Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitét Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/)

DISSERTATION

Interval-based Clock State and Rate Synchronization

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften
unter der Leitung von

Ao0.UN1vV.PROF. DR.TECHN. ULRICH SCHMID

Inst.-Nr. E183/1
Institut fiir Automation

eingereicht an der Technischen Universitat Wien
Technisch-Naturwissenschaftliche Fakultat

von

DiPL.-ING. M.Sc. KLAUS SCHOSSMAIER
Mat.-Nr. 8625231

Finsterergasse 6/2/28
A-1220 Wien

Wien, im September 1998




Kurzfassung

Die lokale Zeit kann an den Knoten eines verteilten Systems von deren Uhren abgelesen
werden, wobei die Uhrenstande und die Ganggeschwindigkeiten sowohl zueinaneinder syn-
chronisiert sein miissen (interne Uhrensynchronisation), als auch ein Bezug zur Weltzeit
gegeben sein muf} (externe Uhrensynchronisation). Die Synchronitét wird durch die Exe-
kution von verteilten Algorithmen erreicht, welche mit Unsicherheiten herriihrend von
variierenden Ubertragungsverz&')gerungen von Paketen, Uhrendriften, nicht vernachléssig-
baren Granularitaten und vor allem mit einem ganzen Spektrum von Systemfehlern fertig

werden miissen.

Unsere Forschung im Rahmen des Projekts SynUTC ist gekenntzeichnet durch das
hochgesteckte Ziel, mit kommerzieller Technologie eine Synchronisation im 1 ps-Bereich
zu erzielen. Das bedeutet, dafi abgesehen von speziellen algorithmischen Betrachtun-
gen eine gewisse Unterstiitzung seitens der Hardware notwendig ist, im konkreten das
exakte Zeitstempeln von Paketen, die Zeitinformationen beinhalten, in Verbindung mit
einer Uhrenkonstruktion, die sich durch eine hohe Auflésung und einer feinen Korrek-
turmoglichkeit beziiglich Uhrenstand und Ganggeschwindigkeit auszeichnet. Zusatzlich
benotigt man eine Schnittstelle, um von GPS Empfiangern externe Zeitinformationen zu
bekommen. All diese Funktionalititen werden von einem M-Modul (genannt NTI) mit
einem selbstentwickelten VLSI Chip (genannt UTCSU) bereitgestellt, welche ebenfalls in

dieser Dissertation tangiert werden.

Im Gegensatz zu herkommlichen Methoden bedienen wir uns einem wohldefinierten In-
tervallansatz, um sowohl Systemparameter als auch algorithmischen Gréflen zu reprasen-
tieren. Das erweist sich deswegen als vorteilhaft, weil fast alle Aspekte der Uhrensynchro-
nisation einheitlich betrachtet werden konnen, wodurch man gute Einsichten erhalt, wie
derartige Algorithmen funktioniern. Im speziellen entwicklen wir Accuracy/Precision-
Intervalle bzw. Rate/Consonance-Intervalle zusammen mit niitzlichen Operationen, um
den Stand bzw. die Ganggeschwindigkeit der Uhren im verteilten System zu erfassen.
Weiters fithren wir den Begriff der global Time/Rate als Mitteln zur worst case Ana-
lyse von unseren Algorithmen ein. Von besonderer Bedeutung sind intervallbasierende
Convergence Functions, die fiir die Berechnung von entsprechenden Korrekturwerten der

Uhren herangezogen werden; trotz fehlerhafter Eingabeintervalle von anderen Knoten.



Zusammenfassend die wichtigsten Resultate dieser Dissertation: Unser Algorithmus
zur Synchronisation der Uhrenstande OP-STATE erhebt den Anspruch optimal beziiglich
der worst case precision und der maximalen Uhrenkorrektur zu sein, und liefert ge-
ringfiigig suboptimale dynamische Schranken der Accuracy. Dariiberhinaus offenbart un-
sere ausfiihrliche Analyse, daf§ die Granularitdten und diskreten Korrekturtechniken der
Ganggeschwindigkeit von Uhren einen entscheidenden Einfluf} auf den erzielbaren Grad
der Synchronitat haben. Als besondere Neuheit demonstriert unser Algorithmus zur Syn-
chronisation der Ganggeschwindigkeiten der Uhren OP-RATE, dafl im wesentlichen die
Stabilitdt der Oszillatoren fiir die gegenseitge Abweichung der Ganggeschwindigkeit von
Uhren verantwortlich ist, welche signifikant geringer ausfallen kann, als die iiblicherweise

spezifiziere maximale Uhrendrift.



Abstract

Local time can be observed at nodes in a distributed system by using their clocks,
whose state and rate are required to be in sync with each other (internal clock synchro-
nization) and related to real-time (external clock synchronization) as well. The synchrony
is accomplished by running distributed algorithms, which have to cope with uncertainties
arising from varying packet transmission delays, clock drifts, non-zero granularities, and

above all a whole range of system faults.

Our research within the scope of project SynUTC is driven by the challenging goal
to achieve a worst case synchronization tightness in the 1 us-range with commercial-off-
the-shelf technology. This means that apart from advanced algorithmic matters, some
hardware support for exact timestamping of packets containing time information is re-
quired in conjuction with a high-resolution clock device with fine-grained state and rate
adjustment capabilities. Additionally, an interface for GPS receivers is needed to obtain
external time information. All those features are provided by an M-Module (called NTT)
built around a custom VLSI chip (called UTCSU), which are also touched here.

Unlike traditional approaches, we employ a well-founded interval paradigm to rep-
resent both system parameters and algorithmic quantities. This entails the advantage
of a uniform view of almost all aspects of clock synchronization, which in turn allows
to gain precious insights how such algorithms work. In particular, we establish accu-
racy/precision resp. rate/consonance intervals along with suitable operations to capture
the state resp. rate of clocks in the distributed system. Moreover, we introduce the notion
of internal global time/rate as a vehicle for the worst case analysis of our algorithms. Of
particular interest are interval-based convergence functions that are in charge of comput-

ing proper clocks adjustments despite faulty input intervals from remote nodes.

To highlight the major results, our clock state algorithm OP-STATE exhibits opti-
mality in terms of worst case precision and maximum clock adjustment, and maintains
slightly suboptimal on-line accuracy bounds. Moreover, our thorough analysis reveals
that clock granularities and discrete rate adjustment techniques have a considerable im-
pact upon the achievable degree of synchronization. As a novelty, our clock rate algo-
rithm OP-RATE demonstrates that the oscillator stability is essentially responsible for
the achievable mutual clock drift, which may be significantly smaller than the commonly

specified maximum drift.
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Each life converges to some centre
Expressed or still;

Exists in every human nature

A goal,

Admitted scarcely to itself, it may be,
Too fair

For credibility’s temerity

To dare.

Adored with caution, as a brittle heaven,
To reach

Were hopeless as the rainbow’s raiment
To touch,

Yet persevered toward, surer for the distance;
How high

Unto the saints’ slow diligence

The sky!

Ungained, it may be, by a life’s low venture,
But then,

Eternity enables the endeavoring

Again.

EMILY DICKINSON
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Chapter 1
PREFACE

Designing distributed fault-tolerant real-time applications is usually considerably sim-
plified when synchronized clocks are available. Temporally ordered events are in fact ben-
eficial for a wide variety of tasks, ranging from relating sensor data gathered at different
nodes up to fully-fledged distributed algorithms, see [31] for examples. Providing mutu-
ally synchronized local clocks is known as the fault-tolerant internal clock synchronization
problem, and numerous solutions have been worked out, see [46] or [65] for an overview
and [75] for a bibliography.

If system time provided by synchronized clocks must also have a well-defined relation
to Universal Time Coordinated (UTC), the only official and legal standard time, then
the fault-tolerant external clock synchronization problem needs to be addressed. Unlike
internal synchronization, it did not receive much attention until recently, when highly
accurate and cheap receivers for the Global Positioning System (GPS) became widespread,
see [5]. A representative overview of the current research on external clock synchronization

may be found in [53].

1.1 Project SynUTC

In January 1995 the research project SynUTC (which stands for Synchronized Universal
Time Coordinated) was launched at the Department of Automation, TU Vienna. It is
devoted to the problem of how to establish a highly accurate, common notion of time
among the nodes of a distributed fault-tolerant real-time system. More specifically, as-
suming that nodes are solely interconnected by some data network (e.g., Ethernet), our
system will provide each node with a local clock device that is kept within a few us of
each other, despite of faulty ones in the system. Moreover, incorporating an external time

source like a GPS receiver, any local clock will be kept within a few us of UTC as well.
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Figure 1.1 provides a good overview of the various research tasks of this project.

Basically, the mainstreams are:

1. Design and worst case analysis of clock synchronization algorithms, which embraces
ones for clock state and rate synchronization along with ones for obtaining various

system parameters on-line.

2. Development of an “engineered” implementation of our algorithms including appro-
priate hardware support, which end up in building an ASIC and an M-Module.

3. Evaluation of our algorithms on an experimental testbed, which requires to incor-

porate our hard/software in a state-of-the-art real-time system kernel.

Further information and plenty of other documents concerning project SynUTC can

be found at our homepage http://www.auto.tuwien.ac.at/Projects/SynUTC/
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T Network GPS
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Figure 1.1: Quverview of Project SynUTC

This thesis focuses on the algorithmic concepts and underlying system and fault mod-
els for internal /external clock synchronization in the uys-range. For that purpose, we make
use of intervals to describe all quantities (e.g., clocks’ state/rate) that are relevant for
clock synchronization. They are suitable to capture the inevitable uncertainties affecting

these quantities, and they allow to gain precious insights how our algorithms work.



1.2 Interval-based Clock Synchronization

Interval-based clock synchronization —introduced in [50] and further developed in a num-
ber of papers [55], [60], [52], [51], etc.— relies on the interval-based paradigm origi-
nally introduced in [35] and [25]. Real-time ¢ (usually UTC) is not just represented
by a single time-dependent clock value C(t) here, but rather by an accuracy interval
A(t) that must satisfy ¢ € A(t). As illustrated in Figure 1.2, accuracy intervals are
usually provided by combining an ordinary clock C(t) with a time-dependent interval

of accuracies a(t) = [—a (t),at(t)] taken relatively to the clock’s value, leading to
A(t) = [C(t) —a™ (1), Ct) + o (1))

T A

T' = C(t')

\j

t' t

Figure 1.2: Accuracy Interval

For interval-based clock synchronization, we hence assume that each node p in the
system is equipped with an interval clock that continuously displays its local accuracy
interval A,(t). An interval-based (external) clock synchronization algorithm is in charge

of maintaining A,(¢) so that the following is guaranteed:

(R1) Precision requirement: There is some precision Tmax > 0 such that |C,(t) —C,(t)] <
Tmax for all nodes p, ¢ that are non-faulty up to real-time t.

(R2) Accuracy requirement: The interval of accuracies oy, (t) is such that —a;f(t) <

Cyp(t) —t < o (t) for all nodes p that are non-faulty up to real-time .

Note that (R2) can be used to specify both external and internal synchronization, simply

by requesting o;f (t), o, (t) to be less than a fixed accuracy amax. Furthermore, we restrict
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our attention to o, (t), a;f (t) = O(t), where the implied constant! is (much) smaller than
1, which excludes “degenerated” cases because C),(t) must be within a linear envelope of

real-time here, cf. [6].

All interval-based clock synchronization algorithms developed so far make use of the
basic structure of the generic algorithm introduced and analyzed in [55], see Chapter 3.
At each node p, the following steps are periodically executed leading to a round-based

execution well-known from traditional clock synchronization algorithms:

1. When C,(t) = kP, k > 1 denoting the current round, a clock synchronization packet
(CSP) containing A,(t) is broadcast to each node within the system.

2. Upon reception of a CSP, the received accuracy interval is preprocessed to make it
compatible with the accuracy intervals of the other nodes received during the same

round.

3. When C,(t) = kP + A for some suitable A > 0, an interval-valued convergence
function is applied to the set of preprocessed intervals to compute and subsequently

enforce an improved accuracy interval.

Two basic operations are required in step 2, where the exchanged intervals are made
compatible with each other while preserving the inclusion of real-time: First, delay com-
pensation is applied to the interval received in a CSP to account for the effects of trans-
mitting an accuracy interval over a network. To account for the maximum transmission
delay uncertainty, the received interval must be enlarged appropriately. Second, drift
compensation is used to shift the resulting interval to some common point in real-time
by means of the local clock C)(t). Since clocks may have a non-zero drift, a sufficient en-
largement (“deterioration”) of the interval is required here. Note that drift compensation
must also be performed continuously by the local interval clock during the remainder of
each round. All these issues are the essence of Chapter 3.

In step 3, a suitable convergence function is applied to the set of preprocessed accuracy
intervals. It is in charge of providing a new (smaller) accuracy interval for the local interval
clock that guarantees (R1) and (R2), despite of some possibly faulty input intervals. In
fact, it is solely the convergence function that determines both performance and fault-

tolerance degree of our interval-based clock synchronization algorithm, see Chapter 5.

tThroughout this thesis, we frequently use the (O(-)-notation to characterize the order of magnitude
of less important terms. Recall that f(z) = O(g(z)) for £ — zo if there is some (reasonably small)
positive constant M such that |f(z)| < M|g(z)| for z = x¢. In addition, we make use of asymptotic
approximations like (1 £z)™! =1 Fz + O(z?) valid for z — 0.
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Generally speaking, the major advantage of interval-based clock synchronization is its
ability to provide each node with a local on-line bound on the own clock’s deviation from
real-time. Since accuracy intervals are maintained dynamically, they are quite small on
the average, which compares favorably to the “static” worst case accuracy bounds known
for traditional clock synchronization algorithms. The price to be paid for this additional
information, however, is the need of explicit bounds on certain system parameters like
transmission delays. These bounds can either be compiled statically into the algorithm
from a-priori information or, preferably, determined on-line through an accurate round-

trip-based transmission delay measurement, see Chapter 6.

In fact, our ambitious goal of a precision/accuracy in the 1 us-range makes it in-
evitable to utilize on-line bounds on the maximum clock drift provided by a suitable
clock rate synchronization algorithm. More specifically, the instantaneous clock rates
vp(t) = dCy(t)/dt of all non-faulty clocks have to be synchronized in such a way that the

following is ensured:

(R3) Consonance requirement: There is some consonance 7 such that |v,(t) —v,(t)| < v

for all nodes p, ¢ that are non-faulty up to real-time ¢.

(R4) Drift requirement: There is some drift ¢, such that |v,(t) — 1| < 6, for all nodes p

that are non-faulty up to real-time ¢.

Obviously, requirement (R3) calls for an internal and (R4) for an external synchronization
of the clock rates. The interval-based algorithm introduced and analyzed in [60] effectively
reduces the maximum consonance/drift without necessitating highly accurate and stable

oscillators at each node, see Chapter 4.

1.3 OQOutline

The thesis is structured in following chapters:

Chapter 2 provides a description of our Network Time Interface (NTI) M-Module
supporting high-accuracy external clock synchronization by hardware, see also [20] and
[21]. Designed for maximum network controller and CPU independence, the NTT provides
a turn-key solution for adding high-resolution synchronized clocks to distributed real-time
systems built upon hardware with M-Module interfaces. The NTI is built around our
custom VLSI chip Universal Time Coordinated Synchronization Unit (UTCSU), which
contains most of the hardware support required for interval-based clock synchronization,
see [61] and [63]. The centerpiece of the UTCSU is a local clock based on an adder
and driven by a fixed-frequency oscillator. This novel clock design allows a fine grained
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rate adjustability apt for maintaining both local time with linear continuous amortization
and accuracy information as needed in interval-based clock synchronization. Additional
features incorporated in our UTCSU are facilities to timestamp clock synchronization
data packets, interfaces to couple GPS receivers, some application support as well as
sophisticated self-test machinery. Apart from addressing design and engineering issues of

the chip, we also provide a basic programming model.

Chapter 3 develops and analyzes a simple interval-based algorithm suitable for fault-
tolerant clock state synchronization, see also [55] and [54]. Unlike usual internal synchro-
nization approaches, our convergence function-based algorithm provides approximately
synchronized clocks maintaining both precision and accuracy w.r.t. external time. This is
accomplished by means of a time representation relying on intervals that capture external
time, providing accuracy information encoded in interval lengths. The algorithm, which
is generic w.r.t. the convergence function and relies on either instantaneous correction or
continuous amortization for clock adjustment, is analyzed by utilizing a novel, interval-
based framework for establishing worst case precision and accuracy bounds subject to a
fairly detailed system model. Apart from individual clock rate and transmission delay
bounds, our system model incorporates non-standard features like clock granularity and
broadcast latencies as well. Relying on a suitable notion of internal global time, our anal-
ysis unifies treatment of precision and accuracy, ending up in striking conceptual beauty

and expressive power.

Chapter 4 addresses the problem of synchronizing the rate of clocks in a fault-tolerant
distributed system, see also [59] and [60]. Contrived to bring the rate (i.e., speed) of all
non-faulty clocks in accordance, clock rate synchronization algorithms are very similar to
usual state synchronization ones. Major differences, however, arise from the fact that the
quantities to be synchronized are not directly accessible and that they do not proceed
linearly with time. Relying on an interval-based paradigm, we introduce a basic system
model and suitable building blocks for a generic convergence function-based rate synchro-
nization algorithm. Our rigorous analysis of the achievable consonance (i.e., mutual rate
deviation) and drift (i.e., deviation towards the ideal rate of 1 Sec/sec) reveals that it is
the clocks’ rate stability (i.e., maximum rate change per unit of time) that takes over the

role of maximum hardware drift rate in traditional clock synchronization approaches.

Chapter 5 is devoted to an interval-based convergence function based on Marzullo’s
function leading to our optimal precision algorithms OP-STATE and OP-RATE. For the
first one we provide worst case bounds for precision and accuracy subject to a realistic
system model including an elaborate hybrid fault model covering send and receive omis-

sions up to arbitrary faults. Apart from revealing that clock granularity and discrete rate
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adjustment techniques seriously affect worst case precision and accuracy, we show that
OP-STATE achieves optimal worst case precision and optimal maximum clock adjust-
ment, see also [51]. Based on these results, we give worst case bounds for consonance and
drift of algorithm OP-RATE that is in charge of synchronizing the clock’s rate.

Chapter 6 combines the clock state and rate algorithm to a complete synchroniza-
tion algorithm. We explore this generically given algorithm by making improvements to
the analysis of the clock state algorithm, taking into account that rate synchronization
depends only loosely on state synchronization. When joining both frameworks the con-
ceptional exquisiteness reaches its crest in the invention of an #improved internal global
time that re-starts at state resynchronization instances and progresses as internal global
rate does. In addition, we motivate and devise methods to measure other system parame-
ters on-line, most importantly, data about the transmission delay of packets. A summary

of extensions to our approach can be found here as well.

The following table summarizes the keywords of the various chapters of this thesis.

chapter | heading keywords
1 preface SynUTC, round-based algorithms
2 hardware support distributed systems, MA-Module, ASIC, GPS
3 state synchronization | clock granularities, accuracy/precision intervals
4 rate synchronization | oscillator stability, rate/consonance intervals
5 convergence functions | fault models, Marzullo, worst case analysis
6 complete algorithm internal global time/rate, on-line measurements

Table 1.1: Keywords of the Chapters




Chapter 2

HARDWARE SUPPORT FOR CLOCK SYNCHRONIZATION

2.1 Introduction

Dealing with time is inherent to the real-time computing domain, since applications need
to interact both correctly and timely with the environment. In order to meet specified
time constraints, activities like timestamping external events, scheduling resources, and
initiating actions require an advanced time service. A clock is the physical basis of
such a service, usually composed of a quartz oscillator that drives a hardware counter.
Although small-scale systems are content with a central clock, modern large-scale real-
time systems become necessarily distributed due to their spatial outspread and fault-
tolerance requirements, see [67]. Exemplary applications that exhibit such characteristics
include transportation (e.g., avionics), manufacturing (e.g., rolling-mill), energy-providing
(e.g., nuclear power plant) or scientific (e.g., radio-astronomy) systems. The distributed
nature aggravates the installation of a time service considerably, because autonomous
running clocks have a tendency to drift apart or might fail grossly in their rate or state.
Hence clocks need to be synchronized by virtue of a suitable algorithm executed on each
node. Usually, both performance and correctness of the system is vitally affected by the

degree of synchrony, see [27].

Most synchronization schemes are purely software-based, i.e., they run on off-the-shelf
processing and networking hardware, providing a precision in the 10 ms-range only. A
considerably better precision can be achieved with dedicated hardware support. In the
fieldbus area, for instance, there are some more recent research activities, like the CAN-
Bus project by [13], that target a few ms. A time service with precision in the 10 us-range
can be built on top of the pioneering Clock Synchronization Unit (CSU) described in [22].
Similar ideas are exploited in the hardware assisted clock synchronization scheme of [45].
Even smaller precisions can be attained by means of clock voting with phase locked loops,

see [46], but we do not consider such solutions because of their extra clocking network.
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The most widely used external clock synchronization scheme is undoubtly the Network

Time Protocol (NTP) designed for disseminating UTC among workstations throughout

the Internet, see [38]. Under realistic conditions, worst case accuracies of approximately

20 ms were observed by [71]. There are also some recent solutions of the external syn-
chronization problem in the LAN domain, see [11], [55] or [72]. The latter describes a

software-based approach that “sprays” external time obtained from GPS satellites into

broadcast-type LANs with accuracies in the 10 ps-range.

It is well-known that the precision achieved by any clock synchronization approach

depends heavily on the uncertainty (i.e., variability) of the end-to-end delay arising in the

exchange of time information. Hence, the quality of clock synchronization is primarily

determined by the properties of the communications subsystem, which can be classified

on the bridged physical distance as follows:

(D)

(IT)

(I11)

If the interconnected nodes are only a few 10 meters apart, a dedicated and usually
fully connected clocking “network” exhibiting small and constant propagation delays
is sometimes affordable. This setting allows the construction of phase-locked-loop
clocks with clock voting for increased fault-tolerance, which can provide a precision

down to the ns-range, see [46] for an overview.

Nodes within a few 100 meters of each other are usually interconnected by a packet-
oriented communications subsystem, where sending data packets is the only means
for exchanging (time) information. Almost any work on clock synchronization ad-
dresses this type of systems, preferably for fully connected point-to-point networks.
Typical distributed real-time systems employ (redundant) LANs like fieldbusses
based on shared broadcast channels, which provide almost deterministic transmis-
sion delays but incur a considerable medium access uncertainty. Purely software-
based solutions achieve a precision in the ms-range, which can be brought down to

the us-range with moderate hardware support, see Section 2.5.

World-wide distributed systems connected via long haul networks constitute an
entirely different class of systems. In fact, they have to cope with end-to-end trans-
mission delays that are potentially unbounded and highly variable due to the in-
evitable queueing delays at intermediate gateway nodes (e.g. in case of congestion
and/or failures). The most prominent external clock synchronization scheme for
such settings is undoubtly the NTP.

In our SynUTC project, outlined in [50] and Section 1.1, we focus on external clock

synchronization for large-scale distributed real-time systems and aim 1 us as both preci-

sion and accuracy, hence type (II) of the above classification. Note that our approach can
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also be adopted to more general topologies commonly known as WANs-of-LLANs, provided
that all gateway nodes are also equipped with the NTI, see [50] and [62]. Of course, such
ambitious goals can only be achieved with proper hardware support. The appropriate
features are presented in the remaining sections of this chapter, which is organized as
follows:

After a brief introduction of the overall system architecture in Section 2.2, we present
our Network Time Interface (NTI) M-Module in Section 2.3, which hosts the Universal
Time Coordinated Synchronization Unit (UTCSU) described in Section 2.4. A reason-
ably detailed discussion of related work including “pure-GPS” solutions can be found in
Section 2.5, and finally Section 2.6 concludes with short summary of our accomplishments

as well as some directions of further work.

2.2 System Architecture

From an abstract point of view, modern real-time systems are physically distributed
networks of nodes hosting hard- and software resources for providing application-specific
services that exhibit predictable behavior. Our focus rests on the time service, a basic
subsystem of any real-time system, that offers its pertinent timing features to a number

of higher-level services.

In order to cope with the complexity of a typical real-time system, we decompose it into
so called synchronization subnets (SSN), similar to [38]. Each SSN comprises a collection
of nodes interconnected by a packet-oriented data network. Regarding the contribution to
the time service and considering cost-performance tradeoffs, we can distinguish between

four types of nodes:

e Client-nodes execute the synchronization algorithm in a passive way. More precisely,
they merely glean synchronization data from the attached SSN and adjust their local

clocks accordingly, see [7].

e Secondary-nodes execute the synchronization algorithm in an active way by pe-
riodically exchanging synchronization data among other non-Client nodes within
the SSN. Their purpose is to provide fault-tolerance, most importantly, guaranteed

precision even in case of total loss of external time (aka. flywheeling).

e Primary-nodes behave like Secondary-nodes but provide access to external time,
e.g., via GPS receivers, as well. Multiple Primary-nodes are useful for increasing

the fault-tolerance level w.r.t. faults of external time sources.
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e (ateway-nodes act as Secondary-nodes in two or more SSNs, making time dissemi-
nation between SSNs feasible. Such nodes have additional functionalities to control

the system-wide flow of synchronization data.

An example of a simple system architecture is given in Figure 2.1, showing three SSNs
linked by a single and a double Gateway-node connection. Note that, irregardless of this

example, a tree-like hierarchy is not mandatory for our approach.

——————————————————————————————————————

SSN 1

Primary-node

Secondary-node

Gateway-node

Client-node @

_________________________________

[0 [@ [of [T

SSN 3

Figure 2.1: System Architecture

Although nodes may have different functionalities, their hardware architecture remains
to be uniform. Figure 2.2 outlines the basic hardware components required for clock
synchronization. Each node must be equipped with a hardware clock (our UTCSU-ASIC,
see Section 2.4), a general purpose CPU (the node’s central processor or, preferably, a
dedicated microprocessor or microcontroller) responsible for executing the software part
of the clock synchronization algorithm, and a Communications Coprocessor (COMCO),
which provides access to the network (e.g., Ethernet) by reading/writing data packets
from/to (shared) memory independently of CPU operation (e.g., via DMA). For external
synchronization purposes, some nodes must also be provided with external time sources

like GPS receivers.
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CPU Memory Memory CPU

T

UTCSU COMCO| . |comco UTCSU —*— GPS

external timesource

network medium

Figure 2.2: Basic Clock Synchronization Hardware Architecture

2.3 Network Time Interface (NTI)

As already pointed out in Section 2.1, our approach targets distributed systems consisting
of computing nodes interconnected by an ordinary packet-oriented data network, so we
did not bother ourselves with developing a fully-fledged node hardware, but rather to
extend existing CPU boards with adequate support. Mezzanine busses are certainly the
easiest way to accomplish this, and given the M-Modules simplicity, robustness, size,
and low cost, we eventually decided to implement the NTI as an MA-Module. Starting
with a requirements analysis in Subsection 2.3.1, an overview of the resulting features
of the NTI M-Module is provided in Subsection 2.3.2. A short description of the NTT’s
hardware/software interface is provided in Subsection 2.3.3, and Subsection 2.3.4 outlines

how we incorporated the NTI into a start-of-the-art real-time kernel.

2.3.1 Requirements

Providing hardware support for highly accurate/precise clock synchronization is primarily
driven by the requirement of exact timestamping of CSPs at both sending and receiving
side. In fact, the work of [29] revealed that even n ideal clocks cannot be synchronized
with a worst case precision less than € (1 — 1/n) in presence of a transmission/reception
time uncertainty €, which is defined as the variability of the difference between the real
times of CSP timestamping at the peer nodes. Unfortunately, there are several steps

involved in packet transmission/reception that could contribute to ¢, cf. [24]:

1. Sender-CPU assembles the CSP
2. Sender-CPU signals sender-COMCO to take over for transmission
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3. Sender-COMCO tries to acquire the network medium
4. Sender-COMCO reads CSP data from memory and pushes the resulting bit stream

onto the medium

5. Receiver-COMCO pulls the bit stream from the medium and writes CSP data into

memory
6. Receiver-COMCO notifies receiver-CPU of packet reception via interrupt
7. Receiver-CPU processes CSP

Purely software-based clock synchronization approaches perform CSP timestamping
upon transmission resp. reception in steps 1 resp. 7, which means that ¢ incorporates
the medium access uncertainty (3 — 4), any variable network delay (4 — 5), and the
reception interrupt latency (6 — 7). The first one can be quite large for any network
utilizing a shared medium, and the last one is seriously impaired by code segments with
interrupts disabled. Fortunately, in our LAN-based setting, we can safely neglect the con-
tribution from 4 — 5 since there are no (load- and hop-dependent) queueing delays from
intermediate gateway nodes. Therefore, the resulting transmission/reception uncertainty
emerges primarily from 1 — 4 resp. 5 — 7 at the sending resp. receiving node itself.

In an effort to reduce ¢, clock synchronization hardware should thence be placed as
close as possible to the network facilities. Ideally, a CSP should be timestamped at the
sender resp. receiver exactly when, say, its first byte is pushed on resp. pulled from the
medium. However, this needs support from the interior of the COMCO, which is usually
not available. In order to support existing network controller technology, a less tight

method of coupling has to be considered.

For this purpose, our NTI uses a refinement of the widely applicable DMA-based
coupling method proposed in [24]. The key idea is to insert a timestamp on-the-fly
into the memory holding a CSP in a way that minimizes the transmission/reception

uncertainty. More specifically, a modified address decoding logic for the memory is used,
which

1. generates trigger signals that sample a timestamp into dedicated UTCSU registers
when a certain byte within the transmit resp. receive buffer for a CSP is read resp.

written,

2. transparently maps the sampled transmit timestamp into some portion of the trans-

mit buffer.

Note that this special functionality is only present when a transmit/receive buffer is

accessed by the COMCO, whereas CPU-accesses are just plain memory accesses.
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To illustrate the entire process of CSP timestamping, we briefly discuss one possible

scenario depicted in Figure 2.3; alternative scenarios may be found in [62].

Sender - UTCSU: TRANSM T
i | (
e CX0N  CGCOEEE N

AN}

Packet: |Preamble| SrcAdr. |Dest.Adr.| | Transm. TS. |d0n’tcare| Usg‘goata | CRC |
AR}

Receive buffer: | SrcAdr. | De;.Adr.| Transm. TS. | Rec. TS.| Us:\% Data |

AR}
Receiver - UTCSU: RECEI VE —>

Figure 2.3: Packet Timestamping

Whenever the COMCO fetches data from the transmit buffer holding the CSP for
transmission, it has to read across the particular address that causes the decoding logic
to generate the trigger signal TRANSMIT. Upon occurrence of this signal, the UTCSU puts a
transmit timestamp into a dedicated sample register, which is transparently mapped into a
certain succeeding portion of the transmit buffer and hence automatically inserted into the
outgoing packet. Note that the trigger address and the mapping address may be different.
By the same token, when the COMCO at the receiving side writes a certain portion of
the receive buffer in memory, the trigger signal RECEIVE is generated by the decoding
logic, which causes the UTCSU to sample the receive timestamp into a dedicated register.
Subsequently, the timestamp can be saved in an unused portion of the receive buffer by
the CPU upon reception notification or by a similar transparent mapping technique, see

[62] for more details.

The proposed approach works for any COMCO that directly accesses CSP data in
memory. Suitable chipsets are available for a wide variety of networks, ranging from
fieldbusses like Profibus over Ethernet up to advanced high-speed FDDI or ATM networks.
COMCOs that provide on-chip storage for entire packets, as is the case for most CAN
controllers, however, cannot be used, unless clock synchronization is explicitly supported
by exporting the required trigger signals, see [23]. In this (ideal) case, the UTCSU can
be even more tightly coupled to the COMCO, which leads to a further reduction of €.
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It is worth mentioning that assessing the transmission/reception uncertainty of a par-
ticular COMCO usually requires some experimental evaluation, see Section 2.3.4. In fact,
since CSP timestamping occurs in step 4 resp. 5 of the data transmission/reception se-
quence introduced earlier, the only activities that still contribute to € are the “ongoing”
data transmission and the bus arbitration necessary for COMCO memory write cycles
upon CSP reception. The former uncertainty, i.e., the time between fetching a byte from
the transmit buffer and trying to deposit it in the receive buffer, obviously depends on the
internal architecture (FIFOs etc.) of the COMCOs at both ends. Whereas adjusting the
trigger position of the transmit/receive timestamp may help in reducing/circumventing
certain impairments, it is nevertheless not easy to find and justify a suitable choice with-
out actual measurements. In general, we should point out that numerous technical hurdles
have to be surmounted to make this approach working properly, see [17] for the twisted

details of a particular prototype implementation based on a FOrRCE CPU-30 board.

2.3.2 Design

M-Modules [34] are an open, simple, and robust mezzanine bus interface primarily de-
signed for VME carrier boards, which are commonly used in Europe. MA-Modules are
enhanced M-Modules, providing a 32 bit data bus instead of the 16 bit one of the orig-
inal M-Modules. The address space consists of 256 bytes I/0O-space accessible via the
standard M-Module interface and up to 16 MB of memory-space addressed by multiplex-
ing the MA-Module data bus. The asynchronous bus interface requires the module to
generate an acknowledge signal for termination of a bus cycle only, thus minimizing the
control logic on-board the M-Module. Further signals in the M-Module interface com-
prise a single vectorized interrupt line and two additional DMA control lines. The unit
construction design of the 146 x 53 mm (single-height) M-Modules provides a peripheral
I/O D-sub connector on the front panel, two plug connectors to the carrier board for
peripheral I/O and MA-interface, and an intermodule port connector for interconnecting
several M-Modules.

We found MA-Modules well-suited for crafting the evaluation prototype of our clock
synchronization hardware, mostly driven by the major requirement about CPU and
COMCO independence, recall Section 2.3.1. In this and the following subsections, we
will provide a short overview of the NTI design; consult [19] for all technical details.

Figure 2.4 shows the major components.

The UTCSU-ASIC contains most of the dedicated hardware support for interval-
based clock synchronization, see Section 2.4 for its features. It is driven by an on-board

temperature-compensated (TCXO) or ovenized (OCXO) quartz oscillator; alternatively,
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Figure 2.4: NTI Block Diagram

an external frequency source like the 10 MHz output of an GPS receiver can be used.

All UTCSU application time/accuracy-stamp inputs and duty timer outputs as well
as all interfaces to GPS receivers are available via the M-Module’s front-panel 25 pin
D-sub connector. In addition, all receive and transmit time/accuracy-stamp signals are
fed to the carrier board via the 24 bit pin plug connector. The M-Modules’ intermodule
port is eventually used to export the NTPA-bus required for future extension modules,
and to facilitate internal connection of modularized GPS receivers. Note that high-speed
opto-couplers or transceivers are provided for all inputs to ensure a decoupled and reliable
interface.

The memory serves as control and data interface between the CPU and the COMCO,
providing the special functionality for COMCO accesses as outlined in Section 2.3.1. It
consists of four 64KB x 16 bit SRAM chips and supports byte, word, and longword
read /write accesses. In Section 2.3.3, the memory map of the current version of the NTI
will be explained in some detail.

All required decoding and glue logic of the NTI is incorporated in a single, in-circuit
programmable complex programmable logic device (CPLD), which has been programmed
in VHDL. It adapts the UTCSU and the memory to the MA-Module interface, forwards
interrupt requests from the UTCSU to the carrier-board, generates the acknowledgment
signal terminating a bus cycle, and gives access to the serial PROM; this read only memory
stores identification and revision information according to the M-Module specification, see
[34]. Note carefully that it is just a matter of re-programming the VHDL code of the
CPLD to support a different COMCO with our NTI.
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2.3.3 Hardware/Software Interface

All accesses to UTCSU registers and NTI memory are performed by addressing the M-
Modules memory-space. As explained in Section 2.3.1, read /writes of the COMCO require
additional logic to provide timestamping functionalities. To distinguish between CPU and
COMCO accesses, the CPLD maps two address regions to the same physical memory as
illustrated in Figure 2.5.

logical address space NTI component
_________ oo
5128 UTCSURegisters | o | UTCSU |
16K8 System Structures
368KB .
\&\
g Data Buffers »
a
-]
o
(@)
120KB
Receive Headers
| transparent
8KB  Transmit Headers 4% 64K16 Pt me%t)amp
5128 . memory SRAM A re-mapping
unused . mapping (= 512KB) : ot
16KB R - triggering
System Structures .
368KB AN
§ Data Buffers \\\ | | |
o N I I I
o 31 0
=
O
O [120k8
Receive Headers
8KB Transmit Headers
31 0

Figure 2.5: Memory Map of the NTI

On top of the memory map is the NTI memory’s 512 KB address region for CPU-
accesses, which is decoded without special functionality, beginning with a 512 byte seg-
ment containing the UTCSU registers. The 512 KB region for COMCO-accesses to NTI
memory starts at address 0 and is divided into four sections: The System Structures sec-

tion holds the command interface and system data structures required by the COMCO,
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the Data Buffers are available for ordinary packet data. Special functionalities apply
only to accesses in the Receive Headers resp. Transmit Headers sections, which hold
packet-specific control and routing information (e.g., source and destination addresses)

for received resp. transmitted CSPs.

The CPLD is currently programmed to support the 82596CA Ethernet coprocessor
from INTEL using 64 byte receive and transmit headers. Figure 2.6 outlines the offsets

within each header that need to be supervised here.

Receive Header Transmit Header
64B 64B

Accuracy 0x20
- 0x1C
RECEI VE ——| 0x1C Timestamp 0x18
TRANSM T ~— 0x14
0x00 0x00

31 0 31 0

Figure 2.6: Receive and Transmit Header

When the 82596CA writes offset 0x1C within a receive header upon reception of a CSP,
the timestamp trigger signal RECEIVE for the UTCSU is generated. In addition, the base
address of the accessed receive header is stored into a dedicated N'TI-register to facilitate
further interrupt processing, as explained below. Similarly, when the 82596CA reads
offset 0x14 within a transmit header upon transmission of a CSP, a timestamp trigger
signal TRANSMIT is issued to the UTCSU. Since the UTCSU registers holding the sampled
time/accuracystamp are mapped to the memory addresses with offsets 0x18-0x20 in the

transmit header, they are transparently inserted into the outgoing data packet.

In addition to the UTCSU registers and the shared memory, there are also a few
registers provided by the N'TT itself, primarily for the purpose of interrupt handling. They

are accessible via the M-Modules I/O-space according to the memory map in Figure 2.7.

The Receive Header Base register at address 0x00 is required for correctly assigning re-
ceive timestamps to data packets: After the UTCSU has sampled a receive time/accuracy-
stamp, it must be moved to an unused portion of the appropriate CSP before the next

CSP drops in. This can be done in an ISR activated by a RECEIVE transition interrupt,
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S-PROM | OxFE

Dis/Enable Interrupt Logic | 0x04
Vector (Base) | 0x02
Receive Header Base | 0x00

31 0

Figure 2.7: Memory Map I/O-space of the NTI

but which cannot reliably determine the address of the receive header associated with the
sampled timestamp, thus the N'TT latches this address into the Receive Header Base reg-
ister upon the occurrence of the RECEIVE-signal. There are of course alternatives, which,
however, do not work in general: For example, one might try to move the timestamp in
the packet reception ISR, where the base address of the receive buffer is of course known.
Unfortunately, this might be too late for avoiding a timestamp loss in case of back-to-back
CSPs. Also inappropriate are schemes that try to exploit a sequential order of received
packets, since there might be CSPs that trigger a timestamp but are eventually discarded,
e.g., due to an incorrect CRC.

Apart from the access-byte to the M-Module’s serial PROM at address OxFE, there are
two additional NTT registers controlling interrupt generation: The Vector (Base) register
at address 0x02 can be used to program the interrupt vector generated upon an UTCSU
interrupt. Note that the final vector also includes the state of the three UTCSU interrupt
pins INT-T, INT-N, and INT-A. Accessing register Dis/Enable Interrupt Logic at address
0x04 eventually enables (further) NTT interrupts; it is usually written immediately prior

to leaving the interrupt service routine.

2.3.4 Integration

This section briefly surveys how we incorporated the N'TI and our clock synchronization

software into the state-of-the-art' industrial multiprocessing/multitasking real-time kernel

tNote that we are of course aware of the fact that customary kernels are quite inadequate for building
well-founded distributed real-time systems. We think, however, that one should try to gradually introduce
sound concepts into existing systems, rather than persuade industry to discard familiar (ready-to-use but
insufficient) technology in favor of a novel (immature but sufficient) one.
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pSOS*™ from INTEGRATED SYSTEMS, INC. Figure 2.8 outlines the complete software

structure of a node, including the underlying hardware.

Application-Tasks
Fm + ) ]
pSOS PNA Clock Synchronization
K, N__ o«
NTI Driver
CPU COMCO NTI

Figure 2.8: Software Structure of a Node

The entire NTI software is embedded in a pSOS*™ add-on that effectively hides clock
synchronization from the application tasks. The heart of this add-on is the NTT driver
[47], which actually multiplexes three different interfaces to the COMCO:

1. Kernel Interface (KI): pSOS™™ supports multiprocessing by providing remote ob-
jects (tasks, queues, semaphores, etc.) that are internally managed via RPCs. To
keep the kernel reasonably independent of the particular communications network,
a user-supplied KI is required that maps a simple message-passing interface to the
particular COMCO.

2. Network Interface (NI): In addition to kernel services, application tasks can commu-
nicate with remote sites via TCP/IP sockets if the additional software component
pNAT is present. Like the pSOS™™ kernel, pNA™ is kept hardware-independent by
means of a user-supplied NI, which is similar to the KI but plugs into a different

message-passing interface.

3. Clock Interface (CI): The third component that requires network services is our
clock synchronization algorithm. Again, a simple message-passing interface CI is
sufficient here. Recall that CSPs sent/received via the CI are timestamped, as
described in Section 2.3.1.
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Viewed at the level of application tasks, a usual pSOS*™/pNA*-environment is at
hand that provides synchronized clocks by means of the application support of the NTI.
In fact, apart from the created computing and networking load, clock synchronization is

performed totally transparent to the application.

The current version of the NTI driver has been developed for MOTOROLA’S MVME-
162 CPU (M68040 CPU + INTEL 82596CA Ethernet coprocessor) in conjunction with a
passive VME carrier-board hosting the NTT M-Module, see [33] for a comprehensive doc-
umentation. A simple pSOS*™-application has been written, which allowed us to assess
the resulting transmission/reception time uncertainty €. It turned out that ¢ is well be-
low 500 ns for most CSP transmissions, except for a few instances where we encountered
values up to 1.8 us. Those large values are primarily caused by the suboptimal hardware
architecture of our evaluation system, since any access has to pass several asynchronous
bus interfaces and can hence occasionally experience large synchronizing delays. More-
over, since the passive carrier-board used is actually a CPU-module (AcQ i6040), it may
happen that COMCO accesses have to wait for the completion of the on-board execution
required for forwarding N'TI-interrupts to the VME-bus. Consequently, we think that the
actual £ of the 82596CA in conjunction with our NTT is below 200 ns.

As a final remark, we note that a transition to a different hardware only requires re-
development of the network controller’s part of the NTI driver (written in C) and perhaps
some reprogramming of the VHDL code for the CPLD. In fact, we are considering a new
version of the driver and the CPLD that supports AcQ’s 16040 multiprocessor VME-
CPU; this module utilizes an M68040 in conjunction with a M68EN360 QUICC network
coprocessor and has 2 MA-Slots on board. Note that the 16040 is particularly suitable for
our purpose, since it allows the CPU-32 on-chip the M68EN360 to operate concurrently
with the M68040 (avoiding companion mode). Due to the fact that the MA-Slots can be
accessed from the M68EN360 without disturbing the execution of the M68040, we could
hence execute the clock synchronization software completely on-chip the M6SEN360.

2.4 Universal Time Coordinated Synchronization Unit (UTCSU)

We packed most of the hardware support into the Universal Time Coordinated Synchro-
nization Unit (UTCSU). A functional specification of it is given in Subsection 2.4.1, which
encompasses features like our novel adder-based clock. The UTCSU is decomposed into
physical units in Subsection 2.4.2, along with an explanation of implementation details.
A programming model of the chip is given in Subsection 2.4.3, and Section 2.4.4 rounds

off by discussing design methodology concerns.



22

2.4.1 Functional Specification

Modularity, flexibility, and performance issues influenced us to realize the UTCSU as an
ASIC. The subsequent sections will shed more light on its interior, first by means of a
functional specification, see [62] for a comprehensive version, and later on by documenting

the development process, see [28] for meticulous details.

Interfacing

During requirement analysis of the chip we took much care to keep all interfaces as
straightforward and general as possible. Our first step to specify the UTCSU is done by

outlining its interfaces.

Coupling the UTCSU to the System-Bus enables communication with the other com-
ponents. A wide range of existing bus architectures, employing data bus widths of 8, 16
or 32 bits, big/little endian byte ordering, different bus access times, interrupt schemes,
etc. should be supported without additional glue logic. Note that the connection to the
System-Bus is also a prerequisite for transparently mapping UTCSU-registers containing
sampled timestamps into transmit/receive buffers in local memory, as required for exact
timestamping of CSPs.

Meeting accuracy requirement of 1 us, we decided to use GPS technology for injec-
tion of external time, hence the UTCSU must be able to interface various GPS timing-
receivers. For applications with only moderate accuracy requirements or to increase fault
tolerance, other sources of external time, like receivers for DCF77 or WWV, see [26], can
be connected to the UTCSU via the same interface.

To support applications, there should be at least means to trigger actions at programm-
able points in time and capabilities for event timestamping. Moreover, to ease the im-
plementation of more elaborate timing features, like the proposed timing processor of
[15], without changing the UTCSU, we export time/accuracy information via a local

unidirectional NTPA-Bus for external processing.

Depending on the type of node, these interfaces will have different significance. For
instance, only Primary-nodes make use of the GPS interface, whereas Gateway-nodes
utilize the interface to several COMCOs extensively. In summary, we give the first rather

loose specification rule

Specification 2.1 (Interfaces) The UTCSU must provide a versatile interface to com-
mercially available system-busses and GPS timing-receivers, and additional interfacing
facilities to timestamp and generate external pulses. Furthermore, it should export local

time/accuracy information on a dedicated NTPA-Bus.



23

Maintaining Local Time

The maintenance of local time at a node will be the core function of the UTCSU. In the
first place, a format has to be established to encode local time. We use a straightforward
binary coding scheme, closely following the NTP-time format from [38], where the upper
32 bits are interpreted as standard seconds relative to UTC and the lower 32 bits give the
associated fractional part. For specification purposes we will use the following notation to
denote a specific part of this format: (u,v) covers bits ranging from the most significant
bit position u to the least significant one v, thus affecting a quantity given by % b; 2¢,
where b; € {0,1}. An optional prefix “+” denotes a signed value. Table 2.1 defines
NTP-bit numbers and their time equivalents for the ease of reference. It is divided in
columns for the integer part (+31,0), the fractional part (—1, —32) and the ultrafractional
part (—33,—64). Note that “n” stands for nano (107%), “p” pico (107!2), “f” for femto
(1071%), “a” for atto (107*®) and “z” for zepto (1072!). For example, NTP-range (—1, —8)

pinpoints values up to slightly less then a second in multiples of 3.81 ms.

The clock synchronization algorithm is responsible for computing adjustments for both
state and rate in order to meet accuracy and precision requirements. State adjustment
means to add/subtract/set instantaneously a particular amount to local time, and rate
adjustment means slowing down/speeding up its progression. Thus, we need to incorpo-
rate a clock in the UTCSU that represents local time in the NTP-based format and is
adjustable in both rate and state.

Specification 2.2 (Local Time) The UTCSU needs to host a digital clock represent-
ing local time over the NTP-range (+31,—24), which is arbitrarily state adjustable for

initialization purposes and rate adjustable not coarser than 1078 s/s.

As mentioned earlier, UTC is going to be our reference timescale, because of its
worldwide availability through GPS technology and its legal character. However, UTC
should be carefully considered in conjunction with real-time systems due to its non-
chronoscopic nature, see [24]. The Bureau International de I’Heure (BIH) inserts or deletes
leap seconds at predefined points in time in order to harmonize it with astronomically
derived timescales, e.g., Universal Time (UT) versions. Strictly speaking, chronoscopic
time standards, such as Temps Atomique International (TAI) or GPS-Time, should be
given preference to establish a time service for real-time systems. Notwithstanding that,

we proclaim

Specification 2.3 (Leap Seconds) The clock for local time inside the UTCSU has to
be equipped with facilities to handle leap seconds by either inserting or deleting pending

ones at programmable points in time.



integer part

fractional part

ultrafractional part

bit# time equivalence | bit# time equivalence | bit# time equivalence
+31 68 years -01 500 ms -33  116.42 ps
+30 34 years -02 250 ms -34  58.21 ps
+29 16 years -03 125 ms -35  29.10 ps
+28 8.5 years -04  62.5 ms -36  14.56 ps
+27  4.25 years -05  31.25 ms =37  T7.28 ps
+26 2.13 years -06  15.62 ms -38  3.64 ps
+25 1.08 years -07  7.81 ms -39 1.82 ps
+24  194.18 days -08  3.81 ms -40  909.50 fs
+23  97.09 days -09  1.90 ms -41  454.75 fs
+22  48.55 days -10 976.56 us -42  227.38 fs
+21 24.27 days -11  488.28 us -43  113.69 fs
+20 12.17 days -12 24414 us -44  56.84 fs
+19 6.07 days 13 122.07 us -45  28.42 fs
+18 3.03 days -14  61.03 us -46  14.21 fs
+17 1.52 days -15  30.51 us A7 711 fs
+16 18.02 hours -16  15.25 us -48  3.55 fs
415 9.10 hours 17 7.62 us -49 177 fs
+14  4.55 hours -18  3.81 us -50  888.18 as
+13  2.27 hours -19 190 ps -51  444.09 as
+12 1.13 hours -20  953.67 ns -52  222.04 as
+11  34.13 min -21  476.83 ns -53  111.02 as
+10 17.07 min -22  238.41 ns -54  55.51 as
409 8.53 min -23  119.21 ns -05  27.76 as
+08 4.27 min -24  59.60 ns -56  13.88 as
+07 2.13 min -25  29.80 ns 57 6.94 as
+06 1.07 min -26  14.90 ns -58  3.47 as
+05 32s =27 745 ns -59  1.73 as
+04 16s -28  3.72 ns -60  867.36 zs
+03 8s -29  1.86 ns -61  433.68 zs
+02 4s =30  931.32 ps -62  216.84 zs
+01 2s -31  465.66 ps -63  108.42 zs
400 1s -32  232.83 ps -64  54.21 zs

Table 2.1: NTP-bit Numbers and their Time Equivalence

24
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Maintaining Accuracy Intervals

Dealing with the accuracy requirement means that local time has to follow UTC as close
as possible. Unfortunately, UTC is neither directly observable nor permanently accessible,
so only a range can be determined where UTC currently lies. More specifically, in our
setting we use an accuracy interval A(t) capturing UTC in the sense that t € A(t) Vt > .
This interval-based approach was introduced in [35], [37] and continued in [25]. The
OSF/DCE time model [43] and newer versions of NTP [40] make use of this notion of

time as well.

Our UTCSU is tailored to support external clock synchronization using the interval-
based clock validation technique proposed in [50]. The algorithms employed herein rely
on accuracy intervals that are maintained locally at a node by an upper accuracy o™ (t)
and a lower accuracy o (t) meant relative to the local clock C(t), such that A(t) =
[C(t)—a (t),C(t)+ a™(t)]. Observe that accuracies are always understood as maximum
UTC deviations, otherwise we would be clairvoyant. The reason to make accuracies
time-dependent is to enlarge them properly in order to account for maximum oscillator
drifts, hence sustaining UTC inclusion. This process of linear deterioration would go
on perpetually, however, periodic resynchronizations executed by a clock synchronization

algorithm aim to shrink A(¢), by exploiting knowledge of UTC provided by GPS receivers.

Specification 2.4 (Accuracy Interval) The UTCSU needs to maintain an asymmet-
rical accuracy interval over the NTP-range (—8, —23), which is arbitrarily adjustable and

performs deterioration in the range of 1078...107* s/s.

A few supplements to maintain accuracy intervals need to be brought to attention. The
accuracy values should be permanently compared against bounding registers, generating
an interrupt whenever the former exceeds the latter. Furthermore, a wrap-around during
deterioration is undesirable; actually, in such situations we require that accuracy registers

stay at their maximum value and trigger an interrupt.

Specification 2.5 (Accuracy Interval Overruns) The upper and lower accuracy val-
ues inside the UTCSU need not wrap-around, and in case of exceeding the corresponding
(—8, —23)-register BOUND+ a dedicated interrupt should be raised.

Adder-Based Clocks

Meeting the specified rate adjustability for local time or the deterioration dynamics for

accuracies with ordinary clocks consisting of an oscillator pacing a hardware counter
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turns out to be a challenging task. As a matter of fact, conventional discrete rate ad-
justment techniques, like tick advancing/delaying employed in the CSU of [24], would
require very high oscillator frequencies (around 100 MHz) for a smooth rate adjustment
of 1078 s/s. Moreover, our NTP-based time representation would enforce a binary oscil-
lator frequency. One alternative pursued in [39] replaces the fixed-frequency oscillator by
a voltage controlled one (VCO) that is put into a carefully engineered phase-locked loop
(PLL).

