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Ökonometrie, Operations Research und
Systemtheorie

der Technischen Universität Wien

unter der Anleitung von

O.Univ.Prof. Dr.phil. Gustav Feichtinger
Univ.Ass. Dipl.-Ing. Dr.techn. Gernot Tragler

durch

Florian Großlicht

Kellerstraße 3
3482 Stettenhof

März 2003 Unterschrift

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Contents

1 Introduction 3

2 Formulation of the Base Model 6
2.1 The Model without Controls . . . . . . . . . . . . . . . . . . . 9
2.2 The Model with Constant Controls . . . . . . . . . . . . . . . 10
2.3 The Optimal Control Model . . . . . . . . . . . . . . . . . . . 10

3 Determination of the Parameters 11
3.1 Estimation of m . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Estimation of k̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Estimation of c . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Estimation of µ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Calculation of the Error . . . . . . . . . . . . . . . . . . . . . 17

4 Analysis 21
4.1 The Model without Controls . . . . . . . . . . . . . . . . . . . 21
4.2 The Model with Constant Controls . . . . . . . . . . . . . . . 23
4.3 The Optimal Control Problem . . . . . . . . . . . . . . . . . . 24

5 Sensitivity Analysis 33
5.1 Effects of Changes of Prevention’s Efficiency Parameters . . . 33

5.1.1 Changing the Minimum h of Iprev(t) . . . . . . . . . . 33
5.1.2 Changing Prevention’s Rate of Decay m . . . . . . . . 34

5.2 Changing the Ratio between Outflow Due to Treatment and
Natural Outflow . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.1 Determination of the Parameters . . . . . . . . . . . . 36
5.2.2 Steady State Values after Ratio Changes . . . . . . . . 42

5.3 Corrected Budget Data . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions and Extensions 54

1



CONTENTS 2

A Technical Details 57
A.1 Solution of the Bernoulli Differential Equation (2.13) . . . . . 57
A.2 Derivation of the Optimality Conditions in the Optimal Con-

trol Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 Proof that λ0 6= 0 in the Current-Value Hamiltonian . . . . . . 60
A.4 Proof of the Concavity of the Current-Value Hamiltonian with

Respect to (u, w) . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.5 Solution of the Utility Functional J (2.12) . . . . . . . . . . . 61

B Analysis of Model Variation 62
B.1 Formulation of the Model . . . . . . . . . . . . . . . . . . . . 62
B.2 Determination of the Parameters . . . . . . . . . . . . . . . . 62
B.3 Steady State Values for Different Outflow Ratios R . . . . . . 64
B.4 Stable Manifolds for some Outflow Ratios R . . . . . . . . . . 65



Chapter 1

Introduction

Nowadays, the drugsyndicates represent a huge problem worldwide, which
can be seen at the thousands of drug deads per year. The transaction vol-
ume of drugs amounts to 500 billions USD yearly. This is an unthinkable
amount because it’s greater than the GDP of many states. Law enforcement,
imprisonment of dealers, border controls, controls at airports or other police
measures are puny and disabled in the ”drug war” but essential attempts to
fight against the destructive global power ”drug”. In this war the antagonist
is from superiour dimension and so it’s very hard to win this campaign.

In the drug scene the abbreviation ”H” means heroin, which is one of the
most hazardous opiates in the whole drug-catalogue. It’s very easy to pro-
duce this drug, but since it represents a derivative of the opium (cleaned
opium), the effect is stronger than from the ordinary opium. The name of
heroin is derived from ”heros” and ”heroic” because the effect is amazingly
strong. The impact of heroin is six-times as strong as that of opium. While
opium is six to twelve hours active in the human body, heroin will be abol-
ished in two to four hours.

The several forbiddances achieved just as little as the alcohol prohibition in
the USA in the twenties. On the contrary, the illegal side found ways at all
times and intends to offer the illegal drugs to the consumer. So this is one
of the most discussed topics in the last years.

In my master thesis I discuss the actual heroin problem in Australia. To anal-
yse this problem I use optimal control theory. The problem is formulated as
a one-state two-control optimization model. The state variable is the number
of heroin users, A(t), with t denoting the time argument. The two control
variables represent treatment spending, u(t), and prevention spending, w(t).
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CHAPTER 1. INTRODUCTION 4

Both controls (u(t), w(t)) have comparable effects on the number of drug
users, by reducing their actual number. The difference is that treatment
increases the outflow of drug users while prevention decreases initiation into
drug use.

The data used to analyse this problem are from different sources (see Chap-
ter 3). Since some data are not available, they had to be estimated. For
instance, the budget is known, but the fractions which have been spent for
prevention and for treatment, respectively, are unknown. In the first chap-
ters we suggest that one half of the users quitted because of treatment, and
the other half had other reasons for quitting, the so-called natural outflow.
Moreover, significant parameters are unknown, and therefore some of them
are taken from Caulkins et al. (2000) and from Tragler et al. (2001), who
analysed similar models of the current U.S. cocaine epidemic.

In the next paragraphs I describe the structure of my master thesis and ex-
plain in a few sentences what I have analysed.

In Chapter 2 the model is formulated and described. We distinguish between
three model types. The first model is the so-called model without controls.
That means that nothing is spent for prevention or for treatment. The next
one is the model with constant controls, i.e. a constant amount is spent each
year for prevention and treatment. These two models are those with less
work because they don’t describe an optimal control model, and therefore
can be solved very easily. The last one is the optimal control model. In
this model, the prevention and treatment spendings are chosen in a way that
the total costs of the drug problem are minimized. This model is the most
interesting one because it’s really ambitious mathematically.

In Chapter 3 the parameters are estimated. Some of them are taken from
Caulkins et al. (2000) and from Tragler et al. (2001). Some of the others are
estimated in that way that the error of the formulated function to the data
is minimized over the time period. The estimation of the two parameters α
(initiation term exponent) and z (treatment function exponent) is of great
interest and is explained in Chapter 3 in detail.

Chapter 4 shows the solutions of the three variations of the model. The
model without controls and the model with constant controls can be solved
very easily. The optimal control model is solved by using Pontryagin’s max-
imum principle (cf. Feichtinger et al. (1986) and Pontryagin et al. (1964)).
This results in the investigation of a nonlinear system of two differential
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equations. The solutions are discussed and plotted for better understanding.

In Chapter 5 a sensitivity analysis is presented. First of all, the parameters
measuring the prevention’s efficiency are changed. The next section deals
with the effects of changing the ratio between quitting due to treatment and
quitting due to other reasons. Further, the analysis of a model with slightly
different budget data is presented to conclude Chapter 5.

In the final Chapter 6 the results of the previous chapters are discussed and
some motivations for further studies are given.

The Appendix is used for some detailed mathematical calculations and the
analysis of a model variation.



Chapter 2

Formulation of the Base Model

The model investigated in this thesis is based on Caulkins et al. (2000),
Tragler et al. (2001), Kaya (2002), and Mautner (2002). A one-state two-
control dynamic optimization problem is considered where the state variable
describes the number of drug users at time t, A(t), and the two control
variables are treatment spending, u(t), and prevention spending, w(t). The
decision maker wants to minimize the discounted stream of the total social
costs which are caused by the drug problem. These total costs consist of the
social costs arising from the drug consumption and the budget spendings for
treatment and prevention.

The control variables are subject to the non-negativity constraints

u(t) ≥ 0, w(t) ≥ 0 ∀t. (2.1)

The function ϑ(w) describes the effect of prevention spending on initiation.
More precisely, the fraction of susceptibles who start using drugs although
w is spent on prevention is given by the function ϑ(w). The function ϑ(w)
is specified as follows:

ϑ(w(t)) := h + (1− h)e−mw(t), (2.2)

where m is the prevention’s rate of decay and h the minimum level to which
the prevention may decrease the initiation:

h := min
w(t)

Iprev(w(t)).

The condition 0 ≤ h ≤ 1 must be guaranteed. It is assumed that the following
equations

ϑ(0) = 1, (2.3)

lim
w→∞

ϑ(w) = h, (2.4)
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CHAPTER 2. FORMULATION OF THE BASE MODEL 7

and

∂ϑ(w)

∂w
= −m(1− h)e−mw ≤ 0 (2.5)

are satisfied.

Equation (2.3) indicates that if nothing is spent on prevention, all suscep-
tibles will start using drugs. For w → ∞, ϑ(w) converges to the minimum
level h and cannot be less this barrier, which is shown in equation (2.4).
Equation (2.5) indicates that ϑ(w) is a monotonously decreasing function,
which means the more is spent on prevention, the less people will start using
drugs.

