
DIPLOMARBEIT

Towards Executable UML -

Code Generation

From Interaction
And State Chart Diagrams

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Diplom-Ingenieurs unter der Leitung von

o.Univ.Prof. Dipl.-Ing. Dr.techn. Richard Eier

Institut für Computertechnik, E384
und

Univ.Ass. Dipl.-Ing. Wolfgang Radinger

als verantwortlich mitwirkendem Betreuer

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Martin Marinschek

Matrikelnummer: 9803246
Apostelgasse 20/30, A-1030 Wien

Wien, Mai 2003

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The Unified Modeling Language (UML) has grown in its importance for the software de-
velopment industry and strives to provide the blueprints for a new approach to software
design. The idea is to drive the software architecture by models drawn in UML, creating
a new Model Driven Architecture (MDA) for software systems. An important aspect of
the MDA is code generation from the models which is today often restricted to the static
structure of the software system. If the models shall be the only necessary prerequisite
of software development, the dynamical aspect has to be generated as well. Two ap-
proaches for achieving complete code generation from UML models are discussed in this
thesis. The approach built on the basic UML uses interaction diagrams ; the approach
of the Executable UML (xUML) profile uses state chart diagrams for code generation
of the software system’s dynamical aspect.

This thesis uses an example, a training system for the mathematical skills of elemen-
tary school students, to illustrate the process of Object-Oriented Analysis and Design
(OOAD) using UML and the xUML profile. The artefacts of this process are docu-
mented, and differences between the two approaches are discussed. Subsequently, the
system is implemented by generating code from the xUML and UML models. Various
commercial tools are used to generate both the static structure and the dynamical as-
pect. The goal is to automatically code as much as possible, leaving only little left for
the error-prone manual coding.

This aids in reducing expenses spent on documentation, on implementation and on
maintenance. Documentation costs are reduced as major parts of it can be retrieved from
the model. Implementation is less expensive as the models are verifiable and executable
soon, errors are found early in the process – a key cost reduction factor. Expenses spent
on maintenance are reduced as the maintenance of the model happens together with
the maintenance of the code and the system is better understood by developers when
visualized in models.

A final comparison evaluates advantages and disadvantages of both approaches for
the development of the above mentioned example. These differences are important when
deciding which strategy to embark upon for designing a software system. It has to be
mentioned that full code generation is possible with neither of these approaches. The
main problems are obstacles in modelling the Graphical User Interface (GUI) and the
persistency layer in UML. However, modelling of other parts of the system and code
generation from these models can reduce the need for manual coding and hence lower
the costs of software development.

Kurzfassung

Die Unified Modeling Language (UML) wird mehr und mehr zu einem wichtigen Fak-
tor in der Softwareindustrie und stellt “Skizzen” für eine neue Art von Softwareentwurf
bereit. Der Versuch, über in UML erstellte Modelle die Softwarearchitektur zu steuern,
wird Model Driven Architecture (MDA) genannt. Ein wichtiger Aspekt dieser MDA ist
die Generierung von Code; heute oft nur der statischen Struktur von Softwaresystemen.
Wenn die Modelle die einzig notwendige Voraussetzung für die Softwareentwicklung sein
sollen, muss aber auch der dynamische Aspekt berücksichtigt werden. Zwei Ansätze
für die Codegenerierung auch des dynamischen Aspekts aus UML Modellen werden in
dieser Arbeit behandelt, der Unterschied zwischen ihnen liegt in Ausgangsbasis für die
Codegenerierung. Der auf der standardisierten UML basierende Vorschlag verwendet
Interaktionsdiagramme zur Codegenerierung, das Executable UML (xUML) Profil von
UML hingegen Zustandsdiagramme.

Diese Arbeit illustriert unter Verwendung von UML und xUML an einem Train-
ingssystem für die mathematischen Fähigkeiten von Volksschülern den Prozess von
Objektorientierter Analyse und Design (OOAD). Die Ergebnisse des Prozesses wer-
den dokumentiert und die Unterschiede zwischen den Ansätzen herausgearbeitet. An-
schließend wird das Beispiel durch Codegenerierung von den Modellen der UML und des
xUML-Profils implementiert. Mehrere kommerzielle Softwarewerkzeuge werden für die
Generierung der statischen Struktur und des dynamischen Aspekts eingesetzt. Das Ziel
ist dabei die möglichst vollständige Generierung der Programmzeilen aus den Modellen;
möglichst wenig soll der fehleranfälligen manuellen Programmierung überlassen bleiben.

Diese Herangehensweise hilft bei der Reduzierung der Dokumentations-,
Implementierungs- und Wartungskosten. Die Dokumentationskosten sind niedriger,
da wichtige Teile der Dokumentation direkt aus dem Modell generiert werden. Die
Implementierungskosten werden durch die frühe Verifizier- und Ausführbarkeit der
Modelle herabgesetzt weil die dadurch eintretende Fehlerfrüherkennung zu niedrigeren
Behebungskosten führt. Die Wartungskosten werden durch die gemeinsame Wartung
von Modellen und Code und durch die bessere Verständlichkeit des Systems durch
immer aktuelle Modelle verringert.

Ein abschließender Vergleich evaluiert die Vor- und Nachteile der beiden Herange-
hensweisen für die Entwicklung des oben genannten Beispielsystems; diese Unterschiede
sind für die Auswahl einer der Entwicklungsstrategien wichtig. Letztendlich kann keine
dieser Varianten eine vollständige Codegenerierung ermöglichen, Probleme dabei sind
vor allem die Hindernisse bei der Modellierung der graphischen Benutzerumgebung und
der Persistenzschicht in UML. Trotzdem kann die Codegenerierung anderer Teile des
Systems zu einer Verringerung des Aufwands an manueller Kodierung und damit zu
einer Verkleinerung der Softwareentwicklungskosten führen.

Acknowledgements

First, a very special thanks to my thesis advisor Wolfgang Radinger for his support –
both his immense knowledge and his intense long-distance coaching made it possible to
finish this thesis while being in France.

Thanks to the people at Kennedy Carter and ProjTech, who helped me with invalu-
able hints in using their software.

Special thanks to my flat-mates, Claudia Hofstadler for her willingness to accept my
distraction and her first review of this text and Doris Marinschek, for her willingness to
put up with the organizational work while I was in France.

Most of all I would like to thank my parents–without their endless support and
understanding my studies would not have been possible. This thesis is dedicated to
them.

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Goals . 4

2 Technical Background 5

2.1 The Software Development Life-Cycle . 5

2.2 The Unified Modeling Language . 8

2.3 The Executable Unified Modeling Language Profile 14

2.3.1 The Maturity of xUML . 15

2.3.2 Modelling in xUML . 16

2.4 The Java Technology . 20

2.5 Patterns for Object-Oriented Software Engineering 22

3 Object-Oriented Analysis and Design Phase 24

3.1 The Process . 24

3.2 The Analysis and Design Tools . 27

3.2.1 Rational Rose 2002 . 27

3.2.2 Together ControlCenter . 27

3.2.3 iUML . 28

3.3 The Requirements . 28

iii

3.4 The Object-Oriented Analysis and Design Phase using UML 29

3.4.1 The Object-Oriented Analysis . 29

3.4.2 The Object-Oriented Design . 43

3.5 The Object-Oriented Analysis and Design Phase using xUML 56

3.5.1 The Object-Oriented Analysis . 57

3.5.2 The Object-Oriented Design . 62

3.6 Summary . 69

4 Implementation Phase 71

4.1 Implementation on the Basis of the UML model 71

4.1.1 Code Generation . 71

4.1.2 The Graphic User Interface Layer 76

4.1.3 The Persistence Layer . 78

4.2 Implementation on the Basis of the xUML Model 80

4.2.1 Code generation . 80

4.2.2 The Graphic User Interface Layer 83

4.2.3 The Persistence Layer . 84

4.3 Summary . 84

5 Summary, Results and Future Work 86

5.1 Results . 87

5.2 Related Work . 88

5.3 Future Work . 89

A Additional Use Case Descriptions 91

B Additional Sequence Diagrams 105

iv

C Additional State-Chart Diagrams 110

List of Figures 117

List of Tables 118

List of Examples 119

v

Abbreviations

API Application Programming Interface

ASL Action Specification Language

CASE Computer Aided Software Engineering

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

CVS Concurrent Versions System

CWA Common Warehouse Metamodel

DSTC Distributed Systems Technology Center

EAI Enterprise Application Integration

EBC Entity-Boundary-Controller

EBP Elementary Business Process

EDOC Enterprise Distributed Object Computing

EJB Enterprise Java Beans

ER Entity Relationship

GUI Graphical User Interface

JDBC Java Database Connectivity

JDK Java Development Kit

JDO Java Data Objects

JIT Just In Time

JNI Java Native Interface

JRE Java Runtime Environment

MDA Model Driven Architecture

MFC Microsoft Foundation Classes

MOF Meta Object Facility

vi

MVC Model View Controller

OCL Object Constraint Language

OMG Object Management Group

OO Object-Orientation, Object-Oriented

OOA Object-Oriented Analysis

OOAD Object-Oriented Analysis and Design

OOD Object-Oriented Design

OOP Object-Oriented Programming

OOSE Object-Oriented Software Engineering

OPM Object Process Methodology

OS Operating System

PIM Platform Independent Model

PSM Platform Specific Model

SQL Structured Query Language

RFP Request For Process

RMI Remote Method Invocation

RUP Rational Unified Process

UML Unified Modeling Language

UP Unified Process

VCS Version Control System

VM Virtual Machine

XMI XML Metadata Interchange

XML Extensible Markup Language

XP Extreme Programming

xUML Executable Unified Modeling Language

vii

Chapter 1

Introduction

Software systems are growing in complexity - this is a statement which can be read in
almost any treatment of computer science. As a matter of fact, software systems are
in their increasing complexity harder to build, the process of building them is harder to
manage and finally, they are much harder to maintain.

As in any field of engineering, visualization can help to keep the system more easily
manageable. Many software engineers can explain their thoughts easier in drawings than
in words, and even though a good algorithm can be self explaining by the means of its
pure existence, a good visualization can help in understanding as more of the mental
capacity is used when drawings are involved1.

The modeling language which attempts to unify all the pre-existing approaches to
a modeling language for computer science is named the Unified Modeling Language –
and is, in fact, the outcome of a method war of the 1990’s. Today the UML is widely
used as a notation when modelling software systems. This is the case with development
processes as different as the Unified Process and the process suggested by the proponents
of Extreme Programming2.

Finally the question has arisen if this modelling language could provide the basis for
the next step of abstraction in the development of programming languages and aid in
bringing the software developer closer to being an architect using blueprints the UML
provides3. This step of abstraction would mean that the architect does not have to be

1For the process of understanding a drawing, both the right and the left cerebral hemisphere are
used. This is a fact well known in the science of human cognition.

2XP, against common knowledge, is often coupled with some modelling. Important is a high agility of
this modelling; it should help the developer to travel light, as explained in [Amb02]. A good introduction
to development processes is given in [Bal00, p. 214], although in the German language.

3Critics of this step’s probability compare it with the hype that was generated when the first CASE

1 – INTRODUCTION 2

personally involved in anything that follows the creation of his blueprints, others could
finish his work based on the instructions embedded in the models he provides. That
would not mean a complete abstraction from code as the blueprints can – and do in
the proposals treated in this thesis – contain code, in the same way as the blueprints of
architecture may contain directives in natural language, be it about measurements of
a building or the texture of a wall. Essential is that a building can be generated in a
straightforward way from the blueprint - and a software system might once be generated
from an UML model.

The analogy to the science of architecture is often found in computer science, the
very useful notion of patterns to be used in the software development process has been
based on the findings of Christopher Alexander, an architect who proposed reusing well
known patterns in designing buildings and their environments [GHJV94]. Two ways
have been proposed to achieve this goal4.

Interaction diagrams: Using the interaction diagrams of UML, sequence diagram and
collaboration diagram, method bodies can be generated5. The static structure of
a software system can be generated by UML tools and provides a framework for
these method bodies.

State chart diagrams: The state chart diagrams of UML can be used to automatically
generate code that is executable. This execution generally happens on the basis
of a generic state machine. Interaction diagrams play a less important role in the
suggested proposals based on this approach6.

tools came to market in the 1980’s and data modelling was proposed as a basic layer for automatically
generating a system [Amb02], nevertheless, the current functionality of some database systems and
their corresponding development tools, e.g. those provided by Oracle, come quite close to these original
promises.

4In [Lar02, p. 444], Larman advocates to use state chart diagrams only for the purpose of illustrating
external and temporal events and the object’s reaction to them. He himself excludes from this rule
the possibilities of applying a code compiler to the state model and generating code, as obviously is
the case with xUML. Still, he argues that on a large scale, the use of interaction diagrams and state
chart diagrams is equivalent - both show interaction between objects and the objects’ reaction to them,
from his point of view using interaction diagrams is in most cases more advisable if the code generation

possibility is neglected.
5A tool providing this functionality today is ControlCenter by Together.
6The most prominent proponent of a state chart based code generation is Stephen J. Mellor who

also defined a profile called xUML (executable UML), explained in section 2.3.

1 – INTRODUCTION 3

1.1 Motivation

The motivation of this thesis is to evaluate the current situation of software development
with UML. Furthermore, it shall be explained how far the above mentioned approaches
have gone and how near the UML has come to the goal of full code generation, how
much ground is still to cover if the current version of UML and the currently available
tools are regarded. As an example a MathTrainer system for elementary school students
shall be used7. This system proposes a platform on which teachers can design exercise
types and students can solve exams automatically created from these exercise types.
The example is based on the requirement text shown in figure 1.1.

The Requirements of MathTrainer

MathTrainer aids in perfecting the mental arithmetic of
elementary school students.

MathTrainer poses each student ten random arithmeti-
cal exercises, which should be solved as fast and correct as
possible. From the responses scores are collected which can
be viewed by the users of MathTrainer.

Teachers can define types of exercises by determining
numerical ranges and allowed mathematical operations.
They can also delete types which were defined by themselves.
Students are assigned to their teacher and can request
exercises for an exercise type of their teacher.

New teachers and students are able to apply as new
MathTrainer users themselves by specifying username and
password – this is done in the context of the usual user
identification. The password can be changed anytime.
Teachers can delete students which are assigned to them.

During the realization of a test (ten exercises) the time
needed for each exercise is stopped. However, the scores are
based on the cumulative time.

Figure 1.1: The requirements for the MathTrainer - example

Modelling this MathTrainer seems to be easy if the description provided in section 3.3

7This example is proposed by [HK99] as an additional exercise.

1 – INTRODUCTION 4

is read, but the many hidden obstacles in developing even such small a system provide
a never-ending flood of possibilities, opportunities and threats. Explaining them and
suggesting a solution for them will be the topic of this thesis.

1.2 Goals

This thesis aims to implement the MathTrainer example in two ways: first using code
generation from the starting point of UML interaction diagrams, and second using code
generation from the starting point of xUML state diagrams (for an explanation of xUML,
see section 2.3). The code generated from the models will either be executable Java code
or C++ Code. Furthermore, this code should comprise a graphical user interface and a
persistence layer.

The documentation is not only about the final outcome, but also about the way that
was gone to get there, particularly about the process of object-oriented analysis and
design and about the major problems being encountered.

A special effort is made to use patterns in all steps of the OOAD process and to
show how these patterns can be applied in different situations of the development of a
software system.

Chapter 2

Technical Background

This chapter will provide a technical background for a better understanding of the soft-
ware development’s requirements. The analysis is split into the organisational and the
technical aspect. First, the organisational prerequisites are explained in the context of
the software development life-cycle. As a life-cycle method, the Object-Oriented Analysis
and Design is introduced, the organisational process is exemplified by the Rational Uni-
fied Process. A possible notation when working through the analysis and design phase
of the software development life-cycle is UML, the first technology being introduced.
A profile of UML used to design executable models follows suit. Consecutively, the fo-
cus shifts to the implementation phase and Java as a quintessential Object-Oriented
programming language is examined. Finally, the term pattern is explained as reuse of
knowledge – patterns become more and more important for each phase of the software
development life cycle.

2.1 The Software Development Life-Cycle

The software development life-cycle is the sequence of tasks occurring in software de-
velopment. This general sequence can further be specified by choosing a process and
a method. The software developer can design the process according to many different
process models, some of them explained in the following.

Waterfall model: Segmenting the life-cycle into distinct stages (some of them being
analysis of system feasibility, elaborating software plans, product design, coding
and integration), it emphasizes fully elaborated documents after each of these.
To limit expensive rework, the possibility of feedback is confined to successive

2 – TECHNICAL BACKGROUND 6

stages. When the requirements change during the development process, the wa-
terfall model can lead to unusable code or even discarded projects [Boe88].

Spiral model: To sidestep the problems caused by the waterfall model, a cyclic ap-
proach is suggested in the spiral model. The developer repeatedly advances
through several stages (determining objectives and alternatives, evaluating the
alternatives, developing and verifying and planning the next phase), in each cy-
cle functionality is added to the system. The spiral model provides a risk driven
approach to software development outperforming the waterfall model in many
situations, but can be used much like the waterfall model in others [Boe88].

Rational Unified Process Model: Based on the Unified Process (UP), this is a spe-
cial case of an iterative or spiral model. It goes through the steps inception, elab-
oration, construction and transition, in each step, several iterations take place.
Essential elements of the RUP are to plan only for the next iteration and the
expectation that rework will be necessary (the waterfall model, in comparison,
denies the necessity of rework). As the process used in this thesis is a close sibling
to the RUP, more details will be given in 3.1.

In dealing with object-oriented technology, Object-Oriented Analysis and Design is
the method of choice for the software development life-cycle. It can be applied in
the analysis and design phase and provides general instructions as for what has to
be accomplished. In discussing Object-Oriented Analysis and Design the distinction
between these two phases has to be clarified first.

According to [⇒OOAD-Roadmap] the distinction between OOA and OOD is the
question the developer mainly poses. In the phase of OOA the typical question starts
with What...? like “What will my program need to do?”, “What will the classes in
my program be?” and “What will each class be responsible for?” [⇒OOAD-Roadmap].
Hence, OOA cares about the real world and how to model this real world without getting
into much detail. Larman describes in [Lar02] the OOA phase as an investigation of the
problem and requirements, rather than finding a solution to the problem.

In contrast, in the OOD phase, the question typically starts with How...? like
“How will this class handle it’s responsibilities?”, “How to ensure that this class knows
all the information it needs?” and “How will classes in the design communicate?”
[⇒OOAD-Roadmap]. The OOD phase deals with finding a conceptual solution to the
problem – it is about fulfilling the requirements, but not about implementing the solu-
tion. The two phases can be summarized in the short phrase ([Lar02]):

“Do the right thing (analysis), and do the thing right (design)”.

2 – TECHNICAL BACKGROUND 7

As for the OOA, it has itself two main steps: the definition of the use cases and
the definition of the domain model, both are parts of the requirement analysis. In the
definition of the use cases the focus lies on written stories describing domain related
processes. This step is often not in the scope of the developer who is not yet involved
in the process. By the definition of the domain model the domain is described by
providing a classification of objects used in this domain. Important concepts, attributes
and associations are identified and expressed in the domain model.

The transition from OOA to OOD seems to be rather easy: the task the developer
has to fulfil is to enhance the OOA objects with the constructs being necessary to come
closer to the actual software system.

[Kai99] is an opponent of the easy transition view and sees a clear and distinct
separation between objects in OOA and objects in OOD. Some of the objects elaborated
in OOA are not necessary in OOD, some objects have to be created additionally and
even the objects needed in both phases can have different attributes and behaviour
and should therefore clearly be marked as different objects. Figure 2.1 visualizes these
dependencies.

(Part of)

The real

world

Domain

Modelabstraction

Inspires

The software

system

(yet to be built)abstraction

Design

Class

Model

OOA

OOD

Figure 2.1: The phases of OOAD and how the transition from OOA to OOD works
– based on the insights of [Kai99].

The Object-Oriented Design phase is not about abstracting from the real world any-
more: it is rather about abstracting from a software system yet to be built – this is why
this phase is so difficult to accomplish [Kai99]. Two of the models used in OOD are the
interaction diagrams and the class diagrams of the design phase. The class diagrams of
the design phase resemble very often the domain diagrams of the analysis phase but are
- as defined above - clearly different constructs.

By defining interaction diagrams, the path the information takes when it flows from
object to object is outlined. Therefore, the most relevant information of this sort of
diagram is in which order and under which conditions operations get called or messages

2 – TECHNICAL BACKGROUND 8

are sent. The interaction diagram’s concern is the dynamical dataflow which occurs
between the objects. On the other hand, the design class diagram is necessary to show
the static structure of the classes. Unlike the domain model - which was created in the
analysis phase - its components are near to actual software-classes, with attributes and
methods which are drawn from the interaction diagrams.

2.2 The Unified Modeling Language

Over the years, software development has greatly increased in complexity. A typical
project in the software industry can consist of huge amounts of code and a tremendous
set of interfaces to other software. Due to this high complexity, efforts have been taken
to structure the process of software development. Process models where developed to aid
in determining and sequencing the necessary steps of software engineering. The higher
complexity also called for graphical notations to visualize the engineering efforts.

In the 1980’s, several modelling languages had evolved claiming to aid the developer
in Object-Oriented Software Engineering. The most important were:

1. The Booch method by Grady Booch, being very close to programming.

2. The Object-Oriented Software Engineering (OOSE) method by Ivar Jacobson,
being very user oriented and related to the telecommunication sector.

