as 3D vectors, IP2 can be visualized according
to figure 3.1. Thus projective points x of IP2 can be interpreted as 3D lines passing through
0 and projective lines λ of IP2 can be interpreted as 3D planes going through 0. The vector λ

interpreted as a vector in IR3 is the normal vector of this plane. The intersection of these lines
and planes with the w = 1 plane gives the Euclidian points and lines.

Figure 3.1: The projective space IP2 interpreted in IR3, and the Euclidian space IR2.

This figure also indicates the problem if the w−coordinate of x is 0. In this case no valid inter-
section point with the w = 1 plane exists. Such points (like v∞ in the figure) are called points
at infinity. They lie infinitely far away and represent directions of 2D lines. Since all points at
infinity are represented as homogenous 3D vectors with w = 0, the set of all points at infinity is
1-dimensional giving a line π∞ ∼ (0, 0, 1)>, which is called line at infinity. This gives another
interpretation for the projective plane: IP2 is obtained by IR2 and adding the line at infinity.

If we consider the incidence relation (3.3) for points and lines again and fix the line λ, then
(3.3) is a point-wise representation for the fixed line λ. Points lying on a single line are called
collinear points. A set of collinear points is also called a pencil of points. Conversely we
can fix the point x and consider all possible lines which satisfy (3.3) and thus get a line-wise
representation for the fixed point x. Lines intersecting in one single point are called concurrent
lines. A set of concurrent lines is also called a pencil of lines.
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Duality. These last considerations and the fact that points and lines in IP2 are both represented
by 3D vectors, thus given an arbitrary 3D vector, one can not determine whether it is a point or
a line without further information, indicate that these entities are dual to each other.

This duality of points and lines in IP2 suggests the possibility to swap the set of lines L with
the set of points P. Doing this one obtains the so-called dual projective plane IP2∗ made up of
P∗ and L∗. So when dealing with IP2∗ the lines of IR2 are identified as ”points” in IP2∗ (i.e. the
set P∗) and the points of IR2 are identified as ”lines” in IP2∗ (i.e. the set L∗). The major gain
of considering the dual projective plane is that any theorem valid in IP2 is also valid in IP2∗.
This has the consequence that the dual of the theorem is also valid in IP2. This is the so-called
duality principle. The dual of a theorem is obtained by interchanging the words ”points” and
”lines”, by keeping the incidences and by interchanging the words ”intersect” and ”join”3. For
example the two basic 2D configurations – a set of concurrent lines and a set of collinear points
– are dual to each other.

Theorem of Desargues. In section 7.6.3 we will use the following theorem, see also figure 3.2.

Theorem 3.1 (Theorem of Desargues.) Let two triangles in IP2 be defined by the points {a, b, c}
and {a, b, c}. The lines aa, bb, cc intersect in a single point z if and only if the intersections of
corresponding sides (ab, ab), (bc, bc), (ca, ca) lie on a single line λ.

Equivalently, we can say if two triangles are perspective from the point z, then they are per-
spective from a line λ.

Figure 3.2: The theorem of Desargues.

Interpretation of the canonical basis vectors of IR3. The columns of I3 represent the canonical
basis vectors of IR3 and can be interpreted as the homogenous representations of points or lines
in IP2; see table 3.1 and figure 3.3.

3The terms join and intersect are defined in section 3.5.
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column vector interpretation as point interpretation as line

i1 = (1, 0, 0)> point at infinity of the x-axis y-axis

i2 = (0, 1, 0)> point at infinity of the y-axis x-axis

i3 = (0, 0, 1)> origin of the coordinate system line at infinity π∞
Table 3.1: Interpretation of the columns of I3 as points and lines in IP2.

Figure 3.3: The interpretation of the columns of I3 as points and lines in IP2 is shown in the left part. Points:
Origin 0, point at infinity of the x-axis x∞, point at infinity of the y-axis y∞. Lines: x-axis π x, y-axis π y, line at
infinity π∞. Note, that π∞ is drawn as a circle. This map of IP2 is created by the stereographic projection shown
in the right part: First all projective points x are normalized to |x| = 1, therefore the resulting points xS lie all on
the north hemisphere of the unit sphere. This way the points at infinity are mapped to the points on the equator
of that sphere; e.g. v∞. Afterwards all these points on the unit sphere are projected from the south pole onto the
equator plane resulting in the points xP. Consequently the map of π∞ becomes a circle with radius 1, and no other
points lie outside this circle. In the left part of the figure the super-script P is omitted.

Conics. A conic is a curve of degree two in IP2. The points x∼ (u, v, w)>, which lie on a conic,
satisfy the following equation

au2 + buv + cuw + dv2 + evw + f w2 = 0.

Using the matrix C this can be written also as

x>Cx = 0, (3.5)

with

C ∼

 a b/2 c/2
b/2 d/2 e/2
c/2 e/2 f

 .

The matrix C is a representation of a conic in IP2; C is homogenous and symmetric and therefore
has 5 degrees of freedom. If the matrix C is non-singular the conic is termed non-degenerate,
and degenerate otherwise. The conic (3.5) was defined using points. Due to the duality princi-
ple we can also define a dual conic C∗ by its tangent lines λ; i.e.

λ>C∗λ = 0. (3.6)

The matrices of a non-degenerate conic and its dual are related by C∗ = C−1.
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In Euclidean geometry a non-degenerate conic can be one of the following types: circle, ellipse,
parabola or hyperbola. A degenerate conic is either a pair of lines (rank(C) = 2) or one
repeated line (rank(C) = 1).

3.3 The projective spaces IP3 and IPn

Basically IP3 is just a generalization of IP2. So, a 3D point X can be addressed with a projective
vector X

X = (X, Y, Z)> → X ∼


X
Y
Z
1

 ∼


P
Q
R
S

 ∼
(

XO
XH

)
. (3.7)

The projective representation of 3D lines is not that straight forward and will follow at the end
of this section. A 3D plane, however, can be represented very easily. If a 3D plane Ω is given by
the equation aX + bY + cZ + d = 0, then the homogenous column vector

Ω =


a
b
c
d

 ∼
(

ΩH
ΩO

)
(3.8)

is the projective representation of this 3D plane. The components of Ω have the following
meaning: ΩH = (a, b, c)> is the normal vector nΩ of the plane and |d|/|nΩ| = |ΩO|/|ΩH|
is the perpendicular distance of the plane to the origin. The incidence relation
aX + bY + cZ + d = 0, that X lies on Ω can be expressed as

Ω>X = 0, (3.9)

and so ΩO = −Ω>
HX.

Since both, 3D points and 3D planes, are represented by homogenous vectors of IR4, a duality
between points and planes exists in IP3 – whereas in IP2 a duality between points and lines
could be observed. The general statement is that in IPn subspaces of dimension k are dual to
subspaces of dimension n− k− 1. As a consequence dual subspaces span the whole IPn, if they
are skew (i.e. their intersection is {}). So in IPn dual to points (having dimension 0) are so-called
hyperplanes (having dimension n− 1). Thus the join of a hyperplane and a point outside span
the whole IPn. The hyperplanes are lines in IP2 and planes in IP3. The basic 3D configurations –
a set of concurrent planes (called bundle of planes4 ) and a set of coplanar points – are dual in
IP3.

If X ∼ (P, Q, R, S)> ∼
(

X>
O , XH

)>
is a general homogenous vector of a 3D point X, then,

provided S 6= 0 resp. XH 6= 0, the corresponding vector X in IR3 is obtained by:

X ∼


P
Q
R
S

 → X =

 P/S
Q/S
R/S

 =
1

XH
XO (3.10)

4A pencil of planes is made up of planes sharing a common 3D line. A pencil is a 1-parameter family, whereas a
bundle is a 2-parameter family.
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And again if S = XH = 0, then X represents a point at infinity which is not part of IR3. All 3D
points at infinity lie in a plane – the so-called plane at infinity, represented by the projective
vector Π∞ = (0, 0, 0, 1)>.

Interpretation of the canonical basis vectors of IR4. The columns of I4 represent the canonical
basis vectors of IR4 and can be interpreted as the homogenous representations of points or
planes in IP3; see table 3.2 and figure 3.4.

column vector interpretation as point interpretation as plane

I1 = (1, 0, 0, 0)> point at infinity of the X-axis YZ-plane

I2 = (0, 1, 0, 0)> point at infinity of the Y-axis ZX-plane

I3 = (0, 0, 1, 0)> point at infinity of the Z-axis XY-plane

I4 = (0, 0, 0, 1)> origin of the coordinate system plane at infinity Π∞
Table 3.2: Interpretation of the columns of I4 as points and planes in IP3.

Figure 3.4: Interpretation of the columns of I4 as points and planes in IP3. Points: Origin 0, point at infinity of
X-axis X∞, point at infinity of Y-axis Y∞, point at infinity of Z-axis Z∞. Planes: YZ-plane ΠX , XZ-plane ΠY,
XY-plane ΠZ, plane at infinity Π∞. Note, that the lines at infinity are drawn as circles. This map of IP3 is created
by the stereographic projection;cf. text of figure 3.3 on page 15.

3.3.1 The Plücker line coordinates

Lines in 3D space have 4 degrees of freedom. This can be seen easily by intersecting a given
3D line L with two planes; e.g. the X = 0 plane and the Z = 0 plane. The resulting two
intersection points define L and have 4 degrees of freedom. For that reason a 3D line L can
not be represented as a homogenous vector in IP3. This explains, why 3D lines require a special
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treatment compared to 3D points and 3D planes which can be represented in IP3 (as homoge-
nous vectors of IR4). However, as it will be shown, 3D lines can be represented as homogenous
vectors in IP5.

The basic idea for the 3D line representation is due to Julius Plücker, a German geometri-
cian of the 19th century. He proposed a representation based on (n+1

k+1) coordinates for any
k-dimensional subspace within an n-dimensional projective space. These so-called Plücker co-
ordinates arise as the (k + 1)× (k + 1) minors of an (n + 1)× (k + 1) matrix M, whose columns
are made up of the k defining points of the k-dimensional subspace. Of the (n+1

k+1) Plücker coor-
dinates only (k + 1)(n− k) are independent; cf. [Faugeras and Luong 2001].

Following Plücker’s idea we can compute a coordinate representation for 3D lines. In this case
we have k = 1 and n = 3. A 3D line L is defined by two 3D points A and B, which are
represented by A = (A1, A2, A3, A4)> and B = (B1, B2, B3, B4)>. A and B define the columns
of a matrix M as follows:

M =


A1 B1
A2 B2
A3 B3
A4 B4

 .

Then we have to compute the (k + 1)× (k + 1) (i.e. 2 × 2) minors of M. These minors can be
used to build up another matrix, called Plücker matrix, L(A, B) as

Li j = AiB j − Bi A j,

or in other words:
L = AB> − BA>. (3.11)

Since Li j = −L ji and Lii = 0, L is a 4× 4 skew-symmetric matrix and only 6 elements of L are
essential, which is exactly the number of coordinates proposed by Plücker (i.e. (4

2)). There are
several possibilities to choose the six essential elements. The following are commonly chosen
for good reason and make up the six homogenous Plücker coordinates of a line L represented
by L

L ∼
(

LH
LO

)
∼ (L41, L42, L43, L23, L31, L12)>. (3.12)

The vector L is homogenous (since L(αA, βB) = αβL(A, B)) and L 6= 0 if the defining points
are different. L is also independent from the choice of the defining points, which can be verified
readily by showing L(C, D) = (αδ−βγ)L(A, B) for C = αA + βB and D = γA + δB.

Since a 3D line has only 4 degrees of freedom, but is represented as a homogenous vector of
dimension 6, one additional constraint must hold between the 6 elements of L, which is the
so-called Plücker-identity:

L>H LO = 0. (3.13)

A projective geometric interpretation for (3.13) is provided by the so-called Klein model, which
states, that lines in IR3 are mapped to points in IP5. But not any point in IP5 may represent a 3D
line, only those points in IP5 which lie on the quadratic surface defined by (3.13), the so-called
Klein quadric, correspond to a line in IR3.

A Euclidian geometric interpretation for the components LH and LO of the Plücker coordinate
vector L is obtained by considering the homogenous and Euclidian parts of the defining points
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A and B; i.e. A ∼ (A>
O , AH)> and B ∼ (B>O , BH)>. It can be easily verified, that in this case LH

and LO follow as

L ∼
(

LH
LO

)
∼

(
AHBO − BH AO

AO × BO

)
. (3.14)

By considering AH = BH = 1 we see, that LH represents the direction of the line and LO
represents the normal vector of the plane joining L and the origin; cf. figure 3.5. This simple
geometric interpretation justifies our choice of essential parameters in (3.12).

Figure 3.5: The vectors LH and LO, which make up the Plücker coordinates of a 3D line L.

So we see that relation (3.14) provides an easy way of computing the Plücker coordinate vector
L for a line L joining two real points A and B. If L is defined by one real point A and the
direction vector d, the Plücker coordinate vector L can be computed as

L ∼
(

LH
LO

)
∼

(
AHd

AO × d

)
. (3.15)

Using the Plücker coordinates of 3D lines it can be checked easily if two lines L and M inter-
sect. Suppose L is defined by the points A and B and the line M is defined by the points C
and D, then the condition for L and M to intersect is identical to the condition that the four
defining points lie in one common plane (they are coplanar). In other words the four points are
linearly dependent and the matrix [ABCD] has to have zero determinant:

|ABCD| = 0

=

∣∣∣∣∣∣∣∣
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4

∣∣∣∣∣∣∣∣ =
∣∣∣∣ A1 B1

A4 B4

∣∣∣∣ ∣∣∣∣C2 D2
C3 D3

∣∣∣∣− ∣∣∣∣ A2 B2
A4 B4

∣∣∣∣ ∣∣∣∣C1 D1
C3 D3

∣∣∣∣ +
∣∣∣∣ A3 B3

A4 B4

∣∣∣∣ ∣∣∣∣C1 D1
C2 D2

∣∣∣∣
+

∣∣∣∣ A2 B2
A3 B3

∣∣∣∣ ∣∣∣∣C1 D1
C4 D4

∣∣∣∣− ∣∣∣∣ A1 B1
A3 B3

∣∣∣∣ ∣∣∣∣C2 D2
C4 D4

∣∣∣∣ +
∣∣∣∣ A1 B1

A2 B2

∣∣∣∣ ∣∣∣∣C3 D3
C4 D4

∣∣∣∣
= +L14 M23 − L24 M13 + L34 M12 + L23 M14 − L13 M24 + L12 M34

= −L41 M23 − L42 M31 − L43 M12 − L23 M41 − L31 M42 − L12 M43.
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In the development of |ABCD| we find the Plücker coordinates of L and M and so can write
the condition |ABCD| = 0 as

−L>H MO − L>O MO = 0.

This is the incidence relation (or coplanarity condition) for two 3D lines and can also be inter-
preted as the inner product of two 3D lines

<L, M> = −L>H MO − L>O MH = L>M∗. (3.16)

Actually, inner products are defined for coordinates of dual spaces. This can be seen also in the
equations (3.3) and (3.9) on pages 12 and 16 respectively, where the incidence relations between
points and lines resp. planes are formulated as inner products. Consequently

M∗ = DM =
(
−MO
−MH

)
, (3.17)

with

D =
[

03 −I3
−I3 03

]
, (3.18)

must be the dual of a 3D line M. Observe that M and M∗ agree up to order5. Of course the
dual of a 3D line could be found also by applying the principle of duality; i.e. by the intersection
of two 3D planes Ω and Φ. By considering the dual version of relation (3.11) and using the
same essential elements as in (3.12) the dual 3D line M∗ is found to be

M∗ ∼
(

ΩHΦO −ΦHΩO
ΩO ×ΦO

)
, (3.19)

with the defining planes Ω ∼ (Ω>
H , ΩO)> and Φ ∼ (Φ>

H , ΦO)>.

Although Plücker coordinates may appear a bit confusing at first sight, they are very useful
when working in 3D space. This will be shown in section 3.5 on page 23 where 3D lines are
used to construct points and planes.

Interpretation of the canonical basis vectors of IR6. The columns of I6 represent the canonical
basis vectors of IR6 and can be interpreted as the homogenous representations of lines in IP3;
see table 3.3 and figure 3.6.

3.4 Projective transformations in IPn

Before we discuss projective transformations in IPn, a few remarks need to be given concerning
the definition of a basis in IPn. Since IPn is based on IRn+1, n + 1 points are needed to define a
vector basis B = {B1, B2, ..., Bn+1} for IRn+1. With respect to this basis B a projective vector X
can be assigned components {X1, X2, ..., Xn+1}; i.e. X ∼ ∑i XiBi. Since the basis vectors Bi are
homogenous vectors, they can be replaced by siBi anytime (si 6= 0), thus the components of X
would depend on the chosen scale of the Bi. This is compensated by introducing an additional

5The change of sign in D does not alter the homogenous relations involving L∗, but aligns the definition of
L∗ with the one found in [Heuel 2002], where the dual line is defined parallel to the so-called Grassmann-Caley
algebra; cf. [Faugeras and Luong 2001].
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column vector interpretation as line

I1 = (1, 0, 0, 0, 0, 0)> X-axis

I2 = (0, 1, 0, 0, 0, 0)> Y-axis

I3 = (0, 0, 1, 0, 0, 0)> Z-axis

I4 = (0, 0, 0, 1, 0, 0)> line at infinity of the YZ-plane

I5 = (0, 0, 0, 0, 1, 0)> line at infinity of the ZX-plane

I6 = (0, 0, 0, 0, 0, 1)> line at infinity of the XY-plane

Table 3.3: Interpretation of the columns of I6 as lines in IP3.

Figure 3.6: Interpretation of the columns of I6 as lines in IP3; cf. table 3.3. The same stereographic projection as in
figure 3.4 on page 17 is applied.

base point B0, the so-called point of unity, with the property B0 = ∑i Bi which linearly depends
on all n + 1 basis vectors in B. With this point of unity the internal scale of the n + 2 base points
is fixed, hence the name, and the homogenous components {X1, X2, ..., Xn+1} of a projective
vector X with respect to the basis B = {B0, B1, B2, ..., Bn+1} are unique. Usually the canonical
basis will be assumed. In this case the point of unity is given by the (n + 1)-dimensional vector
(1, 1, . . . , 1). These considerations result in the following theorem:

Theorem 3.2 (Basis of IPn.) A basis of IPn is made up of n + 2 points – with no n + 1 points being
linearly dependent.

The main projective transformation is the collineation or homography which is geometrically
defined in the following way:

Definition 3.2 (Collineation.) A mapping h from IPn onto itself is called collineation if h is invertible
and if collinear points are mapped to collinear points.
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Algebraically this means that h can be represented by a regular (n + 1) × (n + 1) matrix H.
Consequently, for points in IP2 a collineation is represented as:

x ∼ h(x) → x ∼ Hx. (3.20)

Obviously, H is also a homogenous quantity and thus has n(n + 2) degrees of freedom; i.e.
8 in case of IP2 and 15 in case of IP3. Since each pair of corresponding points {x, x} gives n
independent equations a collineation in IPn is defined by n + 2 points xi and their corresponding
partners xi; i.e. a projective basis is required in both systems xi and xi.

A special case is the perspective collineation, which is a collineation h that has a fixed line
α (a hyperplane in general), which is called axis whose points remain fixed under h. Due to
the duality theorem a perspective collineation must also have a fixed point z, which is called
center of the perspective collineation. If the center lies on the axis, the perspective collineation
is termed elation and homology otherwise. If no fixed element exists the collineation is termed a
projective collineation.

Equation (3.20) describes the projective map of a point x in IP2. Due to the duality principle a
similar relation must be available for lines (or hyperplanes in general). If points x lie on a line
λ (thus λ>x = 0) and are mapped according to x ∼ Hx, then it holds λ>x = 0 and we get

λ ∼ H>
λ, (3.21)

and if H is regular the mapping of lines is given by:

λ ∼ H−>λ. (3.22)

In definition 3.2 on the page before a collineation was defined as a mapping of points to points.
It is also possible to consider mappings from points to hyperplanes. Such transformations are
called correlations:

Definition 3.3 A mapping g from IPn onto itself is called correlation if g is invertible and if collinear
points are mapped to concurrent hyperplanes.

The algebraic expression is similar to (3.20), meaning that a correlation is represented by a
(n + 1)× (n + 1) matrix G, which has n(n + 2) degrees of freedom. In IP2 the correlation of
points to lines is represented as

λ ∼ g(x) → λ ∼ Gx. (3.23)

The dual version of a correlation (i.e. a mapping of hyperplanes to points) will be termed dual
correlation. We will encounter correlations in various chapters of this thesis; e.g. in form of
the fundamental matrix in chapter 6.1.2. Observe that a correlation can be interpreted as a
mapping of the points of IPn∗ to the points of IPn and thus the properties of collineations can be
applied – especially relation (3.21).

Although collineations and correlations were associated with regular matrices, they neverthe-
less can be singular matrices. In this case they do not map the entire IPn onto itself, but only
subspaces of IPn to subspaces of IPn. The relations (3.20) and (3.21) hold nevertheless.

Observe that the columns of any transformation matrix H or G of dimension n × m can be
interpreted as the mappings of the column vectors of the identity matrix Im; i.e. the mappings
of the respective canonical basis.

The projective transformation of 3D lines is represented by a 6×6 matrix HL. Its derivation is
given in section 3.5.1 on page 26 utilizing some concepts presented in the next section.
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3.5 Constructing new entities in IP2 and IP3

In the previous sections the basic geometric entities point, line and plane together with their
representation as homogenous vectors were introduced. The next important thing is to con-
sider how these entities are to be handled algebraically to derive or construct new entities; e.g.
to build a line by joining two points or to determine the point of intersection of a plane and a
line.

At first one has to consider the possible operations that can be done in this context. Actually
there are just two such operations: join and intersection. They are dual to each other and were
already mentioned during the point-line-duality in section 3.2. The join operation takes given
entities and extends them to the smallest projective subspace that contains the given entities;
e.g. two points define a line. The intersection (or meet) operation does exactly the opposite:
it takes the largest projective subspace which is incident to the given entities; e.g. two planes
intersect in a line; [Faugeras and Luong 2001].

The result of a join or intersect operation only corresponds to a valid geometrical entity if the
result is non-empty. Algebraically this means that the resulting vector r is different from the
zero vector 0. The result nevertheless can lie at infinity. Algebraically this means that the
homogenous parts rH or rH of the the resulting vector r are identical to 0 or 0. The join operation
will be denoted by ’∨’ and the intersection by ’∧’.6

In IP2 we only have two possible operations: The construction of a new line λ by the join of two
points x and y and the construction of a new point x by the intersection of two lines λ and µ.
The algebraic expressions of these operations are as follows:

x ∨ y = λ → λ ∼ x× y = S(x)y (3.24)

λ ∧µ = x → x ∼ λ×µ = S(λ)µ. (3.25)

The rank-2 matrix S(a) used for the cross product × in (3.24) and (3.25) is the so-called axiator
sometimes represented as [ a ]× . For a∼ (u, v, w)> it is given by (see also section B.3 on page 179)

a× b = S(a)b = −S(b)a = S
>
(b)a with S(a) =

 0 −w v
w 0 −u
−v u 0

 . (3.26)

In IP3 we have several possibilities of joining and intersecting points, lines and planes. Follow-
ing [Heuel 2002] these constructions can be expressed as simple matrix multiplications. First
we consider a 3D line L, which is created by the join of two points X and Y; cf. relation (3.14)
on page 19.

L = X ∨ Y → L ∼
(

LH
LO

)
∼

(
XHYO −YHXO

XO × YO

)
=

[
XHI3 −XO

S(XO) 0

] (
YO
YH

)

In a short form we have
L ∼ I I(X)Y (3.27)

6The symbol ∨ means ’join’ whereas the symbol ∪ means ’union’ of sets. The union of two points a and b is just
these two points, whereas the join of two points a and b contains all points (also called span) that can be expressed
as linear combinations of a and b.
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with

I I(X) :=
[

XHI3 −XO
S(XO) 0

]
=



X4 0 0 −X1
0 X4 0 −X2
0 0 X4 −X3
0 −X3 X2 0

X3 0 −X1 0
−X2 X1 0 0

 with X =
(

XO
XH

)
=


X1
X2
X3
X4

. (3.28)

If the 3D line L is to be constructed as the intersection of two planes Ω and Φ then we just
have to consider the dual of L = X ∨ Y which is

L∗ = Ω ∧Φ

and this can be represented as

L∗ ∼ I I(Ω)Φ (3.29)

L ∼ D I I(Ω)Φ = I I ∗(Ω)Φ (3.30)

I I ∗(Ω) := D I I(Ω) =
[
−S(ΩH) 0
−ΩOI3 ΩH

]
(3.31)

using D from equation (3.18) on page 20 and Ω∼ (Ω>
H , ΩO)>.

If we fix I I(Ω) in equation (3.29) then I I(Ω) describes a collineation from IP3∗ to IP4∗; i.e. from
Φ to L. Following relation (3.21) on page 22 we get the respective dual collineation as

I I>(Ω)L∗∗ ∼ Φ∗.

Observing that the dual of L∗ is L and the dual of a plane is a point, we found the relation for
a point X as the intersection of a line L and a plane Ω

X ∼ I I>(Ω)L. (3.32)

We can reformulate this last relation in the following way

X ∼ I I>(Ω)L =
[

ΩOI3 −S(ΩH)
−Ω>

H 0>

] (
LH
LO

)
=

[
S(LO) LH

−L>H 0

] (
ΩH
ΩO

)
,

which gives

X ∼ I>(L)Ω (3.33)

using

I(L) :=
[
−S(LO) −LH

L>H 0

]
=


0 L6 −L5 −L1
−L6 0 L4 −L2
L5 −L4 0 −L3
L1 L2 L3 0

 with L =
(

LH
LO

)
=



L1
L2
L3
L4
L5
L6

. (3.34)
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Note that I(L) is identical to the Plücker matrix presented in equation (3.11) on page 18. Next
we consider the construction of planes. We get a plane Ω by the join of a line L and a point X
by considering the dual version of the equation (3.32)

Ω ∼ I I>(X)L∗ = I I ∗>(X)L (3.35)

or the dual of equation (3.33)

Ω ∼ I>(L∗)X = I ∗>(L)X (3.36)

with

I(L∗) := I ∗(L) =
[

S(LH) LO
−L>O 0

]
. (3.37)

A plane Ω can also be constructed as the join of three points X1, X2 and X3

Ω = X1 ∨ X2 ∨ X3 = (X1 ∨ X2) ∨ X3 = L ∨ X3.

Using (3.27) and (3.36) this can algebraically be represented as

Ω ∼ I ∗>( I I(X1)X2)X3. (3.38)

Dual to this is a point X defined as the intersection of three planes Ω1, Ω2 and Ω3 which can
be represented as

X ∼ I ∗>( I I(Ω1)Ω2)Ω3. (3.39)

All the constructions presented in this section are bi- or trilinear in the participating entities
and are summarized in table 3.4. The algebraic representations of these constructions return
a unique result if the entities are in general position and an empty result otherwise. Note that
the intersection of two 3D lines does not fit into this schema as this task also returns an empty
result even for general (i.e. skew) lines.

entities construction expression

points x,y λ = x ∨ y λ ∼ S(x)y = −S(y)x

lines λ,µ x = λ ∧µ x ∼ S(λ)µ = −S(µ)λ

points X, Y L = X ∨ Y L ∼ I I(X)Y = − I I(Y)X

planes Ω, Φ L = Ω ∧Φ L ∼ I I ∗(Ω)Φ = − I I ∗(Φ)Ω

point X, line L Ω = X ∨L Ω ∼ I ∗>(L)X = I I ∗>(X)L
plane Ω, line L X = Ω ∧L X ∼ I I>(Ω)L = I>(L)Ω

points X1, X2, X3 Ω = X1 ∨ X2 ∨ X3 Ω ∼ I ∗>( I I(X1)X2)X3

planes Ω1, Ω2, Ω3 X = Ω1 ∧Ω2 ∧Ω3 X ∼ I ∗>( I I(Ω1)Ω2)Ω3

Table 3.4: Algebraic representations of constructions using join (∨) and intersect (∧) of points, lines and planes
in IP2 and IP3; cf. [Heuel 2002].

Note that the relations (3.24), (3.25), (3.27), (3.30), (3.32), (3.33), (3.35) and (3.36) can be used
to check the identity and incidence of two entities. For these purpose these relations have to
return the zero vector, because in the case of congruence or identity the respective objects do
not create a new object by join or intersection; cf. [Heuel 2002].
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3.5.1 Projective transformations of lines in IP3

If the coordinate system S is changed into another one S by a (regular) collineation h, which
transforms points according to

X∼HX,

where H is a regular homogenous 4×4 matrix, then H−>describes the mapping of the planes

Ω∼H−>Ω.

The corresponding transformation of 3D lines can be represented by a regular homogenous
6×6 matrix HL as

L∼HLL.

The following proposition shows how HL can be determined for a given H.

Proposition 3.1 (Transformation of 3D lines.) Let the point transformation be represented by a reg-
ular homogenous 4×4 matrix H, which can be depicted as

H =
[

A t
v> w

]
.

Then the line transformation matrix HL is given by

HL =
[

wA− tv> −AS(v)
S(t)A adj(A)

]
,

where adj(A) is the adjoint matrix (see relation (B.14) on page 179). The matrix A is required to have
rank ≥ 2, otherwise H would be singular. If A is regular, then adj(A) = det(A)A−1.

Proof:
The derivation follows the one given in [Heuel 2002], where, however, only a special case of H
is considered, namely when A is a 3D rotation matrix and v = 0.

The ith column of HL is the map of the ith canonical 3D line I i; see table 3.3 on page 21. The
line I i itself is the join of the jth and kth canonical point I j and Ik, of IP3 shown in table 3.2 on
page 17. The relation between i, j and k follows from the Plücker coordinates in equation (3.12)
on page 18 and is given in the table below.

i 1 2 3 4 5 6
j 4 4 4 2 3 1

k 1 2 3 3 1 2

Consequently the ith column of HL, denoted by hLi, can be expressed by the join of the maps
of the points I j and Ik; i.e. hLi = HI j ∨HIk. Using the join-relation (3.27) on page 23 this can
be expressed as hLi = I I(HI j)HIk.

With the structure of the operator I I() given in equation (3.28) on page 24 and the form of H in
proposition 3.1 we get hLi as

hLi =
[

v jI3 z
−S(z) 0

]
HIk,
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with

z =

{
A j if j<4
t if j=4

,

where A j is the jth column of A and S() is the axiator defined in section 3.5 on page 23. By con-
sidering the six possible triples (i, j, k) and the axiator relations given in section B.3 on page 179
the form of HL is obtained after a few manipulations.

2

3.5.2 Transformation of S(), I I() and I() for a given point transformation H

If the underlying coordinate system S is changed into another one S by a (regular) collineation
h, which transforms points, lines and planes according to

x∼Hx, λ∼H−>λ, resp.
X∼HX, Ω∼H−>Ω, L∼HLL ,

where H is a regular homogenous 3×3 or 4×4 matrix and HL is given by proposition 3.1 on the
facing page, then also the construction matrices S(), I I() and I() will change in a certain way.

The change of S() is simple and is given by the axiator relation (B.12) on page 179

S(x) = S(Hx) = det(H)H−>S(x)H−1 (3.40)

S(λ) = S(H−>λ) = det(H)HS(λ)H>. (3.41)

Observe that H is a regular homogenous 3×3 matrix, thus H−1 exists and det(H) 6= 0. As long
as this factor is non-zero it is actually not important for the projective relations involving S().

The derivation for the transformation of I I() and I() is given next. With relation (3.27) on page
23 the 3D line L created by the join of two points X and Y can be represented as L = I I(X)Y.
The corresponding relation in system S is given by L = I I(X)Y. With L = HLL and Y = HY
we have HLL = I I(X)HY or HL I I(X)Y = I I(X)HY. Since this relation has to hold for any Y
we get

I I(X) = HL I I(X)H−1. (3.42)

By similar considerations we find the transformation for I I(Ω), I(L) and I(L∗) to be

I I(Ω) = I I(H−>Ω) = HL
−>I I(Ω)H> (3.43)

I(L) = I(HLL) = HI(L)H> (3.44)

I(L∗) = I(HL
−>L∗) = H−>I(L∗)H−1. (3.45)

3.6 Checking the identity of points and lines in IP2

If two points or two lines are identical then their join or intersection does not create a valid
projective entity. The algebraic expression for no projective entity is the zero vector. Therefore
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the axiator S() is a suitable means to check the identity of two projective points or lines in IP2

by

x ≡ y ↔ S(x)y = 0,
λ ≡ µ ↔ S(λ)µ = 0.

Observe that although 0 has 3 components, this check, however, has only 2 degrees of freedom,
because points and lines have 2 independent elements in IP2. Also, this can be seen from the
rank of S(), which is 2. Therefore we can drop one row in S(), the one that is closest to the zero
vector, and obtain a reduced matrix Sred() to perform the identity check as

x ≡ y ↔ Sred(x)y = 0, (3.46)
λ ≡ µ ↔ Sred(λ)µ = 0. (3.47)

For real points the third coordinate will always be non-zero. So we can always use the following
reduced version Sred(x) for points, obtained by keeping the first two rows of S(x),

Sred(x) =
[

0 −1 y
1 0 −x

]
with x =

 x
y
1

 . (3.48)

For infinite points v∞, and lines λ in general, any component can be zero, and therefore one
has to look for the largest element in v∞ resp. λ and keep those two rows in S() that contain
that element.

3.7 Conditioning of projective relations

The transition from IR2 to IP2 is given by relation (3.2) on page 12, which states that the projec-
tive representation x of a real 2D point x is simply obtained by adding a third coordinate with
the value 1; i.e.

x =
(

x
y

)
→ x ∼

 x
y
1

 ∼
(

xO
xH

)
.

Now suppose the point x is measured in a digital image with 2000× 3000 pixels and is located
far away from the origin of the coordinate frame. In this case the Euclidian part xO of x will be in
the order of 1000, whereas the homogenous part still is 1. This difference in order between the
Euclidian and the homogenous part will cause enormous numerical problems if such projective
points are used to derive other quantities; e.g. the projective transformation matrix H between
two point sets.

These problems can be avoided easily if the projective entities are shifted and scaled prior to
the computations. We will refer to this procedure as conditioning, as it improves the condition of
the subsequent linear system of equations. This procedure is due to Hartley, who used this for
computing the fundamental matrix; [Hartley 1995a]. He proposes to translate the set of points
in the way that their centroid xC is moved to the origin and then to scale the translated points
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isotropically by m =
√

2/s, where s is the average distance of the points from xC. With x denot-
ing the points in the original scale and x denoting the conditioned points, this transformation
can be represented as x∼Hx with

H =

 m 0 −mxC
0 m −myC
0 0 1

 , (3.49)

and due to equation (3.22) on page 22, H−>does the conditioning of 2D lines.

Note, however, that quantities which are obtained from these conditioned points do not refer
to the original points. Therefore the conditioning matrix H has to be applied inversely on the
results. For example, if the projective transformation matrix A between two point sets x and y
is to be computed as y ∼ Ax and we apply conditioning matrices Hx and Hy respectively, then
we actually solve the problem y ∼ Ax with x ∼ Hxx and y ∼ Hyy. The matrix A referring to
the original points is obtained afterwards as A ∼ Hy

−1AHx.
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Chapter 4

A few Basics on Tensor Calculus

In this thesis only a very small portion of tensor calculus is needed, therefore we can keep this
introduction short. For a more detailed discussion on this topic we refer to the text books on
tensor calculus; e.g. [Spiegel 1959], [Klingbeil 1966] or [Joshi 1975].

The main difference between vector and tensor notation is that in the former a certain geomet-
ric entity, e.g. a point x, is represented by a vector x, whereas in the latter the point is directly
represented by its components as xi. Consequently, there is always some kind of index asso-
ciated with the tensorial representation of an entity, and a tensor is simply an indexed array of
numbers.

Indices and summation convention. There are two kinds of indices: sub-indices (called co-
variant) and super-indices (called contra-variant). A tensor can have any number of co- and
contra-variant indices. The number of these indices is called the valence of the tensor. A tensor
of co-variant valence p and contra-variant valence q is termed a valence-(p,q) tensor and it is
made up of np+q elements with n being the dimension of the underlying vector space; i.e. each
index runs from 1 to n. In this context a scalar is a valency zero tensor, a vector is valence one
tensor, a matrix is a valence two tensor and all tensors of higher valence are termed tensors in
general.

From section 3.2 on page 12 we know that a vector of dimension 3 can either represent a point
x or a line λ in IP2. This duality is reflected in tensor notation in the following way: Points use
a contra-variant index and lines use a co-variant index:

x =

 x1

x2

x3

 = xi and λ =

λ1
λ2
λ3

 = λi.

In vector notation a vector x sometimes needs to be transposed to operate correctly with other
quantities. Such a transposition of a vector is not reflected in tensor notation, as this does not
affect the components xi. Therefore, for example the incidence of a point x with a line λ, which
is represented as x>λ = 0 in vector notation, must be realized in a different way in tensor
notation. It is done using Einstein’s convention of summation. This convention says that a
sum is made up of all the same indices appearing as co- and contra-variant. So the incidence
relation between a point x and a line λ is simply represented as

xiλi := x1λ1 + x2λ2 + x3λ3 = 0.
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If a matrix is to be represented in tensor notation it requires two indices, and there are no
restrictions on the type of these indices: One can be co- and the other one can be contra-variant,
or both can be of the same type. Which combination is the right one, depends on the property
of the matrix. For example, a collineation H maps points to points. Keeping in mind Einstein’s
convention of summation, the map of a point x to a point y, represented as y ∼ Hx in vector
notation, is represented in tensor notation as

y j∼H j
·ix

i.

The first index ( j) in H j
·i refers to the rows of H and the second index (i) refers to the columns.

The order of the indices is indicated by an additional · in H j
·i.

A correlation G maps a point x to a line λ. Consequently the tensorial expression would be

λ j∼G jixi.

Transposition of vectors is not reflected in tensor notation, as this is only needed in vector
notation to make vectors operate correctly with other vectors or matrices. The transposition of
matrices, however, must also be reflected in tensor notation, as the transposition of a matrix
changes the property of the matrix. For example, if H maps points from system A to points in
system B, then H> maps lines from system B to lines in system A. The transposition in tensor
notation is realized by exchanging the respective indices; i.e.

H = H j
·i → H> = H j

i· .

A tensorial expression, which only involves single or double indexed quantities can always be
transferred to vector notation. Since the transposition of vectors is not reflected in tensor nota-
tion, a single indexed quantity xi can either be interpreted as x or as x> during the transition to
vector notation. So for example

s = Gi jxi y j,

can either be translated as
s = x>Gy or as s = y>G>x.

Both transitions are of course valid.

As long as we are only dealing with single and double indexed quantities in tensor notation
we actually need not apply tensor notation, because the same expressions can be represented
in vector notation equally well and perhaps more accessible; and most of the relations in this
thesis are of this kind. Tensor notation, however, together with Einstein’s convention of sum-
mation has one strong benefit compared with vector notation. Tensor notation allows to deal
with operators, that work on more than two objects.

A matrix is an operator of valence two; i.e. the input is either one or two vectors and the output
is either a vector or a scalar. A tensor of valence three, is an operator on one, two or three
vectors and the output is either a matrix, a vector or a scalar; i.e. the sum of the valencies of
the input and the sum of the valencies of the output always gives the valence of the operator.
The trifocal tensor, introduced in chapter 7 is such an operator of valence three, as it can handle
points or lines from three different images at the same time. Therefore, certain relations can be
expressed in a clear form only in tensor notation.
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The fully antisymmetric valence-(3, 0) tensor εi jk For a general tensor of arbitrary valence,
the terms symmetry and antisymmetry are defined only for pairs of similar indices. A tensor
A i k m
· j · l · is symmetric in the first and the third contra-variant index if A i k m

· j · l · = Am k i
· j · l · or antisym-

metric if A i k m
· j · l · = −Am k i

· j · l ·. Symmetry and antisymmetry can only be defined for similar indices
not for one co- and one contra-variant index, as it is shown in [Joshi 1975].

If symmetry or antisymmetry holds for all possible pairs of indices, then the respective tensor is
said to be fully symmetric or fully antisymmetric. Of special interest is the fully antisymmetric
valence-(3, 0) tensor εi jk. It is made up of 33 = 27 elements, all of which are 0, except for the
elements

ε123 = ε231 = ε312 = −ε132 = −ε321 = −ε213 = 1.

Using εi jk the cross-product of two vectors x and y can be expressed as

x× y = z = zi = εi jkx j yk. (4.1)

Observe that the cross-product of two contra-variant coordinate vectors returns a co-variant
coordinate vector. This might be surprising at first sight, but it is perfectly supported by sec-
tion 3.5 on page 23 where we saw that the cross product is used for computing the line (a co-
variant vector) joining two points (two contra-variant vectors). There we expressed the cross
product using the so-called axiator, a 3 × 3 matrix S(x), as z = S(x)y. From equation (4.1) it
can be seen that the axiator S(x) can be expressed as

(S(x))ik = εi jkx j. (4.2)

If the cross-product of two co-variant vectors (corresponding to the intersection of two lines)
is to be represented in tensor notation, we need the fully antisymmetric valence-(0, 3) tensor
εi jk. And consequently the axiator S(λ) can be expressed as

(S(λ))ik = εi jkλ j. (4.3)
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Chapter 5

Single Image Geometry

Prerequisite for any formulation of image geometry is the underlying camera model. The one,
which is used throughout this thesis is the so-called pinhole camera model which will be de-
scribed next.

5.1 The pinhole camera model

The purpose of the camera model is to describe the relation between the 2-dimensional image
of an object taken with a camera and the 3D representation of the respective object. The central
projection is a rather good model for this relation. A camera model that is based on the cen-
tral perspective relation between object and image is called a pinhole camera model. In this
model all the rays that come from the object pass through the same point in space, the so-called
projection center Z. Afterwards the rays intersect the image plane Ψ, thereby generating the
image. Note that in reality the projection center lies between object and image plane, hence the
image is obtained mirrored and upside-down – the so-called negative orientation. Thus for eas-
ier handling the positive orientation is considered usually, with the image plane between Z and
object, see figure 5.1 on the next page. The ray through the pinhole, i.e. Z, orthogonal to the
image plane is called principal axis, its intersection point with the image plane is the principal
point p0, the distance Zp0 is called principal distance and will be denoted by c.

Physically the pinhole is realized as a system of lenses and the image plan is either a charge
coupled device (CCD) sensor or a plane carrying a light sensitive film medium. Due to the in-
evitable limitations of these physical components any real image will never exactly correspond
to a central perspective view but will have linear and non-linear distortions. The linear distor-
tion can be incorporated easily in the model to be presented, the non-linear distortion, which
is rather small for professional or photogrammetric cameras but may reach several pixels in a
digital image of amateur cameras, is not part of this camera model.

As stated above in the first paragraph the camera model describes the relation between the
image space and the object space. Both spaces are represented using proper coordinate systems.
The image coordinate system will be described in more detail in the following. Actually we
have to consider two kinds of image systems: the camera coordinate system and the measurement
system.
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Figure 5.1: Negative and positive orientation of an image; see section 5.1. Backprojection of a point and line in
the image: projection ray S(x) and projection plane Σ(λ); see section 5.4 on page 42.

The camera coordinate system is defined as follows (see figure 5.2 on the facing page): The
origin is incident with the principal point p0 and the first coordinate axis (xc-axis) runs hori-
zontally to the right. The second axis (yc-axis) completes the system to be Cartesian and right-
hand-oriented; i.e. yc runs to the top. The measurement system is the coordinate system in
which objects are actually observed. In the case of digital images it is the row/column system
of the image matrix. In the case of analogous film images it is the system of the measuring
device (analytical plotter or comparator). To link these two systems the measurements are
translated1 into the camera system, usually hereby affinity is also considered to cope with the
linear distortion mentioned above.

In figure 5.2 the measurement system is drawn as an affine system with different scale k in y
and a skew angle δ between the x- and y-axis. In this system the principal point has the coor-
dinates (xp0 , yp0). Following [Niini 1994] the transformation from the measurement system to
the camera system can be expressed as

xc = (x− xp0)− k sin δ(y− yp0)
yc = k cos δ(y− yp0).

(5.1)

Using α = k cos δ and β = −k sin δ and homogenous coordinates this affine transformation

1If the measurements are only translated then the xc-axis is aligned with the x-axis. Usually this is not a problem,
since any rotation required in the image space can be made up by the rotation elements of the exterior orientation
(see text), which will be determined afterwards. However, if these rotation elements of the exterior orientation are
observed (e.g. using Inertial Measuring Units for aerial images; see e.g. [Cramer 2001]) then also a rotation from the
measurement to the camera system can be necessary – especially when dealing with analog cameras. In such a case
special marked points (so-called fiducial marks) are included in the image, whose camera coordinates are known
from a laboratory calibration.
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Figure 5.2: The camera coordinate system and the affine measurement system.

(5.1) can be represented by an upper-triangular matrix C

C =

 1 β −xp0 −βyp0

0 α −αyp0

0 0 1

 , (5.2)

as (
xc
1

)
= C

(
x
1

)
. (5.3)

5.2 The mapping of points – the projection matrix P

Now we can define a 3-dimensional image coordinate system {XC, YC, ZC}, which has the ori-
gin in the projection center Z, the XC- and YC-axis being parallel to the xc- and yc-axis and a
ZC-axis completing this right hand system; i.e. ZC is orthogonal to the image plane pointing
away from the object. This 3D image system is rotated by a 3-dimensional rotation matrix R,
which has determinant +1 due to the positive orientated systems involved, and translated by
Z with respect to the object system. These 6 parameters (3 for R and 3 for Z) are called the
exterior orientation of the camera.

The image point xc in the camera system for a given object point X can be found in the fol-
lowing way. The projection ray for this point is given by X − Z in the object system and by
XC = R>(X − Z) in the 3D image coordinate system2. Following section 3.2 on page 12 XC is
the homogenous representation xc of the image point xc, except that the homogenous part (i.e.
the distance between the origin and the projective plane) refers to 1, whereas for the camera it
needs to be the principal distance c. So in total the homogenous representation xc of the image

2Other authors, e.g. [Hartley and Zisserman 2001] or [Heuel 2002], consider the rotation matrix without trans-
position; i.e. XC = R(X − Z).
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Figure 5.3: The 3D image coordinate system {XC , YC , ZC} of image Ψ with its principal planes Πi and principal
rays Ri (see text).

point in the camera system depending on the exterior orientation of the camera and the object
point X is given by

xc ∼

 1 0 0
0 1 0
0 0 − 1

c

 R>(X − Z). (5.4)

With the matrix C defined in equation (5.2) the central projection from the object point X to the
image point x in the measurement system, both represented by homogenous vectors, can be
expressed as

x ∼ PX, (5.5)

with
P ∼ C−1R> [I3,−Z] (5.6)

using

C =

 1 β −xp0 −βyp0

0 α −αyp0

0 0 −c

 . (5.7)

The matrix C will be referred to as calibration matrix, its inverse is given by

C−1 =
1
c

 c −cβ
α

−xp0

0 c
α

−yp0

0 0 −1

 . (5.8)
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The calibration matrix3 C depends on the elements of the interior orientation. In Photogram-
metry the interior orientation consists of two parts: (i) the coordinates (xp0 , yp0) of the prin-
cipal point p0and the principal distance c and (ii) additional parameters which model linear and
non-linear image distortions. If these elements are known the images are called calibrated and
uncalibrated otherwise. In the context of this thesis, the five elements {α, β, xp0 , yp0 , c} will be
referred to as interior orientation, and non-linear image distortions are not considered.

In equation (5.6) the matrix P is introduced. It depends on the interior and exterior orientation
of the camera and is termed point projection marix. P is a 3 × 4 matrix, thus represents a
collineation from IP3 to IP2. P is required to have rank-3 otherwise not the entire image will be
in the range of P. It is a homogenous matrix and thus has 11 degrees of freedom. Depending
on given tasks it is helpful to consider different decompositions of P:

P = M [I3,−Z] , (5.9)
P = [M, p4] , (5.10)

with M = C−1R> being the homography from the plane at infinity Π∞ to the image plane,

P = [p1, p2, p3, p4] , (5.11)

P =

Π1
>

Π2
>

Π3
>

 . (5.12)

The last decomposition (5.12) is particularly interesting as the three Πi represent 3D planes
– the so-called principal planes; cf. [Papadopoulo and Faugeras 1998]. These are the three
unique planes passing through Z shown in figure 5.3 on the facing page. We will see at the
end of section 5.4, that these principal planes Πi are the projection planes of the three canonical
lines of IP2. The plane Π3 parallel to the image plane is also called focal plane. The expression of
Πi in M and Z is simple

Πi ∼
(

Πi,H
Πi,O

)
∼

(
M>ii

−Z>M>ii

)
. (5.13)

Also of interest is the transformation of P if the object system is changed by a homography in
IP3 – represented by a regular homogenous 4× 4 matrix H (i.e. X ∼ HX). In order to keep the
object-image-relation x ∼ PX ∼ PX the point projection matrix will then transform as

P ∼ PH−1. (5.14)

Summarizing from [Hartley and Zisserman 2001] the projection matrix P has the properties
shown in table 5.1 on the next page. From there we see that if the matrix M in P = [M, p4]
is singular the projection center lies infinitely far away. Since we deal with real perspective
images this can not be the case, therefore we will assume the matrix M to be regular in general
– except it is noted otherwise.