The proportion of users who stop using drugs due to treatment spending u(t)
is given by cβ. It is assumed that cβ depends not only on treatment spending
but also on the actual number of drug users A(t). c describes the treatment
proportionality constant. The treatment function β is given as follows:

β(A(t), u(t)) :=

(
u(t)

A(t)

)z

, 0 ≤ z ≤ 1, (2.6)

where z is the marginal efficiency of treatment.

The following conditions must be guaranteed for the function β(A, u):

∂β(A, u)

∂A
≤ 0, (2.7)

∂β(A, u)

∂u
≥ 0, (2.8)

and

β(A, 0) = 0. (2.9)

Equation (2.7) implies that for a constant treatment spending less users will
stop using drugs because the amount has to be divided under more users. In
equation (2.8) the number of drug users is held constant, and now the func-
tion is monotonously increasing in treatment spending. If nothing is spent
on treatment, the value of β is equal to zero according to equation (2.9).

There exists also a ”natural outflow”, and it is assumed that it depends only
on the drug price. The function Θ is specified as follows:

Θ := µ̃pb, (2.10)
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where µ̃ is the desistance proportionality constant, p the heroin price and
b ≥ 0 the elasticity of desistance.

The baseline initiation without prevention, Ibase, is modelled as

Ibase = k̃p−aAα

(cf. Tragler et al. (2001)), where k̃ is the initiation proportionality constant,
p the heroin price, a ≥ 0 the elasticity of participation, and 0 ≤ α ≤ 1 the
initiation term exponent.

The following properties are assumed for Ibase:

∂Ibase

∂A
= k̃p−aαAa−1 ≥ 0

and

∂2Ibase

∂A2
= k̃p−aα(α− 1)Aα−2 ≤ 0.

The differential equation describing the dynamics of the number of heroin
users consists of terms for initiation (I(t)), outflow due to treatment (Qtreat(t)),
and natural outflow (Qnat(t)) (cf. Figure 2.1).

-I(t)
A(t)

-

-

Qnat(t)

Qtreat(t)

Figure 2.1: Flow diagram for the model by Tragler et al. (2001).

Now, the differential equation Ȧ(t) can be described as follows:

Ȧ(t) = k̃p−aA(t)αϑ(w(t))−
[
cβ(A(t), u(t)) + Θ

]
A(t), (2.11)

where ϑ(w), β(A, u) and Θ are from (2.2), (2.6), and (2.10), respectively.

The objective function, J , which describes the total costs of drug use, does
not only depend on u(t) and w(t), but also on the social costs caused by the
use of illicit drugs. So the function is specified as follows:

J =

∞∫
0

e−rt
(
ρA(t) + u(t) + w(t)

)
dt, (2.12)
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where ρ are the social costs per user and year and r is the discount rate.

The aim of the decision maker is to minimize the total costs of drug use and
can be specified as follows:

min
u(t),w(t)≥0

J = min
u(t),w(t)≥0

∞∫
0

e−rt
( social︷ ︸︸ ︷

ρA(t) +

treatment︷︸︸︷
u(t) +

prevention︷︸︸︷
w(t)

)
︸ ︷︷ ︸

discounted costs

dt.

2.1 The Model without Controls

This variant is characterized by a decision maker who doesn’t care about the
drug problem and therefore doesn’t spend money for it. The development
of the drug problem is just watched by the decision maker. So the model is
specified as follows:

u(t) ≡ 0, w(t) ≡ 0 ∀t.

From this it follows that

ϑ(w) = ϑ(0) = 1 and β(A, u) = β(A, 0) = 0

(cf. (2.3) and(2.9)).

Substituting into the differential equation (2.11) yields

Ȧ(t) = k̃p−aA(t)α −ΘA(t). (2.13)

This characterizes no optimization problem because the two controls are not
included in this model.

That’s why the objective function J has the following form:

J =

∞∫
0

e−rtρA(t) dt,

which depends only on the number of drug users (cf. (2.13)). The model
without controls requires the least work, because the decision maker is con-
fined to watch the problem.
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2.2 The Model with Constant Controls

This model assumes that the decision maker spends a constant amount every
time period for prevention and treatment, so the following properties have
to be satisfied:

u(t) ≡ ū, w(t) ≡ w̄ ∀t.

Therefore the differential equation (2.11) has the following form:

Ȧ(t) = k̃p−aA(t)αϑ(w̄)−
[
cβ(A(t), ū) + Θ

]
A(t). (2.14)

This problem is again no optimization problem because the two controls are
constant and so they cannot be varied. The decision maker spends the same
constant amount every time period and watches how the problem develops.
The objective function J can be written as follows:

J =

∞∫
0

e−rt(ρA(t) + ū + w̄) dt.

2.3 The Optimal Control Model

This is a real optimization problem because the decision maker wants to
minimize the utility functional J subject to the differential equation (2.11)
and the non-negativity constraints u(t) ≥ 0 and w(t) ≥ 0 ∀t (cf. (2.1)).
The objective function J has the following form:

J =

∞∫
0

e−rt(ρA(t) + u(t) + w(t)) dt

(cf. (2.12)) and the decision maker aims to minimize this function.



Chapter 3

Determination of the
Parameters

In what follows we describe the data that were used for the determination
of the model parameters as well as the sources for these data. One of the
key characteristics of the model investigated in this thesis is that only those
heroin users are considered whose drug career length is greater than one
year; these data will hence be refered to as ”reduced” data as opposed to the
”complete” data including also those users with career length of one year or
less. The following data were used:

1. User Data: complete and reduced (yearly from 1971 to 1996); cf. Figure
3.1

2. Initiation Data: complete and reduced (yearly from 1971 to 1996); cf.
Figure 3.2

3. Quitting Data: complete and reduced (yearly from 1971 to 1996); cf.
Figure 3.3

4. Heroin Price Data (yearly from 1989 to 1999); cf. Figure 3.4

5. Budget Data: the total budget for treatment and prevention spending
(yearly from 1986 to 1997); cf. Figure 3.5

User, initiation, and quitting data were provided by Kaya et al. (2002) (com-
plete data) and Kaya and Agrawal (2002) (reduced data) and are based on
data from the 1998 National Drug Strategy Household Survey. Heroin price
data are from Caulkins (2001). Budget figures are partially from the Ministe-
rial Council on Drug Strategy (1992) and from emails between the National

11
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Drug Strategy Unit and our collaborators from the School of Mathematics,
University of South Australia (UniSA), Adelaide (C.Y. Kaya, Y. Tugai, J.A.
Filar, M.R. Agrawal).

Based on an observation of the UniSA group, the original budget figure for
year 1992 provided by the National Drug Strategy Unit ($ 33.485 million)
was adjusted to $ 50.000 million to yield a smoother curve for the budget
data. Further the UniSA group worked on the decomposition of the budget
into treatment and prevention components using additional sources. The
shares of treatment and prevention do not seem to vary much from one year
to another, by looking what’s happening in the 1990s. Based on their com-
pilation, on the average the share of treatment can be suggested to be taken
as 60 %.

The following parameter values are taken directly from Tragler et al. (2001):

• a = 0.25

• b = 0.25

• h = 0.84

• r = 0.04

• ρ = 42, 000

3.1 Estimation of m

The function ϑ(w) = h + (1− h)e−mw (cf. (2.2)) provides information about
the influence of prevention spending on initiation. That’s why h can be
described as the percentage of the susceptibles who will without fail start
using drugs. So (1− h) can be explained as the part of the susceptibles who
can be influenced in using drugs. According to the U.S. prevention programs
it is known that up to two thirds of (1 − h) will not start using drugs after
participating in a conventional prevention program. Such programs are made
for all kids in a special age group. The costs of an ordinary prevention
program are approximately 150 USD per kid. Roughly 1.44 percent of the
Australian population (about 18,000,000) are in such an age group, and so the
costs of the prevention program are 38,880,000 USD. The conversion factor
from USD to AUD is roughly 2, and so the spendings are 77,760,000 AUD
per year. This means that every year this amount has to be spent. The



CHAPTER 3. DETERMINATION OF THE PARAMETERS 13
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Figure 3.1: User Data: complete and reduced.

1975 1980 1985 1990 1995

5000

10000

15000

20000

25000

Init. red.

Init. compl.

I

t

Figure 3.2: Initiation Data: complete and reduced.
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Figure 3.3: Quitting Data: complete and reduced.
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Figure 3.4: Price Data.
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1986 1988 1990 1992 1994 1996 1998
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t

Figure 3.5: Budget Data.

term e−mw gives information about the efficiency of a prevention program
because it is the part of the influenceable persons who start using drugs after
participating in a program. In our problem this means that:

e−mw =
1

3
.