We propose an adder-based clock (ABC) in order to maintain local time, where each
oscillator tick entails an addition of a particular amount clock-step to a register holding
local time. Any rate change can easily be achieved by varying clock-step, which goes into
effect instantaneously and retains linearity, see Figure 2.9. To make this approach working
properly, however, we have to expand the registers holding local time and clock-step on the
less significant side to accumulate minute time amounts. Targeting a nominal frequency of
224 Hz, it becomes necessary to extend the NTP-range of local time to (+31, —51) in order
to reach the demanded rate adjustability, since 2751 /2724 ~ 7.45-107? s/s. Of course,
timestamps derived for local time are only predicative in the NTP-range (+31,—24), so
that the smallest meaningful unit of time becomes to 59.6 ns, called time granularity. Bits
(=25, —51) are concealed from the outside and solely used for rate correction purposes,

whereby the smallest perceivable unit of time becomes to 444.1 as, called clock granularity.

A Clock Time

|

J too slow

corrected Clock

» Red Time

Figure 2.9: Adder-based Clock Principle

Beyond that, the adder-based approach allows us to use a non-binary oscillator fre-
quency, e.g., 10 MHz from GPS timing-receivers. However, the NTP-range of local time

has to be further extended to preserve the usually excellent quality of such frequency
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sources. We found it sufficient to append 8 bits on the less significant side, thus yielding
a range of (+31, —59), since truncation errors are limited to 27 s per oscillator tick. In
particular, for a 10 MHz input frequency, the truncation errors impair the frequency by

approximately 0.6 - 10711

Specification 2.6 (ABC for Local Time Maintenance) The UTCSU needs to im-
plement an adder-based clock, composed of a (+31,—59)-register NTPTIME representing
local time, an external oscillator input designed for frequencies in the range of 22°...224
Hz and a (—20, —59)-register STEP to hold the increment for each oscillator tick.

For a better understanding of adder-based clocks, let us briefly examine their operation
in more detail. As mentioned above, a particular clock-step is added at each oscillator
tick, which can be separated into the reciprocal of the nominal oscillator frequency and
a fractional correction value. Since our clock exhibits a much coarser time granularity
than clock granularity, an accumulation of correction values may cause discontinuities in
the sequence of clock states. More specifically, when the correction values run up to the
time granularity at a particular tick, the adder-based clock makes either no advancement
or advances by twice the time granularity, depending on the accumulation nature. When
correcting an oscillator drift of say 1 ppm with our clock specified in Specification 2.6,
such effects occur roughly every 60 ms for using a nominal input frequency of 2?* Hz. For

an in-depth treatment of granularities entangled in clock synchronization consult [55].

The adder-based approach is also well suited for maintaining the upper accuracy o™ (t)
and the lower one o~ (t). In fact, each accuracy quantity can be tracked by an ABC similar
to the one for local time, where one register is playing the accumulating role and another
one is holding the deterioration for each oscillator tick. In the sequel we denote ABC
components for the lower resp. upper accuracy by adding the suffix “-” resp. “+”, or “£”

to capture both.

The registers for an ABC representing accuracy span 45 bits internally, including a
sign bit, thus ranging over +(—8, —51). Note that only the upper 16 bits are considered
by the clock synchronization algorithm. Targeting accuracies smaller than 2723 s ~ 120 ns
appears unrealistic with our approach. Nonetheless, it is facile to scale accuracy values

externally as much as desired.

The deterioration registers are 16 bit wide, including a sign bit, covering the NTP-
range +(—37,—51). This arrangement allows a minimum deterioration of about 1078 s/s,
by the same line of justification as for the local clock, and a maximum deterioration of

2736 s/tick or approximately 244 us/s for a nominal oscillator frequency of 22* Hz, which
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should be sufficient even for worst quartz oscillators. The necessity of sign bits arises

from continuous amortization.

Specification 2.7 (ABC for Accuracy Interval Maintenance) The UTCSU needs
to implement two adder-based clocks for the maintenance of an asymmetrical accuracy
interval, composed of +(—8, —51)-registers ALPHAL, an external oscillator input designed
for frequencies in the range of 2%° ... 2%% Hz (the same as for local time), and +(—37, —51)-
registers LAMDBA+ to hold the deterioration for each oscillator tick.

The UTCSU is designed for a maximum operating frequency of 224 Hz. Trading ASIC
production costs against time service qualities and considering downsizing the chip for
specific applications, we allow to run the UTSCU with lower frequencies as well. Chang-
ing the frequency impacts clock characteristics as shown in Table 2.2. A lower operating
frequency increases the clock rate adjustability (expressed as how long a 1 us correc-
tion takes by applying the smallest non-zero clock-step change), renders the maximum

accuracy deterioration smaller, and reduces the meaningful timestamp range.

nominal oscillator | rate adjustability | maximum accuracy | meaningful time-

frequency [Hz] [max s for 1 us| | deterioration [us/s] | stamp range
920 — 1 048.576 | 2148 15 (+31, —20)
921 = 2 097.152 | 1073 31 (+31, —21)
9% = 4,194.304 | 537 61 (+31, —22)
223 = 8, 388.608 268 122 (+31, —23)
10, 000.000 255 146 (+31,—23)
224 =16,777.216 | 134 244 (+31,—24)

Table 2.2: UTCSU Characteristics for Customary Operating Frequencies

Continuous Amortization

Periodically, the clock synchronization algorithm becomes active and computes adjust-
ments for both rate and state in order to achieve internal/external synchronization. En-
forcing these adjustments deserves special attention, since real-time applications dictate
specific properties. In particular, timestamps obtained from local clocks need to be mono-
tonic and free of discontinuities of predefined extent. A technique called linear continuous
amortization is used to carry out state adjustments, see [56]. As a novelty, the UTCSU

provides hardware support for this clock setting method.
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The basic principle is rather simple: Instead of adjusting the clock state instanta-
neously, we achieve the same effect by modifying the clock rate for a specific amount
of time, called amortization period tamers- During this time we say that the local clock
is in its amortization phase, whereas the remaining period is known as pure phase. As
an obvious consequence, these two phases alternate perpetually, controlled by the clock

synchronization algorithm.

On the other hand, accuracies are allowed to change instantaneously, since they are
kept relative to the local clock. However, deteriorations must be modified during the

amortization phase due to the clock rate set forth by state adjustment.

Figure 2.10 gives an example to illustrate both phases. The period before t; shows
clock C(t) in its pure phase, advancing with pure rate C(t) = v, and accuracies a*(t)
growing with pure deterioration &*(¢t) = A\*. Before kicking off continuous amortization,
the parameters for both amortization phase and successive pure phase need to be com-
puted. The amortization phase commences at t;, which entails a reduction of a®(t) by
the accuracy adjustments a*, clock C(¢) advances from now on with the amortized rate
0, and finally a®(t) deteriorates with ME. A counter times out fapuop at to, causing the

transition to the new pure phase.

In our example, a*(t) shrinks during the amortization phase, and o~ (t) happens to
be negative at the beginning, which justifies the sign bits introduced in Specification 2.7.
To remedy the passage with negative accuracy, the externally accessible accuracy is set
to zero during this time, which obviously implies a valid accuracy interval. Recall that
we have to maintain the invariant that UTC is permanently enclosed by envelopes e~ ()
and et (t) defined by C(t) — a (t) and C(¢) + a™(t), respectively.

Having explained the mechanism for continuous amortization, we specify additional

UTCSU elements separated in issues concerning local time and accuracy.

Specification 2.8 (Continuous Amortization ref. Local Time) The adder-based
clock for local time has to carry out state adjustments by continuous amortization. To
that end, features to switch between pure/amortized clock rates need to be implemented,
to commence the amortization phase at a programmable point in time, and a (48, —24)-
counter AMORTTIMER to earmark the end.

Specification 2.9 (Continuous Amortization ref. Accuracy) The two adder-based
clocks for the accuracy interval must switch in lock-step with the clock for local time be-

tween pure/amortized deterioration. Additionally, registers ALPHAL need to be relative
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Figure 2.10: Pure and Amortization Phase

adjustable by +(—8, —38)-registers STATESET+, and negative accuracies during the amor-
tization phase have to be suppressed by forcing the externally accessible part (—8,—23) to

ZETO0.

If T denotes the amount that clock C(t) gains during continuous amortization w.r.t. the
non-amortized clock, the previous pure rate v, the amortized rate 0, and the start value
Tamors Of counter AMORTTIMER are related by

T

Tamort

=0—v=1.

Apparently, there is one degree of freedom involved. Making Ty, large entails a
smooth transition but might jeopardize the precision/accuracy of the local clock. How-
ever, we showed in [55] that there exists an upper bound on Tymers given by ¥ > pmax,
where pna.x denotes the sum of the maximum positive and negative drift of any clock
in the system, such that results obtained for an instantaneous clock adjustment can be

carried over to the continuous amortization case, see Chapter 3.
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Event Timestamping and Generating

Hitherto we have specified elements to maintain local time and accuracies, which will even-
tually be used for event time/accuracy-stamping and event generating purposes. These

two features play an important role in several domains.

The first one assists in exact CSP timestamping at both sending and receiving side,
which is crucial for tight clock synchronizations. Extending the pioneering work of [24],
CSPs are stamped with local time and accuracy just at the moment when they are
actually leaving the node, and with local time when arriving at the peer node. This
necessitates coordinated support from the UTCSU and the embedding hardware. The
UTCSU obtains the CSP transmission/reception events via dedicated input lines for latch-
ing time/accuracy in dedicated registers, and further the embedding hardware is in charge
of mapping them transparently into the CSP transmit/receive buffer, see Section 2.3.1

Considering Gateway-nodes and the need to cope with fault-tolerant communication
architectures (i.e., triple redundant), we have to accommodate multiple units supporting

independent CSP stamping.

Specification 2.10 (CSP Stamping) The UTCSU needs to be equipped with siz units
each capable of sampling the (+31, —24)-range of register NTPTIME and the (—8, —23)-range
of registers ALPHA+ on a CSP transmission, and the (+31, —24)-range of register NTPTIME
on a CSP arrival. Both types of events are announced by special polarity programmable
input lines TRANSMIT[1..6] and RECEIVE[1..6].

In a similar way, an external time reference is linked to the UTCSU. We decided to use
the GPS system to inject UTC due to our high accuracy and availability requirements.
GPS is an earth orbiting satellite based navigation system operated by the US AIr
FORCE under the direction of the DEPARTMENT OF DEFENSE, see [5] for an overview. It
includes a Standard Positioning Service (SPS) for a worldwide civilian use. When Selective
Awailability (SA) is enabled, the horizontal position can be obtained within 100 m (95
percent) and GPS-Time with a maximum error of 340 ns (95 percent). Note that GPS-
Time is steered to be within 1 us of UTC, without taking leap seconds into account. It

is derived from atomic clocks both at ground stations and on board the satellites.

There is a large number of different GPS timing-receivers available. Nearly all of them
output an on-time pulse at 1 pulse per second (aka. 1PPS), and more expensive models
also provide a 10 MHz reference frequency disciplined to GPS-Time. The associated
information identifying the pulse along with other data is provided some considerable time

after the 1PPS, usually via a serial interface. We exempt the UTCSU from processing
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this information and defer it to the CPU. Finally, a few GPS timing-receivers even tell
their status on-line (e.g., data valid, satellites out of view) by means of special output
lines.

For redundancy purpose and for the sake of testing several receivers against each
other, it appears appropriate to equip the UTCSU with multiple units for coupling GPS

receivers.

Specification 2.11 (GPS Coupling) The UTCSU needs to be endowed with three in-
dependent units capable of sampling the (+31,—24)-range of register NTPTIME and the
status of the connected GPS timing-receiver whenever the corresponding 1PPS becomes
active. Polarity programmable input lines 1PPS[1..3] resp. STATUS[1..3] mediate these

events resp. report the receiwer status.

Most clock synchronization algorithms periodically invoke a routine that broadcasts
local time/accuracy via CSPs to the other nodes within the SSN. Hence, the UTCSU has
to provide one duty-timer (DT) for starting a CSP transmission and one for terminating
the reception period. A duty-timer consists of a writable register and a comparator
to check whether local time is equal or greater, which will be reported by a dedicated
interrupt. Special care is required to arm/disarm such DTs to avoid programming pitfalls,

see Section 2.4.3.

Specification 2.12 (Duty Timers) The UTCSU needs to provide two freely programm-
able duty-timers for each SSN attachment to support the protocol for CSP exchange, in
total DUTYA[1..6] and DUTYB[1..6] all ranging over (+31,—16). If they equal or exceed

the current local time then a dedicated interrupt should be raised.

Indeed, application requirements on a time service can vary considerably. The con-
ceivable spectrum ranges from basic features, e.g., reading the local clock or providing
a programmable frequency output, over more advanced ones, like a timestamp FIFO as
required by the distributed event-based monitoring system VTA of [49], up to elaborate
timing support, such as the high-precision timer developed by [15].

We decided to provide only basic on-chip application support. It includes atomic
readings of local time and accuracy, time/accuracy-stamping of external application-
related events, and generation of interrupts with the help of a duty timer. Future advanced
application features can be realized externally by tapping the NTPA-Bus, which exports
local time and accuracy. The following specification rule reveals more details about all
those UTCSU features.
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Specification 2.13 (Application Support) First, register NTPTIME in the (+31, —24)-
range and registers ALPHAL in the (—8, —23)-range must be atomically readable by simple
read operations. Second, the UTCSU needs to be furnished with nine independent units
dedicated to application-support for stamping events that occur on polarity programm-
able input lines APP[1. .91, with local time/accuracy in the same ranges as above. Third,
a dedicated NTPA-Bus has to export local time/accuracy, again in the same ranges. Fi-
nally, a (+31,—16)-duty-timer APPL is to be provided for generating external pulses and

application-specific interrupts.

Self-Test and Debugging Features

To ease system development and implementation of applications depending on a time
service, most test- and debugging-features should be supported by hardware. A classical
method is to guard register NTPTIME with additional control bits, providing a means to

detect/correct flipped bits to some extent.

Specification 2.14 (Checksums) The UTCSU must protect the (+31,—24)-range of
register NTPTIME by computing an appropriate 8 bit checksum to enforce a Hamming dis-
tance of 4.

Another well known self-checking mechanism is based on compression functions over
a sequence of time/accuracy values. More specifically, the UTCSU should compute two
functions over a certain time frame: blocksums, which are summations over a specified
range, and signatures, which employ a generator polynomial akin to CRC-checksums.
These calculations can be done in parallel by a redundant UTCSU or by a general purpose
CPU, occasionally verified against the values derived inside the UTCSU. Note that one
has to trade (low) checking frequency for (high) detection latency.

Specification 2.15 (Blocksums and Signatures) The UT'CSU needs to compute block-
sums and signatures of the (+31, —24)-range of register NTPTIME and the (+8, —23)-range
of registers ALPHA+ over a start/stop prearranged period of time.

A snapshot denotes a mechanism that samples relevant internal registers to get a
glance of the current UTCSU state. Either triggered by hardware or software, registers
NTPTIME and ALPHA+ need to be saved in their full extent to certain shadow registers for
postprocessing. Besides checking for local errors, this mechanism allows experimental
evaluation of the time service precision, by triggering simultaneously snapshots on all
nodes with a common line. To be complete, another special input line allows the UTCSU

to (re)start its operation from a well defined state when an external pulse occurs. This
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features multiple redundant UTCSUs starting simultaneously at each node and allows to

bypass elegantly initial clock synchronization for the sake of testing purposes.

Specification 2.16 (Snapshots) The UTCSU needs to include a soft- and hardware
snapshot mechanism to make atomic full-length shots of registers NTPTIME and ALPHA+.
Furthermore we require a feature to start the UTCSU from a well defined state by acti-
vating the special input line SYNCRUN.

2.4.2 Unit Implementation

Functional issues, ensuing from our desire to capture all hardware requirements for a
highly accurate/precise time service, guided the process of developing the UTCSU spec-
ification. In the course of designing this ASIC, we crafted a layout of physical units
fostering a clean top-down implementation. More specifically, starting from the specifica-
tion [62] given in Section 2.4.1, the UTCSU internal units portrayed in Figure 2.11 were
eventually identified and designed in [28]. A first look at the boundary reveals interfaces
for the System-Bus, GPS receivers, CSP stamping, and applications. The interior con-
sists of 10 generic units connected by a 32 bit broad I-Bus, resulting in a homogeneous
architecture. The following subsections introduce these units in some detail, depending

on the level of interest and originality.

Bus Interface Unit (BIU)

The BIU contains logic for embedding the UTCSU in a wide variety of system architec-
tures as demanded in Specification 2.1. In particular, it makes the ASIC applicable to
System-Bus widths of 8, 16 or 32 bits, little or big endian byte ordering, and different ac-
cess times. A technique called dynamic bus sizing is used to solve this common interfacing

problem and we recommend [41] for technical details.

Interrupt Unit (ITU)

Throughout the UTCSU specification we encountered several dedicated interrupts to
announce certain conditions asynchronously. We grouped all possible interrupt sources

in three categories, resulting in the following interrupt lines:

e Interrupt INT-T indicates events relevant to the clock synchronization algorithm as
specified in Specification 2.12 (duty-timers) and Specification 2.5 (accuracy over-

runs).
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Figure 2.11: Interior of the UTCSU

e Interrupt INT-N indicates external events as specified in Specification 2.10 (stamping

leaving/arriving CSPs) and Specification 2.11 (1PPS pulses from GPS-receivers).

e Interrupt INT-A indicates application-related events as demanded in Specification

2.13 as well as events for chip testing purposes.

The ITU contains the logic for generating these interrupts. Any interrupt source can
be individually enabled/disabled via configuration registers UTCINTEN1/2, and pending
interrupts are reflected by registers UTCSTAT1/2. For further details about handling these
registers turn to Section 2.4.3.

Local Time Unit (LTU)

According to Specification 2.6 and 2.8 local time has to be maintained by an adder-based
clock. This boils down to set up a 91 bit adder capable of carrying out an addition at
each oscillator tick. Due to the advanced space and time requirements, much effort has

been invested to devise an optimal adder architecture, see [18].

Figure 2.12 shows schematically the architecture of the LTU with the 91 bit adder
NTPADDER right in the center. The addend is realized as a positive feedback of the previous
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adder output held by the (431, —59)-register NTPTIME, which in turn provides local time.
Initialization takes place via multiplexer NTPMUX and preload registers MSSET, TSSET and
USSET.

The augend is supplied by the (—20, —51)-register STEPPUREACT resp. STEPAMORT dur-
ing pure resp. amortization phase. Their granularity is extended by register STEPLOW,
which holds a fixed value in the (—52,—59)-range to account for non-binary oscillator
frequencies. Muliplexer AMORTMUX is in charge of switching between pure and amortizing
clock-step values as demanded by Specification 2.8. As long as the programmable 32
bit counter AMORTTIMER is running, the augend originates from STEPAMORT, otherwise from
STEPPUREACT. The counter can be activated by a duty timer or immediately by writing a
dedicated register address. Preload register STEPPURE is necessary to hold the clock-step
value for the following pure phase, which starts when the counter expires. See Figure

2.10 for a better understanding of the transitions between the two phases.

According to Specification 2.3, the adder-based clock has to cope with leap seconds as
well. Basically, the leap second correction hardware consists of multiplexer LEAPMUX, which
affects the upper 32 bits of the augend in such a way that either one standard second is
added or subtracted just as required. An additional duty-timer can be programmed to

initiate these time corrections.

[ VBSET TSSET  USSET oo | [ VeGET TSGET USGET NSGET |
(+31,48)  (+7,24)  (-25-56) CS(+3L48)  (+7,.24) 4 » (-25,-56) (-57,-59)
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AMORTTI MESET [ STEPAMORT | [ STEPPUREACT |
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Figure 2.12: Local Time Unit (LTU)
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An 8 bit Checksum (CS) is computed for the (+31, —24)-range of register NTPTIME by
the Error Detection and Correction Unit (EDCU) as stipulated in Specification 2.14, using
a modified Hamming Code of distance 4. The CS bits together with the NTPADDER output
are buffered on each rising edge of the oscillator pulse in an intermediate register NTPHOLD.
This introduces a delay of one oscillator tick between computation and sampling, but the
clock synchronization algorithm is not affected, since adjustments are only applied in a
relative fashion. Therefore, we can operate the local clock one tick ahead of actual time
internally, so that correct time is perceived after buffering.

Adhering to byte-orientation, the output of register NTPHOLD is decomposed into four
portions. The 24 bit Marcostamp-range (+31,+8) together with the 32 bit Timestamp-
range (+7, —24) including the 8 CS bits constitute the internal 64 bit NTP-Bus (see Figure
2.11) from where all timestamps are obtained. The remaining 32 bit Microstamp-range
(—25,—56) and the 3 bit Nanostamp-range (—57,—59) are internally used for rate cor-
rections. Nevertheless, all portions are atomically accessible through holding registers
CS:MSGET, TSGET, USGET and NSGET for testing purposes.

Accuracy Unit (ACU)

The ACU maintains o (¢) and o~ (t) as demonstrated in Figure 2.10, forming the local
accuracy interval A(t) around local clock C(t). Specification 2.7 and 2.9 demand a dedi-
cated ABC for each o (t) and o (t), but due to symmetry, it suffices to discuss only one
of them.

Apart from a few modifications and supplements, the basic structure of this adder-
based clock is similar to the one inside the LTU, see Figure 2.13. In the center we find a 45
bit adder ACCADDER, which is able to deal with negative numbers. Unlike the LTU-adder,
however, it stays at its upper limit and triggers an interrupt INT-T instead of wrapping
around in case of overrun.

Register ALPHA is situated in the feedback loop of the addend, so that it actually
provides the current accuracy value a*(t) or a (t), respectively. Initialization with the
preloaded value in the +(—8, —38)-register ALPHASET happens via multiplexer ALPHAMUX,
whereby the (—39, —51)-part is fixed to all ones upon initialization.

In analogy to the LTU, multiplexer LAMBDAMUX selects the augend from +(—37, —51)-
register LAMBDAPUREACT resp. LAMBDAAMORT during the pure resp. amortization phase as
specified in Specification 2.9. Both registers hold 16 bit signed deterioration values that
are internally sign-extended to 45 bits via multiplexer LAMBDASMUX. Executing continuous
amortization for local time controlled by counter AMORTTIMER, switching between deteri-

oration values takes place simultaneously with the clock-step registers inside the LTU.
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Figure 2.13: Generic Accuracy Unit (ACU)

No deterioration takes place right at the transition from pure to amortization phase, but
rather register ALPHA is relatively adjusted via multiplexer STATEMUX by an offset value
previously written to register STATESET. Again, Figure 2.10 helps to clarify the subtleties
at this pivotal transition point.

During the amortization phase, the content of accuracy register ALPHA can become
negative. Following Specification 2.9, multiplexer AMUX converts such negative values into
zero controlled by the associated sign bit. The raw accuracy values are nevertheless
accessible via registers ALPHAGET and NALPHAGET, which are sampled simultaneously when
LTU register TSGET is read.

Both negative and positive accuracy are exported in the (—8, —23)-range, constituting
the UTCSU internal A-Bus+ resp. A-Bus-. Together they are referred as the 32 bit broad
A-Bus from where all accuracystamps are taken, see Figure 2.11). Note that the output
of adder ACCADDER is buffered at each rising edge of the oscillator pulse into register
ALPHAHOLD, thus the accuracies on the A-Bus suffer from the same latency of one tick as
local time on the NTP-Bus; recall our comments in Section 2.4.2.

Implementing Specification 2.5 results in a 16 bit comparator block COMPARE that
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permanently checks the A-Bus against a (—8, —23)-register BOUND. If the current value on
the A-Bus happens to be greater or equal to BOUND, an interrupt INT-T will be raised.

Synchronization Subnet Unit (SSU)

Specification 2.10 demands one SSU for each SSN attachment, where each unit com-
prises a set of registers to sample the NTP- and A-Bus on the occurrence of packet re-
ception/transmission events mediated by the embedding hardware as explained in Chap-
ter 2.3.1. The latter is also responsible to map transparently the corresponding SSU reg-
isters, see Section 2.4.3 for an enumeration, into a certain portion of the transmit/receive
buffer of the adjoined COMCO.

Moreover, Specification 2.12 introduces two duty timers for each SSU, that perform
a comparison of the NTP-Bus against a 48 bit preload value. An interrupt INT-T is raised
whenever the NTP-Bus becomes greater or equal to the preloaded value, provided that this

interrupt source is enabled.

GPS Unit (GPU)

External clock synchronization requires access to an external time source. As imposed
by Specification 2.11, we use GPS receivers to inject UTC or GPS-Time. Figure 2.14
shows an exemplary interface structure to couple one receiver to a Primary-node. For

redundancy purposes, up to three receivers can be attached to a single UTCSU.

Both lines 1PPS[1] and STATUS[1] of the receiver are directly connected to the GPU[1]
in order to trigger a timestamp and sample the receiver status on the occurrence of an
active 1PPS. The interior of a GPU is made up of our usual sample registers, see Section
2.4.3 for a listing, whereas the most significant CS bit is replaced by the status bit of the
receiver. To adapt the GPU for different GPS receivers, the active 1PPS edge can be
programmed to be either the rising or the falling one. Advanced GPS timing-receivers
offer an additional frequency output with high stability characteristics, e.g. line 10Mhz
in our example, which is most suitable for being used as the oscillator input frequency
pacing the ABCs.

Events signalled by the 1PPS are conceptually analogous to the arrival of CSPs.
However, information identifying the pulse (full seconds relative to UTC) is delivered
after the occurrence of the 1PPS, usually via a RS232 interface. The task of preprocessing
this data, sending commands to the receiver for configuration purposes, and interpreting
other data concerning status, navigation, etc. are not handled by the UTCSU, but rather
by the CPU of the embedding hardware.
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Figure 2.14: Coupling of GPS Receivers

Application Unit (APU)

According to Specification 2.13, the APU provides features to generate interrupts at
specific points in time and to record the occurrence time of application-related events.
The former is implemented by a duty-timer APPL to generate an INT-A interrupt, similar to
one in the SSU as explained in Section 2.4.2. The second feature is more expensive, since
tracing events requires atomic sampling of both NTP- and A-Bus. The APU accommodates
nine register sets, see Section 2.4.3, to stamp pulses on the polarity programmable input
lines APP[1..9] with time and accuracy simultaneously. Moreover, to ease higher-level
recovery of applications in case of a clock fault, CPU read accesses of these registers are

memorized by a certain reference status bit.

Network Time Interface Unit (NTU)

Additional application timing support can be provided externally by means of the NTPA-Bus
as required by Specification 2.13. The UTCSU produces 64 bit time information onto the
NTP-Bus and 32 bit accuracy information onto the A-Bus at each oscillator tick; given an

operating frequency of 22* Hz, this amounts to 192 MByte/s. Indeed, exporting such a
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stream of data turns out to be a challenging matter. To reduce the pin count of our chip,
the NTU achieves this performance by pushing out data via the 48 bit wide multiplexed
NTPA-Bus driven by both edges of the oscillator pulse.

Snapshot Unit (SNU)

The SNU comprises three debugging/test services called software snapshot, hardware
snapshot and synchronous operation. As motivated by Specification 2.16, snapshots are
means to sample the current internal state of the UTCSU.

A software snapshot can be triggered by writing a dedicated SNU register address or
on expiration of a duty-timer. This entails a simultaneous sampling of the complete LTU
register NTPHOLD into the already introduced registers MSGET, TSGET, USGET, and NSGET, as
well as sampling ACU registers ALPHAHOLD+ into registers ALPHAGET+, NALPHAGET+ and
STATEGET+. Further reads without latching semantics deliver the before sampled data.

A hardware snapshot is triggered by an external pulse on the polarity programmable
line HWSNAP. Due to the asynchronous nature of such an event, it merely samples both
NTP- and A-Bus into appropriate SNU registers, enumerated in Section 2.4.3.

Finally, input line SYNCRUN gives the UTCSU a “go”-functionality. In other words, all
three ABCs can be started simultaneously at a specific point in time triggered by the test

environment.

Built-In Test Unit (BTU)

In principle, the sequence of all time/accuracy values generated inside the UTCSU could
be computed externally as well. Unfortunately, a continuous check is prohibited by the
tremendous throughput, as already pointed out above. However, Specification 2.15 spec-
ifies two compression methods over a certain set of time/accuracy-stamps, that allow less
frequent data exchanges between the UTCSU and external verification devices. As a
result, the UTCSU is endowed with a BTU that computes signatures and blocksums for
both NTP- and A-Bus. Note that these two methods can be used independently of each

other.

The upper half of Figure 2.15 shows the logic to compute a signature for the A-Bus,
where the accuracy values are fed from above into a linear feedback shift register (LFSR),
see [76]. These registers are implementing the evaluation of a polynomial P(z) with
coefficients out of {0,1}. Each power z* is reflected by a D-Flip-Flop (D-FF) fed from
the 2¥~! stage exored with the corresponding bit from the input data. Powers with non-

zero coefficient obtain an additional feedback from the D-FF, output. In particular, a
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polynomial of degree 56, namely Pyrp_pus(z) = 2°° + 2** + 2°' 4+ z' 4+ 1, compresses
timestamps and a polynomial of degree 32, namely Py pys(z) = 232 + % + 2% + 2! + 1,
takes care of accuracystamps. The lower half of Figure 2.15 shows an adder feedbacked
by the 32 bit register ACCSUM to compute blocksums over the A-Bus.

A- Bus+ g A-Bus+ , A-Bus+,; A Bust, A- BUS-_ 54
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Figure 2.15: Compressing Accuracystamps with Signatures and Blocksums

Only a complete sequence of time/accuracy-stamps is useful to be processed in the
LFSR or adder block, hence specific start/stop-points have to be defined. Transitions
between pure and amortization phases are particularly suitable for that purpose. Section

2.4.3 remarks on programming issues about these features.

2.4.3 Programming Model

We wrap up our UTCSU picture by presenting a synoptic view from the programming
standpoint. Organized in subjects concerning clocks, interrupts, sampling and testing, we
inspect essential operations tagged with programming guidelines. Tables will summarize
related UTCSU elements by showing their type and providing a brief description. Three
types can be distinguished: An internal register indicated by the corresponding NTP-
range or width, a pseudo register to trigger certain actions, or a pin for external events. A
forthcoming datasheet will provide a complete programming description including register

maps, timing diagrams and electrical characteristics.
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Clock Management

The management of ABCs can be separated in issues concerning initialization and ad-
justments. Initializing the UTCSU turns out to be a delicate matter, since several stages

have to be passed through, namely

1. set all registers to a default value via a hardware reset,
2. set augend (clock rate and accuracy deterioration) of ABCs, and

3. set addend (clock and accuracy state) of ABCs.

All UTCSU registers are set to a default value whenever the chip is powered up or
when an external hardware reset occurs. In particular, LTU-register NTPTIME becomes
zero, ACU-registers ALPHA+ all ones, and the various registers holding the corresponding

augend are cleared to prevent a progression of the adder-based clocks.

The second stage targets the active augends of the adder-based clocks belonging to
the pure phase, i.e. LTU-register STEPPUREACT and ACU-registers LAMBDAPUREACT+ hold-
ing the pure clock-step resp. pure accuracy deterioration values. As shown in Figures
2.12 and 2.13, these registers cannot be initialized directly. Still, we get a handle on
them by first writing their preload registers STEPPURE resp. LAMBDAPURE+ and by subse-
quently commencing a short period of continuous amortization. Only register STEPLOW
can be set directly to account for a non-binary oscillator frequency. Table 2.3 summarizes

programming elements relevant at this stage.

element type description
STEPPURE (=20, —51) | clock-step for pure phase
STEPLOW (=52, —59) | clock-step for non-binary frequency adaption

LAMBDAPURE+ | +(—37,—51) | upper accuracy deterioration for pure phase

LAMBDAPURE- | +(—37,—51) | lower accuracy deterioration for pure phase

Table 2.3: UTCSU Elements for Rate/Deterioration Initialization

In the third stage, the addends of the adder-based clocks, i.e., LTU-register NTPTIME
and ACU-registers ALPHA+, are initialized. Since they are reflecting the state of local
time/accuracy, their value has to be set appropriately to correspond to the time of set-
ting them. As a consequence, preload registers must be provided to hold the initialization
values in advance that are transferred atomically to NTPTIME and ALPHA+ upon a suitable
event. Local time is initialized with the aid of three 32 bit registers MSSET, TSSET and
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USSET. When no accuracy information is at hand for initialization, we can stick to the
maximum introduced during hardware reset, which serves literally as infinity. Otherwise,
preload register ALPHASET supplies both ALPHA+ and ALPHA-, launching a symmetrical accu-
racy interval. The event of actually transferring preloaded values is generated by writing
pseudo-registers NTPSET and ALPHASET, see Table 2.4. To ease simultaneous starting of dis-
tributed UTCSUs during the testing phase or in redundant configurations, the transfer

event can also be a pulse on the external line SYNCRUN.

element type description

MSSET (+31,+8) | macrostamp portion of clock state

TSSET (+7,—24) | timestamp portion of clock state

USSET (—25,—56) | mircostamp portion of clock state

ALPHASET | +(—8,—38) | initial upper/lower accuracy

NTPSET pseudo sets clock state and upper/lower accuracy on write
ALPHAPNSET pseudo sets only upper/lower accuracy on write

SYNCRUN pin sets clock state and upper/lower accuracy on ext. pulse

Table 2.4: UTCSU Elements for Time/Accuracy Initialization

Once initialized, clocks need to be adjusted periodically in order to maintain in-
ternal /external synchronization. Adjustments values for local time and accuracies are
handed over at each pure to amortization phase transition as already explained in Sec-
tion 2.4.1. The UTCSU enforces these adjustments autonomously, which renders pro-
gramming rather simple. In fact, the elements of Table 2.5 need to be computed before
the next amortization phase, encompassing values for clock-step register STEPAMORT, for
deterioration registers LAMBDAAMORT+, and for accuracy adjustment registers STATESET+.
Additionally, registers STEPPURE and LAMBDAPURE+ need to be preloaded for the subse-
quent pure phase. The duration in oscillator ticks of the amortization phase can be set
via counter AMORTTIMESET, whereas the start can be either triggered by writing pseudo
register STARTAMORT or by activating duty-timer DUTYB[1].

Interrupt Management

There are as much as 64 interrupt sources within the UTCSU, which are statically mapped
to three dedicated interrupt lines introduced in Section 2.4.2. Interrupt processing in
general works as follows, see Table 2.6. To initialize an interrupt source for further

interrupts, we have to clear it by setting the appropriate bit in register UTCINTCLEAR1
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element type description

STEPAMORT (=20, —51) | clock-step for amortization phase

LAMBDAAMORT+ | +(—37,—51) | upper accuracy deterioration for amortization phase
LAMBDAAMORT- | £(—37,—51) | lower accuracy deterioration for amortization phase
STATESET+ +(—8,—38) | upper accuracy adjustment in two’s complement
STATESET- +(—8,—38) | lower accuracy adjustment in two’s complement
AMORTTIMESET | 32 bit counter | duration of amortization phase in oscillator ticks

STARTAMORT pseudo starts amortization phase on write

DUTYB[1] (+31,—16) | duty-timer to start amortization phase

Table 2.5: UTCSU Elements for Time/Accuracy Adjustments

or UTCINTCLEAR2, and to enable it by setting the appropriate bit in register UTCINTEN1
or UTCINTEN2. A pending interrupt is mirrored by a status bit in registers UTCSTAT1
or UTCSTAT2, which can be polled by the interrupt service routine (ISR) to identify the
originating source of the interrupt. Before leaving the ISR, the interrupt source must be

cleared as described above.

element type description

UTCINTCLEAR1/2 | 32 bit each | clears pending interrupts

UTCINTEN1/2 32 bit each | enables/disables interrupts

UTCSTAT1/2 32 bit each | reflects the status of the interrupt condition

Table 2.6: UTCSU Elements for Interrupt Handling

Many interrupts are associated with external events, like leaving/arriving CSPs, 1PPS
pulses from GPS timing-receivers, or occurrence of application-oriented events. Their
handling will be described in Section 2.4.3. Here we proceed with interrupts that are
internally caused by the UTCSU, in particular by DTs and accuracy overruns. Of course,
many other exceptional UTCSU conditions are also announced by INT-T interrupts, like

an overrun of NTPTIME somewhere in year 2036 or clocking failures.

Various duty-timers are used for generating interrupts or for triggering certain actions,
see Table 2.7 for a complete list. Each DT spans 48 bits, organized in a 32 bit high-part
(+31,0) and in a 16 bit low-part (—1,—16) including an enable bit E to arm/disarm its
operation. If armed, the content of each duty-timer is permanently compared against

the current time on the NTP-Bus and corresponding status bits in registers UTCSTAT1
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and UTCSTAT2 indicate the condition “less” (duty-timer < NTP-Bus) or “greater-or-equal”
(duty-timer > NTP-Bus). In case of a transition from “less” to “greater-or-equal”, a
dedicated interrupt INT-T will be generated. Note that activating a DT with an old value

w.r.t. the current time given on the NTP-Bus also entails an interrupt.

element type description

DUTYA[1..6]-HIGH | (+31,0) | SSU duty-timers A[1..6]
DUTYA[1..6]-LOW |E:(—1,—16) | -7 -

DUTYB[1]-HIGH (+31,0) | duty-timer to start amortization
DUTYB[1]-LOW E:(—1,—-16) | - " -

DUTYB [2] -HIGH (+31,0) duty-timer to terminate CSP receptions
DUTYB[2]-LOW E:(—=1,-16) | -7 —

DUTYB[3]-HIGH (+31,0) duty-timer to insert/delete leap seconds
DUTYB [3]-LOW E:(—1,-16) | =" -

DUTYB[4..6]-HIGH (+31,0) auxiliary SSU duty-timers B[4. .6]
DUTYB[4..6]-LOW | E:(—1,—16) | -7 —

SW-HIGH (+31,0) | SNU duty-timer for software snapshot
SW-LOW E:(—1,-16) | -7 —

APPL-HIGH (+31,0) | APU duty-timer for applications
APPL-LOW E:(—=1,-16) | -7 —

Table 2.7: UTCSU Elements for Duty-Timers

Without external scaling, the capacity to hold accuracies in registers ALPHA+ is limited
to 7.81 ms each, while overflows cause an interrupt INT-T. A more selective supervision of
maximum accuracy can be programmed with the help of registers BOUND=, also displayed
in Table 2.8. Similar to duty-timers, whenever the condition “below” (A-Bus+ < BOUND+)
tips to “above-or-equal” (A-Bust+ > BOUND+), an interrupt INT-T will be generated. Set-

ting registers BOUND= to the maximum disables this feature.

element type description

BOUND+ | (—8,—23) | bound for upper accuracy
BOUND- | (—8,—23) | bound for lower accuracy

Table 2.8: UTCSU Elements to Bound Accuracies
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Sampling Management

Sampling activities can stem from software primitives or from external events. The
first ones are also known as atomic clock readings, providing allied portions of local
time/accuracies only. Whenever register TSGET is read by software, it entails a simul-
taneous latching of full-scale local time and accuracy in certain UTCSU-registers listed
in Tables 2.9. Later on the sampled values can be read externally at register addresses

without latching semantics.

element type description
CS:MSGET €S:(+31,+8) | macrostamp portion of clock state with checksum

TSGET (+7,—24) | timestamp portion of clock state (triggers sampling)
USGET (—25,—56) | microstamp portion of clock state

NSGET (—=57,—59) | nanostamp portion of clock state

ALPHAGET+ | =£(—8,—38) | high portion of signed upper accuracy

ALPHAGET- | =£(—8,—38) | high portion of signed lower accuracy

NALPHAGET+ | (—39,—51) | low portion of upper accuracy

NALPHAGET- | (—39,—51) | low portion of lower accuracy

STATEGET+ (—8,—23) | upper accuracy on A-Bus+

STATEGET- (—8,—23) | lower accuracy on A-Bus-

Table 2.9: UTCSU FElements for Sampling Local Time and Accuracy

Crucial for UTCSU operation are features to stamp external events with time/accuracy
values. Apart from sampling, a INT-N interrupt is raised upon occurrence if enabled at all.
Table 2.10 recapitulates all elements relevant for this functionality. Registers UTCCONF1
and UTCCONF2 determine the polarity on which input pulses cause sampling. Besides
that, they contain bits to control leap-second insertion/deletion and to configure self-
test features, see Section 2.4.3. In a straightforward way, pulses on pins TRANSMIT[1. .6]
resp. RECEIVE[1. .6] inform the UTCSU about leaving resp. arriving CSPs. The various
sample registers can be found in the second and third block of Table 2.10. Similarly,
pulses on pins 1PPS[1..3] resp. STATUS[1..3] inform the UTCSU about an active on-
time pulse resp. status of a connected GPS timing-receiver. The fourth block of Ta-
ble 2.10 indicates the corresponding sample registers. Finally, pins APP[1..9] are avail-
able for time/accuracy-stamping of application events. The bottom block of Table 2.10
shows the associated sample registers including APPCLEAR. Every read access of registers
MSAPP[1..9], TSAPP[1..9] or ACCAPP[1..9] sets a status bit in register UTCSTAT1, which
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can be cleared by writing APPCLEAR.

element type description
UTCCONF1/2 32 bit each configuration bits
TRANSMITI[1..6] pins indicates a CSP transmission
MSXMT[1. .6] cs:(+31,+8) sample of upper NTP-Bus portion
TSXMT[1..6] (+7,—24) sample of lower NTP-Bus portion
ACCXMT[1..6] (—8,—23):(—8,—23) | sample of A-Bus
RECEIVE[1..6] pins indicates a CSP arrival
MSRCV[1..6] cs:(+31,+8) sample of upper NTP-Bus portion
TSRCV[1..6] (+7,—24) sample of lower NTP-Bus portion
1PPS[1..3] pins indicates a 1PPS pulse from GPS receivers
STATUS[1..3] pins indicates the status of GPS receivers
MSGPS[1..3] status:CS:(+31,+8) | sample of upper NTP-Bus portion

with receiver status
TSGPS[1..3] (+7,—24) sample of lower NTP-Bus portion
APP[1..9] pins indicates an external application event
MSAPP[1..9] cs:(+31,+38) sample of upper NTP-Bus portion
TSAPP[1..9] (+7,—24) sample of lower NTP-Bus portion
ACCAPP[1..9] (—8,—23):(—8,—23) | sample of A-Bus
APPCLEAR pseudo clears the application reference status bit

Table 2.10: UTCSU Elements for Stamping External Events

Testing Management

Snapshot mechanisms are implemented for test and verification purposes as motivated
in Section 2.4.1. Before using them, certain configuration bits in UTCCONF1 must be set
appropriately. If enabled, a pulse on pin HWSNAP triggers a hardware snapshot, i.e., the
NTP-Bus is latched into registers MSSNU and TSSNU, and the A-Bus into ACCSNU. The top
block of Table 2.11 summarizes these elements. A software snapshot is triggered directly,
when pseudo register SWSNAP is written, or programmed when duty-timer SW fires. All
registers listed in Tables 2.9 are affected by activating this mechanism, which provides a

complete view of the current state of the whole chip.

The computation of signatures and blocksums for external verification can be started

and stopped by a SYNCRUN event, a software snapshot, or at the beginning of an amortiza-
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element type description

HWSNAP pin triggers a hardware snapshot

MSSNU cs:(+31,+8) sample of upper NTP-Bus portion

TSSNU (+7,—24) sample of lower NTP-Bus portion

ACCSNU | (—8,—23):(—8, —23) | sample of A-Bus

SWSNAP pseudo triggers a software snapshot

SW (+31,—16) duty-timer to trigger a software snapshot

Table 2.11: UTCSU Elements for Snapshots

tion phase. Configuration bits in register UTCCONF1 must be set accordingly to enable the
desired operation. Furthermore, these events (except of SYNCRUN) latch the results into
appropriate registers as given in Table 2.12. Usually, the period over which these com-
pression functions are calculated include the pure phase, the length of which is provided

by counter PUREPHASE for external verification purposes.

element type description

MSSIG 32 bit signature of macrostamp portion of time
TSSIG 32 bit signature of timestamp portion of time
ACCSIG 32 bit signature of upper and lower accuracy
MSSUM 32 bit blocksum of macrostamp portion of time
TSSUM 32 bit blocksum of timestamp portion of time
ACCSUM 32 bit blocksum of upper and lower accuracy
PUREPHASE | 32 bit counter | duration of pure phase in oscillator ticks

Table 2.12: UTCSU Elements for External Verification

2.4.4 Design Methodology

The chip design process evolved in several stages. In the following we document them

briefly by pointing out their particular objective and the tools used.

Starting out from the functional specification of [62], an elaborate process of successive
refinement was conducted that eventually ended up in coding and synthesizing all required
units, see [28]. Based on this knowledge, we worked out a complete behavioral VHDL
description of the UTCSU. At the same time, we coded a simulation model of the node
consisting of a basic VHDL model of both CPU and embedding hardware including
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the COMCO. At the next stage, algorithmic operations were verified to ensure that all

required functionalities are present and behave as required. Again, this model was refined
and recoded to meet our specification and to make the code ready for synthesis.

To obtain a gate-level netlist, we used SYNOPSYS Design Compiler for synthesis into
the ES2 0.7 pym standard cell CMOS process foundry. A postprocessing tool was used
to verify the resulting code against the behavioral simulation. Table 2.13 summarizes
some technical chip data derived at this stage. Afterwards, SYNOPSYS Test Compiler
inserted full scan path logic with a multiplexed flip-flop style and boundary scan logic
according to IEEE 1149.1. CADENCE DFWII back-end tools finalized the design with
place&route for ES2. Timing requirements and technology rules were cross-checked by

parasitic extraction.

item value

chip area 105 mm?

max. operating frequency | 25 MHz

equivalent gates 66,500
pins 208

Table 2.13: UTCSU Chip Data

2.5 Relation to other Approaches

Despite of the large body of related research work on clock synchronization, there are
only a few papers that deal with hardware support. In fact, most published papers
restrict their attention to purely software-based approaches, targeting a precision in the
ms-range only. A remarkable exception is the software-based synchronization scheme
of [72], which “sprays” external time obtained via GPS into broadcast-type LANs with
a precision/accuracy in the 10 ps-range. The utilized a posteriori agreement technique,
however, rests on the strong assumption that at least one broadcast among f+1 attempted
ones is completely fault-free.

In [24], it was shown that considerably better results can be achieved with any clock
synchronization algorithm if some dedicated hardware support is present. In fact, the
pioneering CSU briefly discussed therein, consult [42] for details, allows to construct
synchronized clocks with a precision in the 10 us-range for broadcast networks. Even
better results are claimed for the CSU’s successor described in [23], which is tailored

to fieldbusses for automotive applications. The stated worst case precision of a few us,
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however, is quite optimistic.!@ Another hardware-assisted clock synchronization scheme
for (not necessarily fully connected) point-to-point networks is briefly outlined in [45]. It
is also inspired by [24] and targets a precision in the 100 us-range. A full assessment,

however, is impossible due to lacking details.

Our NTI also leans on the general hardware architecture proposed in [24]. In fact,
we utilize the same (DMA-based) method of packet timestamping, although extended
by several “uncertainty-saving” engineering improvements. For example, instead of trig-
gering a receive timestamp upon occurrence of the packet reception interrupt (after the
whole packet has been received), we generate this trigger when a specific address within
the receive buffer is written upon CSP reception. In addition, our N'TT supports different
offsets for timestamp triggering and transparent mapping, which can help in reducing the
effects of COMCO-peculiarities upon ¢, see Section 2.3.1.

The apparent similarities between the CSU and our UTCSU-ASIC, however, are only
implied by the general requirements put on any hardware support for clock synchroniza-
tion. In fact, our UTCSU differs from the CSU in many important ways:

e The UTCSU supports an interval-based clock synchronization paradigm, which re-

quires maintenance of local accuracy intervals, see Section 1.2.

e Our approach aims at a worst case precision/accuracy in the 1 us-range, which
demands a considerably improved granularity as well as excellent rate and state

adjustment capabilities.

e We employ fundamentally different implementations of the vital functional units
on-chip the UTCSU. The strikingly elegant and simple adder-based clock design,
for example, surpasses any existing approach we are aware of. This is also true for
the unwieldy clock device of [23], which may be viewed as a concatenation of an

adder-based clock and a counter, see [62].

e The UTCSU provides features like hardware support for continuous amortization

and leap second insertion/deletion, which are not found in alternative approaches.

e Last but not least, the tremendous advances in VLSI technology allowed us to over-
come the CSU’s obvious design limitations. Our UTCSU provides dozens of wide
internal registers (64 bit NTP-time format + 32 bit accuracy) and many additional
units like application timestamping features and interfaces to GPS receivers, which

would have been impossible to accommodate in the late 80ies.

iIn fact, those figures have been obtained by completely ignoring the large granularity G = 1 us of
the utilized clock, which has a tremendous impact on the achievable worst case precision, see Chapter 3
and 5.
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Relating our NTT to purely hardware-based approaches, in particular, phase-locked-
loop clocks and dedicated GPS receivers, is more difficult due to different system as-
sumptions. For example, PLL-clocks provide a superior accuracy/precision down to the
ns-range, but require a dedicated and fully connected clocking network, recall our classi-
fication in Section 2.1. Hence, solutions like [46] cannot be used in distributed systems

like ours, where nodes are interconnected by a standard data network only.

On the other hand, in view of the negligible costs of GPS receivers, it is tempting to
solve the clock synchronization problem simply by equipping each node of a distributed
system with a modular GPS timing receiver. Although this solution provides an excellent
accuracy/precision in the 100 ns-range, it is not feasible when stringent fault-tolerance
requirements are to be met. First of all, it is arguable for certain fault-tolerant applications
to make a pivotal service like clock synchronization completely dependent upon a system
with single points of failures (e.g., in the GPS control segment, see [5]). Moreover,
although GPS receivers provide reliable information most of the time, it is nevertheless
true that erroneous output may occur: We conducted a 2-month continuous experimental
evaluation [16] of the output of six different GPS receivers, which confirmed that it is
problematic to always trust the output of a GPS receiver. A real-time systems architecture
like the one of [15], which simply phase-locks an internal clock to the 1PPS output of a
GPS timing receiver, can therefore assign incorrect timestamps —taken arbitrarily in a
one second interval— if there is just a single incorrect 1PPS pulse. In [12], it was even
noted that a prototype TDMA communications system at MOTOROLA eventually broke
down due to a certain GPS failure.

Apart from fault-tolerance considerations, there are also practical problems with ded-
icated GPS receivers that severely limit their applicability. Just consider the problem of
accommodating and connecting the “forest” of antennas required for a, say, distributed
factory automation system with 100 nodes. After all, any GPS antenna needs full view
of the sky and is quite sensitive to multipath reception caused by buildings and other
obstacles. Techniques for antenna multiplexing might be used to reduce the number of
required antennas, but such techniques reduce the signal quality and can hence serve a
few GPS receivers per antenna only. Another problem with dedicated GPS receivers is
the large time-to-satellite-fix, which implies that it may take 30 seconds or more until
correct time information is delivered after power up. This in turn implies a very large

node join in case of re-integrating a failed node.

On the other hand, our NTT in conjunction with interval-based clock validation pro-
vides a way to escape from all the abovementioned problems by simultaneously increasing

the fault-tolerance degree and decreasing the number of GPS receivers required in the
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system. This is basically done without additional costs, since our technique uses the
existing data network only. The only price paid is a slightly worse precision/accuracy,
which is hopefully acceptable for most applications. We should add that the 1 us-range
precision/accuracy claimed for our technique is worst case, i.e., almost never attained in
practice. In fact, some preliminary conducted measurements/simulations indicate that
the average case precision/accuracy is at least one order of magnitude better than the

worst case one.

2.6 Summary and Future Work

The hardware implementation of highly accurate/precise synchronized clocks in the real-
time systems domain faces two difficulties: First, a clock circuitry is necessary for main-
taining local time/accuracy with sufficient state graininess and rate dynamics. Second,
recording and generating events in the proximity of the clock has to be done with minimal
uncertainty. Only profound and well designed hardware allows to meet these require-
ments. Hence, a major result of our research is the development of an NTI M-Module
that provides a cheap way of extending state-of-the-art real-time systems technology with
fault-tolerant synchronized clocks with a worst case precision/accuracy in the 1 ps-range.
The NTI is built around our UTCSU-ASIC that incorporates adder-based clocks and
sophisticated event handling facilities. In this chapter we gave the specification of the
UTCSU in terms of 16 rules focusing on the key implementation parts, and presented a

basic programming model.