3Other authors refer to the inverse of C in relation (5.6) as the matrix K; e.g. [Hartley and Zisserman 2001] or
[Heuel 2002].
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Projection center The projection center Z is the 1-dimensional right null space of P; i.e.
PZ = 0.

• M is regular (so-called finite camera): Z =
(
−M−1p4

1

)
• M is singular with rank 2 (so-called camera at infinity): Z =

(
d
0

)
, with Md = 0.

Column vectors The column vectors pi (i = 1, 2, 3) are the vanishing points (maps of points at
infinity) of the X−, Y− and Z−axis of the object coordinate system; p4 is the image of the
origin of the object coordinate system.

Row vectors The row vectors Πi (i = 1, 2, 3) represent the principal planes.

Principal point The principal point p0 can be computed as p0 ∼ MM>i3.

Principal axis The oriented vector v of the principal axis is given by v = − det(M)M>i3. This
vector is directed from the camera to the object; i.e. opposite to the ZC-axis.

Table 5.1: Properties of the point projection matrix P =
[
M, p4

]
; cf. [Hartley and Zisserman 2001].

5.3 The mapping of lines – the projection matrix Q

Since the central projection represented by the pinhole camera model is a collineation, it is line
preserving; cf. definition 3.2 on page 21. Consequently a relation for the mapping of lines,
similar to the relation for points (5.5), is possible

λ ∼ QL. (5.15)

Because 2D lines are represented as 3-dimensional homogenous vectors and 3D lines as 6-
dimensional homogenous vectors (cf. sections 3.2 and 3.3.1 on page 12 and 17 respectively) the
matrix Q is of dimension 3 × 6. Following [Förstner 2003] the matrix Q can be found in the
following way.

The columns of Q are the image lines λi of the six canonical 3D lines Ii, i = 1, . . . , 6, shown
in table 3.3 on page 21, which are homogenously represented by the columns of I6. Using the
canonical points I j, j = 1, . . . , 4, in IR4 (see table 3.2 on page 17) these six lines can be repre-
sented as

I1 = I4 ∨ I1 I4 = I2 ∨ I3

I2 = I4 ∨ I2 I5 = I3 ∨ I1

I3 = I4 ∨ I3 I6 = I1 ∨ I2.

(5.16)

Consequently, the image lines λi of these six 3D lines must arise as the join of the maps of the
respective canonical points I j. This leads to the form of the matrix Q given in the following
proposition.

Proposition 5.1 (Line projection matrix.) Let P = [p1, p2, p3, p4] be the point projection matrix.
Then the line projection matrix Q is given by

Q∼ [p4×p1, p4×p2, p4×p1, p2×p3, p3×p1, p1×p2] .
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Especially if P∼M [I3,−Z] with regular M, then Q turns into

Q∼M−>[−S(Z), I3] .

Proof:
Let the line L be defined by two points A = (A1, A2, A3, A4)> and B = (B1, B2, B3, B4)>. Its
map λ into the image is given by the join of the maps of A and B. Using the 2D join relation
(3.24) on page 23 this is represented as (observe the summation convention)

λ∼ (PA)×(PB) = AiB jpi×p j.

Explicitly this sum reads as

(A4B1 − A1B4)p4×p1 + (A4B2 − A2B4)p4×p2 + (A4B3 − A3B4)p4×p3

+(A2B3 − A3B2)p2×p3 + (A3B1 − A1B3)p3×p1 + (A1B2 − A2B1)p1×p2.

The coefficients (AiB j − A jBi) are exactly the coordinates of the Plücker vector L; cf. equation
(3.14) on page 19. If M is regular, the cross products in the columns of Q can be simplified and
combined using the axiator relation (B.12) on page 179.

2

A similar result for Q, but based on different Plücker line coordinates, can be found in [Carls-
son 1997]. Another approach for deriving Q is suggested in [Faugeras and Luong 2001] and
[Heuel 2002]. The row vectors of Q arise as the intersections of the three principal planes Π1,
Π2, Π3 and thus are the dual 3D lines of the so-called principal rays R1, R2, R3 depicted
in figure 5.3 on page 38. Using relation (3.29) on page 24 for intersecting planes this is alge-
braically represented as

Q ∼

Π2 ∧Π3
Π3 ∧Π1
Π1 ∧Π2

 ∼

R1
∗>

R2
∗>

R3
∗>

 . (5.17)

The principal rays can be expressed in the elements of the point projection matrix P∼M [I3,−Z]
as

Ri =
(

Ri,H
Ri,O

)
∼

(
M−1ii

S(Z)M−1ii

)
. (5.18)

Here the Plücker relation (3.15) on page 19 was used, where the projection center Z is a point
on Ri and M−1ii is its direction. At the end of section 5.4 we will see that the principal rays are
in fact the projection rays of the three canonical points of IP2.

Finally we can ask for the transformation of Q if the object system is changed by a (point)
homography in IP3 – represented as a regular homogenous 4× 4 matrix H (i.e. X ∼ HX). The
point homography defines a homography for 3D lines as L ∼ HLL; see proposition 3.1 on
page 26. In order to keep the object-image-relation λ ∼ QL ∼ QL the line projection matrix
will then transform as

Q ∼ QHL
−1. (5.19)
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5.4 The back projection of points and lines

One of the main task of Photogrammetry and Computer Vision is to derive spatial information
using given images. For this purpose at least two images from different view points of the same
object are required. If only one image is given and no further information about the object is
known the object can not be reconstructed uniquely. It is, nevertheless, important to know the
set of 3D points resp. 3D lines that correspond to a particular given point x resp. line λ in the
image. In the first case the set of 3D points is given by the projection ray S(x) and in the second
case the set of 3D lines is given by the projection plane Ω(λ); see also figure 5.1 on page 36.
Using the point and line projection matrices P and Q introduced in the previous sections, this
so-called back projection of a point and a line can be expressed easily.

As it is shown in [Heuel 2002] the expression for the back projection of lines can be found in
the following way. By considering the central projection (5.5) on page 38 as a collineation from
IP3 to IP2 and by applying the relation (3.21) on page 22 for the dual collineation, we get

P>x∗ ∼ X∗.

Since the dual of a 2D point x∗ is a 2D line λ and the dual of 3D point X∗ is a plane Σ we found
the back projection of a line λ to be

Σ(λ) ∼ P>λ. (5.20)

Note that with P∼M [I3,−Z] it is easy to see that the normal vector of the projection plane is given
by

ΣH(λ) ∼ M>λ (5.21)

or by
ΣH(λ) ∼ RC−>λ (5.22)

in the elements of the interior and exterior orientation. Analogously by considering the dual of
relation (5.15) we get

Q>λ∗ ∼ S∗.

Since the dual of a 2D line λ∗ is a 2D point x and the dual of 3D line S∗ can be expressed as DS
(using (3.18) on page 20), we found the back projection of a point x to be

S(x) ∼ Q∗>x, (5.23)

with
Q∗ = QD. (5.24)

And with P∼M [I3,−Z] it is easy to see that the direction vector of the projection ray is given by

SH(x) ∼ M−1x (5.25)

or by
SH(x) ∼ RCx (5.26)

in the elements of the interior and exterior orientation.

With these relations for the back projection it is easy to see, that the principal planes (the rows of
P) are the projection planes of the canonical lines of the image, and that the principal rays (the
rows of Q∗) are the projection rays of the canonical points of the image. For the interpretation
of the canonical points and lines in IP2 see table 3.1 on page 15.
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Chapter 6

Two-View Geometry

In this chapter we consider the geometry of two images. Especially we will deal with the so-
called epipolar geometry, which is enclosed in a 3×3 matrix, the fundamental matrix. At the end of
this chapter we will look at relations between two images, which are induced by a plane and a
line in 3D space. All these topics depend only on the so-called relative orientation of the images,
which is described in the next section.

To distinguish the quantities associated with each image we will use the image number in our
notation from now on. Partly we will do this by using the image number as a sub-script and
partly by using the respective number of primes (′). So, for example Z1 is the projection center
of image Ψ1, and x′′ is a point in image Ψ2.

6.1 The relative orientation of two images

At first we will define the term relative orientation.

Definition 6.1 (Relative orientation.) A set of images is said to be relatively orientated if the projec-
tion rays of corresponding image points resp. the projection planes of corresponding image lines intersect
in space. The term relative orientation is used since this condition is independent on the so-called ab-
solute orientation of the set of images. In case of calibrated images the absolute orientation is a spatial
similarity transformation, and in the case of uncalibrated images it is a 3D projective transformation.

The relative orientation is of particular interest as it can be determined by the image observa-
tions alone – no information from the object space is required. Suppose the relative orientation
of the images is given, then the object can be reconstructed up to a spatial similarity transforma-
tion if the interior orientation of the images is known, and up to a 3D projective transformation
if the interior orientation of the images is unknown; see e.g. [Hartley and Zisserman 2001],
where also the special case of an affine camera is discussed, for which reconstruction is possi-
ble up to a 3D affine transformation.

Proposition 6.1 (Degrees of freedom – calibrated images.) The relative orientation of n calibrated
images has 6n-7 degrees of freedom.
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Proof:
Each calibrated image has 6 degrees of freedom, which are the elements of the exterior orienta-
tion and 7 parameters are occupied by the absolute orientation (3 translations, 3 rotations and
1 scale).

2

Proposition 6.2 (Degrees of freedom – uncalibrated images.) The relative orientation of n uncal-
ibrated images has 11n-15 degrees of freedom.

Proof:
Each uncalibrated image has 11 degrees of freedom, which are the elements of the exterior and
interior orientation (i.e. the point projection matrix) and 15 parameters are occupied by the ab-
solute projective orientation, which is represented by a homogenous 4×4 matrix.

2

Since two images taken from different view-points is the minimum requirement to gain infor-
mation about the 3D environment, the relative orientation of two images is the most important
one. Figure 6.1 depicts the relative orientation of two images Ψ1 and Ψ2 with different projec-
tion centers Z1 and Z2.

Figure 6.1: The relative orientation of two images.

Although the relative orientation is independent from the absolute orientation, the position
and attitude of the images have to be expressed nevertheless with respect to some coordinate
frame – which can be chosen arbitrarily. For the special case of the relative orientation of two
calibrated images, which has 5 degrees of freedom, two ways for defining the coordinate frame
have established:

• The relative orientation of dependent images: Here the projection center and the 3D
image system of the first image defines the object frame. The second image is translated
and rotated till all projection rays intersect in space. The length of the translation vector
needs to be fixed in a proper way.
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• The relative orientation of independent images: Here the two projection centers define
one axis of the object frame. Both images are then rotated around their fixed centers till
all projection rays intersect in space. One convenient rotation parameter of the first image
is kept fix to yield 5 degrees of freedom.

Both definitions for the object frame can be used for the relative orientation of n images, in the
way that, from the 3rd image on, all other images are positioned and rotated to yield intersect-
ing projection rays. Usually we will use the relative orientation of dependent images, because
the respective object frame is defined sole by one image – the first image – and we will consider
the following definition.

Definition 6.2 (Relative orientation of dependent images.) Whenever the projection centers Zi
and rotation matrices Ri of images Ψi (with i = 1, 2, . . . , n) are referred to the relative orientation of
dependent images (with respect to image Ψ1) we will use a dag (†) to indicate this and it holds: Z†

1 = 0,
R†

1 = I3 and Z†
k = R>

1 (Zk − Z1), R†
k = R>

1 Rk, with k = 2, 3, . . . , n.

6.1.1 Epipolar geometry

We look again at figure 6.1 on the preceding page. In each image there is one distinguished
point – the so-called epipole, which is the map of the projection center of the other image; i.e.
e′2 is the map of Z2 in image Ψ1 and e′′1 is the map of Z1 in image Ψ2. Using the point projection
matrix and decomposition (5.9) on page 39 an epipole e( j)

k can generally be represented as

e( j)
k ∼ P jZk = M j(Zk − Z j). (6.1)

The line joining the two projection centers is called baseline; b21 in figure 6.1. Any object point
X together with this baseline defines a plane ΣX, called epipolar plane. The lines ε′2 and ε′′1
resulting from the intersection of ΣX with Ψ1 and Ψ2 are called epipolar lines. Obviously all
epipolar lines in one image must pass through the epipole in this image. Now we consider the
point x′, which is the map of the object point X in image Ψ1. From figure 6.1 we see that the
epipolar line ε′′1 can also be interpreted as the map of the projection ray S(x′) into image Ψ2
and that the corresponding point x′′ in image Ψ2 has to lie on this epipolar line. This condition
is called the epipolar constraint.

This epipolar constraint can be interpreted geometrically in different ways, see figure 6.1: (i)
x′ lies on ε′2 resp. x′′ lies on ε′′1 , (ii) the projection rays S(x′) and S(x′′) intersect in space, or
(iii) the baseline vector Z2 − Z1 and the direction vectors SH(x′) and SH(x′′) are coplanar. Of
course, all interpretations yield the same algebraic representation for the epipolar constraint,
which is given next.

6.1.2 The fundamental matrix

Algebraically the epipolar constraint is represented by a bilinear form according to the follow-
ing theorem.
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Theorem 6.1 (Fundamental matrix.) Let two images Ψ1 and Ψ2 be given by their point projection
matrices as Pi∼Mi [I3,−Zi] with regular Mi and i = 1, 2. Further let {x′, x′′} be a pair of correspond-
ing image points. Then the epipolar constraint is given by

x′>F12x′′ = 0. (6.2)

The matrix F12 is termed fundamental matrix and is given by

F12∼M1
−>S(Z2 − Z1)M

−1
2 . (6.3)

The relation between the interior and exterior orientation of the two images and the fundamental matrix
is given by

F12∼C1
>R1

>S(Z2 − Z1)R2C2. (6.4)

Proof:
Since we have different geometrical ways to proof the epipolar constraint, we choose the con-
dition, that the projection rays S(x′) and S(x′′) of corresponding points in image Ψ1 and image
Ψ2 intersect in space. These projection rays can be expressed using the line projection matrix
Q of proposition 5.1 on page 40 and relation (5.23) on page 42 for the back projection of im-
age points as S(x′) ∼ Q∗>

1 x′ and S(x′′) ∼ Q∗>
2 x′′. The condition for the projection rays to

intersect can be expressed by the coplanarity condition (equation (3.16) on page 20) of the rep-
resenting Plücker vectors as S(x′)>S∗(x′′) = 0 = x′>Q∗

1Q2
>x′′. This readily gives the epipolar

constraint and the form (6.3) of the fundamental matrix F12. The relation to the interior and
exterior orientation is obtained using the equation (5.6) on page 38.

In [Niini 2000] a different derivation for the fundamental matrix is presented, which is also
based on the intersection of the projection rays. Because it is an interesting approach it will be
outlined next. The direction vector SH(x′) of the projection ray is given by M−1

1 x′; see equa-
tion (5.23) on page 42. The condition for the object point X to lie on S(x′) can be expressed as
X = Z1 + µ1M

−1
1 x′. For image Ψ2 an analog expression holds and by equating these two ex-

pressions we get µ1M
−1
1 x′ = Z2 − Z1 + µ2M

−1
2 x′′, from which readily follows the epipolar con-

straint and the form of the fundamental matrix by multiplying with S(Z2 − Z1) and x′>M1
−>.

This derivation is particularly interesting because it shows, that the relation between the two
images turns into a homography (induced by the plane at infinity, see section 6.2.1 on page 53),
if the two projection centers coincide; i.e. with Z2 − Z1 = 0 we get x′∼M1M

−1
2 x′′ ∼ H∞x′′.

2

Using definition 6.2 for the relative orientation of dependent images, relation (6.4) turns into

F12∼C1
>S(Z†2)R

†
2C2. (6.5)

For theorem 6.1 we assumed the projection matrices Pi to have regular Mi. If this requirement
is not fulfilled, i.e. the projection centers lie at infinity, then F12 can be computed using formula
(C.4) on page 184.

The fundamental matrix introduced in theorem 6.1 has the properties summarized in the fol-
lowing proposition; cf. [Hartley and Zisserman 2001].
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Proposition 6.3 (Properties of the fundamental matrix.) If the projection centers of the two im-
ages do not coincide, then F12 is a rank-2 homogenous matrix with 7 degrees of freedom. The epipoles
e′2 and e′′1 are the left and right nullspaces of F12; i.e.

F12
>e′2 = 0, F12e′′1 = 0. (6.6)

The epipolar lines ε′2 and ε′′1 for a pair of corresponding points {x′, x′′} are obtained as

ε′2 = F12x′′, ε′′1 = F12
>x′. (6.7)

If the images are interchanged the corresponding fundamental matrix is

F21 = F12
>. (6.8)

From relation (6.7) we see that F12 maps a point x′′ from image Ψ2 to its corresponding epipolar
line in image Ψ1. This epipolar line represents the map of the projection ray of the point x′′.
Therefore, the column vectors of F12 can be interpreted as the epipolar lines corresponding to
the canonical points of image Ψ2 or the maps of the projection rays of those canonical points.
From section 5.4 on page 42 we know that these projection rays are the principal rays of image
Ψ2. Therefore we can give the following proposition.

Proposition 6.4 (The maps of the principal rays.) The ith column vector of F12 represents the map
of the ith principal ray R′′

i of image Ψ2 into image Ψ1. This line will be referred to as ρ′2i.

Conversely, the ith row vector of F12 represents the map of the ith principal ray R′
i of image Ψ1 into

image Ψ2, which will be referred to as ρ′′1i.

Note that the fundamental matrix is only of interest if the two projection centers do not coincide
because otherwise F12 = 0. In the proof of theorem 6.1 on the preceding page we saw that if the
projection centers of the two images coincide, then the point sets in the two images are related
by a homography induced by the plane at infinity (see section 6.2.1 on page 53).

Since the fundamental matrix maps points from the first image to (epipolar) lines in the second
image, it represents a projective correlation. And since all epipolar lines are concurrent with the
epipole e′′1 , it is a singular correlation, thus |F12| = 0. Since the fundamental matrix is made
up of 9 elements but has only 7 degrees of freedom, F12 has to fulfil 2 constraints. One is
the singularity constraint |F12| = 0 and the other one is the fixing of the scale since F12 is a
homogenous matrix.

Computation of the fundamental matrix. The fundamental matrix fully represents the epipo-
lar geometry of two uncalibrated images and therefore depends only on the relative orientation
of the two images. Consequently F12 and the epipolar constraint, which is linear in F12, pro-
vide a suitable means to determine linearly the relative orientation of two images if at least 8
corresponding pairs of image points are available – the so-called 8-point-algorithm. For n ≥ 8
corresponding pairs of points in two images this algorithm leads to a homogenous system of
equations of the form1

A f = 0, (6.9)
1 Actually, A and f depend on projective entities, and therefore should be represented as A and f. In the context

of estimating projective entities based on an adjustment, where we do not apply any projective geometry at all, it
is, however, preferable to consider the involved entities rather belonging to IRn+1 than to IPn. This way both worlds
– projective geometry and parameter estimation, which involves adjustment theory and statistics – are clearly kept
apart.
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with an n×9 matrix A and f = vec (F12). The ith row of A holds the derivatives of the epipo-
lar constraint (6.2) for the ith point correspondence {x′i , x′′i } with respect to f and using the
Kronecker-vec-relation (B.27) on page 180 the epipolar constraint can be written as

x′>F12x′′ = 0 → (x′′⊗x′)> f = 0,

and so the ith row of A is represented as

ii
>A = (x′′i ⊗x′i)

>. (6.10)

The system (6.9) is numerically best solved using the singular value decomposition (SVD) (see
appendix B.2 on page 178), which returns the solution F12. This way, however, algebraic error
is minimized and the singularity constraint of the fundamental matrix is generally not satisfied.
It can be applied afterwards by computing the singular value decomposition of F12 and setting

the smallest singular value to zero. In this case that rank-2 matrix F12 is obtained, which

minimizes the Frobenius norm ||F12 − F12||Frob; see [Hartley, Gupta, and Chang 1992].

The minimum case of 7 pairs of corresponding points can also be dealt with the singular value
decomposition of system (6.9). The 2-dimensional nullspace N (A) is spanned by the two vec-
tors f 1 and f 2. The solution f for the fundamental matrix can then be found as that linear
combination of f 1 and f 2 which satisfies the singularity constraint. In general this will be up
to three solutions.

For more and detailed analysis concerning the computation of the fundamental matrix see e.g.
[Luong and Faugeras 1996], [Faugeras and Luong 2001] or [Hartley and Zisserman 2001].

Conditioning. As it was already mentioned in section 3.7 on page 28, it is inevitable to do a
conditioning if measurements are introduced as projective quantities in the computations. The
importance of conditioning the measurements can be seen from the elements of the matrix A,
which are the derivatives of the epipolar constraint of each point correspondence with respect
to f . These elements are products of homogenous point coordinates, one from each image. The
homogenous part xH is 1 for all real points, whereas the coordinates of the Euclidian part xO
can have any value. Suppose the points are measured in digital images with 2000× 3000 pixels,
then the Euclidian part will be in the order of 1000. Consequently the elements of A will vary
between 12 and 10002, and we will encounter numerical problems in the solution of (6.9).

With the conditioning matrices presented in section 3.7 we can easily solve this problem. How-
ever, in this case the computed fundamental matrix, represented by the vector f, refers to the
system of the conditioned measurements. The transformation back to the system of the original
measurements is done in the following way.

If the points in each image are conditioned by different matrices, i.e. x′ ∼ H′x′, and x′′ ∼ H′′x′′,
where x represents the original measurement and x the conditioned one. Then the original
fundamental matrix F12 is computed from the conditioned one F12 by

F12 ∼ H′>F12H
′′.

This transformation can also be performed in the following way. Let the original fundamental
matrix be represented by the vector f and the conditioned fundamental matrix be represented
by the vector f. Then it holds:

f ∼ HFf,
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where
HF ∼ (H′′⊗H′)>.

Although the latter version requires much more computation time than the first version, it is
particularly useful, because it enables the transformation of the covariance matrix Σ f f of the

conditioned fundamental matrix f to the covariance matrix Σ f f of the original fundamental
matrix f by

Σ f f = HFΣ f f H
>
F .

Critical configurations. When computing the fundamental matrix we also have to take care
of critical configurations or surfaces, which do not allow a unique solution for F12. A detailed
analysis of such critical situations is given in [Maybank 1993]. A summary is also included in
[Hartley and Zisserman 2001]. The general critical surface is the ruled quadric2, being non-
degenerate (a hyperboloid of one sheet) or degenerate (like two planes, cones or cylinders). If
the two projection centers and all the object points lie on such a ruled quadric up to 3 solutions
for the fundamental matrix are possible. If all object points lie in a common plane then a two-
parameter family of homogenous matrices is the general solution for F12.

6.1.3 The essential matrix

If the interior orientation of the images is known, the fundamental matrix turns into the essen-
tial matrix

E12∼R1
>S(Z2 − Z1)R2, (6.11)

therefore E12 and F12 are related by

E12∼C1
−>F12C2

−1. (6.12)

Using definition 6.2 on page 45 for the relative orientation of dependent images relation (6.11)
turns into

E12∼S(Z†2)R
†
2. (6.13)

Actually the essential matrix is a special instance of a fundamental matrix and thus has to have
the properties shown in proposition 6.3 on page 47. Especially E12 is also a rank-2 homogenous
matrix, but has 5 degrees of freedom as we already saw at the beginning of section 6.1. It has
the following additional properties proven in [Huang and Faugeras 1989].

Proposition 6.5 (Singular values of the essential matrix.) Any matrix E12 is an essential matrix
if and only if its singular values {σ1,σ2,σ3} satisfy the following condition

σ1 = σ2 and σ3 = 0. (6.14)

2A ruled quadric is a quadric that contains a straight line.
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Since the essential matrix is made up of 9 elements but only has 5 degrees of freedom, E12 has
to satisfy 4 constraints. Again one is the fixing of the scale since E12 is a homogenous matrix,
thus 3 constraints remain. Due to proposition 6.5, however, already the two singular value
constraints are sufficient for a matrix to become essential. This apparent contradiction is re-
solved by observing that the σ1 =σ2 constraint is equivalent to two independent constraints;
see [Faugeras and Luong 2001]. The two singular value constraints can be used when com-
puting the essential matrix by minimizing algebraic error. After computing E12 with the eight

point algorithm presented in the previous section, that valid essential matrix E12, which min-

imizes ||E12 − E12||Frob can be found by computing the SVD of E12 with E12 = USV> and

diag(S) = (σ1,σ2,σ3) >, where σ1 ≥ σ2 ≥ σ3. Then E12 is obtained as E12 = UTV> with
diag(T) = (t, t, 0) >, where t = (σ1 +σ2)/2.

If a valid essential matrix is to be determined using the Gauß-Helmert model (see section D.5
on page 195), which allows the minimization of reprojection error, then the σ1 =σ2 constraint
cannot be used as a single constraint, as in the moment of enditeration the differentials of this
constraint vanish. This can be shown using MATLAB and the respective listing of the m-file is
included in section E.1 on page 199. As a consequence other 4 independent constraints have to
be used. K. Rinner already investigated these constraints, [Rinner 1942], [Rinner 1956], [Rinner
1963], and he proposed the following set of constraints in [Rinner 1963].

Proposition 6.6 (Minimal set of constraints for the essential matrix.) If the matrix
E12 ∼ [e1, e2, e3] is an essential matrix with ||E12||Frob =

√
2, then E12 satisfies the following con-

straints

|e1|2 + |e2|2 + |e3|2 = 2,
|e1|2 + |e?

1|2 = 1,
|e2|2 + |e?

2|2 = 1,
|e3|2 + |e?

3|2 = 1,

with E?
12 = [e?

1 , e?
2 , e?

3] = [e2×e3, e3×e1, e1×e2] being the co-factor matrix of E12. With these
constraints the length of the baseline Z†

2 = Z2 − Z1 is set to 1.

For the minimum case of 5 pairs of corresponding points, it is shown in [Faugeras and Maybank
1990] that up to 10 solutions for E12 are possible. J. Philip [Philip 1996] made serval numerical
test which indicate that practically up to 6 real solutions for E12 are possible. He also presented
a linear (i.e. unique) solution for 6 pairs of corresponding points.

6.1.4 Retrieving the basis vector and the rotation matrix from the essential matrix

Assume we are given the essential matrix E12 for two images Ψ1 and Ψ2, e.g. by determining
it with the 8-point-algorithm of section 6.1.2, possibly by considering the constraints of section
6.1.3; and the scale is chosen so that ||E12||Frob =

√
2; i.e. ||Z†2|| = 1. Then we can extract the

basis vector Z†2 and the rotation matrix R†
2 up to a four-fold ambiguity in a first stage. In a sec-

ond stage a unique solution (up to scale) can be obtained by using a real point correspondence.
Several methods for the first step have been presented over the years, we will summarize two
of them.

50



Using the singular value decomposition. With E12 = USV> we have; e.g. [Hartley and
Zisserman 2001]:

Z†2 = u3 or Z†2 = −u3,

and
R†

2 = UWV> or R†
2 = UW>V>,

where u3 is the third column of U . The matrix W is given by

W =

 0 −1 0
1 0 0
0 0 1

 .

Note that the rotation matrices obtained by this method may have negative determinant and
since we defined the rotation matrix of an image to have positive determinant in section 5.2 on
page 37 a multiplication by −1 may by necessary.

Using the co-factor matrix E?
12. This following procedure does not use the singular value

decomposition. The basis vector Z†2 is found by the cross product of any two columns of E12.
Since in principle this cross product can 0, it is recommend to compute it for all three possible
pairs of columns and to choose the result with maximum length. The second solution Z†2 is
obtained by changing the sign of the first one. For the first solution of the basis vector Z†2 we
get two solutions for the rotation matrix R†

2, which following [Rinner 1963] can be expressed
as

R†
2 = E?

12 −S(Z†2)E12 and R†
2 = E?

12 + S(Z†2)E12.

These two solutions are explained by the sign-ambiguity of E12 (which, however, does not
affect adj(E12)). For the second solution of the basis vector Z†2 we get also two solutions for the
rotation matrix, which are, however, essentially the same as for Z†2.

So, whatever method we choose, we always end up with two solutions for the basis vector and
two solutions for the rotation matrix3, producing four possible solutions for the pair of basis
vector and rotation matrix: {Z†2, R†

2}, {Z†2, R†
2}, {Z†2, R†

2}, {Z†2, R†
2}. The geometrical interpre-

tation of these four solutions is shown in figure 6.2 on the following page. They just correspond
to the four possible combinations of positive and negative orientations of the two images; cf.
figure 5.1 on page 36. We can, however, obtain a unique solution for the basis vector and the
rotation matrix, by requesting a positive orientation for both images.

Requiring a unique solution. Following [Niini 1994] this can be done in the following way.
If x′ and x′′ are known corresponding image points of some point in space, with x′H = x′′H = 1,
then it holds:

µ1C1x′ = Z†2 + µ2R
†
2C2x′′.

Multiplying with S(Z†2) and requesting the same sign for the scalars µ1 and µ2 gives

sign(S(Z†2)C1x′) = sign(S(Z†2)R
†
2C2x′′). (6.15)

3Note, however, if the constraints of the essential matrix are not satisfied, only the rotation matrix returned from

the singular value decomposition will be a valid rotation matrix; i.e. R−1 = R>
.
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Figure 6.2: The four solutions of the relative orientation of two images, which correspond to the four possible
combinations of positive and negative orientations of the two images. The correct object point XPP is only obtained
if both images have positive orientation.

This yields the correct rotation matrix and by requiring positive sign for the scalars µ1 and µ2,
we finally get also the correct basis vector Z†2.

6.1.5 Historical notes

The representation of the relative orientation of two calibrated images using the bilinear form
(6.2) on page 46 was rediscovered in photogrammetry several times; [von Sanden 1908], [Rin-
ner 1942], [Thompson 1968] or [Stefanovic 1973] to name a few. The underlying matrix is given
several names like epipolar matrix, coplanarity matrix or correlation matrix – if named at all. This
matrix has 5 degrees of freedom and thus has to satisfy 4 constraints which were already pre-
sented in [Rinner 1942].

In computer vision the bilinear form of the relative orientation of calibrated images was intro-
duced by [Longuet-Higgins 1981]. The underlying constraints and other properties of the essen-
tial matrix were investigated particularly by [Huang and Faugeras 1989] and [Maybank 1993].
The realization that a 3×3 matrix similar to the essential matrix can be used also for uncali-
brated images, were made simultaneously by Faugeras [Faugeras 1992] and Hartley [Hartley
1992]. The term fundamental matrix was introduced by [Luong 1992].

6.2 Homographies and dual correlations between two images

In section 3.4 on page 20 we introduced the two basic projective transformations: Homographies
(or collineations) and correlations. All transformations between projective spaces, that can be
represented by matrices, belong to one of these two types; i.e.
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mappings from points to points are homographies,
mappings from points to lines are correlations, and
mappings from lines to points are dual correlations.

We already encountered homographies in form of the point and line projection matrices P and
Q in section 5, as well as a correlation in form of the fundamental matrix F12 in section 6.1.2.
Also we will meet homographies and dual correlations in chapter 7, where we discuss the prop-
erties of the trifocal tensor. Therefore it is useful to summarize the properties of homographies
and dual correlations separately.

6.2.1 Homographies between two images induced by a plane

We consider the mapping from a first image Ψ1 to a second image Ψ2 shown in figure 6.3. A
point x′ in Ψ1 is back-projected into space, the respective projection ray S(x′) is intersected
with a plane Ω and then the resulting intersection point X is projected into the second image
Ψ2 yielding the point x′′. Algebraically this mapping can be represented by a homogenous
3× 3 matrix HΩ and we will refer to such kind of mapping as a homography from image Ψ1
to image Ψ2 induced by the plane Ω.

Figure 6.3: The homography from image Ψ1 to image Ψ2 induced by the plane Ω.

Proposition 6.7 (Homography induced by a plane.) Let two images Ψ1 and Ψ2 be given by their
point projection matrices P1∼M1 [I3,−Z1] and P2∼M2 [I3,−Z2] (with M1 and M2 regular), and let
further a plane Ω in 3D space be represented as Ω∼ (ΩH

>, ΩO)>. Then the homography HΩ from
image Ψ1 to image Ψ2 induced by the plane Ω is given by

HΩ∼M2(dI3 + (Z2 − Z1)ΩH
>)M−1

1 with d = Z1
>ΩH + ΩO.
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Proof:
Using the equations (5.23), (3.33) and (5.5) the projection ray S(x′), its intersection point with
Ω and the projection x′′ into the second image can be represented algebraically as

x′′ ∼ P2 I I>(Ω)Q∗>
1 x′.

By applying proposition 5.1 for the line projection matrix Q1 and equation (B.10) for the arising
cross products, the proposition follows immediately.

2

The matrix HΩ of the homography induced be a general plane Ω will be regular in general. For
special cases, however, HΩ will be singular. Depending on its rank the matrix HΩ will have
different properties.

Proposition 6.8 (Ranks of plane homographies.) In general rank(HΩ) = 3 and the epipoles e′2
(in image Ψ1) and e′′1 (in image Ψ2) are related by

e′′1 ∼ HΩe′2. (6.16)

Rank(HΩ) = 2, if the homography plane Ω contains the projection center Z2 of image Ψ2.
Rank(HΩ) = 1, if the homography plane Ω contains the projection center Z1 of image Ψ1.
Rank(HΩ) = 0, if the homography plane Ω contains the coinciding projection centers Z1 = Z2 .
Depending on its rank, HΩ has the ranges and nullspaces shown in table 6.1.

rank(HΩ) R(HΩ) N (HΩ)

3 IP2 {}
2 σ ′′ ∼ M2

−>ΩH e′2
1 e′′1 σ ′ ∼ M1

−>ΩH

0 {} IP2

Table 6.1: Range R(HΩ) and nullspace N (HΩ) of the plane homography HΩ depending on its rank; cf. the
figures 6.4 and 6.5. The images Ψ1 resp. Ψ2 are given as P1 ∼M1

[
I3,−Z1

]
resp. P2 ∼M2

[
I3,−Z2

]
; e′2 resp.

e′′1 are their epipoles. The plane Ω is given as Ω ∼ (ΩH
>, ΩO)> and the lines σ ′ and σ ′′ are the intersection

lines of Ω with Ψ1 and Ψ2.

Proof:
First we proof the dependence of rank(HΩ) on the incidence of the projection centers Z1 resp.
Z2 with the plane Ω. For this we just have to consider the middle part of HΩ because the en-
closing M matrices are assumed to be regular. Setting |HΩ| = 0 gives |dI3 + (Z2 − Z1)ΩH

>| =
|H| = 0. Observe that the left side of this equation can be interpreted as the characteristic poly-
nomial of the dyad −(Z2 − Z1)ΩH

> with eigen-value d. By expanding the determinant by one
column, this equation reduces to

d2(d + ΩH
>(Z2 − Z1)) = 0.

It goes without saying that d1 = d2 = 0 is a solution with multiplicity 2 and the resulting matrix
H1 = H2 has rank-1 (since only the dyad remains). Since the solution d3 = −ΩH

>(Z2 −
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Z1) is unique, the resulting matrix H3 has to have rank-2; see inequality (B.4) on page 177
which relates the multiplicity of an eigenvalue and the resulting rank defect. Then, with d from
Proposition 6.7, the dependence of rank(HΩ) on the incidence of the projection centers Z1 resp.
Z2 with the plane Ω follows directly. Thus, it only remains the rank-0 case. It is easy to see,
that H = 03 if d = 0 and Z1 = Z2.

If rank(HΩ) = 3, then it follows immediately that e′′1 ∼HΩe′2 because the epipoles e′2 resp. e′′1
are defined by e′2∼M1(Z2 − Z1) resp. e′′1 ∼M2(Z1 − Z2).

Next we proof the range and nullspaces of HΩ by utilizing the proven incidence relations of the
projection centers with the plane Ω. Using the relation (B.10) on page 179 for the product of two
axiators, a rank-2 homography matrix can be decomposed as HΩ ∼ M2S(ΩH)S(Z2 −Z1)M1

−1.
With this decomposition it is easy to see that HΩe′2 = 0 and this is the only possible nullspace
as rank(HΩ) = 2. Using relation (B.12) on page 179 it follows that all mapped points x′′ have
to lie on the line σ ′′ ∼ M2

−>ΩH. Similarly for rank(HΩ) = 1 the homography matrix can be
decomposed as HΩ ∼ M2(Z2 − Z1)ΩH

>M1
−>, which can also be written as HΩ ∼ e′′1σ

′>.

2

In the figures 6.4 and 6.5 rank-2 and rank-1 homographies are depicted; cf. table 6.1. Note that
the inverse homography (i.e. the mapping of the points in image Ψ2 to the points in image Ψ1)
can be derived from Proposition 6.7 on page 53 by exchanging the roles of the two images. So
even for singular homographies the map in the opposite direction can be expressed.

Figure 6.4: A rank-2 homography from image Ψ1 to image Ψ2.
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Figure 6.5: A rank-1 homography from image Ψ1 to image Ψ2.

A special homography is the one induced by the plane at infinity Π∞ – denoted by H∞. With
Π∞ = (0, 0, 0, 1)> (see section 3.3) it is easy to see that this homography is represented by

H∞ ∼ M2M1
−1. (6.17)

The same homography H∞ also results if the two projection centers Z1 and Z2 coincide. There-
fore H∞ can be interpreted in two ways: (i) H∞ represents the homography induced by the
plane at infinity, which turns out to be independent on the projection centers; equation (6.17).
(ii) H∞ represents the homography from image Ψ1 to image Ψ2 in case the projection centers
coincide, which is then independent on the inducing plane Ω, provided the projection centers
do not lie in Ω.

Finally, we can give the relation between a plane homography and the fundamental matrix of
two images.

Proposition 6.9 (Plane homography and the fundamental matrix.) Let HΩ be the homography
from image Ψ1 to image Ψ2 induced by a plane Ω, with rank(HΩ) > 1. Then the fundamental matrix
F12 between these two images (with epipolar constraint (6.2)) is given by

F12 ∼ HΩ
>S(e′′1 ).

Proof:
The epipolar line ε′′1 in the second image Ψ2 for a given point x′ is given by ε′′1 ∼ F12

>x′; (see
equation (6.7) on page 47).

A point y′′ on the epipolar line ε′′1 can be found as y′′ ∼ HΩx′. By joining y′′ and e′′1 we ob-
tain the epipolar line ε′′1 . Using equation (3.24) on page 23 this is represented algebraically as
ε′′1 ∼ S(e′′1 )y′′ ∼ S(e′′1 )HΩx′. The comparison of this expression for ε′′1 with ε′′1 ∼ F12

>x′ gives
the result. For the epipolar line ε′′1 to be valid it is required that y′′ 6= e′′1 . This is true as long as
x′ 6= e′2 and rank(HΩ) > 1; cf. table 6.1 on page 54.

2
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6.2.2 Dual correlations between two images induced by a 3D line

Now we consider another mapping from a first image Ψ1 to a second image Ψ2, which is shown
in figure 6.6. A line λ′ in Ψ1 is back-projected into space, the respective projection plane Σ(λ′)
is intersected with a line L and then the resulting intersection point X is projected into the
second image Ψ2 yielding the point x′′. Algebraically this mapping can be represented by a
homogenous 3× 3 matrix GL and we will refer to such kind of mapping as a dual correlation
from image Ψ1 to image Ψ2 induced by the 3D line L.

Figure 6.6: The dual correlation from image Ψ1 to image Ψ2 induced by the line L.

Proposition 6.10 (Dual correlation induced by a 3D line.) Let two images Ψ1 and Ψ2 be given by
their point projection matrices P1 ∼M1 [I3,−Z1] and P2 ∼M2 [I3,−Z2] (with M1 and M2 regular),
and let further a line L in 3D space be represented as L>∼ (LH

>, LO
>). Then the dual correlation GL

from image Ψ1 to image Ψ2 induced by the line L is given by

GL ∼ M2

(
S(LO) + Z2LH

> − LHZ1
>
)

M1
>.

Proof:
Using the equations (5.20), (3.33) and (5.5) the projection plane Σ(λ′), its intersection point with
L and the projection x′′ into the second image can be represented algebraically as

x′′ ∼ P2I
>(L)P1

>λ′,

which directly gives the proposition.
2

Since only 3D points that lie on L are projected into image Ψ2, this kind of mapping will be of
rank-2 in general. The following proposition goes more into detail.

Proposition 6.11 (Ranks of dual line correlations.) In general rank(GL) = 2. The right (η′) resp.
left (η′′) nullspace of GL is the map of the line L into image Ψ1 resp. Ψ2.
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Rank(GL) = 1, if the correlation line L contains at least one of the projection centers of the two images,
with Z1 6= Z2.
Rank(GL) = 0, if the correlation line L contains the coinciding projection centers Z1 = Z2.
Depending on its rank, GL has the ranges and nullspaces shown in table 6.2.

rank(GL) R(GL) N (GL) Note

2 η′′ ∼ Q2L η′ ∼ Q1L
a) Z1 ∈ L

e′′1 (a single point) {λ′ : s′>λ′ = 0} (a pencil of lines) GL ∼ e′′1 s′>
1

b) Z2 ∈ L
s′′ (a single point) {λ′ : e′2

>λ′ = 0} (a pencil of lines) GL ∼ s′′e′2
>

0 {} IP2

Table 6.2: Range R(GL) and nullspace N (GL) of the line correlation GL depending on its rank; cf. the figures
6.7 and 6.8. The images Ψ1 resp. Ψ2 are given as Q1 ∼ M1

−>[
−S(Z1), I3

]
resp. Q2 ∼ M2

−>[
−S(Z2), I3

]
;

e′2 resp. e′′1 are their epipoles. The 3D line L is given as L> ∼ (LH
>, LO

>). In the two rank-1 cases the point
s′∼M1LH resp. s′′∼M2LH is the intersection point of the line L with the image plane Ψ1 resp. Ψ2.

Proof:
First we proof the dependence of rank(GL) on the incidence of the projection centers Z1 resp.
Z2 with the line L. The enclosing M matrices are assumed to be regular therefore rank(GL)
depends only on the middle part G = S(LO) + Z2LH

>− LHZ1
>. Without loss of generality we

can assume that L passes through the origin. Consequently LO = 0 and G = Z2LH
>− LHZ1

>.
Since G is made up of the sum of two dyads, all its columns are linear combinations of the two
vectors Z2 and LH. Therefore rank(GL) = 2 in general.

Of course the rank will be 1 if Z2 ∼ LH, which means that Z1 lies on L. The same reasoning
can be applied to the rows of G, which shows that rank(GL) = 1 if Z2 lies on L. For G to
become 03 it must hold: Z2LH

> = LHZ1
>, which only can be achieved if Z1 = Z2 = µLH for

some scalar µ; i.e. both projection centers lie on L.

The next task is to prove the range and nullspaces listed in table 6.2. As an example, we will
show that all mappings GLλ′ lie on the line η′′ ∼ Q2L in image Ψ2; i.e. L>Q2

>GLλ′ = 0. With
L> ∼ (LH

>, LO
>) and the relation (5.1) on page 40 for the line projection matrix Q2 we have

to show
(

LH
>S(Z2) + LO

>
)(

S(LO) + Z2LH
> − LHZ1

>
)

M1
>λ′ = 0. This condition is indeed

true, which is verified by out-multiplying these two brackets and using the Plücker-identity for
L (3.13) and relation (B.10) for the product of two axiators. The correctness of the other range
and nullspaces can be checked similarly by inserting the quantities listed in table 6.2 into the
correlation proposition 6.10.

2

Because this dual correlation is always singular, there is no expression for the inverse transfor-
mation. The mapping of the lines λ′′ in image Ψ2 to the points x′ in image Ψ1 using the very
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same line L in space, however, can be represented by GL
>. This follows directly from propo-

sition 6.10 on page 57 by exchanging the roles of the two images. In the figures 6.7 and 6.8 the
two possible cases for rank-1 dual correlations are depicted; cf. table 6.2.

Figure 6.7: A dual correlation from image Ψ1 to image Ψ2 with rank-1, where the line L contains the projection
center Z1.

Figure 6.8: A dual correlation from image Ψ1 to image Ψ2 with rank-1, where the line L contains the projection
center Z2.

For dual correlations of rank-2 the relation between the points on η′ and the points on η′′

is one-to-one – a regular collineation in IP1; cf. [Papadopoulo and Faugeras 1998]. This is a
consequence of the following proposition.

Proposition 6.12 (Rank-2 properties of dual line correlations.) Let a dual line correlation from
image Ψ1 to image Ψ2 with respect to a 3D line L be represented by GL with rank(GL) = 2. Further-
more let Lp′ be the pencil of lines with carrier p′ in image Ψ1. If p′ ∈ η′ then all lines λ′ 6∼ η′ in Lp′

map to the very same point p′′(p′) on η′′ (represented as p′′(p′)∼GLλ′), with η′ resp. η′′ being the
projection of L into the image Ψ1 resp. Ψ2; i.e. the right and left nullspace of GL. The point p′′(p′) is
the map of the intersection point of L with the projection ray of p′.

If p′ 6∈ η′ then each line λ′ in Lp′ is mapped to a different point on η′′.
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Proof:
The proof is easy, however a bit too long to be included in detail. The basic idea is to represent
the lines λ′ of the pencil Lp′ as λ′∼S(p′)q′, with q′ being an arbitrary point 6= p′ and to express
q′ as a linear combination of three linearly independent vectors as

q′ ∼ ap′ + bM1LH + cp′×(M1LH).

with the correlation line L given as L>∼ (LH
>, LO

>). Again as in the previous proof we can
assume without loss of generality that L passes through the origin and so LO = 0. With this
preparation and proposition 6.10 on page 57 we can write

p′′(p′)∼GLλ′∼M2

(
Z2LH

> − LHZ1
>
)

M1
>S(p′)

[
M1LH , p′×(M1LH)

] (
b
c

)
,

which does not depend on the coefficient a. Now we define p′ to lie on η′, thus the projection
ray of p′ is coplanar with the line L. Using equation (5.23) on page 42 for the projection ray
and the coplanarity condition for lines (3.16) on page 20 we get the following constraint

L>HS(Z1)M1
−1p′ = 0.

Considering this constraint in the above expression for GLλ′, we see that p′′(p′) is also inde-
pendent of the coefficient b and only c remains, which then only acts as a scale.

Therefore GLλ′ is independent of q′ and so all lines λ′ of the pencil Lp′ are mapped to the
very same point p′′(p′) in image Ψ2. If the line λ′ ∼ η′, then q′ ∈ η′ and c = 0, and therefore
p′′(p′) = 0.

Note that it was assumed that p′ and M1LH are linearly independent. If this assumption is not
valid (i.e. p′ ∼M1LH) it is straightforward to show that p′′(p′) is still independent of q′. This
shows the one-to-one relation by GL between the points on η′ and the points on η′′.

Conversely if p′ does not lie on η′ the dependence on q′ remains and each line λ′∼S(p′)q′ of
the pencil is mapped to a different point on η′′ as the relation GLλ′ can then be expressed as
HL,p′q′, with the rank-2 homography HL,p′∼GLS(p′).

2

In contrast to the plane homographies of the previous section, where the homography
H∞∼M2M1

−1 induced by the plane at infinity played a special role, no special dual line corre-
lation exists. Note that the expression M2M

>
1 is regular and therefore does not represent a dual

line correlation.
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Chapter 7

Three-View Geometry – the Trifocal
Tensor

In section 6.1.1 we saw that corresponding points in two images have to fulfil the epipolar
constraint, which is algebraically represented as the homogenous bilinear form (6.2) whose
coefficients are made up of the elements of the fundamental matrix. Motivated by this obser-
vation we can ask for similar constraints which must hold between corresponding features in three
images. If we consider especially a triple of corresponding lines we will get two such constraints
as it is shown in section 7.3. These constraints are represented as homogenous trilinear forms
whose coefficients are made up by the elements of a valence-3 tensor – the trifocal tensor, which
is derived in the following section.

