
DISSERTATION

XGuide - Concurrent Web
Development with Contracts

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme
Abteilung für Verteilte Systeme

eingereicht an der

Technischen Universität Wien
Fakultät für Technische Naturwissenschaften und Informatik

von

Univ.-Ass. Dipl.-Ing. Clemens Kerer
clemens@infosys.tuwien.ac.at

Matrikelnummer: 9220676
Hetzendorferstrasse 93/6/8
A-1120 Wien, Österreich

Wien, im Mai 2003

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Diese Dissertation stellt die XGuide Web Entwicklungsmethode vor. XGuide betont die ter-
mingerechte Entwicklung von Webapplikationen und garantiert qualitativ hochwertige Design-
dokumente und wiederverwendbare Implementierungen. Es unterstützt den vollen Lebenszyklus
von Webapplikationen und deckt die Phasen Analyse, Design, Implementierung und Wartung ab.

Die zentrale Idee in XGuide ist die Einführung der bewährten Software Engineering Kon-
zepte “Interface” und “Vertrag” in die Domäne des Web Engineering. Verträge legen die Anfor-
derungen und internen Abhängigkeiten von Webseiten fest und fungieren als Spezifikationen für
die folgende Implementierung. Um die parallele Durchführung von Implementierungstätigkeiten
durch unterschiedliche Personen zu fördern, führt XGuide sogenannte mehrdimensionale Ver-
träge ein, die die zeitgleiche Entwicklung von Teilen der Implementierung wie dem Inhalt, der
grafischen Repräsentation und der Applikationslogik ermöglichen.

Zusätzlich zur gleichzeitigen Implementierung unterstützen Verträge auch die Definition von
Web-Komponenten: wiederverwendbaren Fragmenten, die zu Webseiten zusammengesetzt wer-
den. Eine Web-Komponente ist durch ihren Vertrag vollkommen spezifiziert und das Zusammen-
setzen von Verträgen gibt die Regeln für die Integration von Komponenten in Seiten vor.

Aufgrund der kurzen Innovationszyklen des World-Wide Web werden Web Entwicklungs-
methoden ständig mit neuen Anforderungen konfrontiert. Eine formale Definition von Verträgen
und deren Komposition bildet die Grundlage für ein offenes und erweiterbares Vertragsmodell in
XGuide, das neue Anforderungen wie Zugriffskontrolle, Meta-Daten oder Geräteunabhängigkeit
als getrennte Module realisieren kann.

Der XGuide Prozess verwendet einen modellbasierten Ansatz, der anfängliche Anforderun-
gen schrittweise in Designdiagramme, Verträge und Implementierungskomponenten umwandelt.
In der Wartungsphase werden alle Änderungen als Aktualisierung der Diagramme und Verträge
formuliert, die sich letztendlich in der Implementierung wiederfinden. Diese iterative Vorge-
hensweise stellt sicher, dass alle Designmodelle mit der Implementierung konsistent sind und
gewährleistet gut strukturierte Projekte und nachvollziehbare Änderungen.

Um den Einsatz von XGuide in echten Web Projekten zu unterstützen, entwickelten wir das
XSuite Entwicklungswerkzeug. Das Ziel der XSuite IDE ist es, die Entwickler in allen Phasen
des XGuide Prozessmodelles zu unterstützen. Grafische Designmodelle werden automatisch in
Verträge umgewandelt und Assistenten bieten Hilfe bei der Erstellung von neuen Seiten, beim
Zusammensetzen von Verträgen und bei der Installation der Webapplikation. XSuite setzt auf
das generische Entwicklungsmodell von Eclipse auf und integriert eine Java IDE, ein System zur
Versionskontrolle und einen Web Server in die eigentliche Web Entwicklungsumgebung.

Die Umsetzbarkeit des XGuide Prozesses und die Anwendbarkeit des XSuite Softwarepa-
ketes wird anhand der Implementierung der Webapplikation für die Wiener Festwochen 2003
demonstriert.

Abstract

In this dissertation we propose the XGuide Web development method. XGuide focuses on the
timely development of Web applications while guaranteeing high-quality designs and reusable
implementation artifacts. It supports the whole life-cycle of a Web application and covers the
analysis, design, implementation and maintenance phases.

The central idea in XGuide is to bring the well-established software engineering concepts of
interfaces and contracts to the Web engineering domain. Contracts clearly state the requirements
and internal dependencies of Web pages and act as specifications for a subsequent implemen-
tation. To support multiple activities being carried out in parallel by different people, XGuide
introduces multi-dimensional contracts that enable the concurrent development of implementa-
tion concerns such as the content, the graphical appearance and the application logic.

In addition to the parallel implementation phase, contracts also enable the definition of Web
components—reusable page fragments that get assembled to form the final Web page. A Web
component is fully specified by its contract and contract composition defines the rules for em-
bedding components into pages.

The short innovation cycles on the Web further require a Web development methodology to
constantly cope with new requirements. In XGuide, a formal definition of contracts and their
composition is the foundation for an open contract model that can integrate new concerns such
as access control, meta-data or device independence as separate modules.

The XGuide process applies a model-driven approach to Web development that iteratively
refines initial requirements into design diagrams, contracts and implementation components. Af-
ter the initial deployment, XGuide directly maps maintenance and evolution tasks to updates of
the design models (i.e., diagrams and contracts). Model updates trigger a new iteration of the
XGuide process, i.e., follow the same contract-based, parallel implementation paradigm. This
round-trip engineering ensures that models remain consistent with the implementation and guar-
antees well-structured and easy to trace projects.

In order to support the application of XGuide in real-world Web projects, we implemented
the XSuite Web development environment. The purpose of the XSuite IDE is to support the de-
veloper in all phases of the XGuide process. Visual design models are automatically transcoded
into contracts and wizards assist in creating pages, composing contracts and deploying the ap-
plication. XSuite is built on top of the generic Eclipse framework and integrates a Java IDE, a
version control system and a Web server into the actual Web development environment.

The practicality of the XGuide method and the XSuite tool suite is demonstrated in the im-
plementation of the Vienna International Festival 2003 (VIF) case study.

Acknowledgements

It is my pleasure to thank the many people who made this thesis possible.

First and foremost I am greatly indebted to my beloved girl-friend Isabelle Schlager-
Weidinger who accompanied me on the long way leading to this dissertation, accepted me work-
ing (too) long hours, and kept supporting me wherever possible. Many thanks also to my parents
for encouraging me to strive for a dissertation and providing an environment I could resort to in
order to relax and regain my strength.

I further offer my sincerest gratitude to my supervisor, Prof. Dr. Mehdi Jazayeri, who in-
troduced me to research, gave me the possibility to pursue my research ideas, and kept me on
the right track with his advice. The discussions with Prof. Dr. Gerti Kappel and the feedback I
received from her and her group revealed new views on my work and helped me improve it. I
deeply appreciate your collaboration.

Special thanks also go to Engin Kirda and Roman Kurmanowytsch for the many fruitful
discussions, the visions we created, and the innumerable help in identifying research problems
and shaping my ideas. Together we went through challenging times and solved many problems.
Your company and friendship are most valuable to me.

I would like to thank Werner Wohlfahrter for his positive and encouraging comments and
for proofreading this dissertation. Your close scrutiny revealed many inconsistencies and kept
pointing out areas in need of additional explanation.

I owe a great deal to David Hunt, Mike Barnett, Clemens Szyperski and Arthur Watson at
Microsoft XAF/Microsoft Research for sharing their ideas on contracts in software engineering
with me. I benefitted so much from your experience and extraordinary knowledge.

Thanks also to the members of the Distributed Systems Group who formed a most enjoyable
working environment. I am grateful for all I learned from you and will keep many memories of
our extra-curricular activities.

Clemens Kerer
Vienna, Austria, May 2003

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.1.1 A Typical Web Development Scenario 2

1.1.2 The Problem Domain . 3

1.2 Contract-Based Web Development with XGuide 4

1.3 Contributions . 6

1.4 Structure of This Thesis . 7

2 Web Engineering Review 9

2.1 Terminology . 9

2.2 The Architecture of the World Wide Web . 11

2.3 The Communication Model of the World Wide Web 13

2.4 A Short History of Web Evolution . 13

2.4.1 A First Server and Browser - The Web Infancy 14

2.4.2 The Web Gets Dynamic - The Childhood 15

2.4.3 Various Web Technologies Flourish - The Youth 17

2.4.4 Web Engineering - The Adolescence . 18

2.5 Scratching the Surface of XML and Some Related Technologies 21

2.5.1 The eXtensible Markup Language - XML 22

2.5.2 Document Type Definitions - DTDs . 23

2.5.3 XML 2
���

Edition . 24

2.5.4 The Extensible Stylesheet Language - XSL 27

2.5.5 XML Schema . 29

2.5.6 Other X Technologies . 31

i

ii Contents

3 Related Work 33

3.1 A Taxonomy of Web Engineering Methodologies 34

3.2 A Discussion of Existing Approaches Towards Web Engineering 38

3.2.1 The Relationship Management Method - RMM 38

3.2.2 Analysis and Design of Web-based Information Systems 39

3.2.3 Object-Oriented Hypertext Design Method - OOHDM 41

3.2.4 A Schema-Based Approach to Web Engineering 42

3.2.5 SWM - A Simple Web Method . 43

3.2.6 The Object-Oriented-Hypermedia Method (OO-H) 44

3.2.7 The Five-Module Framework for Internet Application Development . . . 45

3.2.8 The WWW Design Technique - W3DT 46

3.2.9 LifeWeb: An Object-Oriented Model for the Web 46

3.2.10 Conceptual Modeling and Web Site Generation using Graph Technology 47

3.2.11 The Web Modeling Language (WebML) 48

3.2.12 WebComposition: An Object-Oriented Support System for the Web En-
gineering Lifecycle . 50

3.2.13 Synthesis of Web Sites from High Level Descriptions 51

3.2.14 The Extensible Web Modeling Framework (XWMF) 52

3.2.15 Strudel . 53

3.2.16 WOOM - The Web Object Oriented Model 54

3.2.17 Comparison of the Presented Web Engineering Methodologies 55

4 XGuide - A novel Approach towards XML-based Web Engineering 59

4.1 An Overview of the XGuide Methodology . 60

4.2 Requirements Analysis . 62

4.3 The Feasibility Decision . 66

4.4 Conceptual Modeling and Design . 70

4.4.1 Design In-The-Large . 71

4.4.2 Design In-The-Small . 80

4.5 Implementation Phase . 81

4.6 Testing Phase . 85

4.6.1 The Abstract State Machine Language - AsmL 87

4.7 Deployment Phase . 89

4.8 Maintenance and Evolution . 89

4.9 Conclusion . 94

Contents iii

5 Contracts and Contract Composition 97

5.1 A Meta-Model for Web Applications . 97

5.1.1 The Dexter Hypertext Reference Model 98

5.1.2 Modeling Web Application Architectures with UML 99

5.1.3 The XGuide Meta-Model for Web Applications 100

5.2 A Formal Model for Web Component Contracts 103

5.2.1 Contract Composition . 106

5.2.1.1 Composition of Orthogonal Contracts 107

5.2.1.2 Composition of Dependent Contracts 107

5.3 XGuide Contracts - XContracts . 110

5.3.1 The Structure Contract Concern . 112

5.3.2 The Interface Contract Concern . 112

5.4 Contract Composition . 114

5.4.1 Composition of Structure Contract Concerns 117

5.4.2 Composition of Interface Contract Concerns 117

5.4.2.1 Output Interfaces . 119

5.4.2.2 Input Interfaces . 119

5.4.3 Composition of Dependent Contract Concerns 127

6 XSuite - An Integrated Development Environment for XGuide 131

6.1 The Eclipse Project . 132

6.1.1 The Eclipse Extensibility Mechanism 134

6.2 The MyXML Web Publishing Framework . 138

6.3 XSuite Conceptual Modeling . 141

6.4 XSuite Eclipse IDE . 143

6.4.1 The Concern Extension Point . 144

6.4.2 The Technology Extension Point . 146

6.5 Separation of Concerns with MyXML . 147

6.6 JAXB - Java XML Data Binding . 150

6.7 The Contract Cache . 150

6.8 Generating Canonical XML from an XML Schema 151

iv Contents

7 The Vienna International Festival (VIF) Case Study 153

7.1 Analysis of VIF Requirements . 154

7.1.1 Discussion . 157

7.2 The Feasibility Decision . 158

7.3 Designing the VIF Web application . 160

7.3.1 Design In-the-Large . 160

7.3.2 Design In-the-small . 163

7.3.3 Discussion . 167

7.4 Concurrent Implementation based on Contracts 169

7.4.1 Discussion . 171

7.5 Testing and Deploying the VIF case study . 173

7.5.1 Discussion . 176

7.6 Maintenance and Evolution of the VIF 2003 Web application 176

7.6.1 Discussion . 178

8 Evaluating the XGuide Web Development Method 181

8.1 Experiences from the VIF Case Study . 182

8.2 XGuide for Development . 183

8.3 XGuide for Maintenance and Evolution . 185

8.3.1 Content Updates . 186

8.3.2 Layout Updates . 186

8.3.3 Application Logic Updates . 187

8.3.4 Page-Related Updates . 187

8.3.5 Navigation Updates . 187

8.3.6 New Output Formats . 188

9 Conclusion and Future Work 191

9.1 Analysis of this Dissertation . 192

9.2 Ongoing and Future Research . 194

Bibliography 197

Appendix 209

LIST OF FIGURES

2.1 The extended client-server architecture of the World Wide Web. 12

2.2 A sample CGI script implemented in the Perl scripting language. 16

2.3 A sample processing pipeline for the chained processing approach. 19

2.4 A sample XML document representing an order. 23

2.5 The document type definition for the sample order document. 23

2.6 Associating a DTD to an XML document using the DOCTYPE declaration. 24

2.7 Two XML documents with conflicting definitions for the <address> elements. 25

2.8 The sample XML document using namespace abbreviations. 26

2.9 The sample XML document overriding the default namespace. 26

2.10 The sample XML document using and overriding several namespace abbreviations. 26

2.11 The sample XSLT stylesheet to transform an order document into an XHTML
page. 28

2.12 The result of applying the sample XSLT stylesheet to the order document. 29

2.13 A sample schema for the order document. 30

4.1 The XGuide Development Process . 61

4.2 A simple page named ’Homepage’ that has a navigational dependency to the
simple page ’Search’ that has additional requirements associated with it. 64

4.3 A legacy Web application for customer feedback is modeled as external page
named ’Customer Feedback’. The ’Product Details’ multi page could be used as
a template for a product catalogue. 65

4.4 The initial XGuide requirements diagram for the Orange Juice, Inc. Web site. . . 65

4.5 A Web component for the header region of the Orange Juices, Inc. Web site. . . . 71

4.6 The updated icons for the XGuide elements including the References section. . . 72

4.7 The component web for the Orange Juice, Inc. Web site. 72

4.8 The ’application logic process’ diagram element used by a search page and pro-
ducing the search result. 73

4.9 The graphical representation of the proxy diagram artifact. 74

v

vi List of Figures

4.10 The interface dialog for the product details multi page indicating its input re-
quirements. 75

4.11 A simple example demonstrating the definition of an output interface. 76

4.12 The application logic process matches the input/output requirements of the con-
necting pages. 76

4.13 The abbreviated notation for the conceptual model of the search example. 77

4.14 An example demonstrating the XGuide consistency checking algorithm. 78

4.15 Structure of an XGuide XML sitemap. 79

4.16 The basic structure of an XContract. 81

4.17 A simple XContract for a Web page. 82

4.18 The content concern for the contract in Figure 4.17. 82

4.19 The layout concern for the contract in Figure 4.17. 83

4.20 The application logic concern for the contract in Figure 4.17. 83

4.21 The XPage implementing the contract in Figure 4.17. 85

5.1 The structure of an XContract. 110

5.2 An XContract with concerns from different namespaces. 111

5.3 The structure concern of a sample XContract for a Web page. 113

5.4 The interface concern of a sample XContract for a shopping cart Web page. . . . 114

5.5 The structure of an extended XContract with concern composition operators. . . 116

5.6 The structure concern composition operator of a sample Web page that references
a component contract. 118

5.7 The structure concern after the composition with the contract of the header com-
ponent. 118

5.8 The component web for the sample scenario. 120

5.9 Sample scenario for the composition-by-addition approach. 120

5.10 A partial XContract demonstrating the syntax of the composition-by-addition
composition operator. 121

5.11 Sample scenario for the composition-by-unification approach. 122

5.12 A partial XContract demonstrating the syntax of the composition-by-unification
composition operator. 123

5.13 Sample scenario for the composition-by-adaptation approach. 124

5.14 A partial XContract demonstrating the syntax of the composition-by-adaptation
composition operator. 124

5.15 Sample scenario for the composition-by-omission approach. 126

5.16 A snippet from a typical Web page offering a page identifier. 126

5.17 A partial XContract demonstrating the syntax of the composition-by-omission
composition operator. 127

List of Figures vii

5.18 A contract for a simple navigation bar with access control information. 128

5.19 A page contract embedding the navigation bar contract. 129

6.1 A generic instance of the Eclipse platform. 133

6.2 The Eclipse Java IDE with the XSuite sources. 135

6.3 The plug-in architecture of the Eclipse platform. 136

6.4 A snippet of the plugin.xml manifest file for the XSuite application plug-in. . . . 137

6.5 The MyXML process. 139

6.6 A sample MyXML content page querying a database to display an event with a
given identifier. 140

6.7 The extended Visio workspace for XGuide development. 142

6.8 The dependencies of the plug-ins constituting the XSuite IDE. 143

6.9 The Java interface for contract concerns. 144

6.10 The plug-in interface for new implementation technologies. 146

6.11 The modified UML package diagram for the XSuite IDE. 148

6.12 The MyXML generated interface for a sample page with input and output inter-
faces. 149

7.1 The requirements diagram for the programme and ticket ordering sections of the
VIF 2003 application. 156

7.2 The snippet of the design diagram responsible for the programme overview,
search and details pages. 161

7.3 The page from the design diagram that specifies the ticket ordering process. . . . 162

7.4 A fragment from the XML representation of the VIF sitemap. 164

7.5 The first page of the contract creation wizard of the XSuite IDE. 165

7.6 The contract template generated for the programme search component with spec-
ifications for the interface and the structure concerns. 166

7.7 A page of the contract composition wizard requesting composition information
for the interface concerns. 167

7.8 The updated composition reference section in the contract that contains all com-
position operators. 168

7.9 The XPage creation wizard provides separate tabs for all concerns and the op-
tions to reuse existing implementation files. 170

7.10 The generated XPage acting as a container for references to the actual concern
implementations. 171

7.11 The generated interface and factory of the programme search component. 172

7.12 The property page of the integrated Tomcat servlet engine. 174

7.13 The final programme overview page of the VIF case study. 175

viii List of Figures

LIST OF TABLES

3.1 Comparison of Web Engineering Methodologies. 56

4.1 The development cycles of the Apache Xerces XML parser and the Jakarta Tom-
cat servlet container. 91

4.2 A classification to determine the state of a Web application with regard to updates
and extensions. 94

5.1 The artifacts of the XGuide Meta-Model for Web Applications. 102

6.1 XSuite extensions contributed to the Eclipse platform. 145

ix

x List of Tables

CHAPTER 1

INTRODUCTION

The killer app will not be a shrink-wrapped program that sells millions.
The killer app will be a Web site that touches millions of people and

helps them to do what they want to do.

Lou Gerstner

1.1 MOTIVATION

Did you ever think about how your life would be without the Internet? How much of your
daily routine would change without electronic mail? How much harder it would be to access
information without the World Wide Web?

Students, business people, parents, and children all over the world have email accounts to
keep in touch with friends, relatives or business partners. Companies have Web sites to commu-
nicate with their customers or advertise and sell their products. Educational institutions provide
teaching material on the Web, offer online training, and use email as the primary communication
media with their students. But there is much more: the Internet effectively spreads into almost
all domains of our daily life. The creation of terms such as eCommerce, eLearning, eSupport,
eProcurement or eGovernment clearly emphasizes this fact.

We keep talking about the Internet but what we actually refer to is usually either electronic
mail (email) or the World Wide Web (Web, WWW). These two services by far outnumber any
other application on the Internet. This thesis focuses on the World Wide Web.

On the Web, we distinguish Web sites and Web applications [5,37]. A Web site’s main intent
is information dissemination. It presents structured information in a mostly static way, i.e., does
not support user interaction. News portals or product catalogues are examples of Web sites. Their
extensive information is mainly for viewing and users cannot interact with the system other than
following pre-defined hyperlinks.

1

2 1.1 Motivation

A Web application, on the other hand, uses the World Wide Web as user interface for a
back-end software application. In Web applications, user interaction and business processes
outrank the information dissemination aspect. The back-end software of a Web application, i.e.,
its functional behavior, is also called the application logic. An online shopping cart application
that lets the user select items, stores the contents of the cart, validates payment information and
processes the order is an example of a Web application; its functionality is implemented by a
custom application logic.

1.1.1 A TYPICAL WEB DEVELOPMENT SCENARIO

Imagine you own the company Orange Juice, Inc. and decide to create a Web application to
represent your company on the Internet (the World Wide Web to be more precise).

First you make a list of all the information and functionality that should be accessible via
your Web site. Then the graphics designer proposes various graphical designs, e.g., based on
your corporate identity policy. The next question is how to implement the graphical design
templates, i.e., what technology to use and how to integrate the content with the layout templates.
This depends heavily on the programmers and their know-how. Often easy-to-use scripting and
template languages are used for this purpose (e.g., Microsoft’s Active Server Pages (ASP), Java
Server Pages (JSP), Perl, PHP, etc.). Eventually, the content managers can start to generate the
content for the Web application in the appropriate form. When all the content is available, it can
be integrated with the application logic and layout templates and the site can go online.

Two months after your site went online, the analysis of the Web server log files indicate that
a large number of visitors is interested in the site. As a consequence you decide to upgrade
your service to contain an e-commerce component to directly sell your products over the Inter-
net. Thus you iterate again through the above steps, i.e., talk to the graphics designer, have the
programmers implement the application logic based on the design templates and, finally, ask the
content managers to provide the content.

In the process of extending your Web site, you realize that it would be nice if you could
reuse the existing product catalogue with the shopping system, the contact information on the
order pages, or the customer database with the feedback facility. Unfortunately, many of today’s
implementation choices do not support this kind of separation and reuse of components. This is
because the layout definitions, the content information and the application logic are all scattered
across various page and fragment definition files, and are possibly even stored together in the
same (content) database.

This scenario still does not cover the so-called maintenance task, i.e., continuous content
updates, addition and removal of special offers, correction of bugs in the application logic or
integration of new functionality.

In the end, what started as a small Web site development project grew to a complex, hard
to maintain Web site with lots of dependencies and a never ending amount of undocumented
updates and changes. And it keeps growing. It is not unlikely that after a year or two your Web
site has become so unmanageable that you decide to start from scratch and build a new Web site
to avoid the maintenance and update nightmare.

Chapter 1: Introduction 3

1.1.2 THE PROBLEM DOMAIN

Right from the beginning, Tim Berners-Lee pointed out that it is important that information on
the Web can be edited as easily as it can be viewed [17, 32]. With visual Web editors and site
management tools this vision became reality to a large extent for moderate-sized, HTML-based
Web sites with only little application logic.

The above scenario, however, already demonstrated that today’s Web applications do not
have much in common with the simple, pure HTML pages of the early days of the Web. Scripting
languages extend the functionality of HTML on the client side, dynamic pages are generated by
server-side programming, and personalized Web sites remember user preferences or behavior.
But the dynamic generation of Web pages is not the only reason for their tremendously increased
complexity.

In addition to the original idea of information dissemination via the Web, other aspects such
as an attractive and intuitive look-and-feel, a clear navigation concept, up-to-date and correct
information, security and access control, transactional behavior, database connectivity, and back-
end business processes (e.g., integration of legacy applications) play important roles in state-of-
the-art Web applications.

The creation of such Web applications is not a trivial task and is often compared with a
full-fledged software project. It requires careful planning and a wide range of expertise [127]
to successfully deploy a new Web application. Additionally, a considerable effort continuously
goes into maintenance and evolution activities once the application is deployed.

The varying goals of the different stakeholders involved in a Web project, further contribute
to its complexity. From the customer’s point of view the budget of the project is usually the main
concern; the project manager focuses on the project duration and the available resources; graph-
ics designers are interested in the visual appearance of the application; programmers usually are
concerned with the functional aspects and the integration of content, layout and application logic;
other stakeholders such as testers or marketing staff have yet another agenda.

Also in analogy to software projects, time-to-market is an important aspect in many Web
projects. In the above scenario, the development process is virtually serialized: the layout design-
ers design the templates, then the programmers take over, and eventually the content managers
provide the actual content. Then it is again the programmer’s task to integrate the content with
the layout templates and make it work together with the application logic before deploying the
Web site. If we could parallelize this process we could significantly reduce the project duration
which often also means a decrease in the total development costs.

With the explosion of possibilities and technologies on the Web over the last years, however,
Web development did not get easier or faster. Instead the development of a Web application
soon became a somewhat chaotic and often ad-hoc process lacking systematic techniques and
methodologies. As a consequence, Web applications became increasingly difficult to maintain
or evolve, changes to the structure or the layout of a site were not possible without a great amount
of work, and performance decreased. Ginige et al. [68] use the term Web crisis to describe this
situation.

Two important developments stem from this unfortunate situation: (i) the Web Engineering
discipline was founded to overcome the problem of ad-hoc development. (ii) with XML and

4 1.2 Contract-Based Web Development with XGuide

its related technologies, a whole set of new technologies and languages were standardized to
overcome the limitations of HTML.

1.2 CONTRACT-BASED WEB DEVELOPMENT WITH XGUIDE

Given the wealth of existing Web engineering technologies and tools, the challenge is not so
much how to develop a new Web site or how to use XML in doing so—though such an under-
taking is still far from being trivial. The real challenge in Web engineering is how to develop
Web sites and applications in a way that quality factors such as maintainability, performance,
extensibility, device independence, development time, or flexibility are taken into consideration.

Before we can achieve these goals, we need to master the complexity in Web engineering
projects, be able to define and measure the above mentioned quality criteria, and have to under-
stand the direct and indirect dependencies among the involved artifacts. To this end, this thesis
introduces the notion of a contract to the Web engineering domain.

The idea of contracts originated in the domain of software engineering. There a contract
defines the public interface of a component and states the requirements that need to be satisfied
before using the component as well as guarantees on the result of any operation on the compo-
nent. Unlike contracts in software engineering [8,9,111,112], the notion of contracts in this work
does not operate on the type or method level but deals with the characteristics and constraints of
the components involved in Web development. This includes, among others, specifications for
the structure and the data model of the content, the required interfaces to the applications logic,
security properties, navigation modeling, etc.

From a high-level point of view, Web contracts can be seen as agreements among and in-
terfaces between all stakeholders involved in the development of the artifacts that eventually
make up the Web application (e.g., content managers, graphic designers, programmers, etc.).
More concretely, a contract provides specifications for all these artifacts and makes dependen-
cies explicit. As opposed to the software engineering domain where contracts exclusively deal
with software artifacts, Web contracts have to deal with multiple dimensions (e.g., the content
dimension, the layout dimension and the application logic dimension of a Web page).

Web contracts not only give us a specification technique for Web artifacts, they also provide
the basis for four important concepts in order to meet the challenges presented at the start of this
section: strict separation of concerns, composability, parallel development, and flexibility:

� Separation-of-concerns. The concept of separation of concerns enables the better under-
standing of complex systems. Contracts define the concerns involved in the development
of a Web page. They separate the concerns and provide a specification of each concern
including its dependencies. Typical concerns of a Web page are the content, the graphi-
cal appearance (i.e., the layout) or the functionality (i.e., the application logic) of a page.
Since concerns are separated, they can be easily reused on other pages further decreasing
development effort and avoiding potential inconsistencies.

Chapter 1: Introduction 5

� Composability. Web pages are the prevailing units of perception on the Web. Though they
are presented as atomic entities to the user, they are frequently structured internally into
multiple areas. A navigation area, a header area and a content area are typical examples.
Contracts support the definition of such page fragments and their composition into Web
pages. Thus not only can the concerns be reused but whole page fragments (e.g., a header
fragment) can be reused on many pages. Unlike other object- or component-based Web
systems, a contract composition language explicitly states the composition relationship
among components and pages.

� Parallel Development. Existing Web development methods are inherently sequential. The
sample scenario above demonstrates this fact. The graphical design, the application logic
development, and the content creation and integration are performed one after the other.
Creating these (separate) concerns in parallel can significantly reduce the project duration
and for this reason the development costs. Contracts provide a clear specification for each
concern and its interface to other concerns. As a result, all concerns can be developed in
parallel. This is similar to interface-based programming where an interface specifies all
external behavior of a component and decouples any concrete implementation.

� Flexibility. A Web application is a continuously changing system. Maintenance and evo-
lution of Web applications are important aspects of Web engineering. Contracts support
maintenance and evolution in that they clearly identify the affected concerns and isolate
the potential impact on other pages or components. Also new concerns such as security,
access control or navigational design can be added to a contract with no or minimal inter-
ference with existing concerns. In some cases, even the implementation technology of a
concern can be changed transparently.

Our vision for the future of contract-based Web engineering is that there are two phases: first,
the contract phase—an analysis and design effort which results in a set of contracts describing
the Web site. Only then the realization phase starts in which the contracts get implemented.
When all aspects of all contracts are fully implemented, the development is finished and the Web
site is deployed.

If supported by appropriate development tools, we argue that contract-based Web develop-
ment can significantly improve Web engineering in terms of a shorter development time, easy
reuse of existing components, enhanced flexibility and maintainability (by clearly separating the
different aspects of the Web application), and automatic consistency checking with respect to the
specified contracts.

6 1.3 Contributions

1.3 CONTRIBUTIONS

Management by objectives works if you first think through your objectives.
Ninety percent of the time you haven’t.

Peter F. Drucker

The objective of this thesis is to introduce the notion of contracts into the Web engineering
domain. Contracts provide specifications of all artifacts in the development process, enforce strict
separation-of-concerns, enable parallel development, support composition of page fragments into
Web pages, and facilitate seamless evolution scenarios.

To fully exploit the concept of Web contracts, we present XGuide, a contract-based deve-
lopment methodology for Web applications. XGuide provides full life-cycle support for the
development, maintenance and evolution of Web applications. It conceptually models a Web
application as a set of contracts (i.e., specifications) that themselves stay independent of any
concrete implementation technology. Subsequently the conceptual model is refined and imple-
mented in the technology of choice. The high reuse potential of many artifacts, the model-driven,
fully parallel implementation phase and the structured maintenance and evolution scenario are
direct benefits of applying the contract concept. An additional advantage of using contracts is
that implementations can be validated against the contracts, i.e., we can check whether our Web
site conforms to the specifications given in the contracts.

To substantiate the concepts used in the XGuide development method, we devise a formal
model for Web contracts and concerns. The model can express independent as well as dependent
concerns. Dependent concerns cannot exist alone but always depend on another concern. Further,
the aggregation of concerns into contracts and the composition of contracts into larger contracts
is presented.

This thesis further contributes the XSuite tool suite, an open, extensible development en-
vironment supporting all phases of the XGuide methodology. A visual modeling environment
based on the Eclipse [142] framework supports the creation of the conceptual models that are in
consecutive steps transformed into fine-grained contracts and concerns. These specifications are
translated into a concrete implementation that can be directly deployed on the target platform.

A case study illustrates the use of the XGuide development methodology and the XSuite tool
suite.

Chapter 1: Introduction 7

1.4 STRUCTURE OF THIS THESIS

The remainder of this thesis is structured as follows.

Chapter 2 points out the fast evolution from the first Web servers to today’s world-wide
information network. It discusses the problems at the various stages of this development that
resulted in the creation of the Web engineering discipline. Further it gives a brief overview of
XML and its related technologies that are subsequently used in this work.

Chapter 3 presents a classification of Web engineering methodologies based on seven char-
acterization properties. It then discusses related Web engineering work and evaluates each ap-
proach with respect to the given classification scheme. The chapter concludes with a comparison
of existing methods and demarcates XGuide from the approaches taken in existing work.

Chapter 4 discusses in detail the seven phases of the XGuide Web engineering methodology
and the diagrams, notations and terminology used. The Orange Juices, Inc. Web application
introduced above is used as running example to demonstrate the approach.

Chapter 5 focuses on the concept of contracts. It defines what the semantics of a contract is
and how it is represented. Separation of concerns on the contract level and contract composition
operations rely on a formal model of contracts and contract concerns introduced in this chapter.

Chapter 6 describes the architecture and design of XSuite. The integrated development en-
vironment supports all steps of the XGuide development process and exploits Eclipse’s potential
to offer usability features such as automatic deployment, wizard dialogs and creation of contract
and implementation templates.

Chapter 7 presents the Vienna International Festival case study. It demonstrates how we
used XGuide and XSuite for the analysis, conceptual design and implementation of this Web
application.

Chapter 8 evaluates the XGuide methodology and XSuite tools with respect to other ap-
proaches and the lessons we learned from the case study.

Chapter 9 concludes the thesis and summarizes the major contributions of this work. It also
gives an outlook on potential future extensions and the integration of additional concerns into
XGuide.

8 1.4 Structure of This Thesis

CHAPTER 2

WEB ENGINEERING REVIEW

We’ve all heard that a million monkeys
banging on a million typewriters

will eventually reproduce the entire works of Shakespeare.
Now, thanks to the Internet, we know this is not true.

Robert Wilensky

This chapter first defines the meaning of the vocabulary used throughout this thesis and il-
lustrates the different architectures used on the Web. It then gives an overview on how the Web
evolved since its birth at CERN in 1989 and presents the technologies that were introduced as
the Web grew and are still commonly used to implement Web sites today.

As we move through the various stages of evolution of the Web, we point out problems
in today’s Web development practice. This discussion results in the introduction of the research
field of Web Engineering, its mission statement and its goals. The chapter concludes with a walk-
through of some fundamentals of XML and its related technologies and standards. They build
the foundation not only for the XSuite approach but are the successors of HTML on the Web
and keep spreading into other domains such as (cross-platform) data exchange or information
storage.

2.1 TERMINOLOGY

Understanding the meaning of the terms used in any given context is a crucial requirement for
effective and unambiguous communication. Unfortunately quite some confusion exists when
it comes to frequently used Web engineering terms such as Web site, Web application or Web
service. This section presents what we understand by these terms in the context of this thesis.

9

10 2.1 Terminology

� Web Page. A Web page is a set of information items which are perceived as an indivisible
entity by the client application or browser. In the case of HTML, an HTML page would
be a Web page; in the case of the Wireless Markup Language (WML) [148] a card in a
WML deck is referred to as a page. This term is sometimes (mis)used for ’Web site’, i.e.,
meaning all the pages available through a given base URL.� Web Site. A Web site is a collection of static and/or dynamically generated Web pages
that form a unit in terms of the content they provide, often share a common look-and-feel,
and are available through the same base URL.� Web Application. A Web application is similar to a Web site in that it also presents related
information in a uniform graphical layout. The focus of Web applications, however, lies
in the application logic (functionality) offered via the Web. A Web application can be
seen as a software application or business process leveraging the Web as a new type of
user interface. In some definitions, a Web application is even characterized as a software
application that is downloaded via the Web and executed on the client not taking any server-
side processes into account. Web sites, in contrast, focus on being an information system
and not on the application logic on the back-end or the client device. Since the distinction
between Web sites and Web applications is not always clear to make, there exist hybrid
forms where the information system and the back-end processes are equally important. A
similar definition is found in [37]:

“In this article, a Web application will be loosely defined as a Web system (Web
server, network, HTTP, browser) in which user input (navigation and data input)
effects the state of the business. This definition attempts to establish that a Web
application is a software system with business state, and that its front end is in
large part delivered via a Web system.”� Web Service. The term Web service is definitely one of the most over-used terms in the

Web arena. In the early days of the World Wide Web, many researchers and practitioners
used it as a synonym for either a Web site or a Web application. As such a Web service was
a very generic term. More recently, the term was redefined in the context of machine-to-
machine services. These services exchange machine readable information utilizing Web
technology; the most prominent representative to date is the Simple Object Access Protocol
(SOAP) that communicates via XML messages which are (usually) transmitted over HTTP.
For the remainder of this work, we restrict the term ’Web service’ to the latter meaning, i.e.,
a machine-to-machine communication on the basis of XML messages. This is sometimes
also called browser-less access to a service, indicating that there is no visual client interface
and the information is further processed by the requesting machine.� Web Development. In the scope of this thesis, we understand ’Web development’ as the
actual implementation process of a Web site. This does not include requirements gathering,
domain analysis, or other phases such as design, maintenance or evolution frequently found
in software and Web engineering methodologies.

Chapter 2: Web Engineering Review 11

� Web Engineering. We use the term ’Web Engineering’ as defined in [56]:

“Web Engineering is the application of systematic, disciplined and quantifiable
approaches to the cost-effective development and evolution of high-quality ap-
plications in the World Wide Web”

This includes all the activities involved in the planning, design, implementation, deploy-
ment, maintenance and evolution of a Web site or application. As a consequence, Web
engineering effectively is a superset of the activities associated with Web development.

2.2 THE ARCHITECTURE OF THE WORLD WIDE WEB

You affect the world by what you browse.

Tim Berners-Lee

Right from the beginning, the World Wide Web was designed as a client-server system.
Clients (usually Web browsers) access the content of a Web server using Uniform Resource Loca-
tors (URLs) that uniquely identify any resource on the Web. Such a URL contains (among other
information) the Web server’s name, the protocol to contact it, and the name of the requested
resource (see [21] for further details). The server deals with incoming requests by delivering the
requested resource to the client. Over time this simple architecture was slightly extended to keep
up with the increasing demand; client-side caching, proxy caches and Web server clusters are the
most prominent extensions of this kind. Nevertheless the basic client-server principle remained
intact.

Modern Web sites are also described as three tier or multi tier architectures. This catego-
rization has its origins in the server-side separation of many Web sites in a Web server and a
data repository/database layer. This again eases the development and maintenance of large or
complex Web sites, but leaves the underlying client-server architecture untouched.

Figure 2.1 depicts the extended client-server architecture of the World Wide Web. Web
browsers form the client-side of the system. These clients use client-side caching to improve
performance and can use shared proxy caches to broaden the effectiveness of the cache from a
single client to a cluster of clients. Web servers represent the server-side. A Web server fre-
quently serves files from its local filesystem and collaborates with dedicated database servers
that host the content repositories. To improve the response time, Web servers can be grouped in
Web server clusters. A load balancer distributes the incoming requests on the separate servers
improving performance and availability.

In general, Web sites and Web applications are perfect examples of distributed applications
as outlined in [138]. Tanenbaum et al. classify applications according to where their processing

12 2.2 The Architecture of the World Wide Web

Figure 2.1: The extended client-server architecture of the World Wide Web.

happens. Some Web applications require the client to perform a large share of the workload;
especially if the application requires a rich user interface, solutions based exclusively on HTML
are often insufficient. A technical solution to this problem was introduced with Java applets that
allow Java code to be executed on the client. They assume, however, a Java virtual machine
being present at the client device and the client’s ability to download executable code at runtime.
Another example is Macromedia’s Flash technology that facilitates full-fledged multimedia ani-
mations but require the client to run the corresponding Flash player.

While we can require capable clients to be responsible for many tasks, there are also many
reasons to support thin clients: you do not have to upgrade all the client devices to new versions
of the application, more devices can be supported easily, and today’s mobile devices with limited
battery and processing capabilities benefit in terms of a longer runtime. Though these devices are
likely to become more and more powerful, their relative thinness compared to other (stationary)
devices will remain. For the purpose of this thesis, we focus on the basic working of the Web
as a client-server architecture and on keeping the client-side as thin as possible for the reasons
given above. To fully exploit more capable clients, XSuite extensions can be introduced that take
client profiles into account to provide a richer user experience, increase the performance or better
distribute the processing load.

Chapter 2: Web Engineering Review 13

2.3 THE COMMUNICATION MODEL OF THE WORLD WIDE

WEB

The communication model on the Web is equally simple: client and server communicate via a
TCP/IP connection and as soon as a client request is completed, the connection is terminated.
The details of this synchronous communication protocol are specified in the HyperText Trans-
fer Protocol (HTTP) [20, 66]. HTTP is an ASCII-based protocol on top of TCP that transmits
requests and responses enriched by a message header that carries additional status and meta
information. Over time, HTTP evolved only marginally to support new requirements such as
virtual hosts (i.e., running multiple servers with varying names on the same physical machine).
As mentioned before, HTTP is a state-less protocol, i.e., the server does not maintain state on
behalf of the client. Thus a server could never identify subsequent requests of the same client as
related. While this keeps the server simple and increases its performance, it is clearly insufficient
in the context of, for instance, e-commerce applications where clients can create shopping carts
and, at some later time, order all articles in the shopping cart. This means that the server must
be able to relate a request to a previously created shopping cart and the items in it. As a conse-
quence, clients are required to store session information themselves and retransmit it to the server
with each request. Two approaches are widely used: URL re-writing and cookies. Using URL
re-writing, the URLs in the response to a client request are dynamically modified to also include
the client state. Cookies, on the other hand, are stored by the client and transmitted as header
information of subsequent requests to the same server. There were many discussions whether
a stateful protocol would have been superior to HTTP; the success of HTTP and its global de-
ployment make these discussions moot. Since today’s Web servers support URL re-writing and
cookies transparently, we take them for granted in our further discussions.

Summing up we see that the Web is based on a simple client-server architecture with a text-
based communication protocol. The simplicity and extensibility of the original design were key
criteria for the success of the Web. In the next sections, we give an overview of the evolution
of the Web and the used technologies that results in the discussion of some major problems
traditional Web development suffers from.

2.4 A SHORT HISTORY OF WEB EVOLUTION

It’s [the Internet] like the flu -
it just spreads like crazy.

Jack Welch

The origins of the idea of hypertext can be traced back to the 1940s (see [18]). The World
Wide Web itself was ’born’ in 1989 at the CERN laboratories. Tim Berners-Lee then circulated

14 2.4 A Short History of Web Evolution

the paper “Information Management: A Proposal” for comments and wrote “HyperText and
CERN” in which he proposed the establishment of a global hypertext space. The following
historical developments are presented here based on information available from the World Wide
Web Consortium (W3C) [2, 32] and Tim Berners-Lee [17, 19].

2.4.1 A FIRST SERVER AND BROWSER - THE WEB INFANCY

In 1990, Tim Berners-Lee got the go-ahead for pursuing his idea and implemented the WorlD-
widEweb program—a ’What You See Is What You Get’ Web browser and editor. It is remarkable
to note that since then, Web clients were intended not only for viewing but also for editing Web
documents. In fact, it should be easy for everybody to edit documents on the Web.

The first Web server at CERN initially contained mainly material about the Web itself (e.g.,
the specifications for HTML, HTTP, URLs, etc.) to help spreading the knowledge of how to run
or implement a Web server and browser. More browsers for other platforms eventually appeared.
In the first three years the load of the first Web server increased steadily by a factor of 10. When
academia and industry were taking notice, Tim Berners-Lee decided to found the World Wide
Web Consortium (W3C) to coordinate the efforts. According to him,

“The Consortium is a neutral open forum where companies and organizations to
whom the future of the Web is important come to discuss and to agree on new com-
mon computer protocols. It has been a center for issue raising, design, and decision
by consensus, and also a fascinating vantage point from which to view that evolu-
tion.” [19]

Here are some of the major development steps in catchwords: in December 1991, the first
Web server outside Europe was installed (by Paul Kunz at the Stanford Linear Accelerator Center
(SLAC)); in November 1992, a list of 26 reasonably reliable servers was published; in March
1993, the Web traffic (HTTP on port 80) on the NSF backbone was measured to be 0.1 percent;
in September 1993, the Web traffic increased to 1 percent of the NSF backbone traffic; in October
1993, about 200 Web servers exist; in May 1994, the first World Wide Web conference was held
at CERN and is referred to as the ’Woodstock of the Web’; in June 1994, 1500 Web servers exist;
in October, the World Wide Web Consortium is founded.

A more complete overview of the history of the Web can be found in the references cited
above and Gromov’s article “History of Internet and WWW: The Roads and Crossroads of Inter-
net History” [73].

With the increasing popularity of Web sites and HTML, developers soon started to demand
language extensions to deal with rendering related information such as fonts, colors, margins,
etc. It was already then that the abuse of HTML for layout-specific tasks started. A prominent
example is a button with round corners. To achieve this in HTML, developers used a 3 x 3 table
where the four corner cells contained a little picture simulating a rounded edge. If the background
color of the table cells and the color used in the images is the same, the desired impression is

Chapter 2: Web Engineering Review 15

achieved—at the cost of polluting the HTML code with tables and images solely contributing to
the layout.

Cascading Stylesheets (CSS) became a W3C recommendation in 1996 and support the spec-
ification of layout properties such as fonts, font sizes, colors, etc. externally to the actual HTML
code. Support for CSS version 1 is built into all popular browsers today. A more powerful second
version of CSS (CSS 2) extends the original specification supporting adding of text, a selection
mechanism for elements and multiple classes of devices. Unfortunately, CSS 2 is still not fully
implemented by existing browsers; even worse, some features are implemented differently across
browsers hindering the successful, large-scale deployment of CSS 2.

2.4.2 THE WEB GETS DYNAMIC - THE CHILDHOOD

Soon predefined, static Web pages alone were not sufficient. User input processing and dynamic
page creation were needed to implement features such as search engines or feedback forms. The
Common Gateway Interface (CGI) was the solution. Up to that time, a Web server mainly located
the requested file on the harddisk and returned its content to the client. With the implementation
of CGI-capable Web servers, requests could be dispatched to arbitrary other processes running
on the Web server and client parameters could be passed to such processes.

Now any software program could be made responsible for processing a Web request and
responding with an appropriate HTML document. With the integration of databases as content
repository for dynamic Web page creation, a whole new class of Web sites appeared that could
deliver up-to-date, user-tailored information; and this number continues to grow since then. In
the year 2000, a report based on real Internet traffic estimated about 40 percent of all page
requests to go to dynamically generated pages.

To avoid the performance drawback of the original CGI proposal which required a new pro-
cess to be created for every request, similar approaches were introduced which reused processes
or implemented multi-threaded solutions. Furthermore, special Web server modules exist for
many Web servers and programming languages that allow the handling of dynamic requests
within the Web server process. Perl scripts were the dominant language for implementing CGI
interaction for quite some time. Today many other languages are also widely used with Java in
the lead.

An important characteristics of CGI solutions is that the CGI script or program is responsible
for creating the HTML response page sent to the client. A typical CGI script in Perl is shown in
Figure 2.2.

The script generates a simple HTML page and uses the input parameter keyword to query a
database and search for news items with the given keyword in their titles. The response contains
a table listing all items found and provides links to each item based on the item’s identifier.1

The major drawback of solutions purely based on CGI is that the program handling a request
is responsible for generating an HTML page or fragment. Thus the HTML definitions are mixed

1More sophisticated error handling and extended functionality (e.g., create a different response page if no news
items matching the query were found) were omitted for space reasons.

16 2.4 A Short History of Web Evolution

#!/usr/bin/perl
use CGI; use DBI;

$query = new CGI;
$keyword = $query->param("keyword");

$sql_command = "SELECT id, title FROM News where title like ’%$keyword%’";
$dbh = DBI->connect("DBI:mysql:WWW:dbhost","login","password");
$sth = $dbh->prepare($sql_command) or die("Something went wrong!\n");
$rv = $sth->execute or die("Can’t execute statement...");

print "Content-Type: text/html\n\n";

print "<HTML> <BODY> <CENTER><H2>Search Results</H2></CENTER>
<TABLE>
<TR> <TD> Title </TD> </TR>

";

while (@row= $sth->fetchrow_array) {
$id = $row[0]; $title = $row[1];
print "<TR><TD>",$title,"</TD></TR>";

}

print "</TABLE> </BODY> </HTML>";

Figure 2.2: A sample CGI script implemented in the Perl scripting language.

Chapter 2: Web Engineering Review 17

with code fragments and often scattered throughout multiple programs. Changes to the layout,
integration of new features and site maintenance became extremely difficult and error-prone.

2.4.3 VARIOUS WEB TECHNOLOGIES FLOURISH - THE YOUTH

Based on the experiences with CGI-based Web development, people around the world started
to implement tools that helped them to overcome the problems with CGI-based development.
In a first step, modules in various languages for better and easier handling of HTTP requests
appeared on the scene; then people started to refactor the page creation process and extract values
that appear on many pages (e.g., store the value of the background color in a globally accessible
variable).

More promising approaches were based on so-called templates or includes. An early example
for such an approach are Server Side Includes (SSI). An SSI-aware Web server scans the HTML
response it sends to the client for a predefined label and replaces the label with the content of the
corresponding server side include fragment. By this means, a common header or footer HTML
fragment can be inserted into all pages. The limitation of this approach is that the inserted page
fragments can only be static HTML text. Server side includes were targeted at Web developers
who build mostly static HTML Web sites; when doing dynamic page generation, such a func-
tionality can be easily mimicked.

Another widely used approach uses the notion of templates. Templates in this context mean
HTML pages that contain additional information such as hooks for some processing tool or ap-
plication logic to be executed before delivery to the client. The Java Server Pages or Microsoft’s
Active Server Pages technologies are widely used instances of this idea. Many more template-
based technologies exist but a profound discussion and comparison is beyond the scope of this
work.

More sophisticated versions of this idea are implemented in tools such as WebMacro [51] or
HTML++ [11] and support composition of reusable page fragments which are not required to be
static any more.

Another group of tools focuses on making the creation of Web pages as intuitive and easy as
possible for the end user. They typically support WYSIWYG editing of HTML pages, have prop-
erty dialogs for colors and fonts, and sometimes even have site maintenance functionality such
as maintaining link consistency when moving pages built into them. Frontpage, Dreamweaver
or GoLive are some popular tools in this category.

A completely orthogonal approach is pursued by the Hyper-G/Hyperwave [106] project. Af-
ter an initial evaluation of the Web (as it existed at that time), a better structured information
base, a solution to the ’dangling link’ problem, access control and support for multiple languages
formed the project objectives. A Hyper-G server thus classifies the documents it hosts according
to so-called collections—sets of documents that are grouped by topic. Collections form a hier-
archy and documents can belong to more than one collection. The resulting information spaces
guarantee to only provide related documents. Since a Hyper-G server takes care of storing do-
cuments, consistent appearance, access control and link consistency can be guaranteed. Link
information in Hyper-G is not stored within the documents but in a separate link base; as a result

18 2.4 A Short History of Web Evolution

not only text documents but arbitrary (e.g., multimedia) documents can act as links or be targets
for hyperlinks.

A final group of tools increasingly used in Web development is formed by so-called appli-
cation servers. Application servers provide development frameworks that offer services such
as persistence management, transaction handling, security mechanisms or transparent database
connectivity. While application servers can be used for general purpose software development,
they are often bundled with a Web server and some template technology. As such they provide
a tightly integrated development environment for Web applications and are used as middleware
layer in between the Web server and the back-end processes.

The benefits of an application server mainly pay off in large projects taking into account the
additional overhead of learning the capabilities of the specific application server. An additional
problem of this approach is that commercial application servers tend to be expensive and might
even lock customers in since migrating from one application server to another (even if based on
the same technology) from a different vendor is rarely fully supported. The three major applica-
tion server technologies today are SUN Microsystem’s Enterprise Java Beans (EJB) specifica-
tion, Microsoft’s counterpart based on COM+ and the Microsoft transaction server (MTS), and
the only slowly advancing CORBA Component Model (CCM) based systems. The CCM and
EJB specifications share many basic concepts, thus the CCM can be seen as extension of the EJB
model and implementations of these technologies are expected to integrate easily.

Though the above technologies are widely deployed today, they all suffer from a shared ar-
chitectural flaw: the content is directly generated in the target language. This is usually achieved
by nested processing, i.e., the page generation process is based on calls and sub-calls to software
modules. The problem here is that the output is generated by appending the result of each sub-
call to the final page. Neither the various parts nor the whole page can later be re-processed to
target other output formats or customize content depending on user or device profiles. All that
changed when XML and XSL entered the arena of Web development.

2.4.4 WEB ENGINEERING - THE ADOLESCENCE

With XML and XSL finally a strict separation of content and layout can be achieved. XML
focuses only on the structure of the content and supports arbitrary XML vocabularies. XSL
consists of XSLT and XSL-FO. XSLT is a powerful transformation language to transform an
XML input document into an output document. The output document can again be an XML
document or contain plain text, HTML, LATEX, etc. XSL-FO is a page-oriented formatting lan-
guage that supports publishing-oriented concepts such as page masters, page sequences, headers,
page numbers, etc. Soon several XML-based development tools including Cocoon [107] and
MyXML [84,85,89,93] became available. These tools support a strict separation of content, lay-
out and application logic and use chained processing as opposed to nested processing. Chained
processing means that a document is passed through a series of processing steps before it is de-
livered to the client (see also [28]). Thus the generated content can be processed multiple times
and in different ways depending on the client’s capabilities or user profiles. Figure 2.3 shows a
sample pipeline for chained processing. A request is first extracted and its parameter decoded.