With the prevention spending of 77,760,000 AUD, m receives the following
value of m = 1.41282 · 10−8. That means, the value of m is received by esti-
mating the costs of a prevention program for 1.44 percent of the Australian
population.

3.2 Estimation of k̃

To estimate k̃ the initiation function I(t) is required. Equations (2.2) and
(2.11) are used to specify the initiation function as follows:

I(t) := k̃p(t)−aA(t)α
[
h + (1− h)e−mw(t)

]
.

In I(t) there are two unknown parameters. In addition to k̃, α is also undeter-
mined. The best value of k̃ is calculated by setting α constant. Consequently,
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the quadratic difference of the initiation function and the initiation data over
the time period t = 1989, . . . , 1996 is minimized:

min
k̃

1996∑
t=1989

(I(t)− InitiationData(t))2.

3.3 Estimation of c

For estimating c, the outflow due to treatment function, Qtreat, is required,
which describes how many persons stop using drugs after being treated. To
specify this function the function β(A, u) (cf. (2.6)) is needed as well as the
differential equation Ȧ(t) (cf. (2.11)). The function is given as follows:

Qtreat(t) := c

(
u(t)

A(t)

)z

A(t).

As in the previous section, there exist two undetermined parameters, i.e.
c and z. This problem will be solved like in the previous section. z is set
constant and then the quadratic difference from the outflow due to treatment
function and the half of the quitting data is minimized over c for the time
period t = 1989, . . . , 1996:

min
c

1996∑
t=1989

(Qtreat(t)−
1

2
QuittingData(t))2.

The half of the quitting data is taken because it is assumed that the other
half of the persons who stop using drugs have other reasons for quitting.

3.4 Estimation of µ̃

In the next steps the function of those users whose quitting has other reasons
than treatment is required. This function is denoted as Qnat and describes
the natural outflow. It is specified as follows:

Qnat(t) := µ̃p(t)bA(t).

In this function only the parameter µ̃ is unknown. The best value of µ̃ is
calculated by minimizing the quadratic error of the natural outflow function
and the half of the quitting data over the time period t = 1989, . . . , 1996:

min
µ̃

1996∑
t=1989

(Qnat(t)−
1

2
QuittingData(t))2.
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The quitting data are also divided by two because it is assumed that one half
quits after being treated and the other half has other reasons, the so-called
natural outflow.

3.5 Calculation of the Error

A decision has to be made, which combination of the parameters describes
the model in the best way. In the calculations the values for α and z must be
fixed and so the optimal values for k̃ and c are received. To get the number
of users A(t) with the specified parameters, the differential equation (2.14)
with the condition A(1971) = 945 (the number of users with career length
greater than 1 year in 1971) has to be solved. Additionally, the following
assumption is made to solve the differential equation:

• The average drug price over the time period t = 1989, . . . , 1999 is used
for p.

At the beginning the budget data are used in the differential equation. To get
the best combination of the parameters for given values of α = 0.1, (0.05), 0.9
and z = 0.1, (0.05), 0.9 the optimal k̃ and z are calculated. To decide which
combination of (α, z) is the best, a determination of the average error between
the calculated drug users and drug users from the user data in the time period
t = 1971, . . . , 1996 is made as follows:

error =
1

tN − t1 + 1

1996∑
t=1971

(A(t)− UserData(t))2. (3.1)

Figures 3.6 and 3.7 show the error as a function of the parameters α and z.
The only difference of the two figures is the label of the vertical axes (i.e.,
the error).

In Figure 3.6 the error can be seen as a two-dimensional function of α and
z. The first observation which can be made is that the error is very large for
big values of α and z. To minimize the error a move to smaller values of α
has to be made. It can be seen that the value of z is not so important for
the size of the error.

Figure 3.7 shows the same problem but it is zoomed in and so better state-
ments can be made. A small cleft between α = 0.4, . . . , 0.6 can be seen and
the value of z is again not as important as the value of α. The region outside
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Figure 3.6: 3D-plot of the error (cf. (3.1)) with the maximal error 2 · 109.

the cleft can be excluded to receive optimal combinations of the parameters.

The minimal error in the model amounts to 8.50038 · 106. So the parameters
of this variant will be used in the next chapter where the model is analysed.
In Figure 3.8 the function of the users, A(t), is plotted with the optimal
parameters. To get a chance to see how good the function approximates the
user data, the user data are also displayed in Figure 3.8.

In Table 3.1 the base parameter values are subsumed. These values will be
used in the next chapter where the analysis of the three variants of the model
is carried out.
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Figure 3.7: 3D-plot of the error (cf. (3.1)) with the maximal error 5 · 107.
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Figure 3.8: User data versus function of A(t) for the base parameter values
- budget data with ū ≡ 2.79 · 107 and w̄ ≡ 1.86 · 107.

Parameter Description Base Value
a elasticity of participation 0.25
b elasticity of desistance 0.25
c treatment proportionality constant 0.000659075
h minimum of Iprev(t) 0.84

k̃ initiation proportionality constant 828.347
m prevention’s rate of decay 1.41282 ·10−8

p heroin price 9,495.86
r discount rate 0.04
z treatment function exponent 0.6
α initiation term exponent 0.4
µ̃ desistance proportionality constant 0.00297822
ρ social costs per user per year 42,000.00

Table 3.1: Base paramter values.



Chapter 4

Analysis

To simplify the further calculations we set k := k̃p−a and µ := µ̃pb. Further-
more, the time argument t will mostly be omitted.

4.1 The Model without Controls

The differential equation (2.13) characterizes a typical Bernoulli differential
equation (cf. Boyce and DiPrima (1992)), and with Θ from (2.10) it follows:

Ȧ = kAα − µA. (4.1)

To find the steady states, the equation Ȧ = 0 has to be solved. From this it
follows that Â1 = 0 and

Â2 =

(
k

µ

) 1
1−α

(4.2)

are the steady states.

To receive the number of drug users at any point in time t the differential
equation (4.1) has to be solved. This can be done analytically (cf. Appendix
A.1). With the initial value A(0) = A0 it follows:

A(t) =

[
k

µ
+ (A1−α

0 − k

µ
)e(α−1)µt

] 1
1−α

. (4.3)

The limit of this particular solution for t → ∞ can be easily calculated
because we have 0 ≤ α ≤ 1, from wich it follows that:

lim
t→∞

A(t) =
(k

µ

) 1
1−α

.
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This means that for any initial value of drug users A0 > 0, A(t) converges
to the steady state value Â2 given in (4.2). The convergence of the function
A(t) can be seen in Figure 4.1. The parameters are taken from Table 3.1.

It results in a steady state value of Â2 = 574, 312, and with the initial value
A0 = 5, 000 and (4.3), the utility functional J amounts to J = 1.23725 · 1011

(see Table 4.1).

100 200 300 400 500
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300000

400000

500000

600000
A

t

Â2

Figure 4.1: Model without controls: A(t) converges to the steady state value
Â2 (red line).

Â2 ū w̄ J
574,312 0 0 1.23725 · 1011

Table 4.1: Model without controls: steady state value of Â2, u(t) = w(t) ≡ 0,
and value of the utility functional J .
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4.2 The Model with Constant Controls

To solve this problem, the average of the budget data over the time period
t = 1986, . . . , 1997 is calculated. The total costs for treatment spending, u(t),
and prevention spending, w(t), correspond to this amount. First of all, the
condition that the decision maker spends 60 % for treatment and 40 % for
prevention is set up. The both controls are constant at u(t) ≡ 2.79 · 107 and
w(t) ≡ 1.86·107. To get the differential equation for this model, the functions
ϑ(w̄), β(A, ū) and Θ are required (cf. (2.2), (2.6) and (2.10), respectively).
Hence, the differential equation becomes

Ȧ = kAα

(
h + (1− h)e−mw̄

)
−

(
c
( ū

A

)z

+ µ

)
A.

To get the steady state values, the parameters are taken from Table 3.1.
Furthermore, the initial value is set to A0 = 5, 000. This yields to Â =
341, 946 and for the utility functional J = 7.85096 · 1010. The convergence of
the function A(t) to the steady state and the steady state itself is plotted in
Figure 4.2. The summary of the calculated values is given in Table 4.2.

Â ū w̄ J
341,946 2.79 ·107 1.86 ·107 7.85096 · 1010

Table 4.2: Model with constant controls: steady state value of Â, constant
values of u(t) and w(t) and value of the utility functional J .
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Figure 4.2: Model with constant controls: A(t) converges to the steady state
value Â (red line).