7.1 A derivation of the trifocal tensor

We consider three images Ψh (h = 1, 2, 3) represented by their point projection matrices
Ph∼Mh [I3,−Zh] with regular Mh, together with a corresponding triple of image lines λh,
which are the mappings of a 3D line L; see figure 7.1 on the next page. In general L is uniquely
determined by the intersection of the back projection of two of these image lines (e.g. λ′′ and
λ′′′). Let L denote this intersection of the projection planes Σ(λ′′) and Σ(λ′′′). Then we will
obtain two constraints in demanding that the map of L into image Ψ1 is identical to λ′.

Algebraically the three image lines λh are represented as homogenous vectors λh. The pro-
jection planes Σ(λ′′) and Σ(λ′′′) are represented as Σ2 and Σ3. Using the back projection of
lines (5.20) these planes are given as Σ2 ∼P2

>λ′′ and Σ3 ∼P3
>λ′′′. Using the relation for the

intersection of two planes (3.30) the line L is represented as

L ∼ I I ∗(Σ2)Σ3 =
[
−S(M2

>λ′′) 0
(Z2

>M2
>λ′′)I3 M2

>λ′′

] [
M3

>

−Z3
>M3

>

]
λ′′′.

The projection of L into image Ψ1 must be identical to λ′. Using the line projection matrix Q1
from proposition 5.1 this can be represented as

λ′ ∼ Q1L ∼ M1
−>[−S(Z1), I3] L

∼ M1
−>S(Z1)S(M2

>λ′′)M3
>λ′′′ + M1

−>(M2
>Z2

>λ′′)M3
>λ′′′ −M1

−>M2
>λ′′(Z3

>M3
>λ′′′).
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Figure 7.1: Three images {Ψ1, Ψ2, Ψ3}, a corresponding triple of image lines {λ′, λ′′, λ′′′} and the respective line
in space L.

With the axiator relation (B.10) we can rewrite S(Z1)S(M2
>λ′′) as M2

>λ′′Z1
>− Z1

>M2
>λ′′I3

and get

λ′ ∼ −((M2Z1 −M2Z2)>λ′′)M1
−>M3

>λ′′′ + ((M3Z1 −M3Z3)>λ′′′)M1
−>M2

>λ′′. (7.1)

Now we introduce the epipoles e′′1 and e′′′1 , cf. epipole equation (6.1) on page 45,

e′′1 = M2(Z1 − Z2)
e′′′1 = M3(Z1 − Z3),

(7.2)

and although they are represented as projective vectors, their scale is not independent from the
other orientation elements of the three images. This is emphasized by using ’=’ instead of ’∼’.
We also give the definition of the other four possible epipoles in the three images as

e′2 = M1(Z2 − Z1)
e′3 = M1(Z3 − Z1)
e′′3 = M2(Z3 − Z2)
e′′′2 = M3(Z2 − Z3).

(7.3)

Finally we introduce the matrices A and B as follows
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A = M2M
−1
1

B = M3M
−1
1 .

(7.4)

Observe that A and B represent the homographies from image Ψ1 to the other two images in-
duced by the plane at infinity (cf. equation 6.17 on page 56). With these new quantities we write
equation (7.1) as

λ′ ∼ −(e′′1
>λ′′)B>λ′′′ + (e′′′1

>λ′′′)A>λ′′. (7.5)

This relation expresses the line λ′ as a bilinear function in λ′′ and λ′′′ and is given in matrix
notation. Because of the multiplication rule associated with this notation (multiply left row with
right column) the relation (7.5) can not be further simplified.

However, using tensor notation we can reach a more simpler representation. The epipoles e′′1
and e′′′1 are contra-variant coordinate vectors which are indexed by a super-script. The column
vectors λ′, λ′′ and λ′′′ are vectors of the dual space and therefore co-variant coordinate vectors,
which are indexed by a sub-script. The matrices A and B require two indices – one sub-script
and one super-script. This follows from the summation convention and the fact that both ma-
trices represent collineations; cf. section 4. The first index corresponds to the rows and the
second one to the columns of the matrix. Therefore we have the following transition between
matrix and tensor notation

λ′ = λ′i λ′′ = λ′′j λ′′′ = λ′′′k

e′′1 = e′′1
j e′′′1 = e′′′1

k

A> = (A>) j
i· = A j

·i B> = (B>) k
i· = Bk

·i

with i, j, k = 1, 2, 3. And so relation (7.5) is given in tensor notation as

λ′i ∼ −e′′1
jλ′′j Bk

·iλ
′′′
k + e′′′1

kλ′′′k A j
·iλ

′′
j ∼ λ′′j λ

′′′
k Tk j

· · i. (7.6)

By combining the quantities that depend on the orientation parameters of the three images we
found the trifocal tensor Tk j

· · i.

Definition 7.1 Any homogenous valence-(1,2) tensor Tk j
· · i, that can be represented as

Tk j
· · i ∼ e′′1

jBk
·i − e′′′1

k A j
·i, (7.7)

using two matrices A and B, and two vectors e′′1 and e′′′1 , is a trifocal tensor.

Note, however, that the representation of a given trifocal tensor in e′′1 , e′′′1 , A and B is not unique,
because in section 7.4.3 on page 90 we will see that the same tensor can also be represented
using we′′1 , we′′′1 , A + e′′1 v> and B + e′′′1 v> for any arbitrary vector v and w 6= 0.

Because the trifocal tensor is a homogenous valence-(1,2) tensor it has 33 = 27 elements. It
only depends on the relative orientation of the three images. This can be seen by its defining
quantities. The epipoles (e′′1 , e′′′1 ) and the point-homographies (A, B) do not depend on the
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choice of the object system. Therefore the trifocal tensor plays the same role for three images
as the fundamental matrix plays for two, e.g. the trifocal tensor contains all the information of
the epipolar geometry of three images and can be determined by image observations alone –
including both lines and points as we will see later. Lines can not be used for the fundamental
matrix, since the projection planes of two image lines intersect in any case; i.e. even if the two
lines are not corresponding.

Observe that one image plays a special role in this derivation. It is the image in which the
3D line L is projected using the respective Q matrix (in this case image Ψ1). The index of
the special image appears as the sub-script in the trifocal tensor Tk j

· · i. Since we can choose
any of the three given images to play that special role and can switch the roles of the other
two, there are six different trifocal tensors associated with three given images: T(Ψ1, Ψ2, Ψ3),
T(Ψ1, Ψ3, Ψ2), T(Ψ2, Ψ1, Ψ3), T(Ψ2, Ψ3, Ψ1), T(Ψ3, Ψ1, Ψ2), T(Ψ3, Ψ2, Ψ1). For any given trifocal
tensor the other 5 representations can be derived from the given one; see section 7.5.

Although the trifocal tensor is made up of 27 elements it only has 18 degrees of freedom in case
of uncalibrated images, which follows from proposition 6.2 on page 44. Therefore the tensor
elements have to fulfil 9 constraints, one of which is the fixing of the scale, since the trifocal
tensor is a homogenous quantity.

Since the trifocal tensor is indexed by three indices, we can imagine the tensor as a 3×3×3 cube
of numbers. If we fix one of the three indices, only two free indices remain. We slice – so to
say – a matrix out of the cube. Since we have three indices to fix, we get three different kinds
of slices. These slices, which will be investigated in detail in section 7.2, are the basic input
for finding the constraints for the trifocal tensor. So actually we will not work much with the
trifocal tensor in its three-index-representation (7.7), but much more with those matrices – the
tensorial slices.

A few words about the placement of the indices. The placement of the super and sub-scripts
in the tensor equation (7.7) is unusual compared to other authors, who refer to the trifocal ten-
sor normally as T jk

i ; e.g. [Hartley and Zisserman 2001] or [Heyden 2000]. The different place-
ment is caused by different approaches for the derivation of the trifocal tensor. The algebraic
derivation in [Heyden 2000], which is also summarized in section C, does not enforce a special
order of the indices. The geometric based derivation in matrix notation used in this section,
however, enforces the order of the indices shown in equation (7.7). In [Hartley and Zisserman
2001] also the same geometric derivation based on matrix notation is presented. Their tran-
sition to tensor notation, however, is is done disadvantageously as the rows of a matrix are
associated with contra-variant indices and the columns are associated with co-variant indices
– a method that would prevent a tensorial representation of the fundamental matrix, which
requires two sub-scripts. In this thesis we use the usual method in tensor calculus, where the
order (indicated with the dots ·) determines the row and column indices. As long as one works
only in tensor notation and sticks with the chosen placement of the indices no problems arise.
In this thesis, however, we will actually not work very much with the tensor in its representa-
tion with the three indices, but more with the above mentioned matrices (the tensorial slices).
Therefore it is required to have a rigid transition between the tensor notation and the matrix
notation of these slices.

If we had chosen to represent the matrices M2M
−1
1 and M3M

−1
1 in equation set (7.4) with A>

and B> respectively, we would have obtained a tensor representation as T jk
i·· . However, as
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these matrices represent point homographies, it is not advisable to use the notation of a line
homography.

7.1.1 Computing the trifocal tensor from given projection matrices

Assume we are given three images Ψ1, Ψ2 and Ψ3 with their projection matrices

P1∼M1 [I3,−Z1] ∼

Π′
1
>

Π′
2
>

Π′
3
>


P2∼M2 [I3,−Z2] ∼

Π′′
1
>

Π′′
2
>

Π′′
3
>


P3∼M3 [I3,−Z3] ∼

Π′′′
1
>

Π′′′
2
>

Π′′′
3
>

 .

With these projection matrices we can determine the trifocal tensor of the three images. If the
M matrices are regular we can use the relations obtained in the previous section where we de-
rived the trifocal tensor:

e′′1 = M2(Z1 − Z2) → e′′1
j

e′′′1 = M3(Z1 − Z3) → e′′′1
j

A = M2M
−1
1 → A j

i·

B = M3M
−1
1 → B k

i·

⇒ Tk j
· · i ∼ e′′1

jBk
·i − e′′′1

k A j
·i.

(7.8)

For the derivation in the previous section we required the three M matrices to be regular; i.e.
the projection centers must not lie in the plane at infinity Π∞. If this requirement is not ful-
filled, then the trifocal tensor can be computed using the following relation, which is obtained
from a more algebraic approach in deriving the trifocal tensor (equation (C.5) on page 186):

Tk j
· · i =

1
2
εie f det


Π′

e
>

Π′
f
>

Π′′
j
>

Π′′′
k
>

 , (7.9)

where εie f is the fully antisymmetric valence-3 tensor introduced in section 4. Note, that in (7.9)
it is summed over e and f .
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7.2 The tensorial slices

Because the trifocal tensor is indexed by three indices, each running from 1 to 3, we can imagine
the tensor as a 3×3×3 cube of numbers. If we fix one of the indices i, j, k at a certain value (1,2
or 3), we slice – so to say – a 3×3 matrix out of the tensor; see figure 7.2. Since we have three
indices to choose, we can slice in three different directions and thus get three different types of
matrices, which we will call conveniently Ii, J j and Kk. And since in each direction the fixed
index can take three values, we get in total 9 possible slices out of the tensor.

Figure 7.2: The trifocal tensor interpreted as a 3×3×3 cube of numbers with the tensorial slices I1, J3 and K1.

7.2.1 The correlation slices

Let us start by fixing the i-index in the expression (7.7) for the tensor. This returns a two-fold
indexed quantity (Ii)k j

(Ii)k j = Tk j
· · (i) = e′′1

jBk
·(i) − e′′′1

k A j
·(i).

Putting an index in brackets is the usual way in tensor notation to indicate the fixation of this
index. Since (Ii)k j is a two-fold indexed quantity, we can interpret it as a 3×3 matrix Ii. Its
rows are created by the first index (k) and its columns by the second index ( j). Therefore A j

·(i)

corresponds to A ii and Bk
·(i) to B ii, where ii is the ith column vector of the identity matrix I3.

And so we get Ii in matrix notation as

Ii = B ii e′′1
> − e′′′1 ii

>A>. (7.10)

Note that A ii and e′′1 need to be transposed because the j-index counts the columns in Ii. We
can further express Ii in terms of the projection matrices Ph∼Mh [I3,−Zh], (h = 1, 2, 3), with
regular Mh using the relations (7.4) and (7.2) as

Ii = M3

(
−Z1ii

>M1
−>+ M−1

1 iiZ1
>︸ ︷︷ ︸

S(R′
i,O)

+Z3 ii
>M1

−>︸ ︷︷ ︸
R′

i,H
>

−M1
−1ii︸ ︷︷ ︸

R′
1i,H

Z2
>
)

M2
>, (7.11)
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where R′
i ∼ (R′

i,H
>, R′

i,O
>) is the ith principal ray of image Ψ1; see relation (5.18) on page 41.

The comparison of the equation (7.11) with proposition 6.10 on page 57 reveals that Ii describes
a dual correlation of the lines in image Ψ2 to the points in image Ψ3 via the ith principal ray R′

i
of image Ψ1; see figure 7.3. For this reason we will refer to these slices as correlation slices1 and
drop the ”dual” to simplify matters. The following proposition summarizes these findings.

Proposition 7.1 (The correlation slices Ii of the trifocal tensor.) Let the trifocal tensor be given as
Tk j
· · i ∼ e′′1

jBk
·i − e′′′1

k A j
·i. Then the correlation slices Ii, which are obtained by fixing the i-index, are

represented as Ii = B ii e′′1
> − e′′′1 ii

>A>. The matrix Ii represents a dual correlation of the lines in
image Ψ2 to the points in image Ψ3 via the ith principal ray R′

i of image Ψ1. The matrix Ii
> maps the

lines in image Ψ3 to the points in image Ψ2 via the very same principal ray.

Figure 7.3: The Ii matrices represent dual line correlations from image Ψ2 to image Ψ3 induced by the principal
rays R′

i of image Ψ1. The maps of these principal rays in the images Ψ2 and Ψ3 are the lines ρ′′1i and ρ′′′1i
respectively.

Proposition 7.2 (Linear combinations of the correlation slices Ii.) The matrix I�(x′), which is the
linear combination of the homography slices Ii given by

I�(x′) = u′I1 + v′I2 + w′I3, (7.12)

1In [Faugeras and Luong 2001] the respective slices are called trifocal matrices Gi. Due to their choice of indices
the matrices Gi correspond to the matrices Ii

> considered in this thesis.
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or

I�(x′) = M3

(
−Z1x′>M1

−>+ M−1
1 x′Z1

> + Z3x′>M1
−>−M1

−1x′Z2
>
)

M2
>,

describes the dual correlation of the lines in image Ψ2 to the points in image Ψ3 via the projection ray of
the point x′ ∼ (u′, v′, w′)> in image Ψ1.

Proof:
The comparison of the second expression for I�(x′) with relation (7.11) shows that I�(x′) corre-
sponds to the dual correlation matrix with respect to a 3D line passing through Z1 and whose
direction is given by M1

−1x′; i.e. the projection ray of the point x′ in the image Ψ1.
2

Adapting from proposition 6.11 on page 57 we can give the rank of Ii depending on the ar-
rangement of the images Ψ2 and Ψ3 with respect to the image Ψ1.

Proposition 7.3 (The ranks of the correlation slices Ii.) In general the rank of Ii) is 2. The right
(ρ′′1i resp. left (ρ′′′1i ) nullspace of Ii is the map of the ith principal ray R′

i of image Ψ1 into image Ψ2 resp.
Ψ3.
The rank of Ii is 1, if the ith principal ray R′

i of image Ψ1 contains at least one of the projection centers
of the other two images, with Z2 6= Z3. If Z2 ∈ R′

i then Ii∼e′′′2 e′′1
>. If Z3 ∈ R′

i then Ii∼e′′′1 e′′3
>.

The rank of Ii is 0, if the ith principal ray R′
i of image Ψ1 contains the coinciding projection centers

Z2 = Z3.
Depending on its rank, Ii has the ranges and nullspaces shown in table 7.1.

rank(Ii) R(Ii) N (Ii) Note

2 ρ′′′1i ∼ Q3R′
i ρ′′1i ∼ Q2R′

i

a) Z2 ∈ R′
i

e′′′2 (a single point) {λ′′ : e′′1
>λ′′ = 0} (a pencil of lines) Ii ∼ e′′′2 e′′1

>

1
b) Z3 ∈ R′

i

e′′′1 (a single point) {λ′′ : e′′3
>λ′′ = 0} (a pencil of lines) Ii ∼ e′′′1 e′′3

>

0 {} IP2

Table 7.1: Range R(Ii) and nullspace N (Ii) of the correlation slice Ii depending on its rank. The images Ψ2 resp.
Ψ3 are given as Q2 ∼M2

−>[
−S(Z2), I3

]
resp. Q3 ∼M3

−>[
−S(Z3), I3

]
; e′′1 and e′′3 are the epipoles in image

Ψ2 and e′′′1 and e′′′2 are the epipoles in image Ψ3. The ith principal ray of image Ψ1 is given as R′
i. Note that all

these properties hold also for I�(x′) ∼ x′iIi, but by exchanging R′
i with S(x′) – the projection ray through the

point x′ in image Ψ1.

For rank-2 correlation slices we can find the following important properties; [Spetsakis and
Aloimonos 1990] or [Papadopoulo and Faugeras 1998]. We will use them in section 7.6 for
deriving the internal constraints of the trifocal tensor and in section 7.4.1 for determining the
epipoles e′′1 and e′′′1 .
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Proposition 7.4 (Properties of rank-2 correlation slices.) If the correlation slices Ii have rank-2,
then the following holds:

(a) The right and left nullspaces N (Ii) and N (I>i ) of Ii are the maps ρ′′1i and ρ′′′1i of the ith principal
ray of image Ψ1 into image Ψ2 and Ψ3 respectively; cf. figure 7.3 on page 67. In other words:
the lines ρ′′1i and ρ′′′1i are the epipolar lines in image Ψ2 and Ψ3 corresponding to the canonical
points of image Ψ1; i.e. ρ′′1i ∼ F12

>ii and ρ′′′1i ∼ F13
>ii, with F12 and F13 being the respective

fundamental matrices.

(b) The matrices NR and NL also have rank-2, with NR = [ρ′′11, ρ′′12, ρ′′13] and NL = [ρ′′′11, ρ′′′12, ρ′′′13].
The left nullspace of NR is the epipole e′′1 and the left nullspace of NL is the epipole e′′′1 .

(c) Any line λe′′1
6= ρ′′1i through the epipole e′′1 is mapped by Ii to the same point in image Ψ3 – the

epipole e′′′1 .

Proof:
The property (a) follows directly from the nullspaces of rank-2 line correlations (see table 6.2
on page 58), which are the maps of the inducing 3D line into the images. Since the correlation
Ii of the trifocal tensor are induced by the ith principal ray R′

i of image Ψ1, the map of this ray,
which are the lines ρ′′1i and ρ′′′1i in image Ψ2 and image Ψ2 respectively, represent the nullspaces.
The relation to the columns of the fundamental matrices is due to proposition 6.4 on page 47.

The property (b) is derived by observing that in image Ψ2 all epipolar lines with respect to
image Ψ1 have to pass through the respective epipole (i.e. e′′1 ). Therefore they form a pencil of
epipolar lines with carrier e′′1 and the matrix NR, whose columns are made up of such concur-
rent lines can at most have rank-2. The same reasoning can be applied for the matrix NL. We
could also argue that the principal rays of image Ψ1 are concurrent in space, consequently their
maps must be concurrent in the images.

The correctness of property (c) can been seen simply by the fact, that the intersection point of
the projection plane for any line λe′′1

6= ρ′′1i through the epipole e′′1 with R′
i is the projection

center of the first image, which maps to the epipole e′′′1 in the third image. Algebraically we
can prove it in the following way.

Let λe′′1
be represented as λe′′1

∼ S(e′′1 )x′′ with x′′ 6= e′′1 and x′′ 6∈ ρ′′1i. Then using the equation
(7.10) on page 66 for Ii we get Iiλe′′1

∼ e′′′1 ii
>A>S(e′′1 )x′′ = e′′′1 s. This shows that the result will

always be ∼ e′′′1 as long as the scalar s is non-zero. This scalar s can be written as the deter-
minant |M1ii, Z1 − Z2, M2

−1x′′|, where M1ii is the direction of the ith principal ray R′
i of the

image Ψ1. After some simple but tedious manipulations it can be seen that this determinant is
non-zero as long as Z2 6∈ R′

i (i.e. rank(Ii) = 2), and x′′ 6= e′′1 and x′′ 6∈ ρ′′1i (i.e. our assumptions
on the point x′′).

2

The properties (a) and (b) in proposition 7.4 have a simple geometric interpretation. The col-
umn vectors of the correlation slices I1 =

[
a1, a2, a3

]
, I2 =

[
b1, b2, b3

]
and

I3 =
[

c1, c2, c3
]

can be interpreted as points in image Ψ3. Due to the singularity of each
Ii matrix the respective three points have to lie on a line, which is the nullspace ρ′′′i . And all
three nullspaces ρ′′′1 , ρ′′′2 , ρ′′′3 must be concurrent through the epipole e′′′1 ; see figure 7.4 on the
following page. The same geometric interpretation in image Ψ2 holds for the I>i matrices, which
then involves the row vectors of Ii and the right nullspaces ρ′′i .
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Figure 7.4: The column vectors of the correlation slices I1, I2 and I3 interpreted as points in image Ψ3.

7.2.2 The homography slices

Next we will fix the j-index in the trifocal tensor (7.7).

The J homography slices Fixing the j-index returns a two-fold indexed quantity (J j)k
· i

(J j)k
· i = Tk( j)

· · i = e′′1
( j)Bk

· i − e′′′1
k A( j)

· i.

Again we can interpret this as a 3×3 matrix J j, where the rows are created by the first index (k)

and the columns by the second index (i). Therefore A( j)
· i corresponds to i j

>A and Bk
· i to B. And

so we get J j in matrix notation as

J j = (e′′1
> i j) B− e′′′1 i j

>A. (7.13)

We can further express J j in terms of the projection matrices Ph∼Mh [I3,−Zh] with regular Mh
using the relations (7.4) and (7.2) as

J j = M3

(
(Z1 − Z2)>M2

>i j︸ ︷︷ ︸
d

I + (Z3 − Z1) i j
>M2︸ ︷︷ ︸

Π′′
j,H

>

)
M1

−1, (7.14)

where d = Z1
>Π′′

j,H + Π′′
j,O and Π′′

j
> = (Π′′

j,H
>, Π′′

2 j,O) represents the jth principal plane Π′′
i of

image Ψ2; see relation 5.13 on page 39. The comparison of the equation (7.14) on page 70 with
proposition 6.7 on page 53 reveals that J j describes a homography of the points in image Ψ1 to
the points in image Ψ3 via the jth principal plane Π′′

i of image Ψ2; see figure 7.5 on the next
page. For this reason we will refer to these slices as homography slices2 and summarize these
findings in the following proposition.

2In [Faugeras and Luong 2001] the respective slices are called intrinsic planar morphisms Hv
ji. Due to their choice

of indices these matrices correspond to the matrices J j
> considered in this thesis.
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Proposition 7.5 (The homography slices J j of the trifocal tensor.) Let the trifocal tensor be given
as Tk j

· · i ∼ e′′1
jBk
·i − e′′′1

k A j
·i. Then the homography slices J j, which are obtained by fixing the j-index, are

represented as J j = (e′′1
>i j) B− e′′′1 i j

>A. The matrix J j represents a collineation of the points in image
Ψ1 to the points in image Ψ3 via the jth principal plane Π′′

i of image Ψ2. The matrix J j
> maps the lines

in image Ψ3 to the lines in image Ψ1 via the very same principal plane.

Figure 7.5: The J j matrices represent plane homographies from image Ψ1 to image Ψ3 induced by the principal
planes Π′′

j of image Ψ2. These principal planes intersect in the principal rays R′′
j and their maps in the images

Ψ1 and Ψ3 are the lines ρ′2 j and ρ′′′2 j respectively.

Proposition 7.6 (Linear combinations of the homography slices J j.) The matrix J�(λ′′), which
is the linear combination of the homography slices J j given by

J�(λ′′) = a′′J1 + b′′J2 + c′′J3, (7.15)

or

J�(λ′′) = M3

(
(Z1 − Z2)>M2

>λ′′I + (Z3 − Z1)λ′′>M2

)
M1

−1,

describes the collineation of the points in image Ψ1 to the points in image Ψ3 via the projection plane of
the line λ′′ ∼ (a′′, b′′, c′′)> in image Ψ2.

71



Proof:
The comparison of the second expression for J�(λ′′) with relation (7.14) shows that J�(λ′′) cor-
responds to the homography matrix with respect to a 3D plane passing through Z2 and whose
normal vector is given by M2>λ′′; i.e. the projection plane of the line λ′′ in the image Ψ2.

2

Adapting from proposition 6.8 on page 54 we can give the rank of J j depending on the arrange-
ment of the three images Ψ1, Ψ2 and Ψ3.

Proposition 7.7 (The ranks of the homography slices J j.) In general the rank of J j is 3 and the
epipoles e′3 (in image Ψ1) and e′′′1 (in image Ψ3) are related by

e′′′1 ∼ J je′3. (7.16)

The rank of J j is 2, if the jth principal plane Π′′
j of image Ψ2 contains the projection center Z3 of image

Ψ3; then it holds: e′′3
( j) = 0.

The rank of J j is 1, if the jth principal plane Π′′
j of image Ψ2 contains the projection center Z1 of image

Ψ1; then it holds: e′′1
( j) = 0.

The rank of J j is 0, if the jth principal plane Π′′
j of image Ψ2 contains the coinciding projection centers

Z1 = Z3; then it holds: e′3 = e′′′1 = 0.
Depending on its rank, J j has the ranges and nullspaces shown in table 7.2.

rank(J j) R(J j) N (J j)

3 IP2 {}
2 σ ′′′ ∼ B−>A>i j e′3
1 e′′′1 σ ′ ∼ A>i j

0 {} IP2

Table 7.2: Range R(J j) and nullspace N (J j) of the homography slice J j depending on its rank. The lines σ ′

and σ ′′′ arise as the intersection of the jth principal plane Π′′
j of image Ψ2 with the other two images and are given

using the defining matrices A = M2M1
−1 and B = M3M1

−1 of the trifocal tensor.

Proof:
All these properties are obtained directly from proposition 6.8 except for the additional prop-
erties of the vanishing epipolar coordinates for the singular cases. These properties, however,
are easily verified by observing that for singular J j matrices it holds:

rank(J j) = 2 ⇔ Z3 ∈ Π′′
j ⇒ 0 = Π′′

j,H
>Z3 + Π2 j,O = i j

>M2(Z3 − Z2) = i j
>e′′3

rank(J j) = 1 ⇔ Z1 ∈ Π′′
j ⇒ 0 = Π′′

j,H
>Z1 + Π2 j,O = i j

>M2(Z3 − Z1) = i j
>e′′1

The form of s′ and s′′ follows from table 6.1 on page 54 with relation (5.13) for the normal vector
of the principal plane Π′′

j and the defining matrices of the trifocal tensor in (7.4).
2

From equation (7.16) we see that e′3 is a solution of the general eigenvalue problem
(Jp −κJq)x = 0. The following proposition goes more into detail.
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Proposition 7.8 (The general eigenvalue problem (Jp −κJq)x′ = 0.) The general eigenvalue prob-
lem (Jp −κJq)x′ = 0, with regular Jq, x′ ∈ Ψ1 and p 6= q, has the following general eigenvalues:

• A double general eigenvalue κ1 = κ2 = e′′1
(p)/e′′1

(q) with the corresponding two dimensional
general eigenspace ρ′2r

>x′ = 0, where ρ′2r ∼ M1
−>M2

>S(e′′1 )ir is the map of the rth principal
ray R′′

r of image Ψ2 into image Ψ1 (r 6= p and r 6= q); see figure 7.5 on page 71.

• A single general eigenvalue κ3 = e′′3
(p)/e′′3

(q) with the corresponding general eigenvector e′3.

This general eigenvalue problem may have an eigenvalue with multiplicity 3 (κ1 = κ2 = κ3 =
e′′1

(p)/e′′1
(q)). If the respective rank defect is 3 then it holds Z1 = Z3, otherwise Z1, Z2, Z3 and R′′

r
are coplanar and e′3 ∈ ρ′2r. If the latter case is true for two different choices of {p, q}, then Z1, Z2 and
Z3 are collinear.

If Jp is singular with rank-2, then κ3 = 0. If Jp is singular with rank 1, then κ1 = κ2 = 0; if also one
of the previous condition holds then κ1 = κ2 = κ3 = 0.

Proof:
First we will show that e′′1

(p)/e′′1
(q) is a double root. Using the expression (7.13) for J j we get

Jp −κJq = e′′1
>(ip −κiq)B− e′3(ip −κiq)>A.

From this relation it is easy to see that for κ1 = e′′1
(p)/e′′1

(q) the first addend vanishes and only
the second one – a dyad – which has rank 1 remains. Since the multiplicity of an eigenvalue
is greater or equal to the rank defect (see inequality (B.4) on page 177), which is 2, κ1 must
be a at least a double root. The corresponding two dimensional eigenspace can be found by
expressing (Jp − κ1Jq)x′ = 0 in the defining quantities of the trifocal tensor using relations
(7.2) - (7.4), which gives

M3(Z1 − Z3)ir
>S(e′′1 )M2M1

−1x′ = M3(Z1 − Z3)ρ′2r
>x′ = 0. (7.17)

So, as long as Z1 6= Z3, the line ρ′2r ∼ M1
−>M2

>S(e′′1 )ir in image Ψ1 represents the general
eigenspace. To see that ρ′2r is the map of the rth principal ray R′′

r of image Ψ2 into image Ψ1,
we can argue in the following way. The expression M2

>S(e′′1 )ir represents the normal vector
nΣ of the second projection plane Σ of a line joining e′′1 and ir; see relations (3.24) and (5.21).
The rth principal ray R′′

r also lies in this plane as it is defined by the second projection center
and its direction (in the system of the second camera) is given by ir. Further, since e′′1 lies in this
plane also the first projection center has to. Therefore Σ is also a projection plane for the first
image and the respective image line is given by M1

−>nΣ.

Now for the single eigenvalue. From equation (7.16) we see that the epipole e′3 is also a general
eigenvector, which in general should not lie on ρ′2r because the latter is independent of the
image Ψ3. Inserting x′ ∼ e′3 = M1(Z3 − Z1) in (Jp −κJq)x′ = 0 gives

M3(Z3 − Z1)(ip −κiq)>M2(Z3 − Z2) = 0.

And so, as long as Z1 6= Z3, e′3 is the general eigenvector to the single eigenvalueκ3 = e′′3
(p)/e′′3

(q).

Since the denominator in all general eigenvalues must be non-zero, the matrix Jq is required to
have maximum rank; see the relations for the vanishing epipole coordinates in proposition 7.7
on the preceding page.
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In case of one eigenvalue having multiplicity 3 the rank defect in Jp −κJq can become 3; then
Jp − κJq = 0 and therefore Z1 = Z3. In general the rank defect will be 2 and then e′3 is no
longer a unique eigenvector but lies in ρ′2r. If this later case occurs for two different choices of
{p, q} then e′3 has to lie on two different ρ′2r which intersect in e′2 and thus e′2 = e′3 and the three
projection centers are collinear.

The properties for singular Jp follow from proposition 7.7.
2

The fact that the rth principal ray R′′
r of image Ψ2 is responsible for one eigenspace can geo-

metrically be seen by rewriting the general eigenvalue problem (Jp −κJq)x′ = 0 as a standard
one (Jq

−1Jp −κI)x′ = 0, which is possible since Jq is required to have maximum rank. Geo-
metrically this means, we map a point x′ from image Ψ1 via the homography plane of Jp into
image Ψ3 and then project this point back from image Ψ3 into image Ψ1 via the homography
plane of Jq. Obviously we only get the point x′ from where we started, if x′ corresponds to a
point on the intersection line of the two homography planes. Now, since these planes are the
pth and qth principal plane of image Ψ2, they intersect in the rth principal ray of image Ψ2.

The K homography slices By fixing the k-index we get a two-fold indexed quantity (Kk)
j
· i

(Kk)
j
· i = T(k) j

· · i = e′′1
jB(k)

· i − e′′′1
(k)A j

· i.

Again we can interpret this as a 3×3 matrix Kk, where the rows are created by the first index
( j) and the columns by the second index (i). Therefore A j

· i corresponds to A and B(k)
· i to ik

>B.
And so we get Kk in matrix notation as

Kk = e′′1 i>k B− (e′′′1
>ik) A. (7.18)

We can further express Kk in terms of the projection matrices Ph∼Mh [I3,−Zh] with regular Mh
using the relations (7.4) and (7.2) as

Kk = −M2

(
(Z1 − Z3)>M3

>ik︸ ︷︷ ︸
d

I + (Z2 − Z1) ik
>M3︸ ︷︷ ︸

Π′′′
i,H

>

)
M1

−1, (7.19)

where d = Z1
>Π′′′

k,H + Π′′′
k,O and Π′′′

k
> = (Π′′′

k,H
>, Π′′′

k,O) represents the kth principal plane Π′′′
k of

image Ψ3; see relation 5.13 on page 39. The comparison of the equation (7.19) on page 74 with
proposition 6.7 on page 53 reveals that Kk describes also a homography just as the J slices, but
of the points in image Ψ1 to the points in image Ψ2 via the kth principal plane Π′′′

k of image Ψ3;
see figure 7.6 on the facing page. So we see that the Kk and J j matrices represent mappings of
the same kind. Therefore we can adopt the properties from the J j matrices, by interchanging
the images Ψ2 and Ψ3, and give the following properties.

Proposition 7.9 (The homography slices Kk of the trifocal tensor.) Let the trifocal tensor be given
as Tk j

· · i ∼ e′′1
jBk
·i − e′′′1

k A j
·i. Then the homography slices Kk, which are obtained by fixing the k-index, are

represented as Kk = e′′1 ik
>B − (e′′′1

>ik)A. The matrix Kk represents a collineation of the points in
image Ψ1 to the points in image Ψ2 via the kth principal plane Π′′′

k of image Ψ3. The matrix Kk
> maps

the lines in image Ψ2 to the lines in image Ψ1 via the very same principal plane.
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Figure 7.6: The Kk matrices represent plane homographies from image Ψ1 to image Ψ2 induced by the principal
planes Π′′′

k of image Ψ3. These principal planes intersect in the principal rays R′′′
k and their maps in the images

Ψ1 and Ψ2 are the lines ρ′3k and ρ′′3k respectively.

Proposition 7.10 (Linear combinations of the homography slices Kk.) The matrix K�(λ′′′), which
is the linear combination of the homography slices Kk given by

K�(λ′′′) = a′′′K1 + b′′′K2 + c′′′K3, (7.20)

or

K�(λ′′′) = −M2

(
(Z1 − Z3)>M3

>λ′′′I + (Z2 − Z1)λ′′′>M3

)
M1

−1,

describes the collineation of the points in image Ψ1 to the points in image Ψ2 via the projection plane of
the line λ′′′ ∼ (a′′′, b′′′, c′′′)> in image Ψ3.

Proposition 7.11 (The ranks of the homography slices Kk.) In general the rank of Kk is 3 and the
epipoles e′2 (in image Ψ1) and e′′1 (in image Ψ2) are related by

e′′1 ∼ Kke′2. (7.21)
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The rank of Kk is 2, if the kth principal plane Π′′′
k of image Ψ3 contains the projection center Z2 of image

Ψ2; then it holds: e′′′2
(k) = 0.

The rank of Kk is 1, if the kth principal plane Π′′′
k of image Ψ3 contains the projection center Z1 of image

Ψ1; then it holds: e′′′1
(k) = 0.

The rank of Kk is 0, if the kth principal plane Π′′′
k of image Ψ3 contains the coinciding projection centers

Z1 = Z2; then it holds: e′2 = e′′1 = 0.
Depending on its rank, Kk has the ranges and nullspaces shown in table 7.3.

rank(Kk) R(Kk) N (Kk)

3 IP2 {}
2 σ ′′ ∼ A−>B>i j e′2
1 e′′1 σ ′ ∼ B>i j

0 {} IP2

Table 7.3: Range R(Kk) and nullspace N (Kk) of the homography slice Kk depending on its rank. The lines σ ′

and σ ′′ arise as the intersection of the kth principal plane Π′′′
k of image Ψ3 with the other two images and are

given using the defining matrices A = M2M1
−1 and B = M3M1

−1 of the trifocal tensor.

Proposition 7.12 (The general eigenvalue problem (Kp −κKq)x′ = 0.) The general eigenvalue
problem (Kp − κKq)x′ = 0, with regular Kq, x′ ∈ Ψ1 and p 6= q, has the following general eigen-
values:

• A double general eigenvalue κ1 = κ2 = e′′1
(p)/e′′1

(q) with the corresponding two dimensional
general eigenspace ρ′3r

>x′ = 0, where ρ′3r ∼ M1
−>M3

>S(e′′′1 )ir is the map of the rth principal
ray R′′′

r of image Ψ3 into image Ψ1 (r 6= p and r 6= q); see figure 7.6 on the page before.

• A single general eigenvalue κ3 = e′′′2
(p)/e′′′2

(q) with the corresponding general eigenvector e′2.

This general eigenvalue problem may have an eigenvalue with multiplicity 3 (κ1 = κ2 = κ3 =
e′′′1

(p)/e′′′1
(q)). If the respective rank defect is 3 then it holds Z1 = Z3, otherwise Z1, Z2, Z3 and

R′′′
r are coplanar and e′2 ∈ ρ′3r. If the latter case is true for two different choices of {p, q}, then Z1, Z2

and Z3 are collinear.

If Kp is singular with rank-2, then κ3 = 0. If Kp is singular with rank 1, then κ1 = κ2 = 0; if also one
of the previous condition holds then κ1 = κ2 = κ3 = 0.

7.2.3 Rank combinations

In the two previous sections we looked at the properties of the tensor slices. These properties
are directly linked to the ranks of these slices. For the correlation slices rank defects occur
if the projection centers Z2 or Z3 lie on the principal rays of the first image, whereas for the
homography slices they occur if the projection centers Z1, Z2 resp. Z3 lie in the principal planes
of the third resp. second image. Therefore we should know what possible rank defects can
occur depending on the arrangement of the projection centers with respect to the principal rays
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and planes. Note that the orientation of the principal rays and planes of an image is defined by
the 3D image coordinate system (see figure 5.3 on page 38), which itself depends on the image
measurement system. Therefore we can control the rank defects of the tensor slices by adapting
the image coordinate systems.

Let us first consider the usual case of distinct projection centers Z1 6= Z2 6= Z3. Because the
projection centers Z2 and Z3 can not lie on all three principal rays of the first image at the same
time, at least one rank-2 correlation slice is available, with the others having at least rank-1.
Now for the homography slices: If Z1 lies on the principal ray R′′

1 of image Ψ2 then the J2
and J3 have rank 1, as these homographies are induced by the principal planes Π′′

2 and Π′′
3 ,

all of which contain Z1 in this case. Only J1 would be regular, however, if Z3 lies on one of
the other two principal rays of image Ψ2 or in the principal plane Π′′

1 then also J1 is singular
with rank-2. Further one of the principal rays of image Ψ3 could contain one of the other two
projection centers, then also two K homographies would be singular. But at least one of the
K homographies will be regular, as not all three principal planes or equivalently two principal
rays of image Ψ3 can contain the other two projection centers (provided the image coordinate
systems have no or only small affinity, which for real images is generally fulfilled).

This shows that in the case of three distinct projection centers at least one rank-2 correlation
slice is available, with the others having at least rank-1, and at least one regular homography
of one kind and at least one rank-2 homography of the other kind. This gives the first row
in table 7.4. The entries for the cases of incident projection center can be found by similar
considerations.

PRC incidence rank(Ii) rank(J j), rank(Kk)

Z1 6= Z2 6= Z3
all Ii: rank ≥ 1,
at least one Ii with rank=2

all J j: rank ≥ 1, at least one J j with rank=2
all Kk: rank ≥ 1, at least one Kk with rank=3
or J j and Kk distribution interchanged

Z2 = Z3
all Ii: rank ≥ 0,
at least two Ii with rank=2

all J j: 1 ≤ rank ≤ 2
all Kk: 1 ≤ rank ≤ 2
at least one J j and one Kk with rank=2

Z1 = Z2 all Ii: rank=1
all J j: rank=1
all Kk: rank ≥ 0, at least one Kk with rank=3

Z1 = Z3 all Ii: rank=1
all Kk: rank=1
all J j: rank ≥ 0, at least one J j with rank=3

Z1 = Z2 = Z3 all Ii: rank=0 all J j and all Kk: rank=0

Table 7.4: Possible rank combinations for the tensor slices Ii, J j and Kk depending on the incidence of the projec-
tion centers (PRC).

7.3 The trilinearities

The derivation of the trifocal tensor in section 7.1 was actually motivated by finding two con-
straints for corresponding image lines λ1, λ2 and λ3 in three images. These two constraints can
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be represented in two ways. The first representation is given by the relation (7.6)

λ′i ∼ λ′′j λ
′′′
k Tk j

· · i.

Using the correlation slices from section 7.2.1 this expression can simply be transferred from
tensor notation to vector notation as

λ′ ∼

λ′′′>I1λ
′′

λ′′′>I2λ
′′

λ′′′>I3λ
′′

 , (7.22)

which are three equations minus one unknown scale factor (note the ∼ symbol). We will call
this a transfer relation, because it can be used to predict the position of the line in image Ψ1
given the corresponding lines in the other two images.

The second representation applies the identity check in IP2 (see section 3.6) and removes the
scale ambiguity by multiplying with the axiator S(λ′). In this way we get the following set of
constraints; e.g. [Hartley 1994a]

S(λ′)

λ′′′>I1λ
′′

λ′′′>I2λ
′′

λ′′′>I3λ
′′

 = 0. (7.23)

Since the identity check in IP2 has 2 degrees of freedom, we get two independent constraints.
We will refer to these constraints as line-trilinearities. They constitute a homogenous trilinear
form; tri-linear since (7.23) is linear in the elements of the trifocal tensor and each coefficient of
this form is a product of one coordinate from each of the three image lines; homogenous since
the right side is the zero vector.

From the transfer relation (7.22) we can derive another single constraint, which is caused by
the fact that for any point x′ on λ′ it must hold x′

>
λ′ = 0, thus

x′>

λ′′′>I1λ
′′

λ′′′>I2λ
′′

λ′′′>I3λ
′′

 = λ′′′>I�(x′)λ′′ = 0, (7.24)

with I�(x′) from proposition 7.2. This trilinearity involves the corresponding image features of
a point in image Ψ1, and a line in image Ψ2 and image Ψ3. From this constraint we can derive
even more constraints. First, from

λ′′′>I�(x′)︸ ︷︷ ︸
x′′>

λ′′ = λ′′′> I�(x′)λ′′︸ ︷︷ ︸
x′′′

= 0

we observe that

x′′ ∼ I>� (x′)λ′′′, (7.25)

with x′′ lying on λ′′ and

x′′′ ∼ I�(x′)λ′′, (7.26)

with x′′′ lying on λ′′′. These are transfer relations that allow the prediction of a point in image
Ψ2 resp. Ψ3 given a point in image Ψ1 and a corresponding line in image Ψ3 resp. Ψ2.
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Again using the axiator S() we obtain from these transfer relations the following trilinearities

S(x′′)I>� (x′)λ′′′ = 0, (7.27)
S(x′′′)I�(x′)λ′′ = 0. (7.28)

The last and most important type of trilinear constraints is again obtained from relation (7.24).
Let us consider a point x′′ in image Ψ2 which corresponds to a point x′ in image Ψ1. Through
x′′ we can construct three unique lines σ ′′

i by joining x′′ with the three canonical points of IP2

(see table 3.1 on page 15)

σ ′′
1 =

(
0, −1, y2

)>
σ ′′

2 =
(

1, 0, −x2
)>

σ ′′
3 =

(
−y2, x2, 0

)> .

The line σ ′′
1 is parallel to the x′′-axis, σ ′′

2 is parallel to the y′′-axis and σ ′′
3 is the connection with

the origin; see figure 7.7. These three lines can be used to form the rows of a matrix which turns
out to be the axiator S(x′′). In the same way we can construct three lines σ ′′′

j through the point
x′′′ in image Ψ3, which are the rows of the axiator S(x′′′).

Figure 7.7: The lines σ ′′
i in image Ψ2 connecting x′′ with the canonical points of IP2.

Any line σ ′′
i can be used as the line λ′′ in (7.24) and any line σ ′′′

j can be used as the line λ′′′.
This gives nine constraints in total, which can be represented as

S(x′′′)I�(x′)S
>
(x′′) = 0. (7.29)

These constraints involve a triple of corresponding points and are called point-trilinearites;
e.g. [Shashua and Wolf 1994]. Because the axiator matrices have rank-2, only 4 of the equations
in 7.29 are linearly independent.

So in total we found five kinds of trilinearities, which are summarized in table 7.5 on the fol-
lowing page. Note, however, that each set of the trilinearities (7.23), (7.27), (7.28) and (7.29) is
linearly dependent due to the involvement of the axiator S(). This would led to an unnecessary
additional computational effort when working with these trilinearities. Therefore it advisable
to replace S() with the reduced version Sred() (see section 3.6). As long as the corresponding

79



image points do not lie at infinity we can safely assume the third projective coordinate to be
non-zero and use Sred() from relation 3.48 on page 28.

For image lines no such general reduction can be applied, as any component can be zero, and
therefore each Sred() for lines has to be constructed individually. Another possibility proposed
in [Hartley 1994a] is to represent the line in image Ψ1 by its endpoints x′ and y′ and to use the
point-line-line trilinearity (7.24) two times.

trilinearities
entities equations n

λ′, λ′′, λ′′′ Sred(λ′)

λ′′′>I1λ
′′

λ′′′>I2λ
′′

λ′′′>I3λ
′′

 = 0 2

x′, λ′′, λ′′′ λ′′′>I�(x′)λ′′ = 0 1

x′, x′′, λ′′′ Sred(x′′)I>� (x′)λ′′′ = 0 2

x′, λ′′, x′′′ Sred(x′′′)I�(x′)λ′′ = 0 2

x′, x′′, x′′′ Sred(x′′′)I�(x′)Sred>(x′′) = 0 4

Table 7.5: The trilinearities of the trifocal tensor. The reduced axiator Sred(x) for points is given by relation 3.48.
The last column for the trilinearities gives the number n of linearly independent equations within each group of
trilinearities. I�(x′) is defined in proposition 7.2.

The line- and point-trilinearites are used when the trifocal tensor is determined for a given set
of point and line correspondences. Since the trilinearites are linear in the 27 elements of the
tensor they allow – in principle – a direct solution for the trifocal tensor; see section 8.1. For
each triple of points and for each triple of lines we get four and two trilinearities respectively.
Therefore we need at least 7 triples of points or 13 triples of lines (or a proper combination) to
get a linear solution for the tensor.

Note, however, that the tensor has actually 18 degrees of freedom. Therefore 7 triples of points
or 13 triples of lines is not the minimum requirement for a solution. Each line trilinearity
produces two independent equations, so 9 lines is the minimum requirement. Although this
case seems to be disregarded in the literature so far.

For the point trilinearity we encounter a strange schizophrenic behavior: If the 27 elements of
the tensor are considered linearly independent, then each point trilinearity produces 4 indepen-
dent equations, however, if the tensor is considered to have 18 degrees of freedom then each
point trilinearity produces only 3 independent equations. Therefore the minimum requirement
are 6 points. We will come back to this issue in chapter 8 about the computation of the trifocal
tensor.