3. The Object-Modeling Technique (OMT) by James Rumbaugh, very much relying
on data modelling.

The period termed method wars was ended by the joining of forces of these three
outstanding methodologists of software engineering. They unified their own approaches
to software modelling in the rules and definitions of UML [Kob99], today being the
standard for building object-oriented software systems. The UML is widely adopted and
accepted both with software developers using the notation and tool vendors providing
aid in the software development process. The OMG maintains a list of available tools
helping the software engineer using UML [⇒UML-Tools] – this list reflects the high
reputation of UML as a modelling language.

Figure 2.2 displays the development of UML over the years, currently the version 1.5
is the OMG’s accepted standard.

The UML version 1.5 consists of diagram types enabling the developer to express her
software building plans in manifold ways. Duplicity is inherent in these diagram types -

2 – TECHNICAL BACKGROUND 9

Unified Method
0.8

<<document>>

UML 0.9
<<document>>

<<refine>>

UML 1.0
<<document>>

<<refine>>

UML 1.1
<<document>>

<<refine>>

UML 1.2
<<document>>

UML 1.3
<<document>>

UML 1.4
<<document>>

UML 2.0
<<document>>

Editorial revision with
no significant
changes

1995

1996

January 1997
(initial submission
to OMG)

September 1997
(final submission
to OMG)

1998

1999

2001
(minor revision)

August 2003?
(planned major revision)

UML 1.5
<<document>>2002

enhances UML
with Action Semantics

<<refine>>

<<refine>>

<<refine>>

<<refine>>

<<refine>>

Figure 2.2: The origin and descent of UML, taken from [Kob99] and extended with
the latest developments.

2 – TECHNICAL BACKGROUND 10

as the definition of these types has arisen from the many interest groups who all wanted
their notation to be in UML. When modelling with UML, any of the following eight
diagram types can be chosen [HK99, UML03].

1. Static structure diagram is often termed class diagram, and describes the static
aspect of the system in the form of classes, packages and their relations.

2. Use case diagram describes the functionality of the software system from the view-
point of the user. This is a top level view of the system, the details are not visible
at this level of abstraction.

3. Sequence Diagram shows the interactions occurring between objects to fulfil a
certain task, which might be anything from an use case to an operation. Sequence
Diagrams show these interactions with respect to the time passing between the
occurring calls.

4. Collaboration Diagram is essentially the same construct as the sequence diagram.
However, the focus here is not mainly on the sequence of events but the structural
relationship of the objects taking part in fulfilling the task.

5. State Chart Diagram describes the life-cycle of an object. The three basic con-
structs are states, transitions and events. An object remains in a state and - upon
occurrence of an event - transitions to the next state.

6. Activity Diagram describes a sequence of actions and is used to specify use cases in
more detail and to model business processes. Its semantics are based on those of
the state chart diagram, which is an often criticized point of UML – the semantics
of state chart diagrams are not viable to express all the constructs generally being
used in modelling business processes.

7. Component Diagram shows the dependency of components on each other. Com-
ponents are pieces of source-code, binary-code or executable code.

8. Deployment diagram visualizes the architecture of the software system as a graph,
where the nodes are processors and their attached components and the connection
of these elements in form of a network are the graph’s edges.

The constructs of UML - like class, association or attribute - are defined in three
packages, their interaction is shown in figure 2.3. Each of these packages consists of
subpackages and/or classes, the detailed description of which lies beyond the scope of
this introduction. [UML03] provides all the details.

2 – TECHNICAL BACKGROUND 11

Behavioral
Elements

Foundation

Model
Management

Figure 2.3: The packages of UML and their interdependencies [UML03].

Currently the OMG is working on extensions to the UML, the next version will be
termed UML 2.0 and will be a major overhaul of the UML standard in trying to fix
many of the issues currently regarded as pitfalls of the UML standard. Some of these
pitfalls are, according to [Kob99]:

• Incomplete semantics and notation for activity graphs: The construct of an activity
graph was added relatively late into the concept of the UML, its elements depend
on the semantics of a state-diagram but are not correctly derived from these basics.

• The standard elements bloat: Many competing groups tried to have UML tweaked
to their necessities and so there were added standard elements that are semanti-
cally weak and not well defined.

• Architectural misalignments: The originally taken approach of a strict-metamodel
architecture was replaced by a loose meta-modelling approach. This helped with
deploying UML to the market faster, but is now an obstacle in integrating UML
with the other major standards of the OMG, especially the Meta Object Facility
(MOF).

[Mel02] adds more problems to this list.

• Separate Specifications: The diagrams of the UML are specified separately, nothing
is said about their interconnection and their relation to each other in a standard-
ized way. This would resemble to specifying a Java class and a Java method, and
saying nothing about how these two constructs interact.

2 – TECHNICAL BACKGROUND 12

• Model Interchange: The interchange of models based on XML Metadata Inter-
change (XMI) is an interchange based on the abstract syntax of diagrams. Rather
than this interchange based on syntax, different tools should be able to exchange
models based on the concrete meaning of these models.

• Presentation layer: Right at the core of UML should be a layer where the meaning
is defined, and on top the presentation should be layered. Each developer should
be able to change the presentation layer as he desires, but still work on the same
core components.

Some of these problems will not be fixed by UML version 2.0, and some might be
solved which did not occur in the list above – this depends on which proposal the OMG
will finally decide upon as there are five proposals for the next generation of UML. An
outline of each of these is given below, along with the respective abbreviation used for
distinguishing the different proposals.

The UML2-Partners (U2P) Proposal: Evolution, not Revolution. What
[SRK02] rank the highest, is a gradual evolution of UML and not a revolution to add
a multitude of new and changed features – this is to secure the investments of the user
base (both tool vendors and the individual developers), in the best case they should
be able to migrate to UML 2.0 without even noticing. Towering on this approach they
propose that necessary changes are a precise definition of the concepts of UML1 and a
consolidated semantic foundation through the introduction of the UML infrastructure2.
Additionally they suggest increased support for multiple standard languages specified
by the Meta-Object Facility (MOF), examples are the Common Warehouse Metamodel
(CWA) and the Enterprise Application Integration (EAI) model, opening of UML it-
self to be a family of languages to avoid the “language bloat” syndrome. Finally, the
proposal integrates some additional feature improvements like modelling the structure
of component-based software systems3 and more possibilities for modelling complex be-
haviour 4 and a formal graphical syntax and diagram interchange on top of the current
“model element” interchange format XMI.

1This must include its runtime semantics to support the Model Driven Architecture (MDA) approach
of the OMG.

2The infrastructure consists of UML abstractions like class, association or Instance
3This is necessary for modelling software architectures as for example CORBA components, EJB or

.NET.
4This includes removing the tight constraints on the activity graphs and adding the possibility to

model behaviour specifications in a hierarchical way.

2 – TECHNICAL BACKGROUND 13

The Distributed Systems Technology Center (DSTC) Proposal: UML2 must
enable a family of languages. [Dud02] argues that with the UML based on the
MOF in version 2.0 (which is mandated in the “Request For Process” (RFP) for UML
2.0) there is no reason for profiles anymore – instead the metamodel should define the
basics for any modelling language and meta modelers should be able to add abstract
syntaxes for new languages and the concrete graphical realization of them using the
UML2 superstructure. So the different members of the family of languages could share
semantics, structure, notation and - maybe the most important fact - the toolset avail-
able on the market. The process of adapting UML to new requirements of the market
will be easier and faster to achieve with this approach.

The 2U Proposal: Make Models be Assets. In [Mel02], Mellor mandates exe-
cutable, translatable and freely interchangeable models – when models fulfil these defi-
nitions they start to be assets themselves. He argues that it is necessary to define the
meaning of a model’s constructs clarifying what these constructs mean in the context
of another model – it is necessary to relate syntaxes. When the UML is to become a
family of languages, there must be a limited base of first-class concepts and composition
rules on which all those languages build. The UML must be known to be coherent and
orthogonal. Layering on top of the core has to be consistent with the meaning of the
underlying layer. If these conditions are fulfilled, the UML is executable – but not only
in a platform dependent meaning, but in a platform independent one. By defining a
Platform Independent Model (PIM) and compiling it with a model compiler it shall be
possible to map this PIM to a Platform Specific Model (PSM) and finally execute it on
the desired computer platform5.

The 3C Proposal: Be Clear, Clean and Concise. The 3C proposal strives to
reduce the 144 primitives which are defined by UML to just fifteen types. Using these
fifteen6 concepts any other concept of UML can be derived as a non-primitive one. This
attempt to clear up the foundations would help to learn, use and automate the UML
and to extend its life, so the proposal [FT02].

The Object Process Methodology (OPM) Proposal: Why significant change
is unlikely. [Dor02] discusses the problems of UML regarding simplicity. Dori states
that the syntactical wealth of the various diagrams and far over a hundred concepts of

5This is comparable to what the OMG itself advocates in its model driven architecture (MDA)
approach.

6These fifteen are individuals (objects, actions and associations), abstraction (combination and
view), type, specification, role, template, time, place, possibility and change.

2 – TECHNICAL BACKGROUND 14

UML is difficult to grasp for a typical developer and slows down the process of software
development. Additionally, he presents the Object-Process Methodology (OPM) as a
remedy for the situation. In this modelling language, the structure and the behaviour
of a system are viewed in the same diagram and so these two most important aspects
of OOSE can be viewed at once. Starting from this single diagram other views could be
created if necessary. Additionally, Dori mandates the notion of a “process” concept in
UML which is supposed to be a pattern of transformation experienced by one or more
objects. He argues that this process concept ought to be at the base of an ontologi-
cally correct, system-theoretical foundation for UML. Finally Dori objects the usage of
programming jargon in the UML specification as both programmers and the users of a
system should be able to view the UML diagrams.

Evaluation of the Proposals

According to [Mil02], three of the groups having proposed for the UML 2.0 specification
have started two work together, namely the groups U2P, 2U and 3C.

The result might be the adoption of the outcome of this cooperation. So in the best
case UML 2.0 will incorporate remedies to the biggest problems of the last time, will
have a solid foundation using just fifteen primitive concepts and will be executable in
a platform independent way (as is xUML already today). Part of the DSTC proposal
is already mentioned in the U2P draft – enabling a family of language is an OMG’s
mandatory request for the UML2 specification anyway, so this concept will be included.
The revolutionary change suggested by the last proposal, made by [Dor02], means both
developers and the tool industry would have to start from the base again.

2.3 The Executable Unified Modeling Language

Profile

Executable UML is a profile7 of UML trying to go one step further than the ordinary
UML. It enables the developer to declare his intentions down to a more detailed level than
UML and so lets him create executable models [MB02, MW99]. As [⇒xUML02, p. 9]
mentions, the xUML language is a subset of UML on the one hand, and a superset with
the additions of an action specification language on the other hand (figure 2.4). With

7A profile is a certain subset of the syntax of UML that specifies well-formedness rules beyond those
in this subset (often in OCL), adds standard elements to the subset and specifies additional semantics
in natural language. A profile can be both officially adopted by the OMG or can be an inofficial
publication of independents, the latter is (still) the case with xUML.

2 – TECHNICAL BACKGROUND 15

the adoption of UML version 1.5 the situation has changed as the action semantics are
now part of the UML standard. Still, there are other additions in xUML going beyond
the scope of the UML standard, especially the precise meaning of a diagram’s elements
for another diagram – this interaction specification is left out in UML.

xUML = UML -
Semantically

Week

Elements

+
Precise

Action

Semantics

Figure 2.4: xUML is a subset and a superset of UML as of version 1.4 [⇒xUML02,
p. 9].

The interesting part of xUML is that models created in this language can be compiled
into any programming language and afterwards executed on any chosen platform. The
choice of programming language and platform is just restricted by the availability of
model compilers for the target environment (or by the ability of the developer to write
the model compiler he needs). Arguably, writing a model compiler for xUML is not
easy, but the future will make these tools available for the most purposes ([MB02]), as
can be seen in table 4.1.

The concepts used in an xUML model are, according to [MB02, p. 6], data and control
elements as well as algorithms. An overview is provided in table 2.1.

Concept Called Modelled As Expressed As

the world is full of
things

data classes attributes
associations
constraints

UML class diagram

things have lifecycles control states
events transitions
procedures

UML statechart diagram

things do things at
each stage

algorithm actions action language

Table 2.1: The elements of xUML [MB02, p. 6]

2.3.1 The Maturity of xUML

One of the hardest critics of xUML is Ambler in [Amb02, p. 172]. He argues that xUML
is far to early on the market to be of any use to today’s programmers. Additionally,
he compares the beginning hype around this approach to the hype that accompanying
the creation of CASE tools in the 1980’s. He bases this assumption on the lack of user
interface modelling and data modelling in UML, being represented in xUML as well. So
his advise is not to use xUML as of today. On the other hand, he is suggesting to use

2 – TECHNICAL BACKGROUND 16

UML in every project when the UML syntax can be applied to the problem without
having to tweak it. According to him, for user interface description and data modelling
other modelling languages should be used – even though there are proposals for a data
modelling in UML like in [NM01] which are not yet standardized.

In his foreword to [MB02], Ivar Jacobson argues that the final goal of UML is to reach
a state where it can replace nowadays high level programming languages. He predicted
such a change far in the future (talking about 25 years from now) but with the progress
xUML has made in the last time the goal could – according to him – be reached much
earlier for at least a specified subset of software systems. Even if this might be the
biased point of view of someone on staff in the leading UML toolset provider it is still
clear that the direction of development will work for xUML as it provides us with a
possibility to go to a higher level of abstraction; and this is what has happened since
the beginnings of the software development.

2.3.2 Modelling in xUML

Executable UML tries to abstract from both specific programming languages and the
decisions about how the software should be organized. An xUML model can be

• built by graphical model builders,

• verified by interpreting the model with real values,

• compiled to a wide array of platforms,

• debugged to see the model in action,

• analyzed to find paths leading through the model execution and unreachable states
and

• tested by generating and running test cases for the model [Mel02].

In the following sections, the process of OOAD in xUML shall be shortly outlined,
more to this in chapter 3. The explanations are based on the assumption that the
reader has knowledge of UML and is therefore especially interested in the differences of
the xUML and the UML notation.

2 – TECHNICAL BACKGROUND 17

Building a System Model

Starting of from the requirements provided for the system, a model is built by identi-
fying the domains being relevant. The construct resembling the notion of a domain in
the ordinary UML is a package: it provides a common boundary for objects of a system
belonging together. So the UML package diagram, as provided by figure 2.3, can also be
seen as a domain model diagram in xUML: the classes necessary for the metamodel of
UML are partitioned in packages providing a rough structure. The process of partition-
ing the real world in domains which are “...autonomous worlds inhabited by conceptual
entities...”[MB02] is called domain identification.

Along with this building of a domain model, use cases can provide means to under-
stand the functional or behavioural requirements of the system [MB02]. These constructs
closely match use cases in the UML.

When the process of identifying domains and specifying use cases has produced a
domain model satisfying the developer - satisfying does not mean perfect here, as there
is always the necessity for iteration and coming back to further detail the basics - he
can start with modelling any of the domains previously defined.

Modelling a single Domain

Starting from the requirements the next step is to find the abstractions necessary to build
the precise model of a domain, capturing the behaviour of the parts it is comprised of.
This model consists of

• class diagrams,

• state machines and

• action specifications

which will be explained in the following.

Building class diagrams: In an attempt to abstract from the use cases built earlier
to describe structure and behaviour of the domain, it is necessary to search for things
which are alike and model them as classes, ignoring the biggest part of these things –
those not being necessary for the system [MB02].

The next step in capturing classes is finding the properties necessary to describe
such classes, each of these properties which is relevant for the problem will be modelled

2 – TECHNICAL BACKGROUND 18

as an attribute of the class [MB02]. There are two differences to UML in this step
worth being noted: the first is xUML not having a visibility attached to an attribute
– it is the choice of the model compiler to transform the attribute appropriately to the
destination language. The second thing is the notion of identifiers which are special
attributes having a similar role as unique identifiers in the relational data theory with
its ER-diagrams: they allow to tell a special object - and just this special object - to be
told apart from the other instances of a class.

Finally, the relationships between classes have to be established. Again, relationships
in xUML are much alike their counterparts in UML, with some exceptions worth to
be noted. First, every relationship in xUML gets a unique name, starting with an R
followed by a unique number which is automatically assigned by most tools. Second,
xUML misses the notion of navigability – therefore the associations have no arrows, just
straight lines (with the exception of the generalization relationship, which looks just
like its counterpart in UML). Next, there are no n-ary associations8 in xUML which is
a seldom used construct anyway, reasons for this gives [Sta02, p. 141]. And finally a
very important semantic, but not notational difference: in xUML, an object can change
its class during execution, taking on the behaviour of another class of its generalization
tree. This is due to the fact that the generalization is not treated much different from
any other relationship - a instance of the class Teacher as a subclass of the class User
will have an instance of the class User associated to it, rather than “being” a user itself.

The result of this process is a class diagram much alike to the class diagrams of UML,
examples for these diagrams will be given in section 3.5.2.

An additional artefact showing classes interacting with each other is the dynamical
collaboration diagram - in [MB02] Mellor suggests that the creation of these diagrams
as well as the syntactically equivalent sequence diagrams could (and should) be done
automatically, driven by the execution of the model. Possibly different dynamic dia-
grams can be created depending on the test case momentarily being driven through the
system, or diagrams of this type, if used properly and automated, can even be used for
real time logging of what happened to the system during its execution.

State machines: Finishing the class diagram, the developer should now return to the
objects comprising the problem and see if they have a lifecycle that is interesting to be
modelled. Here as before, he has to think about lifecycles common to all instances of a
class. This lifecycle can be modelled in a state chart diagram which is a way of looking
on the class’ actual state machine lying beneath it.

State chart diagrams, again, resemble the state chart diagrams of UML. They are

8n-ary associations are relationships in UML where more then three classes take part [UML03].

2 – TECHNICAL BACKGROUND 19

comprised of states, transitions and actions that are executed upon entry to a state.
Examples for state diagrams will be given in section 3.5.2. The interesting part in
xUML is that the actions are defined using a predefined language - for example the
Action Specification Language (ASL) - which allows to specify the behaviour of the
system in detail.

Action Specifications: The actions being executed in a state machine upon entry
into a state are specified using a predefined language. The semantics of this language
- but not its syntax - is standardized as of today. The standardization happened in
the official UML version 1.5 [UML03]. With these action specifications the developer
can design precisely the behaviour of the system. The language supports creating and
deleting objects, sending signals out to other objects navigate along relationships to the
classes interconnected with the current class as well as manipulating these relationships
and the reading and writing of attributes. An example for a concrete ASL implemen-
tation is given in [WKC+03]. With ASL, the structure of the classes is filled up with
the behaviour of its instances – an unavoidable step if executable models are the goal.
Examples for this ASL syntax can again be found in section 3.5.2.

When all domains are finally modelled, the view shifts back to the bigger picture and
to preparing the model for execution.

Verification and Compilation of the Model

For the verification the development of test sequences is necessary - these sequences
define how the model is to be driven through the simulation and eventually what is
the correct output at the final stage (using pre- and postconditions) [MB02]. These
test cases are a necessity in simulation as well, where the user has more possibilities to
interact with the model.

For the compilation the model can be enhanced with further information. This helps
optimizing the output and the runtime behaviour of the model on the desired platform.
The process of layering this information on top of the model is called colouring, as is
defined in section 3.5.1.

Often the execution of the model requires initialization sequences which have to
be coded. These initialization sequences are comprised of creating objects which are
essential for the execution of the system and of providing the necessary data to these
objects.

2 – TECHNICAL BACKGROUND 20

2.4 The Java Technology

Java is both a programming language and a programming environment of wide use in the
context of heterogeneous and network-wide distributed applications. Java’s origin lies
in a research project with the goal of developing a small, reliable, portable, distributed
and real-time platform for executing applications. At first, C++ was chosen as a pro-
gramming language, but the goals could not entirely be achieved with this language; as
a consequence, a new language was created [GM96]. Nowadays, both the language and
the platform are used to create applications running on a wide variety of hardware plat-
forms, their operating systems and graphical user interfaces. The portability of the Java
language environment makes it also an ideal language for programming and deploying
web applications as these applications are highly distributed. The other major charac-
teristics of the Java programming language are that it is simple, object-orientated and
familiar; robust and secure; architecture neutral and portable; it offers high performance;
it is interpreted, threaded and dynamic. These terms shall be explained subsequently.

Simple, object-oriented and familiar: Java can be learned in a much shorter time
than other programming languages require and it enables the programmer to be
productive from the beginning on. Java is object-oriented from the ground up,
even the smallest program consists of a Class. Hence, it greatly encourages ob-
ject oriented development which is necessary in the age of distributed client-server
applications. Java very much resembles C++ and is therefore familiar to program-
mers having knowledge of C++. For them, the migration to the new language is
easy.

Robust and Secure: The Java language environment enables easy creation of reliable
software. This fact stems from the new memory management of Java making it
unnecessary to deal with pointers anymore. Hence, many errors of C++ programs
are eliminated. The compile time checking is also more elaborated and followed
by run-time checking. Due to the run-time checking a Java program does not
crash without providing information which error occurred at which location in the
code. Additionally, Java provides an unprecedented level of security. Security is
designed right into the language and the runtime environment, making it hard to
breach distributed Java applications.

Architecture neutral and portable: Java is designed for distributed applications,
these applications can run on many different hardware and software platforms.
Hence, Java is an interpreted language. The Java compiler creates interopera-
ble byte code which can immediately be executed on a multitude of operating-

2 – TECHNICAL BACKGROUND 21

systems9. Additionally, the language definition is strict about the basics, for in-
stance the size of data-types and the outcome of mathematical operations.