4.3 The Optimal Control Problem

This model is the most demanding one from a mathematical point of view
because the use of Pontryagin’s maximum priniciple is inevitable (cf. Fe-
ichtinger et al. (1986) and Leonard and Long (1996)). The optimization
problem is to minimize the total costs of drug use over the time t = 0, . . . ,∞.
So the problem has to be converted to a maximum problem. This can be
done by multiplying the function J with the factor −1. That’s why the
maximum problem has the following form:

max
u(t),w(t)

−J. (4.4)

The function J is taken from equation (2.12). To get the differential equation
Ȧ, (2.2), (2.6) and (2.10) have to be inserted into equation (2.11) to get the
following state equation

Ȧ = kAα(h + (1− h)e−mw)−
(

c
( u

A

)z

+ µ

)
A. (4.5)

Now, the current-value Hamiltonian H for the optimization problem (4.4)
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subject to (4.5) can be formulated as follows:

H = λ0(−ρA− u− w)− λ

(
kAα(h + (1− h)e−mw)−

−
(
c
( u

A

)z

+ µ
)
A

)
where λ0 and λ describe the costate variables 1. The use of Pontryagin’s
maximum principle on this problem leads to two necessary optimality con-
ditions

u = arg max
u

H (4.6)

and

w = arg max
w

H. (4.7)

Since H is concave with respect to (u, w), Hu = 0, Hw = 0 give the un-
restricted extremum, but because of the non-negativity constraints u ≥ 0,
w ≥ 0, the border solutions have to be take into account. That means, if the
extremum is situated below 0, u = 0 and/or w = 0 have to be chosen as the
extremum, respectively.

From the costate equation

λ̇ = rλ−HA

the differential equation for Ȧ (cf. (4.5)), and the Hamiltonian maximizing
conditions (4.6) and (4.7), a differential equation for u̇ can be calculated (cf.
Appendix A.2):

u̇ = u

[
r − αkAα−1 + µ

1− z
− cρzuz−1

(1− z)Az−1
− αczuz−1

(1− z)mAz
+

+khAα−1 +
czuz−1

mAz
− µ

]
.

The concavity of the current-value Hamiltonian H w.r.t. A cannot be guar-
anteed. That’s why the optimality of the solution can only be shown by
means of the proof that the existing solution is the only one which satisfies
the necessary optimality conditions.

1λ0 can be set to one w.l.o.g., cf. Appendix A.3
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To get the steady state values of this problem, the two equations Ȧ = 0 and
u̇ = 0 have to be solved simultaneously. Now, the parameters from Table 3.1
have to be used to show the phase portrait. The two necessary optimality
conditions (4.6) and (4.7) allow to describe two of the four variables A, u, w, λ
as functions of the others. Therefore, the value of ŵ can be calculated by
inserting the two solutions Â and û in the equation for wopt (cf. (A.9)).

The intersection of the both isoclines Ȧ = 0 and u̇ = 0 represents a saddle
point equilibrium (Â, û) (cf. Figure 4.3), because the two eigenvalues are real
numbers and have different signs. The green curves are the stable manifolds
which give the optimal trajectories. The two grey lines represent the two
isoclines Ȧ = 0 and u̇ = 0. The essential values of this problem are subsumed
in Table 4.3.

Â û ŵ J?

216 3.04201 ·108 1.20952·107 9.95043 · 109

Table 4.3: Optimal control model: steady state values of Â, û and ŵ and
value of the utility functional J .

Figure 4.4 shows the optimal trajectories of treatment spending, u(t), and
of prevention spending, w(t), which are plotted as functions of the number
of drug users A(t). The vertical line represents the steady state value Â.
This means if you’re on the optimal trajectories of u and w, you move to the
steady state value. The only question is, from which side of Â the motion to
the steady state takes place. It can be seen that for any value of A treatment
spending is greater than prevention spending.

In Figure 4.5 the prevention function θ(w) is plotted as a function of w. The
horizontal line (violet) represents the value of θ(w) in the steady state ŵ.
The optimal value amounts to 0.974867, while the function converges to the
limit of θ(w) for w →∞.

Figure 4.6 shows the optimal trajectories of u and w as functions of the
time argument t. It was supposed that the initial value of drug users is
A0 = 5, 000. It can be seen that treatment spending u(t) is always greater
than prevention spending w(t). Furthermore, the values of the two functions
after 15 years are almost constant, and both spendings remain at this value.

From Figure 4.7 the optimal trajectory of drug users A(t) can be derived as
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Figure 4.3: Phase portrait in the A−u-plane for the optimal control problem.
The grey curves represent both isoclines Ȧ = 0 and u̇ = 0, the green curves
are the stable manifolds.

a function of the time argument t. The same initial value A0 = 5, 000 was
supposed. The trajectory converges to the steady state value Â (red line).
The optimal trajectory of A(t) represents also a monotonously decreasing
function due to a higher initial value of drug users compared with the low
steady state Â = 216. So one is basically always situated on the second
stable manifold (cf. Figure 4.3, right green function).

Figure 4.8 shows the functions I(t), Qtreat(t) and Qnat(t) which are evaluated
along the optimal paths of u(t) and w(t). It can be seen that in the first years
the quitting due to treatment is greater than the initiation. This can be ex-
plained as follows: The optimal trajectory of drug users is a monotonously
decreasing function and so the value of drug users has to decrease which can
happen if Qtreat(t) ≥ I(t) ∀t. After few years the steady state is reached
and now the people who initiate in the drug scene, quit after being treated.
This can be explained mathematically as follows: Ȧ(t)|Â = 0. That means if
you’re staying in the steady state, the number of drug users doesn’t increase.

In Figure 4.9 one can see the function θ(w) as a function of t where the opti-
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Figure 4.4: Optimal trajectories for u (blue) and w (orange) as functions of
A. The vertical line represents the steady state value Â.

mal prevention spending has been taken. The initial value of the drug users
is taken as A0 = 5, 000. The initial value of the function θ(w(0)) amounts
to 0.932601, and for t →∞ the function converges to the steady state value
θ(ŵ) = 0.974867. This means that the effect of prevention decreases, and
after 15 years the value of θ(w) is almost constant.

A very interesting question can be formulated as follows: What happens, if
the decision maker starts the optimal control with a delay?

This problem is analysed because it is possible that the decision maker starts
the optimal control too late. This may have many causes. For instance, the
spendings for the drug problem have to be granted from the parliament, since
the financial plans are made one or two years before. The next possibility
could be that the decision maker realizes too late that there already exists a
drug problem or she/he doesn’t want to realize that there is a drug problem
and so many years pass until control measures start.

From Figure 4.10 it can be seen what happens to the utility functional J , if
the optimal control starts with delay. That means, if the delay τ is x years,
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Figure 4.5: The prevention function θ(w) in addition to the horizontal line
(violet) which represents θ in the steady state.
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Figure 4.6: Optimal trajectories u (blue) and w (orange) as functions of t.
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Â

Figure 4.7: Optimal trajectory A converges to the steady state value Â (red
line).
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Figure 4.8: The functions I(t), Qtreat(t) and Qnat(t) evaluated along the
optimal trajectories of u and w as functions of the time argument t.
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Figure 4.9: The prevention function θ(w) evaluated along the optimal tra-
jectory of w as a function of t.
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Figure 4.10: The total costs J as a function of the delay τ before the optimal
control starts.



CHAPTER 4. ANALYSIS 32

the number of drug users with the initial value of A0 = 5, 000 first increases
just as in the model without controls. After x years, the optimal control
starts and the function of the drug users A(t) moves further on the optimal
trajectory. So if τ = 0 the optimal control model is used. We learn that a
prompt spending is essential and saves a lot of money.



Chapter 5

Sensitivity Analysis

The sensitivity analysis is a very important part of analysing a problem like
this, because many parameters have to be estimated (cf. Chapter 3), which
produces inaccuracy. Note, that some paramters are taken from Tragler et
al. (2001). In the first part, the effects of efficiency parameter changes have
been observed. The second part deals with the consequences of changing
the ratio between quitting due to treatment and the natural outflow. In the
next one, the solutions for the case with the original budget data point from
1992 with $ 33.485 million and with the ratio between u(t) and w(t) from
50:50 have been calculated. Finally, we refer to Appendix B, which deals
with the introduction of a constant γ in the function β(A(t), u(t)) and the
consequences which follow from introducing this constant.

5.1 Effects of Changes of Prevention’s Effi-

ciency Parameters

5.1.1 Changing the Minimum h of Iprev(t)

The value of the parameter h is taken from Tragler et al. (2001). It describes
how effective prevention may be, because it describes the minimum level to
which prevention may decrease the initiation. This means, if prevention is
very effective, the value of h can get smaller, because less susceptibles will
start using drugs. The value of h is only estimated and so it makes sense
to alter the value of the parameter. Nobody knows how effective prevention
really is and so the effects of changing h are very interesting to know.