Chapter 2: Web Engineering Review 19

Next the application logic processes the input parameter and decides what content to include in
the response. The content is subsequently generated. The content generation can trigger further
application logic and content generation tasks. A sequence of transformation steps transforms
the final content into the appropriate output format or markup language. Eventually, the server’s
reply is serialized and encoded and returned to the client. There the response is deserialized and
rendered. Subsequent user interactions cause further requests to the server and the process starts
anew.

Figure 2.3: A sample processing pipeline for the chained processing approach.

Our experience with XML-based Web engineering as presented in [86, 94] revealed both
positive and negative effects of deploying XML technology on the Web. One drawback was that
learning of XML and XSL concepts was not easy for the developers. The strict separation of
content and layout was misunderstood and misused by the developers. For example, there was
a general tendency to mark content using XML tags such as � left � , � right � , � middle � , etc.
that actually reflected the layout design requirements and did not describe the content. Another
frequent misconception was that content management could directly benefit from XML. Content
managers are used to a rich text-editor environment to manage content and available XML edi-
tors, though comfortable for XML editing, could not provide the same user experience. Thus we
built custom content management interfaces on top of XML. Finally, graphics companies were
used to creating design templates using WYSIWYG HTML editors rather than XML and XSLT.
As a result, the translation of the HTML templates into appropriate XSLT stylesheets increased
the overall development effort. In the long run, these negative experiences can be expected to

20 2.4 A Short History of Web Evolution

diminish as XML technology spreads and appropriate editing tools become available.
Even taking above problems into account, the advantages of using XML technology easily

outweigh the disadvantages. Foremost, the strict separation of content and layout achieves a high
layout flexibility that makes it easy to change the layout specifications and to support multiple
output formats. Furthermore, consistent navigational structures (navigation bars, hierarchical
menus, etc.) throughout a Web site can be easily implemented. Also support for multi-lingual
sites enhances by reusing style elements for all languages. In combination with XML-based
navigational structures, switching between languages while preserving the user context (i.e., the
currently viewed page, the contents of a shopping cart, a search result, etc.) becomes possible.
More details on how we could exploit the power of XML technology on the Web are given
in [86, 91, 94, 95].

Having built and deployed many large-scale and complex Web sites using above technolo-
gies, people came to realize several important issues. First, the maintenance and evolution of
such Web sites is an extremely time-consuming and tedious task. In some cases it was even
easier (and cheaper) to re-build the whole Web presence from scratch instead of evolving it. This
was mainly a result of having the layout information of the site (i.e., the actual HTML tags) scat-
tered across different places: static HTML files, template files, in the application logic or even
the content repository.

Second, the process of creating a Web site was often an ad-hoc and somewhat chaotic proce-
dure since the various roles and responsabilities involved in such an undertaking were not prop-
erly understood. Especially the unreflected use of existing methods from software engineering
did not work out to the desired extent. The significant differences between Web development and
software development such as the integration of new disciplines (e.g., arts and graphic design)
and content management were not considered.

Third, many Web projects suffered from continuously changing requirements. It is well
known in software engineering that changes to the requirements later in the development pro-
cess are costly [26]. The same is true—maybe even to a greater extent—for Web development;
nevertheless proper requirements engineering is still rarely found in Web development. Other
topics commonly disregarded are ease of navigation, accessibility, compatibility, cultural and
legal aspects, and reliability.

In our Web projects, we also saw that XML per se does not help for arbitrary changes in the
requirements for a Web site or Web application. This requires a more flexible and extensible
framework for separately evolving concerns of Web applications.

The keynote held by Randy Katz at the Networking 2002 conference followed the same lines.
It pointed out that the Web develops so fast, you do not know what the next killer application
or technology or device will be. Nevertheless, you have to be prepared to develop applications
for this yet to be appearing infrastructure in a flexible and maintainable way quickly. What is
needed, thus, is a framework that enables application development in such an environment. The
same is true for the development of Web sites and Web applications themselves.

A report by the Cutter consortium on Web projects [38] lists alarming facts: the developed
systems did not meet requirements in 84 percent of the cases, 79 percent of the projects were
delayed, 63 percent of the projects exceeded their budget.

Chapter 2: Web Engineering Review 21

For all these reasons, the previously cited term Web Crisis was coined as a parallel to the
software crisis [117] when too many incompatible programming languages, exceeded budgets
and schedules, a gap between users and programmers, and hacking type of programming methods
were some of the problems. A cite from the Wikipedia free encyclopedia hits the spot: “Try
http://www.google.com to search for ’software crisis’ and read through the half a million
web pages that match this simple query. Then try to summarize this knowledge within your
budget and deadline. Now you might start to understand that the root of the software crisis is
complexity.”

In response to the Web crisis and the above challenges, a group of people at the University
of Western Sydney in Austrialia coined a name for the emerging research disciplines: Web Engi-
neering. A definition of Web engineering was already given in 2.1 above; a second one is given
here:

“Web Engineering is the establishment and use of sound scientific, engineering and
management principles and disciplined and systematic approaches to the successful
development, deployment and maintenance of high quality Web-based systems and
applications.” [52]

The main focus in Web engineering, thus, is not so much on how to develop new Web sites
but on how to develop them in a systematic and quantifiable way that reduces development costs
and supports quality attributes such as changing requirements, future extension and evolution.

The various existing Web engineering approaches are presented and evaluated in the con-
text of our problem definition in Chapter 3. The remainder of this chapter gives a brief, non-
exhaustive overview of the eXtensible Markup Language (XML) and related technologies which
are the foundation on which XGuide and most other new developments in Web engineering build.

2.5 SCRATCHING THE SURFACE OF XML AND SOME RE-
LATED TECHNOLOGIES

Getting information off the Internet
is like taking a drink from a fire hydrant.

Mitchell Kapor

The original intention of the HyperText Markup Language (HTML) was not only to structure
Web content but also reflect some semantic notion, e.g., using <h1> to indicate that the enclosed
content forms a heading of level one. Web developers, however, soon started to request rendering
related tags such as to specify the font in which some content should be displayed.
Even browser-specific tags such as the infamous <blink> and <marquee> elements further

22 2.5 Scratching the Surface of XML and Some Related Technologies

polluted the language. The Cascading Stylesheet Specification (CSS) is the attempt to separate
layout information from the actual HTML content. Unfortunately, CSS support—which is now
available in an extended, powerful second version—is not consistently implemented across the
major browsers (not even the newest versions).

Parallel to this development, the limited set of HTML tags, their nesting rules and fixed
semantics were perceived as limitation. Other problems with HTML include the missing ability
to specify semantic information (except for <meta> tags), the fact that support for reuse in
HTML is hardly possible, and the inflexible model of embedding links into a document. A
restriction gaining in importance with the increasing number of Web-enabled devices is that
HTML was never designed with device independence in mind and thus does a poor job on several
small devices and for different output formats. A detailed discussion of device independence
issues in Web engineering can be found in Engin Kirda’s dissertation [90].

The eXtensible Markup Language (XML) and accompanying specifications line up to tackle
these problems and can be used in combination with existing technologies or on their own. This
section briefly discusses the most important concepts and applications of these technologies and
gives pointers where to find further information. Note that this discussion can only cover the
most basic concepts needed in the scope of this thesis. Many details had to be omitted for
space reasons; the reader is referred to the official W3C Web site for more information, new
developments and the full specification documents of the technologies presented here [3, 24, 31,
39, 143].

2.5.1 THE EXTENSIBLE MARKUP LANGUAGE - XML

XML is a means to define new markup languages. Such a markup language structures documents
into several sections. The sections of a document are called elements and contain text content and
further nested document sections (elements). The hierarchy of all elements in a document forms
a single-rooted tree structure. All elements in this tree have a start and an end tag. A tag consists
of an opening angle bracket followed by the elements name and a closing angle bracket, e.g.,
<order>. The end tag further uses a slash as distinction criteria, i.e., </order>. Elements
can contain other elements or plain text. In the start tag, attributes can be defined as key/value
pairs. To add an attribute id to the order element, we just write <order id="294">.

Thus when using XML, there is no fixed set of tags but tags can be chosen as seen appropriate
for the intended purpose. Technically, XML is a restricted version of the Standardized General
Markup Language (SGML) [1] while being much more flexible than HTML. As such HTML
can be completely formulated as one special instance of an XML language (and is then called
XHTML). Figure 2.4 shows a simple XML document for an order using custom elements and
attributes.

Also note that XML is, unlike HTML, case sensitive. Thus <order>, <ORDER> and
<Order> are three different elements.

Two different ways to process XML documents exist today: the Document Object Model
(DOM) and the Simple API for XLM (SAX). The DOM approach strongly builds on the tree
structure of an XML document and provides an interface to an in-memory representation of this

Chapter 2: Web Engineering Review 23

<order id="294">
<customer>

<name>Clemens Kerer</name>
</customer>
<product id="21">

<name>Orange Juice</name>
</product>

</order>

Figure 2.4: A sample XML document representing an order.

tree. SAX, on the other hand, iterates through the document in a depth-first manner and fires
events whenever a new element, a new attribute, some text or the end of an element or attribute
are detected. Unlike using DOM, SAX provides no means to navigate the XML document (e.g.,
find the parent node, list all child nodes, etc.). The downside of DOM is the low performance
compared to SAX and the memory requirements that increase with the size of the document.

Besides Web development, many other application areas for XML exist: platform and appli-
cation independent data exchange, XML messaging, XML content repositories, etc. In this work
we concentrate on exploiting XML for Web development and do not discuss other application
areas of XML. We will later see how some of them (e.g., XML databases as content repositories
or XML Web Services as content providers) can be used and integrated in XGuide.

2.5.2 DOCUMENT TYPE DEFINITIONS - DTDS

To describe what elements and attributes may be used in an XML document, a corresponding
Document Type Definition (DTD) can be defined and associated with the document. Figure 2.5
shows the DTD for the order document from Figure 2.4.

<!ELEMENT order (customer, product+)>
<!ATTLIST order id CDATA #REQUIRED>

<!ELEMENT customer (name)>

<!ELEMENT product (name)>
<!ATTLIST product id CDATA #IMPLIED>

<!ELEMENT name (#PCDATA)>

Figure 2.5: The document type definition for the sample order document.

It defines element <order> to contain a <customer> and one or more <product>
elements (quantifiers are specified using expressions known from regular expressions such as +,
* or ?). Both elements further contain <name> elements which in turn consist of text (indicated
by the special #PCDATA keyword).

Attributes are defined in <!ATTLIST> items specifying the name of the element they belong
to, their datatype (CDATA in the example, i.e., text), and optional modifiers specifying if an

24 2.5 Scratching the Surface of XML and Some Related Technologies

attribute is required or optional (i.e., implied) for an element. In the example, attribute id is
defined for elements <order> and <product>, mandatory for the former, optional for the
latter.

To associate the DTD stored in order.dtd with our order document, we add a special line
at the beginning of the XML document as shown in Figure 2.6.

<!DOCTYPE order SYSTEM "order.dtd">
<order id="294">
...

</order>

Figure 2.6: Associating a DTD to an XML document using the DOCTYPE declaration.

When an XML parser processes a document with an associated DTD; it automatically checks
if all rules given in the DTD are followed. If not, an error is reported. To distinguish XML
documents with and without DTDs, an XML document that only obeys the basic rules of XML
(e.g., every opening tag must have a closing tag, attribute values must be enclosed in quotes, etc.)
but does not have an associated DTD is said to be well-formed. If a document—in addition to
being well-formed—obeys the rules in an associated DTD, it is said to be valid. Thus our sample
document in Figure 2.4 is valid with respect to the DTD given in Figure 2.5.

2.5.3 XML 2
���

EDITION

When people started composing XML documents, they realized that elements with the same
name but different DTD definitions cause problems. Assume you want to compose the two
documents shown in Figure 2.7; what definition could you give for element <address> in the
resulting document?

One solution to this problem would be to rename one of the address tags to ensure unique-
ness of element names. Since the DTD of that document might not be under your control and a
modification of elements is undesireable in general, a more powerful solution was needed: XML
Namespaces. The concept of namespaces was already successfully applied to solve a similar
problem in programming languages. If several types with the same name need to work together,
namespaces are used distinguish the different types (e.g., C++ or .NET namespaces, Java pack-
ages, etc.).

You can think of a namespace as a unique id for a DTD that is added to all elements
of the DTD to be able to trace elements back to its original DTD. In fact, the namespace is
added as prefix to elements resulting in the following form for element names: 	 namespace-
identifier
 : 	 element-name
 , e.g., for a namespace order and element customer, this
would result in order:customer.

The remaining question is how to ensure uniqueness of namespace names (i.e., make sure
nobody else also uses namespace order). By convention, namespaces are based on URLs—
and the unique association of URLs to their owning principals (e.g., companies, organizations,
persons, etc.) is implicitly ensured because IANA (Internet Assigned Numbers Authority)

Chapter 2: Web Engineering Review 25

<customer>
<name>Clemens Kerer</name>
<address>
<street>Hetzendorferstrasse</street>
<number>93/6/8</number>

</address>
</customer>

(a)

<producer>
<name>Orange Juices Inc.</name>
<address number="23a" street="Orange Street">
</address>

</customer>

(b)

Figure 2.7: Two XML documents with conflicting definitions for the <address> elements.

globally manages URL names. Thus to define a new namespace, you take your URL (e.g.,
http://www.orangejuices.com/) as prefix and append the desired namespace name to
it. You are locally (i.e., within your organization) responsible for the uniqueness of all names-
paces using your URL as prefix. Principally, however, namespace names can be arbitrary strings
and technically nothing keeps you from using any other string for your namespace. Not obeying
the above convention quickly renders the idea of namespaces unusable since name clashes are
likely to appear again. Following this convention, we would reformulate the above example as
http://www.orangejuices.com/order:customer.

The element name including the namespace prefix is also called fully-qualified element name
as opposed to the element name without namespace prefix (i.e., ’customer’) which is called the
element’s local name. If you would now write a namespace-qualified XML document, it would
be a tedious task to keep typing the URL-based namespaces all over again and again. As a
consequence, abbreviation for namespace names can be introduced using the special xmlns
syntax shown in Figure 2.8.

If you do not specify a namespace prefix for an element, it is said to belong to the default
namespace. This namespace is implicitly always defined but can also be overridden as shown in
line 2 of Figure 2.9. The default namespace is changed to http://www.orangejuices.
com/order by not specifying an abbreviation for the associated namespace. All elements
without an explicit namespace prefix are then assumed to lie in the specified namespace.

A final remark on namespaces: namespace abbreviations are valid always withing the scope
of the element in which they are defined and can be overridden in nested elements. In Figure 2.10
this mechanism is used extensively.

26 2.5 Scratching the Surface of XML and Some Related Technologies

<o:order id="294"
xmlns:o="http://www.orangejuices.com/order">

<o:customer>
<o:name>Clemens Kerer</o:name>

</o:customer>
<o:product id="21">

<o:name>Orange Juice</o:name>
</o:product>

</o:order>

Figure 2.8: The sample XML document using namespace abbreviations.

<order id="294"
xmlns="http://www.orangejuices.com/order">

<customer>
<name>Clemens Kerer</name>

</customer>
<product id="21">

<name>Orange Juice</name>
</product>

</order>

Figure 2.9: The sample XML document overriding the default namespace.

<o:order id="294"
xmlns:o="http://www.orangejuices.com/order"
xmlns="http://www.orangejuices.com/order2">

<customer>
<name xmlns="http://www.orangejuices.com/name">

Clemens Kerer
</name>

</customer>
<o:product id="21"

xmlns:o="http://www.orangejuices.com/product">
<n:name xmlns:n="http://www.orangejuices.com/name">

Orange Juice
</n:name>

</o:product>
</o:order>

Figure 2.10: The sample XML document using and overriding several namespace abbreviations.

Chapter 2: Web Engineering Review 27

In the <order> element, the order namespace is bound to o and the default names-
pace is overridden with namespace order2. Consequently, the <o:order> element is in
the order namespace while the customer element lies in the order2 namespace. The cus-
tomer name element again overrides the default namespace with a name namespace. Similarly,
the <o:product> element binds the product namespace to prefix o—resulting in a different
meaning of the o prefix of the product and order elements.

2.5.4 THE EXTENSIBLE STYLESHEET LANGUAGE - XSL

The Extensible Stylesheet Language specification is further structured into three parts:

� XPath. XPath is a selector language to select arbitrary parts of an XML document. This
could be a single element, a set of elements, text values or any other part of an XML
structure. XPath takes advantage of the tree structure of an XML document and uses an
addressing scheme based on the branches of the tree (e.g., select all nodes with a given
name, select all successors of the current node with a given name, etc.). Predicates further
enrich the semantics of such expressions by adding conditions such as only selecting ele-
ments with a given attribute, with a given successor element, or with a given text content.� XSL Transformations (XSLT). XSLT is a transformation language that provides rules to
transform an input XML document into a different output representation such as another
XML format or plain text. XSLT consists of so-called templates which transform a set of
nodes selected by an XPath expression into some other representation. XSLT processing
always starts at the root element of an XML document. In each template, recursive calls
to other templates (again based on XPath expressions or names) can be embedded which
results in an inherently recursive processing of XML documents.� XSL Formatting Objects (XSL-FO). XSL-FO is an XML vocabulary for specifying
page-oriented formatting information such as page dimensions, margins, headers, foot-
ers, page numbers and much more. The basic idea is to first specify the properties of a set
of master pages, then arrange a set of references to the master pages to form the sequence
of pages in the document, and finally, fill the pages with the actual content. A common
application of XSL-FO is to generate RTF or PDF documents from XML content. Though
currently not implemented in any browser, XSL-FO capable Web browsers can also be
envisioned in the future.

In XSuite, we mainly use XPath and XSLT to transform input XML documents into other
markup languages such as XHTML. Both parts are relatively complex on their own rendering a
more detailed tutorial here impractical. In Figure 2.11 we provide a sample stylesheet to convert
the order document from Figure 2.4 into an XHTML page.

The stylesheet first defines a template for the <order> element and creates a skeleton
HTML document in its body. It then recursively invokes the templates for the <customer>
and product elements. In the case of a customer, we output the name of the customer enclosed

28 2.5 Scratching the Surface of XML and Some Related Technologies

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- start with ’order’ element -->
<xsl:template match="order">

<html>
<head>

<title>Order Document</title>
</head>
<body>

<!-- continue with customer -->
<xsl:apply-templates select="customer" />

<!-- continue with product -->
<xsl:apply-templates select="product" />

</body>
</html>

</xsl:template>

<!-- transform ’customer’ element -->
<xsl:template match="customer">

<h1><xsl:value-of select="name" /></h1>
</xsl:template>

<!-- transform ’product’ element -->
<xsl:template match="product">

<h2><xsl:value-of select="name" /></h2>
<p>Product id = <xsl:value-of select="@id" /></p>

</xsl:template>

</xsl:stylesheet>

Figure 2.11: The sample XSLT stylesheet to transform an order document into an XHTML page.

Chapter 2: Web Engineering Review 29

by <h1> tags. In the case of a product, we do the same using <h2> tags for the product name.
We also add a paragraph with some text indicating the value of the product identifier (i.e., the
attribute id of the product element).

The result of processing the sample order document with this stylesheet is illustrated in Fig-
ure 2.12.

<html>
<head>

<title>Order Document</title>
</head>
<body>

<h1>Clemens Kerer</h1>
<h2>Orange Juice</h2>
<p>Product id = 21</p>

</body>
</html>

Figure 2.12: The result of applying the sample XSLT stylesheet to the order document.

2.5.5 XML SCHEMA

XML Schemas are the successors of document type definitions to overcome several problems
with DTDs: DTDs are not XML document themselves and thus cannot be processed with the
same tools; DTDs support only a small number of datatypes; nesting of elements can be con-
strained in a rudamentary way and namespaces are not supported. The XML schema recommen-
dation is based on many other schema languages such as XML Data [102], Document Content
Description (DCD) [30] and Schema for object-oriented XML (SOX) [42] that tried to solve
parts of the problems with DTDs.

The specification consists of a part on datatypes and a part on structures. The datatype part
defines a complete type system for XML documents including simple types (i.e., string-based
types) and complex types. The latter support element nesting, attributes, and mixed content. Fur-
ther inheritance rules are defined to support extension and restriction of already existing types.
The part on structures deals with how elements can be nested and how this nesting can be con-
strained (e.g., how often an element may appear as child, whether it is required or optional,
whether it may be substituted by another element, whether the sequence of child elements mat-
ters, etc.).

XML schemas are regular XML documents living in a fixed schema namespaces and fully
support namespaces by so-called target namespaces. A target namespace indicates to which
namespace an element specified in this schema belongs, effectively solving the name clash prob-
lem mentioned before. An excellent introduction can be found in the XML schema primer [53].
A sample schema for the order document of Figure 2.4 is shown in Figure 2.13.

XSuite uses schemas as part of the contract to specify the structures and data types of the
components used and introduces several operations on schemas to compose several components
or generate documents from the schemas.

30 2.5 Scratching the Surface of XML and Some Related Technologies

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.orangejuices.com/fruit"
xmlns:f="http://www.orangejuices.com/fruit">

<xsd:element name="order">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="f:customer"

minOccurs="1" maxOccurs="1" />
<xsd:element ref="f:product"

minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"

use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="customer">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="f:name" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="product">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="f:name" />

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"

use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="name" type="xsd:string" />

</xsd:schema>

Figure 2.13: A sample schema for the order document.

Chapter 2: Web Engineering Review 31

2.5.6 OTHER X TECHNOLOGIES

Apart from XML, namespaces, DTDs, schemas and XSL, other interesting XML related tech-
nologies exist in the context of Web engineering. XForms are an extended form specification
that is much more powerful than HTML forms. XInclude is an emerging technology supporting
composition of XML documents. XLink is a new linking specification that supports the defini-
tion of links outside the actual XML document (again a separation of concerns issue), defines
multi-directional links and one-to-many links. RDF, DAML, OIL are specifications related to se-
mantic information on the Web. XML Query is the counterpart to the Structured Query Language
(SQL) in the XML world. XML Signature and XML Encryption add security to XML documents.
VoiceXML supports voice input and output.

Though these technologies are interesting and important to Web engineering in general, they
do not directly affect the core XGuide principles. For this reason, we provide no further details
but refer the reader to their official hompages available via http://www.w3.org.

32 2.5 Scratching the Surface of XML and Some Related Technologies

CHAPTER 3

RELATED WORK

Reviewing has one advantage over suicide:
in suicide you take it out on yourself;

in reviewing you take it out on other people.

George Bernard Shaw

As the Web evolved over the years, so did the methodologies for Web engineering. This
process is very similar to the evolution of software engineering methodologies. The need for a
structured process model for the development of software became obvious during the software
crisis [117]: ad-hoc development, missing requirements engineering and a plenitude of program-
ming languages and environments led to unmanageable software and projects constantly exceed-
ing their budgets. Many of these problems also hold for early Web development. Web projects
kept missing deadlines (and still frequently do), ad-hoc development resulted in overly complex
systems and maintenance was exceedingly difficult since HTML fragments were distributed over
templates files, program code and even content repositories.

In the field of software engineering, new methodologies appeared with the victory of object-
oriented programming over modular techniques. Once object orientation was sufficiently un-
derstood, component-oriented and aspect-oriented approaches introduced even higher levels of
abstraction and separation of concerns. The corresponding developments in Web development
are object-oriented approaches that view a Web page as an object composed from several smaller
objects and support inheritance and reuse. More recently and driven by the rapid acceptance
of XML, separation of concerns (namely content, layout and application logic) are the dom-
inant features of Web engineering methodologies paralleling component and aspect-centered
approaches in software engineering.

In this chapter, we discuss Web engineering approaches and compare them with the sce-
nario outlined in this work. We first introduce a taxonomy for Web engineering methodologies

33

34 3.1 A Taxonomy of Web Engineering Methodologies

capturing the key characteristics. A detailed discussion of existing methodologies follows. A
comparison and classification of the presented approaches shows their applicability for different
kinds of Web projects and points out how the approach taken in this thesis differs from them.

3.1 A TAXONOMY OF WEB ENGINEERING METHODOLOGIES

This section introduces the characteristics used to classify Web engineering methodologies pre-
sented in subsequent sections. They are independent of any particular domain or implementation
technology. But as always, some methods and technologies lend themselves more easily towards
integration with a technology or domain than others. The selected characteristics cover a broad
range of requirements a modern Web engineering method has to deal with. It is important to em-
phasize, however, that an evaluation on such an abstract level necessarily ignores the specialties
of a methodology and can only be used as a high-level indicator rather than the only source for a
decision for a real-world Web project.

The first and one of the most important characteristics found in all Web engineering methods
is Separation of Concerns. A strict separation of concerns is desirable both during development
and even more during the maintenance phase to decouple tasks, avoid redundancies, and support
reuse of design and implementation artifacts. Web applications integrate a growing number of
disjoint concerns; most commonly the actual content, the layout information and the application
logic. For the purpose of this evaluation we take into consideration the following five concerns
commonly found in today’s Web applications: content (data), site structure, graphical appearance
(layout), application logic, navigation.

� The content is the actual information to be published. The data is kept in files, relational
databases, object stores or repositories for semi-structured data.� The site structure defines all the Web pages in the application and how the content is
distributed among them. For large projects, it can define subsections (e.g., for internal vs.
external, public or restricted access, etc.).� The graphical appearance adds the formatting instructions to the actual content on the
pages. This often means to transform the content into HTML pages. It is desirable, how-
ever, to support other output formats such as WML, text or PDF documents.� Integration of and interaction with the application logic is crucial as many Web application
get more and more dynamic. The application logic deals with the ability to dynamically
generate pages and process user interaction in business processes on the back-end.� The navigation concern describes how pages are related and what navigation paths are
offered to users. Typical navigation structures include non-contextual structures such as
sequential or hierarchical menu bars for quick access to different parts of a Web site and
contextual structures such as indexers, guided tours and indexed guided tours based on the
user’s current context (e.g., search result, selected page, etc.).

Chapter 3: Related Work 35

In addition to these five concerns, there are several others that are likely to gain in impor-
tance in the future. These include full device-independence, security and meta-data. Device-
independence is not only about supporting multiple output formats but also how to support the
same business processes on multiple devices with varying capabilities. The security concern
talks about the necessary credentials a user must have in order to access a page or trigger a user
interaction. Meta-data currently attracts many researchers in the context of the W3C’s semantic
Web [145] initiative. Though the usefulness of meta-data on the Web is not completely clear
to date, it is obvious that meta information can improve the searching and information retrieval
process. As such, a separate concern might talk about the available or required meta-data for
Web applications, sites, pages or even dedicated items on a page. These concerns are currently
not commonly found either in Web engineering methodologies or in Web applications. For this
reason we do not consider them in the review of related work directly but include support for
these concerns in the evaluation.

We measure the degree to which a method supports separation of concerns by giving the
number of how many of the above five concerns are explicitly supported in the method. We
further add (+) to this number to indicate that a method supports additional concerns or supports
a concern much better than the other methods. We add (-) if a method identifies a concern but
falls short in explicitly supporting it as a separate concern.

The second criterion we use in this evaluation is Reuse of Artifacts. Reuse is one of the major
contributors to improve quality, support faster development cycles and ensure consistency. This
property of a methodology is often closely related to its ability to separate concerns and make
them reusable as separate entities. However, this is not always the case. While a method might
identify the layout as a separate concern, the use of HTML fragments to add layout information
is often page-specific and does not allow for layout reuse.

We define three levels of reuse: on the highest level (3), all artifacts can be reused. Depending
on the method, this refers to both design and implementation artifacts. On level (2), some artifacts
can be reused, but the method also requires non-reusable artifacts. On the lowest level (1), no
explicit support for reuse is provided.

Another criterion we include in the evaluation is Complexity of a method. This criterion is
especially important to set a context for the measurements of the other criteria. Some develop-
ment methodologies are intentionally kept simple for educational use or beginners in the field
of Web engineering. Obviously, they cannot achieve the same degree of evaluation results com-
pared to methods that are not concerned about complexity. Thus all other evaluation results must
be viewed relatively to a method’s complexity value. The complexity value includes whether a
method is easy to understand, the complexity of the tasks proposed by the method, the required
knowledge to apply the method and whether a method uses standards rather than proprietary
notations, diagrams, models or technology.

We rate a method of having complexity (1) if it is easy to learn and apply, does not have a
steep learning curve in terms of new concepts and mainly relies on existing, well-known tech-
nologies. Methods with a medium complexity (2) require acquisition of some new knowledge
and extend existing technologies to match their requirements. High complexity (3) methods,
finally, use whatever techniques they see fit to achieve their goals as best as they can. They are

36 3.1 A Taxonomy of Web Engineering Methodologies

not concerned about complexity and assume a developer is willing to learn the new notations,
diagrams and techniques that come with the method.

An important aspect in all state-of-the-art Web applications is the ability to dynamically
create pages and process user input in (sometimes legacy) business processes. Integration of
Application Logic covers both of these more and more important issues.

We say a method has low (1) support for dynamism if no support for the integration of
dynamically generated pages and user input processing is included in the method. Medium
support (2) means that there might be a set of pre-defined operations that can be used for dynamic
page creation (e.g., a set of templates to include database queries). These operations, however,
are not extendable and no user input processing relies on any sort of CGI programs. A high
support (3) in this category means that a generic way of integrating dynamic content into pages
exists; ideally accompanied by a way of defining an explicit interface between the back-end
business application and the user input in a Web page.

The next criterion distinguishes between user-centric and data-centric approaches. Most
existing methodologies are rooted either in software engineering or in database design. Since
the early development of dynamic Web applications was driven by the requirement to integrate
(relational) database content, several methodologies start with the data model at hand and map it
into a Web application. Other methodologies focus on an object-oriented data model of the Web
application. Another category of approaches is based on user expectations and user analysis. In
this scenario, a Web application is modeled to meet the expectations of a user community and
the actual implementation in terms of software modules and data organization is derived from
that.

Often, a user-centric, requirements-driven approach is preferable to creating the Web site
according to the underlying data model. In some data-intensive publishing scenarios where the
goal is to publish a large amount of highly structured and consistent information, the data-centric
approach might be the better choice. We thus classify a method in being either user- or data-
centric.

Transformability (Model to Implementation Mapping) indicates how difficult it is to map the
design of a Web application (i.e., conceptual models, layout templates, etc.) to an actual imple-
mentation. We do not focus on any special implementation technology but consider the generic
mapping process to any implementation. Depending on the level of abstraction a method is oper-
ating on and the availability of development tools supporting the method’s tasks, we distinguish
three different levels for this characteristic:

� Level 1 - Conceptual Modeling Only: in this approach a conceptual and often very expres-
sive model can be formulated. The methodology only lives in the conceptual space and
does not provide any support to transform the conceptual design into an implementation.
It is left to the developer to implement such a model in terms of an existing technology.� Level 2 - Partial Generation: in this case, the conceptual model is analyzed and the actual
Web application can be partially generated from it. Usually a set of templates and skeleton
files that need further manual adaptation or extension are generated.

Chapter 3: Related Work 37

� Level 3 - Automatic Generation: here the complete Web application is automatically gen-
erated from the model and does not need any further manual adaptation. In this scenario,
any update or evolution task takes place on the conceptual level and the Web site is merely
generated from the updated model.

Methodologies with a high degree of abstraction frequently do not provide implementation
support. A lower level of abstraction, on the other hand, renders automatic application generation
possible. This becomes especially important in the maintenance phase when updates, extensions
and modifications have to be integrated. With only a conceptual model, no support for integrating
changes is possible; using the second approach, care has to be taken to not overwrite previous
manual changes; if the model is automatically transformed into the final application, only the
re-generation of the application is necessary to reflect the updated state of its model.

A characteristic that reflects the rapidly changing requirements and short life-cycles on the
Web is Concurrent Development. It reflects the ability of a method to reduce the overall deve-
lopment time by decoupling and doing as many tasks as possible in parallel. Most existing Web
engineering methodologies do not support parallel development but stick to a strictly sequential
process. This property only focuses on the implementation of the Web site; during the design,
parallel development is hardly possible and usually not desirable.

We again distinguish three levels of parallelism in Web engineering methodologies. On the
lowest level (1), all tasks are executed in sequence and depend on each other. No parallelism is
possible. On a medium level (2), at least some tasks can be executed in parallel. The highest
level (3) requires that most of the tasks involved in creating the actual Web implementation can
occur concurrently.

Finally, we include the Additional Value characteristics that covers any special properties and
features the other characteristics did not cover. The span of existing Web engineering method-
ologies is so broad, a classification can never include all properties of every method. Thus we
add this characteristic to capture any special value a method has. A value of (1) means that a
method has no or insignificant additional value other than included in the other characteristics.
A value of (2) means that there are some useful and interesting features that are superior to what
other methods provide. Finally, a value of (3) means that a method provides many additional
features and concepts that do not fit in the above classification but contribute significantly to the
usefulness of the method.

We considered but ruled out Process coverage and Applicability as further criteria. Process
coverage gives an indication of how much of a Web application’s life cycle is covered by a
methodology. Several of the methodologies presented below do not explicitly include phases
such as feasibility, requirements analysis or maintenance. At a closer look, however, it becomes
obvious that all of them understand the importance of these phases but (mostly for space reasons)
did not include them in a detailed discussion. It would thus be misleading to include such an
evaluation criterion here. Applicability discussed the potential application domains of a method.
After evaluating the methods, it became clear that this criterion can be described in terms of the
data-centric vs. user-centric property and the level of support for the integration of application
logic. The more user-centric a method is and the better integration for application logic it pro-
vides, the broader its application domain is. A data-centric method, on the other hand, that does

38 3.2 A Discussion of Existing Approaches Towards Web Engineering

not support dynamic page generation, is only applicable if large amounts of static information,
e.g., in classical Web-based information systems, is published.

In the remainder of this chapter, we discuss several Web engineering methodologies with
respect to these criteria. We evaluate each of them with respect to the criteria presented above
and compare the methods to each other at the end of the chapter.

3.2 A DISCUSSION OF EXISTING APPROACHES TOWARDS WEB

ENGINEERING

This section starts with the discussion of the most widely known and referenced methodolo-
gies including HDM/OO-HDM, RMM and extended RMM. These methodologies have a strong
background in hypertext and database research respectively. While they form a solid foundation
for our discussion, they are both relatively old approaches and do not take into account newer
requirements such as non-structured information domains, functionality-centric dynamic Web
applications or device independence.

Several newer and less-known approaches are proposed in literature and presented next. They
include a diverse range of perspectives from user-centered methods to purely object-based mod-
els.

3.2.1 THE RELATIONSHIP MANAGEMENT METHOD - RMM

The relationship management method (RMM) [77, 79] views hypermedia as managing relation-
ships between information entities. The RMM data model (RMDM) is inspired by and based on
the hypertext design model (HDM) [62] and its successor HDM2 [63]. Unlike HDM which is a
data model in its own right, RMDM is embedded in a methodology that shows how to create and
use the data model.

RMM method defines seven phases starting with the definition of the entity relationship (E-
R) design. The well-documented E-R approach [139] was chosen since it is easy to use and
already commonly applied in database design. Just as for databases, the diagram defines entities
representing the actual information items that have attributes/fields holding the content. Also
derived from database design, one-to-many and many-to-many relationships among entities can
be introduced. In the next step, the entities are further split into slices that group those attributes
of an entity that will appear together on the final Web page. Structural links are added to navigate
the slices within an entity. The third phase deals with navigational design. Navigational design
is based on the inter-entity relationships in the E-R diagram and includes a variety of access
structures such as indices, guided tours, and groups. The output of this phase is the relationship
management data model (RMDM) that enriches the E-R diagram by all access structures (inter-
and intra-entity) that have to be implemented.

The RMDM is the input for the conversion protocol design that defines how the elements of
the RMDM are mapped to objects in a particular development environment. These objects are

Chapter 3: Related Work 39

then integrated in the user interface design phase with the actual layout information that describes
how RMDM objects shall be visually represented in the final page. The runtime behavior design
phase defines how navigational access structures are implemented and how content is generated
dynamically. Finally, the construction and testing phase completes the development process and
turns the output of the previous phases into the final Web application. This last step can happen
automatically with appropriate tool support.

Based on their experiences with RMM, Isakowitz et al. presented an extended version of the
RMM in 1998 [78]. The two major changes were the extension of the slice model to m-slices [77]
and the replacement of the navigation model by the application diagram. The concept of m-slices
overcomes the restriction of the original RMM that a slice can only contain attributes of a single
entity. The original design resulted in overly complex navigation structures since no page could
contain information from more than one entity. Also users easily lost trace of the navigation
context. Further m-slices can be composed with other m-slices to form larger information items
and are the core component in RMM. The application diagram was introduced to modify the
development process to not require a strict top-down approach. First, the requirements analysis
phase missing in the original version was explicitly added to the development process. A top-
down view of the application diagram then contains all the Web pages and the hyperlinks between
them. The m-slice design then defines the content components and how they are related. Next,
a bottom-up approach towards the application diagram is undertaken by adding all identified
m-slices to the diagram and defining the links between them. Depending on how much of the
application is already implemented and whether the requirements were correctly captured in m-
slices, the result of the bottom-up application diagram should match the envisioned top-down
version. Also navigation modeling is better supported now. Hyperlinks consist of a content
anchor, a starting point, a target and an ending point.

The relationship management method defines a sequential process that covers all phases of
the life-cycle of a Web application and starts out at an abstract level that gets refined towards the
actual implementation in every step. RMM is not bound to any concrete implementation technol-
ogy or platform; a case tool called RMCase supporting the methodology exists [46]. Separation
of concern is an issue in terms of content, structure, layout and navigation. Reuse is supported
on the level of m-slices. In [78] the authors use a database report generator to add HTML layout
to the RMDM objects. This approach falls short in fully separating the layout information and it
remains vague how application logic is integrated.

The most limiting factor of the RMM definitely is its tight coupling with relational data mod-
els. While RMM works great if all content is stored in a database and the information domain is
highly structured, semi-structured data such as XML documents are not supported. Considering
that RMM was first presented in 1995, it is not surprising that XML, device-independence, or
logic centric Web applications are not a major concern.

3.2.2 ANALYSIS AND DESIGN OF WEB-BASED INFORMATION SYSTEMS

An early approach towards the analysis and design of Web-based information systems that uses
RMM (see 3.2.1) as foundation is presented in [137]. The authors point out that RMM and

40 3.2 A Discussion of Existing Approaches Towards Web Engineering

OOHDM (see 3.2.3) are mainly suited for information dissemination but largely ignore user
interaction, application logic and maintenance. Thus the method focuses on the architectural and
functional aspects of a Web site explicitly including the maintenance costs; it is not concerned
about the graphical appearance. The proposed method consists of two approaches: a static and
a dynamic approach. The static approach exploiting RMM’s entity relationship modeling and
the dynamic approach using scenarios to trace how and by whom resources are accessed and
updated.

After the requirements analysis, the E-R analysis of the problem domain identifies entities
and relationships and creates an E-R model. The entities in the model are further classified as
agents, events and products. Following this terminology, agents are actors that conduct events;
the outcome of an event is a product. Members of a committee would be actors, a meeting
would be an action and the meeting notes would be the product. This distinction is necessary
to better structure and execute the maintenance activities later. In the next step, the scenario
analysis captures potential users, their goals, the Web resources needed and how the system is
going to interact with the user. Scenario tables detail on how a user can achieve its goals. They
list the sequence of steps (a navigation path), the agent executing a step, the action and the Web
resource(s) involved . They also build the backbone for the system’s architecture design.

The architecture design is a data model diagram that again exploits RMM’s data model. It
also contains the navigation structures for the final site and maps entities to actual Web resources.
As in the first versions of RMM, entities cannot be combined and placed on a single page. The
method supports three navigation methods: guided tour, index, and indexed guided tour. The
scenario design and the architecture design are performed concurrently and cross-checks between
the two models ensure consistency. A final step defines the attributes for the Web resources.
Attributes are meta-information on the resources themselves (e.g., last modified date, managed
by, expires, etc.) that is used for maintenance activities. A notification system keeps track of
the expected and actually performed changes and can report missing maintenance activities or
changes in the system.

Meta-level links are introduced to express a semantic relationship between Web pages outside
the pages themselves. For this purpose, the method requires an extended Web server and client.
The meta-navigation information is carried in the header of the HTTP request and response
messages and pursue the same ideas as the out-of-line links recently presented in the context of
the W3C’s XLink/XPointer recommendations. The problem with this sort of meta-links is that
they cannot be linked to a specific position or semantic context in a document. Thus such a
link only establishes a relationship between pages but does not have a dedicated source or target
within the pages themselves.

Though this approach also suffers from the requirement of a structured information domain,
it identifies several important aspects that are still rarely found in other methodologies. First the
application logic is explicitly considered (though no concrete hint is given how it is modeled or
implemented). Second the user of meta-data (in this case for maintenance) is included in the
method. Finally, the authors state the need for meta-level links that do not require modification
of the source or target documents; a requirement that is, even today, rarely considered.

Chapter 3: Related Work 41

3.2.3 OBJECT-ORIENTED HYPERTEXT DESIGN METHOD - OOHDM

The object-oriented hypertext design method (OOHDM) [131–133] uses abstraction and com-
position mechanisms in an object-oriented framework to support the description of information
items, navigational patterns and interface transformations. OOHDM splits the development pro-
cess into four phases supporting incremental modeling, i.e., each phase adds new object-oriented
models or enriches existing models from previous phases.

The conceptual design phase defines an object-oriented model of the application domain. It
is only concerned about the semantics of the domain and does not include any user or task related
considerations. The model itself is a slight extension of the well-known class diagrams used in
UML. The only difference is that relationships can be given an explicit direction and attributes
of classes can have enumeration types (e.g., a sequence of value types rather than a single type).
This is similar to defining collection types over an existing type system.

The main focus of OOHDM is on the navigational design. The navigational design defines
an application as a navigational view over a conceptual domain model. The navigational model
contains navigational classes including nodes, links, access structures and indices. The impor-
tant concept of a node defines what parts of the conceptual model are aggregated in a single node
and can be compared to m-slices in RMM. Navigational nodes can also be thought of modeling
the actual page structure of a Web application. A query language similar to the one presented
in [88] is used to express what a navigational node should comprise. Links between nodes are
derived from the relationships defined in the conceptual model. Once the navigational model is
completed, the navigational classes are grouped in so-called navigational contexts. A context de-
scribes how the navigational model is accessible to the user, e.g., using guided tours, indices, etc.
Contexts further structure the navigation space and form the context model. An approach how
navigation designs can be synthesized is presented in [74]. First user profiles and corresponding
scenarios are created; then a simple diagram of navigational paths is created which is then refined
in a partial and, eventually, a final context diagram.

In the next step an abstract representation of the user interface is created using abstract data
views (ADVs) [41]. An abstract data view defines user interface classes that describe a page as a
composition of primitive user interface classes such as buttons, images, and text. The structural
composition is enriched by defining how user interface events are handled and what events result
in a change of the currently visible view of the navigational model.

The final phase of OOHDM is the implementation of the interface classes in terms of an
actual development environment and platform. OOHDM does not propose or define any imple-
mentation technology or platform but suggests to store all modeling artifacts (conceptual classes,
navigational classes, contexts, etc.) in one or more databases. Navigation contexts are then im-
plemented as stateful objects that always keep track of the currently visible page and the other
pages in the same context (e.g., to correctly switch to next or previous pages in a guided tour).
The integration of an layout information is envisioned using HTML templates that are enriched
by function calls to objects of the conceptual model to retrieve and embed dynamically calculated
values.

OOHDM-Web [130] is a development environment for OOHDM that is based on the CGI
Lua scripting language and a module to connect to relational databases. These databases store

42 3.2 A Discussion of Existing Approaches Towards Web Engineering

all information and modeling artifacts and provide a library of functions to complete HTML
templates with dynamic information.

The high level of abstraction of OOHDM enables it to be used in a broad variety of applica-
tion domains. OOHDM is missing an analysis phase in the process and also does not explicitly
consider testing, maintenance or evolution. Separation of concerns is only achieved on the con-
ceptual level but lost on the (suggested) implementation level where content, application logic
and layout information is again intermixed. Reuse of conceptual classes is supported by sepa-
rating the conceptual classes from the navigational nodes. The abstract data views also benefit
from the reuse of existing interface objects. The suggested implementation environment does not
support separation of concerns or reuse of implementation artifacts. The transformability from
the conceptual model to the implementation space remains unclear.

3.2.4 A SCHEMA-BASED APPROACH TO WEB ENGINEERING

Unlike RMM and OO-HDM, the schema-based approach towards Web Engineering presented
in [100] takes a document-oriented view of the development process. The creation of a Web site
is considered a combination of document engineering and software engineering. The method,
however, only considers the document engineering part including detailed content structuring,
quality factors for content, and content adaptation for selected target audiences and contexts
(language, culture, etc.).

The development process comprises phases for analysis, design, authoring and production.
While maintenance and evolution is not mentioned at all, testing is seen as integral and continuing
task throughout the process (though no details are given on how and what should be tested). The
phases themselves are again document-centric. As such the analysis phase talks about editorial
guidelines and writing standards but does not include functional requirements, target devices,
or platform decisions. The design and authoring phases are said to be inseparable and often
indistinguishable and thus effectively collapsed. Both phases, however, are split in into two steps:
design/authoring-in-the-large and design/authoring-in-the-small. As a consequence, it would
be more appropriate to separate the in-the-large phase from the in-the-small phase rather than
authoring from design. According to the authors, the production phase should merely consist of
turning the designed hypertext components into an actual Web site.

The method is based on the classic hypertext model of (information) nodes and hyperlinks.
Kuhnke et al. [100] introduce different classes of nodes and link types that are designed during
the authoring-in-the-large and design-in-the-large phase. The result of these phases are patterns
and templates that can later be used to create instances of nodes and links that correspond to
actual Web pages and hyperlinks. The in-the-large phases can to some degree be compared to
the idea of having a contract for the content concern or an XML schema describing a class of
XML instance documents. This approach is different from most other methods in that it focuses
on the structure and content of the actual information nodes rather than using a given, underlying
data model and transforming it into a hypertext model.

Separation of concerns is identified as an important issue; however, the content is clearly
the dominant concern. Other concerns such as layout and navigation information are added by

Chapter 3: Related Work 43

so-called expanders, macro-like code fragments that operate on the content. The idea of having
standardized catalogues of transformers to solve standard problems for standard parameters can-
not make up for that. Reuse is supported where the design process allows it. Nodes and link
types can be reused and expanders can be applied to multiple nodes to solve the same standard
problem, also requiring the nodes to conform to a standard set of parameters. In extension of
the original hypertext model, links play an important role and navigation paths and structures
between nodes are well supported on the conceptual level. Unfortunately, their implementation
again relies on expanders strictly limiting the approach to standard solutions.

The decision to include only the static, document-oriented part of the development process in
the methodology allows tools to automatically generate (static) Web sites from hypertext mod-
els. SchemaText is a commercial tool that supports this approach. The major drawback of this
decision is that only static Web sites can be supported. Hardly any Web site or application today
consists of only static pages. On the contrary, more and more Web applications are developed
that do not contain static information at all but generate all pages dynamically. The integra-
tion of application logic with hypertext concepts turns out to be one of the key requirements for
state-of-the-art development methodologies and is completely ignored in [100].

3.2.5 SWM - A SIMPLE WEB METHOD

The simple Web method (SWM) [40] tackles the problem that many developers find methodolo-
gies too complex and hard to understand [10]. SWM is primarily intended for educational use
and for inexperienced users. The fundamental philosophy for this approach besides being simple
is to strongly support the early phases of the life-cycle of a Web application, provide tool support
and traceability of changes.

SWM distinguishes five phases. The first phase, planning, is concerned about feasibility
and project management. The following analysis defines the target audience, the content to be
presented, the market situation and constraints such as copyright, developer expertise, etc. In the
design phase, the structure, the visual layout and the navigation style is defined and results in a
set of storyboards. In the building phase, the actual Web application is built. The maintenance
phase finally covers all activities after the initial deployment of the Web site.

The presented method extends existing software engineering techniques by a navigation chart
and page mockups. No more detailed description of the phases or the development process is
given. Consequently, SWM operates on a very abstract level that does not provide much guidance
for developers.

A more innovative approach is taken in order to support the whole life-cycle of the application
and project management. The need for process modeling, project management, quality manage-
ment, and configuration management tools interacting with development tools to appropriately
support the developer is stated. PAWS, the Project Administration Web Site, is the attempt to
combine several such tools in an interactive Web site accessed and updated by the developers.
PAWS supports a simple process model, action minutes, deliverable and tasks. Developers and
managers can obtain a detailed status on all tasks and deliverables. In a small case study, most

44 3.2 A Discussion of Existing Approaches Towards Web Engineering

participants understood the SWM mostly or completely. Action minutes and task management
were found to be the most useful aspects of PAWS.

Due to the high abstraction level and only vague definition, SWM does not easily fit in the
categorization scheme presented in 3.1. It does not touch separation of concerns, support of reuse
or its applicability. It does, however, support the full life-cycle of a Web site and practicability is
good in that the method is easy to understand and apply. Unfortunately, no existing standards or
tools are explicitly supported.

Regarding many of today’s application scenarios, SWM cannot be considered the appropriate
methodology. It leaves out too many crucial requirements such as concrete modeling diagrams,
support for reusable components and separation of concerns. Since SWM was designed to be
simple and for educational use, it probably also was never intended for complex Web projects.
SWM contributes and outdoes other approaches integrating process and project management into
the actual development process.

3.2.6 THE OBJECT-ORIENTED-HYPERMEDIA METHOD (OO-H)

Like other approaches ([37,105]), the object-oriented hypermedia method (OO-H) [70,71] looks
at a Web application as an object-oriented software artifact. It extends traditional object-oriented
development techniques with two new views: the navigation view and the presentation view. The
navigation view extends a class diagram to include link information between information items,
the presentation view provides default rules to transform content into the final output.

The OO-H design process starts with a class diagram modeling the information domain. Then
several navigation access diagrams (NADs) are added, one per target device or audience. Based
on the NADs and a set of default rules, abstract presentation diagrams (APDs) are created to help
the developers map the information to the desired target language. A pattern catalogue provides
user-centered solutions for presenting information and capturing user interaction. Other phases
such as analysis, testing or maintenance are not explicitly covered in the design process but can
easily be added.

The abstract presentation diagram separates five concerns contributing to the final Web ap-
plication: the content (tStruct), the layout (tStyle), the user input (tForm), client-side scripts
(tFunction), and views/windows shown to the user (tWindow). This clear separation is based on
XML files for each concern that are backed by a custom document type definition (DTD). The
DTD defines the valid elements and interaction styles for the Web application. This is neces-
sary to enable automatic generation of a default implementation. On the other hand, it restricts
the practicability of the approach and does not support alternative ways of defining information
and/or interaction. For instance, all content has to be provided in as a collection of objects and
links with specified attributes. Such a DTD can be seen as page description language that ar-
ranges a given number of objects and links on a page. It does not support other structures or the
introduction of new elements. Transformation rules in an OCL-like syntax (object constraint lan-
guage, [121, 149]) can be used to transform artifacts, e.g., a template in the APD into an HTML
page.

Chapter 3: Related Work 45

OO-H builds on existing standards (XML, DTD, OCL, etc.), defines a sequential develop-
ment process similar to other object-oriented approaches, clearly separates concerns and pro-
vides high transformability. Among the goals of OO-H are flattening the learning curve and
decreasing the cost of Web development. While the latter is likely to be achieved, the method as
a whole remains rather complex, especially regarding the definition and syntax of transformation
rules. Also the integration of and interaction with application logic is not clearly defined though
the tForm concern mentioned above provides some support for user input. It remains unclear,
however, how the claimed device independence features are achieved, how the input is handed
to the back-end business processes and how the application logic interfaces for interacting with
the content templates work. OO-H is, at least conceptually, one of the most state-of-the-art Web
engineering methodologies.

3.2.7 THE FIVE-MODULE FRAMEWORK FOR INTERNET APPLICATION DE-
VELOPMENT

The five-module framework for Internet application development [48] proposes a novel archi-
tecture for Web applications. It extends the commonly used three-tier architecture (presentation,
business logic, and system layer) into five modules: the presentation, UI component, business
logic, data management, and system infrastructure module. The underlying theme of this work is
the tight coupling of the various aspects involved in Web development. In the five-module frame-
work, a looser coupling and an object/component-based approach towards Web development is
envisioned resulting in the ability to independently evolve the business logic.