The missing transfer relations So far we found three kinds of transfer relations: {λ′′, λ′′′} →
λ′ using (7.22), {x′, λ′′′} → x′′ using (7.25) and {x′, λ′′} → x′′′ using (7.26). Of course, between
three images there exist more transfer configurations. The three presented ones, however, are
unique, as they are linear in the elements of the tensor.
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Note, that each of these three relations transfers into another image. The missing transfer re-
lations can now be constructed from the given ones; they are, however, no longer linear in the
elements of the tensor. In the case of {x′′, x′′′} → x′, {x′, x′′′} → x′′ and {x′, x′′′} → x′′ the two
starting points have to satisfy the epipolar constraint otherwise the transferred point and the
two starting points will not give a valid correspondence. All transfer relations are summarized
in table 7.6 (with the assumption that the epipolar constraint is satisfied).

transfer relations
into image Ψ1

{λ′′, λ′′′} → λ′ λ′ ∼

λ′′′>I1λ
′′

λ′′′>I2λ
′′

λ′′′>I3λ
′′

 =: `(λ′′, λ′′′)

{x′′, λ′′′} → x′ x′ ∼ `(λ′′1 , λ′′′)× `(λ′′2 , λ′′′)
with x′′ ∼ λ′′1 × λ′′2

{λ′′, x′′′} → x′ x′ ∼ `(λ′′, λ′′′1 )× `(λ′′2 , λ′′′2 )
with x′′′ ∼ λ′′′1 × λ′′′2

{x′′, x′′′} → x′ x′ ∼ `(λ′′1 , λ′′′1 )× `(λ′′2 , λ′′′1 )
with x′′ ∼ λ′′1 × λ′′2 and x′′′ ∈ λ′′′1

into image Ψ2

{x′, λ′′′} → x′′ x′′ ∼ I>� (x′)λ′′′ =: ℘2(x′, λ′′′)

{x′, x′′′} → x′′ x′′ ∼ ℘2(x′, λ′′′1 )
with x′′′ ∈ λ′′′1

{λ′, λ′′′} → λ′′ λ′′ ∼ ℘2(x′1, λ′′′)×℘2(x′2, λ′′′)
with λ′ ∼ x′1 × x′2

{λ′, x′′′} → x′′ x′′ ∼ (℘2(x′1, λ′′′1 )×℘2(x′2, λ′′′1 ))× (℘2(x′1, λ′′′2 )×℘2(x′2, λ′′′2 ))
with λ′ ∼ x′1 × x′2 and x′′′ ∼ λ′′′1 × λ′′′2

into image Ψ3

{x′, λ′′} → x′′′ x′′′ ∼ I�(x′)λ′′ =: ℘3(x′, λ′′)

{x′, x′′} → x′′′ x′′′ ∼ ℘3(x′, λ′′1 )
with x′′ ∈ λ′′1

{λ′, λ′′} → λ′′′ λ′′′ ∼ ℘3(x′1, λ′′)×℘3(x′2, λ′′)
with λ′ ∼ x′1 × x′2

{λ′, x′′} → x′′′ x′′′ ∼ (℘3(x′1, λ′′1 )×℘3(x′2, λ′′1 ))× (℘3(x′1, λ′′2 )×℘3(x′2, λ′′2 ))
with λ′ ∼ x′1 × x′2 and x′′ ∼ λ′′1 × λ′′2

Table 7.6: All possible transfer relations involving the trifocal tensor. I�(x′) is defined in proposition 7.2 on
page 67.

The transfer relations are of interest if the tensor is already known, computed from image cor-
respondences or from given projection matrices, and can be used to transfer the content of two
source images into the other one (the target image). If the target image is a real image, the trans-
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ferred position of features can be used to initialize a matching technique in the target image.
If the target image is virtual with a given orientation, then the transfer relations can be used to
form the content of this new image by transferring pixel by pixel. This process is called novel
view synthesis or image formation. Reports on this transfer topic can be found e.g. in [Avidan and
Shashua 1997] or [Mayer 2002].

Degenerate transfer configurations. The line transfer (7.22) into the first image fails in the
following cases; adapted from [Faugeras and Luong 2001] and [Hartley and Zisserman 2001]:

(a) λ′′and λ′′′are epipolar lines with respect to the first image. In this case the corresponding
3D line is a projection ray of the first image.

(b) λ′′and λ′′′are epipolar lines with respect to the image pair Ψ2 and Ψ3. In this case the
projection plane of λ′′and λ′′′are coplanar and therefore do not intersect in space. Since
in case of Z2 = Z3 the coplanarity of the projection planes happens for all 3D lines, the
following two special cases exist.

(b1) The projection centers Z2 and Z3 coincide. In this case the projection planes of λ′′and
λ′′′coincide, and the images Ψ2 and Ψ3 are related by H∞. The relation between image
Ψ1 and any of the other two images is then described by the fundamental matrix.
Consequently the line in image Ψ1 is not uniquely defined by the corresponding pair of
lines in image Ψ2 and image Ψ3.

(b2) The three projection centers coincide (Z1 = Z2 = Z3). In this case the trifocal tensor
is the zero tensor and any pair of images is related by the homography H∞ induced
by the plane at infinity. Consequently the line in image Ψ1 is already defined by the
corresponding line in image Ψ2 or image Ψ3.

A special degeneracy of the both cases (a) and (b) are all 3D lines lying in the trifocal plane,
which is the plane passing through the projection centers of all three images.

The point transfer relation (7.25) into the second image fails in the following cases

(a) The line λ′′′is the epipolar line of x′. In this case the projection plane of λ′′′and the projection
ray of x′are incident, however, this case can be avoided by choosing another corresponding
line λ′′′through x′′′.

(b) The corresponding object point lies on the basis of the first and third image. Since in case
of Z1 = Z3 all object points lie on a line through Z1 and Z3, the following two special cases
exist.

(b1) The projection centers Z1 and Z3 coincide. In this case the projection ray of x′ lies in
the projection plane of λ′′and the images Ψ1 and Ψ3 are related by H∞. The relation
between image Ψ2 and any of the other two images is then described by the funda-
mental matrix. Consequently the point in image Ψ1 is not uniquely defined by the point
in image Ψ1 and the line in image Ψ3.

(b2) The three projection centers coincide (Z1 = Z2 = Z3). In this case the trifocal tensor
is the zero tensor and any pair of images is related by the homography H∞ induced
by the plane at infinity. Consequently the point in image Ψ2 is already defined by the
corresponding point in image Ψ1 or image Ψ3.
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Analogous cases exist for the point transfer relation (7.26) into the third image. Note that the
point transfer between the three images could also be performed using the three fundamental
matrices of the three views. This so-called epipolar transfer can not handle lines and fails for
image points if the three projection centers and the corresponding object point are coplanar.
For more details on these transfer relations see e.g. [Hartley and Zisserman 2001].

7.4 Retrieving the orientation parameters

Assume we are given the trifocal tensor, e.g. by determining it with the trilinearities and a set
of corresponding features (see section 8). Then we can extract the epipoles e′2, e′3, e′′1 , e′′3 , e′′′1 and
e′′′2 , the fundamental matrices F12, F13 and F23, and the projection matrices P1, P2 and P3 out
of the tensor. The latter can not be retrieved uniquely. Since the trifocal tensor describes only
the relative orientation of the three images the projection matrices can be retrieved only up to
a certain transformation in space. The type of this transformation depends on the knowledge
of the interior orientation of the images and is a general projective transformation in IP3 if it is
unknown, and a spatial similarity transformation in IR3 if it is known. If the interior orientation
of the images is unknown but common to all three images, then this common interior orientation
can be retrieved in general; see section 7.4.4.

For this chapter we will assume that the three images have distinct projection centers, because
only in this case the existence of all epipoles and fundamental matrices is defined.

7.4.1 Retrieving the epipoles

The six epipoles of the tree images can be extracted easily from the tensor using the tensorial
slices Ii, J j and Kk.

The epipoles e′′1 and e′′′1 . From proposition 7.4 on page 69 (about the properties of rank-2
correlation slices Ii) we see that these two epipoles arise generally as the left nullspaces of the
matrices NR and NL, which itself are made up of the left resp. right nullspaces of the correlation
slices. This method is proposed in many articles e.g. [Hartley 1994b], [Faugeras and Luong
2001] or [Hartley and Zisserman 2001]; but it is only applicable if all three correlation slices
have maximum rank-2. For Ii matrices with smaller rank the two epipoles can nevertheless
be computed, however, the algorithm can not use the two N matrices, because they are not
defined. This is due to the fact, that the columns of the two N matrices are supposed to be made
up of the single null spaces of the Ii matrices, however, in case of rank-1 or rank-0 correlation
slices the nullspace is a pencil of lines or all lines in the image. Therefore, the algorithm for
retrieving the two epipoles must consider the ranks of the three Ii matrices and choose the
respective methods from table 7.1 on page 68. This situation is, of course, a mayor drawback,
as the rank-determination of matrices is an ill-posed problem in case of noisy data.

Another method, which in general returns these two epipoles, is to compute the general eigen-
values of Jp − κJq resp. Kp − κKq. The general eigenvalue with multiplicity 2 is the ratio of
the pth and qth coordinate of epipole e′′1 resp. e′′′1 ; see propositions 7.8 and 7.12 on page 73 and
76 respectively. This method was presented in [Shashua and Werman 1995], however, it suf-
fers from the same drawback as the previous method, that the ranks of the homography slices
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need to be considered. Especially it is the matrix Jq resp. Kq (the one the general eigenvalue
is associated with) which needs to be regular; the rank of the partner matrix is not important.
A workaround would be to select the J resp. K matrix with the best condition number for this
important matrix of the general eigenvalue problem. However, from table 7.4 on page 77 we
see that in principle all three J or K matrices can be singular, thus a certain insecurity remains.

Note that the singularity of the tensor slices depends on the incidence of the projection centers
with the principal rays and planes and that the orientation of the principal rays and planes of
an image if defined by the 3D image coordinate system (see figure 5.3 on page 38), which itself
depends on the image measurement system. Therefore we could avoid the singularity of the
tensor slices by adapting the image coordinate systems of the three views. This is, however, a
bad strategy as we do not know in advance if our current image systems are appropriate or not
and if not how to change them (and not to risk to produce new singular matrices). Therefore it
is better to aim for methods for retrieving the epipoles, that work independent on the choice of
the image coordinate system and thus independent on the ranks of the tensor slices.

One such method was proposed by Spetsakis and Aloimonos already in 1990, [Spetsakis and
Aloimonos 1990], although they actually did not deal with the trifocal tensor as such but con-
sidered three matrices that correspond to the correlation slices (for calibrated images). Their
method is in principle identical to the first method presented above, however, the authors were
aware of the rank problem and solved it in the following way.

In proposition 7.2 on page 67 we introduced the linear combination I� of all three correlation
slices

I�(p′) = u′I1 + v′I2 + w′I3,

which is the dual line correlation induced by the projection ray of the point p′ ∼ (u′, v′, w′)> in
image Ψ1. I�(p′) is therefore of rank-2 in general and its right nullspace η(p′) passes through
the epipole e′′1 . Let N(p′) = adj(I�(p′)) denote the adjoint (defined in (B.14) on page 179) of
I�(p′). Then N(p′) is of rank 1 in general (and of rank 0 if rank(I�(p′)) < 2) and all of its column
vectors are proportional to η(p′). Therefore we could choose any column Nic, c ∈ {1, 2, 3}, and
form one defining equation

ic
>N(p′)>e′′1 = 0.

However, since we do not know in advance which column c is best to choose (because in prin-
ciple the chosen column can be the zero vector), it is better to choose all three and combine
them in a least-squares way

e′′1
>N(p′)N(p′)>e′′1 → min. (7.30)

If the correlation slices have rank ≤ 2 the minimum will be zero3. This relation can be used
for any point p′, even if the respective matrix I�(p′) has not rank-2, since in this case N(p′) is
the zero matrix. For the determination of e′′1 we need a second equation, which is obtained in
the same way but for another point p′. Particularly if we choose p′ = ii, then I�(p′) turns into
the correlation slice Ii. However, since we can not be sure if the matrices I�(p′) obtained for

3If the trifocal tensor is computed from noisy data without considering the internal constraints, then the correla-
tion slices will be of rank-3 in general and the minimum will be ≥ 0.
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two chosen points p′are not degenerate, it is better to choose all points p′and to integrate (7.30)
over the unit sphere with respect to p′. Doing this we then have to solve

e′′1
>Me′′1 → min,

with
M =

∫
unit sphere

N(p′)N(p′)>dp′.

This integral can be solved explicitly (see [Spetsakis and Aloimonos 1990]) and we get

M = 3
(

adj(Z1)adj(Z1)>+ adj(Z2)adj(Z2)>+ adj(Z3)adj(Z3)>
)
+

adj(Z1)adj(Z2)>+ adj(Z1)adj(Z3)>+ adj(Z2)adj(Z1)>+ adj(Z2)adj(Z3)> +
adj(Z3)adj(Z1)>+ adj(Z3)adj(Z2)>+ A12A12

> + A13A13
> + A23A23

>,

(7.31)

with

A12 = adj(Z1 + Z2)− adj(Z1)− adj(Z2),
A13 = adj(Z1 + Z3)− adj(Z1)− adj(Z3),
A23 = adj(Z2 + Z3)− adj(Z2)− adj(Z3) .

Since we will need this matrix M also for retrieving other epipoles, we used general argument-
matrices Zi. For the retrieving the epipole e′′1 we have to set Zi = Ii.

The matrix M will have rank-2 in general and e′′1 is obtained as the eigenvector of the smallest
eigenvalue of M. This solution is valid, as long as none of the other two projection centers
coincides with the projection center of the first image. Otherwise all three correlation slices Ii
have rank ≤ 1 (with I1 ∼ I2 ∼ I3, see proposition 7.3 on page 68) and therefore M would be of
rank-0.

The epipole e′′′1 is found in exactly the same way but by using Zi = Ii
> in equation (7.31).

The epipoles e′2 and e′3. After having obtained the epipoles e′′1 and e′′′1 , the remaining ones can
be found using the homography matrices. From relation (7.16) we see that e′3 can be computed
as

e′3 ∼ J j
−1e′′′1 .

For this computation only one of the three homography matrices J j is required and to avoid the
inversion of a nearly singular matrix the one with the best condition number should be chosen.
However, from table 7.4 on page 77 we see that it may happen that all three J j are singular. In
this case or in the vicinity to it, this method is unreliable.

Actually the inversion of J j is not required, because by applying the identity check in IP2 (sec-
tion 3.6) onto the relation (7.16) we simply get

S(e′′′1 )J je′3 = 0, (7.32)

and can compute e′3 as the nullspace of the matrix S(e′′′1 )J j, which is actually the fundamental
matrix F13

>. This method is valid as long as the chosen matrix J j has at least rank-2 and from
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table 7.4 we see that for all possible cases at least one such matrix is available. However, to
avoid choosing a particular J j matrix, we can again use the method proposed by Spetsakis and
Aloimonos and build up the matrix M in (7.31) using the matrices Z j = S(e′′′1 )J j. In this case
the epipole e′3 is obtained as the eigenvector to the largest eigenvalue of the matrix M.

The epipole e′2 is found in exactly the same way but by considering the matrices Zk = S(e′′1 )Kk.

The epipoles e′′3 and e′′′2 . The epipole e′′′2 could be computed for example by

e′′′2 ∼ J je′2.

This relation follows from the fact that the homography planes associated with the three J
matrices are the principal planes of image Ψ2, which intersect in the projection center Z2. Only
one J matrix is required to find e′′′2 and its rank need to be at least 2. Thus we again have the
problem to choose a proper one.

Another method, that avoids this problem, is presented in [Lasenby and Lasenby 1998]. The
epipole e′′′2 is the eigenvector of the largest eigenvalue of the matrix I�(e′2)

I�(e′2) = u′I1 + v′I2 + w′I3, (7.33)

with e′2 ∼ (u′, v′, w′)>.

The matrix I�(e′2) represents the dual line correlation from image Ψ2 to image Ψ3 induced by
the projection ray of the epipole e′2 in image Ψ1. Since this ray is actually the basis between
image Ψ1 and image Ψ2 it contains the projection center of the source image Ψ2 and therefore
I�(e′2) has rank-1 (provided Z1 6= Z2) and all its columns are proportional to e′′′2 ; cf. table 7.1
on page 68. And therefore we actually need not compute the eigenvectors of I�(e′2) and can
simply choose the column with largest norm to obtain e′′′2 .

The epipole e′′3 can be found in the same way but by considering the matrix I>� (e′3).

Summary of retrieving the epipoles

Table 7.7 on the next page gives a summary on retrieving the six epipoles in the three images
using the trifocal tensor.

7.4.2 Retrieving the fundamental matrices

The fundamental matrices can be derived from the trifocal tensor basically in two ways. The
first method requires the epipoles to be computed prior and the second method does not.
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epipole method

e′′1
the eigenvector of the smallest eigenvalue of matrix M set
up using the matrices Zi = Ii

e′′′1
the eigenvector of the smallest eigenvalue of matrix M set
up using the matrices Zi = I>i

e′2
the eigenvector of the largest eigenvalue of matrix M set up
using the matrices Zk = S(e′′1 )Kk

e′3
the eigenvector of the largest eigenvalue of matrix M set up
using the matrices Z j = S(e′′′1 )J j

e′′3 the column of matrix I>� (e′3) with largest norm

e′′′2 the column of matrix I�(e′2) with largest norm

Table 7.7: Summary of retrieving the epipoles using the trifocal tensor. The matrix M is defined by relation (7.31)
on page 85 and the matrix I�(·) is defined by relation (7.12) on page 67.

Using the epipoles

With the epipoles computed in the previous section and the homography slices the funda-
mental matrices between the three pairs of images can be computed using proposition 6.9 on
page 56, which describes the relation between plane homographies and fundamental matrices.
The fundamental matrix F13 between image Ψ1 and Ψ3 is found by

F13 ∼ Jx
>S(e′′′1 ). (7.34)

For this computation only one (denoted Jx) of the three J j matrices is needed, which must
have at least rank-2. From table 7.4 on page 77 we see that one such matrix is always available
– but how to choose the best one? From proposition 7.7 on page 72 we see that rank(J j) = 1
is equivalent to e′′1

( j) = 0 and therefore the J matrix for the index of the maximum absolute
element of the epipole e′′1 is the one that is farthest away from having rank ≤ 1. Another choice
for Jx, which avoids this maximum search, is to use the matrix J�(e′′1 ) – the linear combination
of the J homography slices introduced in proposition 7.6 on page 71:

J�(e′′1 ) = u′′J1 + v′′J2 + w′′J3, (7.35)

with e′′1 ∼ (u′′, v′′, w′′)>. The matrix J�(e′′1 ) represents the homography induced by the projec-
tion plane of a line λ2 = e′′1

∗ in Ψ2 whose coordinates are given by λ2 ∼ e′′1 ; i.e. the dual of e′′1 .
This choice ensures that the homography plane does not contain the projection center Z1 and
thus has certainly rank > 1.

Note that F13 can also be expressed in terms of the correlation slices as

F13 ∼

 e′′1
>I1

>

e′′1
>I2

>

e′′1
>I3

>

 S(e′′′1 ),
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as this expression is identical to using J�(e′′1 ) in equation (7.34). The geometric explanation is
that we build up F13 row-wise (cf. proposition 6.3 on page 47) using the left nullspaces of the
correlation slices. These left nullspaces are the maps of the principal rays R′

i of image Ψ1 into
image Ψ3, which can be expressed as S(e′′′1 )Iiλ

′′. The line λ′′ can be any line not going through
the epipole e′′1 , otherwise Iiλ

′′∼ e′′′1 . To ensure e′′1 6∈ λ′′ we can use the dual of the point e′′1 as
the line λ′′.

Analogously the fundamental matrix F12 between image Ψ1 and Ψ2 is found by

F12 ∼ Kx
>S(e′′1 ), (7.36)

where Kx is chosen for the index of the maximum absolute element of the epipole e′′′1 or as

K�(e′′′1 ) = u′′′K1 + v′′′K2 + w′′′K3,

with e′′′1 ∼ (u′′′, v′′′, w′′′)>. And another representation would be

F12 ∼

 e′′′1
>I1

>

e′′′1
>I2

>

e′′′1
>I3

>

 S(e′′1 ).

For determining the fundamental matrix F23 between the images Ψ2 and Ψ3 we need a ho-
mography between these two images. None of the three different slices of the trifocal tensor
T(Ψ1, Ψ2, Ψ3) represents such a homography directly. But it is nevertheless possible to derive
a homography between the images Ψ2 and Ψ3 using the J and K homography slices – pro-
vided all three projection centers are distinct. Although this homography has only rank-2, it is
sufficient to derive the third fundamental matrix.

Proposition 7.13 (A rank-2 homography between the images Ψ2 and Ψ3.) Using the J and K ho-
mography slices of the trifocal tensor T(Ψ1, Ψ2, Ψ3), with distinct projection centers, a rank-2 homogra-
phy from image Ψ2 to image Ψ3 can be computed as

H23 ∼ J�(λ′′)K�
−1(µ′′′)− 1

µ′′′>e′′′1
e′′′1 λ′′>,

with λ′′ = e′′1
∗, the dual of e′′1 , and µ′′′ = 1/2(e′′′1 + e′′′2 )∗. This homography is induced by the

projection plane of the line µ′′′in image Ψ3. J� and K� follow from (7.15) and (7.20) on page 71 and 75
respectively.

Analogously, the rank-2 homography from image Ψ3 to Ψ2 induced by the line λ′′ in image Ψ2 can be
computed as

H32 ∼ K�(µ′′′)J�−1(λ′′)− 1
λ′′>e′′1

e′′1µ′′′>,

with λ′′ = 1/2(e′′1 + e′′3 )∗ and µ′′′ = e′′′1
∗. J� and K� follow again from (7.15) and (7.20).

Proof:
We will only give the proof for the expression of H23, as for the proof of H32 only the roles
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of the images Ψ2 and Ψ3 need to be interchanged. Using the representations for the linear
combinations J� and K� from proposition 7.6 and 7.10 we get

J�(λ′′) = M3

(
λ′′>e′′1 I + (Z3 − Z1)λ′′>M2

)
M1

−1,

K�
−1(µ′′′) = − 1

µ′′′>e′′′1
M1

(
I − 1

µ′′′>e′′′2
(Z2 − Z1)µ′′′>M3

)
M2

−1,

where proposition B.1 together with the epipole relations (7.2) and (7.3) was used for the in-
verse of K�−1(µ′′′). The multiplication of these two matrices gives

J�(λ′′)K�
−1(µ′′′) =

−λ′′>e′′1
µ′′′>e′′′1 ·µ′′′>e′′′2︸ ︷︷ ︸

t

M3

(
µ′′′>e′′′2 I + (Z3 − Z2)µ′′′>M3

)
M2

−1︸ ︷︷ ︸
H23

+
1

µ′′′>e′′′1
e′′′1 λ′′>.

The comparison of the underbraced term H23 with the homography proposition 6.7 shows that
it is a homography from image Ψ2 to image Ψ3 induced by a plane with normal vector M3

>µ′′′

going through Z3; i.e. the projection plane Σ(µ′′′) of image Ψ3. Therefore the rank of H23 is 2
in general. All three scalars in t must be 6= 0 therefore: λ′′>e′′1 6= 0 → λ′′ = e′′1

∗, this ensures
that J�(λ′′) has at least rank-2; µ′′′>e′′′1 6= 0 and µ′′′>e′′′2 6= 0 → µ′′′ = 1/2(e′′′1 + e′′′2 )∗, this en-
sures that K�(µ′′′) has rank-3. To avoid annulling of µ′′′ in case of collinear projection centers,
it should be checked that e′′′1

>e′′′2 ≥ 0.
2

Using this proposition the fundamental matrices F23 and F32 can be found by

F23 ∼ H23
>S(e′′′2 ),

F32 ∼ H32
>S(e′′3 ).

(7.37)

Without the epipoles

In [Shashua and Werman 1995] a simple method is presented how to computed the fundamen-
tal matrices F12 and F13 from the trifocal tensor without recovering the epipoles at first. From
the expressions (6.3) and (7.19) for F12 and Kk in the elements of the projection matrices and
using the epipole definitions (7.2) and (7.3) together with the axiator relation (B.12) it can be
seen easily, that the following two equations hold

F12Kk = e′′′1
(k)/ det(M1)S(e′2),

K>
k F>12 = −e′′′1

(k)/ det(M1)S(e′2),

where e′′′1
(k) is the k-th coordinate of e′′′1 . Therefore the combined relation

F12Kk + K>
k F>12 = 03 (7.38)

can be used to determine the fundamental matrix F12 directly using the Kk homographies. Ob-
serve that this symmetric relation produces only 6 independent equations in general. Therefore
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the relation (7.38) must be set up for at least two (and best for all three ) Kk homographies. This
way we get an overdetermined homogenous system of equations A f = 0 with

A =

A1
A2
A3


where Ak = K>

k ⊗I3 + I3⊗K>
k T 3 (T 3 is defined in relation (B.29)) and f = vec (F 12). The

solution for f is obtained as the eigenvector to the smallest eigenvalue of A>A.

Similar relations allow the determination of F13 using the J j homographies. The epipoles e′2,
e′3, e′′1 and e′′′1 are then easily obtained from these fundamental matrices using proposition 6.3.

Note that this method can be of disadvantage if the computation time is of concern, because
it requires the solution of eigenvalue problems of dimension 9, whereas the methods based on
first computing the epipoles always involve systems of dimension 3. Especially if one is only
interested in the epipoles then the methods presented in section 7.4.1 are preferred.

7.4.3 Retrieving the projection matrices

In section 7.1 we saw that the trifocal tensor depends only on the relative orientation of the
three images. Therefore we could change the object system by any homography in IP3 without
effecting the trifocal tensor. If this homography in IP3 is represented by a regular homogenous
4× 4 matrix H, then the point projection matrices would accordingly change as Ph ∼ PhH−1;
see equation (5.14). In particular, we can choose H in the way that

P1H−1 ∼ P1 = [I3, 0] . (7.39)

Note, however, that from this relation H is not uniquely determined, because we only get 12
equations for the 16 elements of H; so 4 degrees of freedom remain. With P1 ∼ M1 [I ,−Z1] the
general form of H−1 is

H−1 ∼
[

M1
−1 + Z1v> wZ1

v> w

]
, (7.40)

where v> and w are the remaining 4 degrees of freedom.

With P1 = [I3, 0] and the fact that the trifocal tensor (relation (7.7)) must be invariant of H, it is
easy to see from (7.2) and (7.4) that the other two projection matrices must be given by

P2 ∼ [A, e′′1 ] ,

P3 ∼ [B, e′′′1 ] .
(7.41)

From these considerations we see that we can find directly from the defining quantities of the
trifocal tensor a consistent set of projection matrices of the form (7.39) and (7.41), which are
related to the real Euclidian configuration by some unknown projective transformation.

The epipoles e′′1 and e′′′1 can be computed following section 7.4.1, and the matrices A and B
could then be determined linearly from the tensor equation (7.7); i.e. Tk j

· · i ∼ e′′1
jBk
·i − e′′′1

k. How-
ever, the solution for these two matrices is not unique. In the expression Tk j

· · i ∼ e′′1
jBk
·i − e′′′1

k
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this can be seen by substituting A with A + e′′1 v>, B with B + e′′′1 v>, e′′1 with we′′1 , and e′′′1 with
we′′′1 , for any v and any w 6= 0. The two additional e′′1 v> and e′′′1 v> terms simply chancel out,
and w only changes the scale of the tensor. This is the same four way ambiguity that we have
in relation (7.39) for determining H; cf. relation (7.40).

So we can choose any particular solution in this 4-parameter family for the matrices A and B.
Hartley proposes the following solution, which extracts A and B directly from the correlation
slices Ii; [Hartley 1997]:

A = (e′′1 e′′1
> − I)

[
I>1 e′′′1 , I>2 e′′′1 , I>3 e′′′1

]
,

B =
[
I1e′′1 , I2e′′1 , I3e′′1

]
,

(7.42)

with |e′′1 | = |e′′′1 | = 1. Note, that in this particular solution the ambiguity is solved by demand-
ing that the columns of A are perpendicular to the epipole e′′1 . Therefore, A is singular and in
this special projective frame the second projection center lies in the plane at infinity.

7.4.4 Retrieving the common interior orientation of the three images

We saw in section 7.4.3, that the projection matrices can not be retrieved uniquely from the tri-
focal tensor. Consequently an unknown interior orientation C1, C2 and C3 can not be retrieved
uniquely either. If, however, the interior orientation of the three images is known to be the
same for all three images, then it can be retrieved in general. One way of doing this will be
summarized in the following. This method is based on the so-called Kruppa equations, named
after an Austrian mathematician and first used in [Faugeras 1992] for camera calibration. But
prior to explaining these equations, we need to describe a unique feature in each image – the
so-called image of the absolute conic.

The absolute conic lies in the plane at infinity and it is made up of the points X∼ (P, Q, R, S, T)>

for which holds: T = 0 and U2 + V2 + W2 = 0. Therefore it only contains imaginary points.
Its map in an image is called image of the absolute conic, represented by the symmetric matrix W.
Due to the definition of the absolute conic it is easy to see that its map W in any image depends
only on the interior orientation C of the respective image

W ∼ C>C.

Of more interest is the dual image of the absolute conic, represented by W∗

W∗ ∼ C−1C−>. (7.43)

Observe, that C is defined by 5 elements and W∗ is a homogenous symmetric 3×3 matrix,
which also has 5 independent elements. This one-to-one relation between the elements of W∗

and the 5 elements of the interior orientation in C is the reason why the dual image of the
absolute conic is so important for camera calibration.

Now back to the Kruppa equations. These equations refer to an image pair {Ψ1, Ψ2} and express
the constraint that, epipolar lines, which are tangent to a conic in image Ψ1, are mapped by any
homography in IP2 to epipolar lines in image Ψ2, which are also tangent to the corresponding
conic in image Ψ2. If we especially consider the conic W∗, the dual image of the absolute conic,
then we can represent this constraint as; e.g. [Hartley and Zisserman 2001]

S(e′′1 )W∗′′S(e′′1 ) ∼ F>12W
∗′F12.
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Although this constraint involves nine relations, only two are independent, therefore in [Hart-
ley and Zisserman 2001] a shorter version of the Kruppa equations is presented: u>2 W∗′u2

−u>1 W∗′u2
u>1 W∗′u1

×

 s2
1v>1 W∗′′v1

s1s2v>1 W∗′′v2
s2

2v>2 W∗′′v2

 = 0,

where ui, vi and si are the columns and singular values of the SVD of the fundamental matrix
F12. It is easy to show that these three relations can also be written as

u>1 W∗′F12W∗′′v2 = 0,
u>2 W∗′F12W∗′′v1 = 0,

s1u>1 W∗′F12W∗′′v1 − s2u>2 W∗′F12W∗′′v2 = 0.
(7.44)

So we see, using the Kruppa equations we get two independent non-linear constraints on the
elements of the dual images of the absolute conic W∗′ and W∗′′.

If the interior orientation of the three images associated with the trifocal tensor are unknown
but common i.e. C = C1 = C2 = C3, then we have 5 unknown elements in C. From the trifocal
tensor we can easily obtain three image pairs with their respective fundamental matrices F12,
F13 and F23; see section 7.4.2. Due to the common interior orientation also the dual images
of the absolute conic are the same W∗ = W∗′ = W∗′′ = W∗′′′ and by applying the Kruppa
equations (7.44) onto the three image pairs, we get 9 equations in the 5 unknown elements of
W∗, and 6 of these equations are independent. After determining W∗ the one-to-one relation
of W∗ and C can be used to compute the common interior orientation of the three images by
Cholesky factorization of W∗.

Since we have 9 equations in 5 unknowns we can solve the Kruppa equations in a least squares
manner, provided initial values for the common interior orientation C are available (this then
initializes W∗ using (7.43))

M∆w + m = d with |d|2 → min, (7.45)

M is the Jacobian of the Kruppa equations with respect to the essential elements of W∗ which
make up the vector w. The latter is iteratively refined by ∆w. m is the left side of the 6 Kruppa
equations evaluated with the actual value of W∗ and the fixed fundamental matrices F12, F13
and F23. The scale of W∗ is either fixed by setting its Frobenius norm to 1 (and thereby adding
an additional scaling constraint into system (7.45)) or by setting the element at position (3,3) to
1. The latter is a safe choice, because this element is inverse proportional to the square of the
principal distance.

If the trifocal tensor itself was derived from noisy image correspondences (see section 8), then
the interior orientation C determined in this way is not an optimal solution, because it is ob-
tained by minimizing algebraic error and not by minimizing the errors in the original image
observations (the so-called reprojection error). If an optimal solution of the interior orientation is
the prime goal, then a subsequent bundle adjustment should be performed, where further im-
age distortion parameters can be added. The values for C obtained by the presented method,
however, are in general very good approximations for initializing this bundle adjustment.

Note, however, that for certain configurations of the three images not all 5 parameters of C can
be determined. So, if there is no rotation between the images then this method will fail and if
all images have the same rotation axis, then not all 5 parameters can be determined.
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One open question is how to get the approximations of the interior orientation to initialize the
iterative solution of system (7.45). The affine terms α and β can be assumed safely with 1 and 0
respectively. The principal point is usually near the center of the image4. So the approximations
for these four elements should not be a problem in general. The initial value for the principal
distance can be a bit difficult. Often we know the focal length used while taking the images,
this will be a very good approximation for the principal distance. If the images are from an
unknown source and there is no information on the principal distance or focal length, then
using the approximations mentioned for α, β and the principal point, the Kruppa equations
can be set up for an image pair with the latter interior elements fixed. The Kruppa equations
then turn out to be linear in the unknown principal distance and so an approximation can be
obtained quite easily. For more information on this topic of self calibration see again [Hartley
and Zisserman 2001].

7.4.5 Retrieving the relative orientation of three calibrated images

If the interior orientation is known, either it is given for all images, or the common unknown
interior orientation is determined following section 7.4.4, then it is straight forward to deter-
mine the quantities of the relative orientation of dependent images with respect to image Ψ1,
see definition 6.2 on page 45; i.e. Z2

†, R2
†, Z3

†, and R3
†.

Using the methods of section 7.4.2 we can retrieve the fundamental matrices F12 and F13 from
the trifocal tensor. Together with the known interior orientation C1, C2 and C3, and relation
6.12 we also get the respective essential matrices E12 and E13. From these two matrices, one
corresponding point in each image and the methods of section 6.1.4 on page 50 we can derive
the rotation matrices R2

† and R3
† uniquely. Also the projection centers Z2

† and Z3
† are ob-

tained with the correct sign, but with wrong relative scale as the length of both vectors is set to
1.

Using one pair of corresponding points x′′ and x′′′ in image Ψ2 and Ψ3, we can adapt the length
of Z3

† to the unit vector Z2
† by a scale m. Starting from the relation

Z2
† + µ2R2

†C2x′′ = mZ3
† + µ3R3

†C3x′′′,

we obtain the scale m as

m =
|x′′′>C>

3 R3
†>S(R2

†C2x′′)Z2
†|

|x′′′>C>
3 R3

†>S(R2
†C2x′′)Z3

†|
, (7.46)

and the correctly scaled third projection center as mZ3
†.

4It is important to point out that if all images are supposed to have the same interior orientation, then the
measurement system (see section 5.1) must be the same in all images. This is true if the images are acquired with
the same digital camera. However, if the images are shot using analog cameras and the measurement system
refers to the analog images or to digital images obtained by scanning the analog ones, then all these images must
be transformed into a common image coordinate system prior to computing the trifocal tensor. This common
coordinate system can be defined by fiducial marks, which are part of professional cameras, or by the corners of the
image frame (if visible) or by other striking points of the camera frame visible in all images.
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7.4.6 Transformation of the individual relative orientations into one common frame
in case of n > 3 images

Assume we are given n > 3 images together with corresponding image points, which are the
mappings of some object points X j. Then we can compute m < n trifocal tensors for various
image triples with the methods of section 8 on page 111, so that each image is part of at least
one tensor. Afterwards, following section 7.4.5, we can retrieve the parameters of the relative
orientation, i.e. the basis vectors and rotation matrices, for each image triple with respect to
the first image of each triple, provided the interior orientation is known or can be retrieved
following section 7.4.4 on page 91.

Before all n images can be used simultaneously to perform spatial reasoning, it is required to
transform all these individual relative orientations into one common system. This can be done
basically in two ways; for simplicity we assume that we have n = 9 images Ψ1, . . . , Ψ9:

(i) The m trifocal tensors are not disjoint; e.g. we have computed the following m = 4 tensors
and obtained the respective parameters of the relative orientation:

T(Ψ1, Ψ2, Ψ3) → Z[1]
i , R [1]

i i = 1, 2, 3,

T(Ψ3, Ψ4, Ψ5) → Z[2]
i , R [2]

i i = 3, 4, 5,

T(Ψ5, Ψ6, Ψ7) → Z[3]
i , R [3]

i i = 5, 6, 7,

T(Ψ7, Ψ8, Ψ9) → Z[4]
i , R [4]

i i = 7, 8, 9.

The super-script [ f ] indicates the frame, defined by the first image of the f th tensor, in
which the respective entity is given. In this case all orientation parameters can be trans-
formed into the frame of the first tensor in the following way:

Z[1]
i = R [1]

a R [ f ]
a
>(

Z[ f ]
i − Z[ f ]

a
)
+ Z[1]

a

R [1]
i = R [1]

a R [ f ]
a
>R [ f ]

i ,

where f = 2, 3, 4 and a is the number of the image common to frame [1] and frame [ f ].
We therefore have a = 3 for the transformation of frame [2], a = 5 for frame [3], and a = 7
for frame [4].

(ii) The m trifocal tensors are disjoint. In this case the basis vectors and rotation matrices of
the relative orientation can not be used directly to compute the transformation from each
frame into the frame of the first tensor. However, if the sets of points used to compute
the individual tensors are not disjoint, then the transformation can be derived from the
respective object points X j, which are obtained for each individual image triple by spatial
intersection. For our example we have computed the following m = 3 tensors and derived
the respective object points, basis vectors and rotation matrices:

T(Ψ1, Ψ2, Ψ3) → X[1]
j′ and Z[1]

i , R [1]
i , i = 1, 2, 3,

T(Ψ4, Ψ5, Ψ6) → X[2]
j′′ and Z[2]

i , R [2]
i , i = 4, 5, 6,

T(Ψ7, Ψ8, Ψ9) → X[3]
j′′′ and Z[3]

i , R [3]
i , i = 7, 8, 9.
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Now we compute the transformation parameters R [1]
[ f ] and Q[ f ]

[1] , which take the object

points of each individual frame into the frame of the first tensor as X[1]
j = R [1]

[ f ]

(
X[ f ]

j −Q[ f ]
[1]

)
,

with f = 2, 3. This transformation is uniquely determined if at least 3 non-collinear
points, common to frame [1] and frame [f], are given.

The basis vectors and rotation matrices are then transformed as:

Z[1]
i = R [1]

[ f ]

(
Z[ f ]

i −Q[ f ]
[1]

)
R [1]

i = R [1]
[ f ]R

[ f ]
i .

The first method, which directly uses the basis vectors and rotation matrices, is easier to handle
than the second one, because it does not need any object points. However, for applying the first
method more trifocal tensors for the same number of images must be computed than for the
second method. If n images are given, then for the first method at least d n−1

2 e trifocal tensors
and for the second method at least d n

3 e trifocal tensors must be computed.

7.5 Changing the order of the images

In section 7.1 we saw that there are actually six different trifocal tensors associated with three
given views Ψ1, Ψ2 and Ψ3. If we have computed the trifocal tensor T(Ψ1, Ψ2, Ψ3) then the
tensors for the five other image orders can be derived directly from the computed one. In
[Avidan and Shashua 1996] this task is accomplished by introducing two operators: O12, which
exchanges the first and the second view, and O23, which exchanges the second and the third
view.

The latter operator O23 is simply realized. The exchange of the second and third view results in
interchanging the J and K homographies. This can be done just by transposing the I matrices.
Thus T(Ψ1, Ψ3, Ψ2) = {I1, I2, I3} is obtained from T(Ψ1, Ψ2, Ψ3) = {I1, I2, I3} using the operator
O23 as T(Ψ1, Ψ3, Ψ2) = {I1

>, I2
>, I3

>}.

The operator O12 is a bit more involving. The K homographies of the given tensor T(Ψ1, Ψ2, Ψ3) =
{K1, K2, K3} map the points of image Ψ1 to the points of image Ψ2 via the principal planes of
image Ψ3. The K homographies of the desired tensor T(Ψ2, Ψ1, Ψ3) = {K1, K2, K3} map the
points of image Ψ2 to the points of image Ψ1 via the same principal planes of image Ψ3. This
mapping corresponds to the inverse of the given K homographies. Thus it holds Kk ∼ Kk

−1,
or Kk = µkKk

−1. Of the three remaining unknown scales µk only two are essential, because
one can be cancelled for the overall scaling of the tensor. In [Avidan and Shashua 1996] these
two scales are determined using a measure called projective depth for a pair of corresponding
points in the images Ψ1 and Ψ2. Note that this operator O12 can run into problems if the K ho-
mographies are singular. In [Heyden 2000] and [Faugeras and Luong 2001] basically the same
approach is used. There, however, the adjoint matrices of the K homographies are considered,
which allows to cope with rank-2 homographies; but still leaves an open problem for rank-1
homographies.

In [Hartley and Zisserman 2001] a totally different method is presented for deriving the trifocal
tensor from a given one if the reference view is changed. Their method does not suffer from
possible singular homographies, and is outlined as follows: (a) Extract the three projection
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matrices P1, P2 and P3 from the tensor, by the method of section 7.4.3; i.e. with P1 = [I3, 0]. (b)
Find a regular projective transformation H such that P2H = [I3, 0]; i.e. solve (I4⊗P2) vec (H) =
vec ([I3, 0]). Since this system has only 12 equations for the 16 unknowns of H, the solution
for H is a four-parameter family. Select any parameter-set that produces a regular H and apply
H to P1 and P3. (c) Compute the trifocal tensor T(Ψ2, Ψ1, Ψ3) with these transformed projection
matrices following section 7.1.1.

7.6 The internal constraints

We saw in section 7.1 during the derivation of the trifocal tensor, that it is made up of 27 ele-
ments but has only 18 degrees of freedom. Therefore 9 constraints have to be satisfied by these
27 elements to represent a valid trifocal tensor. One of these constraints is the fixing of the scale
of the homogenous tensor (e.g. by setting its Frobenius norm to 1) and therefore 8 constraints
are essentially to be considered. These constraints are especially important when the tensor is
computed from given point and/or line correspondences across three views; see section 8.

Over the past few years a lot of research has gone into finding these constraints. Some of the
presented constraints are not complete (<8), some are not minimal (>8) and others are rather
complicated. In the following the most important sets of constraints presented in the literature
so far are described. Afterwards two new sets are derived and from these we will see that the
geometric meaning behind the internal constraints is rather simple: The internal constraints of
the trifocal tensor just guarantee that the maps of the principal rays Ri of each image into the
other images are straight and concurrent lines.

All constraints are in some way related to the properties of the tensorial slices presented in
section 7.2 and they are derived based on the assumption that the images are in general position
– in this case the tensorial slices will have maximum rank.

7.6.1 The non-minimal set of Papadopoulo and Faugeras

Perhaps the first set of constraints that fully characterize the trifocal tensor was proposed by
Papadopoulo and Faugeras in [Papadopoulo and Faugeras 1998]. It is a non-minimal set con-
sisting of 12 dependent equations – the so-called epipolar and extended rank constraints, which
are derived from the correlation slices Ii.

Proposition 7.14 (The rank and epipolar constraints.) The correlation slices Ii of the trifocal ten-
sor satisfy the three rank constraints

det(Ii) = 0. (7.47)

The trifocal tensor also satisfies the two epipolar constraints

det(NR) = det(NL) = 0, (7.48)

where NR and NL are made up of the right and left nullspaces of the Ii; see proposition 7.4 on page 69.
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These constraints, which have been presented also by many other authors e.g. [Spetsakis and
Aloimonos 1990], [Hartley 1994b], or [Stein and Shashua 1998], follow directly from the prop-
erties of the correlation slices Ii in the propositions 7.3 and 7.4.

The epipolar constraints got their name from the fact that the right and left nullspaces N (Ii)
and N (I>i ), provided rank(Ii) = 2, represent the lines ρ′′1i and ρ′′′1i respectively. These lines
are the mappings of the principal rays of image Ψ1 into the images Ψ2 and Ψ3 respectively.
Therefore these lines are epipolar lines and consequently they must be concurrent through the
respective epipole. It is, however, important to point out, that these epipolar constraints are
only applicable if all three correlation slices Ii have maximum rank-2, because only in this case
the nullspaces are lines. If rank(Ii) < 2 the nullspaces are either a pencil of lines through
the respective epipole or the entire IP2; cf. table 7.1. From table 7.4 on page 77 we see that
rank(Ii) < 2 can happen for any image configuration. However, since these ranks depend
on the incidence of the projection centers Z2 and Z3 with the principal rays of image Ψ1 (see
proposition 7.3 on page 68), by proper choice of the measurement system of image Ψ1 the
general case of rank-2 for all three correlation slices can be achieved generally. Although it
may not be obvious in advance how to choose the coordinate system in image Ψ1.

These five rank and epipolar constraints have a simple geometric interpretation, which was
given at the end of section 7.2.1 and are independent, since the singularity of the matrices says
nothing about the way the nullspaces are related. However, they are not sufficient to describe
the internal constraints of the trifocal tensor because for that eight constraints are required. In
[Papadopoulo and Faugeras 1998], however, the authors also introduce the so-called extended
rank constraints.

Proposition 7.15 (The extended rank constraints.) The correlation slices Ii of the trifocal tensor
satisfy the ten extended rank constraints

rank(
3

∑
i=1

xiIi) ≤ 2, for all xi, i = 1, 2, 3. (7.49)

These constraint correspond to proposition 7.2 on page 67, which says that the linear combina-
tion of the correlation slices Ii is also a singular dual correlation matrix – the one induced by
the projection ray of the point (x1, x2, x3)> in image Ψ1. Note that the three rank constraints of
(7.47) are of course included in the extended ones. To see that (7.49) are ten constraints, we have
to expand det(∑3

i=1 xiIi) = 0 with respect to the individual products of the xi. The resulting
polynomial of degree three in the xi has (3+3−1

3 ) = 10 individual terms. Since (7.49) must hold
for any choice of the xi, all ten coefficients (which are sums of three determinants made up of
the columns of the Ii matrices) of this polynomial must vanish individually.

Papadopoulo and Faugeras proof that any homogenous valence-(1,2) tensor that satisfies the
ten extended rank and the two epipolar constraints is a trifocal tensor. In other words these 12
constraints represent a non-minimal set of constraints that fully characterize the trifocal tensor.
The extended rank constraints are of degree 3 in the elements of the tensor and the epipolar
constraints are of degree 6.

7.6.2 The minimal set of Canterakis

The first minimal set of constraints was presented by Canterakis in [Canterakis 2000]. His 8
constraints are based on the properties of the homography slices J j given in proposition 7.8
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(and since the second and third image play similar roles with respect to the trifocal tensor,
corresponding constraints could be derived from the homography slices Kk as well):

– The polynomial det(J2 −κJ1) = 0 should have a double root κ1 = κ2 with J2 −κ1J1 having
rank-1, and a single root κ3.

– The polynomial det(J3 −κJ1) = 0 should have a double root κ1 = κ2 with J2 −κ1J1 having
rank-1, and a single root κ3.

– The general eigenvectors of the single roots κ3 and κ3 should be the same.

The algebraic representation of these constraints is not straightforward and Canterakis pro-
poses the following. The polynomial det(J2 −κJ1) = 0 can be represented as aκ3 + bκ2 + cκ +
d = 0, where a, b, c, d are expressions in the elements of the tensor (i.e. in J1 and J2). If this
polynomial is supposed to have a double root, then using A = b2 − 3ac, B = bc − 9ad and
C = c2 − 3bd the following condition has to be satisfied

B2 − 4AC = 0, (7.50)

which is of degree 12 in the elements of the tensor. Using the quantities A, B and C the roots
can be expressed directly as

κ1 = κ2 = − B
2A

and κ3 =
B
A
− b

a
.

However, no direct representation for the corresponding eigenvectors is given in [Canterakis
2000]. Let us denote the two dimensional eigenvector with γ (a line) and the single one with
c (a point). We know from proposition 7.8 that γ ∼ ρ′23 (the map of the principal ray R′′

3 of
image Ψ2 into image Ψ1), and that c ∼ e′3 (the epipole in image Ψ1 with respect to image Ψ3).

The condition that J2 −κ1J1 has rank-1 can be checked as follows. First let us recall that due
to the homography-epipole-relation (7.16) on page 72 c ∼ e′3 is mapped via any regular J j to
e′′′1 . If the rank-1 condition is satisfied then we see from table 7.2 that J2 −κ1J1 can be written
as J2 −κ1J1 = e′′′1 γ>. Therefore any point x 6∈ γ is mapped via J2 −κ1J1 to e′′′1 . Because the
point x = γ∗ (the dual of γ) will not lie on γ, the rank-1 condition can be tested by

(J2 −κ1J1)γ ∼ J1c, (7.51)

which is equivalent to two equations.

Summing it up the 8 constraints of Canterakis are realized in the following way:

– Two constraints of the form (7.50) by demanding double roots for the polynomials
det(J2 −κJ1) = 0 and det(J3 −κJ1) = 0.