High performance: Even though the performance of interpreted languages is lower
than the performance of directly executable code, the Java language environment
struggles hard to achieve sufficient performance. Java programs are therefore first
compiled and later interpreted - a new approach to this topic. The performance
of such programs is not as good as compiled software written in C or C++, but
better than of programs written in languages just being interpreted, as Basic and
especially its most widely used sibling, Visual Basic10.

Interpreted, Threaded and Dynamic: Java is interpreted and therefore offers very
short link phases. The development cycle is fast, aiding in prototyping, experimen-
tation and rapid development. The Java language also offers inherent support for
multithreading – many concurrent threads of activity enable the user to do many
things at once. Finally, Java offers the concept of dynamic linking. At runtime,
new modules can be loaded from any accessible place – the memory, disk drives
or the network.

A program written in the Java language is first compiled to a platform independent
byte code then being interpreted on the desired platform. This interpretation is done
by the Java platform on the target system. The platform consists of two components:
the Java VM and the Java API. On top of this foundation, which has been ported to
all the major OS currently being on the market, the individual Java program executes
– as can be seen in figure 2.5.

The greatest advantage of Java is the large amount of APIs being available. They can
readily be used by any developer deploying its programs with Java technology [CWH01].
It comprises essential classes - without them programming would be almost impossible,
e.g. the String-class, as well as many useful capabilities such as Graphical User Interface
(GUI) components, to be found in the javax.swing-package. This API is one of the
most complete and thoroughly defined available.

9Any exception of this rule is generally considered to be a bug in Java. However, there is platform
specific behaviour which is clearly marked as such in the documentation (e.g. the System.exec()

functions - usage of which should therefore be avoided).
10Nowadays, Just-in-time (JIT) and hotspot interpreters are common when using Java. They help

making the process of interpretation being a lot faster, not far off the direct execution of programs.

2 – TECHNICAL BACKGROUND 22

Hardware based

Platform

Java API

Java Virtual Machine

JavaProgram.java

Figure 2.5: The Java platform consisting of Java VM and Java API [CWH01].

2.5 Patterns for Object-Oriented Software Engi-

neering

A design pattern provides a solution for a problem that has occurred over and over in
a certain field [GHJV94] – these fields can be as far apart as software engineering and
architecture. Hence, when the problem is encountered another time, using a predefined
pattern provides the solution much faster. The pattern facilitates reuse of knowledge.
Additionally, the pattern helps in the communication among software developers – using
the name of the pattern conveys a large amount of knowledge in a very dense way. A
pattern is usually described in four components; these components explain what it is
about and how it is to be used.

Pattern name: The pattern name is used to identify the pattern once it has been
introduced. It is a way to communicate the pattern to other people and is therefore
vital in spreading its reach, this is a fact mentioned in [GHJV94].

Problem description: In this section, the problem is described that is the reason for
applying the pattern. It may be accompanied by a list of preconditions that must
be fulfilled – only when these conditions are met, the pattern is applied.

Solution: Here the workings of the pattern are explained: which classes interact when
and how these interactions are achieved. The description is on an abstract level
to make sure that it can be applied in many situations [GHJV94].

Consequences: Here the effects of the pattern are explained. This might be both
advantages and disadvantages of applying the pattern. The consequences are often
related to the impact on flexibility, extensibility and portability the application of
the pattern has [GHJV94].

2 – TECHNICAL BACKGROUND 23

Patterns can be used in any stage of software engineering, their applicability ranges
from the analysis to the implementation phase. Examples for patterns will be given
later, especially in the chapters 3 and 4. A discussion often arising with patterns is
at what level of included knowledge a construct can be called a pattern. What is a
pattern to one person, is a “primitive building block” ([GHJV94]) to another. However,
it can not be considered bad practice to use the name pattern for any principle in
software-engineering, as the developers who do not need and do not want to cope with
that pattern can easily refrain from doing so. Patterns can be categorized, one way of
achieving this categorization is provided by [BMR+96].

Architectural patterns: This type of patterns copes with the design at a high level
and is used early on in the development process. An example is the Layers pattern,
structuring the system into layers.

Design patterns: These are useful in the detailed design of the system, on a small to
medium level. Examples are the Facade pattern, providing the interface from one
layer of the system to the next.

Idioms: Idioms are used on a low level, and are very much oriented to the implemen-
tation of the system. An example is the Enum pattern for transferring the C++
construct of an enumeration to Java.

Chapter 3

Object-Oriented Analysis and
Design Phase

Object-Oriented Analysis and Design (OOAD) cope with the analysis of the provided
requirements and the subsequent design of a software system meeting the needs of the
requirements. As this phase in software development is structured into a sequence of
steps, the overall process providing the framework for this sequence shall be explained
first. Next, the OOAD tools used in this thesis shall be introduced before the Object-
Oriented Analysis and Object-Oriented Design steps are exemplified on the MathTrainer
system. As a guideline for what to do in the distinct OOAD steps the recommendations
by [Lar02] are followed.

3.1 The Process

The process used in this thesis is based on to the Rational Unified Process (RUP). Even
though it is termed Rational Unified Process, it is actually a process model and aids
in creating a development process suiting the needs for any special project. Hence,
the RUP is described in the following, and whenever small deviations from the RUP
occurred, they are explained shortly. For the sake of simplicity, the highly iterative
sequence of steps in the RUP will be explained in this section, but not be used in the
documentation of the OOAD. Still, emphasis shall be laid upon this major principle
of iterating through the software development. The other major components of the
RUP are the management of requirements, regarding the architecture of a software
system as component-based and visually modelling the structure and behaviour of these
components. The RUP is distributed as a collection of documents mainly in the HTML

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 25

format, including templates for the major artefacts being the outcome of applying the
RUP.

Inception Elaboration Construction Transition

C
o

re
 P

ro
c

e
ss

W
o

rk
flo

w
s

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

C
o

re

Su
p

p
o

rt
in

g

W
o

rk
flo

w
s Configuration & Change Mgmt

Project Management

Environment
preliminary

Iteration(s)

Iter. E

#1

Iter. E

#2

Iter.

#1

Iter.

#2

Iter. T

#1

Iter. T

#2

Iter.

#3

Figure 3.1: The phases of the Rational Unified Process, based on [Ros01].

The RUP is separated into four distinct phases, these being inception, elaboration,
construction and transition. In each of these phases, a certain amount of effort is spent
on the basic workflows business modelling, requirements, analysis and design, implemen-
tation, test, deployment, configuration and change management, project management
and environment. However, the effort necessary for the different workflows changes over
the lifetime of the project, as indicated in figure 3.1. For instance, the effort spent on
deployment is very low in the beginning and grows to a large extent in the final part of
the transition phase – as deployment is not a major workload in the beginning of the
project. Hence, figure 3.1 provides the outline for planning a development project and
deciding about what has to be done at which time. Fine planning is only done for one
iteration in advance ([Ros01]), however, the overall time span of the project should be
planned early. For each of the workflows represented in figure 3.1, the steps to be taken
for the MathTrainer example are outlined on the base of the RUP.

Business Modelling: In this early stage, the current business is assessed as it is the
environment of the software system in development. For the MathTrainer exam-
ple, there was no environment to be assessed, this step can be skipped in the
development efforts. Additionally, the domain model is built in this stage, as
explained in section 3.4.1.

Analysis and Design: This workflow begins with planning the software architecture.
For the MathTrainer example, this architecture was decided to be twofold, first, a
Java application connecting to a relational database, second, an executable UML

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 26

model. Additionally, the use case models are created in this step, as well as
the design class diagrams and all the behavioural diagrams like the interaction
diagrams. These steps will occur time and again in the current chapter.

Implementation: Here, the emphasis lies upon coding and testing. By generating as
much code as possible, the MathTrainer example was developed with low efforts
at this stage. The implementation efforts are described in chapter 4.

Test: In this stage, the previously implemented code is tested and verified. Part of
the efforts in testing the MathTrainer are explained in this chapter. With xUML,
much work is done for this stage in the elaboration iterations, whereas in UML, the
testing is delayed to the construction iterations. This is one of the main advantages
of xUML.

Deployment: This step copes with deploying the software product to the end-user.
This may either be packaging and distributing it, or to provide a web-location for
downloading the application. As the MathTrainer example is not deployed to any
end-user, this step is not described.

Configuration and Change Management: As the requirements of a software ap-
plication can seldom be frozen during the development efforts, it is necessary to
manage the changes occurring in the needs of the end-users. The configuration
management consists of enforcing principles on developers to ensure the seamless
access to process artefacts. It also includes the responsibility of providing a sound
working environment for each developer. Due to the small type of the MathTrainer
example, these steps are not necessary.

Project Management: These responsibilities include all steps necessary for planning
the whole project as every single iteration, and the planning necessary if the project
has to be changed or if it failed. Additionally, the project maintenance has to be
supervised by the project management. Again, due to the small size of the project,
this step is not necessary.

Environment: The environment management ensures working tools, prepared tem-
plates, and the availability of necessary documents at the beginning of each itera-
tion. Due to the small size of the MathTrainer example, this step is not described
in further detail.

Following the process outlined above will be the topic of the next sections, after a
short introduction to the tools being used in the OOAD phase has been given.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 27

3.2 The Analysis and Design Tools

Three different tools were used in the OOAD phase, two for the work with UML and one
for working with xUML. As xUML is a profile of UML, it is possible to design xUML
models with UML tools, but they usually lack the possibility to generate code directly
from the state chart diagrams. Rational Rose 2002 was very much used in the OOA
and is introduced first, followed by Together ControlCenter, mainly used in the OOD.
Finally, the xUML tool iUML of Kennedy Carter is presented.

3.2.1 Rational Rose 2002

Rational Rose 2002 is one of the most widely used UML tools. The popularity of
Rational Rose can be explained by Rational being the employer of the “three amigos”,
Grady, Booch and Jacobson, and by Rational keeping close to the UML standard. Still,
even Rational Rose does not support all UML constructs, for instance, conditional logic
on sequence diagrams is not supported by the tool except by using notes.

The user interface of Rational Rose is easy to use, even though the complexity of
the tool is sometimes overwhelming. Code generation from Rose is possible from static
diagrams and to many target languages, with add-ins the functionality can be amended.
Code is written outside of Rational Rose, but round-trip engineering subsequently up-
dates model and source code, respectively. Rational Rose can cope with multiple users
working on a model at the same time, but this functionality is not included in the stan-
dard tool. A version management tool like Rational ClearCase has to be purchased
separately.

3.2.2 Together ControlCenter

Together ControlCenter has evolved from TogetherJ, providing more languages than its
predecessor. The tool is sold by Borland; the inventor of TogetherJ is Peter Coad, well
known in the field of OOP. Together ControlCenter is keeping as close to the UML
standard as the Rational tool, but provides some additional constructs that can not be
modelled with Rose. For instance, conditional logic is supported for sequence diagrams.

The user interface of Together ControlCenter is well structured and easy to use. An
integrated development environment provides a way to simultaneously model and code
without frictions between these two actions, round-trip engineering instantly updates
the other view. Code generation is possible from static and dynamic diagrams and
to many target languages. Still, automatic and instant round-trip engineering is only

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 28

available for static diagrams, for interaction diagrams this process has to be started
manually. Together ControlCenter works with major Version Control Systems (VCS),
also the freely available Concurrent Versions System (CVS), which enables multiple
developers to work on a model.

3.2.3 iUML

iUML is provided by Kennedy Carter, a consultancy specialized in developing software
systems by designing executable models. The modelling notation used by the tool is
the xUML profile, both a subset and a superset of the UML standard. This ambiguity
is reflected in the notation; xUML diagrams look familiar, but are not similar to UML
diagrams. Another speciality of xUML tools is that usually a process is imposed on the
developer as he has to follow the steps outlined by the program.

The usability of the product is high, this even more so, as the superimposed sequence
of steps aids in achieving first results very fast. The modelling is straightforward, coding
for state chart diagrams is done in a special language, this being the Action Specification
Language (ASL) for iUML. The development environment for coding the states is a plain
text editor, not even providing keyword highlighting; more effort could have been put
into this aspect. Code generation is done from state diagrams using a model compiler,
any target language supported by this model compiler is possible. Code generation
from interaction diagrams is not supported. The tool uses a proprietary repository,
many developers can work on this repository at once, the changes are then subsequently
submitted and conflicts handled.

3.3 The Requirements

To get familiar with the example, first it is necessary to look at the requirements in
figure 1.1. These are no formal, elaborated requirements, but this text might be a first
draft of a requirement provided by the management as they declare to which capabilities
and conditions the system will have to comply. In the case of the MathTrainer system,
the requirements are purely functional, for larger development efforts, the requirements
can come from a wide variety of categories.

The categories proposed in the RUP divide the requirements ([Ros01]) based on what
aspects they affect, the following incomplete list provides some of these categories.

Functional requirements deal with features, capabilities and security.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 29

Usability requirements declare human factors, needed help and documentation.

Reliability requirements impose restrictions on frequency of failure, recoverability
and predictability.

Performance requirements deal with response times, throughput, accuracy and fur-
ther aspects.

Supportability requirements explain the needs of adaptability, maintainability, in-
ternationalization and configurability.

Additional categories could deal with the restriction to special tools, languages or
hardware, with interfaces to other systems or legal aspects.

The RUP supports the principle of managing requirements. This principle is contra-
dictory to the waterfall attempt of having fully stabilized requirements before beginning
with the development, but refers to constantly finding, evaluating, documenting and
tracking the changing requirements ([Ros01])– management of change, in fact.

3.4 The Object-Oriented Analysis and Design

Phase using UML

Starting off from the requirements, the OOAD progresses by first executing a thorough
analysis of the requirements and the real world being the inspiration for them and second
designing structure and behaviour of an appropriate software system.

3.4.1 The Object-Oriented Analysis

[Lar02] suggests, as a starting point to developing a system, to write use cases – stories
about how the actors interact with the system to get value out of it. The requirements
given above are strictly spoken no such use cases – however, they can be used to perform
the analysis normally based on use cases. It is possible to regard the requirements
provided in figure 1.1 as one sentence use cases each.

Identifying and describing Use Cases

To properly identify use cases a possibility is to start off from the requirements and to
do a linguistic analysis. Searching for use cases is equivalent to search for verb phrases

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 30

in the requirements [HK99, p. 166]. The easiest way to do this is to go through the
requirements and highlight all the verb phrases with a text marker, as shown in figure
3.2.

The Requirements of MathTrainer

MathTrainer aids in perfecting the mental arithmetic
of elementary school students.

MathTrainer poses each student ten random arithmetical

exercises, which should be solved as fast and correct as
possible. From the responses scores are collected which
can be viewed by the users of MathTrainer.

Teachers can define types of exercises by determining
numerical ranges and allowed mathematical operations. They
can also delete types which were defined by themselves.
Students are assigned to their teacher and can request
exercises for an exercise type of their teacher.

New teachers and students are able to apply as new
MathTrainer users themselves by specifying username and
password – this is done in the context of the usual user
identification. The password can be changed anytime.

Teachers can delete the students which are assigned to
them.

During the realization of a test (ten exercises) the time
needed for each exercise is stopped . However, the scores

are based on the cumulative time.

Figure 3.2: Highlighted verbs in the requirements of the MathTrainer - example

From this foundation on, the developer is to write down all verb phrases in a list and
decides which verb phrases evaluate to a use case of the system. For the MathTrainer
- example, this process is shown in table 3.1.

The found use cases may not be complete (for this example, an Identify User use

0For a discussion of goals, see [Lar02, p. 59]. Larman argues that use cases should be on the level of
EBPs (elementary business processes). A common mistake is defining use cases at much too low levels,
e.g. adding a line item instead of taking an order.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 31

Evaluation of the verb phrases
aids in perfecting This is a mission statement - not a use case,

it is too high in its goal to be one2.
poses Here the first use case candidate is found -

MathTrainer poses student arithmetical ex-
ercises.

should be solved The student solves exercises – this seems to
be very close to the previous use case, so just
one of these two use cases is necessary. The
use case is chosen where the user takes the
active step, so this one.

are collected The system creates scores from the re-
sponses. If the system is doing some internal
work, this work should not be reported as a
use case. Use cases are about a black box
view of the system.

can be viewed The A user can view scores.
can define Teachers can define exercise types.
determining Teachers define exercise types by determin-

ing numerical ranges and allowed mathemat-
ical operations – this fact is refining and ex-
plaining the previous use case into more de-
tail.

can also delete Teachers can delete exercise types.
were defined This is not a use case, rather a constraint on

the previous one - only teachers defining an
exercise type may delete this exercise type.

are assigned A student is assigned to a teacher.
can request A student can request exercises.
are able to apply A user can apply as a new user providing

username and password.
is done This is a statement about where the above

use case has to happen.
can be changed A user can change the password anytime.
can delete A teacher can delete his students.
are assigned Again just a constraint for the previous use

case.
is stopped The system stops the time for each exercise.

Again, reporting this fact as a use case would
not be in compliance with the black box view.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 32

continued from previous page

are based The score is based on the cumulative time.
Table 3.1: The evaluation of the verb phrases which were
identified in figure 3.2

case has not yet been found but might be important to cope with the restrictions of
user identification1. Implicitly, this use case is mentioned in the requirements as they
proclaim any person being able to apply as a new user in the context of the login
procedure.

Additionally, not all verbal phrases are describing a stand alone use case as could
be observed in coping with the information of table 3.1. Some of the identified facts
are constraints, some are further refining other use cases and some are system internal
actions which should not be considered in this phase (for considering what the notion
“system internal” means, the system boundaries have to be defined correctly).

As for the naming of the use cases, a good advice is to use names starting of with a
verb. This is to emphasize the dynamical aspect of a use case and to distinguish them
from the other concepts of OOA.

The found use cases are described in written stories. This is not the only way to
represent use cases thoroughly and with added value for the user, another way would be
to draw use case diagrams (to look at the system from a high-level view) and describe
the internal actions of the use cases with activity diagrams.

The use case diagram for the MathTrainer system is shown in figure 3.3.

Use case diagrams show the identified use cases in ovals and the interactions between
actors and use cases by arrows pointing from an actor to the associated use case. The
actors of the use case diagram should be termed different to the names of the classes
later used in the structural diagrams, this is why in figure 3.3 the term “Actor” is used
as a prefix to the actor’s names.

Modelling the use cases is one of the first steps of the OOAD process – and therefore
the use case diagram should apparently be one of the easiest diagrams to create and
understand by both developer and user. This assumption does not hold true for the use
case diagrams in UML: the problem is the vague specification of the extend and include
relationships.

1[Lar02] argues against a user identification use case as it does not add any real business value. This
being true, security is still something that is often very important to the business at a higher level and
if this principle is not obeyed in the analysis and design phase, it is very hard to add it later on by
changing the structure of the system (see the struggles of Microsoft in changing their policies to respect
security to a higher extent).

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 33

Creat e Ex ercise Ty pe

Delete Exercis e Ty pe

Identif y User

Assign Student to Teacher

Create Teacher

Delete student

Administrate Excercise Ty pes
<<extend>>

<<extend>>
Actor Teacher

<<include>>

<<include>>

Show High Scores

<<include>>Change Password

<<include>>

Act or User

Solv e Exam

<<include>>

Create Student

<<include>>

Actor Student

<<include>>

Figure 3.3: The use case diagram for the MathTrainer example.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 34

According to [Qua03, p. 35] the include relationship is used whenever use cases share
the same functionality. This functionality is then drawn out to a separate use case and
connected to the use cases including its functionality with an include relationship. In
figure 3.3 the Identify User use case is included in many of the others.

The extend relationship is used whenever optional behaviour or conditioned behaviour
(e.g. behaviour which is only executed when a certain alarm has triggered) occur.
Additionally, the extend relationship can be exploited to handle the case of an actor
choosing one of several different flows of a use case. In figure 3.3 this behaviour can be
seen with the Administer Exercise Types use case is extended by either a Create Exercise
Type or Delete Exercise Type use case, depending on the choice of the actor Teacher.

Basing on the requirements provided for the MathTrainer example, the use cases are
now converted into written stories. These stories explain what happens for the special
use case under which circumstances and have a standardized layout. The use case for
creating a student is presented in table 3.2.

To show the work-flow of a use case, an activity diagram can be used. However, it is
not a replacement to the written stories accompanying a use case. An example for an
activity diagram is shown in figure 3.4.

Building a Domain Model

When the use cases and the other requirements have been identified, the next step is to
build a domain model – which is a model of objects of the real world, and not a software
model yet. This domain model must include all the relevant conceptual classes, which
are again found by linguistic analysis3.

The preferred way to find classes is to highlight and identify nouns in the require-
ments, as can be seen in figure 3.5. After a noun has occurred the first time, it is not
marked a second time, contradictory to the handling of the verb phrases.

Again, after the nouns are identified and highlighted, an analysis has to be done
about which nouns constitute conceptual classes and which do not. This process will be
shown in table 3.3.

When looking at table 3.3, the question arising most frequently in modelling this
example is if a given noun should be displayed as a stand-alone class or as an attribute
to another one. As a proposal, [Lar02, p. 138] suggests the creation of a conceptual

3As a second way, [Lar02] proposes the usage of a conceptual class category list where categories of
objects like places, transactions, roles of people, events, organizations etc. are distinguished. For each
of these categories classes are identified, e.g. by a brainstorming process.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 35

Choose an Exercise
Type

User is a
student?

[user is a teacher]

Retrieve Teacher for the
Student

[user is a student]

Display List of all
Exercise Types

Display Sorted List of all Exams
for this Exercise Type

Mathtra inerActor User

Figure 3.4: The activity diagram MathTrainer’s View Scores use case.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 36

Description A student can be created by any user of the MathTrainer
system. Necessary information are username and password
which has to be entered twice. Additionally a teacher must
be chosen.