The newly added user interface component layer consists of a set of objects that represent a
page in terms of its user interface. The presentation layer then transforms each such object into
its corresponding HTML representation. The claimed benefit is that UI components can be added
dynamically while not modifying the presentation information. This is only true if all possible
components are known in advance or only components of already existing types are added. We
doubt that this behavior justifies a separate layer.

A further decoupling is attempted by introducing the data management layer that represents
a system- and storage-independent view of the code and data in the database. While this allows
changing the underlying database system, the benefit over existing standards such as ODBC or
JDBC is questionable.

Finally, a broker facility is introduced to decouple any direct method invocations between
modules. Thus, any object in a module first contacts the broker to connect to another object
offering the desired service. While this approach facilitates the modification and upgrade of the
application at runtime, it also introduces a significant overhead and performance penalty.

Though the five-module framework proposes a new way of developing Web applications, it
cannot be considered a methodology. It also ignores many crucial factors such as other output
formats than HTML, other data sources than relational databases, and navigation design artifacts.

46 3.2 A Discussion of Existing Approaches Towards Web Engineering

3.2.8 THE WWW DESIGN TECHNIQUE - W3DT

The World Wide Web Design Technique (W3DT) [23] consists of two parts: a modeling part that
supports graphical models of the Web site and a computer-based design environment for the im-
plementation of the model site. This is in contrast to the approaches presented so far that mainly
focus on supporting the modeling part. One of the goals of W3DT is that the models should be
clear and intuitively comprehensible at all times. Another important aspect is its modularity that
supports distributed development, hierarchical decomposition of a site, and the development of
distributed Web sites.

Another important difference is that unlike RMM and OOHDM, W3DT does not start with a
data or domain model but is user-centric in that it models the structure and pages of the final Web
site and derives the data requirements from them. It also introduces another level of abstraction
by introducing the W3DT meta model that defines how the modeling primitives are related (e.g.,
a site consists of a set of diagrams, each consisting of pages, layouts and links, etc.).

A concrete Web site is modeled using various modeling primitives such as pages, indices,
forms and links to create an instance of the meta model that represents the structure of the site.
Further, W3DT distinguishes between static information and dynamic information (i.e., informa-
tion that is collected or created at runtime) already in the design phase. Similarly, a distinction
between static and dynamic links is made.

The methodology does not distinguish separate phases; the building of the site model is the
main task. Once the site model is finished, it can immediately be implemented in W3DT’s deve-
lopment environment called WebDesigner. Web pages are implemented using HTML templates
from which skeleton HTML files are generated that have to be completed in an HTML editor.
Separation of concerns is supported only marginally. Layouts are separated from the actual page
but consist only of attributes for the background color, the background image, a header line and a
footer line. While the simplicity of the method makes it easy to understand and the models sim-
ple, it is not suitable for the much more sophisticated requirements of today’s Web applications.

The extended WWW design technique [12, 129] adds a new development process including
an analysis, design, implementation and recurring evolution phase. It also conceptually separates
the content production from its technical separation (i.e., the roles of the content manager and the
programmer are separated). Further, user input processing is explicitly included but only to the
extent as user actions directly manipulate the content of a database. More sophisticated interfaces
to business process and their application logic are missing. The simplicity of W3DT models
is dropped in favor of more complex diagrams. A new notation explicitly includes priorities,
responsibilities and expected maintenance effort on the page level.

However, key requirements such as separation of concerns or support for reuse are not ad-
dressed. The method also states that it is intended to be integrated into higher level methodolo-
gies. An implementation environment similar to the one included in W3DT is missing.

3.2.9 LIFEWEB: AN OBJECT-ORIENTED MODEL FOR THE WEB

LifeWeb [119, 144] proposes an object-oriented model for the Web that not only models single
Web sites but also the Web in its entity. It further tries to capture the dynamic nature of the

Chapter 3: Related Work 47

Web (i.e., its fast growth, rapid changing information services, etc.). LifeWeb tries to model this
dynamism by introducing the concept of life. Similar to the concepts in genetic programming,
it tries to exploit fundamental principles of life such as reproduction, interaction, existence and
evolution. Objects are enriched with object genes that carry meta-information about the object,
the class hierarchy is compared with the species hierarchy in biology and so on.

The model consists of four levels: the instance, genetic, meta-genetic, and meta-meta genetic
level. The instance level comprises the actual Web documents as seen by the client, the genetic
level deals with the document’s object (in the case of LifeWeb XML) representation on the server,
the meta-genetic level defines the DTDs for the XML documents, and the meta-meta genetic level
defines the grammar to express DTDs.

The evolution process is incremental and defined by the evolution on every level. Evolu-
tionary thresholds model the likeliness of evolutionary actions. Only if a certain threshold is
reached, evolution becomes possible and changes are propagated to higher levels. Thus, a DTD
for an XML document can effectively change if the threshold for such a change is reached. Ac-
cording to the model, all documents based on this DTD would be changed, too.

Evolution actions happen in response to user interaction or long-term behavior (e.g., how
often a page is requested, which content is popular, etc.) and cumulate until a evolutionary
threshold is reached.

Technically, LifeWeb formulates publication on the Web as an object-oriented activity using
the same model for single sites as for modeling the Web itself [120]. It introduces structural
and presentational subclasses but maps the object hierarchy to a set of XML documents. Sepa-
ration of concerns is achieved to some degree as result of the distinction between structural and
presentational subclasses.

LifeWeb is not a full methodology since it only proposes a model but no concrete develop-
ment process. Though it is a fact that the Web evolves and changes all the time, it is questionable
whether it is an advantage to think of a Web site as an autonomously evolving entity. Usually, this
automatic behavior is not desired; however, the concept of evolutionary thresholds can also be
mapped to access statistics, Top 10 page listings, and similar artifacts that are commonly found
on today’s Web sites.

Reuse is supported to the extent that the class hierarchy supports it. As mentioned above,
LifeWeb does not cover the whole life-cycle of a Web application but merely the modeling and
implementation part. Analysis, test, or maintenance are missing.

3.2.10 CONCEPTUAL MODELING AND WEB SITE GENERATION USING GRAPH

TECHNOLOGY

In [69] the authors discuss an approach towards developing Web sites that exploits the power of
graph theory. As in many state-of-the-art methodologies, a conceptual model is used to present
the application domain and understand the relationships and constraints. Correctly the authors
point out that such a model is well suited as a means of communications among the roles involved
in the development process (content managers, graphics designers and programmers).

48 3.2 A Discussion of Existing Approaches Towards Web Engineering

Similar to the hypertext model where nodes are connected via hyperlinks, [69] models a Web
site as a Web of vertices and edges. The modeling approach is based on EER/GRAL [80] and
thus again especially suited for structured information domains. The conceptual graph model
also provides type information for the class of possible Web sites conforming to the conceptual
model; as a consequence automatic consistency checking is possible. All instances of Web sites
that conform to the conceptual model are said to be in a valid state with respect to the model.

Once the conceptual model is stable, an actual instance of the graph model is created by
acquiring and populating the conceptual model with actual content. It is interesting to note that
not only the conceptual model but also the concrete instances (i.e., the content) is modeled and
stored as a graph. XML documents are used as generic data format though the mapping of
the semi-structured XML data to the EER/GRAL based conceptual model is only possible if
the document type definition of the XML content is significantly close to the structure of the
conceptual model. In other words, only XML documents that represent the conceptual model
can be used.

The site generation phase follows the modeling phase. In this phase the graph’s content is
extracted using graph queries and written into text files. The result of the queries is a set of so-
called XML bags, XML documents with a specific structure reflecting the content in the graph.
This intermediate step is necessary to consecutively apply XSL transformations to the content
and generate the final Web pages.

Apart from neglecting requirements analysis, testing and maintenance, the main point of
criticism is that only static pages are generated. Although the authors claim that their ideas can
be extended to also cover dynamic pages, it remains unclear how this could be done in a modular
way. Separation of concerns is only supported for content and layout and these artifacts can be
reused. Navigation is directly inferred from the edges in the graph which roughly corresponds
to the approaches taken in other methodologies. The application of the same concept (i.e., graph
modeling) for both the conceptual and the implementation model is remarkable since it gives
you automatic consistency checking for free. With the inclusion of dynamic pages, however, this
becomes much more difficult.

3.2.11 THE WEB MODELING LANGUAGE (WEBML)

The Web Modeling Language (WebML) [34, 35] is a language for high-level, conceptual mod-
eling of Web sites. The model-driven development approach is based on distinct orthogonal
perspectives manifested in four models: the structural, the hypertext, the presentation, and the
personalization model.

The structural model captures the content (i.e., data model) of the site using entities and
relationships. It uses existing notations such as E/R models or UML class diagrams for this task.
The hypertext model consists of the composition and navigation sub-models. The composition
sub-model specifies what pages will make up the site and what content is included in the pages.
The navigation sub-model talks about the relationships of pages and content units in terms of
contextual and non-contextual links. Contextual links are derived from the relationships in the
data model and connect semantically related items of information. Non-contextual links simply

Chapter 3: Related Work 49

connect non-related pages (e.g., a link to a site’s search engine that is reachable from all pages).
Next, the presentation model describes the graphical appearance in an abstract XML syntax thus
remaining independent of the target output language and device. Finally, the personalization
model supports the definition of users and user groups and the dynamic adaptation of the site
based on high-level business rules (e.g., the shopping behavior of a user can automatically make
him member of different user groups).

The proposed development process is an iteration of requirements collection, data design,
hypertext design in-the-large and in-the-small, presentation design, user and group design, and
customization design. When the requirements are established, the data design models the un-
derlying information domain. As other approaches, WebML is especially well suited to highly
structured data domains and data-centric applications where rich relationship and constraint in-
formation is available. It defines six units to model data representation based on single or multi-
ple entities, relationships and lists of information items. The hypertext design in-the-large talks
about the whole site, the pages that should be included and their relationships. Hypertext design
in-the-small is consecutively concerned about single pages and page-level refinements. The nav-
igation model created in the hypertext model can be used to express semantically rich navigation
structures such as multi-step indices, filtered indices, indexed guided tours and rings. The pre-
sentation design adds the presentation information to the pages and the user and group design
creates user profiles based on the intended personalization behavior. Eventually, the customiza-
tion design takes advantage of the user profiles and defines business rules that specify how the
site is to be customized based on the user profiles and customization requirements.

Given a structured information domain, WebML achieves many of the desired characteristics
presented in 3.1. It clearly separates the concerns content, structure, presentation, navigation,
and personalization. Especially personalization is not covered by any of the other methods. The
level of abstraction reaches from high when modeling the site in-the-large down to the imple-
mentation level where the Toriisoft development tool turns a WebML specification into an actual
implementation. Reuse of design artifacts is not as clearly supported as in other approaches. Fur-
ther, the modeling process only supports a limited number of concepts (e.g., the six data units,
the abstract layout specification, the pre-defined classes of links, etc.). While this makes it easier
to deal with the method and to create a supporting tool, it might fall short in covering the so-
phisticated requirements of today’s Web applications. Also a discussion of dynamically created
pages and how to integrate (existing) application logic is missing.

In other areas, however, WebML proposes innovative concepts such as the notion of a valid
hypertext that support automatic checking of a Web site for design flaws. Further, the explicit
support for generating a default hypertext from the specification to validate the model with a
working prototype at all stages is a valuable feature. It strongly supports rapid prototyping and
the exploration of design alternatives. Proposed extensions also include the introduction of op-
erations to model user-triggered write access to the underlying (relational) data repository, i.e.,
allowing users to actively modify the content of the site.

50 3.2 A Discussion of Existing Approaches Towards Web Engineering

3.2.12 WEBCOMPOSITION: AN OBJECT-ORIENTED SUPPORT SYSTEM FOR

THE WEB ENGINEERING LIFECYCLE

WebComposition [56, 58, 64, 65] is an object- and component-oriented model for Web deve-
lopment. The changing characteristics of Web application from mere information systems to
full-fledged software applications and the fast pace of changes on the Web result in WebCompo-
sition’s goal to strongly support reuse and maintenance scenarios. A better modeling of the Web’s
coarse-grained, document-oriented structure to preserve design decision artifacts and component
definitions is identified as critical success factor.

To achieve its goals, WebComposition defines component-based Web Engineering as a dis-
ciplined Web Engineering approach that supports reuse of components and domain knowledge.
WebComposition supports components on different levels of abstraction. Its components can be
as fine-grained as single attributes (e.g., the font attribute for an HTML tag) or as large as whole
pages. Components have simple properties (e.g., key/value pair attributes, text content, etc.) and
a generateCode()method to produce the components representation in the target language.

A component is called primitive if it is not further decomposed; composite components con-
sists of one or more other (primitive or composite) components. Further prototype inheritance
is supported using dedicated prototype components other components inherit from. This is sim-
ilar to having HTML template files and deriving instance pages by refining the template. The
inheritance and composition hierarchy of all components and together with their definitions are
stored in the component repository effectively capturing the design artifacts required to generate
the Web site. The component repository [59] uses an extensible architecture consisting of the
actual component stores, meta-data stores and the actual repository tool that combines compo-
nent stores with meta-data stores to provide sophisticated query and retrieval mechanisms for
components.

The development process starts with the creation of the WebComposition model contain-
ing all components and their inheritance and aggregation relationships. While WebComposi-
tion suggest a not further specified structured approach that incrementally refines the model, it
also acknowledges the requirement and need for a tool to re-engineer existing HTML designs.
Component factories are used to create default content component from an underlying relational
database. When the initial model is created, a refinement and abstraction process towards the
final component model concludes the design phase. If the model is fully specified, the model can
be executed at runtime or, in the case of more static information, file resources containing the
Web pages can be generated and stored in the file system that acts as a cache for the Web server.
An important feature of the WebComposition system is that it supports evolution and mainte-
nance activities at runtime. As soon as the component specification is updated (and existing file
resources re-generated), the changes are reflected in the final Web site. This is possible because
the component repository serves as store for the design changes as well as a source for the Web
page delivery process.

WebComposition components are defined in the Web Composition Markup Language
(WCML) [57, 60], an application of the XML. A component has a unique identifier, a set of
attributes, can inherit from one or multiple prototype components and can itself be a prototype

Chapter 3: Related Work 51

for other components. Components can override inherited attributes and be parameterized re-
sulting in a component template mechanism that supports the implementation of design patterns
on top of WCML components. WCML further supports the definition of hyperlinks on the con-
ceptual level by linking to other components. These links can be defined outside the components
themselves, resulting in a powerful concept to define different navigation structures for a given
component model. The decorator pattern is used to extend existing content components with
device-specific layout information. Thus the same content can be presented differently depend-
ing on the target device.

The WebComposition system provides a powerful component and composition technology
that supports reuse and maintenance of components. Separation of concerns is not directly sup-
ported; layout information can be separated using the aforementioned decorator pattern. The
design process supports a smooth transition from the component model towards the implementa-
tion. The component model, however is close to the implementation since it already contains the
final content and layout information. A real conceptual model and higher levels of abstractions
are not supported.

3.2.13 SYNTHESIS OF WEB SITES FROM HIGH LEVEL DESCRIPTIONS

The work reported in [33] attacks the problem of increased complexity of Web sites and their
development from a different angle than the research discussed so far. It defines a framework to
automatically synthesize domain-specific formal representations of a Web site to make its design
more methodical and maintenance less time consuming. Information processing is abstractly
represented by computational logic. To prevent developers from having to deal with the logic
representation directly, domain specific dialects of a logic are defined.

The development is structured as a simple three-level approach. An informal problem de-
scription is mapped to an intermediate representation in a logic dialect and eventually mapped
to an actual implementation. The content and structure of the Web site is separated from the
layout which is provided by stylesheets. When the intermediate representation is finished, the
final Web site can be automatically derived from it. The content itself is modeled using predicate
logic. The distribution of the content on Web pages and links among pages are modeled the same
way. Thus developers still have to deal with logic and inference rules, though their complexity is
reduced by the introduction of domain-specific predicates.

Navigational structures and paths are described using concepts from transactional logic.
Paths are described by defining the valid sequences to visit Web pages. Sophisticated rules
such as ’page x must always be visited before page y’ can be enforced using this concept. For
large Web sites, however, the rule base gets large. An important concept in the context of links is
the distinction between links and operations. Links represent traditional hyperlinks that connect
two (static) Web pages. Operations on the other hand refer to executable (CGI) programs that
execute some application logic, take input parameters and return a dynamic page as result. This
distinction is not found in other approaches but can help to better model the integration of the
application logic and the overall workflow of the Web application.

52 3.2 A Discussion of Existing Approaches Towards Web Engineering

This approach is operational rather than declarative, given a description of how to assemble
the final Web page from rules and functional entities. It achieves separation of concern for con-
tent and layout by using stylesheets and cleanly defines the interfaces to the application logic. A
conceptual model, other than the domain-specific predicates, is missing; the informal description
is directly converted into the intermediate representation. Though the intermediate representation
serves as input for the automatic generation of the final site, it is doubtful whether the complexity
of this representation and the absence of a conceptual model achieve the desired effect of making
design more methodical and easing maintenance.

3.2.14 THE EXTENSIBLE WEB MODELING FRAMEWORK (XWMF)

As several other methods, the Extensible Web Modeling Framework (XWMF) [96,97] proposes
an extensible, conceptual model of a Web site consisting of classes and objects similar to con-
cepts in object-oriented software development. Unlike the other approaches, however, XWMF is
an application of the resource description framework (RDF) [101] and defines an extensible set
of RDF schemata and descriptions for defining Web applications. The idea behind using RDF
is to not only get syntactic interoperability as when using XML directly but also get a machine-
understandable description of the semantics of the data and the meta-data of a Web application.

XWMF models a Web application as a single graph-based data model facilitating validation
of the semantics of the model based on first order logic. The framework defines generic Web
application schemata that are specialized into Web application schemata for a given problem
domain. These schemata provide the vocabulary for Web application descriptions that represent
the conceptual model of the Web site in terms of components. The descriptions are eventually
converted into the final Web application.

Components in XWMF can either be simplexons or complexons. Simplexons are leaves in
the graph of a Web application description and contain the actual content. Complexons represent
the structure of the application by grouping simplexons and other complexons the larger enti-
ties. These constructs are closely related to the primitives and composites in WebComposition
(see 3.2.12).

Separation of content and layout is only achieved to some degree. To add different layout
styles to the same content component, simplexons have to inherit from the content component
and enrich it with the layout information. Thus the content can be reused but a clean separation
is not provided. Further each such simplexon only contains a small part of the actual layout
information (e.g., a table data or row in an HTML layout; the table itself is defined in another
complexon). As a consequence of this fragmentation, reuse of layout information is not possible.
Also the integration of application logic is done via extensions of existing complexons. Again
the problem of fragmentation and the lacking ability to reuse implementation code limit the
approach. The only form of implementation reuse is that multiple objects of the same class use
the same implementation code. Definition of navigational structures on the conceptual level is
not supported.

Chapter 3: Related Work 53

3.2.15 STRUDEL

The Strudel system [54] takes a data management perspective on Web Engineering. It starts
with the definition of a data model and applies data base management techniques to transform
the data model into an actual Web site. Unlike most other approaches, Strudel uses a semi-
structured data model based on labeled directed graphs and thus avoids the shortcomings of
relational models. Data sources are wrapped by translator components that integrate the content
into Strudel’s internal, graph-based data structure. As Strudel’s data model is targeted at the
Web, it contains atomic data types such as URLs, images and text. The authors also state that
the integration of multiple data sources is a key success factor and likely to become ever more
important in the future.

The key idea in Strudel is to separate the modeling of the data, the site’s structure and the
site’s appearance (i.e., layout) from each other. the Strudel methodology starts with a semi-
structured data model, the data graph. This graph is similar to approaches such as WebCom-
position 3.2.12 that use objects and components containing key/value pairs of information. A
so-called site definition query is applied to the data graph to create the site’s structure. This
query defines the pages the site will comprise and the content they included. The result of this
query is the site graph that is similar to the conceptual models in many other methods except that
it is not a relational but a semi-structured model. Since the site graph contains both the content
and the structure of the site, it can be transformed into the final Web site by applying Strudel’s
HTML template language.

Strudel’s flexibility mainly stems from the StruQL, Strudel’s query language. The complete
Web site can be created from several queries, each specifying a smaller part of the overall site.
Also different views of the same site or evolution scenarios of a Web site are expressed in creating
new or updating existing site queries. Strudel applies graph-based structures for all its models
thus facilitating the definition of integrity constraints on top of this structure and incremental
updates by evaluating only selected queries.

The application of formatting information is supported by Strudel’s HTML template lan-
guage that applies enriched HTML fragments to the site graph. Such a fragment consists of a
traditional HTML code extended by format, conditional and enumeration expressions. Similar to
the approach taken in Active Server Pages (ASP) and Java Server Pages (JSP), these expression
support if-statements and loops in the HTML fragment and are resolved at page generation time.

As with other methods that use HTML fragments to create the final Web page, layout reuse is
hardly possible since the page creation process depends on many such HTML fragments scattered
over many nodes in the site graph. Another major drawback of Strudel is that the method does
not support dynamic page creation or the integration of existing application logic. Thus Strudel
is only applicable to pages with rarely changing, static content. This type of Web sites seems to
get less and less frequent while dynamic sites grow in importance.

Strudel makes an important contribution in using a semi-structured data model rather than
a relational one. However, the missing support for dynamically generated pages and the use
of HTML fragments limit its benefits to a small number of Web sites. The site graph is an
important model to communicate the site’s structure and distribution of content. Navigation and

54 3.2 A Discussion of Existing Approaches Towards Web Engineering

linking issues are not covered at all in Strudel and rely on the definition of HTML links in the
layout fragments. According to the authors, several potential users of Strudel also requested a
graphical representation or easier way to define queries in StruQL.

3.2.16 WOOM - THE WEB OBJECT ORIENTED MODEL

In [36] the authors present a strong case for a structured Web engineering methodology. They
correctly claim that often Web development is focused on the fine-grained implementation de-
tails and happens in an ad-hoc manner. Software engineering principles such as requirements
analysis, specification and design are often ignored. This situation largely stems from the lack
of appropriate abstraction and modeling concepts for Web applications. Also the need for a
technological solution that bridges the gap between high-level Web site designs and the actual
implementation technology is identified.

The authors define a World Wide Web software process that starts with a requirements anal-
ysis and specification phase. The needs of the stakeholders are assessed in terms of contents
(the actual information), structure (the organization of information in pages), access (navigation
and access structures to the information) and layout (the graphical appearance of the contents).
Other aspects such as the application logic, multiple output devices or security requirements
are not covered. Since WOOM is an object-oriented approach, the structuring of a Web site is
modeled using object-oriented concepts: views and relationships. Views select a subset of the
contents to be presented and relationships establish semantic connection among such contents
(e.g., is-a relationships).

The requirements are further refined in the design phase. The overall structure of the Web
site, the navigational structures and information organization are described. The design effort can
use various design methodology for hypermedia applications such as the aforementioned HDM,
RMM, or OOHDM approaches. Together with the advantages of these modeling techniques,
WOOM also inherits their drawbacks — most prominently the missing transformation of the
conceptual model into an implementation model.

The implementation phase is further structured into several steps: first the conceptual model
is mapped onto primitives of the implementation technology. Second, the actual content is added
to the site, i.e., the site is populated. Finally, the site is delivered by making it accessible to
clients using standard WWW technologies. Again the semantically poor and low-level Web
technologies require the developer to ’manually’ bridge the gap between the conceptual model
and the actual implementation.

Unlike many other approaches, the maintenance phase receives significant attention in
WOOM. Maintenance is identified as a crucial phase for Web engineering and the WOOM pro-
cess due to the dynamic nature of Web sites, even more than in the case of traditional software
engineering. Drawing from the field of software engineering [67], WOOM distinguishes correc-
tive (bug fixes), adaptive (adjustments to the outside environment) and perfective maintenance
(improvements and extensions). In XGuide, we propose a slightly different but essentially com-
patible characterization of maintenance activities.

Chapter 3: Related Work 55

WOOM abstracts from the low-level implementation details and introduces a fully object-
oriented framework for modeling Web sites. The main entities can be arranged in direct acyclic
graphs (DAGs) to express their dependencies and relationships. Containers group sets of re-
sources to make them accessible using a common navigation or access structure and external
resources can be integrated using references to them. WOOM also provides mechanism to work
on the low-level HTML implementation details (e.g., attributes for the BODY tag). Every WOOM
resource can appear in several contexts depending on its position in the site DAG. Eventually,
the translate operation of a resource turns the WOOM entity into an HTML file. This translation
operates on the site graph using a set of transformers on the resources. This concept of trans-
formers is the central mechanism to keep the contents separate from its various occurrences on
the site and its graphical representation.

The WWW Object Oriented Model is a direct extension of software engineering methods to
the Web engineering field. It emphasizes the need for a structured and methodological approach
towards Web development and postulates a conceptual model that can be smoothly translated into
an implementation. The WOOM approach is strictly object-oriented and does not take advantage
of recent Web technologies such as XML or XSL. Separation of concerns is only covered for
the contents, the structure of the Web site, and the graphical appearance. The integration of
application logic and dynamic pages is not discussed at all.

3.2.17 COMPARISON OF THE PRESENTED WEB ENGINEERING METHOD-
OLOGIES

Based on the comparison of the Web methodologies presented in this chapter, we can make
several interesting observations. First, most methods are strongly data-centric and the data model
(relational or object-oriented) of the problem domain usually drives the development process. To
achieve high user acceptance and good usability, we believe it is beneficial to think of the user’s
needs first and define the structure and functionality of the site based on the target audience and
their expectations. Then the data model and structure of the target domain can be modeled in the
required granularity and integrated with the user scenarios.

Another observation is that the integration of existing application logic and its interaction
with the Web application is poorly specified in most cases. Methods that rely on object-oriented
frameworks frequently require a runtime process to transform the object hierarchy into a Web
page. These methods can easily integrate additional application logic, though detailed interface
specifications are rare. Another simplistic approach to integrate application logic is to re-route a
complete HTTP request to some external process that subsequently calls back into the develop-
ment framework or independently sends a response to the client. If a clear separation of concerns
and the ability to develop in parallel is a goal, this is not acceptable.

Parallelism and time-to-market, which are key foci of this work, are only poorly addressed
in the presented methods. Most frequently the development process is a strictly sequential set
of steps where each step depends on the result of the previous step. Also sequences of process
steps are commonly iterated to further refine a model or integrate maintenance and evolution
activities. It is evident that a Web engineering process can never be fully parallel. At least at the

56 3.2 A Discussion of Existing Approaches Towards Web Engineering

Table
3.1:

C
om

parison
of

W
eb

E
ngineering

M
ethodologies.

C
oncerns

R
euse

C
om

plexity
A

ppl.L
ogic

U
ser/D

ata
T

ransform
ability

P
arallelism

A
dditional

R
M

M
(3.2.1)

4
(-)

2
3

1
data

3
1

1

W
eb-B

ased
Inf.System

s
(3.2.2)

3(-)(-)
1

3
2

data+
user

2
1

2

O
O

H
D

M
(3.2.3)

5(-)
2-3

3
2

data
1-2

1
2

Schem
a-B

ased
A

pproach
(3.2.4)

4(-)(-)
2

2
1

data
3

1-2
2

SW
M

(3.2.5)
2(-)

1
1

1
user

2
1

2

O
O

-H
(3.2.6)

4
2-3

3
1

data
3

1
2

Five
M

odule
Fram

ew
ork

(3.2.7)
3(-)

1-2
1-2

2
data

1
1-2

1

W
3D

T
(3.2.8)

3(-)
1

2
1-2

user
3

1-2
2

L
ifeW

eb
(3.2.9)

3
1-2

3
1

data
1

n/a
2-3

G
raph

Technology
(3.2.10)

3(+
)

2
3

1
data

1-2
1-2

2-3

W
ebM

L
(3.2.11)

4(+
)

2
3

1
data

3
1

2-3

W
ebC

om
position

(3.2.12)
2(+

)(+
)

3
2

2
data

3
1

2

H
igh-L

evelD
escr.

(3.2.13)
4(+

)
2

3
2

data+
user

3
1

1(+
)

X
W

M
F

(3.2.14)
3(+

)
1-2

2-3
2

data
2

1-2
2

Strudel(3.2.15)
3(+

)
2

3
1

data
2-3

1
1(+

)

W
O

O
M

(3.2.16)
4

2
3

1
data

3
1

2

Chapter 3: Related Work 57

beginning, a joint effort has to be made to create a conceptual view of the envisioned Web site or
application. Only then and only if appropriate supporting concepts are available, the work can be
parallelized. In this thesis, we try to extend the level of parallelism as far as possible, reducing
the number of sequential, dependent tasks.

Separation of concerns is the main vehicle to achieve this goal. Many of the existing Web
engineering methodologies fall short of achieving full separation of concerns. A prominent ex-
ample is if a method uses some HTML-based template language that is enriched by special tags to
embed content. Clearly, formatting and content information are intermixed in such an approach,
resulting in a loss of reuse potential and subsequently prohibiting device independence and a
flexible and easy-to-change graphical appearance. A similar problem exists with approaches that
embed application logic directly into the content. More subtle examples of not cleanly separated
concerns include the derivation of the structure of a Web site from the underlying data model, the
implicit modeling of navigation information as part of the layout, and storing layout information
(e.g., line breaks) in content databases.

We strongly believe that XML and its related standards are the technologies of choice to
achieve separation of concerns on the World Wide Web. As a consequence, this work focuses
on deploying XML technologies for Web engineering. We further exploit the advantages of
fundamental concepts from software engineering such as interfaces, component-based develop-
ment and design-by-contract for Web engineering. These ideas are key in our attempt to support
parallel development throughout the development process.

The remainder of this thesis presents our approach towards contract-based, concurrent Web
development with XML technologies. We first present an overview of XGuide, our method of
parallel Web development, before detailing on the concepts and technologies involved in the
XGuide process. We further discuss a tools suite supporting the XGuide development process
and early results from applying XGuide to the Web site of the Vienna International Festival.

58 3.2 A Discussion of Existing Approaches Towards Web Engineering

CHAPTER 4

XGUIDE - A NOVEL APPROACH TOWARDS

XML-BASED WEB ENGINEERING

The important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.

Sir William Bragg

There won’t be anything we won’t say to people
to try and convince them that our way is the way to go.

Bill Gates

Having analyzed existing Web engineering methods, this chapter presents XGuide, our ap-
proach towards XML-based, concurrent Web engineering. XGuide promotes a parallel process
that reduces development time and extends the concept of separation-of-concerns to a new level
by introducing concern specifications called contracts. Today the prevailing topics in Web engi-
neering research are conceptual modeling of Web applications and support for separation of con-
cerns. XGuide further adds standards conformance, strong support for the integration of legacy
systems and application logic, and user-centered design to the list. Finally, XGuide proposes
a way to overcome the gap between the conceptual and implementation world. All conceptual
artifacts and concern contracts form the basis for the generation of implementation skeletons that
can be directly deployed.

This chapter first gives an overview of the XGuide development process using a small ex-
ample before each phase is discussed. We focus on the methodological and conceptual aspects
of the process and defer a detailed discussion of concern contracts and contract composition to
the next chapter. Chapter 5 presents a formal model of contracts, their representation in XML,
extensibility properties of contracts and the semantics of contract composition.

59

60 4.1 An Overview of the XGuide Methodology

4.1 AN OVERVIEW OF THE XGUIDE METHODOLOGY

Before we introduce the phases of the XGuide methodology, we briefly discuss what a method-
ology is and how XGuide fulfills the requirements of a methodology. Kronlof et al. [99] define a
method as consisting of the following (as presented in [40]):� An underlying model, or set of models, which is the class of objects represented, manipu-

lated and analyzed by the method (e.g., a data model).� A language, or set of languages, which is the notation technique for model(s) (e.g., a data
model can be represented by an entity relationship diagram).� A process model, which is the method’s defined stages and the ordering of these stages.� Guidance, which is the manuals, handbooks, and guides which explain the method.

XGuide complies with this definition. It defines a set of conceptual models on various levels
of abstractions and iteratively refines them towards the implementation model. XGuide relies
on XML as a notation for the models and defines a partially concurrent development process.
The discussion of the phases in the XGuide process is a handbook on how to use the method
and its artifacts in real-world projects. XGuide is also consistent with an extended definition
from [16] where the method’s input and output and the underlying philosophy are added to the
list of requirements.

A methodology, however, is not sufficient. In the previous chapter, several methods for mod-
eling, understanding and building Web applications were presented. Still a recent survey [10]
shows that they are not used. Almost one-quarter (24.6 percent) of the respondents (compa-
nies from general and multimedia industry) stated that they do not use a methodology at all for
building their Web presence. The main reason is not so much the difficulty in understanding the
methods but that they are perceived as too cumbersome to use for real-world projects. Of the
companies who use a methodology to develop Web applications, only 2 out of 19 companies use
Web engineering methodologies such as HDM, OO-HDM or RMM. One of the results of the
survey is that tool support for a method is necessary—otherwise the method is considered ’use-
less’. A typical example for such a method is OO-HDM. Three-quarters of these companies use
in-house methods rather than existing ones. The reasons given for this behavior are that existing
methodologies are not cost effective and too time intensive. Still most of the participants felt
that a structured approach would improve the current situation and 77% expect the importance
of methods to increase.

With the problems of today’s Web development practice and existing methodologies in mind,
we designed the XGuide process to be simple enough to be understood and used by Web devel-
opers and powerful and flexible enough to cover large and complex domains. Special emphasis
lies on the modeling and design phase, the concurrent implementation and the recurring mainte-
nance and evolution activities. We also provide a tool suite to support the XGuide process that
is presented in Chapter 6. Figure 4.1 depicts the activity diagram [27, 122, 128] for the XGuide
process.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 61

Figure 4.1: The XGuide Development Process

62 4.2 Requirements Analysis

At the beginning of the process, a detailed requirements analysis creates a common vision of
the goal and a shared vocabulary and domain understanding among all the parties involved. At
the end of the requirements phase, all requirements are mapped to a high-level sitemap. Once
the requirements are known, feasibility considerations clarify whether the project can be handled
with the available resources (e.g., human resources, knowledge, hardware, technologies, money,
etc.) and time. The requirements captured in the high-level sitemap (called the requirements
diagram) is then refined and expanded to cover all design decisions, components, and depen-
dencies and represents a full-fledged sitemap and conceptual model of the Web application to be
developed. From this model, a set of contracts is derived that act as specifications for the separate
pages and components. The contracts encapsulate all information about the aspects present in
a given Web page (e.g., content, structure, layout, API, etc.) and enable developers to work on
them in parallel. Once such an aspect (or concern) is implemented, it can be validated against
the contract. All concern implementations are combined and tested locally before they are de-
ployed to the production environment. We distinguish between maintenance and evolution. As
indicated in the diagram, maintenance deals with intra-concern activities that are independent of
other concerns. Evolution, on the other hand, is an inter-concern task and can be regarded as a
miniature project in itself; for major evolution scenarios, not only the design and the contracts
are adapted but the process starts anew with a feasibility analysis.

We use a simplified version of the Orange Juices, Inc. Web site as an example throughout
this chapter to demonstrate how XGuide is used. The Web site backbone consists of a home-
page, the product catalogue, a sitemap, and a search facility. The homepage displays up-to-date
information about new products or special offers depending on the current date. The product
catalogue lists all available products in an overview page and provides links to more detailed
product pages. The sitemap is a static page that offers general information about the site and the
information and services available. On the search page, a full-text search engine is used to search
all pages for keywords. This simple example is only used to demonstrate the XGuide concepts;
our experiences using XGuide for a real-world Web project are presented in Chapter 7.

The remainder of this chapter presents the XGuide process with its phases and introduces the
terminology used in each phase.

4.2 REQUIREMENTS ANALYSIS

As in many other software and Web engineering approaches, the requirements analysis phase is
the initial phase in the XGuide process. Several roles such as project managers, content man-
agers, graphic designers and programmers are involved in a Web project. Project managers are
concerned about the scope and time frame of the project and have to make sure that the project
deadlines and objectives are met. Content managers are responsible for the information to be
published on the Web. Graphic designers deal with the visual representation and formatting of
the content on the Web (e.g., based on a corporate identity policy, accessibility guidelines for the
Web, etc.). Programmers provide the application logic that implements the business processes
and selects, transforms and combines the content and the formatting templates. The XGuide

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 63

process defines a domain analysis activity as first step. This is more than an initial project meet-
ing. Here the business domain of the customer should be presented and discussed. This offers
external roles the possibility to get accustomed with the processes and problems in the domain,
the terminology used, the IT infrastructure at the customer, the existing in-house knowledge, and
any developers that might be assigned to the project or have been maintaining an existing Web
site (for more information on domain analysis see [4,118,123,146]; requirements analysis issues
are discussed in several books including [29, 81, 98]).

Since the domain of our demonstration example is simple and we do not (yet) include much
interaction with other business processes, the domain and its terminology should be easy enough
to understand. Still information about the various product categories and products, the existing
infrastructure, the data repositories used, and potential problems and experiences with an exist-
ing Web site are important to understand before continuing the development process. Lacking
this information can easily lead to misunderstandings that result in increased development effort,
higher costs and a longer project duration. This does not even include problems on a social in-
terpersonal level when project members in either role feel misunderstood or ignored. Motivated,
open-minded team members and an informal and productive attitude and communication among
the various roles are key success factors for such a project. Since Web projects can hardly ever
satisfy all the wishes and desired features of the customer, it cannot be over-emphasized how
important it is to create and maintain an environment where problems and potential solutions
or compromises can be discussed. To make this work, however, it requires developers that are
flexible enough and willing to contribute to the overall project goals rather than insisting on
their particular, however justified, demands. The other important dimension here is a require-
ments analysis as discussed below that helps to avoid problems and misunderstandings in the
first place.

When everybody has a good understanding of the customer’s business (or problem) domain,
a common vision for the project should be created. This means that all parties should have a
similar understanding of what the goal of the project is, what functionality the Web application
will provide, and what will be excluded from the project.

In several of our Web projects, we found that it is not sufficient to reach this common vision
but that it also has to be documented. Further any additions or modifications to this initial vi-
sion of the project again need to be documented and traceable throughout the project. This is
especially important if, which is often the case, the customers do not completely know what they
want. In a first attempt, we tried to capture the vision of the project by describing the functionality
that should be supported by the Web application. We soon learned that customers cannot easily
visualize a set of functional requirements and connect them to the resulting Web application. As
a consequence, XGuide introduces a simple, graphical notation (the XGuide requirements dia-
gram) that models the pages and dependencies of the Web application and facilitates addition of
further requirements to all artifacts. This notation relies on a simple ’boxes and arrows’ diagram
and is easy to understand and use for customers.

The main modeling artifact in this diagram is the Simple Page. A simple page represents
a traditional Web page. Typical examples for simple pages are homepages, sitemaps, or search
pages. Figure 4.2 shows the simple page element characterized by the single page icon. The only

64 4.2 Requirements Analysis

information about such a page in the model is its identifier, i.e., the page name. Additional anno-
tations and notes capturing page-specific requirements can be added on a separate requirements
card for the page. If a page has such a requirements card, this fact is reflected in the diagram
by adding the additional requirement icon (a black plus symbol) at the lower right corner of the
element. The ’Search’ simple page in Figure 4.2 indicates that it has an additional requirements
page.

Figure 4.2: A simple page named ’Homepage’ that has a navigational dependency to the simple
page ’Search’ that has additional requirements associated with it.

Navigational dependencies, i.e., hyperlinks, between any two model artifacts are expressed
using arrows connecting the source artifact (e.g., page) and the destination of the hyperlink (see
Figure 4.2). Such navigational dependencies do not describe what the source or destination
element in a page is but state conceptually that the destination page is directly reachable from
the source page. To increase the expressiveness of the model, we introduced External Pages and
Multi Pages as shown in Figure 4.3.

External pages (with a gray page icon) are similar to simple pages but are not included in
the scope of the project. Examples for such external pages (or services) could be third-party
Web sites that act as part of the Web application or legacy systems that have to be integrated.
External pages have an associated short description to clarify the functionality of the external
entity. Furthermore, additional requirements can be associated with external pages just as with
all other diagram artifacts using the additional requirement icon.

Multi pages, on the other hand, represent a set of similar pages. Basically this means that a
group of pages share common characteristics (such as layout, structure and navigational depen-
dencies) and only differ in their content. Product catalogues as in our example Web site often use
multi pages. They define a single page template and only exchange the content in this template
to present all products in a consistent way. Good examples can also be found in other domains
with well-structured information such as legal documents, human resources or financial informa-
tion. XGuide models depict multi pages as rectangular elements with two cascaded page icons.
External pages and multi pages also have a unique identifier or name.

With the concept of simple, multi and external pages, XGuide provides a simple but flexible
and powerful modeling notation for the requirements of Web applications. Figure 4.4 shows the
XGuide requirements diagram for the Orange Juices, Inc. Web site. It defines the simple pages
for the homepage, the sitemap, the search page and the product catalogue overview page. It
further shows the external service for customer feedback that is not in the scope of the project
and the multi page for the product detail pages. The homepage and the search page are further

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 65

Figure 4.3: A legacy Web application for customer feedback is modeled as external page named
’Customer Feedback’. The ’Product Details’ multi page could be used as a template for a product
catalogue.

labeled as having additional requirements: in the case of the homepage it says that the homepage
will display special offers depending on the current date; for the search page the additional
requirement states that the search functionality must distinguish between a database and full-text
search query.

Figure 4.4: The initial XGuide requirements diagram for the Orange Juice, Inc. Web site.

The XGuide requirements diagram, however, is only the first part of the analysis phase. It
serves customers and developers as a means of communication but does not yet include non-
functional requirements and organizational or environmental constraints. If such a requirement
is page-specific (e.g., the performance of the search engine, a specific search engine that must be
used, etc.) it can be directly added as additional requirement to the corresponding page. All other
requirements such as available hardware, human resources, deadlines, project budget or status
reports are collected in a separate requirements document that complements the requirements
diagram. Though this depends on the size of the project, we suggest to use the requirements
diagram as the main communication facility and thus to integrate as much of the requirements as

66 4.3 The Feasibility Decision

possible into the diagram.

In the case of the Orange Juice, Inc. example, the non-functional requirements document
might specify that an existing database system on a particular host and/or operating system must
be used, the maximum project duration and a weekly progress reporting scheme.

A final note on the requirements analysis phase looks ahead to evolution scenarios for the
Web site. By nature, evolution scenarios are not known in advance. However, in some situations
ideas for future extensions of the Web application already exist. Our example Web site, for in-
stance, might already plan to migrate the legacy feedback system or integrate an online shopping
cart. Such foreseeable extensions might also influence the requirements analysis, e.g., in terms of
the infrastructure used or the organization of the data repository. The earlier such considerations
are included in the development process, the less effort it will require later on to implement such
extensions.

At the end of the requirements analysis phase, the requirements diagram should contain all
pages, their navigational dependencies and additional requirements, and the separate require-
ments document for generic, non-functional constraints. It must be clear to all parties that only
what is included in these documents will be in the scope of the project; anything that does not
appear in the diagram or the requirements document is excluded from the project.

4.3 THE FEASIBILITY DECISION

The feasibility decision basically is an initial assessment of the requirements and a commitment
to the project. Explicitly including such a decision in a method is unusual but too often feasibility
considerations are neglected. In software engineering it is widely accepted and acknowledged
that measurements or estimations for the complexity, duration and development effort of a project
are important for project planning and management [25].

In the context of Web-based systems only few and preliminary methods exist to define met-
rics for Web applications. Rollo [126] applies the IFPUG function point method [76, 82] and
the COSMIC-FFP [147] from software engineering to Web sites. He concludes that COSMIC is
the most flexible approach for counting the functional size of any Web site. In [108] and [109],
Mendes et al. state that there is an urgent need for adequate, early-stage effort prediction mecha-
nisms in Web engineering and propose a set of new metrics for estimating the design and author-
ing effort of Web sites. Their method includes metrics for length size, reusability, complexity
and effort. The estimation process is based on linear regression and stepwise regression models.
In the future, the authors plan to not only measure the site authoring effort but extend their mod-
els to cover the whole Web development life-cycle and be able to compare the prediction results
against human estimations.

In XGuide, we apply a more informal feasibility process. We believe that the exist-
ing approaches require “too much” mathematical and statistical knowledge and are too time-
consuming. Further regression-based models are based on an existing set of homogeneous (i.e.,
the same group of developers, technologies, etc.) Web applications which is often not available
given the many roles involved in a Web project and the fast evolving field of Web technologies.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 67

Instead, XGuide provides a checklist of aspects that might influence the feasibility of the project
and explains their impact. It is up to the project manager to evaluate them in the context of the
actual project and the available assets and resources.

The importance of the aspects below also depends on the kind (e.g., in-house vs. external)
and size of the project being discussed. Thus the following checklist is intended as a way to rule
out potential problems as soon as possible.

� Money. As so often, money is one of the main concerns. The budget for a Web project con-
sists not only of the salaries of the various roles such as graphics designers, programmers,
and content managers. It also has to take into consideration costs for buying new hard-
ware and software, software licenses, consulting, education and training of employees,
Internet connectivity, backup facilities, fault-tolerance equipment and the establishment of
appropriate (e.g., air-conditioned) environment for the server(s). Especially indirect costs
such as on-going maintenance or Internet Service Provider (ISP) fees have to be explicitly
calculated or excluded from the project’s budget. If, as is seldom the case, an unlimited
budget is available, many of the following considerations lapse since almost anything is
possible with infinite resources.� Time. Time is a critical resource in all Web projects. The Web evolves and changes so fast
that—as a matter of principle—you can never finish a Web-based system early enough.
More importantly, however, customers usually have a tight schedule for a Web project and
often do not appropriately plan for all the project activities. A too tight project schedule
is a hard problem. Customers frequently do not want or cannot extend the time frame
and simply adding other resources often does not solve the problem. Especially in today’s
Web engineering approaches many dependencies among the involved people exist. For
instance, nobody can start working before the graphics designer has finished the layout
templates. With XGuide and its support for parallel development, we hope to alleviate this
problem.� People and Responsibilities. Depending on the size of the project, the number of team
members and their distribution on the separate roles can be a non-trivial task. This es-
pecially becomes an issue in larger projects where it is not obvious whether adding more
people to the content management or programming role would increase the role’s produc-
tivity. Also the clear and unambiguous assignment of responsibilities is important to ensure
traceability of progress, have a dedicated contact in the case of problems and avoid misun-
derstandings within and among roles. For small projects, it is important to ensure that all
roles have been assigned team members and that this assignment and the responsibilities
of every role are made explicit.

Another consideration with respect to human resources is whether project members are
guaranteed to work full-time on the project or not. This also has to involve a mid-term and
long-term analysis to measure the likelihood of people getting assigned to other projects
or tasks. If somebody is also involved in other projects, their project deadlines and priority
within an organization should be checked.

68 4.3 The Feasibility Decision

Finally, the maintenance and evolution of the Web site when the project is finished should
be discussed. Frequently, Web development is regarded as a one-time effort. This is clearly
not the case. When the initial design and implementation effort is finished, the maintenance
of content, bug fixes, functional extensions and adjustments of the graphical appearance
will continue to happen on a regular basis. Thus human resources have to be allocated for
these tasks.� Dependencies. XGuide distinguishes two kinds of dependencies: external and internal de-
pendencies. An external dependency describes a relationship with a service of an external
third party. External dependencies are important since they usually cannot be influenced
and hence potentially dictate interfaces and technologies that must be used. They might
further limit a system’s availability and flexibility in terms of service evolution or software
upgrades. Internal dependencies, on the other hand, refer to already existing in-house sys-
tems. This can be an already existing Web site where parts of the content or a dedicated
service have to be reused. This could also be a legacy application at the back-end such as
a database repository, a business process or sever application.� Quality of Service. As for any distributed system, quality factors such as performance,
scalability, availability, security and fault tolerance are important design and implementa-
tion criteria. The desired properties for these characteristics not only influence the hard-
ware infrastructure but might also affect the software design and the choice of the imple-
mentation language and/or technology. Dependencies of any kind as outlined above often
limit the possible choices for some quality factors, e.g., by introducing a single point of
failure or providing poor performance characteristics.

In the area of Web-based systems, scalability and performance are especially important.
Often Web sites are initially small and easy to maintain but soon tend to grow quite rad-
ically. If a Web site is popular, the number of requests to be served can also increase
quickly over very short periods of time. If the project has the potential of growing rapidly
or receiving a flood of requests, it should be planned for such developments right from the
beginning. In other projects (e.g., intranet Web applications) this is not an issue.

The quality of service attributes also affect the hardware infrastructure necessary for the
project. Most performance, scalability, fault-tolerance and security requirements need
some sort of hardware or network device to be satisfied.� Know-How. The know-how of the people involved in the project plays a major role in the
overall planning of the project. With an experienced team of Web developers, a project
can well be finished in half of the time compared to a non-experienced team. Experience
in this context is primarily targeted at experience with Web technologies (e.g., HTML,
XML, CSS, XSL, etc.) but also includes experience with software tools, team work, and
Web projects in general. Lacking know-how either requires additional training which costs
time and money or rules out the unknown technologies and tools a priori.� Technology. On the technical side, the implementation technology and platform is the
most important choice to be made. Which of the many available implementation tech-

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 69

nologies is the best option for a given Web project, often depends on the requirements and
complexity of the project. For Web-based information systems, for instance, support for
database access is critical. For more process-oriented Web sites, a flexible integration of
application logic is more important. Obviously, also other aspects such as performance
and scalability requirements, tool support, third-party services that must be integrated and
available know-how influence this decision. Particular attention must be paid to the soft-
ware supporting a technology: Is it stable? Is it going to be available in the future? What
is the copyright and/or licensing situation? A software product that will not exist any more
a year from now is hardly a good choice for a Web site with a long lifetime.

The development and deployment platform might also eliminate some technologies and
usually depends on the predominating platform in the organization. Apart from the imple-
mentation technology decision, standards and tools for documentation, reports, conceptual
modeling and communication should be available.

The XGuide process suggests to deal with each of the above criteria and to record the results
in a separate document. This feasibility document should explicitly list all the requirements and
prerequisites for the project, e.g., the project is planned for 10 people who work full-time on the
project and stay with the project for its full duration. Even better, the names of the people with
their qualifications and why they were assigned to the project should be included. This document
also forms a good basis for discussion with the various roles to provide a rough overview of the
required resources and infrastructure. It is not, however, a detailed project plan. In XGuide
we do not propose yet another way of defining a detailed project plan. Instead, we regard the
project plan as a refinement of the feasibility document. The format and level of detail of the
plan depends on the size of the project, the experience of the project manager and the modus
operandi of the customer.

When the feasibility document is finished, the project commitment statement is formulated.
Depending on the outcome of the feasibility evaluation, the project can be canceled, the scope of
the project can be adapted or the stated project requirements are approved.

The cancellation of the project has to be considered if the expectations of the stakeholders
differ too much from the expected course of the project. Examples for this scenarios are unsus-
tainable deadlines or too low a budget for the required functionality. More frequently, however,
a redefinition of the project goals and requirements in terms of the available resources and time
takes place. Alternatively, extensions of the project time frame or an increase in the budget are
necessary to fulfill all requirements. Of course, a project can also be approved as-is if the ini-
tial planning and assessment was accurate. This, however, requires an experienced project team
and stakeholders. In our experience, the immediate approval of a project proposal is rare; the
modification of the requirements or the scope of the project is more frequent.

Eventually, if the (initial or redefined) project is approved, the requirements in the form of the
XGuide requirement diagram and the descriptions of the additional requirements must be cast
into a conceptual model and design. The next phase, the design phase, refines the requirements
model to a full conceptual model of the requirements that also captures design decisions such as
componentization and navigation contexts.

70 4.4 Conceptual Modeling and Design

4.4 CONCEPTUAL MODELING AND DESIGN

The previous two phases, requirements analysis and feasibility evaluation, directly involved the
customer of a project. The diagrams and notations presented so far were thus intentionally kept
simple to facilitate unambiguous communication with the various parties involved in the project
and to capture the high-level requirements of the project.

In this phase, the architecture and design of the Web application take center stage. The
architecture frequently is a classic three tier architecture. A persistent storage layer (e.g., file or
database system) is the first layer. The Web or application server is the second tier. The client
browser is responsible for the user interface and represents the third tier.

Compared to the requirements phase, the design is a more complex process. In the field
of traditional software engineering, established design notations for software systems exist—
among which the Unified Modeling Language (UML) [122,128] has a prominent position today.
In Web engineering, however, a widely accepted notation for modeling Web applications does
not exist. Instead, every approach defines its own notation to best represent the main focus of
the respective method. Well-known examples of such notations include the graphical modeling
notations of OO-HDM [130,133], RMM [78,79] and WebML [34]. Conallen [37] takes a slightly
different approach in extending the UML towards a Web modeling language.