In Figure 5.1 the changes of the steady state value of Â for different values of
h can be seen. The value of h is varied from 0.7 to 0.87. The other parameter

33
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values are taken from Table 3.1. The plot shows an almost linearly increasing
function of h. This means, the more effective the prevention is (lower values
of h) the smaller is the value of the steady state. The explanation for this can
be seen in the differential equation (2.11). This equation includes a smaller
flow of initiation for smaller values of h. The consequence is a lower steady
state value of Â.

Figure 5.2 shows the effect of changing h on the steady state values of treat-
ment spending û and prevention spending ŵ. We see that the more effective
prevention is, the higher is the steady state value of ŵ. On the other hand,
the higher the steady state value of the prevention spending, the lower is the
steady state value of treatment spending.

0.7 0.725 0.75 0.775 0.8 0.825 0.85

160

180

200

220

240Â

h

Figure 5.1: Steady state value of the number of users Â as a function of h.

5.1.2 Changing Prevention’s Rate of Decay m

The value of m is estimated in Chapter 3.1 and describes how fast the func-
tion ϑ(w) = h + (1− h)e−mw (cf. (2.2)) reaches the level h. So the value m
can be described also as the effectiveness of prevention but in another sense.
The parameter h describes how high the minimal percentage of the suscep-
tibles is who start using drugs although w is spent for prevention. The value
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Figure 5.2: Steady state values of treatment spending û (blue) and prevention
spending ŵ (orange) as functions of h.

of m describes only the velocity to reach this minimal level. This means, the
higher the value of m is, the faster the initiation reaches the minimum level.

In Figure 5.3 the steady state value Â can be seen as a function of m. The
function describes a convex, monotonously decreasing function of m. The
values of m varied from 1.18 · 10−8 to 2.9 · 10−8. It can be seen that the
steady state value of Â decreases for higher values of m. The higher the
value of m is, the faster ϑ(w) reaches the minimum level of h. Consequently,
the term of initiation in the differential equation (2.11) is smaller, and so a
lower steady state is reached.

Figure 5.4 shows the effect of different values of m on the steady state values
of û and ŵ. û as a function of m describes a convex, monotonously decreasing
function. On the other hand, ŵ shows a concave, monotonously increasing
function of m. The faster the minimum h can be reached, the more is spent
on prevention and the less on treatment.
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Figure 5.3: Steady state value of the number of users Â as a function of m.

5.2 Changing the Ratio between Outflow Due

to Treatment and Natural Outflow

In this section the ratio between the different outflows is changed. This has to
be done since nothing about this ratio is well known. In Chapter 3 this ratio
is set to 50:50. That means, 50 percent of the outflow are due to treatment
and the other 50 percent quit due to other reasons (the so-called natural
outflow). This proportion has an effect on the estimation of the parameters,
and so the parameters have to be re-estimated. The first step of changing
the ratio is to calculate the new parameters in the same way as in Chapter
3. The next step is to solve the optimal control model with Pontryagin’s
maximum principle (cf. Section 4.3). The resulting optimal trajectories are
plotted. Big focus was set on the accuracy of the parameter changes, which
has been increased.

5.2.1 Determination of the Parameters

In this subsection the estimation of the parameters will be discussed. The
accuracy of the parameter changes has been increased because the former
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Figure 5.4: Steady state values of treatment spending û (blue) and prevention
spending ŵ (orange) as functions of m.

changes from α = z = 0.1, (0.05), 0.9 has been altered to α = z =0.1, (0.01),
0.9. The ratio changes have been made also in 0.01 steps from 0.1 to 0.9.
The optimal parameters have been plotted for the different ratios. The only
problem is represented through the following inequality

α + z ≤ 1. (5.1)

If α and z fulfil this inequality, both isoclines Ȧ = 0 and u̇ = 0 have only one
intersection (cf. Mautner (2002)). This means that a saddle point equilib-
rium (Â, û) has been reached. If the inequality (5.1) does not hold the two
isoclines have no point of intersection and the optimal solution is a trajectory
converging to the origin (0, 0).

With the new parameter values, some interesting changes appear. The value
of the ratio (abbreviated by R) has to be understood in the following way:
The value of R is the fraction of users who quit because of treatment. The
estimation shows that the sum of α and z doesn’t fulfil the inequality (5.1)
for the following values R = 0.1, (0.01), 0.59 and 0.61.
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Figure 5.5: Optimal values of α for different outflow ratios, connected by
lines (grey) and interpolated by bezier splines (black).
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Figure 5.6: Optimal values of z for different outflow ratios, connected by
lines (grey) and interpolated by bezier splines (black).
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Figure 5.7: Sum of the optimal values of α and z for different outflow ratios,
connected by lines (grey) and interpolated by bezier splines (black).
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Figure 5.8: Optimal values of c for different outflow ratios, connected by lines
(grey) and interpolated by bezier splines (black).
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Figure 5.9: Optimal values of µ̃ for different outflow ratios.

Figures 5.5-5.8 and 5.10-5.12 show optimal parameter values and steady state
values for different values of R. To remove fluctuations in the plots, the val-
ues are also interpolated by bezier splines (i.e., cubic parables are stringed
together with the same bend).

Figure 5.5 shows the optimal parameter α for the different ratios of outflow
due to treatment and the natural outflow. It can be seen that the param-
eter moves only in the area (0.35, 0.45). In the first part the function is
monotonously decreasing and around R = 0.5, α is increasing. For values of
R bigger than 0.65, the parameter α amounts always to 0.45.

In Figure 5.6 the optimal values for the paramter z can be seen. In the first
part the value of z is very high (around 0.9) but it falls down around R = 0.6.
This ratio represents the first one at which the sum of α and z is smaller
than 1 (cf. (5.1)). The ratios R = 0.62, (0.01), 0.9 show z in the lower area.

Figure 5.7 represents the sum of both essential paramters α and z. As de-
scribed before, for a sum greater than 1 the isoclines have no intersection
point and the optimal solution is a trajectory converging to the origin (0, 0).
It can be seen that the ratios at which the isoclines have an intersection point
are given by values of R above 0.6. The red line describes the step from no to
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Figure 5.10: Optimal combination of the parameters α and z in the α − z-
plane, connected by lines (grey) and interpolated by bezier splines (black).

one intersection point. The bezier splines describe a monotonously decreas-
ing function.

Figure 5.8 shows how the treatment proportionality constant c changes for
different outflow ratios. At first glance it can be seen that the value of c is
very small for ratios R = 0.1, (0.01), 0.59. The first increase takes place at
R = 0.6, which is the first case where the inequality (5.1) is fulfilled. From
then on the value of c increases very strongly.

In Figure 5.9 the desistance proportionality constant µ̃ can be seen. The
value of µ̃ decreases with an increasing ratio R.

Figure 5.10 shows the changes of the combinations which occur if the ratio
between quitting due to treatment and natural outflow will be changed. It
can be seen that the changes of the values are in the first part only in the α-
area. At the ratio value R = 0.6 a jump to the lower z-values takes place (this
value represents the first case with a saddle-point equilibrium). Afterwards
the combination of (α, z) stagnates at low z values. The same observations
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can be made by looking to the bezier splines but there the small fluctuations
are removed.

5.2.2 Steady State Values after Ratio Changes

Comparison of R =0.1,(0.01),0.9

This part is used to describe which effect the ratio changes have on the steady
state value of drug users. The first part (R = 0.1, (0.01), 0.59) was excluded
since this one has two isoclines with no intersection point. This one has the
long-run optimal solution (Â, û) = (0, 0). The ratio R = 0.61 produces also
no saddle-point equilibrium and that’s why this ratio has always the value
0 on the following plots. This phenomenon was described precisely in the
subsection 5.2.1 and the reason for this is lying in inequality (5.1).

Figures 5.11 and 5.12 show the changes of the steaty state values of Â, û and
ŵ for different outflow ratios.

In Figure 5.11 it can be seen how the steady state value Â changes for dif-
ferent values of R. The different values of Â describe a non-monotonous
function but values with small differences are always in the same area. The
jumps from plane to plane which are characterized by differences in altitude
are caused by the different values of c. Figure 5.8 shows the different values
of c for different outflow ratios and this figure shows strong similarities with
Figure 5.11. The bezier splines remove the high fluctations in the plot, which
is why the black function has only small oscillations.

Figure 5.12 shows the steady state values û and ŵ for different values of R.
The optimal solutions of these two functions are almost constant except the
value for R = 0.61 (cf. subsection 5.2.1).