We are currently negotiating a pilot industrial project in the area of on-line fault
location for underground power cables. The —already patented— idea is to equip each
incoming/outgoing power trunk in a power plant/transformer station with a detector
that produces a digital signal when a transient indicating a cable break or short-circuit
arrives. This signal is fed to the application timestamp input of the NTT of a nearby
located microprocessor node, which is in turn connected to all the other nodes in the
same power plant/transformer station by a fiber-optic data network. By relating the
timestamps gathered at both ends of a cable in case of damage, it is possible to determine
the fault location within a few 10 meters.

Although this is by now the only practical application we are aware of that really
requires our high precision/accuracy, we are nevertheless convinced that others in com-
puter science, like multimedia or mobile computing, will eventually emerge when enabling

technology is available.
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Chapter 3
INTERVAL-BASED CLOCK STATE SYNCHRONIZATION

3.1 Introduction

One important problem that needs to be addressed when dealing with distributed real-
time systems is the issue of global time. To support very large —world-wide— distributed
applications, like automatic instrument landing systems (ILS), for example, each com-
puting node in the system should have local access to a reliable system time satisfying

the following two application requirements:

(A) Accuracy (= maximum deviation of local clock reading from real-time)

Time rules daily life and for that reason most commercial computer applications, for
instance a flight reservation system. Hence, system time must have a well-defined re-
lation to the only official and legal world-wide standard Universal Time Coordinated
(UTC), which is a “paper clock” computed from the weighted average of approxi-
mately 200 atomic clocks located all over the world, with leap seconds occasionally
inserted /deleted to keep UTC close to astronomical time (not exceeding a deviation
of 0.9 seconds to UT1). It is made publicly available world-wide primarily by means
of radio transmission, most notably by the NAVSTAR Global Positioning System
(GPS), which has changed the world of accurate time and position measurement

completely, see [5] for an up-to-date overview.

Providing an accurate global time in distributed systems is usually termed as the
external clock synchronization problem, due to the fact that UTC has to be provided
externally to the system. The probably most well-known solution is the Network
Time Protocol (NTP), which was designed to establish a global time related to
UTC in the Internet, see [38] or [40]. NTP provides its clients with an average
accuracy below 10 ms, which amply fulfills the modest accuracy requirements of

typical applications.
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(P) Precision (= maximum difference of simultaneous local clock readings)

Algorithms for (fault-tolerant) distributed systems are usually considerably simpli-
fied and improved when approximately synchronized local clocks are available, see
[27] for some examples. Distributed real-time systems depend upon precise global
time even at a very low level of operation. For example, timestamping is often
employed for establishing a global order of (external) events occurring at different

nodes.

Providing mutually synchronized local clocks is known as the internal clock syn-
chronization problem, and numerous solutions have been worked out (at least in
scientific research) under the term fault-tolerant clock synchronization, see [65] for
an overview. In fact, there are more than 60 papers listed in the 1993 bibliography
[75] of clock synchronization in distributed systems. The actual precision require-
ments of typical applications are in the range below 1 ms, although increasingly
demanding applications like an airborne flight control system supporting ILS will
certainly push these requirements down to the ps-range. Aiming at that high pre-
cision is also advantageous w.r.t. improving the performance of most distributed

algorithms.

Different components (i.e., applications) within a heterogeneous distributed system
have usually different requirements concerning accuracy and/or precision. However, it
should be clear that a global time that satisfies both requirements simultaneously is
preferable over a solution that provides “translations” between parts of the system em-
ploying their own idea of precise/accurate time, see [25].

Unfortunately, it turns out that establishing a precise global time that also relates
to some external time standard like UTC in fault-tolerant distributed systems is not a
simple matter of combining techniques from (A) and (P). Informally, it is difficult to
add accuracy to existing solutions for internal synchronization, since such algorithms are
necessarily reluctant to obey “authoritative” information of a few UTC time sources due
to fault-tolerance. On the other hand, whereas high precision is of course implied by high
accuracy, it is usually not feasible to build a fault-tolerant time service that is purely

based on accuracy, since highly accurate UTC is not continuously available.

Although it has been recognized early that the problem of fault-tolerant external clock
synchronization constitutes a research topic in its own right, see [4], it did not receive much
attention until recently. A short overview of existing earlier work is given in [50], whereas
our research on interval-based clock validation aims at a solution of the external clock

synchronization problem for large-scale, fault-tolerant real-time systems. Clock validation
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algorithms are based on the idea of verifying whether the highly accurate external time
provided by non-faulty UTC time sources is consistent with some less accurate but more
reliable “validation time” formed by exchanging information of all local clocks in the
system. If so, the distinguished time is accepted, otherwise, it is discarded and the nodes

rely on the validation time instead.

There might of course be phases of unavailability of accurate time information from
the UTC time sources. For clock validation, this means that the system automatically
undergoes a transition to internal synchronization, and a transition back to normal opera-
tion when UTC is available again. This flywheel operation implies, however, that the clock
synchronization algorithm (employed for computing the validation time) must not only

ensure precision but should maintain high accuracy as well.

When system time must have a defined relation to external time, there is a promising
alternative to the “one-dimensional” point of view sufficient for internal synchronization,
viz. the interval-based paradigm introduced in [35] and [37]. Interval-based algorithms
represent time information relating to an external standard like UTC by intervals that
are known (better to say supposed) to contain UTC. Given a set of such intervals from dif-
ferent sources, a usually smaller interval that actually contains UTC may be determined,

even if some of the source intervals are faulty.

We consider the interval-based paradigm as being exceptionally suitable for dealing
with fault-tolerant external clock synchronization. Since accuracy is maintained dynam-
ically here, it provides an average case behavior that is much better than the worst case
one. By contrast, worst-case accuracy bounds for internal synchronization algorithms
are necessarily static in nature, allowing no improvement w.r.t. average case at all. Sur-
prisingly enough, however, interval-based approaches did not receive much attention in
research. To our knowledge, there is only Lamport’s technical report [25], Marzullo’s
work [36] on replicated sensors, and our paper [50] introducing interval-based clock vali-
dation that further exploit ideas of [35]. However, it is worth mentioning that both DTS,
the Digital Time Synchronization Service of OSF /DCE, and newer versions of NTP are
built upon the interval-based paradigm, see [43] and [40], respectively.

This chapter provides description and analysis of a simple interval-based algorithm
suitable for internal clock synchronization, which is generic w.r.t. the convergence function
employed. Thus, our results are given in terms of some characteristic parameters of the
convergence function, see [57]. In order to determine precision and accuracy of a particular
instance of our algorithm, it only remains to determine the characteristic parameters of

the particular convergence function, and to plug them into the generic results.
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The outline of the rest of the chapter is as follows: Section 3.2 introduces the interval-
based paradigm, focusing on both accuracy and precision intervals. The system model
for processors, local clocks, and communications in conjunction with a discussion of the
(generic) fault model is contained in Section 3.3. Section 3.4 eventually provides our
clock synchronization algorithm and outlines some of its properties. The generic analysis
of precision and accuracy, along with the definition of internal global time and the treat-
ment of continuous amortization, is given in Section 3.5. Finally, some conclusions and

directions for further research are appended in Section 3.6

3.2 The Interval-Based Paradigm

To introduce the interval-based paradigm, we have to establish some basic notation and
operations on intervals first. We use bold letters like I to denote a real interval I = [z, y],
x < y, with lower and upper edge z and vy, respectively; the empty interval () satisfies
Ft:t € (. A set of intervals is denoted by a calligraphic bold letter like Z. For an interval
I = [z,y], ||I|| = y — x denotes its length and center(I) = (z + y)/2 its centerpoint. The
sum of two intervals is defined by [z,y] + [u,v] = [z + u,y + v], the scalar product by
b[z,y] = [bx, by] for b > 0, and I +a = I +[a, a] = [x+a, y+a] for some arbitrary scalar a.
For two intervals [z, y], [u, v], the intersection reads [z, y]N[u, v] = [max{z, u}, min{y, v}]
ifu <yand v >z, or ) otherwise, and the union is [z, y|U[u,v] = [min{z, u}, max{y, v}],
even valid for [z, y] N [u,v] = 0.

Most of the intervals encountered in our setting contain a distinguished reference
point that partitions the interval into a negative and a positive accuracy. To that end,

we introduce the notation

I=rtal=[r—-a,r+a']= 29, (3.1)
where
r = ref(I) I'’s reference point (also called midpoint),
at = acct(I)>0 I’s positive (upper) accuracy,
a- = acc(I)>0 I's negative (lower) accuracy,
x = left(I)=r—a~ I’s lower edge (envelope),
y = right(I)=r+at I’s upper edge (envelope).

Note that we usually suppress the subscript 7 in intervals of the form [r — a™, 7 + o],
for brevity.
When referring to an interval [r +a], @ = [—a~, o] denotes its interval of accuracies

and o = ||a|| = ot + " this interval’s length. For intervals I = [r + ) and J = [s + 3],
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we have ||I|| =at +a™ =, center(I) =r+ (et —a7)/2, I +J = [r + s £ v] where
y=a+B=[-(a"+07),a"+ 5], I +a=[r+ a=xafor an arbitrary scalar a, and
bI = [br + p| with p = ba = [—ba—, bat] for any scalar b > 0. There is also a notation
to express intervals obtained from (3.1) by swapping the positive and negative accuracy,

namely

I=[r+a]l=[rFa]j=[r—at,r+a]=[r+aq] (3.2)

where & = [—at, a7].

3.2.1 Accuracy Intervals

The core idea of the interval-based paradigm introduced in [35] is to represent time
information by a time-dependent accuracy interval. More specifically, an accuracy interval
A = A(t) representing real-time ¢ is an interval satisfying ¢ € A. Accuracy intervals
are primarily provided by interval clocks, which are interval-valued functions C(t) =
[L(t),U(t)] with the edges L(t) and U(t) forming lower and upper envelope, respectively,
of real-time ¢. In practice, interval clocks are implemented as an ordinary clock C(¢) in
conjunction with a time-dependent interval «(t) = [—a~ (¢), at ()] of accuracies taken
relatively to the clock’s value, hence C(t) = [C(t) — a (1), C(t) + ™ (2)].

Definition 3.1 (Interval Relations) Accuracy intervals are categorized as follows:

(1) Two accuracy intervals I = I(t1) and J = J(t2) are compatible iff they both repre-

sent the same real-time t; = t; = t.
(2) Two compatible accuracy intervals I and J are consistent iff I N J # ().

(8) An accuracy interval I = I(t) representing real-time t is accurate iff t € I.

Note that two compatible and accurate accuracy intervals are consistent, whereas two
compatible consistent accuracy intervals I,J are not necessarily accurate since possibly
t ¢ INJ. Moreover, consistency is not transitive in general since non-empty intersections
INJ and JN K do not imply I N K # (). However, we have the following lemma:

Lemma 3.1 (Consistency and Intersection) If n > 2 compatible accuracy intervals

I,,...,1I, are mutually consistent in the sense that they are all pairwise consistent, then
=11 # 0.

Proof. Using induction, we first have I' = I # (), and provided that I* ' = -1 I; #

we conclude non-emptiness for I*: Assuming the contrary, I, would lie entirely left (or

right) of I*' so that it cannot be consistent with the interval I, 1<1<k—1 whose
left (right) edge delimits I*~!. O
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3.2.2 Precision Intervals

Apart from the requirement of being accurate, a property of a single accuracy interval, we
also have to deal with the precision requirement that applies to (the reference points of)
a set of accuracy intervals. In the traditional framework, a set of ordinary clocks is called
precise with precision 7 during some time interval D, iff |C,(t) — Cy(t)| < wfort € T
(and clocks progress linearly with ¢). In our setting, precision can easily be added to
accuracy, since none of the interval relations given in Definition 3.1 involves the reference
point; it is not required for accuracy purposes and can in principle be set to any point

within the accuracy interval.

Unlike traditional approaches, we utilize a definition of precision that is based on

intervals, inspired by the following lemma:

Lemma 3.2 (Precision Equivalence) Given some w = [—n,nt] with #—, 7" > 0

and m = ||w|| =7~ + 7, and n > 2 non-negative real numbers r1, ..., ,, we have

n
lri —rj| <7 foralli,j = ([rj £ =] # 0.
j=1
Proof. To show direction <, we note that there is some ' € (j_;[r; £ 7] so that
immediately ™ 2 maxlSiSn{ri} — minlSan{rj} 2 |Ti - ’f'j| for all Z,] The other direction
follows from Lemma 3.1, since |r; — ;| < 7 for all 4, j implies that the intervals [r; £ ]

are mutually consistent. O
This suggests the following definition of precision:
Definition 3.2 (Precision Intervals) Given w = [—7~,7n"] with 7=, 7% > 0 and 7 =

l|w|| =7 + 7", and a set of n > 2 compatible accuracy intervals T = {I,,...,I,} with

I, = [r; &+ a;], the w-precision interval I, associated with I; is defined as
jj = [’f‘j + 71']
The set I is called mw-precise iff N;_4 j]. # (.

Keep in mind that the associated m-precision interval I of an accuracy interval I
is not separately maintained, but rather computed from the reference point of I. Thus,
precision and accuracy are orthogonal issues here. Note also that we cannot safely assume

I, C I, in case of small accuracies.

Our definition of 7r-precision has several immediately apparent consequences, most

importantly, that 7r-precision implies precision 7:
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Lemma 3.3 (w-Precision vs. Precision) Given a mw-precise set T = {I,,...,I,} of

n > 2 compatible accuracy intervals I; = [r; + o] and m = ||7||, then
(1) ||L; U L[| < 2 for any 1 <i,j <m,
(2) |ri —r;| <7 for any 1 <4i,j <n.

Proof. The first assertion follows from the fact that I ; and I ; are consistent and that
||I,|| < mfor 1 < I < n, according to the definition of the associated r-precision intervals.

The second assertion is an immediate consequence of Definition 3.2 and Lemma 3.2. O

Lemma 3.4 (Precision by Accurateness) If the n > 2 compatible accuracy intervals
Z={I,,...,1,} with I; =[r;+ ay] are accurate and oj < o, af < o' for all j, then

T is also m-precise for any ™ 2 [—a~,a™].

Proof. Using 7w D [—a~, a*] in Definition 3.2, we have I; D I; and the statement of the
lemma follows from ¢ € Nj_, I; # 0. O

Lemma 3.5 (Composition of Precisions) Let two sets T = {I,...,I,} and J =
{J1,....dm} of compatible accuracy intervals be m-precise and w'-precise, respectively.
If ( i1 j]) N ( ) .AIZ) # 0, then the set TU J 1s w U w'-precise.

Proof. Since the m-precise set Z and the 7'-precise set J are also w U 7'-precise, the

statement follows immediately from Definition 3.2. O

Our definition of mr-precision is a key issue in our novel interval-based framework for
precision analysis. Nevertheless, there are only a few occasions where we actually face
m-precise intervals according to Definition 3.2. In most cases, we employ the slightly
stronger predicate of m-correctness as provided in Definition 3.3. It characterizes the
m-precision interval I associated with an accuracy interval I as being accurate w.r.t. an
appropriately defined internal global time T = 7(t). Actually, I = I(t) is called mr-correct
iff botht € I'and t € I, in other words, iff I is accurate w.r.t. both 7 and ¢, as shown in

Figure 3.1.

At this point there is no need to elaborate on how internal global time is actually main-
tained; consult Section 3.5.1 for details. Intuitively, we exploit the fact that our clock
synchronization algorithm maintains the set C = C(¢) of non-faulty interval clocks C,(?)
so that it is mo-precise at (periodic) resynchronization real-times (k) characterizing the
beginning of the (k + 1)-th round (k > 0). This property allows us to define round £’s
unique internal global time 7*) = 7(®)(¢) by 7®) (1) = 7*)(t”BE)) 4 (+ — tBK) for any
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Figure 3.1: Accuracy and Precision Intervals

real-time #; the “fixed point” 7()(¢%*)) is some arbitrary value satisfying 7 (%)) ¢

Ne,ec C;(t®®) £ . For large accuracies, it is likely that 7(*)(t) # ¢, although
Lemma 3.4 justifies that choosing 7(¢) = ¢ is possible if accuracies are sufficiently small
(i.e., 7 > «). However, internal global time of any round progresses as real-time does,
so that it can be used interchangeably with real-time if one is interested in measuring

durations only.
Definition 3.3 (w-correctness) For w = [—7n~,nt| with 7,7t >0,

(1) an accuracy interval I is w-accurate (w.r.t. internal global time of round k) iff the
w-precision interval I = I(7®)) = j(T(k) (t)) associated with I satisfies 7®) e I,

(2) an accuracy interval I is mw-correct (w.r.t. internal global time of round k) iff I is

both m-accurate and accurate,

(8) a set I of compatible intervals is m-correct if all I € I are m-correct.

Lemma 3.6 (Relation 7" and 7) If the intervals I1(t1) = [T} £ a1] and I5(ts) = [To £
o] are mi-accurate and ma-accurate (w.r.t. internal global time of the same round),

respectively, and 71 = 7(t1), 72 = 7(t2), then 71 — 7o =11 — ty € Tt — Ty + 71 + To.

Proof. Since, for 1 = 1,2, 7; € L(Ti) according to the asserted m;-correctness of I;, we
have T; — m; < 7; < T; + m;". Subtracting those inequalities and recalling the notion of
swapped intervals easily provides the statement of the lemma; note that m — 7, = t; — ¢

since internal global time (of the same round) progresses as real-time does. O

In the following we will frequently employ the abbreviation 7 = 7(t) = 7*)(¢) as above
when the particular round £ is clear from the context. Moreover, we can usually unam-
biguously write I = I(t) = I(7*)) for 7®) = 7*)(¢), meaning that I represents 7*)(¢) iff
I represents t.
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The following lemma is a simple corollary of Lemma 3.6 for t; = t, = t:

Lemma 3.7 (Distance Reference Points) If the compatible intervals I,(t) = [T1 +
aq] and I(t) = [Ty + ] are wi-accurate and mo-accurate (w.r.t. internal global time of

the same round), respectively, then Ty — Ty € ™1 + To.

Note that this result, which is of central importance for precision analysis, can be
viewed as a consequence of the fact that both I,(7) and I(7) must contain 7, so that
Ty—Ti € [~(mg +m1),m +7f | =m + .

It should be obvious that a set of compatible m-correct intervals Z = {I,...,I,} is
m-precise due to 7 € j_; I ; # 0. Therefore, Lemmas 3.3-3.5 are valid for w-correct sets
as well. Of course, since our precision analysis is primarily based upon those lemmas,
it would in principle be sufficient to deal with m-precise intervals. Introducing internal
global time and m-accurateness, however, allows to reason about precision by considering
each local interval clock separately, i.e., without explicitly relating it to the other clocks
in the system, which greatly simplifies the analysis.

As a consequence, most of the intervals encountered in our analysis are ww-correct ones,
so that it does not make much sense to adhere to a strict separation of accuracy/precision
terminology. In the remaining sections, will use interval as a standard term of generic
meaning, while accuracy interval or precision interval is only used if we want to stress the

particular “instance” of the interval in question.

3.3 System Modelling

In this section, we will provide the system model and its parameters. Similar models
are well-known from the analysis of internal clock synchronization and other distributed
algorithms for fault-tolerant systems. However, non-standard features are incorporated
in our discrete clock model, which is interval-based and deals with non-zero clock granu-
larity, and in the model of the communication subsystem, which contains parameters for

broadcast latencies and limited transmission bandwidth.

We consider a distributed system consisting of n nodes, which may communicate
with each other by message passing over a suitable communication network. Each node
is equipped with a processor that executes the clock synchronization algorithm, an ad-

justable local clock, and a network interface.

As we will see later on, all computations required for clock synchronization purposes
are essentially periodic and require integer arithmetic only. As far as the execution speed

of the processor executing the algorithm is concerned, we assume the following:
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Assumption 3.1 (Execution Times) A single computation required for clock synchro-
nization purposes at a non-faulty node p is completed within 7, seconds. Let Nmax > Mp,

Nmin < 7p be suitable uniform bounds on the execution time of all non-faulty nodes p.

Note that we do not make further assumptions about application tasks the processor
might perform concurrently with clock synchronization; a fault-free node p must solely

guarantee the bound 7.

In the following two subsections, we will develop the system model for local clocks
and for the communication subsystem without considering faults. The fault model is

discussed in the last subsection.

3.3.1 Discrete Local Interval Clocks

The local clock of a node is assumed to be built upon a physical clock (usually driven by
a quartz oscillator) of non-zero granularity G (micro-)seconds, which allows adjustment
of rate and state. Non-zero granularity implies that the clock is incremented by G at
discrete points in real-time (called clock ticks) only, posing a particular challenge to

system modelling.

A clock is usually modelled as a monotonic function C' : t — T mapping real-time t
to logical time T = C(t). Note that we use the convention of writing upper-case names
(like T') for logical time and lower-case ones (like t) for real-time values throughout the
paper. Most often, C(t) is assumed to be a continuous (differentiable) function, although
existing clocks are modelled appropriately by discrete step-functions only. Up to our
knowledge, however, discretization and the adverse effect of non-zero clock granularity
has been investigated only in [64].

In our analysis, we employ an alternative discretization that is more suitable for the
interval-based paradigm. Instead of considering clocks 7' = C(t) in the first place, we
start with inverse clocks t = ¢(T) mapping logical time to real-time. More specifically,
“Inverting” the approach of [58], we assume that real-time ¢ advances instantaneously a
(varying) real value g at each logical tick of the clock, and remains constant everywhere
else. Clock ticks take place every (fixed) G > 0 logical time seconds, modelling non-zero
clock granularity.

Of course ¢(T) is only meaningful for 7" = kG being a multiple of the clock granular-
ity G. Unfortunately, when ¢(T') is actually defined as the inverse of the step-function
modelling clock C(t), it is multi-valued (infinitely many values, representing the progress

of real-time) at T = kG. We enforce a proper function, however, by defining ¢(kG) to be
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the value before advancing the clock by g, i.e., limg_,r ¢(T") = ¢(T) = limp 7y c(T")—g
for T = kG. The following Figure 3.2 illustrates this.
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Figure 3.2: Discrete Clocks

Note that this definition of ¢(7') calls for setting the clock C'(6)’s value at real-time 6,
where a tick takes place, to the value after advancing C by G, i.e., limy_g_ C(t') + G =
C(#) = limy_,g C(t'). This is due to the fact that C(¢) and ¢(7") must be inverse at real-
time 0 where C(t) ticks, thus § = ¢(©) for © = C(f). In fact, we assume that discrete

local time approximates continuous local time by a leading (majorizing) step-function.

In practice, a local clock C,(t) is primarily characterized by its intrinsic rate r, = G/ g,
which gives the amount of logical time seconds the clock advances per real-time second.
More specifically, one usually assumes that there is some p; , P, <K 1, that account for the
clock’s rate deviations due to oscillator frequency offset, aging, temperature dependency,

noise, etc., such that

1 _ _
1—pf +0(pt?) = <r,< —=1+p, +O0(p,?). (3.3)

In our clock model, we will employ the equivalent condition 1 —p, <r, <1+ Py on
the intrinsic inverse rate r, !, i.e., the rate of the inverse clock, which gives the amount

p
of real-time seconds the inverse clock ¢,(T") advances per logical time second.

1

Unfortunately, granularity G' and intrinsic inverse rate 7, are not sufficient to de-

scribe completely the behavior of discrete clocks. First, rate adjustment uncertainties are
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introduced when local clocks utilize an “artificial” rate generated by discrete rate adjust-
ment techniques. Since it is difficult to fine-tune the frequency of an ordinary quartz
oscillator (as opposed to a voltage controlled oscillator, where this is easy), techniques
have been developed that allow rate adjustment of a clock by occasionally tampering
with raw oscillator ticks. This type of clocks tick at the intrinsic rate most of the time,
whether they are adjusted or not. However, when the accumulated deviation between
intended and observed local time is about to exceed some bound u, the next tick is mod-
ified: If the clock is to be slowed down resp. speeded up, the next regular tick is delayed
resp. advanced. Of course, this causes an additional uncertainty in the relation between
logical time and real-time not explained by the intrinsic clock rate, which must be taken
into account explicitly.

In addition, we have to account for the fact that practical clocks cannot be state
adjusted with infinite resolution, but only with a certain clock setting granularity Gs < G.
Whereas G's = G is easily provided by making the clock register writable, it is considerably
more expensive to implement fine-grained clock setting capabilities (Gs < G). Apart
from employing state adjustment controlled by a continuous amortization algorithm, see
Section 3.5.3, instantaneous state correction could be implemented directly by utilizing a
clock register with higher (internal) resolution G or, alternatively, by delaying/advancing
the time of setting the clock. In any case, G's should be considered as the “internal”
granularity of the clock, as opposed to the (coarser) granularity G available for external
clock reading.

Note that fine-grained clock setting and discrete rate adjustment should not be con-
sidered independent of each other, as it might be the case in a sub-optimal clock design.
More specifically, we assume that the error between intended and observed local time
caused by rate adjustment is added to the initial clock setting error prior to deciding
when oscillator ticks are to be modified. For example, in case of u = @, if a clock driven
by a slow oscillator is set to G + G/2, an additional clock tick should be introduced as
soon as the accumulated error of the subsequent clock ticks becomes G/2, otherwise the

total error will exceed u = G by then.

With these preparations, we are ready for stating our basic model of local clocks. It
does not incorporate explicit rate adjustment capabilities required for continuous amor-
tization, which are added in Section 3.5.3. However, rate adjustments may already be

incorporated here for fine-tuning of the intrinsic rate.

Assumption 3.2 (Local Clocks) FEach node p is endowed with a discrete local clock
Cy(t), which increments by G > 0 seconds at each clock tick and allows state adjustment

with clock setting granularity of at least Gs = G/ K seconds, for some integer K > 1. In
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the absence of resynchronizations, intrinsic inverse rate and rate adjustment uncertainty

of the clock of a non-faulty node p are such that

with ©; = Cy(8;) is guaranteed for any sequence of i > 2 successive clock ticks 6;, 1 <
j <i. For p, = [—p,,py] denoting the clock’s intrinsic inverse rate deviation bounds and
up = [~u,,uf] its mazvimum rate adjustment uncertainty, let p. = [~ Pmaxs Prax] 2

Up pp with Pmax = pr:lax + pr—ir—lax and Umax = [_ur:lax’ur—ir—lax] 2 Up up with Umax = U’r;a.x +

ut. = O(G) be suitable uniform bounds for all (non-faulty) nodes p.

max

Of course, inequality (3.4) is also valid for 7 = 1, although the bounds are not partic-
ularly meaningful, besides from the fact that u, can be used to account for the fractional

clock setting value (< @) in case of fine-grained clock setting.

It seems appropriate here to sketch how conceivable clock implementations map to the
above model, i.e., how G, p,, G5 and u, are to be chosen for a certain implementation.
First of all, we note that u, = u; for all discrete rate adjustment techniques we are aware
of. More specifically, although u; bounds the logical vs. real-time deviation A caused
by a fast clock (say, A > 0), whereas u, is meaningful for a slow clock (A < 0), it is
apparent that both A > 0 and A < 0 occurs when slowing down or speeding up the clock
via rate adjustment. In fact, the actual sign of the deviation A depends on whether a
modified tick is at the beginning (j = 1) or beyond the end (5 > i) of the sequence of
ticks under consideration. Consequently, it is the maximum value of any scenario that

determines u, = u;.

The particular clock models considered are as follows:

o Counter Clock: Implemented by means of a fixed-frequency oscillator that incre-
ments a counter by G = 1/f,,. (usually, G = 2% for binary counters or G = 10°*
for decimal ones) at each tick, it follows that p, is the intrinsic inverse rate devi-
ation bound p,,, of the oscillator, Gg = G, and u, = [0, 0] since there are no rate

adjustment capabilities.

e Voltage Controlled Oscillator (VCO): Replacing the fixed-frequency oscillator above

0

osc fOT

by a VCO adds (continuous) rate adjustment capabilities, so that G = 1/
the intrinsic (non-adjusted) oscillator frequency f2 ., P, = P2, u, = [0,0], and

Gs < G provided state correction is done by continuous amortization.

e Tick Advancing/Delaying: One technique for discrete rate adjustment, employed
in the CSU of [24], is based on a fixed-frequency oscillator running at a multiple
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fose = Mfeiock, m > 2, of the desired clock frequency fuoer = 1/G. Without rate

adjustment, every m-th oscillator tick is used to increment the counter, so that
G = 1/faock = m/fose- To speed up the clock, the m — 1-th oscillator tick is
used occasionally, that is, when the accumulated deviation between intended and
observed logical time is about to exceed G/m = 1/f,s.. Similarly, the m + 1-th
oscillator tick is used occasionally if the clock is to be slowed down. Therefore, it
is immediately apparent that p, = p,s., Gs = G/m because clock setting may be
delayed in multiples of G/m (both for instantaneous state correction and continuous
amortization), and u, = [-G/m~+O(Gp,sc), G/m~+O(G posc)], where the remainder
terms account for the deviation between real-time and (observed) logical time.

Tick Insertion/Deletion: This approach is very similar to the above one and is
most efficient for foc = 2feock, S0 that G = 1/ feoer = 2/ fosc. However, instead
of shifting all (future) oscillator ticks as a consequence of any single correction
instant, it just inserts an additional oscillator tick between two regular ones in case
of speeding up, and suppresses a regular tick if slowing down the clock. Therefore,
future ticks occur at the same instants as they would have occurred if no rate
correction took place. It follows immediately that p, = p,,, Gs = G (both for
instantaneous state correction and continuous amortization) since slowing down
only works in multiples of G (although speeding up would allow G/2), and u, =
[—G 4+ O(Gpose), G + O(Gpose)]-

Adder-Based Clock: This novel clock architecture utilized in our UTCSU-ASIC (see
[62] or Chapter 2) uses a fixed-frequency oscillator that drives an adder instead
of a counter. At each oscillator tick, a high-resolution (Gs < G%,. = 1/ f,s) clock

osc

register is incremented by a programmable register STEP, which usually contains the

0

intrinsic value G° osc

osc’

purposes, with dGs > 0 speeding up and dGs < 0 slowing down the clock. Hence,

It can be modified to any value G,,.+ 0Gs for rate adjustment
an adder-based clock has in fact variable internal granularity, equal to the content
of STEP. State correction (with clock setting granularity G's) can be carried out by

continuous amortization if STEP holds appropriate increments.

The clock’s actual granularity G, which should satisfy G > GY,_ to be meaningful, is
imposed by the fact that the clock register is externally accessible with resolution G
only, resulting in a reading error of up to G. That is, the “fractional part” with reso-
lution Gg < G is not visible externally, but nevertheless (continuously) maintained
internally. It follows that p, = p,,. and u, = [~GY. + O(Gposc), Goye + O(Gpose)]

for reasonable clock rate corrections 0Gs = O(pysc), since the clock register is oc-
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casionally incremented by 2G in case of speeding up the clock (STEP > @), and not

incremented at all in case of slowing it down (STEP < G).

Now we will establish a relation between real-time and logical time intervals as mea-
sured on a non-faulty local clock. Recalling the definition of ¢(7T") from the beginning, we
have for any ¢t and T = C(t)

co(T) <t<c(T+G). (3.5)
Therefore, we easily obtain
c(T)=c(To+G) <t—ty <c(T+G)—c(Tp) (3.6)

for any t,to and T = C(t), Ty = C(ty). If t = @ and/or ty = y denotes some real-time
where clock C(t) ticks, we can use the stronger relation § = ¢(©) instead of (3.5), so that
the corresponding G in (3.6) may be dropped (however, < has to be replaced by <). The
following definition helps in unifying this situation.

Definition 3.4 (Synchrony) Real-time t is in synchrony with a node’s local clock C(t)
iff t = 6 for some real-time 0 where C(t) ticks. Let the indicator function of non-synchrony
be defined as

Lo = Iy(t) = { ? ift ’tlez:wi;:ynchrony with C(t), (3.7)
With the help of this definition, we can generalize (3.6) to
c(T) — c(To + Liy20,G) <t —to < (T + LizgG) — c(Tp). (3.8)
For a non-faulty node p, (3.4) immediately provides
(1= p))AT — uy < p(T + AT) — ¢p(T) < (1 + p )AT + u;), (3.9)

for any T', AT being integer multiples of G. Combining this with (3.8), we easily obtain
the following inequalities estimating the real-time interval ¢ — ¢, in terms of the corre-
sponding logical time interval T —Ty = C,(t) — C,(to) for a non-faulty clock in the absence

of resynchronizations:
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Lemma 3.8 (Duration Estimations) Letty andt > ty be two arbitrary points in real-
time and T = C,(t), To = Cp(to) the corresponding points in logical time at node p. If

clock Cy(t) is non-faulty and if there are no adjustments, we have

t—ty < (T=To)(1+p,)+uy +LizeG(1+py) (3.10)
and the converse
b= aer-T,< TS L G (3.11)
1+,01‘f 120G < 0= 1— s to#00G - )

Proof. Due to monotonicity of C,(t), we always have T' > Tj since we assumed t > .
If T > Ty, + G, (3.10) follows immediately from plugging in (3.9) at both sides of (3.8).
Moreover, it is immediately apparent that (3.10) is also valid for T'= Ty and T' = T + G,
although the lower bound is not particularly meaningful. Finally, the converse relation

follows by trivial algebraic manipulations. O

Neglecting terms of order O(p2) and O(Gp,) in (3.11) we easily obtain the common

formula
(t—to)(1 = pf) —uf — LipgG < T =Ty < (t —to)(1+ p, ) + uy + Liyr, G

note that p,, ,o; are swapped here. Apart from u,, u;, this estimate is the one of [64]
improved w.r.t. the quite usual case where ¢ or/and t; is in synchrony with the ticks
of Cy,(t). In that case, there is no need to spoil the appropriate upper/lower bound by
G, actually halving (or even ruling out completely) the adverse effects of non-zero clock

granularity.

We link the above clock model with the interval-based paradigm introduced in Sec-
tion 3.2 by means of the most important drift compensation operation, cf. [25]: Consider
an accurate interval I = I(ty) = [Ty + «] that somehow appears at a node at some arbi-
trary real-time ty. In order to provide an interval I' = I'(f;) representing some arbitrary
real-time t; >ty based on I locally at the node, one should move (the reference point of)
I to the right by ¢; — o, thus providing the obviously accurate interval I' = I + (t; —tg).
Unfortunately, t; — to is not available, but can be approximated via local clock C(t).
Shifting an interval I from ¢, to t; using C(t) is called dragging; it provides the interval
I' =1+ C(t;) — C(ty) = [T £ a]. That interval’s accurateness, however, might be
violated due to the error in approximating t; — to by C(t1) — C(to).
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Deterioration is required to maintain accurateness of the dragged interval. This is
done by “blowing up” the dragged interval’s reference point to an interval accounting for
the maximum possible approximation error given by (3.10), which amounts to enlarge
the positive and negative accuracy of interval I according to (3.12) in Definition 3.5.

Definition 3.5 (Drift Compensation) The result of drift compensation of an accurate
interval I = I(ty) representing an arbitrary real-time to (where C(ty) = Ty) to some
arbitrary real-time t; > ty (where C(t1) = T1) by means of a local clock with intrinsic
inverse rate deviation bound p C p.. and rate adjustment uncertainty w C Umax 15 the
accurate interval I' = I'(t,) defined by

II =1 + T1 — T() + (T1 — To)p +u + Ito#oé + Itl;,ggle, (312)
where
Gp=[0,G1+ pi.)], G=[-G,0], and G =[0,G]. (3.13)

Figure 3.3 shows an example of drift compensated intervals based upon some initial
interval [Ty £+ «], at (equidistant) local times T; = Ty + ¢AT, i > 1, in case of p~ > p™,
a fast (but deaccelerating clock), and u, G < AT. For accurateness, deterioration must

ensure that the resulting interval I' intersects with the line T = t.

t A

fo b . |
[To + Ot] .
+[2AT + (2pAT +u + G + Gp))

12 T s

|
[To + @ C
HAT % (pAT +u + G + Gp)]

to | ...

Ny

To To + AT To +2AT

Figure 3.3: Drift Compensation

A few remarks on drift compensation are appropriate here:
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It is important to realize that the errors due to rate adjustment uncertainties (ac-
counted for via u) do not add up in a single (uninterrupted) drift compensation operation.
Unfortunately, they can add up in subsequent drift compensations that are separated by
some other operation, like network transmission, drift compensation at another node,
or even computation of the convergence function. Therefore, it will turn out that w.y
spoils achievable worst case accuracy and precision even more than granularity does(!),
see Theorem 3.1. However, we should note that it is very unlikely in practice to have
executions where the worst case behavior is actually attained.

Almost any meaningful #; is in synchrony with the local clock, since activities of the
clock synchronization algorithm are usually initiated when the local clock reaches some
predefined value. Therefore, the term involving G p in (3.12) is encountered in our analysis
only a few times, for example, when determining maximum precision, see Theorem 3.1.

Inequality (3.12) is valid for Ty > Ty, although the negative accuracy of I' is not
particularly meaningful (unnecessarily large) when 77 = T, or T} = To+G, recall the proof
of Lemma 3.8. Hence, periods of drift compensation lasting at least 2G are preferable

w.r.t. tightness of the bounds.

Equipped with those prerequisites, we can eventually introduce the clock model suit-
able for the interval based paradigm: Each node p has to provide a local interval clock
C,(t), which is implemented by an interval of accuracies o, relative to the nodes instan-
taneous local clock value C,(t). In the absence of adjustments (i.e., when running at its
intrinsic rate), C,(t) must be accurate despite of the fact that C,(¢) may drift away from
real-time. Hence, a, must be maintained according to (3.12):

Assumption 3.3 (Local Interval Clocks) FEach node p provides a local interval clock

C, (1) = [Cp(t) — ay (1), Cp(t) + af ()] if t = 0 is in synchrony with C,(t),
P [Cp(0:) — 0 (0:), Cp(6;) + ot (6:)] for 6; <t < ;1 otherwise
via a local interval of accuracies oy (t) = [—ay, (t), ogf (t)] of granularity G's taken relatively

to the node’s local clock Cy(t), which is maintained by means of the following operations:

e (Re-)Initializing C,(t%): C, along with o, can be set atomically to a new interval
(all values, including reference point, being integer multiples of Gg) at any syn-

chronous real-time t.
e Reading C,(t): C, along with oy, can be read consistently at any real-time t.

e Deteriorating Cp(0): o, is enlarged by Gp,, at each clock tick 6 of C,. Moreover, at

the first tick after (re-)initializing C) (if not already incorporated due to a reference
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point not being an integer multiple of G), an additional u, is added to incorporate

the rate adjustment uncertainty.

Note that it does not make much sense to maintain accuracies with a resolution below
G, since the clock setting error spoils accuracy by the same amount it spoils the clock
value. Choosing G's as the resolution for accuracies is also advantageous due to the fact
that all computations of the clock synchronization algorithm can be performed by using
integer arithmetic, provided that all non-integer parameters compiled into the algorithm

are integer multiples of Gs.

Of course, the clock synchronization algorithm is responsible for periodically re-
initializing C,(t®) in an accurate way, so that ¢ € C,(t) for all ¢ > ¢® is guaranteed
for a non-faulty node p by accurateness of deterioration, cf. (3.12). The correctness of
this statement involves a subtle issue, though, if applications are allowed to read C)(t)
at arbitrary (non-synchronous) real-times ¢. More specifically, in implementations where
any reading of the local clock is synchronized to clock ticks, as is the case when using our
UTCSU-ASIC, it is of course sufficient to guarantee accurateness for synchronous real-
times (so that only w, must be incorporated). However, in settings that allow reading
of the local clock at arbitrary real-times ¢, reading o,(t) must (explicitly or implicitly)
incorporate G'p as well, since C)(t) has to be accurate for any § <t < 6 + g here.

Deteriorating C), can either be performed by adding Gp, at each clock tick or, in an
accumulated fashion, by adding (C’ (ty) = C (ta_l))pp at the a-th clock reading access at
real-time ¢,. For the adder-based clock in our UTCSU-ASIC we implemented an approx-
imation of the former technique in hardware: Instead of adding Gp, at any clock tick,
we add G, p, at any oscillator tick. This approximation introduces an error of at most

O(Gpp) in o, which vanishes in the already present remainder terms, see Theorem 3.1.

3.3.2 Network Communications

To model the communication subsystem, we first recall that our clock state synchroniza-
tion algorithm operates in periodic rounds, taking place every Ps (logical time) seconds.
At the end of each round, clock synchronization messages (CSM) are exchanged among
the n nodes of the distributed system in a full message exchange (FME). More specifi-
cally, in a single FME, each node p transmits a CSM consisting of the accuracy interval
AL (th) = [Cy(thy) — o (th), Cp(thy) + oo (t2.)] to node g at some real-time ¢, . Applying
a suitable convergence function to the set of received and preprocessed accuracy intervals,
each node eventually computes a local clock correction value that enforces precision and

accuracy.



73

The required communication primitive for this setting is a basic (unreliable) broadcast

operation, something that is easily implemented by means of n send operations in a fully

connected point-to-point network, or even provided in hardware by modern broadcast-

type networks. The most important requirements are upper and lower bounded trans-

mission delays, i.e., synchronous behavior.

Assumption 3.4 (Transmission Characteristics) We assume a synchronous com-

munication network exhibiting the following properties:

(1)

(2)

(3)

If a non-faulty node p of the distributed system initiates its broadcast at some arbi-
trary time t;, there 1s a uniform bound Amax > 0 on the possible delay up to time
t]f when it actually starts the broadcast transmission; Amax S called the maximum

broadcast latency.

If the broadcast of a non-faulty node p starts at time tg, there is a bound w, >
t;‘l — tﬁ > 0 on the delay up to time t;‘l when the transmission to the last node [
required for broadcasting is activated. Let wmax > wp be a suitable uniform bound
called the maximum broadcast operation delay. Moreover, the “indicator function”

of making use of a pure broadcast network is

. (3.14)
2  otherwise.

- { 1 if Wmax = 0 (pure broadcast network),
If some node p activates its transmission to some node q # p at time t]fq and no
transmission fault occurs, node q receives the message at time th, with the transmis-
sion delay §,, = F — t;‘q satisfying

01g € [Opg — €pgs Opg + 545 (3.15)

where 0y, represents the deterministic part and €y, = [—s;q,

certainty of 0, (of course, dpg > €5.). Let €max = [—€maxs Emax] 2 Upgstp Epg With

g4, the mazimum un-

Emax = Emax T Emax AN Omax > Opg, Omin < Opg be suitable uniform bounds for all

(non-faulty) pairs of nodes p, q # p, with the additional technical condition
OminPmax © Emax- (3.16)

Note that this condition expresses the quite reasonable assumption that time-keeping
during transmission by any non-faulty clock is more accurate than exploiting the

synchronous network behavior.
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(4) The accuracy interval in the CSM is transmitted with limited resolution. More
specifically, we assume that the local clock value Cp(t;‘q) 18 transmitted in a way that
preserves its granularity G. Both lower and upper accuracy o, (t5,) and o () are

transmitted with finite resolution Ry = LGg for some integer L > 1; let
Ga=Ry— Gy (3.17)
be the loss in resolution.

We assume that a CSM is timestamped with Cp(t;j‘q) at the moment of actual trans-

mission 4 . not at the moment of initiation tI{ of the broadcast or at the moment tf of

pq’
actually starting it. This ensures that the relatively large maximum broadcast latency
Amax and/or the maximum broadcast operation delay wp,yx does not impair (5;(1 and hence
achievable precision and accuracy. Therefore, we can cope with both the extended ca-
pabilities provided by our UTCSU-ASIC and with traditional settings (Wmax = Amax = 0
and including any uncertainty in e,,).

Our model can be adopted to a wide variety of different networks: A,., > 0 and
wmax = 0 models broadcast-type networks, whereas A\, = 0 and wpax > 0 is appropriate
for point-to-point networks without hardware broadcast capabilities. Note that we can
even deal with approaches that stagger CSM transmissions in time to avoid peak network

load, simply by making wn.x large enough to cover the whole period of transmissions.

In the interval-based paradigm, a delay compensation operation is responsible for cop-
ing with transmission delays, see [25]. Basically, delay compensation maintains accurate-
ness of intervals that are transmitted over a network experiencing variable transmission
delays according to Assumption 3.4. If an accurate interval I = [T + a] is sent from
node p to ¢ # p, experiencing some transmission delay ¢’ € [§ & €], an accurate inter-
val I" (which covers the unobservable I' representing the real-time of reception at the
sender-node p) is constructed at the receiving node ¢ by shifting the original interval I
by 4, and blowing up the shifted interval’s reference point to an interval € in order to
compensate for uncertainties in the transmission delay. In addition, we have to account
for the effects of finite transmission resolution R4 of accuracies. Since accuracies o, a™
of the sending node p are always multiples of Gs according to Assumption 3.3, truncation

to R4 = LG for some integer L > 1 introduces an error of at most G4 = R4 — Gs.

Definition 3.6 (Delay Compensation) The result of delay compensation of an accu-
rate interval I transmitted from node p to node q # p in the absence of faults is the

accurate interval

I" =1+ 2G4 + [0p £ €34, (3.18)
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where the loss in accuracy resolution during transmission is covered by 2G 4 = [—G 4, G 4].

Note that we did not consider the effect of non-zero clock granularity G at the receiving
node ¢ here, since a drift compensation operation takes place at ¢ later on. Bear in mind,

however, that the real-time of reception ¢’ at ¢ is usually not in synchrony with ¢’s clock.

Figure 3.4 should make delay compensation straightforward. We assume that the
experienced transmission delay is d;,, > d,q and G4 < &pg. The middle time axis corre-
sponds to real-time, whereas the upper and lower ones display logical time at p and ¢,
respectively. The sender node p’s rate r, is presumed to be 1, i.e., its local clock progresses
as real-time does. Interpreting Figure 3.4, one should consider the intervals I and I" as

“fixed”, whereas the reception time ¢ and hence the interval I' may vary with Opgr

Opg
Clock Time - | ;l | .-
on node p .‘ T S ,
. I=[T+q]  I'=[(T +9,,) £a
; e ¢
) I € 'l et
Real Time : 5 | Pe Py
- pa -
B Opq .
Clock Time L l . |
on node q — f T >

I" = [(T + 0pg) £ (@ + 2G4 + £pg)]

Figure 3.4: Delay Compensation

3.3.3 Fault Model

All assumptions in the previous subsections are meaningful for the fault-free case only.
Dealing with fault-tolerant systems, a pertinent fault model is required. However, since
we are considering a generic algorithm and its analysis, it does not make much sense to
stipulate a particular fault model here — not even an advanced hybrid one as in [70]
or [2]. After all, it is the convergence function that is primarily concerned about faults.
Consequently, we will assume that an abstract fault model F is provided along with a

particular convergence function. It is abstract in the sense that it gives information on
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faults not in terms of faulty system components, but rather by classifying the intervals I?
provided to the convergence function at node ¢ as a result of reception and preprocessing
of the broadcast(s) of node p, see (3.19)/(3.20).

Eventually, any F must incorporate a (convincing) way of tracing back abstract faults
to component faults in order to be meaningful in practice. The following issues are to be

considered here:

Our generic algorithm imposes only a few limitations on the severity of faults. More
specifically, faulty nodes or network components may in principle perform arbitrarily,
including transmission/reception of any number of arbitrary messages without, however,

being capable of causing (serious) “global” disturbance of system operation, e.g. by

1. impersonating other nodes,

2. flooding/jamming the network or non-faulty receiving nodes (violating Ayax and/or

Wmax, OF causing excessive transmission delays of other broadcasts).

Note that this is easily guaranteed in a fully-connected point-to-point network, but is

difficult to ensure for a (non-redundant) broadcast channel.

Viewed from a single (non-faulty) receiving node ¢’s perspective, an interval I? re-
sulting from reception and preprocessing of node p’s broadcast(s) during an FME can be

faulty in various ways:

1. Omission faults, caused by an omissive faulty node p or transient errors during

message reception, resulting in I? = {).

2. Timing faults, due to a faulty node/clock p or excessive transmission delays, result-

ing in a non-accurate and/or non-m-accurate T

3. Clock (value) faults, caused by a faulty node p or a damaged message, resulting in

a non-accurate and/or non-mr-accurate I%.

Apart from those faults, which arise in traditional clock synchronization as well, we face
additional accuracy faults that are unique in the interval-based paradigm. Adopting the

terminology of [36], we distinguish three different types:

1. Truncated accuracy faults, caused by accuracies being too small, resulting in a non-

accurate I f]’ .

2. Bounded accuracy faults, due to accuracies that are too large but bounded (usually
in a way that makes them indistinguishable from accuracies provided in a non-faulty

broadcast), resulting in an accurate but not particularly meaningful I?.
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3. Unbounded accuracy faults, resulting in an accurate but meaningless I7.

Obviously, accuracy faults do not affect mw-precision intervals, since 7r is not transmitted
but rather compiled into the algorithm. However, one has to account for the possibility
that I z is mr-accurate despite of the fact that I{Z’ suffers from a truncated accuracy fault,
and also the opposite situation where I z is not mr-accurate although it is accurate because

of a bounded/unbounded accuracy fault.

Viewed from the perspective of corresponding intervals I, I; at two (non-faulty)
nodes p and ¢ (for the same sending node s) in a single FME, we encounter the following

faults:

1. Arbitrary faults covering (almost, see first item) any kind of faulty behavior, in-
cluding a Byzantine (two-faced, “asymmetric”, cf. [2]) one. Arbitrary faults may
be caused by nodes sending different messages to different receivers or by excessive
transmission delays at the receiving ends. Note that both faults can also occur in
broadcast-type networks, since the elementary broadcast operation is not assumed
to be reliable, see [50]. Of course, some receiving nodes may experience an omission

or deliver a non-faulty interval in an arbitrarily faulty broadcast as well.

2. Depending on the convergence function, there are usually one or more classes of
faults that may be considered as restricted faults, in the sense that they can be
tolerated “easier” than arbitrary ones. For example, tolerating f consistently per-
ceived timing faults (“symmetric” faults as in [2]), usually requires n > 2f+1 nodes
(instead of n > 3f + 1 in case of arbitrary faults). Again, some receiving nodes
may experience an omission fault instead of providing a faulty interval; delivery of

a non-faulty interval, however, usually turns the fault into an arbitrary one.

3. Omission faults are usually perceived differently at different receiving nodes p and q.
Traditionally, they are attributed to sending nodes (“strictly omissive asymmetric
faults”, cf. [2]), although most receive omissions occur (independently!) at the re-
ceiving nodes. Hence, viewed globally, they cannot be traced back to (a reasonably

small number of) omissive sending nodes.

4. Crash faults (and other “benign” faults according to the terminology of [2]) are con-
sistently detectable at all nodes. However, a node that crashes during a broadcast

operation produces (at least) restricted faults due to inconsistent reception.

Note finally that the four types of faults above, which are well-known from traditional
clock synchronization, are only meaningful for 7r-precision intervals, not for accuracy

intervals. For a more formal explanation consult Chapter 5.
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We close this section with Table 3.1 that gives a flavor of the order of magnitude of the

various parameters introduced so far. They are valid for the class of distributed systems

portrayed in Chapter 2.

parameter | magnitude | description
n 100 | number of nodes
Mp 10 ms | overall execution time
G 100 ns | clock granularity
Gs 10~ s | clock setting granularity
or, P, 10% | inverse rate deviation bound
ul, u, 100 ns | rate adjustment uncertainty
Amax 1 s | maximum broadcast latency
Wmax 0 s | maximum broadcast operation delay
Opq 10 ps | deterministic transmission delay
Ep> 5;(1 < 1 ps | transmission delay uncertainty
Ga 100 ns | accuracy transmission loss

Table 3.1: System Parameters with typical Values

3.4 Generic Algorithm

This section contains the description of our generic clock state synchronization algorithm.
It employs the common round-based structure from other internal synchronization algo-
rithms. Periodically, every Ps (logical time) seconds, the algorithm executes the following

steps:

1. Initiation of a full message exchange (FME) to provide each node with the accu-
racy intervals of all other nodes (involving delay compensation operations, recall
Definition 3.6).

2. Preprocessing of the set of received accuracy intervals to make them all compatible.

3. Application of a suitable interval-valued convergence function to the set of prepro-
cessed intervals to compute and subsequently apply a correction value for the local

interval clock.

4. Keeping track of real-time by means of the local interval clocks of the nodes (in-

volving drift compensation operations, recall Definition 3.5) up to the next round.
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The abovementioned basic operations, i.e., delay compensation and drift compen-
sation, are required to make the exchanged intervals compatible with each other while
maintaining 7r-correctness. More specifically, all intervals gathered at node ¢ in an FME
are preprocessed to represent a common point in time tf as follows: For an accuracy
interval A, sent by node p # ¢, delay compensation (3.18) is applied to provide the re-
ceiver ¢ with an initial interval AJ that estimates A, at the (non-synchronous) real-time
of reception 7, when Cy(tf) = TP. That interval A} is then dragged locally by means
of the receiver’s clock, utilizing drift compensation (3.12), to some common, synchronous
point in real-time ¢ defined by Cy(tf) = TS*. Therefore, we arrive at the compatible

intervals

IR = Ap+ [T} — TP + 650 + (2G4 + £5y)]
+ (T =TP)p,+u+ G (3.19)

for p # q. Provided that TqR is chosen large enough to ensure that the intervals of all
non-faulty nodes can be received and processed, it is immediately apparent that I} is
accurate —and, as we will justify in Section 3.5, 7r-accurate for some suitable 7 as well—
if (1) A, was accurate, (2) transmission delay was not excessive, and (3) the receiver ¢ is
not faulty; recall our discussion of the abstract fault model F in Section 3.3.3.