In the context of the XGuide process, they all share the same inadequacy: they do not support
separation of concerns on the conceptual level or the notion of contracts in their models. Though
separation of concerns is identified as important design criteria and is realized to various degrees
in the implementation approaches presented in Chapter 3, their conceptual models totally ignore
it. Since separation of conceptual concerns forms the basis for contracts and concurrent deve-
lopment in XGuide, we introduce a modeling notation that allows us to identify concerns on the
conceptual level.

Apart from the separation of concerns on the conceptual level, it even is still unclear what
the appropriate modeling primitives for Web applications are. Most approaches use the notion of
pages and hyperlinks among pages. Depending on the method, additional primitives for the nav-
igation or the page content exist. Another important aspect of Web applications is the consistent
graphical appearance and navigation structure throughout the whole application. Reusable page
fragments that appear on several pages with the same or a similar formatting are the solution to
this problem. Component-based approaches model pages as a set of components that represent a
page fragment and can be reused independently.

In XGuide, we already introduced the modeling primitives of simple pages, multi pages and
hyperlinks in the requirements phase. In the design phase we introduce new modeling artifacts
and refine the requirements diagram to include additional design-related information. The design
phase has two sub phases: the design in-the-large (on the architectural level) and the design in-
the-small (on the module level). Design in-the-large refines the requirements diagram towards a
conceptual model of the application; Design in-the-small focuses on the design and specification
of single pages and components rather than the whole application or site.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 71

4.4.1 DESIGN IN-THE-LARGE

Starting with the requirements diagram, design in-the-large extends the diagram with additional
artifacts to better model the structure and functionality of the application.

Following the component-based approach, XGuide supports so-called Web Components to
model reuse and composition relationships. We think of a Web component as a reusable, config-
urable page fragment that can be reused and composed with other components to form the actual
Web page.

Further generalizing the Web component concept, XGuide not only supports composition of
Web components into pages but also the composition of Web components into larger Web com-
ponents that can then be reused as separate entities. Thus a page is a special, top-level component
that cannot be further composed. Typical examples for Web components are the aforementioned
navigation structure of a site and a common header or footer fragment that appears on all pages.
XGuide uses the element shown in Figure 4.5 to define components and assign them a component
(i.e., unique) identifier.

Figure 4.5: A Web component for the header region of the Orange Juices, Inc. Web site.

A first refinement step, thus, is the transformation of the requirements diagram into a com-
ponent web. The component web contains the same artifacts as the requirements diagram and
augments it by the definition of reusable Web components.

In the next step, the Web components have to be embedded into the existing pages. To keep
the diagram clearly arranged and avoid confusion with navigational dependencies, we do not
use arrows to model composition relationships in the diagram. Especially since components
are frequently used in all or a majority of the pages, the diagram would quickly be crammed
with arrows. Instead, we add a References section to the diagram elements that name the Web
components a page or component references. Figure 4.6 shows the extended versions of the
diagram elements.

Figure 4.7 shows the component web for the Orange Juices, Inc. Web application. It defines
the Header Web component that is referenced from all pages in the diagram. Thus the page
elements list its component identifier in their References sections. (For simplicity reasons we did
not include additional components for the footer, the navigation bar, etc.)

When all Web components are defined and correctly referenced by the respective pages, the
modularization of the site is finished. Depending on the experience and mode of operation of all
the parties involved, Web components can already be introduced in the requirements diagram to

72 4.4 Conceptual Modeling and Design

Figure 4.6: The updated icons for the XGuide elements including the References section.

Figure 4.7: The component web for the Orange Juice, Inc. Web site.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 73

better visualize the physical artifacts representing the page in the discussion process. Another
alternative is to introduce components along the way rather than as a post-processing measure
after all pages have been defined.

The second concept introduced in design in-the-large are application logic processes. With
the increasing use of dynamic technologies such as ASP, JSP or Java servlets, a growing number
of Web pages are generated dynamically at runtime rather than delivered from a static file. The
creation of pages at runtime follows a common pattern independent of the concrete technology
used. The Web server first receives a request for the page. It then identifies the process or
application that is responsible for the requested page and forwards the request. The so-called
request handler then executes some application logic to generate the result page (e.g., queries a
database and lists all hits in an HTML table). The request handler then directly returns the result
page to the client. Application logic processes model the functionality of the request handlers
that take a request as input and produce a resulting output page.

Figure 4.8 depicts the diagram element for an application logic process. It has a unique name
and a short description of its functionality. Application logic processes are referenced from
pages or components and produce another page as output. In the example, the search input page
references the application logic process representing the search engine, which in turn outputs the
search result page.

Figure 4.8: The ’application logic process’ diagram element used by a search page and producing
the search result.

Application logic processes provide details on the transition from one page to another. On
the conceptual level, they are merely optional constructs. The relationship of the search input
and search result page could equally well be modeled without an application logic process since
the transition from one page to the other is not the main focus of the design phase. Further it is
implicitly clear from the context that a functional unit has to be inserted in between. Nevertheless,
in complex scenarios application logic processes are a good means to clarify page relationships
and to make them explicit.

The final diagram artifact we introduce for design in-the-large is the proxy element. A proxy
has a unique identifier and is a representative of the element with the same identifier. It is used
to keep the diagram readable, to avoid too many arrows through large parts of the diagram, and
to facilitate referencing of elements if the diagram is split across several pages. The diagram
artifact for the element proxy is shown in Figure 4.9.

Having split the pages into reusable components and having defined their composition de-
pendencies, the design in-the-large is finished. Design in-the-small then concentrates on the
fine-grained specification of the identified artifacts (i.e., pages, components and application logic

74 4.4 Conceptual Modeling and Design

Figure 4.9: The graphical representation of the proxy diagram artifact.

processes). Before we continue with the discussion of the design in-the-small activities, however,
a separate subsection introduces the notion of input and output interfaces of components, pages,
and processes.

INPUT AND OUTPUT INTERFACES

So far we only introduced optional application logic processes, but otherwise did not distinguish
between static and dynamic pages or any information flow between them. The content of dy-
namic pages typically depends on some input values provided by the framework or the user. If
a page has no such input requirements, there is no reason to create it at runtime. Here are some
typical examples for the input requirements of dynamic pages:

� A search result page uses a keyword or search expression as input to display the corre-
sponding search result.� A currency converter page, for instance, needs the amount to be converted as input.� A page displaying a user’s shopping cart uses the contents of the shopping cart as input.� A grading service page displaying all grades of a student needs the student’s name or
identification number as input.� In the Orange Juices, Inc. Web site example, the product details multi page requires a
product number as input to determine which product’s details it should present.

As a consequence we classify a page without input requirements as being static and a page
with at least one input requirement as being dynamic. In XGuide, we denote all input require-
ments of a page (i.e., the set of arguments that the page needs to be created) as the page’s input
interface. Unlike interfaces in object-oriented programming languages, XGuide’s interfaces only
specify data (i.e., variables) but no behavior (i.e., methods). The behavior of an input interface is
implicitly clear since the only supported operation is the creation of the page.

To incorporate input interfaces in the conceptual model, we further extend the diagram to
contain the input interface for all components and pages. Input arguments for diagram artifacts
are defined in the interface dialog of the element. Figure 4.10 shows this dialog for the product
details multi page that indicates that it needs an input argument of type integer.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 75

Figure 4.10: The interface dialog for the product details multi page indicating its input require-
ments.

In addition to pages, we also classify components into static and dynamic components de-
pending on their input requirements. A common use of input interfaces on components are cus-
tomized navigation bars or menus. Such components take a page identifier as input and render
the currently viewed entry in the menu differently than the others (e.g., using a different color).
In the case of a hierarchical menu, the branch in the menu tree corresponding to the current page
is displayed while the other branches stay collapsed.

After the specification of the input interfaces for the pages and components in the conceptual
model, the question arises where the values for the input parameters come from.

In the case of pages, two options exist: (1) the user enters them in a Web form and submits
them as input for the subsequent page and (2) the values are derived from an external source
in the environment (e.g., the current time or date) not requiring user interaction. In the case of
components, a third option exists. The component can derive the value for an input parameter
directly from the embedding page. Consider a component displaying a customized navigation
bar depending on the page it is embedded in. If the enclosing page specifies its identifier (e.g.,
as an attribute of the page’s document element), the component can derive the value of its input
parameter from that value. It does not require user interaction nor an external source.

As mentioned above, a user can only provide input values via Web forms that are embedded
in pages or components. XGuide introduces the concept of an output interface to describe the set
of values a page (i.e., the user filling out the form) provides to the outside world. Since a page
can contain several Web forms, it can also have multiple output interfaces as opposed to a single
input interface as discussed before.

Consider the simple example depicted in Figure 4.11. A simple login page is used to let
the user enter her name. Its interface dialog specifies no input requirements and a single output
parameter name of type string. When the form is submitted, the name output parameter serves
as input argument for the subsequent welcome page that takes the submitted value to greet the
user with a personalized welcome message. The interface dialog for the welcome page depicts
the required input parameter and an empty output interface. Note that the output parameter of
the login page and the input parameter of the welcome page have both the same name and the
same type. This correspondence is important to be able to match input to output parameters.

76 4.4 Conceptual Modeling and Design

Figure 4.11: A simple example demonstrating the definition of an output interface.

Although this example nicely demonstrates the concept of input and output interfaces and
their dependencies, in practice a direct match is rarely found. More frequently, the output in-
terface of a page (i.e., the values provided by form fields) do not directly match the input re-
quirements of the subsequent page. Instead, some application logic first processes the output
arguments of a page, transforms or modifies them, and only then provides the required input ar-
guments for the result page. To be able to model such scenarios, we use the previously introduced
application logic process diagram element (see Figure 4.8).

As the other diagram elements, the application logic element has an input and one or multiple
output interfaces. Figure 4.12 demonstrates the use of the application logic element and the
definition of its interfaces in the simple search scenario introduced in Figure 4.8. The search
page provides a form that takes a keyword as input. Consequently, the search page has an output
interface that provides a string (keyword) argument. The search result page, on the other hand,
takes a list of matched items as input arguments and displays them. The search engine matches
the interfaces; it takes the keyword as input, performs the search and provides a list of matched
items as output.

Figure 4.12: The application logic process matches the input/output requirements of the connect-
ing pages.

Figure 4.13 shows an alternative way to model the above search example. In this case, the
two pages are directly connected and the application logic element is removed. Since the input
and output arguments of the two pages do not match, an application logic artifact that matches
the search page’s output interface to the result page’s input requirements is implicitly added to

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 77

the definition. The advantage of this implicit definition of application logic processes is that the
diagram remains smaller and easier to understand.

Figure 4.13: The abbreviated notation for the conceptual model of the search example.

In the previous examples, the output arguments of application logic elements were directly
used (i.e., specified as input parameters) by the subsequent response page. In complex Web
applications, however, input values are often stored across several page requests using cookies
or session management. In XGuide, an extended definition of output parameters supports these
concepts. If an output parameter is followed by the session qualifier [S], the respective parameter
is stored in the user’s session for later reuse. If the qualifier is missing, the parameter is not
stored across page requests and only available in the immediate response page. Thus name:
string denotes a parameter that is not stored in the user’s session, whereas name[S]:string adds
the parameter to the session.

Finally, we call a conceptual model strict if it does not rely on implicitly added application
logic artifacts. The advantage of strict models is that the consistency of their input and output
interfaces can be checked. The consistency checking algorithm is simple. For every page with an
input interface, we first analyze its navigation dependency to identify the pages from which it can
be reached. We then have to make sure that the referencing pages satisfy the input requirements
of the current page. This means that they must provide a value for all arguments in the current
page’s input interface. Such a value can either be directly provided by an argument in a page’s
output interface or by the value of a session parameter. In the former case, the referencing
page must specify the output parameter in one of its output interfaces. In the latter scenario, all
navigation dependencies of the referencing page have to be recursively walked back to ensure
that the required session parameter is provided independently of how the referencing page was
reached.

Figure 4.14 shows a more complex strict conceptual model. A page � requires two input
parameters � and of types integer and string respectively. The page is referenced by page �
that defines an output interface providing an integer parameter � . Thus the first input requirement
of page � is satisfied. The second parameter (), however, is not directly provided by page � .
According to the above algorithm, we now recursively follow all navigation dependencies of
page � to ensure that a session parameter is defined on all paths. In this example we end up at
the pages � , � and � . Pages � and � define the missing session parameter and the recursive
search stops. Page � , on the other hand, does not provide the parameter and the search continues

78 4.4 Conceptual Modeling and Design

recursively—leading to page � in this case. Since page � provides the correct session parameter,
all required input parameters for page � were found and the algorithm completes successfully.

Figure 4.14: An example demonstrating the XGuide consistency checking algorithm.

The definition of input and output requirements resides somewhere between the design in-the-
large and design in-the-small activities. Though it defines (page-level) properties of single pages,
components and processes, it also requires knowledge about their (site-level) dependencies to
correctly connect input and output requirements.

With the definition of the input and output interfaces, the introduction of explicit application
logic processes, and a successful consistency check, the conceptual model is complete. We also
call this final conceptual model the XGuide sitemap. It is a first high-level specification of the
Web application and is transformed into its XML representation to serve as input for the more
detailed page and component specifications in the design in-the-small step. The structure of the
XML representation of a final sitemap including pages, components, composition references,
application logic processes, input and output interfaces, and links is displayed in Figure 4.15.

The sitemap’s XML representation contains three separate sections for the pages, the com-
ponents and the application logic processes of the sitemap. The page section is further divided
into subsections for the simple, the multi and the external pages in the diagram. Each diagram
artifact has an internal (unique) integer identifier and a name derived from the diagram represen-
tation. Further pages and components define References elements to indicate their composition
dependencies. A component reference specifies the component identifier to uniquely identify
the referenced component. Navigation dependencies are similarly specified in LinkInformation
elements that indicate the pages identifiers of the linked pages. Finally, the concept of input and
output interfaces is present in pages, components and application logic processes (encapsulated
by Interface elements). Note that element proxies are not present in this representation. All

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 79

<?xml version="1.0" encoding="UTF-8"?>
<ConceptualModel xmlns="http://www.infosys.tuwien.ac.at/xguide/sitemap"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://.../xguide/sitemap ConceptualModel.xsd">
<Title>Orange Juice, Inc.</Title>
<Pages>

<SimplePages>
<SimplePage id="1" name="Homepage">

<LinkInformation>
<Target id="2" type="directLink"/>
<Target id="3" type="directLink"/>
<Target id="5" type="directLink"/>

</LinkInformation>
<References>

<Ref id="6"/>
</References>

</SimplePage>
<SimplePage id="2" name="Search"> ... </SimplePage>
<SimplePage id="7" name="Search Result"> ... </SimplePage>

</SimplePages>
<MultiPages>

<MultiPage id="4" name="Product Details">
<Interface>

<Input>
<Param name="productId" type="String"/>

</Input>
</Interface>
<References>

<Ref id="6"/>
</References>

</MultiPage>
</MultiPages>
<ExternalPages id="5" name="Customer Feedback">
<Description> ... </Description>

</ExternalPages>
</Pages>
<Components>

<Component id="6" name="Header">
<References />

</Component>
</Components>
<AppLogic>

<Process id="100" name="Search Engine">
<LinkInformation>

<Target id="7" type="directLink"/>
</LinkInformation>
<Description>Search the site with the given keyword</Description>

</Process>
</AppLogic>

</ConceptualModel>

Figure 4.15: Structure of an XGuide XML sitemap.

80 4.4 Conceptual Modeling and Design

properties and dependencies of proxies are already resolved and integrated in the definitions of
the elements the proxies represented.

4.4.2 DESIGN IN-THE-SMALL

The sitemap now contains all pages and components that will eventually make up the final Web
application. Design in-the-small breaks the high-level sitemap specification down into specifica-
tions for the pages and components denoted as XContracts. An XContract is structured into sev-
eral orthogonal concerns that represent different characteristics of a page or component. XGuide
currently supports concerns for the content (i.e., information that is offered to the user such as
the price of a book), the graphical appearance (i.e., the layout – the formatting information with
which the content is formatted for presentation), and the application logic (i.e., the functionality
that is necessary for providing the dynamic interaction to the users) of a page. When a sitemap
is processed, basic contract templates for all pages and components are automatically generated.
The designers then adapt and complete these concern specifications to form the final contracts.

The specifications for all concerns are again an application of the XML and combined in
the XContract XML document. They are reusable entities that can be integrated into multi-
ple contracts (e.g., the same XML Schema is used to describe the structure of several pages).
Figure 4.16 shows the basic structure of an XContract. The contract elements themselves are de-
fined in the http://www.infosys.tuwien.ac.at/xguide/contract namespace.
The <xcontract> element combines a set of concerns (<xconcern>) and a set of composi-
tion references (<reference>).

The concern elements contain the XML specification for the given concern (often in a differ-
ent namespace, e.g., an XML schema). An alternative way to specify concerns is to reference an
external source that contains the concern specification. A good example is the structure concern.
The XML Schema that is directly included in the document in Figure 4.16 could equally well
be replaced by a reference to an external schema location. Such external concern specifications
become reusable since they can be referenced from multiple contracts.

In the composition information, we further define contract composition operations to include
the contracts of components in the contracts of the pages (and components) that reference them
(depending on the composition dependencies in the XGuide sitemap).

For now, we assume that we already have all XContracts for the pages and components
in the sitemap. Concern specifications, more details on XContracts, a formal contract model,
and how contract composition works in XGuide is excluded from the discussion of the XGuide
development process. We dedicate a separate chapter (Chapter 5) to these key issues. We, thus,

1. defined the concern specifications of all pages and components,

2. created the corresponding XContracts, and

3. composed the XContracts of components with those of the referencing pages.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 81

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract">
<xconcern name="structure">
<xsd:schema xmlns:xsd="...">
<!-- XML schema for component goes here -->

</xsd:schema>
</xconcern>
<xconcern name="interface">

<!-- definition of application logic concern goes here -->
</xconcern>
<compositionrefs>
<reference to="contract/header.contract">
<composition type="structure">
<!-- composition operation for structure concern -->

</composition>
<composition type="interface">
<!-- composition operation for interface concern -->

</composition>
</reference>

</compositionrefs>
</xcontract>

Figure 4.16: The basic structure of an XContract.

XContracts form the foundation of XGuide’s concurrent implementation phase. They capture
all information necessary to implement the various concerns independently of each other. Thus,
an XContract for a page has to contain all the information to support the concurrent development
and definition of content, layout and application logic.

The translation and extension of the sitemap into a set of contracts is an effective way to
describe the transition from the conceptual model towards a concrete implementation. Concern
developers directly use the contracts as specifications for their implementation.

4.5 IMPLEMENTATION PHASE

Traditionally, the implementation phase of a Web project has three sequential steps. First, the
graphics designers work on the graphical appearance of the site and develop layout and format-
ting templates for all types of pages. Next, the content managers provide the content that should
be presented on the pages. Eventually, a programmer inserts the content into the page templates
and integrates the application logic.

The major advantage of the XGuide implementation phase over those of other approaches is
that the concerns are implemented concurrently. As a result of the strict separation of concerns
on the conceptual level and the introduction of contracts, programmers, content managers and
layout designers can work independently of each other in the implementation phase. This means
that the content, the layout and the functionality of a site can be developed in parallel.

82 4.5 Implementation Phase

Consider the XContract in Figure 4.17. It defines a structure concern and an interface con-
cern. From this information, we can derive the specifications for the three implementation con-
cerns: content, layout, and application logic. The content manager only depends on the XML
schema that specifies the structure of the content and the valid data types. The graphical designer
also uses the XML schema as specification and builds corresponding XSLT stylesheets. The pro-
grammer uses the second contract concern, the interface concern, to derive an interface between
the page and the application logic. As a result she can use automatically generated stubs until
the real content and layout are available.

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract">
<xconcern name="structure">
<xsd:schema xmlns:xsd="...">

<xsd:element name="webpage">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string" />
<xsd:element name="inputfield"

type="xsd:string" maxOccurs="2" />
</xsd:sequence>

</xsd:complexType>
</xsl:element>

</xsd:schema>
</xconcern>
<xconcern name="interface">

<Interface>
<Output name="out1" url="/xguide/welcome">

<Param type="String" name="loginname" />
<Param type="String" name="password" />

</Output>
</Interface>

</xconcern>
</xcontract>

Figure 4.17: A simple XContract for a Web page.

This example already shows that contract concerns not necessarily map one-to-one to im-
plementation concerns. For instance, the content and layout implementation concerns use the
same structure contract concern as specification. A concrete implementation of the given sample
contract is shown in Figures 4.18 - 4.20.

<webpage>
<title>Welcome Page</title>
<inputfield>Enter your login:</inputfield>
<inputfield>Enter your password:</inputfield>

</webpage>

Figure 4.18: The content concern for the contract in Figure 4.17.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 83

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="webpage">
<html>

<body>
<h1><xsl:value-of select="./title" ></h1>
<p>
<xsl:apply-templates select="./inputfield" />

</p>
</body>

</html>
</xsl:template>
<xsl:template match="inputfield">
<h2><xsl:value-of select="." /></h2>
<input type="text" name="input{position()}" />

</xsl:template>
</xsl:stylesheet>

Figure 4.19: The layout concern for the contract in Figure 4.17.

public class WelcomeServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String login = request.getParameter("loginname");
String password = request.getParameter("password");

if (Utils.validatePassword(login, password)) {
WelcomePage wp = new WelcomePage(login);
wp.print(out);

}
else {
ErrorPage ep = new ErrorPage("Login failed!");
ep.print(out);

}
}

}

Figure 4.20: The application logic concern for the contract in Figure 4.17.

84 4.5 Implementation Phase

Figure 4.18 shows the XML content of the page. It adheres to the simple XML schema in
the contract. In the general case, XML technologies such as MyXML [85, 93] or Cocoon [107]
that support, among others, database access and conditional processing are used to implement
the content rather than plain XML documents. Figure 4.19 depicts a simple XSLT stylesheet
(welcome.xsl) based on the contract that renders the content as HTML. Figure 4.20, finally,
presents the Java servlet implementation class (WelcomeServlet.java) that was derived from the
information in the output interface.1 Note that the class expects the parameters loginname and
password from the page, validates the login information, and then outputs the welcome or error
page (not shown in the figure). Note that the welcome page has an input interface requiring a
single string parameter (the name of the user currently logged in). Thus it is instantiated with a
constructor using a single string value as argument.

Concern validation of the separate implementation concerns (as indicated in Figure 4.1) is
the last task of the concern implementation. Depending on the concern, different validation tech-
niques are used. For static XML content as used in the above example, validation simply means
to validate the XML content against the schema in the contract. For the application logic imple-
mentation, validation means to verify that the implementation only uses the interface variables
specified in the contract.

For dynamic content (e.g., retrieved from a database or a Web service) and formatting
stylesheets, it is not so clear what validation means. In dynamic pages, the actual content for
the page is constructed only at runtime. Thus the schema validation cannot be executed at design
time but has to be deferred until runtime, too. An XSLT stylesheet is a loose collection of tem-
plates and rules that defines formatting rules based on XPath expressions. Thus it is not possible
for such a stylesheet to prove that they correctly process content conforming to a given XML
schema. In this worst case, no automatic checking occurs and validation means to manually
inspect the stylesheet or content-generating XML document.

When the implementation concerns are finished, they have to be somehow grouped to repre-
sent an implementation of the given contract. This group of implementation concerns is called
XPage. An XPage has an associated contract and provides implementations for all concerns of
the page. Normally, XPages are simple containers that represent pages in the final Web site
and include references to the (externally defined) implementation concerns. Again, concern im-
plementations (e.g., application logic or formatting instructions) can be reused across multiple
pages.

Figure 4.21 shows a sample XPage for the contract and concern implementations of the pre-
vious example. The XPage references its contract and provides information about the imple-
mentations of the concerns. In the example, we directly included the content concern (inline
concern implementation) and referenced the layout and application logic concern implementa-
tions (external concern implementation). This makes sense if we do not expect the content to be
reused.

When the XPages for all pages and components in the sitemap exist, the implementation
phase is finished and the project enters the next phase: the testing and deployment phase.

1We use the Java servlet technology for presentation purposes - the code generation module, however, can easily
be replaced to generate source code in a different programming language.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 85

<?xml version="1.0"?>
<xpage xmlns=".../xguide/page">
<concern name="content">

<webpage>
<title>Welcome Page</title>
<inputfield>Enter your login:</inputfield>
<inputfield>Enter your password:</inputfield>

</webpage>
</concern>
<concern name="layout">

<ref target="welcome.xsl" />
</concern>
<concern name="applogic>

<ref target="WelcomeServlet.java" />
</concern>

</xpage>

Figure 4.21: The XPage implementing the contract in Figure 4.17.

4.6 TESTING PHASE

As we discussed in the introduction, Web engineering is a multi-disciplinary field. Hence, the
testing also distinguishes multiple aspects of a Web application that must be tested: content
freshness, correctness and completeness, layout consistency, usability, functional correctness,
response time, and many more.

No single testing method exists to date that covers all aspects of a Web application. On the
contrary, testing of Web sites and applications is largely ignored today. In this section we sketch
a possible testing approach. The granularity and effort put in testing, however, mainly depends
on other factors such as the size or complexity of the project. Also the level to which a project is
mission critical to an organization heavily influences the testing approach.

In XGuide we already did a first validation step at the end of the (concern) implementation
phase. All concern implementations are validated against the respective contract. We already
discussed above that the activities involved in contract testing vary from fully automatic to com-
pletely manual depending on the concern (e.g., static content can be automatically validated
against an XML schema and interface conformance can be automatically checked; contract ver-
ification of the layout templates, on the other hand, can only be done manually).

In the context of XGuide’s Web components, we follow an approach similar to those found
in testing of software components and formal specifications of programs. The assumption is
that if the concerns are validated against the contracts and the composition rules are sound, no
additional validation needs to be done for the composites [22, 47, 72, 134]. This, of course,
requires the contracts and composition rules to be correct. More details on a formal model of
concerns, contracts, and contract composition is presented in Chapter 5. As a result, we can
break down testing of XPages into testing of implementation concerns.

Testing the internals of pages and components, however, is only the first step. More impor-
tantly, the interaction of pages and components on the one hand and the application logic on the

86 4.6 Testing Phase

other hand needs to be checked. Also the correctness of the implementation of the application’s
functionality needs to be ’proven’.

The pages of a Web site and the navigation links between them form a directed graph. If we
identify a single homepage as the starting point of the graph, we get a tree similar to the abstract
syntax trees of conventional software programs. To fully test the inter-working of all pages, we
would have to evaluate all possible paths through the Web site using all possible parameters as
input for dynamic pages and application logic calls. Similar to white box testing in software
engineering, we can define the arc coverage of our test cases with respect to the whole site. One
approach could be that each arc must be executed (i.e., navigated) at least once. Another could
require one execution of each arc with a set of varying parameters (e.g., exception and error
cases, regular values, edge conditions, etc.).

An alternative approach for testing the interaction of pages is model-based testing. An ab-
stract model–usually an abstract state machine–models the whole Web site. A state consists of
the identifier of the currently viewed page and the state of the model variables. In our case, model
variables are the arguments in the input and output interfaces of the XGuide sitemap. They are
the only externally visible state of the application. Given the set of states, the links between pages
define the possible state transitions. A state transition occurs if the user triggers a new request to
the same or a different page. Furthermore, state transitions can have conditions and—depending
on external information (e.g., the values the user entered in a form)—different transitions are
triggered. As such, the model of the Web application can be directly derived from the sitemap
that specifies all pages, component and navigation paths.

Using a model-based testing approach has several advantages. First, test cases for a con-
crete application can be automatically generated. If we require, for instance, that all navigation
links are taken at least once, the abstract model can be analyzed and test cases that satisfy this
condition can be automatically generated. A second advantage is that the behavior of the Web
application can be monitored at runtime and checked against a model. Thus a deviation from the
expected behavior is immediately detected. The implementation of runtime verification (i.e., the
comparison of the application’s internal state with the expected state as defined in the abstract
model), however, is not easy to implement. Section 4.6.1 below presents the abstract state ma-
chine language (AsmL) [7–9], a promising approach for model- and contract-based testing and
explains how runtime verification is achieved with AsmL.

Testing the correctness of the application logic basically involves the large field of software
testing. Various methods exist and can be directly applied to the software representing the ap-
plication logic. We do not further discuss details of software testing here but refer the reader to
related work such as [15, 50, 103, 124, 125].

Another aspect of the testing process is user testing. Depending on the targeted audience of
the Web application, users have different requirements and knowledge. The presentation of the
content, clear and consistent navigation structures, and the lack of ’surprises’ (e.g., unexpected
popup menus, misleading link texts, etc.) are of interest from the user’s point of view. Also
the use of the application on different devices (e.g., desktop computers, laptops, person digital
assistants (PDAs), or mobile phones), different operating systems (e.g., Windows, Linux, Ma-
cOS) and their various versions, different language settings, different output methods (e.g., voice

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 87

output, large text for better readability, text-only output) and different Web browser products (In-
ternet Explorer, Netscape, Mozilla, Opera, Konqueror, etc.) and versions need to be investigated.

Eventually, other aspects such as response times, consistency of the Web site’s build process
or availability strategies must be considered.

A completely different facet of the testing process is regression testing during the mainte-
nance and evolution phases of the project. If single concerns are modified, the application logic
updated, or whole new pages and/or components added to the application, regression tests have
to ensure that the behavior of the site did not change–or changed only in the expected way.

XGuide proposes XML-based regression tests. When the inter-working of pages and appli-
cation logic is tested as outlined above (using arc coverage or model-based testing), the input and
expected output of the tests is recorded and stored in an XML test repository. Regression testing
then means to execute all such tests against the updated application and verify the results. The
runtime environment for regression tests can be easily provided using a test driver that simulates
the user interaction, i.e., submits the corresponding requests, receives the responses and com-
pares the results with the expected results. While regression suites work well for modifications
of the application logic, changes to the content or layout of the site usually require an update
of the regression tests, too (since the result pages differ from the original result pages). More
sophisticated page comparators that could extract the content of an XHTML page and ignore the
formatting statements (e.g., Lixto [13,14]) or focus exclusively on the formatting instructions ig-
noring the actual content could be a solution. The basic problem with these approaches, however,
is that they post-process the result page and do not compare the actual result with the expected
result. As a consequence, the post-processing tool might cause or hide potential inconsistencies
and conflicts and can only be viewed as a reliable alternative if its correctness is proven.

Extended regression scenarios can specify sequences of page requests to also cover session
parameters as used in shopping cart, ticket ordering or similar applications. Regression tests are
executed periodically or after every modification of the application. The current status of the
regression tests are best exported as separate Web site that allows easy and comfortable checking
of the current status of the regression suite.

4.6.1 THE ABSTRACT STATE MACHINE LANGUAGE - ASML

The abstract state machine language (AsmL) is developed by the foundations of software en-
gineering group at Microsoft Research [115]. AsmL is a contract or specification language
applying the model-based testing approach. An AsmL specification is only concerned about
a software component’s externally visible parts, i.e., its public interface. Given the public inter-
face of a software component (a class or a composite of classes that provides a public interface),
AsmL provides two alternative ways to define a contract for the component: in the traditional
pre-/post-condition style or using executable specifications called model programs.

Specifications using pre-conditions, post-conditions on methods and class invariants are well-
known in software testing. AsmL defines constraints on the method arguments, its return value
and the internal state of the component. Further it supports access to an argument’s or state
variable’s resulting value in the method’s post condition. The resulting value of a variable is the

88 4.6 Testing Phase

variable’s value after the method was executed. At the same time the variable’s original value
(i.e., the value it had in the pre-condition of the method) is still accessible. As a result, post-
conditions and class invariants can define constraints that relate the original and the new/updated
value of a state variable. The set of state variables defined for a component implicitly spans the
space of potential model states. A model state is defined by the set of model variables and a
unique assertion of values to the variables. Whenever the value of a state variable changes, the
model is in a new state. This basic concept is extended by the fact that method arguments and
return values can themselves have models. Thus pre-/post-condition expressions cannot only
include references to state variables but also to state variables of the models of arguments and
return values.

Executable specifications (also called model programs) in AsmL use the same basic scheme
of models and state variables but instead of defining the state of the model before and after a
method execution, it implicitly defines the state transition by specifying a program that trans-
forms the state variables accordingly. Thus instead of defining what the expected state of the
model before and after the method invocation is, model programs describe the behavior seman-
tics, i.e., what happens to the state variables when the method is executed. The expected benefit
of model programs is that developers usually are more familiar with writing code rather than
complex pre-/post-condition constraints which increases the acceptance rate of the technique.
Additionally, model programs can be used as high-level implementations of software compo-
nents until a concrete implementation becomes available. These stubs are useful during the
development and testing process and support early testing of implementations (using stubs for
all components that are not yet available).

The ultimate goal of AsmL is to provide a mechanism for runtime verification of software
components that have an associated AsmL specification. Since AsmL is a full .NET language
based on the CLI [49,114] language, it is compiled into its intermediate language representation
just as any other .NET language (e.g., C#, VB.NET, etc) is. A special program called AsmL
Weaver operates on the intermediate representation of the implementation and the specification
and injects the specification code into the actual implementation. As a result, pre-/post-conditions
and class invariants are automatically checked when the code is executed. In the case of model
programs, the model program is executed in parallel with the real application and the applica-
tion’s state is continuously checked against the model state.

An approach similar to model programs in AsmL might be an interesting area of research
in Web engineering. As outlined above, the sitemap provides the possible model states and
variables and state transitions can be defined in terms of hyperlinks and request parameters.
More information about AsmL and its advanced features is found in [7–9].

In practice, Web application testing often focuses on the most critical parts of the function-
ality. Time-to-market is important and sufficient time for detailed tests is rarely available. As a
result, Web applications tend to be tested and improved after their initial deployment. This again
puts special emphasis on the maintenance and evolution phases that are discussed below after the
deployment of Web applications.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 89

4.7 DEPLOYMENT PHASE

A common setup for a Web application development environment consists of three separate
machines: a development machine, an internal test server, and the final production machine
that offers the site to the outside world. Deploying a Web application thus has two steps. First
the application is deployed from the development to the internal test server; after testing and
final clearance it is then deployed to the production machine. Usually the test machine and the
production machine have a similar setup which results in similar deployment mechanisms.

Ideally, deployment of a Web application would only require to copy the content, formatting
and application logic files from the development machine to the target machine. More abstractly,
we distinguish deployment processes that just copy files from the development to the target
machine (deployment-by-copy) and processes that modify and adapt source files and require a
new build of the system on the target machine (deployment-by-adaptation).

With XML-based publishing frameworks (e.g., Cocoon) deployment-by-copy is easily pos-
sible for XML content files and XSL stylesheets. Application logic usually exists in source code
and needs to be compiled into some binary format or library that has to be made available on the
target machine. In the case of database systems that are involved in almost all Web applications
today, deployment means to perform some synchronization activity on the database (e.g., an up-
dated database structure has to be published to the production machine or some internal tables
have to be migrated).

In deployment-by-adaptation, a common deployment activity is to replace the settings of the
test environment with those of the production environment. Typical examples are the database
connect string, the document root or the installation directory of libraries. In XML-based Web
development, document and parameter entities can be used to reduce this task to the modification
of a global definition file. Alternatively, scripts applying regular expressions to all source files
and triggering a new build process on the production machine are necessary.

In non-XML publishing environments, deployment-by-adaptation can also involve more
complex tasks. In MyXML, for instance, all XML/XSL definitions are first translated into
XHTML files and source code that can then be deployed to any servlet container and Web server.
Generally, the deployment of a Web application is highly dependent on the implementation tech-
nology and publishing framework. Depending on the project and the technologies used more or
less custom tailored processes are needed.

After the initial deployment of the Web application, it enters the maintenance and evolution
phases. The next two sections discuss these important phases and relate them to XContracts and
the XGuide development process.

4.8 MAINTENANCE AND EVOLUTION

Maintenance of software applications is a difficult task. It is well known in software engineering
that the maintenance phase of software projects consumes about 70 percent of the whole project
effort [104, 151]. It is also widely accepted that the earlier a bug is introduced in a system,

90 4.8 Maintenance and Evolution

the more expensive it is to remove. This also motivates the emphasis of software architecture
and design in most of today’s software engineering methodologies. The claim is that a well-
engineered architecture and a good design significantly reduce the number of (costly) bugs to be
corrected in the later phases, especially the maintenance phase.

In [67], the authors distinguish corrective, adaptive, and perfective maintenance. Corrective
maintenance covers corrections and bug fixes that were introduced in the implementation phase.
Typical examples in the Web domain could be the correction of typos in the content or program-
ming errors in the application logic. Adaptive maintenance is the adjustment of the system to
the outside environment. The fast development cycles of software such as Web servers, Java
servlet containers, databases and build tools from time to time requires an adaptation of the Web
application to comply with new protocols, input/output behavior or configuration settings. Short
product cycles are necessary to keep up with the continuously evolving technologies and stan-
dards on the Web and, even more importantly, to close security vulnerabilities in the respective
products. Table 4.1 shows the incredibly fast development history of the Apache Xerces XML
parser [141] and the Jakarta Tomcat [140] servlet container to give an impression of how short
the product cycles are.

Finally, perfective maintenance denotes all extensions and improvements of the application.
Perfective maintenance is of special interest in Web engineering. Software applications evolve
in a step-wise manner introducing new versions of the product. Small changes and patches to
existing software products are less common. Web applications are less rigid than software appli-
cations and often expected to be frequently or even continuously upgraded and extended. As a
result, design-for-change is even more important in Web engineering than in software engineer-
ing. Today design-for-change in Web engineering is supported by separating implementation
concerns. In XGuide, we further abstract this principle and introduce multi-concern contracts
that support separation of concerns not only on the implementation but also on the conceptual
level.

Since XContracts also act as specifications for Web pages and components, they also alleviate
a second problem found in software maintenance: program understanding. In [55] the authors
state that about 50 percent of the overall maintenance effort is program understanding. In the
case of Web engineering that means to understand where the content is stored and how it is
included in dynamic pages; what components are involved in the page generation process; where
the layout is defined and how it is applied to the content before the final page is delivered. If
no Web engineering concepts such as separation of concerns is used in the implementation of a
Web site, content, layout and application logic definitions are frequently intermixed making it
hard to understand what is going on in a complex Web application–this is especially true if the
original implementation dates back a couple of months or was done by a different person. While
separation of implementation concerns already helps to identify the definition of every single
concern, separation of concerns on the conceptual level (in XContracts) provides the information
to understand how the various concerns work together and depend on each other.

To better structure and control the maintenance phase in Web engineering, we introduce an
orthogonal classification in addition to corrective, adaptive, and perfective tasks as introduced
in [67]. Every activity in the maintenance phase is classified as being a maintenance or an
evolution activity.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 91

Table 4.1: The development cycles of the Apache Xerces XML parser and the Jakarta Tomcat
servlet container.

Xerces version Release date Tomcat version Release date

Xerces v1.0.0 November 9, 1999 Tomcat v4.0 September 17, 2001

Xerces v1.0.1 January 5, 2000 Tomcat v4.0.1 October 14, 2001

Xerces v1.0.4 May 9, 2000 Tomcat v4.0.2 February 10, 2002

Xerces v1.1.0 May 19, 2000 Tomcat v4.0.3 March 1, 2002

Xerces v1.1.1 June 5, 2000 Tomcat v4.0.4 June 13, 2002

Xerces v1.1.2 June 21, 2000 Tomcat v4.0.5 October 9, 2002

Xerces v1.1.3 July 26, 2000 Tomcat v4.1.0 April 26, 2002

Xerces v1.2.0 August 28, 2000 Tomcat v4.1.2 May 14, 2002

Xerces v1.2.1 October 19, 2000 Tomcat v4.1.3 May 29, 2002

Xerces v1.2.2 November 27, 2000 Tomcat v4.1.5 June 14, 2002

Xerces v1.2.3 December 6, 2000 Tomcat v4.1.6 June 28, 2002

Xerces v1.3.0 February 1, 2001 Tomcat v4.1.7 July 5, 2002

Xerces v1.3.1 March 16, 2001 Tomcat v4.1.8 July 23, 2002

Xerces v1.4.0 May 22, 2001 Tomcat v4.1.9 August 10, 2002

Xerces v1.4.1 June 22, 2001 Tomcat v4.1.10 August 30, 2002

Xerces v1.4.2 July 23, 2001 Tomcat v4.1.14 October 29, 2002

Xerces v1.4.3 August 20, 2001 Tomcat v4.1.14 November 14, 2002

Xerces v1.4.4 November 15, 2001 Tomcat v4.1.15 November 26, 2002

Xerces v2.0.0 January 29, 2002 Tomcat v4.1.16 November 26, 2002

Xerces v2.0.1 March 7, 2002 Tomcat v4.1.17 December 17, 2002

Xerces v2.0.2 June 21, 2002 Tomcat v4.1.18 December 19, 2002

Xerces v2.1.0 August 28, 2002 Tomcat v4.1.19 January 15, 2003

Xerces v2.2.0 September 26, 2002 Tomcat v4.1.20 February 12, 2003

Xerces v2.2.1 November 11, 2002 Tomcat v4.1.21 February 25, 2003

92 4.8 Maintenance and Evolution

Maintenance tasks are intra-concern tasks, i.e., they only affect a single concern and do
not require updates to the contract or other concerns. As a result, maintenance tasks are self-
contained and can be performed at any time. Several maintenance tasks are common in Web
engineering:

� Content Updates. The content of a Web application, especially a Web-based information
system, changes frequently and content updates are the most frequent maintenance activity
in Web engineering. Content updates affect the information provided by the system but do
not influence other concerns such as the formatting rules or the application logic.� Layout Updates. Changes to the graphical appearance of a Web application are not so
frequent but still relatively common. Information needs to be arranged differently on a
page, the color scheme of the Web application has to be adjusted to the corporate identity,
or hover effects (e.g., when moving the cursor over a link) shall be introduced. These
changes exclusively require modifications to the formatting rules but do not affect other
concerns.� Bug Fixes. Bug fixes in the application logic of a Web application are also typical exam-
ples of maintenance tasks. The program logic processing client requests is modified but
the input and output interfaces to the client, the content and the formatting instructions are
left unchanged.

Referring to the classification in [67], bug fixes are categorized as corrective maintenance.
Layout updates react to external requirements (e.g., updates to the corporate identity) and can
be seen as adaptive maintenance. Content updates evolve the Web site and count as perfective
maintenance. Some updates correct existing errors (e.g., typos); others are due to timely changes
of content (e.g., on a news portal).

Since XGuide features separation of concerns and maintenance tasks solely depend on one
concern, they can be integrated into the Web application at any time. Thus content updates, layout
updates and bug fixes can be done independently of each other or even concurrently. XGuide’s
view of maintenance is a great advantage over the prevalent Web development practice where
concerns are not clearly separated but intermixed. A content update in such a system thus can
easily cause unintended side-effects on the layout information or the application logic.

Evolution, on the other hand, denotes inter-concern updates. In this case, the contract of
a page or component must be modified and multiple concerns are involved. Typical evolution
scenarios are:

� Extending Pages. Imagine you have a Web page with a three column layout. So far, only
the middle column is used to display content; the left and right columns are for layout
purposes only. Now you want to place some special information in the left or right column
of the page. Such an update involves the content and the layout concerns since both the
information to be displayed (e.g., text and images) and its graphical appearance (e.g., font
sizes, colors, alignment, etc.) must be defined.

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 93

� Extending Forms. A form extension is a special case of a page extension. An additional
form field is added to an existing Web form. The update not only requires the content (e.g.,
the field labels, explanation text and default values) and the layout (e.g., to position the
new fields correctly) for the new field to be defined but also involves the application logic
that must process the value entered in the field (e.g., to store them in a database).� Adding Pages. Adding new Web components or pages to an existing application, obvi-
ously also classifies as evolution. A whole new content structure, graphical appearance and
potential application logic code need to be defined. In special cases, however, if the page
does not require logic processing and can reuse existing formatting stylesheets, adding a
new page can shrink to a maintenance task.

Larger evolution scenarios such as adding whole subsystems can be seen as mini-projects
themselves starting with a requirements analysis and feasibility decision before the conceptual
model and XContracts are updated. A good example for this case would be the Orange Juices,
Inc. example. If the existing Web site is extended with a shopping cart functionality, the deve-
lopment and integration of the shopping cart defines the mini-project that is eventually integrated
into the existing project.

Documentation and version control of all artifacts plays an important role during all phases of
the development process but specifically so in the maintenance and evolution phase. Documen-
tation further eases program and concern understanding which is crucial for any modifications
to or updates of a system. Version control of concern implementations and contracts is also in-
dispensable. Consider an update of a Web page that embeds a Web component. Consequently,
the Web component’s contract evolves together with the page. To not break other page defi-
nitions that might use the same component, it is important to uniquely identify which version
of a component or component contract is referenced in a page. As a consequence, all artifacts
used in an XGuide development process (i.e., XContracts, XPages, content concerns, formatting
stylesheets, application logic, etc.) are version controlled and all references or composition de-
pendencies use fully qualified references, i.e., the unique identifier of the artifact together with
the desired version.

Although the development process ends with the maintenance and evolution phase, it can-
not be overemphasized that a Web site or application is much more dynamic than a traditional
software product and requires an ongoing maintenance effort. If a Web site is well-designed,
mostly maintenance tasks such as content updates and bug fixes should be necessary after its
initial deployment. Evolution tasks should be significantly more scarce. Large-grained evolu-
tion activities of the size of small mini-projects should be even more rare than other evolution
activities.

Generally, we can determine the state of a Web application at any given time using the clas-
sification shown in Table 4.2. If no changes or extensions are made to a Web application, all
artifacts on all levels (i.e., the XGuide sitemap as conceptual model, the XContracts, and the
actual implementation) are stable. During a maintenance activity, the implementation changes,
but the contracts and the conceptual model remains fixed. Evolution scenarios also involve the
contracts thus only keeping the conceptual model unchanged. Extensions of the size of small

94 4.9 Conclusion

projects (e.g., adding a shopping cart or another new service to an existing site) require updates
of all artifacts including the conceptual model.

Table 4.2: A classification to determine the state of a Web application with regard to updates and
extensions.

Conceptual Model Contracts Implementation

No changes stable stable stable

Maintenance stable stable changing

Evolution stable changing changing

Mini-Project changing changing changing

As in all model-driven approaches, it is important to keep the model information up-to-date.
In XGuide, the actual model is represented by the conceptual model (i.e., XGuide sitemap) it-
self and the XContracts of the pages and components. Thus for any maintenance or evolution
activity, first the corresponding model artifact has to be identified and updated. Only then can
the implementation be modified according to the changes in the higher-level artifacts. If this rule
is ignored, not only is the traceability of the specification information lost but the whole model
cannot be used any more. As a result no explicit design information would exist and the imple-
mentation would be the only source of information. While such modifications might work in the
short term, they are strongly discouraged in terms of maintenance and traceability and can only
be compared with the (in)famous statement on documentation in software engineering projects:
“The code is the documentation”.

Keeping the conceptual model and the contracts consistent with the implementation, on the
other hand, ensures—among the advantages discussed above—that side-effects of maintenance
tasks are easily detectable, the workflow of the application is always clear, no hidden dependen-
cies among components or concerns exists, and new team members can easily understand the
inner functioning of the system.

4.9 CONCLUSION

This chapter introduced the XGuide methodology and its seven phases: requirements analysis,
feasibility decision, conceptual modeling and design, implementation, testing, deployment and
maintenance/evolution. First, the requirements diagram is compiled together with the customer.
A simple notation for modeling a high-level view of the Web application is used to support
the communication among the various roles involved in a Web project; additional requirements

Chapter 4: XGuide - A novel Approach towards XML-based Web Engineering 95

are recorded on separate requirements cards. Lacking established metrics for Web projects, the
feasibility decision uses informal decision guidelines to estimate the effort and time frame of
the project. If the project is approved, the design phase distinguishes between design in-the-
large and design in-the-small. Design in-the-large refines and componentizes the requirements
diagram and introduces application logic processes to model workflow and data processing. It
also introduces the input and output interfaces of pages and components. Design in-the-small
uses the refined conceptual model to define XContracts for pages and components that act as
specifications for the implementation. The implementation phase then transforms page and com-
ponent specifications into XPages, implementations in a concrete technology. Exploiting the
strict separation of concerns on the conceptual level, the implementation of all concerns can be
done concurrently. The testing phase strongly depends on the requirements of the project. Test-
ing of Web applications involves various testing strategies–often only the correct functioning of
the application logic is thoroughly tested. More sophisticated approaches involve XML-based
regression testing to ensure that changes do not break other components and model-based test-
ing which can cover more complex scenarios involving several subsequent requests. After the
initial, technology-specific deployment, the project enters the maintenance and evolution phase.
XGuide classifies maintenance as intra-concern updates such as content or layout modifications.
Maintenance tasks do not depend on other concerns and can be integrated easily whenever nec-
essary. In contrast, evolution tasks involve multiple concerns (inter-concern) and range in their
complexity from simple page extensions to small Web projects on their own if whole subsystems
are added.

Although the importance and central role of contracts became obvious in the discussion of
XGuide, we postponed a detailed discussion of XContracts. So far, we only mentioned that
contracts must be composable to support embedding of components into pages and extensible
to support adding of new concerns. The next chapter catches up on how contracts are specified
and composed, what contract concerns are, and how contracts are extensible. It also presents a
formal model for contracts that defines the semantics of and operations on contracts and contract
concerns.

96 4.9 Conclusion

CHAPTER 5

CONTRACTS AND CONTRACT

COMPOSITION

New ideas pass through three periods:
- It can’t be done.

- It probably can be done, but it’s not worth doing.
- I knew it was a good idea all along!

Arthur C. Clarke

Contracts and contract concerns are the cornerstones of the XGuide methodology. After the
high-level overview of their role in XGuide, this chapter presents a detailed discussion of the
syntax and semantics of contracts. It also introduces a formal model of contracts, describes the
realization of this model as XML contracts, and explains how contract composition is defined.

As explained in the previous chapter, contracts reside between the high-level conceptual
model and the concrete implementation of a Web application. Thus they effectively bridge the
gap between the big picture in the conceptual model and its implementation in a concrete tech-
nology. To start the discussion of contracts, we first introduce a meta-model for Web applications
and how contracts are integrated in the model.

5.1 A META-MODEL FOR WEB APPLICATIONS

A meta-model introduces the concepts and terminology used in modeling a given domain. In the
context of Web engineering, often an implicit meta-model defining (Web) pages and navigation
links is assumed. Similarly, we implicitly used diagram artifacts such as pages, components

97

98 5.1 A Meta-Model for Web Applications

or links in the requirements diagram and component web of the XGuide method. This section
introduces two existing meta-models used in the Web engineering domain: the Dexter Hypertext
Model [75] and Conallen’s UML-based approach [37]. It then makes the meta-model used for
modeling Web applications in XGuide explicit and relates it to the Dexter model and Conallen’s
approach.

5.1.1 THE DEXTER HYPERTEXT REFERENCE MODEL

The Dexter Hypertext Reference Model [75] is the outcome of two small workshops on hyper-
text in 1988. The workshop was held in the Dexter Inn in New Hampshire–hence the name
for the model. The researchers strived to answer the question what hypertext systems have in
common and how they can be classified. Another goal of the workshops was to come up with a
terminology for the hypertext field.

The most generic hypertext model consists of nodes and hyperlinks. The nodes represent
actual information or content and the hyperlinks provide the possibility to connect two pieces
of information with each other. Because of the wide range of uses and the generic nature of the
term “node”, the Dexter model uses the more neutral term “component” instead. From today’s
perspective where the term “component” is heavily overloaded, it is questionable whether this
change really made the model clearer and easier to understand.

The Dexter model divides a hypertext system into three layers: the run-time layer, the storage
layer and the within-component layer. The model strongly focuses on the storage layer which
defines the information nodes (components) and hyperlinks of the model. This node/link network
structure is the essence of a hypertext system. The within-component layer is concerned with the
internal structure and workings of the components themselves. Because of the great variety of
possible information nodes and content types, the Dexter model purposefully does not elaborate
on the within-component layer. The run-time layer describes how the hypertext network of
information components and links is represented and displayed at runtime. The main tasks of
the run-time layer is the creation, presentation and unpresentation (destruction) of components.
Further run-time operations include follow-link or session management functions. On the World-
Wide Web, the run-time layer is usually represented by a Web server combined with some sort
of container for the business logic (e.g., a servlet container, an application server, etc.).

The focus of the Dexter model, the storage layer, is centered around the notion of an (informa-
tion) component. A component in the Dexter model is either an atomic or composed information
component or a link. An atomic information component only contains the actual information,
a composite contains additional references to other components. Support for composites is one
of the key features that supports reuse and consistency of information. Secondly, the Dexter
model defines a component to consist of a so-called base component representing the content
and additional component information. This additional information includes all properties of
the component other than the content: its graphical representation, linking information, etc. Al-
though not designed as explicit goal, Dexter components feature some support for separation
of concerns since the actual information is separated from the other properties of the compo-
nent. Together with the composability of components, the extensibility of base components with

Chapter 5: Contracts and Contract Composition 99

additional properties result in a flexible and powerful model for information systems.