Comparison of R =0.6, 0.65, 0.75 and 0.85 in detail

First and foremore 4 cases were lifted out. The ratios are R = 0.6, 0.65,
0.75 and 0.85. The optimal parameters for these cases are calculated in the
same way as in Chapter 3 and are subsumed in Table 5.1. The remaining
parameters are taken from Table 3.1. The optimal parameters are used to
solve the differential equations (2.11) and (A.15) to receive the steady state
values (Â, û, ŵ) (cf. Table 5.2). It can be seen that the values of the essential
parameters α and z are always in the same area.
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Figure 5.11: Steady state values Â for different ratios R = 0.1, (0.01), 0.9,
connected by lines (grey) and interpolated by bezier splines (black).

Figure 5.13 shows the phase portrait in the A − u-plane for the four differ-
ent ratios. The blue curves are the stable manifolds for the different ratios,
which represent the optimal trajectories. It can be seen that these curves
have always the same appearance - the only difference is the ascent. The
vertical lines represent the steady state values for the tested ratios.

In Figure 5.14 the phase portrait in the A−w-plane can be seen. The orange
curves are the optimal trajectories for the different ratios. The functions look
very similar but they have all different altitudes. The vertical lines represent
the different steady state values.
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Figure 5.12: Steady state values û (blue) and ŵ (orange) for different ratios
R = 0.1, (0.01), 0.9, connected by lines and interpolated by bezier splines
(black).

Par. R =0.6 R =0.65 R =0.75 R =0.85
c 0.006048169 0.010884874 0.007560211 0.014234067

k̃ 482.115 432.636 537.247 482.115
z 0.28 0.2 0.28 0.2
α 0.45 0.46 0.44 0.45
µ̃ 0.002382578 0.002084756 0.001489111 0.000893467

Table 5.1: Base paramter values for R =0.6, 0.65, 0.75 and 0.85.

5.3 Corrected Budget Data

This section has been included because the drug user data used in this mas-
ter thesis include only users with a drug career length greater than one year.
First, the original budget data point $ 33.485 million for 1992 was used
because this amount was confirmed by the National Drug Strategy Unit.
Second, the ratio between treatment spending, u(t), and prevention spend-
ing, w(t), is 50:50. Third, oberservations were made that the budget data
should be reduced, because if less drug users have to be treated, less money
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R Â û ŵ J?

0.6 49,564 6.60338 ·108 1.46147 ·108 4.32116 ·1010

0.65 78,458 5.83398 ·108 1.64068 ·108 5.06296 ·1010

0.75 37,040 6.23845 ·108 1.33240 ·108 3.83275 ·1010

0.85 60,388 5.96310 ·108 1.52492 ·108 4.59194 ·1010

Table 5.2: Steady state values of Â, û, ŵ and value of the utility functional
J for R =0.6, 0.65, 0.75 and 0.85.
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Figure 5.13: The optimal policies for treatment spending u as a function of
A for different outflow ratios. The vertical lines represent the different values
of Â for different outflow ratios.

will be needed. That’s why the budget data of every year in this section were
reduced to 85 percent. At the beginning the optimal parameters have to be
estimated. The determination runs like in Chapter 3 and the parameters are
given in Table 5.3.

Figure 5.15 shows how good the determined parameters estimate the user
data. This was done by solving the differential equation (2.11) with the new
parameters and then plotting the function A(t) with the user data points. It
can be seen that the approximation is accurate.
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Figure 5.14: The optimal policies for treatment spending w as a function of
A for different outflow ratios. The vertical lines represent the different values
of Â the different outflow ratios.

Parameter Description Base Value
a elasticity of participation 0.25
b elasticity of desistance 0.25
c treatment proportionality constant 0.00494256
h minimum of Iprev(t) 0.84

k̃ initiation proportionality constant 482.326
m prevention’s rate of decay 1.41282 ·10−8

p heroin price 9,495.86
r discount rate 0.04
z treatment function exponent 0.3
α initiation term exponent 0.45
µ̃ desistance proportionality constant 0.00297822
ρ social costs per user per year 42,000.00

Table 5.3: Base paramter values - corrected budget data.
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Figure 5.15: User data versus function of A(t) for the parameter values from
Table 5.3 - budget data with ū = w̄ ≡ 1.95 · 107.

In the optimal control problem, the intersection of the both isoclines Ȧ = 0
and u̇ = 0 represents a saddle point equilibrium (Â, û) (cf. Figure 5.16),
because the two eigenvalues are real numbers and have different signs. The
green curves are the stable manifolds which give the optimal trajectories.
The red curves are the instable manifolds, i.e. if you’re on this curve you
move away from the point of intersection. The two grey lines represent the
two isoclines Ȧ = 0 and u̇ = 0. The essential values of this problem are
subsumed in Table 5.4.

Â û ŵ J?

45,019 6.31873 ·108 1.41658·108 3.45959 · 1010

Table 5.4: Steady state values of Â, û and ŵ and value of the utility functional
J - corrected budget data.

In Figure 5.17 the optimal functions of prevention spending, w(t), and treat-
ment spending, u(t), are plotted as functions of the number of drug users
A(t). The vertical line at Â represents the steady state value of the number
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Figure 5.16: Phase portrait in the A− u-plane for the optimal control prob-
lem. The grey curves represent the both isoclines Ȧ = 0 and u̇ = 0, the green
curves are the stable manifolds and the red curves are the instable manifolds
- corrected budget data.

of drug users. This can be explained as follows: if you’re on the optimal
trajectory of u and w, you move to the steady state value Â. If the number
of drug users is small (smaller than 2,494 drug users) then the spending for
prevention is greater than the spending for treatment. The optimal trajec-
tory for u has a very high slope in contrast to the optimal trajectory for w
which is nearly constant.

Figure 5.18 shows the prevention function θ(w) as a function of w and a hor-
izontal line (violet), which represents the optimal value at the steady state
θ(ŵ). It can be seen very clearly that the function has a high descent in the
first part because the limit of the function for high w is nearly h (cf. (2.4)).
Besides it can be descerned that the horizontal line has the intersection point
with θ(w) at (0.861624, 1.41658 · 108).

In Figure 5.19 the optimal trajectories of u and w can be seen as functions
of the time argument t. It was presupposed that the number of drug users at
time t = 0 is 5,000. Treatment spending u(t) is always greater than preven-
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Figure 5.17: Optimal trajectories u (blue) and w (orange) as functions of A.
The vertical line represents the steady state value Â - corrected budget data.

tion spending w(t) because the initial value is too high for another situation.
If the initial value A0 is smaller than 2,494 drug users, w(t) is higher than
u(t) until the number of drug users exceed this limit.

Figure 5.20 shows the optimal trajectory of the number drug users A as a
function of the time argument t. The trajectory converges to the steady state
value Â (red line). The initial value amounts to A0 = 5, 000 and the function
has a high ascent but reaches the steaty state value approximately after 80
years.

In Figure 5.21 you can see the functions I(t), Qtreat(t) and Qnat(t) evalu-
ated along the optimal paths of treatment and prevention spending. This
yields to the ”optimal trajectories” of initiation, the number of users treated
successfully and natural quitting. It can be seen that the initiation is the
function with the highest values, followed by the function Qtreat and than
Qnat. After 80 years the three functions are nearly constant and this can
be explained by watching Figure 5.20. Since the number of drug users is
nearly constant after 80 years, the three functions in Figure 5.21 have to be
also nearly constant because A is defined through these functions. This can
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Figure 5.18: The prevention function θ(w) in addition to the horizontal line
(violet) which represents θ in the steady state - corrected budget data.
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Figure 5.19: Optimal trajectories u (blue) and w (orange) as functions of t -
corrected budget data.



CHAPTER 5. SENSITIVITY ANALYSIS 51

20 40 60 80 100 120

10000

20000

30000

40000

50000

t

A

Â

Figure 5.20: Optimal trajectory A(t) converges to the steady state value Â
(red line) - corrected budget data.

be explained mathematically as follows: Ȧ(t)|Â = 0. That means if you’re
staying in the steady state, the number of drug users doesn’t increase.

Figure 5.22 shows the prevention function θ(w) where the optimal prevention
spending has been taken. It was assumed that the number of drug users at
time t = 0 is 5,000. At the beginning, the value of this function is 0.874121.
The descent in the first 35 years is very high, but after that the function
converges to the steady state value. This means that at time t = 0, 12.59
percent of the potential initiates don’t start using drugs, while 13.84 percent
stay away in the steady state.