In addition to the intervals obtained from remote nodes p # ¢, there is also the
accuracy interval of the own node ¢ that needs to be considered. Of course, no actual
transmission is required here, so we just have Il = C,(tf) = [T} £ af]. Observe
carefully that it is possible to compute C,(t¥) in advance by exploiting knowledge of
some C,(0) = [T £ a] with ' < T from the same round and without continuous
amortization being active: Since exactly TqR — T clock ticks must occur between ¢ and tff,
we obviously have Cy(t¥) = Cy(t) + T —= T + (T} — T)p, due to intrinsic deterioration;
recall Assumption 3.3. Therefore, we can imagine a zero-delay “loop-back transmission”
of the accuracy interval A, = C,(t7,) = [T+ ] at the FME initiation, which “arrives”

instantaneously at node ¢, thus T = T(;‘]. Incorporating this we finally arrive at
I8 = Ag+ T = T+ (T = T]) p,- (3.20)

Now, given the set of node ¢’s intervals I} above, a function that provides a (small)
interval that both contains real-time tf' and enhances precision —despite of some possibly
faulty ones— is required. Adhering to the terminology introduced in [58|, we call such
a function a convergence function. The clock synchronization algorithm defined below is
stated on top of a generic convergence function CV x(+), which can be any interval-valued

function that satisfies certain properties stated in Definition 3.11.
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Definition 3.7 (Clock State Algorithm) The generic algorithm is defined in terms

of its parameters, the initial and periodic synchronization actions.

Parameters: All parameters are integer multiples of Gs (cf. Assumption 3.3) unless

otherwise specified:

e total number n of nodes,

e node p’s intrinsic inverse rate deviation bound p, and uniform bound p.. 2 U, p,

With pmax = ||Pmaxl| = Pmax T Piax (defined in Assumption 3.2),

e clock granularity G, clock setting granularity Gs, node p’s maximum rate adjustment
uncertainty u, = [—u; ,u; , and uniform mazrimum rate adjustment uncertainty
Umax 2 Up Up With Umax = U,y + U, (defined in Assumption 3.2),

e transmission delay characteristics 0y, €5, for all nodes s, uniform bounds 0 <
Omin < Miny o {0pg}, Omax > Maxy ¢ {0pe} and Emax D U, 4 Epg With Emax = ||€max|| =

Emax T Eaxy GNd accuracy transmission loss G4 (defined in Assumption 3.4),

e computation delay compensation (integer multiple of G) guaranteeing node p’s maz-

imum computation time n, (defined in Assumption 3.1), chosen according to

EPZM:
1—=p,

and uniform bounds Enyax > max,{E,} and 0 < Eyin < min,{E,}; usually E, =
Eax = Emin 1S chosen to be the same at all nodes p,

e broadcast delay compensation A + Q (integer multiple of G), chosen to satisfy

ALQ> )\max+wmax+umax,

— Pmax

in conjunction with A below ensures that resynchronization starts only after all
CSMs broadcast by non-faulty nodes during an FME have arrived (see Assump-
tion 3.4),

e transmission delay compensation A (integer multiple of G) chosen according to

A > o + Umax + 5ma.x + (PS - Emin + ﬂﬁ)pmax + 6$ax
- 1+ pihax

(3.21)

(defined in Lemma 8.11), where mg = ||mo|| and 7~ (defined in Theorem 3.1) depend

on the convergence function employed,

e round period Ps > A+ Q + A + Enax (integer multiple of G ),
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Initial synchronization: At each node g, the local interval clock C, must be initial-

ized to the accuracy interval A) = [T — a)=, TQ + a*] at some synchronous real-time ¢

by some external means. This initialization must ensure

0
tye Ay,
T)e[A+Q+A+E, + 7,

0
aq g To,

where 7 and mwy depend on the convergence function employed, see Theorem 3.1.

Periodic Synchronization: Near the end of each round k > 0, every node q in the

system performs the following operations:

(5)

(R)

(C)

(T)

CSM Send: Periodically at times Cy(t.) = T' = (k + 1)Ps, node q initiates a
broadcast. The message M,, sent to node p at some real-time t;‘; during that
broadcast operation contains the accuracy interval Ay, = [T+ o] = Co(ts,)-

For the zero-delay “loop-back transmission” to the own node q, tj?q = té so that
Tq‘g =T! = (k+1)Ps.

CSM Reception: When a message My, from node p arrives at node q at real-time
th, when Cy(th) = T?, the interval IY given in (8.19)/(3.20) is computed and stored
in an ordered set L,. For the definition of the resynchronization time TqR turn to
item (T).

Computation: At Co(t3T9+2) = TM2 = (K + 1)Ps + A+ Q4+ A in round Fk,
a convergence function CV £(-) (see Definition 3.11) is applied to the compatible
intervals stored in I,, yielding the result S,. Finally, I, is re-initialized to the

empty set for the next round k + 1.

Termination and Resynchronization: At Cy(t¥) = T = (k+1)Ps+A+Q+A+E,

in round k, q’s interval clock C, is set to S, (instantaneously or by continuous

amortization).

A few remarks are certainly appropriate here:

A number of parameters defined in our system model (Assumptions 3.1-3.4) must be

provided (statically or dynamically) to the instance of the algorithm running at a node p,

e.g., rate deviation bound p,, transmission delay parameters 0,4, €4, and quantities A,

A’ Q’

E, related to A, w, and n),, respectively. The particular convergence function might

also require some parameters. Therefore, our algorithm depends on those parameters not

implicitly as traditional synchronization algorithms do, but rather explicitly.
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The needed initial synchronization is automatically provided when the algorithm is
used in our clock validation framework, see Section 3.1. Clock validation assumes that
there are some primary nodes having their physical clock disciplined by an UTC time
source of high accuracy, which may, however, fail arbitrarily. In normal operation, a
primary node p’s local clock C, provides UTC with some a priori accuracy o’ such that
t € [Cy(t) — a® Cy(t) + a°], for all real-times ¢ > 0. Temporarily, we may assume that
local clocks are initially synchronized when flywheeling begins. Furthermore we assume
w.l.o.g. that real-time and logical time start at ¢ = 0 and 7' = 0, respectively, at the
beginning of round 0.

Steps (S), (C), and (T) of the algorithm are triggered when the local clock reaches
some specific point in (logical) time, so that they are effectively sequenced. Step (R),
however, takes place asynchronously when a CSM drops in. Note also that the execution
time required for computing the convergence function is usually smaller when the latter
is performed piecewise in steps (R). Of course, if 7, is chosen appropriately, our results
apply to this situation as well.

Resetting the local interval clock instantaneously in step (T) of the algorithm would
cause non-monotonicity and non-continuity of local time. This is circumvented in practice
by means of the continuous amortization algorithm of [56]: To perform state correction
of the local clock, its rate is modified by a fixed amount +v for a programmable period
until the clock has changed its value as desired. This algorithm, which is supported in
hardware by our UTCSU-ASIC, is particularly attractive as it does not impair the worst-
case precision and accuracy obtained for instantaneous correction if ¢ is chosen suitably,

see Theorem 3.2 for details.

In the remaining sections, we will analyze worst case accuracy and precision of the
algorithm given in Definition 3.7, stating expressions in terms of characteristic parameters
of the convergence function. The major results obtained herein will be summarized in
Theorem 3.1 and 3.2.

3.5 Analysis

From the description of the algorithm in the preceding section, it should be reasonably
obvious that accurateness of the local interval clocks C,(t) of all non-faulty nodes is
maintained during all rounds. In fact, all operations involved (drift compensation, delay
compensation, and application of the convergence function) are explicitly designed to
preserve accurateness. This is not that obvious for precision, however, so we find it

appropriate to give an informal overview how precision is actually maintained.
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First of all, recall that any local interval clock C)(t) is defined by three values, namely
accuracies o, (t), o;f (t) and local clock value Cy(t) as reference point. Dealing solely with
accuracy, the lower and the upper edge would be sufficient. Hence, the reference point can
be set appropriately to achieve the orthogonal goal of maintaining the precision condition
|Cp(t) — Cy(t)| < = for all non-faulty nodes p and ¢. From Lemma 3.3 we know that this

is achieved when the interval clocks of all non-faulty nodes are kept 7r-precise.

The actual approach taken is particularly attractive due to the fact that precision
during a round is automatically maintained when accuracy is. To understand how this
works, assume that all members of the set C(t) of non-faulty interval clocks are 7ry-correct
at some real-time ¢°, i.e., that their associated mo-precision intervals contain 7(£°), and
recall that internal global time 7 progresses as real-time does. When trying to capture
real-time ¢’ > t° by C,(t'), we must deteriorate (enlarge) the accuracy interval in order
to compensate for the drift of the local clock. However, if this is done properly to capture
real-time ¢/, it is clear that the associated mr-precision interval C,(#') captures internal
global time 7(#') > 7(t%) as well, provided that 7 is the result of enlarging m, by the
maximum amount any C; has been enlarged. It is important to understand, though,
that enlargement of precision intervals is just a matter of analysis, since the algorithm
does not deal with precision intervals at all. Anyway, it follows that C(¢') must be -

correct.

Whereas enlarging my to mr guarantees that 7(¢) lies in the intersection of the r-
precision intervals of all non-faulty nodes, this cannot ensure a bounded precision for
t — oo. Periodic resynchronizations are required for that purpose, giving rise to our
round-based algorithm. More specifically, at the end of the k-th round, the nodes’ current
m-correct local interval clocks are re-initialized to newly computed accuracy intervals that
are o-precise for wy C 7 (= precision enhancement). Note that we cannot safely assume
mo-correctness here, since it may be the case that internal global time 7*) for round k
does not lie in the intersection of the new mg-precision intervals! However, if we define a

k+1) for round k + 1, independently of its predecessor 7). we

new internal global time 7(
have of course 7r-correctness w.r.t. 7% Consequently, the resynchronization launches

the next round £k + 1 during which initial precision 7, again deteriorates to 7r.

Keep in mind that only #r-precision intervals ép are affected by precision enhance-
ment. The local interval clocks C,, itself must continuously track real-time ¢, so that the
accuracies could grow. Actually, accuracy in round k& can be viewed as an accumulation
of the m-precision intervals during round 0, ..., k. This eventually explains why ¢ and 7

will usually be apart, as mentioned in Section 3.2.2.
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3.5.1 Internal Global Time

When trying to formalize the concept of internal global time, a number of technical
difficulties arise. First of all, we have to establish a notion that allows us to deal with
multivalued local time. Near a resynchronization event at node p, occurring at real-
time ¢7,
resynchronization, and/or in T = C!(t¥) read from the already resynchronized clock.

one could be interested in local time TPR = Cp(tf) taken from the clock before

To express this situation unambiguously, we employ the well-thumbed technical device of
virtual clocks: When round k£ at node p commences at real-time tf’(k_l), a virtual clock
Cz()k) is instantiated that progresses according to the physical clock C, up to time tf’(k),
when the (k + 1)-th resynchronization event takes place. At this instant, a new virtual
clock C’g”l) (initialized with a value based on the convergence function applied to the
intervals taken from the FME) is instantiated, which then proceeds concurrently with
C’z(,k) in the same way. Needless to say, it is the set of virtual clocks of round k that

defines the instance 7*) = 7()(¢) of internal global time.

The probably most awkward problem when trying to define internal global time,
however, arises from the fact that the contributing intervals reside at different nodes.
After all, resynchronizations at different nodes do not occur simultaneously. Albeit two
nodes are within the same round & most of the time, there are short periods where one
has already resynchronized (and thus started its round &+ 1) while the other one has not.
Nevertheless, accuracy intervals from different nodes must be made compatible to form a
m-precise set. For practical purposes, this requires dragging by means of the local clock
and utilizing drift compensation. given by Definition 3.5). For the purpose of analysis,
however, there is no need to make intervals residing at different nodes compatible in a
“practicable” way. Rather than using dragging and drift compensation, it is sufficient to

employ a simple, ideal shift-operation:

Definition 3.8 (Shifting) The result of shifting an interval I = I(t1) to some point in
time t' > ty is the interval J = J(t') = shifty (I) = I+t'—t;. For a set of n > 1 intervals
T ={I(t1),...,I,(t,)}, the shifted set J of compatible intervals all representing some
arbitrary t' > maxi<;j<p{ti} is defined by J = shifty (L) = {I1(t1) +t' — t1,..., In(tn) +
t—t,}.

Of course, any interval in J above represents t'. However, keep in mind that they are
artificial constructions, i.e., that they could only be provided by dragging I with an ideal,
continuous real-time clock. Note that restricting ¢’ to a point in time greater than any ¢;

of the intervals in Z is not really necessary.
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Lemma 3.9 (Precision Shifted Intervals) Let T = {I(t1),...,I,(t,)} be a set of
intervals with I;(t;) = [T; £ o] representing real-time t; for 1 < i < n, and J =
{J1(t), ..., ()} = shifty (Z) = {I,(t1) +t' —t1,..., I,(t,) +t' —t,} for some arbitrary
t' > maxi<i<n{t:}.

(1) If, for any i, the interval I; in T is m;-correct w.r.t. internal global time of the same
round k, then J; = I; +t' — t; is also m;-correct, and the whole shifted set J is

7' -correct for ' = U, m;,

(2) If T is m-correct w.r.t. the internal global time of round k, then 7; = T®(t;) € I;(7;)

for any 1.

Proof. To prove the first statement of the lemma, we note that m;-correctness of I;
implies 7r;-correctness of J; = I, +t' — t;, since J; = I, + 7 — 7; due to the fact that
internal global time (of the same round) progresses as real-time does, i.e., 7/ —7; = t' — t;.
The asserted |J; m;-correctness follows from n — 1 applications of Lemma 3.5 to the union
of the singletons {I; +t' —t;} forming J.

To prove the second statement of the lemma, we use the same argument as before
to derive J;(r;) = I;(m) + 7" — 1; for 7/ = 7(t'), so that the set of mw-precision intervals
associated with J reads J = {I,(r)) + 7 — 7,..., I,(7) + 7' — 7,}. The asserted
m-correctness of J; implies 7 € I, (1;) + 7" — 73, hence 7; € I i(r). O

It is helpful to view the precision of shifted intervals as an ideal one, in contrast to
the observable precision obtained by applying drift compensation. We have the following

relation between ideal and observable precision:

Lemma 3.10 (Shifting vs. Drift Compensation) Let Z = {I(t),...,I,(t,)} be a
set of intervals I;(t;) = [T; + a] residing at node p; and representing real-time t; be-
ing in synchrony with clock C,,. For some arbitrary t' > maxi<;<,{t;}, define T' =
{I\(¥),...,I(t')} to be the set of compatible intervals I(t") obtained from I;(t;) by ap-

plying drift compensation at node p;.

1 the shifted set J = shifty ={I(t1)+t' —t1,...,I,(t,) +t —t,} of compatible
If the shifted J hift, (Z I ! I ! f bl

intervals all representing t' is w-precise, then I' is w'-precise for
o =n+ T - T)p,, +up, + Gp, (3.22)
i
where T] — T; = C,,(t') — C,,(t:) satisfies

Pi—GgT!—TigH. (3.23)
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(2) If, for all i, the interval I; is m;-correct, then I' is w'-correct for

' ={Jmi+ (T} — T)p,, + up, + Gp. (3.24)

Proof. Recalling Definition 3.5 of drift compensation, (3.22) and also (3.24) follow im-
mediately, since (ideal) 7 must be enlarged to capture the maximum deviation from
real-time that can arise when dragging the intervals I; from ¢; to t'; recall that ¢; is in
synchrony with node p;’s clock. The bounds on T} — T; = C,, (') — C,, (¢;) given by (3.23)
are obtained directly from (3.11). O

The above lemma allows us to carry over any result involving shifted intervals to
the situation where those intervals are actually compatible in the real system, i.e., when
they are read at some common point in real-time #'. Apart from the inevitable effect of

granularity, there is an additional enlargement essentially proportional to (t' —t;)p,,.

With these preparations, we are ready for the precise definition of internal global time:

Definition 3.9 (Internal Global Time) Let C**V for k > 0 be the set of the non-
faulty nodes’ virtual interval clocks Cg-kH) (tf’(k)) of round k+1 at their (k+1)-th resyn-
), when switching from round k to k + 1 takes place at node j.
If shift,z.a) (C*HY) for some t7*) > max,{tf*)} is wq-precise, we define internal global

time 71 (¢) for round k + 1 by

L. . R,(k
chronization instants tj (

T(k—i—l)(t) — kD (tR,(k)) +(t— tR,(lc)) for k >0,
01 = ¢

; (k+1) ($+R,(k) ]
valid for all t, where T (™) e ﬂJESMttR,(k) ) J £ 0.

Note that defining 7(%(¢) = ¢ is justified by applying Lemma 3.4 to the initial synchro-

nization assumption given in Definition 3.7.

3.5.2 Instantaneous Correction

In this subsection, we will provide our interval-based framework for analyzing worst case
precision and accuracy of the generic algorithm given in Definition 3.7 for instantaneous
state corrections. As in [58], we will describe convergence functions by a few characteristic
parameters (functions) and derive expressions in terms of those. To obtain the final
results for a particular instance of the algorithm, it is only necessary to determine the
characteristic functions of the particular convergence function and to plug them into
Theorems 3.1 and 3.2.
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The general outline of our generic analysis is quite straightforward: We provide a
sequence of lemmas that characterize how accuracy/precision intervals evolve in a single
round. Starting from Lemma 3.11 describing the set of intervals fed into the convergence
function, Lemma 3.12 guarantees that the precision provided at the beginning of round &
is re-established at the beginning of round k£ + 1. On top of that, a simple induction
proof can be conducted to establish our major Theorem 3.1, which provides results for
instantaneous correction. Finally, adopting the achievements of [56], it follows that those

results are also valid in case of continuous amortization.

Our interval-based framework surpasses traditional approaches to precision analysis
due to its conceptual beauty and high flexibility w.r.t. incorporating features like clock
granularity, broadcast latencies, etc. This is primarily a consequence of our notion of
internal global time, which allows us to reason about precision by considering each local
interval clock separately without explicitly relating it to the other clocks in the ensemble.
Even more, in our analysis, there is no need to consider the “position” of intervals, i.e.,
local clock values, at all. In fact, any information required is encoded in the interval of
accuracies a resp. in the associated m-precision interval of an interval I(t) = [T + «f,
since all non-faulty accuracy intervals must contain real-time ¢ resp. internal global time 7
by construction, which thus serves as a “common reference” for relating them. Of course,
the particular reference point may lie anywhere in [t — o™, t + 7] resp. [t — 7, ¢t + 7],
according to the actually experienced drift, transmission delay, and initial accuracy, but

we do not have to deal with it explicitly.

The following first major lemma describes how precision evolves during a round, in-
cluding local drift compensation and interval dissemination in the FME. Keep in mind

that the resulting intervals Iy are fed into the convergence function.

Lemma 3.11 (FME Dissemination) Let A, = [T, = o] = CP) (t2(¢-1) be the accu-
racy interval of node p’s interval clock at real-time t, = tf’(k_l), when round k (for some
fized k > 0) starts, and denote by A the subset of the A,’s of those nodes p that remain
non-faulty during round k. Let TqR = (k+1)Ps+A+Q+ A+ E, be the logical time when
the (k + 1)-th resynchronization instant —happening at real-time té% = tf’(k) and termi-
nating round k— is scheduled at node q, and let Ih = I%(tF) be the interval (3.19)/(3.20)
that is obtained at node q as the result of delay and drift compensation of a node p’s
accuracy interval transmitted during the FME in round k.

If, at the beginning of the round,

[1] the accuracies of any A, = [I, £ a,] € A are integer multiples of G,



38

[2] shifty(A), t' > max,{t,} arbitrary, is wy-correct for some wy = [—m, , 7| with

Ty = Ty + Wa’,
[8] there is some w = [—n,wt] with m =7~ + 7" > 7y such that
T, € [kPs+A+Q+ A+ E,+ ] (3.25)
for any A, € A,

[4] transmission delay, broadcast delay, computation time compensation, and round

period are integer multiples of G satisfying

o + Umax + 5max + (PS - Emin + 71—7),01’113)( + ‘Sr_;ax

A > 3.26
- L+ phas  (3.26)
)\max max ;n
A+Q > 7 Wmax 7 Umax (3.27)
1- Pmax
+u,
B, > 2% (3.28)
1-1p,
Emax > mEX{Ep}a
0 S Emin S ngn{Ep},
PS 2 A+Q+A+Emaxa

we have the following results:

(1) Any non-faulty receiving node q is able to form its set I, of intervals It = I (tF) =
(TP + o] —given by (3.19)/(3.20)— at least n, real-time seconds before resyn-
chronization takes place at time tf. By default, I = 0 if node p’s CSM did not
arrive in time. Any I € N, C I, (contained in the subset Ny of non-faulty

intervals) is accurate with accuracies being integer multiples of Gs, which satisfy

B C oay+tu,+u,+G+2G4+egy

+ (Ps = A= Ep)p, + (Eg+ A — bypg)p,
+ (A + Q) [_ max{p; - p;: O}a max{p;— - p;ja 0}]
+ O(7 + Pspmax + G + €max) Pmax (3.29)

P,
aq

and

o D a,tu,+uy+ G+ 2G4 + gy

+(Ps = A= Ep)p, + (B, + A= 8,0)p,

- (A+9Q) [— max{p, — p,,0}, max{p; — pf, 0}]

+ O(7 4 Pspmax + G + Emax) Prmax (3.30)
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forp#q, and

a?® = o, +u, + Psp, + O(7)p,. (3.31)
Moreover, any I € N, is mh-correct with

w C Wot+uy+ug+ G +ept (Ps— A= Ep)p, + (Eg+ A = dy)p,
+ (A + Q)[—max{p; — p,,0}, max{p; — p,0}]
+ O(7 + Psprmax + G + €max) Prmax (3.32)

forp #q, and
wl =+ ug + Psp, + O(7)p,. (3.33)

The whole set N is 7 [ -correct for

7w C o+ Umax + Uy + G+ Emax

q
+ (PS A El'ﬂin)pmax + (Eq + A— 6min)pq
+ O(T + Pspmax + G + Emax) Prax- (3.34)

(2) The set N = Ug non—faultyN ¢ containing all non-faulty intervals Iy at all non-faulty
receiving nodes q has the property that shifty(N) for some arbitrary t" satisfying

t" > max,{tl} is w"-correct for

WH g ) + 2umax + @ + €max + (PS + Emax - Emin - 5min)pmax
+ O(T + Pspmax + G + Emax) Pmax- (3.35)

(3) Finally, the set N* formed by the non-faulty nodes’ “perceptions” I of the accuracy
interval transmitted by a single non-faulty node p has the property that shift, (N®)

for t" > max,{tF} is both wP-correct and m;-precise with

7w C mo+ Up + Unax + G + Emax

+ (Ps — A= E,)p, + (Emax + A — 6min) Prnax

+ (A + Q) [~ (Pmax = 5> Parax — P51 |

+ O(7 + Pspmax + G + Emax) Pmaxs (3.36)
T C Emax + Hmax + G+ (A+ Q2+ A+ Enax — Omin) Proax

+ O(mo + Pspmax + G + Emax) Prmax- (3.37)
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Proof. From the description of the clock synchronization algorithm in Definition 3.7,
we know that any node p initiates its broadcast in round k£ when its local clock reaches
time (k + 1) Ps. Due to broadcast latency Amax and broadcast operation delay w, < Wmax
according to Assumption 3.4, the CSM to node q is actually transmitted when the local

clock of the transmitting node p reads time Ty = Cy(t7,) satisfying

Amax + Wmax + Uy,

0< Ty — (k+1)Ps < 1 max < A+ Q, (3.38)

~ Pmax
recall (3.11) in conjunction with (3.27). Of course, ¢/, is the real-time when the CSM
(containing the accuracy interval A;‘q = [T, + o) is actually transmitted. Combining

(3.38) with (3.25), we easily obtain

Th—T, < (k+1)Ps+A+Q— (kPs+A+Q+A+E,—7")
= Ps—A-E,+7" (3.39)

and similarly
T.-T,<Ps—A—FE,+7". (3.40)

The CSM from node p is received (we consider non-faulty intervals here) at node q
delayed by ¢’

pg>
We will now establish bounds on T? — T, p’z.

Relating the points in real-time involved in the evolution of a round (from the begin-

hence at real-time ) = t{,‘q + 6!

»q» When the local clock of node g reads T}

ning to reception of the FME) yields
th—tg =10 —ty— (tg — tp) =t + 0 — tp — (tg — L) (3.41)

Since t,, t,, and t;‘q (but not #7) are in synchrony with their respective clocks, applying
(3.10) to #& — t, and ¢, — t, provides

(Té"—Tq)(l—P;)—uq_ < (Tgf;_Tp)(l"‘P;)‘i‘“;"'é;q_(tq_tp)
(T7 =T+ p)) + G+ p)) +uf > (T =T) (1= py) = uy + 6y — (tg — tp)-

Some algebraic manipulations produce

(T7 = Tp)(1=py) < (T, =Tp0)(1 = pg) + (T = T)(1+ ;)
+ 0py — (tg — 1) +uy +uy
S Tq - tq - (Tp - tp) + (Tp% - Tq)P; + (Tzf; - Tp)p;)F
+ Opg + €5y + ug + ur
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and

GO+ p)) + (T2~ THA+p) > (T, -TH+5)+ (TA—Tp>(1—p;>+6,',q

rq

( —tp) —ug —
2z — (T, — 1) — (TA Tq)p;
( —Tp)py + 0pg — Epg — Ug — U,

Abbreviating 1, = T, —t,— (T, —t,) and recalling (3.39) and (3.40), we eventually obtain

1 -\ -
ng—Tplz < ﬁ[/]’pq‘f’(qu’i’(PS—A—Eq‘f’ﬂ' )pq
q

+U%—A—J%+wj@ww;+u;+@+ (3.42)

TP — T4 1

—\ o+
q pq > W[Mpq‘i‘dpq—(PS—A—Eq‘i‘ﬂ' )pq

_(PS—A—Ep—i—ﬁ_)p;—s];q—u;—u;]—G. (3.43)

Since all A; = [T;+a;] € A are my-correct according to precondition [2] of our lemma,

Lemma 3.6 provides —my < 1,y < 7o since g + @y = [—7o, Mo, so that it follows from
(3.42) that
™ < ﬂ2+ww+@¢+G@—A—J%m+wj@;+gﬂ+f;+u;+qf

q 1-p7

< (k+1)Ps+A+Q+A-A
+ o + 5ma.x + (PS —A— Emin + 71'_)pmax + 51—;3)( + Umax
1 —

Pmax

(k+1)Ps+A+Q+A
— . - +
+ o + 51'1'1a‘x + (PS Emln + )pmax + 6max + Umax —A Pmax + 1
1-— 1
< (k+1)Ps+A+Q+A;

Pmax ~ Pmax

the last step is confirmed by plugging in the definition of A according to (3.26). This result
eventually assures that I from any non-faulty node p # ¢ is available for computing the
convergence function at node ¢ at latest when ¢’s clock reads (k+1)Ps+A+Q+A, leaving
a logical time duration E, up to time TqR when resynchronization will take place. This
is also true for the interval I} from the own node, which can in fact be (pre-)computed
at any time, recall the remark following (3.19). Remembering (3.28), this means that
at least m, real-time seconds are available for computing the convergence function, as

asserted in item (1) of our lemma.
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Apart from that, inequalities (3.42) and (3.43) may be condensed into the more con-

venient, form
TP — Tpf‘l = 0pq + O(70 + Psprmax + G + Emax), (3.44)

where we used u,.x = O(G) according to Assumption 3.2.

With this preparatory work, we can attack the results given in item (1) of the lemma.
According to our expositions in Section 3.4, each receiving node g relies on (3.19)/(3.20)

to compute the interval

IP=T1(tF) = AL +[TF—TP+ 6y, £ €pg + 2G4]
+ (T =TP)p,+ u+ G (3.45)

from the accuracy interval A;lq received from node p # ¢. Incorporating the term that
accounts for local deterioration (see Assumption 3.3) at node p from local time 7, where
the round started (with the accuracy interval A, = [T, + «,]) up to transmission of the
CSM to node ¢ at time T2, we easily obtain an expression for the interval of accuracies

g’
ol of I = [TP" &+ b from (3.45):

PP = o, + (T —T,)p, + up+ &g +2Ga+ (T —TP)p, + u,+ G
+ (T — Tp)p, + (TF =T p, — (TP — Tyo) py- (3.46)

Since we assumed in Definition 3.7 that all parameter values appearing in (3.46) are
integer multiples of G'g, which is true for a, according to precondition [1] of our lemma

as well, " is also an integer multiple of G's as asserted in item (1). Considering

(Cmax — @)Tp + (b — Cmax)rq if 7p > 7y,
Cmin — a)rp + (b - Cmin)rq if Tp S Tq

fle)=(c—a)rp+ (b—c)rg < {

for rp,74 > 0 (and similarly with ¢max and cmin exchanged for the lower bound), which

follows immediately from f(c¢) = ¢(r, — r,) — ar, + br,, we obtain

S~
3]
~
IA

(Cmax — @)Tp + (b — Cmax)Tq + max{r, — 7, 0}(Cmax — Cmin)

fle) > (cmax — @)rp + (b — Cmax)7q — max{0,7p, — 74} (Cmax — Cmin) (3.47)

Using the above upper bound in equation (3.46) for a?® and recalling (3.39), T} =
(k+1)Ps+ A+ Q+ A+ E, in conjunction with (3.38), and relation (3.44), we obtain
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the upper bound

ol C ooyt u,t+ug+ G+ 2Gs+ gy
+(Ps—A—-E,+77)p, + (E;+A)p,
+(A+Q) [— max{p; — p,,0}, max{p; — p;,O}]
- 5pqpq + O(mg + Pspmax + G + Smax)Pq; (3.48)

remembering that my < 7 according to precondition [3] of our lemma, the result stated
in (3.29) follows. For (3.30), we just have to employ in the lower bound (3.47) in-
stead of the upper bound in the derivation above, which amounts to replacing the term
(A + Q) [— max{p; — p,,0}, max{p} — p;,(]}] in (3.48) by —(A + Q) [— max{0, p, —
pg b max{0, o} — pf}].

We still have to investigate a{]”R

in case of p = ¢. Incorporating the term (Tq’j‘]—Tq)pq—i-
u,, which accounts for deterioration at node ¢ from local time 7, up to Tq/}] = (k+1)Ps,

the instant of the virtual “loop-back transmission”, in (3.20) provides
O‘Z’R =0+ (TqR - Tq)Pq + ug,

from which (3.31) follows immediately.

The above derivations for accuracy immediately carry over to mf-correctness of I? for
a suitably chosen 7f: Given that A, was o-correct at the beginning of round k (at real-
time ¢,), we only have to add the maximum uncertainties caused by the drift and delay
compensation operations. Recall that internal global time for any fixed round progresses
as real-time does, so that maintaining accuracy w.r.t. real-time by enlarging the interval
automatically maintains “accuracy” w.r.t. internal global time as well. Note that the
term 2G4 accounting for limited accuracy transmission resolution (see Assumption 3.4)
can be ignored here, since precision intervals like 7ty are not handled by the algorithm
but rather computed in our analysis. Adopting (3.46) appropriately, literally the same
derivation that led to (3.29) resp. (3.31) provides (3.32) resp. (3.33).

Moreover, by virtue of Lemma 3.5, we find that the set A/, of all non-faulty I7 at
node ¢ is mwl-correct for wl = U,,, w". Straightforward majorizations of (3.32) easily
confirm the value given in (3.34); note that setting p, = py,,, causes the term involving
[— max{p, —p,,0}, max{p} — pif, 0}] to vanish. Finally, 7¢ C 7!’ is also true by virtue of
the technical condition dminP . € Emax according to (3.16), so that genuinely Wf =U, b

as required.

To prove item (2), we note that the asserted w”-correctness of the shifted set A is a

straightforward consequence of Lemma 3.5 applied to U shift, (A,). The bound

g non-faulty
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stated in (3.35) follows from

= U 71'5[
q
g ™o + 2umax + @ + €max
+ (Ps — A = Enin) Pmax T (Pmax + A = dmin) Prnax
+ O(7 + Pspmax + G + €max) Pmax-

Finally, turning our attention to the set N of intervals obtained at different (non-
faulty) receivers for the same broadcast (of non-faulty node p), Lemma 3.5 applied to
Ugzp shifty (I1) yields w? = U,, 7, and trivial majorizations easily provide (3.36).
Again, 7l C &P by virtue of (3.16), so that 7” = {J, 7 as required.

In addition, it is clear that almost the same accuracy interval A;‘q appears in I}
of any receiver q. More specifically, the only difference is the deterioration that occurs
at the sender p between T%; = min {7/} and the particular T} under consideration.
+ 0]

of length 0. Starting from an equation adopted from (3.45) in a similar way, we obtain

WIQU

4,p#q

Conceptually, this may be viewed as if node p has commenced with an interval [T2

min

(Tp‘; — mqin{TI;g})pp + (H — 1)u, + €y

+(TF-Thp,— (TP —Th)p, + ug| + G (3.49)

C €max + BUmax + G + U (TqR - mln{Tpﬁ})pmax - 5IIliIlpma,x
4,p#q I
+ 0(7"-0 + PSpmaX + G + ‘Smax)pmax

by majorizing p,, p, by P, and using (3.44). Note that T/ — ming {72} = 0 in case of
a broadcast network (H = 1, see Assumption 3.4), so that no deterioration occurs here.
The result stated in (3.37) follows from recalling that TqR - minq{TIfI} < A+Q+A+FEpax
by virtue of (3.38) and the definition of the logical resynchronization time T*. Note that
the contribution (TqR —(k+ l)PS)pq = (A+Q+ A+ E,)p, of the own node ¢ to =’ is
again covered by expression (3.37) due to the technical condition (3.16). This eventually
completes the proof of Lemma 3.11. O

It is important to understand that the set N? is v -correct and 7r;-precise, but not
necessarily 7 -correct. After all, we cannot assume that internal global time 7*)(z) of
the current round k lies in the intersection of the (quite small) 7r-precision intervals

associated with the elements of N”.

Next we will provide the properties of generic convergence functions in terms of their

characteristic functions. We start with the following auxiliary definition:
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Definition 3.10 (Translation Invariance, Weak Monotonicity) Given two sets

IT=AI,..,I,}) and J ={J1,...,dn} of n > 1 accuracy intervals, an interval-valued

function f(-) of n > 1 interval arguments is called

(1) weakly monotonic iff I; C J; with ref(I;) = ref(J;) for all 1 < j < n implies
f(T) C F(T),

(2) translation invariant iff f(I,+A,...,I,+A) = f(I,...,I,)+ A for any real A.

Note that a weakly monotonic function satisfies this property for both accuracy intervals
and associated 7r-precision intervals, hence I; C J; with ref(I;) = ref(J,) for all j implies

f@) C f(T).

Definition 3.11 (Generic Convergence Function) LetZ, ={I,,...,I}} resp. L, =
{Igll, .. .,I;‘}, q # p, be two ordered sets of n compatible intervals obtained at nodes p
resp. q at the end of a round, which are in accordance with a given fault model F. As-

suming that

[1] the accuracies of any non-faulty I; = [T;j:a;,] are integer multiples of Gs satisfying
a; - ,3;, € B, for a given set of accuracy bounds B, = {,8117, .-+, By}, and analogous

for Ifl with the set of accuracy bounds By,

1
Py

set of precision bounds, and analogous for I, with set of precision bounds P, =

{ﬂ'é, e, wg},

[3] P={x',...., 7"} with w,Un’ Cw* Cw", for some suitable =¥, denotes a set of

uniform precision bounds ensuring m'-correctness of both I;, and Ifl (if non-faulty),

[2] any non-faulty I;) is W;—corr‘ect for 71';, € Pp = {m,,...,m;} denoting a given

[4] any pair of non-faulty intervals {I;J, Ifl} is mwr-precise for some wr C wH,

[5] for any s € {1,...,n} with both I, and I being non—faulty, the common inter-
~S ~S 2 1M1 2 INII, ~S ~S
section of the associated precision intervals I, NI, N1, N I,  resp. I,n1,n
A IMax 2~ max _ . .
I "N I, * has length at least vf >0 resp. vy > 0 (all integer multiples of Gs),
where min, resp. max, represents that non-faulty node that leads to the leftmost

p
right(I, ") resp. the rightmost left(I, ) for z € {p,q},

let

S, = CVr(Z,) =T +d),
S, = CVx(ZI,) =[T+da].
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The generic convergence function CV £(-) must be translation invariant, weakly mono-
tonic, and has to provide accurate intervals with reference point and accuracies being in-
teger multiples of Gg. Its properties are characterized by the following functions, which

must be weakly monotonic w.r.t. any interval argument:

(1) Conditional accuracy preservation functions ®, (-), ®1(-), so that

~

a; C [—@;(Bp,’Pp,ﬂ'H,ﬂ'l,Vs 1), @1 (B, Py, Vs L:)]

~

o C [—(I);(Bq,’Pq,ﬂ'H,ﬂ'I,Vs 21;), (B, Py, 7, Vs L:)]

(2) Precision preservation function ®,(-), so that S, is ®,(P,, w", m)-correct and S,

is @ (Py, w8, mwr)-correct, with ||®, (P, mw;)|| = O(xH) for nfl = ||wH||.

3) Precision enhancement function ¥,.(-), so that the set {S,,S,} is my-precise for
p q
any o satisfying ||wo|| = mo = Ur (P, 7H,7w;) <7t = ||wH]|.

(4) Conditional intersection enhancement functions ¥, (-) resp. Uf(-), so that the set

+
. L . L. . . _
{S,,8,} is w§*-precise resp. wf*-precise for worst case settings w.r.t. acc™ (S,)

resp. acct(S)), with

Lpe Lpe — H -
H,"_Opq =7 = U, (By, By, Py, Py, 71, Vs 1 1)

+ +

wal| _ e _ gt H .+
|wg?|| = 76 = (B, By, Py, Py mp, Vs 1d),

+
and analogous wy™” for determining the worst case settings w.r.t. acc™(S,).

Informally, the accuracy preservation functions ®=(-) give bounds on the new interval
of accuracies, the precision preservation function ®,(-) gives the precision of the new
accuracy intervals w.r.t. old internal global time, and the precision enhancement function

U, (-) gives the precision of the new accuracy intervals w.r.t. new internal global time.

The conditional intersection enhancement functions W:(-) are in charge of keeping
track how the convergence function affects the common intersection ¢ of the associated
precision intervals’, which eventually determines the worst case setting for a;, and a;.
Just taking ¢ = () leads to overly conservative accuracy bounds, since the worst case
enlargement of the accuracies cannot occur in consecutive rounds. This striking obser-
vation is owing to the fact that the worst case settings are usually adjoined with an

initial precision (i.e., after resynchronization) that is better than the worst case one.

tTo enable some degree of freedom, we do not specify which one in our generic framework.
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Hence, by feeding the length ¢ of the common intersection as an additional parameter
to the accuracy preservation functions ®Z(-), the worst case enlargement of a, and o
can be “conditioned” on the common intersection actually present. The (conditional)
intersection enhancement functions W (-) effectively determines ¢ for the next round, i.e.,
propagates the required information over multiple rounds. Note that a lower bound is
sufficient for this purpose, since excessive adjustments happen for small intersections only.

Making this idea working in practice, however, is tricky for several reasons: First of all,
it is the particular convergence function that determines how many/which input intervals
are involved in the worst case accuracy setting. Moreover, different ;= resp. +* are usually
required for computing the worst case bound for the negative resp. positive accuracy. Also
a dependence on a particular node p might be the case. To cope with those problems,
we actually utilize individual lower bounds ¢} resp. ¢;, 1 < s < n, on the common

aSs

intersection of (I, N j;nmp) N (j: N fqnmq) resp. (j; N j;naXp) N (jz N j;naxq), see Figure 3.5.

To be complete, all lengths (T, . .. , 1= are supplied as parameters in functions ®=(-) and
U£(-). In order to be able to derive an expression for, say L; , the conditional intersection
+

enhancement function ¥} (-) provides an upper bound 7 on the mutual precision upon

{S,, S,} computed at node p, with ¢ under the worst case accuracy setting for a’;. Since
S, and 8, are both 7rg-correct, this implies that the mutual intersection S, N S, for any

Py
¢ has length at least mp — max, {7 }.

Figure 3.5: Common Intersection

Note that it is possible to provide additional arguments to any of the characteristic
functions above, but we tried to keep them small for clarity. In particular, no global
parameters are used, so that the behavior of the convergence function CV£(-) can be

studied for any non-faulty pair of nodes.
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The following lemma describes the result of applying the generic convergence function

to the intervals resulting from an FME as set forth by Lemma 3.11.

Lemma 3.12 (Application of Convergence Function) Let A, = [I, + o] =
C’;,k) (tf’(k_l)) be the accuracy interval of node p’s interval clock at real-time t, = tﬁ’(’“_l),
when round k (for some fized k > 0) starts, and denote by A the subset of the A,’s of
those nodes p that remain non-faulty during round k w.r.t. a given fault model F. Let
TF = (k+1)Ps+A+Q+ A+ E, be the logical time when the (k+1)-th resynchronization
instant —happening at real-time t¥ = t®) — is scheduled at node q, and let I" = I"(tF)
be the interval (3.19)/(3.20) that is obtained at node q as the result of delay and drift
compensation of a node p’s accuracy interval transmitted during the FME in round k.

Assume that the set I, of intervals I available at node q is subsequently fed into a
convergence function CV x(+) characterized by the accuracy preservation functions ®=(-),
precision preservation function ®,.(-), precision enhancement function V. (-), and inter-
section enhancement functions VE(-) subject to fault model F.

If, at the beginning of round k,

[1] the accuracies of any A, = [T, + o] € A are integer multiples of Gs bounded
according to

a,CB,€EB (3.50)
for a given set of accuracy bounds B={8,,...,8,},

[2] shifty (A), ' > maxy{t,} arbitrary, is my-correct w.r.t. internal global time of

round k for some m, C m, where mwy is a solution of the equation

7ol = o (P, ™, 1) (3.51)
for the set P = {=m',...,w"} of uniform precision bounds wP C wH defined by
7w’ = o+ Up + Umax + G + Emax

+ (PS -A- Ep)pp + (EmaX +A- 5Inin)pmax
+ (A + Q) [_(p;lax - p;): pr_;ax - p;]

+ O(Pspmax + G + Emax) Praax> (3.52)
7 = o+ ug+ Psp, + O(Pspmax + G + Emax) Py (3.53)
7 = 7y 4 2Umax + G + Emax + (Ps + Emax — Emin — Omin) Prmax

+ O(Pspmax + G + €max) Prmax (3.54)

M = Emax T Humax + @ + (A + Q4+ A + Emax - 6min)pmax
+ O(PSpmax +G+ Emax)pmaxa (355)
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[3] for any s € {1,... ,n} with both A; and A; being non-faulty, the associated preci-

ston intervals satisfy

|1A,NA,NA, "NA, || > >0, (3.56)
~ 8 ~'8 ~ maxp ~ Maxg _
1A,NnA,NA, "NA, || > 1y >0, (3.57)

where 1= are integer multiples of Gs, and miI_lz resp. max, represents that non-
~ maXg

faulty node that leads to the leftmost right(A;mnw) resp. the rightmost left(A, )
for z € {p.q},

[4] any A, € A satisfies T, € [kPs+ A+ Q+ A+ E, £ x| for ' C 7 defined by

T = E(Pa WHa 771) + o + Umax + PSpmax
+ O(Pspmax + G + Emax) Pmax> (3.58)

[5] broadcast delay A + 2, transmission delay A, computation time compensation E,,

and round period Ps are as defined in item [}] of Lemma 3.11,

then the set 8 of intervals
S, =8,0tH =T, + a}] =CV£(Z,)

provided by the application of the convergence function CV £(-) to the set I, of compatible
intervals (3.19)/(3.20) resulting from the FME at a non-faulty node q satisfies:

(1) S, is accurate with accuracies being integer multiples of Gs bounded according to
o, C |[—0,(By, Py, Vs 1)), 0f (By, Py, w7, Vs - 1f)|,
where the set By = {,8;, cee ,BZ} of node q’s accuracy bounds is defined by

B = B,+up,+u+G+2G4+¢y
+(Ps— A= B)py+ (B + A - b,0)p,
+ (A+Q) [— max{p, — p,,0}, max{p; — p;, 0}]
+ O(Pspmax + G + €max) Pmax (3.59)

forp# q and

B9 = B, + ug + Psp, + O(Pspmax + G + £max) P, (3.60)
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with B, € B; the set Py = {m,, ..., 77} of node q’s precision bounds wb C =P C 7"
1s defined by

T = Totuy+ug+ G +eyt+ (Ps— A= Ep)p, + (Eg+ A = dy)p,
+(A+Q) [— max{p; — p,,0}, max{p; — p, 0}]
+ O(Pspmax + G + €max) Pmax (3.61)

forp# q and

7wl = mo +ug + Psp, + O(Pspmax + G + €max) Py (3.62)

(2) S, is ®,(Py, wH, mr)-correct w.r.t. internal global time of round k.

(8) shifty (8), t' > max{tl} arbitrary, is wo-correct w.r.t. the newly defined internal
global time of round k + 1.

(4) The precision interval S, associated with shift,(S,) € shift,(S), t' > max,{t}
arbitrary, has a common intersection with any associated precision interval from
shifty (8) of length at least

Vo= m— mpax{\IfL_(Bp, B, Py, Py m,Vs:17)} >0 (3.63)
JTo= mp— mgx{‘l’f(Bp, By, Py, Py, Vs 1f)} >0 (3.64)
under the worst case setting for accT(S,).

(5) Two non-faulty nodes p, q resynchronize within real-time tf — tf satisfying

th —tl € E,— E;+[—m0,m0] + Ps(p, + P,) + up + Uy
+ O(Pspmax + G + €max) [~ Pmax> Pmax] (3.65)

for mg = ||mo]|.

(6) The mazimum clock adjustment Y, applied to the clock of any non-faulty node gq
satisfies T, € m, for w, C m defined by

w, = @ (P, mr) +me+ Psp, +u,
+ O(Pspmax + G + €max) Prmaxs (3.66)

hence Ty € [(k+1)Ps + A+ Q+ A+ E;+m] for any S, € S.
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Proof. First of all, we establish some coarse “a priori” bounds on the various preci-
sion values given in precondition [2] of our lemma, which will be required for apply-
ing Lemma 3.11: Since m, satisfies (3.51), it follows from ¥, (-) < m according to

item (3) of Definition 3.11 that 77 > my = Cn¥ for C < 1. Therefore, (3.54) reveals

H

(1 — C)r" = O(Pspmax + G + €max), s0 that this remainder term applies for 7/ and

mo as well. Moreover, plugging in ||®,(P,, w, 7;)|| < ||®(P,w", mwr)|| = O(x?)
justified by weak monotonicity of ®,(-) and the bound from item (2) of Definition 3.11—

into (3.58) resp. (3.66) reveals that m, < 7 = O(Pspmax + G + €max) for any p as well.

—as

Now, since our preconditions are the same ones as required by Lemma 3.11, it follows
from (3.29) resp. (3.31) that the accuracy of a (non-faulty) interval I¥ € Ny C I, is
bounded according to (3.59) resp. (3.60), which defines the set of accuracy bounds B,
required for CV#(-). Similarly, we know from (3.32) resp. (3.33) that any I? € N is
wh'-correct for 8" C b given by (3.61) resp. (3.62). In addition, (3.35) implies that
any I? € N is wH'-correct with 7’ C 7 defined in (3.54), and (3.36) establishes that
any It € N7 is wP'-correct for w?' C #? given by (3.52); note that O(n') < O(n) =
O(Pspmax + G + €max), as shown above. Moreover, from (3.37) it follows that N is also
7' -precise with 7, C 7r; given by (3.55); again, O(7}) < O(m) = O(Pspmax + G + Emax)-

Therefore, we have established bounds on all the arguments of the characteristic func-
tions of CV £(-). Hence, the statements asserted in item (1) and (2) of our lemma follow
immediately from Definition 3.11 item (1) and (2), respectively. Note that weak mono-
tonicity of CV£(-) and ®=(-) is required here to carry over bounds on the source intervals

to bounds on the result.

Since (3.51) in conjunction with item (3) of Definition 3.11 implies that shifty (S), t' >
max, {¢t%} arbitrary, is mo-precise, we can define internal global time 7(+1) = 7(¢+1)(¢/) for
the new round k£ 4 1 to be an arbitrary point that lies in the intersection of the intervals
in shifty (S) (recall Definition 3.9), so that this set is actually mo-correct w.r.t. 7¢-t1) as

asserted in item (3) of the lemma.

To understand item (4) of the lemma, consider the 7rj-precision intervals drawn from
set shift, (A), t" > max,{t,}. Precondition [3] states that the length of the common
intersection AZOAZHA;HIDPHAZHHQ is at least 17 > 0, forall 1 < s < n. Since the drift and
delay compensation operations used to obtain the I, from A, according to (3.19)/(3.20)
have been explicitly designed to preserve accurateness, the precision intervals associated
with the I;’s fed into the convergence function CVx(-) have a common intersection of
length at least «J as well. Applying the conditional intersectioJIrl enhancement function

T} (+) from Definition 3.11 item (4), provides an upper bound 7, on the precision of the
set shifty ({S,, Sp}), t' > max,{t}} arbitrary, for the worst case setting w.r.t. acc™(S,).
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+
This implies a lower bound L;’p = my — ;™ on the length of the mutual intersection of
5,NS,, since shifty (&) is 7e-correct according to item (3). To confirm (3.64), we just take
the minimum over all p, which gives a lower bound ¢ = 7o — max,{m;"*} on that mutual
intersection for arbitrary nodes p (including p = min,). The same line of reasoning holds

for the worst case setting w.r.t. acc™(S,), eventually proving « in (3.63).

To prove the statement of item (5), we recall that node p resynchronizes at real-time
t% when the virtual clock C{*) used in round k displays T.F = (k+1)Ps+A+Q+ A+ E,.
Since round k started when Cpfk) read T, > kPs + A+ Q+ A+ E, — m according to
precondition [3] of our lemma, our usual argument provides that the initial precision

has deteriorated to

Top = mo+ (T} —Ty)p, +u, Cmo+u,+ (Ps+7)p,
C mo+uy+ Psp, + O(T) Proax (3.67)

when t£ is reached; that is, the virtual clock C'¥)(t%) = [T.F + o] of a non-faulty node p

is 7, ,-correct. Therefore, Lemma 3.6 immediately provides
R _ 4R R R =
ty =ty €T, —T,"+mop+Toy

for all non-faulty nodes p and ¢. Plugging in the definition of the logical resynchronization
times 7, and T, and (3.67) while recalling 7 + 7 = [—m, 7] for any =, item (5) of our

lemma follows.

Turning our attention to item (6), we recall that the new virtual clock C’((Ik“)(tff) at
node ¢ is initialized to S, = [T} £ ], so that it is ®.(Pg, w7, 7)-correct w.r.t. 7
by virtue of item (2) of our lemma. On the other hand, the virtual clock C’flk)(th) was

established above to be 7, ,-correct w.r.t. 7% according to (3.67). Lemma 3.7 thus yields
Yo=T,— T} € moq+ Bn(Py,w",7p). (3.68)

Using &, (P, nf, 7)) C ®,.(P,m, m;) due to weak monotonicity, (3.66) and also m, C
m follows, which in turn justifies our choice of (3.58). The bound on T} given in item (6)

is an immediate consequence of T, =T, — TqR, eventually completing our proof. O

By virtue of the Lemma 3.12, it is not difficult to present the concluding Theorem 3.1
about clock state synchronization by means of instantaneous correction. Before that, we
are motivating the notion of traditional accuracy R, which gives the amount local time
may drift from real-time during a given time interval A¢. Although worst case bounds 3

on accuracy intervals obviously provide an upper bound on traditional accuracy because
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of R € B, it is favorable to determine the latter explicitly and in a stronger way. Taking
the limit At — oo, traditional accuracy leads to the rate (see forthcoming Chapter 4)
of the synchronized clocks, which is more convenient for comparison. Note that such
worst case bounds are available for most existing internal synchronization algorithms, see
[30], [32], [58], [66], [8], [10], or [72]. Our invention of internal global time makes it easy
to deal with traditional accuracy, since we only have to bound the maximum “jump”
internal global time 7(¢) can experience when switching from one round to the next. This
is sufficient because internal global time progresses as real-time does during a round, so

that no additional deviation from real-time occurs in between synchronization instants.