The missing component for a hypertext system is the linking of information components.
The Dexter model not only supports links between information components but also address-
ing locations or items within components. In the model, this mechanism is called anchoring
which today is commonly seen on the World-Wide Web where anchors are the only possibility
to address locations within an HTML document. To unambiguously identify components, every
Dexter component has a unique identifier. The target of a hyperlink thus consists of such a unique
component identifier in combination with an anchor specification that locates the referenced po-
sition within the component. On the Web, uniform resource locators (URLs) [21] contain both
the component (i.e., resource) identifier and the within-component fragment identifier based on
existing anchors. With the recent W3C’s XLink/XPointer recommendation [43,44], the need for
embedding anchors in a Web resource to be able to reference a specific position in a component
vanishes. XLinks uniquely identify the target resource while an XPointer identifier locates a
given position in the content. Unlike the anchoring approach, no embedded anchors are required
in the content which is especially helpful for referencing third-party documents for which the
required write access to embed anchors usually is not granted.

5.1.2 MODELING WEB APPLICATION ARCHITECTURES WITH UML

In [37], Conallen presents a UML-based meta-model for Web applications that takes a com-
pletely different approach than the Dexter model. Conallen starts with the definition of a Web
application as a software system with a business state whose front end is delivered via a Web sys-
tem. This definition completely coincides with our definition in Section 2.1. Regarding a Web
application as a complex software system and given the dominant role of the UML for modeling
software systems, Conallen exploits the UML extensibility mechanisms and defines stereotypes
to model Web applications using UML diagrams.

Unlike the Dexter model that is content-centric (i.e. the storage layer), the extended UML
notation is focused on the business logic of a Web application. Conallen concludes that modeling
Web applications as UML class diagrams alone, is not sufficient. The additional semantics and
inner workings of Web pages are thus represented by stereotyped UML classes. The resulting
component diagram is similar to a sitemap and conceptually close to the XGuide requirements
diagram. To model the collaboration inside Web pages (e.g., client-side or server-side scripting),
the functional entities used in a Web page are separated. Again the principle of separation of
concerns is used. In this case, however, to separate various logic concerns from each other rather
than to separate different kinds of concerns such as the content, the logic, access control or
graphical presentation.

In Conallen’s model, each component has a client-side and a server-side representation. This
is necessary to model the different behavior of a component depending on the location where it is
displayed or executed. The client-side view of a component, for instance, includes the JavaScript
functionality and the processing of potential Web forms. The server-side view, on the other hand,
represents the back-end application logic that is necessary to create the page. The client page and

100 5.1 A Meta-Model for Web Applications

server page stereotype classes are used in the meta model to represent the two different views of
the same component.

Hyperlinks, the second ingredients for a hypertext model, are depicted by stereotyped asso-
ciation classes. Such relationships can have quantifiers (e.g., 0..*) to model links to multiple
pages. A typical example is the result of a search request in a product catalogue. The result page
contains a number of links that point to the respective product details page–each of which is an
instance of a stereotyped class parameterized by the product identifier. The notion of quantifiable
hyperlink associations is similar to the multi page approach in XGuide. Multi pages similarly
represent a collection of typed and parameterized pages (e.g., the set of product detail pages) that
can be referenced from another page or component (e.g., the search result page).

A major drawback of the model presented in [37] is that no real notion of a component
exists. Pages are the basic entities and only the functional aspects of pages are further refined
in an object-oriented approach. Apart from the business logic of a Web application, no compo-
nentization (e.g., for page fragments that are composed to form the final Web page or for layout
reuse) is supported.

5.1.3 THE XGUIDE META-MODEL FOR WEB APPLICATIONS

Implicitly we already introduced the entities of the XGuide meta-model in the discussion of the
requirements analysis and design phases. Unlike the above approaches, XGuide implements the
notion of a Web component as a first-class primitive. It does not focus specifically on the content
(as in the Dexter model) or on the business logic (as in the Conallen approach). Instead, XGuide
components consist of several equal and independent concerns that represent the content, the
layout or the application logic.

Components in XGuide come in two flavors: either as composable or as non-composable
entities. A composable component represents a fragment of a Web page that is reused and em-
bedded in other components (e.g., the footer of a page). Non-composable components are the
Web pages themselves that have the same characteristics as any other (composable) component
but cannot be embedded into other components or pages themselves. The XGuide meta-model
distinguishes between composable components, simple pages and multi pages that represent a
parameterized collection of simple pages. Dependencies on third-party or external services are
covered by external components. A composition dependency describes the embedding of a com-
ponent into another component or page.

Linking information in the XGuide model is defined by navigational dependencies. Such
dependencies represent a hyperlink from one page or component to another. Since XGuide intro-
duces the notion of a multi page, quantifiers on navigational dependencies as found in Conallen’s
approach are not necessary. Instead, hyperlinks to multi pages transport context information to
select the appropriate page to display out of the collection of pages represented by the multi
page. Also note that composable components (page fragments) as well as full pages can act as
sources for hyperlinks. In contrast, only Web pages but no page fragments are allowed as link
destinations. Using page fragments as link destinations would result in the definition of one-to-
many hyperlinks since the source of such a link is implicitly linked to all pages that embed the

Chapter 5: Contracts and Contract Composition 101

referenced component. One-to-many hyperlinks are currently not supported in XGuide because
they are extremely rare in Web applications. With the (currently missing) broad support of the
XLink/XPointer recommendation [43, 44], however, one-to-many links will be easy to integrate
into XGuide.

Apart from the classical elements of a hypertext model (i.e., the information components
and the linking structure), the XGuide meta-model introduces additional artifacts to loosen the
coupling among components and provide support for the increasing use of dynamically generated
Web pages.

The most important such concept is the notion of a contract for a Web component. Contracts
provide specifications of Web components and pages and clear interfaces among the component’s
internal concerns. Contracts are discussed in detail later in this chapter.

A second extension to traditional hypertext models is the explicit modeling of interfaces and
information processing using input- and output-interfaces. Input interfaces state the information
requirements of a component in order to be instantiated. As a consequence, only dynamic pages
have input interfaces. Output interface, on the other hand, specify the information a page pro-
vides via Web forms–both static and dynamic pages can have output interfaces. If input- and
output-interfaces of linked pages do not directly match, a mediator (processing) component has
to be inserted between them. Such a processing entity is traditionally called the business or ap-
plication logic of the Web application. In the XGuide model, application logic processes can
be introduced to make the workflow, the dependencies on external systems, and processing of
information explicit. Such processes, as all other model artifacts, have a specification that states
their input- and output-interfaces to ensure easy and consistent deployment.

Table 5.1 presents a description of all (visual and non-visual) entities of the XGuide meta-
model for Web applications.

Regarding the level of detail of the XGuide meta-model, it is positioned between the Dexter
and the Conallen models. In the Dexter model, information on the internals of a component is
explicitly excluded. The authors state that the internals of such components can be so manifold
that their modeling is simply beyond the scope of a generic model. In Conallen’s approach, on
the other hand, only the application logic is modeled–but in great detail. The XGuide approach
lies in between in that it provides a component specification that defines separate concerns and
interfaces to other components but otherwise agrees with the authors of the Dexter model that
the internals of each concern depend too much on the concrete application to be covered by a
generic model. Modeling the content concern, for instance, might involve information mining
and structuring techniques; the graphical appearance is often determined using storyboards, UI
charts or rapid prototyping; the application logic can be modeled using the standard or Conallen’s
extended version of the UML.

Compared to the other models presented above, the XGuide model covers a broader spectrum
of the design space since it does not focus on a single concern but provides an extensible contract
model that supports an arbitrary number of equal concerns. Although Conallen defines a client-
side and a server-side view of the Web components, a real component approach that features
reusable and composable Web components–as found in the Dexter (composites) and XGuide
approaches–is missing. Unlike the Dexter model, we do not explicitly support operations on

102 5.1 A Meta-Model for Web Applications

Table
5.1:

T
he

artifacts
of

the
X

G
uide

M
eta-M

odelfor
W

eb
A

pplications.

N
am

e
D

escription

Sim
ple

Page
A

sim
ple

page
represents

a
single

W
eb

page
that

consists
of

several
concerns

and
can

em
bed

other
com

ponents.
Sim

ple
pages

them
selves

are
com

ponents
butcannotbe

further
com

posed.

M
ultipage

M
ultipages

are
param

eterized
collections

of
(sim

ple)
pages

of
the

sam
e

type.
Such

pages
share

the
sam

e
structure

and
graphical

appearance
and

only
differ

in
the

content
they

present.

C
om

ponent
C

om
ponents

are
com

posable
entities

and
represent

page
fragm

ents
to

be
reused

and
em

-
bedded

into
other

com
ponents

and
pages.

E
xternalPage

E
xternalpages

denote
the

dependencies
to

external,third-party
services

thatare
notpartof

the
projectbutneed

to
be

integrated.

A
pp

logic
process

A
pplication

logic
processes

m
ake

the
processing

of
user

input
explicit

and
act

as
m

edia-
tors

betw
een

the
input-

and
outputinterfaces

of
pages

and
com

ponents.
A

pplication
logic

processes
often

are
com

plex
softw

are
system

s
on

their
ow

n
w

ith
m

ulti-layer
architectures,

back-end
databases

and
com

plex
interactions

w
ith

externalservices.

N
avigationalD

ependency
A

navigational
dependency

represents
hyperlink

from
the

source
page

(or
com

ponent)
to

the
destination

page.In
the

case
of

m
ultipage

targets,navigationaldependencies
transport

contextinform
ation

to
provide

the
m

ultipage’s
inputparam

eters.

C
om

positionalD
ependency

C
om

positionaldependencies
specify

the
em

bedding
of

com
ponents

into
other

com
ponents

and
pages.

Input/outputinterface
Input-

and
outputinterfaces

are
associated

w
ith

allsorts
of

pages
and

com
ponents

to
cap-

ture
the

inform
ation

they
provide

(via
W

eb
form

s;outputinterface)
and

the
argum

ents
they

require
to

be
instantiated

(input
interface).

T
he

explicit
specification

of
input

and
output

requirem
ents

supports
consistency

checking
of

com
ponentw

ebs
and

provides
a

clear
inter-

face
to

program
m

ers.

C
ontract

C
ontracts

are
specifications

for
pages

and
com

ponents
and

provide
inform

ation
abouttheir

internalstructure,the
concerns

they
im

plem
ent,their

navigationaldependencies,and
their

com
positionaldependencies.C

ontracts
are

notdirectly
partofthe

m
eta-m

odelbutare
used

to
capture

and
later

on
refine

m
eta-m

odelinform
ation.

Chapter 5: Contracts and Contract Composition 103

Web components and pages. The Dexter model defines both storage (e.g., create component,
destroy component, etc.) and run-time operations (presentComponent, followLink, etc.). In
XGuide, the life-cycle of a component is implicit, i.e., it is automatically created when it is first
requested, automatically displayed as a response to the request, and following links is simply
modeled as requesting a new component.

In XGuide, all information on model artifacts such as pages, hyperlinks or application logic
processes is captured in contracts. Hence contracts are the actual presentation of the model
artifacts and act as specifications for a subsequent implementation. The remainder of this chapter
discusses the idea of contracts for Web components and pages. We first introduce a formal model
for contracts and contract concerns. The following sections present the actual implementation
of contracts in XGuide as XML documents and the semantics of and operations for contract
composition.

5.2 A FORMAL MODEL FOR WEB COMPONENT CONTRACTS

The idea of contracts originates from the domain of software engineering. On the component
level, interfaces represent the contract of a component, i.e., specify how the component can be
used from the outside. Bertrand Meyer’s design-by-contract [83, 111, 112] brings the idea of
contracts to the next level. Not only the interface but also pre-/post-conditions and invariants
specify the expected behavior of methods. Eiffel [110, 113] provides built-in support for such
contracts. The next level of evolution is reached with state machines such as AsmL (Abstract
State Machine Language) [6–8]. It supports the definition of contracts for Microsoft’s .NET
platform. Such contracts of pre- and post-condition and type invariants can then be woven into
the actual implementation code to have them checked at runtime.

The idea of a contract in Web engineering—just as the the idea behind interfaces in software
engineering—is to reveal all the necessary information to interact with an artifact independently
of its inner workings. Similarly, an XGuide contract (XContract) describes the properties of a set
of pages with the same characteristics. Such a contract could, for instance, specify the structure
of the content on a page. It does not, however, say how the content is created or collected.

The structure of the content to be placed on a page is one example. Similarly, contracts
define specifications for the development of the graphical appearance and the application logic.
The various properties of a page or component that are covered by its contract are called con-
tract concerns. In addition to defining a default set of contract concerns, XContracts provide an
extensibility mechanism to add and integrate new contract concerns without affecting existing
ones.

Throughout this work, we developed an intuitive notion and understanding of what contracts
are and how they can be used. This section presents the formal foundation for dealing with
contracts in XGuide. It defines what a contract and a concern is and how contract composition
works.

An XGuide contract � is an unordered tuple of concerns ��� that denote the different charac-
teristics of the page.

104 5.2 A Formal Model for Web Component Contracts

������������� ����!"!#!$� �&% (5.1)

The structure of the content mentioned above, the input and/or output interfaces or access
control constraints are examples for concerns that are aggregated in a contract.

Furthermore, each concern has an associated type which is used to identify the concern in
the contract. A sample contract, thus, could contain a concern of type structure, a concern of
type interface and another concern of type access control. The type of a concern can be retrieved
using the ')(+*-, function, i.e., the type of �.� is ')(+*-,��/� � % . A contract can contain at most one concern
of any given type. As a result, the contract definition given in 5.1 has to be extended to

�0�1�/�2� �3������!�!�!��3� �4% where ')(5*-,���� � %76�8')(5*-,����:9 %<; ���=���:9?>@�A�3B 6�DC (5.2)

If the type of a concern ':�E�F')(5*-,��/� � % is independent of another type '�9@�G')(5*-,����:9 % , we
call ')� orthogonal to '�9 . Independent in this context means that concerns of type 'H� do not need
information specified in a concerns of type 'I9 to express their characteristics. If ':� is orthogonal
to '/9 we write

'=� J '/9 (5.3)

If type ')� of a concern is independent of all other types of concerns in a contract, we call this
type of concern orthogonal to the contract or simply orthogonal.

'=� J � (5.4)

Since at most one concern of any given type may be present in a contract, we can also call a
concern orthogonal if its type is orthogonal. Thus, a concern ��� is orthogonal to concern �H9 if the
type of � � is orthogonal to the type of �K9 .

��� J �:9 LAM '=� J '/9 (5.5)

If the type of concern � � is orthogonal to the contract, we also call ��� orthogonal to the con-
tract.

��� J � (5.6)

Finally, a contract is said to be orthogonal if all the concerns it contains are orthogonal.

The structure concern describing the structure of the content of a page is a good example for
a concern which is orthogonal to the contract. It does not depend on any other concern since
the structure of the content is self-contained and does not require further information from other
concerns.

Although concerns are independent of each other in the domain of the final application, their
definition might require dependencies among concerns. The access control concern, for instance,
defines which parts of the content are accessible to a given principal. Clearly, the definition of the

Chapter 5: Contracts and Contract Composition 105

access control concern must depend on the structure concern to be able to refer to the appropriate
parts of the content. As a consequence, we call the type 'N9 of concern �H9 dependent on ')� if
concerns of type '�9 rely on concerns of type ':� .

'=� O '/9 (5.7)

Arguing as before that the type ':� of concern � � has to be unique within the contract, we call
a concern �H9 which relies on another concern ��� dependent on � � denoted as shown in 5.8.

� � O �:9 (5.8)

For XGuide contracts we further enforce some rules on the use of dependency relations to
restrict the complexity of contracts. The optimum is to have an orthogonal contract since in this
case no concern is dependent on any other. If this is not possible, the number and complexity of
dependency relationships should be as small as possible. We thus do not support a concern ��9 to
be dependent on more than one concern �.� . Multiple concerns �K92���:9KPQ� �3�H9HPR����!�!�! , however, can be
dependent on the same concern ��� .

	+� �I�����SPQ� �����SPR����!�!�!T
 O �:9 U�V/VXWZY-[\V)] (5.9)� �^O 	+�:92���:9KPQ� ���:9KPR�.��!�!�!T
 (5.10)

We allow transitive dependencies of concerns, i.e., �39 is transitive dependent on ��� if there are
other concerns ��_ in � to form a dependency chain from ��� to �H9 .

���`L �:9DLAM ab� �`O � �TPQ�cO � �TPR�d!�!�!eO �H9 (5.11)

The length of the longest dependency chain f of a concern gh� can unambiguously be defined
as

f:��gi� % �kj4	+g&lmO gn�oO !�!�!&O gi�pj�g&l is an orthogonal concern
Ej (5.12)

Additionally, we define qsr as the set of all concerns with a dependency chain of length t andf#uwv:xh�/� % as the length of the longest dependency chain in � .

qmr+��� % � 	+gi�wj�f:��gi� % �ytz
 (5.13)f"u{v)xZ��� % � |}gi~w�/fH�/gi� %K% ; gi�{>�� (5.14)

Based on the above definitions, an orthogonal concern gn� has f:��g&� % ��� and q�l5�X� % is the set
of all orthogonal concerns in � .

Extensibility of contracts can now be defined as the addition of a new concern � � and its
corresponding dependency relationships taking into account the above restriction.

106 5.2 A Formal Model for Web Component Contracts

For convenience, we also introduce compatibility among concerns. We call a concern ���
(type) compatible to �K9 if both concerns have the same type. Correspondingly, two concerns are
called (type) incompatible if they have different types.

��� compatible �H9�L`M ')(5*-,������ % �8')(+*-,��/�H9 % (5.15)� � incompatible �H9�L`M ')(5*-,������ %�6�8')(+*-,��/�H9 % (5.16)

5.2.1 CONTRACT COMPOSITION

Using the definitions of contracts and concerns from the previous section, we now discuss the
composition of contracts. Let � ���/g\����g&����!�!�!���g �i% and ���������������2��!�!�!����3u % be XGuide con-
tracts. We define a composition operator � and ���1����� ��� �2��!�!�!����)� % as the result of the compo-
sition:

� ��� � � (5.17)

The basic idea of the � composition operator is to compose all compatible concerns of the
contracts taking all dependency relationships into account. The functionality of � is thus defined
in terms of � v � ��� ��!�!�! —the composition operators for the concerns of types g , � , . . . included
in � and � .

The number of concerns * in the composition result is determined by the number of unique
types of concerns in � and � . The following simple condition always holds for * :

* � |}gi~w�/|��3� % (5.18)

For the discussion of contract composition we also introduce � —the set of types occurring
in the result � of the composition of � and � . Since no new types are added to nor existing
types are removed from the composition result by doing contract composition, � is the set of all
types which occur in � or � . Thus for �0����� � , we define

�}�=� % � 	2')(5*-,������ % j�Bw���4��!�!�!.�I*<
 (5.19)�}�=� % � 	2')(5*-,���gi� % j�Bw���i��!�!�!.�3�w
��c	2')(5*-,��/��� % j�B{���i��!�!�!��3|�
 (5.20)

Finally, we define �@j � as the concern in � with type � . For any given contract � , �@j � is
either the empty set (if no concern of this type is present) or contains exactly one element (since
only one concern of any given type can exist in a given contract).

�@j �e��	+gi�pj�')(5*-,���gi� % �8�Z
 (5.21)j2�@j �Ej���� � j��@j �Ej��0� (5.22)

Chapter 5: Contracts and Contract Composition 107

Contract Composability. We call two contracts � and � composable iff the dependencies in
the two contracts are unique with respect to the rules for dependencies as described above.
Specifically, this means that if a type f depends on a type � in � , then f must (if present)
also depend on � in � , i.e., �

j���O
�

j�f<L`M ¡j��¢O dj�f (5.23)

5.2.1.1 COMPOSITION OF ORTHOGONAL CONTRACTS

To begin with, we discuss the composition of orthogonal contracts, i.e., contracts which ex-
clusively contain concerns with no dependencies. Let again � � �/gz����g&����!�!�!���g �i% and � ���������������!�!�!��3��u % be contracts with an arbitrary number of orthogonal concerns. Dealing only with
orthogonal concerns, we get a set of composed, orthogonal concerns �/�4����� ����!�!�!.���)� % where *
is the number of orthogonal types in �£�¤� . Since no dependencies exist, ¥�l+�/� % �¦� and¥§l+��� % ��� . The composition � of � and � is defined as follows:

���1�/�2� �3������!�!�!��3�:� % ����� �1�8q�l5��� % � q�l+�/� % (5.24)

For each ��_`>¨� we distinguish three cases: the type of �._ only exists in � , the type of ��_
only exists in � , and the type of �._ exists in both � and � . Thus we define a �._7>©� as:

��_ �
�

j�� 6 ab�)9«ªi')(+*\,����)9 % ��� (i.e., �¬j��¢��	&
)��_ � dj�� 6 abgi�wªi')(5*-,��/g&� % ��� (i.e., �@j�����	&
)��_ �
�

j�� � _ ¡j�� abgi�I���)9�ª�g&� compatible �:9
(i.e., �@j�� 6��	&
®¯�¬j�� 6��	&
)

(5.25)

In other words, we simply add all orthogonal concerns to the resulting composite contract
that do not have a counterpart of the same type in the other contract. For those concerns which
occur in both contracts, we apply the composition operator for the respective type.

Example. Given the orthogonal contracts � � �/g-� �3g�� % and � � ����������� % with '��1�')(5*-,���gn� % �°')(5*-,������ % , we would aggregate �¦�¦���5����� ����� ± % according to the above rules
as �2�§�¨gn� �0²´³ ��� , � ���¨g�� , and ��±m�¨��� .

5.2.1.2 COMPOSITION OF DEPENDENT CONTRACTS

In the case of general dependent contracts, the situation is not as obvious as in the orthogonal
case. We also have to consider dependencies among concerns including transitive dependency
chains.

in � and � with the length of the longest dependency chain of the concern, i.e., we assign
each concern to its corresponding q�� where B denotes the length of the dependency chain. Recall
that every concern can only have a single dependency on another concern (similar to single vs.

108 5.2 A Formal Model for Web Component Contracts

multiple inheritance in object-oriented programming). As a result we get labels f:��gn� % on all nodesgi� of the directed acyclic graph of dependency relations between concerns. We can further divide
the graph into levels where each level consists of all nodes with the same label, i.e., level B
contains all nodes of q�� .

Assume for the discussion of composition of dependent contracts that ���^��gz����g&����!�!�!���g �i%
and � � �����������2��!�!�!.���3u % are contracts with an arbitrary number of orthogonal and depen-
dent concerns. As a result of the composition of � and � , we get a composite contract�0�0��������������!�!�!����)� % where * is the number of all types in ���¬� , i.e., j��µ�=� % j .

We now define by complete induction how contract composition is done. We first show how
the composition works for concerns in q¶l and then describe how composition is done for qs�
under the assumption that all concerns of qo9 with C`��B were already composed.

For q�l2��� % and q�l+��� % we deal with orthogonal concerns only and thus can apply the rules
from the previous section. We calculate q¶l5�=� % as q�l5�/� % �·qml5��� % .

For the concerns in q�� on the other hand, the concerns in qs�¹¸\� influence how the composition
is performed. Basically, the composition operator for a concern � � of type � (� �) which depends
on another concern ��v of type g has to ’understand’ what the composition operator for typeg (� v) means. This requires a way to apply � v to �k� to reformulate �1� according to the
definitions in � v .

We define the reformulated composition operator º � for a concern of type B that depends on
type B¼»y� as the result of applying º �#¸\� to � � :½

� � ½
�#¸\� � � � ½

�¹¸Z� � �¹¸\� � � �0!�!�!&� � l !�!�! � �¹¸\� � � (5.26)

Remark. Note that for orthogonal concerns of type B � � � º � . For all other concerns,
however, this is usually not the case.

Returning to the composition of q��)���¾�¿� % , we define the composition �._�>¾qm�=�=� % as
follows: be � uy�0�@j |�º u �¬j |¦>@qm�¹¸\���N� % and � u8O � _ . As in the orthogonal case, we have
to distinguish three cases: the ')(+*\,����._ % �0')_ exists only in � , ')_ exists only in � , and 'H_ exists
in both � and � . We can thus define a �._7>�qm�=�N� % as:

� _ �
�

j�� ��uÁÀ��@j |1¬�¬j�����	&
� _ � º u
�

j�� ��u 6À��@j |1¬�¬j�����	&
 (5.27)

��_ � ¡j�� � uÂÀ��¬j |�¬�@j�����	&
��_ � º u ¡j�� � u 6À��¬j |�¬�@j�����	&
 (5.28)

��_ �
�

j��Âº _ ¡j�� �@j�� 6��	&
m¬�¬j�� 6��	&
 (5.29)

This means that if there is neither a concern of type � in � nor a concern of type | in � ,
we can simply take what is defined in � . If no concern of type � is defined in � but a concern

Chapter 5: Contracts and Contract Composition 109

of type | is defined in � , we apply the reformulated composition operator of type | (º u) to
the definitions of type � in � (�@j��). The same applies vice verse for � . If a concern of type �
is present in both � and � , we use the reformulated composition operator for type | (º u) on� _ to obtain the reformulated composition operator for type � (º _).
Remark. Note that we can reformulate both composition operators as well as concerns by

applying composition operators of types they depend on as unary operators. If we use a
composition operator as a binary operator, we actually compose two concerns of the same
type to form a composite concern.

Example. Extending the previous example on orthogonal contracts, assume contracts � ��/gR����g&� % and �1���/�����3� � % with '��§��')(5*-,���gn� % �8')(+*-,��/��� % , gn�§O g&� , and ���§O ��� .
The contracts in this example cannot be composed because they are not compatible, i.e.,gn� and ��� have the same type but do not have the same dependencies. Specifically, gQ� is
orthogonal while ��� depends on ��� .

Example. A slight modification of the previous example makes the contracts composable.
Assume contracts � �¦��gR����g&� % and �¦������������� % with '3�b�£')(5*-,��/gR� % �^')(+*-,��/��� % , ')�¢�')(5*-,���g&� % , ')±��8')(+*-,��/��� % , gn�§O g&� , and � �mO ��� .
In this case, both gR� and ��� are orthogonal and the types of the concerns that depend on
them are different which does not violate the composability condition.

Following the rules of contract composition as described above, we create and label the
dependency graph and divide it into the following disjunct levels: qÃl5���1��� % �Ä	+gn��������

and q?�.�/�°�@� % ��	+g&�2������
 . Starting with the orthogonal concerns, we would calculateq�l2�=� % as ���Å�¨gR� �0² ³ ��� . For g&� we have a dependency on g\� but we do not have a concern
of type ')� in � . Thus we apply the reformulated composition operator � ² ³ � º ² ³ to g�� :� ����º ²´³ g&� . The same steps have to be done for �2� : � ±m��º ²´³ ��� .

The above definitions and composition rules form the basis for contract composition as used
in XGuide. It is already clear that the introduction of dependent concerns significantly increases
the complexity of the overall composition since dependent concerns have to ’understand’ the
composition operators of the concerns they depend on. Fortunately, the most important contract
concerns used in Web applications (the content, the layout and the application logic) do not
require dependent concerns. Additional concerns such as access control or meta-data, however,
do.

The next section demonstrates a concrete implementation of the formal contract model pre-
sented here. Contracts, concerns and composition operators are completely formulated in XML
and the result of a composition operation again is an XML document.

110 5.3 XGuide Contracts - XContracts

5.3 XGUIDE CONTRACTS - XCONTRACTS

Since XGuide focuses on XML-based Web engineering and we aimed at expressing contracts
declaratively, it stands to reason to use XML as the contract language. This choice is especially
beneficial since some contract concerns can directly be expressed in an XML language. Using
XML as contract language also provided us with a rich set of libraries and tools that could be
used to create and manipulate contracts.

A first important property of a contract is that it must be uniquely identifiable. Thus all con-
tracts have a unique identifier together with a version. The identifier is necessary to differentiate
between the various contracts. The version identifier distinguishes multiple instances of the same
contract. Multiple contract instances occur if contracts evolve over time to satisfy extended or
changed requirements of pages. Nevertheless other pages referencing the same contract might
not fulfill the update and still conform to the original version of the contract. As a result, both the
contract identifier and the version identifier are necessary to unambiguously identify a contract.

The structure of an XContract wrapping the contract concerns is shown in Figure 5.1. The
xcontract document element and all contract-related elements and attributes lie in the http:
//www.infosys.tuwien.ac.at/xguide/contractnamespace. The contract and the
version identifier are both required attributes on the document element.

<?xml version="1.0"?>
<xcontract xmlns="http://www.infosys.tuwien.ac.at/xguide/contract"

id="SampleContract"
version="0.9"

>

<!-- concern definitions go here -->

</xcontract>

Figure 5.1: The structure of an XContract.

As we pointed out before, a contract basically is a collection of contract concerns. Each
contract concern describes a certain characteristic of the Web component or page and may, or
may not, depend on other concerns.

As shown in Figure 5.2, concerns are encapsulated by the concern element and again have
an identifier attribute. Since we want to be able to use arbitrary XML languages to describe the
content of a concern, we use the concept of XML namespaces to distinguish the various vocab-
ularies. In Figure 5.2, the structure concern is represented by an XML schema (i.e., by elements
from the http://www.w3.org/2001/XMLSchema namespace) and the interface concern
is represented by our own interface definition language (i.e., by elements from the http:
//www.infosys.tuwien.ac.at/xguide/concerns/interface namespace).

Having introduced this contract structure, the extensibility requirement of contracts can easily
be satisfied. To extend the contract, only a new concern element with content in the appropriate
markup language has to be added. The only constraint is that the concern identifiers must remain

Chapter 5: Contracts and Contract Composition 111

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract"

id="SampleContract"
version="0.9"

>
<concern type="Structure">

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- XML schema for component goes here -->

</xsd:schema>
</concern>
<concern type="Interface">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">
<idl:in>
<idl:param name="page_id" type="int" dimension="0" />
</idl:in>

</idl:interface>
</concern>
<concern type="SomethingElse">
<ref src="external.xml" />

</concern>
</xcontract>

Figure 5.2: An XContract with concerns from different namespaces.

unique. Another distinguishing criterion for concerns shown in Figure 5.2 is that concerns can be
specified directly in the contract or merely referenced in the corresponding concern section. In
the case of the structure and interface concerns, the concern specification is inline, i.e., directly
provided in the contract using different namespaces. The SomethingElse concern, however, is
external, i.e., only references an external definition stored in the external.xml file. The
important advantage of external concern definitions over internal ones is that they can easily
be reused in multiple contracts. Inline concerns, on the other hand, cannot be embedded in or
referenced from other contracts and thus are only usable in one contract.

Before delving into the details of the structure and interface concerns, we first introduce
the notion of an implementation concern versus a contract concern. Contract concerns are the
various subsections of contracts that describe the various aspects of the specification. Implemen-
tation concerns, on the other hand, are the concerns used in concrete implementations of Web
pages and components.

The interesting fact is that the mapping of contract concerns to implementation concerns is
not necessarily a one-to-one mapping. The structure contract concern, for instance, is used as
specification information for the content implementation concern (i.e., it defines the structure and
data types of the content document) and the layout implementation concern (i.e., the development
of XSLT stylesheets only depends on the structure information in the schema). Other contract
concerns (e.g., the interface concern) directly map to implementation concerns (e.g., in a specific
programming language).

112 5.3 XGuide Contracts - XContracts

As a result, contracts for the dominant three implementation concerns in Web engineering
(content, layout and application logic) only require two contract concerns (structure and inter-
face). The following subsections discuss both of these contract concerns in detail.

5.3.1 THE STRUCTURE CONTRACT CONCERN

The structure contract concern is the heart of an XContract. It relies on the W3C XML Schema
recommendation [24, 143] and defines both the structural and the datatype constraints. Depend-
ing on the type of the concern (inline vs. external), the schema document is either directly
embedded in or only referenced by the structural concern. We do not present more information
about the XML Schema recommendation here but refer the interested reader to the excellent
primer of the recommendation [53]. Figure 5.3 shows the (internal) structure concern snippet
from a sample contract for a Web page.

5.3.2 THE INTERFACE CONTRACT CONCERN

The interface contract concern is more complex to introduce because no XML dialect covering
input- and output interfaces as needed in XGuide exists. As a consequence, we introduce our
own markup language to describe the input and output requirements of pages and components.
Recall that an XGuide component can only have a single input interface stating the information
needed to create the component. In contrast, a component can have multiple output interfaces
according to the number of embedded Web forms. Output interfaces consequently require an
identifier attribute whereas the single input interface does not.

Both input and output interfaces share a common structure consisting of a set of parameters
that have a name, a (data) type and a dimension. The dimension attribute specifies the whether
a parameter is an array, and if so, what its dimension is. Accordingly a parameter of dimension
0 represents a single value, a parameter of dimension one a 1-dimensional array of the given
type, and so on. Note that the notion of an interface in XGuide differs from interfaces as used
in software engineering. XGuide interfaces only contain field members but no methods. The
reason for this restriction is that always a single default method is (implicitly) used by clients
of the interfaces. For input interfaces of pages and components, this is the instantiate operation;
for output interfaces it is the submit operation. Supporting additional methods in the XGuide
interfaces (e.g., display component, destroy page, etc.) only makes sense if the created system
needs to be dynamically edited at runtime (see the Dexter hypertext model [75] for details on
this idea); XGuide currently does not support dynamic editing of Web applications.

Figure 5.4 depicts the input and output requirements of a Web page that takes a string ar-
gument as input and provides two output interfaces (i.e., two separate Web forms). The search
output interface provides a string argument (e.g., the search term). The order interface contains
two integer arguments representing a product identifier and the quantity to be ordered. This con-
stellation of interfaces could, for example, occur in a shopping cart contract that takes the user’s
name as input to display a customized welcome message and provides a product and quantity
selection form together with a (separate) search form.

Chapter 5: Contracts and Contract Composition 113

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract"

id="SampleContract" version="0.9"
>
<concern type="Structure">

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xguide/webpage"
xmlns="http://xguide/webpage"

>

<xs:element name="webpage">
<xs:complexType>
<xs:sequence>

<xs:element name="header" type="xs:string" />
<xs:element ref="content" />
<xs:element name="footer" type="xs:string" minOccurs="0" />

</xs:sequence>
<xs:attribute name="lang" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="content" type="ContentType"></xs:element>

<xs:complexType name="ContentType" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="b" type="xs:string" />
<xs:element name="em" type="xs:string" />

</xs:choice>
</xs:complexType>

</xs:schema>
</concern>
<!-- other concerns go here -->

</xcontract>

Figure 5.3: The structure concern of a sample XContract for a Web page.

114 5.4 Contract Composition

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract"

id="SampleContract" version="0.9"
>
<concern type="Interface">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">
<idl:in>
<idl:param name="user_name" type="string" dimension="0" />
</idl:in>
<idl:out name="search">
<idl:param name="keyword" type="string" dimension="0" />
</idl:out>
<idl:out name="order">
<idl:param name="product_id" type="int" />
<idl:param name="quantity" type="int" />
</idl:out>

</idl:interface>
</concern>
<!-- other concerns go here -->

</xcontract>

Figure 5.4: The interface concern of a sample XContract for a shopping cart Web page.

The only elements in the http://www.infosys.tuwien.ac.at/xguide/concerns/
interface namespace are the interface, in, out and param elements. The in and out elements
encapsulate the input and output interfaces respectively. The param element represents a sin-
gle argument with the specified name and data type in the respective interface. As explained
above, the dimension attribute determines the dimension of array types. Note that the dimension
attribute can be omitted to use the default dimension of zero.

The introduction of XContracts, contract concerns and the contract extensibility model is
only a preparation for the discussion of how contracts can be composed. The formal model
presented in Section 5.2 already defined composition operators for orthogonal and dependent
concerns. The basic structure and interface concerns of XGuide contracts are both orthogonal.
The next section extends our notion of XContracts with the definition of composition rules and
operators for these concerns.

5.4 CONTRACT COMPOSITION

If we think of contracts as XML documents as outlined in the previous section, composition
means to process and merge the contract documents to create the resulting (composite) contract–
again in XML form. Although their contracts syntactically do not differ, recall that we distinguish
between page contracts and component contracts. Only the latter can be embedded into other
components and pages; the former cannot be reused or further composed. Thus when we talk
about contract composition we always mean the composition of a component contract with a
page or another component contract.

Chapter 5: Contracts and Contract Composition 115

Also note that composing two contracts does not create a third, completely new contract but
embeds one contract into the other. The resulting hierarchy of composition (i.e., embedding)
dependencies is natural for Web applications where reusable page fragments (e.g., the header or
navigation bar) are embedded into pages.

Basically, two alternative ways of composing contracts are possible: composition-by-copy
and composition-by-reference. In the first case, the referenced contract is merged with the re-
ferencing contract. Once the contracts are merged, the composition is transparent, i.e., no in-
formation on what contract was referenced and how the composition operation was performed
exists. Using composition-by-reference, on the other hand, the contracts are only linked and the
composition operation rather than the referenced contract is added to the referencing contract.

In the case of XContracts, composition-by-copy means to merge the XML fragments repre-
senting the corresponding contract concerns. The resulting XML fragment then replaces the orig-
inal contract concern definition in the referencing contract. This has the advantage that changes
to the referenced contract can never break the referencing contract. This fact, at the same time,
is also a downside since updates to the referenced contract are not propagated and have to be
integrated manually into a potentially large set of contracts. Even worse, if a contract embeds
several component contracts by copy, it might not be possible to undo the composition operation
to integrate a new version of one of the component contracts.

Alternatively, using composition-by-reference better facilitates reuse and change propaga-
tion. However, it results in a problem similar to the fragile base class problem [136] in object-
oriented inheritance. Changes to the referenced contracts are immediately propagated to all
referencing contracts, but might well require a subsequent update of the composition operator
in the referencing contract. We meet this problem by supporting strongly typed contract refer-
ences, i.e., both the contract’s unique identifier and the full version number are included in the
reference. Thus if a referenced component contract is upgraded, it gets a new version number
and references to previous versions continue to work. Thus we do not support automatic change
propagation to the referencing contracts but require an update to the contract reference to the new
version of the embedded contract. The advantage of this approach is that no unexpected changes
are propagated and the result of a contract update is more predictable. Updating a contract ref-
erence to a newer version of the contract is still easy since only the version information of the
contract reference has to be updated.

In the discussion of the formal contract model we stated that contract composition means to
iteratively compose all contract concerns. As a result, a contract composition operator consists of
a set of concern composition operators for the concern types present in the contracts. Figure 5.5
demonstrates how the concern composition operators are added to the contract. A separate com-
positionrefs element contains all composition references. Composition references are iteratively
integrated into the contract. Thus in the example shown in Figure 5.5, first a.contract is inte-
grated and then b.contract is added to the result of the first composition. Each reference specifies
a strong contract reference (i.e., the unique identifier and the version of the referenced contract)
and provides composition operators for all concerns.

The subsequent sections present in detail the concern composition operators for the structure
and the interface contract concerns. They also fill in the missing details of the XML representa-
tion of the operators as used in XContracts.

116 5.4 Contract Composition

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract"

id="SampleContract" version="0.9"
>
<concern type="Structure">

<!-- structure definition goes here -->
</concern>
<concern type="Interface">

<!-- interface definition goes here -->
</concern>
<compositionrefs>

<reference to="a.contract" version="1.2">
<composition type="Structure">

<!-- structure composition operator goes here -->
</composition>
<composition type="Interface">

<!-- interface composition operator goes here -->
</composition>

</reference>
<reference to="b.contract" version="0.9">
<composition type="Structure">

<!-- structure composition operator goes here -->
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.5: The structure of an extended XContract with concern composition operators.

Chapter 5: Contracts and Contract Composition 117

5.4.1 COMPOSITION OF STRUCTURE CONTRACT CONCERNS

Obviously, the concern composition operators themselves directly depend on the types of con-
cerns to be composed. We already outlined at the beginning of the chapter that we use XML
Schema definitions to define the structure of a component. As a consequence, we need to define
operators for schema composition for the structure contract concern.

Our experience in the Web engineering domain and an analysis of existing Web sites led us
to the assumption that complex composition operators for Web components are not necessary.
Usually components are integrated at prominent places (e.g., only at the top-level of an XML
DOM tree or the beginning of a given element). More sophisticated composition operators that
could, for example, support integration of components somewhere in the middle of a sequence or
collection of elements, are not used. This composition behavior is easy to understand given the
fact that complex composition operations immensely increase the complexity of a page but do
not add much additional value. This is especially true since re-arranging, modifying or sorting
of elements is subsequently done by an XSL transformation rather than by embedding content at
the right places.

As an outcome of this observation, we also keep the structure composition operation simple
and only support operators that add the referenced structure concern at the beginning or end of an
existing element definition. This is already more than is used in most of today’s Web applications
and still straight forward enough to not increase contract complexity too much. More powerful
composition operators that fully exploit or even extend the composition mechanisms in the XML
schema recommendation can easily be integrated. Until we experience a need for such powerful
composition mechanisms, we only support the default composition operator that specifies the
element and where (at the beginning vs. at the end) the referenced component should be added.
Figure 5.6 shows a sample structure composition operator.

The contract in the example contains a simple XML schema for a Web page. As defined in
the contract’s structure concern, a Web page only consists of string content. We then specify a
composition reference to the contract of a header component (header.contract). We further say
that the component should be structurally added at the beginning (in the position attribute) of
the webpage element. Assuming that the header component defines a header element of type
HeaderType, the resulting structure concern is displayed in Figure 5.7. Since the composition is
by reference and specified by the composition operator, this resulting concern representation is
only used internally.

5.4.2 COMPOSITION OF INTERFACE CONTRACT CONCERNS

With the composition operation of the structure concern in place, we now turn to the composition
of interface concerns. Composing interfaces is a more complex task than composing schemas
since we have to deal with name clashes, type conflicts and dimensional dependencies, i.e.,
potential adjustments of an argument’s dimension. As a first step, we distinguish between com-
position of input interfaces and output interfaces.

118 5.4 Contract Composition

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract"

id="SampleContract" version="0.9"
>
<concern type="Structure">

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xguide/webpage"
xmlns="http://xguide/webpage"

>
<xs:element name="webpage">

<xs:complexType>
<xs:sequence>

<xs:element name="content" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</concern>
<!-- other concerns go here -->
<compositionrefs>

<reference to="header.contract" version="1.2">
<composition type="Structure">

<operator elementName="webpage" position="beginning" />
</composition>

</reference>
<!-- more references go here -->

</compositionrefs>
</xcontract>

Figure 5.6: The structure concern composition operator of a sample Web page that references a
component contract.

<concern type="Structure">
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xguide/webpage"
xmlns="http://xguide/webpage"

>
<xs:element name="webpage">

<xs:complexType>
<xs:sequence>

<xs:element name="header" type="HeaderType" />
<xs:element name="content" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!-- more definitions go here -->

</xs:schema>
</concern>

Figure 5.7: The structure concern after the composition with the contract of the header compo-
nent.

Chapter 5: Contracts and Contract Composition 119

5.4.2.1 OUTPUT INTERFACES

Recall that output interfaces represent Web forms that are embedded in a page. In other words,
an output interface contains an argument for every field, checkbox or option the user enters in a
Web form. If the page contains multiple forms, multiple output interfaces are generated. Now
imagine that you embed a component containing a Web form into an existing page. This simply
means to add the whole form to the page; it does not make sense to combine the form with
another, existing form. As a consequence, composition of forms is in most cases cumulative.
This means that if we reference a component that contains a form, i.e., has an output interface,
we simply add a new output interface to the referencing component. The only potential conflict
with this strategy is that a form with the same name already exists in the referencing component
which means that we have to rename one of the forms to resolve the name clash.

We consider a single special case when composing output interfaces. If we embed the same
form multiple times in a page, we do not add a new output interface for each new instance of
the form but unify them with an already existing or previously added one. A good example for
this scenario is Google’s search result page. It contains a search form both at the top and at the
bottom of the result page. In XGuide, we could model the search form as a separate component
that is included twice into the result page. The interface concern of the result page, however,
would only contain a single output interface that is used by both forms and that submits the
search information to the search engine.

5.4.2.2 INPUT INTERFACES

For input interfaces, the situation is more complex. The composition operation does not deal
with the whole input interface but defines a composition operator for every parameter in the input
interface of the referenced component. This is necessary since the resulting page can again have
only a single input interface that has to also include the arguments required for the instantiation
of the referenced component. This means that unlike output interfaces, input interfaces have to
be merged and potential conflicts between interface arguments must be resolved.

For the purpose of this discussion, consider a page

�
that references a component . The

parameters of the input interfaces of

�
and are denoted as �/gz���3g�����!�!�!.��g �&% and �����������2��!�!�!����3u %

respectively. The XGuide component web for this scenario is shown in Figure 5.8.

When composing input interfaces, we distinguish the following four composition operations
for composing a given parameter � � with the input interface of

�
:

COMPOSITION-BY-ADDITION

Composition-by-Addition is the simplest case of composition where no semantic relationship
exists between component and page

�
. No semantic relationship in this context means that

the information in component does not depend on the information in the input interface of
page

�
. Hence, each ��� is independent of any parameter g49 in the input interface of

�
. As

a consequence, � � is simply added to

�
’s input interface resulting in the new input interface��gn����g&����!�!�!��3g � ���3� % for

�
.

120 5.4 Contract Composition

(a) Page Æ with
input interfaceÇ2È�É�Ç�Ê ÉHË:ËHË:É�Ç�Ì .

(b) Component Í
with input interfaceÎ È3ÉIÇ�Ê�É:ËHË:Ë)É Î=Ï .

Figure 5.8: The component web for the sample scenario.

Consider a page Ð that displays the current user’s name. Its only input requirement is the
user name as shown in Figure 5.9(a).

(a) Page Ñ taking a
user name as input.

(b) The semantically
independent compo-
nent Ò .

(c) The result of the composi-
tion operation.

Figure 5.9: Sample scenario for the composition-by-addition approach.

An example of a semantically independent component Ó (with respect to page Ð) could be
a menu bar that takes the current page identifier as input to highlight the currently viewed page
or section (see Figure 5.9(b)). The input interface of component Ó is clearly independent of
the input interface of page Ð as it does not depend on the given user name. Consequently, the
input interface of the composite page Ð � Ó is a union of the input interfaces of Ð and Ó ,
i.e., the user name and the page identifier. The result of the composition operation is shown in
Figure 5.9(c).

In the concrete syntax of an XContract, composition-by-addition is denoted as shown in Fig-
ure 5.10 (only the interface concern is shown). For each parameter in the input interface of

Chapter 5: Contracts and Contract Composition 121

the referenced contract a <param-ref> element is added that contains an operation defini-
tion (in the <op> element) to specify how the parameter should be composed. In the case of
composition-by-addition, the type attribute simply states that the parameter should be added to
the input interface of the referencing page or component.

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="PageXContract" version="1.0">
<concern type="Interface">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">
<idl:in>
<idl:param name="username" type="string" dimension="0" />
</idl:in>

</idl:interface>
</concern>
<compositionrefs>

<reference to="y.contract" version="1.0">
<composition type="Interface">
<param-ref name="page_id" type="int">
<op type="add" />

</param-ref>
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.10: A partial XContract demonstrating the syntax of the composition-by-addition com-
position operator.

Another example for the composition-by-addition operation is a shopping cart application
that uses a status component to display the user’s current settings (e.g., payment and delivery
options). The status component requires the user identification as input parameter user id to
identify the user. If we then compose the status component with an overview page that does not
require any input parameters, composition-by-addition would add the user identification param-
eter user id to the overview page’s input interface.

Note that composition-by-addition does not change the type or dimension of the referenced
parameters. They are simply added to the existing input interface. To resolve potential naming
conflicts between existing and added parameters with the same name, we support renaming of
the added parameter. We could, for instance, rename the user id parameter from the previous
example to status user id in the composite to indicate that the parameter is required by the status
component. Since no name clashes exist in this example, we can but by no means have to rename
the parameter.

COMPOSITION-BY-UNIFICATION

A completely different situation arises if semantically dependent interfaces are composed.
Composition-by-Unification deals with parameters ��� that are semantically dependent on a pa-
rameter g59 , i.e., represent the same information. In this case, the parameter �.� is unified with an

122 5.4 Contract Composition

already existing parameter g�9 in the input interface of

�
. Obviously, g49 and ��� must be of the

same type to make this work. The resulting input interface is the unmodified input interface of
�

. Only the correspondence information between �.� and g59 needs to be preserved.
In a shopping cart scenario, consider a page ÔÕg&Ö5' that displays the contents of the user’s

shopping cart. It already defines an input interface with parameter current user that is needed to
retrieve the current user’s shopping cart (Figure 5.11(a)). If we compose this page with the status
component (Figure 5.11(b)), we can unify the status component’s user id input parameter with
the existing current user input parameter. The resulting component has the same input interface
as the ÔÕg&Ö5' page–annotated with the correspondence of the current user and user id parameters
(Figure 5.11(c)).

(a) The shopping
cart page taking a
user name as input.

(b) The status
component
requiring a
user id.

(c) The result of the composi-
tion operation.

Figure 5.11: Sample scenario for the composition-by-unification approach.

The syntactic representation of composition-by-unification in XContracts is shown in Fig-
ure 5.12. As in the composition-by-addition case, each parameter of the referenced input inter-
face is represented by a <param-ref> element. The composition operator, however, differs.
The type attribute of the operator indicates that the referenced parameter is unified with an exist-
ing one and the with attribute specifies the name of the corresponding parameter.

Note again that composition-by-unification only works for parameters of the same type and
dimension. Simple transformation or cast operators could be imagined (e.g., unification of an
integer with a long parameter) but are currently not viewed relevant in practice and do not con-
ceptually contribute to the composition operation. Such special unification rules can be easily
added by any implementation. Unlike composition-by-addition, the original input interface of
the referencing page remains unchanged; only meta-information about the correspondence rela-
tionships is added.

COMPOSITION-BY-ADAPTATION

Composition-by-adaptation is an extended version of composition-by-addition. It supports mod-
ification of the referenced input parameters depending on the context where a component is

Chapter 5: Contracts and Contract Composition 123

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="PageXContract" version="1.0">
<concern type="Interface">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">
<idl:in>
<idl:param name="current_user" type="string" dimension="0" />
</idl:in>

</idl:interface>
</concern>
<compositionrefs>

<reference to="status.contract" version="1.0">
<composition type="Interface">
<param-ref name="user_id" type="string">
<op type="unify" with="current_user" />

</param-ref>
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.12: A partial XContract demonstrating the syntax of the composition-by-unification
composition operator.

embedded. The typical application of composition-by-adaptation is to embed a component for
each item in a given enumeration or iteration in a page.

Imagine a page in the shopping cart scenario that lists all customers with their status. Thus,
the status component is not only embedded once, but for every customer in the list. Figure 5.13
demonstrates this situation. The ¥§B=×�' page takes a list of user names as input parameter. It
further references the status component that displays the status of a single user and takes the user
identification as input (Figure 5.13(b)). In the composition process, we have to update the user id
parameter of the status component from a single user identification to a list of user identifications,
i.e., increase the parameter’s dimension by one. The updated parameter is then added to the input
interface of the customer list page and results in the final input interface shown in Figure 5.13(c).

Thus a �3� in the input interface of the referenced component is not directly added to

�
, but

modified (resulting in ���ÙØ) and only then added to

�
’s input interface forming the new input in-

terface ��gn� ��g&�2��!�!�!.��g � ���3�ÙØ % . The adaptation of an input parameter always results in a modified
dimension attribute of the parameter. We do not support other adaptations such as type transfor-
mations.

The XML notation of the composition-by-adaptation operator is shown in Figure 5.14. The
parameter reference of the user id parameter specifies a single integer value (dimension is zero).
In the composition operator the dimension is increased by one resulting in an integer array data
type.

Frequently but not necessarily is the increase in the dimension of the parameter type an
increase by one. If a component is embedded in a cascaded iteration (e.g., a list of customers
that for each customer contains a list of accounts with different payment options), the dimension

124 5.4 Contract Composition

(a) The ÚzÛXÜ:Ý page taking a list
of user names as input.

(b) The status com-
ponent requiring a
user id.

(c) The result of the composi-
tion operation.

Figure 5.13: Sample scenario for the composition-by-adaptation approach.

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="CustomerList" version="1.0">
<concern type="Interface">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">
<idl:in>
<idl:param name="customer_names" type="string" dimension="1" />
</idl:in>

</idl:interface>
</concern>
<compositionrefs>

<reference to="status.contract" version="1.0">
<composition type="Interface">
<param-ref name="user_id">
<operator type="add" dimension="+1" />

</param-ref>
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.14: A partial XContract demonstrating the syntax of the composition-by-adaptation
composition operator.