In Figure 5.23 it can be seen what happens to the utility functional J if the
optimal control starts with delay. That means, if the delay τ is x years,
the number of drug users with the initial value of A0 = 5, 000 increases just
as in the model without controls for x years. After x years the optimal
control starts and the function of the drug users A(t) moves on the optimal
trajectory. So if τ = 0, the optimal control model is used. Notice that the
number of drug users in the uncontrolled model after 12 years is greater than
the steady state number of users in the optimal control model. That means,
if τ ≥ 12, the optimal trajectories on the right side of the steady state value
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Figure 5.21: The functions I(t), Qtreat(t) and Qnat(t) evaluated along the
optimal trajectories of u and w as functions of the time argument t - corrected
budget data.

have to be used. Figure 5.23 demonstrates that the costs increase almost
linearly with the delay. So each delayed start of the optimal control is very
expensive implying that a prompt realization of the drug problem and a quick
start of the spendings is advisable.
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Figure 5.22: The prevention function θ(w) evaluated along the optimal tra-
jectory of w as a function of t - corrected budget data.
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Figure 5.23: The total costs J as a function of the delay τ before the optimal
control starts - corrected budget data.



Chapter 6

Conclusions and Extensions

To carry out the calculations in this thesis several data were needed. These
data were provided to us by Kaya et al. (2002), Kaya and Agrawal (2002),
Caulkins (2001), the Ministerial Council on Drug Strategy (1992), and from
emails between the National Drug Strategy Unit and our collaborators from
the School of Mathematics, University of South Australia, Adelaide (C.Y.
Kaya, Y. Tugai, J.A. Filar, M.R. Agrawal). Tragler et al. (2001) used a
similar model to analyze the current cocaine epidemic in the United States
of America. Mautner (2002) used the same model but a different data set. In
this analysis only those users were considered who have a drug career length
greater than one year. That means that the user, quitting and initiation data
include only drug users who appear in a period greater than one year.

In some sense, this analysis hence makes a difference between ”light” and
”heavy” users. In former analyses of the Australian heroin epidemic (e.g.,
Mautner (2002)) this distinction wasn’t take into account. The work by
Behrens et al. (1999), (2000) on U.S. cocaine makes differences between light
and heavy users. The light users are people who consume drugs only occa-
sionally and don’t get addicted to them. These users have a positive influence
on initiation because they make a positive impression on the non-users. On
the other hand, the heavy users are people who take the drug regularly and
often are addicted to them. These people have a negative influence on ini-
tiation because they are a deterrence for people who think about using drugs.

The determination of some of the model parameters was an important part
of this work. For the estimation of these parameters the initiation function
I(t), the quitting due to treatment function Qtreat(t) and the natural outflow
function Qnat(t) were needed. These three functions are taken from the dif-
ferential equation for Ȧ(t) (2.11). To determine the missing parameters, the
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exponents α and z were kept fixed while k̃ and c, respectively, were calculated
so as to minimize the quadratic difference between I(t) and Qtreat(t) and the
iniation data and half of the quitting data, respectively. The parameter µ̃
was estimated by minimizing the quadratic error between Qnat(t) and half
of the quitting data. In Chapter 3 the differences in this estimation between
the α or z steps amount to 0.05. In the sensitivity analyis (cf. Section 5.2)
this value was decreased to 0.01 to increase the accuracy of the calculations.
In Chapter 3 the assumption was made that one half of the quitting people
stop using drugs because of treatment and the other half has other reasons
for quitting. This ratio was changed in Section 5.2 from 10:90 to 90:10 in 1
percent steps.

One of the problems with estimating the parameters is shown in Figure 5.10
which shows the changes of the parameters α and z in the α− z-plane. The
ratio between quitting due to treatment and natural outflow is unknown. In
Chapter 3 the ratio is set to 50:50. Figure 5.11 and Figure 5.12 describe the
steady state values of Â, û and ŵ for different ratios. The fluctuations are
very severe and so the real ratio of quitting is important to know to find the
real optimal solution of the underlying problem.

The calculations of Chapter 4 distinguish between three variations of the
model. The first one presupposed that nothing was spent for treatment or
prevention. The long-run steady state in this case are 570,000 heroin users
with total costs at $ 1.23 · 1011. The second variation demanded that treat-
ment and prevention spending are at constant levels. More precisely, the
average spendings from the budget data were shared out in the ratio 60:40
between ū and w̄. The steady state in this case are 340,000 users with total
costs at $ 7.85 · 1010. The optimal control problem which uses Pontrya-
gin’s maximum principle (cf. Feichtinger et al. (1986) and Pontryagin et al.
(1964)) yields 216 drug users as steady state level and total costs at $ 9.95·109.
One problem with this solution is the annual budget for the drug problem
with $ 3.16 · 108 in the steady state. The current budget for the Australian
heroin problem amounts to $ 5.75 · 107. The spending for the drug problem
would have to increase to 550 percent to reach the optimal steady state value.

In Section 5.1 the efficiency parameters h and m were changed without re-
estimation of the other parameters. These two parameters influence the effect
of prevention spending on initiation. The value of h describes the minimal
percentage of the susceptibles who start using drugs although w was spent
for prevention. The result is that the higher the value of h, the higher is the
steady state level of drug users. Treatment and prevention spending run in
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opposite ways for increasing values of h. Spending for treatment increases
with increasing values of h, while prevention spending decreases. The value
of m describes how fast the minimum level h is reached. That’s why for
higher values of m the steady state values Â decrease. The values of treat-
ment spending go down for a higher m in contrast to the prevention spending
which rises with increasing values of m.

Section 5.3 deals with the original budget data point from 1992 with $ 33.485
million which was altered in the other part of the work to $ 50 million on
the recommendation of our colleagues in Australia. The ratio between treat-
ment spending, u(t), and prevention spending, w(t), was also changed to
50:50. These calculations led to further interesting results.

Concerning possible extensions, the model could be expanded if a third con-
trol variable, i.e. law enforcement, is included. Such models have been inves-
tigated by Caulkins et al. (2000) and Tragler et al. (2001). This control has
an effect on the drug price, because the more is spent on law enforcement,
the more risky is drug dealing and hence the price is raising. If the price
is higher, consumption decreases, more people will quit, and less people will
initiate.



Appendix A

Technical Details

A.1 Solution of the Bernoulli Differential Equa-

tion (2.13)

To solve the differential equation (2.13), the fact is used that this is a
Bernoulli differential equation (cf. Boyce and DiPrima (1992)). With Θ
from (2.10) the following equation is obtained

Ȧ = kAα − µA, 0 < α < 1, k, µ ∈ R+. (A.1)

The substitution z
1

1−α = A is made which leads to the differential equation

Ȧ =
( 1

1− α

)
z

α
1−α ż. (A.2)

Now (A.2) is substituted into the differential equation (A.1) resulting in

1

1− α
z

α
1−α ż + µz

1
1−α = kz

α
1−α

ż + (1− α)µz = k(1− α).

With

m(t) = e
∫

(1−α)µ dt = e(1−α)µt

z can be expressed as:

z =

∫
e(1−α)µt(1− α)k dt + c

e(1−α)µt
=

e(1−α)µt k
µ

+ c

e(1−α)µt
=

=
k

µ
+ ce−(1−α)µt.
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By backsubstitution, the general solution of the differential equation (2.13)
looks as follows:

A(t) =

(
k

µ
+ ce(α−1)µt

) 1
1−α

.

From the initial value A(0) = A0 it follows that

A0 =
(k

µ
+ c

) 1
1−α

and consequently

c = A1−α
0 − k

µ
.

Finally, this yields to the solution (4.3) of the initial value problem of the
differential equation.

A.2 Derivation of the Optimality Conditions

in the Optimal Control Problem

The current-value Hamiltonian of the optimal control problem is specified as
follows:

H = −ρA− u− w + λ

{
kAα[h + (1− h)e−mw]−

−
[
c
( u

A

)z

+ µ
]
A

}
. (A.3)

We have two necessary optimality conditions

Hu = 0 and Hw = 0

and the costate equation

λ̇ = rλ−HA. (A.4)

From this it follows that

Hu = −1− λcz
( u

A

)z−1

= 0 (A.5)

and

Hw = −1− λmkAα(1− h)e−mw = 0. (A.6)
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From (A.5) we get

λ(A, u) = − Az−1

czuz−1
(A.7)

and from (A.6) we have

λ(A, w) = − emw

mk(1− h)Aα
. (A.8)

By equating (A.7) with (A.8) we get

wopt =
1

m
ln

(mk(1− h)Az+α−1

czuz−1

)
. (A.9)

Further, if λ = λ(A, u) is differentiated with respect to time and the chain
rule for two independent variables is used this yields to

λ̇ = λAȦ + λuu̇. (A.10)

Now, if (A.10) is equated with (A.4) this leads to

u̇ =
rλ−HA − λAȦ

λu

. (A.11)

Differentiating (A.7) with respect to A and u and (A.3) with respect to A
yields

λA = −(z − 1)Az−2

czuz−1
, (A.12)

λu = −(1− z)Az−1

czuz
(A.13)

and

HA = −ρ + λ[αkAα−1ϑ(wopt)− µ− c(1− z)uzA−z]. (A.14)

Finally, through the substitution (A.12)-(A.14) into (A.11) the differential
equation for u̇ follows:

u̇ = u

[
r − αkAα−1 + µ

1− z
− cρzuz−1

(1− z)Az−1
− αczuz−1

(1− z)mAz
+

+khAα−1 +
czuz−1

mAz
− µ

]
. (A.15)
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A.3 Proof that λ0 6= 0 in the Current-Value

Hamiltonian

Generally, the current-value Hamiltonian H is specified as follows:

H = λ0(−ρA− u− w) + λ[kAαϑ(w)− (cβz + µ)A],

where λ0 represents a constant.