Precondition At least a teacher is known to the system. The user has access
to the Login context of the MathTrainer system.

Postcondition A new student has been created. The student possesses a
unique username and a password and is associated to an ex-
isting teacher.

Error conditions
1. The provided username is already given to a user of

the MathTrainer system.

2. The entered passwords do not match.

Error postcondition The student was not created.

Actors User (primary actor)

Standard procedure
1. Username and password are entered, password twice.

2. The Teacher is chosen.

3. The username is not yet used by the system and the
entered passwords match.

4. The student is created in the system.

5. The student is assigned to the chosen teacher.

Deviation 1
3’. The username is already in use or the entered pass-

words do not match.

4’. An error is shown to the user and all system objects
retain their state.

5’. The user is directed to the Login context.

Table 3.2: The written story for the Create Student use case.

class when in doubt. Doubt arises, when the noun in question is not merely a text
or a number. When it is not just a number or text, it is intended to be a conceptual
class of its own, even if it does not have any attributes. Another very common problem,
which has not been arising in this example, is to forget about specification or description
classes. These classes are necessary to describe other classes when crucial information
is lost when all instances of the other class are deleted.

Imagine a university having Lectures, and each of them having an association with
a Professor. Now, the summer holidays start and as no lectures are given anymore,
the lecture-instances are deleted from the system. Also the information about which
professor can hold which lecture is lost. So there has to be a specification class which
tells us about which professor can hold which lecture.

Evaluation of the nouns

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 37

continued from previous page

MathTrainer This is the name of the system being built.
It is generally not included in the domain
model – the system is what is to be generated
starting off from the domain model, it is not
yet there.

mental arithmetic This abstract noun is not to be excluded as
it is abstract (there can be a lot of abstract
concepts which have their place in domain
modelling, e.g. the notion of “happiness” of
a user in a Customer Relationship Manage-
ment (CRM) system.), but as the sentence
where it originated from was seen to be a
higher mission statement, not an explanation
of a business process the noun is not relevant
to the domain model.

elementary school student Definitely a class to be included in the model,
it plays a rule in many use cases.

arithmetical exercise Again a conceptual class.
response This looks like a conceptual class, the ques-

tion is if this should be modelled as an at-
tribute or as a separate class. As the re-
sponse to an arithmetical exercise is a num-
ber, a class is used.

high scores Again a conceptual class.
user Definitely a class being used to name the gen-

eral user of the system.
teacher Again a conceptual class.
type of exercise It needs to be determined if the type of the

exercise is to be modelled as an attribute or
as a separate class. As it has two distinct
properties (the next two nouns in the list) it
can be seen as a conceptual class.

numerical range Should be included in the model, the ques-
tion is once more if it is an attribute or a
class, when a range is thought as having lim-
its, it is no plain number or text and should
be a class.

mathematical operation The operation, again, is no plain number or
text.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 38

continued from previous page

username The username is a text which can be included
as an attribute to the user.

password The password is a text which can be included
as an attribute to the user.

context Is nothing which is relevant for the problem
domain.

user identification Has been identified as a use case and will con-
sist of collaboration of independent classes,
so it is not a class of itself

realization The realization of the test is again a use case
(solve the exercises, solve the test) and is not
a class of itself.

test Modelled as a conceptual class.
time The concept of time is here seen as modular

as a number or text, it can be an attribute
to the exercise.

cumulative time Arguably, time is as modular as a number or
text, leading to the conclusion of modelling
the cumulative time as an attribute of the
exam.

Table 3.3: The evaluation of the nouns which were iden-
tified in figure 3.5

Again, the linguistic analysis step is far from perfect and does not realistically show
all the classes of the domain model – the developer has to do additional reasoning so as
not to forget important aspects. When the conceptual classes have been identified, the
next step is to find associations.

In this step, there no concept of linguistic analysis is suggested, and finding the
correct associations is indeed not very easy. For the start, some associations which are
very important in most software development projects and which can be useful in any
domain model are introduced. These are, according to [Lar02]:

• A is a part of B, either physical or logical.

• A is contained in B, either physical or logical.

• A is recorded, logged or known in B.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 39

The Requirements of MathTrainer

MathTrainer aids in perfecting the mental arithmetic
of elementary school students .

MathTrainer poses each student ten random
arithmetical exercises , which should be solved as fast
and correct as possible. From the responses scores are
collected which can be viewed by the users of MathTrainer.

Teachers can define types of exercises by determining

numerical ranges and allowed mathematical operations .
They can also delete types which were defined by themselves.
Students are assigned to their teacher and can request
exercises for an exercise type of their teacher.

New teachers and students are able to apply as new
MathTrainer users themselves by specifying username
and password – this is done in the context of the usual

user identification . The password can be changed anytime.
Teachers can delete the students which are assigned to them.

During the realization of a test (ten exercises) the
time needed for each exercise is stopped. However, the
scores are based on the cumulative time .

Figure 3.5: Highlighted nouns in the requirements of the MathTrainer - example

With the application of these types many of the associations of MathTrainer’s domain
model can be found: e.g. an exercise is contained in a test or a numerical range is a
part of an exercise type.

Still, there is no restriction to the vocabulary given above, the more expressive the
description of an association is, the better for the system’s design. Additionally, it might
be interesting to model is-a or kind-of relations by usage of an inheritance relationship.
In the MathTrainer example, this is the case with the user-student and the user-teacher
association, shown in 3.7.

There is a trade-off between inheritance and aggregation. Often, both can be used to
model a specific association, the decision for one of them depends on other influences.
In the MathTrainer example, the decision can clearly be made in the case of the user,

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 40

student and teacher relationship. A teacher is-a user, a student is-a user – an inheritance
relationship should be used. While inheritance is very useful in such cases, it can be a
problem in others. As an example, the case of a user being either a part-time or a full-
time student is suggested. If a developer modelled this relationship in an inheritance,
it would be hard to accommodate the fact of a student changing his time schedule. If
he was a part-time student before, he would then be a full time student or the other
way round. This would not be a problem in itself, but a problem might emerge in the
implementation as there are not many programming languages supporting an object able
to change its class during the lifetime. Hence, Quatrani mandates in [Qua03, p. 127]
to refrain from inheritance when a change of the class is likely. Instead, the author
recommends using a specification class as an attribute to the student. This specification
class can then be subclassed in an inheritance relationship to accommodate the full-
time and part-time specifications. The approach of xUML is here clearly different, as
explained in section 2.3.2.

The final step for building the domain model is to identify the attributes of the
conceptual classes. It is possible to start this analysis by referring to table 3.3 and
marking the nouns being excluded from the list of conceptual classes. Additionally,
reasoning has to be made about the important attributes by looking into the real world
and by transferring the relevant attributes into the domain model.

Usually, the reasoning for the determination of conceptual classes should be reversed
for class attributes. Everything that is a simple text or number (time, Boolean value
and date may be included in this list) should be an attribute; not a conceptual class or
an association. The term association has to be mentioned here as a common mistake
is to include referential attributes in the domain model instead of modelling them as
associations.

Still, the readability has to be balanced with the importance of the displayed details,
as can be seen when comparing figure 3.6 to figure 3.7. In the first diagram, the choice
was made to display the Number as a distinct conceptual class, even though it might fulfil
the specification necessary for an attribute. The resulting diagram is rather complex
to grasp, and does not have a great advantage over the second diagram, which displays
numbers as an attribute.

After the domain model is created, the phase of OOA is finished and the phase of
OOD can start. For a clarification, finished does not mean perfect or anywhere near
it, finished means good enough to go ahead to the next step; there will always be the
possibility to return to OOA in any of the next iterations of the development process.

Tooling - the transition from OOA to OOD: When using Rational Rose for the
OOA, the major problems arising in this step can be dealt with – without a problem

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 41

User

username : String
password : String

Div isionMultiplicationSubtractionAddition

Number

StudentTeacher

0..n1 0..n1

hasStudents

NumberRange

1

1

1

1

has a lower bound of

1

1

1

1

has an upper bound of

Exam

/ cumulatedTime : Time

0..n

1

0..n

1
solves

Exercise

isSolv edCorrectly : boolean
solv ingTime : Time

1

1

1

1has as a first operand

1

1

1

1

has as a second operand

1

1

1

1

has a calculated result of

10

1

10

1
consists of

MathematicalOperation

1

0..n

1

0..n

has as operator

ExerciseTy pe

0..n

1

0..n

1
defines

1
1 consists of a

1 0..n1 0..n

defines type for

1

0..n

1

0..n

uses a

1
1

Figure 3.6: The domain model of the MathTrainer example, including numbers as a
conceptual class.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 42

Addition Div ision Multiplication Subtraction

Exercise

solv ingTime : Time
isSolv edCorrectly : boolean
f irstOperand : Number
secondOperand : Number
calculatedResult : Number

Exam

/ cumulatedTime : Time

1

10

1

10
consists of

MathematicalOperation
0..n

1

0..n

1
has as operator

NumberRange

lowerBound : Number
upperBound : Number

Student

1

0..n

1

0..n
solves

Teacher 1 0..n1 0..n

hasStudents

ExerciseTy pe 0..n1 0..n1

defines type for

0..n

1

0..n

1

uses a
1

1
consists of a

1

0..n

1

0..n defines

User

username : String
password : String

1

1

Figure 3.7: The domain model of the MathTrainer example.

whatsoever. The interesting step is the transition into the OOD phase. Arguably, it is
best to keep the model of the analysis separated from the design model as the classes
of the domain model (the conceptual classes) are clearly different from the classes in
the design model which are the design classes. If the step of separation is not taken
and the classes of the design model are changed - providing that the same classes are
used in both design and domain model - the changes show up in the domain model
as well. These changes might be deleting or adding attributes and deleting or adding
associations. Rational Rose has filtering capabilities which can handle this problem, but
still it is preferable to design a distinct model.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 43

3.4.2 The Object-Oriented Design

The OOD phase bases on the outcome of the OOA, the transition not being easy between
these two steps ([Kai99]). The transition is mainly based on the domain model which is
subsequently transformed to (or replaced by) a design class model. In the explanation
of this artefact of the OOAD phase the transition will be exemplified on some of the
interesting aspects of the MathTrainer. Complementary to the design class diagrams,
the interaction diagrams are the other main model being built in the OOD phase. The
two types of diagrams are not created sequentially, but rather parallel and in an iterative
process. The outcome of the class diagram influences the outcome of the subsequent
interaction diagrams and vice versa. Of great use in the OOD phase are patterns, as
the reuse of knowledge they provide is aiding the developer in its attempt to cope with
static and dynamic aspects of the software system. Some of the patterns widely used in
the Object-Oriented Design shall be presented subsequently.

Patterns

Patterns are solutions to problems very often occurring in the software development pro-
cess. They can be used both in the interaction diagrams as in the design class diagrams
to help solving problems frequently solved before. The background for understanding
patterns theoretically is provided in 2.5.

The Entity-Boundary-Controller Pattern: This very popular pattern has its
roots in the Model-View-Controller (MVC) concept. The MVC concept advocates a
separation of concerns, leading to a more understandable assignment of responsibilities.
According to [Qua03, p. 57], the concept of entity, boundary and controller classes is
used to model the interaction between objects and to separate sequencing, data and
logic and the visualization of an object4. These concepts could already be used in the
analysis phase, as explained in [Qua03], but to keep design decisions out of this first
phase and display only the interesting information, it might be better to defer this clas-
sification of classes to the design phase, especially as many classes can be created in
this step which are not abstractions of classes in the real world5.

Entity classes: This type of classes is relatively stable in its behaviour. These classes
often reflect a concept of the real world, so they will often be found in the analysis

4The goal of this pattern is not to separate the data and the logic of an object. Those should both
be included in the object when using OO paradigms. The code being separated is the sequencing – so
when the logic takes place.

5Controller classes are seldom classes being inspired by real world behaviour.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 44

phase and already be present in the domain model [Qua03]. Often this type of
classes can be reused among applications when these applications have to model
the same part of the real world.

Boundary classes: Boundary classes are the interface classes of the system. They are
found by evaluating the use cases of the system; typically, each actor-use case pair
needs one boundary class. Actors can be persons as well as other systems - in
the first case, the boundary class often resembles a GUI, in the second case, the
boundary class is often an interface class which defines a special protocol to be
used to communicate with the system [Qua03].

Controller classes: Controller classes help with defining and controlling the flow of
sequences to fulfil the action of a use case. Again, the required classes of this
type are found by evaluating the actor-use case pairs – one pair, one controller
class6. Important about defining controller classes is that they should not take on
too many responsibilities [Qua03]. An example: in the domain diagram in figure
3.7 a Student of the MathTrainer-system has to be added to its Teacher upon
creation7. In this case, the controller class for the teacher should know when to
add the student. A possibility to recognize bad design would be if the controller
class of the teacher knew how to add the new student.

In the basic EBC-pattern the boundary element may only communicate with the
controller element, and does not have any links to the entity object. This is necessary
to keep the coupling between boundary elements and entity elements low. It is possible
to modify the basic pattern by letting the controller pass the entity to the boundary
element – the boundary object can then use the methods of the entity element for data
entry. Using this approach, the data structure modelled in the entity object can be
reused. Still, the coupling is higher in this approach – when the entity object remains
highly stable, the high coupling will not be a problem. For the MathTrainer example,
the modified approach was used, as outlined in [HK99]. Figure 3.8 shows the static
structure of the modified EBC pattern. From the structural point of view, this pattern
is very easy to comprehend: there is a controller element which has two relationships with
an entity element. One is an instantiation relationship, and the other an association
named administrates <EntityElementName>. Additionally, it owns one boundary
element having a link to the entity element itself. The link is only established after
the controller object has passed the entity object to the boundary object, before the
boundary object has no information about its existence.

6Hence, very often one boundary class has one controller class accompanying it.
7As both the teacher knows its students and the students know their corresponding teacher, to avoid

misinterpretations – this relationship is changed to a one-way relationship in the design phase.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 45

<<instantiate>>

0..1

1

administrates

<<instantiate>>

0..1 1

1

1

edits

<<control>>
C Teacher

-teacher:Teacher
-boundaryTeacher:B_Teacher

+C_Teacher

 boundary:B_Teacher
 allTeachers:Teacher[]

C_EventListener
<<control>>

C StateController

B_Panel
<<boundary>>

B Teacher

-enterPasswordField:javax.swing.JPasswordField
-enterPasswordLbl:javax.swing.JLabel
-okBtn:javax.swing.JButton
-reenterPasswordField:javax.swing.JPasswordField
-reenterPasswordLbl:javax.swing.JLabel
-enterUsernameLbl:javax.swing.JLabel
-cancelBtn:javax.swing.JButton
-usernameField:javax.swing.JTextField
-teacher:Teacher

+B_Teacher
-initComponents:void
+actionPerformed:void
#preRegisteredButtonPerformedAction:void

 username:String
 password:String

User
<<entity>>
Teacher

+Teacher
+create:void
+change:void

 exerciseTypes:ExerciseType[]
 students:Student[]

Figure 3.8: The static structure of the modified EBC pattern.

The dynamic behaviour of the modified EBC pattern is shown in figure 3.9 and
figure 3.10. First the controller element instantiates the entity, then it instantiates the
boundary and passes as creation data the entity element to the boundary (which now has
a link to the entity). Upon data entry the boundary element updates the entity element.
Optionally, the boundary element may also tell the entity when it has to store its data
persistently. Finally the boundary element is no longer of use and can be destroyed (or
stored for a later usage), and either the boundary or the controller element can finish
the creation process of the entity element using the necessary instructions – which might
be to save the element in a repository.

The General Responsibility Assignment Pattern: Pattern usage in OOP as ex-
plained in section 2.5 does not start with programming – some patterns are a vital tool
also in the design phase, the GRASP collection of patterns is one of these, introduced
by [Lar02]. GRASP means General Responsibility Assignment Patterns and consists of
the patterns aiding a developer in handling this important task. In these patterns, re-

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 46

initial
C_StateController

cTeacher
C_Teacher

teacher
Teacher

boundaryTeacher
B_Teacher

container
Container

mainFrame
B_MainFrame

1.1.2: <constructor>(l, teacher)

1.1.1: <constructor>()

1.4: add(cTeacher.getBoundary()):java.awt.Component

1.3: getContentPane():java.awt.Container

1.2: getBoundary():B_Teacher

1.1: <constructor>(this)

Figure 3.9: The construction phase of the modified EBC pattern’s dynamic be-
haviour.

sponsibilities are assigned to components based on widely used design principles. These
patterns can be used when designing interaction diagrams: whenever a message has to
be sent from an object to another object the developer has to reflect about where to put
the responsibilities of receiving and sending the message. Often, the part of sending is
provided by the structure and the use case, but the part of who receives the message
can be cleared up by using the five patterns explained below.

Information Expert: This pattern assigns responsibilities to the class that has the
necessary information to cope with the responsibility.

The information is provided by either the attributes it possesses or by the asso-
ciations it is connected to. An example: the cumulative time for solving the exam
should be provided by the Exam class as it is associated with all the exercises that each
know their solving time. So when the design choice has to be made to add a method
getCumulativeSolvingTime(), the class Exam will receive it.

There are some cases where this pattern should be applied, an example would be

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 47

enterPasswordField
JPasswordField

reenterPasswordField
JPasswordField

teacher
Teacher

c_MathTrainerException
C_MathTrainerException

initial
B_Teacher

if(enterPassword.equals(reenterPassword))

else
1.4.1: <constructor>("Entered passwords did not equ al each other.")

'throw' expression

1.3.4: create():void
1.3.3: setPassword(enterPassword):void

1.3.2: setUsername(getUsername()):void

1.3.1: getUsername():String

1.2: getPassword():char[]

1.1: getPassword():char[]

Figure 3.10: The data entry phase of the modified EBC pattern’s dynamic be-
haviour.

database access; e.g. via Java Database Connectivity (JDBC). In this case, a lot of
source code will be duplicated if each class knows how to handle these connections, so it
will be harder to maintain and comprehend the code. This fact mandates a separation
of concerns and separating the connection code to a common place.

Creator: Objects (of class A) have to be created, and this responsibility is assigned to
a class B, if the objects of this class B aggregate, contain, record or closely use instances
of class A. This pattern can also be applied when B possesses the information an object
of class A needs for its construction.

The list is prioritized, so when more than one relationship of classes to class A exist,
the classes having relations that stand on top of the list are chosen first for being creator.
An example: As the Exam class aggregates Exercise instances, the exam should be
creator for the exercise class. Another pattern dealing with creation is the factory
pattern.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 48

Low Coupling To explain this pattern, first the term coupling has to be defined:

“Coupling is a measure of how strongly one element is connected to, has
knowledge of, or relies on other elements. An element with low (or weak)
coupling is not dependent on too many other elements [...]. These elements
include classes, subsystems, systems, and so on.” [Lar02, p. 229]

The design principle of this pattern is to assign the responsibilities so that coupling
remains low. This principle can often be broken down to knowledge: when classes can
exist without having knowledge of each other, this knowledge should not be added. Low
coupling is especially important with unstable objects. It should not be a problem to
couple with highly stable business objects which are at the core of an application or
with the Java API, but it can be a problem to couple with objects of the GUI which
might change anytime.

High Cohesion At first the explanation of the term cohesion is provided:

“Cohesion is a measure of how strongly related and focused the responsibil-
ities of an element are. An element with highly related responsibilities, and
which does not do a tremendous amount of work, has high cohesion. These
elements include classes, subsystems, and so on.” [Lar02, p. 232]

It is undesirable in OOD and OOP to have classes which have hundreds of methods
and attributes - for the sake of maintainability and usability it is necessary to partition
the responsibilities of this class functionally and draw them out to different classes.

This problem often arises with factory classes, being designed for the creation of ob-
jects. When the types of objects get numerous in a system, the factory class can consist
of a collection of a hundred and more methods. The class becomes incomprehensible
and unmaintainable. The solution is to partition of the factory class, in the same way
as the objects being created are partitioned.

Cohesion and coupling often depend on each other. When one is made worse, the
other is made worse as well. So to prevent these problems from arising, it is necessary
to pay attention to both principles at the same time.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 49

Controller: When handling system events being the input from a user or another
system, controller classes come in handy. These classes have either the responsibility of
handling events systemwide (facade controller) or handle just one use case in the system
(use case controller). In the second case, they are often named <UseCaseName>Handler.

Controllers themselves are not user interface classes, but they often handle the inter-
action with the GUI. It is sensible to put in a layer between the GUI and the business
objects as the GUI can change anytime due to technical improvements and additional
requirements – business objects are rather seldom changed, on the other hand. The
responsibilities of the controller are to be the intermediary between GUI objects and
business objects and often to provide a sequencing function in determining which actions
are executed. In the pure controller pattern, the GUI object may only communicate with
the controller object, it is not allowed to access the business object directly. Often, a
less purist approach is taken and the GUI object can obtain the business object from
the controller object and can directly access its methods for display and data-entry.
After it finishes these tasks, it returns the business object to the controller object for
the administrative work [HK99]. This approach helps in reducing code overhead as the
data model of the business object does not have to be replicated in the boundary ob-
ject, but it performs worse with respect to low coupling. It depends on the stability of
the underlying business objects if this approach can be taken, coupling to highly stable
objects is generally not a problem.

By the information provided above, the GRASP patterns can be seen as highly in-
terconnected. If a slight change occurs in the assignment of responsibility, all of these
patterns are affected. Generally, the better the software development, the better is the
overall fulfilment of the principles the GRASP patterns propose.