Chapter 5: Contracts and Contract Composition 125

can increase by two. Similarly the increase is not always from dimension zero to dimension
one. If the referenced component already takes a parameter of dimension one, for example, the
dimension will be increased to two. An example of this scenario could be a list of customers
that displays the list of items currently in each customer’s shopping cart. The shopping cart
component would take a parameter representing a list of articles (dimension is one). If we embed
this component in a page with a list of customers, the parameter’s dimension is changed to two
to hold a list of articles for every customer.

A special case of composition-by-adaptation is a combined adaptation and unification. Con-
sider again the example shown in Figure 5.14. If we change the customer names input parameter
into a customer ids parameter, we first have to adapt the dimension of the status component’s
user id by one (since it is embedded in a list) and then unify the modified parameter with the
existing customer ids input parameter (since the customer ids parameter already contains the
necessary user identification information).

COMPOSITION-BY-OMISSION

Finally, composition-by-omission describes the scenario when the input parameter ��� of a ref-
erenced component is not added at all to the input interface

�
of the referencing page. This

situation occurs if the referencing page itself can provide the input parameter for the referenced
component. This most frequently happens with internal parameters that are not visible to the
user. The value for such a parameter is directly evaluated by an XPath expression in the referen-
cing page. As a result, the input interface of

�
remains unchanged. The composition only adds

the meta information how to retrieve the value for ��� to the interface concern.

Consider again the page displaying a list of customers as presented in previous sections. In-
stead of embedding a status component, we now reference a navigation component that is used
to display a customized navigation bar depending on the currently viewed page (e.g., the cur-
rently viewed item in the navigation bar is highlighted). Figures 5.15(a) and 5.15(b) show the
component web for this scenario. The ÔeÞß×�':à5|},�Ö4¥§BN×�' page references the á¡g&âZB/thg&')BIà+� compo-
nent. The customer list again takes a list of customer names as input. The navigation component
requires the page identifier (page id) of the currently viewed page as input argument to highlight
the appropriate navigation entry.

The page identifier of a page is usually encoded in the page itself, e.g., as an attribute of the
document element. Figure 5.16 shows a snippet from a typical Web page with a page identifier.
The page identifier is encoded as an attribute of the <webpage> document element.

To satisfy the input requirements of the navigation component, we don’t have to add a new
parameter to the input interface of the customer list page but simply specify how the compo-
nent can access the required value. We use XPath expressions for this purpose. In the example
in Figure 5.16, the expression would be /webpage/@pageId. Thus the additional input re-
quirement of the referenced component is never visible externally but satisfied at composition
time.

Figure 5.17 depicts the XML syntax of the composition-by-omission operator. The type at-
tribute of the composition operator element indicates that composition-by-omission is used. The

126 5.4 Contract Composition

(a) The ã{ä&Ü:ÝXå3æ�çKè�Ú-ÛXÜHÝ
page taking a list of user
names as input.

(b) The naviga-
tion component
requiring a
page id.

(c) The result of the composition
operation.

Figure 5.15: Sample scenario for the composition-by-omission approach.

<?xml version="1.0"?>
<webpage pageId="customer_list">
<heading>Our Customers</heading>
<customers>

<!-- customer information goes here -->
</customers>

</webpage>

Figure 5.16: A snippet from a typical Web page offering a page identifier.

Chapter 5: Contracts and Contract Composition 127

value attribute contains the XPath expression that specifies how the required value is retrieved in
the context of the referencing page.

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="CustomerList" version="1.0">
<concern type="Interface">
<!-- potential input interface goes here -->

</concern>
<compositionrefs>

<reference to="navigation.contract" version="1.0">
<composition type="Interface">
<param-ref name="page_id" type="int" dimension="0">
<op type="omit" value="/webpage/@pageId" />

</param-ref>
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.17: A partial XContract demonstrating the syntax of the composition-by-omission com-
position operator.

The discussion of the composition-by-omission composition operator concludes the presen-
tation of input interface composition operators. With the concerns and composition operators
discussed so far, the three dominant implementation concerns, i.e., the content, the graphical
appearance and the application logic, are fully specified. Nevertheless, the XGuide contract ap-
proach is designed in a modular fashion to support plug-ins and thus can be easily extended with
additional concerns. Such a concern consists of its representation in XML and the corresponding
composition operators for concern composition. The extensibility mechanism can be used to
extend contracts with new concerns such as meta-data or access control.

The structure and interface contract concerns are orthogonal to each other with respect to
the definition given in Section 5.2. As such, their composition operators do not depend on each
other. The remainder of this chapter discusses how concern composition works for dependent
concerns and presents the effects on the respective composition operators.

5.4.3 COMPOSITION OF DEPENDENT CONTRACT CONCERNS

A contract concern is called dependent if its definition depends on the definition of another
contract concern. A typical example is the access control concern that determines which parts of
a page are visible for a user. The visibility information in the access control concern is specified
as XPath expressions. Obviously, these expressions depend on the schema (i.e., the structure
contract concern) of the page. If the schema of the page changes, the access control information
has to be updated, too.

In terms of the composition operators for dependent concerns, this means that such a compo-
sition operator also has to ’understand’ the composition operator of the concern it depends on. In

128 5.4 Contract Composition

the case of the access control concern, it must first apply the composition operator of the struc-
ture concern to derive the new schema information. Then the access control information of both
the referencing page and the embedded component have to be updated to reflect the composed
page structure.

Consider the example in Figure 5.18. It shows a simple contract for a navigation bar
with an access control concern that grants access to all content in the component (i.e., the
<navigation> document element and all its children are included in an <allow> rule).

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="Navigation" version="1.0">
<concern type="Structure">

<xs:schema xmlns:xs="...">
<xs:element name="navigation">

<xs:complexType>
<xs:sequence>

<xs:element name="naventry" type="xs:string" />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</concern>
<concern type="AccessControl">

<ac:accesscontrol xmlns:ac="...">
<ac:allow value="/navigation" />

</ac:accesscontrol>
</concern>

</xcontract>

Figure 5.18: A contract for a simple navigation bar with access control information.

Figure 5.19 shows a page contract that references the navigation component and specifies the
necessary composition operators. It defines a webpage element that contains all the content
(only indicated in the figure). In the access control concern, only the contents of the first child
element of the webpage element (i.e., /*[1]) is made accessible. The dependency on the
structure concern is made explicit in the definition of the access control concern. The depends
attribute specifies this dependency.

The composition operator for the structure concern defines that the navigation information
should be embedded at the beginning of the webpage element. The access control composition
operator specifies that the access control information in the referenced component should be
merged with the access control information of the page. An alternative option could be to ignore
the component’s access control information.

Though the depends attribute is the only explicit hint that the access control concern depends
on the structure concern, behind the scenes a lot more has to be considered.

First, the access control information of the sample page in Figure 5.19 might not be valid
after the integration of the navigation component since the structure information (i.e., the XML
schema of the resulting page) has changed. In our example, the navigation bar is integrated at the

Chapter 5: Contracts and Contract Composition 129

<?xml version="1.0"?>
<xcontract xmlns=".../xguide/contract" id="SamplePage" version="1.0">
<concern type="Structure">

<xs:schema xmlns:xs="...">
<xs:element name="webpage">

<xs:complexType>
<!-- content definition goes here -->

</xs:complexType>
</xs:element>

</xs:schema>
</concern>
<concern type="AccessControl" depends="Structure">

<ac:accesscontrol xmlns:ac="...">
<ac:allow value="/webpage/*[1]" />

</ac:accesscontrol>
</concern>
<compositionrefs>

<reference to="navigation.contract" version="1.0">
<composition type="Structure">

<operator elementName="webpage" position="beginning" />
</composition>
<composition type="AccessControl">

<op type="merge" />
</composition>

</reference>
</compositionrefs>

</xcontract>

Figure 5.19: A page contract embedding the navigation bar contract.

130 5.4 Contract Composition

beginning of the <webpage> element. Thus the access control information that granted access
to the first child element of the <webpage> element must be updated to now grant access to the
second child element.

Second, the integration of the component’s access control information (i.e., access to every-
thing in the navigation bar) has to be transformed from /navigation to /webpage/navigation
to reflect the embedding at the beginning of the <webpage> element.

As we mentioned in Section 5.2.1.2, composition of dependent concerns is considerably
more complex than the orthogonal case. Although the depends attribute is the only visible sign
of dependent concerns in a contract, the logic of concern composition is much more complex.
Especially in the case of several, chained dependencies as presented in Section 5.2.1.2 in which
case multiple, consecutive composition steps have to be performed.

The discussion of the composition of dependent concerns concludes this chapter on contracts,
contract concerns and their composition. Having presented the formal contract model used in
XGuide and the concepts of contract composition, the next chapter discusses how XGuide and
support for contracts can be used in practice. It presents XSuite, an integrated development envi-
ronment (IDE) for the XGuide methodology that supports the notion of contracts and contract-
based development.

CHAPTER 6

XSUITE - AN INTEGRATED DEVELOPMENT

ENVIRONMENT FOR XGUIDE

A complex system that works
is invariably found to have evolved
from a simple system that worked.

John Gall

However sophisticated and powerful any methodology is, strong tool support is a crucial
requirement for its successful application in real-world projects [10]. XSuite is an integrated
development environment (IDE) for Web projects following the XGuide process and the concepts
presented in the previous chapters. Such an IDE must support the whole life-cycle of a Web
project and should view the artifacts of the respective methodology as first class objects. As such,
XSuite not only provides a project and resource management platform but deals with contracts,
contract concerns, implementation of contracts and deployment strategies.

Within the scope of this thesis and the case study presented in the next chapter, we use
the MyXML publishing framework as deployment platform [85, 92, 93]. MyXML itself is im-
plemented in the Java programming language and provides good support for the integration of
Java-based application logic of Web applications. For the XSuite IDE we also chose Java as an
implementation technology for two reasons: first, we strive to achieve the same level of plat-
form independence as the MyXML framework, i.e., only require a Java virtual machine on the
target platform. Second, the Java-based Eclipse project [142] provides an extremely powerful
and flexible framework for the development of customized IDEs. Despite our choice of Java as
implementation language, it is important to note that the XGuide process by no means depends
on the Java language or any Java-based technology. It could equally well be implemented on

131

132 6.1 The Eclipse Project

Microsoft’s .NET platform [114], e.g., as a Visual Studio plug-in, using Microsoft technologies
such as Active Server Pages (ASP) as deployment platform.

This chapter starts with a brief introduction to the Eclipse project that highlights its great
potential for the development of new IDEs. Next we present the concepts of the MyXML pub-
lishing framework that is used as deployment platform. The remainder of this chapter discusses
the architecture of XSuite in the context of the Eclipse framework and shows how it reflects
XGuide’s extensibility concepts presented in Section 5.2. The architecture and design decisions
presented in this chapter only represent one possible implementation of the XGuide process in
a given system environment and using the Eclipse platform and MyXML framework. Though
alternative implementations on other platforms and/or using other tools may choose to use dif-
ferent implementation approaches, they may benefit from the concrete realization considerations
presented in the context of Eclipse and MyXML.

6.1 THE ECLIPSE PROJECT

The Eclipse Project [142] is a collaborative effort initiated by companies such as IBM, Ratio-
nal Software, Red Hat, SuSe, TogetherSoft and others. Since November 2001 the consortium
grew considerably and now contains about 20 members who stated their commitment and plan
to release tools for the Eclipse platform. In the Eclipse project charter the mission statement
contains the following sentence that summarizes what Eclipse is: Eclipse is a kind of univer-
sal tool platform - an open extensible IDE for anything and yet nothing in particular. In other
words, the Eclipse platform is a generic environment to build IDEs and highly integrated tools
and provides support for common constructs such as projects, resources, build processes, ver-
sion control, etc. The platform’s extensibility mechanism described later in this chapter is a core
concept that ’teaches’ the platform how to deal with such different resources as Java files, Web
content, graphics, video or any other content types.

Figure 6.1 shows the graphical appearance of a generic instance of the Eclipse platform with-
out any additional tools or plug-ins.

The navigator (in the upper left corner) is the central resource management component of
the Eclipse platform. It lists all available projects and for each project a hierarchy of resources
that it contains. Eclipse projects are file-oriented, i.e., a project has a base URL in the file system
and project resources are mapped to files in the project directory or one of its sub-directories.
Editors are components to modify resources. Depending on the resource type (e.g., the file
extension or content type), different editors such as text editors, color choosers, or graph drawing
environments are used. Figure 6.1 shows the built-in editor with the Eclipse welcome message.
The content of the editor is an Eclipse system file containing the message that is interpreted and
rendered by the editor. In contrast to editors, views only display the contents of a resource. More
specifically, they provide a special view on the contents of a resource. Thus, multiple different
views of the same content can be used to highlight different properties of the content. The outline
view in Figure 6.1, for instance, could be used to display the overall structure of the welcome
message (e.g., contain the sections and subsections and provide links to directly jump to the
selected section).

Chapter 6: XSuite - An Integrated Development Environment for XGuide 133

Figure 6.1: A generic instance of the Eclipse platform.

134 6.1 The Eclipse Project

Further the platform provides mechanisms to annotate resources (called markers) that can be
used to highlight syntax problems, compiler errors, missing information, or anything else. Anno-
tations are displayed in the task pane shown at the bottom of Figure 6.1. Project build processes
define what it means to build a project (e.g., compile source files, apply XSL transformations,
deploy Web content, etc.). An incremental project builder keeps track of the changes since the
last full build and can build only the changed resources. Additional built-in functionality of the
platform includes support for version control systems and a flexible help system.

Obviously this section cannot be a complete introduction or tutorial to the Eclipse platform.
It should only give you an impression of how powerful the platform concept is and what the
main components are. Many other powerful features dealing with performance considerations,
internationalization, deployment, updates, etc. are beyond the scope of this overview. All this
information is available via the project Web site at www.eclipse.org.

Apart from the core platform, the Eclipse project also includes two sub-projects to support
the development of Eclipse-based tools. The first is a showcase for the power, flexibility and
extensibility of the Eclipse concept. The Java development tooling (JDT) is a full-fledged Java
IDE including syntax highlighting, an incremental compiler, and many other features to ease the
software development process. The second sub-project is the plug-in development environment
(PDE) that supports the development of Eclipse extensions.

Figure 6.2 depicts the Eclipse Java IDE and the sources for the XSuite tools and plug-ins.
The navigator contains the hierarchical source view corresponding to their internal organization
in Java packages. An editor component displays the main XSuite plug-in source file with an
intentional programming error (the instance variable resolvedInstallDir of type URL is assigned
the integer value two). As a result, a marker is shown at the beginning of this line, the task pane
contains the compile error message and the file’s respective graphical appearance in the navigator
and the editor’s title bar display an error marker.

The basic concept underlying the Eclipse platform is its extensibility via plug-ins. The
Eclipse Java IDE is built exclusively using this plug-in mechanism to implement all its func-
tionality and extend the generic platform. The next section investigates the Eclipse extensibility
mechanism in detail and gives several examples of plug-ins, i.e., platform extensions.

6.1.1 THE ECLIPSE EXTENSIBILITY MECHANISM

We already used the notion of Eclipse plug-ins in the previous section. A plug-in is the smallest
unit of functionality and deployment in Eclipse. A plug-in can contain as much functionality as
an HTML editor or as little functionality as an action to save a resource. The size of a plug-in
depends on its internal architecture, e.g., whether parts of the functionality are intended for reuse
or whether other plug-ins should be allowed to extend and refine the plug-in’s functionality or
not.

The plug-in architecture of the Eclipse platform introduces the notion of extensions and exten-
sion points. An extension point is a well-defined interface that a plug-in or the platform provides
that can be extended by other plug-ins. An extension point can be regarded as a hook for other
plug-ins to contribute new functionality. The Eclipse platform defines a large set of extension

Chapter 6: XSuite - An Integrated Development Environment for XGuide 135

Figure 6.2: The Eclipse Java IDE with the XSuite sources.

136 6.1 The Eclipse Project

points that allow plug-ins to extend and customize almost all aspects of the IDE. Examples in-
clude extension points for new project builders, new resource markers, new editors and views,
new (popup) menus, new toolbars and toolbar buttons, and many more.

The hooks defined by the extension points are used by other plug-ins that contribute their
extensions, i.e., refined or extended implementations of the extension point’s interface. Even
tools such as the XSuite development tool come in the form of a plug-in that contributes an
extension of the applications extension point. These plug-ins are loaded when the platform is
run.

Figure 6.3 shows the plug-in structure of all Eclipse applications. A small runtime library
provides the required plug-in services that the rest of the platform uses. All application plug-ins
completely and solely rely on the extension points offered by the runtime and the platform. They
in turn offer new extension points to yet another plug-ins that contribute their functionality.

Figure 6.3: The plug-in architecture of the Eclipse platform.

In the context of the XSuite application, the XSuite plug-in contributes to the application
extension point and is loaded at startup time. It further defines a concern extension point that
supports plugging in new contract concerns at any time. Thus each contract concern is encapsu-
lated in a separate plug-in that contributes to this extension point.

The set of all extension points and all extensions defines a dependency graph between plug-
ins. At platform startup, this dependency graph is constructed by analyzing the dependencies
(i.e., extensions and extension points) of all available plug-ins. When an application plug-in is
loaded, all dependent plug-ins are loaded recursively to complement the application’s functional-
ity. Obviously, this process would result in an enormous amount of plug-ins that must be loaded
as soon as the platform is started. To avoid this memory and performance bottleneck, each plug-
in has an associated manifest that contains meta-information about the plug-in. The manifest is
an XML document called plugin.xml and includes the dependency relationships of the plug-in.
As a result, only the manifest information needs to be loaded to create the dependency graph of
extensions and extension points. The actual code libraries are only loaded on demand, i.e., as
soon as the user initiates an action that requires code from the respective plug-in.

Summarizing, an Eclipse plug-in contributes to one or more extension points, optionally
declares new extension points, depends on a set of other plug-ins, and contains Java code li-
braries and other resources. The plug-in’s detailed meta information (contributions, new exten-
sion points, dependencies, etc.) is spelled out in the manifest. A snippet of the manifest file for
the XSuite application plug-in is shown in Figure 6.4.

Chapter 6: XSuite - An Integrated Development Environment for XGuide 137

<?xml version="1.0" encoding="UTF-8"?>
<plugin

id="at.ac.tuwien.infosys.xsuite"
name="XSuite Plug-In" version="1.0.0" provider-name="Clemens Kerer"
class="XSuitePlug-In">

<runtime>
<library name="xsuite.jar">

<export name="*"/>
</library>

</runtime>

<requires>
<import plugin="org.eclipse.ui" version="2.1.0"/>
<!-- list of other required plug-ins -->

</requires>

<extension point="org.eclipse.ui.editors">
<editor default="true" name="XSuite Sitemap Editor"

icon="icons/img1.gif" extensions="xmap"
class="SitemapEditor"
id="at.ac.tuwien.infosys.xsuite.sitemap.SitemapEditor">

</editor>
</extension>

<extension point="org.eclipse.ui.propertyPages">
<page objectClass="org.eclipse.core.resources.IProject"

name="XSuite Project Property Page"
class="XSuiteProjectPropertyPage"
id="at.ac.tuwien.infosys.xsuite.projectprops">

</page>
</extension>

<!-- more extensions here -->

</plugin>

Figure 6.4: A snippet of the plugin.xml manifest file for the XSuite application plug-in.

138 6.2 The MyXML Web Publishing Framework

Every plug-in manifest starts with the plug-in identification consisting of an identifier, a
human readable name, a version, an optional provider name and the class implementing the
plug-in. The <runtime> element contains the location of the plug-in’s code and what parts
of it should be exported. In the sample manifest, the library xsuite.jar contains the code and
everything (indicated by the star in the <export> element) is exported. The <requires>
section of the manifest states all dependencies on other plug-ins (including the version of the
plug-in). Finally, a list of extensions, i.e., contributions to extension points, is given. The snippet
in Figure 6.4 only lists two. First an extension to the editors extension point is specified. It
defines a customized editor for XGuide sitemaps with the extension xmap. The second extension
contributes a new property page to the platforms collection of property pages. The property page
offers a set of options to configure the behavior of the XSuite application. Other extensions
defined in the XSuite plug-in manifest (not shown in the figure) include customized project
definitions for Web projects, more editors and several wizards to create new resources such as
contracts, concerns or XPages.

After this brief introduction to the Eclipse platform, its potential and the basic plug-in ex-
tension mechanism, we now introduce the deployment platform used in the XSuite reference
implementation and the case study: the MyXML publishing framework.

6.2 THE MYXML WEB PUBLISHING FRAMEWORK

The MyXML Web Publishing Framework consists of a language and a compiler that supports the
creation of XML-based Web applications while keeping the content, the layout information and
the application logic separate. MyXML is an implementation language (in the terminology of
the XGuide approach) that we developed together with our colleagues Engin Kirda and Roman
Kurmanowytsch. As in the case of the Eclipse framework, we only give a brief introduction to the
potential of the MyXML framework. Details, examples and our experiences in the deployment
of MyXML-based Web applications can be found in [85, 86, 91, 93–95].

The World Wide Web Consortium’s eXtensible Markup Language (XML) [31] along with
the eXtensible Style Sheet (XSL) [3] technology aim at solving the layout and content separa-
tion problem. Ultimately, complete layout independence can be achieved by the use of XML and
XSL. Although the layout and content separation problem has been attacked intensively (e.g., by
standards such as XML, XSL, Cascading Style Sheets, etc.), the problem of separating the ap-
plication logic from the layout and content in dynamic Web applications has not received much
attention yet. Most popular Web technologies (such as PHP, JavaScript, Active Server Pages
(ASP) and Java Server Pages (JSP)) are XML unaware and do not exploit its capabilities. These
tools and technologies lack support for the creation and maintenance of layout-independent dy-
namic Web content.

MyXML is an XML/XSL-based template engine that supports a strict separation of layout,
content and application logic. The content and its structure are defined in well-formed XML
documents, the layout information is given as an XSL stylesheet and the application logic is
defined separately in an arbitrary programming language. The template functionality of the

Chapter 6: XSuite - An Integrated Development Environment for XGuide 139

MyXML engine is exploited by using special MyXML elements in the input XML document.
These tags (i.e., elements) are defined in the MyXML template language that is based on the
MyXML namespace definition (see [84] for details). The layout stylesheets that can be applied
to a MyXML document are arbitrary XSL transformations.

The functionality of the MyXML template engine is based on the MyXML process which
defines the actions to be taken depending on the type of the MyXML input document. Figure 6.5
shows the MyXML process.

Figure 6.5: The MyXML process.

The process starts with a MyXML input document. Any well-formed XML document which
may contain elements of the MyXML template language can be used as input document. In
the next step a pre-processing XSL stylesheet can be applied to add layout information to the
document. Additionally, the XSL stylesheet can be used to add static information to a document
(e.g., header and footer) or to restructure the input document. After having passed this second
step of the MyXML process, the template engine processes the modified input file.

The MyXML template engine distinguishes between two kinds of input documents: static
and dynamic documents. A MyXML document is considered static if all MyXML elements
can be resolved at processing time. A dynamic MyXML document, on the other hand, contains
at least one dynamic MyXML element such as a reference to a CGI parameter or a dynamic
database query which can only be evaluated at runtime.

If the MyXML engine detects a static input document, it processes the MyXML elements
that it contains. Optionally, it applies a post-processing XSL stylesheet before creating the result
file which usually, but not necessarily, is an HTML or an XML file. Such a post-processing
stylesheet could be used to add additional layout information based on the result of a database

140 6.2 The MyXML Web Publishing Framework

query (e.g., alternate the background color of a database-backed HTML table for every second
row).

If a dynamic input document is passed to the MyXML template engine, source code has
to be generated which handles all dynamic aspects defined in the input document. Arbitrary
programming languages can be supported by the MyXML engine since a special code generator
interface represents the link between the MyXML template engine and the application logic. By
implementing this interface for a given programming language, support for that language can be
added to the MyXML engine. The reference implementation supports generation of Java code
which can easily be used by servlets or other programs encapsulating the application logic of a
Web application.

Figure 6.6 shows a sample MyXML content file. It uses the <myxml:sql> and <myxml:cgi>
elements to model the user input (i.e., the selected event) by means of a CGI parameter and a
database query depending on the user’s choice. In addition, we provide the contents of the title,
date and description fields in the result set using the <myxml:dbitem> element. These values
are formatted further by the XSL pre-processing stylesheet and then processed by the MyXML
engine that retrieves the actual value of the CGI parameter, executes the database query and
returns the result document.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE event_search>
<selected_event xmlns:myxml="http://www.infosys.tuwien.ac.at/ns/myxml">

<myxml:sql>
<myxml:dbcommand>

SELECT title, date, description FROM VIF_EVENTS
WHERE id = <myxml:cgi>id</myxml:cgi>;

</myxml:dbcommand>
<event>

<title><myxml:dbitem>title</myxml:dbitem></title>
<date><myxml:dbitem>date</myxml:dbitem></date>
<description>
<myxml:dbitem>description</myxml:dbitem>

</description>
</event>

</myxml:sql>
</selected_event>

Figure 6.6: A sample MyXML content page querying a database to display an event with a given
identifier.

The MyXML template language has several other elements besides <myxml:sql> and
<myxml:cgi>. The <myxml:loop> and <myxml:multiple> elements allow the en-
gine to repeatedly process parts of a document (e.g., for generating the list of items a user has
stored in a shopping cart). The <myxml:single> element represents a user-defined vari-
able, whose value is determined at runtime (e.g., the name of the user currently logged in). The
<myxml:attribute> element can be used to dynamically set the attribute of another element
(e.g., the src attribute of an HTML or the href attribute of an HTML link). A detailed

Chapter 6: XSuite - An Integrated Development Environment for XGuide 141

discussion of all these elements (and several more) as well as their attributes can be found on the
MyXML homepage at www.infosys.tuwien.ac.at/myxml/.

Although MyXML-based Web solutions usually include more files and have a higher com-
plexity than traditional HTML-based solutions, it adds a great amount of flexibility, reusability
and maintainability to the site. Using the strict separation of layout, content and application logic
makes it easy to change or reuse any of the three parts independently of the others. All that is
needed after an update or modification of any part of the Web site is a regeneration of the affected
pages using the MyXML template engine.

There are many template-based products and tools for Web development in the market. Most
of these tools are HTML oriented and do not support a clean separation of content, formatting
information and application logic. These tools do not satisfy the requirement of an XML-based
implementation technology and are consequently excluded from being an XGuide implementa-
tion technology.

Apart from MyXML, the Apache Cocoon project [107] is an example of an alternative XML-
based implementation technology that can be used with XGuide. It offers support for the clean
separation of layout and content and to a lesser degree of the application logic. In contrast to
the MyXML approach that tries to do as much processing as possible at compile time, Cocoon
performs all processing steps at runtime. As a consequence, it uses a sophisticated caching mech-
anism and defines a processing pipeline that starts with the XML content assembly, followed by a
sequence of (XSL) transformations to bring the content in the desired output structure or markup
language and a final serialization step that encodes the result document and returns it to the client.

For this thesis we prefer MyXML as an implementation technology over Cocoon since it has
a more flexible concept of separating the application logic from the content and better supports
Web components. As mentioned above, Cocoon could also be used for the implementation
phase but would require a much more sophisticated build process since Web components are not
supported.

After this brief introduction to Eclipse and MyXML that are the core technologies for the
implementation of the XSuite IDE, we now present selected details of the implementation sup-
porting the XGuide development process.

6.3 XSUITE CONCEPTUAL MODELING

To optimally support the XGuide process with software tools, we must not only provide tools for
single tasks or steps in the process but need an environment that supports the full life-cycle of a
Web application as defined in the XGuide process shown in Figure 4.1. The conceptual model-
ing part of the process includes the requirements analysis and design-in-the-large activities that
result in an XGuide sitemap. We already introduced the syntactic notation for the requirements
diagram and the sitemap in Chapter 4. Creation and editing of the diagrams is currently not fully
integrated into the Eclipse IDE but supported by an external modeling tool: Microsoft Visio
(version 2002). Although Eclipse provides a graph-drawing plug-in that could also be used for
the generation of the respective diagrams, extending and customizing Visio reduced the overall

142 6.3 XSuite Conceptual Modeling

programming effort and lets users benefit from Visio’s usability features. Figure 6.7 depicts the
XGuide environment and the shapes available in Visio.

Figure 6.7: The extended Visio workspace for XGuide development.

Visio supports a concept called stencils. A stencil is a collection of drawing artifacts, connec-
tors and shapes that topically belong together. For instance, Visio provides built-in stencils for
UML modeling, network diagrams, database design and workflow charts. For modeling XGuide
requirements diagrams and sitemaps, we created an additional stencil with the shapes presented
in Chapter 4 and shown again in the figure. A stencil contains so-called master shapes that act
as templates and can be dragged into a document. In the document, a copy of the master shape is
created that can be further adapted. Figure 6.7 demonstrates a sample document with the shapes
as they appear in a document after being inserted from the stencil. The default captions and text
information is subsequently replaced by the user.

By extending the Visio environment for XGuide diagram modeling rather than developing
a proprietary editor, we also inherit Visio’s comfortable editing functionality: shapes grow dy-
namically in height and width depending on the amount of text they contain, connection points
support persistent linking of shapes even if they are moved in the document or rearranged, Vi-
sio’s routing algorithm can be used to optimally lay out the shapes on the pages, input and output
interfaces can be edited using popup dialogs (an example is shown in Figure 4.10), etc. The final

Chapter 6: XSuite - An Integrated Development Environment for XGuide 143

sitemap is then exported as Visio XML drawing and transformed into the sitemap structure as
presented in Figure 4.15 using an XSLT stylesheet that strips away all Visio and editing related
information and restructures the remaining information appropriately.

6.4 XSUITE ECLIPSE IDE

As mentioned above, the XSuite IDE is an application plug-in for the Eclipse platform. This
section discusses the architecture of the XSuite IDE and presents some of the key decisions for
the implementation. Since the actual IDE implementation not only depends on the Eclipse plat-
form but also on third party libraries, we encapsulated all required libraries in separate plug-ins
and installed them in the platform. Only then can the XSuite IDE be plugged into the (modified)
platform using the plug-in extension mechanism. Figure 6.8 shows this correlation in a layered
diagram.

Figure 6.8: The dependencies of the plug-ins constituting the XSuite IDE.

The Eclipse runtime constitutes the bottom layer. The plug-ins required by the XSuite IDE
are JAXB (Java XML Data Binding), PerlTools (regular expressions), EMF (Eclipse Modeling
Framework), XSD (XML Schema Support), and JDT (Java Development Tooling). They all
provide functionality that is directly used by the XSuite plug-in. The plug-in in turn defines two
core extension points: the Concern extension point and the Technology extension point. The

144 6.4 XSuite Eclipse IDE

former supports plugging in new contract concerns, the latter supports different implementation
technologies. Independent of the XSuite IDE, the Tomcat plug-in integrates the servlet container
into the Eclipse platform.

Figure 6.8 explicitly shows only the two XSuite specific extension points for concerns and
technologies. Effectively, many more (platform) extension points are involved in building the
functionality of the IDE. Table 6.1 shows an overview of the extensions contributed by the XSuite
plug-in (it does not list the extensions provided by required plug-ins, concern plug-ins, technol-
ogy plug-ins and the Tomcat plug-in).

To complement the discussion of plug-in mechanism used by the Eclipse platform, the fol-
lowing subsections present the XSuite-specific extension points for concerns and technologies
in some detail. They also introduce the interfaces that stand behind the extension points and
explains the rationale for their design.

6.4.1 THE CONCERN EXTENSION POINT

The concern extension point defines a hook that supports plugging in new contract concerns
(in addition to the default structure and interface concerns). Such concerns could capture the
navigation requirements, access control information, or meta data for a given page or component.
To integrate a new concern with the XSuite IDE, the concern has to interact with the IDE in many
situations. The plug-in interface specifying all such interactions is shown in Figure 6.9.

public interface IConcern {
public String getTypeId();

// representation of concerns
public Element asXML() throws XSuiteException;
public boolean hasDataModelSupport();
public Object getDataModel() throws XSuiteException;

// composition of concerns
public void createConcernCompositionUIFor(Listener validationListener,

Composite c, IConcern concernToCompose) throws XSuiteException;
public String isConcernCompositionInfoValid();
public IConcernComposition getConcernCompositionInfo();
public void composeWithConcern(Node concernNode, IConcern otherConcern,

IConcernComposition compositionInfo) throws XSuiteException;
}

Figure 6.9: The Java interface for contract concerns.

The getTypeId() method simply returns the unique identifier of this concern used to
group and compose concerns of the same type. The remaining methods in the plug-in interface
can be divided into two groups: methods dealing with the representation of concerns and methods
for the composition of concerns.

The native representation of a concern is XML. The asXML()method provides access to the
document object model (DOM) of the concern. In some situations, however, more sophisticated

Chapter 6: XSuite - An Integrated Development Environment for XGuide 145
Ta

bl
e

6.
1:

X
Su

it
e

ex
te

ns
io

ns
co

nt
ri

bu
te

d
to

th
e

E
cl

ip
se

pl
at

fo
rm

.

E
xt

en
si

on
P

oi
nt

X
Su

it
e

E
xt

en
si

on
D

es
cr

ip
ti

on

u
i
.
e
d
i
t
o
r
s

X
M
L
E
d
i
t
o
r

C
on

tr
ib

ut
es

an
X

M
L

ed
it

or
th

at
su

pp
or

ts
sy

nt
ax

hi
gh

-
li

gh
ti

ng
an

d
au

to
-c

om
pl

et
io

n
fo

r
X

M
L

ta
gs

.

S
i
t
e
m
a
p
E
d
i
t
o
r

C
on

tr
ib

ut
es

a
vi

su
al

ed
it

or
fo

r
X

G
ui

de
si

te
m

ap
s.

M
u
l
t
i
p
a
g
e
E
d
i
t
o
r

C
on

tr
ib

ut
es

an
ed

it
or

th
at

sp
li

ts
X

M
L

fil
es

in
to

se
ve

ra
l

pa
rt

s
an

d
le

ts
th

e
us

er
ed

it
th

e
pa

rt
s

in
a

ta
bb

ed
pa

ne
.

u
i
.
d
o
c
u
m
e
n
t
P
r
o
v
i
d
e
r
s

X
M
L
D
o
c
u
m
e
n
t
P
r
o
v
i
d
e
r

C
on

tr
ib

ut
es

th
e

do
cu

m
en

tp
ro

vi
de

r
fo

r
th

e
X

M
L

ed
it

or
.

c
o
r
e
.
r
e
s
o
u
r
c
e
s
.
n
a
t
u
r
e
s

X
S
u
i
t
e
N
a
t
u
r
e

D
efi

ne
s

th
e

ch
ar

ac
te

ri
st

ic
s

of
X

G
ui

de
pr

oj
ec

ts
;t

he
na

tu
re

is
au

to
m

at
ic

al
ly

ad
de

d
to

ne
w

pr
oj

ec
ts

.

u
i
.
n
e
w
W
i
z
a
r
d
s

P
r
o
j
e
c
t
C
r
e
a
t
i
o
n
W
i
z
a
r
d

C
on

tr
ib

ut
es

a
w

iz
ar

d
fo

r
th

e
cr

ea
ti

on
of

X
G

ui
de

pr
oj

ec
ts

.

X
P
a
g
e
C
r
e
a
t
i
o
n
W
i
z
a
r
d

C
on

tr
ib

ut
es

th
e

w
iz

ar
d

fo
r

th
e

cr
ea

ti
on

of
ne

w
X

Pa
ge

s
(b

as
ed

on
a

co
nt

ra
ct

).

C
o
n
t
r
a
c
t
C
r
e
a
t
i
o
n
W
i
z
a
r
d

C
on

tr
ib

ut
es

a
w

iz
ar

d
to

cr
ea

te
ne

w
co

nt
ra

ct
s.

F
i
l
e
C
r
e
a
t
i
o
n
W
i
z
a
r
d

C
on

tr
ib

ut
es

a
w

iz
ar

d
to

cr
ea

te
ne

w
im

pl
em

en
ta

ti
on

fil
es

.

u
i
.
i
m
p
o
r
t
W
i
z
a
r
d
s

S
i
t
e
m
a
p
I
m
p
o
r
t
W
i
z
a
r
d

C
on

tr
ib

ut
es

a
w

iz
ar

d
to

im
po

rt
V

is
io

si
te

m
ap

s
in

to
th

e
ID

E
.

u
i
.
p
r
o
p
e
r
t
y
P
a
g
e
s

P
r
o
j
e
c
t
P
r
o
p
e
r
t
y
P
a
g
e

C
on

tr
ib

ut
es

a
pr

op
er

ty
pa

ge
fo

r
X

G
ui

de
pr

oj
ec

ts
.

u
i
.
a
c
t
i
o
n
S
e
t
s

C
o
n
t
r
a
c
t
A
c
t
i
o
n
s

C
on

tr
ib

ut
es

th
e

se
t

of
ac

ti
on

s
(i

.e
.,

m
en

u
it

em
s,

to
ol

ba
r

bu
tt

on
s,

et
c.

)
us

ed
in

th
e

X
Su

it
e

ID
E

.

146 6.4 XSuite Eclipse IDE

or comfortable data models for concerns exist. The structure concern, for instance, uses a schema
data model to represent an XML schema rather than the DOM tree of the schema. All concerns
must support the XML representation of the concern, customized data model support is optional.
The hasDataModelSupport()method returns whether a concern has a separate data model.
If so, the getDataModel() method returns it.

The other methods in the concern interface describe the interaction for contract, i.e., con-
cern composition. First the createConcernCompositionUIFor() method is a callback
for the corresponding composition wizard and adds a wizard page with all user interface ele-
ments needed to gather the composition information for this concern. For the structure concern
this is the position where the new schema should be embedded. For the interface concern, the
composition information includes operators for all parameters in all input and output interfaces.
The isConcernCompositionInfoValid()and getConcernCompositionInfo()
methods are used to validate that all required information was entered and to return an object
representing the composition information. Finally, the composeWithConcern() method
composes the concern with the concern passed as method argument using the information in the
composition information argument.

6.4.2 THE TECHNOLOGY EXTENSION POINT

The second extension point defined by the XSuite plug-in specifies the interface to the imple-
mentation and deployment technology used in the project. Per default, the MyXML technology
is used for this purpose, but other technologies could replace it by implementing this extension
point. Figure 6.10 depicts the callback methods for new technology plug-ins.

public interface IImplementationTechnology {
public String getName();

// contribute pages to project creation wizard
public IProjectCreationContribution getProjectCreationContribution();

// contribute pages to XPage creation wizard
public IXPageCreationContribution getXPageCreationContribution();

// create a template for the given implementation concern
public IFolder getFolderForImplType(IFolder implementationFolder,

String type);
public void createTemplateFor(String implConcern, Element parentNode,

IConcern contractConcern, IFile target) throws XSuiteException;

// build, compile, deploy the project
public String getProjectBuilderName();
public IncrementalProjectBuilder getProjectBuilder();

}

Figure 6.10: The plug-in interface for new implementation technologies.

Chapter 6: XSuite - An Integrated Development Environment for XGuide 147

Apart from the getName()method that returns the name of the implementation technology,
the interface has methods for the creation of new implementation and XPage files, the building
of the project and the gathering of configuration information at project creation time.

The getProjectCreationContribution()method provides optional wizard pages
for the project creation wizard. These pages gather configuration information for the implemen-
tation technology. In the case of MyXML, for instance, we ask for the default deployment di-
rectory, the default output type, etc. Similarly, the getXPageCreationContribution()
method contributes pages to the XPage creation wizard. Again, the pages collect implementation
specific information such as the output name, the processing type or the processing scope (in the
case of MyXML).

The getFolderForImplType() and createTemplateFor() methods are used to
create a new implementation template for the specified concern and retrieve the folder where
such concern implementations are stored. Using the MyXML technology, the method would
generate a MyXML document for the content implementation concern, an XSL stylesheet for
the layout concern and a Java interface and factory class for the application logic concern.

The final group of methods deals with the building of projects, folders and files. De-
pending on the implementation technology, building a project has a different meaning. In
MyXML it means to process all XPages with the MyXML engine, compile the generated
Java sources and copy all static and dynamic resources to the deployment directory. The
getProjectBuilderName() method returns the name of the customized project builder
that is subsequently used to locate and initialized the plug-in containing the builder. The
getProjectBuilder()method then provides access to the builder implementation.

The presented interfaces for contract concerns and implementation technologies form the
backbone of XSuite’s extensibility mechanism that in turn relies on the Eclipse extensibility
mechanism via plug-ins. Figure 6.11 depicts a slightly modified UML package diagram that
includes plug-in boundaries in addition to the actual software packages. It further only shows
dependency but does not model communication relationships.

The total number of classes contributing to the functionality of the XSuite IDE (including the
MyXML engine but excluding the Tomcat integration and the required libraries such as JAXB,
EMF, XSD, etc.) is 355 (containing a little over 38 000 lines of source code). A detailed dis-
cussion of the concrete implementation of the full XSuite functionality is not the purpose of this
work. Thus, the remainder of this chapter focuses on three interesting implementation decisions
that influenced the development of the XSuite IDE: the separation of implementation concerns
with MyXML, the application of JAXB (Java XML Data Binding) and the contract cache.

6.5 SEPARATION OF CONCERNS WITH MYXML

The MyXML introduction in Section 6.2 explains that MyXML separates the content, the layout
and the application logic. The separation of the content from the layout is done using XML and
XSLT. For dynamic pages, however, the separation of the application logic from the content and
the layout is more interesting. In this case, MyXML first generates an interface that describes

148 6.5 Separation of Concerns with MyXML

Figure 6.11: The modified UML package diagram for the XSuite IDE.

Chapter 6: XSuite - An Integrated Development Environment for XGuide 149

the input/output behavior of the page. It then generates the class encapsulating the content and
the layout for the page and ensures that this class implements the generated interface.

Figure 6.12 shows the MyXML generated interface for a page SamplePage that takes a
string title as input parameter and provides an output interface for the string array value1
and the integer value2.

public interface ISamplePage {

public void setInput(String title);
public void print(PrintWriter pw) throws Exception;

public interface IOutput {
public String[] getValue1();
public Integer getValue2();

}
}

Figure 6.12: The MyXML generated interface for a sample page with input and output interfaces.

For the purpose of parallel development of Web applications, however, it must be possible
for the programmer to implement the application logic without the concrete MyXML generated
class with the content and layout (i.e., the output class).

As a consequence, XSuite uses the factory pattern [61] for the creation of output classes.
When the Web application is deployed, the factory will create an instance of the MyXML gen-
erated output class and return it to the caller. During the implementation phase, however, the
XSuite IDE generates the interface and a dummy implementation of the interface from the con-
tract. The factory is then configured to return an instance of the dummy implementation which
lets the programmer work independently of the content manager and the graphics designer.

In practice, two XSL transformations are used to create the interface and the factory with the
dummy implementation from the contract. The contract already contains all information (i.e.,
the page’s input and the output interfaces) required for this processing. This code generating
transformation also takes the type and the dimension of the parameter into accounts.

For non-string types, the transformation generates appropriate conversion operations since
Web forms only deal with strings. Thus an integer parameter in an input interface has to be
converted to a string; in the same way an integer output parameter requires a conversion from the
string value provided by the Web form to an integer object.

Parameter dimensions greater than zero further complicate the code generation process since
we have to convert arrays to and from Web form values. Web forms don’t have the notion of
array parameters but require the mapping of an array to a sequence of single value fields. As a
solution we use the name of the array as a base name of the form field and append the value’s
array index to the base name for the final name of the field. When submitting a Web form, we
scan all parameters and reconstruct an array from the submitted values using the ’base name plus
index’ naming convention.

150 6.6 JAXB - Java XML Data Binding

To generate a dummy implementation of the output interface that the factory can return im-
mediately even if the final output class does not yet exist, the transformation code creates a class
that encapsulates a simple HTML page with the following properties:

� For each parameter in the input interface specification, the page contains a line that states
the name, the type and the value of the parameter.� For each output interface, the page contains a separate Web form. Again the name and type
of the expected value is displayed. For array values a sequence of five consecutive input
fields is used.

Using this approach, the programmer can implement the application logic without any de-
pendencies on the content or the layout. She can even test the interaction among multiple servlets
by using the generated dummy classes that implement the same interface as the final output class
will.

6.6 JAXB - JAVA XML DATA BINDING

When working with XML documents in a software application, it is a common task to parse an
XML document and create a Java data structure from it rather than working directly with the
XML (DOM) tree. With the Java XML Data Binding (JAXB) specification [135], Sun Microsys-
tems provides a schema-based approach to ease the parsing, creation and validation of XML
documents. Starting from an XML schema, the schema compiler creates a set of Java interfaces
and classes that are able to represent all documents that comply with the schema.

In the application, marshaller and unmarshaller classes provide operations to read and val-
idate XML documents and to access their data model representation. The actual mapping of
schema elements to data model elements can further be adapted by so-called customized bind-
ings that specify how a schema element should be translated into a data model entity.

In addition to reading of documents, also the creation of schema compliant documents and
their serialization to an output stream is supported in JAXB. In XSuite we use JAXB to work
with configuration files, the MyXML project file, interface definitions and sitemap models.

6.7 THE CONTRACT CACHE

In Chapter 5 we discussed in detail contracts and contract composition. We also stated that
contract composition is performed ’by reference’ in XSuite which means to only embed a pointer
to the referenced contract and the required composition information as opposed to the actual
contents of the contract.

As a result, contracts in XSuite have a <compositionreferences> section that con-
tains all such composition pointers. In some situations, however, we need the expanded version

Chapter 6: XSuite - An Integrated Development Environment for XGuide 151

of the contract, i.e., the contract after the composition operation was performed and the refer-
enced contract was integrated. One such situation is the composition of a contract with another
contract. We have to first expand all existing composition references since the new composition
information must be collected relatively to expanded version of the contract.

Consider that we need to specify the composition information for a structure contract con-
cern. The composition information consists of an element name and the position within the
element where the new contract is to be embedded. Obviously we must first expand the current
contract to retrieve the list of available elements rather than using only the elements in the current
contract’s schema and ignoring any elements from referenced contracts.

Contract composition requires to iteratively compose all contract concerns of all referenced
contracts. As a result, the composition operation is extremely expensive. Because of the event
model of Eclipse wizards, access to the expanded version of a contract is needed frequently. To
avoid the performance penalty of continuously expanding contracts, we introduced the so-called
contract cache that stores the expanded version of a contract and invalidates the cache entries if
the contract is modified.

6.8 GENERATING CANONICAL XML FROM AN XML SCHEMA

In the XPage creation wizard, the final task is to generate implementation templates for all im-
plementation concerns in the page. For the content this means to generate an XML document
that reflects the structure and data type information of the page’s contract. In other words, we
needed to generate an XML document from a given XML schema.

Since an XML schema represents a class of documents rather than a single instance, the
generation of a template file cannot be deterministic. Instead, it has to be decided how to react
on <xsd:choice>, <xsd:sequence> or <xsd:all> elements and what to do with facets
such as the minimum and maximum number of element occurrences. For the use in XSuite,
we defined a simple algorithm to derive an instance document from a schema. We apply the
following rules:

� For every element with a simple type, create a string value stating the type’s name.� For every element using <xsd:choice>, continue with the first element in the choice
enumeration.� For every element using <xsd:all> or <xsd:sequence>, process the elements in the
order they appear in the schema.� For every minOccurs facet that is zero, add a comment stating that the following content
is optional.� For every maxOccurs facet that is unbounded, add a comment stating that the following
content can be repeated infinitely.

152 6.8 Generating Canonical XML from an XML Schema

� If minOccurs and maxOccurs are within a given lower and upper bound, generate
minOccurs number of such elements and add a comment with the maxOccurs upper
bound.� If minOccurs and maxOccurs are not within the given bounds, insert a fixed number
of elements and add a comment stating the minOccurs and maxOccurs values.� For attributes, always insert the attribute and add a comment if the attribute is optional.

We introduce the term canonical XML for an XML document that is derived from a given
schema using a set of agreed upon rules. Some requirements for these rules are that they should
be able to create customized default values for simple type elements and attributes that take the
base type as well as existing facets into account. For choices, a comment should outline the other
possible content models for a given type. The handling of minOccurs and maxOccurs facets
should be parameterized to support more flexible document generation.

It is clear that such rules can be formulated, it remains an interesting exercise, however, to
think about reasonable assumptions in these rules and to implement a full-fledged generator for
canonical XML from a given schema.

This chapter started with an introduction to the Eclipse and MyXML technologies. It then
presented the extensibility mechanism and the architecture of the XSuite IDE plug-in and dis-
cussed some implementation decisions. What is still missing, is the functional description of the
XSuite IDE, i.e., how the XGuide process is mapped onto activities in the development environ-
ment and what wizards, dialogs, editors, project builders, deployment strategies and consistency
checks the tool provides.

To better illustrate XSuite’s functionality we postpone the functional description to the next
chapter where we introduce the Vienna International Festival case study. On the basis of this
case study, we will demonstrate how the XGuide process is supported by XSuite and what func-
tionality the IDE offers to the developer.

CHAPTER 7

THE VIENNA INTERNATIONAL FESTIVAL

(VIF) CASE STUDY

Looking at the proliferation of personal web pages on the net,
it looks like very soon everyone on earth will have 15 Megabytes of fame.

MG Siriam

In this chapter, we demonstrate how the XGuide process and XSuite IDE were deployed for
a first real-world case study: the VIF 2003 Web application.

The Vienna International Festival is a major cultural event in Vienna. This annual festival
usually lasts six to eight weeks over a period in May and June. The festivities take place in
various theater locations and concert halls and consist of operas, plays, concerts, musicals and
exhibitions. Often, famous international directors, performers and ensembles are guests. The
VIF attracts many visitors from around the globe. Most of the international visitors, however,
come from neighboring countries such as Germany, Italy and Switzerland. As a consequence,
the content in the Web application must be fully bilingual (German and English).

Since its first presence on the Web in 1995, the VIF has been changing its look-and-feel every
year according the that year’s promotion theme of the festival. The services the site provides also
vary annually. Information such as event locations, current programme, an archive of earlier
performances, news updates and press reports are traditionally provided to visitors. Additional
features such as feedback facilities, discussion forums, and hosting of smaller festivals and series
depend on user feedback, Web server log statistics and the theme of the festival. Further, one of
the key services of the application is the online ticket ordering. Users can choose and buy tickets
online using a shopping-basket application. In total, the whole application consists of hundreds
of static and dynamic pages and attracted more than 70 000 (different) visitors in two months
(resulting in about 6 million hits and more than 22 gigabytes of network traffic).

153

154 7.1 Analysis of VIF Requirements

Until the year 1999, we had been using our HTML-based technologies for building and man-
aging the VIF Web presence. These template-based tools enabled us to achieve some flexibility,
but we were not able to have a strict separation of the content and the layout, let alone the ap-
plication logic. Starting in 2000, we implemented the application using XML, XSL and our
MyXML template engine technology [85, 92, 93]. Our aim at that time was to achieve a high
level of flexibility in order to decrease the necessary effort in integrating new layout and service
requirements.

With the MyXML implementation technology and the work introduced in this thesis, i.e.,
the XGuide process and the supporting tools, we now cover – in addition to the implementation
level – also the conceptual and methodological level. The remainder of this chapter follows the
XGuide process to discuss the design and implementation of the case study. It starts with the
presentation of the requirements for the VIF 2003 Web application and consecutively focuses on
selected parts of the application for an in-depth discussion to show our experience with the use
of XGuide.

7.1 ANALYSIS OF VIF REQUIREMENTS

The analysis of the requirements for the VIF 2003 Web application were driven by the VIF man-
agers. The four main areas of concern were the programme information, the ticket ordering
system, the VIF archive and the dissemination of general information about the festival (e.g.,
contact information, special offers, cooperations, payment options, etc.). Since the whole appli-
cation is bilingual, the customer should be able to switch languages at any point in time, i.e.,
every German page (be it static or dynamic) has an English counterpart it is linked to. Addi-
tionally, a browseable Web gallery was envisioned that contains images and textual information
on selected events. The possibility to integrate future news releases, press reviews, critique,
highlights and interviews concluded the list of main requirements for the VIF 2003.

In the context of the VIF project, we identified the following stakeholders that need to interact
to get the project implemented:

� VIF Managers. The VIF managers are the owner of the Web site and are concerned about
meeting deadlines and getting functionality implemented. The pay for the work done by
the other internal and external stakeholders.

� Content Managers. The content managers are VIF staff and thus internal stakeholders.
Their only concern is the correctness and freshness of the information available via the
Web application.