– Two constraints of the form (7.51) by demanding rank-1 for J2 −κ1J1.

– Two constraints of the form (7.51) by demanding rank-1 for J3 −κ1J1.

– Two constraints by demanding that the eigenvectors of the single roots are the same: c ∼ c.

For applying this set of constraints we need at least one regular homography slice which plays
the role of the matrix J1 in the previous relations, and from table 7.4 on page 77 we see that this
is possible as long as the second projection centers is distinct from the other two, which can be
reached by adapting the roles of the given images properly.
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7.6.3 The new minimal sets of constraints

In the following we will derive two new minimal sets, one from the correlation slices Ii and
one from the homography slices J j. From the homography slices Kk we can derive similar
constraints to those obtained from J j, just be interchanging the roles of the second and the
third image – therefore we will only consider the J j matrices. However, this just shows that
minimal sets of constraints can be derived from any kind of slice. This is not very surprising
after all, as all 27 elements of the tensor are involved in the three matrices of each kind of slice.

Both new sets are guided by the same geometric consideration, that the maps of the principal rays
of each image into the other images have to be straight and concurrent lines, see figure 7.8, and
we adopt the naming convention given in table 7.8.

Figure 7.8: The maps ρ
(·)
·· of the principal rays R(·)

· of each image into the other two images.

Although, this geometric consideration seems to be a rather trivial realization, it is exactly this
condition, which is not satisfied, if the internal constraints of the tensor are neglected. We
record this in the following theorem and prove it at the end of this section.

Theorem 7.1 (The geometric meaning of the internal constraints.) The internal constraints of the
trifocal tensor guarantee that the maps ρ

(·)
·· of the principal rays R(·)

· of each image into the other images
are straight and concurrent lines.
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ρ′2 j maps of the principal rays R′′
j of image Ψ2 into image Ψ1

ρ′3k maps of the principal rays R′′′
k of image Ψ3 into image Ψ1

ρ′′1i maps of the principal rays R′
i of image Ψ1 into image Ψ2

ρ′′3k maps of the principal rays R′′′
k of image Ψ3 into image Ψ2

ρ′′′1i maps of the principal rays R′
i of image Ψ1 into image Ψ3

ρ′′′2 j maps of the principal rays R′′
j of image Ψ2 into image Ψ3

Table 7.8: The naming convention for the maps ρ
(·)
·· of the principal rays R(·)

· of each image into the other two
images.

It is simple to transfer this geometric consideration into a minimal set of constraints, because
the rows and columns of the correlation and homography slices correspond either to points
lying on or to lines intersecting on the maps of the principal rays in the images. These points and
lines are the mappings of 3D points or 3D lines which arise as the intersections of particular
principal rays or principal planes of one image with the principal planes of another image.
These relations are summarized in table 7.9.

slice row-indx col-indx columns are of . . . in space rows are of . . . in space

Ii k j points in Ψ3 R′
i ∧Π′′

j points in Ψ2 R′
i ∧Π′′′

k

J j k i points in Ψ3 R′
i ∧Π′′

j lines in Ψ1 Π′′
j ∧Π′′′

k

Kk j i points in Ψ2 R′
i ∧Π′′′

k lines in Ψ1 Π′′
j ∧Π′′′

k

Table 7.9: The geometric interpretation of the rows and columns of the three tensorial slices as mapped points and
lines in the images Ψ1, Ψ2 and Ψ3. The principal rays of image Ψ1 are given as R′

i. The principal planes of the
images Ψ2 and Ψ3 are given as Π′′

j and Π′′′
k respectively.

For simpler handling we will refer to the columns and rows of the three slices individually by
assigning the names given in table 7.10 on the facing page.

A new minimal set derived from the correlation slices

Let us begin with the correlation slices Ii. From table 7.9 we see that the jth column of Ii is a
point in image Ψ3, which is the mapping of the intersection of the principal plane Π′′

j with the
principal ray R′

i. Consequently all three columns of each Ii matrix must be collinear – lying on
the epipolar line ρ′′′1i , which is the map of the the principal ray R′

i into image Ψ3, see figure 7.10
on page 104 left part. The algebraic expression for these collinear properties is that the deter-
minants of the correlation matrices must vanish

|a′′′1 , a′′′2 , a′′′3 | = det(I1) = 0
|b′′′1 , b′′′2 , b′′′3 | = det(I2) = 0
|c′′′1 , c′′′2 , c′′′3 | = det(I3) = 0 .

(7.52)
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I1 =
[

a′′′1 , a′′′2 , a′′′3
]

J1 =
[

a′′′1 , b′′′1 , c′′′1
]

I2 =
[

b′′′1 , b′′′2 , b′′′3
]

J2 =
[

a′′′2 , b′′′2 , c′′′2
]

I3 =
[

c′′′1 , c′′′2 , c′′′3
]

J3 =
[

a′′′3 , b′′′3 , c′′′3
]

K1 =
[

d′′1 , e′′1 , f′′1
]

I>1 =
[

d′′1 , d′′2 , d′′3
]

K2 =
[

d′′2 , e′′2 , f′′2
]

I>2 =
[

e′′1 , e′′2 , e′′3
]

K3 =
[

d′′3 , e′′3 , f′′3
]

I>3 =
[

f′′1 , f′′2 , f′′3
]

J>1 =
[
α′

1, α′
2, α′

3
]

K>
1 =

[
α′

1, β′
1, γ′1

]
J>2 =

[
β′

1, β′
2, β′

3
]

K>
2 =

[
α′

2, β′
2, γ′2

]
J>3 =

[
γ′1, γ′2, γ′3

]
K>

3 =
[
α′

3, β′
3, γ′3

]
Table 7.10: Assigning names to the columns and rows of the three tensorial slices, which are either points or lines
in the images Ψ1, Ψ2 and Ψ3. See table 7.9 for the interpretation of these columns and rows, and figure 7.9 for a
visual representation.

These three constraints are the rank constraints (7.47) on page 96 and just correspond to the
property that the Ii matrices have at most rank-2 and are therefore always singular. Since the
principal rays R′

i are concurrent also their mappings – the epipolar line ρ′′′1i – have to be so.
This gives another constraint – one of the epipolar constraints in (7.48) on page 96

|a′′′1 × a′′′2 , b′′′1 × b′′′2 , c′′′1 × c′′′2 | = 0. (7.53)

This constraint was set up with the first two columns of the Ii matrices, but in general can be
set up with any pair of columns. Since these four constraints are identical to the rank and (half
of the) epipolar constraints in section 7.6.1, we know they are independent.

So we need to find four more constraints to form a minimal set of constraints. These remaining
constraints are new and use the property (c) in proposition 7.4 on page 69. If we adapt this
property onto the transposed correlation slices I>i we get the following lemma.

Lemma 7.1 Any line λ′′′ 6= ρ′′′1i through the epipole e′′′1 in image Ψ3 is mapped by I>i to the epipole e′′1
in image Ψ2.

With this property we can formulate the following relation:

I>1 λ′′′1 ∼ I>2 λ′′′2 ∼ I>3 λ′′′3 , (7.54)

with arbitrary λ′′′i 6= ρ′′′1i and e′′′1 ∈ λ′′′i . We can represent lines λ′′′i going through e′′′1 as
λ′′′i ∼ S(e′′′1 )p′′′i , with arbitrary p′′′i 6∈ ρ′′′1i . And a point p′′′i that satisfies the condition p′′′i 6∈ ρ′′′1i
is simply the dual of ρ′′′1i ; i.e. p′′′i = ρ′′′1i

∗. So we can rewrite the relations (7.54) and get the
following mapping constraints

I>1 S(e′′′1 )ρ′′′11 ∼ I>2 S(e′′′1 )ρ′′′12 ∼ I>3 S(e′′′1 )ρ′′′13. (7.55)
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Figure 7.9: A visual representation of the vectors a′′′1 , f′′1 and γ′3. The vector a′′′1 is the first column of I1 and the
first column of J1. The vector f′′1 is the first row of I3 and the last column of K1. The vector γ′3 is the last row of
J3 and the last row of K3.

Note that the additional entities in this relation, i.e. the epipole e′′′1 and the three epipolar lines
ρ′′′1i , can be expressed by cross products of the columns of the Ii matrices. The three ρ′′′1i are the
columns of the matrix in the epipolar constraint (7.53) and the epipole e′′′1 is the cross product
of two convenient ρ′′′1i ; e.g.

e′′′1 ∼ (a′′′1 × a′′′2 )× (b′′′1 × b′′′2 ).

The relation (7.55) corresponds to six relations with two unknown scales µ and µ, and could be
reformulated for example as

µI>1 S(e′′′1 )ρ′′′11 = I>2 S(e′′′1 )ρ′′′12

µI>1 S(e′′′1 )ρ′′′11 = I>3 S(e′′′1 )ρ′′′13 ,

giving four constraints in total. Since each of these relations involves two different Ii matrices, it
is obvious that they are independent. What remains to show is that all eight constraints (7.52),
(7.53) and (7.55) are independent among each other. This will be shown next.

Assume we have three matrices Ii, which are supposed to be correlation slices of a trifocal
tensor, and we know that these matrices satisfy the four independent constraints (7.52) and
(7.53), then we can parameterize them in the following way without loss of generality

Ii =
[

s′′′i , vis′′′i + mie′′′1 , wis′′′i + nie′′′1
]

. (7.56)

This parameterization ensures that the columns of each matrix Ii are collinear, because they are
spanned by two vectors s′′′i and e′′′1 , and that the carrier lines (i.e. the epipolar lines ρ′′′1i ) of these
columns are concurrent in e′′′1 . Now we have to check if these matrices satisfy lemma 7.1. If the
lemma is satisfied, then the constraints (7.55) are dependent on the first four constraints. If it
is not satisfied, then all eight constraints are independent. Therefore we multiply each matrix
I>i with a line λ′′′i that is different from the carrier lines of the Ii matrices (→ s′′′i

>λ′′′i 6= 0) and
which goes through the common point e′′′1 . Taking into account that e′′′1

>λ′′′i = 0 we therefore
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get:

I>1 λ′′′1 =

 s′′′1
>λ′′′1

v1s′′′1
>λ′′′1

w1s′′′1
>λ′′′1

 ∼

 1
v1
w1


I>2 λ′′′2 =

 s′′′2
>λ′′′2

v2s′′′2
>λ′′′2

w2s′′′2
>λ′′′2

 ∼

 1
v2
w2


I>3 λ′′′3 =

 s′′′3
>λ′′′3

v3s′′′3
>λ′′′3

w3s′′′3
>λ′′′3

 ∼

 1
v3
w3


Due to lemma 7.1 all three right sides should return the same homogenous vector (i.e. the
epipole e′′1 ). This can only be achieved if the following holds for the coefficients of our param-
eterization: v1 = v2 = v3 = v and w1 = w2 = w3 = w. And this shows that the second four
constraints are not satisfied in general and therefore all eight constraints are indeed indepen-
dent. Consequently by adapting our parameterization in (7.56) we get a new parameterization,
that satisfies all eight constraints in general:

Ii =
[

s′′′i , vs′′′i + mie′′′1 , ws′′′i + nie′′′1
]

. (7.57)

We will come back to this parameterization later in section 8.3.4. Now we summarize this new
minimal set of constraints in the following proposition.

Proposition 7.16 (A new minimal set of constraints via the correlation slices.) A valence-(1,2)
tensor Tk j

· · i is a trifocal tensor if its correlation slices – the matrices that are obtained by fixing the
covariant index i – satisfy the following eight constraints: the three rank constraints (7.52), the epipolar
constraint (7.53) and the four mapping constraints (7.55).

The rank constraints are of degree 3 in the elements of the tensor, the epipolar constraint is of
degree 6 and the mapping constraints are of degree 7. The latter, however, can be regarded as
of degree 5 in practise, as the epipolar lines ρ′′′1i in (7.55) are needed only to build lines which
are securely different from these epipolar lines and can be regarded as fixed.

A new minimal set derived from the homography slices

Now we consider the homography slices J j. From table 7.9 on page 100 we see that the ith
column of J j is a point in image Ψ3, which is the mapping of the intersection of the principal
ray R′

i with the principal plane Π′′
j . Therefore the three columns of each J j matrix form a

triangle J j in image Ψ3. From table 7.10 on page 101 and also figure 7.10 on the following page
we see that the columns (i.e. the points in image Ψ3) of the J j matrices are the same as those of
the Ii matrices except for the ordering. Therefore the constraints that we can derive from the
columns of the J j matrices are the same as we found for the columns of the Ii matrices; i.e. the
three rank constraints (7.52) and the single epipolar constraint (7.53), which are independent.

As we can see, these four independent constraints is all we can get out of the relations between
the points in image Ψ3. Note that these point relations are valid in IP2 and are therefore indepen-
dent on the actual scaling of the columns of the Ii and J j matrices. Consequently to get relations
that constrain this scale ambiguity we have to consider also the rows of the J j matrices.
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Figure 7.10: The column vectors of the correlation slices I1, I2 and I3 (left) and the column vectors of the homog-
raphy slices J1, J2 and J3 (right) interpreted as points in image Ψ3.

From table 7.9 on page 100 we see that the kth row of J j is a line in image Ψ1, which is the
mapping of the intersection of the principal plane Π′′′

k with the principal plane Π′′
j . Therefore,

the three rows of each J j matrix form a triangle J j in image Ψ1; see figure 7.11.

Figure 7.11: The row vectors of the homography slices J1, J2 and J3 interpreted as lines in image Ψ1, and three
points of intersection s j1 which are collinear; cf. figure 7.12.

Now we consider the corners s′jk of such a triangle; s′11, s′21 and s′31 are shown in figure 7.11. The
corner s′jk of triangle J j results from the intersection of the (k− 1)st and the (k + 1)st row of J j.
This corner s′jk is the map of the intersection point S jk of the three principal planes Π′′′

k−1 and
Π′′′

k+1 (both intersecting in the principal ray R′′′
k ) and Π′′

j ; see figure 7.12 on the next page for
the creation of the points S11, S21 and S31. Since S jk lies on the principal ray R′′′

k , the mapped
corner s′jk has to lie on the map of that principal ray, which is the epipolar line ρ′3k. This princi-
pal ray also intersects the other two principal planes Π′′

j−1 and Π′′
j+1, and so the corners s′j−1,k

and s′j+1,k arising from the intersection of the (k− 1)st and (k + 1)st row of J j−1 and J j+1 re-
spectively must also lie on ρ′3k. So we see that corresponding corners of the three triangles must
be collinear – lying on the epipolar lines ρ′3k, which are the maps of the principal rays of image
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Figure 7.12: The three points of intersection S j1 of the principal ray R′′′
1 with the principal planes Π′′

j of image
Ψ2. The collinearity of the maps of these three points into image Ψ1 gives one constraint.

Ψ3. This gives the three following collinearity constraints

|α′
2 ×α′

3, β′
2 ×β′

3, γ′2 ×γ′3| = 0
|α′

3 ×α′
1, β′

3 ×β′
1, γ′3 ×γ′1| = 0

|α′
1 ×α′

2, β′
1 ×β′

2, γ′1 ×γ′2| = 0.
(7.58)

Since the principal rays are concurrent in space through Z3, their maps (the epipolar lines ρ′3k)
in image Ψ1 are also concurrent – through the epipole e′3. And therefore we get another epipo-
lar constraint

|α′
2 ×α′

3 ×β′
2 ×β′

3, α′
3 ×α′

1 ×β′
3 ×β′

1, α′
1 ×α′

2 ×β′
1 ×β′

2| = 0. (7.59)

This constraint was set up with the rows of J1 and J2, but in general can be set up with any
pair of J j matrices.

So we easily found another set of four constraints, which are also independent. The latter can
be seen again from the fact that the collinearity of the corners of the J j triangles in general does
not enforce the carrier lines (i.e. the epipolar lines ρ′3k) to be concurrent. What still needs to
be shown is that both groups of constraints that we found for the J j matrices are independent
among themselves.

The independency of both groups can be conjectured from the fact that the first group is derived
using the columns and the second group using the rows of J j matrices. An actual proof by
hand seems to be not so easy as it was for the first minimal set derived from the Ii matrices.
Therefore the proof was carried out using the software package MATLAB and the respective
m-file is attached in appendix E.2.

We summarize this second minimal set of constraints in the following proposition.
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Proposition 7.17 (A new minimal set of constraints via the homography slices.) A valence-
(1,2) tensor Tk j

· · i is a trifocal tensor if its homography slices – the matrices that are obtained by fixing
the contra-variant index j – satisfy the following eight constraints: the three rank constraints (7.52), the
epipolar constraint (7.53), the three collinearity constraints (7.58) and the epipolar constraint (7.59).

The rank constraints are of degree 3 in the elements of the tensor, the first epipolar constraints
is of degree 6, the second one of degree 12 and the collinearity constraints are of degree 6.

Now we are able to prove theorem 7.1 on page 99, which states that the constraints guarantee
that the maps of the principal rays in the images are straight and concurrent lines.

Proof:
The three rank constraints (7.52) and the epipolar constraint (7.53) derived from the Ii matrices
guarantee that the maps of the principal rays of image Ψ1 into image Ψ3 are straight and con-
current lines. These constraints also guarantee that the maps of the principal rays of image Ψ1
into image Ψ2 are straight lines, but not necessarily concurrent. However, the latter is guaran-
teed by the four mapping constraints (7.55) also derived from the Ii matrices. Using these eight
constraints, we can parameterize the Ii matrices in the way of (7.57). With this parameterization
it is straight forward to show that also the three collinearity constraints (7.58) and the epipolar
constraint (7.59) derived from the J j matrices are satisfied. Therefore, also the maps ρ′3k of the
principal rays of image Ψ3 into image Ψ1 are straight and concurrent lines.

So, if we look at figure 7.8 on page 99, we find one set of concurrent epipolar lines in each
image; i.e. ρ′3k, ρ′′1i and ρ′′′1i . What needs to be shown is that the other three sets (ρ′2 j, ρ

′′
3k and ρ′′′2 j)

are also straight and concurrent lines.

Using the theorem of Desargues 3.1 on page 14 this task is rather simple to solve. For example
we consider the situation in image Ψ1. Due to the three collinearity constraints (7.58) and the
epipolar constraint (7.59) derived from the J j matrices we know that the three lines ρ′3k form a
set of straight and concurrent lines. The rows of the J j matrices form triangles J j and intersect
on the lines ρ′3k, see figure 7.13 on the next page left part. Since corresponding corners of these
triangles lie on the concurrent lines ρ′3k, each pair of triangles {J1, J2}, {J1, J3} and {J2, J3} is
perspective from the point e′3. Due to the theorem of Desargues each pair of triangles {J j−1, J j+1}
is also perspective from a line α′

j. And since the three pairs of triangles are perspective from the
same point e′3 these three lines α′

j must be concurrent in a point z′.

Now we consider the rows of the Kk matrices. From table 7.9 on page 100 we see that these
rows are also lines in image Ψ1, which therefore make up triangles Kk. And from table 7.10
on page 101 we see that these rows are the same as the rows of the J j matrices, except for the
ordering. Due to this different ordering the sides of the triangle Kk are made up of the kth side
of each J j triangle (see figure 7.13 on the facing page right part).

We know from the J j triangles that their sides are perspective from the lines α′
j, which are con-

current in the point z′. Therefore, each pair of triangles {Kk−1, Kk+1} must be perspective from
this point z′. Then, due to the theorem of Desargues, each pair of triangles {Kk−1, Kk+1} is also
perspective from a line, which is the line ρ′3k.

The rows of the Kk matrices are related to the maps ρ′2 j of the principal rays of image Ψ2 in
image Ψ1 in the very same way as the J j matrices are related to the maps ρ′3k of the principal

106



Figure 7.13: The triangles formed by the rows of the J j matrices (left) and the triangles formed by the rows of the
Kk matrices (right).

rays of image Ψ3 in image Ψ1; i.e. the sides of the Kk triangles must intersect on the lines ρ′2 j,
and the lines ρ′2 j must be concurrent in the epipole e′2.

From the relations of the Kk triangles to the lines ρ′2 j and the relations found using the theorem
of Desargues, we see that the lines α′

j are actually identical to the lines ρ′2 j and that the point z′

is actually the epipole e′2.

So we see that given the set of straight and concurrent lines ρ′3k in image Ψ1, the remaining
set of straight and concurrent lines ρ′2 j in image Ψ1 is guaranteed due to the theorem of De-
sargues. The same reasoning can be applied to image Ψ2, where we have given the set ρ′′1i and
require the set ρ′′3k, and to the image Ψ3, where we have given the set ρ′′′1i and require the set ρ′′′2 j.

2

7.7 Historical notes

In photogrammetry Mikhail proposed first to use three images instead of two for the relative
orientation of aerial images; [Mikhail 1962]. The benefit gained by using three images is the
checking and minimizing of the x-parallaxes, which are uncontrolled in case of two images.
This work, however, still relayed on the non-linear collinearity relations (1.1).
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In [Rinner and Burkhardt 1972] the dependencies between corresponding points in three im-
ages are investigated. These dependencies are termed trilinear relations, because corresponding
lines in two images are related to a line in the third image. These relations can be used to deter-
mine the corresponding point in the third image if the corresponding points in the other two
images are given. This way the image content of n > 3 images can be transferred into two
chosen images to create two images with maximum image content. Consequently the spatial
information inherent in all n images could be retrieved from these two distinct images alone.
These relations could also be used to form the ground map from two given images – here the
ground map acts as the third image.

Despite those and other interesting properties of these trilinear relations they remained quite
unused in photogrammetry, maybe due to the lack of a compact mathematical representation.
Simple and compact mathematical representations always have been a prime goal in computer
vision; and linear representations are the optimum representations in this context.

Historically at the late 1980’s only linear methods based on point correspondences, introduced by
[Longuet-Higgins 1981] in form of the essential matrix for two calibrated images, were present
in the computer vision community, but no linear methods using lines. Since points and lines
are both available from image feature extractors, it was of interest to find also linear methods,
that can handle lines.

Motivated by this need, the representation of the relative orientation of three calibrated images by
means of 27 parameters was discovered independently by [Spetsakis and Aloimonos 1990] and
[Weng, Huang, and Ahuja 1992]. Both, works come up with the same two linear constraints
for corresponding lines in three images, which correspond to the line-trilinearities (7.23) on
page 78. In both work these constraints are expressed using three 3×3 matrices, which cor-
respond to the transposed correlation slices in this thesis. Spetsakis and Aloimonos go even
further as they also show that the same three matrices can be used to set up nine constraints
for corresponding points in the three images. These nine constraints correspond to the point-
trilinearities (7.29) on page 79. Because their work was based on calibrated images, Spetsakis
and Aloimonos deduced that only three of these constraints are independent, and therefore 9
point correspondences were required for a direct solution.

In the meantime other authors were also dealing with uncalibrated images and tried to solve var-
ious vision tasks. Motivated by the problem of predicting a novel view from a set of given ones
without reconstructing the 3D scene, Shashua rediscovered the same nine constraints for corre-
sponding points in three uncalibrated images in [Shashua and Wolf 1994] and [Shashua 1995a],
which he expressed using nine 3-vectors. Due to the general approach of uncalibrated images
these point correspondences were investigated independently and it became evident that due
to the expression in these 27 parameters actually 4 of these constraints are independent. Con-
sequently 7 point correspondences are already sufficient to determine these 27 parameters.

Further, Hartley also showed that the methods of [Weng, Huang, and Ahuja 1992] for using
lines in calibrated images are equally applicable also for the projective scene reconstruction in
the uncalibrated case; [Hartley 1994b]. So far the 27 elements involved in each author’s work
was realized in different ways grouped either as matrices or vectors. Their first representation
as a tensor was given in [Vieville and Luong 1993]. Based on this tensor representation, Hartley
showed that the point relations of Shashua and the scene reconstruction from lines arise from
the same tensor, for which he proposed the term trifocal tensor; [Hartley 1994a].

In subsequent work the tensor and its underlying relations were re-derived using different
approaches: [Faugeras and Mourrain 1995] used Grassman-Caley algebra, and [Lasenby and
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Lasenby 1998] used Geometric algebra. The properties of the tensor slices were investigated by
e.g. [Shashua and Werman 1995] and [Papadopoulo and Faugeras 1998], as were the constraints
of the tensor; cf. section 7.6.

In [Avidan and Shashua 1996] the authors consider the relations between all possible trifo-
cal tensors among n + 2 images, n > 1. Using the operators O12, which exchanges the first
and the second view, O23, which exchanges the second and the third view, both were already
mentioned in section 7.5, and a third transfer operator, which takes the tensors T(Ψi, Ψ j, Ψk)
and T(Ψ j, Ψk, Ψl), and returns the tensor T(Ψi, Ψk, Ψl), all n(n− 1)(n− 2) tensors among these
n + 2 images can be generated from n arbitrary given tensors of these n + 2 images.

If only the image triples with identical first and second image are considered, then only n dif-
ferent tensors T(Ψ1, Ψ2, Ψi), i = 3, . . . , n, exist. Among these n tensors only 12 are linearly inde-
pendent; [Shashua 1995b]. Consequently any tensor T(Ψ1, Ψ2, Ψi) can be expressed linearly in
12 basis tensors and due to Shashua the coefficients of this linear combination are determined
by 6 corresponding points and the three images Ψ1, Ψ2 and Ψi.
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Chapter 8

The Computation of the Trifocal Tensor

The aim of this chapter is to compute the trifocal tensor for a given set of point and/or line
correspondences across three images. The basic equations for this task are the point and line
trilinearities presented in section 7.3, which are linear in the 27 elements of the tensor. In prin-
ciple 7 triples of points or 13 triples of lines are sufficient for a unique solution. Due to the
inevitable noise in the data, however, it is advisable to use more correspondences than neces-
sary and to determine the tensor using an adjustment. Since the trilinearities are linear in the 27
elements of the tensor we can in principle determine the trifocal tensor without any difficulties
simply by solving a homogenous system of linear equations, just like we did for the fundamen-
tal matrix in section 6.1.2 – but now also line correspondences can be used for the computation.
This direct linear solution will be discussed in section 8.1. Although this is a fast and easy way
to compute the trifocal tensor, it has two mayor drawbacks.

The first drawback is that the trifocal tensor is computed with 26 degrees of freedom, because
the 8 intrinsic constraints of section 7.6 are not considered in this direct linear solution. For
this reason and the inevitable noise in the data the solution will not be a valid trifocal tensor; i.e.
one that has 18 degrees of freedom. Furthermore, depending on the number of point and line
correspondences, their distribution in space and the arrangement of the three images, chances
are that the redundant 8 unconstrained degrees of freedom of the tensor absorb some of the
errors in the image measurements and thereby return a severely disturbed tensor and thus a
rather wrong relative orientation of the three images.

The second drawback is that this direct linear solution does not minimize the errors in the
original measurements (so-called reprojection error) but the deviations of the homogenous right
sides (so-called algebraic error). And therefore we suspect that additional errors in the tensor
elements are induced.

From these drawbacks we see that the direct linear solution only provides an initial solution
and we should further refine it by enforcing the constraints and by minimizing reprojection
error. This can be accomplished by determining the trifocal tensor in the Gauss-Helmert model;
see section D. For this we have to consider the parameterization of a valid trifocal tensor in
the adjustment. This can be done basically in two ways: By parameterizing the tensor using
its 27 elements and introducing 8 suitable constraints from section 7.6 together with the scale
fixing; or by using an alternative parameterization for the trifocal tensor that has 18 degrees of
freedom. These methods of computing a valid trifocal tensor are discussed in section 8.3.
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8.1 The direct linear solution

If we have a set of C image correspondences across three images, which can be any of the fol-
lowing kinds: {λ′, λ′′, λ′′′} (Cλλλ) , {x′, λ′′, λ′′′} (Cxλλ), {x′, x′′, λ′′′} (Cxxλ), {x′, λ′′, x′′′} (Cxλx)
or {x′, x′′, x′′′} (Cxxx), where C... gives the number of the respective correspondences so that
C = Cλλλ + Cxλλ + Cxxλ + Cxλx + Cxxx. Then we can determine the trifocal tensor in a linear
way by solving

At = 0, (8.1)

where t is a 27-vector given as

t =

 vec (I1)
vec (I2)
vec (I3)

 . (8.2)

The matrix A is the Jacobian of the trilinearities with respect to the tensor elements. It is built
row-wise by sub matrices Ac (c = 1, . . . , C), which are made up of the coefficients of the trilin-
earities of our image correspondences and which can be expressed using the Kronecker prod-
uct; see table 8.1.

trilinearities

entities Ac n

λ′, λ′′, λ′′′
(

I2⊗(λ′′>⊗λ′′′>)
)(

Sred(λ′)⊗I9

)
2

x′, λ′′, λ′′′
(
λ′′>⊗λ′′′>

)(
x′>⊗I9

)
1

x′, x′′, λ′′′
(
Sred(x′′)⊗λ′′′>

)(
x′>⊗I9

)
2

x′, λ′′, x′′′
(
λ′′>⊗Sred(x′′′)

)(
x′>⊗I9

)
2

x′, x′′, x′′′
(

Sred(x′′)⊗Sred(x′′′)
)(

x′>⊗I9

)
4

Table 8.1: The sub matrices Ac of coefficients of the reduced trilinearities represented using the Kronecker product;
cf. table 7.5 on page 80. The reduced axiator Sred(x) for points is given by relation (3.48) on page 28. The last
column in this table gives the number n of the linearly independent equations within each group of trilinearities
and thus the number of rows in Ac.

Note that although the implementation of the Ac matrices using the Kronecker product is rather
simple, it requires a lot of computational overhead. Therefore if computation time is of concern
a more direct implementation of the Ac matrices should be aimed for. For example the basic
trilinearity for {x′, λ′′, λ′′′} can simply be written as:

Ac(x′, λ′′, λ′′′) =
(

x′1h>, x′2h>, x′3h>
)

,

with

h> =
(
λ′′1λ

′′′>, λ′′2λ
′′′>, λ′′3λ

′′′> )
.
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In general, the system (8.1) has only a unique solution for the homogenous trifocal tensor in-
corporated in t if exactly 26 equations are used. However, as such minimal solutions are rather
unstable, we will use many more equations usually and solve system (8.1) by minimizing alge-
braic error (i.e. the squared sum of the right side of the equations)

t>A>At → min with ||t|| = 1. (8.3)

Again as in the case of the fundamental matrix, the solution is found by computing a singular
value decomposition of A. An alternative solution without the SVD would be to set the ith
element of t to 1 and to put the respective column of A on the right side of (8.1), thereby
creating an inhomogeneous system of linear equations:

Aiti = −ai → ti = −(A>
i Ai)−1A>

i ai,

where Ai and ti represent the matrix and vector obtained by striking out the ith column and
ith element respectively. Note, however, that the solution obtained in this way will depend on
the value of i. This is due to the algebraic error, which is different for each choice of i, and the
fact that the original matrix A is regular for noisy data. Therefore, it is advisable to use the SVD
solution when minimizing algebraic error, as in this case all columns of A contribute equally to
the solution.

As it was already mentioned in the beginning of this chapter, the direct linear solution for
the trifocal tensor has two disadvantages. First, the computed tensor is not valid, because it
is computed with 26 degrees of freedom without considering the constraints of section 7.6.
And second, this direct linear solution does not minimize reprojection error but algebraic error.
Therefore we will consider in the following sections, how to overcome these two disadvan-
tages.

8.2 Minimizing reprojection error

For determining the trifocal tensor by minimizing reprojection error we can use the Gauss-
Helmert model, which is described in detail in section D.5 on page 195. This model is based
on linearized equations, and therefore the estimation of the tensor t is iterative, starting from
an initial guess t0. The latter may be obtained from the direct linear solution for example. In
the Gauß-Helmert model we have to distinguish between two different types of equations: (i)
conditions, which are relations involving the observations and the unknown tensor elements,
and (ii) constraints, which are relations involving only the tensor elements. For the trifocal
tensor the conditions are the trilinearities and if the internal constraints are not considered, then
there is only one constraint, which is the fixing of the tensor scale e.g. by setting its Frobenius
norm to 1. Basically the Gauss-Helmert model can be written in the following way:

conditions: A∆t + Bv−w = 0,
constraints: C∆t − d = 0,

where ∆t is the vector of corrections for the unknown tensor elements, v is the residual vector
and contains the reprojection error of the observed image features, A is the Jacobian of the
trilinearities with respect to the tensor elements, B is the Jacobian of the trilinearities with
respect to the observations, and w is the contradiction of the trilinearities. The matrix C is
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the Jacobian of the constraint(s) with respect to the tensor elements, and d is the respective
contradiction. In case of disregarding the internal constraints, only the scaling constraint, e.g.
|t| = 1, is involved and C becomes a row vector.

The solution for the trifocal tensor in the Gauß-Helmert model is found by minimizing the
weighted sum of the squared residuals:

v>Pv → min.

The weight matrix of the observations P is proportional to the inverse of the covariance ma-
trix of the observed image features Σ by an unknown scale factor σ2

0 , the reference variance:
P = σ2

0 Σ−1; see section D.3 on page 191. The corrections ∆t are found by solving the following
system [

A>WA C>

C 0

] (
∆t
µ

)
=

(
A>W w

d

)
, (8.4)

with µ being a vector of Lagrange multipliers (see section D.5). The matrix W is the weight
matrix of the trilinearities obtained by error propagation as

W = (BP−1B>)−1.

From the comparison of the algebraic minimization (8.3) with (8.4) the reason for the weakness
of the algebraic solution becomes evident: The trilinearities are not correctly weighted during
the algebraic minimization, as there implicitly W = I is used.

The Jacobian A is build row-wise by sub Jacobian matrices Ac (c = 1, . . . , C) for each type of
trilinearity. These sub matrices are identical to the ones presented in table 8.1 on page 112.
Analogously, the Jacobian B is build row-wise by sub Jacobian matrices Bc for each type of
trilinearity. In table 8.2 on the facing page the sub Jacobian matrices for the two most impor-
tant trilinearities T(x′, x′′, x′′′) = 0 and T(x′, λ′′, λ′′′) = 0 are given. Note, that for the point
trilinearities T(x′, x′′, x′′′) = 0 the rank of the respective sub Jacobian depends on the degrees
of freedom of the trifocal tensor. If the tensor is computed unconstrained with > 18 degrees
of freedom the rank is 4, whereas for the computation of a valid trifocal tensor with 18 degrees
of freedom the rank is 3; [Förstner 2000]. The latter is easy to see from the fact that a triple
of corresponding image points is made up of 6 coordinates, the corresponding point in object
space has 3 unknown coordinates, which gives a redundancy of 3.

This has two consequences: First, the minimum number of point correspondences across three
images required for computing a valid trifocal tensor is 6 not 7. For this computation an initial
tensor is needed, which can be obtained using a 7th point and the direct linear solution. In sec-
tion 8.3.2 a direct method for computing a valid trifocal tensor from 6 point correspondences is
presented, which, however, may return up to three solutions. The second consequence when
computing a valid trifocal tensor using point correspondences is, that we may only consider 3
of the 4 reduced point trilinearities. In [Förstner 2000] ways are presented to choose 3 relations
in an optimal way. The other possibility is to use the reduced 4 trilinearities as in the uncon-
strained case and to enforce the correct rank by applying an SVD for each sub Jacobian matrix
Bc.

During several tests of computing an unconstrained trifocal tensor by minimizing reprojection
error in the Gauß-Helmert model using synthetic point data with added normally distributed
noise the following behavior was observed. The iterative solution was initialized by the direct
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T(x′, x′′, x′′′) = 0

Bc
4×6

=
[

∂T(x′ ,λ′′ ,x′′′)
∂x′ , ∂T(x′ ,λ′′ ,x′′′)

∂y′ , ∂T(x′ ,λ′′ ,x′′′)
∂x′′ , ∂T(x′ ,λ′′ ,x′′′)

∂x′′′
]

with rank(Bc) = 3 or 4

∂T(x′ ,λ′′ ,x′′′)
∂x′ = vec

(
Sred(x′′′)I1Sred>(x′′)

)
∂T(x′ ,λ′′ ,x′′′)

∂y′ = vec
(
Sred(x′′′)I2Sred>(x′′)

)
∂T(x′ ,λ′′ ,x′′′)

∂x′′ =
[

0 1
−1 0

]
⊗

(
Sred(x′′′)J3x′

)
∂T(x′ ,λ′′ ,x′′′)

∂x′′′ =
(
Sred(x′′)K3x′

)
⊗

[
0 1
−1 0

]
T(x′, λ′′, λ′′′) = 0

Bc
1×10

=
[

∂T(x′ ,λ′′ ,λ′′′)
∂x′ , ∂T(x′ ,λ′′ ,λ′′′)

∂x′′S
, ∂T(x′ ,λ′′ ,λ′′′)

∂x′′E
, ∂T(x′ ,λ′′ ,λ′′′)

∂x′′′S
, ∂T(x′ ,λ′′ ,λ′′′)

∂x′′′E

]
with rank(Bc) = 1

∂T(x′ ,λ′′ ,λ′′′)
∂x′ = u>1 I

∂T(x′ ,λ′′ ,λ′′′)
∂x′′S

= u>2 S(x′′E)I
∂T(x′ ,λ′′ ,λ′′′)

∂x′′E
= −u>2 S(x′′S)I

∂T(x′ ,λ′′ ,λ′′′)
∂x′′′S

= u>3 S(x′′′E )I
∂T(x′ ,λ′′ ,λ′′′)

∂x′′′E
= −u>3 S(x′′′S )I

with:
λ′′ = x′′S×x′′E

||x′′S×x′′E||

λ′′′ = x′′′S ×x′′′E
||x′′′S ×x′′′E ||

I =

 1 0
0 1
0 0


u>1 = λ′′′>

[
I1λ

′′, I2λ
′′, I3λ

′′ ]
u>2 = λ′′′>

[
J1x′, J2x′, J3x′

] 1
||x′′S×x′′E||3

S(x′′S × x′′E)S(x′′S × x′′E)

u>3 = λ′′>
[
K1x′, K2x′, K3x′

] 1
||x′′′S ×x′′′E ||3

S(x′′′S × x′′′E )S(x′′′S × x′′′E )

Table 8.2: The sub Jacobian matrices Bc of the trilinearities T(x′, λ′′, x′′′) = 0 and T(x′, λ′′, λ′′′) = 0 with re-
spect to the observations x′ = (x′, y′, 1)> = (x′>, 1)>, x′′ = (x′′>, 1)>, x′′′ = (x′′′>, 1)>, x′′S,E = (x′′S,E

>, 1)>

and x′′′S,E = (x′′′S,E
>, 1)>. For the trilinearity T(x′, λ′′, λ′′′) = 0 it is assumed that each line is defined by its start

and end point. The reduced axiator Sred(x) for points is given by relation (3.48) on page 28. The rank of Bc of
the point trilinearity T(x′, λ′′, x′′′) = 0 is 4 if the trifocal tensor is computed unconstrained with > 18 degrees of
freedom, and the rank is 3 if the tensor is computed with 18 degrees of freedom.
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linear solution and therefore the rank of the sub Jacobian matrices Bc of the point trilinearities
was 4. At the very end of the iterations the rank should still be 4 as the internal constraints
were not considered. At the end, however, the rank turned out to be numerically near to 3; i.e.
the respective unknowns correspond almost to a valid tensor. Because of this rank defect of
almost 1 in Bc the inversion of W in (8.4) induced wrong large corrections in the unknowns,
which destroyed the quality of the previously determined tensor. Consequently the rank of
Bc became 4 again and the iteration proceeded again till this break point was reached another
time. This way an oscillating state was reached.

The explanation for this behavior seems to lie in the synthetic and therefore perfectly normally
distributed noise in the test data. A certain part of this noise was eliminated due to using
the Gauß-Helmert model and minimizing reprojection error. Consequently the solution of the
tensor is near to a valid tensor, with a distance depending on the remaining noise in the data.
Therefore the rank of the sub Jacobians Bc tends to become 3 the more the iteration approaches
its final state.

8.3 The constrained solution

In this section we consider the computation of a valid trifocal tensor; i.e. one that satisfies the
internal constraints and therefore has 18 degrees of freedom. We can distinguish the methods
for computing a valid trifocal tensor in two aspects.

The first aspect concerns the realization of the 18 degrees of freedom. This can be done either by

(A) introducing a set of sufficient constraints into the computation, or by

(B) introducing an alternative parameterization for the trifocal tensor, which has exactly 18
degrees of freedom.

The second aspect concerns the input for the constrained solution. This can either be

(a) the original measurements, or

(b) the direct linear solution of the trifocal tensor.

In the case (a) we compute that constrained solution, which fits best to the original point and
line measurements in the images, by minimizing algebraic or reprojection error. And in case
(b) we compute that constrained solution, which lies closest to the direct linear solution, by
minimizing some type of algebraic error. In [Faugeras and Luong 2001] this method is termed
projection method, as the given direct linear solution is projected orthogonally onto the manifold
defined by the constraints of the trifocal tensor. Since only the case (a) allows minimizing of
reprojection error, this case is the preferred one.

Note that all methods for computing a valid trifocal tensor are nonlinear, regardless of the
realization of the 18 degrees of freedom and the input for the constrained solution. This follows
from the fact that all internal constraints presented in section 7.6 are nonlinear in the elements
of the tensor. Consequently, this nonlinear solution requires an initialization, which in general
is provided by the direct linear solution.
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In the following we consider the first aspect and show ways of introducing the 18 degrees of
freedom in our computation. For case (A) we can use any of the sufficient sets of constraints
presented in section 7.6. For case (B) several parameterizations having 18 degrees were pro-
posed in the past and we will review the most important ones in the following.

8.3.1 The parameterization using the projection matrices

Since the trifocal tensor describes the relative orientation of three images, it is a natural ap-
proach to parameterize the tensor in the elements of the three projection matrices. And as we
saw in section 7.4.3 on page 90, the first projection matrix can be set to the standard form

P1 = [I3, 0] ,

as this just corresponds to a projective transformation in the object space, which does not affect
the relative orientation of the images. We further saw that the other two projection matrices
can then be represented as

P2 ∼ [A, e′′1 ] ,
P3 ∼ [B, e′′′1 ] .

And using the tensor relation (7.7) on page 63 we therefore can parameterize the tensor in the
elements of P2 and P3 as

Tk j
· · i ∼ e′′1

jBk
·i − e′′′1

k A j
·i. (8.5)

Although this parameterization uses 24 parameters, 6 more than required, it is consistent; i.e.
any choice of the 24 parameters returns a valid trifocal tensor. It is a bilinear parameterization,
which can be initialized by the direct linear solution and the method for retrieving the projec-
tion matrices described in section 7.4.3. Recall that this method of retrieving valid projection
matrices relies on the fact that neither the second nor the third projection center coincides with
the first one; therefore in case two of the three projection centers coincide, the roles of the im-
ages have to be changed so that the image with the unique projection center plays the role of
the first image.

This parameterization was proposed by Hartley in [Hartley 1994a]. And in [Hartley and Zis-
serman 2001] this parameterization is used to compute the trifocal tensor in different ways:
by minimizing algebraic error with fixed or varying epipoles, and by minimizing reprojection
error. For these least squares estimations either the SVD or the Levenberg-Marquard algorithm
is used. These two methods do not require the introduction of additional constraints to cope
with the rank defect due to the redundant 6 parameters, whereas other least squares solvers
would need them, especially the Gauß-Helmert model.

The 6 constraints required for the Gauß-Helmert model are explained in the following. Since
projection matrices are defined only up to scale, two constraints are required to fix the scale of
P2 and P3; e.g. by setting |e′′1 | = 1 and |e′′′1 | = 1. In section 7.4.3 on page 90 we saw that the
projective transformation, which takes P1 to the standard form [I3, 0] is only defined up to four
degrees of freedom – the vector v and the scalar w in section 7.4.3.

The remaining constraints fix these degrees of freedom. Following [Hartley 1994a] the vector
v is fixed by requiring that the three columns of A are orthogonal to e′′1 . This relation between
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A and e′′1 is also the basis for retrieving the projection matrices in section 7.4.3. The last con-
straint fixes w, which acts as a scale of the trifocal tensor. Therefore w can be fixed by setting
||Tk j

· · i||Frob = 1 or in a simpler form by setting ||A||Frob = 1. To understand the latter, con-
sider the tensor Tk j

· · i with ||Tk j
· · i||Frob = 1. In this case ||A||Frob = a 6= 1. Since the tensor is

homogenous, we can divide it by a. Consequently ||Tk j
· · i||Frob changes to 1/a and ||A||Frob to 1.

If this parameterization is to be used in the Gauß-Helmert model introduced in section 8.2, then
the unknowns are not the 27 tensor elements but the 24 elements of the two projection matrices
P2 and P3. Consequently the Jacobian matrix A of the Gauß-Helmert model, which holds the
derivatives of the trilinearities with respect to the unknowns, must be adapted.

The 27 tensor elements make up the vector t introduced in equation (8.2) on page 112

t =

 vec (I1)
vec (I2)
vec (I3)

 ,

where Ii are the correlation slices; see relation 7.10 on page 66. We can put the 24 elements of
the parameterization using the projection matrices into a vector p as

p =


vec (A)
vec (B)

e′′1
e′′′1

 . (8.6)

With the vectors t and p we can represent the derivative of any trilinearity T(·, ·, ·) as

∂T(·, ·, ·)
∂p

=
∂T(·, ·, ·)

∂t
∂t
∂p

.

If we further represent the respective Jacobian matrices by At and Ap, where At follows from
the trilinear derivatives of table 8.1 on page 112, then Ap is obtained as

Ap = AtDp, (8.7)

with

Dp
27×24

=
∂t
∂p

=


−I⊗e′′′1 e′′1⊗I I⊗b1 −a1⊗I

−I⊗e′′′1 e′′1⊗I I⊗b2 −a2⊗I

−I⊗e′′′1 e′′1⊗I I⊗b3 −a3⊗I

 , (8.8)

where the positions of zero elements have been left blank for clearer representation. The iden-
tity matrix of dimension 3 is represented as I and the column vectors of A and B are given as ai
and bi respectively.

8.3.2 The six-point parameterization

Torr and Zisserman presented an interesting method to compute a valid trifocal tensor given
the minimum number of six point correspondences across three images, which may return up

118



to three real solutions; [Torr and Zisserman 1997]. This method, which is based on earlier works
of Quan [Quan 1994] and Weinshall et al. [Weinshall, Werman, and Shashua 1996], is outlined
in the following.

Let the three projection matrices be denoted by Pi and the six space points by X j. Since the
absolute orientation is of no concern we can choose the first five of the space points to act as a
projective canonical basis: X1∼ (1, 0, 0, 0)>, X2∼ (0, 1, 0, 0)>, X3∼ (0, 0, 1, 0)>, X4∼ (0, 0, 0, 1)>

and X5∼ (1, 1, 1, 1)>. The sixth point in this canonical basis is then given by X6∼ (P, Q, R, S)>.
The corresponding image points xi

j (for simpler notation we drop the bars (′) and use the super-
script i instead) in the three images can be transformed by a suitable projective collineation Hi
in IP2 from their original coordinates to the canonical points in IP2: xi

1∼ (1, 0, 0)>, xi
2∼ (0, 1, 0)>,

xi
3∼ (0, 0, 1)> and xi

4∼ (1, 1, 1)>. In these canonical bases the maps of the fifth and sixth object
point are given by xi

5∼ (ui
5, vi

5, wi
5)
> and xi

6∼ (ui
6, vi

6, wi
6)
>.

With this preparation it is straight forward to see from xi
j ∼ PiX j, j = {1, 2, 3, 4}, that the

projection matrices Pi can be expressed as

Pi ∼

αi 0 0 δi

0 βi 0 δi

0 0 γi δi

 .

If the three projection matrices are known, then also the trifocal tensor is determined. Therefore
the main task is to determine the four elements of each projection matrix, which is done by
means of the fifth and sixth point. The rest of the algorithm’s outline is due to [Faugeras and
Luong 2001].

Using the maps xi
5∼ (ui

5, vi
5, wi

5)
> of the fifth point X5∼ (1, 1, 1, 1)> we can express the elements

of the projection matrices as

αi = ui
5 − δi,

βi = vi
5 − δi,

γi = wi
5 − δi.

This also fixes the scale of the projection matrices, observe the ’=’ sign. Since the maps of the
sixth point X6 ∼ (P, Q, R, S)> are known to be xi

6 ∼ (ui
6, vi

6, wi
6)
> we can set up the identity

check in IP2:
xi

6×(PiX6) = 0,

which gives

xi
6 ×

 diag(P, Q, R)

 ui
5 − δi

vi
5 − δi

wi
5 − δi

 + δi

 S
S
S

 = xi
6 ×

 P ui
5

Q vi
5

R wi
5

 + δixi
6 ×

 S− P
S−Q
S− R

 = 0.