Theorem 3.1 (Instantaneous Correction) Running in a system complying to As-
sumptions 3.1-3.4, the clock synchronization algorithm of Definition 3.7 using the generic
convergence function CV x(-) —characterized by the accuracy preservation functions ®=(-),
precision preservation function ®,(-), precision enhancement function ¥, (-), and inter-
section enhancement functions VE(-) subject to a given fault model F— guarantees accu-

racy and precision for all rounds k > 0 as follows:

(1) The accuracy interval AFT) = ATV (B®) = [T,+1) £ ok+D] provided by the
local interval clock of a non-faulty node q at the beginning of round k+ 1, k > 0,

satisfies agk“) C ,ng“) with

,ngﬂ) = [—@a (B(k+1),Pq,7rH,7r1,Vs : L;’(k)) ,
_|_

® (ng+1>, Py, mw, Vs L;W“))] : (3.69)
BV = ol (3.70)
where the set B((IHU = {,3;’(“1), e, ,32’<k+1)} of node q’s accuracy bounds is defined

by B = BY) 4¢P with

¢ = upyt+u+G+2G + gy
+(Ps—A— Ep)pp + (Eq +A- 5pq)pq
+(A+9Q) [— max{p, — p,,0}, max{p; — p}, 0}]
+ O(Pspmax + G + €max) Pmax~ forp# ¢, (3.71)
¢t = ug+ Psp,+ O(Pspmax + G + €max) Py (3.72)

the set Py = {m,

q,...,wg} of node q’s precision bounds wh C wP C 77 —see
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item (2)— is defined by

= mo+up+ug+Gtey+ (Ps—A—Ey)p,+ (Eg+ A —6y)p,
+(A+9Q) [— max{p; — p,,0}, max{p; — p, 0}]
+ O(Pspmax + G + max) Pmax ~ fOrp# ¢, (3.73)
wl = o+ ug+ Pspy,+ O(Pspmax + G + €max) Py (3.74)

q

and the minimum lengths on the common intersections are

L;’(k+1) = my— m;lx{\lf; (ngﬂ), Bg’”l), Py, Py, w Vs L;’(k))} (3.75)

> 0,
L;’(kﬂ) = Ty — mz?,x{\lffr(Bg)kH), Bg’”l), Py, Py w0, Vs Lj’(k))} (3.76)
> 0,
£,0) _ 0
Ly O = 7 - m;;xx{ap} > 0. (3.77)

(2) The interval clocks of non-faulty nodes are synchronized to the (observable) initial
worst case precision, i.e., the precision at the beginning of each round of the last

non-faulty clock,

To,max — T + Umax + G+ (Ema,x - Emin)pma,x

+ O(Ps proax + GPmax + EmaxPmax) (3.78)
with my = |||, where mwy is a solution of the equation
||7wol| = Wu (P, &, 1) (3.79)
for the set P = {=w',..., ®"} of uniform precision bounds w? C w! defined by
7w = T+ Up+ Umax + G+ Emax

+ (Ps — A = Ep)pp + (Emax + A — Omin) Prmax
+ (A + Q) [~ (Pmax = £p): P — 1]

+ O(Pspmax + G + €max) Prnax> (3.80)
7l = w4 ug+ Psp, + O(Pspmax + G + €max) Py (3.81)
= o+ 2Umax + G + €max + (Ps + Emax — Fmin — Omin) Prmax

+ O(Pspmax + G + €max) Pmaxs (3.82)

T = €Emax T Humax + @ + (A +Q+A+ Emax - 5min)pmax
+ O(Pspmax + G + Emax) Prmaxs (3.83)
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where w4 C w4 denotes node q’s own precision bound.
(8) The (observable) worst case precision Tyax Satisfies
Tmax — ma’X{ﬂ-_ + u$ax + (Emax - Emin)pr—'r—lax:
mt + U’l;lax + (Emax - Emin)pr;ax’

o + Umax + PS,Omax}
+ G + O(Ps iy + Gpmax + EmaxPmax) (3.84)

with

™ = E(Pa WHa 771) + o + Umax + PSpmaX
+ O(Pspmax + G + €max) Pmax- (3.85)

. . . . . R R
(4) Resynchronization of any two non-faulty nodes p, q occurs within real-time t,; —t,

satisfying

tf—tf € Ep_Eq—i_[_ﬂ—Oaﬂ—O]+up+ﬂq+PS(pp+ﬁq)
+ O(Pspmax + G + 6max)[_pmaxa pmax]’ (386)

where clock adjustments Y, of at most Y, € w, C 7 defined by

g = (P, w) + mo+ ug + Psp,
+ O(Pspmax +G + 5maX)pmax (3'87)
are applied to the clock of a non-faulty node q.

(5) Let ® = U, ®-(Py, w",71) C ®,(P, 7", mw;). For any round k > 0, the traditional
accuracy R*Y at the beginning of round k + 1 satisfies

REHD = 7D 4B € 750 + (k + 1) (@ — 7). (3.88)
The inverse rate T, slyn of the synchronized clock at any node q evaluates to
(k) _ 40 ® — 7,
Tgsyn = Jim —d——1 [I:I: ], (3.89)
k—o0 Tq( +1) _ qu Pg

where T,? = C’q(tg) s node q’s local time at the beginning of round k = 0.
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Proof. The above results are established by carrying out an induction proof on the
round k: Assuming that the accuracy intervals A, = [T, + o0, = C’I()k) (t2*E=D) of all

non-faulty nodes p are my-correct at the beginning of round £, in the sense that
o shifty (A), #' > max, {t>*~1} arbitrary, is mo-correct,
e I, €ckPs+A+Q+ A+ E, £ |, and
o a, CBY,

. It 11 — (k+1) (4R(K inni
we show that the accuracy intervals A, = [T) + og] = C;77 () (k)) at the beginning of
the succeeding round k + 1 satisfy these precision properties and accuracy bounds as well.

As a matter of fact, most results stated in our theorem follow directly from Lemma 3.12.

As far as item (1) is concerned, the recursively defined bound (3.69) follows directly
from item (1) of Lemma 3.12, where we introduced the additional abbreviation ¢} in
(3.71)/(3.72) since this expression is independent on round k. The lower bounds on the
appropriate common intersections are carried over according to item (4) of Lemma 3.12,
so that (3.75)/(3.76) follow as well. Similarly, item (4) of our theorem just combines
item (5) and (6) of Lemma 3.12.

The initial case £ = 0 is immediately implied by the initial synchronization assumption
in the algorithm’s Definition 3.7. More specifically, the initial accuracy ag of node ¢ at
the beginning of round 0 readily confirms (3.70) and (3.77).

It only remains to derive the expressions for the observable precisions 7y max and Tmax
given in item (2) and (3) of our theorem. Let C be a certain set of just resynchronized
non-faulty virtual interval clocks C’g““)(tf) at their respective resynchronization times
tﬁ = tf’(k). From item (5) of Lemma 3.12 in conjunction with m7¢ = O(Pspmax + G + €max)
established in its proof, it follows that ¢} — t# < Enax — Emin + O(Pspmax + G + €max) for
any two non-faulty nodes p and ¢, so that item (2) of Lemma 3.10 provides us with the
precision 7 max of the clocks in C at real-time ¢ = maxp{tf}, when the last non-faulty
node in the system resynchronizes: Provided that any C*V(tF) € C is m,-correct, we
obtain

R _ 4R -
m + (tl;t_#pp —i—up) +Gp
P P
C 7+ (Fmax — Fmin) Pmax + Ymax + G

+ O(Pspmax + G + Emax) Pmax (3.90)

N

Tz, max

by recalling tmax = O(G) from Assumption 3.2 and the definition of Gp in (3.13).
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To establish 7 max, we have to consider the set C of all non-faulty virtual clocks
Cl(,k“)(tf’). Since shiftz(C) is mwo-correct w.r.t. internal global time 7+ due to item (3)

of Lemma 3.12, we have to plug in mw, = g in (3.90), which provides (3.78).

Before we can attack overall precision 7,,,, we need some technical preparations.
Consider some ty, t; > to being in synchrony with a node’s clock C(t), and denote by I'(t)
the interval obtained by drift compensation of a mg-correct (initial) interval Iy = I(to)
dragged from ty to ¢ at that node. Then, it is not difficult to see that I'(t) for any ¢

within ¢t; <t < t; is m-correct for
m=m+ (11 —To)p+u+ Gp, (3.91)

where Ty = C(t) and 77 = C(t;). In fact, monotonicity of C(t) implies 73 > T so that
(3.91) follows immediately from (3.12) for ¢; = t. However, note the subtle fact that
we cannot always infer mw-correctness of I'(t) for any ¢ < ¢; from m-correctness of I'(t).
Whereas this is justified when ¢; is not in synchrony with C(t), we must explicitly account
for clock granularity (which amounts to adding G p) in case that #; is synchronous.
Returning to our problem of determining the maximum observable overall precision,
we know from (3.67) that the virtual interval clock C" (t%) = [I'F + o] of a non-faulty
node p is m, ,-correct at tf. Therefore, by using majorization in (3.67) and recalling
(3.91), it follows that C:f,k) (t) of any non-faulty node p, for any ¢ < ¢ in round k, is

,, ~correct with
Ty, = T + PSpmax + Umax + Gp + O(PSpmaX + G + 5max)pmax‘ (392)

Assuming that the last resynchronizing node [ in round £ actually attains this maxi-
mum, we now consider the set C containing just a single virtual clock C{*V(t%), of any
non-faulty node p # [. From item (2) of Lemma 3.12 and weak monotonicity of ®,(-),
we know that C{F*V) (%) is @, (P, 7!, 7 )-correct w.r.t. internal global time of round k.

Plugging this into (3.90) provides the observable precision

7rM = Qﬁ(’Pﬁ ﬂ-Ha 7‘-1) + (Emax - Emin)pmax + Umax + G

+ O(PSpmaX + G + 6maX)pmaX (393)

of C, (k+1) (1) at time ¢*, when the last node [ is about to resynchronize. Of course, by the
above reasoning, this precision is in fact valid for C (k+1) ( ) for any t satisfying tﬁ <t<th
as well, since granularity compensation Gp is already incorporated in M.

Applying Lemma 3.7 to Cl(k)(t) and C",E,Hl)(t) while using (3.92) and (3.93) reveals

that the distance Y(t) = ref(CF* (1)) — ref(C{¥ () for any t with ¢ < t < tf is
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bounded by

Y(t) € mo. +7u
C o+ Psppay + Umax + G + @, (P, " 7;)
+ (Emax — Enin) Prmax + Umax + G
O(Pspmax + G + €max) (Prax + Prax)
= T+ (Emax — Emin) Prmax T Umax + [~ G, G]
O(Pspmax + G + Emax) [~ Pmaxs Pmax]

by recalling the definition of 7r in (3.85).

Of course, the maximum of the positive and negative accuracies of the interval above
gives the maximum observable precision for the “mixed” case, where virtual clocks of
round k£ and k£ + 1 are simultaneously alive. Thus, to determine 7.y, it only remains to
find the maximum observable precision for the case where all nodes are still in round £,
and to take the maximum of both cases. However, we have already established that
C®(t) and C((]k) (t) for any t < min{t¥ t#} are at most m, _-correct, so that Lemma 3.7

p prUq

in conjunction with (3.92) provides U(t) = ref (C'pc(t)) — ref (C”qc (t)) bounded by

U(t) € [—71'0, 71'()] + PS[_pmaDU pmax] + [_umaxa Umax] + [_Gv G]
+ O(PS,Omax + G + gmax)[_pmaxa pmax]-

Taking the maximum values of positive and negative accuracies of Y(¢) and U(t) eventu-
ally provides (3.84).

Turning our attention to the last item, we know that A((Jk“) is ®, (P,, w, mr)-correct
w.r.t. 7®) by virtue of item (2) of Definition 3.11 and hence ®-correct. Note that & C
®, (P, n", m;) is a simple consequence of the weak monotonicity of ®,(-). Moreover,

from item (3) of Definition 3. 11 it follows that all A(’€+1 are mo-precise. Hence it is

possible to choose 7+1) ¢ Ny A , as justified by Definition 3.2, and we claim that we

may in fact choose 7¥*1) such that
—(@®t —af) <7k 70 <@ — 75

which can also be written more elegantly as 7¢*+1) — 7() ¢ & — 7r,. If this is not

feasible, there would exist an interval A(Hl) of length 7y with 7¢+1) = e ft(A(k+1)) or

else T(F+1) = right(A( )) that satisfies T(k ¢ A k+1) + (® — my) = ®. This, however,
would contradict the ®-correctness of Ag““).
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The bound (3.88) is a simple consequence of the fact that internal global time pro-
gresses as real-time does during a round, so that the maximum deviation between internal
global time and real-time remains the same during any round. Therefore, we just have to
add up the worst case leap of internal global time at each round. The initial deviation is
zero since choosing 7(9) (¢) = ¢ is legitimate due to the initial synchronization assumption

in Definition 3.7. Hence, to complete the proof of (3.88), it only remains to add the max-

(k+1)

¢, which is trivial

imum deviation between 7¢¥*1) and the reference point Tq(’““) of A
since the latter is mg-correct.
To derive expression (3.89) for the rate of the synchronized clocks, we multiply (3.88)

by (—1) to arrive at

(tR0) —10) € THHD 7O — (19 —T9) + mo + (k+ 1) (@ — ). (3.94)

From the initial synchronization assumptions of Definition 3.7 we gather that t) — T} €
o) C mo. Moreover, from step (T) of the algorithm in conjunction with the fact that the
maximum clock adjustment was shown to satisfy T, € 7 in item (4) of this theorem, we
obtain T{¥™) — T0 = (k 4 1) Ps + O(r). Plugging this into (3.94) yields

t(lf’(k) _tg [—7T0,7T0]+(k+1)(@—ﬂ'0)
LT 14
T — 10 (k+1)Ps + O()

and taking the limit for £ — oo eventually provides (3.89). This completes the proof of

our theorem. O

The analysis of the accuracy bounds is done with both “halfs” ®_(-) and ®/(.),
so that different worst case scenarios may be considered for the negative and positive
accuracy. Note that in this case H,B((IkH)H is an overly conservative bound for the total

length ozq_’(k“) + ozj’(k“), since they do not occur simultaneously.

3.5.3 Continuous Amortization Technique

Theorem 3.1 provides results for instantaneous correction, where the local interval clocks
CP(tB®) are re-initialized to C5™(tf*) at the end of round k. Since this simple
approach could cause non-continuity and non-monotonicity of local time, applications
usually demand some kind of continuous amortization. Such techniques are based on the
idea of smoothing out the difference C{¢+1) (t8®)) — (k) (¢£:*)) by means of a suitable rate
change. Continuous amortization has been studied in some detail in [58] and, in particular,
in [56], where the non-interval based variant of our algorithm has been introduced and

analyzed.
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Adopting existing continuous amortization techniques to the interval-based framework
involves intricate issues as already touched in our UTCSU specification in Chapter 2. First
of all, continuous amortization only applies to the reference point Cy(t) of a local interval
clock

Cy(t) = [Ly(t), Up(1)] = [Cp(t) — a, (1), Cp(t) + 0y (1),

whereas the upper and lower envelope can be set instantaneously. However, since the
envelopes are not maintained explicitly but rather implicitly via o, (t) and o (t), it
is necessary to compensate any change of C,(¢) caused by continuous amortization by
changing o, (t) appropriately.

Apart from that, it might also happen that instantaneous setting of lower or upper
edge cause “negative” values of the accuracies a;, or off, since the reference point is not
changed to its new value simultaneously with . Of course, eventually, accuracies will
become positive again, but one should ensure that applications read “negative” accuracy
values as zero. Furthermore, the worst case accuracy bounds for the beginning of a round
provided by Theorem 3.1 are not particularly meaningful anymore, except for the total

length oy, = o +af.

To cut the matter short, we just repeat the abstract specification and properties
of our continuous amortization algorithm from [55]. Provided that the rate “boost” is
chosen large enough, it turns out that continuous amortization does not impair worst cast
precision and accuracy. Therefore, the following Theorem 3.2 imposes an upper bound

on the length of the amortization period.

Definition 3.12 (Continuous Amortization Algorithm) Setting node p’s local in-
terval clock Cy(t) displaying [T £ o at real-time t to [T" + o] (with T' =T + Y being

an integer multiple of Gs) is accomplished by

(1) adjusting the (intrinsic) inverse rate r,* of the local clock Cp to (1 —4)r, " for the
next A clock ticks (according to the amortizing clock), where the amortization rate

deviation v and (local time) duration A - G of the amortization period are related

by
8

w:Ea

(2) instantaneously setting the clock’s interval of accuracies to oy = Y + o, and mod-
ifying (intrinsic) deterioration, clock reading, etc. appropriately to keep away any

effect of continuous amortization from the envelopes Ly(t) = Cp(t) + a, (t) and
Up(t) = Cp(t) + 0 (1)
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Theorem 3.2 (Continuous Amortization) Given the clock synchronization algorithm
of Definition 3.7 employing the continuous amortization algorithm of Definition 3.12 for

setting the local interval clock in step (T), with

[1] amortization rate deviation v, of any non-faulty node p’s clock satisfying
1> |¢p‘ 2 Pmaz s

[2] Ps > A+ Q+ A+ Enax + AmaxG with

max{7r~, 7t}

Apar 2 [T, 3.95
Ghbmin‘ ( )
where |Ymin| = min,{|¢,|} and w = [—-7—, 7] is the mazimum adjustment applied

to a non-faulty clock given by (3.85),

we obtain
(1) mazimum precision 7%, given by
¥ YmaxUmax

7Trnaux = Tmax + + 0<Gpmax): (396)

(1 = Prmax) (1 = Ymax)

for Ymax = max,{1,}, where mmax defined in (3.84) is the mazimum precision of
the instantaneously corrected variant of the algorithm. The additional terms vanish

in the remainder if Ymax = O(Pmax)-

(2) The accuracy interval ALETY) = [TREHD £ oBE+0] provided by the local interval

clock of a non-faulty node q at the end of (and during) round k+1, k > 0, satisfies
alttt) € B 4 Pop. +uy + G+ O(Pspuax + G + Emax) Prmaxs

where ,ng“) is given by (8.69), which is the same bound as obtained for the instan-

taneously corrected variant of the algorithm.

3.6 Summary and Future Research

We introduced and rigorously analyzed a simple interval-based algorithm suitable for
clock synchronization. Unlike usual internal synchronization approaches, our convergence
function-based algorithm (dynamically) maintains both precision and accuracy w.r.t. an
external time standard like UTC. To that end, each node keeps track of time by means of

a local interval clock C(t), which is made up of an interval of accuracies taken relatively
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to the ordinary local clock’s value. Our algorithm periodically exchanges local interval
clock readings among all nodes in the system and employs an interval-valued convergence
function to obtain and subsequently apply a clock correction value that enforces precision
and accuracy. Clock correction can be done either instantaneously or by means of a
certain continuous amortization algorithm.

The comprehensive analysis presented in the previous sections is generic w.r.t. the
particular convergence function. It relies on a system model that considers many aspects
usually abstracted away, like non-zero clock granularity, rate-adjustment uncertainties,
and broadcast latencies. Technically, the analysis is based upon a novel, interval-based
framework for providing worst case bounds for various parameters in terms of the charac-
teristic functions of the convergence function. It manifests a striking conceptual beauty
and expressive power, primarily by utilizing a suitable notion of internal global time. The
results obtained include worst case bounds for initial and maximum precision, accuracy,
maximum clock correction, and resynchronization tightness, for both instantaneous cor-
rection and linear continuous amortization. One of the surprising facts revealed by our

analysis is the influence of rate adjustment uncertainties as well as the clock granularity.

Future theoretical research will be primarily devoted to the problem of integrating
our algorithm(s) in the clock validation framework, which raises issues ranging from
incorporating accuracy intervals from primary nodes up to suitable failure detectors for
certain (unbounded accuracy) faults. Other subjects of interest include a more general
investigation of the problem of optimality w.r.t. precision/accuracy besides the most
challenging task of providing an average case analysis of precision and accuracy.

As far as practice is concerned, we are currently working on a fully engineered im-
plementation (reviewed in Chapter 2), which will be mainly used for experimental eval-
uation. Besides confirming theoretical results experimentally, it will help us not to have
overlooked important practical issues. Moreover, demonstrating the suitability of our
concepts is mandatory for a certain industrial pilot application that could be carried out

by using our approach.
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Chapter 4
INTERVAL-BASED CLOCK RATE SYNCHRONIZATION

4.1 Introduction

The concept of time allows us to reason about events and durations. For the purpose
of quantification, designated clocks assign (real) numbers to them, so we are able to tell
when a particular event occurs or how long a duration takes. Viewed from the other side,
clocks can be characterized in two ways: An event draws a particular clock state, whereby
a duration, measured as the difference between two corresponding clock states, enables
us to determine a clock rate when compared against a reference clock. Unlike the states
of clocks, however, the rates are not directly observable. In case of an ensemble of clocks,
a simultaneous event could entail different clock states and a common duration different

clock rates. This leads to the clock state/rate synchronization problem.

A clock C is regarded as an entity that reads clock state 7" at the non-directly observ-
able real-time ¢ in some meaningful Newtonian frame. In mathematical parlance, a clock
can be modelled by a piecewise continuous function C : t — T. Ideally, C(¢) should be
the identity function, but in a realistic system we have to deal with an approximation
falling short of a perfect clock synchronization.

Commonly, clock synchronization is characterized in terms of clock states by two
parameters: The maximum deviation between corresponding clock states and real-times
on a single clock is called accuracy a, and the maximum clock state deviation between
two different clocks in the distributed system at simultaneous real-times is called precision
m. Maintaining accuracy resp. precision of an ensemble of clocks refers to the exrternal

resp. internal clock state synchronization problem.

Definition 4.1 (Clock Accuracy and Precision) Let T be a non-empty (real-time)
interval. A clock C, has accuracy oy, during T iff |Cp(t) —t] < o, VE € T. Any two
different clocks C, and Cy have precision 7 during T iff |Cp(t) — Cy(t)| < 7wVt € T.
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However, clock synchronization can be viewed in terms of clock rates as well by con-
sidering the instantaneous clock rate v(t) = dC(t)/dt. Hence, we obtain another two
parameters for characterization: The maximum deviation between the clock rate and the
ideal rate 1 is called drift, and the maximum clock rate deviation between two different
clocks in the distributed system at simultaneous real-times is called consonance. Main-
taining drift resp. consonance of an ensemble of clocks refers to the external resp. internal

clock rate synchronization problem.

Definition 4.2 (Clock Drift and Consonance) Let T be a non-empty (real-time) in-
terval. A clock C, has drift 6, during T iff |v,(t) — 1| < 0, Vt € T. Any two different
clocks C, and C, have consonance 7y during T iff |v,(t) —v,(t)| <y Vte T.

The significance of clock rate synchronization is motivated by the numerous dis-
tributed applications that are content with rate synchronized clocks, see [27]. Examples
are algorithms based on timeouts (e.g., lifetime of Kerberos tickets [68]) or round-trips
(e.g., NTP synchronization system [38]).

However, many applications require tight and robust state synchronized clocks, for
instance distributed fault-tolerant real-time systems, see [24]. Most algorithms for clock
state synchronization can be improved with an appropriate clock rate synchronization by
achieving a better accuracy/precision or by saving communication bandwidth. Figure 4.1

helps to explain these improvements by regarding the precision development.

A
Tmax T without rate synchr.
with rate synchr. and
Mow T frequent state resynchr.
- with rate synchr.
To T

Figure 4.1: Benefits of Rate Synchronized Clocks

Let the dotted line represent the precision bound when no clock rate synchronization
takes place, having a precision of at most 7y immediately after state resynchronization

instances and mm,, just before it. If the clock rates are additionally synchronized beyond
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the usual manufacturer’s drift specification, the precision deterioration of freely running
clocks during consecutive state resynchronization instants can be reduced. This is shown
by the dashed line with the same maximal precision, whereby the state resynchronization
instants can occur less frequently (we estimate up to 10 times in the best case). On the
other hand, adhering to the frequent state resynchronization instants leads to a lower
worst case precision M, as shown by the solid line. In order to achieve a highly accu-
rate/precise state synchronization in the 1 ps-range as in [20], it is inevitable that clocks
are additionally rate synchronized.

Last but not least, rate synchronization can be useful to achieve initial clock synchro-

nization and or to implement fault detection mechanisms.

A vast material on clock state synchronization has been developed, see [65] for an
overview or [58] for a generic paradigm, but not much research has been conducted on
the problem of clock rate synchronization. The only important contribution is the work
of [35], which includes a presentation of an interval-based algorithm for constant-rate
clocks combined with a round-trip method for rate measurement. We extend those ideas,
resulting in a framework for algorithms that deal with both drift and consonance on top
of a realistic system model. In particular, a specification about the maximal rate change
of a clock is taken into account and suitable intervals are used to capture the relevant rate
information. The analysis is generic w.r.t. the employed convergence function, making
our framework amenable to different failure assumptions. It makes use of the analysis
techniques introduced in Chapter 3, which documents again their power and beauty.

This chapter is organized as follows: Section 4.2 introduces our system model con-
cerning clocks and processors along with their means of communication. After a com-
prehensive preparatory work on notations and building blocks for rate synchronization
in Section 4.3, the following Section 4.4 develops the theory of algorithms apt for both
internal and external clock rate synchronization. Section 4.5 provides the analysis of con-
sonance and drift in terms of properties of the employed convergence function. Section 4.6

closes this chapter by giving a summary and pointing out further research issues.

4.2 System Modelling

We assume a distributed system of n > 2 nodes connected by a communication subsystem,
where each node p hosts a processor and a clock C, driven by an oscillator O,. Figure
4.2 illustrates the components involved in steering a local clock, where a clock state
algorithm (CSA) is concerned with accuracy/precision and a clock rate algorithm (CRA)

with drift/consonance.
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Figure 4.2: Clock Steering

4.2.1 Oscillator

The oscillator O, indicates the progress of time with periodic ticks of nominal frequency
fp in Hz. Typically, the manufacturer specifies an initial oscillator drift p, in ppm for
shipment, hence the instantaneous frequency f,(to) at to lies between f,(1—p,) and f,(1+
pp). During operation the instantaneous frequency may change due to environmental
influences and aging of the oscillator, so that a mazimal oscillator drift py*®* can be

asserted, which is referred as “hardware drift rate” in the clock synchronization literature.

For clock rate synchronization it is crucial that the instantaneous frequency f,(¢) does
not alter too rapidly, otherwise rate resynchronization will not be effective. Fortunately,
experiments have shown that oscillators keep up their frequency to some extent, see [69],
[71], or [48]. Therefore, we are seeking for a dynamic characterization of f,(¢) including
deterministic influences (e.g., temperature, aging, pressure, humidity, magnetism, shock,
power supply change, load impedance, radiation) and stochastic ones (e.g., white noise,

flicker noise, random walk), see [1].

For our purpose, we capture the frequency variation as follows: Suppose oscillator
O, has instantaneous frequency f,(¢) at some real-time ¢ and f,(t + At) at ¢t + At. We
stipulate that f,(t + At)/f,(t) is linearly bounded by 1 + 0,At. Parameter o, is called
the oscillator stability measured in ppm/s. However, this simple characterization is only
meaningful for certain durations 0 < At < oco. For very large ones, the term 0,At would

become too pessimistic, since the specified maximum oscillator drift p** prevents the

p

frequency ratio on the long run from exceeding 1 + 2p;**. For very small durations,

say a few oscillator periods 1/f,, glitches could violate the bounds, but we regard them

as non-accumulating which can be confirmed by experiments (however the variance of
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the frequency deviation becomes larger). A more advanced way of characterization use
an oscillator stability o,(At) that is dependent on the duration At, see Figure 4.3 for a
conceivable example. Still, we are interested in durations that are in the range of the

resynchronization period, which should be safely within these extremes.

op(At)

0.01 ppm/s

1 ms 1 min At

Figure 4.3: Oscillator Stability

In the following we present three examples of oscillators drawn from manufacturers
data sheets to determine estimates on p and o. For a more general overview take a look
at the table presented in [73].

Example. Uncompensated quartz (XO)

SMI INc. offers an quartz crystal 38STF327 with f, = 32.768 kHz, where Typ B has an
initial drift p, = 20 ppm = 2-10°. The major influence for stability is temperature here,
given as a parabolic curve for this X-cut quartz. From the characteristics we can obtain
that a change of 1°C entails a frequency change of at most 3 ppm. Assuming that after a
warm up phase the ambient temperature does not vary of more than 1°C within 10 sec,
we end up with stability o, = 0.3 ppm/s = 3- 1077 s7'. In respect to this large value, all
other influences can be neglected, like an aging of 3 ppm/year.

Example. Temperature compensated quartz (TCXO)

ACT offers a digital processing temperature compensated crystal oscillator DTCXO-07A
with f, =1 MHz, where for Version A a drift of 0.1 ppm = 1-1077 is specified over the
temperature range from —10° to +60°C. With the same ambient temperature assumptions
as above, we get a stability of about 0.0002 ppm/s. An aging of 0.3 ppm/year can be ne-
glected for our concerns. Additionally, a short term frequency stability of 0.0003 ppm/s is
given, which covers the stochastic behavior (see next example). Combining both stability

measures yields o, = 0.001 ppm/s =1-10"% s 1,
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Example. Rubidium gas cell (Ru)

BALL-EFRATOM offers a subminiature rubidium oscillator FRS-C-1A8E4C with nominal
frequency f, = 10 MHz and initial drift p, = 5-10"!'. Again, an aging of 10~'°/day
and 107! /year can be ignored. Also the environmental influences do not contribute
significantly, but we have to account for stochastic effects. Those are characterized in
the time domain with the help of the Allan variance that describes the variance of the
frequency deviation during a particular measurement period, see [1]. This oscillator has
an Allan variance of (3.16-107'")? at 10 seconds, so we can form a confidence interval for
the frequency deviation with say three times of the standard deviation. Carrying over this
into our notation, we get a stability o, = (3.16-10 ' x 3)/10 ~ 1-10 ™' s~ '. Note again,

that the nature of stochastic influences is primarily understood as non-accumulating.
Let us summarize the oscillator assumptions for our framework, which hold for proper

parameter settings with max{o,At, p,} < pp'®*.

Assumption 4.1 (Oscillator Drift and Stability) Fach non-faulty node p hosts an

oscillator O, with instantaneous frequency f,(t) subject to three conditions:
(1) The initial drift condition

M_l‘ < pp (4.1)

Jo

bounds the instantaneous frequency at begin ty, where f, is the nominal oscillator

frequency and p, the initial oscillator drift.

(2) The overall drift condition

)

7 <p (4.2)

p

bounds the instantaneous frequency for any time t > ty, where p2®* s the mazimal

p
oscillator drift.

(8) The stability condition

fp(t + At)

AR |

X0 < opAt (4.3)

bounds the wvariation of the instantaneous frequencies during At > 0 for any time

t > to, where o, is the oscillator stability.
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4.2.2 Local Clock

The distinction between oscillator O, and clock C, as shown in Figure 4.2 is the hook
to introduce rate synchronization for clocks. In the absence of a CRA, the oscillator is
directly coupled to the clock, which is usually a simple hardware counting device. Thus,

the instantaneous clock rate v,(t) becomes to

up(t) = Spfp(t), (4.4)

where coupling factor S, in [sec] is the constant 1/f,. In such an arrangement the clock
drift 0, equals the maximal oscillator drift pj**. Strictly speaking, clock rate v(t) is not
continuous since advancements happen only at oscillator ticks, but we regard them as

evenly applied during the stalling periods in between.

It is vital to understand that a CRA tries to break up this rigid oscillator-clock coupling
by getting a handle on S,,. In other words, even though f,(¢) changes, the factor S, should
be set in such a way that the clock rate v,(¢) remains approximately constant. Obviously,
the realization of a local clock needs to provide some means to modify S,, like the CSU
from [24] or our UTCSU-ASIC, see Chapter 2. The feasible range of coupling factor S, is

given by 1/f,(1 £ p;**), through which the clock rate v,(t) of a non-faulty clock satisfies

0p(t) — 1] < 207 (4.5)
A CRA has no means to affect the oscillator stability, hence a free running clock C,
inherits (4.3) for its rate as

vp(t + At)
Up(t)

since the common coupling factor S, falls out of the ratio. In the special case of o, = 0

— 1| < g,At, (4.6)

we say the oscillator/clock is stable, thus f,(t) = const. Moreover, we define
Omax = max{o, : 1 <p<n} (4.7)
as the uniform bound on the oscillator stability, and
e = max{p™ : 1< p < n) (4.8

as the uniform bound on the maximal oscillator drift.

Additionally, we presume a clock state synchronization with precision 7., as a result
of the coexisting CSA. This facilitates a rounds-based fashion of a CRA, which entails an
inexpensive implementation and renders the analysis easier. Note that we do not require

an accuracy on the clocks.
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Assumption 4.2 (Clock Precision) The clocks in our system are synchronized by a
clock state algorithm, where any non-faulty pair of clocks C, and C, satisfies the precision

condition
|Cp(t) — Cy(t)] < Tmax Vi>t (4.9)
With OmaxTmax < Pmax-

4.2.3 Processor

Each node is equipped with a processor that is responsible to execute the CRA. All com-
putations are essentially periodic and require integer arithmetic only. From our oscillator
examples it appears reasonable to represent any rate related quantity in multiples of
274 ~ 1.1-107!% and limit it by 272 ~ 2.4 - 107, hence a 32 bit integer arithmetic
seems to be enough. In terms of the execution speed, memory and organization of the

processor, we require that there are bounds on the execution time.

Assumption 4.3 (Processor Characteristics) FEach node in our system is equipped

with a processor that ensures the following:
(1) Rate related data is adequately represented in range and granularity.

(2) A single computation required for clock rate synchronization at any non-faulty node

takes between Nyin and Nmax Seconds.

4.2.4 Communication Subsystem

Nodes communicate with each other via a packet based communication subsystem that
provides an (un)reliable broadcast primitive. It can either be a fully connected point-to-
point network or a broadcast-type network, both with synchronous behavior and limited

transmission capacity.

Assumption 4.4 (Communication Characteristics) The nodes in our system com-

municate by via packets subject to the following conditions:

(1) The maximum broadcast latency Amax delimits the time between initiating and ac-

tually sending a packet at any non-faulty sending node.

(2) The maximum broadcast operation delay wm.x delimits the time to send out all

packets at any non-faulty sending node.
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(8) If no transmission faults occur, a packet from node q to node p # q experiences a

delay At , satisfying

Atpg—€yq <AL < Aty +6f (4.10)

where At, , represents the deterministic part and e;,'fq the delivery uncertainties. For
stmplicity we will work with €nax = max{e,, + 6;(1 : 1 < p,g < n} and Atpax =
max{At,, : 1 < p,q < n} satisfying min{At,, : 1 < p,q < n} > €max for logical

reasons.

(4) Any packet can carry b bytes.

The first two parts allow to model a fully connected point-to-point network (Amax = 0,
Wmax 7 0) or a broadcast-type network (Amax 7# 0, Wmax = 0). Furthermore, the deliv-
ery uncertainties e;'fq given in the third part can either be fixed a priori or, preferable,
measured on-line with round-trip oriented protocols. For a long haul network it is typ-
ically in the ms-range, and for LANs with a shared broadcast channel in the ps-range.
Timestamping uncertainties could be added to delivery uncertainties, since they arise pri-
marily from non-zero clock granularities, see [55]. The last part accounts for a maximal
data portion of a packet (e.g., for a CAN-Bus b = 8), so that only a certain amount of

information can be passed on by one transmission.

4.2.5 Faults

The above made system assumptions are only meaningful in the absence of faults. How-
ever, when dealing with a realistic system, faults may occur and need to be considered
both for developing and analyzing distributed algorithms. Faults can affect the clocks
(e.g. stuck, jump, rate error), the processors (e.g. various crashes) or the communication
subsystem (e.g. omissions, timing errors, value errors). Therefore, it becomes necessary
to set up a proper (abstract) fault model F that specifies the prospective faults in our
system, see Section 4.4.6. We do not focus on a specific F to keep our framework widely

applicable.

4.3 Building Blocks

This section presents the building blocks for clock rate synchronization by introducing
notations and definitions, and by proving useful technical lemmas with O()-expressions,
whose purpose are to specify the order of magnitude of terms that can be neglected in
practice. Based on them will be the developed algorithm for clock rate synchronization

in Section 4.4 along with its analysis in Section 4.5 but with relaxed O()-expressions.
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4.3.1 Interval Paradigm

Our framework uses asymmetric intervals to capture the necessary information, see [55]
or earlier [50], [25] and [37]. We denote them with bold capital letters such as I = [z, 7, y],
where r > 0 is called the reference point, x > 0 the left length and y > 0 the right length.
Such an asymmetric interval translates into a regular one [r—z, 7 +y|, where (r —z) is the
left edge and (r + y) the right edge. In case that x = y we also write [r £+ z]. An ordered
set of them is written by calligraphic capital letters such as Z. Operations on them are

defined in a straightforward manner, summarized in the following extensive Definition.

Definition 4.3 (Operations on Asymmetric Intervals) Given two asymmetric in-

tervals Iy = [x1,71,y1] and Iy = [29,79,y2]. We define the

(1) reference point as ref(I;) = ry,

(2) right edge as right(I;) = r; + yi,

(8) left edge as left(I;) = r1 — x4,

(4) length ||L;|| as z1 + y1,

(5) exchange of lengths as I} = [y, 71, 71],

(6) sum I + 1y as [z1 + o, 71 + T2, Y1 + Yo,

(7) alignment as align(I;) =I; — [0, 74, 0],

(8) scalar product sIy as [sx1, sr1, sy1]| for any real s,

(9) normalization as norm(I;) = [z1/71,1,y1/71],
(10) interval product I - I as [rize + rox1 — T122, 1172, T1Y2 + T2Y1 + Y192],
(11) intersection I; NIy as [max{r; — x1,79 — T2}, min{r; + yi, 7o + ¥2}],

(12) union I; Uy as [min{r; — 21,75 — xo}, max{r; + y1, 7o + y2}],

Note that in case of disjunct intervals the intersection delivers the empty interval ()
and the union the closure of them. Furthermore, no reference point is explicitly given for

these two operations, since several definitions are conceivable (e.g., midpoint setting).
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4.3.2 Local Rate Intervals

For rate synchronization we have to find a way to capture the rate v, of clock C,. Un-
fortunately, the rate of a clock cannot be observed directly, but we can postulate an
asymmetric interval with reference point r, and sufficiently long left/right lengths to in-
clude the ideal rate of 1. Both lengths and the reference point are given in multiples of
the clock rate, hence 1 € [v,0,, vpTy, vpﬁ; ], where 9, and 19; are called inverse rate drifts.
Note that this introduces a relative expression of clocks rate as opposed to an absolute
expression of clock states. Generally speaking, “rates” are always regarded as the ideal
rate 1 altered by the some “drifts”. Dropping v, leads to the definition of a rate interval

R, = [J,,7p,¥F], which contains enough information to run a clock rate algorithm.

Definition 4.4 (Correctness of Rate Intervals) A rate interval R, = [J,7p, 9] is

correct during a non-empty (real-time) interval T iff
1 €v,(t)R, VieT. (4.11)

In the special case that a rate interval R, has 1 as reference point, we call it a local rate
interval. These kind of rate intervals have great importance, since they can be maintained
locally and possess many useful properties. The following lemma asserts that there exists

a correspondence between local rate intervals and clock drifts.

Lemma 4.1 (Local Rate Interval vs. Clock Drift) If clockC, has clock drift , then

0 0

R,= P_1 P 4.12

P l1+5p’ ’1—5,,] (4.12)
is guaranteed to be a correct local rate interval. On the other hand, if R, = [J, 1,19;] 18

a correct local rate interval for clock C, then the actual clock drift is at most
I '
0p = P 4 . 4.13
P maX{1+q9;’1—19p} (4.13)

Proof. For the first part, we have to determine inverse rate drifts ¥, and 9 that satisfy
vp(1—=9,) <1< w,(1+9)) (4.14)

due to Definition 4.4. Given that Definition 4.2 assures that clock rate v, € [1—4,, 1+d,)],
it is sufficient to draw upon the extreme values of v,. Hence, plugging in v, = 1 + 6,
in (4.14) yields ¥, > 6,/(1 + 6,) and ¥ > 0, and v, = 1 — §, delivers ¥, > 0 and
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9 > 0,/(1 — &,). Putting these statements together, we obtain the desired local rate
interval in (4.12).

For the second part of the lemma, we have to find a J, that matches the possible clock
rates v, induced by the local rate interval R,. For that purpose we transform (4.14) into
9F '

P <y, —1< L 4.15
1+19;_vp — 19 (4.15)

which can be rewritten as |v, — 1| < max{d, /(1-19,),9,/(1+9,)} = J, proving (4.13).
O

The first part of Lemma 4.1 together with the specified initial oscillator drift p, can

be used to commence with a correct local rate interval at %y, thus

Pp Pp
R, (t,) = 1, 416

by a neutral setting of coupling factor S, = 1/f,. The second part of Lemma 4.1 can be
used to assert a clock drift

R
5 IRy

= Pl 4.17
- R,/ (4.17)

from which we can deduce that the current oscillator drift has to be within [0 £ §,] in

case of a feasible coupling factor S,.

For further considerations it is important to relate an observable duration AT on a
local clock with their real-time counterpart At and vice versa. Our next lemma, establishes

these relationships.

Lemma 4.2 (Duration Estimation) Given a clock C, paced by an oscillator with sta-
bility 0. Let t; resp. to be real-times and Ty = Cy(t1) resp. To = Cy(t2) the corresponding
clock states, where t; <ty and no resynchronization occurred in between. If clock C, has

rate v,(t1) at ty then we have

Up(tl) ((tg — t1) — %(tQ — t1)2> S T2 — T1 S Up(t1) ((tQ — tl) + %(tz - t1)2>
(4.18)
and the converse
L-Ti  op(Tr— Th)? 2 3
—tH < T, —T; 4.1
2=t s vp(t1) - 2v;(t) O <0p( ’ Y ) (419)

T, - T Up(TQ - T1)2 2 3
to —t1 > — () T, —T . 4.20
TEE N T OB 20
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Proof. We introduced the clock rate v,(t) as the derivative of the time-dependable func-
tion C,(t) of the clock state. Applying the integral from starting point ¢; to successive
point t; + At, we get

At
AT = Gyt + At) — Cy(t) = / vy (t1 + €)de. (4.21)
0

In the absence of resynchronizations we derive from the stability condition of Assumption
4.1 part (3) that the clock rate at t; + £ satisfies

Up(tl)(l - Upg) < Up(tl +§) < Up(tl)(l + Upf)

for any £ > 0. Using these relations as majorants for the integrand in (4.21) and relying
on the non-accumulating nature of short-term violations, we can bound the clock state

difference by

At At
[t =00 <AT< [u(t)(1+0m6)de
0 0
vp(t1) (At — %Aﬁ) < AT < wy(ty) (At + %A#) :

which proves (4.18) by replacing At with ¢, — ;.

For the second part we treat the above relation as a quadratic equation and choose
the corresponding roots in order to find bounds on At. This leads to
1

<At < —
Op

1—4/1

1 [_1+ 1+20pAT

U_p vp(t1)

_ QUPAT]
Up (t1) ’

where in our setting the second term under each root is small compared to 1. To simplify

the bounds we use the asymptotic approximation

Ml:l:x:l:l:%q:xg-l—(’)(x?’),

valid for x — 0 and obtain after some algebraic manipulations that

AT o, AT? ( ag AT3 ) . AT o, AT? (05 AT3 >

o)~ 202(t)) B3y ) =S ) T e v3(t)

Since clock rates v, are very close to 1, we drop them in the O()-terms and get (4.19)/(4.20)
of the Lemma. O
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Each node p maintains a local rate interval R,, which should remain correct as time
proceeds. However, the oscillator stability requires to deteriorate them as illustrated in
Figure 4.4. Let the local rate interval R, be correct at ¢;, hence 1 € v,(¢1)R,(¢1). The
cone formed by the dotted lines indicates the feasible clock rates according to the stability
condition of the attached oscillator, whereas the curved line represents an exemplary

progress of the clock rate. At ¢, the local rate interval has to satisfy 1 € v,(t2)R,(22).

vp(t1)Ryp(t1)

vp(t2) Ry (t2)

Figure 4.4: Deterioration of Rate Intervals

Lemma 4.3 (Deterioration of Rate Intervals) Given a clock C, paced by an oscilla-

tor with stability op. If R, is a correct local rate interval at T, then

Up(TQ — Tl)

R, + [0+ 20T
PRy

] +[0+£ 0 (02(1n - 11)?)] (4.22)

s correct at Ty > T, when no resynchronizations occurred in between.
Proof. Due to the correctness of R, = [¥,,1,9,] at T1 = C,(t1) we know from Definition
4.4 that

vp(t) (1 = 95) <1< vy(t) (1 + ). (4.23)

In the absence of resynchronizations until 7, = C,(t3), the stability property (4.6) ensures
that |v,(t2)/vp(t1) — 1| < op(t2 — t1). Making v,(¢1) explicit and using the asymptotic
approximation (1 +z)™' = 1F z + O(2?) valid for z — 0 yields

vp(ts) < vplte) (14 op(te — t1) + O (02(ta —11)?))
vp(ts) > vp(te) (1= op(ta — 1) + O (02(t2 — 11)?)) -
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To bring in the observable duration 75 — 7} we consult Lemma 4.2 to bound ¢, —¢;, hence

op(Ty —Th) 2 2

vp(t1) < vy(ta) (1 + T +0 (o2(Ty - 1) )) (4.24)
Up(T2 -T) 2 2

’Up(tl) Z ’Up(tg) (1 — W + O (O'p(TQ — Tl) )) . (425)

Plugging v,(t1) from (4.24)/(4.25) into (4.23) leads to

1 < wy(ty) (1 + 97 + 1U+(;9§ op(Ty —T1) + O (aj(T2 - T1)2)> (4.26)
1> vy(ty) (1 — i - lvp_(t% 0p(To — T1) + O (a2(T — T1)2)> . (427

To get rid of the denominator v,(t;) we know from (4.17) that v,(t;) > 1 — ||Rp[|/(1 —

IR,||) and utilizing 0 < 49, , 9, < 1 provides

1—-9, 14495 1
< < :
vp(te) — wp(ti) T 1 2[[Ry|

Eventually, we can transform (4.26)/(4.27) into

1 op(To — T1)

< 149h4 22z 7 2(T, — T, )2
w S P gm0 - T)
1 _ 0T —TY)

> 1—9- - P2 "4 o0(c*T, —T1)?
w2 T T T m, T,

which proves the correctness of the deteriorated local rate intervals. O

The deterioration of rate intervals with reference point unequal 1 is of minor interest;

it requires additional provisions and will show up in the proof of Lemma 4.15.

4.3.3 Relative Rate Measurement

Any clock rate algorithm has to work on the grounds of relative rates between clocks
pairs. This restriction comes from the fact that a local clock is not able to determine its
rate by itself, otherwise rate synchronization would be trivial. We capture the relative
rate of a remote clock against a local one with a quotient rate interval Q4. The indexing
follows the rule that the first one denotes the local node and the second the remote one.

Such an interval quantifies how fast/slow a remote clock is in respect to its own.
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Definition 4.5 (Quotient Rate Interval) Given two clocksC, resp. C, with their rates
vp(t') resp. vy (") during the non-empty (real-time) intervals T, resp. T,. An asymmetric
interval Qp 4 that satisfies

vy(t')
vp(t")

€qQ,, WeT,Vt'eT, (4.28)

is a quotient rate interval of remote clock C, during T, against local clock C, during T,.

We propose a simple protocol shown in Figure 4.5 to obtain Q,,. It is based on
repeated message pairs, such that remote node ¢ broadcasts periodically a message that
contains its current clock state T, = C,(t,). Local node p records its current clock state
T, = Cy(t,) upon message arrival. Therefore, node p can extract clock states T,, T), from
the latter message M, and 7%, T,* from the earlier message M. With these four clock
states and taking into account the transmission characteristics from Assumption 4.4, node

p can compute a quotient rate interval given by Lemma 4.5.

remote node q local node p

= u

Figure 4.5: Protocol for Relative Rate Measuring

For preparation, we need the following technical Lemma 4.4, from which we can also
learn that it is not meaningful to define a quotient rate interval on the ratio of clock rates
at simultaneous real-times. This explains the relaxed condition (4.28) in Definition 4.5
with the dangling ¢’ and ¢".
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Lemma 4.4 (Min/Max Clock Rate) Given a clock C, paced by an oscillator with sta-
bility o, and let t; resp. to be real-times and T\ = C,(t1) resp. Ty = Cy(t2) the correspond-
ing clock states, where t; < ty. When no resynchronization occurred in between, then

clock rate v,(t) satisfies

v, (t) € LRy 92 (4, — tl)] 0+ 0 (o2(t — 11)?)] (4.29)

o — 1 2

for any t € [ty,ts].

Proof. We have to consider two cases, either where the clock rate increases or decreases
maximally during the real-time duration At = t, — t; whereas the expired logical time
still amounts to AT =T, — T;. The actual clock rate lies somewhere between these two
extremes, which gives rise for bounding v,(t) Vt € [t1,t2]. In the first case (increasing

rate), the clock has a minimum rate v}, at ¢; related by
AT =o' (At + (A ) (4.30)
according to (4.18) of Lemma 4.2. By virtue of Assumption 4.1 part (3) the maximum

rate vl . at to is given by

!
max ~ mln(

v 1+ 0,At). (4.31)

For the second case (decreasing rate) we find similar expressions for the maximum rate

o
AT = o (At - Ep(At)2> (4.32)
and for the minimum rate
Vntin = Umax (1 — 0, AL). (4.33)
We can easily show that v}, < o/. and v, > v/, but the asymptotic approximation

(1+ )" =1F 2+ O(z?) valid for x — 0 vanishes the differences. Hence, using (4.30)

for the lower rate bound yields

AT y o\ AT
up(t) > S (1—— t)+0( At)At

and (4.32) for the upper rate bound

AT

9 2 n42) AT
o) < % (1+ At>+0( IAE?) S

At
both for ¢ € [t1,t5], which completes the proof of (4.29). O
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Lemma 4.5 (Relative Rate Measurement) Let C, be the clock of local node p with
stability o, and C, be the clock of remote node q with stability o,. By executing the
protocol given in Figure 4.5 relying on Assumption 4.4 part (3), and providing that local

rate interval Ry, is correct during [t t,] and Ry is correct during [t7,t,], then interval

Q _ qu _T; ((Up‘i'aq)(Tq_T;) €max(1 + ||RqH)>]
i 1, - Ty 2(1 = |[Ryl]) T, -1y

(4.34)

max R 2
102 O (e + 02 (T — TV + e (T — T Ry |2 + xRl
! P T, — Ty

is a quotient rate interval during [t,t,] resp. [t7,14].

Proof. First of all, we want to find a relation between the involved real-time duration
At, = t, — t7 at the sending side q, and At, = t, — ¢ at the receiving side p. Due to
Assumption 4.4 part (3) the delivery delay for the earlier message M can be captured
by Atyq—€,, St =15 < Aty + 6
tp —tq < Aty 4+ €. Subtracting them delivers

and for the latter message M, by At,, —€,, <

Aty — Aty < €+ €650 < €max- (4.35)

Next we want to derive a lower bound on %, where ' € [t7,1,] and t" € [t),1,].

From Lemma 4.4 we know that the maximum clock rate v;"** at node p during [t5,1,] is
related by

AT,
At, = - P (4.36)
upa — ZAT, + O (02A¢2)

min

and the minimum clock rate vy

at node ¢ during [t3,%,] by

Aty = ——— ATy : (4.37)
vt + FAT, + O (agAtg)

Putting together (4.36) and (4.37) via (4.35) yields
ATy — ATp > ~ 2 TN, AT, + O (07A12) AT, + O (02A¢2) AT,
— €max (,U]r)nax _ %ATP + 0O (JﬁAtﬁ)) (U;nin + %ATq +0 (0’2At§)>

and after some algebraic manipulations we get
e S AT, 1 (0p + o) AT\ e N 0,AT,
vmax = AT, 2umax AT,  2AT, ) ™
+ 0 (02A8] + o] AL2) . (4.38)
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In the following, three manipulations on the right hand side of (4.38) are carried out.
First, we are able give a lower bound on v;*®* by virtue of (4.17) since R, is correct
during [t,t,], thus v > 1 — [[R,|| + O(||R,][|*). Alternatively, we could have used

max

Pp
p. By the same token, we obtain v/"* < 1+ [|R4|| + O(||[Ry[[?). Finally, the term
(0,AT,)/(2AT,)€émax Will be put into the O()-term. After all, (4.38) can be rewritten as

according to (4.5), which exempts us from using the local rate interval of node

vt AT, ( _ (UP+UQ)ATP> _ Emax(1+ [[Ryl])
ymax = AT, 21— |[Ry)) AT,

p

em X
+0 (aqemax + ORAEE + OEALE + (0 + 0 ) AT [Ry | + T Hqul2> ,
p

which provides the left edge of Q,, in (4.34). A similar line of reasoning starting out
with

AT,
At, = — P (4.39)
upin + ZAT, + O (02A12)
and
AT,
At, = q (4.40)

vmax — WAT, + O (02A12)

vg (t')
vp(t')?