The Singleton Pattern: This pattern describes a way to create a single instance
of a class and to prevent more than one instance from being created. Such behaviour
is often necessary with architecture classes that should be instantiated once and only
once. Of course, the same effect would be achieved with providing static methods to the
class, but this approach is not open to software reuse (as most programming language
preclude the user from overriding static methods). Additionally, if once the necessity
arises to have more than one instance available, the code can easier be changed when
using the singleton pattern.

Java example 3.1 shows the application of the singleton pattern in a factory class,
using lazy initialization8 of the single instance.

8Lazy initialization means that the instance is only created when a request really happens, this helps
to save resources and is preferable over immediate initialization.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 50

The Factory Pattern: The factory pattern mandates a separation of concerns –
business logic elements are there to cope with the business logic, and for the creational
logic a new type of element is defined: the factory. The advantages of the introduction
of pure fabrication objects, called factories, are:

Separation of concerns: The complex responsibility of creating objects is put into
helper classes.

Hidden creation logic: The creation logic is hidden from the other parts of the sys-
tem, they communicate with the factory only.

Performance enhancements: As the creation logic is hidden, it is possible to intro-
duce performance enhancements, as caching of objects or instances.

An example for the factory pattern can be seen in figure 3.11, where it is
used, along with the Singleton pattern, to generate random numbers using a
RandomNumberGenerator class. The factory and the singleton pattern are natural com-
panions as often exactly one instance of the factory has to be created.

public class ToolFactory
{

private stat ic ToolFactory too lFac to ry = null ;

private ToolFactory ()
{

t oo lFac to ry = this ;
}

public Tool c reateToo l (S t r ing name)
{

//Create and return a t o o l depending
//on the name

return t o o l ;
}

public stat ic ToolFactory in s t anc e ()
{

i f (t oo lFac to ry==null)
ToolFactory () ;

return t oo lFac to ry ;
}

}

Example 3.1: How the factory pattern could be implemented in Java code.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 51

The Enum Pattern: A very useful pattern in designing programs for the Java pro-
gramming language is the Enum pattern. It is necessary as Enums are not supported
by Java (contrary to C++), even if this construct can be utile in many situations. Of-
ten constants are used to get around this restriction, but public constants are far from
helping with reusability as they cannot be overridden as well as extended. The basic
structure of the Enum pattern is to define a class which has the desired properties as
public members. To prevent others from adding properties to the list, the constructor is
made private. Example 3.2 provides a colour class with the three properties Red, Green
and Blue.

public class Color
{

public stat ic Color RED = new Color (”Red”) ;
public stat ic Color GREEN = new Color (”Green”) ;
public stat ic Color BLUE = new Color (”Blue”) ;

private St r ing name = null ;

private Color (S t r ing name)
{

name = name ;
}

public St r ing toS t r i ng ()
{

return name ;
}

}

Example 3.2: How the Enum pattern could be implemented in Java code.

With all these patterns in place, it is easier to solve complex problems in OOP – still,
it is not necessary to know all the patterns to find a good solution to problems arising
in this field. And the wrong application of patterns can often lead to code that is even
more unmaintainable than without them. Hence, it is necessary to check if a pattern
can usefully be applied in the context. Hints for the application of patterns were given
above and additional examples will be provided in the following sections, with respect
to the models of the MathTrainer system.

The Design Class Diagram

The design class diagram has its roots in the domain model of the OOA phase, but
transfers the concepts found in the real world into the context of the software system
yet to be built. The MathTrainer ’s class diagram is shown in figure 3.11. The transi-
tion’s first step is executed by evaluating classes, associations, and attributes still being
necessary for the design phase. In the case of the MathTrainer, most of the constructs

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 52

make their way from the analysis to the design phase. Exceptions are the subclasses of
the MathematicalOperation: They cease to be important as the Enum-pattern is applied
to model the MathematicalOperation concept. Each of the different subclasses is mapped
to a public instance of the MathematicalOperation superclass, and both the subclasses
as the generalization relationship are removed. The second step adds concepts not im-
portant in the analysis phase. For instance, a factory is added to the MathTrainer
system to generate random integers; an additional StopWatch aids in measuring the
time needed to solve the exam. After the transition has completed, the class diagram is
further detailed by applying the patterns of the design phase.

The application of patterns can be seen in many places throughout this diagram.
Generally, the information expert pattern has been applied for all classes shown on the
diagram and is therefore responsible for the way how operations have been partitioned
to the major classes. As this pattern interacts with the low coupling and the high
cohesion patterns, these three patterns have interacted providing the solution shown.
The factory pattern is used to generate numbers in the RandomNumberGenerator. The
singleton pattern is also used in this context. The Enum pattern is used to define the
different mathematical operations. This pattern is very often utilized to get away from
using constants as they are generally not very reusable.

Interaction Diagrams

The dynamical view of a system is represented by interaction diagrams. Interaction
diagrams can be both collaboration diagrams and sequence diagrams.

The syntax of a sequence diagram is easily understood: Instances are laid out at the
top end of the diagram, and messages pass from one instance to the other. The currently
active instance has a thread9 associated with it. The description of the messages is not
generally defined by the UML, often method names are used to underline the existence
of a mapping between the message and the operation. The message description can also
contain the operation signature, which means the parameters and an eventual return
value. Optionally return messages are drawn which themselves can be labelled with
return types and return values [UML03].

The UML standard has defined ways to notate conditional logic on sequence diagrams.
The conditional messages are visualized by enclosing the condition in square brakes
and putting the condition before the signature of the operation. Loops are defined as
rectangular boundaries around the messages affected, where the loop condition is put
somewhere into this rectangular space. However, not many tools support this kind of

9The active thread is usually denoted by a rectangle.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 53

0..*1

1
is defined by

2

1

2

<<use>>

<<use>>

1

1..*

has as operator

has Teacher

uses

110

0..*

1
solves

11

1

1..*

uses a

0..*

1

defines

0..*

1

defines type for

has a Singleton instance

has as operands

consists of

consists of a

StopWatch

-startTime:long

+StopWatch
+stop:long

MathematicalOperation

+ADDITION:MathematicalOperation
+SUBTRACTION:MathematicalOperation
+MULTIPLICATION:MathematicalOperation
+DIVISION:MathematicalOperation
-operationsVector:Vector
-representation:String
-name:String

-MathematicalOperation
-prepareVector:void
+calculate:Number
+toString:String
+getName:String
+getOperations:MathematicalOperation[]

Integer

-number:int

+intValue:int
+toString:String
+equals:boolean

Student

+Student
+create:void
+change:void
+delete:void

 teacher:Teacher

Teacher

+Teacher
+create:void
+change:void

 exerciseTypes:ExerciseType[]
 students:Student[]

Object
User

+User
+isValidPassword:boolean
+login:void
+logout:void
+toString:String
#change:void
#create:void
+change:void
+create:void

 username:String
 password:String
 loggedIn:boolean

Comparable
Exam

+COUNT_EXERCISES:int
-accumulatedSolvingTime:long
-student:Student
-exercises:Exercise[]
-watch:StopWatch

Exam
+solveExercise:void
+setExerciseType:void
+startSolving:void
+stopSolving:void
+getStudent:Student
+setStudent:void
+getExercises:Exercise[]
+setExercises:void
+countSolvedExercises:int
+getSolvingTime:long
+setSolvingTime:void
+create:void
+toString:String
+compareTo:int

Number

+Number

RandomIntFactory

-instance:RandomIntFactory

-RandomIntFactory
+getInstance:RandomIntFactory
+createRandomInt:int
+createRandomInt:int

Exercise

-solvingTime:long
-operands:Number[]
-mathematicalOperation:MathematicalOperation

+Exercise
+Exercise
+solve:boolean
+toString:String

 solvedCorrectly:boolean

RestrictedNumberRange

-LOWER_RESTRICTION:int
-UPPER_RESTRICTION:int
-restrictions:Number[]

RestrictedNumberRange
+getUpperRestriction:Number
+getLowerRestriction:Number

NumberRange

+NumberRange

ExerciseType

+ExerciseType
+addOperation:void
+create:void
-contains:boolean
+delete:void
+toString:String

 name:String
 numberRange:NumberRange
 operations:MathematicalOperation[]
 teacher:Teacher
 sortedExams:Exam[]

Figure 3.11: The design class diagram of the MathTrainer example.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 54

visualization, which makes it hard to describe the method bodies thoroughly enough to
generate code from them.

An example for a sequence diagram is figure 3.12. The same diagram in collaboration
notation is shown in figure 3.13.

initial
B_Exam

b_Exercise
B_Exercise

jTextComponent
JTextComponent

exam
Exam

result
String

e
C_Event

exercise
Exercise

if(e == C_Event.SOLVE_EXAM_OK)

for(int i=0;i<boundaryExercises.length;i++)

if(result.length() != 0)

else
1.2.1: toString():String

'throw' expression

1.1.3: create():void

1.1.2.4.2: solve(new Integer(result)):boolean

1.1.2.3: length():int

1.1.2.2: result:=getText():java.lang.String

1.1.2.1: exercise:=getExercise():Exercise

1.1.1: stopSolving():void

Figure 3.12: The sequence diagram for solving an exam in the MathTrainer example.

Collaboration diagrams essentially show the same information as sequence diagrams,
but in a different representation. What is missing in collaboration diagrams is the
timeline, the information represented by this element is conveyed by the sequential
numbering of messages on collaboration diagrams [UML03]. This type of diagram re-
sembles a class diagram when looking at it first, but the classes shown in this model are
actually instances of the classes, and the arrows in between are not associations but the
messages passing from one instance to another [UML03]. Conditional logic is here more

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 55

often supported by tools, also loops can generally be shown on collaboration diagrams.

b_Exercise:B_Exercise

result:Stringe:C_Event

exam:Exam

initial:B_Exam

exercise:Exercise

jTextComponent:JTextComponent

1.2.1: toString():String

1.1.2.4.2: solve(new Integer(result)):boolean

1.1.2.2: result:=getText():java.lang.String

1.1.1: stopSolving():void
1.1.3: create():void 1.1.2.1: exercise:=getExercise():Exercise

1.1.2.3: length():int

Figure 3.13: The collaboration diagram for solving an exam in the MathTrainer
example.

Tooling - Conditional Logic in Sequence Diagrams

The UML defines a way to cope with decisions and loops in sequence diagrams, Rational
Rose 2002 does not. To work around this fact and still model the conditional logic
arising from requirements [Qua03, p. 81] suggests to use notes and scripts on a single
diagram when the logic is simple. When the logic comprises more than some messages
she mandates the usage of two diagrams, one for the “if ” and one for the “else” case.
To allow the user to easily navigate to other diagrams, Rational Rose offers the ability
of linking – done by specially marked entries in plain notes.

This is a rather unsophisticated way of coping with this problem for the leading UML
tool on the market, even if the notion of simplicity is called upon for mandating the
exclusion of conditional logic from sequence diagrams [Qua03].

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 56

Tooling - Layouting Class Diagrams

When class diagrams become larger, it gets more difficult to analyze and comprehend
them. However, the usage of the EBC -pattern, explained in section 3.4.2 leads to
an explosion of the number of classes necessary to model the system. This explosion
induces class diagrams which can by hardly be understood. A possible workaround is to
continue the separation of concerns on the layer of packages and introduce packages for
each of the three class types: entity, boundary and controller. Problematic is the high
interconnection among the three classes making up one instance of the EBC-pattern.
Hence, the structure can not easily be conceived if the classes are spread on several
diagrams. So it is necessary to include at least one class diagram in the documentation
which shows the structure of the EBC-pattern used in the system. Even better is the
inclusion of a sequence or collaboration diagram showing the dynamic interaction.

Apart from those additional diagrams, the main class diagram of the system should
not show boundary or controller classes, except if they are of a great importance for
understanding the system.

Tooling - Using the Object Constraint Language in Rational Rose

OCL, the OMG’s object constraint language, helps formulating restrictions on what can
happen (or what can exist). These constraints are then visualized on the diagrams. The
language exists as an alternative to natural language constraints and is – maybe due to
its alternative state – neither widely known by programmers nor implemented by tool
vendors.

Rational Rose 2002 is not an exception. The only way to notate OCL expressions on
diagrams is by attaching notes to diagram elements, so there is no syntax check and no
immediate utility of writing constraints in OCL. Generally, it is not recommended to
use OCL as a constraint language as long as this sad state of affairs is not changed.

3.5 The Object-Oriented Analysis and Design

Phase using xUML

The following explanation of the OOAD phase in xUML is based on the UML approach
shown in the previous section. Major differences are outlined and the steps are compared
to those taken with the UML.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 57

3.5.1 The Object-Oriented Analysis

Using xUML, the phase of OOA comprises the same steps as in using the “ordinary”
UML. An interesting difference is about nomenclature: the domain model used to show
the conceptual classes found in the real world in UML is the normal class model in
xUML.

The domain model in xUML, on the other hand, is something like a model of the
main packages (called domains in xUML) of a system, including their interaction. This
is, as mentioned in 2.3.2 comparable to a class diagram in UML which contains only
packages (which themselves contain the classes of the system).

The Domain Model in xUML

The domain model of the MathTrainer example is shown in figure 3.14; it displays the
interdependencies of the domains. In xUML, the term “domain” is used for a part
of the system in development, this part must have clearly defined boundaries. Hence,
these elements are then analysed and designed separately and interfaces are envisaged
to finally interconnect them. A domain can also be seen as lying outside of the scope of
the system, then it is not handled in the development process – except for the interfaces
being necessary to connect to the domains within the system.

Figure 3.14: The xUML domain model of the MathTrainer example.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 58

Use Case Diagrams in xUML

The second step of OOA is in xUML as in UML the generation of use cases and use
case diagrams. The generation and visualization of these diagrams resembles very much
those generated by the application of UML and are therefore not replicated here.

A problem in the OOAD process using xUML is the even less distinct separation
between OOA and OOD. Using xUML the creation of only one diagram is recommended
[MB02, Sta02] – this diagram should be closer to the analysis of the real world than the
design class diagram in UML, but still reflects some design decisions. As an example,
the addition of operations to the classes in this diagram is mentioned.

Class Diagrams in xUML

Class diagrams are used to depict the structure of the real-world. More specifically, it
shows the structure in the part of the real world being base for the software system
under construction. The reasoning applied to find the elements of the UML design
model and design class diagram can also be used in the case of xUML. The result of
applying this reasoning, the xUML class diagram of the MathTrainer example, is shown
in figure 3.15. As mentioned in section 2.3.2, the xUML class model resembles to the
class models built in UML. The differences between the models shall be outlined in the
following paragraphs.

Notation of Associations: One of the major differences in the visualization of associ-
ations between xUML and UML are the multiplicity expressions, which are explained in
3.5.1. Additionally, UML offers displaying the notion of navigability, which is not shown
in xUML10. Furthermore, the xUML subset defines a unique name for associations (an
R followed by a unique identifier, e.g. R1, R2,... as explained in section 2.3.2). Finally,
the role specifiers of UML take over the role of describing the associations. Or, to put
it more correctly: The description of the association is put to the place where the role
names reside in UML. To read an xUML association, first the class name is read, than
the far end description and then the other class name (e.g. Exam has exercises of type
Exercise Type). In UML, a class is described by the role name on the near-end of the
association [Qua03, p. 94]. This is clearly different and can lead to misinterpretations
of xUML diagrams which should be avoided.

10This is the reason for the fact that no arrows - except the generalization arrows - are displayed on
xUML class diagrams.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 59

Figure 3.15: The xUML class diagram of MathTrainer’s Core domain.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 60

Multiplicity Expressions in xUML: According to [Sta02, p. 303] xUML allows to
specify the allowed multiplicity in a class model in the form of

• 0..1,

• 1,

• 0..* and

• 1..*.

From the requirements analysis of the MathTrainer example follows that one exam
consists of ten exercises. Modelling this fact would be very complicated when using the
xUML profile – in UML a multiplicity like the one given above can be defined. Starr
suggests in [Sta02] as a remedy to reconsider the probability of change of this multiplicity.
This can be achieved by first posing the question if the relationship being modelled

• might change anytime or

• is something that is a fundamental law of a science like mathematics, geometry or
physics.

In the second case, the behaviour should be modelled explicitly. This is easy with small
multiplicities (as an example, a flat surface has a backside and a frontside), but can
be impossible with larger multiplicities – which are seldom to find in fundamental laws
anyway11. An example of this would be the definition of a simple arithmetic problem in
the mathematics: there are always exactly two numbers which are joined by the operator
and on which the operator is executed. A class diagram showing this relationship can
be found in figure 3.16. For the first case, the constraint should not be included in
the model: if a company has 150 customers and the 151st comes along, nothing should
change in the behaviour of the system – the code should work with 151 customers as good
as with 150. The place to put this information is the colouring12 of the xUML-model:
the developer instructs the compiler to consider this relationship to have a multiplicity
of ten, and the compiler ought to find a viable solution with a small footprint and a
good execution time [Sta02].

11An exception would e.g. be the amount of protons in an atom of a given element. It is hard to
distinguish different protons though, so they might be modelled as a count-attribute of the atom class.

12Colouring is the process of putting a kind of acetate sheet over the model - without changing it -
to instruct the model compiler to treat parts of the model differently (e.g. a part of the model is to be
executed on a special processor) [Sta02, p. 19]

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 61

Number

First Number Second Number

Arithmetic Problem

1

1

1

Operator

1

0..n

is the first number in the

R2

1consists of the

R3

is the second number in the

consists of the

1

1

R1

R4
consists of the

solves the

1

0..n

Figure 3.16: How an arithmetical exercise, its operator and the operands interact.

Referential Attributes in xUML: An interesting addition of the xUML profile to
the UML standard is the introduction of identifiers [Sta02, p. 57]. These identifiers are
– as in the relational data model – the key to one special instance of the class. Identifiers
can be implicit or explicit. An implicit identifier is an identifier a class gets if there is
no other identifier defined. This identifier is provided automatically, by the underlying
software layers, to be able to distinguish among instances – it might be done by using
keys, pointers, indices, handles, memory co-location or any other software architecture
related mechanism. When - later in the process - statements in the action specification
language are written, the implicit identifiers are used when a link is set or removed, or
if a link is followed from one class to another and a single instance or a set of instances
is received – no explicit identifier is necessary. Still, if bridging to another domain
in which a GUI resides is necessary, and the instance data shell be presented to the
user, this user might expect the identification to be of a special format, e.g. an item
identification number, a car plate number or a social security number. In such cases,
it is better to model an identifier explicitly13 [Sta02]. As in the relational data model,
the identifier can consist of one attribute or more than one. If more than one is used,
the identifier is termed compound. When designing xUML classes, their attributes and
identifiers, the relational principle of the first normal form, second normal form and
third normal form should be obeyed – making the close coupling between xUML and

13In iUML by Kennedy Carter every class has to have its explicit identifier - hence the restriction is
even higher.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 62

relational principle even more obvious. An introductory explanation of these concepts
can be found in [⇒Normalization], and in [Sta02, p. 61ff] they are applied to xUML;
although not explicitly mentioned.

3.5.2 The Object-Oriented Design

The OOD phase using xUML begins by adding a collaboration diagram to each domain
– as the major parts of the class diagram have already been designed in the analysis
phase. It should be noted that the class diagram might not be finished yet, it is possible
to return and refine it during any of the next steps. Additionally to the attributes
and associations, it might be necessary to add operations to the class diagram. A major
difference to the design phase using UML is that the concepts information hiding should
not lead to wrapper methods, even if the target language mandates them. These wrapper
methods will be created automatically when the model is compiled. For creating other
necessary operations the usage of the GRASP pattern – explained in section 3.4.2 – is
advocated. The EBC-pattern – explained in section 3.4.2 – does not aid in designing
xUML models as the controller is here often the state machine of the class. Additionally,
the boundary class is seldom included in the model as the GUI is often in a completely
separated domain, connected by a bridge.

The xUML Collaboration Diagram

This collaboration diagram shows essentially the same classes as the class diagram,
but carries additional information about their interaction and is therefore a dynamical
diagram [MB02]. For the MathTrainer’s core domain, this diagram is shown in figure
3.17.

Three types of classes are displayed on an xUML collaboration diagram, the type is
expressed by the stereotype provided in the first compartment of the class symbol.

Class: The stereotype class describes ordinary classes which are defined on the class
diagram and do not have any special meaning.

State machine: The term state machine denoted classes which have a state machine,
expressed in a state chart diagram, associated with them. The step of determining
which classes should become state machines and how to associate them with state
charts will be explained later on.

Terminator: Finally, the stereotype terminator marks classes which are outside of
this domain and interact with it (they are interface classes). Terminators can

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 63

Figure 3.17: The xUML collaboration diagram for the MathTrainer’s Core domain

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 64

have signals and method calls associated with them which are activated by the
classes of the domain, terminators themselves can send signals to the domain and
call operations of the domain.

State machines and State Chart Diagrams

Starting off from the class diagram of the domain, the next step is to think about which
of the classes shown on this diagram are state machines [MB02]. Generally, almost any
object can be considered as being a state machine as almost all objects start off being in
a special state and going through a lifecycle in which they traverse a sequence of states.
By determining which state machines are important to adequately model the behaviour
of the domain, a correctly working system can be achieved.

For the MathTrainer example, most classes have been identified as state machines.
One exception are the Student and the Teacher class. As they are subclasses of the User
class, a separate state machine for them is not recommended [MB02]. Another is the
Operator class for which the state information is not necessary as objects of this class
are created and do not react to any transition. An example for a state chart diagram is
represented in figure 3.18, exemplifying the state chart for the User class.