If X6 ∼ (P, Q, R, S)> were known, we could determine δi from this relation. For this the other
two vectors must be parallel and therefore it must holdxi

6 ×

 P ui
5

Q vi
5

R wi
5

×

xi
6 ×

 S− P
S−Q
S− R

 = 0.
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Expanding this cross product using relation (B.18) on page 179 we get∣∣∣∣∣∣
ui

6 P ui
5 S− P

vi
6 Q vi

5 S−Q
wi

6 R wi
5 S− R

∣∣∣∣∣∣ xi
6 = 0.

Since xi
6 6= 0 the determinant in the previous equation must be zero. By expanding this deter-

minant we get

ui
5(vi

6 − wi
6)PS + vi

5(wi
6 − ui

6)QS + wi
5(ui

6 − vi
6)RS +

ui
6(vi

5 − wi
5)QR + vi

6(wi
5 − ui

5)PR + wi
6(ui

5 − vi
5)PQ = 0.

This equation can be set up for each image and therefore we get a homogenous system of
3 linear equations for the 6-dimensional vector U = (PS, QS, RS, QR, PR, PQ)> of the form
MU = 0. Consequently the general solution of this system (or the nullspace of the respective
matrix) is 3-dimensional, and since the sum of the coefficients in the previous equation is zero
this solution can be expressed as

U ∼ A + λ1B + λ2(1, 1, 1, 1, 1, 1)>,

where A and B can be computed using the singular value decomposition of M .

The homogenous vector U depends only on the coordinates of the sixth object point X6, which
has 3 degrees of freedom. Therefore the elements of U have to satisfy 2 additional constraints:
U1U4 = U2U5 = U3U6. These two constraints together with the general representation of the
solution U gives the following two linear equations in λ2

((B1 + B4 − B3 − B6)λ1 + A1 + A4 − A3 − A6)λ2 +
((B1B4 − B3B6)λ2

1 + (A1B4 − A3B6 + B1 A4 − B3 A6)λ1 + A1 A4 − A3 A6) = 0,

((B1 + B4 − B2 − B5)λ1 + A1 + A4 − A2 − A5)λ2 +
((B1B4 − B2B5)λ2

1 + (A1B4 − A2B5 + B1 A4 − B2 A5)λ1 + A1 A4 − A2 A5) = 0.

By eliminating λ2 the following equation of degree 3 in λ1 is obtained

((B1 + B4 − B2 − B5)λ1 + A1 + A4 − A2 − A5)
((B1B4 − B3B6)λ2

1 + (A1B4 − A3B6 + B1 A4 − B3 A6)λ1 + A1 A4 − A3 A6)−
((B1 + B4 − B3 − B6)λ1 + A1 + A4 − A3 − A6)
((B1B4 − B2B5)λ2

1 + (A1B4 − A2B5 + B1 A4 − B2 A5)λ1 + A1 A4 − A2 A5) = 0.

This cubic equation may yield up to three real solutions for λ1 and each of them provides
unique solutions for λ2, U (and therefore X6), δi and αi, βi, γi. So we may get up to three
different sets of projection matrices Pi and consequently up to three different trifocal tensors
using the relations of section 7.1.1 on page 65.

This 6-point approach is useful in two ways. First, it can be used as a search engine for the so-
called random sample consensus paradigm (RANSAC), [Fischler and Bolles 1981], which is a useful
algorithm for finding gross errors in the data. And second, it can be used to form a minimal
parameterization for the trifocal tensor. A minimal parameterization has the same number of
parameters as the degrees of freedom of the tensor; i.e. 18.
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RANSAC. As opposed to common adjustment techniques, which use all data to find an initial
solution and remove outliers afterwards, the idea behind RANSAC is to select a random sample
of minimum data required to obtain a solution (e.g. two points for a 2D-line) and to test the
other data if it fits with the obtained minimal solution. Depending on some threshold the other
data can therefore be classified as in- and outliers with respect to the selected sample. This way
a consensus measure (the number of outliers) is assigned to the selected sample. This process
is repeated enough times to assure with some probability α that at least one randomly chosen
sample contains only inliers. The required number n of samples depends on the probability
α, the possible percentage of outliers p and the sample size s, and is given by n ≥ ln(1 −
α)/ ln(1− (1− p)s). In the meantime several adaptions of the basic RANSAC idea have been
published; see e.g. [Tordoff and Murray 2002].

To use RANSAC for the computation of the trifocal tensor using data that is probably corrupted
by gross errors, we only have to provide tow things: (i) An algorithm, that works for the mini-
mum point number; like the presented 6-point algorithm. And (ii) a test measure with proper
threshold, which can be used to decide if a point triple is an in- or outlier; e.g. the mean error
of the spatial intersection for each point triple using the projection matrices obtained from the
6 point sample. For more details see the original paper [Torr and Zisserman 1997].

Note that in principle also the direct linear solution of section 8.1, which requires 7 point triples,
can be used for RANSAC. With this algorithm, however, the sample size is larger by one and
thus following from the formula above, more samples are needed to assure the same probability
for an outlier-free sample, and further the direct linear solution does not return a valid trifocal
tensor.

Minimal parameterization. This 6-point approach also provides a possible minimal parame-
terization for the trifocal tensor, which has 18 parameters and consequently any realization of
these parameters returns a valid trifocal tensor. This minimal parameterization is obtained in
the following simple way. The 6 triples of corresponding image points have in total 36 coordi-
nates. Therefore if we fix 18 convenient coordinates of them and allow the other 18 to be free,
we get the trifocal tensor functionally dependent on the free 18 coordinates; i.e. 18 degrees of
freedom.

In this way we can compute a valid trifocal tensor from all point correspondences (after re-
moving the outliers). However, it is not obvious from the beginning which 18 coordinates to
keep fix and which to consider free. In the original paper [Torr and Zisserman 1997] different
choices of 18 coordinates are considered, as well as choices with up to 30 free coordinates. In
the latter case the parameterization is no longer minimal but still consistent, and due to this
overparameterization a special minimization algorithm by [Gill and Murray 1978] needs to be
applied, that ’discards redundant combinations of the variables’. The experiments of Torr and
Zisserman show that the final results do indeed depend on the selected coordinates and also
the convergence (indicated in the number of iterations) varies largely. The computational effort
seems to be further increased by the fact that the usage of the 6-point algorithm is linked to the
particular choice of canonical base points in the images. Therefore after each iteration when
the parameters (i.e. the free coordinates) have changed, these base points must be updated.
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8.3.3 The minimal parameterization by Papadopoulo and Faugeras

The minimal parameterization proposed by Papadopoulo and Faugeras is based on the ob-
servation that the correlation slices Ii are always singular matrices with rank(Ii) ≤ 2; [Pa-
padopoulo and Faugeras 1998]. Particularly, they show that the set G(λ, ρ) of homogenous
rank-2 matrices G for given left kernel λ∼ (λ1, λ2, λ3)> and right kernel ρ∼ (ρ1, ρ2, ρ3)> has 4
degrees of freedom. This can be seen by the relations λ>G = 0> and Gρ = 0, each of which
produces 3 constraints. However, since each of these two groups of constraints includes implic-
itly the singularity of G, only 5 of the resulting 6 equations are linearly independent. Therefore,
only 4 of the 9 elements of any homogenous singular 3×3 matrix G with given left and right
kernel are free.

Consequently any matrix of G(λ, ρ) can be linearly expressed in terms of four rank-1 basis
matrices G1, G2, G3, G4. There is no general way to define a basis, that is valid for all choices
of λ and ρ, and so in their derivations Papadopoulo and Faugeras assume the first coordinate
of λ and ρ to have the largest absolute value. Then the following basis matrices are applicable:

G1 =

 ρ3λ3 0 −ρ1λ3
0 0 0

−ρ3λ1 0 ρ1λ1

 , G2 =

−ρ2λ3 ρ1λ3 0
0 0 0

ρ2λ1 −ρ1λ1 0

 ,

G3 =

−ρ3λ2 0 ρ1λ2
ρ3λ1 0 −ρ1λ1

0 0 0

 , G4 =

 ρ2λ2 −ρ1λ2 0
−ρ2λ1 ρ1λ1 0

0 0 0

 .

This basis is valid as long as λ1 6= 0 and ρ1 6= 0, and for numerical reasons should be used only
if these two elements have the largest absolute value. If other elements are the largest (there are
in total 9 possible combinations), the corresponding basis can be found in a similar way. With
respect to this basis we can express any matrix G, that has the left and right kernels λ and ρ, as
G = a1G1 + a2G2 + a3G3 + a4G4 and as long as a2a3 − a1a4 6= 0 the matrix G is of rank-2, and
rank-1 otherwise.

Now we consider especially the correlation slices Ii of the trifocal tensor. Based on the fact that
the left and right kernels of the three correlation slices are concurrent in the epipoles
e′′′1 ∼ (e′′′1

(1), e′′′1
(2), e′′′1

(3))> and e′′1 ∼ (e′′1
(1), e′′1

(2), e′′1
(3))> respectively, Papadopoulo and Faugeras

show that the following relation must hold

e′′1
(2)e′′′1

(2)ai
1 + e′′1

(2)e′′′1
(3)ai

2 + e′′1
(3)e′′′1

(2)ai
3 + e′′1

(3)e′′′1
(3)ai

4 = 0, (8.9)

where ai
1 to ai

4 are the coefficients needed to express Ii in the basis matrices of G(λi, ρi), with
i = 1, 2, 3. And again, depending on the largest elements in λi and ρi, different elements of
the epipoles need to be selected. The form of relation (8.9) refers to the case where the first
elements in λi and ρi have the largest absolute value.

With this preparations Papadopoulo and Faugeras show that the Ii matrices can be parame-
terized by 8 coefficients, provided the six nullspaces λi and ρi of the three correlation slices Ii

are given. To see this, we consider the 12 coefficients a j
i , j = 1, . . . , 4, required for the linear

expression of the three Ii matrices in the basis matrices of G(λi, ρi). Since for each i the four
coefficients a j

i satisfy the condition (8.9), we can express one of the a j
i in the other quantities

of (8.9). The best choice is to select that element a j
i , whose coefficient in (8.9) hast the largest
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absolute value. Furthermore, because the trifocal tensor is only defined up to scale we can drop
one more of the remaining 9 coefficients a j

i by setting it to 1.

Since the trifocal tensor has 18 degrees of freedom and 8 parameters are used for the parame-
terization of the three Ii matrices if the six nullspaces are given, 10 parameters remain for the
parameterization of the six nullspaces λi and ρi. The three left kernels λi are concurrent in the
epipole e′′′1 , which is only defined up to scale and thus can be parameterized by two coordi-
nates by normalizing the largest coordinate to 1. Then each of the three left kernels λi can be
parameterized by an angle with respect to some basis vectors in the plane orthogonal to the
direction of e′′′1 and since the λi are also only defined up to scale, we can set ||λi|| = 1. So in
total the set of concurrent left kernels λi is parameterized by 5 parameters.

The same reasoning can be applied to the three right kernels ρi, which are concurrent in the
epipole e′′1 . And so in total the set of concurrent right kernels ρi is also parameterized by 5
parameters.

This concludes the minimal parameterization introduced in [Papadopoulo and Faugeras 1998].
Note, however, that a single set of these 18 parameters can not represent all possible trifocal
tensors, because the elements of the nullspaces λi and ρi, the coefficients a j

i and the coordinates
of the epipoles must be mapped in a different way to the 18 minimal parameters depending
on the configuration of the three images. The total number of maps is rather large: 36 for the
selection of the element with the largest absolute value in the six nullspaces λi and ρi (this
defines the basis matrices of G(λi, ρi)); 9 for the selection of that coefficient a j

i which is set to 1
to fix the scale ambiguity of the tensor; 3 for the selection of the largest coordinate of the epipole
e′′1 and analogously 3 for e′′′1 . This gives in total 36 · 9 · 32 = 59.049 possible maps. The best
map has to be selected judging from approximations obtained by e.g. the direct linear solution.

Prerequisite for the applicability of this minimal parameterization is that all six nullspaces
λi and ρi are single lines; i.e. all three correlation slices Ii must have maximum rank-2. If
rank(Ii) ≤ 2 then the nullspaces λi and ρi are not single lines but pencils or the entire IP2, and
therefore the proposed method is not applicable. From table 7.4 on page 77 we see that this
requires that neither the second, nor the third projection center coincides with the first one, as
then all correlation slices would be of rank-1. In general this can be reached by adapting the
roles of the three images.

However, there is still one drawback associated with this minimal parameterization, because
we can see from table 7.4 that correlation slices Ii with rank(Ii) ≤ 2 can occur for any image
configuration; i.e. even if the three projection centers are distinct. Although this problem can be
solved by changing the coordinate system of the first image in a way that all three correlation
slices have rank-2, it shows that the applicability of this minimal parameterization depends on
the coordinate system of the first image.

8.3.4 A new parameterization

In section 7.6.3 on page 99 we derived new sets of constraints for the trifocal tensor and proved
that these sets are minimal. During the prove for the constraints obtained from the correlation
slices we discovered, that we can parameterize the correlation slices and therefore the trifocal
tensor without loss of generality in the form (7.57); i.e.
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I1 =
[

s′′′1 , vs′′′1 + m1e′′′1 , ws′′′1 + n1e′′′1
]

,
I2 =

[
s′′′2 , vs′′′2 + m2e′′′1 , ws′′′2 + n2e′′′1

]
,

I3 =
[

s′′′3 , vs′′′3 + m3e′′′1 , ws′′′3 + n3e′′′1
]

.
(8.10)

This parameterization, first presented in [Ressl 2002], is made up of 20 elements – the vectors
s′′′i , m = (m1, m2, m3)>, n = (n1, n2, n3)> and the epipole e′′′1 have 3 components each, plus
v and w. From section 7.6.3 we know it is a consistent parameterization and therefore it has
18 degrees of freedom. Consequently the parameters have to satisfy 2 constraints, which sim-
ply correct two scaling ambiguities in 8.10. Obviously, the scale of e′′′1 is undetermined as any
change in that scale can be compensated in the parameters m and n. Further, the overall scale of
this parameterization represented in the scale of the vectors s′′′i , m and n is also undetermined.

We can resolve these two scale ambiguities explicitly, by considering two suitable scaling con-
straints, e.g. |e′′′1 | = 1 and || [s′′′1 , s′′′2 , s′′′3 ] ||Frob = 1, or implicitly by adapting the parameters
to form a minimal parameterization. First we consider the general, non-minimal, case and in-
vestigate the properties of this parameterization and afterwards we show how the minimal
parameterization can be realized.

The non-minimal parameterization. The elements of the parameterization (8.10) have a sim-
ple geometric meaning; see proposition 8.1. Note, that in representation (8.10) there is one
column in each correlation matrix Ii that is solely parameterized by the vector s′′′i . We will refer
to this unique column by the index cI .

Proposition 8.1 (Geometric interpretation of the new parameterization.) The elements in the pa-
rameterization (8.10) have the following geometric interpretation:

• e′′′1 is the epipole of image Ψ1 in image Ψ3.

• (1, v, w)> is the epipole e′′1 of image Ψ1 in image Ψ2 – its component at position cI is set to 1.

• [s′′′1 , s′′′2 , s′′′3 ] is a (point) homography from image Ψ1 to image Ψ3 induced by the cI th principal plane
of image Ψ2; i.e. the homography slice JcI .

• m is the 2-dimensional general eigenspace of JcI+1 − κJcI , which corresponds to the map of the
(cI − 1)st principal ray of image Ψ2 into image Ψ1.

• n is the 2-dimensional general eigenspace of JcI−1 − κJcI , which corresponds to the map of the
(cI + 1)st principal ray of image Ψ2 into image Ψ1.

Proof:
The interpretation for e′′′1 and (1, v, w)> was already used during the derivation of the minimal
set of constraints in section 7.6.3 on page 99. The interpretation of [s′′′1 , s′′′2 , s′′′3 ] follows directly
from table 7.10 on page 101; i.e. with cI = 1 the J j homographies are represented by this
parameterization as

J1 =
[
s′′′1 , s′′′2 , s′′′3

]
,

J2 = vJ1 + e′′′1 m>,
J3 = wJ1 + e′′′1 n>.
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What remains to show is that m and n represent the stated general eigenspaces. It is straight
forward to show that κ = v is a general eigenvalue with multiplicity 2 of JcI+1 − κJcI and
that κ = w is a general eigenvalue with multiplicity 2 of JcI−1 −κJcI . From proposition 7.8 on
page 73 about the general eigenvalue problem associated with the homography slices we see
that the general eigenspace of the eigenvalue with multiplicity 2 is the map of the respective
principal ray of image Ψ2 into image Ψ1.

2

The fact that in representation (8.10) the vectors s′′′i parameterize the same column, with index
cI , in all three Ii matrices is a possible limitation for the applicability of this parameterization.
Only if the cI th column in each Ii matrix is different from e′′′1 and the zero vector 0, the param-
eterization is applicable in general. Therefore and for numerical reasons, the index cI is chosen
so that the respective columns are farthest away from e′′′1 . Consequently this index cI may be
found by ∑3

i=1 |e′′′1 ×IiiI | → max; or we simply look for the largest absolute value of the coordi-
nates of epipole e′′1 , because from proposition 8.1 we see that the cI th coordinate of this epipole
is implicitly set to 1.

For the safe application of any parameterization it is important to know its critical configura-
tions.

Proposition 8.2 (Critical configurations of the new parameterization.) The parameterization
(8.10), taking into account the three possible maps for the index cI , is applicable for any image con-
figuration as long as not all three projection centers coincide.

Proof:
Since it is part of the parameterization, that the length of e′′′1 and one component in e′′1 are set
to 1, problems surely arise if either of these epipoles is the zero-vector. This would happen if
the first projection center Z1 coincides with one of the other two; i.e. Z1 = Z3 or Z1 = Z2. This
problem can be solved - as long as not all three projection centers coincide - by changing the
role of the images in the way that the image with the unique projection center plays the role
of image Ψ1. In case of Z1 = Z2 = Z3 the respective trifocal tensor becomes the zero-tensor,
which does not correspond to a valid relative orientation of three images.

Another problem with this parameterization could come from the fact, that the vectors
{s′′′1 , s′′′2 , s′′′3 } parameterize the same column (with index cI ) in all three correlation slices. Still
keep in mind that we choose the best column for this parameterization – the one that is farthest
away from e′′′1 . If we take the minimal parameterization exactly as it is given in representation
(8.10), we see, that the columns of I1 = [a′′′1 , a′′′2 , a′′′3 ] are parameterized by e′′′1 and the vector
s′′′1 . Thus it must be assured, that s′′′1 is different from e′′′1 and different from the zero-vector,
i.e. s′′′1 6∼ e′′′1 , because otherwise the column vectors a′′′2 6∼ e′′′1 and/or a′′′3 6∼ e′′′1 can not be
parameterized by s′′′1 and e′′′1 . Of course, if a′′′2 ∼ e′′′1 and a′′′3 ∼ e′′′1 , than we would have no
problem. So, we will prove, that the first case, s′′′1 ∼ e′′′1 but a′′′2 6∼ e′′′1 and/or a′′′3 6∼ e′′′1 , can not
occur. This prove is outlined in the following.

First we arrange the three matrices Ii as the rows of a large matrix U, which then has 9 rows
and 3 columns. We, however, consider the elements of U being the column vectors of the Ii
matrices. So, U has 3× 3 elements and the element at row ξ and column η is the ηth column
vector in matrix Iξ , which is the image of the intersection point of principal plane Π′′

η with the
principal ray R′

ξ .
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Now, we assume that one element (row ξ , column η) of U is ∼ e′′′1 . This may happen due to
two situations: A1) Z3 ∈ R′

ξ or A2) Z1 ∈ Π′′
η . Then, we consider that one element (row ξ ,

column η) of U shall be = 0. This may happen also due to two situations: B1) Z3 = Π′′
η ∧ R′

ξ or
B2) R′

ξ ∈ Π′′
η . However, B1) implies Z3 ∈ R′

ξ (→ A1) and B2) implies Z1 ∈ Π′′
η (→ A2). Thus,

the only possible situations, that may return one element in U being ∼ e′′′1 or = 0 are the ones
of A1) and A2).

These situations, however, not only return the element at row ξ and column η of matrix U to
be ∼ e′′′1 or = 0, they further imply: A1) returns that all elements in row ξ of U are ∼ e′′′1 ; i.e.
the entire matrix Iξ , which then has rank-1. And so all columns of Iξ can be parameterized by
sξ , being ∼ e′′′1 or = 0, and e′′′1 . A2) returns that all elements in column η of U are ∼ e′′′1 ; i.e. the
column η in all three correlation matrices Ii. Again, the parameterization of these columns is not
difficult, but what is more important: When situation A2) occurs, the ηth column in the three
correlation matrices Ii will never be used as the vectors {s′′′1 , s′′′2 , s′′′3 } in the parameterization,
since they are not far away from e′′′1 .

This completes the prove, that it is impossible, that one of the three vectors {s′′′1 , s′′′2 , s′′′3 } is
∼ e′′′1 or = 0, but one of the other columns in Ii is different from e′′′1 and 0. Thus, the new pa-
rameterization of the trifocal tensor holds for any image configuration – provided not all three
projection centers coincide.

2

If the parameterization (8.10) is to be used in the Gauß-Helmert model, then we have to make
the same adaption as for the parameterization using the projection matrices in section 8.3.1;
i.e. the unknowns are not the 27 tensor elements which make up the vector t introduced in
equation (8.2) on page 112, but the 20 elements of the new parameterization, which make up
the vector q. Consequently the Jacobian matrix A of the derivatives of the trilinearities with
respect to the unknowns must be adapted also. We can represent the vector q as

q =
(

s′′′1
>, s′′′2

>, s′′′3
>, v, m>, w, n>, e′′′1

>
)>

. (8.11)

With the vectors t and q we can represent the derivative of any trilinearity T(·, ·, ·) as

∂T(·, ·, ·)
∂q

=
∂T(·, ·, ·)

∂t
∂t
∂q

.

If we further represent the respective Jacobian matrices by At and Aq, where At follows from
the trilinear derivatives of table 8.1 on page 112, then Aq is easily obtained as

Aq = AtDq, (8.12)

with

Dq
27×20

=



I
vI s′′′1 e′′′1 m1I
wI s′′′1 e′′′1 n1I

I
vI s′′′2 e′′′1 m2I
wI s′′′2 e′′′1 n2I

I
vI s′′′3 e′′′1 m3I
wI s′′′3 e′′′1 n3I


, (8.13)
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where the positions of zero elements have been left blank for clearer representation. The iden-
tity matrix of dimension 3 is represented as I.

For the usage of this parameterization in the Gauß-Helmert model we further need approxi-
mate values for the elements of this parameterization, which can be obtained from the direct
linear solution following table 8.3.

(i) Compute the epipole e′′′1 from the direct linear solution using the method of Spetsakis and
Aloimonos in section 7.4.1 on page 83. This also gives |e′′′1 | = 1.

(ii) Choose the index cI as explained above; this gives the vectors s′′′1 , s′′′2 and s′′′3 , which
are the columns of the matrix JcI

. Divide those three vectors and the trifocal tensor
from the direct linear solution by ||JcI

||Frob. This ensures the second scaling constraint
|| [s′′′1 , s′′′2 , s′′′3 ] ||Frob = 1 is satisfied.

(iii) Find the other elements (m, n, v, w) of the parameterization by solving the following
overdetermined system, which is linear in these missing parameters,

 s′′′1 e′′′1
s′′′2 e′′′1
s′′′3 e′′′1


︸ ︷︷ ︸

M


v w

m1 n1
m2 n2
m3 n3


︸ ︷︷ ︸

V

=
[

vec
(

JcI +1

)
, vec

(
JcI−1

)]
︸ ︷︷ ︸

N

by minimizing the squared distance to the (cI + 1)st and the (cI − 1)st column of the Ii

matrices; V = (M>M)−1M>N .

(iv) (optional) Refine this parameterization iteratively by solving the following least squares
problem:

|Dq∆q− (t − t(q))|2 → min.

The vector t represents the direct linear solution of the trifocal tensor, t(q) is the valid
trifocal tensor computed from the parameterization q using relation (8.10), ∆q is the cor-
rection for the elements of the parameterization q and Dq is defined in (8.13). Usually 1-3
iterations are sufficient.

Table 8.3: Initialization of the new parameterization (8.10) using the direct linear solution for the trifocal tensor.

Note that this way of getting the approximation for the new parameterization (including the
optional last step) corresponds to a constrained solution of type (Bb), or projection method, men-
tioned at the beginning of this chapter; i.e. the input for the constrained solution is the direct
linear solution of the tensor and using the new parameterization that valid trifocal tensor is
found, which lies closest to the direct linear solution.

Observe that the new parameterization and the parameterization using the projection matrices
are closely related. The latter turns into the new parameterization, if the six constraints for the
projection matrices are adapted as shown in table 8.4.
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ambiguity
parameterization using
the projection matrices new parameterization

fix scale of P2 = [A, e′′1 ] |e′′1 | = 1 max(|e′′1 |( j)) = |e′′1
(cI )| = 1

fix scale of P3 = [B, e′′′1 ] |e′′′1 | = 1 |e′′′1 | = 1

fix v a>i e′′1 = 0, i = 1, 2, 3 acI
= 0

fix w ||A||Frob = 1 ||JcI
||Frob = 1

Table 8.4: Comparison of the new parameterization and the parameterization using the projection matrices (sec-
tion 8.3.1 on page 117) with respect to the choices of resolving the 6 ambiguities in the 24 elements of the projection
matrices P2 and P3. The vector v and the scalar w are the remaining degrees of freedom in the projective trans-
formation that takes P1 to the standard form

[
I3, 0

]
; see section 7.4.3 on page 90. The vector ai is the ith column

of the matrix A.

The minimal parameterization In the general form of the new parameterization we have to
consider two scaling constraints during the computation. We can avoid these constraints by
adapting the parameterization in the following simple way. We can set the largest absolute
value of e′′′1 and [s′′′1 , s′′′2 , s′′′3 ] to 1. Consequently the whole parameterization depends only on
18 parameters and so we derived a minimal parameterization for the trifocal tensor in very
simple way.

The elements of this minimal parameterization can be initialized in the same way as the non-
minimal one using table 8.3 and afterwards setting the largest absolute value in e′′′1 and
[s′′′1 , s′′′2 , s′′′3 ] to 1.

Considering that we have 3 choices for selecting the index cI of the columns, which are pa-
rameterized by s′′′i , 3 choices for the largest absolute value of e′′′1 and 9 choices for the largest
absolute value of [s′′′1 , s′′′2 , s′′′3 ], this minimal parameterization has in total 81 maps, which is a
number much smaller than for the minimal parameterization of Papadopoulo and Faugeras in
section 8.3.3.

Consequently the implementation of this minimal parameterization will be much simpler than
the one of section 8.3.3. The implementation of the non-minimal parameterization together
with its two constraints, however, is still easier, because only the 3 choices for selecting the
index cI need to be considered. Therefore we will consider in the following only the non-
minimal parameterization.

8.3.5 Considering the internal constraints in the Gauß-Helmert model

For estimating a valid trifocal tensor by minimizing reprojection error we can use the Gauss-
Helmert model introduced in section 8.2. Now we have to decide how to realize the constraints
in this model in an easy way. We can either estimate the trifocal tensor with its 27 elements
and introduce suitable 8 constraints from section 7.6 plus the scaling constraint to achieve 18
degrees of freedom, or we can use one of the parameterizations presented in the previous sec-
tions, which, being minimal or non-minimal, have always 18 degrees of freedom.

The set of constraints introduced in section 7.6 are not the first candidates because the following
restrictions are associated to them.
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The non-minimal set of Papadopoulo and Faugeras (section 7.6.1 on page 96): The Gauß-
Helmert model does not offer the possibility of including redundant constraints1. There-
fore suitable 8 constraints must be selected from the 12 constraints proposed by Pa-
padopoulo and Faugeras, and it is not obvious which ones are the best for this purpose.
Further, the epipolar constraints (7.48) on page 96, which must be included in any case,
require that all three correlation slices have maximum rank-2. The rank of these matrices
depends on the orientation of the measurement system {x′, y′} of the first image. So by
proper choice of the system {x′, y′} the maximum rank case can be established in general.
However, it may not be obvious in advance how to choose the coordinate system in im-
age Ψ1 to provide rank-2 for all correlation slices. So, due to this dependency on {x′, y′}
the usage of these constraints is further reduced.

The minimal set of Canterakis (section 7.6.2 on page 97): Although this is a minimal set, the
realization of these constraints in the Gauß-Helmert model seems to be a difficult task,
due to the high complexity of the constraints. For example, the implementation of the
two constraints for demanding identical (up to scale) eigenvectors for the single gen-
eral eigenvalues, requires the differentials of these two constraints with respect to the
27 tensor elements, which appears to be complicated even by numerical differentiation.
Therefore the set of Canterakis does not seem to be the first choice for the Gauß-Helmert
model.

The new minimal sets of constraints (section 7.6.3 on page 99): The new sets include either the
epipolar constraint (7.53) on page 101 or the concurrency constraint (7.59) on page 105 and
for both the same restriction as for the set of Papadopoulo and Faugeras holds. Only if all
correlation slices have maximum rank-2 (for the epipolar constraint) the first set of con-
straints can be applied; and only if all homography slices have at least rank-2 the second
set of constraints can be applied. So, although these sets are minimal, they are also not the
first choice for the Gauß-Helmert model. For the set derived from the correlation slices
some experiments were made and it became evident, that if not all correlation slices have
maximum rank-2, then the iteration does not converge, but oscillates around the actual
solution.

One drawback that holds for all previous sets of constraints, is that the constraints expressed
in the 27 tensor elements are of high order, ranging from degree 3 to degree 12.

The other possibility of introducing the constraints in the Gauß-Helmert model is to use one of
the parameterizations with 18 degrees of freedom presented in the last sections. Concerning their
implementation in the Gauß-Helmert model we can state the following.

The parameterization using the projection matrices (section 8.3.1 on page 117): This is a sim-
ple bilinear parameterization using 24 parameters. It is is independent on the choice of
the coordinate systems of the three images and valid for all image configurations, as long
as not all three projection centers coincide and the projection center of the first image is
unique. To realize the 18 degrees of freedom in the Gauß-Helmert model we need to
consider 6 constraints, which were discussed in section 8.3.1. The parameterization itself
and the 6 necessary constraints have a simple form. Consequently their implementation
is easy and so this parameterization is a perfect candidate for the Gauß-Helmert model.

1A workaround would be to introduce the constraints as conditions with very large weights to assure they are
satisfied. This, however, may run the risk that numerical problems arise or that the internal constraints are not fully
satisfied.
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The six-point parameterization (section 8.3.2 on page 118): Although this parameterization al-
lows a perfect method for detecting gross errors in the data, it is not the first choice for param-
eterizing the trifocal tensor in the Gauß-Helmert model. Again we are confronted with
a selecting problem that can not be solved in advance: Which points of all n point cor-
respondences are to be used for the six-point parameterization and which coordinates of
those are to be kept fix and which allow to be free? This corresponds to (n

6) · 18 choices.
Further we need the matrix Ar , containing the differentials of the trilinearities with re-
spect to the 18 free coordinates of the the six point parameterization, which make up the
vector r. This can be done analogously to section 8.3.1 as Ar = AtDr . The elements of Dr
contain the differentials of the 27 tensor elements with respect to the 18 free coordinates
of the the six point parameterization. The determination of the elements of Dr is not
trivial and seems to be realizable only by numerical differentiation, which itself is rather
involving: First the six points must be transformed to their canonical representation, then
the cubic equation for λ1 must be solved, which gives then up to 3 solutions for the pro-
jection matrices, the appropriate set of projection matrices is the transformed back to the
system of the original points. Finally these projection matrices determine the 27 elements
of the tensor.

So, all in all, the realization of the six-point parameterization in the Gauß-Helmert model
would be rather involving.

The minimal parameterization by Papadopoulo and Faugeras (section 8.3.3 on page 122): The
main drawbacks associated with this parameterization are the following. It is rather in-
volving to setup this minimal parameterization at the beginning of the computation, as
there are several selections to be made concerning the fixing and substitution of elements,
resulting in a total number of 59.049 possible maps. During the iteration it may turn out
that other elements are better suited for fixing or substitution, therefore these criteria need
to be observed throughout the iterations and if needed the parameterization needs to be
adapted. Since there are several cases to be considered, the respective program code will
be rather long and complex. And since this parameterization requires all correlation slices
to have maximum rank-2, another drawback of this parameterization is its dependency
on the choice of the coordinate system of the first image. Although this does not prac-
tically hamper the realization of this parameterization, it is nevertheless an unnecessary
additional regard.

The new parameterization (section 8.3.4 on page 123): The new parameterization can be real-
ized in a minimal or non-minimal way. The minimal form has 81 possible maps, therefore
we will consider the non-minimal parameterization, as it is easier to realize. This new pa-
rameterization offers a simple bilinear relation between the 27 tensor elements and the
20 elements of the parameterization. It is is independent on the choice of the coordinate
systems of the three images and valid for all image configurations, as long as not all three
projection centers coincide and the projection center of the first image is unique.

Due to its simplicity and its general applicability, this new parameterization is suited for
the realization of the 18 degrees of freedom in the Gauß-Helmert model.

Summing it up, of all the sets of constraints and parameterizations presented, only the parame-
terization using the projection matrices and the new parameterization are suited for computing
a valid trifocal tensor in the Gauß-Helmert model. Both are non-minimal parameterizations. The
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implementation of any minimal parameterizations is not recommended, as the program code
will be relatively complex due to the many case differentiations involved.

The benefit of the parameterization using the projection matrices is that there is only one map
from the trifocal tensor to this parameterization, whereas for the new parameterization there
are three maps, i.e. the choice of the column index cI . On the other hand the parameterization
using the projection matrices requires 6 constraints, whereas the new parameterization needs
only 2 constraints.

However, since the simplicity of the implementation, i.e. the number of maps, is more impor-
tant than the number of required constraints, the parameterization using the projection matrices is
the recommended way to represent a valid trifocal tensor in the Gauß-Helmert model.

8.4 Transformation of the trifocal tensor due to conditioning

As it was already mentioned in section 3.7, it is inevitable to do a conditioning if measurements
are introduced as projective quantities in the computations. The effect of not conditioning the
measurements can be exemplified especially by the point trilinearities (the last row in table 8.1
on page 112). From there we see that the elements of the sub-matrix Ac are products of three
homogenous point coordinates, one from each image. The homogenous part xH is 1 for all real
points, whereas the coordinates of the Euclidian part xO can have any value. Suppose the
points are measured in digital images with 2000× 3000 pixels, the Euclidian part will be in the
order of 1000. Consequently the elements of Ac will vary between 13 and 10003, and we will
encounter numerical problems in the solution of 8.1.

With the conditioning matrices presented in section 3.7 on page 28 we can easily solve this
problem. However, in this case the computed tensor, represented by the vector t, refers to the
system of the conditioned measurements. The transformation back to the system of the original
measurements is done in the following way.

If the points in each image are conditioned by different matrices, i.e. x′ ∼ H′x′, x′′ ∼ H′′x′′ and
x′′′ ∼ H′′′x′′′, where x represents the original measurement and x the conditioned one. Then
the correlation slice Ii of the original tensor are computed from the conditioned ones Ii by

I1 = m′H′′′−1I1H
′′−>

I2 = m′H′′′−1I2H
′′−>

I3 = H′′′−1(−m′x′CI1 −m′y′CI2 + I3)H
′′−>,

(8.14)

where m′, x′C and y′C are the elements of H′; cf. equation (3.49) on page 29. This transforma-
tion follows simply from the point trilinearities (see table 7.5 on page 80) by applying the three
conditioning matrices H() and the axiator relation (B.12) on page 179.

This transformation can also be performed in the following way. Let the original tensor be
represented by the vector t and the conditioned tensor by the vector t. Then it holds:

t ∼ HTt, (8.15)

where
HT ∼ H′>⊗H′′−1⊗H′′′−1.
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Although the version (8.15) requires much more computation time than the version (8.14), it
is particularly useful, because it enables the transformation of the covariance matrix Σtt of the
conditioned tensor t to the covariance matrix Σtt of the original tensor t by

Σtt = HTΣttH
>
T .

8.5 Critical configurations for determining the trifocal tensor

When computing the trifocal tensor we also have to take care of critical configurations or sur-
faces, which do not allow a unique solution for the tensor. Due to [Hartley 2000] the following
configurations are critical when determining the trifocal tensor from image point correspondences:

• All image point correspondences arise from object points lying in the same plane, which does
not contain the three projection centers 2.

• All image point correspondences arise from object points lying on a certain space curve of
degree 3, called twisted cubic, which also contains one of the three projection centers.

• All image point correspondences arise from object points lying in a six-parameter family of
space curves of degree 4, which also contain the three projection centers.

Again as in the case of the fundamental matrix, point correspondences arising from the same
plane are critical, which is not very surprising, as in this case the points between any pair of
images are related by a homography. This is also understandable from the photogrammetric
point of view, because the three images are considered uncalibrated. Consequently a calibration
is associated with the determination of the trifocal tensor, which is well known to be impossi-
ble for planar point correspondences. However, what is different from the critical surfaces of
the fundamental matrix (which are ruled quadrics) is, that for the trifocal tensor there are no
critical surfaces, but only critical curves of certain degree. This is of practical importance, as the
chance of running into a critical situation is much smaller when computing the trifocal tensor
compared to computing the fundamental matrix (from the same points).

In contrast to the fundamental matrix, the determination of the trifocal tensor can also be done
using image line correspondences. Here critical configurations also exist, with the so-called
linear line complex being one of practical relevance; [Stein and Shashua 1998]. A linear line
complex (LLC) is a set of 3D lines intersecting on a common line; e.g. all lines that are visible
on two facades of a house form a LLC because they intersect on the edge of the two facades
(see figure 8.1). In the case of this critical configuration the system for the direct linear solution
(8.1) on page 112 has rank-23 instead of rank-26. A unique solution can be found nevertheless
by imposing the internal constraints of the trifocal tensor. More on the topic of critical line
configurations can be found in [Buchanan 1992].

2The rank of the matrix A in system (8.1) has rank-21 instead of rank-26; [Stein and Shashua 1998]. Therefore the
right nullspace is a 6-dimensional subspace in IR27. So by intersecting this nullspace with the manifold of dimension
18 defined by the internal constraints of the tensor (i.e. by looking for the members in the nullspace that satisfy the
constraints) a valid trifocal tensors could be obtained. This intersection, however, will not be unique in general.
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Figure 8.1: A critical configuration of lines. All thick lines intersect the line L and form a linear line complex.

133



134



Chapter 9

Empirical Investigations concerning the
Quality of the estimated Trifocal Tensor

In this chapter we will compute the trifocal tensor by different methods for different image
configurations and for a varying number of corresponding points. These examples are based
on synthetic data and shall demonstrate

• the differences between minimizing algebraic and reprojection error,

• the effects of considering or neglecting the internal constraints of the tensor, and

• the impact of critical configurations; i.e. how close must points lie to the same plane so that
the computation fails? To answer this question the object points will be placed inside a
cuboid, which is then incrementally compressed in one direction till the computation fails;
the compression for which the computation is still possible will be referred to as minimum
thickness of the cuboid.

The examples are conducted and evaluated in the following way.

(i) Define a configuration of three images by means of exterior and interior orientation. This
gives the original projection matrices Pi.

(ii) Define a cuboid in object space, place n points X j regularly inside and project those points
into the three images.

(iii) Add normally distributed noise (e.g. with 1 pixel standard deviation) to those image
points and randomly select m < n point correspondences.

(iv) Determine the trifocal tensor from these point correspondences by some selected method,
which minimizes algebraic or reprojection error with or without considering the internal
constraints.

(v) Retrieve projection matrices Pi from the computed tensor using the method of section 7.4.3
on page 90.

(vi) Determine all n object points X j by spatial intersection (minimizing reprojection error)
using the projection matrices Pi.
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(vii) Since those retrieved Pi differ from the original Pi by some unknown 3D projective trans-
formation H−1 as Pi ∼ PiH−1, determine H using the known original points X j and the
intersected points X j by minimizing ∑ d2

j , with d j = |X j − Y j| and Y j ∼HX j. Do not use
the m select points which were used to compute the trifocal tensor.

(viii) Store the mean and maximum of the d j values. If the mean value is above a certain thresh-
old, then the respective solution is classified as ’bad’.

(ix) Repeat steps (iv) – (viii) for different methods of computing the trifocal tensor by minimiz-
ing algebraic and reprojection error with and without considering the internal constraints.

(x) Repeat steps (iii) – (ix) 1000 times.

(xi) Repeat steps (ii) – (x) by incrementally compressing the cuboid till all object points X j lie
in one plane.

(xii) Plot the averages over all 1000 samples of the mean and maximum d j values (referred to
as ground errors), and the percentage of ’bad’ solutions against the compression rate of
the cuboid.

(xiii) Repeat steps (ii) – (xii) for different m.

9.1 The setup

In this section the setup of the examples is described; i.e. the image configurations and the
computation methods.

Image configurations. Five different image configurations ’Tetra’, ’Air1’, ’Air2’, ’Street1’ and
’Street2’ have been created.

’Tetra’: The three images and the center of the object points form a tetrahedron. The camera
geometry is based on the Nikon DCS 460 camera. So each image has 3000×2000 pixels,
with a pixel sice of 9×9 µm2, therefore the whole CCD chip measures 27×18 mm2. The
principal point lies at the center of the image at (1500,−1000), the principal distance c is
given by 3500 pixel, which corresponds to about 32 mm. No affinity is assumed for the
interior orientation.

The object points are regularly placed inside a cuboid of dimension 3×1.5×3 m3, with 8
points along each direction. All three principal axes intersect in the center of the cube with
an angle of about 90◦. To find the critical planarity situation this cube will be compressed
in the direction orthogonal to the trifocal plane symmetrically to the center of the cuboid.

The projection matrices of the three images are given in table 9.1 on page 138 and the
whole configuration is depicted in figure 9.1 on page 138.

’Air1’: The images are assumed to be three consecutive images of an aerial flight strip flown
with 80% length overlap. The projection centers lie 1500 m above the center of the object
points, which is placed at height 0. The camera geometry is assumed to be the normal
angle case. The image size is 23×23 cm2 and the images are scanned with 15 µm resulting
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therefore in 15300×15300 pixels per image. The principal point is placed in the center of
the image at (0, 0) (i.e. the image measurements refer to the camera system due to a fidu-
cial transformation). The principal distance is assumed to be 300 mm, which corresponds
to 20000 pixel. Again no affinity is assumed for the interior orientation.

The object points are regularly placed inside a cuboid of dimension 690×1150×225 m3,
with 8 points along each direction. The corresponding projection rays intersect in the
center of the cube with an angle of about 17◦. To find the critical planarity situation this
cuboid will be compressed in the vertical direction symmetrically to the center of the
cuboid. In the beginning the height of the cuboid is 15% of the flight height.

The projection matrices of the three images are given in table 9.2 on page 139 and the
whole configuration is depicted in figure 9.2 on page 139.

’Air2’: This configuration is identical to ’Air1’, except that the third image is assumed to be
from the neighboring strip, which overlaps with the first strip by 60%. The object points
are regularly placed inside a cuboid of dimension 920×690×225 m3, with 8 points along
each direction. The corresponding projection rays intersect in the center of the cube with
an angle of about 19◦. To find the critical planarity situation this cuboid will be com-
pressed in the vertical direction symmetrically to the center of the cuboid. In the begin-
ning the height of the cuboid is 15% of the flight height.

The projection matrices of the three images are given in table 9.3 on page 140 and the
whole configuration is depicted in figure 9.3 on page 140.

’Street1’: The images are assumed to be three consecutive images acquired from a car driving
on a straight and horizontal street approaching a vertical object; e.g. a garage. The image
geometry is identical to the ’Tetra’ configuration. The distance between the vertical object
and its closest projection center is 10 m, which is also the depth of the object. The front
facade measures 8.6×5.7m2. This facade is mapped in the first image by covering 100%
of the image size, and consecutive images overlap by 80% in area. The object points are
regularly placed inside this vertical object, which is represented as a cuboid of dimension
8.6×5.7×10 m3, with 8 points along each direction. The corresponding projection rays
intersect in any point of the cubic with an angle of less than 3◦. To find the critical pla-
narity situation this cuboid will be compressed in the direction of the street towards the
front facade.

The projection matrices of the three images are given in table 9.4 on page 141 and the
whole configuration is depicted in figure 9.4 on page 141.

’Street2’: This configuration is identical to ’Street1’, except for finding the critical planarity
situation. Here the cuboid will be compressed in vertical direction towards the street; i.e.
how close to the street must the points lie for the computation to fail? For this purpose
the cuboid is adapted to the dimension 8.6×2.85×10 m3.

The projection matrices of the three images are given in table 9.5 on page 142 and the
whole configuration is depicted in figure 9.5 on page 142.
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P1 =

−0.929723 −0.176307 −0.536846 0.000000
−0.117883 1.029001 0.094305 0.000000
−0.000203 −0.000118 0.000163 0.000000


P2 =

−0.319666 −0.176306 1.024892 3.196663
0.117883 1.029001 0.094305 −1.178830
0.000203 −0.000118 0.000163 −0.002034


P3 =

 1.000000 0.352214 0.244169 −8.050175
0.000000 −0.804538 0.659054 6.967296
0.000000 0.000235 0.000163 −0.002033



Table 9.1: The projection matrices of configuration ’Tetra’.

Figure 9.1: Sketch of configuration ’Tetra’. The arrows point in direction of the cuboid compression, the limit of
which is represented by the small horizontal bar.
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P1 =

 1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 −0.000050 0.075000


P2 =

 1.000000 0.000000 0.000000 −230.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 −0.000050 0.075000


P3 =

 1.000000 0.000000 0.000000 −460.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 −0.000050 0.075000



Table 9.2: The projection matrices of configuration ’Air1’.

Figure 9.2: Sketch of configuration ’Air1’. All three projection centers have h = 1500. The arrows point in
direction of the cuboid compression, the limit of which is represented by the small horizontal bar.
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P1 =

 1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 −0.000050 0.075000


P2 =

 1.000000 0.000000 0.000000 −230.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 −0.000050 0.075000


P3 =

 1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 −460.000000
0.000000 0.000000 −0.000050 0.075000



Table 9.3: The projection matrices of configuration ’Air2’.

Figure 9.3: Sketch of configuration ’Air2’. All three projection centers have h = 1500. The arrows point in
direction of the cuboid compression, the limit of which is represented by the small horizontal bar.
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P1 =

 1.000000 0.000000 −0.428571 1.071429
0.000000 1.000000 0.285714 −6.428571
0.000000 0.000000 −0.000286 0.003571


P2 =

 1.000000 0.000000 −0.428571 0.505860
0.000000 1.000000 0.285714 −6.051526
0.000000 0.000000 −0.000286 0.003194


P3 =

 1.000000 0.000000 −0.428571 0.000000
0.000000 1.000000 0.285714 −5.714286
0.000000 0.000000 −0.000286 0.002857



Table 9.4: The projection matrices of configuration ’Street1’.

Figure 9.4: Sketch of configuration ’Street1’. The arrows point in direction of the cuboid compression, the limit of
which is represented by the small bar.
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P1 =

 1.000000 0.000000 −0.428571 1.071429
0.000000 1.000000 0.285714 −6.428571
0.000000 0.000000 −0.000286 0.003571


P2 =

 1.000000 0.000000 −0.428571 0.505860
0.000000 1.000000 0.285714 −6.051526
0.000000 0.000000 −0.000286 0.003194


P3 =

 1.000000 0.000000 −0.428571 0.000000
0.000000 1.000000 0.285714 −5.714286
0.000000 0.000000 −0.000286 0.002857



Table 9.5: The projection matrices of configuration ’Street2’.

Figure 9.5: Sketch of configuration ’Street2’. The arrows point in direction of the cuboid compression, the limit of
which is represented by the small horizontal bar.
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Computation methods. For each image configuration the trifocal tensor is computed in the
following ways, where minimization of reprojection error is always carried out in the Gauß-
Helmert model (see section 8.3 on page 116):

’UCA’: The direct linear solution or in other words the unconstrained solution (with 26 degrees
of freedom) minimizing algebraic error; see section 8.1 on page 112.

’UCR’: The unconstrained solution (with 26 degrees of freedom) minimizing reprojection error; see
section 8.2 on page 113. This iterative estimation is initialized by the ’UCA’ solution.