Since relative rate measurements will take place less frequently than state resynchro-

yields the desired upper bound on which completes the proof. O

nizations, we have to care about interspersed state adjustments to get useful clock state
differences AT, and AT,. In fact, we have to maintain and subsequently exchange the
running sum of state adjustments on both sides, denoted as U, and U,, irrespective of

being applied instantaneously or by continuous amortization, see [55].

By taking a look at (4.34) of the quotient rate interval in Lemma 4.5, we observe that
the deterministic part At,, of the message delivery delay does not appear, since it is
included in the measured durations AT, and AT,. Furthermore, for a large measurement
duration Q, , degrades to a point when the clocks are stable. In case of a short duration,
the delivery uncertainty spoils the rate measurement. Thus, we can calculate a certain

optimal duration

6IIla,X
ATy = ,

Umax
where the interval length ||Q,,|| becomes smallest. Note that this is different to an
CSA, where apart from bandwidth concerns there is no particular lower limit on the state

resynchronization period.
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Rate measurement requires the cooperation of two different nodes to compute Q, ,.
In the special case that ¢ = p, i.e. node p sends messages to itself, we get straight from

Lemma 4.5 and by dropping delivery uncertainties that

op AT,

Q,, = llii
o 1—|[Ry||

|+ bo(iantaanmm)

for a duration AT),. This reflects again the impossibility to acquire rate information about

the own clock.

4.3.4 Remote Rate Intervals

Suppose node ¢ maintains a correct local rate interval R, of its clock C,. For synchroniza-
tion purpose, we want to transfer it correctly to another node p resulting in the remote
rate interval R, ,. This operation is similar to a CSA, where an accuracy interval from

one node is passed on to another.

However, the way to carry over a rate interval from node ¢ to a node p is more
intricate than for an accuracy interval (recall delay and drift compensation, see [55]), since
switching correctness involves the relative rate measurement via quotient rate interval
Q,,,- The importance of a remote rate intervals come from the fact, that it expresses the
ideal rate 1 in the “rate world” of local node p, though it stems from remote node ¢q. The

following lemma pins down this property in a formal way.

Lemma 4.6 (Remote Rate Intervals) Let C, and C, be clocks driven by oscillators
with stability o, and o4, respectively. As shown in Figure 4.5, the messages for the
relative rate measurement are sent from node q at Ty = Cy(t,) resp. T = C,(t5) and
received at node p at T, = Cp(t,) resp. T,* = Cy(t5). If Ry is a correct local rate interval

at t; on remote node q, then
Ry =Qpq Ry (4.42)

is a correct remote rate interval at t, on local node p, where Q4 is a quotient rate interval

during [t},t,] resp. [t t,].

Proof. We string together the properties of intervals Q,, and R, forming the remote
rate interval R, ,, and show that this leads to the desired interval multiplication.

From Definition 4.4 we know that the local rate interval R, = [J;,1,9;] of clock C,
satisfies

V() (1 = 07) <1< wy(t)(1 +9;), (4.43)
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and by specialization of Lemma 4.5 that the quotient rate interval Q,, = @, 4[u, 1, u],
with @, , = ref(Q,,) and u = ||R,||/2, holds

Qpall —u) <

< Qa1+ ). (.41
Plugging in v,(t;') from (4.44) into (4.43) yields

Up(tp) Qpg(1 — w) (1 = 9,) < 1 < up(ty)Qpg(1 +u)(1+ 9F).
We can translate the last equation into the asymmetric interval notation

1€ wy(ty)Qpglu+ 9, —ud,, 1, u+ 95 +ud],

qr
which is according to Definition 4.3 item (10) equivalent to
le Up(tp)Qp,q[ua 1’ U] [ﬁq ’ 519+]

Finally, a resubstitution provides the desired property

1€ vp(t)(Qpy - Ry)

that finishes the proof. O

In general, a remote rate interval does not have 1 as reference point, in fact

ref(R, ;) = ref(Q,.,)- (4.45)

In the special case that ¢ = p the ensuing remote rate interval R, , becomes to Q, ,-R,
and using (4.41) shows that

o, AT, _
Ry = [15 (1258 10 (iats + 8Ty ) |- 071,07
[19; o, AT, (1 — 9, )’ Lot + a,,AT,,(1+19;)]
1— R, 1 —[|R,||
+ [0+ O (62AT2 + 0, AT |[Ry )]
op AT, 2 2 2
c R4 [Oi ﬁuw] + [0+ 0 (2AT? + 0, AT R, )]

Note that this expression equals the deterioration given by (4.22), which makes perfect
sense because measuring the rate by itself over a particular duration means simply to

cope with the oscillator stability.
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4.3.5 Consonance Intervals

For internal rate synchronization, consonance 7, which measures how close the clock rates
are together, has to be expressed in terms of intervals. Returning to the definition of rate
intervals, we introduce consonance by imposing distances upon their associated reference

points.

Definition 4.6 (y-Consonance) Given consonance interval v = [y~,0,v%] and an en-
semble of clocks Cy, ... ,C, with their respective rates v1(t), ... ,v,(t). An associated set of

correct rate intervals R = {Ry,... ,R,} is y-consonant during a non-empty (real-time)
interval T iff

DL

vp(t)(ref(Ry) +4) #0  VteT. (4.46)

1

p

As before, local rate intervals are playing a special role for establishing a relationship

between the «-consonance property and consonance «y of the clock ensemble.
Lemma 4.7 (y-Consonance vs. Consonance 7) Given a set of clocksCy, ... ,C, each

with drift 6. If such an ensemble has consonance v, then a set R = {Ry,... Ry} of

correct local rate intervals is vy-consonant for any ~y satisfying

v 2

~
0+ ——+1. 4.47

2(1 - (5)] ( )
On the other hand, if the set of correct local rate intervals R is y-consonant, then the

actual consonance s at most

v =0+~ (4.48)

Proof. For the first part of the Lemma we have to ensure that v,(1 4+ ) and v,(1 + )
intersect for any 1 < p,¢ < n, since ref(R,) = ref(R,) = 1. Therefore we make v =
[v~,0,7*] sufficiently large, in particular, v,7" + v,y~ > 7 has to hold if v, < v,, and

vy~ 4+ vgyT > v if v, > v,. By solving these inequalities we easily get

+Z v
Up+Uq

Y

and noting that the sum of any two clock rates cannot fall short of 2(1 — 4), we have

shown (4.47) of our lemma.
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For the second part we know from the non-empty intersection of v,(1++) and v,(1+7)
for any 1 < p,q < n that v, — v, < vy~ + vyt if v, > v, and v, — v, < vyt + v,y if

vp > vy. Combining them and recalling that no clock rate exceeds (1 + J) leads to

lvp = vg| < max{vy” + vy, vy vy}

v max{vp, vy} + v max{v,, v,}

< Al +9),

which proves (4.48). O

Obviously, if an ensemble of clocks Cy,...,C, has drift § then their consonance is
guaranteed to be 20. Therefore, applying (4.47) from the above lemma provides that an
associated set R = {Ry,...,R,} of correct local rate intervals is «y-consonant for any
v2[0£4/(1-4)]

In order to understand internal clock rate synchronization, we introduce the notion
of internal global rate ¢(t) as analogue to internal global time as advocated in [55].
The idea is to define o(t) in such a way that ¢(t) € Ny=; vp(t)(1 + =) Vt > ty, which
guarantees a particular consonance according to Lemma 4.7. In Section 4.5.1 it will
become clear that () is a piecewise constant function in the proximity of the ideal
rate 1. We mention explicitly that the introduction of internal global rate is purely
artificial, nevertheless, it allows us to reason about consonance by considering each clock
separately, which provides great insights and simplifies the analysis tremendously. All
further considerations about internal clock rate synchronization rely on the definition of

~-correctness upon rate intervals.

Definition 4.7 (y-Correctness) Given consonance intervaly, = [v,,0,7,] and a clock
Cp with its rate vy(t). A rate interval R, is ~y,-correct w.r.t. internal global rate ¢(t) dur-

ing a non-empty (real-time) interval T iff
o(t) € vy(t) (ref(R,) +7,)  VEET. (4.49)

For an ensemble of clocks C1,...,C, the associated set of correct rate intervals R =
{Ry,..., R} is vy-correct during T iff each of them is ~-correct w.r.t. internal global
rate o(t) during T .

Of course, ~y-correctness of rate intervals implies y-consonance but not necessarily the
other way around. When the individual consonance and local rate intervals of clocks are
available, the following lemma put back to back with Lemma 4.7 asserts the consonance

of the ensemble.
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Lemma 4.8 (v-Correctness of an ensemble) If each correct local rate intervals R,
Jor all 1 < p < n is «y,-correct w.r.t. internal global rate ©(t) during a non-empty (real-

time) interval T, then the set {Rq,... ,Ry,} is y-correct during T for any

n
2 U (4.50)
p=1
Proof. Let v be an interval such that v 2 Up_, ;. Suppose (}_; v,(1+7) = 0, then there
exist at least two disjunct intervals v;(1+-) and v;(1+). Since 7;,7; C v we conclude
that v;(1 4+ ;) Nv;(1 4+ ;) = 0, which contradicts with the correctness assumption of
either R; or R; . O

Associated consonance intervals can be deteriorated locally and transferred between
nodes in the same manner as rate intervals, c¢f. Lemma 4.3 and 4.6. This is obvious,
since internal global rate ¢(t) takes over the role of the ideal rate 1 in the corresponding

relations. The following two lemmas repeat these properties.

Lemma 4.9 (Deterioration of Consonance Intervals) Given a clock C, paced by an
oscillator with stability op. If local rate interval Ry, is correct and «y,-correct at Ty, then
it 18

(7]) n lo + %] +[0+0(a2(Ty - T1)2)]> — correct (4.51)

at Ty > T, when no resynchronizations occurred in between.

Proof. The same line of reasoning as in the proof for Lemma 4.3 can be applied, but
instead of the ideal rate 1 the internal global rate ¢(t) is enclosed, which is identical at

T, and T5 if no resynchronizations take place. O

Lemma 4.10 (Consonance of Remote Rate Interval) Let C, andC, be clocks driven
by oscillators with stability o, and o4, respectively. As shown in Figure 4.5, the messages
for the relative rate measurement are sent from node q at Ty = Cy(t,) resp. T, = Cy(t5)
and received at node p at T, = Cy(t,) resp. T,* = Cy(t). Furthermore, let Qp 4 be a
quotient rate interval during [t;,t,] resp. [t t,]. If local rate interval Ry is v,-correct at

t; on remote node q, then Ry, = Qpq - Ry is 7, ,-correct at t,, whereby

’Yp,q = Qp,q ’ 7q (452)

and no resynchronizations occurred in between.

Proof. Similar to the proof of Lemma 4.6 by starting out with () € v4(¢;)(1 +7,),
plugging in vy(t;) taken from (4.44), and noting that ¢(t,) = ¢(t;). O
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4.4 Clock Rate Algorithm

In this section we develop an algorithm apt for both internal and external clock rate
synchronization based on the building blocks from Section 4.3. As introduced in Sec-
tion 4.2, we assume a distributed system of n > 2 nodes, connected by a communication
subsystem (Assumption 4.4), where each node p hosts a processor (Assumption 4.3) and
a clock C, (Assumption 4.2) driven by an oscillator O, (Assumption 4.1). Our starting
point is the round structure of this algorithm followed by its generic description. A simple
example provides a good insight how the algorithm works. Afterwards we focus on con-
vergence functions responsible for internal clock rate synchronization, and on validation
functions for external clock rate synchronization. Issues concerning abstract fault models
(see Definition 4.11) can be found at the end of this section.

4.4.1 Round Structure

First we lay out the structure of our algorithm CRA, which is based on rounds as known
from other distributed algorithms. With rate resynchronization period Pg each node
executes the same algorithm, which consists basically of relative rate measurements and
the computation of proper rate adjustments. The rounds are a product of a coexistent
CSA with state resynchronization period Ps, whereby precision mm., does not need to be
very small to make our algorithm working. In fact, a round-less version is also conceivable
by an adaptation of the value of m,,, and the ensuing analysis. To facilitate an easy
implementation, Pgr should be an integer multiple m of Pg, since the engendered clock
synchronization traffic from the CSA can be reused by the CRA accordingly, see Figure
4.6.

Let us examine a particular rate round &, which starts at (k — 1) Pg + F + E lasting a
duration of Pg logical seconds. The rates of the clocks are going to be adjusted at these
points in time symbolized by circles in Figure 4.6. During a round, we need to carry out
the protocol of Figure 4.5 in order to make relative rate measurements. More specifically,
shortly before the beginning of round %, we initiate a full message exchange (FME) for
the first messages, and near the end of the round for the second ones. These FMEs are
already generated by the coexisting CSA that adjusts the state of the clocks at the times
symbolized by both squares and circles in Figure 4.6. Intervening state synchronizations
are allowed to occur during relative rate measurements, since they can be easily taken
into account by summing up the appropriate state adjustments. Unfortunately, the rate
adjustment at (k — 1)Pgr + F' + E happens during the relative rate measurement, but it
has only a minor influence because F' + E < Py, see Section 4.5.2. As an alternative,
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RATE round

STATE round

/\
—m @ ] -] -] - rm— T
F+FE Pg :T
|
Pgr
|

kPr+ F+ E

®  STATE Resynchr.
® RATE+STATE Resynchr.
o FME and Computation

Figure 4.6: Rounds

we could initiate an additional FME shortly after (k — 1)Pgr + F' + E which increases
the communication expense, or use the next FME for clock state synchronization which

leaves a “hole” of size Ps in the measurements.

To make our algorithm running properly, we have to set up large enough delays to
account for the longest possible duration of any FME and any execution of algorithm
CRA. In particular, delay F' covers the worst case FME duration and E the worst case

execution time. The following lemma helps us to assign F' and E.

Lemma 4.11 (FME and Execution Duration) Complying to Assumptions 4.1-4.4,

any full message exchange is completed within

Tmax
F= (1 + 2,0max) <ﬁ + Wmax + Amaux + AtmaX + 6max> (453)
max

logical seconds, and any single execution for the clock rate synchronization algorithm

within
E = (1 4+ 2pmax) Tmax (4.54)
logical seconds, when the participating nodes are non-faulty.

Proof. We make use of the assumed precision mp,, of non-faulty clocks provided by
Assumption 4.2. Suppose clock C, is Tmax ahead of clock C;, and the former is the

fastest and the latter the slowest in our ensemble characterized by the uniform maximal
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oscillator drift ppa from (4.8), see also Assumption 4.1 part (2). Let ¢’ be the real-

time when node p initiates as first one its broadcast of a particular FME. We know that
C,(t") > Cp(t') — Tmax, thus by virtue of (4.5) and Lemma 4.2 node g takes at most
Tg < Tmax/ (1 — 2pmax) to initiate its broadcast as the latest participant of the same FME.
Before the packet from node g gets transmitted, it can experiences a maximum broadcast
operation delay wmax and a maximum broadcast latency Amax, see Assumption 4.4 part
(1) and (2). Furthermore, the transmission itself can take as long as Atpmax + €max to reach
its peer, see Assumption 4.4 part (3). Since we are interested in the worst case duration

of any FME, we map the sum of expired real-times onto clock p, hence
F = Cp(t" + T4 + Amax + Wmax + Atmax + €max) — Cp(t').

An application of Lemma 4.2 in combination with (4.5) proves (4.53).

For the second part, we know from Assumption 4.3 part (2) that any execution of
algorithm CRA does not take longer than 7y, seconds. Once again, by mapping this
duration onto the fastest clock, we get the desired result (4.54). O

Given the worst case duration for both FME and execution, we are able to quantify the
rate resynchronization period Pg. It cannot be smaller than the state resynchronization
period Psg, which in turn has to be at least F'+ E to manage a single FME along with the
execution of the algorithm. Note that we did not consider any staggering of the initiation

times of the broadcast to avoid a peak load in the communication subsystem.

4.4.2 Generic Algorithm

Now we have prepared all parts and join them together in the following algorithm.

Definition 4.8 (Clock Rate Algorithm) FEach node p in the system performs the fol-

lowing operations:

(S) CSP Send: At kPg initiate broadcast of timestamped packets (R, Uy, T,)

(R) CSP Reception: Until kPgr + F receive packets (R,,U,, T,) from nodes q and time-
stamp them by T},

(C) Computation: At kPr+ F compute

— the set of quotient rate intervals Q,, whereby

Ty—T7+Uq (0p+09)(Te—TF+Uq) €
< q :i: q + max or
Qg Tp,0—Tpig+Up ( 2 Tp.a—Tpiq+Up forq#p
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— the set of remote rate intervals R,, whereby
Rpq ¢ Qpq Ry + [0 £ (0p +04)(F + E)] for ¢ # p and Ry, < R,
— the new rate interval Ry, as application of CV£(-) and VAL #(-) over R,.

— the new local rate interval R, <— norm(R,) + [0 £ 0, Pg]

(T) Termination and Resynchronization: At kPr + F + E adjust clock rate by setting

S, « ref(R,)S,

Periodically, at kPg each node p initiates a broadcast of timestamped packet(s), which
contain the local rate interval R, that is correct throughout round %, the sum U, of applied
state adjustments during round £, and the sending timestamp 7}, see Figure 4.6. Until
kPg+ F each node p receives packets from other nodes ¢ containing as well the local rate
interval R, that is correct throughout round &, the sum U, of applied state adjustments
during round £, and the sending timestamp 7,. These packets will be timestamped with
T, , upon reception and collected for further processing. Remembering the timestamps
T and T, of the former rate round enables us to carry out the protocol for relative
rate measurement, see Figure 4.5. The quotient rate interval Q,, can be computed by
(4.34) of Lemma 4.5 in a simplified version; note also that Q,, is not explicitly required
because R, is just R,. Next the received local rate intervals R, are transformed into
remote rate intervals R, , by virtue of (4.42) of Lemma 4.6. An additional deterioration
ensures a proper matching between the rate measurement period and the round endpoints
in order make all R, , compatible with each other for the future resynchronization point
kPr + F + E, see Lemma 4.15.

Subsequently, the remote rate intervals R, , are fed into an interval-based convergence
function CVx(-) and/or validation function V.ALx(-) to compute a new rate interval R,
for adjustment purposes. It should be both correct (required for external rate synchroniza-
tion) and 4-correct (required internal rate synchronization) for a certain 4. Sections 4.4.4

and 4.4.5 are devoted to these functions.

Here it remains to explain how the algorithm accomplishes the rate adjustment at
kPr+ F + E. In particular, we need to determine a new factor S, for the oscillator-clock

coupling and a new local rate interval R,. The first issue is straightforward, since we

warrant that 1 € v,R, at kPr + F' + E. Our best approximation for the clock rate is

given by 1/ref(R,) according to Definition 4.4, hence we reset S, in a multiplicative way

by ref(R,)S,, i.e.,

S, « ref(R,)S, (4.55)
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to enforce the new clock rate. Recalling (4.5), we additionally check for |S,f, — 1| < pp'*
to ensure a feasible rate adjustment, otherwise the clock is declared as faultyf. The other
issue deals with the computation of local rate interval R, in respect to the new rate

@, = ref(R,)v,. Because of 1 € (#,/ref(R,))R, we can set

R, = Rf = norm(R,). (4.56)
ref(R,)

A following deterioration of R, via (4.22) of Lemma 4.3 again in a simplified version

guarantees that this local rate interval is correct throughout the upcoming round (k+1).

In the initial case £ = 0 at ¢, we begin with coupling factor S, = 1/f, and local
rate interval Ry, = [p,/(1 + pp), 1, pp/(1 — pp)] as justified by Lemma 4.1. The results of
analyzing algorithm from Definition 4.8, in particular, the worst case consonance and the

run of drifts will be given in Theorem 4.1 and 4.2, respectively.

4.4.3 Example

A simple example should demonstrate our algorithm. We assume three nodes with stable
clocks (0max = 0) having rates v; = 0.8, v, = 0.9 and vz = 1.3, respectively. Therefore
the drift 6 = 0.3 for any clock and the consonance v = 0.5 of the ensemble. Clearly,
the clock rates are not directly observable, but local rate intervals R; = [0.15,1,0.3],
R, =[0.2,1,0.4] and R3 = [0.3,1,0.1] capture them by fulfilling condition 1 € v,R,, for
all 1 < p < 3 from Definition 4.4.

The protocol for relative rate measurement together with Lemma 4.5 yields the quo-
tient rate intervals. When neglecting message delivery uncertainties (émax = 0) we can
immediately calculate Q,, = v,/v, for all 1 < p,¢ < 3. In addition local rate inter-
vals are exchanged and subsequently transformed into remote rate intervals by use of

R,,=Q,, R, from Lemma 4.6. The resulting matrix of remote rate interval reads

[0.15,1,0.3] 0.225,1.125,0.45] [0.488,1.625,0.163]
R = | [0.133,0.889,0.267] 0.2,1,0.4] [0.433,1.444, 0.144]
0.092,0.615,0.185] [0.138,0.692, 0.278] 0.3,1,0.1]

Only local information was used to calculate the remote rate intervals. Figure 4.7

depicts them from a global perspective, where each dashed block represents the local view

tThis operation touches an open problem, since due to a potential tradeoff between internal and
external clock (rate) synchronization, it could become necessary to steer a clock beyond its maximum
oscillator drift to meet the consonance requirement. In this case we have to be careful to keep up with
the round structure, since delays F' and E are depending on this drift.
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of a node. Qualitatively we can say that nodes have a similar view up to a particular
shift (nodes with faster clocks to the left) and stretch (nodes with slower clocks possess

larger intervals).

node 1 1/v
‘R . —
C Rt * . |
Ry 3} : - I
| ~
i R1
............................ Lo e
node 2 1/vy
Ro| . —
. RQ,QI ® T I
Rs 3| . . |
|
Ry
.......................... L.
node 3 1/vs
R3,1|—‘—:|
R3 2| - |
R;33p ° |
|
o Ry
.................
0.4 0.7 1 1.3 1.6

Figure 4.7: Global View of Remote Rate Intervals

Let’s take a closer look at node 1. Since all its remote rate intervals include the desired
reciprocal rate 1/v; = 1.25 in our example, plain intersection is used as convergence func-
tion along with setting the reference point in the middle. We get Ry = [0.082,1.218,0.082]
as the new rate interval, which is rather short due to averaging effects. For adjusting the
clock rate we multiply the oscillator-clock coupling with 1.218 leading to the new rate
07 = 0.9744. Moreover the new local rate interval in respect to the changed rate becomes
to Ry = [0.067,1,0.067], which again goes hand in hand with Definition 4.4. Analogous
results hold for the remaining nodes. Not surprisingly, these are excellent outcomes, but

we should bear in mind the idealized assumptions.
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4.4.4 Convergence Function

We know that each correct remote rate interval R,, computed by node p contains the
searched value of 1/v,, which is the anchor for rate adjustments. Informally, the crux
is to use a convergence function CV£(-) for computing a new interval f{p out of these
intervals that encloses 1/v, more closely. However, in a realistic system failures may lead
to erroneous intervals. An (abstract) fault model F has to be established that restricts the
variety of faults in terms of the provided rate/consonance intervals, see Section 4.4.6. A
suitable convergence function CVx(+) is based on a such an abstract fault model, thus the
subscript F. Examples for CV £(-) range from plain intersection, over Marzullo’s function
in [35], to the orthogonal-accuracy convergence function in [52] that, e.g., provides the

usual 1/3 tolerance against arbitrary faults.

For a better understanding of internal rate synchronization, recall the notion of -
correctness introduced in Definition 4.7. Suppose that each local rate interval belonging
to a non-faulty clock is “y,-correct w.r.t. ¢(t) at the beginning of a particular round k.
During the round we have to deteriorate the consonance intervals in order to compensate
for the stability of oscillators according to Lemma 4.9. Choosing two different non-faulty
nodes p and ¢, which have acquired a set of remote rate intervals {R,1,... ,R,,} and
{Rg1,. .. ,Ryn}, respectively. The non-faulty ones among them are y-correct at the end

of round & for a suitable v according to Lemma 4.10.

Applying the convergence function at node p resp. ¢ yields R, = CV£(R,1,... ,R,.)
resp. R, = CV£(Ry1,...,Ry,) that has to preserve/enhance consonance. More specif-
ically, the clock rates have to be manipulated in such a way that the ensuing new local
rate intervals become «y,-consonant with v, C 4. We emphasize that they cannot be
safely asserted as 4,-correct here, since it may be the case that the internal global rate
©(t) from round k does not fit for the new consonance intervals. Defining a suitable new
internal global rate resolves this deficiency and reassures «y,-correctness. As a result, our
imaginary internal global rate ¢(¢) makes discrete leaps at rate resynchronization instants

and remains constant otherwise, see Section 4.5.1.

Formally, in continuation of [55] and earlier [58], a convergence function CV #(-) for
rate synchronization will be characterized by a consonance preservation function ®,(-),
a consonance enhancement function V. (-), and drift preservation functions ®3(-). Their
arguments are consonance/rate intervals that specify the possible set of non-faulty remote
rate intervals fed into CVx(-). For the analysis of our algorithm from Definition 4.8 it
suffices to require that a particular convergence function CV £(-) is translation invariant

as well as weakly monotonic in the sense of Definition 4.9 and complies to Definition 4.10.
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Definition 4.9 (Translation Invariance, Weak Monotonicity) Given two setsT =
{I,..., I,} and J = {J4,...,J.} of n > 1 intervals. An interval-valued function f(-)

is called translation invariant iff for any real A
f(@ +[0,A,0],...,I,+[0,A,0])) = f(I4,... ,I,) + [0, A, 0], (4.57)
and weakly monotonic iff I; C J; with ref(L;) = ref(J;) for all 1 <i <n implies

f@,..., L) C £(3q,...,T,). (4.58)

Definition 4.10 (Generic Convergence Functions) Let R, = {R,1,... ,Ry,} and
R, =1{Ry1,... ,Ryn} be two ordered sets of remote rate intervals in accordance with a
given abstract fault model F (see Definition 4.11), where non-faulty members R, ; and

R,; for suitable i € I C{1,...,n} are subject to the following preconditions:

[1] R, is correct and Ry, is correct,

[2] Ry is v, ;-correct and Ry is v, ;-correct,

[3] {R,,;, Ry} is v'-correct,

4] Uier ¥* € va»

[5] {Rp,i, Ry} is yy-consonant with ||y, < |lvgl],

[6] R, satisfies align(R,;) C V,;, and R, satisfies align(R,;) C V.

Provided that R, = CV#({Rp1, ... ,Rpn}) and Ry = CV+({Ry1, ... ,Ryn}) a generic

convergence function CV £(-) is characterized by

(1) the correctness of both R, and R,

(2) a weakly monotonic consonance preservation function ®,(-) iff

y(Ypir- -+ s Ypns Ya; V15 - - - ) — correct and (4.59)

R, is @
R, is D (Vo1 Vgm Y3 V15 - - - ) — correct (4.60)

with [|®4(y", - ¥ v v -l = Ozl

(3) a weakly monotonic consonance enhancement function ¥, (-) iff

{R,,R,} is 4 — consonant satisfying ||¥|| = . (v, .-, Y Y& V5 - - -)
(4.61)

with YooY Y Y- --) < |lvall, and
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(4) weakly monotonic drift preservation functions ®5(-) iff

ahgn(ﬁp) g I:(I)g(vp,la te 7Vp,’n; 7}),17 T 77p,n; Y V13- )7 07
Dy (Vpts- s Vs Ypis - > Ypi Yas Vs - - - )] (4.62)

and

ahgn( q) g I:(I)J_(Vq,la e avq,n; ’Yq,la te ’7q,n; YV )a 0,
(D;_(Vq,la tt ’Vq,n; ’Yq,la s a7q,n; YaiVr--- )] (463)

Let us briefly make of few informally remarks about the above definition. Precondi-
tions [1]-[6] specify the non-faulty remote rate intervals fed into the generic convergence
function CV £(-) at two different nodes p and ¢. Section 4.5.2 will bring up bounds on the
respective parameters. Obviously, item (1) requires that the computed rate intervals ﬁp
and R, need to be correct for external clock rate synchronization. Item (2) helps to ob-
tain the maximum amount of rate adjustments administered at the end of a round, since
®, () expresses how well the new rate intervals fit into the former round. Item (3) holds
the key to maintain the consonance of our clocks, because ¥,(-) asserts a consonance
property of the new rate intervals that allows to determine a new internal global rate.
Finally, item (4) bounds the length of the new rate intervals via ® (-) to account for the
growth of clock drifts separated in a left and right length, which allows a strengthened

analysis.

The properties of a particular convergence function for clock rate synchronization
can be either derived directly by adhering to the above characterization or, preferably, by
taking over a convergence function for clock state synchronization as defined in Chapter 3,
see also [55]. The following lemma provides the correspondence between them, showing

that their characteristic functions translate with only minor modifications.

Lemma 4.12 (Correspond. between Rate and State Convergence Functions)
Given a convergence function CY £(-) for clock state synchronization characterized by
Definition 3.11 along with its precision preservation function ®,(-), precision enhance-
ment function ¥, (-), and accuracy preservation functions ®=(-). Additionally, all func-
tions are multiplicative in the sense that f(sIy,...,sl,) = sf(1i,...,1,) for any s > 0.
Using CV #(+) as the convergence function for clock rate synchronization as specified in
Definition 4.10 we get:

(1) CVY£(-) preserves correctness,
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(2) 4’7(71),1’ s Yy YEI YD - - )= q’ﬂ({’)’p,la .. :'Yp,n}a Y5 2Y1)
N -~ S~~~

P, TH T

and analogous for <I>7('yp71, e s Y YH YL - - ),

(3) \II’Y(‘YI: fee 77n;7H;7I;" ) = \IIW({Z717" - azﬁyn}:Z’YH:Z’YI);
~ s N~ =~

~"

P T

(4) [(D(S_(Vp,lv"' 7Vp,n;'yp,17"' :’Yp,n;’YH;’YI;"')aOa
©(5+(Vp,17"' an,n;’Yp,la"' a’Yp,n77H7’YI7)j| =
I:_(D;(\{V NERER aVP;n}:a:[’Yp,la T a‘yp,n}‘a Z‘YHaaI/a\q_,)a

v ~" L

H
BP Pp ™ 71-1

+
@a (\{V NERER ,Vp,n}:, \{’Yp,l’ tee a’yp,n}la Z’YH’Z\’Z_I/’ \0’_,)]

"~ ~~

H L
BP Pp ™ 7"1

and analogous for [@g(Vq,l, s Vi Yt s Y Y Yri - - )5 0, O (Vyriy---
Vq,n;7q,la .- :'Yq,n;’YH; Y- -- )]

where z = max{:—:, z—z =1+ O(pmax)-

Proof. Based on the two sets R, and R, of remote rate intervals that meet preconditions
[1]-[6] of Definition 4.10, we construct another two sets Z, and Z, of “pseudo” state

intervals that meet preconditions [1]-[4] of Definition 3.11 by setting
Zp,i = vap,i and Zq,i = ’UqR%Z' V1 < 1 <n.

[1]: If a remote rate interval R, ; resp. R,; is correct in the context of rate synchro-
nization, then interval Z,; resp. Z,; is correct in the context of state synchronization,
since 1 € v,R,; resp. 1 € y,R,; where ¢t := 1. Furthermore, if align(R,;) C V,; then
align(Z, ;) C v, V,,;, and if align(R,;) C V; then align(Z,;) C v,V..

[2]: If a remote rate interval R, ; resp. R,; is v, ;-correct resp. -, ;-correct in the
context of rate synchronization, then interval Z,; resp. Z,; is v,7, ;-correct resp. vy, ;-
correct in the context of state synchronization, since ¢ € ref(v,Ry;) + vp7y,; resp. ¢ €
ref(vgRqi) + vgY,; where 7 := ¢. When {R,;, Ry} is v'-correct in the context of
rate synchronization, then {Z,;,Z,;} is (max{v,, v,}7")-correct in the context of state
synchronization, since ¢ is lies in both ref(v,R,;) + max{v,,v,}v" and ref(v,R,;) +
max{v,, v, }v".

[3]: By the same token, all non-faulty intervals from Z, U Z, are (max{vy, v}vg)-

correct in the context of state synchronization.
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[4]: If any pair {R,;, R,;} of non-faulty remote rate interval is «,-consonant, then
{Z,;,Z,;} is (max{v,, v, }7)-precise because (ref(v,R,;)+max{v,, v,}v;)N(ref(v,Ry;)+
max{vp, vg}y;) # 0.

After the preconditions on Z, and Z, are settled, we know that Zp =CVx(Z,) and
Z, = CVx(2,) satisty items (1)-(3) of Definition 3.11. Exploiting them, it remains to
derive items (1)-(4) of Definition 4.10 upon R, = CV#(R,) and R, = CVx(R,). By
using the multiplicativity of CV x(:) we get immediately

Z, = v,R, and Zq = vqf{q.

Item (1) is a trivial consequence, since Zp resp. Zp is correct in the context of state

synchronization, hence 1 € vpf{p resp. 1 € vqﬁq.

Item (2) uses item (2) of Definition 3.11 by setting w¥ := max{v,,v,}vy, 7 =
max{v,, g}y, and Py := {vp¥,1,- -, VpYp,}- Plugging them into the precision preser-
vation function ®,(-) by considering the signature of this function (look at the underbraces

of our lemma) yields in the context of state synchronization

Y E ref(Zp) + &, ({vp'yp,l, . ,vp'yp,n}, max{v,, v, }y g, max{vy, vq}’yI) )

Due to the multiplicativity of ®,(-) this can be transferred into the context of rate

synchronization

= (% (%
¥ € Up (I‘Qf(Rp) + @W <{’Yp,1a et 77p,n}1 max{l, U_q}’YHa max{l, U_q}7l)> )

p p
and the analogous holds for f{q. To unify both cases we use factor z = maX{Z—Z, z—z , which
is asymptotically 1 + O(pmax) due to (4.8).

Item (3) follows the same line of reasoning as above by setting ¥ := max{v,, v }vy,
;= max{vp, vy}, and P = {max{v,, v, }v, ... ,max{v,, v, }vy"}. Plugging them

into the multiplicative precision enhancement function W,(-) specifies a 4 with

1911 = T ({27" - 27"} 270, 271

according to item (3), which leads to v, (ref(R,) + ) N v, (ref(R,) +7) # 0.

Item (4) can be shown by using item (1) and setting P,, w”, mw; as above and

B, = {v,V,1,...,u5Vy,}. The length of the common intesection ¢ = 0, since we are
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content with are more conservative analysis upon the clock drifts. Plugging them into

the accuracy preservation functions ®=(-) yields

align(zp) C [—@; ({vpr,l, ooVt {vp'yp,l, . ,vp'yp,n},
maX{vP’ Uq}7H7 max{vp, vq}7]7 0):
o] ({vpr,l, 5 Vpn} {Up'Yp,la .- a”p'Yp,n}a

max{ vy, g}y g, max{vy, v}y, 0)]

and by virtue of its multiplicativity

. ~ _ v v
ahgn(Rp) g [q)a <{V NERRN ’Vp,n}: {’Yp,]_’ e 17]),77,}’ maX{la U_q}’YHa max{l, ,U_p}’YIa O)a
p q
0,

(% (%
(DI ({V SRR ’Vpan}’ {7p,1’ T ’7p,n}’ max{l, U_q}’YHa max{l, U_p}7I: 0):| .
p q

The analogous holds for align(R,) unified by factor z. This finishes the proof about our

lemma on the correspondence between rate and state convergence functions. O

4.4.5 Validation Function

For external rate synchronization we have to devise a mechanism to inject rate information
from primary nodes N in our system. Such nodes have their clocks disciplined towards a
reference frequency obtained from atomic clocks or receivers for WWYV, DCF77, or GPS,
see [5]. Obviously, their local rate intervals and consequently their contributing remote
rate intervals are of short lengths compared to the ones from non-primary nodes N". If

n stands for the total number of nodes in our system, we can say that
n=|N"| + |N"|, (4.64)

where in a realistic setting |NV'| < |N”].

Figure 4.8 depicts exemplary remote rate intervals at node p, where three come from
primary and seven from non-primary nodes, including faulty ones. It is also shown that
the reference points of remote rate intervals from non-primary nodes are close to the
reciprocal of the internal global rate ¢(t) which guarantees a certain consonance, see
Definition 4.6.

Just focusing on the set X, of remote rate intervals from primary nodes appears to

be a promising solution for external rate synchronization for a node p, since the new rate
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from primary nodes

Figure 4.8: Remote Rate Intervals from Primary and Non-primary Nodes

interval will be of short length too. However, there are basically two difficulties to exploit
them: First, they might not be continuously available which results in a toggling between
internal and external rate synchronization. For justification, we carried out a 2-month
continuous experimental evaluation of the output of six different GPS receivers, which
revealed a wide variety of failures, see [16]. Second, an ordinary convergence function

CV£(-) is reluctant to obey them due to fault tolerance reasons.

One solution is the clock validation technique rooted in [50], which verifies whether
the short but possibly faulty reference rate interval 5(,, stemming from nodes of N’ is
consistent with the longer but more reliable validation rate interval R, from nodes of
N If the reference rate interval gets accepted, then clock C, is adjusted by the clocks
of N accomplishing external rate synchronization. Otherwise the algorithm discards the
reference rate interval and proceeds with the validation rate interval as it is the case of
internal rate synchronization. Unfortunately, this straightforward technique works only
in limited fault models JF, in particular, malicious faults could separate the ensemble into

groups of clocks with different drifts, see [11] for further issues.

We are looking for new approaches embraced by a validation function VAL #(-) that
integrates these two sets of remote rate intervals in a meaningful way. For notational
purpose, let X {X(k g € N'} and ’R,(’c = {R(’c q € N"} for round k. Moreover,
inspired by [44] we are convinced that it is advantageous to consider the set {X,,: ¢ €

N'} from the preceding h rounds as well, which are maintained by virtue of Lemma 4.3
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and denoted by X g“_l), X g“_h). The validation function VAL #(-) in conjunction
with a suitable convergence function CV £(-) gets applied on all these sets of intervals in
order to compute the rate interval f{I(,’““) for the next round £ + 1, thus

P p p

(h+1) — Y AL 5 (R](ﬁ); x®. xk-0, ;X,(ykfh)) : (4.65)

4.4.6 Abstract Fault Model

So far we have only touched the issue of faults in our system by claiming a fault model
F to keep our clock rate synchronization framework open for different fault assumptions.
Such a fault model affects the choice of a particular convergence function CV£(-) and
validation function VAL #(-), since in case of simple fault scenarios a less sophisticated
convergence/validation function should be adequate. Both functions call for certain fault-

tolerance requirements, e.g. fraction of non-faulty primary or non-primary nodes.

In order to cope with the variety of system faults, we ignore the actual cause (e.g.,
faulty component or adversary) and pay attention on the resulting rate intervals. This
explains the notion of an “abstract” fault model, see [55]. Rate intervals can be faulty in
terms of their reference points and/or their lengths, leading to a catalogue of fault cases
from which a specific F can be built. The following definition provides a taxonomy on

faulty remote rate intervals; see Chapter 5 for further details.

Definition 4.11 (Abstract Fault Model) An abstract fault model F specifies the type
and number of potential faults in our system in terms of the obtained remote rate intervals
during a round. Table 4.1 summarizes the elements of an abstract fault model, where the
first column gives the name of the fault type, the second states the mazimal number (a
single prime refers to primary nodes and a double prime to non-primary nodes) of faulty
remote rate intervals, the third provides a brief characterization, and the last column
indicates whether such faulty remote rate intervals reside at a single node or at a pair of

receiving nodes.

Let us make a few remarks on the above introduced fault types. A miss fault at a
single receiving node could be caused from omissive broadcasting nodes or from transient
errors during message receptions. Note that two FMEs are necessary to compute the
remote rate intervals. Such misses can be either consistent (crash fault) due to a node
crash or inconsistent (omission fault) affecting different intervals at different nodes. The
latter expands the traditionally view of missing intervals by considering the fact that
most receive omissions occur independently. Also, a node that crashes during a broadcast

operation might produce inconsistent receptions.
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type maz. number | remote rate interval(s) receiving node(s)
miss faults n,nh missing single
faul L non-correct and/or non-+y-correct 1
timing faults Ny, M . . single
g b due to faulty timing behavior &
non-correct and/or non-+y-correct )
value faults nt,nl single
due to erroneous messages
P ; . :
crash faults o e consistently missing pair
— P ; . - ;
omission faults 0 Ty inconsistently missing pair
) consistently _
restricted faults nh,nr pair
non-correct and/or non-+-correct
' L inconsistently _
arbitrary faults n,,n., pair

non-correct and/or non-+y-correct

Table 4.1: Elements of an Abstract Fault Model

Obtained remote rate intervals can be not correct according to Definition 4.4 (drift),
to Definition 4.7 (consonance), or both. Here we do not examine further combinations,
but we solely make the distinction whether they are caused by timing faults or by value
faults. Examples for the former ones could be excessive delivery delays and for the latter
damaged messages. In contrast to accuracy intervals, rate intervals are rather easy to
check for meaningful lengths, so it is not necessary to consider truncated, bounded or

even unbounded intervals, see [36].

Important for the selection of a suitable convergence/validation function is the as-
sumption about the maximum number of consistent (restricted faults) and inconsistent
(arbitrary faults) faulty remote rate intervals at two different receiving nodes having a
broadcasting node in common. Arbitrary faults include the Byzantine case, which may
be caused by nodes sending different messages to different receivers or by excessive trans-
mission delays at receiving nodes. Such faults can also occur in broadcast type networks,
since the broadcast operation is not assumed to be reliable, see Assumption 4.4. However,

we rule out the possibility of impersonating other nodes or jamming the network.

4.5 Analysis

The analysis of our clock rate algorithm comes in five subsections concerning the round
beginnings, the dissemination of rate and consonance intervals within a single round, the
maximal applied rate adjustments, the worst case consonance (internal rate synchroniza-

tion) and worst case drift (external rate synchronization) of clocks. The final results will
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be in terms of the characteristic functions of the employed convergence function along
with a particular fault model. For practibility reasons, we work with “larger” O()-terms

in comparison to the ones of the building blocks in Section 4.3.

4.5.1 Round Beginnings

At the very first, we have to agree upon the real-time when a particular round starts,
since clocks do not resynchronize simultaneously. According to Figure 4.6, the beginning
of round k£ > 0 is given by (k — 1)Pr + F' + E, whereas the corresponding real-time of a
non-faulty node p is tz(,’“). Following the line of arguments from the proof of Lemma 4.11

and relying on the assumed precision 7y, from Assumption 4.2, it is easy to show that

1+ 2pmax
10 — 3| <~ P (4.66)

— 1 _ 2pmax max;

where p and ¢ are non-faulty nodes.

For the purpose of analysis, rate/consonance intervals are only meaningful when they
refer to a common point of time. The beginning of round % denoted as ¢(*) is determined
by the latest resynchronization time tg“) among non-faulty nodes p € N'*®) during round
k, thus

t® = max{t® : p e N} (4.67)

Fortunately, since T, is assumed to be very small compared to Pg we can justify that
v, (t*)) = vp(ték))—i-(?(apﬂmax) by rearranging (4.6) and recalling Assumption 4.1 item (3).
Given this approximation, it is our goal to collapse the time span of resynchronizations

of a particular round into a single point of time. In terms of rate intervals we assert that

R, (1)) = By (t) + [0+ O(0, )] (4.68)

p

is correct at t*) iff R, (tg“)) is correct at tg“). Turning our attention to consonance intervals,
we say the set R® = {R,(t®) : p € N®} of correct rate intervals is

(’Y(k) +[0+ O(Omaxﬂmax)]) — consonant (4.69)

at t*) iff it holds that
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as a slight relaxation of Definition 4.6 in need of (4.66). Notice if there is no state
synchronization or a too weak one in the sense that 0,mmax cannot be put into an O()-
term, we are not entitled to make the above simplifications and need to redo the following

analysis.

Now we are ready to define internal global rate ¢(t), which is the anchor for ~-
correctness, see Definition 4.7. As argued before, it is constant during a round and makes
leaps at resynchronization instants. Formally, given that R%®) = {R,(t®) : p € N®)} is
~*)_consonant for all k£ > 0, internal global rate ¢(t) = p*) = ¢(t*)) for t*) < ¢ < #k+1),
whereby

e(t®) € N w(t®) (refRy(t*) + 9% + [0+ Ooymmar)]) . (4.70)
peEN (k)

All this preparatory work can be concentrated in the following assumption, which

serves as an induction hypotheses for the beginning of each round.

Assumption 4.5 (Round Beginnings) At the beginning t**) of each round k > 0, we
assume that there exists a set R® = {R,(t®) : p € N®} of local rate intervals with the

following properties:
(1) Ry(t®)) + [0 + O(0pTmax)] is correct, and

(2) R,(t™)) is ('y(k) +[0+ O(Jpﬂmu)])-correct w.r.t. internal global rate o®).

4.5.2 Interval Dissemination

During each round the local rate interval R, of a remote node ¢ will be transferred
to the remote rate interval R, , at local node p with the help of two FMEs. Since
the computation of a remote rate interval involves the multiplication of the associated
quotient rate interval Q, ,, we begin with obtaining properties on them. The final results

on rate intervals appear in Lemma 4.15 and on consonance intervals in Lemma 4.16.

Lemma 4.13 (Quotient Rate Interval) Given the algorithm from Definition 4.8 un-
der Assumptions 4.1-4.4. If R, resp. R, is a correct local rate interval during a round
at remote node q resp. local node p, then the computed quotient rate interval Q, , at local

node p # q has the following properties at the end of this round:

(1) align(Q,,q) < [0 + (%;—JQ(P R+ B) + PRfoemairiaI(ﬂE)pmax)]

+ [O +0O ((UmaXPR + %) (UmaxPR + ||Rp + Rq”))]
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(2) vef(Qpq) € [1£ (|[Ry + Ryl + 57 Py 2 ems Bl Dloms )|

2
+ [0 :I: 0 ((‘ |Rp + RqH + O-maxPR + B+€max+}(3§+E)pmax) ):|
with mazimum logical broadcast delay B = (1 + 2pmax)(Wmax + Amax) -

Proof. Looking at the formula for Q, , in the algorithm from Definition 4.8, our first step
is devoted to find bounds on the duration AT, =T, =T~ and the corresponding duration
AT, =T,,— Tpfq. The accumulated state adjustments U, and U, can be ignored, since
we assume a transparent clock state synchronization. The idea is to carry over bounds on
AT, to the real-time counterpart At, = ¢, —t~ and further to At, , = 1, ,—1, at node p,
which will finally give us bounds on AT}, ;. See also Figure 4.5 for a better understanding

of the involved points of time.

To get a handle on AT, we have to figure out the range of sending timestamps at
remote node ¢ belonging to the two FMEs enclosing an arbitrary round k. Complying
to Assumption 4.4 item (1) and (2), at any non-faulty node the maximal logical time

between initiating an FME and drawing a sending timestamp is given by
B = (1 4 2pmax) (Wmax + Amasx); (4.71)

called mazimum logical broadcast delay.

Unfortunately, one rate adjustment takes place at t((]’“) during the relative rate mea-

surement, see Figure 4.6. Therefore we split AT, into a two durations
AT, =L+ L7, (4.72)

where L= = (k—1) Pr+F+E—T7 reflects the duration from the first timestamp 7 until
(k=1)Pr+F+E,and Ly =T,— (k—1)Pgr— F — E the duration from (k—1)Pr+F+E
until the second timestamp 7,. Directly from the algorithm and consulting the proof of
Lemma 4.11 we see that 0 <T* — (k — 1)Pg < B and 0 < T, — kPr < B, which proves

(F+E)-B<L;<(F+E) (4.73)
and
(Pr—F—E)<L; <(Pp—F —E)+B. (4.74)
Adding (4.73) and (4.74) leads to

|AT, — Pg| < B. (4.75)
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max

For the sake of simplicity, whilst L we work with the maximal oscillator drift pp

as given in (4.5), so we get limits for the corresponding real-time [ as

; < L;
— << —— 4.76
1+2pznax - 9 — 1_2pgla)( ( )

by exploiting (4.21) from the proof of Lemma 4.2.

In order to obtain bounds on the corresponding real-time l; of L;, it is necessary to
have limits on the clock rate v, whilst L7 . Since local rate interval R, is correct during
[t(’“), t(k“)], we can assert by virtue of (4.17) falling out from Lemma 4.1 that

[v(t) = 1] < [[Ryl| + O(|[R,|I") (4.77)

during this interval. From Lemma 4.4 we can obtain the relation

L; Oq ;5 2752 L; ;- 2752
Eu—;quO(oq(zq))s%(t)sE(H S o)+ 0 (057)°)

(4.78)

which holds for the same interval. Making ;" explicit by combining (4.77) and (4.78),

followed by an asymptotic approximation yields

o,L”
7 > Ly (1— 42q —HRq||+o(\|Rq\|2+a§(L;)2)> (4.79)
I < L~ 1+ﬁ+||RH+0 |Ry|[* + 02(L7)? (4.80)
¢ = Y 9 q q Tq\ g : :

Now we are able to compute At, as the sum of /[ and ;. For that purpose, we
add up (4.76) and (4.79)/(4.80) accordingly, and plug in (4.73) and (4.74) as needed. A
subsequent application of (4.35) gives us the bounds on the corresponding real-time At, ,

at node p, thus

At > P —F—E 1— a - R . — Cmax
] : IRal) + g — o
+O (||Ry|[* + 02P3) P
Pr—F—-E+B F+E
Mg < (Pe-P-p ) (14 LD )y PP
q

+ O (|[Ry|[* + 02P}) Pr.

Next they have to be mapped onto clock C, in order to obtain the aspired bounds on

AT, ,. Since we are again facing the problem with the interspersed rate adjustment at
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k . . . . max . .
t](, ), the mapping happens in two portions: For term (F + E)/(1 + 2p7®) it sufficient

to work with the maximal oscillator drift pj®* as given in (4.5) and by exploiting (4.21).

For the remaining term we use the clock rate induced by the correct local rate interval

R, analogous to (4.79)/(4.80). Focusing on the lower bound, we get

AT,

pq

O'PR UPR
> P (1= 258 I RyJ1) (1= 28— R

1_2prnax
— B —€max + (F+ E) <7pmx—1>
1+ 2pp

+ O (IRy|* + 0, Prl[Ry|| + 02,0 P%) Pr

AV

Op+ 0
Pr (1= IRyl ~ Ryl = 2570 Pr) (481)
_B _emax_4(F+E),0max
+ O (1Rl + |Rall)? + Omax Pall[Ryll + IRy} + 020 PE) Pr

and for the upper bound

o,P, o, P
AT,y < Pr(1+ %07 4 Ry|) (1+ 20 + Ry )
1+2pmax
B+eémax+(F+E) | —2——1
+ B+ €max + (F + )(1_2/]?ax )

+ O (IRy|* + 0, Prl[Ry|| + 02,0 P%) Pr

_|_
< P (1+ IRyl + [Ryll + 2570 Pr) (4.82)

+ B + €max + 4(F + E) pmax
+ O ((I[Ry]| + [[Rq])* + e Pr(|[ Ryl + [|Rq]]) + 070 P2) Pr

After this preparatory work we are ready to attack Q,, itself. Let us begin with the
alignment of it from (4.34) in Lemma 4.5, whereby the left and right lengths are equal.
We use (4.75) for an upper bound on AT, and (4.81) as a lower bound on AT}, ,, hence
op + 0y

€max
Pr+ B
(R+ )+PR_B_€max_4(F+E)pmax

+ O (Omastmas + P+ (P + ) (R + Ryl

1
iHQp,qH <

which proves item (1) of our Lemma.