This figure 3.18 consists of the essential components of such a state chart diagram:
Each chart is composed by representing the different states the object can assume, and
the signals which cause the transition to another state. These signals are labelled with
a unique identifier followed by a colon, then a name which is given by the developer and
finally by the parameters accompanying them. The action which is taken upon entry into
the state is shown in the state’s box and is denoted in an action specification language
(in [UML03] the semantics, but not the syntax of such a language is standardized).
This language depends on the manufacturer of the tool - the language used by Kennedy
Carter in their tool iUML shall be presented (and evaluated with respect to [UML03])
in the next section.

The Action Specification Language by Kennedy Carter

In [WKC+03], the ASL is explained thoroughly. As the language is situated in the
public domain, it has been implemented several times independently [UML03].

The ASL provides the user with syntax to denote sequential logic, to access data
items, to manipulate classes and objects, to handle associations and generalizations, to
generate signals, to execute arithmetic and logical operators on data, to call operations

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 65

Figure 3.18: xUML state chart of the User class.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 66

and to handle sets of objects. Additionally, a timer is provided to implement time based
functionality [WKC+03].

Some of these possibilities shall be explored with an explanation and a short example.

Sequential Logic Sequential logic can be represented in the ASL by using any of the
following statements.

• switch

• if

• for .. loop

• loop

The statements can also be nested, if this is necessary [WKC+03]. The example 3.3
shows an if statement in ASL.

i f countSo lvedExerc i s e s = 10 then
generate EXM3: Exam Solved () to t h i s

e l s e
generate EXM5: Exam Not Yet Solved () to t h i s

end i f

Example 3.3: An if statement in ASL.

Handling associations and generalizations: An interesting feature of the ASL is
to handle associations and - in the same way - generalizations. It is possible to navigate
to the other end of associations, to establish a link between to classes and to delete this
link again [WKC+03]. Example 3.4 shows these possibilities.

#type and mathOp are both l o c a l v a r i a b l e s
#which have been de f ined be f o r e

l i n k type R8 mathOp

newMathOp = type−>R8

unl ink type R8 mathOp

Example 3.4: Establishing a link, navigating along it and deleting it, written in
ASL.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 67

Sending signals: Out of ASL code, it is possible to send signals to other classes and
terminators [WKC+03]. The signal sending syntax is relatively easy, as can be seen in
example 3.5.

#USR shor t name o f the s t a t e machine
1 , 2 unique index o f the s i g n a l
#Create Teacher , Create Student name o f the s i g n a l
#in the bracket s the parameter are provided

generate USR1 : Create Teacher (” teacher ” ,” t eacher ” ,” admin”)

generate USR2 : Create Student (” student ” ,” student ” , ” t eacher ”)

Example 3.5: Syntax for sending signals in ASL.

Handling Sets: Sets are generated in ASL by following a link to an association with
a multiplicity of higher than one or by executing a find statement. On collections, many
operations are defined. For example, it is possible to iterate through the set or count
the instances comprising the set [WKC+03]. Example 3.6 shows the details.

l oca l exam = f ind−only EXAM where studentName=”student ” & \
Current State = ’ Unsolved ’

#Set obta ined by nav igat ing along an a s s o c i a t i o n
#Sets are denoted by {} in ASL
{ e x e r c i s e s } = local exam−>R6

#I t e r a t e through the s e t and send each in s t anc e a s i g n a l
f o r e x e r c i s e in { e x e r c i s e s } do

generate EXC1: So l v e Exe r c i s e (2 0) to e x e r c i s e
endfor

Example 3.6: Handling of sets in a test method written in ASL.

Calling Operations: The example 3.7 shows how a method with one parameter and
two return values is called.

#has two return va lue s (both the teacher and i t s user ob j e c t)
#the d i f f e r e n c e to s i g n a l s are the notat ion with square bracket s
[teacher , user] = USR5 : GetTeacherAndUser [” username ”]

Example 3.7: Calling an operation in ASL.

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 68

Handling Objects and Classes: The final example 3.8 shows how objects and
classes are handled. This is done by showing a test case where a Student and a User are
created, they are connected to create a generalization relationship and then the Student
is deleted and the User instance is connected to a teacher – thus showing that an object
can change its generalization relationships as easy as its associations.

#Create a user
tmpUser = Create USER with \

username = paramUsername & \
password = paramPassword

#Create a student
tmpStudent = Create STUDENT with \

username = tmpUser . username & \
t eacher = paramTeacher

#look up the user that be longs to the teacher
tmpTeacherUser = f ind−only USER where username = paramTeacher

#nav igate to the teacher i t s e l f
tmpTeacher = tmpTeacherUser−>R1 .TEACHER

#l i n k the student and the teacher
l i n k tmpStudent R2 tmpTeacher

#l i n k the user and the student ob j e c t s to
#c r ea t e a g e n e r a l i z a t i o n r e l a t i o n s h i p
l i n k tmpUser R1 tmpStudent

#student c r e a t i on i s f i n i s h e d − now a change : the
#created user ob j e c t i s to be a teacher
#so we r e s e t the l i n k s and d e l e t e the student
un l ink tmpUser R1 tmpStudent
un l ink tmpStudent R2 tmpTeacher
d e l e t e tmpStudent

#Create a teacher
tmpNewTeacher = Create TEACHER with \

username = tmpUser . username

#l i n k teacher and i t s user ob j e c t
l i n k tmpNewTeacher R1 tmpUser

generate USR4 : Created Teacher () to tmpUser

Example 3.8: Creating and deleting instances in ASL and changing the position in
a generalization relationship.

Model Simulation

The implementation phase of the xUML OOAD process would be the transformation of
the designed model to an executable one on the desired platform. A very interesting and
useful aid when designing models is that it is possible to use model simulators. These

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 69

are tools automatically executing the model, but on the special platform of a simulator
so that the model can be debugged before it is finally executed [MB02]. In a strict sense,
this is a form of implementing an xUML model, still it is used in both the analysis and
mostly the design step to do the right things right.

This step aids in designing models as the viability of the model can be ensured by
simulating the instantiated model, providing a set of input stimuli and checking the
postconditions. If the model was designed to built a calculator, the input conditions
“3” and “5” should lead to the postcondition “8”, assuming the model was initiated to
add the numbers. Example 3.6 shows a test method that is executed upon simulation of
the model and triggers some behaviour of the objects. In this case, the exam is solved
by sending signals to the exam’s exercises to communicate when – and with which value
– they are solved.

3.6 Summary

The phase of Object-Oriented Analysis and Design (OOAD) was exemplified on the
MathTrainer system using both UML and xUML. Analyzing in UML leads to the use
case diagram, which was further explained by written use case stories and an activity
diagram for each use case. The real world was – in its relevant properties – captured
in the classes, attributes and associations of the domain model. By both enhancing and
reducing the concepts of the domain model the transition of OOA to OOD leads to
the class model of the design phase. In an iterative process, both interaction diagrams
and the class model evolve and influence each other. In designing interaction diagrams,
special effort has to be made to capture all interesting aspects of the system – these
diagrams are the basis for the later code generation of the dynamical aspect in this
approach. State chart diagrams could additionally be employed to further clarify the
life cycles of objects, but were not designed as they were used in the xUML approach.

Using xUML, the main constructs of the UML analysis phase can be reused. Both the
use case diagram and the activity diagram provide the information necessary to model an
xUML diagram. The xUML domain model is different from the UML domain model as
the first depicts the top level interconnection of main packages and the second shows all
conceptual classes, attributes and their interactions. The xUML class model has its roots
in the analysis phase of the OOAD as this model is more a picture of the real world than
visualizing the software system yet to be built. Essentially, it uses the main constructs
as its UML equivalent, some differences can be found in the notation for associations,
in multiplicity expressions and in the referential attributes used in xUML. An xUML
collaboration diagram was designed to visualize the dynamical interconnection of classes.
The final artefact of designing in xUML were state chart diagrams which were used to

3 – OBJECT-ORIENTED ANALYSIS AND DESIGN PHASE 70

illustrate the lifecycle of objects where necessary. The states of these diagrams are
further refined with action specifications, these being executed when the object enters
the state. An example for a notation of such actions was provided by introducing the
Action Specification Language (ASL). The state charts created in this phase will be the
basis for the code generation of the dynamical aspect in the xUML approach.

Both the UML and the xUML approach can be used to model a software system
in great detail. Whereas the emphasis in terms of time and commitment has to be on
the interaction diagrams in the UML approach, it must be on the state chart diagrams
in the xUML approach. The better and the more detailed the models of the design
phase, the more code can be generated in the implementation phase. A major differ-
ence between the UML and the xUML approach is that with xUML, the design phase
marks the final point of the classical software system development. Afterwards, the new
tasks of colouring the model and configuring the model compiler take over. In UML,
the distinction between design and implementation phase is not so clear and several
iterations will take place, slowly shifting the emphasis from design to implementation.
In both approaches, it is always possible to return to the design phase and clarify the
information the model contains, when code generation is employed, these clarifications
can subsequently be conveyed to the implementation phase.

Table 3.4 shows what times were necessary to actually analyze and design the system.
Learning phases have been subtracted from the amount of time given in this table. In
effect, the analysis phase took the same amount of time for both approaches, the design
phase took longer with the xUML approach due to the detailed state chart diagrams
necessary.

Phase UML xUML
Analysis 7 days 7 days
Transition from Analysis to Design 1 day 1/2 day
Design 10 days 15 days (due to the

detailed state chart
diagrams necessary)

Table 3.4: An overview of the time necessary for the Object-Oriented Analysis and
Design phase.

Chapter 4

Implementation Phase

The description of this phase shows how the output of the previous steps has to be
augmented to reach an executable software system.

4.1 Implementation on the Basis of the UML model

The first step in converting the model into an executable application was done by choos-
ing Java as a programming language. Successively, the GUI prototype – which was
originally written in Java – was connected to the generated classes of the business layer
and finally persistence code was added to these classes. This process will be explained
in the following sections.

4.1.1 Code Generation

Most available tools generate code from UML class diagrams – Rational Rose 2002 also
provides these capabilities. However, the code generated is not more than a static struc-
ture of the classes, and associations are not handled in a very detailed way [BKL+01].
Generating code from interaction diagrams is not common for tools dealing with UML,
even though some do it, as will be evaluated later on with the case of ControlCenter.

Manual Mapping

Hence, if automatic generation of code is not fully possible, [HK99] suggests to handle
the process of converting UML models into code in a rule-based way instead of handling

4 – IMPLEMENTATION PHASE 72

each construct separately.

Such rules must be defined for the mapping of

1. classes, of

2. attributes, of

3. operations and of course,

4. associations.

As an example, a rule-based approach for associations is very easy to accomplish with
1:n multiplicities with a navigability in just one direction, it gets harder if navigability
in both directions is desired. In the MathTrainer example, the work was done without
using bidirectional navigability, if this construct is necessary, [HK99, p. 271] provides a
mapping.

An example of such a mapping to Java source code is shown in figure 4.1. Here
the easy case of an association with navigability in only one direction is treated. This
approach is taken by Rational Rose as well when generating code from the class diagram.
Hence, this approach is also reflected in the MathTrainer source code.

X Y+rYassoc

class X {
 private Y rY;

 public X(Y y) {
 assoc(y);
 ...
 }

 public void assoc(Y y) {
 rY = y;
 }

 public Y assoc() {
 return rY;
 }
}

class Y {
 /*no
changes are
necessary*/
}

Figure 4.1: How an unidirectional ?:1 association can be mapped to Java source code
[HK99, p. 270]

4 – IMPLEMENTATION PHASE 73

Automatic Mapping

Further than Rational Rose, the Together ControlCenter goes in its code generation
capability. ControlCenter does not only offer code generation from class diagrams, but
also from sequence diagrams – this gets very close to the desired full generation of code
from UML models.

Example 4.1 is code that is totally generated from the sequence diagram of 4.2,
except for the class statement itself which was generated from a class diagram. This
automatic code generation works very well. There is just one problem with the mapping
of diagrams to code (and back again): the constructs of the language which do not
comprise a message call will not be reflected on the sequence diagram.

In Java, this is the case with the instantiation of primitive types like int or float and
the assignment of a result of mathematical and logical operations to them. Additionally,
the assignment of one object reference to another can not be represented on the sequence
diagram and therefore not be generated. Furthermore, constructs such as the throw

<exception>; statement can be reverse engineered, but not forward engineered using
ControlCenter (try and catch statements can be represented). Finally, any comments
in the code are lost after a round-trip engineering has finished.

The problems are illustrated by example 4.2 and figure 4.3. They show the loss of
information that occurs when doing reverse engineering – additionally, this information
loss prevents this kind of code from being forward engineered. Due to these flaws,
it is not 100% viable to generate source code from sequence diagrams with Together
ControlCenter – though it must be stressed that the UML standard provides no way
to accommodate these constructs in a sequence diagram. The essential problem is a
sequence diagram being object-oriented and a language like Java having constructs not
being object-oriented.

When looking on the xUML approach, it is possible to learn how these problematic
code lines could be accommodated in the sequence diagram: there, the action specifi-
cation is added to the symbol for the state in the state chart diagram. Following this
logic, the code lines which are not directly representable could determine the size of the
activation bar in the sequence diagram. While the activation bar is not large enough
to display these code segments to the user, it could show a text editor to the user in
which he could enter these code lines, including comment lines. Finally, the length of
the activation bar would then be stretched or reduced, to graphically show how much
logic has been accommodated in this segment. Additional comment lines (which can
not be accommodated in the diagram) would be added as notes or in the description
of the sequence diagram’s other elements. To add graphical interaction with the user,
the code segments could be presented as a tool tip to the user. The advantage of this

4 – IMPLEMENTATION PHASE 74

public class HelloWorld {
public void hel loWorld (In t eg e r numberOfDisplays){

int count = numberOfDisplays . intValue () ;
for (int i = 0 ; i < count ; i ++) {

i f (i == count − 1) {
// message #1.1 .1 .1 to t h i s : HelloWorld
this . d i sp layHel loWor ld (true) ;

}
else {

// message #1.1 .2 .1 to t h i s : HelloWorld
this . d i sp layHel loWor ld (fa l se) ;

}
}

}

public void disp layHel loWor ld (boolean i s La s t){
i f (i sLa s t) {

// message #1 . 1 . 1 . 1 . 1 . 1 to <unnamed>: javax . swing . JOptionPane
JOptionPane . showMessageDialog (null , ”Last He l lo World”) ;

}
else {

// message #1 . 1 . 1 . 1 . 2 . 1 to <unnamed>: javax . swing . JOptionPane
JOptionPane . showMessageDialog (null , ” He l lo World”) ;

}
}

}

Example 4.1: The code generated by the sequence diagram of figure 4.2.

approach would be the possibility of full code generation and no violation of the UML
standard whatsoever, paired with the ability to repeat round-trip engineering as often
as necessary.

public void problematicOp () {
//This opera t ion does not make any sense
/∗But the cons t ruc t s used here

do prevent f u l l round−t r i p eng ineer ing
to be p o s s i b l e in ControlCenter ∗/

int i =5;
i=i +10;

i f (i ==16)
throw new I l l e g a l S t a t eEx c ep t i o n (”Eventual ly a r r i v i n g the re . ”) ;

S t r ing s t r = ”abc” ;
S t r ing s t r 2 = ” de f ” ;

S t r ing s t r 3 = s t r+s t r 2 ;

System . out . p r i n t l n (s t r 3) ;
}

Example 4.2: The code being the base for the sequence diagram of figure 4.3.

4 – IMPLEMENTATION PHASE 75

Object1

initial
HelloWorld

numberOfDisplays
Integer

static
JOptionPane

for(int i = 0;i < count;i++)
if(i == count - 1)

if(isLast)

else

else

1.2.2.1: displayHelloWorld(false):void

1.2.1.1.2.1: showMessageDialog(null, "Hello World") :void

1.2.1.1.1.1: showMessageDialog(null, "Last Hello Wo rld"):void

1.2.1.1: displayHelloWorld(true):void

1.1: count:=intValue():int
1: helloWorld(Integer):void

Figure 4.2: A sequence diagram automatically being mapped to method bodies.

Object1

initial
Problem

illegalStateException
IllegalStateException

out
PrintStream

if(i==16)

1.2: println(str3):void

1.1.1: <constructor>("Eventually we will get there. ")

'throw' expression

1: problematicOp():void

Figure 4.3: A sequence diagram that was automatically created by reverse-
engineering from example 4.2.

4 – IMPLEMENTATION PHASE 76

Tooling: Code Generation with Rational Rose

Code generation with Rational Rose 2002 is relatively easy accomplished. It is necessary
to select the classes being forward-engineered and to set the relevant classpath settings.
Code is generated only from the class diagrams: the sequence diagrams, state diagrams,
use cases, deployment diagrams and so forth are totally left out. So what a developer
gets when executing the code generation feature is the static structure of the system.
Another fact is that constraint statements written in OCL are not considered when the
code is generated - even though they could be used in specifying pre- and postconditions
for testing code or could supply restrictions on associations. It is therefore recommended
(see section 3.4.2) to use natural language for constraint statements, OCL is not widely
understood by developers.

If this state of affairs is unsatisfactory for the developer, tools are available which
generate code from the state chart diagrams and the actions being defined by them 1,
or changing the modelling environment, a possibility would be to use Together Control-
Center. In [Lar02, p. 574], Larman argues that the availability of code generation from
sequence diagrams is one of the key functionalities users can expect from their UML
CASE tool.

4.1.2 The Graphic User Interface Layer

Building the user interface lies almost completely out of the scope of UML diagrams.
They can hardly show more than a glimpse on the static structure of the classes of the
GUI and some overview of the behavioural aspects. What makes it so hard for the UML
to be of use when designing the GUI is the fact that the framework such a GUI consists
of is often a very complex conglomerate of classes. Additionally, the user interface itself
has as its goal a graphic output to the user - investigating this output is the easiest way to
understand how the user interface works. Diagramming does rather hide the interesting
points then showing them to the developer who desires to understand the user interface
part of the program. Nevertheless, the GUI is a major part of any program, and the
code necessary to construct it can be as much as half of the overall code. Building the
GUI is therefore also an expensive part of the development process and it should be
coped with rather early in the sequence.

So the best way to design a user interface is to build a prototype in some GUI builder
early – producing code which can later be connected to the classes generated from
the UML models. A program creating a GUI from the UML models automatically is

1A plug-in is available from BridgePoint software enabling the developer to model xUML in Rational
Rose.

4 – IMPLEMENTATION PHASE 77

Janus (developed by oTRIs) – this program uses C++ and also connects to a Microsoft
Access database to ensure persistency [Bal00, p. 15]. Later, by reverse engineering,
the interesting aspects about the GUI can be visualized in the form of some diagram;
especially the connection of the user interface with the application layer is of interest
here (section 3.4.2).

Figure 4.4: The Swing-window for solving an exam.

When implementing a prototype, it has to be decided how detailed this should be.
As a recommendation, it is not necessary to be able to interact with the GUI in this
first step. As an example, the GUI prototype for solving an exam is provided in figure
4.4.

Tooling - Netbeans and Rational Rose

When the design of a GUI prototype and the reverse engineering of this prototype
with Rational Rose are discussed, severe incompatibilities with Netbeans, the open
source IDE of Sun, have to be mentioned. When the user interface is laid out in the
GUI editor in Netbeans, special comment lines are added to the source code. When
reverse engineering these classes into Rational Rose and doing a forward engineering

4 – IMPLEMENTATION PHASE 78

again, these comments are lost as they are situated outside of method bodies somewhere
between methods – Rational Rose can not handle these comments properly. Trying to
start the design editor of Netbeans again it is impossible, because these comment lines
are missing. The only remedy to this problem is not to use Rational Rose as a modelling
tool and Netbeans as a GUI editor together.

4.1.3 The Persistence Layer

For the persistence layer, a relational database was chosen, namely MySQL. The reason
for this choice lies in the properties of this product; it is both open source and has a wide
community of developers. Other open source products might provide more functionality
than MySQL, but generally do not offer the speed of this database system and the
amount of documentation available.

Database Design

Designing a database based on the information provided by the UML model is not
always straightforward. As often the object-oriented approach used in the model has
to be mapped to a relational database in the back-end there has to be some object-
relational mapping. Descriptions of this mapping can be found in [Bal00]. Basically, the
pattern works in mapping the classes to tables; the attributes of classes are mapped to
columns of the tables and the associations are mapped to either foreign key columns in
the respective tables or to tables of their own. In the case of the MathTrainer example,
the mapping has been less strict for the sake of simplicity.

MySQL offers different types of tables depending on the purpose for which the
database table is going to be used, as transaction handling should be provided by the
persistence layer, the table type InnoDb was necessary. The create script for the table
user is shown in example 4.3.

Database Access

Arguably, the professional application developer should not struggle with designing the
database access himself. There are well-prepared, full blown persistence architecture
available which can readily be used in project. Possibilities for achieving persistence in
Java include all tools based on the JDO standard and the open source Castor persistence
layer which is freely available (some trade off regarding the functionality has to be
mentioned, at least as of current versions below 1.0). For the example used along this

4 – IMPLEMENTATION PHASE 79

drop tab l e user ;

c r e a t e t ab l e user (
username varchar (100) not null ,
primary key (username) ,
password varchar (100) ,
parent username varchar (100) ,
index par ind (parent username)

) type=InnoDb ;

a l t e r t ab l e user
add con s t r a i n t f o r e i g n key (parent username) r e f e r e n c e s user (username) ;

i n s e r t i n to user va lue s (’ t eacher ’ , ’ t eacher ’ , null) ; i n s e r t i n to
user va lue s (’ s tudent ’ , ’ s tudent ’ , ’ t eacher ’) ;

Example 4.3: An example SQL statement for the creation of the user table in the
MySQL system.

project, a sophisticated persistence layer like proposed above would be helpful, but
would also add complexity to the source code, so a simple approach using JDBC was
used. According to the information expert pattern the functionality to make an object
persistent should be in the object itself, but as explained before, this approach could lead
to low cohesion and therefore violate another pattern of good software development.