’CR’: The constrained solution (with 18 degrees of freedom) minimizing reprojection error. The 18
degrees of freedom are realized by applying the new parameterization of section 8.3.4 on
page 123 (as a non-minimal parameterization). This iterative estimation is initialized by
the ’UCA’ solution.

’CR*’: This iterative estimation is identical to ’CR’ but it is initialized by the known true trifocal
tensor.

’CA’: This is the projection method based on the new parameterization presented in table 8.3 on
page 127. It determines that valid trifocal tensor, represented by the vector q and the new
parameterization, which lies closest to the ’UCA’ solution t; i.e. |t − t(q)| → min, . The
vector q found in this way also serves as initial value for the ’CR’ method.

The comparison of the ’UCA’ solution with the ’UCR’, the ’CR’ and the ’CA’ solution will show
the different gains in the results by minimizing reprojection error with and without considering
the internal constraints as opposed to minimizing algebraic error with and without consider-
ing the constraints. This comparison will be based on the plots of the mean and maximum
ground errors and on the plots of the percentage of ’bad’ solutions. The first plot will show the
impact of the different computations methods on the accuracies of the determined points on
the ground. The second plot will show the sensitivity of the different computation methods to
the compression of the cuboid.

The ’CR*’ solution will act as a benchmark for assessing the critical compression situations:
As it was stated above the percentage of ’bad’ solutions indicates the breakdown of the tensor
computation because of a too flat cuboid. Due to the random selection of the points used to
determine the trifocal tensor, it may happen that those points are badly distributed in space
although the cuboid itself is far away from being flat. Consequently for such badly distributed
points a bad direct linear solution will result. And since the direct linear solution initializes all
of the other (iterative) computation methods, chances are high that those better methods will
also fail and the percentage of ’bad’ solutions will be different from 0 even for non-flat cuboids.

The ’CR*’ solution, however, is initialized by the true trifocal tensor of the respective image
configuration, and only if this solution is also a ’bad’ solution, the respective set of selected
points can be regarded as being degenerate. Therefore, in the plots of the percentage of the
’bad’ solutions, the respective curve of any method relying on the initialization through the
direct linear solution should always be compared with the curve of the ’bad’ ’CR*’ solutions.
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9.2 The plots of the ground errors and the percentage of failures with
respect to the variation of the cuboid

9.2.1 Variation of the cuboid and 1 pixel noise in the images

In this section the plots of the averages over all 1000 samples of the mean and maximum of
the ground errors, and the plots of the percentage of ’bad’ solutions against the compression
rate of the cuboid are depicted. The compression of the cuboids is given in percent of the
camera distance. The injected noise in the images of each configuration is 1 pixel. The following
thresholds for classifying ’good’ and ’bad’ solutions were used: 0.025 m for ’Tetra’, 3.5 m for
both ’Air’ configurations and 1 m for both ’Street’ configurations.

9.2.2 Variation of the cuboid and 10 pixel noise in the images

These plots demonstrate the effect of different noise in the images. For the configurations ’Tetra’
and ’Air’ 10 pixel noise is injected in the images and 10 points are used for determining the
trifocal tensor. Whereas for the two ’Street’ configurations 2 pixel noise is injected in the images
and 25 points are used. For larger noise in the ’Street’ configurations no useful results could
be obtained with the chosen cuboid. The following thresholds for classifying ’good’ and ’bad’
solutions were used: 0.25 m for ’Tetra’, 35 m for both ’Air’ configurations and 1 m for both
’Street’ configurations.

9.3 Investigation of the results

In the following the plots of each configuration with 1 pixel noise in the images are investigated
in detail by considering the following questions:

Ground Error: What is the impact of the various computation methods, minimizing algebraic
and reprojection error with or without considering the internal constraint, on the mean
and maximum ground errors?

Flatness: At which minimum thickness of the object points do the various computation methods
still return a reasonable estimate of the trifocal tensor, before the determination fails?

A summary of these investigations and general formulas are given in the section 9.4 on page 163.

We expect the following from the plots: For a small number of point correspondences the
ground errors should be larger and the minimum thickness should be reached earlier, than
for a large number of point correspondences. To show this behavior we will start with the
smallest possible point number, i.e. 7, and increase this number step by step. However, only
the configurations ’Tetra’ and ’Air2’, which have a strong geometry, return acceptable results
already with 7 points, whereas the smallest possible number for ’Air1’ was 8, and for the two
’Street’ configurations, due to their very weak geometry, even for 10 points very bad results
were obtained.
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Figure 9.6: Configuration: ’Tetra’, 7 points, 1 pixel noise, camera distance: 3 m, threshold for bad solutions: 0.025
m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.7: Configuration: ’Tetra’, 8 points, 1 pixel noise, camera distance: 3 m, threshold for bad solutions: 0.025
m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.8: Configuration: ’Tetra’, 10 points, 1 pixel noise, camera distance: 3 m, threshold for bad solutions:
0.025 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.9: Configuration: ’Tetra’, 15 points, 1 pixel noise, camera distance: 3 m, threshold for bad solutions:
0.025 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.10: Configuration: ’Air1’, 8 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.11: Configuration: ’Air1’, 9 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.12: Configuration: ’Air1’, 10 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.13: Configuration: ’Air1’, 15 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.14: Configuration: ’Air2’, 7 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.15: Configuration: ’Air2’, 8 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.16: Configuration: ’Air2’, 10 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.17: Configuration: ’Air2’, 15 points, 1 pixel noise, camera distance: 1500 m, threshold for bad solutions:
3.5 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.18: Configuration: ’Street1,’ 10 points, 1 pixel noise, camera distance: 10 m, threshold for bad solutions:
1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.19: Configuration: ’Street1,’ 15 points, 1 pixel noise, camera distance: 10 m, threshold for bad solutions:
1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.20: Configuration: ’Street1,’ 20 points, 1 pixel noise, camera distance: 10 m, threshold for bad solutions:
1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.21: Configuration: ’Street1,’ 25 points, 1 pixel noise, camera distance: 10 m, threshold for bad solutions:
1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.22: Configuration: ’Street2,’ 10 points, 1 pixel noise, reference distance: 5.7 m, threshold for bad solu-
tions: 1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.23: Configuration: ’Street2,’ 15 points, 1 pixel noise, reference distance: 5.7 m, threshold for bad solu-
tions: 1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.24: Configuration: ’Street2,’ 20 points, 1 pixel noise, reference distance: 5.7 m, threshold for bad solu-
tions: 1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.25: Configuration: ’Street2,’ 25 points, 1 pixel noise, reference distance: 5.7 m, threshold for bad solu-
tions: 1 m. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.26: Configuration: ’Tetra’, 10 points, 10 pixel noise, camera distance: 3 m, threshold for bad solutions:
0.25 m.; cf. figure 9.8. The mean ground error is plotted with thin lines, the maximum ground error with thick
lines.
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Figure 9.27: Configuration: ’Air1’, 10 points, 10 pixel noise, camera distance: 1500 m, threshold for bad solutions:
35 m; cf. figure 9.12. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.28: Configuration: ’Air2’, 10 points, 10 pixel noise, camera distance: 1500 m, threshold for bad solutions:
35 m; cf. figure 9.16. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.29: Configuration: ’Street1,’ 25 points, 2 pixel noise, camera distance: 10 m, threshold for bad solutions:
1 m; cf. figure 9.21. The mean ground error is plotted with thin lines, the maximum ground error with thick lines.
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Figure 9.30: Configuration: ’Street2,’ 25 points, 2 pixel noise, reference distance: 2.85 m, threshold for bad solu-
tions: 1 m; cf. figure 9.25. The mean ground error is plotted with thin lines, the maximum ground error with thick
lines.
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The algebraic minimizations, ’UCA’ and ’CA’, should in general produce larger ground errors
and should breakdown earlier than the reprojection methods, ’UCR’ and ’CR’. Methods that
neglect the internal constraints of the tensor should also perform worse than the methods that
consider them. Therefore the direct linear solution ’UCA’ is expected to be at the low end, and
the constrained method minimizing reprojection error ’CR’ is expected to be at the high end of
the performances.

Further, we compare the plots with 1 pixel noise in the images of section 9.2.1 with the corre-
sponding plots with larger noise of section 9.2.2.

9.3.1 Configuration ’Tetra’

The figures 9.6 – 9.9 on the pages 145 and 146 show the plots of the configuration ’Tetra’ based
on image noise of 1 pixel. The cuboid compressions are given in percent of the camera distance
of 3 m.

Ground Error: Looking at the left plot in each of these figures, we see that up including 8
points the unconstrained computation minimizing reprojection error ’UCR’ performs better
than any algebraic computation (’UCA’ and ’CA’); which indicates the benefit of minimizing
reprojection error. From 10 points onwards all five computation methods (’UCA’, ’UCR’, ’CR’,
’CR*’, ’CA’) produce practically the same curves for the mean and maximum ground errors; i.e.
even the simple direct linear solution ’UCA’ performs equally well to the constrained method
’CR’ minimizing reprojection error.

Flatness: Looking at the right plot in each of these figures, we see that from 7 points onwards
the percentage of bad solutions is slightly smaller for the reprojection methods ’UCR’ and ’CR’
than for the algebraic methods ’UCA’ and ’CA’, whereas there is almost no difference in the
bad solutions between considering or neglecting the constraints. For 7 points and flatness
25% the reprojection methods initialized by the direct linear solution deviates from the ’CR*’
solution, which is initialized by the true tensor; this indicates that the direct linear solution can
be insufficient to initialize the iterative methods. For 10 points and 15 points all methods show
the same minimum thickness of 2.8% and 0.9% respectively.

Noise in the images: By comparing the plots based on 10 points with 1 and 10 pixel noise
in the images (figure 9.8 on page 146 and figure 9.26 on page 155), we see that the mean and
maximum ground errors and the minimum thickness of the computations are practically scaled
by the ratio of the noise in the images. Therefore, at least for the noise-range considered here,
the results depend linearly on the noise in the images.

9.3.2 Configuration ’Air1’

The figures 9.10 – 9.13 on the pages 9.10 on page 147 and 9.13 on page 148 show the plots of
the configuration ’Air1’ based on image noise of 1 pixel. The cuboid compressions are given in
percent of the camera distance of 1500 m.
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Ground Error: Looking at the left plot in each of these figures, we see that up including 9
points the unconstrained computation minimizing reprojection error ’UCR’ performs better
than any algebraic computation (’UCA’ and ’CA’); which indicates the benefit of minimizing
reprojection error. From 10 points onwards all five computation methods (’UCA’, ’UCR’, ’CR’,
’CR*’, ’CA’) produce practically the same curves for the mean ground errors; i.e. even the sim-
ple direct linear solution ’UCA’ performs equally well to the constrained method ’CR’ mini-
mizing reprojection error. The maximum ground error for the algebraic methods is still larger,
but from 15 points onwards mean and maximum error for all methods are identical.

Flatness: Looking at the right plot in each of these figures, we see that for 8 points the curves
of the bad solutions for all methods have values different from zero even for 15% flatness. For
8 and 9 points all methods relying on the initialization through the direct linear solution ’UCA’
have larger percentage of bad solutions than the ’CR*’ method. Again, this shows that for
small number of points the ’UCA’ can be insufficient to initialize the iterative methods. From
10 points onwards, however, all methods are identical in their behavior concerning the bad
solutions and show the same minimum thickness, which is 5%, 1.7% and 0.6% for 9, 10 and 15
points respectively.

Noise in the images: By comparing the plots based on 10 points with 1 and 10 pixel noise
in the images (figure 9.12 on page 148 and figure 9.27 on page 156), we see that the mean and
maximum ground errors and the minimum thickness of the computations are practically scaled
by the ratio of the noise in the images. Therefore, at least for the noise-range considered here,
the results depend linearly on the noise in the images.

9.3.3 Configuration ’Air2’

The figures 9.14 – 9.17 on the pages 9.14 on page 149 and 9.17 on page 150 show the plots of
the configuration ’Air2’ based on image noise of 1 pixel. The cuboid compressions are given in
percent of the camera distance of 1500 m.

Ground Error: Looking at the left plot in each of these figures, we see that up including 10
points the unconstrained computation minimizing reprojection error ’UCR’ performs better
than any algebraic computation (’UCA’ and ’CA’); which indicates again the benefit of minimiz-
ing reprojection error. From 10 points onwards all five computation methods (’UCA’, ’UCR’,
’CR’, ’CR*’, ’CA’) produce practically the same curves for the mean ground errors; i.e. even the
simple direct linear solution ’UCA’ performs equally well to the constrained method ’CR’ min-
imizing reprojection error. The maximum ground error for the algebraic methods is still larger,
but from 15 points onwards mean and maximum error for all methods are identical. So, except
that ’Air2’ performs better than ’Air1’ for small number of points, from 10 points onwards both
’Air’ configurations perform identically.

Flatness: Looking at the right plot in each of these figures, we see that for 7 points the curves
of the bad solutions are to some extent the same for all methods, except for ’CR*’, which is
significantly better; this indicates again that the direct linear solution for seven points can be
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not sufficient to initialize the iterative methods. From 10 points onwards, however, all meth-
ods are identical in their behavior concerning the bad solutions and show the same minimum
thickness, which then only depends on the number of point correspondences.

Noise in the images: By comparing the plots based on 10 points with 1 and 10 pixel noise
in the images (figure 9.16 on page 150 and figure 9.28 on page 156), we see that the mean and
maximum ground errors and the minimum thickness of the computations are practically scaled
by the ratio of the noise in the images. Therefore, at least for the noise-range considered here,
the results depend linearly on the noise in the images.

9.3.4 Configuration ’Street1’

The figures 9.18 – 9.21 on the pages 9.18 on page 151 and 9.21 on page 152 show the plots of the
configuration ’Street1’ based on image noise of 1 pixel. The cuboid compressions are given in
percent of the camera distance of 10 m.

Ground Error: Looking at the left plot in each of these figures, we see that from 10 points
onwards all methods show practically the same curves of mean and maximum error; so there
is practically no gain in accuracy in computing ’CR’ compared to ’UCA’.

Flatness: The right plot of the bad solutions, however, shows a radically different picture as
the percentage of bad solutions for the two algebraic methods ’UCA’ and ’CA’ always lie clearly
above all reprojection methods; although the difference gets smaller with increasing number of
points.

Noise in the images: By comparing the plots based on 25 points with 1 and 2 pixel noise
in the images (figure 9.21 on page 152 and figure 9.29 on page 157), we see that the mean
and maximum ground errors of the computations are to some extent scaled by the ratio of the
noise in the images. This also holds true for the percentage of bad solutions. However, for 1
pixel noise the smallest percentage of bad solutions is 0% (for a cuboid compression of 25%),
whereas for 2 pixel noise the smallest percentage is about 10% (for a cuboid compression of
50%). This shows that due to the weak image geometry the impact of the image noise on the
critical planarity is much stronger than for the previous configurations.

Additional note: The reason for almost identical ground error curves between algebraic and
reprojection methods is caused by the large number of 10 – 25 points, and not due to some
hidden properties of the algebraic methods. For smaller number of points the algebraic meth-
ods are practically useless concerning accuracy. Since we can see that even for 10 points any
method produces bad solutions with a percentage of at least 20 %, the high number of points
was selected to show their requirement for a reliable, i.e. not bad, solution. So the ground error
plots of the algebraic methods should be understood as: When the algebraic solution is good, it is
comparable to the reprojection method, however, the chances of getting a good result from an algebraic
method is much smaller than for a reprojection method.
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Note also the strange course of the ground error plots, which gets better with increasing flat-
ness. This behavior is explained by the way the cuboid is compressed. This is done in direction
to the images by fixing the side of the cuboid, which faces the images. Therefore all points move
closer to the images and the mean intersection angle of corresponding projection rays gets larger.
Consequently the accuracy of the determined points also becomes better.

9.3.5 Configuration ’Street2’

The figures 9.22 – 9.25 on the pages 9.22 on page 153 and 9.25 on page 154 show the plots of the
configuration ’Street2’ based on image noise of 1 pixel. The cuboid compressions are given in
percent of a reference distance of 2.85 m; see figure 9.5.

Ground Error: Looking at the left plot in each of these figures, we see that from 10 points
onwards all reprojection methods are clearly distinct from the algebraic methods (see also the
following additional note 1), while there is no difference between the constrained and uncon-
strained methods of the same minimization.

Flatness: The plot of the bad solutions shows, that – similar to ’Street1’ – the percentage of bad
solutions for the two algebraic methods ’UCA’ and ’CA’ always lie clearly above all reprojection
methods; although the difference gets smaller with increasing number of points.

Noise in the images: By comparing the plots based on 25 points with 1 and 2 pixel noise in
the images (figure 9.25 on page 154 and figure 9.30 on page 157), we see that, similar to ’Street1’,
the mean and maximum ground errors of the computations are also to some extent scaled by
the ratio of the noise in the images. This also holds true for the percentage of bad solutions.
Opposed to ’Street1’, however, the smallest percentage of bad solutions is 0% for both 1 and 2
pixel noise; namely for the cuboid compression of 25% and 50% respectively. For 2 pixel noise
on both sides of this minimal thickness of 50% the percentage of bad solutions quickly raises.
So here again due to the weak geometry the impact of the image noise on the critical planarity
is stronger than for the configurations with stable geometry; i.e. ’Tera’ and ’Air’.

Additional note 1: From the way the ground error curve of the algebraic methods progresses
from 10 to 25 points without ever reaching the curve of the reprojection methods, we see that
there is a clear bias between these two kinds of minimizations. This is opposed to ’Street1’,
where already for 10 points practically no difference between both minimizations could be
observed.

This bias is caused by the nature of the algebraic error, which is the deviation from zero on the
right side of the homogenous point-trilinearities. For each corresponding triple of image points
{x′, x′′, x′′′} four point-trilinearities (7.29) on page 79 are set up. Each of these four trilinearities
can be represented as x′>λ′jk = 0, j, k = 1, 2. The line λ′jk in image Ψ1 is the projection of a
3D line, which is created by the intersection of the back-projection of the lines σ ′′

j and σ ′′′
k ; cf.

section 7.3 and figure 7.7 on page 79.

Due to the special geometry of the ’Street’-configurations, the lines λ′12 and λ′21 run approxi-
mately radially from the principal point of image Ψ1 to the point x′. This holds true for image
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Ψ1 in both configurations ’Street1’ and ’Street2’. The bias in the algebraic minimization for
’Street1’ is caused by the distribution of the points x′ in image Ψ1, which is totaly different to
’Street2’.

In ’Street1’ the cuboid is compressed in direction of the basis of the images, therefore the distri-
bution area of the points x′ stays practically the same for all cuboid compressions. In ’Street2’
the cuboid is compressed orthogonally to the basis of the images, in direction to the street,
therefore the distribution area of the points x′ is limited to the lower half of image Ψ1; see
figure 9.31.

Figure 9.31: The image Ψ1 of configuration ’Street1’ (left) and ’Street2’ (right), with the lines λ′jk drawn in four
representative points. In image Ψ1 of ’Street1’ the lines λ′12 and λ′21 are not limited in their direction, whereas
in image Ψ1 of ’Street2’ these lines, and partly the lines λ′11, have all approximately the same direction (i.e. the
y′c-direction).

During the algebraic minimization the deviations on the right side of the trilinearities x′>λ′jk = 0
are minimized. These trilinearities represent the incidence relation between the point x′ and the
line λ′jk. Therefore the right side of these trilinearities corresponds to the orthogonal distance of
the point x′ to the line λ′jk, however, scaled by the norm of the homogenous part of λ′jk. Now, as
we can see from figure 9.31 for the configuration ’Street2’, the lines λ′12, λ′21, and partly the lines
λ′11, have all approximately the same direction (i.e. the y′c-direction). Therefore the contribution
of the error component orthogonal to this direction (i.e. the x′c-direction) to the total algebraic
error is almost three times higher than for the y′c-direction.

These different, unjustified, weights of the four point-trilinearities of ’Street2’ are the reason for
this bias. For ’Street1’ the lines λ′12 and λ′21 are not limited in their direction as the points x′ are
scattered in the whole image area.

The algebraic error corresponds to the distance of the point x′ to the line λ′jk, scaled by the norm
of the homogenous part of λ′jk. The scale of λ′jk depends on the coordinates of the points x′′ and
x′′′ in the other images. So there could be an additional source of bias in the algebraic error due
to the scale difference between the Euclidian coordinates, which can be some 1000 pixels, and
the homogenous extension of 1. Because of the conditioning following section 3.7 on page 28,
however, this bias should be eliminated to a large extent, as all image points are translated to
their centroid and are appropriately scaled afterwards. This conjecture is also backed by the
results of ’Street1’, which does not show this kind of bias.
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Additional note 2: A strange course of the ground error plots, which gets better with increas-
ing flatness, can be observed, similar to ’Street1’. The reason for this course, however, is differ-
ent to ’Street1’, where it was caused by the increasing mean intersection angle of corresponding
projection rays due to the cuboid compression. Here the mean intersection angle stays more
or less the same, since the depth of the cuboid remains fixed and only its height is flattened.
For ’Street2’ the improvement is caused by the increasing distance of the points to the common
basis of the three images, which cuts right through the middle of the uncompressed cuboid.
For object points on this basis the intersection angle of corresponding projection rays is zero
and therefore the object point is undeterminable1. According to this, in the vicinity to the basis
the intersection angle will be very small, resulting in very badly determined object points. The
percentage of such points decreases as the cuboid for ’Street2’ is compressed. Consequently
the mean and maximum ground error get smaller.

Since the mean intersection angle for ’Street2’ does not increase that much as it does for ’Street1’,
the actual values of the ground errors is higher than for ’Street1’.

9.4 Summary

The expectations stated in the beginning of section 9.3 on page 144 are practically confirmed,
however the direct linear solution performed much better than presumed. We can summarize
the results of the examples with 1 pixel noise in the images in the following way:

• The ground errors obtained for the different computation methods tend to be the same

– for a particular image configuration, if the number of point correspondences increases, and

– for a particular number of point correspondence, if the stability of the image geometry in-
creases.

Therefore, from 10 points onwards for ’Tetra’, ’Air1’ and ’Air2’, and from 25 points onwards
for ’Street1’ and ’Street2’, all computation methods return practically the same result; i.e.
then the direct linear solution is equivalent to the constrained computation minimizing reprojection
error.

• For small numbers of point correspondences, ≤ 8 for the stable configurations ’Tetra’, ’Air1’
and ’Air2’ and for the unstable configurations ’Street1’ and ’Street2’ in general, the uncon-
strained minimization of reprojection error generally performed better than any algebraic
(constrained or unconstrained) minimization. Therefore, the benefit of minimizing only repro-
jection error, is larger than of considering only the constraints.

• The algebraic minimizations can produce a bias for certain lopsided configurations,
i.e. ’Street2’, due to the incorrect weighting of the trilinearities.

• Concerning the impact of the minimum thickness of the cuboid on the various computation
methods, we can say

1For the preparation of these examples we were aware of this fact and therefore the number of points place in
the cuboid along each direction is even, because for an odd number, points exactly on the basis would have been
created.
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– for image configurations with strong geometry, i.e. ’Tetra’, ’Air1’ and ’Air2’, the minimum
thickness is practically independent on the computation method of the tensor, and be-
comes smaller for larger numbers of point correspondences.

– for image configurations with weak geometry, i.e. ’Street1’ and ’Street2’, the minimum
thickness is larger for the algebraic methods and smaller for the reprojection methods,
where the consideration of the internal constraints adds a significant additional benefit;
and for larger numbers of point correspondences the minimum thickness also gets smaller
generally.

• Depending on the number of point correspondences, the computation of the trifocal tensor
was still successful for the minimum thickness of the cuboid given in table 9.6; afterwards it
failed. Because of the discrete cuboid compressions the actual minimum thickness is smaller
than the presented values; i.e. if the percentage of ’bad’ solutions for one compression is
zero and for the next it is non-zero, then the actual minimum thickness lies somewhere in
between.

number of points
configuration

8 10 15

’Tetra’ 8.3 % 2.8 % 0.9 %
camera distance approx. 3 m

’Air1’ >15 % 1.7 % 0.6 %
camera distance approx. 1500 m

’Air2’ 5 % 1.7 % 0.6 %
camera distance approx. 1500 m

number of points
configuration

15 20 25

’Street1’ 50 % 50 % 25 %
camera distance approx. 10 m

’Street2’ 50 % 25 % 12.5 %
reference distance approx. 2.85 m

Table 9.6: Minimum thickness in percent of the camera distance for which the computation of the trifocal tensor
was still successful. For the configurations ’Tetra’, ’Air1’ and ’Air2’ the given values hold for any computa-
tion method, whereas for the two ’Street’ configurations they hold only for the constrained method minimizing
reprojection error.

By comparing the plots for the configurations ’Tetra’, ’Air1’ and ’Air2’ based on 1 pixel noise in
the images with the respective plots based on 10 pixel noise, we see that the ground errors and
the minimum thickness of the computations are practically scaled by the ratio of the injected
noise. Therefore, using 10 as a representative number of points for the configurations ’Tetra’,
’Air1’ and ’Air2’, we can summarize the mean and maximum ground error and the minimum
thickness with the following formulas (distance D to object, noise σ in the image, principal
distance c):
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’Tetra’:

Mean ground error = 2
D ·σ

c

Max ground error = 9
D ·σ

c

Minimum thickness ≤ 98
D ·σ

c

’Air1’:

Mean ground error = 4
D ·σ

c

Max ground error = 23
D ·σ

c

Minimum thickness ≤ 340
D ·σ

c

’Air2’:

Mean ground error = 3
D ·σ

c

Max ground error = 20
D ·σ

c

Minimum thickness ≤ 340
D ·σ

c

We can use the symbol ’≤’, because of the discrete cuboid compressions. Also note that the prin-
cipal distance is only included in these formulas to be independent on the units in the image
space, and that the formulas may not be very correct for totally different principal distances for
the same cameras. Here the principal distance for ’Air1’ and ’Air2’ is 20000 pixel and for ’Tetra’
it is 3500 pixel.

Similar formulas for the two ’Street’ configuration are not given, since due to the very weak
geometry the ground error depends highly on the cuboid compression, with better ground
accuracies for thinner cuboids. Further, since for higher noise levels than 2 pixel no useful
results were obtained, it can be deduced that the influence of the noise level is more crucial,
which further prevents the derivation of general formulas.

Since the ’Air1’ configuration is probably the most relevant for practical applications, we can
take a closer look at the distribution of the planer and height components of the errors of this
configuration; using 10 points and 1 pixel noise. From figure 9.32 on the following page we
see that the mean planar error and the mean height error are about (12 cm/50 cm) for the
’CR’ method and (17 cm/68–75 cm) for the ’UCA’ method. For the same configuration but
using calibrated instead of uncalibrated images, we can adapt the formulas of [Kraus 1993] and
obtain the planar error as 1[pixel] · 1500[m]/20000[pixel] =̂ 7.5 cm and the height error as
0.15h · 1500[m] =̂ 23.5 cm. Therefore, the constrained determination of the trifocal tensor is
approximately 2 times worse and the direct linear solution is approximately 3 times worse.
In general, however, the relative orientation of the three images obtained from both methods,
especially from the direct linear solution, is a sufficient good approximation to initialize a final
bundle block adjustment during which the known interior orientation of the images can be
fully exploited.
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Figure 9.32: Separation of the mean ground errors in planar component (thin line) and height component (thick
line); 1000 realizations, Configuration: ’Air1’, 10 points, 1 pixel noise, camera distance: 1500 m, threshold for bad
solutions: 3.5 m.

Conclusion. Summing it up, if the image geometry is not too bad and at least 10 correspond-
ing points are used, then the simple direct linear method ’UCA’ for determining the trifocal
tensor, which neglects the internal constraints and minimizes reprojection error, practically
performs equal to the constrained method ’CR’, which minimizes reprojection error. Conse-
quently, if the trifocal tensor is only computed to obtain approximations for the orientation
parameters of a bundle block adjustment, the direct linear solution ’UCA’ is usually sufficient.
However, if a general routine for providing such initial values is requested, which does not
have any restrictions on the image geometry and also handles weak configurations, then the
Gauß-Helmert model ’CR’ minimizing reprojection error must be used.
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Chapter 10

Conclusion

The topic of this thesis is the trifocal tensor, which describes the relative orientation (or epipo-
lar geometry) of three uncalibrated images. It is a homogenous valence-(1,2) tensor, which means
that it can be represented as a 3×3×3 cube of number. The trifocal tensor is of particular inter-
est because it can be determined linearly from corresponding points or lines in the three images.
Consequently it provides a tool to determine the relative orientation of three images without requiring
approximate values. This relative orientation can be further used as initial values in a subsequent
bundle block adjustment.

Each triple of points provides 4 linear equations, called trilinearities, in the tensor elements
and each corresponding triple of lines provides 2 such linear equations; therefore at least 7
points, 13 lines or a proper combination are needed for a direct linear solution of the trifocal
tensor. To obtain a unique solution it is important that the corresponding image features do
not arise from a critical configuration. The probability of running into such configurations is
much smaller than for two images and the fundamental matrix. However, if all corresponding
image features arise from a common plane the direct solution fails. This is due to the fact that
the images are considered uncalibrated.

10.1 Summary

Although the point and line trilinearities allow a simple direct linear solution of the trifocal ten-
sor, there are, however, some drawbacks associated with this linear solution. The trifocal tensor
is made up of 27 elements, but it only has 18 degrees of freedom. Consequently its elements
have to satisfy 8 internal constraints, besides the fixing of the tensor’s scale, to represent a valid
trifocal tensor. These constraints are in generally not satisfied by the direct linear solution. An-
other drawback is that the direct linear solution does not minimize the errors in the original
point and line measurements (so-called reprojection error) but some other quantities (so-called
algebraic error).

Because of these drawbacks, errors in the tensor elements will be induced and therefore the
obtained relative orientation may be not sufficient to initialize a subsequent bundle block ad-
justment. These drawbacks can be prevented by determining a valid trifocal tensor by mini-
mizing reprojection error. The so-called Gauss-Helmert model provides a general environment
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for such constrained adjustment tasks. The determination of a valid trifocal tensor in the Gauß-
Helmert model can be done basically in two ways: By parameterizing the tensor using its 27
elements and introducing the 8 internal constraints together with the scale fixing, or by using
an alternative parameterization for the trifocal tensor that has 18 degrees of freedom.

Several sets of constraints and alternative parameterizations have been proposed over the years
and we reviewed the most important ones in the sections 7.6 on page 96 and 8.3 on page 116
respectively. In this thesis we also derived two new sets of constraints and gave a simple
geometric interpretation for them. We also found a new alternative parameterization for the
trifocal tensor.

For computing a valid trifocal tensor by minimizing reprojection error in the Gauß-Helmert
model it is important to have a consistent representation for the trifocal tensor. The parameter-
ization using the projection matrices proposed in [Hartley 1994a] and reviewed in section 8.3.1
on page 117 is the simplest way for such a consistent representation. This parameterization
is applicable as long as (i) not all three projection centers coincide and (ii) the first projection
center is different from the other two.

Empirical investigations in section 9 on page 135 showed the difference in computing the trifo-
cal tensor by minimizing algebraic error or reprojection error with or without considering the
internal constraints. Further the minimum thickness of the object points was investigated; i.e.
what is the minimum deviation of the object points from a common plane, so that the compu-
tation is still possible?

The findings can be summarized in the following way: For image configurations with strong
geometry, like in the case of convergent terrestrial images or in the case of aerial images, the
direct linear solution for the trifocal tensor and the valid tensor from the Gauß-Helmert model
minimizing reprojection error are practically the same. Concerning the minimum thickness
unexpected small values were found already for 10 point correspondences. If the number of
points increases, then the minimum thickness gets even smaller. For the mentioned configura-
tions and 15 point correspondences the computation of the trifocal tensor is still successful for
a minimum thickness of the object points of about 1% of the camera distance (normal angle
camera with assumed noise in the images of 1 pixel).

For image configurations with weak geometry, like collinear projection centers with congruent
viewing directions, much more point correspondences are required and the direct linear solu-
tion fails more often for small thicknesses of the object points than the valid solution from the
Gauß-Helmert model minimizing reprojection error.

From these empirical investigations we come to the conclusion that minimizing reprojection er-
ror and considering the internal constraints is actually not necessary if the image configuration
has a strong geometry – especially if one is only interested in initial values for a subsequent
bundle block adjustment. However, if a general tool for providing such initial values is re-
quested, which does not have any restrictions on the image geometry and handles also weak
configurations, then the Gauß-Helmert model minimizing reprojection error must be used.

If n > 3 images are given, then many unrelated trifocal tensors are computed. Before all n
images can be used simultaneously, the individual basis vectors and rotation matrices derived
from the unrelated tensors must be transformed into one common system; see section 7.4.6 on
page 94.
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10.2 Contribution of this thesis

The contribution of this thesis can be divided into a theoretical part, concerning geometry and
constraints of the trifocal tensor, a practical part, concerning the computation of the trifocal
tensor, and an empirical part, concerning the necessity of computing a valid trifocal tensor by
minimizing reprojection error as opposed to the direct linear solution.

Geometry and constraints of the trifocal tensor. Two new minimal sets of constraints were
derived in section 7.6.3 on page 99. A set of constraints is termed minimal if it is made up of
exactly 8 constraints.

For deriving these constraints we reviewed thoroughly the properties of the trifocal tensor by
means of its tensorial slices, the matrices Ii, J j and Kk; see section 7.2 on page 66.

Using the so-called principal rays, which are the projection rays of the canonical points of an
image, we found a simple geometric interpretation for the new set of constraints: The eight
constraints of the trifocal tensor guarantee that the mappings of the principal rays of each image into the
other two images are straight and concurrent lines.

Further, we discovered a new parameterization, which uses 20 parameters; see section 8.3.4 on
page 123. Therefore 2 constraints, which fix two scaling ambiguities, need to be considered in
the Gauß-Helmert model. From this parameterization also a very simple minimal parameteri-
zation can be derived, which has exactly 18 parameters. These 18 parameters have a simple
geometric interpretation; see proposition 8.1 on page 124.

Minimal parameterizations have the advantage that their implementation requires no addi-
tional constraints, however, generally more than one minimal parameterization are required to
represent all possible trifocal tensors. In case of the new minimal parameterizations 81 maps
from the set of all possible trifocal tensors to the new minimal parameterization exist. This is,
however, still less than the number of maps for the minimal parameterization of [Papadopoulo
and Faugeras 1998], which is 59.049.

Computation of the trifocal tensor. Using the trilinearities of points and lines in section 7.3
on page 77 the 27 elements of the trifocal tensor can be computed linearly. This direct linear
solution, however, has the drawbacks, that the internal constraints are not satisfied and that
algebraic error is minimized instead of reprojection error. These drawbacks can be avoided if a
valid trifocal tensor is computed in the Gauß-Helmert model by minimizing reprojection error.
This can be done basically in two ways: By parameterizing the tensor using its 27 elements
and introducing the 8 internal constraints together with the scale fixing; or by using an alter-
native, minimal or non-minimal, parameterization for the trifocal tensor that has 18 degrees of
freedom.

However, the method of introducing the 8 internal constraints is not recommended, because
all sets of constraints reviewed in section 7.6 on page 96, including the new ones, suffer from
one of the following reasons; cf. section 8.3.5 on page 128: The constraints are too complex to
be implemented in the Gauß-Helmert model, they are not minimal (i.e. > 8) or they are not
valid for all image configurations. Also the minimal parameterizations reviewed in section 8.3
on page 116 can not be recommended for realization in the Gauß-Helmert model due to their
complexity, which is primarily caused by the many case differentiations involved.
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Actually, only the new parameterization of section 8.3.4 on page 123, using 20 parameters and 2
constraints, and the parameterization using the projection matrices of section 8.3.1 on page 117,
using 24 parameters and 6 constraints, are relatively simple to be realized in the Gauß-Helmert
model. The benefit of the parameterization using the projection matrices is that there is only one
map from all trifocal tensors to this parameterization, whereas for the new parameterization
there are three maps. On the other hand the parameterization using the projection matrices
requires 6 constraints, whereas the new parameterization needs only 2 constraints.

However, since the simplicity of the implementation, i.e. the number of maps, is more impor-
tant than the number of required constraints, the parameterization using the projection matrices is
the recommended way to represent a valid trifocal tensor in the Gauß-Helmert model.

Empirical studies. In chapter 9 on page 135 the trifocal tensor is determined by various meth-
ods for five different image configurations and for different numbers of corresponding points.
Three image configurations, ’Tetra’ (the three projection centers and the object center from a
tetrahedron), ’Air1’ and ’Air2’ (images from one and two flight strips), represent stable image
geometries with intersection angles of about 90◦ and 17◦ respectively. The other two configu-
rations, ’Street1’ and ’Street2’ (three collinear projection centers with congruent viewing direc-
tions), have a rather unstable geometry with intersection angles of about 3◦.

These examples are based on synthetic data and shall demonstrate the differences between
minimizing algebraic and reprojection error, the effects of considering or neglecting the internal
constraints of the tensor, and the impact of critical configurations; i.e. how close must points lie
to the same plane so that the computation fails?

The results from these investigations can be summarized in the following way:

– The differences in the results of the various computation methods vanish for a particular
image configuration if the number of point correspondences increases, and for a particular num-
ber of point correspondence if the stability of the image geometry increases. Therefore, from 10
points onwards for ’Tetra’, ’Air1’ and ’Air2’, and from 25 points onwards for ’Street1’ and
’Street2’, all computation methods return practically the same result; i.e. then the direct linear
solution is equivalent to the constrained computation minimizing reprojection error.

– For small numbers of point correspondences, ≤ 8 for the stable configurations ’Tetra’, ’Air1’
and ’Air2’ and for the unstable configurations ’Street1’ and ’Street2’ in general, the uncon-
strained minimization of reprojection error generally performed better than any algebraic
(constrained or unconstrained) minimization. Therefore, the benefit of minimizing only repro-
jection error, is larger than of considering only the constraints.

– The algebraic minimizations can produce a bias for certain lopsided configurations,
i.e. ’Street2’, due to the incorrect weighting of the trilinearities.

– Concerning the critical configuration of almost planar object points we can say that for image
configurations with stable geometry the minimum thickness, i.e. the minimum deviation
from a common plane, is practically independent from the computation method of the tensor. For
image configurations with unstable geometry the minimum thickness strongly depends on
minimizing reprojection error and considering the internal constraints.

Generally the minimum thickness becomes smaller if the number of point correspondences
increases. Therefore, the computation of the trifocal tensor is still successful for the following
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minimum thickness of the object points, represented in units of the camera distance (normal
angle camera with assumed noise in the images of 1 pixel, 15 point correspondences):

· ’Tetra’ (1 pixel = 9 µm): flatness of 1/100,

· ’Air1’ and ’Air2’ (1 pixel = 15 µm): flatness of 6/1000.

Summing it up, if the image geometry is not too bad and at least 10 corresponding points
are used, then the simple direct linear method for determining the trifocal tensor, which ne-
glects the internal constraints and minimizes reprojection error, practically performs equal to
the constrained method, which minimizes reprojection error. Consequently, if the trifocal ten-
sor is only computed to obtain approximations for the orientation parameters of a bundle block
adjustment, the direct linear solution is usually sufficient. However, if a general routine for
providing such initial values is requested, which does not have any restrictions on the image
geometry and also handles weak configurations, then the Gauß-Helmert model minimizing
reprojection error must be used.

10.3 Outlook

The following tasks seem worth further investigations:

Calibrated images. In section 8.5 on page 132 the critical configurations for determining the
trifocal tensor are reviewed. If the correspondences arise from points lying on certain
curves in space or in a plane then the trifocal tensor can not be determined uniquely. The
chances of running into a configuration involving those critical curves is rather small,
however, point correspondences from a common plane occur very often, especially if
man-made objects are involved. The examples from section 9 showed that the minimum
thickness, required to successfully determine the trifocal tensor, depends on the distance
between camera and object, and the noise in the image. Therefore the problem may in
practise be solved by using larger image scales, however, a certain risk remains, because
often the images are taken without considering these critical planarities or approaching
the object is restricted by environmental conditions.

Planar object points constitute a problem because the images are regarded as uncalibrated
when computing the trifocal tensor. If the the interior orientation of the images is known,
then this problem may be solved in general. Empirically we found that the system of the
direct linear solution has rank-21 instead of rank-26. Consequently by applying the inter-
nal constraints on this 5-parameter family of direct solutions a certain countable number
of valid trifocal tensors will result and if we further consider the known interior orien-
tation parameters, the number of valid trifocal tensors fitting to this interior orientation
may be broken down to a single solution.

Empirical investigations. From the examples in section 9 we derived formulas for the ground
errors and the minimum thickness for certain image configurations depending on the
noise level in the images. These formulas are backed only by two different noise levels,
which were considered in the examples, and only one principal distance is used. There-
fore an approach, considering different noise levels, various principal distances and other
image configurations, will result in formulas with a more general validity.
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Algebraic error. We also saw during the examples, that for geometric stable configurations
using a certain number of point correspondences the results obtained by minimizing al-
gebraic error are very similar to the results of minimizing reprojection error. On the other
hand we also saw that for certain lopsided image configurations the minimizing of alge-
braic error produces a bias in the results. A more thorough investigation of the relation
ship between these two kinds of minimizations may give deeper insights into the behav-
ior of minimizing algebraic error during the determination the trifocal tensor.

Lines. One benefit of dealing with the trifocal tensor is its ability to handle points and lines
at the same time. During the examples in section 9 we only consider point correspon-
dences. Also in the literature primarily points are used in connection with the trifocal
tensor. Therefore it is worth investigating the benefits and limitations of considering line
correspondences with and without additional point correspondences.

Lines have the advantage of occurring frequently in images, especially in industrial scenes.
They can be extracted automatically, often with higher accuracy than points; provided the
lines are long enough. Line correspondences can be established even if occlusions occur
in the images. However, since one single line does not constrain the image geometry as
much as one single point, many more line correspondences will be necessary to achieve
the same accuracy as with a certain number of points.

Distortion. The trifocal tensor so far is embedded in the framework of projective geometry,
which does not include non-linear image distortions. If the trifocal tensor is only deter-
mined to derive approximations of the image orientations for a subsequent bundle block
adjustment, this limitation should not be of much concern, provided the non-linear dis-
tortions are not too large and the points are well distributed. However, if an optimal
estimate of the trifocal tensor is wanted, then non-linear distortion parameters have to be
included in the projective framework. Some strategies can be found in the literature; e.g.
[Niini 2000] or [Fitzgibbon 2001].
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Appendix A

Notation

In this chapter the notation used within this thesis is summarized in detail. Quantities with
fixed scale are represented in slanted notation, and homogenous quantities are represented in
upright notation.

special symbols

|A| = det(A) the determinant of the matrix A

||A||Frob the Frobenius norm of the matrix A; see definition B.3 on page 181

|x|, |s| the length of a vector x and the absolute value of a scalar s

x∗, λ∗ the dual of a point x and the dual of a line λ

A? the cofactor matrix of the matrix A, which is the transposed of the ad-
joint; see equation (B.14) on page 179

<x, y> the inner, or scalar, product of two vectors x and y

dxe smallest integer being equal to or larger than x

lower case Roman font

e′2, e′3
the epipoles in image Ψ1 with respect to the images Ψ2 and Ψ3 ; see
relation (6.1) on page 45

ii the ith column of the identity matrix I3; see table 3.1 on page 15

x′, x′′, x′′′ corresponding image points in the images Ψ1, Ψ2 and Ψ3

lower case Greek font

ε′2
an epipolar line in image Ψ1 with respect to image Ψ2; see section 6.1.1
on page 45

λ′, λ′′, λ′′′ corresponding image lines in the images Ψ1, Ψ2 and Ψ3

κ the eigenvalue of a standard or general eigenvalue problem

π∞ the line at infinity; see section 3.2 on page 12

ρ′31, ρ′32, ρ′33
maps of the principal rays R′′′

1 , R′′′
2 and R′′′

3 of image Ψ3 into image
Ψ1; see proposition 6.4 on page 47
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upper case Roman or Sans Serif font

A M2M1
−1; see equation (7.4) on page 63

A
the Jacobian-matrix of the condition equations, especially in the Gauß-
Helmert model, with respect to the unknown parameters; see sec-
tion 8.2 on page 113

B M3M1
−1; see equation (7.4) on page 63

B
the Jacobian-matrix of the condition equations in the Gauß-Helmert
model with respect to the observations; see section 8.2 on page 113

C1 the calibration matrix of image Ψ1; see equation (5.7) on page 38

C
the Jacobian-matrix of the constraints in the Gauß-Helmert model with
respect to the unknown parameters; see section 8.2 on page 113

E12
the essential matrix from image Ψ2 to image Ψ1; see equation (6.11) on
page 49

F12
the fundamental matrix from image Ψ2 to image Ψ1; see theorem 6.1 on
page 46

G a general correlation matrix; see definition 3.3 on page 22

GL
the dual correlation induced by the 3D plane L; see proposition 6.10 on
page 57

H a general homography matrix; see definition 3.2 on page 21

HΩ
the homography induced by the 3D plane Ω; see proposition 6.7 on
page 53

H∞ the homography induced by the plane at infinity Π∞; see equation
(6.17) on page 56

Ii
the ith tensorial slice in direction i – a dual line correlation from image
Ψ2 to image Ψ3; see proposition 7.1 on page 67

In the identity matrix of dimension n

Ii the ith column of the identity matrix I4

J j
the jth tensorial slice in direction j – a point homography from image
Ψ1 to image Ψ3; see proposition 7.5 on page 71

Kk
the kth tensorial slice in direction k – a point homography from image
Ψ1 to image Ψ2; see proposition 7.9 on page 74

M1
the leftmost 3×3 sub-matrix of the point projection matrix P1; see equa-
tion (5.9) on page 39

P1 the point projection matrix of image Ψ1; see equation (5.6) on page 38

IP1, IP2, IP3, IPn the projective spaces of dimension 1, 2, 3 and n

IP2∗ the dual projective spaces of dimension 2

Q1 the line projection matrix of image Ψ1; see proposition 5.1 on page 40

R1 the rotation matrix of image Ψ1; see section 5.2 on page 37

IR2, IR3, IR4, IRn the Euclidian spaces of dimension 2, 3, 4 and n
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upper case Roman or Sans Serif font

S(·) the axiator, i.e. the operator that returns the cross-product matrix; see
equation (B.8) on page 179

Sred(·) the axiator reduced by one row; see section 3.6 on page 27

S the diagonal matrix of singular values; cf. section B.2 on page 178

U the left orthogonal matrix of singular value decomposition

V the right orthogonal matrix of singular value decomposition

Z1 the projection center of image Ψ1; always represented as a Euclidian vector

upper case Greek font

I(·) the operator that returns a 4×4 matrix, the Plücker matrix, needed for
joining and intersecting 3D entities; see section 3.5 on page 23

Σ(λ′) the projection plane of image line λ′ in image Ψ1; see relation (5.20) on
page 42

I I(·) the operator that returns a 6×4 matrix needed for joining and intersect-
ing 3D entities; see section 3.5 on page 23

Π′
1, Π′

2, Π′
3 the principal planes of image Ψ1

Π∞ the plane at infinity

Ψ1 the first image; see relation (5.13) on page 39

Ω a general plane in 3D space

upper case Calligraphic font

I i the ith column of the identity matrix I6; see table 3.3 on page 21

L a general line in 3D space

N (A) the nullspace of a matrix A

R′
1, R′

2, R′
3 the principal rays of image Ψ1 see relation (5.18) on page 41

R(A) the range of a matrix A

S(x′) the projection ray of image point x′ in image Ψ1 see relation (5.23) on
page 42
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Appendix B

Matrix Calculus

This chapter briefly summarizes some concepts of matrix calculus, which are used within this
thesis.

B.1 The eigenvalue problem

Let A be a square matrix of size n×n. Then finding solutions for the scalars κ1,κ2, . . . and the
vectors x1, x2, . . . of the equation

Ax = κx (B.1)

is called the (standard) eigenvalue problem. The scalars κi are called the (standard) eigenvalues
and the vectors xi are called the (standard) right eigenvectors of matrix A. The equation x>A =
κx> has the same eigenvalues but in general different (standard) left eigenvectors.

The general eigenvalue problem is of the form

Ax = κBx, (B.2)

where B is also of size n×n. The scalars κ are called general eigenvalues and the vectors x
are called the general right resp. left eigenvectors. Without any further specification the term
eigenvalue problem always refers to the standard case.