For the reference point ref(Q,,) = AAquq from (4.34) in Lemma 4.5, we apply (4.75)



157
on AT,, and (4.81)/(4.82) on AT, ,. A lower bound becomes to

Pr—B
Pr (1+[Ryll + |Rql| + 257 Pr) + B + €max + 4(F + E) pma
@ ((HRp + Rq|| + UmaxPR)Z)

UP + GQPR o 2B + €max + 4(F + E)pmax
2 Pr

ref(Qp,q) >

> 1- |‘Rp+Rq||_

B + €max + (F + E) praax |
+O(<|\Rp+RqH+omaxPR+ e )pa>>

Py

and an analogous upper bound, which completes the proof of item (2). O

Lemma 4.14 (Interval Multiplication Bounds) IfI = [z,1,y] and J = [r + u] then
(1) align(J) + left(J)align(I) C align(I- J) C align(J) + right(J)align(I)

(2) ref(I-J) = ref(J)

Proof. First we have align(I-J) = [u + z(r — u),0,u + y(r + u)]. The lower bounding
interval is given by [0 £ u] + (r — u)[z, 0, y] and the upper one by [0+ u] + (r + u)[z, 0, y].
A re-substitution according to Definition 4.3 delivers the claimed result. The second item

is a trivial conclusion from Definition 4.3 item (10). O

Lemma 4.15 (Rate Interval Dissemination) Given the algorithm from Definition 4.8
under Assumptions 4.1-4.4. If Ry resp. R, is a correct local rate interval during round k
at remote node q resp. local node p # q, then the computed remote rate interval R, , has

the following properties at the end of round k:

(1) align(R,,) C align(R,)

+ [0+ (5% (Pr +2(F + E) + B) + Comax )

PR_B_fmax_4(F+E)pmax

+[0£ O(Gpq + TmaxTmax)]

(2) ref(R,,) € [1 + (HRp +R,|| + 2% Py + 2B+5max+4(F+E)pmax)]

Pg

+[0£0(Gy)]

with error term Gpq = (|[Ry + Ryl| + OmaxPr + (B + €max + (F + E) pmax)/ Pr)’.
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Proof. Let us begin with the alignment of R, , addressed by item (1). From the formula of

R, , in the algorithm from Definition 4.8 we have to deal with the interval multiplication

of Q4 and R, whereby Lemma 4.14 certifies an upper bound as

align(Qp,q - Rq) C align(Qy,q) + right(Qy,q)align(Ry). (4.83)

Focusing on right(Q,) we get by virtue of Lemma 4.13 item (1) and (2) that

. +
right(Qg) < 1+ [[Ry+Ryl[+ 2021 Pe + (Pr+ B)

€max 2B + €max + 4(F + E) pmax
PR_B_emax_4(F+E)pmax PR

B+ €max + (F + E)pmax> 2)

op+ 04

+

+0 ((HR,, + Ry|| + OmaxPr +
Pr

< 1+ HRp +Rq” + (Up +‘7q)(PR+ B)
2B + 2€max + 4(F + E) pmax
+
Pr

+ O(Gp,) (4.84)

where G, stands for (||R, + Ry|| + 0maxPr + (B + €émax + (F + E)pmax)/ Pr)” as above.

Next we justify and analyze the deterioration interval

RIME =104 (0, + 0,)(F + E)] (4.85)

P,q

as drawn from the formula for R, ; in our algorithm. The reason for it lies in the mismatch
between the endpoints of the relative rate measurement period and the corresponding
round. More specifically, at remote node ¢ the first sending timestamp 7" is taken before
the beginning of round k& when the correctness of the current local rate interval R, starts,
however, Lemma 4.6 requires R, to be correct at the moment of timestamping. Therefore,
we need to deteriorate R, “backwards” for as much as F'+E following Lemma 4.3 to make
it correct at (k — 1) Pg and afterwards. A multiplication with Q,, provides a temporary

remote rate interval

R, = Qu (Ry+ (0% 0,(F +E)+ [0£0 (62(F + E)? + 0,(F + E)||R,]])])
= Qpq Ry + [0+ 1ight(Qpq)0q(F + E)]

+[0£ 0 (07(F + E)? + 0,(F + E)|[R,[)],

which in turn needs to be deteriorated by as much as F'+ E on node p to end up with a
correct Ry, at kPr + F' + E. However, the reference point of R;,,q is not necessarily 1,

so we cannot immediately apply Lemma 4.3. Therefore, going back to (4.26)/(4.27) in
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the proof of Lemma 4.3, replacing 1 by ref(R;, ,) and knowing that the clock rate v, is at
least 1/right(R,, ) at kPg from Definition 4.4, yields a deterioration interval

AR;, = [0 (right(R},,))%0,(F + E)] + [0+ O (62(F + E)?)]
= [0+ (right(Q, ) right(R,))> 0,(F + E)| + [0+ O (02, (F + E)?)]
= [0t0,(F+E)]+[0+0(Gp,)]

by relying on right(Q, ,) < 1+O (||Rp + Ry|| + OmaxPr + (B + €max + (F' + E)pmax)/ Pr)
from (4.84), and right(R,) < 1+ O(||R,|[) by definition. Eventually, adding R;,, and
AR, , explains RE’Z/IE as given in (4.85), whereby an upper bounding interval for it can

be easily expressed as
align(Ry\™) C [0+ (0, + 0)(F + E)] + [0 £ O(Gp,)].- (4.86)

Finishing up the proof for align(R,,), we know that R,, = Q,, - Ry + Rj}" as
provided by the algorithm, hence combining (4.83), (4.84), (4.86), and item (1) from
Lemma 4.13 leads to

align(R,,) C align(Q,,) + right(Q,,) align(R,) + align(RE(\]/[E)

op+o0 €
C |0£(2 1(Pr+ B —=
- [ < 2 ( R+ )+PR_B_€max_4pmax(F+E)>]

+ align(Ry) + [0 £ (0, + 0) (F + E)]
+ [0+ O(Gy)]

C align(R,) + [0 + 2% p B yo(F E))]
€maX
+ +
; [0 e E)] £ 0+ 0(Gyy)

proving item (1) of our lemma by adding [0 £ O(0maxTmax)] t0 agree with Assumption 4.5
item (2).

Item (2) of our lemma follows immediately from Lemma 4.14 item (2), since the
deterioration term RJM" does not affect the reference point, i.e., ref(R, ) = ref(Q,,).

Therefore it is sufficient to take over the interval from item (2) of Lemma 4.13. O

The case ¢ = p is trivial, since the algorithm sets R, , to the local rate interval R,,
hence align(R,,) = align(R,) and ref(R,,) = 1.

At this point we should elaborate on the limited transmission capacity b of our com-

munication subsystem, see Assumption 4.4 item (4). Our algorithm requires to put the
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timestamp T, (e.g., 4 bytes), the local rate interval R, (e.g., 2 x 4 bytes), and the sum
of state adjustments U, (e.g., 2 bytes) into a packet for an FME. If b is sufficiently large,
then there is no need to modify the algorithm nor its analysis. When b becomes strin-
gent, the data (in the first place R,) could be divided into several packets, otherwise the

analysis needs to be adapted to account for a reduced granularity.

Lemma 4.16 (Consonance Interval Dissemination) Given the algorithm from Def-
inition 4.8 under Assumptions 4.1-4.4. Let N®) be the set of non-faulty nodes during
round k. If the set of local rate intervals R™ = {R,:p€ N®Y is correct during round
k and v®) -correct w.r.t. internal global rate ©*) at the beginning of round k, then the

remote rate intervals Ry, for p,q € N®) have the following properties at the end of the
round k:
(1) Any remote rate interval Ry 4 is v, ,-correct for p # q with
Vo © 70 + [0 (25%(Py + 2(F + E) + B) + e )

Pp—B—€max—4(F+E)pmax
+ [0 + O(Gmax + O'max'ﬂ'max)];

and any local rate interval R, = Ry, 18 v, ,-correct with
Yop ©V® +[0 £ 0, Pr] + [0 £ O(Grmax + TmaxTmax)]
(2) The set of remote rate intervals R, = {R,, : ¢ € N} at receiving node p supplied
by broadcasting nodes ¢ € N'¥) is 'yf -correct with
v Cy® 4 [0+ (2= (P + 2(F + E) + B) + €max )]

PR_B_fmax_4(F+E)Pmax
+ [0 + O(Gmax + o'rnaxﬂ-ma,x)]-

3) The set of all remote rate intervals R = U ® Ry, at non-faulty nodes is ~y -
,qEN Psq H
correct with

Yu €Y% + [0 + (UmaX(PR +2(F + FE)+ B) + €max )]

Pr—B—€max—4(F~+E)pmax
+ [0 + O(Gmax + O-rna,xﬂ—max)]-

(4) The set of remote rate intervals R = {R,, : p € N®} at receiving nodes p € N

from a broadcasting node q is y4-correct with
A1 C A®) +[0:|:(ama;j(PR+2(F+E)+B)+ €max )]

PR—B—emax—4(F+E)pmax
+ [0 + O(Gmax + O'max'ﬂ'max)];

and ~y-consonant with

;€ [0+ (2t (Py + 2(F + E)) + Tmectioap 4 - )

PR_B_Cmax_4(F+E)pmax

—|— [0 It O(Gmax + O-max(’n-max + Bpmax))]-
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2
. . B max F+FE ‘max >
Error term G ax 18 given as (||Rmax|\ + Opax Pr + Z1ema +1(3R+ )Joma ) , where Ryay 18 the

largest correct local rate interval.

Proof. Item (1) of our lemma is analogous to item (1) of Lemma 4.15, but instead of
rate intervals the associated consonance intervals are analyzed. Suppose node ¢ € N'*)
maintains a correct local rate interval R, during round k, which is also ~*)_correct at
the beginning of round k satisfying p*) € v, (t®)(1 +~®), see Definition 4.7. It remains
to quantify the -, -correctness of R, ;. Due to Lemma 4.10, we can use the same line of
reasoning as for align(R,,) in Lemma 4.15 in order to find a bounding interval on 7, ,.

In particular, equation (4.83) can be rewritten as

Qpq - 'Y(k) - align(Qp,q) + right(Qp,q)'Y(k);

the upper bound on right(Q, ,) stays (4.84), and the deterioration interval to bridge F'+F
on both ends is the same as (4.85) relying on Lemma 4.9 and retrenched Lemma 4.3.
Eventually, we arrive at ) € v,(t*+1)(ref(R,,) + 7, ,) with the properties from item
(1) of Lemma 4.15 after applying two substitutions, namely align(R, ) becomes to 7, ,
and align(R,) to ). In preparation for further operations, we want to get independent
of the corresponding local rate intervals in expression Gy 4, so we define a uniform Gpax

—also referred as rate granularity— as

(4.87)

B+ €ax + (F + E)pm>2

Gmax: Rmax maxP
(1Rl + 0P + A

with Rhax as the largest correct local rate interval. The case p = ¢ is a trivial consequence

of Lemma 4.9 and by considering Assumption 4.5 item (2).

In item (2) the ~}'-correctness of set R, follows from a straight majorization over the
non-faulty broadcasting nodes, since each remote rate interval is 7y, -correct as asserted by
item (1). More specifically, calculating v" = Ugepre\ p) Vp,, Tesults in the given formula,

whereas the consonance interval «,, , is also subsumed since 7, , C 'yf holds.

Item (3) embraces all appearing remote rate intervals at non-faulty nodes, whose
~H-correctness can easily be proved by doing the union of Yp,q from item (1) over all

p,q € N®)_ Effortlessly, we get the claimed formula.

The first part of item (4) results from a majorization over the receiving nodes, i.e.,

Y = Upentn{q} Vp,g» Whereas v, , C 7 holds as well.

For the second part, we have to calculate the consonance of the set of remote rate

intervals R? stemming from a common broadcasting node ¢. For that purpose, we attach



162
a pseudo consonance interval K, to the local rate interval R,. It is initialized to ) when
the first message leaves node ¢ during (k — 1) Pg and (k — 1) Pg + F. Covering a point-to-
point and a broadcast-type network uniformly, we deteriorate it by the maximum logical
broadcast delay B to take care for the last leaving message, thus
_ 2 D2 max
Ky =[0+0,B]+ [0+ O (02B* + 0,Bp™)]
by exploiting Lemma 4.3. Replacing R, with k, in item (1) of Lemma 4.15 yields the
corresponding pseudo consonance interval &, , valid at t*+1) with

Kpq &

0+ (%(PR+2(F+E) + B) + %(PR+2(F+E) +3B))]
+ [0 £ O (Gmax + Tmax(Tmax + Bpmax))]

for all p,¢ € N® . A majorization over the receiving nodes provides the 4;-consonance
of RY, hence v; = Upen (g} Kp,g 1€ads to the formula given in the second part of item

(4), and noting that k4, C v,. O

This eventually completes the issues about disseminating of rate/consonance intervals
within a single round. We have managed to express the properties of the remote rate
interval R, , at the end of a particular round £ in the terms of the local rate intervals R,,
and R, correct during round &, and consonance interval 4¥) at the beginning of round
k. The actual remote rate intervals are fed into the convergence/validation function,
computing a new local rate interval for the next round after adjusting the clock rate
accordingly. The remaining sections focus on the evaluation and effects of these functions

based on the bounding intervals characterized by Lemma 4.15 and 4.16.

4.5.3 Rate Adjustments

We investigate the amounts of rate adjustments administered at the end of each round
by changing instantaneously the oscillator-clock coupling factor S, of the algorithm from
Definition 4.8. Since this change happens in a multiplicative way, we aim to find bounds
on the ratio between the new and old one. An additional sanity check for feasible values of
Sy helps to exclude faulty clocks. Our analysis is grounded on the consonance preservation

function @, (-) of the utilized convergence function CV£(-), see Definition 4.10 item (2).

Lemma 4.17 (Rate Adjustment) Given the algorithm from Definition 4.8 under As-
sumptions 4.1-4.4 using convergence function CV£(-) subject to fault model F. Let
N be the set of non-faulty nodes during round k. If the set of local rate intervals
RE) = {R, : p € N®)} is correct during round k and v*¥)-correct w.r.t. internal global
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rate ) at the beginning of round k, then the rate adjustment at the end of the round k,

expressed as the ratio between the new and old oscillator-clock coupling factor, is limited

by

Szgk_l'l) i o
S(k:) < Gp =1 +’Y( )+ [OZI:OPPR] +¢’Y(7p,1a"' a’Yp,n7’YHa7I7)
J2
+ [0 + O(Gmax + o'maxﬂ-ma.x)] (488)
for node p € N'®) | whereby D (Y15 s Ypui YE Y15 - - - ) 18 a weakly monotonic conso-

nance preservation function of CV(-) supplied with

(1) Ypg =74 + [0 (255(Pat+ 2P + B) + B) + g )|
+ [0 £ O(Gmax + TmaxTmax)],

(2) ’YH— = ’Y(k) + [0 :I: (O-max(PR + 2(F + E) + B) + PR—B—EmaiIiaZ(F-FE)pmaX)]
+ [0 £ O(Gmax + TmaxTmax)],

(3) 71 = [0 + (Umax (Pr+2(F+E+B))+ PR—B—emaiTI(F—FE)pmax)]
+ [0+ O(Gax + Omax(Tmax + Bpmax))];

2
and error term Gpax = (HRmaXH + OmaxPr + B+€max+1(3§+E)pmax) with Rmax as the largest

correct local rate interval.

Proof. At the beginning t**) of round &, suppose clock C, of node p e N () is steered with
coupling factor Sz()k) and the corresponding local rate interval R, is ~®)_correct w.r.t. k)
see Definition 4.7. From item (1) of Lemma 4.16 we know that R, is v, ,-correct as
shown there. Hence, if v,(t**1)) is the clock rate just before the rate adjustment takes

place to switch over to round £ + 1, it follows that

™ € ") (14 4% 4 [0+ 0, Pr))
+[0£ 0 (02P} + 0, Pr|[Ry || + 0y Tmax )| (4.89)
Furthermore, node p computes a new correct rate interval f{p valid for t**+1 by virtue of
the convergence function CV x(+), whose characterization with the consonance preserva-

tion function ®,(-) ensures that R, is D (Yp1 - s Vpmi Vi Vs - - - )-correct w.r.t. o),
see Definition 4.10 item (2). Due to the the weak monotonicity of CV£(-) and ®,(-), we

get

W(k) € Up(t(k+1)) (ref(f{p) + ‘1’7(7;0,1’ s Yo YHIYID - )

L0+ O(Opwmax)]) (4.90)
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with the above calculated intervals for v, 1,... ,7,,, 7y and majorized «; taken over as

bounds from item (1), (3) and (4) of Lemma 4.16. Since the calculated intervals in (4.89)

and (4.90) intersect, we can derive

ref(R,)) € 14+4® +[0£0,Prl + & (Vprs-- - » Ypms Yis Vi - - )
+ [0 £ O(Gax + 0pTmax)] -

Recalling S+ = S®ref(R,) from (4.55) finishes the proof. O

Note that above limits on the amounts of rate adjustments are only true for straight
internal rate synchronization. If there are adjustments meant for external rate synchro-

nization, we have to consider properties of the employed validation function.

4.5.4 Consonance

For internal rate synchronization, we are interested how the consonance of our clocks
evolve. In particular, we study the maintenance of the consonance, which is primarily de-
terminated by the consonance enhancement function ¥, (-) of CV£(-), see Definition 4.10
item (3). The following theorem expresses the maximal lengths of the ensuing consonance
intervals at the beginning of each round, whereby the conversion to the usual consonance

~ can be done via Lemma 4.7.

Theorem 4.1 (Consonance) Given the algorithm from Definition 4.8 under Assump-
tions 4.1—4.4 using convergence function CY z(-) subject to fault model F. Let v* be a

solution of equation

Y = O Y YY), (4.91)

whereby Wo (Y, ... Y™ Ym; Y15 - - - ) 8 a weakly monotonic consonance enhancement func-
tion of CV £(-) supplied with

(1) 40 ="+ [0+ (22529 (Pp + 2(F + E) + B) + e )

PR_B_Cmax_4(F+E)Pmax

+ [0 + O(Gmax + O-maxﬂ-ma.x)] fO’f' 1 S q S n,

(2) 7H == ‘Y* + [O :l: <0max(PR + 2(F + E) + B) + PR—B—CmainiaZ(F-i'E)pmax)]
+ [0 £ O(Gmax + TmaxTmax)],

(3) Y = [0 + <0max (PR + 2(F +E+ B)) + PR—B—CmaiITZ(F-f—E)pmax)]
+ [0 :t O(Gmax + O'max(ﬂ-max + BpmaX))L
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2
and error term Gmax = (‘ |RmaxH -+ UmaxPR —+ B+6max+l(3£+E)pmax) . If each local rate inter-

val R, of a non-faulty node p is correct during all rounds k > 0 with R, C Ruyax and
v O correct with v C v* at t© = t,, then R, is (v*¥) + [0+ O(Grmax + TmaxTmax)] ) -correct
with

YW C 4 (4.92)
at the beginning t*) of round k for all k > 1.

Proof. We establish this result by conducting an induction proof on round k£ with As-
sumption 4.5 item (2) as hypothesis. The initial case k¥ = 0 is already implied by the
above assumption. Therefore, we have to show that if the set of correct local rate intervals
R¥ is 4*)_correct w.r.t. internal global rate ¢*) at ¢®) for some & > 0, then R**Y is
~*+D_correct w.r.t. the newly internal global rate **1 at ¢*+1) whereby both 4*) and
,Y(Ic+1)

(4.91). For a better comprehension of the involved consonance intervals take a look at
Figure 4.9.

have to be enclosed by a consonance interval 4, which is a solution of equation

run round k

~*) _correct apply CVx(-) 7®)_consonant

define new global rate

R

~(k
’Y;(, )-correct

enforce rate adjustment

\

RN

~*+1) _correct

\J

Figure 4.9: Succession of Consonance Intervals
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Suppose each node p from set A/*) of non-faulty nodes during round k has computed
its new rate interval flz(,’“) valid for t**1) when round k& ends. Due to the consonance en-
hancement function ¥ (+) of the employed convergence function CV#(-), there exists a ¥
such that the set {R{® : p € N®} is %)-consonant, see Definition 4.10 item (3). Since
CVx(-) and U, () are weakly monotonic, the above calculated intervals for 4%, ... 4™,
~y and majorized 7, taken over as bounds from item (3) and (4) of Lemma 4.16 deter-
mine a maximum on ||5%*)|| when plugged into W, (-). This maximum depends primarily
on v%) which indicates the v¥)-correctness w.r.t. internal global rate ¢*) at t(*) of the

preceding set {Rz(vk) peN (k)} of correct local rate intervals, hence we simply write

FOI <0 (Fr ) o (VO): £y, (V515 ). (4.93)

For our interval-based rate synchronization approach it is vital to understand how to
carry over the 4*)-consonance of {R{? : p € N®)} to the ) -correctness of R() for all
p € N®)_ Tt is solely accomplished by “choosing” a new internal global rate ¢*+1) as an

arbitrary point within the intersection

N wpt®D) (ref(RP) + 5% + [0 + O(0maxTmax)]) ,
peN (k)
which is non-empty due to Definition 4.6. For the other modalities of internal global
rate ¢(t) turn to Section 4.5.1. Consequently, to guarantee a '")'/](Jk)-correctness of f{g“)

w.r.t. #+1 it is sufficient to set 771(,’“) = 4" for all p € N®), leading to

BN <O (P 0o fp )i £, (i) (090)

Next we examine the enforcement of the rate adjustment at t*+1) of our algorithm.
Recalling (4.55) and (4.56), the new clock rate @, (t*+1)) turns out to be ref(R{®)v, (t*+D)
at node p, which assures

:5,(/6)
o* ) € g, (%) [ 1+ ——2ay T [0 £ O(TmaxTmax)] VpeN®
ref (R;")
and further that the new local rate interval R{**!)) = norm(R{) is 4**+-correct after

the rate adjustment took place, whereby

= (k)
re

f(R")
The additional deterioration of [0 £ 0,Pg| by our algorithm is not relevant for inter-

nal rate synchronization. In order to bound the maximum in (4.95), we need to find
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a minimum on ref(f{g“)) over all p € N®. With the help of Lemma 4.17 and using
@ (Y Y Yms Y5 ---) || = O(l|vx||) from Definition 4.10 item (2) we derive

ref(RY) > 1— [yl =0, Pr— [y (£, , (V) £y, (VD) £y, (P55 )|
+ O(Gmax + O-maxﬂ-max)

v

(4.96)

B + émax + (F + E)prax
1+O<||’7('“)H+HRmamH+<7maxPR+ ( . )

Pg

Obviously, this is a conservative estimation, but a more detailed analysis renders the
resulting expressions rather complicated due of the arising consonance preservation func-
tion @, (-) without providing any further insight. Anyway, combining (4.94) and (4.96)
yields

O < (P 0 Fn ) £y, )i )
+ O(Ghmax + OmaxTmax) (4.97)

relyingon W (yL, ... ;¥ vm; V- --) < ||vy| from Definition 4.10 item (3), and ||[v®|| =
O(]|Rumax||) as a consequence of Lemma 4.4 and 4.7.

To make our induction working, we require that ||y*+D|| < |[y*)|| for any & > 0,
which leads to equation (4.91) with the unknown ~*. If it exists, the induction step
becomes true, and the weak monotonicity of CV #(-) makes it applicable to any consonance
interval enclosed by «4* at the beginning of a round. This eventually finishes the proof of

our theorem about consonance. O

Since the above calculated consonance interval «* holds only at the beginning of
a round, we have to establish a worst case consonance interval «,,,. just before the
end of a round. For that purpose imagine two nodes: One has not yet resynchronized,
therefore its local rate interval is (v* + [0 & omax Pr] + [0 £ O(Gmax + TmaxTmax)])-correct
according to Lemma 4.16 item (1). Another one has already resynchronized, so its local
rate interval is (®,(... ;vu; 755 ---) + [0 £ O(Gmax + OmaxTmax)])-correct with respect to
the same internal global rate by exploiting (4.90) and (4.96). As argued in Section 4.5.1,
we neglect the impact of different round beginnings. Combining these intervals by virtue

of Lemma 4.8, we finally get for the worst case consonance interval

Ymax = (’Y* + [0 j:JmaXPR]) U ‘1)7( 7'YH7'YIa)
+[0 £ O(Gmax + OmaxTmax)] (4.98)

which holds now for all ¢t > t,.
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An open issue remains the achievement of the initial consonance 4(®) C ~+* at the
beginning ?y. Basically, there are three avenues: Either the initial oscillator drifts p, are
small enough, or an external rate synchronization takes care for it. Otherwise, we have to
devise alternative means (e.g., rate validation as sketched in Section 4.4.5) to meet this

initial condition.

4.5.5 Drift

For external rate synchronization, we are interested how the clock drifts evolve. Such a
result is not only useful in case there are no correct remote rate intervals available from
primary nodes, but for the mechanism of the validation function V.AL(-) as well, see
Section 4.4.5. The following theorem expresses the lengths of the resulting local rate
intervals at round beginnings, whereby the conversion to the usual clock drift ¢, can be

done via Lemma 4.1.

Theorem 4.2 (Drift) Given the algorithm from Definition 4.8 under Assumptions 4.1-
4.4 using convergence function CV x(+) subject to fault model F. Let all local rate intervals
R, correct at t©) with align(R,) C V . If node p is non-faulty up to the beginning t*
of round k > 1, then Ry, is correct at t *) and satisfies

ahgn(Rp) - Vl(,k) + [0 + O(Gmax + O-ma,xﬂ—max)]: (499)

with Vg()k) = [(I)(;(V( 1)5 .- V(k)a’)/p,la s a’yp,n;‘YH;’YI; .- )aoaég—(v(k) e V(k)a’Yp,la R

p, p,n p,1 PN
Voui YiiV1i - )], whereby ®F(V, . VEy ,'7p,n;’rH;71;---) are the weakly
monotonic drift preservation functions of CY x(-) supplied with

(1) 7]),(] = ‘Y* + [0 :i: (%(PR + 2(F + E) + B) + PRfofmajcniaZ(F'i‘E)pmaX)]
+ [0 £ O(Gmax + OmaxTmax)] with v* from (4.91),

(2) Yy =" +[0% (Omax(Pr+ 2(F + B) + B) + p—g )|
+ [0+ O(Gmax + OmaxTmax)| with v* from (4.91),

(3) Yr = [0 + <0max (PR + 2(F +E+ B)) + PR—B—emaiTI(F—l—E)pmax)}
+ [0 :i: O(Gmax + O'max(ﬂ-max + BpmaX))]f

(4) V(k k: 1) + [0 + <(Up+”q)(PR;2(F+E)+B) + €max )]

PR_B_Cmax_4(F+E)Pmax

2
and error term Guax = (||Rumaxl| + Omax P + ZromestEEme )" yyith R, .o as the largest

correct local rate interval.
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Proof. We carry out an induction proof on round £ about ahgn(R( )) with Assumption 4.5
item (1) as hypothesis. The initial case £ = 0 is already implied by the above assumption,
where [p,/(1+ pp), 1, pp/(1 — pp)] can be used for V¥ justified by Lemma 4.1.

For the induction step, assume that Rg’“_l) is correct during round k£ — 1 with £ > 1
for ¢ € N7 and satisfies align(R{¥~) C V=1 From item (1) of Lemma 4.15 we
know that

alignR{" V) c VED LAV, (4.100)

P,q

for a remote rate interval R, ; on local node p € NE=D with p # g, where

o, +0 €
AV,, = |0+ | 2—%(Pr,+2(F+E)+ B max
pa [ ( y Prt2F+E)+ Byt 5y F + B)po

+ [0+ O (Gpy + TmaxTmax)] -

In case of ¢ = p, we use R, , = R,, straight from our algorithm.
The application of convergence function CV (-) outputs a correct rate interval fil(,k)
that satisfies

ahgn(ﬁg‘:)) g I:(I)J_(Vg()]fl): T ’V]()]::’I)L’ 7;),1) s 7’Yp,n; Y V13- -- )’ Oa
k
o (VI Vv Y YY) (4.101)

according to item (1) and (4) of Definition 4.10, whereby

k-1
V)= Vi 1 av,,
taken from (4.100), and consonance intervals 7, ,...,7,,, Yy and majorized v, are

taken over as bounds from item (1), (3) and (4) of Lemma 4.16; recalling the weak
monotonicity of &3 (-). The encountered v*) is bounded by ~*, which is justified by (4.91)
and (4.92) of Theorem 4.1. This proves the inputs (1)—(4) for ®3(-) in our theorem.

It remains to analyze ahgn(RI(,k)) as a result of the rate adjustment at t*), which is

given by
1 (k)
align(RI(,k)) = %Wf))
ref(Ry ")

due to (4.56). Recalling estimation (4.96) for ref (Rz()k)) and (4.101) for align(f{g“)) provides

ahgn(R](,k)) g [(1)5 (Vp 15~ V]()],cn77p,17"' 77p,n;7H;7I;"')707
k
(I)(—Si—(vg(),l)a s ?Vé,%;’),p,l? .- :7p,n;7H;71; T )]
+ [0 =+ O(Gmax + O-maxﬂ-max)]
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which finally proves (4.99) of our theorem. O

Admittedly, this result is overly conservative since in case of multiple rounds, only the
worst case enlargements of the rate intervals would be added up. For an improvement
we need to consider two facts: First, the nominal oscillator stability o, decreases for
longer durations At, so we are better off when working with o,(At), see again Figure 4.3.
Second, the maximal rate adjustment cannot take place more than once in consecutive
rounds, hence analogous to clock state synchronization “conditioned” drift preservation
functions ®5(-) seem to be useful here.

It should be clear that there is no conflict with the optimal result of [66], since the
“hardware drift rate” is now affected by the CRA but not the oscillator stability.

4.6 Summary and Future Research

Clock rate synchronization is useful for plenty of distributed applications and supports
algorithms for clock state synchronization. Their communication and computation costs
are low, although a rate adjustable local clock is required. We crafted a framework for
algorithms synchronizing both internally and externally the rates of clocks in a fault-
tolerant distributed system. Its interval-based paradigm is surprisingly similar in many
aspects to ours for clock state synchronization presented in [55]. In fact, the same conver-
gence/validation functions can be used to operate on intervals that captured synchroniza-
tion quantities like clock rates or real-time. These intervals in turn need to be sufficiently
enlarged to account for uncertainties arising from the communication subsystem or the
clocks. For the latter we have discovered that their stabilities have great importance for

(internal) clock synchronization instead of their conservative maximum drift.

Much work remains to be done. In particular, we are about to investigate the initial-
ization/joining problem and to analyze promising convergence/validation functions along
with abstract fault models. Moreover, we are interested in optimality results for clock
rate synchronization. Last but not least, experimental measurements on oscillators are

required to obtain their drift and stability parameters.

&
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Chapter 5
INTERVAL-BASED CONVERGENCE FUNCTIONS

5.1 Introduction

Traditional internal synchronization techniques turned out to be ill-suited for coping with
this both precision and accuracy requirement, see Chapter 3. In fact, although worst case
accuracy bounds have been provided for most existing synchronization algorithms, it is
nevertheless true that a static worst case bound is not representative for the “average”
execution. A promising alternative are interval-based algorithms, where local time infor-
mation relating to real-time ¢ (usually UTC) is represented by an interval that is supposed
to contain ¢t. Given a set of such intervals from different nodes, a usually smaller interval
that contains UTC can be determined by means of a suitable interval-valued convergence
function. Since accuracy bounds are hence maintained “on-line” here, they are of course

representative for the average execution.

In Chapter 3 resp. 4, we presented and analyzed a generic interval-based framework
for clock state resp. rate synchronization algorithms. According to our exposition above,
this implies that it is capable of maintaining precision resp. consonance when started from
an initially synchronized state resp. rate and takes care of accuracy resp. drift as well.
The algorithms are generic in the sense that it left unspecified the convergence function
CV x(-) employed for computing the clock state/rate adjustments. As in [58], all results
(worst-case precision and consonance, accuracy and drift, maximum adjustments, etc.)
are expressed in terms of a few characteristic parameters of the convergence function,
see Definition 3.11 and 4.10. In order to determine the performance of a particular
instance of the algorithm, one has to determine the characteristic parameters of the
particular convergence function and to plug them into the generic results: Theorem 3.1
on precision/accuracies with instantaneous state corrections, Theorem 3.2 on continuous
amortization, Theorem 4.1 on the consonance of clocks, and Theorem 4.2 on the drift of

clocks.
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Although our interval-based framework does of course not provide entirely new results
for worst case precision and consonance, it nevertheless surpasses traditional approaches
due to its conceptual beauty and high flexibility w.r.t. incorporating features like clock
granularity, broadcast latencies, etc. This is primarily a consequence of our notion of
internal global time and rate, which allows us to reason about precision and consonance
by considering each local interval clock separately, i.e., without explicitly relating it to
the other clocks in the system. Even more, there is no need to consider the “absolute

position” of intervals, i.e., clock state and rate, at all.

This chapter provides description and detailed analysis of the optimal precision algo-
rithms OP-STATE and OP-RATE obtained by employing the optimal precision conver-
gence function OP(-) in the generic clock state and rate algorithm, respectively. It is
organized as follows: Section 5.2 is devoted to the investigation of Marzullo’s function
M(-), which plays a central role in the analysis of OP(-) contained in Section 5.3. The
latter also includes the major results, namely, worst case bounds for precision and accu-
racy of OP-STATE, and worst case bounds for consonance and drift of OP-RATE. As

usual, a summary and directions of further research are appended in Section 5.4.

5.2 Marzullo’s Function

This section is devoted to an in-depth investigation of a certain fault-tolerant intersection
function M(-), which plays a central role in our optimal precision convergence function.
It was introduced in Marzullo’s thesis [35] and termed Marzullo function in [25]. How-
ever, its relevance was recognized in the context of replicated sensors only, see [36] and
[3]. For clock synchronization purposes, a number of additional properties are required
that will be established subsequently. More specifically, we start with a definition and
Subsection 5.2.1 and 5.2.2 analyze the properties in regard of accuracy and precision,
respectively. Subsection 5.2.3 concludes with a discussion why Marzullo’s function alone
is not sufficient for internal clock synchronization. For ease of presentation the following

definitions and lemmas will be in the context of clock state synchronization, see Chapter 3.

Definition 5.1 (Marzullo Function) Given a set T = {I,...,I,} of n > 1 non-
empty compatible intervals with at least n — f > 1 of the intervals being accurate,

Mz_f(I) 1s defined as the largest interval whose edges lie in the intersection of at least
n— f different I’s.

Therefore, to compute the left resp. right edge of Mz_f (Z), one has to “sweep” over
the set of intervals from left to right resp. right to left and stop when n — f intervals



173
intersect for the first time. Thus, M(-) can be computed in O(nlogn) time by sorting

the intervals’ edges, see [36]. The following Figure 5.1 shows an example for n = 4 and
f = 1. Note that the unknown ¢ cannot lie in the region between right(I3) and left(I,)
in this example. However, since there is no way to decide whether ¢ lies in the area left

or right of this region, both areas must be covered by M3(-).

IIl

i Iy — non-accurate

| I

{ Iy

#

—_——— - — —— } - - 4

Mi({11712713714})

Figure 5.1: Example of Marzullo’s Function

It is immediately apparent from Definition 5.1 that M, ({I1,...,I,}) = Uicjcn I;
and My ({I1,...,I,}) = Ni<j<n I, hence M1 (.) “changes” from union to intersection
as n — f goes from 1 to n.

When Marzullo’s function M(-) is a constituent part of a particular convergence
function, we need to prove the following straightforward properties, cf. Definition 3.11

and Lemma 4.12.

Lemma 5.1 (Translation Invariance, Multiplicativity of Marzullo’s Function)
Let T ={I4,...,I,} be a set of n > f > 0 compatible non-empty accuracy intervals rep-

resenting t, where up to f faulty ones are among them. Then,
(1) MMI({I 4+ A, ... I, +A}) = M T({I,...,I,}) + A for any A, and
(2) M ({sIy,...,sI,}) =sM T ({I,...,1,}) for any s > 0.

Proof. Let I, = [z;,%4,) for any 1 < j < n, then there exists a partial order of the
endpoints such that z,q) < ... < Z,(2,). Adding a A or a multiplication with any s > 0
keeps this partial order, thus z,) + A < ... < 2,0, + A and sz,1) < ... < 5Tr(2n),
which reflects the input of the Lh.s. of item (1) and (2), respectively. Since only the
partial order of the endpoints are relevant for the computation of Marzullo’s function
M(-), the properties of translation invariance in item (1) and multiplicativity in item (2)

follow immediately. O
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5.2.1 Accuracy Properties

The most important feature of M(-) is fault-tolerance w.r.t. faulty input intervals. For
example, Figure 5.1 shows that M3 (-) provides an accurate result despite of the fact that
I, was non-accurate. We will now embark formally on M (+)’s capabilities in this respect.

To that end, we introduce the following classification of faults:

Definition 5.2 (Single Faults) An interval I representingt can suffer from the follow-
ing faults:

(1) Omission: missing interval expressed by I = ().
(2) Non-accurate interval: ¢ ¢ T

(8) Unbounded accuracy: t € I but ||I|| too large according to some condition (that

need not be known explicitly).

Whereas it is usually impossible to decide locally whether an interval I is accurate
or not, it is of course possible to detect omission faults. Hence, given a set Z of n > 1
compatible intervals with o' > 0 of them exhibiting omission faults, it is trivial to discard
the o’ omissive ones from Z and to proceed with the reduced set J containing n' = n — o'
non-empty intervals only.

Masking or detecting —and thus ruling them out completely— unbounded accuracy
faults is impossible in most circumstances. Indeed, apart from the fact that it is sometimes
difficult to determine the exact border between faulty and non-faulty accuracy values
locally, even enforcing a certain worst-case bound —by limiting o, a"— cannot prevent

faulty nodes from considerably spoiling the “average” behavior.

The following lemma reveals how M (-) behaves in the presence of faults according to
Definition 5.2. Extending the accomplishments of [35] and [36], it answers the question
of how “severe” a particular fault is w.r.t. the number of non-faulty intervals required for
tolerating it. Moreover, both an upper and a lower bound on the length of the provided

interval is given.

Lemma 5.2 (Accuracy of Marzullo’s Function) Let J = {J1,...,J,} be a set of

n > 1 non-empty compatible accuracy intervals representing t, and define w" to be the

length of the largest intersection of h > 1 non-faulty intervals among them, i.e., w" =

max{||W||: W € W"} for

h
W={W : W= ﬂ Jw; with w; # w; fori# j and Jy, € T being non-faulty}.

i=1
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If o' > 0 of the J; suffer from unbounded accuracy faults and d" > 0 are non-accurate,
where a' < a and d < d withad +d = f' <a+d= f <n, then

(1) M = M™/(J) is accurate and contains any intersection W € W™ of n—f > 1

different non-faulty input intervals, i.e.,
W= )Juw, €M, (5.1)

so that ||M|| > w™/ (minimal intersection property),

(2) there are at least n — 2f —a' > n — 2f — a different non-faulty input intervals

Joys-- - Jb, o € T such that
n—2f—a’ n—2f—a
Mc [} JyC [} Ju, (5.2)
j=1 3=1

where the sequence {;}1<j<n—2r—a 15 obtained from {b;}1<j<n—27-a by discarding

a —d' arbitrary intervals. Hence, ||M|| < w"=2/=¢ < yn=2f-0,

(3) there are at least f — f' +1 > 1 non-faulty intervals Jy, resp. J,, in J satisfying
left(M) < left(J,,) resp. right(M) > right(J,,).

Proof. Since M = M" /(J) contains any intersection of at least n — f input intervals
by definition, it obviously contains any intersection of n — f non-faulty intervals W =
ﬂ?;lf Ju; € W"~!. Therefore, it follows that ¢+ € M and ||M|| > w7/ as asserted in

item (1) of the lemma.

Turning our attention to item (2), it follows that the total number of intersections of
left and right edge of M with non-faulty input intervals is g; + ¢/ > 2(n — f) — 24’ — d',
because an interval J; suffering from an unbounded accuracy fault (a') could intersect
with both edges of M whereas a non-accurate interval (d') can only intersect with one
edge of M due to t ¢ J; but t € M. However, since there are only ¢’ = n — f’ different
non-faulty intervals in J = {J,...,J,}, the pigeonhole principle reveals that

g+g—gd>2m—2f—2d —d -n+f=n-2f—d

of the intersected accurate intervals, say Jp,,...,Js » must be the same. Therefore,

n—2f—a'

n—2f—

M must lie in the intersection of those intervals and ||[M|| < w as asserted. A

simple majorization easily establishes (5.2).
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Finally, to prove item (3), consider w.l.o.g. the left edge of M. We show by contra-
diction that the left edge of at least f — f’ + 1 non-faulty intervals lies at or right of
left(M): If there were at most f — f’ such intervals, all n — f' — (f — f') = n— f remain-
ing non-faulty intervals would have their left edge strictly left of left(M). However, this
would contradict the minimal intersection property established in item (1), completing

the proof of our lemma. O

The lower bound on ||[M]|| in item (1) expresses the rather obvious fact that M(-)
cannot improve the accuracy beyond the one “hidden” in the input intervals; the term
minimal intersection property was coined in [35]. Note that M contains any intersection
of n — f intervals, hence also intersections involving unbounded accuracy faults.

Interpreting item (2) of Lemma 5.2 in terms of the fault-tolerance degree, it follows
that n > o' + 2f + @’ + 1 nodes are required to guarantee that M remains bounded by

the length of at least one non-faulty input interval. Hence, as many as

o+1 for o’ omission faults,
n>< 2d+1 for d’ < d non-accurate intervals,

2a 4+ a' < 3a for a’ < a unbounded accuracy faults

nodes are required for tolerating faults of the given type. It is thus apparent that M/(-)
can tolerate | (n — 1)/2] non-accurate intervals but only |(n — 1)/3] intervals that suffer
from unbounded accuracy faults, cf. [36]. Note carefully that the numbers above do not
solely depend on the actual number of faults (e.g., '), but also on their maximum number
(e.g., a); this is due to the fact that the latter is compiled into the superscript argument
of M().

Item (3) just says that M contains the left and right edge of at least one (not neces-

sarily the same) non-faulty interval.

Lemma 5.3 (Monotonicity of Marzullo’s Function) Let T = {I,,...,I,} be a set
of n > f > 0 compatible non-empty accuracy intervals representing t, with f', 0 <
f' < f, faulty ones among them. Then, Mz_f(l') 15 accurate and satisfies the following

monotonicity relations:
(1) M) C MUTRN(T) for any integer k with 0 < k < n — f,
(2) MY I(I) C MY I(T) forany T ={J1,...,Jn} with I, CJ, for1 <1< n,

(3) For f > f' > 1, if L =TZI\{I,} is obtained by discarding some faulty interval I
from T, MU DU (£) = MPI(L) is accurate and satisfies

MIZI(L) c MP(T). (5.3)
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Proof. In the proof of item (1) of Lemma 5.2 we argued that M = M" /(Z) contains

any intersection of at least n — f input intervals by definition, hence must be accurate.
Since the interval containing any intersection of n— f —k input intervals obviously contains

any intersection of n — f input intervals, item (1) of the lemma follows.

Turning our attention to item (2), it is clear that any particular intersection of n — f
intervals in J contains the intersection of the corresponding intervals in Z if it is non-
empty at all. By the same token as before, it hence follows that M"~/(J) must contain
M (T) as well.

For proving item (3), the same argument is used again. First of all, n > f > 1 implies
that n—1> f—1 > 0, hence M%":ll)_(f - (L) is accurate. Moreover, discarding a faulty
I,; in Z and simultaneously reducing f by 1 leaves the superscript argument (n — 1) —
(f—1) =n—f in M"~ (L) unchanged. Since the interval containing any intersection of
n — f input intervals in Z must contain the interval containing any intersection of n — f

intervals in £ C Z, the statement given in item (3) of our lemma follows. O

It is not difficult to show that M(-) is optimal w.r.t. worst case accuracy for non-
accurate intervals (but not for unbounded accuracy faults) among all interval-valued
functions of n interval arguments, cf. [25]: Suppose there were a function F that provides
an accurate interval satisfying M(Z) € F(Z), then M' = M(T)\ (M(I) ﬂ.’F'(I)) #0
and there must be an intersection of n — f accurate intervals A = ﬂ?;lf I,, so that
ANM' # (). However, the (valid) assumption that ¢ € AN M’ reveals that F(Z) cannot
be accurate, providing the required contradiction.

Regarding item (2) of Lemma 5.3, it is important to note that enlarging an input
interval (even by a minor amount) can cause a discontinuous jump of an edge of M™™/(J)
if a “new” intersection of n — f intervals comes up. Just consider shrinking or moving
right the faulty interval I, in Figure 5.1, which causes the right edge of M3(-) to shrink
to right(I3) as soon as left(Iy) > right(Iy). This implies that M(-) does not satisfy a
Lipschitz condition w.r.t. moving (edges of) input intervals, as already noted in [25].

Item (3) of Lemma 5.3 implies that one should always try to detect and discard faulty

intervals before M (-) is applied, since this can only improve the result.

5.2.2 Precision Properties

For establishing precision results, we also require some “global” properties, i.e., statements
relating the results M, and M, of M(-) computed at different nodes p and ¢. Of course,
since M, and M, are both accurate and hence contain ¢, Lemma 5.2 implies certain
results on M, U M, as well; for example, |[M, U M,|| < 2w"™ 2/-¢ However, this would
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be too weak for a statement about precision enhancement.

As a first step, the single-interval faults of Definition 5.2 must be complemented by
faults of pairs of intervals I, resp. I, obtained at nodes p resp. ¢ in a broadcast from
node s. In addition, we account for the case that a more severe fault comes out as a less

severe on by introducing a convenient hierarchy of faults.

Definition 5.3 (Pairwise Faults) A pair of compatible accuracy intervals {I,,, I} rep-

resenting t suffers from
(1) a crash fault iff I, = I, =0,
(2) a symmetric fault iff either

- both I, and I} are not accurate in the sense of t < left(I,) and t < left(I}),
or else t > right(I7) and t > right(I}),

- without loss of generality, I, = 0 and I, # 0 does not exhibit an unbounded

accuracy fault.
(8) an asymmetric fault iff either

- both I and I are not accurate in the sense of t > right(I,) and t < left(I})
or else t > right(I7) and t <left(I}) (true Byzantine fault),

- without loss of generality, I} # 0 is faulty and I .7 0 is arbitrary.

(4) a restricted fault if it suffers from a symmetric fault according to item (2) or a

crash fault according to item (1).

(5) an arbitrary fault if it suffers from an asymmetric fault according to item (8) or a

restricted fault according to item (4).

Separating different classes of faults as in Definition 5.3 yields a hybrid fault model
similar to the one of [70], see also [2] for an overview and more recent extensions. There
are intricate differences, though. Most importantly, we consider pairwise perceptions Z,
and Z, at two different receiving nodes p and g in isolation. By the precision require-
ment, we only have to ensure that any two non-faulty clocks satisfy |C,(t) — C,(t)| < ,
independently of the other clocks in the system. Hence, system-global fault assumptions
—like the one that all receivers perceive a symmetric fault consistently— are not required.
Note that we do not even need the common assumption that the total number of faulty
nodes during a round does not exceed, say, |(n —1)/3]; it is only the maximum number

of faulty intervals in a pairwise perception that counts.
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Our fault model is thus of wider applicability than conventional hybrid fault models.
Most importantly, we do not require that faults caused by receiving nodes —like receive
omissions— are artificially attributed to (a small number of) sending nodes. Instead,
we credit each receiving node a certain number of omissions that may affect arbitrary
senders, independently of receive omissions at other receivers, simply by counting them
as symmetric faults. If modelled in the conventional way, this could easily lead to a

situation where all n nodes of the distributed system appear faulty.

Now we are ready for the following “precision lemma”, which is an advanced version
of a lemma introduced in [50]. Note that it also takes into account that two different
nodes p and ¢ usually receive slightly different intervals in the broadcast of a node s even
if there is no fault.

Lemma 5.4 (Precision of Marzullo’s Function) Let Z,, = {III,, o Ipy and I, =
{I,,...,I7} be two ordered sets of n > € + d' compatible (or empty) accuracy inter-
vals representing t, where €' resp. d' of the n pairs of intervals {I,,, I} } erhibit arbitrary
resp. restricted faults, and the remaining ones are non-faulty. Define u" resp. v" to be the
length of the largest intersection of h > 1 unions resp. intersections of pairs of non-faulty
intervals, formally u* = max{||U|| : U € leq} resp. v" = max{||V||: V € qu for

h
leq = {U:U-= ﬂ I U Ty with u; # uj, i # j, and non-faulty I} € T, I}' € I}
i=1

h
ng = {V:V= ﬂ NI with v; # v, i # j, and non-faulty I € I, I)' € I,}.

i=1

Let Ty ={J1,...,Jdn,} be the set of n, = n — o, non-empty intervals obtained from
Z, by discarding any of the o, empty intervals caused by omissions. Using the upper bound
fp = d+e— o0, on the number of intervals in J, that (still) may be faulty in presence of

op, omissions, define
M, = Mz;d_e(Jp) and analogously ~— M, = qu_d_e(Jq). (5.4)

Then,

(1) both M, and M, are accurate and

n—d—e

M,nM,2> (| IyNIY =V (5.5)
j=1

for any possible subset V' € qu_d_e, so that |[|[M, N M|| > v"~4¢ (distributed

minimal intersection property),
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(2) if € < e and d < d, there are at least n — 2d — 2e — €' > n — 2d — 3e pairs of
non-faulty intervals {I*, I*} with I € J, and I}* € J, such that

n—2d—2e—e’ n—2d—3e , ,
M,uM,Cc () Iprulyc () IpUIp, (5.6)
k=1 k=1

where the sequence {u} }1<k<n—2d—2e—e' by discarding e—e' arbitrary elements. Hence,
/
||Mp U Mq|| S un—Zd—Qe—e S un—2d—36.

Proof. First of all, we note that f, gives indeed an upper bound on the number of intervals

in J, that still may be faulty in presence of 0, < d' < d omissions, since it holds that
np—fp=n—d—e (5.7)

and the same for n, — f,. Hence, Lemma 5.2 is applicable, and it follows that M, and
M, are both accurate and satisfy the (local) minimal intersection property. That is, M,
contains any intersection of n, — f, non-faulty intervals present in J,. If {v;}1<j<n,—f,
denotes any sequence of different indices of non-faulty pairs of intervals Iy € Z,,, I'j € I,

(of course also present in J,, J,), we thus have

np—fp
w,= () I C M,
j=1

and, for the same sequence {v,}, W, = ﬂ;ﬁ;fp I'7 C M,. By elementary set algebra, it
thus follows that V = W, N W, € V™ % satisfies (5.5). Finally, |[M, N M,|| > v /»
is a simple consequence of the definition of v" as the maximum length of V' € qu. This

completes the proof of item (1).
For item (2), we distinguish two cases:

1. If w.l.o.g. M, determines both left and right edge of M, U M, Lemma 5.2 applies
with n := n,, f = f,, and o’ < €' (as well as a < e). Hence, by item (2) of this

lemma in conjunction with (5.7), there are at least
ny—2f,—a >n—2d—2—¢

non-faulty intervals Ifj in J,, the intersection of which majorizes M,. Of course,

any corresponding I Zl is present in J 4, so that we can write

n—2d—2e—e’ )
M,uUM,CM, ¢ (| I¥
Jj=1
n—2d—2e—e’

c () IyuIyeup e, (5.8)

i=1
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which shows (5.6) in this case.

2. If wlo.g. the left resp. right edge of M, U M, is determined by M, resp. M,
where the left resp. right edge of M, resp. M, intersects with g, resp. g, intervals

belonging to a non-faulty pair of intervals in calBI,, Z,, we easily find

9p, > ny — fp —e - (dleft - dp,left) >n—d—e— e — et

! !
9q,r Z ng — fq —€ - (dright - dq,right) Z n—d—e—e — drighta

where diefy +dright = d' < d are the number of restricted faulty pairs of intervals lying
left resp. right of ¢, and dpjery < dp, dgright < dy denote the number of omissions
among them at node p resp. ¢. The lower bounds given above come immediately
from (5.7). On the other hand, we have only ¢ < n — d' — €' different non-faulty

pairs of intervals. Thus, the usual pigeonhole argument reveals that

i+ 9gr—9 > 2n—2d—2e—2¢' —d —n+d +¢
> n—2d—2—¢
> n—2d— 3e

\%

of them must be the same. We can conclude that there are n—2d —2e — e’ (pairs of)

accurate intervals I UIY, .., I Y I ith I'e Jpand IV € J,
satisfying
n—2d—2e—e’ )
M,UM,C () IJuIlieU, > >, (5.9)
J=1

which proves (5.6) for this case as well.

The condition ||[M,U M,|| < ut~2d-2e=¢ < yn=2d=3¢ ig g trivial consequence of (5.8) and

(5.9) finishing up the proof. O

Interpreting the accomplishments of Lemma 5.4 and the previous comment in terms
of the fault-tolerance degree, it turns out that n > 2d + 2e + €’ nodes are required to
guarantee that M, U M , remains bounded by the length of the union of at least one pair

of non-faulty input intervals I :f; ulr Z. Hence, as much as

S 2d +1 for d' < d restricted faults,
n
| 2¢e+€ +1<3e+1 fore <e arbitrary faults

nodes are required for tolerating faults of the given type.
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5.2.3 Reference Point Setting

Whereas M(-) is optimal w.r.t. the length of the resulting accuracy interval, it can
nevertheless exhibit large discontinuous jumps even for minor shifts of a faulty input
interval, recall the comments on Lemma 5.3. For that reason, it has been claimed in [25]
that M(-) is incapable of guaranteeing small precision if the input intervals are large.
The following example proves this claim: Consider a system of four nodes A, B, C, D

with interval clocks having the following characteristics:

e A’sinterval clock is deteriorated by 42 units during the resynchronization period P,

but actually runs at perfect rate,

e B’s interval clock is deteriorated by £1 unit and is actually one unit ahead of real-

time after one period P,

e (’s interval clock is deteriorated by +1 unit and is actually one unit behind of

real-time after one period P,

e D’s clock exhibits arbitrarily faulty behavior in the sense that D’s accuracy interval

received by node p mimics p’s current interval clock.