� Graphics Designers. The design of the visual representation of the content was out-
sourced to an external design company whose only task is to produce the (HTML) page
templates.

Chapter 7: The Vienna International Festival (VIF) Case Study 155

� Programmers. In the VIF scenario, we take the role of programmers who implement
the application logic and integrate it with the graphical layout and the content. In addi-
tion we perform maintenance/evolution tasks such as content updates or extensions of the
application’s functionality (e.g., special offers if you buy more than 5 tickets).� System Administrator. The system administrator role is responsible for running the in-
frastructure (e.g., hardware, network, Web server, etc.) and provide secure, fast and reliable
access to the services. We assumed this role in cooperation with the VIF’s technician.� Customers. The customers are the users of the VIF Web application who want to get
information about the festival and order tickets.

In the following we provide detailed information on the programme and ticket ordering re-
quirements. We use this central and most complex part of the application for our case study
description in the remainder of this chapter.

The programme overview page is the central source of information for the client regarding
events, locations and dates. It contains a list of all events, shortcuts to the ticket ordering system
for each event, indicates whether events are still available and lets the customer browse events by
location, date or keyword. A link for each event brings up the respective event details page that
contains detailed event information (e.g., title, author, actors, location, dates, short description of
the content, an image, etc.). Event details pages further support navigating the set of all events
or a specific search result with links to the previous and next event in the set.

The ticket ordering process covers all aspects of selecting, reserving, ordering and paying
for tickets and manages a shopping cart that the client can modify at all times. Furthermore,
(host-based) third-party services running on a mainframe computer need to be integrated into the
workflow to perform online credit card validation and to interface with the ticket issuing system
used by the rest of the festival’s ticket offices (e.g., to globally reserve tickets).

The ordering process is initiated from the programme overview page or from the event details
page. First, the list of available performances of the selected event is shown. When the customer
has chosen the desired date, a list of available ticket categories and the number of free seats in
each category are displayed. She now selects the number and category of all tickets she wishes
to buy. In the next step, the current contents of the customer’s shopping cart is shown, including
the newly added tickets. This list already contains the exact row and seat numbers of the tickets
and allows the customer to cancel any number of tickets. At this time, she can either choose to
go back to the programme to order more tickets or to finish the transaction. In the latter case,
a page requests the customer’s personal and payment information and lets the customer commit
the order. When the order was successfully processed, she obtains a confirmation page on the
screen and an email with the same confirmation information (including the ordered tickets, the
grand total and the reservation number).

Following the XGuide process, we modeled these requirements in a requirements diagram
using only simple and multi pages. Figure 7.1 shows the requirements diagram of the programme
and shopping cart sections of the application.

156 7.1 Analysis of VIF Requirements

Figure 7.1: The requirements diagram for the programme and ticket ordering sections of the VIF
2003 application.

Chapter 7: The Vienna International Festival (VIF) Case Study 157

The programme overview page Programme is the starting point for any event information or
ticket ordering process. It is modeled as a multi page since it is parameterized with the criteria
the customer selected (e.g., date range, location, type of event, etc.). After the client selected an
event, the corresponding event details are displayed in the ProgrammeDetails multi page that is
parameterized with the identifier of the selected event.

From both the programme main and the event details pages, the customer can start the online
ticket ordering process. In a first step, all dates for the selected event are shown (ShowDates).
Having selected a particular date, the various ticket categories and the number of available tickets
per category are displayed (ShowCategories). The customer can then select the number of tickets
per category she wants to put into the shopping cart. As a result of putting tickets in the shopping
cart, the contents of the cart is shown in the ShowCart page. Besides the possibility to cancel
the ordering process, this page provides options to go back to the programme to add more tickets
for other events, to remove selected tickets (change cart) from the current shopping cart, and to
proceed to the Order page to finalize the ordering process.

The final page in the online ordering process requires the customer to enter her personal
information (e.g., name, address, email, phone number, etc.) and the preferred payment and
delivery options. Once all information is provided, the order is processed on the back-end system
including credit card validation and online reservation of the selected tickets in the ticket issuing
system. Eventually, the customer receives a confirmation page (Confirmation) containing details
on her order (e.g., the exact seat and row numbers, reservation id, grand total of all tickets,
selected delivery option, etc.).

Also note the ‘additional requirements’ indicators on the ShowCategories, Order and Confir-
mation pages. The respective requirements cards state that� the number of available tickets per category in the ShowCategories page must be retrieved

from the third-party ticketing system,� finishing the order in the Order page means to first validate the credit card information
(again using a third-party service) and then book the tickets in the back-end ticketing sys-
tem,� in addition to the Confirmation page, the customer must get a confirmation email contain-
ing the same information as the confirmation page. Further the same email is for redun-
dancy reasons sent to the VIF ticketing office (to cross-check in the ticketing system).

7.1.1 DISCUSSION

First it needs to be emphasized that the requirements diagram explained above is the result of an
iterative discussion process. We started out with a much simpler version of the diagram. When
discussing the workflow, however, additional requirements were added and the diagram evolved.
Examples of such changes include:� removing single tickets from the shopping cart’s ShowCart page (as opposed to canceling

the whole shopping cart or all tickets of a selected event),

158 7.2 The Feasibility Decision

� adding shortcut links to the Programme overview page to directly start the ticket ordering
process (as opposed to requiring the customer to first navigate to the event details page),� showing the exact number of available tickets per category in the ShowCategories page
(as opposed to merely indicating whether tickets in the respective category are available or
not).

Another requirement we were not able to easily capture in the requirements diagram per-
tains to the bilingual nature of the Web application. As a consequence, every page exists in
both languages and switching from one language to the other should be seamlessly implemented
throughout the application. Theoretically this would mean to duplicate the requirements diagram
and for every page to add a navigational dependency to its counterpart in the other language. This
would render the diagram almost unreadable. With respect to the requirements diagram, we de-
cided to consider the diagram to be language-independent (i.e., not to model the switching of
languages at this level); instead we added this requirement as a separate section to the require-
ments document.

An important aspect with respect to the following feasibility decision are represented by
the non-functional requirements. Apart from the technical requirements of integrating legacy
or third-party systems, two other requirements had significant impact on the project: the short
development time and the expected change rate of the application.

In terms of development time, a hard deadline for the Web application was determined by the
date of the public press conference in which the programme of the next year’s VIF is presented.
The press conference for the VIF 2003 programme was scheduled for December 13, 2002. In
the project planning meetings it became clear that the final layout and most of the content will
only be available in late November. This left us with about 2-3 weeks to integrate the content,
the layout and the back-end application logic.

The expected evolution rate of the application was the other significant concern. On the one
hand, the amount of information to deal with continues to grow as press releases, interviews
with artists and reviews of performances become available. On the other hand, our experience
with Web projects and the VIF in particular shows that managers and Web site owners usually
do not think of all requirements at the beginning of the project but tend to come up with new
requirements later in the project. Examples are given in Section 7.6 detailing on maintenance
and evolution activities.

7.2 THE FEASIBILITY DECISION

Since the VIF case study is a relatively small Web project, assessing the feasibility of the project
was relatively easy. Following the checklist presented in the XGuide process, we evaluated
the project in terms of money, time, people, dependencies, quality of service, know-how and
technology.

Chapter 7: The Vienna International Festival (VIF) Case Study 159

Because the implementation of the case study was set up as a cooperation with the VIF,
money was not the primary concern. Also the people involved in the project and their responsi-
bilities and roles (content management, project management, graphics design, implementation)
has become clear over the years. In terms of dependencies on third-party products and services
only the credit card validation service and the ticket issuing system were identified. The lat-
ter is a host-based system using terminal emulations to gather user input. As a consequence,
an adapter service to translate between the Web-based shopping application and the back-end
ticketing system had to be developed.

Regarding the know-how of the people involved in the project, the situation was more proble-
matic. The people at the VIF office are mostly users of the Web but did not have much experience
developing Web-based applications. As a result, we planned for increased communication to dis-
cuss what is possible and reasonable to do on the Web. Also in terms of hardware infrastructure
(server machines, service maintenance, network security, etc.) the VIF could not provide the
necessary know-how as outlined when discussing the technology aspect below. The graphics
design was done by an external company whose expertise is in creating HTML-based layouts
using WYSIWYG tools such as Dreamweaver and scripting using JavaScript and Macromedia
Flash. In the case of the VIF case study, we considered the know-how of the developers as be-
ing no problem since we have enough experience developing, deploying and maintaining Web
applications. We also developed the technologies used during the implementation phase (e.g.,
MyXML, XSuite) ensuring sufficient familiarity with the tools and technologies.

The project setup as a cooperation with the VIF gave us the possibility to decide on the
technological aspect of the project. For the VIF 2003 we use an Apache Web server running
on Linux as base platform. The application development is done using XML, XSL, MyXML
and Java servlets. The back-end data store is realized as MySQL database. Taking this setting
into consideration, the technology aspect of the feasibility decision brought up two potential
problems: first, the VIF did not have experience in setting up or maintaining a Linux-based Web
server; second, the graphics designers did not have knowledge of XSL but only HTML.

The solution to the first problem was that we took over the responsibility for configuring,
securing, running and maintaining the Web server machine and services. Since it was not an
option for the graphics designers to provide the layout as XSLT templates, we planned for a ‘pre-
processing’ task to analyze and transcode the delivered HTML mockups into XML and XSLT
definitions.

Also what kind of quality of service is required for the VIF Web application was an interesting
question. Since the Web presence of the VIF is important especially for foreign customers,
availability was the main concern. To cover the possibility of hardware defects that cannot be
fixed by replacing the hardware, we have a cold stand-by solution, i.e., copies of all required
software packages to be able to setup an alternative Web server in a couple of hours. Obviously,
also all the data is backed up. The security of the system is ensured by a restrictively configured
firewall that only accepts HTTP(S) requests and monitoring of the Web log files. Only for the
network connection to the Internet, the VIF fully rely on their provider which constitutes a single
point of failure.

The scalability of the system is not a major concern since the Web server load still by far
does not tap the full potential of the server and the lifetime of the Web application will end

160 7.3 Designing the VIF Web application

with the final events in June (i.e., be less than a year). The only critical point with respect to
scalability is the communication with the adapter service for the ticketing system since only
a limited number of connections are accepted by this service. On certain days (e.g., the first
day when the ticketing service is available, the day of the opening ceremony, etc.) we expect
the amount of concurrent ticket orderings to exceed this limit. Regarding the performance of
the application, the situation is similar. The performance of the Web and database server are
more than sufficient, the communication with the adapter service (which in turn connects to the
ticketing system), however, causes some delays. Since the adapter service is provided by an
external party, we cannot directly influence its properties.

Regarding the project duration and implementation time, however, the situation was more
difficult. We already mentioned that the available development time was extremely short and
it was not clear at the beginning whether we could finish the implementation in the given time
frame. As a result, we agreed to implement all functionality except the ticket ordering before
the press conference and, if necessary, provide the ticket ordering functionality at a later date.
As it turned out, the integrated support for separation of concerns let us finish everything in time
(since we could implement all the functionality independently of the actual data and graphical
appearance). Still the online ticket ordering could only start a month after the press conference
since the VIF could not provide the necessary ticket information.

7.3 DESIGNING THE VIF WEB APPLICATION

The design of the VIF case study builds on the requirements diagram created in the first step.
The design in-the-large activity refines the requirements diagram to include Web components,
application logic processes and the necessary input- and output interfaces. Consecutively, design
in-the-small translates the high-level design into concrete contracts for all pages and components.
Further it specifies the composition operators to embed components into pages.

7.3.1 DESIGN IN-THE-LARGE

In the requirements diagram, the envisioned Web application is viewed from the client’s per-
spective. Design in-the-large means to further analyze the requirements diagram to identify
commonalities across pages (and separate them out into Web components) and to precisely spec-
ify all interfaces (i.e., between pages, components and application logic processes).

Figure 7.2 depicts the snippet from the diagram showing the programme overview, search and
details pages. The Programme page references three Web components: the Header, Programme-
Search and ProgViewDefault components. The header component is embedded in all pages to
display a common header section and navigation structure for all pages. The programme search
component represents a search facility that lets the client search for events depending on the se-
lected date, location and event category. Finally, the (default) view components displays the list
of events that match the search criteria.

Chapter 7: The Vienna International Festival (VIF) Case Study 161

Figure 7.2: The snippet of the design diagram responsible for the programme overview, search
and details pages.

Further the search component is linked to an application logic process that performs the
actual search against the back-end database containing all events and displays the search result
in yet another page of type Programme. This recursive dependency is also the reason why the
programme page is modeled as multi page as opposed to a simple page—each search query
produces a new instance of the page that only differs in the list of events to be displayed. When
initially navigating to the programme page, no restrictions on the search criteria are specified
resulting in a list of all events in the view component.

From the list of events in the view component, the client can select an event to view its
details. The details page reuses the header component and displays all information available for
the selected event. The ProgrammeDetails page again is a multi page since its page specification
is parameterized with the identifier of an event and reused for all events. From the programme
details page, also the ticket ordering process starts. If the client chooses to order tickets for the
selected event, she is first presented with a list of all dates when the event is performed. In the
design diagram, we modeled the ticket ordering process on a separate page (shown in Figure 7.3).
As a result, we used a proxy component in Figure 7.2 to indicate the fact that the ShowDates page
is specified somewhere else (i.e., on a different page) in the diagram.

Since the input and output interfaces are properties of the components and pages set via
a property dialog, they are not shown in Figures 7.2 and 7.3. In Figure 7.2, for instance, the
ProgrammeSearch component has an output interface that specifies the selected search criteria,
i.e., the date range, the location and the event category. This output interface is matched by a
corresponding input interface of the ProgrammeSearchLogic application process that uses the
provided values to compile the list of events that match the search criteria. Consequently, the

162 7.3 Designing the VIF Web application

Figure 7.3: The page from the design diagram that specifies the ticket ordering process.

Chapter 7: The Vienna International Festival (VIF) Case Study 163

process defines an output interface that contains a list of events. This list is used as input interface
in the Programme page and displayed as search result. The duality of input and output interfaces
continues for all pages.

To finish the discussion of the design in-the-large activities in our case study, we briefly walk
through the diagram for the ticket ordering process. The process starts with the aforementioned
ShowDates page that displays all dates when the selected event is performed. When the client
has chosen a date, the available ticket categories (i.e., price categories depending on the event
location) are displayed together with the number of tickets available in each category in the Show-
Categories page. The client then selects the number of tickets she wants to order (per category)
and puts them into the shopping cart. On the server-side, this triggers the (internal) reservation of
the tickets (ReserveTickets) to avoid placing the same tickets into multiple shopping carts at the
same time. The ShowCart page displays the current content of the shopping cart and provides
buttons to change or cancel the order. In the former case, the reservation is changed on the server
and the modified shopping cart displayed anew. In the latter case, the reservation is canceled and
the programme overview is shown. If the client decides to finish the order, she is asked to enter
the delivery and payment information on the Order page. Again she can cancel to reservation and
return to the programme overview; or she chooses to finish the order,i.e., affirmatively booking
the tickets on the server and, in the case of a credit card transaction, validating and charging her
credit card. Eventually, a confirmation page with all ticket details is shown. Note that all pages
embed the header component to ensure a consistent appearance and navigation experience.

7.3.2 DESIGN IN-THE-SMALL

So far, all modeling was done in the Visio modeling environment. Starting with design in-the-
small, visual modeling is replaced by the XSuite IDE. To make the Visio sitemap usable in
XSuite, it is first translated into an XML representation. The parts of the VIF sitemap that model
the programme pages are shown in Figure 7.4.

You can see that only the essential information such as the identifiers, the names, input and
output interfaces, composition dependencies and link information are extracted from the Visio
diagram.

The XSuite IDE provides a customized editor for sitemaps and supports creation of contracts
for all the pages, components, and application logic processes in the sitemap. To create a contract
for a page or component, the developer first chooses among the available contract concerns. All
pages and components must have a Structure concern that defines their structure and data model.
Dynamic pages (and components) might in addition use the Interface concern to define their
input/output behavior. Application logic processes, on the other hand, only use the interface
concern since they do not have content or a visual representation themselves but only consume
and provide information for pages and components.

The contract creation wizard integrated into the XSuite IDE supports the developer in creating
contracts. Figure 7.5 shows the first page of this wizard. It lets the user select the appropriate
concerns and defines a location in the project where to store the contract. Eventually, it creates

164 7.3 Designing the VIF Web application

<?xml version="1.0" encoding="UTF-8"?>
<ConceptualModel xmlns="http://www.infosys.tuwien.ac.at/xguide/sitemap"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://.../xguide/sitemap ConceptualModel.xsd">
<Pages>

<SimplePage><!-- simple page definitions go here --></SimplePage>
<MultiPages>

<MultiPage id="88" name="ProgrammeDetails">
<Interface>

<Input><Param name="eventId" type="String"/></Input>
</Interface>
<LinkInformation>

<Target id="1" type="proxyLink"/>
</LinkInformation>
<References><Ref id="14"/></References>

</MultiPage>
<MultiPage id="149" name="Programme">

<LinkInformation>
<Target id="88" type="proxyLink"/>

</LinkInformation>
<References>

<Ref id="14"/>
<Ref id="108"/>
<Ref id="114"/>

</References>
</MultiPage>

<!-- more multi pages here -->
</MultiPages>

</Pages>
<Components>

<Component id="14" name="Header">
<Interface>

<Input><Param name="pageId" type="String"/></Input>
</Interface>

</Component>
<Component id="108" name="ProgrammeSearch">

<Interface>
<Output name="output">

<Param name="date_from" type="String"/>
<Param name="date_to" type="String"/>
<Param name="keyword" type="String"/>
<!-- more parameters here -->

</Output>
</Interface>
<LinkInformation>

<Target id="95" type="directLink"/>
</LinkInformation>

</Component>
<Component id="114" name="ProgViewDefault"/>

</Components>
<AppLogic>

<Process id="95" name="ProgrammeSearchLogic">
<!-- more process-related information here -->

</Process>
<!-- more application logic processes here -->

</AppLogic>
</ConceptualModel>

Figure 7.4: A fragment from the XML representation of the VIF sitemap.

Chapter 7: The Vienna International Festival (VIF) Case Study 165

Figure 7.5: The first page of the contract creation wizard of the XSuite IDE.

a contract template from the user input and the information in the sitemap. Such a contract
template is shown in Figure 7.6.

With the contract template at hand, the designers fill the contract with the corresponding
information (e.g., interface specification and XML schema definition). Eventually, when all
contracts are defined, the contracts can be composed according to the definitions in the sitemap.
Another wizard supports the designer in doing so. First the contract that should be composed
with the selected contract is chosen. Then the composition operators for all concerns in the
contract are specified. If all required information is available, the contracts are composed, i.e., the
appropriate component reference is inserted into the <compositionreferences> section
of the contract. Figure 7.7 shows an input page of the contract composition wizard that requests
information on how to compose the interface concerns. As discussed in Section 5.4.2, the user
can choose among composition by addition, by unification, by adaptation, and by omission.
Corresponding user interface controls are provided on the wizard page.

The effect of the composition operation on the XML representation of the contract (i.e., the
updated <compositionreferences> section) is shown in Figure 7.8. A new composition
reference was added that uniquely identifies the embedded contract via its name and version.
Further a custom composition operator is specified for each contract concern that contains the
information on how to integrate the referenced concern.

When all contracts are fully specified and all composition references satisfied, the design
phase is finished. The set of contracts (including the composition information) acts as a spec-
ification for the developers. They encapsulate all information necessary to develop the various

166 7.3 Designing the VIF Web application

<xcontract version="1.0" xmlns="http://.../xsuite/contract"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://.../xsuite/contract contract.xsd">

<concern type="Interface" id="interfaces">
<idl:interface xmlns:idl="http://.../xguide/concerns/interface">

<idl:in />
<idl:out name="output">

<idl:param name="date_from" type="String" dimension="0" />
<idl:param name="date_to" type="String" dimension="0" />
<idl:param name="keyword" type="String" dimension="0" />
<idl:param name="location" type="String" dimension="1" />
<idl:param name="category" type="String" dimension="1" />
<idl:param name="search" type="String" dimension="0" />

</idl:out>
</idl:interface>

</concern>

<concern type="Structure"
docElement="ENTER_DOCELEMENT_HERE"
id="structure">

<xs:schema
targetNamespace="ENTER_YOUR_TARGETNAMESPACE"
xmlns:xx="ENTER_YOUR_TARGETNAMESPACE"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- add your schema definition here -->

</xs:schema>
</concern>

<compositionreferences>
</compositionreferences>

</xcontract>

Figure 7.6: The contract template generated for the programme search component with specifi-
cations for the interface and the structure concerns.

Chapter 7: The Vienna International Festival (VIF) Case Study 167

Figure 7.7: A page of the contract composition wizard requesting composition information for
the interface concerns.

implementation concerns concurrently and independently of each other.

7.3.3 DISCUSSION

The design phase depends to large parts on the expertise and experience of the designers. In
the programme search example we outlined how a page can be factored into components that
can subsequently be reused across multiple pages. As a result of the concrete design presented
before, the initial programme overview page is merely a special case of search result, i.e., the
list of events that match no specific criteria. While this design has advantages in terms of reuse
and implementation effort, it makes it more difficult (if not impossible) to update the Programme
overview page (e.g., with special offers or recent news) without also affecting the search result
pages. Thus if changes to the programme overview page can be anticipated that should not be
reflected on the search result pages, a better design would be to single out the overview page and
model it separately (again reusing the header and search components, though).

Another aspect to keep in mind is the complexity of the model. The more components are
defined, the more complex and incomprehensible the model gets. Depending on the expected
change- or evolution-rate of the application, this might make sense. A mere over-engineering of
the design diagram, however, (e.g., splitting all pages into components even if the components
cannot be reused) only adds to the complexity of the diagram but not any value.

A good example for this kind of trade-off was the decision to model the list of events re-
turned by a search query as a separate component (called ProgViewDefault in Figure 7.2). In

168 7.3 Designing the VIF Web application

<xcontract>
<!-- concerns go here -->

<compositionreferences>
<reference version="1.0" with="programmeview.contract">

<composition type="Interface">
<in>
<param-ref name="locations">

<operator type="as-is"/>
</param-ref>
<param-ref name="sortByEvent">

<operator type="as-is"/>
</param-ref>
<param-ref name="sortByLocation">

<operator type="as-is"/>
</param-ref>
<param-ref name="ticketsAvailable">

<operator type="as-is"/>
</param-ref>
<param-ref name="event_ids">

<operator type="unify" value="events"/>
</param-ref>

</in>
</composition>
<composition type="Structure">

<operator elementName="programmeview" position="beginning"/>
</composition>

</reference>
</compositionreferences>

</xcontract>

Figure 7.8: The updated composition reference section in the contract that contains all composi-
tion operators.

Chapter 7: The Vienna International Festival (VIF) Case Study 169

the requirements phase, we already discussed offering alternative views of the search result (e.g.,
sorted by event location, by date, etc.). Thus we expected other components to be used together
with the existing default view. If this probable extension of the programme page would not have
been obvious from the beginning, it would not have made sense to isolate the list of events in a
separate component. Instead, it would have been part of the Programme page itself.

7.4 CONCURRENT IMPLEMENTATION BASED ON CONTRACTS

Once all component and page contracts exist and the composition information specifies how
contracts are composed, the concurrent implementation phase starts. As explained before, the
information in the contracts is everything needed to create the various parts of the implementation
independently of others. Consider the contract of a dynamic page. It contains a structure and an
interface concern. The structure concern (i.e., XML schema definition) defines the structure and
data model. The interface concern (i.e., interface definition) specifies the input/output behavior.
Thus the content manager uses the structure part of the contract to create the content documents,
the graphics designer also uses the structure concern (i.e., XML schema) to create appropriate
XSLT templates, and the programmer solely relies on the interface definition when implementing
the application logic.

To initially create an implementation of a contract, the XSuite IDE again provides a support-
ing wizard. The wizard lets you select the contract to be used and lets you enter the name of the
resulting XPage (i.e., implementation of a contract). Since an XPage only contains pointers to
the actual implementation files, we can easily support implementation reuse by selecting existing
implementation files. If no such implementation exists, the wizard creates a new implementa-
tion skeleton based on the information in the contract. Figure 7.9 shows the second page of the
XPage creation wizard that provides a separate tab for every implementation concern. It further
lets the developer decide on a per concern basis whether a new implementation template should
be created or an existing implementation reused.

If the developer tells the wizard to create a new implementation skeleton, it analyzes the
contract to create a preliminary content (XML) document, layout (XSLT) stylesheet and (Java)
application logic. For this purpose, the wizard processes the structure part of the contract and
creates a commented XML document conforming to the schema. Similarly, a schema-compliant
XSLT stylesheet is generated. For the application logic, the situation is a little more complicated.
First, a Java interface is generated based on the interface definition information in the contract. In
this process, the input interface is translated into a dedicated method signature and each output
interface is encapsulated in a separate sub-interface. While this interface would be sufficient
to develop and compile the application logic, the programmer would not have a possibility to
test the application logic until the final content and layout are available. Instead we create a
factory class that returns a dummy implementation of the application logic interface until the
final content and layout becomes available.

Consider the example of a generic message contract that defines a page to display a simple
text message. The page takes a header and a text parameter as input. It does not provide output

170 7.4 Concurrent Implementation based on Contracts

Figure 7.9: The XPage creation wizard provides separate tabs for all concerns and the options to
reuse existing implementation files.

interfaces. If the developer uses the page creation wizard to create a new implementation of this
contract, the wizard creates an XPage as shown in Figure 7.10. The XPage indicates the identifier
and the version of the contract it uses and contains references to implementations for the content,
layout and application logic. For space reasons, we do not show the skeletons for the content and
layout files here. The interface and a fragment of the created factory is shown in Figure 7.11. All
this source code is directly generated from the contract using two XSLT stylesheets.

Based on the created implementation skeleton, the developers use XSuite to finish the im-
plementation. For XML and XSLT documents, customized editors with syntax highlighting and
auto-completion support the developer. For the application logic, a complete Java IDE is inte-
grated into the XSuite environment (including editor, compiler, debugger, etc.). When all imple-
mentation activities are finished, only the creation of the page template in the newInstance()
method of Figure 7.11 has to be changed to use the final content and layout. Then the component
or page can be tested and deployed.

To demonstrate that the implementation tasks are independent of each other, we implemented
the case study starting with the application logic and–in the first step–completely ignoring the
content and layout concerns. With the created dummy pages, we successfully implemented the
full functionality of the case study (shopping cart, programme search, archive search, etc.). Only
then did we add the actual content and layout information (again independently of each other). In
this step we could show that a concurrent implementation phase based exclusively on contracts
is possible. The experiences we made in the various implementation tasks are collected in the
discussion section below.

Chapter 7: The Vienna International Festival (VIF) Case Study 171

<xpage xmlns="http://www.infosys.tuwien.ac.at/xguide/xpage"
contract="model\contracts\generic\genericMessage.contract"
contractversion="1.0">

<concern type="Content">
<ref target="implementation\content\generic\genericMessage.myxml"/>

</concern>
<concern type="Interface">
<ref target="implementation\logic\generated\IGenericMessage.java"/>

</concern>
<concern type="Layout">
<ref target="implementation\layout\genericMessage.xsl"/>

</concern>
</xpage>

Figure 7.10: The generated XPage acting as a container for references to the actual concern
implementations.

After the implementation phase, the VIF case study consisted of 18 contracts that were used
in a total of 25 XPages and components. 25 content files, 13 stylesheets and 118 Java classes
were involved in the implementation of the pages and application logic. 93 of the total 118 Java
classes were automatically generated by the XSuite IDE and the MyXML engine; the remaining
25 classes encapsulated the ‘real’ application logic. The number of actual HTML pages delivered
to users is further increased by the fact that many pages are parameterized multi pages. For
example, the event details page is parameterized with the event identifier and is used to create
about 50 different HTML pages; similarly the archive details page is reused for hundreds of
articles in the archive.

7.4.1 DISCUSSION

In implementing the VIF case study, we could show how the content managers, graphics de-
signers and programmers can work independently of each other. In practice this means that the
content managers need a simple stylesheet to validate the entered content. The graphics designer
work with dummy content that lets them test various formatting alternatives. The programmer,
finally, uses the automatically created dummy pages mentioned before to test the input/output
behavior of the application logic. In this setting, XSuite’s version control support proved to be
extremely useful. The integrated CVS module allowed the developers to check in their contri-
bution to the project while the temporary files (dummy content, simple layout definitions, etc.)
stayed local. As a result, the shared repository always reflected the current status of the project
even if the developers used task-specific environment settings.

The development of the application logic took advantage of the integrated Java IDE. Es-
pecially the incremental compiler and debugger helped to ensure contract compliance since all
sources got immediately compiled against the interfaces created from the contract. Thus the ap-
plication logic–if compiled successfully–automatically is guaranteed to fulfill its contract. Also
for the other concerns, the integration of the independently developed concern implementations
worked without problems as long as they remained contract compliant.

172 7.4 Concurrent Implementation based on Contracts

public interface IGenericMessage {
public void setInput(String header, String text);
public void print(PrintWriter pw) throws Exception;

}

public class GenericMessageFactory {
private static GenericMessageFactory factory = null;

public static GenericMessageFactory getInstance() {
if (factory == null) {

factory = new GenericMessageFactory();
}
return factory;

}

public IGenericMessage newInstance() {
return new GenericMessageDummyImpl();

}

public class GenericMessageDummyImpl implements IGenericMessage {

private String header = null;
private String text = null;
private boolean initialized = false;

public GenericMessageDummyImpl() {
this.initialized = false;

}

public void setInput(String header, String text) {
this.header = header;
this.text = text;
this.initialized = true;

}

public void print(PrintWriter pw) throws Exception {
if (!initialized) {

throw new Exception("Output class was not initialized!");
}
pw.println("<HTML>");
pw.println(" <HEAD>");
pw.println(" <TITLE>Auto-generated page from XSuite</TITLE>");
pw.println(" </HEAD>");
pw.println(" <BODY>");
pw.println(" <H1>Auto-generated page for IGenericMessage</H1>");
pw.println(" <H2>Input Parameters</H2>");
pw.println(" <P>header (string) = " + this.header + "</P>");
pw.println(" <P>text (string) = " + this.text + "</P>");
pw.println(" </BODY>");
pw.println("</HTML>");

}
}

}

Figure 7.11: The generated interface and factory of the programme search component.

Chapter 7: The Vienna International Festival (VIF) Case Study 173

Eventually it remains to be noted that in some occasions the created contracts turned out
to be not complete, i.e., do not correctly specify the dependencies and interfaces between the
implementation concerns. This is a result of a not careful enough design phase and, once more,
shows how important it is to invest enough time and thoughts in the design. One example of an
incomplete specification in the design phase is related to hidden fields in Web forms. Consider
the programme search component: the from, to, location, category and keyword arguments are
obvious since they represent form fields in which the user can enter or select values. What is
easy to miss, is the existence of hidden fields in Web forms (e.g., to indicate whether the form
is shown the first time, what language the form is shown in, etc.). In the design phase, such
information (though important to the application logic) is easily overlooked. This is especially
the case if the design is driven by design and layout mock-ups and no cross-check with the
requirements of the application logic is performed. Another example of an incomplete contract
turned up in the implementation of the ShowCart page. This time the reason was that the page
uses several commit buttons in the same form (i.e., cancel order, change cart, finish order) and
thus the application logic has to react differently depending on which button was pressed. The
necessary information (i.e., the name of the selected button) is crucial to the application logic but
was not part of our initial contract.

Besides the conclusion that we did not invest enough in the design of the application, the
set of incomplete contracts gave us the possibility to try out real-world evolution scenarios as
presented in Section 7.6.

7.5 TESTING AND DEPLOYING THE VIF CASE STUDY

Because of the limited time, testing of the VIF case study before the initial roll-out started with
the most critical parts of the application, i.e., the programme search and ticket ordering system.
Everything else was then validated according to its importance and remaining time before the
initial deployment.

Testing of the programme search and ticket ordering system basically meant to ensure that
the system reacts as expected (i.e., on the client as well as the server side) for arbitrary user input.
Therefore we (manually) created a set of test cases to cover the most common user scenarios,
several faulty inputs and corner cases. Since the input/output behavior and the state on the server
could be tested using the dummy pages and the application logic, the testing process started
together with the implementation of the application logic. When the final content existed and the
layout was integrated, the set of tests was executed once more against the final Web application
to ensure that the integration of the content and layout did not tamper the system’s behavior.

We already mentioned at the beginning of this chapter, that the design of the graphical ap-
pearance of the Web application was outsourced to an external company that produced HTML
mock-ups rather than XSLT stylesheets. As a result, testing of the layout concern meant to en-
sure that the created XSLT stylesheets (visually) produce the same output as the original (and
accepted) HTML mock-ups. Similarly, the content was re-checked in terms of correctness of in-
formation and typing errors. Eventually, a link checking tool would ensure that no broken links
exist in the application.

174 7.5 Testing and Deploying the VIF case study

To re-run the application logic tests and perform the content and layout checks having inte-
grated all concerns, we needed to deploy the final application to a test environment. To deploy the
case study, we needed to invoke the MyXML template engine for all XPages, compile the gener-
ated and manually coded Java sources and copy the final runtime files to a Java servlet-enabled
runtime environment. For this purpose, we used XSuite’s integrated Jakarta Tomcat [140] servlet
engine that supports running the Web application under development directly from within the
IDE. Figure 7.12 shows the Tomcat property page to manage the necessary configuration infor-
mation. Everything else is done transparently for the user, i.e., the Web application description
files (web.xml) and the server configuration file (server.xml) are maintained automatically.
Supported by Tomcat’s code hot-swapping ability, changes to the application logic even become
immediately visible through the Web interface and no longer require time-consuming restarts of
the servlet container.

Figure 7.12: The property page of the integrated Tomcat servlet engine.

The final deployment step is to copy the Web application to the production server. Based
on so-called server profiles that encapsulate all server-specific information (e.g., document root,
database driver, database connect string, etc.), it suffices to copy all implementation files to the
production machine and re-build the application using the corresponding server profile.

Figure 7.13 shows the final programme overview page after integrating the implementations
for the content concern, the layout concern and the application logic. The common header com-
ponent resides at the top of the page, the programme search component is displayed in the vertical
bar on the left, and the list of events in the main area of the page.

Chapter 7: The Vienna International Festival (VIF) Case Study 175

Figure 7.13: The final programme overview page of the VIF case study.

176 7.6 Maintenance and Evolution of the VIF 2003 Web application

7.5.1 DISCUSSION

The main problem when testing the VIF case study was that there is little or no work on how
to exhaustively test a Web application. Even in the software engineering domain, though much
research on software testing exists, testing of non-trivial software products is a difficult task–
not to speak of proving the correctness of applications. Since the application logic of Web
applications in most cases is non-trivial and needs to deal with transactional processes (i.e.,
manage user sessions), the work on software testing can be directly applied to the application
logic.

For the other concerns of a Web application (e.g., content, layout, etc.) and especially their
integration, it is not so clear what testing means. Furthermore, hypertext-related testing (e.g., to
avoid the broken link problem or to make sure all pages are reachable) and user testing (e.g., to
ensure user acceptance and usability) is important. It is also unclear to what extent the testing of
Web applications can be automated since the test driver has to have a way to evaluate the server’s
reply. Since such replies change depending on the state of the server, the input device used, the
graphical layout deployed and maybe even environmental variables (e.g., the time of the day),
this is an extremely difficult task.

Also the lack of appropriate metrics to evaluate how well an application is tested (such as
block coverage or arc coverage in software engineering) makes it difficult to argue about the
quality of a Web application. Existing metrics mainly focus on the complexity of Web applica-
tions [45, 109].

In terms of regression testing, it is often impossible to derive from a changed resource what
other resources are affected by the modification. Because of the strict separation of all concerns
in XGuide, we can do a better job by maintaining dependency graphs that track all uses of any
given resource. For every content or layout file, for instance, we can derive in what XPages it is
used (i.e., what pages need to be rebuilt). For every XPage, we can find the contract it uses to
ensure that the change does not violate the contract. Using this mechanism, we can build a list
of pages that are affected by any given modification and thus need to be re-built, re-tested and
re-deployed.

The deployment of the Web application itself, be it into the test environment or to the produc-
tion environment of the VIF application, did not cause much problems. The concept of server
profiles was expressive enough to encapsulate all machine-related information and reduce the
deployment activities to copying all required files and rebuilding the application with the new
profile.

7.6 MAINTENANCE AND EVOLUTION OF THE VIF 2003 WEB

APPLICATION

Once the Web application is deployed, it enters the maintenance phase. Recall that we distinguish
maintenance and evolution depending on whether a modification remains within a single concern
(and leaves the contract unchanged) or is cross-concern (and requires an update to the contract).

Chapter 7: The Vienna International Festival (VIF) Case Study 177

In the VIF case study, we applied maintenance in the application logic to fix programming
bugs and extensively in the content concern to add new or update existing content information.
Maintenance in the layout concern, i.e., changes to the graphical appearance, did not occur.

Maintaining the application logic is directly supported within the XSuite IDE by editing the
source code and recompiling it. The newly generated Java class files are then automatically
copied to the test environment where the code hot-swapping feature of Tomcat uses them to
replace existing, now out-dated versions. As a result, changes and bug fixes in the source code
are instantaneously active in the test environment once the compilation process succeeds.

Content maintenance is more complicated. The content of most Web applications is stored
either in static XML/XHTML files (for static pages) or in a database (for dynamic pages). This
is also the case in the VIF example. Thus content maintenance has to deal with changes to static
content files and updates to database content.

In the case of static files, XSuite offers the same editing capabilities as for their creation,
i.e., syntax-highlighting and auto-completing text editors. A modification of a static file is not
immediately visible in the test environment since it requires a rebuild of all XPages that use the
modified file. Only then, do the changes become visible.

Database content is a little different in that it does not directly affect the XGuide process.
Instead it is used by the generated dynamic pages. As such, an update of database content does
not require an update of any XGuide related resource. To address the recurring requirement of
update interfaces for database content, we created a MyXML-based tool called WebCUS (Web
Content Management System) [87, 95] that can be used to provide generic, customizable Web
interfaces to arbitrary relational databases (as long as a JDBC connection to the database can be
established). WebCUS takes the entity relationship model of the data source to manage (in XML
format) and a set of access control definitions (“who is allowed to do what on which table”)
as input and generates a full XML/XSL-based Web application to maintain the content in the
database. The functionality of WebCUS includes entering, updating, and deleting information
and managing one-to-one and one-to-many relationships. Since WebCUS uses XSLT for its
formatting, it can be easily adapted to fit any given corporate identity or graphical layout.

Summarizing, the maintenance activities of the case study worked well and did not cause
problems. All concerns could be maintained (i.e., updated, tested and deployed) separately and
integrated smoothly with existing concern implementations.

Apart from the maintenance tasks, also several evolution steps were performed. This started
with the contracts that later on turned out to be incomplete (e.g., because some hidden form fields
were not modeled in the interface). In general, such problems could be solved quickly by updat-
ing the contract and the corresponding XPage implementation files. To avoid inconsistencies, it
is important to update the version numbers of the contract and the referencing implementations.

Another example of evolution from the VIF case study was that the ticket ordering process
should not only support regular tickets but also deal with reduced tickets for children and special
offers involving multiple events and/or tickets (e.g., you a get a 30 percent price reduction if you
buy tickets for all events in a series). Such extended functionality was not originally considered
important and needed to be integrated later on; it is a typical example of an evolution task since
it obviously is cross-concern: it requires an updated content to describe special offers, updated

178 7.6 Maintenance and Evolution of the VIF 2003 Web application

layout to visually indicate them and updated application logic to correctly process them (e.g.,
correctly calculate the grand total of an order in the presence of a special offer).

In a first step, we considered what changes to the contracts were needed. Obviously the
structure concern had to reflect the additional textual information describing (potential) special
offers. Further, the interface to the application logic had to be updated to include a parameter that,
at runtime, would contain the actual description of the special offer (depending on the selected
event and the current contents of the shopping cart). Once the updated version of the contract
existed, the implementation again was done in parallel. The provision of the textual description
of special offers was straightforward. Also the visual rendering (i.e., updates to the layout)
were easy to do since the special offer description should simply appear in red color below the
existing ticket description. Only the modifications to the application logic that needed to check
for potential special offers, create the offer descriptions, and correctly calculate the overall price
required significant effort. In the end, however, the support of special offers was surprisingly
easy to implement and integrate.

7.6.1 DISCUSSION

Basically, the maintenance and evolution tasks in the case study worked without problems and
confirmed the advantages of contracts for maintenance as postulated in Chapter 4. Further the
separation of maintenance and evolution activities better structures the post-deployment phase
that is–though often costly and the longest phase–traditionally badly neglected.

For the purpose of maintenance and evolution, the XSuite IDE is not fully satisfactory. First,
contract updates do not automatically result in an updated contract version. Second, modified
contracts do not yet invalidate all dependent XPages and implementation files. And third, the use
of CVS as version control system does not ideally support using multiple versions of the same
resource.

Whenever a contract is modified, its version should be increased. There is currently no
enforcing mechanism for increasing versions built into XSuite. Such a mechanism should be able
to deal with the situation that the updated contract is currently not used in the project and should
provide the ability to intentionally suppress the automatic update of the contract versions (e.g.,
to correct a typo in a contract). Once a contract is updated, all pages that use the contract should
be invalidated. This forces the developers to revisit the affected pages to make sure they still
comply with the contract. Such a feature becomes critical to keep track of contract compliance
when more than a few versions of a contract are used. Eclipse’s concepts of incremental project
builders and resource change listeners offer the required functionality for its implementation.
Finally, the use of CVS as version control system is not perfect to concurrently use multiple
versions of the same resource in one project. CVS was designed to keep track of multiple versions
of a file but usually does not support concurrent (even read-only) access to multiple versions
easily.

In the VIF case study, these issues were not a real problem since we never used multiple
contract versions at the same time but updated all components and pages to use the latest contract
version. With the maintenance and evolution phase the VIF application enters the final stage

Chapter 7: The Vienna International Festival (VIF) Case Study 179

of its lifecycle in which it keeps returning either to the implementation phase (in the case of
maintenance) or to the design phase (in the case of evolution). This loopback iteration continues
for the remaining lifetime of the application, in the case of the VIF until the end of the festival in
June.

In this chapter we outlined the implementation work for the VIF case study. It by far does
not cover all details of the full implementation and can only show how the XSuite IDE supports
the XGuide process. The discussions at the end of each section presented the strengths and open
issues in the current prototype implementation of the IDE. In the final chapters we present further
evaluation details of our approach and present advanced topics and open issues that need to be
dealt with in future research.

180 7.6 Maintenance and Evolution of the VIF 2003 Web application

CHAPTER 8

EVALUATING THE XGUIDE WEB

DEVELOPMENT METHOD

If you use the original World Wide Web program,
you never see a URL or have to deal with HTML.

That was a surprise to me -
that people were prepared to painstakingly write HTML.

Tim Berners-Lee

This chapter discusses the usefulness and applicability of the XGuide development process.
Evaluating a development methodology is a difficult task, all the more so if the method is new
and not much experience with it exists. This chapter looks at the suggested process from var-
ious angles to present differences to and advantages over other approaches. It summarizes the
experiences from the implementation of the case study and presents the most critical factors that
influence the successful use of the method.

A good method to evaluate any new product or process is to calculate its rating depending on
an agreed upon metrics. In computer science, many benchmarks for processors, graphics chips,
hard disk, memory chips, etc. exist and help to evaluate new products. In software engineering
metrics are used to evaluate the complexity of software artifacts and to estimate the length and
cost of software projects. On the Web, however, such estimates or metrics are rare. Only recently
a survey of Web metrics [45] shows that most existing approaches focus on aspects such as the
quality or complexity of a Web site. Early work on estimating the development effort of a Web
site is presented in [109] where the authors limit themselves to static Web pages and argue that
merely estimating the development effort but neglecting the design and especially maintenance
phases can only be a first step. As such no useful metrics to compare the XGuide process with
other approaches (e.g., by evaluating them using the same Web application) exists to date.

181

182 8.1 Experiences from the VIF Case Study

Lacking objective metrics, another possible evaluation technique could be to run controlled
experiments to evaluate how well various Web development approaches can deal with given
scenarios. We apply this approach to the evaluation of the maintenance phase of XGuide. The
application of this technique to the whole process is not possible since the early phases of a
Web project heavily depend on the knowledge and experience of the individuals involved. Thus
it is close to impossible to create a controlled and continuous environment for whole process
experiments.

One possible measure to make up for the different backgrounds, knowledge and experiences
of the individuals involved in the development process is to do as many experiments as possible
with as homogeneous development teams as possible. We considered setting up student projects
to gather feedback from as many students as possible implementing the same example project.
The problem with this approach was that the prerequisites to successfully deploy the XGuide
method are too high for students. They needed to know the basic XML technologies (XML,
XML schema, XSLT, etc.), to understand the XGuide development process, to learn the MyXML
implementation technology and to familiarize themselves with the XSuite IDE. This is beyond
what a single course can teach within reasonable time.

A similar approach of evaluating a software product on as large a sample as possible is pur-
sued by open source products. Such software is downloaded from people around the world with
possibly widely varying capabilities. The main evaluation criterion in such a setting is the amount
of downloads or, even better, installations of the software. Again this approach is not directly
applicable to the evaluation of a development method. Successfully using a new method requires
much more than downloading and installing a software package. The understanding and correct
use of the development process, design models and implementation technologies is of utmost
importance.

The remaining option to evaluate a development method is to implement a case study. It is
obvious that the experiences gathered from a single case study are not necessarily representative
for all possible kinds of Web applications but they provide a first indication of the usefulness of
a method. Having presented the VIF case study in the previous chapter, the remainder of this
section summarizes our experiences, outlines the prerequisites to successfully deploy XGuide
and discusses in what kind of projects XGuide can best realize its potential.

8.1 EXPERIENCES FROM THE VIF CASE STUDY

We already gave details on the deployment of XGuide for the VIF case study in the previous
chapter. Here we summarize our experiences with the central ideas in XGuide, i.e., the model
driven, visual design phase, the notion of contracts as specifications for Web pages and compo-
nents, the parallel implementation based on contracts, pluggable implementation technologies,
and the XSuite IDE.

The visual modeling of a requirements diagram in Visio and its refinement into a high-level
design diagram worked without problems for the case study. Though we introduced proxies as
a way to make the diagram more readable and support splitting of diagrams into multiple pages,

Chapter 8: Evaluating the XGuide Web Development Method 183

for large projects these diagrams might still be overly complex to analyze and read. Especially
the ’References’ section of pages that lists the identifiers of embedded components is a problem.
We intentionally did not add arrows or connectors to indicate such a relationship to not pollute
the diagram with lines. From the list of component names, however, it is not trivial to find the
referenced components in the diagram and for any given component it is hard to figure out all
the places where it is used.

The introduction of contracts as a specification for pages and components forces the designers
to exactly specify all the properties of the artifact. Though this is a desirable effect, it also leads
to multiple evolution iterations if the designers are not experienced or not enough time is spent in
the design phase. The only other problem with the definition of contracts is that the exact schema
specification of the structure and the data types of all elements of a page is time consuming and
requires detailed knowledge of the XML schema language. This limitation will vanish with the
integration of an XML schema editor.

The contract composition operators needed in the case study could easily be covered with
the operators provided for the structure and interface concerns. More sophisticated and complex
operators do not seem to be a major requirement for Web applications.

An unsatisfactory experience was testing the Web application. As explained in the previous
chapter we did not fully test the application; on the one hand due to lacking time, on the other
hand due to a generally missing understanding of what it means to test a Web application. Stan-
dardized and well-defined testing processes for Web applications (including hypertext-related
testing, software testing, acceptance testing, etc.) remain an open issue and call for future re-
search initiatives.

We further found the visual XSuite environment and the integrated Java IDE and Tomcat
servlet engine to be really helpful. This is especially important since the contract compliance
of the developed application logic is automatically checked with every compilation process. We
never experienced any compatibility problems at runtime (e.g., missing or superfluous parame-
ters, etc.) as well-known from previous Web projects with CGI-based technologies. We can only
emphasize the claim of [10] that tool support is critical for any new development process.

8.2 XGUIDE FOR DEVELOPMENT

XGuide’s main goal in the development phase is to reduce the overall implementation time
needed. Since we need to invest extra time for the definition and creation of contracts, we need to
make up for it somewhere else. We thus pose the question whether XGuide really saves time–and
if so–how much and in what scenarios. We do not include the time spent on requirements gath-
ering and other analysis tasks here. Nor do we include the effort that goes into maintaining the
deployed Web application; we discuss the maintenance separately in the next section. Finally, we
do not include the experience and knowledge of the developers into the following considerations
but assume that in both cases the developers are equipped with all the knowledge (process and
technology) they need.

184 8.2 XGuide for Development

For the following discussion we define the implementation delivery time as the time period
from starting the implementation phase to the initial deployment of the Web application. The
total implementation effort of a Web project, on the other hand, is calculated from all man-hours
needed to implement the Web application. Thus if the implementation phase consists of three
parallel tasks that each requires 2 man-days, the delivery time would by 2 days (since all tasks
are executed concurrently). The total effort, however, would be 6 man-days.

Considering traditional (i.e., sequential) Web development processes, the total delivery time
is calculated from the sum of the times required to provide the layout, the content, the application
logic and any other concerns. In XGuide, on the other hand, the delivery time is reduced–
because of the parallel implementation phase–to the longest time required to implement any of
the involved concerns. Since the design activities (e.g., the creation of contracts) is a prerequisite
for the parallel implementation of concerns and does not exist in traditional processes, we also
have to include it into the calculation.

The equation below shows the relationships of all the time factors involved where 'K� is the
time needed to implement concern B and 'HéX� ��²Tê vHé ² is the time needed to design and create the
contracts. �ë

�SìRl '=� í ')éX� �.²Tê v:é ²Rî |}gi~w�ï'3���K')����!�!�!H' �i% (8.1)

In other words, the benefit of XGuide in terms of delivery time depends on the amount of time
spent for design (i.e., contract creation) and the relative differences of the 'K� . If |}gi~w�X'3�.�K')����!�!�!H' �i%
is almost the same as ðñ'=� (i.e., the time to implement one concern is much greater than the times
needed for all other concerns), XGuide might not be a good choice since it requires the additional')éX� ��²Tê vHé ² . If, however, the ':� are all of similar size, a significant (delivery) time improvement can
be achieved–even with the additional cost of 'Hé/� ��²Tê v:é ² . This is clearly expressed in the transformed
formula that eliminates '�9 which is the longest time for implementing a concern.ë

�/òì&9 '=� í ')éX� �.²Tê vHé ² ó�ô ,�Ö4, '/9¶�8|}gi~w�X'3�.�K')����!�!�!H' �i% (8.2)

Note, however, that while XGuide’s parallel implementation phase shortens the delivery
time, it usually adds to the total effort since contract creation is not considered in traditional
approaches. In the long run, i.e., also including maintenance and evolution activities, the benefits
of using contracts should compensate for the initially increased total effort.

For the VIF 2003 case study we estimate that the creation of the content in the correct format
took about 2 weeks (assuming the content is available), the design of the graphical appearance
and formatting stylesheets approximately 3 weeks and the implementation of the application
logic about 6 weeks (2 weeks to implement the basic functionality such as searching; another 4
weeks for the implementation of the shopping cart functionality). For the contracts we assess one
to two weeks. Thus a sequential implementation phase would have taken 11 weeks (of delivery
time as well as total effort). Using contracts, we could have reduced the delivery time to 7-8
weeks while increasing the total effort by the 1-2 weeks spent for contract creation. It must be

Chapter 8: Evaluating the XGuide Web Development Method 185

noted, however, that we explicitly did not include education effort here which–especially for the
first couple of XGuide projects–can significantly contribute to the overall project duration.

Though it is great to claim a net reduction of delivery time from 11 to 7 weeks (about 36
percent), the above formula is not quite realistic. We experienced a relatively extreme case in the
VIF case study but in many projects the implementation activities are not executed strictly one
after the other. Often partial deliveries (e.g., graphical design templates for a couple of pages)
allow for some degree of parallelism. As a result, the above formula only represents the optimal
upper bound of saved time.

Further the VIF case study is not the optimal example since the content creation and layout
definition activities took significantly less time than the six weeks of application logic program-
ming. Had all tasks used the same amount of six weeks, the reduction of development time would
have been from 18 to 7 (or 61 percent). It remains open, however, whether the development times
of the concerns are similar or unbalanced in the ‘average’ Web development project. A study of
many Web projects could create at least a profile for such an average project that could be used
to calculate the average time benefit using XGuide.

After all these thoughts on saving time during the implementation phase, it has to be em-
phasized that the parallel implementation phase is just one advantage of the XGuide method.
Additional benefits stem from a better communication means, explicit documentation (through
contracts and design diagrams) and advantages in maintenance and evolution. The next section
details on maintenance and evolution scenarios and outlines XGuide’s advantages in this field.