Eigenvalues are found as the roots of the characteristic polynomial

det(A−κI) = 0. (B.3)

The multiplicity ai of a root κi of this polynomial is called algebraic multiplicity of the eigen-
value κi. The set of eigenvectors x that satisfies (B.1) for a particular eigenvalue κi is called
the eigenspace of the eigenvalue κi, and its dimension gi = n− rank(A−κiI) is called the geo-
metric multiplicity of the eigenvalue κi. Both types of multiplicities are related by the following
important inequality; e.g. [Überhuber 1997]

1 ≤ gi ≤ ai. (B.4)

The eigenvalues of a matrix A are related to the determinant and the trace in the following way:

∏κi = det(A), (B.5)

∑κi = trace(A). (B.6)
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B.2 The singular value decomposition

The singular value decomposition (SVD) of a real matrix A of size m× n is given by

A = USV>, (B.7)

where U and V are orthogonal matrices of size m×m and n× n respectively, and
S = diag(σ1,σ2, . . . ,σk) is a diagonal matrix of size m×n and k = min(m, n). The diago-
nal elements satisfy the following inequality

σ1 ≥ σ2 ≥ · · · ≥ σr = σr+1 = · · · = σk = 0 with r = rank(A).

These diagonal elements are called singular values of the matrix A and are identical to the pos-
itive square-roots of the eigenvalues of A>A and AA>. The column vectors of U are called left
singular vectors of A and correspond to the eigenvectors of AA>, and the column vectors of V
are called right singular vectors of A and correspond to the eigenvectors of A>A; e.g. [Golub and
VanLoan 1996]. The matrices U and V and hence the singular value decomposition are unique,
if all singular values have multiplicity 1.

The singular value decomposition is a very useful tool for doing linear algebra – both in a nu-
merical and theoretical way; see e.g. [Golub and VanLoan 1996], [Überhuber 1997] or [Hartley
and Zisserman 2001].

For example, the range R(A) and nullspace N (A) of a rank-r matrix A is easily obtained by

R(A) = u1 ∨ u2 ∨ · · · ∨ ur

N (A) = vr+1 ∨ vr+2 ∨ · · · ∨ vn,

where ui and vi denotes the ith column of U and V respectively; see e.g. [Überhuber 1997].

Consequently, the singular value decomposition represents a simple way to solve homogenous
systems of linear equations Ax = 0, which we encounter several times in this thesis. Provided
the system has rank-(n− 1), the unique solution x is obtained by the last column of V ; i.e.
N (A) = vn. In case of an over-determined homogenous system (i.e. m > n), the same vector
x = vn, being the left singular vector to the smallest singular value σn, is the solution of

|Ax|2 → min

and |Ax| = σn. See e.g. [Hartley and Zisserman 2001] for further possible usages of the singular
value decomposition concerning linear least squares problems.

Also the pseudo inverse or Moore-Penrose inverse A+ of a singular matrix A can be obtained easily
with the singular value decomposition:

A+ = VS+U>,

with S+ = diag(1/σ1, 1/σ2, . . . , 1/σr, 0, . . . , 0). The pseudo satisfies the following conditions

AA+A = A
A+AA+ = A+

(A+A)> = A+A
(AA+)> = AA+ .
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B.3 The cross product

The cross product of two vectors a = (a1, a2, a3)
> and b = (b1, b2, b3)

>, denoted by a×b, re-
turns a vector c that is orthogonal to both vectors a and b:

c =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 with c>a = c>b = 0.

Using the so-called axiator S(a), this can also be written as

c = S(a)b,

with

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (B.8)

In other publications the axiator is represented as [ a ]× ; e.g. [Hartley and Zisserman 2001]. The
following relations involving S(a) are very helpful.

αS(a) + βS(b) = S(αa + βb) (B.9)
S(a)S(b) = ba> − a>bI (B.10)

S(a×b) = S(S(a)b) = ba> − ab> (B.11)

S(Ma) = det(M)M−>S(a)M−1, (B.12)

with M regular. The general formulation of (B.12), which holds for any M , is

S(Ma)M = adj(M>)S(a). (B.13)

adj(M) is the adjoint of the matrix M , defined by

adj(M)(i, j) = (−1)i+ j det(M ′
ji), (B.14)

where M ′
ji denotes the matrix obtained by striking out the jth row and the ith column of M .

So, if M is regular, it holds adj(M) = det(M)M−1. The relation (B.13) is adopted from [Hartley
and Zisserman 2001]; the other relations are obtained by simple computations.

Here are some rules that hold for cross products involving more than two vectors, adapted
from [Bronstein and Semendjajew 1991].

a× (b× c) 6= (a× b)× c
a× (b× c) = S(a)S(b)c (B.15)
(a× b)× c = S(S(a)b)c (B.16)

(a× b)>(c× d) = (a>c)(b>d)− (a>d)(b>c) (B.17)
(a× b)× (c× d) = |abd|c− |abc|d = |acd|b− |bcd|a (B.18)
(a× b)>

(
(c× d)× (e× f )

)
= |abd||ce f | − |abc||de f | (B.19)

Here |abc| denotes the determinant of the matrix made up of the column vectors a, b and c.
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B.4 The Kronecker product and the vec ()-operator

The Kronecker product and the vec ()-operator are useful for rewriting vector and matrix rela-
tions.

Definition B.1 (The Kronecker product.) Let A by a matrix of size m×n and B by a matrix of size
p×q. Then the Kronecker product A⊗B defines a matrix of size mp×nq as

A⊗B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Definition B.2 (The vec ()-operator.) Let A = [a1, a2, . . . , an] by a matrix of size m×n. Then
vec (A) returns a vector of size mn×1 by stacking together the columns ai of A:

vec (A) :=
(

a>1 , a>2 , . . . , a>n
)>

.

The following relations involving the Kronecker product and the vec ()-operator are very help-
ful; see e.g. [Schmidt and Trenkler 1998].

(A⊗B)C = A⊗C + B⊗C (B.20)
C(A⊗B) = C⊗A + C⊗B (B.21)

(A⊗B)> = A>⊗B> (B.22)
(A⊗B)(C⊗D) = (AC)⊗(BD) (B.23)

with A : (m×n), B : (p×q), C : (n×r), D : (q×s)

vec (αA) + vec (βB) = α vec (A) + β vec (B) (B.24)
vec (a) = vec

(
a>

)
= a (B.25)

vec
(

ab>
)

= b⊗a (B.26)

vec (ABC) = (C>⊗A) vec (B) (B.27)

By some simple but tedious computations we can also see that the following relation holds

A vec (B) = AT n vec
(

B>
)

, (B.28)

with A of size m× n2, B of size n× n and T n of the following form

T n
n2×n2

=
[
i1, i1+n, i1+2n, . . . , i1+(n−1)n, i2, i2+n, . . . , i2+(n−1)n, . . . , in, in+n, . . . , in+(n−1)n

]
, (B.29)

where ii is the ith column of the identity matrix In2 .
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B.5 Miscellaneous

At some points of this thesis we need one of the following terms or relations associated with
matrices.

Proposition B.1 (A special inverse.) The inverse of the matrix M = cI + ab> is given by

M−1 =
1
c
(I− 1

c + a>b
ab>),

provided a>b 6= −c and c 6= 0, because in these cases M is singular.

Proof:
It is easy to show by multiplying M with the proposed form of M−1 that the result is the
identity matrix I. What remains to show are the conditions for M to be singular. Of course
c 6= 0 is required, because otherwise only the dyad ab> with rank-1 remains. So we can cancel
out c from our problem and consider only the n×n matrix M ′ = I + a′b>, with a′ = 1/ca.
From requiring det(M ′) = 0 we see that −1 is an eigenvalue of a′b>. If we look therefore at
the eigenvalue problem a′b> +κI, then we see that also 0 is an eigenvalue and as the resulting
matrix is the dyad a′b>, the rank defect and therefore the geometric multiplicity is n− 1. From
inequality (B.4) on page 177 we see that the algebraic multiplicity has to be at least n − 1.
So, a′b> only has two different eigenvalues: κ1 = −1 with multiplicity 1, and κ2 = 0 with
multiplicity n− 1.

By applying relation (B.6) on page 177 with ∑κi = κ1 and trace(a′b>) = a′>b, we see that
a′>b = −1. And consequently a>b = −c is required for M to be singular.

2

Definition B.3 (Frobenius norm.) Let A by a matrix of size m×n. Then the Frobenius norm ||A||Frob
is defined as

||A||Frob = (∑ a2
i j)

1/2.
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Appendix C

The Algebraic Derivation of the
Multiple View Tensors

In [Hartley 1995b] and [Heyden 2000] the following approach of deriving the multiple view
tensors (i.e. fundamental matrix, trifocal tensor and quadrifocal tensor) is presented. From this
approach it is easy to see that such tensor for the relative orientation of more the four images is
not possible.

The general idea. The map x of a 3D point X into an image can be represented using the point
projection matrix P as

µx = PX, (C.1)

with a scalar µ replacing the scale ambiguity in the notation of section 5.2. Given m images
with mappings x′, x′′, x′′′, . . . , x(m) of the point X, we can look for relations that have to hold
between all corresponding image points x′, . . . , x(m). For finding such relations we consider the
following system of equations

P1 x′ 0 0 · · · 0
P2 0 x′′ 0 · · · 0
P3 0 0 x′′′ · · · 0
...

...
...

...
. . .

...
Pm 0 0 0 · · · x(m)





X
−µ1
−µ2
−µ3

...
−µm


=



0
0
0
0
...
0


. (C.2)

In a short way we can represent this system as

Nu = 0,

where N is a 3m×(4 + m) matrix and u is a (4 + m) vector. A necessary and sufficient condition
for the homogenous system (C.2) to have a non-trivial solution is that

rank(N) < m + 4. (C.3)

or in other words any (m + 4)×(m + 4) determinant of N has to be zero. Obviously these
determinant conditions are good candidates to derive relations between all corresponding im-
age points x′, . . . , x(m). Further, since the image points appear in separate columns in N, these
relations will be multi-linear in these image points.
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Two images. At first we consider the case of two images (m = 2). The system (C.2) turns
therefore into [

P1 x′ 0
P2 0 x′′

]  X
−µ1
−µ2

 =
(

0
0

)
.

This is a 6 × 6 system and therefore only one determinant of size (m + 4) has to be zero. By
denoting the rows of P1 with Ai and the rows of P2 with Bi, this determinant condition looks
the following

det



A1 x′1 0
A2 x′2 0
A3 x′3 0
B1 0 x′′1

B2 0 x′′2

B3 0 x′′3

 = 0.

This determinant condition already corresponds to the epipolar constraint 6.2. Using the fully
antisymmetric valence-3 tensor εi jk (see section 4) the expansion of this determinant gives the
following bilinear relation (observe the summation convention)

1
4
εie f x′iε jpqx′′ j det


Ae

A f

Bp

Bq

 = 0,

with each index running from 1 to 3. The quantities not depending on the image coordinates x′

and x′′ can be stuck together to form a matrix Fi j as

Fi j =
1
4
εie fε jpq det


Ae

A f

Bp

Bq

 .

This bifocal tensor corresponds to the fundamental matrix F12 in theorem 6.1. The epipolar
constraint in tensor notation is then represented by

Fi jx′ix′′ j = 0.

Three images. In the case of three images (m = 3) the system (C.2) turns into

P1 x′ 0 0
P2 0 x′′ 0
P3 0 0 x′′′




X
−µ1
−µ2
−µ3

 =

 0
0
0

 .

This is a 9×7 system and since m + 4 = 7 any 7×7 determinant has to be zero. Basically we
have two possibilities to choose 7 rows: (i) 3 rows from one camera, 3 rows from another camera
and 1 row from the last camera, or (ii) 3 rows from one camera and 2 rows from each of the
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other two cameras. The first kind of determinants, however, will not yield a relation between
all three image points. This can be seen by considering the following determinant condition

det



A1 x′1 0 0
A2 x′2 0 0
A3 x′3 0 0
B1 0 x′′1 0
B2 0 x′′2 0
B3 0 x′′3 0
C1 0 0 x′′′1


= 0,

where the rows of P3 are identified with Ci. Expanding this determinant by the last column
gives

x′′′1 det



A1 x′1 0
A2 x′2 0
A3 x′3 0
B1 0 x′′1

B2 0 x′′2

B3 0 x′′3

 = 0,

which is independent on the third camera. This is in contrast to what we aimed for – con-
ditions depending on all corresponding image points. Consequently we only can consider
determinants of the second type, where 3 rows are taken only from one camera.

If we use all rows from the first camera and the rows (p, q) and (r, s) from the second and third
camera respectively, we get the following determinant condition

det



A1 x′1 0 0
A2 x′2 0 0
A3 x′3 0 0

B(p) 0 x′′(p) 0
B(q) 0 x′′(q) 0
C(r) 0 0 x′′′(r)

C(s) 0 0 x′′′(s)


= 0,

with super-scripts in brackets indicating fixed indices. Since we have 3 choices for leaving one
of the B-rows and also 3 choices for leaving one of the C-rows, we get actually 9 different
conditions involving the corresponding points in three images. Of course, these conditions
correspond to the 9 point-trilinearities (7.29) on page 79.

Once again we use the fully antisymmetric valence-3 tensor εi jk and represent these 9 condi-
tions as the following trilinear relations

1
2
εie f x′iε jpqx′′pεkrsx′′′r det


Ae

A f

B j

Ck

 = 0qs, (C.4)

with all indices running from 1 to 3. By combining the quantities which are not related to the
image coordinates x′i, x′′p and x′′′r and common to all 9 equations, i.e. do not depend on q and
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s, we get the following valence (1,2) tensor T jk
i

T jk
i =

1
2
εie f det


Ae

A f

B j

Ck

 . (C.5)

Note, that there is a summation over e and f . This tensor corresponds to the trifocal tensor1 in
definition 7.1. Consequently, all the transfer relations and trilinearities can also be represented
in tensor notation – see table C.1.

transfer relations
entities equations

{λ′′, λ′′′} → λ′ λ′i ∼ λ′′j λ
′′′
k T jk

i

{x′, λ′′′} → x′′ x′′ j ∼ x′iλ′′′k T jk
i

{x′, λ′′} → x′′′ x′′′k ∼ x′iλ′′j T jk
i

trilinearities
entities equations m n

λ′, λ′′, λ′′′ εabiλ′bλ
′′
j λ

′′′
k T jk

i = 0a 3 2

x′, λ′′, λ′′′ x′iλ′′j λ
′′′
k T jk

i = 0 1 1

x′, x′′, λ′′′ x′iεab jx′′bλ′′′k T jk
i = 0a 3 2

x′, λ′′, x′′′ x′iεab jx′′′bλ′′′k T jk
i = 0b 3 2

x′, x′′, x′′′ x′iεab jx′′bεcdkx′′′dT jk
i = 0ab 9 4

Table C.1: The transfer relations and trilinearities associated with the trifocal tensor in tensor notation; cf. ta-
ble 7.5 on page 80. The last two columns for the trilinearities give the number m of all equations and the number
n of the linearly independent equations within one group of trilinearities.

Due to inequality (C.3) we have to consider the minors of size (m + 4) of the system (C.2) for
m images and as we just saw from each image at least 2 rows must be included, otherwise
we will not obtain a relation between all corresponding image points. Therefore the following
inequality must hold

m + 4 ≥ 2m → m ≤ 4.

Consequently we are limited to the maximum of four images, when trying to find multi-linear
relations for corresponding points in all images.

1In contrast to the geometric based derivation of the trifocal tensor in section 7.1, no particular order of the three
indices i, j and k results from this algebraic derivation, therefore the tensor can be addressed as T jk

i ; and it holds

T jk
i = mTk j

· · i for some non-zero scalar m.
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Four images. In the the last possible case of four images (m = 4) the system (C.2) turns into


P1 x′ 0 0 0
P2 0 x′′ 0 0
P3 0 0 x′′′ 0
P4 0 0 0 x′′′′




X
−µ1
−µ2
−µ3
−µ4

 =


0
0
0
0

 .

This is a 12×8 system and since m + 4 = 8 any 8×8 determinant has to be zero. Since we have
to choose at least two rows from each image, we arrive at the following determinant condition

det



Ai x′i 0 0 0
Ap x′p 0 0 0
B j 0 x′′ j 0 0
Bq 0 x′′q 0 0
Ck 0 0 x′′′k 0
Cr 0 0 x′′′r 0
Dl 0 0 0 x′′′′l

Ds 0 0 0 x′′′′s


= 0,

where (i, p), ( j, q), (k, r) and (l, s) denotes the rows chosen from the first, second, third and
fourth image respectively. The rows of the fourth image are represented as Dl . Since we have
3 choices for dropping one row from each projection matrix, we actually get 81 different condi-
tions involving the corresponding points in four images.

Using the fully antisymmetric valence-3 tensor εi jk we represent these 81 determinant condi-
tions as quadrilinear relations

εiptx′pε jqux′′qεkrvx′′′rεlswx′′′′s det


Ai

B j

Ck

Dl

 = 0tuvw, (C.6)

with each index running from 1 to 3. By combining the quantities which are not related to the
image coordinates x′p, x′′q, x′′′r and x′′′′s, and common to all 81 equations, i.e. do not depend
on t, u, v and w, we get the following valence (0,4) tensor Qi jkl

Qi jkl = det


Ai

B j

Ck

Dl

 .

This tensor is called quadrifocal tensor, which is made up of 34 = 81 elements. The 81 relations
(C.6) involving four corresponding image points are called quadrilinearities, which therefore can
be written as

εiptx′pε jqux′′qεkrvx′′′rεlswx′′′′sQi jkl = 0tuvw, (C.7)

Of these 81 relations, however, only 16 are linearly independent. This can be see from the fact,
that in (C.7) each image point appears in combination with an ε-tensor; e.g. εiptx′p. This corre-
sponds to the axiator S(x′), which only has rank-2. If we consider one of these 81 equations by
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fixing the indices t, u, v and w, we use from each axiator one column, which corresponds to one
line through the respective image point. Obviously only two of the three lines through each
point are linearly independent, therefore only 24 = 16 independent equations are obtained.

One needs nevertheless at least 6 (instead of 5) point quadruples to determine the quadrifo-
cal tensor, because there exists one linear dependency between the 32 quadrilinear relations
obtained from two different point quadruples in four images; [Heyden 2000].

The monofocal tensor. In [Heyden 2000] another determinant is considered, which is made
up of all three rows A1, A2 and A3 of the first point projection matrix P1 and one row Bi from
the second point projection matrix P2

det


A1

A2

A3

Bi

 .

This determinant does not depend on any image coordinates (and will be non-zero in general).
As it is shown in [Heyden 2000] the three possible determinants of this kind make up the
epipole e′′1 , i.e. the map of the first projection center into the second image, and is also called
monofocal tensor

e′′i1 = det


A1

A2

A3

Bi

 .
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Appendix D

Least Squares Adjustment

In the following sections the basics of least squares adjustment will be presented to the reader.
Although it was tried to formulate this chapter as general as possible, it is beyond the scope
of this thesis to cover all aspects of adjustment (especially the statistics part) and the interested
reader is recommend to the text books [Mikhail 1976] and [Koch 1999], which are also the basis
for this chapter.

D.1 Introduction

Let us consider some sort of natural object, which can have a static (time invariant) or dynamic
(time dependent) behavior. An example of a static object would be a building, whereas the
Earth’s atmosphere would be a dynamic object. Now, we would like to determine and repre-
sent such a natural object. It is evident, that we can not describe the natural object per se but
only an approximation of it using an object model. Such an object model can be very complex
(e.g. the model of a building considers its doors, windows, and even the chimneys) or rather
simple (e.g. the building is represented only as a cuboid).

The object model itself is represented by a set of parameters xObject; e.g. a cuboid model of a
building could be represented by the length of the three edges or by the eight corner points.
The parameters can be subdivided into known (or constants) and unknown parameters. Of course
our aim is to determine the unknown parameters and thus complete our object model. This task
can be solved by performing measurements (or observations) m with a suitable device (e.g. a tape
or a camera). Sometimes we can directly observe an unknown parameter with a device (like
the distance between to points with a tape), but usually we can only measure quantities, which
are functionally related to the unknowns in a certain way (e.g. points, which we can observe in
an image of a building are related to the object points through a central projection).

The observations m, which are the basis for our work, however, are affected by some sort of
errors, which can be seen from the fact that repeated observations of the same quantity return
(slightly) different values each time. Thus, if we would make only as many observations as we
need for a unique determination of our unknown parameters, the errors of the observations
would affect the parameters in an uncontrolled way. So, to limit the influence of the errors on
the result and to assess the effect of the remaining errors, many more observations than actually
necessary are made. Now the question arises, how to determine the unknowns in a best way
given this redundant information.
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D.2 The Mathematical Model

Before we can determine the parameters of our object model, we have to set up the so-called
mathematical model, which itself consists of the functional model and the stochastic model.

The functional model describes the relations F(m, xObject, xInstrument) = 0 between the object pa-
rameters xObject and the observations m and introduces the additional (un)known parameters
xInstrument. These additional parameters are required for establishing the functional relations F,
e.g. camera parameters in case of image observations. The functional and the object model al-
ways need to be considered together and should be tuned accordingly, e.g. if the object model
is rather course (like a cuboid representing a building) it is not necessary to use a very sophis-
ticated set of camera parameters, on the other hand, if we demand very accurate results or a
very high level of detail on the object, the functional model should be suitable to achieve these
goals. xObject and xInstrument are combined in the vector x in the following.

The stochastic model describes the statistic properties of the observations. We know from our
experience that observations are subject to some sort of error. For example, if the distance
between two points is measured several times by different persons using different devices or
methods, all observed distance values will be different. They will scatter around the ’true’ value
of the distance. Although we do not know this true value it is evident that the observations
must be erroneous due to the scattering within the observations. Three types of errors are to be
considered in this context: random errors, gross errors and systematic errors.

D.2.1 Error properties of observations

Random errors result from the accidental nature of the observations. The scattering in repeated
observations is caused by the limitations of the measuring instrument and the user, the varying
environmental influences where the observations take place, and the sharpness or definition
uncertainty of the 3D-object itself. Therefore the result of a measurement process has to be
considered as a random variable, with the actual observation being a realization or sample of it.
Associated with a (continuous) random variable is a probability density function and thus a
certain distribution. Usually this distribution of the measurement errors is assumed to be a
Gaußian or normal distribution. However, the normal distribution is not generally required for
errors to have ’random’ behavior. Still, the normal distribution is a good choice because the
repeated observations usually display a normal frequency distribution. It is also statistically
well justified to assign the observations a normal distribution due to the central limit theorem,
which states that data which are influenced by many small and unrelated random effects are
approximately normally distributed.

The amount of the random errors or noise in a single observation can be quantified by the
variance σ2 or the standard deviation σ . The noise of and the mutual dependencies between a
group of observations m can be quantified by the covariance matrix Σmm, which is a symmetric
matrix. If two observations are stochastically independent then their covariance is zero. The
inverse is not true in general, however, if the observations are normally distributed, then they
are independent if their covariance is zero. If the covariance σxy between two observations
is normalized by the respective standard deviations σx and σy, a measure called correlation
coefficient is obtained. If all observations are uncorrelated then Σmm turns into a diagonal matrix.
Data can be correlated in two ways: mathematical correlation (if the data results functionally from
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other quantities; e.g. GPS-positions which are obtained from distance measurements to several
satellites) and physical correlation (if certain environmental conditions like temperature or vapor
fundamentally effect the data).

Gross errors, although occurring randomly, do not have any probability distribution and must
be eliminated from the observations before computing the final results. When dealing with
images they are caused by the carelessness of the user (who identifies a point wrongly from
one image to another) or by the limitations of automatic (matching) algorithms. Usually gross
errors or blunders are associated with a rather high magnitude. They, however, can also have
rather small magnitude (in the order of the random errors) and then their detection turns out
to be rather difficult.

Systematic errors actually are not a property of the observations. They result from errors in the
functional model; i.e. the relations between the observations and the parameters are not correct.
For example the disregard of existing non-linear distortion in the camera model will result in
such systematic errors. The model errors must be detected before computing the final results
and eliminated by a refinement of the functional model using additional parameters. The de-
tection of small systematic errors can be done easier compared to small gross errors, since the
model errors affect all data in the same way, thus resulting in a suspicious, i.e. systematic,
pattern of errors, whereas small gross errors occur only individually.

D.3 Methods for parameter estimation

As we saw, due to the inevitable errors in the observations m we have to make more obser-
vations than necessary to minimize the influence of the errors on the resulting parameters x
and the question arises, how to determine the unknowns in a best way given this redundant
erroneous information.

Before we can do this, we have to define what we mean with ’best way’. Obviously some kind
of general error or quality criterion has to be chosen in beforehand. A parameter estimator that
either minimizes or maximizes this criterion can be regarded as a best way to determine the un-
knowns with respect to this criterion. The following three estimators maximizing/minimizing
certain criteria seem appropriate:

• Maximum Likelihood Estimator The observations m are associated with a probability
density function depending on the unknown parameters x. The unknown parameters
are determined in the way that the Likelihood function L(m|x) is maximized; i.e. the un-
knowns are determined such that the probability for the occurrence of the given sample
of observations m is a maximum.

• Best Unbiased Estimator The unknown parameters x are determined in the way that
the expectation of their estimation E(x̂) and the expectation of their true value E( ∗x) are
identical (→ unbiased estimation) and that the expectation of the sum of the squared errors
(i.e. the variance) is minimal (→ best estimation). The expectations need to be considered
because of the accidental nature of the errors in m.

• Least Squares Estimator The unknown parameters x are determined in the way that the
squared sum of the observations’ residuals v = m − s(x̂) is minimized: v>Pv → min.
With s(x̂) = m̂ being the estimated observations fitting to the estimated unknowns x̂ and
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P being a weight matrix for the observations m providing a sum of weighted squared
residuals (see following text).

In contrast to the Best Unbiased and the Least Squares Estimator, the Maximum Likelihood
Estimator requires a given probability density function for the observations.

For the least squares estimator a weight matrix P was introduced for the following reason: Due
to the redundant erroneous information certain contradictions in the mathematical model will
occur. For the least squares estimation these contradictions will be eliminated by the unknown
parameters x and by altering (or improving) the given observations m by some residuals v.
Weights are used to reflect to what extent observations may be altered. Very accurate observa-
tions mi (i.e. with small standard deviationσi) should be improved much less than observations
with lower accuracy. Thus, for stochastically independent observations mi, the weights are de-
fined as pi = σ2

0 /σ2
i , with σ2

0 being the reference variance. Its root is the standard error of unit
weight (since an observation with σi = σ0 has wi = 1). All observations’ weights are collected
in the weight matrix P , which is a diagonal matrix for uncorrelated observations.

For stochastically dependent (thus correlated) observations individual weights can not be as-
signed, due to mutual dependencies. The weight matrix P is then defined as

P = Q−1
mm = σ2

0 Σ−1
mm (D.1)

Thus P is the inverse of the cofactor matrix Qmm which is proportional to the observations’
covariance matrix Σmm. If the observations are represented as homogenous entities, the covari-
ance matrix Σmm will be singular; cf. [Heuel 2002]. Therefore, we will represent all observations
inhomogenously and work with regular covariance matrices.

The functional relations F(m, x) = 0 between observations m and (un)known parameters x
are made up of two different kinds of relations: condition equations and constraints. Condition
equations involve at least one observation and any number of parameters. Constraints do not
include any observations and are entirely made up of parameters. Generally both of these
relations can be made up of any (nonlinear) functions in m and x respectively. However, in
general it is rather difficult to handle nonlinear estimation problems directly – in contrast to
linear problems. Therefore a linearization of the original estimation problem is carried out
by Taylor’s series. This linearization needs an initial value x0 for the unknowns x which are
iteratively refined by corrections ∆x.

If this linearization is done with the original functional relations F(m, x) = 0 then one arrives
at the so-called Gauß-Markoff (D.4) or Gauß-Helmert (D.5) models. The (iteratively refined) so-
lution in these two models returns the Best Unbiased estimation for the unknowns (i.e. having
minimal variance) and also minimizes the squared sum of the weighted observations’ residuals
v>Pv. If the probability density function of the observations is known to be Gaußian, then the
solution is also a Maximum Likelihood estimation.

Since the solution is independent of the choice of the criterion, the (weighted) Least Squares
criterion will be considered in the following.

D.3.1 Parameterization

The object model and the functional model introduce parameters into our mathematical model.
Most of these parameters will be unknown and a few will be known (i.e. constant). In a correct
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manner only a few numbers can be considered as constant (e.g. the numbers e and π), because
even internal parameters of a camera determined in a laboratory are only known with finite
(admittedly very high) accuracy. So, in a rigorous mathematical model also the known param-
eters would be treated as stochastic variables. Consequently their covariance matrices would
be considered also in the stochastic model.

It may be possible that a model for our (physical or geometrical) phenomenon can be repre-
sented by different sets of parameters. Among all possible sets of parameters, the so-called
minimal parameterizations are distinguished, as they use the least possible number, referred to
as u0. For example, a 2D line can be represented in the following ways with the number of
parameters given in brackets; adopted from [Heuel 2002]:

slope-intercept form (2) : y = kx + m
axis-intercept form (2) : x/a + y/b = 1

angle-distance form (2) : cosφ x + cosφ y + d = 0
homogenous form (3) : ax + by + c = 0

point-angle form (3) : cosφ (x− x0) + cosφ (x− y0) = 0

determinant form (4) :

∣∣∣∣∣∣
x1 x2 x
y1 y2 y
1 1 1

∣∣∣∣∣∣ = 0

Some of these representations use the minimal number of u0 = 2 parameters, others are over-
parameterized and use up to 4 parameters; however, some of the minimal representations can
not represent all possible lines, e.g. vertical lines in the slope-intercept form. And therefore
more than one map from all possible lines to a minimal parameterization may be needed; i.e.
the two maps y = kx + m and x = k′y + m′ represent all possible lines.

All of these representations return a valid 2D line for any choice of the parameters. A pa-
rameterization with this property is also termed consistent. In principle, a 2D line can also be
represented as y = f x2 + gx + h. This is a non-minimal representation, since 3 parameters are
used, and it is also non-consistent, as only in the case f = 0 a valid 2D line is obtained.

If a non-minimal representation with u parameters is used, u− u0 constraints must be satisfied
by this parameterization. The purpose of these constraints in case of an already consistent
parameterization is to prevent the singularity of the subsequent system of equations; e.g. for
the homogenous form ax+by+c=0 the scale of the vector (a, b, c)> must be fixed. In the case
of an non-consistent representation, the constraints are required to make the parameterization
consistent; e.g. f = 0 is the constraint required for y = f x2 + gx + h to represent a valid 2D
line.

Note, that in the latter case the subsequent system of equations will be regular even without
considering the constraints, but the result will not be valid as the additional parameters, i.e. the
quadratic component f , will absorb some effects of the errors in the observations. However, in
case of observations having only small errors, the observed points are practically collinear and
therefore the quadratic component f is not determinable and the system will be nearly-singular.

If c constraints are considered in the parameterization with u parameters, we will refer to the
number u − c as the number of essential parameters1 ue. Only if ue = u0, the parameterization
together with the constraints is consistent. For example, if the trifocal tensor is parameterized
by its 27 elements and only the scaling constraint is considered, then ue = 26 and u0 = 18.

1The term degrees of freedom might be a better choice for the number ue, however, this term is already defined
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D.4 The Gauß-Markoff model

The Gauss-Markoff model model is defined as m̂ = f (x̂); i.e. the original nonlinear relations
F(m̂, x̂) = 0 only include condition equations where each observation is expressed by some set
of parameters and therefore m = c > u). The Taylor linearization in the Gauß-Markoff model
is given by:

m̂ = m + v = f (x0 + ∆x) → v = A∆x−w (D.2)
w = m− f (x0)

The term ’Gauss-Markoff model’ is used, because [Gauß 1809] applied it together with the
Likelihood method to derive the Least Squares method and showed that this way a Best Esti-
mation is obtained. Later [Markoff 1912] used this model to determine the unknowns using the
Best Unbiased Estimator. This model is also called adjustment by indirect observations and plays
the mayor role in technical disciplines since in many situations a single (physical) observation
returned by some instrument can be related easily to a set of unknown physical or geometrical
parameters. So e.g. this model is used for bundle adjustment, where the measurements in an im-
age can be expressed easily by the orientation elements of the image (e.g. the projection matrix)
and the corresponding 3D-points.

The sum of the weighted squared residuals Ω is given by

Ω = v>Pv → min. (D.3)

By replacing v in (D.3) with (D.2) and setting the partial derivative ∂Ω/∂∆x = 0 the correction
∆x for the unknown parameters are determined by:

∆x = (A>PA)−1A>Pw = N−1A>Pw (D.4)

The system (D.4) is also termed system of normal equations. This is due to the fact that the residual
vector v is orthogonal to the column space of the Jacobian A: A>v = 0. If the model is over-
parameterized the Jacobian A will be deficient in rank and (D.4) needs to be solved using the
pseudo-inverse N+.

The unknown σ0 can be estimated by

σ̂0 =

√
v>Pv
m− u

(D.5)

The covariance matrix Σx̂x̂ of the estimated unknown parameters x̂ is computed by

Σx̂x̂ = σ̂2
0 Q x̂x̂ (D.6)

Q x̂x̂ = (A>PA)−1 = N−1 (D.7)

The covariance matrices of the other quantities can be found in [Mikhail 1976] or [Koch 1999].

In [Gill and Murray 1978] the solution (D.4) is referred to as Gauss-Newton’s method, which
differs from another one called Newton’s method. The difference is caused by the argument

in adjustment theory, where it used for the number of redundant observations m + c− u, given m observations for
u unknown parameters and c constraints. To avoid confusion with the notion of degrees of freedom used in the
geometric part of this thesis, we will not use this term in this chapter on adjustment at all.
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of the Taylor approximation, which is f (x) for Gauß-Newton’s and Ω for Newton’s method.
Therefore the latter takes the Hessian matrices of f (x) into account. Due to [Gill and Murray
1978] the Gauß-Newton method converges to the real value ∗x as long as the Jacobian A is
regular and |m− f (x)| is small.

Another modification of this model is the the so-called Levenberg-Marquardt algorithm which
uses augmented normal equations by replacing N in (D.4) with N ′ where N′

ii = (1 + λ)Nii for
some small λ. Due to [Hartley and Zisserman 2001] the Levenberg-Marquardt algorithm
moves seamlessly between the Gauß-Newton method, which will cause rapid convergence
in the vacinity of the solution, and a descent approach, which will guarantee a decrease in the
cost function Ω when the going is difficult.

D.5 The Gauß-Helmert model

The Gauss-Helmert model is defined as a functional model F(m̂, x̂) = 0, which is made up of the
condition equations f (m̂, x̂) = 0 and also may include additional constraints g(x̂, ŷ) = 0, with
y being some sort of additional unknown parameters, which may be needed to set up the con-
straints, but do not take part in the condition equations. Since it makes no restrictions on the
functional model the Gauss-Helmert model is also called general case of least squares adjustment
[Helmert 1872]. The Taylor linearization of the Gauß-Helmert model is given by:

conditions: f (m̂, x̂) = 0 → A∆x + Bv−w = 0
w = − f (m, x0)−B(m−m0)

constraints: g(x̂, ŷ) = 0 → C∆x + D∆y− t = 0
t = −g(x0, y0)

(D.8)

Observe, that the vector w in (D.8) depends on the original observations m and the iteratively
refined approximations m0 for their estimates m̂.

With m independent observations m, u (≥ u0) unknown parameters x, c1 independent condi-
tions, c2 independent constraints set up with s additional independent unknowns y the Jaco-
bians resp. vectors in (D.8) are of the following order:

x: u× 1 v: m× 1 y: s× 1
A: c1 × u, rank = u0 B: c1 ×m, rank = c1 w: c1 × 1
C: c2 × u, rank = c2 − s D: c2 × s, rank = s t: c2 × 1

And it holds:

m ≥ c1

c1 + c2 ≥ u + s
c2 ≤ u + s
c2 ≥ s
ue = u + s− c2
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Using Lagrange multipliers λ (a c1-dimensional vector) and µ (a c2-dimensional vector) the
criterion Ω to be minimized is given by

Ω = v>Pv
+ 2λ>(A∆x + Bv−w)
+ 2µ>(C∆x + D∆y− t) → min. (D.9)

The partial derivatives of Ω are set to 0:

∂Ω/∂v = 2Pv + 2B>
λ = 0

v = −P−1B>
λ (D.10)

∂Ω/∂∆x = 2A>
λ + 2C>

µ = 0

∂Ω/∂∆y = 2D>
µ = 0

∂Ω/∂λ = A∆x + Bv−w = 0

λ = (BP−1B>)−1(A∆x−w)
λ = W (A∆x−w) (D.11)

∂Ω/∂µ = C∆x + D∆y− t = 0

The matrix W = (BP−1B>)−1 in (D.11), obtained by error propagation from P , is the weight
matrix of the conditions. This matrix is regular if P is regular (i.e. inhomogenous observations
are used ) and if B has full row rank ( i.e. the conditions f (m, x) are linearly independent).
If the unknown vector of Lagrange multipliers λ is eliminated with (D.11) then the following
system of normal equations is obtained:A>WA 0 C>

0 0 D>

C D 0


 ∆x

∆y
µ

 =

A>W w
0
t

 (D.12)

If the conditions and constraints are properly set up the system (D.12) will be regular. If B
has not full row rank (i.e. the conditions are dependent) then W is obtained using the pseudo-
inverse of BP−1B>. The pseudo-inverse is briefly summarized in section B.2 on page 178.
Further if the model is overparameterized with a consistent set of parameters and the depen-
dencies are not (entirely) considered in the constraints, then the whole system (D.12) needs to
be solved using its pseudo-inverse.

The Lagrange multipliers λ and further the residuals v can be computed from the corrections ∆x
using (D.11) and (D.10) respectively. This way better approximations for the next iteration step
are obtained. Since the Jacobians A and B depend on the parameters and the observations, A
and B for the iteration (i+1) should be evaluated at (x0

i+1, m0
i+1) = (x0

i + ∆xi, m + vi). However,
in practise the iteration on the residuals may be skipped. This can be admissible if the errors
in the observations are not too large; i.e. the given observations m are sufficiently close to the
final estimates. If the residual iteration is neglected (and if no constraints are in the model),
then this method is identical to the minimization of the Sampson approximation to reprojection
error presented in [Hartley and Zisserman 2001]. However, one must be aware of the fact, that
if the iteration on the residuals is skipped, the final check of the conditions will not be fulfilled;
i.e. f (m̂, x̂) 6= 0.
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The unknown σ0 can be estimated by

σ̂0 =

√
v>Pv

c1 + c2 − u− s
(D.13)

The system (D.12) can also be represented by: ∆x
∆y
µ

 =

 Q11 Q12 Q13
Q>

12 Q22 Q23
Q>

13 Q>
23 Q33

  A>W−1w
0
t

 (D.14)

Using (D.14) the covariance matrix Σx̂x̂ of the estimated unknown parameters x̂, with rank(Σxx) =
u0, is computed by

Σx̂x̂ = σ̂2
0 Q11. (D.15)

Note: By considering or neglecting the matrices B, C and D, the Gauß-Helmert model allows
the unknowns to be determined by minimizing measurement error (with B) resp. algebraic
error (without B), in a constrained way (with C and D) or unconstrained way (without C and
D).
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Appendix E

MATLAB File Listings

Two proofs in this thesis were done using MATLAB V.5 – a programming language for technical
computing. The respective listings of the applied script files (the so-called m-files) are given
here.

E.1 Vanishing derivatives for the essential matrix constraint of iden-
tical singular values

Following proposition 6.5 on page 49 a matrix E12 is an essential matrix if and only if its singu-
lar values {σ1,σ2,σ3} satisfy the following condition

σ1 = σ2 and σ3 = 0.

The first condition σ1 = σ2 expressed in the elements of E12 reads as

(e>1 e1 + e2
>e2 + e>3 e3)2 = 4(e?

1
>e?

1 + e?
2
>e?

2 + e?
3
>e?

3) (E.1)

with E?
12 = [e?

1 , e?
2 , e?

3] = [e2×e3, e3×e1, e1×e2] being the co-factor matrix of E12.

With the following m-file it is shown, that the differentials of the equation E.1 with respect to the
9 elements of E12 vanish if E12 is a valid essential matrix. In practical applications this means,
that starting from approximate values for E12 the iteration sequence crashes in the moment of
enditeration.

% This MATLAB file shows the following:
% Let C represent the constraint that the essential matrix (E) has two identical singular
% values.
% Then the differntials of C with respect to the 9 elements of E vanish if the 9 elements
% make up a valid essential matrix; i.e. when the adjustment in the Gauss-Helmert model
% is enditerated.

clear; % delete old variables
syms e11 e12 e13 e21 e22 e23 e31 e32 e33 real; % 9 elements of E defined as real symbols
e1=[e11;e12;e13]; % the columns of E
e2=[e21;e22;e23];
e3=[e31;e32;e33];

E=[e1 e2 e3]; % E as a general 3x3 matrix
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% constraint C=0
leftside=(e1’*e1+e2’*e2+e3’*e3)^2;
rightside=4*([cross(e1,e2)]’*cross(e1,e2)+

[cross(e1,e3)]’*cross(e1,e3)+
[cross(e2,e3)]’*cross(e2,e3));

C=leftside-rightside;
% derivatives of C with respect to the
% elements of E

deriv_C11= diff(C,’e11’);
deriv_C12= diff(C,’e12’);
deriv_C13= diff(C,’e13’);
deriv_C21= diff(C,’e21’);
deriv_C22= diff(C,’e22’);
deriv_C23= diff(C,’e23’);
deriv_C31= diff(C,’e31’);
deriv_C32= diff(C,’e32’);
deriv_C33= diff(C,’e33’);

% a valid essential matrix with 5 DOF
syms b1 b2 b3 real; % elements of baseline
B=[ 0 -b3 b2; b3 0 -b1; -b2 b1 0]; % axiator of baseline
syms s1 s2 s3 real; % parameters for spatial rotation
S=[ 0 -s3 s2; s3 0 -s1; -s2 s1 0];
R=inv(eye(3)-S)*(eye(3)-S); % rotation matrix

E5dof=B*R; % the valid essential matrix

% assign the 9 valid elements to the
% general 9 elements

e11=E5dof(1,1);e12=E5dof(1,2);e13=E5dof(1,3);
e21=E5dof(2,1);e22=E5dof(2,2);e23=E5dof(2,3);
e31=E5dof(3,1);e32=E5dof(3,2);e33=E5dof(3,3);

% substitute the valid elements in the deriv.
subst_deriv_C11=subs(deriv_C11);
subst_deriv_C12=subs(deriv_C12);
subst_deriv_C13=subs(deriv_C13);
subst_deriv_C21=subs(deriv_C21);
subst_deriv_C22=subs(deriv_C22);
subst_deriv_C23=subs(deriv_C23);
subst_deriv_C31=subs(deriv_C31);
subst_deriv_C32=subs(deriv_C32);
subst_deriv_C33=subs(deriv_C33);

simpl_deriv_C=zeros(1,9); % simplify the expressions of the deriv.
simpl_deriv_C(1)=simplify(subst_deriv_C11);
simpl_deriv_C(2)=simplify(subst_deriv_C12);
simpl_deriv_C(3)=simplify(subst_deriv_C13);
simpl_deriv_C(4)=simplify(subst_deriv_C21);
simpl_deriv_C(5)=simplify(subst_deriv_C22);
simpl_deriv_C(6)=simplify(subst_deriv_C23);
simpl_deriv_C(7)=simplify(subst_deriv_C31);
simpl_deriv_C(8)=simplify(subst_deriv_C32);
simpl_deriv_C(9)=simplify(subst_deriv_C33);
simpl_deriv_C % output of simplified derivatives,

% which turn out to be all zero
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E.2 Independency of the constraints derived from the homography
slices

In section 7.6.3 on page 103 we found the following constraints from the J j homographies:
The three rank constraints (7.52) on page 100 and the single epipolar constraint (7.53) on page
101, these four constraints were also derived from the Ii correlations. Further we found the
collinearity constraints (7.58) on page 105 and the concurrency constraint (7.59) on page 105.
These eight constraints must be independent to represent a minimal set of constraints.

If the J j homographies satisfy the first four constraints, then the parameterization 7.56 on
page 102 of the Ii correlations can be applied, which represents the J j homographies as

J1 =
[
s′′′1 , s′′′2 , s′′′3

]
,

J2 =
[
v1s′′′1 + m1e′′′1 , v2s′′′2 + m2e′′′1 , v3s′′′3 + m3e′′′1

]
,

J3 =
[
w1s′′′1 + n1e′′′1 , w2s′′′2 + n2e′′′1 , w3s′′′3 + n3e′′′1

]
.

Using this parameterization the other four constraints, i.e. the collinearity constraints (7.58) and
the concurrency constraint (7.59), can be set up. If they are satisfied, all eight constraints are
dependent, if they are not satisfied, they are independent.

Note, that there is a some uncertainty in this proof, as the desired goal of independent eight
constraints would also result if the collinearity constraints (7.58) and the concurrency constraint
(7.59) were incorrectly implemented. Therefore the implementation is also checked with the
consistent parameterization (7.57), which is obtained by v1 = v2 = v3 = v and w1 = w2 = w3 =
w. For this consistent parameterization the collinearity constraints (7.58) and the concurrency
constraint (7.59) must be satisfied.

% ++++ Minimal set of constraints via the J-matrices ++++
% The J-matrices are parameterized so that they satisfy the constraints in image 3.
% With this parameterization, the constraints in image 1 are checked.
% It should result that the constraints in image 1 are not satisfied
% and therefore all 8 constraints are independent

clear

% parameterization of the J-matrices so that
% they satisfy the constraints in image 3

syms s11 s12 s13 s21 s22 s23 s31 s32 s33;
syms e31x e31y e31z; % epipole in image 3 with respect to image 1

s1=[s11;s12;s13];
s2=[s21;s22;s23];
s3=[s31;s32;s33];

e31=[e31x;e31y;e31z];
syms v1 v2 v3 w1 w2 w3;
syms m1 m2 m3 n1 n2 n3;

J1=[s1,s2,s3]; % parameterization of J-matrices
J2=[v1*s1+m1*e31,v2*s2+m2*e31,v3*s3+m3*e31];
J3=[w1*s1+n1*e31,w2*s2+n2*e31,w3*s3+n3*e31];

% constraints in image 1
col12=det([cross(J1(1,:),J1(2,:));

cross(J2(1,:),J2(2,:));
cross(J3(1,:),J3(2,:))]); % collinearity on rho_33
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col13=det([cross(J1(1,:),J1(3,:));
cross(J2(1,:),J2(3,:));
cross(J3(1,:),J3(3,:))]); % collinearity on rho_32

col23=det([cross(J1(3,:),J1(2,:));
cross(J2(3,:),J2(2,:));
cross(J3(3,:),J3(2,:))]); % collinearity on rho_31

% concurrency of rho_33, rho_32, rho_31
conc=det([cross(cross(J1(1,:),J1(2,:)),cross(J2(1,:),J2(2,:)))

cross(cross(J1(1,:),J1(3,:)),cross(J2(1,:),J2(3,:)))
cross(cross(J1(3,:),J1(2,:)),cross(J2(3,:),J2(2,:)))]);

[R,HOW] =simple(col12) % output is different from zero --> independency
[R,HOW] =simple(col13)
[R,HOW] =simple(col23)
[R,HOW] =simple(conc)

% check: constraints in image 1 should be satisfied if consistent parameterization is used
syms v w;
v1=v;v2=v;v3=v;
w1=w;w2=w;w3=w;

J1=[s1,s2,s3]; % parameterization of valid J-matrices
J2=[v1*s1+m1*e31,v2*s2+m2*e31,v3*s3+m3*e31];
J3=[w1*s1+n1*e31,w2*s2+n2*e31,w3*s3+n3*e31];

% constraints in image 1
col12=det([cross(J1(1,:),J1(2,:));

cross(J2(1,:),J2(2,:));
cross(J3(1,:),J3(2,:))]);

col13=det([cross(J1(1,:),J1(3,:));
cross(J2(1,:),J2(3,:));
cross(J3(1,:),J3(3,:))]);

col23=det([cross(J1(3,:),J1(2,:));
cross(J2(3,:),J2(2,:));
cross(J3(3,:),J3(2,:))]);

conc=det([cross(cross(J1(1,:),J1(2,:)),cross(J2(1,:),J2(2,:)))
cross(cross(J1(1,:),J1(3,:)),cross(J2(1,:),J2(3,:)))
cross(cross(J1(3,:),J1(2,:)),cross(J2(3,:),J2(2,:)))]);

[R,HOW] =simple(col12) % output is zero --> check of implementation
[R,HOW] =simple(col13)
[R,HOW] =simple(col23)
[R,HOW] =simple(conc)
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