The approach taken for this project is somewhere in the middle: There is a class
named C DatabaseManager which provides the handling of database connections (see
example 4.4) and executing statements (see example 4.5, as well as handling any excep-
tions happening on the way. The objects themselves are still responsible of handling
the methods associated with persistence, like save(), and generating the SQL strings
being associated with these methods. Additionally, the observer pattern is used to let
these objects handle the result sets – which are generated by executing the queries –
themselves by implementing the C DatabaseResultSetHandler-interface. By using this
pattern, the C DatabaseManager class can define generic code being the same for all the
entities, and code reuse is increased.

Example 4.6, extracted from the User class, shows how persistence is handled in the
objects themselves: a SQL statement is generated for calling the method change() –
which is converted into an UPDATE in SQL.

4 – IMPLEMENTATION PHASE 80

/∗∗
∗ Creates a new ins tance o f DatabaseManager
∗ and connects to the database .
∗ <p>

∗ I f connect ing i s not po s s i b l e , an excep t ion
∗ i s thrown .
∗
∗ @throws C MathTrainerException
∗ @roseuid 3E2DC97C002A
∗/

private C DatabaseManager () throws C MathTrainerException
{

try

{
Class . forName (MTProperties . g e tS t r i ng (

”C DatabaseManager . j d b c d r i v e r ”)) . newInstance () ;

conn = java . s q l . DriverManager . getConnect ion (
MTProperties . g e tS t r i ng (”C DatabaseManager . c onn e c t s t r i n g ”)) ;

}
catch (Exception ex)
{

C MathTrainerException mtEx = new C MathTrainerException (
C MathTrainerException .DATABASE CONNECTION FAILED) ;

mtEx . in i tCause (ex) ;
throw mtEx ;

}
}

Example 4.4: The part of the C DatabaseManager-class handling the connection.

4.2 Implementation on the Basis of the xUML

Model

The implementation on the basis of an xUML model uses the automatic code generation
features of xUML model compilers. The model compiler evaluates the constructs used
in the model and transforms them to executable constructs in the target language,
respectively.

4.2.1 Code generation

An xUML model is implemented by executing two steps:

Colouring consists of preparing the model for compiling by marking the xUML arte-
facts as having to be implemented in a special way. This might not be necessary
for all components, but is surely necessary for some items which need to be treated
specially.

4 – IMPLEMENTATION PHASE 81

/∗∗Execute an SQL query aga ins t the database . Af ter execu t ing
∗ the query , the method <code>hand leResu l tSe t ()</code> o f the
∗ <code>C DatabaseResultSetHandler </code> o b j e c t i s ca l l e d , t h i s can be
∗ used to handle the <code>Resul tSet </code >.
∗ @param query The s t r i n g used as a query .
∗ @param handler The i n t e r f a c e o b j e c t be ing c a l l e d f o r hand l ing the
∗ <code>Resul tSet </code >.
∗ @throws C MathTrainerException
∗ @roseuid 3E2DC97C00D4
∗/

public stat ic void executeQuery (S t r ing query ,
C DatabaseResultSetHandler handler)

throws C MathTrainerException
{

try

{
i f (manager == null)

manager = new C DatabaseManager () ;

Statement stmt = manager . getConnect ion () . c reateStatement () ;

i f (stmt . execute (query))
{

Resu l tSet r s = stmt . ge tResu l tSe t () ;
handler . handleResu l tSet (r s) ;
r s . c l o s e () ;

}
stmt . c l o s e () ;

}
catch (Exception ex)
{

C MathTrainerException e = new C MathTrainerException (query) ;
e . in i tCause (ex) ;
throw e ;

}
}

Example 4.5: The part of the C DatabaseManager-class executing a query.

Compiling is done by taking the model as provided by some repository, reading in the
colouring information and transforming the model to source code being platform
specific or platform independent. In turn, that source code can then be trans-
formed to binary code (by a standard compiler for the language the intermediary
source code output was generated in) which is executable, or e.g. in the case of
Java, interpretable.

The process of colouring shall not be explained in detail here as it is different for each
of the modelling tools. The process of compiling a model is rather straightforward – the
outcome should be generated in a short time. The base for model compiling (what is
generated as an intermediate outcome from the xUML model) is not standardized, thus
different for each tool. Today, the model compilers work with just one tool, and even
worse, there is no way to interchange models among the tools. In [MB02, p. 10], Mellor

4 – IMPLEMENTATION PHASE 82

protected void change (S t r ing parent username) throws C MathTrainerException
{

St r i ngBu f f e r query = new St r i ngBu f f e r () ;
query . append (”UPDATE user SET username=’”) ;
query . append (getUsername ()) ;
query . append (” ’ , password=’”) ;
query . append (password) ;
query . append (” ’ , parent username=”) ;
i f (parent username != null)
{

query . append (” ’ ”) ;
query . append (parent username) ;
query . append (” ’ ”) ;

}
else

{
query . append (””+null) ;

}
query . append (” where username = ’”) ;
query . append (getUsername ()) ;
query . append (” ’ ”) ;
C DatabaseManager . executeQuery (query . t oS t r i ng () , null) ;

}

Example 4.6: The part of the User-class committing an UPDATE to the database.

names possible model compilers which are either available or could be designed shortly,
but he notes the Enterprise Java Beans compiler as being unavailable (see table 4.1).

Description of the xUML model compiler

Multi-tasking C++ optimized for embedded systems, target-
ing Windows, Solaris and various real-time operating systems.
Multi-processing C++ with transaction safety and rollback.
Fault-tolerant, multi processing C++ with persistence sup-
porting three processor types and two operating systems.
C, straight on to an embedded system, with no operating sys-
tem.
C++, widely distributed discrete-event simulation, Windows
and UNIX
Java byte code for single-tasking Java with EJB session beans
and XML interfaces
Handel-C and C++ for system-level hardware and software
development
A directly executing xUML virtual machine.

Table 4.1: Possible model compilers for xUML (not all of them are currently
available)[MB02, p. 10]

As no Java code could be created from the model, C++ code was generated instead.
This was done using a C++ code generator supplied by Kennedy Carter Ltd., a company
specialized on xUML tools. The used compiler supports no persistency. Hence, the
database access is not shown in the generated code. The basic principle for this code
generation is to evaluate every single construct of the ASL and appropriately transform
it to the target language. Additionally to the pure transformation, some directives

4 – IMPLEMENTATION PHASE 83

provide the framework for the execution of the code. Example 4.7 shows an extract
from the output being generated, where the corresponding ASL-statements are included
as comments.

void

D D3 COR : : SCN 1 ()
{

//Local v a r i a b l e
OI D3 COR O8 OP IH VAR op plus ;
/∗ ASL 2 : op p lu s = crea t e OPERATOR with name = ”+”
∗/

{ VAR op plus = D3 COR O8 OP−>c r e a t e i n s t a n c e (”+”) ; }
/∗ ASL 7 : l oca l admin user = \
crea t e USER with username = ”admin” & \

password = ”admin” & \
Current Sta te = ’ Logged Out ’

∗/
{ VAR local admin user = D3 COR O2 USR−>c r e a t e i n s t a n c e (

”admin”) ;
VAR local admin user−>password wr i te (”admin”) ;
VAR local admin user−>c u r r e n t s t a t e = 3 ;

}
/∗ ASL 1 6 : l i n k

l oca l admin user R1 loca l admin t eacher
∗/

VAR local admin user−>R1 . l i n k sup e r s ub (VAR local admin user ,
VAR local admin teacher) ;

/∗ ASL 2 0 : generate USR2: Create Student (” s tudent ” ,” s tudent ” ,
” teacher ”)

∗/
Q−>generate (new E D3 COR O2 USR Create Student (D3 COR O2 USR , NULL, 2 , 2 ,

” student ” , ” student ” ,
” t eacher ”)) ;

}
// Non−Counterpart Terminator Serv i c e s
// Terminator Events

Example 4.7: An extract of the generated code being the output of an xUML model
compiler. The corresponding ASL statements are shown as comments.

4.2.2 The Graphic User Interface Layer

Connecting this code to a GUI is not difficult and could be achieved using any major
C++ API. This assumption is based on the fact that the bridge to the GUI was designed
in a straightforward way and decoupling of the user interface and the business objects
was achieved. An example provided by Kennedy Carter Ltd. worked in cooperation
with Microsoft Visual C++ and the MFC classes2. Even connecting this C++ code

2This example was obtained in written communication with Kennedy Carter Ltd.

4 – IMPLEMENTATION PHASE 84

to a Java GUI would be possible, using the JNI (Java Native Interface) as the inter-
connection between the application and the user interface. Still, this would lead to a
mixture of programming languages and technologies being hard to maintain and is not
recommended. Waiting until a Java model compiler is commercially available will be
necessary to do serious work generating Java code from small xUML models.

4.2.3 The Persistence Layer

Persistency is a question of how the model compiler is configured. It depends on which
form of persistence is used (e.g. an object-oriented database or a relational database)
and, additionally, when the data has to be persisted. This could be

1. after each attribute update,

2. at the end of each action occurring in a state or

3. at the end of each executing thread.

Then the code generator would have to be configured to insert the respective method
calls to the persistency mechanism at the points being defined3. There are model com-
pilers available being configured to add persistency, the one used for creating the source
code for the MathTrainer example did not offer such possibilities. Therefore the source
code shown in 4.7 does not contain calls to the persistency layer.

4.3 Summary

The implementation based on the UML approach led to a slowly shifting focus from the
design to the implementation phase. By iteratively generating code from interaction
diagrams, further enhancing this code and reverse engineering it to the diagrams mod-
elling and coding went step by step. However, in none of the available tools full code
generation from interaction diagrams is achieved. Hence, after each iterative cycle the
programming lines which were added so far have to be re-entered. Future tools will solve
this problem and enable full code generation providing a smooth transition between the
design and the implementation phase.

Not all of the software system was modelled in UML, the part of the GUI and the
persistence layer was added by external means. In the first case this was done by using

3Based on written communication with Kennedy Carter Ltd, February 19th, 2003.

4 – IMPLEMENTATION PHASE 85

a GUI builder, in the second case by manual programming. As these two components
can add up to substantial parts of the programming code and the code generation is
restricted to the components modelled in UML, the benefits of code generation for the
implementation depend on the relation of GUI/persistency code to the rest. However,
the seamless integration of the GUI part and the persistency code with the other parts
make it possible to visualize these components as well, providing benefits for both doc-
umentation and maintenance.

The xUML approach started its implementation phase with the colouring of the class
model emerging from the design phase. Then the model compiler was configured and
transformed the model into executable code, in this case based on C as a programming
language. The problem for small projects is that the model compiler has to be readily
available, which was not the case with a Java model compiler; else the targeted language
can not be generated. The integration with a Java GUI would work using the Java Native
Interface, but would possibly lead to a fragile architecture. Integrating with a C++ GUI
is possible, but was not undertaken for the MathTrainer example. The unavailable Java
model compiler makes it hard to interconnect GUI and business layer for the example.
The persistence layer is created by properly configuring the model compiler which was –
again – not readily available, the compiler subsequently adds the desired statements at
the indicated locations. These locations could be after each action specification, when
the information of an attribute of the object has changed or when a thread execution is
finished. As the unavailability of a model compiler lead to code being connected neither
to the GUI nor to the persistence layer, the model was executed in a model simulator.
This model simulator allows to define test sequences and to run the model through
these, providing a way to correct and verify the model.

Both approaches have their advantages and disadvantages in the implementation
phase. Table 4.2 shows how much time each of the approaches took in the implementa-
tion phase and how much of the code could be generated for the different parts of the
system.

UML xUML
Time necessary 5 days 1/2 days
Amount of code generated for GUI 0% no GUI used
Amount of code generated for persistence layer 0% no persistence layer used
Amount of code generated for business layer 80% 100%

Table 4.2: An overview of the time necessary and the amount of generated code for
the implementation phase.

Chapter 5

Summary, Results and Future Work

To conclude the project, the following sections provide a summary and an outlook on
both other projects and future work to be done.

The project used a MathTrainer system for elementary school students to illustrate
the phase of Object-Oriented Analysis and Design in the development process and sub-
sequently, to show the possibility of generating substantial amounts of source code from
UML models. In the OOAD phase, both the UML and the xUML profile were used
to model the software system – exemplifying the similarities and differences of the two
approaches. Whereas use case diagrams, written use cases, activity diagrams and class
diagrams where used in both approaches, the dynamic aspect of the system was for the
UML approach modelled in interaction diagrams, particularly sequence diagrams, for
the xUML approach in state chart diagrams. These state chart diagrams were designed
for the classes having a lifecycle with interesting aspects for the software development.
The notation of xUML diagrams differs not too much from the one of the UML standard
and developers accustomed to the UML can easily model systems in xUML, as well. Fi-
nally, the xUML state charts were further refined using action specification statements.
These action specifications document the behaviour of the object upon entry in a state
and are used to fully generate the dynamical aspect of the code. For specifying these
actions, a special notation termed ASL was used, there is no standardized language for
the action specification.

In the implementation phase, the code generation approaches were applied to the
designed models. For the UML approach, the code was then connected to a Java GUI
and to a relational database and a Java application was developed. For the xUML
approach, the code could not be generated in Java and the connection to the relational
database was not possible, the target language had to be changed to C++ and no
persistency code was generated. The reason for this was the unavailability of a pre-

5 – SUMMARY, RESULTS AND FUTURE WORK 87

configured model compiler able to achieve the desired code generation. Hence, the
model was connected neither to the GUI nor to the relational database. However, it
was executed in a model simulator allowing the definition of test sequences and driving
the model through these test sequences. By executing the model in the simulator, the
model was iteratively corrected and verified.

5.1 Results

For the interaction diagram approach, existing tools support both generating code from
sequence diagrams and reverse engineering this code. Additionally, these tools can usu-
ally be integrated with the other necessities of software development, like GUI builders
and persistence providers. The approach can be applied without having to stop changing
program code by hand using the vast amount of very good development environments
available today. The changed code can then be reverse engineered into the better vi-
sualization and documentation an UML model provides. However, when more than
one iteration is employed, some of the manually entered program code will have to be
re-entered as full code generation from sequence diagrams is not yet possible. Addition-
ally, using interaction diagrams can become unfeasible when working with huge method
bodies comprising a large amount of conditional logic.

For the state chart diagram approach, the tool support is good in the analysis and
design phase. The usability of this approach for a certain project is dependent on the
commercial availability of a flexible and robust model compiler for the target language.
If this model compiler is not available as it was the case with the Java language, it has
to be built and configured for the aims of the project. As Java is not a very uncommon
programming language as of today the unavailability of an out-of-the box Java solution
for xUML can be interpreted as a major weakness of this approach, at least for small
projects1. When the necessary model compiler is available, the approach of xUML is
promising. The inherent program language and platform independency of this form of
software development might provide exactly the additional step of abstraction necessary
to drive the IT industry to a higher layer. Still, the xUML advocates mandate not to
change compiled code ([MB02]), so many software developers good in writing program

1Java is not generally unavailable for the xUML approach as sophisticated code generators exist on
the market providing the generation of any language, even Java. Problematic are the expenses needed
for the configuration of such a code generator. For the size of the project used as the example in this
thesis they would be unaffordable – so the rule in this comparison must be that the code generator
ought to be readily available, or it cannot be used. For an IT company having dozens of projects of a
larger size running, the obstacle of configuring a code generator to produce Java code might be a minor
one.

5 – SUMMARY, RESULTS AND FUTURE WORK 88

code today would have to learn something totally new – a change which might not
happen for years.

5.2 Related Work

The related work copes both with the generation of code from interaction diagrams as
with the generation of code from state chart diagrams, especially with the xUML profile
of UML.

For the first topic, mainly theoretical work has been done to enhance the interaction
diagram semantics to be able to generate code from them. [SFL98] is such a paper, pre-
senting a way to map sequence diagrams to interaction graphs which deal with defining
the scope of the variables included in the graph. Lieberherr also defines a possibility
for automatic object passing were the object is automatically provided to all places the
visibility allows. The developer does not have to care about passing the object on to sub-
sequent method calls, the according parameters are generated automatically. Of course,
this means the naming scope is being enhanced to be the whole sequence diagram; or at
least the part of the sequence diagram following the object’s creation. This approach is
part of the so called aspect-oriented programming. Both forward engineering and reverse
engineering are possible with Lieberherr’s approach.

In [EHSW99], an approach to enhance the semantics of collaboration diagrams be-
yond the standard of UML is presented. This approach restricts itself to collaboration
diagrams; furthermore, the authors argue that code generation from sequence diagrams
is not viable. As the availability of ControlCenter is the proof for working code gener-
ation from sequence diagrams, this point of view has to be reconsidered.

Finally, the documentation delivered with Together ControlCenter provides a practi-
cal overview about how the code generation from sequence diagrams works with this tool
[CCG02]. Together is very much in scope with the UML standard with the graphical
notation used for the sequence diagrams and provides many of the constructs other tools
do not support, making code generation from sequence diagrams possible. A small ex-
ample of code generation from sequence diagrams using ControlCenter is also provided
by [Lar02, p. 572].

For the second topic, [MB02] provides a good insight to modelling using xUML (and
also an example using xUML, but no comparison to the same example solved by using
UML). Still, the code generation using xUML is not very widespread, so it might be not
so easy building a code generator for the desired project.

5 – SUMMARY, RESULTS AND FUTURE WORK 89

5.3 Future Work

Four proposals shall be made for future work on the presented topics.

Some of the most significant advantages introduced by xUML are, according to
[MB02]:

1. platform independency and

2. language independency.

All of the action languages (or action specification languages) available today in tools
for modelling with xUML are proprietary developments by the providers of these tools.
Hence, what a developer has to do first when starting to model in xUML is to learn the
syntax of this language.

The advantage of using Java as an action specification language would be to remove
the obstacle of learning the syntax of a new language (like ASL). Additionally, the Java
API could be used, which is arguably one of the best available today. The disadvan-
tages would be that Java might first not be the best approach to write the necessary
constructs being provided by an action language2. Furthermore, the notion of language
independency would fall3. For the community of Java developers this disadvantage could
possibly be neglected.

For the xUML to be a success, it is necessary to standardize the output generated from
models4. With output not the compiled output is meant, but the intermediate output
used as a basis for the compilation. From this intermediate, standardized output a
model compiler could generate the executable code in any desired language.

As Java would be a great destination language due to its platform independency and
its interaction capabilities with many components available, an open source EJB model
compiler would bring a leap forward for both the acceptability and usability of xUML.

Another leap forward could be made by the inclusion of complete code generation in
an open source UML diagramming tool. There are such tools available today, but they
generally lack code generation capabilities beyond the static structure generated from
a class diagram. Enhancing such a tool, an example might be the Java ArgoUML tool,
would be a great way to increase the usage of code generation from UML diagrams.

2An example would be the link-construct which would have to be mapped to a method call, as well
as the signal generation would have to map to a method call, e.g. using a appendSignal()-syntax.

3As it might be hard to compile Java code into another language, even if this could be achieved.
4According to [MB02], the tool industry tries hard to accomplish that .

5 – SUMMARY, RESULTS AND FUTURE WORK 90

This could happen for both approaches presented above, either for code generation from
sequence diagrams or for code generation using the xUML profile.

Both approaches to complete code generation presented above have their advantages
and disadvantages: combining the approaches would enable a new way of modelling and
automatic code generation and visualization so far not been possible. As an example,
the often very algorithmic approach to action languages means that the actions written
in these languages could also be represented in sequence diagrams. This is certainly
true with the ASL language used in iUML, but also with many others. An automatic
mapping between these two ways of defining actions is further simplified by the strict
object-orientation of many of the action languages. Such a mapping would increase the
readability and comprehensibility of action definitions by far. Additionally, the pressure
of learning such a language could be eased for the developer as the visualized syntax
would be easier to understand.

Appendix A

Additional Use Case Descriptions

Enter username

Enter password

Check the
Login-Information

[info invalid]

[info valid]

MathTrainerActor User

Figure A.1: Activity diagram for the Identify User use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 92

Enter Old
Password

Re-Enter New
Password

Enter New
Password

Old Password was
correctly entered?

[Password incorrect]

Set Password

New Password correctly
entered in"Re-Enter"-Field ?

[new password incorrect]

MathTrainerActor User

Figure A.2: Activity diagram for the Change password use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 93

Description Before any action can be taken in the MathTrainer system,
the users have to be logged in. This is done by providing
username and according password.

Precondition The user has been created in the MathTrainer system and has
access to the Login context.

Postcondition The user’s state has changed to being logged in, he can set
desired actions.

Error conditions
1. The username is unknown to the system

2. The password is wrongly entered.

Error postcondition The user is not logged in.

Actors User (primary actor)

Standard procedure
1. Username and password are entered.

2. The username is known to the system and the pass-
word is correct.

3. The user’s state is changed to logged-in.

4. Possible actions are presented to the user.

Deviation 1
2’. The username is not known or the entered password

is not correct.

3’. An error is shown to the user and all system objects
retain their state.

4’. The user is directed to the Login context.

Table A.1: The written story for the Identify User use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 94

Description The user’s password can be changed at any time. This is done
by entering the old password and the new password twice.