8.3 XGUIDE FOR MAINTENANCE AND EVOLUTION

In order to evaluate XGuide with respect to maintenance and evolution, we introduce a set of
scenarios of varying size, effect on the application, and complexity that we believe are typical
for many Web applications. We then use different implementation approaches to highlight how
each of them would manage the given scenarios. We do not pick concrete implementation tech-
nologies for this discussion but describe the properties of a set of technologies to cover multiple
approaches that share similar characteristics. We distinguish three classes of technologies:

1. Technologies that do not explicitly separate concerns (Class 1). In this group, dynamic
functionality is often directly embedded into HTML pages and interpreted by a server-side
module. Scripting languages such as PHP, ASP or JSP (without additional design patterns
such as model-view-controller) belong in this group.

2. Technologies that separate the application logic from content/layout templates (Class
2). This is traditionally the field of template engines. Content/layout templates are created
in HTML and enriched with placeholders for dynamically generated content that is inserted
at runtime. HTML++ [11], Webmacro [51] and scripting approaches that apply the model-
view-controller pattern are examples for this category.

186 8.3 XGuide for Maintenance and Evolution

3. Technologies that strictly separate content, layout and application logic (Class 3). Re-
cent technologies such as Cocoon [107] or MyXML [85] try to enforce the principle of
separation of concerns. They provide the most structured approach and best support reuse
of artifacts. XGuide differs from other approaches in that it supports composition of pages
from components and uses contracts to model dependencies between concerns.

In the following we discuss content updates, layout changes and application logic bug fixes
before attacking more complex tasks such as restructuring pages, adding pages or modifying
the navigation structure. For each scenario we discuss how well approaches from the above
categories are suited to implement the required changes.

8.3.1 CONTENT UPDATES

The most primitive content update is to simply change a typo on a single page. Independent of
the approach you have to first identify the file that contains the content to be updated. This might
be easier for class 1 approaches than for classes 2 and 3 since the latter involve more files that
are further not directly mapped to the final structure of the Web application. The concrete update
activity, however, is easiest for class 3 where the developer only has to deal with the content. In
class 2, content and layout information must be dealt with. Class 1 combines all concerns into a
single file and thus undesired side effects of the change can be introduced easily.

A content change across all pages of a Web site (e.g., updating an contact email address that
appears in the footer of all pages), is more complicated. In principle, such an update requires an
update of all pages (class 1), templates (class 2) or content files (class 3). Good support for this
kind of change can only be achieved if component or fragments are supported that can be reused
across all pages (e.g., HTML++, MyXML). Then only a single component needs to be updated.
Page fragments are only supported in few technologies in classes 2 and 3.

8.3.2 LAYOUT UPDATES

For any layout-related tasks, we do not consider the use of cascading stylesheets (CSS) [150]
since they are applicable to all approaches and would not help in distinguishing them. In princi-
ple, however, we strongly encourage the use of CSS. A simple layout update could include the
change of the background color or the appearance of links on all pages. Such a modification
requires an update of all pages or layout templates–again with the problem of implicit modifi-
cations of the intermixed content (and potential functional definitions) in classes 1 and 2. Most
class 3 approaches use XSLT to specify the graphical appearance. XSLT’s concept of importing
other style definitions (i.e., componentization) makes such a change almost trivial.

The situation is different if the task is to highlight a single sentence on a (single) given page.
Here the replication of layout information in all pages (class 1) is an advantage since it is easy to
incorporate the desired change. With approaches in classes 2 and 3 it is much harder to deal with
such ’exceptions’. In this case, a new template or stylesheet has to be created which is clearly
unacceptable for many such exceptions.

Chapter 8: Evaluating the XGuide Web Development Method 187

More serious updates include the rearrangement of information on a page and a complete
change of a page’s visual appearance. For class 1 approaches, this is almost impossible to imple-
ment with respect to the tightly integrated application logic and content. Class 2 approaches need
to adjust all templates (and the contained content information) to the new style. In class 3, the
(reusable) XSLT stylesheets are the only place where such structure and formatting information
is stored. Thus only the affected XSLT stylesheets need to be updated.

8.3.3 APPLICATION LOGIC UPDATES

Updates to the application logic (e.g., bug fixes) are mainly a problem in class 1 approaches
where the functionality is mixed with content and layout definitions. In these cases, uninten-
tional modifications to the content and/or layout are easy to introduce. Since class 2 and 3
approaches strictly separate the application logic from the other concerns, functional updates are
straightforward (as long as they do not affect the interfaces to the other concerns, e.g., introduce
a new parameter that needs to be passed to the content template).

8.3.4 PAGE-RELATED UPDATES

Sometimes, larger evolution scenarios such as adding of a new page need to be implemented.
Class 1 approaches require the developer to start from scratch, i.e., implement the content, the
layout and the application logic of the page anew. In class 2, layout/content templates can easily
be reused to create a new page as long as a suitable template already existed. Otherwise, a new
template must be created. Class 3 approaches offer the most flexible alternative. Their strict
separation of concerns supports reuse of arbitrary existing concern implementations (e.g., the
layout or the content) and minimizes the amount of new implementation work.

Another complex evolution scenario is to introduce a new header, footer or sidebar on all
pages of a Web application. With class 1 approaches this is almost impossible. It requires to
edit all pages and clone the component to be added for every page. Support for this kind of
change in classes 2 and 3 depends on the ability to define components and reuse implementation
artifacts across pages. If, for example, a template approach supports page fragments, it is easy to
implement a header fragment. Then the fragment has to be embedded into all existing templates.
Without such fragment support, also class 2 and 3 do not provide significant advantages over
class 1 since again the desired fragment has to be embedded into all templates or implementation
files.

8.3.5 NAVIGATION UPDATES

When talking about navigation updates, we distinguish two types of links: content links and
structure links. Content links are embedded into the content and denote content-related resources.
Structure links, on the other hand, define the navigation structure of the application and are not
bound to the content.

188 8.3 XGuide for Maintenance and Evolution

Inserting a new content link into a page is similar to the update of the content itself. New
information is hence added to the content (see above). In class 1 and 2 approaches, not only the
content for the link but also its appearance need to be defined. Class 3 normally just requires
extending the existing content with the new link definition. The visual appearance does not need
to be specified explicitly but is reused.

Adding a link to the navigation structure of a Web application, requires to update the naviga-
tion bar on all pages of the application. In class 1, this once more requires an update of all pages.
For class 2 and 3 it again depends on whether components or page fragments are supported. If
fragment support is provided, the navigation structure can be modeled as a single component that
is embedded into all pages. In this case, adding or modifying the navigation structure is easy.

8.3.6 NEW OUTPUT FORMATS

A final remark on maintenance refers to the ability to present content in an output format other
than HTML. In a previous VIF case study, we showed how to implement access to the Web
application using a cell phone and the Wireless Markup Language (WML) [148]. In a different
project, we also demonstrated how to generate PDF documents that completely reflect the content
of a Web site. Class 3 approaches that cleanly separate all concerns are the only candidates that
can provide such a service. As soon as any layout information is encoded together with the
content, support for multiple output formats is almost impossible.

Abstracting from the above scenarios, we can state that the more an approach separates con-
cerns and supports components, page fragments, and implementation reuse, the better it is suited
to deal with varying kinds of maintenance requirements. The two exceptions to this rule are
the increased complexity having to maintain many more files and the non-existing support for
‘exceptions’, i.e., page or layout properties that apply to only a single page.

Similar to other class 3 approaches, XGuide exploits its strict separation of concerns to struc-
ture maintenance activities. However, it has the additional advantage of using contracts that
document any changes and updates to the system, support a concurrent maintenance phase, and
indicate whether other concerns are involved in a given task (evolution) or not (maintenance).
Further it supports a flexible notion of Web components that support reuse not only of imple-
mentation artifacts but of whole page fragments. As a result, scenarios such as modifying the
navigation structure or adding new footer component can easily be realized.

The drawback of using XGuide in the maintenance phase clearly is the overhead of maintain-
ing and validating the contracts. This overhead, however, is not wasted but directly contributes
to maintaining a well-documented and well-structured Web application.

To summarize the above sections on evaluating the XGuide process, we present a condensed
view of our experiences. First, the basic idea of using contracts as design artifacts of Web appli-
cations that enable a parallel implementation phase worked to our (almost) complete satisfaction.

Chapter 8: Evaluating the XGuide Web Development Method 189

The prerequisites to using this approach, however, are considerable (at least at the time of this
writing): developers have to be fluent in several XML languages, graphics designers are expected
to model the layout in XSLT/CSS, content managers are required to create XML content, etc. To
date, this is not the situation in the majority of Web projects; we hope this will change in the near
future.

The requirements and design diagrams used in XGuide provide a good communication means
with all the roles involved in the Web project. This is a considerable advantage over previous ap-
proaches, especially since the diagrams are directly refined into the final contracts. We showed
that the implementation of contracts can be done in parallel utilizing the MyXML technology
and that the strict separation of concerns facilitates a maximum of reuse potential. The support
for Web components and contract composition plays a central role in reusing not only imple-
mentation concerns but whole page fragments. This is also important during maintenance and
evolution.

The overall time savings from the parallel implementation phase is reduced by the additional
cost of creating contracts. Though we believe based on the case study that XGuide saves a
remarkable amount of time, many more experiments and Web projects are necessary to confirm
this preliminary claim. The XSuite IDE as supporting software tool is important to the success of
the XGuide method. It was a great help in the implementation of the case study, most remarkably
the combination of a Java and Web development environment and the well integrated deployment
environment represented by the Tomcat servlet engine.

190 8.3 XGuide for Maintenance and Evolution

CHAPTER 9

CONCLUSION AND FUTURE WORK

As an adolescent I aspired to lasting fame,
I craved factual certainty,

and I thirsted for a meaningful vision of human life -
so I became a scientist.

This is like becoming an archbishop so you can meet girls.

M. Cartmill

In this dissertation we presented XGuide, a novel development methodology for Web projects
based on XML technology. With the progression of Web sites (i.e., pure information dissemi-
nation) into Web applications (i.e., business-critical, highly complex software applications), new
requirements on technologies and development methods were introduced. Web technologies
such as XML, XSL and XML Schema are the answer to new demands such as customizable con-
tent languages, reusable formatting instructions and strongly-typed documents. Though several
related approaches exist (see Chapter 3), they do not fully utilize the potential offered by these
technologies.

XGuide fully leverages XML technologies and provides full life-cycle support for Web
projects–from the analysis to the maintenance stage. It proposes a novel notation for the de-
sign of Web applications that acts as a communication means with customers and gradually gets
refined into a high-level specification of the Web application. Starting from this specification,
we address another key issue in many Web projects: time-to-market. In Web projects, a short
development time is often crucial to their success. XGuide accommodates this requirement by
supporting a fully parallel implementation phase based on the concept of contracts. A contract
strictly separates the various concerns involved in the implementation of a Web page (e.g., con-
tent, layout and application logic) and describes all dependencies among them. The contract
of a page is all a developer (e.g., content manager, graphics designer, programmer, etc.) needs

191

192 9.1 Analysis of this Dissertation

to implement her aspect of the page. At the end, all implementations are tested for contract
compliance and combined to form the final Web page.

The reuse potential found in a Web application is impressive: formatting rules are applied
to all pages, page fragments such as headers or footers are reused across many pages, the same
content is presented differently depending on the current context of the user, and so on. We
introduce the notion of a Web component to represent a page fragment that can be reused in
multiple pages. Just as Web pages, Web components are specified in contracts. Components are
then embedded into other components or pages by composing their contracts (i.e., specifications)
to form the specification of the composite page. Apart from the specification reuse in the shape
of contracts, a separate page description file supports implementation reuse for all concerns.
Thus the content, application logic or graphical appearance can be reused separately for arbitrary
components and pages.

We implemented the XSuite integrated development environment to support Web develop-
ment following the XGuide process. XSuite uses a model-driven approach and is based on the
generic Eclipse [142] framework that offers a flexible extension mechanism to customize the en-
vironment. The XSuite IDE supports design and implementation of Web applications, provides
wizards to guide the developers through contract creation, composition and implementation ac-
tivities, supplies code generators, and stages a full Java development environment. XSuite further
has direct support for versioning systems in order to support distributed teams and keep track of
progress. The integrated Web server and servlet container using the Tomcat engine are transpar-
ently included into XSuite and facilitate immediate testing of the application.

To demonstrate its practicality, we used the XGuide method in the Vienna International Fes-
tival (VIF) case study to implement the programme, programme search, archive, and shopping
cart functionality. The results of this first case study are promising in terms of clear specifications
derived from visual models and based on contracts, parallel and independent implementation of
all concerns, and contract-based round-trip engineering in the maintenance phase.

9.1 ANALYSIS OF THIS DISSERTATION

The first observation addresses the fundamental concept of separation of concerns. Although
a broad agreement exists on the importance of this concept in the Web engineering domain,
only few approaches provide continuous support for it. On the conceptual level, the actual con-
tents, the formatting and the navigation information are frequently captured in separate concerns.
XGuide takes this concept one step further in multiple respects. First, it does not operate on a
fixed number of conceptual concerns but introduces an open concern model that supports dy-
namic adding of new concerns (e.g., application logic, meta-data, access control, etc.). Second,
the dependencies of the concerns are made explicit through the contracts and the corresponding
composition operators. Third, the separation of concerns is not only supported on the conceptual
level but continues on the implementation level supporting concurrent development.

Several recent developments in Web engineering (e.g., template engines, separation of for-
matting information via XSLT and CSS) focus on realizing the reuse potential commonly found

Chapter 9: Conclusion and Future Work 193

in Web applications (e.g., content reuse, style reuse, alternative visual representations, etc.). Be-
cause of the strict separation of all concerns in XGuide, this form of reuse is fully supported.
The concept of Web components further supports an orthogonal form of reuse by realizing that
pages can be broken down into smaller parts, so-called page fragments. These fragments (e.g.,
headers, navigation structures, footers, etc.) are autonomous entities on their own and can be
reused across an arbitrary number of pages. Although page fragments are implicitly used in
other approaches, the novel concept of contracts in XGuide explicitly states their requirements,
dependencies and external interfaces. Contract composition then explicitly defines how compo-
nents can be assembled to larger components and full Web pages.

The concept of contracts is crucial to the XGuide approach. Though contracts proved to be
effective in making design information more explicit and enabling parallel development, they
also introduce additional complexity to the development process. Apart from learning the syn-
tax of contracts, it often requires a major rethinking to adopt contract-based development as it
requires an extended design phase, strict tests for contract-compliance, and the comprehension
of contract composition rules and operators, contract versioning and update propagation. Even
in software engineering, more sophisticated contracts than pure interfaces are usually avoided
because of their complexity. In XGuide, the one-dimensional contracts known from software
engineering are extended to multi-dimensional contracts that cover several concerns and their
dependencies.

One major contribution of the XGuide process and the XSuite IDE is their openness with
respect to new concerns such as meta-data or access control. We are not aware of any other
approach that is able to comprise arbitrary concerns and specify their interworking with other
concerns. The XGuide contract and contract composition calculus forms the basis for a semanti-
cally rich concern handling.

Another focus of this dissertation is the full life-cycle support of Web application develop-
ment. Though its importance was initially pointed out by [65], few approaches respect this
finding. The XGuide process starts with a requirements diagram that gets refined towards an
implementation and—after the initial deployment of the Web application—introduces the dedi-
cated maintenance and evolution phases to cover modifications and extensions of the application.
XGuide’s model-driven nature thereby assures that the model remains consistent with the con-
tracts and the implementation.

Building on the survey presented in [10], we provide a prototype of a visual development
environment (XSuite) supporting all phases of the XGuide process. Despite its prototype status,
the IDE proved its usefulness in the implementation of the VIF case study where non-trivial con-
tracts had to be designed, composed and implemented. Even with this preliminary experience,
we concur with [10] that any reasonably complex development method will not succeed without
proper tool support.

Finally, we emphasize the importance of an emerging role in the Web development process:
the Web architect. Following the XGuide process, the development effort is distributed across
different organizational units and roles. While this decentralization and strict separation enables
concurrent development, the global view of what is going on and how it relates to other tasks
in the project can easily get lost. One responsibility of the Web architect is to bear in mind the

194 9.2 Ongoing and Future Research

‘big picture’ of all activities and to communicate it to the other roles. The architect’s view of the
project is initially created by guiding the development process from the business requirements
to a set of well-engineered specifications (i.e., contracts in the XGuide sitemap) for components
and pages. With the notion of contracts to capture the architectural and design decisions, XGuide
explicitly supports this phase of the development process. With the specifications, the program-
mers, content managers and graphics designers can start their work. In the implementation phase,
the Web architect has a mentoring role for the implementation teams to clarify the specifications
and ensure that all developers maintain a consistent view on the project.

Deciding on the architecture and the design of a Web application is an important and diffi-
cult task and the resulting decisions may have far-reaching consequences. A good example is
the decomposition of pages into components. While components enable a flexible architecture
and can be reused, they also increase the complexity of the overall page. Failure of using com-
ponents, on the other hand, results in implementing the same functionality multiple times and
entails consistency problems. The advantages and disadvantages of such design decisions need
to be carefully balanced to avoid undesired implications. Furthermore, a Web architect not only
needs profound knowledge of conceptual modeling and system decomposition but also has to
know how to choose the proper implementation technologies. This is crucial to optimally map
the design to a concrete implementation, satisfy performance, scalability, or interoperability re-
quirements and support evolution of the application. Thus a Web architect must understand the
benefits and limitations of existing technologies on the conceptual level and in combination with
other technologies.

9.2 ONGOING AND FUTURE RESEARCH

When a thing is done, it’s done.
Don’t look back.

Look forward to your next objective.

George C. Marshall

The work presented in this dissertation is the foundation for several ongoing and future exten-
sions of the XGuide process and the XSuite IDE. One area of investigation deals with dependent
concerns. Dependent concerns cannot exist on their own but directly depend on another concern.
An example of a dependent concern is access control to the Web application’s content that makes
heavy use of XPath to denote what parts of a document should be presented to the user and what
parts should remain hidden. This concern obviously is dependent on the structure concern since
the XPath expressions assume the document structure defined in the structure concern.

As a consequence, the access control concern requires special attention in the context of
contract composition. Basically we have to trace all modifications to the structure concern (re-
sulting from composition operations) and adapt the access control information and composition

Chapter 9: Conclusion and Future Work 195

operators accordingly. So far it is unclear to what degree such an adaptation, if at all, can be
performed automatically. Next, the effects on the implementation of the layout need to be re-
searched. The formatting stylesheets were developed assuming a certain structure and might not
work unchanged with the modified document. Imagine a user that has no access right at all; thus
all content will be removed from a page. The stylesheet needs to be prepared for this situation.
As a result we plan to contractually state what parts of the document might be removed because
of access control limitations.

All concerns discussed in this thesis define aspects of Web components or pages. It requires
a different kind of concerns, however, to characterize relationships among whole pages rather
than within pages and components. We call concerns that capture dependencies among pages
site-level concerns as opposed to the page-level concerns introduced before. A typical example
for a site-level concern is the navigation concern. It contains links among pages and specifies the
possible navigation paths through the Web application.

In the case of the navigation concern, the contract could include the links that must appear
on all pages that reference the contract (e.g., navigation bars or hierarchical navigation menus).
Our preliminary thinking is that the set of links to be included on a given page should not only
be pre-determined by explicit specifications in the contract but could also be created at runtime
via link queries. Link queries support the generation of link collections based on a query that
operates on meta information defined in the meta data concern. A link query could, for instance,
provide links to all pages that have the category ’sport’ attached in the meta information. For
structural links (e.g., the ’next’ and ’previous’ links in a slideshow), the contract also should
provide a mechanism to specify what structural links a page must contain to satisfy the contract.

While the development of the access control and navigation concerns is ongoing work, the
ideas on integrating device independence and meta data are longer-term. We plan to support
publishing the same Web application on multiple output platforms based on the concepts of page
splitting and process partitioning [90]. The goal is to support new target environments (e.g.,
WML on a WAP-enabled mobile phone) by only providing a set of customized stylesheets for
the respective platform. The other concerns should be modified as little as possible.

Meta data aspects of Web applications are the focus of several initiatives in the Web commu-
nity, most notably the W3C’s semantic Web initiative [145]. Since meta data was designed from
the beginning to work on top of existing Web content (i.e., with little or no interference), it is an
ideal candidate for a new contract concern. Unlike device independence, the integration of the
meta data concern is less a conceptual or implementation rather than a practical issue of how to
provide and use such meta information.

Apart from adding new concerns to the model, several suggestions for extending the interface
between the application logic and the content/layout information exist. Currently, we support
displaying the information as the only operation. In some situations, other operations such as
creating, updating or deleting information might also be useful. This would, of course, require
a specialization of the component concept and requires us to support different operations on
different kinds of components. One example could be to define a data component similar to or
wrapping an Enterprise Java Bean (EJB) entity bean [116]. For such components, new operations
such as add or delete could make sense.

196 9.2 Ongoing and Future Research

But the XGuide process is not the only source for future improvement. Using the XSuite IDE
for the implementation of the VIF case study revealed several interesting features that could be
integrated. These features include enhanced usability, improved versioning, and better support
for round-trip engineering (i.e., updates to the model should propagate to the implementation).
As presented in Chapter 6, we designed the XSuite IDE to provide a plug-in interface for arbi-
trary implementation technologies. So far only the MyXML technology implements this inter-
face and is thus usable in the tool suite. It is an interesting project to create a wrapper for the
Apache Cocoon technology [107] that also implements the technology interface as an alternative
to MyXML. The major problem for this undertaking seems to be the missing support for compo-
nents and page fragments in the Cocoon platform. In the worst case, the deployment process for
the Cocoon platform would have to directly integrate the components into all referencing pages.

Finally, more case studies following the XGuide process and using the XSuite IDE are nec-
essary to strengthen the evaluation results and the experiences from the VIF case study. Well-
defined student projects seem to be the most likely environment to get more experience with
the XGuide process. Groups of students could implement the same Web project and report on
their experiences. Such a setting would also enable the comparison of teams using the XGuide
process and teams implementing in any other technology. This might also let us reason about the
education overhead involved with initially deploying the XGuide process.

BIBLIOGRAPHY

[1] International Standards Organization. Standard Generalized Markup Language, 1985.

[2] About The World Wide Web. The World Wide Web Consortium. http://www.w3.
org/WWW, 1992.

[3] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham, Paul Grosso,
Eduardo Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman, and Steve Zilles. Ex-
tensible Stylesheet Language (XSL) 1.0. Technical report, World Wide Web Consortium,
Oct 2001.

[4] G. Arango. Domain analysis: From Art Form to Engineering Discipline. In Proceedings
of the 5th Internation Workshop on Software Specification and Design, pages 152–159.
ACM Press, 1989.

[5] Luciano Baresi, Franca Garzotto, and Paolo Paolini. From Web Sites to Web Applications:
New Issues for Conceptual Modeling. In Stephen W. Liddle, Heinrich C. Mayr, and
Bernhard Thalheim, editors, ER 2000 Workshops on Conceptual Modeling Approaches for
E-Business and the Web, volume 1921 of Lecture Notes in Computer Science. Springer-
Verlag, October 2000.

[6] Michael Barnett, Egon Boerger, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.
Using Abstract State Machines at Microsoft: A Case Study. In Proceedings of the Ap-
plications of Software Measurement Conference, San Jose, CA, USA, Mar 2000. http:
//research.microsoft.com/˜gurevich/Opera/145.ps.

[7] Michael Barnett and Wolfram Schulte. Spying on Components: A Runtime Verification
Technique. In Proceedings of Workshop on Specification and Verification of Component-
Based Systems at OOPSLA 2001, 2001.

[8] Michael Barnett and Wolfram Schulte. The ABCs of Specification: AsmL, Behavior and
Components. Informatica, 25(4), Nov 2001. http://research.microsoft.com/
foundations/comps.pdf.

[9] Michael Barnett and Wolfram Schulte. Contracts, Components, and their Runtime Ver-
ification on the .NET Platform. Technical report, Microsoft Research, Foundations of

197

198 Bibliography

Software Engineering Group, Apr 2002. http://research.microsoft.com/
research/pubs/view.aspx?tr_id=555.

[10] Chris Barry and Michael Lang. A Survey of Multimedia and Web Development Tech-
niques and Methodology Usage. IEEE Multimedia, 8(2):52–60, April-June 2001.

[11] Robert Barta. What the heck is HTML++?,TUV-1841-95-06, Distributed Systems Group,
Technical University of Vienna. Technical report, 1995.

[12] C. Bauer and A. Scharl. Tool-supported Web Development: Rethinking Traditional Mod-
eling Principles. In Proceedings of the 8th European Conference on Information Systems,
Vienna, Austria, volume 1, pages 282–289. Vienna University of Econ. and Bus. Adm.,
2000.

[13] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Declarative Information Extrac-
tion, Web Crawling and Recursive Wrapping with Lixto. In T. Eiter, W. Faber, and M. Tr-
usczynski, editors, Proceedings of the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, Vienna, Austria, volume 2173 of Lecture Notes in
Computer Science, pages 21–42. Springer Verlag, Sep 2001.

[14] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual Web Information Extrac-
tion with Lixto. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi,
Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors, Proceedings of the 27th In-
ternational Conference on Very Large Databases (VLDB), September 11-14, 2001, Roma,
Italy. Morgan Kaufmann, Sep 2001.

[15] Boris Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold,
1984.

[16] F. Bell and B. J. Oates. A framework for method integration. Information Systems Method-
ologies. British Computer Society, 1994.

[17] T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, and A. Secret. The World-Wide
Web. Communications of the ACM, 37(8), August 1994.

[18] Tim Berners-Lee. The World Wide Web - Past, Present and Future. Journal of Digital
Information, 1(1), Jul 1996. http://jodi.ecs.soton.ac.uk/Articles/v01/i01/BernersLee/.

[19] Tim Berners-Lee. Tim Berners-Lee Homepage. http://www.w3.org/People/
Berners-Lee/, 2002.

[20] Tim Berners-Lee, R. Fielding, and H. Frystyk. Request for Comments 1945: Hypertext
Transfer Protocol – HTTP/1.0. Technical report, MIT/LCS and UC Irvine, May 1996.

[21] Tim Berners-Lee, L. Masinter, and M. McCahill. Request for Comments 1738: Uniform
Resource Locator (URL). Technical report, CERN and Xerox Corporation and University
of Minnesota, Dec 1994.

Bibliography 199

[22] Antoine Beugnard, Jean-Marc Jzquel, Noel Plouzeau, and Damien Watkins. Making com-
ponent contract aware. IEEE Computer, 32(7):38–45, Jul 1999.

[23] Martin Bichler and Stefan Nusser. Modular Design of Complex Web-Applications with
W3DT. In Proceedings of the 5th Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE ’96), pages 328–333. IEEE Comput. Soc. Press.,
Los Alamitos, CA, USA, 1996.

[24] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Technical report,
World Wide Web Consortium, May 2001.

[25] B. Boehm. Software engineering economics. IEEE Software Engineering, 10(1):4–21,
Jan. 1984.

[26] B. W. Boehm. Software risk management. Sep 1989.

[27] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Object Technology Series. Addison Wesley, 1999.

[28] Götz Botterweck. Einsatz von XML und WAP zur Realisierung strukturierter, ubiquärer
Informationsdienste. Master’s thesis, University of Koblenz, Germany, 2000.

[29] I. K. Bray. An Introduction to Requirements Engineering. Addison-Wesley, Pearson Edu-
cation Limited edition, 2002.

[30] Tim Bray, Charles Frankston, and Ashok Malhotra. Document Content Description for
XML: W3C Note 31 July 1998. http://www.w3.org/TR/NOTE-dcd/, Jul 1998.

[31] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). Technical report, World Wide Web Consortium,
Oct 2000.

[32] R. Cailliau. A Little History of the World Wide Web. http://www.w3.org/
History.html, 1995.

[33] Joao M. B. Cavalcanti and David Robertson. Synthesis of Web Sites from High Level
Descriptions. In 9th WWW., 3rd Web Engineering Workshop, Amsterdam, Netherlands,
May 2000.

[34] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language (WebML): a
modeling language for designing Web sites. In Proceedings of the 9th World Wide Web
Conference, Amsterdam, Netherlands, volume 33 of Computer Networks, pages 137–157.
Elsevier Science B.V, May 2000.

[35] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-Driven, One-To-One Web
Site Generation for Data-Intensive Applications. In Malcolm P. Atkinson, Maria E. Or-
lowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, VLDB’99,

200 Bibliography

Proceedings of 25th International Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 615–626. Morgan Kaufmann, 1999.

[36] F. Coda, C. Ghezzi, G. Vigna, and F. Garzotto. Towards a Software Engineering Approach
to Web Site Development. In Proc. 9th IEEE Int. Workshop on Software Specification and
Design (IWSSD), pages 8–17, Japan, 1998.

[37] Jim Conallen. Modeling Web Application Architectures with UML. Communications of
the ACM, October 1999.

[38] Cutter Consortium. Poor Project Management Number-One Problem of Outsourced E-
Projects. Technical report, Cutter Consoritum, Research Briefs, Nov 2000. http://
www.cutter.com/research/2000/crb001107.html.

[39] The World Wide Web Consortium. W3C Homepage, 2002. http://www.w3.org/.

[40] G. E. Cormack, G. Griffiths, B. D. Hebbron, M. A. Lockyer, and B. J. Oates. Web Engi-
neering: Methods and Tools for Education. In Proceedings of the International Confer-
ence Advances in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine
on the Internet, Jul 2002.

[41] Donald D. Cowan and Carlos J. P. Lucena. Abstract Data Views: An Interface Specifica-
tion Concept to Enhance Design for Reuse. IEEE Transactions on Software Engineering,
21(3):229–243, Mar 1995.

[42] Andrew Davidson, Matthew Fuchs, Mette Hedin, Mudita Jain, Jari Koistinen, Chris
Lloyed, Murray Maloney, and Kelly Schwarzhof. Schema for Object-Oriented XML 2.0:
W3C Note 30 July 1999. http://www.w3.org/NOTE-SOX/, Jul 1999.

[43] Steve DeRose, Ron Daniel Jr., Paul Grosso, Eve Maler, Jonathan Marsh, and Norman
Walsh. XML Pointer Language (XPointer) - W3C Working Draft. Technical report, World
Wide Web Consortium, Aug 2002.

[44] Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink) 1.0.
Technical report, World Wide Web Consortium, Jun 2001.

[45] Devanshu Dhyani, Wee Keong Ng, and Sourav S. Bhowmick. A Survey of Web Metrics.
ACM Computing Surveys, 34(4):469–503, December 2002.

[46] Alicia Diaz, Tomas Isakowitz, Vanesa Maiorana, and Gabriel Gilabert. RMC: A Tool To
Design WWW Applications. December 1995.

[47] Michael R. Donat. Automating formal specification based-testing. In Michel and Max
Dauchet, editors, TAPSOFT’97: Theory and Practice of Software Development, 7th In-
ternational Conference CAAP/FASE, volume 1214 of Lecture Notes in Computer Science.
SpringerVerlag, April 1997.

Bibliography 201

[48] Ezra Ebner, Weiguang Shao, and Wei-Tek Tsai. The Five-Module Framework for Internet
Application Development. ACM Computing Surveys, 32(1):40, 2000.

[49] ECMA. Standard ECMA-335: Common Language Infrastructure (CLI). Technical report,
ECMA - Standardizing Information and Communication Systems, Dec 2001. http:
//www.ecma.ch/ecma1/STAND/ecma-335.htm.

[50] Stephen H. Edwards. A framework for practical, automated black-box testing of
component-based software. Software Testing, Verification and Reliability, 11(2):97–111,
Jun 2001.

[51] Justin Wells et al. Webmacro Home Page, http://www.webmacro.org/, 2002.

[52] San Murugesan et al. Web Engineering, chapter Web Engineering: A New Discipline
for Development of Web-Based Systems, pages 3–13. Number 2016 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2001.

[53] David C. Fallside. XML Schema Part 0: Primer. Technical report, World Wide Web
Consortium, May 2001.

[54] Mary Fernandez, Daniela Florescu, Jaewoo Kang, and Alon Levy. Catching the Boat with
Strudel: Experiences with a Web-Site Management System. In Proceedings of Sigmod
’98, Seattle, Washington, USA, pages 414–425, June 1998.

[55] A. Frazer. Reverse Engineering – hype, hope or here?, volume 12 of UNICOM Applied
Information Technology, pages 209–43. Chapman & Hall, 1992.

[56] M. Gaedke and G. Graef. Development and Evolution of Web-Applications using the
WebComposition Process Model. In Proceedings of the International Workshop on Web
Engineering at the 9th International World-Wide Web Conference (WWW9), Amsterdam,
The Netherlands, May 2000.

[57] M. Gaedke, C. Segor, and H.-W. Gellersen. WCML: Paving the Way for Reuse in Object-
Oriented Web Engineering. In ACM Symposium on Applied Computing (SAC), Villa Olmo,
Como, Italy, March 2000.

[58] Martin Gaedke, Hans-W. Gellersen, Albrecht Schmidt, Ulf Stegemueller, and Wolfgang
Kurr. Object-oriented Web Engineering for Large-scale Web Service Management. In
Proceedings of the 32nd Annual Hawaii International Conference on System Sciences.
IEEE Computer Society, Los Alamitos, CA, USA, January 1999.

[59] Martin Gaedke and Jorn Rehse. Supporting Compositional Reuse in Component-Based
Web Engineering. In Proceedings of Symposium of Applied Computings (2), pages 927–
933, 2000.

202 Bibliography

[60] Martin Gaedke, D. Schempf, and Hans-Werner Gellersen. WCML: An enabling Tech-
nology for the Reuse in object-oriented Web Engineering. In Poster-Proceedings of the
8th International World Wide Web Conference (WWW8), Toronto, Ontario, Canada, May
1999.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley professional computing series. Addison-
Wesley, 1995.

[62] F. Garzotto, P. Paolini, and D. Schwabe. HDM - A Model-based Approach to Hypermedia
Application Design. ACM Transactions on Information Systems, 11(1):1–26, Jan 1993.

[63] Franca Garzotto, Paolo Paolini, and Luca Mainetti. Navigation Patterns in Hypermedia
Databases. In Proceedings of the 26th Hawaii International Conference on System Sci-
ences, volume III, pages 370–379. IEEE Computer Society Press, January 1993.

[64] H.-W. Gellersen and M. Gaedke. Object-oriented Web application development. IEEE
Internet Computing, 1(3):60–68, Jan-Feb 1999.

[65] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web Composition: An Object
Oriented Support System for the Web Engineering Life Cycle. Computer Networks and
ISDN Systems, pages 1429–38, April 1997.

[66] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Request for
Comments 2616: Hypertext Transfer Protocol – HTTP/1.1. Technical report, UC Irvine
and Compaq/W3C and W3C/MIT and Xerox and Microsoft, Jun 1999.

[67] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering, 2nd
edition. Prentice-Hall, Englewood Cliffs, NJ, 2002.

[68] Athula Ginige and San Murugesan. Web Engineering: An Introduction. IEEE Multimedia,
Special Issue on Web Engineering, 8(1):14–18, March 2001.

[69] Torsten Gipp and Jürgen Ebert. Conceptual Modelling and Web Site Generation using
Graph Technology. Fachberichte Informatik 4–2001, Universität Koblenz-Landau, Uni-
versität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2001.

[70] Jaime Gomez, Christina Cachero, and Oscar Pastor. Conceptual Modeling of Device-
Independent Web Applications. IEEE Multimedia, 8(2):26–39, April-June 2001.

[71] Jaime Gomez, Cristina Cachero, and Oscar Pastor. Extending a Conceptual Modelling
Approach to Web Application Design. In Proceedings of the 12th International Confer-
ence on Advanced Information Systems Engineering, Lecture Notes in Computer Science,
pages 79–93. Sprnger-Verlag, Berlin, June 2000.

Bibliography 203

[72] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Confor-
mance testing with abstract state machines. Technical report msr-tr-2001-97, Microsoft
Research, Oct 2001. Available from http://research.microsoft.com/pubs.

[73] Gregory R. Gromov. History of Internet and WWW: The Roads and Crossroads of Internet
History. http://www.internetvalley.com/intval1.html, 2002.

[74] Natacha Guell, Daniel Schwabe, and Patricia Vilain. Modeling Interactions and Naviga-
tion in Web Applications. In Stephen W. Liddle, Heinrich C. Mayr, and Bernhard Thal-
heim, editors, Proceedings of ER Workshops 2000 on Conceptual Modeling Approaches
for E-Business and The World Wide Web, Salt Lake City, Utah, USA, volume 1921 of
Lecture Notes in Computer Science, pages 115–127. Springer, Oct 2000.

[75] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model. Communi-
cations of the ACM, 37(2):30–39, February 1994.

[76] International Function Point User Group, Westerville, Ohio, USA. Function point count-
ing practices manual, Release 4.0, 1994.

[77] T. Isakowitz, A. Kamis, and M. Koufaris. Extending the Capabilities of RMM: Russian
Dolls and Hypertext. In Proceedings of the Thirtieth Annual Hawaii International Con-
ference on System Sciences, 1996.

[78] T. Isakowitz, A. Kamis, and M. Koufaris. The Extended RMM Methodology for Web
Publishing. In Working Paper IS98 -18, Center for Research on Information Systems,
1998.

[79] Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM: A Methodology for
Structured Hypermedia Design. Communications of the ACM, 38(8):34–43, August 1995.

[80] A. Franzke J. Ebert. A Declarative Approach to Graph Based Modeling. In G. Tinhofer
E. Mayr, G. Schmidt, editor, Graphtheoretic Concepts in Computer Science, number 903
in Lecture Notes in Computer Science, pages 38–50, Berlin, 1995. Springer.

[81] Michael Jackson. Software Requirements and Specifications. Addison Wesley Longman,
1995.

[82] D. Ross Jeffery, Graham C. Low, and M. Barnes. A Comparison of Function Point Count-
ing Techniques. IEEE Transactions on Software Engineering, 19(5):529–532, May 1993.

[83] Jean-Marc Jezequel and Bertrand Meyer. Design by Contract: The Lessons of Ariane.
IEEE Computer, 30(1):129–130, Jan 1997.

[84] Clemens Kerer and Engin Kirda. MyXML Home Page, http://www.infosys.
tuwien.ac.at/myxml/ , 1999-2001.

204 Bibliography

[85] Clemens Kerer and Engin Kirda. Layout, Content and Logic Separation in Web Engineer-
ing. In 9th International World Wide Web Conference, 3rd Web Engineering Workshop,
Amsterdam, Netherlands, May 2000, number 2016 in Lecture Notes in Computer Science,
pages 135–147. Springer Verlag, 2001.

[86] Clemens Kerer, Engin Kirda, Mehdi Jazayeri, and Roman Kurmanowytsch. Building
XML/XSL-Powered Web Sites: An Experience Report. In Proceedings of the 25th In-
ternational Computer Software and Applications Conference (COMPSAC), Chicago, IL,
USA. IEEE Computer Society Press, Oct 2001.

[87] Clemens Kerer, Engin Kirda, and Roman Kurmanowytsch. A Generic Content-
Management Tool for Web Databases. IEEE Internet Computing, 6(4):38–42, July/August
2002.

[88] W. Kim. Advanced Database Systems. ACM Press, 1994.

[89] Engin Kirda. Web Engineering Device Independent Web Sevices. In 23rd International
Conference on Software Engineering, Doctoral Symposium, Toronto, Canada, pages 795–
796, Mar 2001.

[90] Engin Kirda. Engineering Device-Independent Web Services: An XML/XSL-based ap-
proach to creating flexible and extensible multi-device services . PhD thesis, Techni-
cal University of Vienna, August 2002. http://www.infosys.tuwien.ac.at/
˜ek/phd.pdf.

[91] Engin Kirda, Mehdi Jazayeri, Clemens Kerer, and Markus Schranz. Experiences in Engi-
neering Flexible Web Services. IEEE Multimedia, 8(1):58–65, January-March 2001.

[92] Engin Kirda and Clemens Kerer. Engineering Distributed Web Services with MyXML.
Technical Report TUV-1841-2001-12, Distributed Systems Group, Technical University
of Vienna, 2002.

[93] Engin Kirda and Clemens Kerer. MyXML: An XML based template engine for the gen-
eration of flexible Web content. In Proceedings of WEBNET 2000, San Antonio, Texas,
USA, November 2000.

[94] Engin Kirda, Clemens Kerer, Mehdi Jazayeri, and Christopher Krügel. Supporting Multi-
device Enabled Web Services: Challenges and Open Problems. In Proceedings of the 10th
IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Boston, MA, USA. IEEE Computer Society, Jun. 2001.

[95] Engin Kirda, Clemens Kerer, and Gerald Matzka. Using XML/XSL to build adaptable
database interfaces for Web site content management. In Proceedings of the XML in
Software Engineering Workshop (XSE 2001), 23rd International Conference on Software
Engineering (ICSE 2001), May 2001.

Bibliography 205

[96] R. Klapsing and G. Neumann. Applying the Resource Description Framwork to Web
Engineering. In Proceedings of the 1st International Conference on Electronic Commerce
and Web Technologies: EC-Web 2000. Springer, Lecture Notes in Computer Science.
Springer Verlag, 2000.

[97] Reinhold Klapsing. Semantics in Web Engineering: Applying the Resource Description
Framework. IEEE Multimedia, 8(2):62–68, April-June 2001.

[98] G. Kotonya and I. Sommerville. Requirements Engineering: Processes and Techniques.
John Wiley and Sons, 1998.

[99] Klaus Kronlof, editor. Method Integration: Concepts and Case Studies. Wiley Series in
Software-Based Systems. John Wiley and Sons, January 1993.

[100] C. Kuhnke, J. Schneeberger, and A. Turk. A schema-based approach to Web engineering.
In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,
pages 2289–2298, Jan 2000.

[101] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. Technical report, World Wide Web Consortium, Feb 1999.

[102] Andrew Layman, Edward Jung, Eve Maler, Henry S. Thompson, Jean Paoli, John Tigue,
Norbert H. Mikula, and Steve De Rose. XML-Data: W3C Note 05 January 1998. http:
//www.w3.org/TR/1998/NOTE-XML-data-0105/, Jan 1998.

[103] Gary T. Leavens. Modular specification and verification of object-orient programs. IEEE
Software, 8(4):72–80, Jul 1991.

[104] B. Lientz and E. Swanson. Characteristics of application software maintenance. Commu-
nications of the ACM, 21(6):466–71, 1978.

[105] F. Manola. Technologies for a Web object model. IEEE Internet Computing, 3(1):38–47,
Jan-Feb 1999.

[106] Hermann Maurer. Hyper-G now Hyperwave, the next generation Web solution. Addison-
Wesley England, 1996.

[107] Stefano Mazzocchi. The Cocoon 2 Project Home Page,
http://xml.apache.org/cocoon/, 1999-2002.

[108] E. Mendes, N. Mosley, and S. Counsell. Web metrics - estimating design and authoring
effort. IEEE Multimedia - Special Issue on Web Engineering, 8(1):50–57, Jan-Mar 2001.

[109] E. Mendes, N. Mosley, and S. Counsell. Comparison of Web size measures for predicting
Web design and authoring effort. In IEE Proceedings - Software, volume 149, pages 86–
92, Jun 2002.

206 Bibliography

[110] Bertrand Meyer. Lessons from the Design of the Eiffel Libraries. Communications of the
ACM, 33(9):68–88, Sep 1990.

[111] Bertrand Meyer. Applying ’Design By Contract’. IEEE Computer, 25(10):40–51, Oct
1992.

[112] Bertrand Meyer. Design by Contract, Components and Debugging. Journal of Object-
Oriented Programming, 11(8):75–79, Jan 1999.

[113] Bertrand Meyer, Jean-Marc Nerson, and Masnaobu Matsuo. EIFFEL: Object-Oriented
Design for Software Engineering. In Howard K. Nichols and Dan Simpson, editors, Pro-
ceedings of the 1st European Software Engineering Conference (ESEC), volume 289 of
Lecture Notes in Computer Science, pages 221–229. Springer Verlag, Berlin, Sep 1987.

[114] Microsoft Corporation. The Microsoft .NET Web Site - http://www.microsoft.
com/net/ , 2002.

[115] Microsoft Corporation. The Microsoft Research Homepage - http://research.
microsoft.com/ , 2002.

[116] Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly, 2000.

[117] P. Naur and B. Randell. Software Engineering: Report on a Conference by the NATO
Science Commitee. Technical report, Oct 1968.

[118] J. M. Neighbors. DRACO: A Method for Engineering Reusable Software Systems. Soft-
ware Reusability, I:295–320, 1989.

[119] T. Nguyen. LifeWeb: An Evolvable Web. http://goanna.cs.rmit.edu.au/
˜tln/papers/evolution/paper.htm, 2000.

[120] Thuy-Linh Nguyen and Heinz Schmidt. Creating and managing documents with LifeWeb.
In Proceedings of AusWeb99, Fifth Australian World Wide Web Conference, Southern
Cross University, 1999.

[121] Object Management Group. Object Constraint Language Specification Version 1.1. Tech-
nical report, Sep 1997.

[122] Object Management Group. Unified Modeling Language Specification Version 1.4. Tech-
nical report, Sep 2001.

[123] R. Prieto-Diaz. Domain Analysis for Reusability. In Proceedings of 11th International
Computer Software and Applications Conference (COMPSAC ’87), pages 23–29, 1987.

[124] Debra J. Richardson, S. Leif-Aha, and T.O. OMalley. Specification-based Test Oracles
for Reactive systems. In Proceedings of the 14th International Conference on Software
Engineering, May 1992.

Bibliography 207

[125] Debra J. Richardson and Alexander L. Wolf. Software testing at the architectural level. In
Joint Proceedings of the SIGSOFT’ 96 Worshops. ACM Press, October 1996.

[126] T. Rollo. Sizing E-Commerce. In Proceedings of the ACOS 2000 - Australian conference
on Software measurement, Sydney, Australia, 2000.

[127] Louis Rosenfeld and Peter Morville. Information Architecture for the World Wide Web.
O’Reilly & Associates, February 1998.

[128] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual,
1999.

[129] Arno Scharl. Reference Modeling of Commercial Web Information Systems Using the Ex-
tended World Wide Web Design Technique (eW3DT). In Proceedings of the 31st Hawaii
International Conference on System Sciences (HICSS-31), Hawaii, USA. IEEE Computer
Society Press, 1998.

[130] Daniel Schwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid Prototyping of Hy-
permedia Applications in the WWW. Technical Report MCC 08/98, Department of Infor-
matics, PUI-Rio, Brasil, 1998.

[131] Daniel Schwabe and Gustavo Rossi. An Object Oriented Approach to Web-Based Appli-
cation Design. Theory and Practice of Object Systems, 4(4), 1998. Wiley and Sons, New
York, ISSN 1074-3224.

[132] Daniel Schwabe and Gustavo Rossi. The Object-Oriented Hypermedia Design Model.
Communications of the ACM, 38(8):45–6, August 1995.

[133] Daniel Schwabe, Gustavo Rossi, and Simone D.J. Barbosa. Systematic Hypermedia Ap-
plication Design with OOHDM. In Proceedings of the Seventh ACM Conference on Hy-
pertext, New York, NY, USA, page 116 128, 1996.

[134] Neelam Soundarajan and Benjamin Tyler. Testing components. In Workshop on Specifica-
tion and Verification of Component-Based Systems, OOPSLA 2001, pages 1–6. Published
as Iowa State Technical Report #01-09a, Oct 2001.

[135] Sun Microsystems. The JAXB Home Page, http://java.sun.com/xml/jaxb/,
2002.

[136] Clemens Szyperski. Component Software, beyond object-oriented programming.
Addison-Wesley, Reading, Mass. and London, 1997.

[137] Kenji Takahashi and Eugene Liang. Analysis and Design of Web-based Information Sys-
tems. In Proceedings of the 6th International World Wide Web Conference, Santa Clara,
CA, USA, 1997.

208 Bibliography

[138] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, Englewood Cliffs, NJ, 2002.

[139] Toby J. Teorey, D. Yang, and J. Fry. A logical Design Methodology for Relational
Databases Using the Extended Entity-relationship Model. ACM Computing Surveys,
18(2):197–222, 1986.

[140] The Apache Foundation. Tomcat Servlet Containter - http://jakarta.apache.
org/tomcat , 2002.

[141] The Apache Foundation. Xerces XML Parser - http://xml.apache.org/
xerces-j , 2002.

[142] The Eclipse Consortium. The Eclipse Project Home Page, http://www.eclipse.
org/ , 2002.

[143] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. Technical report, World Wide Web Consortium, May 2001.

[144] Sayed Sajeev Thuy-Linh Nguyen, Xindong Wu. LifeWeb: An object-oriented model
for the Web. In Proceedings of SCI’98 and ISAS’98, Fourth World Multiconference on
Systemics, Cybernetics and Informatics and Information Systems, Analysis and Synthesis,
volume 3, pages 301 – 308, 1998.

[145] James Hendler Tim Berners-Lee and Ora Lassila. The Semantic Web. Scientific American,
May, 2001.

[146] W. Tracz, L. Coglianese, and P. Young. Domain-specific Software Architecture Engineer-
ing Process Guidelines. Technical report, 1992.

[147] United Kingdom Software Metric Association. MKII function point analysis counting
practices manual, version 1.3.1, Sep 1998.

[148] WAP-Forum. Wireless Markup Language Specification http://www.wapforum.
org/what/technical.htm. Technical report, June 1999.

[149] J. Warmer and A. Kleppe. The Object Constraint Language. Precise Modeling with UML.
Addison-Wesley, Reading, Mass., 1998.

[150] World Wide Web Consortium. Cascading Style Sheets. Technical report, Jan 2000.
http://www.w3.org/Style/CSS/.

[151] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon. Principles of software engineering and
design. PH., 1979.

APPENDIX

The itemization below shows the visual modeling elements used for the requirements and design
diagrams in the XGuide process.

Diagram elements can incorporate a References and a Description section. The references
section accepts a list of page or component identifiers and was introduced to avoid flooding the
diagram with arrows that would indicate the relationship. The description of an element, on the
other hand, merely provides a short statement on the purpose of the element.

The input and output interfaces of a diagram elements (applicable only to simple, multi,
and external pages, application logic processes and components) are attached properties of the
element and not directly visible in the diagram.

A simple page represents a traditional Web page. Typical examples
for simple pages are homepages, sitemaps, or search pages. The
simple page element is characterized by the single page icon in the
upper right corner.

Multi pages represent a set of similar pages. Basically this means
that a group of pages share common characteristics (such as lay-
out, structure and navigational dependencies) and only differ in
their content. Product catalogues as in our example Web site of-
ten use multi pages. They define a single page template and only
exchange the content in this template to present all products in a
consistent way. Good examples can also be found in other do-
mains with well-structured information such as legal documents,
human resources or financial information. XGuide models depict
multi pages as rectangular elements with two cascaded page icons.

209

210 Appendix

External pages (with a gray page icon) are similar to simple pages
but are not included in the scope of the project. Examples for such
external pages (or services) could be third-party Web sites that act
as part of the Web application or legacy systems that have to be
integrated. External pages have an associated short description to
clarify the functionality of the external entity.

Following the component-based approach, XGuide supports so-
called Web Components to model reuse and composition relation-
ships. We think of a Web component as a reusable, configurable
page fragment that can be reused and composed with other com-
ponents to form the actual Web page. Further generalizing the
Web component concept, XGuide not only supports composition
of Web components into pages but also the composition of Web
components into larger Web components that can then be reused
as separate entities. Thus a page is a special, top-level component
that cannot be further composed. Typical examples for Web com-
ponents are the navigation structure of a site and a common header
or footer fragment that appears on all pages.

Application logic processes model the functionality of dynami-
cally generating Web pages and components. Application logic
processes are referenced from pages or components, process the
respective request (e.g., book a ticket, check the status of a reser-
vation, or any other back-end business workflow) and produce an-
other page as output.

A proxy has a unique identifier and is a representative of the el-
ement with the same identifier. It is used to keep the diagram
readable, to avoid too many arrows through large parts of the di-
agram, and to facilitate referencing of elements if the diagram is
split across several pages.

Appendix 211

The additional requirements element can be added to any diagram
element and indicates additional (external) requirements for that
element. Such requirements are first captured on a requirements
card for the respective element and eventually collected in the re-
quirements document. Typical usage examples for this element are
non-functional requirements such as response times, resource con-
sumption, security constraints, etc.

Navigational dependencies, i.e., hyperlinks, between any two
model artifacts are expressed using arrows connecting the source
artifact (i.e., page or component) and the destination of the hy-
perlink. Such navigational dependencies do not describe what the
source or destination element in a page is but state conceptually
that the destination page is directly reachable from the source page.