Assume that λ0 = 0. Then the current-value Hamiltonian reduces to

H = λ[kAαϑ(w)− (cβz + µ)A].

Through the necessary condition for optimality Hu = 0 it follows that:

Hu = −λcz
A1−z

u1−z
= 0. (A.16)

Due to (λ0, λ) 6= 0 it follows λ 6= 0. Now there exists only one possible
solution of (A.16) and this is A = 0. But this solution creates no control
problem because this converges to the asymptotic steady stable solution Â =
0. Contradiction! W.l.o.g. λ0 = 1 can be set.

A.4 Proof of the Concavity of the Current-

Value Hamiltonian with Respect to (u, w)

In order to guarantee that the conditions (A.5) and (A.6) yield to a maxi-
mum, it is necessary that H is strictly concave in (u, w), i.e. the following
conditions have to be satisfied:

Huu < 0, Hww < 0

and

HuuHww > H2
uw. (A.17)

Differentiation of (A.5) and (A.6) with respect to u and w yields to

Huu = −λcz(z − 1)
uz−2

Az−1
(A.18)

and

Hww = λkAα(1− h)e−mw. (A.19)

Both expressions (A.18) and (A.19) are negative, because λ < 0 (cf. (A.7)),
c > 0, 0 ≤ z ≤ 1, k > 0 and 0 ≤ h ≤ 1. The condition (A.17) is satisfied,
because Huw = 0. So it can be seen that the Hamiltonian H is really concave.
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A.5 Solution of the Utility Functional J (2.12)

There exist two ways to calculate the utility functional J for the different
models. The first is to calculate the value of the integral numerically. For
the model without controls and the model with constant controls, the value
of J has to be calculated this way.

For the optimal control problem we define

F (A(t), u(t), w(t), t) = ρA(t) + u(t) + w(t),

Ȧ(t) = f(A(t), u(t), w(t), t) and

H0(A, λ, t) = max
u(t),w(t)≥0

H(A, u, w, λ, t).

Then the value of

J =

∞∫
0

e−rt(ρA(t) + u(t) + w(t)) dt

can be determined through a formula (cf. Feichtinger and Hartl (1986)).

Theorem A.5.1. Consider the optimal control problem

max

∞∫
0

e−rtF (A(t), u(t), w(t), t) dt

s.t. Ȧ(t) = f(A, u, w, t), A(0) = A0, u(t), w(t) ≥ 0.

F and f are autonomous (i.e. Ft = 0 and ft = 0). For all trajectories which
satisfy the necessary optimality conditions and which fulfil

lim
t→∞

e−rtH0(A(t), λ(t)) = 0,

the value of the utility functional J can be calculated through the formula
∞∫

0

e−rtF (A(t), u(t), w(t)) dt =
1

r
H(A(0), u(0), w(0), λ(0)) =

=
1

r
H0(A(0), λ(0)).

Proof. The complete proof can be gleaned from Feichtinger and Hartl
(1986) (Theorem 4.13).

In our case the solution of this formula has to be multiplied with the factor
−1 because the utility functional J has to be minimized.
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Analysis of Model Variation

B.1 Formulation of the Model

The model variation has a slightly different treatment function β(A, u) (cf.
(2.6)), in which the constant γ is introduced in denominator. This constant
γ should have the consequence that for small values of A, treatment is not so
effective anymore because γ enlarges the denominator of β and hence reduces
its value for small amounts of A. β is defined as follows:

β(A(t), u(t), γ) :=
( u(t)

A(t) + γ

)z

. (B.1)

The remaining functions stay as they are. The differential equation Ȧ(t) (cf.
(2.11)) can be described with (B.1) as

Ȧ(t) = k̃p−aA(t)αϑ(w(t))−
[
c
( u(t)

A(t) + γ

)z

+ µ̃pb
]
A(t). (B.2)

The differential equation u̇(t) was calculated in the same way as in Section
A.2.

B.2 Determination of the Parameters

The parameters m, µ̃, k̃ and α are calculated as in the Sections 3.1, 3.2 and
3.4. The optimal values of c and z are estimated as in Section 3.3 (but the
outflow ratio R was changed as given 0.1,(0.01),0.9). The quitting due to
treatment function Qtreat(t) is defined as

Qtreat(t) := c
( u(t)

A(t) + γ

)z

A(t). (B.3)
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To determine the values of γ for the different outflow ratios the quadratic
error between (B.3) and the quitting data was minimized over γ for the time
period t = 1989, . . . , 1996:

min
γ

1996∑
t=1989

(Qtreat(t)−R QuittingData(t))2 ∀R ∈ [0.1, 0.9].

For a given value of z, values of γ are always the same for different ratios R
(trivial proof). In Figure B.1 the optimal values for the constant γ can be
seen.
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Figure B.1: Optimal values of γ for different outflow ratios, connected by
lines (grey) and interpolated by bezier splines (black) - model variation.

The parameter changes for different values of R can be seen in Figure B.2,
where the optimal values of α and z for different outflow ratios are illustrated
in the α− z-plane. The fluctuations of α are small but the optimal value of
z reacts sensitively to changes of R. To remove the oscillations from Figure
B.2 the optimal combinations of the parameters are interpolated by bezier
splines. It can be seen in this figure that the true value of the outflow ratio
R would be interesting to know because the fluctuations in particular in z
are very high.
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Figure B.2: Optimal combination of the parameters α and z in the α − z-
plane, connected by lines (grey) and interpolated by bezier splines (black) -
model variation.

B.3 Steady State Values for Different Out-

flow Ratios R

The values of the steady states Â, û and ŵ for the different ratios R are
calculated and plotted in Figures B.3 and B.4. To remove small fluctuations,
in Figure B.3 and B.4 the bezier splines are calculated and plotted.

Figure B.3 shows the steady state values Â for different values of R. The
bezier spline describes a - more or less - monotonously decreasing function
from R = 0.2. Only the value R = 0.28 represents a ”runaway” because this
value lies far from the other steady states.

In Figure B.4 the steady state values û and ŵ can be seen. û (blue) shows
a monotonously decreasing function in the first part and from R = 0.3 the
function is almost constant. The steady state values ŵ (orange) are approx-
imately constant over the whole range.
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Figure B.3: Steady state values Â for different ratios R = 0.1, (0.01), 0.9,
connected by lines (grey) and interpolated by bezier splines (black) - model
variation.

B.4 Stable Manifolds for some Outflow Ra-

tios R

This section deals with the optimal trajectories of the new model (cf. (B.2)
and the corresponding differential equation u̇(t)). The stable manifolds rep-
resent the optimal trajectories converging to a saddle point equilibrium (Â,û).

Figure B.5 shows the optimal trajectories of treatment spending u(t) in the
A − u-plane for different outflow ratios R = 0.15, 0.5 and 0.75. The verti-
cal lines represent the steady state values Â for different ratios. The main
difference between these optimal trajectories is represented by the ascent of
the functions.

In Figure B.6 the stable manifolds of prevention spending w(t) can be seen.
The stable manifolds are plotted in the A − w-plane and the vertical lines
represent the steady state values Â. In all cases, w is negative for values of
A below 2500 (approximately).
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Figure B.4: Steady state values û (blue) and ŵ (orange) for different ratios
R = 0.1, (0.01), 0.9, connected by lines and interpolated by bezier splines
(black) - model variation.

The optimal trajectories for w(t) don’t fulfil the inequality w(t) ≥ 0 ∀t (cf.
(2.1)). That’s why the solution presented here is not fully correct and the
optimal trajectories for u(t) and w(t) have to be determined with another
approach, which is part of future research.
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Figure B.5: The optimal policies for treatment spending u as a function of
A for different outflow ratios. The vertical lines represent the values of Â for
different outflow ratios - model variation.
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Figure B.6: The optimal policies for the prevention spending w as a function
of A for different outflow ratios. The vertical lines represent the values of Â
for different outflow ratios - model variation.
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