Precondition The user is logged-in.

Postcondition The password of the user has changed.

Error conditions
1. The entered old password was wrong.

2. The entered new passwords do not match.

Error postcondition The password was not changed

Actors User (primary actor)

Standard procedure
1. Old password and new password are entered, new

password twice.

2. The entered old password matches the user’s password
and the entered new passwords match.

3. The password is changed.

Deviation 1
2’. The entered old password do not match the user’s

password or the entered new passwords do not match.

3’. An error is shown to the user and all system objects
retain their state.

Table A.2: The written story for the Change Password use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 95

Choose Operation

Enter Lower Bound of
Number Range

Enter Upper Bound of
Number Range

Create
ExerciseType

ExerciseType :
ExerciseType

MathTrainerActor Teacher

Figure A.3: Activity diagram for the Create Exercise Type use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 96

Description A teacher can create exercise types. These types then define
what the exercises look like when a student solves an exam.

Precondition The teacher is known to the system and logged-in.

Postcondition A new exercise type has been created. The exercise type pos-
sesses a unique name, an upper and a lower bound for its range
of numbers and at least one mathematical operation.

Error conditions The name is already used by an existing exercise type.

Error postcondition The exercise type was not created.

Actors Teacher (primary actor)

Standard procedure
1. Upper and lower bound for the number range are cho-

sen.

2. Mathematical operations are chosen, can be happen
for each available mathematical operation consecu-
tively.

3. The exercise type is created in the system.

Deviation 1
2’. The name of the exercise type is already used.

3’. An error is shown to the teacher and all system objects
retain their state.

Table A.3: The written story for the Create Exercise Type use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 97

Choose a
Teacher

Enter username

Enter password

Re-enter
password

Assign Student to
Teacher

Check if username
exists

[username invalid]

Check if password was
re-entered correctly

[username valid]

[password invalid]

Create Student

[password valid]

newStudent :
Student

[NewStudent]

assignedStudent :
Student

[AssignedStudent]

MathtrainerStudent

Figure A.4: Activity diagram for the Create Student use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 98

Enter username

Enter password

Re-enter
password

Teacher :
Teacher

Check if username
exists

Check if password was
entered correctly

[username valid]

Create Teacher

[password valid]

[username invalid]

[password invalid]

MathtrainerTeacher : Actor Teacher

Figure A.5: Activity diagram for the Create Teacher use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 99

Description A teacher can only be created by an existing teacher of the
MathTrainer system. Necessary information are username
and password which has to be entered twice.

Precondition The existing teacher is known to the system and logged-in.

Postcondition A new teacher has been created. The teacher possesses a
unique username and a password.

Error conditions
1. The provided username is already given to a user of

the MathTrainer system.

2. The entered passwords do not match.

Error postcondition The teacher was not created.

Actors Teacher (primary actor)

Standard procedure
1. Username and password are entered, password twice.

2. The username is not yet used by the system and the
entered passwords match.

3. The teacher is created in the system.

Deviation 1
2’. The username is already in use or the entered pass-

words do not match.

3’. An error is shown to the existing teacher and all sys-
tem objects retain their state.

Table A.4: The written story for the Create Teacher use case.

Description An exercise type is deleted.

Precondition A teacher is logged-in to the system.

Postcondition An exercise type object is deleted.

Error conditions none

Error postcondition none

Actors Teacher (primary actor)

Standard procedure
1. Exercise Types of the current teacher are shown.

2. Teacher chooses one of the types.

3. The chosen type is deleted.

Table A.5: The written story for the Delete Exercise Type use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 100

Choose an Exercise Type

Display List of Exercise
Types

Delete Exercise Type

MathTrainerActor Teacher

Figure A.6: Activity diagram for the Delete Exercise Type use case.

Choose a Student for
Removal

Delete Student

Display a list of
teacher's students

MathTrainerActor Teacher

Figure A.7: Activity diagram for the Delete Student use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 101

Description A student is deleted.

Precondition A teacher is logged-in to the system.

Postcondition An student object is deleted.

Error conditions none

Error postcondition none

Actors Teacher (primary actor)

Standard procedure
1. Students of the current teacher are shown.

2. Teacher chooses one of the students.

3. The chosen student is deleted.

Table A.6: The written story for the Delete Student use case.

Description Exams are created upon request of the student; the student
requests by choosing an exercise type. They consist of ten
randomly created exercises.

Precondition The student is known to the system and logged-in.

Postcondition A new exam has been created and solved by the student.

Error conditions The student has entered non-numerical values for the solu-
tions.

Error postcondition The exam object was created and subsequently deleted.

Actors Student (primary actor)

Standard procedure
1. A list of exercise types is shown to the student

2. The student chooses one of them.

3. An exam and its ten random exercises are created.

4. The student solves the ten exercises subsequently, the
system measures the time.

5. The exercises were all solved by entering numerical
values.

6. The exam object is retained.

Deviation 1
5’. One of the exercises was solved by entering a non-

numerical value.

6’. An error is shown to the student and all system objects
retain their state.

7’. The exam object is discarded.

Table A.7: The written story for the Solve Exam use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 102

Choose an
Exercise Type

Solve the
Exercise

Submit
Results

another exercise
unsolved?

[No]

Choose an
Exercise

[Yes]

Retrieve
Teacher

Display List of all Exercise
Types of this Teacher

Create a random exam for
this exercise type

Display Exam to
User

Measure Time

Store results

MathTrainerActor Student

Figure A.8: Activity diagram for the Solve Exam use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 103

Choose an Exercise
Type

Determine type of
user

[user is a teacher]
Retrieve Teacher for the

Student

[user is a student]

Display List of all
Exercise Types

Display Sorted List of all Exams
for this Exercise Type

MathtrainerActor User

Figure A.9: Activity diagram for the Show Score use case.

A – ADDITIONAL USE CASE DESCRIPTIONS 104

Description Users can request to view high scores for a special exercise
type.

Precondition The user is known to the system and logged-in.

Postcondition The high score has been shown, all system objects retained
their state.

Error conditions none

Error postcondition none

Actors User (primary actor)

Standard procedure
1. A list of exercise types is shown to the user.

2. The user chooses one of them.

3. A score table is created and shown to the user.

Table A.8: The written story for the Show Score use case.

Appendix B

Additional Sequence Diagrams

mainFrame
B_MainFrame

container
Container

b_Exception
B_Exception

initial
C_StateController

1.4: validatePanel():void

1.3: add(new B_Exception(this,ex)):java.awt.Compone nt

1.2: getContentPane():java.awt.Container

1.1: <constructor>(this, ex)

Figure B.1: Sequence diagram of showing an exception in the GUI by calling
C StateController.showThrowable().

B – ADDITIONAL SEQUENCE DIAGRAMS 106

initial
C_DatabaseManager

manager
C_DatabaseManager

stmt
Statement

handler
C_DatabaseResultSetHandle

try
if(manager == null)

if(stmt.execute(query))

catch(Exception ex)

1.1.5: close():void

1.1.4.2: handleResultSet(rs):void

1.1.4.1: rs:=getResultSet():java.sql.ResultSet

1.1.3: execute(query):boolean

1.1.2: getConnection():Connection

1.1.1.1: <constructor>()

Figure B.2: Sequence diagram of executing a query by calling
DatabaseManager.executeQuery().

initial
Exercise

mathematicalOperation
MathematicalOperation

correctResult
Object

if(correctResult.equals(result))

1.2: equals(result):boolean

1.1: correctResult:=calculate(operands[0], operands [1]):Number

Figure B.3: Sequence diagram of solving an exercise by calling Exercise.solve().

B – ADDITIONAL SEQUENCE DIAGRAMS 107

initial
Exam

cmp
Exam

long
Long

classCastException
ClassCastException

if(!(o instanceof Exam))

if(cmp.countSolvedExercises() == countSolvedExercis es())

else

1.5.5: compareTo(new Long(countSolvedExercises())): int

1.5.4: <constructor>(cmp.countSolvedExercises())

1.5.3: countSolvedExercises():int

1.5.2: <constructor>(countSolvedExercises())
1.5.1: countSolvedExercises():int

1.4.5: compareTo(new Long(getSolvingTime())):int

1.4.4: <constructor>(cmp.getSolvingTime())

1.4.3: getSolvingTime():long

1.4.2: <constructor>(getSolvingTime())
1.4.1: getSolvingTime():long

1.3: countSolvedExercises():int

1.2: countSolvedExercises():int

1.1.1: <constructor>()

'throw' expression

Figure B.4: Sequence diagram of comparing exams by calling Exam.compareTo().

B – ADDITIONAL SEQUENCE DIAGRAMS 108

initial
User

query
StringBuffer

static
C_DatabaseManager

if(parent_username != null)

else

1.15: executeQuery(query.toString(), null):void

1.14: toString():java.lang.String

1.13: append("'"):java.lang.StringBuffer

1.12: append(getUsername()):java.lang.StringBuffer
1.11: getUsername():String

1.10: append(" where username = '"):java.lang.Strin gBuffer

1.9.1: append(""+null):java.lang.StringBuffer

1.8.3: append("'"):java.lang.StringBuffer

1.8.2: append(parent_username):java.lang.StringBuff er

1.8.1: append("'"):java.lang.StringBuffer

1.7: append("',parent_username="):java.lang.StringB uffer

1.6: append(password):java.lang.StringBuffer

1.5: append("',password='"):java.lang.StringBuffer

1.4: append(getUsername()):java.lang.StringBuffer
1.3: getUsername():String

1.2: append("UPDATE user SET username='"):java.lang .StringBuffer

1.1: <constructor>()

Figure B.5: Sequence diagram of changing a user by calling User.change().

B – ADDITIONAL SEQUENCE DIAGRAMS 109

initial
C_MathTrainer

controller
C_StateController

mainFrame
B_MainFrame

b_LoginPanel
B_LoginPanel

1.1.4.3: validatePanel():void

1.1.4.2: addPanel(new B_LoginPanel(this)):void

1.1.4.1: <constructor>(this)
1.1.4: deliverFirstPanel():void

1.1.3: show():void

1.1.2: setSize(new Dimension(400,400)):void

1.1.1: <constructor>()

1.1: <constructor>()

Figure B.6: Sequence diagram of the startInstance() method of the class
C MathTrainer.

Appendix C

Additional State-Chart Diagrams

C – ADDITIONAL STATE-CHART DIAGRAMS 111

Figure C.1: xUML state chart of the Exercise class.

C – ADDITIONAL STATE-CHART DIAGRAMS 112

Figure C.2: xUML state chart of the Exam class.

C – ADDITIONAL STATE-CHART DIAGRAMS 113

Figure C.3: xUML state chart of the StopWatch class.

C – ADDITIONAL STATE-CHART DIAGRAMS 114

Figure C.4: xUML state chart of the ExerciseType class.

List of Figures

1.1 The requirements for the MathTrainer - example 3

2.1 The phases of OOAD and how the transition from OOA to OOD works
– based on the insights of [Kai99]. 7

2.2 The origin and descent of UML, taken from [Kob99] and extended with
the latest developments. 9

2.3 The packages of UML and their interdependencies [UML03]. 11

2.4 xUML is a subset and a superset of UML as of version 1.4 [⇒xUML02,
p. 9]. 15

2.5 The Java platform consisting of Java VM and Java API [CWH01]. 22

3.1 The phases of the Rational Unified Process, based on [Ros01]. 25

3.2 Highlighted verbs in the requirements of the MathTrainer - example . . . 30

3.3 The use case diagram for the MathTrainer example. 33

3.4 The activity diagram MathTrainer’s View Scores use case. 35

3.5 Highlighted nouns in the requirements of the MathTrainer - example . . 39

3.6 The domain model of the MathTrainer example, including numbers as a
conceptual class. 41

3.7 The domain model of the MathTrainer example. 42

3.8 The static structure of the modified EBC pattern. 45

3.9 The construction phase of the modified EBC pattern’s dynamic behaviour. 46

3.10 The data entry phase of the modified EBC pattern’s dynamic behaviour. 47

3.11 The design class diagram of the MathTrainer example. 53

3.12 The sequence diagram for solving an exam in the MathTrainer example. . 54

3.13 The collaboration diagram for solving an exam in the MathTrainer example. 55

3.14 The xUML domain model of the MathTrainer example. 57

3.15 The xUML class diagram of MathTrainer’s Core domain. 59

3.16 How an arithmetical exercise, its operator and the operands interact. . . 61

3.17 The xUML collaboration diagram for the MathTrainer’s Core domain . . 63

3.18 xUML state chart of the User class. 65

4.1 How an unidirectional ?:1 association can be mapped to Java source code
[HK99, p. 270] . 72

4.2 A sequence diagram automatically being mapped to method bodies. . . . 75

4.3 A sequence diagram that was automatically created by reverse-
engineering from example 4.2. 75

4.4 The Swing-window for solving an exam. 77

A.1 Activity diagram for the Identify User use case. 91

A.2 Activity diagram for the Change password use case. 92

A.3 Activity diagram for the Create Exercise Type use case. 95

A.4 Activity diagram for the Create Student use case. 97

A.5 Activity diagram for the Create Teacher use case. 98

A.6 Activity diagram for the Delete Exercise Type use case. 100

A.7 Activity diagram for the Delete Student use case. 100

A.8 Activity diagram for the Solve Exam use case. 102

A.9 Activity diagram for the Show Score use case. 103

B.1 Sequence diagram of showing an exception in the GUI by calling
C StateController.showThrowable(). 105

B.2 Sequence diagram of executing a query by calling
DatabaseManager.executeQuery(). 106

B.3 Sequence diagram of solving an exercise by calling Exercise.solve(). . 106

B.4 Sequence diagram of comparing exams by calling Exam.compareTo(). . . 107

B.5 Sequence diagram of changing a user by calling User.change(). 108

B.6 Sequence diagram of the startInstance() method of the class
C MathTrainer. 109

C.1 xUML state chart of the Exercise class. 111

C.2 xUML state chart of the Exam class. 112

C.3 xUML state chart of the StopWatch class. 113

C.4 xUML state chart of the ExerciseType class. 114

List of Tables

2.1 The elements of xUML [MB02, p. 6] . 15

3.1 The evaluation of the verb phrases which were identified in figure 3.2 . . 32

3.2 The written story for the Create Student use case. 36

3.3 The evaluation of the nouns which were identified in figure 3.5 38

3.4 An overview of the time necessary for the Object-Oriented Analysis and
Design phase. 70

4.1 Possible model compilers for xUML (not all of them are currently
available)[MB02, p. 10] . 82

4.2 An overview of the time necessary and the amount of generated code for
the implementation phase. 85

A.1 The written story for the Identify User use case. 93

A.2 The written story for the Change Password use case. 94

A.3 The written story for the Create Exercise Type use case. 96

A.4 The written story for the Create Teacher use case. 99

A.5 The written story for the Delete Exercise Type use case. 99

A.6 The written story for the Delete Student use case. 101

A.7 The written story for the Solve Exam use case. 101

A.8 The written story for the Show Score use case. 104

List of Examples

3.1 How the factory pattern could be implemented in Java code. 50

3.2 How the Enum pattern could be implemented in Java code. 51

3.3 An if statement in ASL. 66

3.4 Establishing a link, navigating along it and deleting it, written in ASL. . 66

3.5 Syntax for sending signals in ASL. 67

3.6 Handling of sets in a test method written in ASL. 67

3.7 Calling an operation in ASL. 67

3.8 Creating and deleting instances in ASL and changing the position in a

generalization relationship. 68

4.1 The code generated by the sequence diagram of figure 4.2. 74

4.2 The code being the base for the sequence diagram of figure 4.3. 74

4.3 An example SQL statement for the creation of the user table in the

MySQL system. 79

4.4 The part of the C DatabaseManager-class handling the connection. . . . 80

4.5 The part of the C DatabaseManager-class executing a query. 81

4.6 The part of the User-class committing an UPDATE to the database. . . 82

4.7 An extract of the generated code being the output of an xUML model

compiler. The corresponding ASL statements are shown as comments. . . 83

Bibliography

[Amb02] Scott W. Ambler. agile modeling: Effective Practices for eXtreme
Programming and the Unified Process. John Wiley & Sons, New
York, first edition, 2002.

[Bal00] Heide Balzert. Objektorientierung in 7 Tagen: Vom UML Modell
zur fertigen Web-Anwendung. Spektrum Akademischer Verlag,
Heidelberg, first edition, 2000.

[BKL+01] Alf Borrmann, Stefan Komnick, Gunnar Landgrebe, Jan Matèrne,
Manfred Rätzmann, and Jörg Sauer. Rational Rose und UML.
Galileo Computing, Bonn, first edition, 2001.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System of
Patterns. Wiley, West Sussex, England, first edition, 1996.

[Boe88] Barry W. Boehm. A spiral model of software development and
enhancement. IEEE Computer, 21(5):61–72, 1988.

[CWH01] Mary Campione, Kathy Walrath, and Alison Huml. The
Java(TM) Tutorial: A Short Course on the Basics (3rd Edition).
Pearson Education, Upper Saddle River, third edition, 2001.

[CWHT01] Mary Campione, Kathy Walrath, Alison Huml, and Tutorial
Team. The Java Tutorial Continued: The Rest of the JDK. Pear-
son Education, Upper Saddle River, first edition, 2001.

[Dor02] Dov Dori. Why significant UML change is unlikely. Communica-
tions of the ACM, 45(11):82–85, 2002.

[Dud02] Keith Duddy. UML must enable a family of languages. Commu-
nications of the ACM, 45(11):73–75, 2002.

[EHSW99] G. Engels, R. Hücking, St. Sauer, and A. Wagner. UML collabora-
tion diagrams and their transformation to Java. In R. France and
B. Rumpe, editors, UML ’99 - The Unified Modeling Language -
Beyond the Standard., pages 473–488. Springer, Berlin, October
28-30 1999. Second Intern. Conference. Fort Collins, CO. LNCS
1723.

[FT02] William Frank and Kevin P. Tyson. Be clear, clean, concise. Com-
munications of the ACM, 45(11):79–81, 2002.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, New York, second edition, 1994.

[GM96] James Gosling and Henry McGilton. The java language environ-
ment: A white paper. Technical report, Sun Microsystems, 1996.

[HK99] Martin Hitz and Gerti Kappel. UML@Work - Von der Analyse
zur Realisierung. dpunkt.Verlag, Heidelberg, first edition, 1999.

[Kai99] Hermann Kaindl. Difficulties in the transition from OO analysis
to design. IEEE Software, 16(5):94–102, 1999.

[Kob99] Cris Kobryn. UML 2001: A standardization odyssey. Communi-
cations of the ACM, 42(10):29–37, 1999.

[Lar02] Craig Larman. Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and the Unified Process.
Prentice Hall, Upper Saddle River, second edition, 2002.

[MB02] Stephen J. Mellor and Marc J. Balcar. Executable UML: A Foun-
dation For Model-Driven Architecture. Addison-Wesley, first edi-
tion, 2002.

[Mel02] Stephen J. Mellor. Make models be assets. Communications of
the ACM, 45(11):76–78, 2002.

[Mil02] Joaquin Miller. What UML should be. Communications of the
ACM, 45(11):67–69, 2002.

[MW99] Stephen J. Mellor and Ian Wilkie. A mapping from Shlaer-Mellor
to UML. Technical report, Projtech Inc. and Kennedy Carter
Limited, 1999.

[NM01] Eric J. Naiburg and Robert A. Maksimchuk. UML for database
design. Addison Wesley, Boston, first edition, 2001.

[OMG02] OMG. UML profile for CORBA specification: April 2002 version
1.0. Technical report, Object Management Group, 2002.

[Qua03] Terry Quatrani. Visual Modeling with Rational Rose 2002 and
UML. Addison Wesley, New York, first edition, 2003.

[Ros01] Rational Rose. The rational unified process. Technical report,
Rational Rose, 2001.

[SFL98] Neeraj Sangal, Edward J. Farrell, and Karl J. Lieberherr. In-
teraction graphs: A system for specifying and generating object
interactions. Technical report, Tendril Software, Inc., 1998.

[SRK02] Bran Selic, Guus Ramackers, and Cris Kobryn. Make models be
assets. Communications of the ACM, 45(11):70–72, 2002.

[Sta02] Leon Starr. Executable UML: How To Build Class Models. Pren-
tice Hall, Upper Saddle River, first edition, 2002.

[UML01] OMG Unified Modeling Language Specification: Version 1.4
September 2001. Technical report, Object Management Group,
2001.

[UML03] OMG Unified Modeling Language Specification: March 2003 Ver-
sion 1.5. Technical report, Object Management Group, 2003.

[WKC+03] Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver, Chris
Raistrick, and Paul Francis. UML ASL reference guide: ASL
language level 2.5, manual revision D. Technical report, Kennedy
Carter Limited, 2003.

[⇒Normalization] Database normalization basics. URL http://databases.about.

com/library/weekly/aa080501a.htm.

[⇒OOAD-Roadmap] A road map for OOA and OOD. URL http://www.gvu.gatech.

edu/edtech/BOOST/designmap.html.

[⇒Proposals] The proposals for UML 2.0. URL http://www.community-ml.

org/UML2.htm.

[⇒UML-Tools] A list of tools for the software development with UML, main-
tained by the OMG. URL http://www.omg.org/technology/

uml/index.htm\#Links-Tools.

[⇒xUML02] Supporting model driven architecture with executable uml,
2002. URL http://www.kc.com/cgi-bin/download.cgi?

action=ctn/CTN_80v2_2.pdf.

[CCG02] User guide: Together controlcenter, 2002. Updated September 10.