Assuming fault-free, zero-delay communication and initially perfectly synchronized inter-
val clocks C,(0) = [0 £1] for p = A, B, C, we obtain the scenario depicted in Figure 5.2.
Each node receives the interval clocks C), of the non-faulty nodes A, B, C exactly as they
are shown above at ¢ = kP, £ > 1. One observes that the interval M, obtained by
applying M3(-) to the I’s received by node p is always exactly C), hence no precision
enhancement will ever take place here, and the reference points of Cz and C¢ will drift

apart perpetually.

t=20 t=P t=2P t=3P

— -+ N A t
A aal p—e— I—0—| f * i
D arb.vfaulty arb. faulty arb. faulty arb. faulty

Figure 5.2: Lacking Precision Enhancement Property
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This behavior can be avoided if one applies M3(-) to the associated 7-precision
intervals jZ instead of I7, recall Definition 3.2. In the example of Figure 5.2, o must
satisfy ||wf|| = 2 + 4 units because of the initial precision (= 2 units) plus twice the
maximum deterioration during P (= 2 -2 units). The intervals fed into M (-) are hence
trimmed to length 7, and considering the resulting intervals M p and M ¢ at two different
nodes p and ¢, one finds that the reference points cannot be further apart than 7 /2
(centerpoint setting assumed), since M U M ¢ has a length of at most 7¥ by item (2) of

Lemma 5.4.

Since the above considerations are only meaningful for maintaining precision, i.e., set-
ting the reference point of C,, the optimality of M (-) recommends its use for determining
left and right edge of C,. However, this requires some care, because the reference point
computed via the associated precision intervals might lie outside of the accuracy interval.
This is demonstrated by the following example: Reconsider our system of four nodes A,

B, C, D, now with the following characteristics:

e A’s interval clock is deteriorated by 41 unit and is actually one unit ahead of

real-time after one period P,

e B’s, C’s interval clocks are deteriorated by +1 unit and are actually one unit behind

real-time after period P,

e D’s clock exhibits restricted faults.

Assuming fault-free, zero-delay communication and initially synchronized clocks satisfying
C,(t)) = C,(t) for p= A, B,C and 7y = [—1,1], so that 77 = [2,2] (since maximum
deterioration during P is £1), consider the evolution of accuracy intervals during two
rounds depicted in Figure 5.3. At ¢;, applying MZ() to the received accuracy intervals
resp. the associated m-precision intervals (which satisfy Ch(t) = éz(tl) for p,q €
{A, B,C} here) yields C4(t1) = [t; £ 0] and Cg(t1) = Cc(t1) = [t1 — 2 £ 2] at the
respective nodes; recall that the reference point of C, is computed as the centerpoint of
M(-) applied to the é’z’s. In order to ensure my-correctness of clock A and B, internal
global time 7; must be set to t; — 1 to lie in the intersection of the renewed 7r(-precision
intervals. Although 71 does not lie in C4(¢;), this situation is still feasible due to the
fact that we decoupled precision and accuracy in the definition of w-precision intervals.
However, a problem shows up when setting the reference point of clock A at t5: Applying
M(-) to the received accuracy intervals provides [ty 0], but the reference point evaluates
to ty — 1, which lies outside. If we ignored this, that is, if we set the reference point to

19, precision would be violated. Therefore, the accuracy interval must be enlarged to the
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left by 1 to include the reference point. Note also that internal global time 75 must be
set to t9 — 2 here.

to t1 to
H!H HH!HH HHH!HHH t
. . i
. -
—e— AaA,B,C e+ AatA,B,C
. —e— BaA,B,C —e—i BaA,B,C
. intervals fed into M3(:) : :
' —e— CaA,B,C j—e— BaA,B,C
—e— DatA - —e— DaA -
—e— Dat:B,C —eo— DatB,¢
Toz T15 T2
AL ¢ .
C e e ]
D restr. faulty restr. faulty restr. faulty

Figure 5.3: Reference Point Setting outside an Accuracy Interval

Viewed from a different angle, this problem can be seen as a consequence of the fact
that internal global time may drift away from real-time. In Figure 5.3, it is node D’s faulty
behavior that slows down the overall progress of internal global time relative to real-time.
This reveals that limiting 7r-precision intervals to subintervals of the accuracy interval,
i.e., by defining T = [r & «] N I for an interval I = [r + a], does not work in general.
Alternatively, we could pad any accuracy interval [r + a] computed by M(-) to enforce
the condition w C «, so that 71 € C4(t;) in Figure 5.3 can be guaranteed, however,
this approach spoils accuracy more. For that reason, we eventually decoupled accuracy
and precision, thus viewing them as “orthogonal” issues. Note that this opens up the
possibility of employing virtually any internal synchronization algorithm for maintaining
precision and to enlarge accuracy as needed.

In any case, we need some means to set the reference point, and since we assumed a
typical processor with integer arithmetic only, the following discrete asymmetric reference

point setting operation turned out to be useful.
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Definition 5.4 (Discrete Reference Point Setting) Let an interval I = [a,b] with

a, b being integer multiples of Gs > 0 and some arbitrary ® = [—7—,7t] satisfying
T =m 47" >0 be given. With |z|gs denoting truncation of x to the next integer

multiple of Gs being < z, and [z]g, denoting rounding up x to the next integer multiple
of Gs being > x, we define

(5.10)

b+ 7T+aJ
m Gs.

w—centerg, (I) = {

Note that this operation provides a reference point that partitions I according to the
proportion of 7~ : w*. The following two technical lemmas are dealing with the properties

of mw—centerg, operation.

Lemma 5.5 (Accuracies Discrete Reference Point Setting) Let I = [a,b] with 0 <
a < b being integer multiples of Gs > 0 and an arbitrary interval @ = [—7~, 7" with

7=7n"+x" >0 be given. Then,
m—centerg, ([a, b]) < w—centerg([a + z,b+ y]) (5.11)

for any x,y > 0 being integer multiples of Gg, and the accuracies in the interval [r + o

obtained from I by setting the reference point to r = w—centerg,(I) satisfy

o
o~ = ——-IJ , 5.12
| (5.12)
ot
at = L—ﬂﬂﬂ . (5.13)
m Gs
Proof. Monotonicity (5.11) follows immediately from the definition (5.10) of w—centerg,

and monotonicity of |z|. Using the well-known fact —[z] = |—z], the expressions for

negative and positive accuracy yield

B 7 b+7Ta T b+7Ta— ma 7w
o = = Jo = [0
m Gg m Gg m Gg

and - - N
b+ b+
a+:b_{z__JLEJ :b+[—1——1131 :[lquﬂ .
Gs Gs T Gs

Lemma 5.6 (Reference Point Precision) Let I,, I, be two consistent intervals with
length 0 < ||I,]| < 7@y, 0 < ||I,|| < 7, being integer multiples of Gs, and ref(I,) =
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my—centergg (I,), ref(I,) = w,—centergy(I,) for somem, = [—n, 7} and 7wy = [—n,, 7}

»Tp
If || I,U1,|| <7 with max{7,,7,} <7 <@, + 7, then
Ty = 7r;," — Tp — 7r;' —

max | 757g + E(ﬂ' -7 =T+ E(ﬂ' — Tp)

_ Gs GS

if Mo Tp
+Zf b 27 ™ + —
max{ [:—f;ﬁp + 2 (m - ﬁp)w : [’;—qqfrq + 22 (m - ﬁq)-‘ }
G's GS

otherwise.

r

ref(I,) — ref(L,)|| < ¢

\

Proof. Apart from discreteness of m,—centergy, this is a straightforward linear pro-
gramming problem. One has to look out for an arrangement of the consistent intervals
I, = [a,b] and I, = [c,d] that maximizes the distance of their reference points. The

full-length proof can be found in the technical report [52]. O

5.3 Optimal Precision Convergence Function

The optimal precision convergence function OP(-), originally introduced in [51], treats
precision and accuracy independently of each other and works as follows: At any node g,
Marzullo’s function M(-) is applied to the set Z, of preprocessed accuracy intervals I 2 to
compute a new accuracy interval for ¢’s interval clock C; In addition, we consider the fact
that it does not make sense to “correct” a non-faulty clock to an interval that is worse than
its current one. Consequently, it is perfectly reasonable to use the intersection M (Z,)NT .
for clock correction at node g, where I{ denotes the accuracy interval originating in the
node’s own clock. This intersection is guaranteed to be non-empty for a non-faulty node ¢,
since ¢ € I and also t € M(Z,). Due to the fact that no network transmission and hence
delay compensation operation is required for I (and certain granularity effects do not
show up either), this interval is usually considerably smaller than remote intervals Y b
that ultimately determine M (Z,). As a result, the achievable accuracy will be improved
appropriately. Without the intersection of I? we are dealing with the precursor of OP(:),
called the orthogonal accuracy convergence function O.A(-), see [52].

Of course, exactly the same reasoning also applies to the precision part of OP(-). More
specifically, the reference point is set to the midpoint of the intersection C’q = M(fq)ﬂf Z,
where I Z denotes the r{-precision interval originating in the own node ¢’s clock. Usually,
5, which
immediately carries over to the above intersection. This ultimately leads to a considerably

m] is also much smaller than the precision 7} of a remote precision interval I

improved precision.

This section provides the formal definition of @P(-), whose characteristic functions

are derived in Subsection 5.3.1. Instantiating it as convergence function for clock state

].
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synchronization leads to algorithm OP-STATE and for clock rate synchronization to al-
gorithm OP-RATE, which are fully analyzed in Subsection 5.3.2 and 5.3.3, respectively.

Definition 5.5 (Optimal Precision Function) Let T be a set of n compatible accu-
racy intervals and J C I with |J| = n' < n be the set of non-empty ones among them.
Moreover, with I, € J denoting the interval originating in the own node’s clock, let
. Al an!
J={J,...,d

. ni y
cision w8 for J and w° C wf for I

1
i Z} be the set of associated precision intervals utilizing a given pre-

o _ _ . .

o, Where T~ wHT go= w0t qre integer multiples of

Gs. For some a priori given fault-tolerance parameter f and a mazimum correction bound
. .. . oqrH v . .

T max, the optimal precision convergence function (’)Pnﬂ,}ﬂ max (L) herein abbreviated by

OP(.), is defined by

Tn Zf |7'n - To| S Tmax;
ref(OP(T)) =1 7o+ Twax i 0 — 7o > Trnans (5.14)
To — Tmax Zf Tn —To < _Tmax;
where
ro = ref(I?),
r, = m’—centerg, (MZ,_f(j) N 12), (5.15)
and
OP(T) = (Mz,f(J) n Ig) U [ref(op(:f)) + o] . (5.16)

That is, the result of OP(-) is the interval provided by M(-) applied to the accuracy
intervals in J, possibly extended appropriately to include the reference point; the latter
is set to the Yp,c-bounded mw°—centerg, of M(-) applied to the associated precision
intervals. Obviously, T ,.x = oo means that the new reference point is always set to r,,
whereas a finite Y, implies that the maximum clock correction applied to any non-faulty
clock is limited to —Ypax resp. +Yax. Inspired by [10], we will show in Lemma 5.8 that
T max can be reduced up to the provably necessary maximum clock correction established
in [9].

Before characterizing OP(-) in detail, we point out that it is obviously translation
invariant due to item (1) of Lemma 5.1 and the fact that (I+A)N(I'+A) = (INI')+A and
(I+A)U(I'+A) = (TUI')+ A. Moreover, for the purpose of clock rate synchronization,
we make the remark that OP(-) is multiplicative due to item (2) of Lemma 5.1 and the
fact that sINsI' =s(INI') and sIUsI' =s(IUT).
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5.3.1 Characteristic Functions

In the remainder of this section, we will analyze the worst case behavior of this convergence
function by evaluating its characteristic functions according to Definition 3.11. For this
purpose, we have to provide an appropriate fault model F first, which is a refinement of
Definition 5.3 that takes into account that faults may occur both in accuracy and precision
intervals. Actually, we have to distinguish faults affecting an accuracy interval and its
associated precision interval either in the same way or differently: Let a single accuracy
interval I that is faulty w.r.t. ¢ and/or 7 be called t/7-symmetrically faulty if t < left(I)
and 7 < left(I) or either ¢ > right(I) and 7 > right(I), and t/7-asymmetrically faulty
otherwise; a set I of faulty accuracy intervals is identically t/7-symmetrically faulty if ¢

is either to the left or to the right for all members of Z identically.

Assumption 5.1 (Hybrid Fault Model) A pair of compatible accuracy intervals {I,
. . . .. . 25 28 .
I Z} representing t, with the associated precision intervals {I o L q} representing T, suffers

from a

(1) restricted fault if it suffers from a crash fault or a symmetric fault w.r.t. t and/or

7 and all faulty intervals involved are identically t/T-symmetrically faulty,

(2) arbitrary fault if it suffers either from an asymmetric fault w.r.t. t and/or v, a sym-
metric fault involving at least one t/T-asymmetrically faulty interval, or a restricted
fault.

Let T, = {I;,...,I;‘} and T, = {Ié,...,IZ} be the sets of intervals obtained at any
two non-faulty nodes p and q after reception and preprocessing of the accuracy intervals
disseminated in an FME. We assume that at most ¢ < e and d < d of the pairs of
intervals {I;, 1 f]}, 1 < s < n, suffer from arbitrary and restricted faults, respectively,

where e and d are such that
n>3e+2d+ 1. (5.17)

Now we are ready for the lemma providing the most important properties of OP(-),
which are analyzed according to the framework in Chapter 3. More specifically, we pro-
vide expressions for the (conditional) accuracy preservation functions ®=(-), precision
preservation function ®,(-), precision enhancement function ¥, (-), and (conditional) in-
tersection enhancement functions ¥ (-) of OP(-) for the special case Tyax = oo first. In
Lemma 5.8 we will show that our results remain valid for (certain) finite settings of Tpax

as well.
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Lemma 5.7 (Optimal Precision Function for Y, = 00) Let Z, = {I,,..., I}

resp. L, = {I;, cen, IZ} be two ordered sets of n compatible accuracy intervals obtained
at nodes p resp. q at the end of a round, which are in accordance with the fault model of
Assumption 5.1. Moreover, let the subsets of non-empty accuracy intervals among them
be Ty C Iy, |Tpl =ny <, and Ty C Iy, |T 4| = ng < n, respectively, with It € T,
and I € J, denoting the interval originating in the own node’s clock. Assume further
that

[1] the accuracies of any non-faulty I; = [T} )] are integer multiples of G's satisfying
af, - ,3; € B, for a given set of accuracy bounds B, = {,311,, .-+, By}, and analogous

for Ifl with set of accuracy bounds By,

[2] any non-faulty I; € I, as well as any non-faulty Ifl € I, is w-correct for some
given w" with #"*, 7"~ being integer multiples of Gs, and both It and I? are

m°-correct for some w° C i with 7=, 7t being integer multiples of G,

[3] any pair of non-faulty intervals {I;,, Ifl} is m-precise for some given w; C wH,

where Ty 1s an integer multiple of G,

[4] for any s € {1,... ,n} with both I}, and I}, being non-faulty, the common inter-

section of the associated precision intervals j; N j: N j;ninp N j;ninq resp. j; N j: N
"7 n j;naxq has length at least vf > 0 resp. o7 > 0 (all integer multiples of Gs),
where min, resp. max, represents that non-faulty node that leads to the leftmost

p
right(I, ) resp. the rightmost left(I, ) for z € {p,q}.

The convergence function O’Pfjf:’oo(-) applied to J, resp. J, at node p resp. q
provides accurate intervals S, = OP(Tp) = [T, £ o] resp. 8, = OP(T,) = [T, £ oy
with reference point and accuracies being integer multiples of Gs. It has a worst case
computational complexity of O(nlogn), is translation invariant and weakly monotonic.
The characteristic functions ®u(-), ®.(-) and V. (-) are weakly monotonic w.r.t. any

interval argument, are as follows:

(1) The conditional accuracy preservation functions ®=(-), which ensure that the accu-

racies oy, in Sy satisfy a;, C [—®, (B,, 7, wo, Vs : 1), 0 (B, w8, w° Vs : 1],

read
g
(I)_ H 0 < — ° Nl
a(BI”"r X ,VS LS) ﬁ;’_ —+—7TH+ — ’77;_:[,;-‘ Zf Aﬂp_ <0, (5 8)
Gs
ﬂp,—f- + T—I—
®F (B, 7 Vs 1}) = ' . (5.19)

Bort 4~ — {%‘L;JGS if ABF <0,
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where
o— o+
T- = g0t V— OA—} —V —} 5.20
’ T + - min{0, A3, } o el o (5.20)
YH = 7% + FTM— min{0 A,B+}-‘ — VTO_ L+J (5.21)
p o ’ p Gs o p Gs

are bounds on the (absolute value of the) mazimum clock correction applied to

node p’s clock on the occurrence of a worst case accuracy setting w.r.t. a’; resp.

o/;, and
AB, = By =00 + oH+ — ot (5.22)
ABS = pot -t -1, (5.23)

where x denotes the node with the n—2d—3e-largest accuracy bounds among By, i.e.,
By~ = maxi:n_gd_ge{ﬁ;’*} resp. B3 = maxi:n_gd_ge{ﬁ;;’Jr} with max;., B denoting
the m-th largest element of the set B = {b;: 1 <1i < n}.

(2) The precision preservation function ®,(-), which ensures that S, and S, are ®,(7°)-

correct, s

®, (7% = n°, (5.24)

(3) The precision enhancement function ¥, (-), which ensures that the set {S,, S,} is

mo-precise with my = U, (7, 7%, w;) < m° < 7, evaluates to

’ max{ [w‘“’ + T (r — w4 W[)-‘ :

Gs
o— ™t/ H o
U (m, 70, m) = [” M G J””)LS } (5.25)
if T + 7 < 270,
7° otherwise.

(4) The conditional intersection enhancement functions ¥ (-) resp. ¥ (-), which ensure
— + —
that the set {S,, S, } is w* -precise resp. g -precise with n! = ¥, (B,, 7%, 7°, my,
+
Vs : 1)) resp. gt = U (B, wH wo w;, Vs 1 1}) for worst case settings w.r.t.

negative resp. positive accuracy of Sy, evaluate to

7l—0

Ty = o
[” min{7;, 7% — Lz}-‘ if AB, <0,

7o
S

[”O_ min{7r; + AB;, m° — L;}-‘ - V;; min{0, Aﬁp_}J
Gs Gs (5.26)




N [“7:: min{7; + ABS, m° — L;}-‘ — V;: min{0, Aﬁ]’f}J
7T(L)pq = ot Gs Gs (527)
Pﬂo min{7, 7° — L:}-‘ if ABS <0.
Gs

which are in fact independent of q.

Proof. Requiring two evaluations of M(-), the worst case computational complexity
of OP(-) for n nodes is O(nlogn), recall Definition 5.1. Since M(-) is translation
invariant and monotonic by item (2) of Lemma 5.3, the same is true for OP(-), at least
if no enlargement due to the inclusion of an excessive reference point according to (5.16)
occurs. However, since we only have to establish weak monotonicity, where the reference
points of all input intervals are invariant, this enlargement cannot cause any problem

since it depends solely on the reference points.

We first approach the precision statements given in items (2) and (3). Using the
notation introduced in OP(-)’s Definition 5.5, we have §, = M, N jg with M, =
Mz;d_e(j »), where T ﬁ denotes the w°-precision interval associated with I7. Now, since
I is mw°-correct according to precondition [2], we obviously have 7 € jﬁ. In addition, any
non-faulty I}, was assumed to be w-correct, hence 7 € j;, and ||j;|| < 7f | which implies
that any intersection of such intervals has these properties as well. Lemma 5.2 applies
with n :=n, and f := d + e — (n — n,), thus it follows that 7 € M, by its item (1) and
|| M,|| < 7 by its item (2) since

np—2f—a >n—-2d—3e+n—n,>n—2d—3e>1, (5.28)

recall Assumption 5.1. Hence we conclude that 7 € S, as well, and since OP(-) sets the

reference point 77 of S'p = [T, £ m,] to wo—centerGS(S'p), applying Lemma 5.5 yields

o— o—

- 7T ¢ m ¢ —
m o= G lS], < TS <
7T0+ - 7T0+
no= g <[] =w
™ Gs ™ Gs

by recalling that 7°T was assumed to be an integer multiple of Gg. Since obviously
ref(S,) = ref(S,), the asserted m°-correctness of S, and hence expression (5.24) for
®,(-) is evident.

The required weak monotonicity of ®,(w°) w.r.t. w° follows immediately from the
monotonicity of the above expressions w.r.t. ||S,||. Note carefully that the (apparently

™" and T

i ™o

problematic) fractions

originate in the °-center operation compiled statically

into OP. Hence, they are fixed and thus irrelevant for weak monotonicity.
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Of course, exactly the same reasoning holds for S, completing the proof of item (2).

As far as item (3) is concerned, we first recall that any pair of w-correct intervals
I;, € J, and Ifl € J, was assumed to be 7 -precise in precondition [3]. Hence it
follows that ||I, UT,|| < % + 7, since \|II;||, ||~i;|\ < " and [ref(T}) — ref(I})| < m;
by item (2) of Lemma 3.3. This implies ||S, U S || < [[M, U M|| < 7 4 m; due to
M,UM,C ﬂﬁ;fd_%(j;k U jzk) by virtue of item (2) of Lemma 5.4 in conjunction with
(5.28). Now, if

o+ < 27 (5.29)

holds, Lemma 5.6 with 7, = 7, = 7, = 7, :== 7° and 7 = 7" + 77 applies and yields

o+ o—
lref(S,) — ref(S,)| < max{ [ w0+ = (m? —7° + 71'1)-‘ ,
o e Gs
o— o+
FT —7’ + z ~ (r® — 7° + WI)-‘ } (5.30)
7T 7r Gs

If, on the other hand, (5.29) does not hold, then no precision enhancement takes place
in the worst case. From m°-correctness established in item (2) it follows that |ref(S,) —
ref(S,)| = |ref(S,) — ref(S,)| < 7° here. This finally establishes the expression given for
7 = U, (+) in item (3) of our lemma. Plugging (5.29) into (5.30) and using w° C ¥
from precondition [2] confirms the asserted condition my < 7° < 77 as well.

It only remains to show that U, (wf, w° m;) is weakly monotonic w.r.t. wf, °, and
77 The only non-trivial part of this proof is to show that (5.30) does not increase

when 7° decreases. As in the proof of item (2), we use the fact that the (potentially

o+

° s
7T0

— and

problematic) fractions are irrelevant for weak monotonicity, since they stem

™
from the parameters m, = m, := 7° that respresent the m’-center operation compiled
statically into OP(-). Now, if (5.29) is still satisfied when 7° is decreased, it is not hard
to see that the maximum value of the two terms on the r.h.s. of (5.30) is the first one if

o+ o— . . . . .
T~ > T and the second one otherwise, invariant w.r.t. weak monotonicity. Therefore,

7r0 —_ /n-O

the relevant term is monotonically decreasing when 7° is decreasing as required. If, on
the other hand, (5.29) is no longer satisfied, ¥, (-) = 7° and weak monotonicity follows

trivially. This eventually completes the proof of item (3).

Now we will turn our attention to item (1) of our lemma. From Definition 5.5, it

is evident that the accuracies a’;, o/; as well as the reference point of S, are integer

multiples of Gg. Moreover, item (1) of Lemma 5.2 applied to (5.16) in conjunction with

the fact that the own node was assumed to be non-faulty reveals that S, is accurate.
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Hence, it only' remains to bound a,. For this purpose, we need an arrangement of input
intervals that maximizes, say, the positive accuracy OJ';— subject to the given lower bounds
Vs : ¢f on the intersection of certain non-faulty input precision intervals.

A typical worst case scenario for 04;,+ is depicted in Figure 5.4. It will be used sub-
sequently for establishing bounds on the quantities of primay interest, namely, the worst
case accuracy ' = ®7(-), the maximum clock correction Y, and the resulting precision
¢’ = Uf(:). First of all, it reveals the crucial role of the common intersection lengths
Vs : 1] defined in precondition [4] of our lemma: With the dotted vertical line R marking

the ridge edge of the utmost left non-faulty input precision interval j;r;l; at either node
p or ¢, parameter ¢ gives the lower bound on how far left of it the left edge of both j;
and I 2 may lie; for comparison see also Figure 3.5. Hence, boundary R in conjunction
with Vs : " effectively allows us to relate the many different intervals involved in the
worst case scenario. It will turn out, the depending on the value of +™ and ¢, we have

x

to distinguish two cases:
(I) o+ <, which is the case shown in Figure 5.4.

(IT) «* > ¢, which is the situation faced by the orthogonal accuracy convergence func-

tion analyzed in [52].

Clearly, our analysis has to provide results that are valid in either case.

—
p

we define the mized interval I of an arbitrary accuracy interval I = [T + a] with its

We will provide the detailed argument for a’; only; o/ is derived analogously. First,
associated 7r-precision interval I = [T+ ] as I = [T — 7~,T + a*]. Mixed intervals are
in fact ideally suited for attacking our problem: Since left and right edge of the result
of M(-), and hence OP(-), are computed independently of each other, and right(f:) =
right(I}) resp. left(f;) = left(j;), it follows that right(g'p) = right(S,) resp. left(g'p) =
left(S,) as well. Analyzing the result of M(-) in terms of mixed intervals, however, is
easy since the hybrid fault model in Assumption 5.1 guarantees that the sets of mixed
input intervals .'7_.";, .'Z'Z are in accordance with the fault model of Definition 5.3, which

underlies the properties of Marzullo’s function M ().

In order to determine the worst case accuracy bound (', we need those settings of
the edges of 5’,, and S, that maximize S,’s positive accuracy. Analogous to the proof
of the precision enhancement function ¥, (), we know from item (2) of Lemma 5.4 in
conjunction with (5.28) that there are at least n — 2d — 3e pairs of non-faulty intervals
Ik, I.* present in J, X J 4 such that S'p U S'q - Mp U Mq - ﬂz;%d_3e(fzk U f;k) The

tWithout loss of generality, since the analogous result for S, is obtained by exchanging p and g.
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Figure 5.4: A Worst Case Scenario for Positive Accuracy

reference points (and hence the left edges of the mixed intervals) of any non-faulty pair
I;, I fl can be at most 7; apart since they are ar;-precise according to precondition [3].
Let * = u,_24-3. be the node that produces the n — 2d — 3e-largest positive accuracy
Be = B = maXyn_24-3.10,} among all I}, Evidently, maximizing their intersection’s
length requires I ; to be entirely contained in all the larger I :i, which eventually leads to
the left resp. right edge of ﬂz;%d_:*e(fzk ul Zk) as marked with a vertical dashed line in
Figure 5.4, and eventually to

=

left(S,) > max{left(fﬁ),left(f:)} (5.31)

= =T

right(S,) < min{right(fﬁ),right(Ip)}. (5.32)
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From
ref(I)) — R=m"" — " (5.33)

together with the fact that §’p cannot be larger than #+ 7°~, since the precision interval
S’p resp. the accuracy interval S, has been intersected with fﬁ resp. I, it hence follows
that the worst case of g’p w.r.t. #' is characterized by

right(S,) — ref(I%) = right(S,) — R — (ref(I2) — R) (5.34)
< min{p, pg} — (777 —07)
= min{B, B + 7 — 7 — (1, — M)}, (5.35)

see Figure 5.4 for the definition of u, u,.

As far as the worst case position of right(S,), we know already that no non-faulty
precision interval i;, I Z (including I Z and I Z) can have a right edge left of R, recall our
earlier comments on precondition [4]. From the distributed minimal intersection property
of M) stated in item (1) of Lemma 5.4, it thus follows that both M, and M, must

have this property as well. Consequently, neither right(S,) nor right(S,) can be left

of R, see Figure 5.4. This implies that we have to consider right(S,) = R for worst
case settings w.r.t. 3’ only, since the monotonicity property (5.11) of w—centerg, ensures

that setting right(S,) further right would provide a smaller 3’ only. Using (5.33) and
R — left(S,) < min{s*, 3} by (5.31) in conjunction with (5.13) easily yields

T = ref(I)) —ref(S,) = ref(I%) — R+ (R — ref(S))) (5.36)
o+
< 7w =4 V min{ ", s -‘ (5.37)
e Gs
o+ o~
= 71 + [ min{0,:} — 7} — L+-‘
o e Gs
o+ o—
< 7+ FT —min{0, ¢} — L+}-‘ — r . L+J : (5.38)
m Gs m Gs

For this derivation, we exploited the fact that . is an integer multiple of Gg and used
the well-known relations [z +y]| < [z] + [y] and —[z] = | —z], whose justifications can
be found in Chapter 3 of [14]. Adding (5.34) and (5.36), we eventually obtain

-

right(S,) — ref(S,)
min{3, B, + 77 — 7" — (of =)} + T (5.39)
< min{B+ 77, B+ 77" — (uf —h)}

,ﬂ.o—l— o—
+ [ min{0, .} — L+}-‘ — { L+J : (5.40)
m° Gs Gs

/61

IN

™

7T0
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Now we turn our attention to a bound on the precision ¢’ of the set {S,, S,;} in worst
case settings for 3. As for right(S,) before, we only have to consider right(S,) = R
here, since a right edge located further right can only provide a smaller ¢’ by virtue of
monotonicity (5.11). Due to the containment property established earlier and the obvious

m°-correctness of Sy, we hence get
R —left(S,) < min{c} + 77, 7°}. (5.41)
Using (5.33), (5.36) and the above relation in conjunction with (5.13) reveals that

¢ = ref(S,) —ref(S,) = ref(I%) — R + (R —ref(S,)) - T*

o+

T
< 7TO_—L++[

7T0

min{c} + 77, WO}-‘G -1t (5.42)
S

However, a uniformly valid upper bound would require a lower bound on Y, which is
not available. Nevertheless, it is apparent from (5.39) that the maximum of 3’ occurs for
maximal T only. Hence, for our purpose, we can safely insert the upper bound (5.37)

on Yt into (5.42), arriving

' et 0 T et

¢ < — min{.; + 77, 7w }-‘Gs — ’771'0 min{.", ¢} -‘ ] (5.43)

r -0+ o+

< |T min{.} + 77, 7w} — min{.*, 1} -‘ (5.44)
A * fiad "lag
_7_‘_0—}- 7TO+

< —min{s} — 1" 47,70 — L+}-‘ — { —min{0, s} — L+}J (5.45)

m Gs m Gs

by the same devices as used for the derivation of (5.38). Note that our bound (5.45) on

(" does not depend on g, i.e., it is uniformly valid.

To complete our worst case analysis, we have to show that the worst case scenario for
' constructed above is also valid w.r.t. multiple rounds. It is of course valid for a single
round, in the sense that there is no scenario that provides a worse 3’ for the given (*.
However, the resulting (' is quite small, and since ¢’ will determine :* —and hence §'—
in the next round, the question arises whether a non-worst case setting could provide a
worse overall accuracy. Now, it follows by construction that 8’4 ¢’ is also maximal in the

worst case scenario considered above, see Figure 5.4. In fact, adding (5.39) and (5.42)
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and employing the same derivation that led to (5.38) yields an upper bound
B+ = right(g'p) —ref(S,)
< min{f, B + 77 =7 — (i —1h)}

o+
min{s + 7y, WO}-‘ (5.46)
Gs

+7T"—L++FT

/n-O
min{ 8+ 7°7, B + 777 — (1 — 1)}

mot
+ min{¢, — " + 7,7 =t} —
0 T ’

T Gs

IN

o—

™

L+JG : (5.47)

7T0

which holds for any scenario (including non-worst case ones, as caused by a smaller T).
It follows that the occurrence of some (' exceeding our bound (5.43) can only occur in
scenarios where (' falls below (5.40) at least by the same amount. However, (5.40) in
conjunction with 7°~ /7% < 1 demonstrates that the resulting decrease in +* for the next
round cannot catch up the decrease 5’ experienced in the current round. Thus, our single

round worst case setting also implies a multiple round one.

Nevertheless, the worst case bounds on YT, 3, and ¢’ established above depend upon
something that is actually not available: Both the definition of the conditional accuracy
preservation functions @/ (-) as well as the conditional intersection enhancement functions
UF(-) relies upon lower bounds 7™ < " and 77 <} only. Hence, in order to derive the
required expressions (5.19) and (5.27), we have to modify our results to utilize the lower

bounds 7" resp. 7;7 instead of the actual values ¢* resp. ¢} .

First, looking at our expressions (5.38), (5.40), (5.45), and (5.47), it is apparent that
they actually depend upon (" and Aut = 1} — 7. Referring to ¢, they are all mono-
tonically decreasing, which means that we can safely replace ™ by its lower bound i*.
Dealing with As*, however, is more complicated since (the sign of) Ai™ =7} — it is not
representative for (the sign of) Ac*. For our argument, we exploit the fact that the max-
imum of (5.47) occurs for Avt = A3 = B, — B+mH~ —7° . For, if AB > 0, it is apparent
that 3 + 7°~ determines the first min-term of (5.47) provided that Ait < A, whereas
the whole expression is monotonically decreasing for Av™ > AS. If, on the other hand,
AB <0, then 8, + 7~ — (1 — ™) determines this min-term provided that A > ApS;
clearly, this term is monotonically increasing in |AsT| here. Hence, it follows that the
maximum of (5.47) occurs when At = Af in any case. Plugging Aut = Af in (5.40),
(5.38), and (5.45) immediately leads to the bounds (5.19), (5.21), and (5.27), respectively,
as stated in items (1) and (4) of our lemma.
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Actually, the above bounds can be improved in case of A < 0. Stepping back to
(5.39) resp. (5.46) and pulling — (¢} — ¢*) out of the first min-term easily yields

B < min{f+f — B+ -7 P+ -+ YT (5.48)
< min{f+7°7 +of — ot B+ 77}

N o+ o—
+ V min{* — o, 0}} - { L;J (5.49)
m° Gs e Gs

™

resp.

B +¢ < min{B+¢ — " B+ =77}
o+

+W°_—L;’+V

— min{.} + 7y, W”}-‘

Gs
< min{B+ 7" +f -, B+ 777}

o—

+ VOJF min{7;, 7° — LI}-‘ — VT 1,+J . (5.50)

o Gs o z

by analogous manipulations as used for deriving (5.38). Similarly, by pulling out ¢ in
(5.44) it easily follows that

o+ o+

min{7;, 7% — LI}-‘ — VT min{," — LI,O}J . (5.51)
w° G

o
™ Gs s

™

¢<|

This time, our expressions depend upon ¢} and Act = ¢ — ™. Again, replacing ¢, by
its lower bound 7 poses no problem since (5.49), (5.50), and (5.51) are all monotonically
decreasing in (. From (5.49) it is apparent that the maximum value of ' occurs when
At =0, since the first min-term is determinated by 3, + 7%~ due to A3 < 0. Note that
(5.38) and (5.50) also attain their maximum value for Ac* = 0. Plugging At™ = 0 in our
expressions confirms statements (5.19), (5.21), and (5.27) for AgF < 0 as well.

We still have to show that the expressions established before are weakly monotonic
w.r.t. any interval argument. This is obvious for ®}(-) and T given by (5.19) and (5.21),
respectively, but in fact not true for W/ (-) given by (5.27): Increasing 7°~ and/or 35"
decreases Aﬂ;’ . By the same reasoning as used for carrying over the single-round worst
case to a multiple round one, however, it can be justified that weak monotonicity is only
required for ®F(-) +¥;F(-), and this is of course guaranteed by virtue of (5.47) and (5.50).

It only remains to provide the analogous expressions for @, (-) resp. ¥; (), which

can be done by considering Figure 5.4 mirrored at the vertical line R while exchanging

min max

p/q p/a>
(5.12), we also have to replace [-] by || in our starting equations (5.37) and (5.42).

— I 7+ s o= 7ot 5 7°7 and further /™ < =, 1} < ;. According to

T
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Rewriting the derivation of (5.38) accordingly results in

™
— min{s™, ¢ }J o

T I Ca i
= TO++{ min{0,:, — ¢} — LJ
o o Gs

T < 7r"+—f+{

o—

T ot
< 7t 4+ { min{0, ., — L_}-‘ — [ L_-‘ :
me Gs me Gs

where we used the relation |z| — |y| < [z — y]|. The latter follows from combining
lz] + |y] < |z +y]| and —|y — z] = [z — y], see again [14]. An analogous reasoning
as carried out for the positive accuracy part leads to the expressions (5.18) and (5.20)
stated in item (1) of our lemma.

Similarly, rewriting (5.42) accordingly and using the relation introduced above, it
follows that

< T 0 T
¢ < T min{c, + 7,7 }JGS — {7‘(‘0 min{s™, ¢ }J .
(mo= . oy T L
< - min{.; + 77, 7%} — — min{.™, ¢ }-‘GS
(m - o T _
< — min{e, — ¢~ + 7,7 — 1 }-‘Gs - {71’0 min{0,¢, —¢ }JGS.

From here, an analogous derivation as conducted for the positive accuracy part leads to

the expression (5.26), finally completing the proof. O

The following lemma shows that all results of Lemma 5.7 can at least be improved by

using certain finite settings of Y.

Lemma 5.8 (Optimal Precision Function for Y,,,, < co) With the notations and

preconditions of Lemma 5.7, and if Tax ts chosen to satisfy
T ax > 70 — o, (5.52)

all results of Lemma 5.7 remain valid. The conditional accuracy preservation functions

OE(-) improve to

o, (B, w7, w0\ Vs 1)) = ﬂg’—{—min{Tp,TmaX} (5.53)

O (B, 77, 70, Vs 1) = ﬂ£’++min{TZ,Tmax} (5.54)
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with (unchanged) mazimum clock correction bounds

T = ﬁ:(wv—%)hﬁﬁo min{o,Aﬁp}]GS (5.55)
TH = {ig(WO—L;)JGSJrF:: min{O,Aﬂ;}-‘Gs, (5.56)

and the conditional intersection enhancement functions WE(-) improve to

U (B, 7w, w, Vs 1]) = FT min{m; + AB,, 7 — L;}-‘ (5.57)
Vi Gs
mo~
- i O,AJ ~ mi {o,rmx—r}
{ — min{0, AS, } . min a »
o+
UH(B,, 7w w, Vs 1f) = V min{r; + AB,, 7 — L;}-‘ (5.58)
o Gs
7T0+ ] 4 ) 4
- { min{0, A, }J — mln{O, Tmax — 1, }
0 Gs

Proof. From OP(-)’s Definition 5.5, we recall that limiting Y, to finite values means
limiting the correction |Y,| = [T, — T,| applied to the clock at any node p; herein,
T, = ref(I7) resp. T, = ref(S}) denote the reference point of old resp. new clock state at

the end of some round £ at node p in case of T, = 0.

Let 7 = 7%) resp. 7/ = 7(*1) be the instances of internal global time for round k
resp. k + 1, and S, with 7.7 = ref(S)) be the accuracy interval computed by OP(-)
in case of finite Y,,... First of all, it is obvious that the precision preservation function
(5.24) —stating that S, is 7w-correct w.r.t. 7— remains unaltered by limiting Y, since
I7 is mwo-correct by precondition [2] of Lemma 5.7, so S, C jz and 7 € §,. Putting this
together, it is clear that 7 € [T, + #°] for any T, € [T}, T;], which confirms item (2) of

the foregoing lemma.

Turning our attention to the precision enhancement function ¥, () given by (5.25),
we show that it is feasible to limit the maximum correction to Y. = 7° — 7y without
imparing the mg-correctness of the resulting S’g w.r.t. 7. First of all, it is easy to see
that (in case of Tiayx = 00) the new internal global time 7' may be chosen such that it is
not too far away from 7. More specifically, since S, and S, are both w’-correct w.r.t. 7

and 7y-correct w.r.t. 7/, a choice of 7’ such that
™t - > (7' —1) > (7" —7y) (5.59)

is legitimate. If this is not feasible, one of the intervals S,, S,, say S, w.l.o.g., is respon-

sible that the (new) associated 7ro-precision interval S, satisfies 7' = left(S,) > left(S,)
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resp. 7' = right(8,) < right(S,), since otherwise we could choose a smaller resp. larger
7', but then ref(8,) —7 = 7' + 1y — 7 > 1 — 715 + 1y = 7 resp. T — ref(S,) =
T — (1" —7f) > 7" —nf +nj = x°F. This, however, contradicts the mw-correctness of
S, wrt. 7.

When [T} — T, is pressed down by Tpay, we need to consider two cases. Assuming
that we encounter Tlﬁ — T, > Tmax but limiting it to TpT = T 4+ Tmax enforces S;r to be

not my-correct. However, this can only happen if
> T+ Thax + 70 > T, +7° — 7 (5.60)

and hence

r=r (7 =) > T+ g — (17 — ) =T, + 7t

by (5.60) and (5.59), which contradicts the mw°-correctness of I7.
By the same token, if T — T, < —Ypa but limiting it to 7,0 = T}, — Trax leads to

Rp}r being not 7ry-correct, we must have
! — o) +
T <Tp—Tmax — My <Tp—7°+m, (5.61)

and hence

r=7 (1" -1)<Ty—n+7f +7°" -7y =T, — 7"

by (5.61) and (5.59), which again contradicts the m°-correctness of It. This eventually

confirms item (3) of the foregoing lemma.

It only remains to establish the modified values of the conditional accuracy preserva-
tion functions ®(-) and intersection enhancement functions ¥=(-) as given in our Lemma.
For that purpose, we have to consider the effect of limiting T to Y.« in the proof of
Lemma 5.7. However, it is obvious that replacing Y in (5.39) by min{Y, Y.} simply
translates to adding the difference min{0, T ,ax — T} to the accuracy preservation func-
tions (5.18) resp. (5.19), which immediately leads to (5.53) resp. (5.54). Our expressions
(5.55) resp. (5.56) are just a slight modification of (5.20) resp. (5.21) based on the fact
that both 79, 7°* are assumed to be integer multiples of Gs. By the same token, in view
of (5.42), it is clear that subtracting min{0, Y ax — T} from the intersection enhancement
functions (5.26) resp. (5.27) provides the corresponding expressions (5.57) resp. (5.58).

This finally completes the proof of our lemma. O

In the following we make some remarks about the accomplishments of the above two

lemmas:
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Observe that U, (w# 7w m;) given by (5.25) is minimized when 7° is symmetric, i.e.,
when 7t = 7°~. In that case, we obtain
H 4+ 7, 7 +m; Gg
o = [TL ST Ty
This respresents the maximum precision enhancement of our convergence function, see
[58]. The convergence factor is 1/2, which is the same as provided by the well-known
fault-tolerant midpoint convergence function [30].

A violation of the condition m# + 7; < 27° in item (3) of Lemma 5.7 would indicate
too frequent resynchronizations, i.e., a too large €,,,x compared to the maximum possible
clock drift Psp,,,, during a round. In this case, no precision enhancement might take
place, i.e., only |ref(S,) — ref(S,)| < 7° can be guaranteed here.

The fact that S, is w’-correct easily provides the “accuracy” « of our convergence
function in the terminology of [58], which gives the maximum amount the resulting clock
value can differ from any non-faulty input clock value. More specifically, since any non-
faulty input interval is " -correct, it follows that |o| < max{m7+ 7o~ 7~ 47xot} < rf.
Hence, OP(-) provides a considerably better “accuracy” than most other convergence
functions.

Although both accuracy preservation and intersection enhancement functions are mod-
ified in Lemma 5.8, it is nevertheless true that the corresponding results of Lemma 5.7
can be literally applied to Y. < oo as well. The reason is that (5.54) resp. (5.53)
can only be less or equal than (5.19) resp. (5.18), whereas the sums of (5.54) and (5.58)
resp. (5.53) and (5.57) are the same. Thus, accumulated over multiple rounds, the results
obtained via Lemma 5.7 majorize the ones achieved via Lemma 5.8.

We did not carry over the improved bounds of item (1) and (4) from Lemma 5.7 for
Aﬁpi < 0 to Lemma 5.8, since the latter is only encountered when node p’s clock has
bad accuracy (large drift p,), communication is good (low uncertainty €,,), and there are
many (at least 2d 4 3e) high-accuracy clocks in the system. It does not seem worth while

to squeeze out our formulae for this rarely encountered situation.

5.3.2 Clock State Algorithm

In this section, we will plug in the results obtained for the optimal precision convergence
function O7P(-) into the generic expressions for precision, accuracy, etc. of Theorem 3.1.
This yields a complete characterization of the worst case performance of the optimal
precision algorithm OP-STATE for clock state synchronization by means of instantaneous

correction, see Definition 3.7. Most results carry over to continuous amortization via
Theorem 3.2.
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Theorem 5.1 (Precision of OP-STATE) For the system model complying to Assump-

tions 8.1-8.4 and to the fault model in Assumption 5.1, the optimal precision clock state

algorithm OP-STATE for instantaneous clock correction, with transmission delay com-

pensation
A > 2epax + et + (H 4 3)Uumax + 2G + Gs + Omax(1 + Prax)
+ (2PS + A + Q + 2E’max - 2E’min — 25min)pmax
+ O(Psplax + GPmax + EmaxPmax); (5.62)
and
7ro = T + Umax + PSpmaX + O(Pspmax + G + 5max)pmax (563)
ﬂ-H = Ty + 2umax + @ + €max + (PS + Emax - Emin - (5Inin)pmax
+ O(Pspmax + G + Emax) Prmax (5.64)

Tmax > 70— o = PSpmax + Umax + O(Psp?nax + G,Omax + 5max,0max) (565)

used in O’P;’Lrjff ’T"‘a"(-) requires a computation time of O(nlogn) to state synchronize
the (non-faulty) clocks of n nodes to the initial worst case precision (i.e., the precision at

the beginning of each round for the last non-faulty clock)

To,max — 7o + Umax + G+ (Emax - Emin)pmax

+ O(Psplax + GPmax + EmaxPmax) (5.66)
where wy = [—m, , 7| is given by
_ 1 4 _
o= 26max + (H 4 2)Umax + 2G + Gs + Uy — Uppax

-+ (PS -+ A -+ Q + A + 2Ema,x - Emin - 26min)pmax + PS(pr_;ax - p;nax))

+ O(Psphax + G Pmax + EmaxPmax) (5.67)

1
71'()+ - 5 <2Emax + (H + 2)umax +2G + GS - uIJIrlaX + U'I;lax

+ (PS + A -+ Q + A + 2Emax - Emin - 25min)pma.x - PS(pr_;ax - pr?wx))

+ O(Psphas + GPmax + EmaxPmax) (5.68)
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so that

o = 26max + (H + 2)Umax + 2G + G5
+ (PS + A + Q + A + 2Emax - Emin - 25min)pma.x
+ O(Ps prax + GPmax + EmaxPmax)- (5.69)

Moreover, OP-STATE guarantees an overall worst case precision Tmax Satisfying

Tmax = 26max + (H + 3)Umax + 3G + G5
+ (2Ps + A+ Q+ A+ 2F 0 — Fuin — 20min) Pmax
e s + (B = Bin) e G & (B = Bonin) |
+ O(Psprax + GPmax + EmaxPmax); (5.70)

and any two non-faulty nodes p, q resynchronize within real-time tﬁ — th satisfying
E,— E,—7mp <t} -t} <E,— E;+mp
for
Tp = o + Umax + Pspmax + O(Psplax + G Pmax + EmaxPmax); (5.71)
where clock state adjustments
Tq € 7N [~ Timax;, Tmax] (5.72)
are applied to the local clock of any non-faulty node q.

Proof. The computational complexity of the optimal precision algorithm is primarily
determined by the complexity of computing the convergence function OP(-), which is
O(nlogn) by Lemma 5.7.

By item (2) of Theorem 3.1, 7 is the solution of the equation || || = ¥, (7

J 7.‘.0’ ﬂ-l)
involving OP(-)’s precision enhancement function ¥, () given by (5.25). Precision en-
hancement is optimal if % given by (5.63) is a symmetric interval, recall the remarks

following Lemma 5.8. Hence, writing w¥ = my + w; and w° = m + 7, with

T = 2umax + @ + €Emax + (PS + Emax - Emin - 5min)pmax
+ O(PSpmax + G + 5max)pmax7 (573)
Ty = Umax + PsPrax + O(Pspmax + G + Emax) Prmax (5.74)
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according to (3.82) and (3.81), we exploit our freedom of choosing an arbitrary reference

point of 7y to enforce this symmetry: Setting

T 7r1+7r;“—7r2) FTI" T+ Ty — Ty
_ (] T T[] Mt T T 5.75
mo= (51,5 B (515
such that my = 2[77/2] ¢4 + m provides a symmetric interval
7fo:7fo+772: —(’Vﬂ-‘ +7T1+7T2>”'ﬂ-‘ +7T1+7T2 (576)
2 | g 2 2 |ag 2

and 7 = 1y + m = 2[n;/2]gs + 2m. Evaluating the precision preservation function
U, (-) given by (5.25) yields

H
\I/,,r(ﬂ'H,ﬂ'o,ﬂ'I) = ’VWTW-‘ :’V[WI/2—|GS+7T1+7TI/2-‘
GS GS
= 2[71/2_]G5+7T1:7TO (577)

as required; recall that m; and all other precision values are integer multiples of G'g since
its constituting parameters have this property, see Definition 3.7 of our algorithm. The
condition 27° > 7 + 77 required for validity of the used expression for W, (-) is easily
verified, since 7° > my > (7 + 77)/2. Plugging in 7, m; from (5.73), 73, 7, from
(5.74), and [77/2]gs < 71/2 + Gg/2 with 7 = |my| from (3.83) into (5.75) confirms the
values of 7y, mg given in (5.68) and (5.67). An addition provides the value of 7 stated

in (5.69), and 7y max given by (5.66) is only a restatement of (3.78).

Next, the value 7p given in (5.71) is obtained by plugging in (conservative) maximum
bounds for u,,u, and p,, p, in (3.86). Inserting ®,(7°) = 7 according to item (2) of
Lemma 5.7 and the definition (5.63) of 7w into (3.85) provides

™ = f() + ﬂmam + (PS + O(PSpmax + G + Emax))ﬁmax
+ o + Umax + <PS + O(PS,Dmax + G + 5max)>pmax’
so that actually

a7t =77 = 2epax + (H + 3)tumax + 2G + G
+ (2PS + A + Q + A + 2Emax - Emin - 25min),0max
+ O(Psp?nax + G:Omax + <C:maxpmaux) (578)

Now it is possible to evaluate (3.84) in Theorem 3.1, which confirms the value of Ty
stated in (5.70).
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To show the maximum clock correction bound (5.72), we do not use the bounds from
(3.87) of the generic Theorem 3.1, since they would be overly conservative. This is due
to the fact that nothing but consistency w.r.t. 7® of the “old” #-precision interval I Z
and the newly computed @®,(-)-precise S, was assumed in the proof of Theorem 3.1.
However, in case of OP(-), we have the additional input that ref(S,) € S, C I Z, recall
(5.15) in Definition 5.5. This obviously implies that the maximum clock adjustment
satisfies T, € 7°, unless Y.,y sets an even stricter limit; this is conveniently expressed

by the intersection 7w° N [—Y nax, Tmax] as asserted.

It remains to justify the value of the transmission delay compensation A. Plugging
in the expressions for myp and 7= = O(emax + G + Pspmax) according to (5.78) into the
definition of A in (3.21), we easily obtain

1
A 2 m <2Ema.x + (H + 3)umax +2G + GS + 6max + gr_;ax

+(2PS + A + Q -+ A + 2Ema,x - 2E11'nin - 25min)pmax

+O(P5p?nax + G,Omax + 5maxpmax)>

Z + ,OmaxA
1+ pfax

Solving this for A yields

Z
A > PR Z(l + pr;lax + O((pmax)Q))
1- Pmax
= 2f':max + 61—;ax + (H + 3)umax +2G + GS + 5max

+ (2PS + A + Q + 2Emax - 2Eﬁmin - 26min)pmax
+ OmaxPmax T O(PSpIQHaX + G Pmax + EmaxPmax);

which confirms the value of A given in (5.62). This eventually completes the proof of
Theorem 5.1. O

The precision results above are valid for any setting of the parameters defined in the
system model. That is, our analysis provides the worst case behavior of the algorithm
under the worst setting of parameters. Note that one could derive improved worst case
results for more relaxed parameterizations. Unfortunately, our algorithm does not benefit
much from such situations unless refined worst case bounds are compiled into it — after
all, OP(-) depends on 7° and wf.

With respect to precision, our OP-STATE algorithm achieves optimal performance like

the optimal algorithm of [10]. More specifically, it has the same computational complexity
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O(nlogn) and the same worst case precision T,y &~ 4¢ 4+ 4Psp (in a comparable setting);
our respective terminology is related by myax = 0, €max = 2A, Ps = Tmax, and ppax = 2p.

Both algorithms require initially synchronized clocks.

It is interesting to compare the fundamentals of our approaches, which are —despite
of their similarity— based on totally different paradigms. In essence, optimality of the ex-
tended fault-tolerant midpoint algorithm of [10] rests upon enforcing the so-called nested
adjustment condition: Any newly resynchronized clock is guaranteed to lie between two
non-faulty “old” clocks in the system. Whereas this condition is automatically maintained
when the remote clock readings are reasonably apart, it must be secured if all of them
are close to each other. This is accomplished by modifying the well-known fault-tolerant
midpoint (FTM) convergence function [30] to incorporate the “A-extended” clock of the
own node as well. This way, if all remote clock readings surviving FTM are almost the
same, it is the own “old” clock that sustains the nested adjustment condition.

By contrast, our optimal precision algorithm guarantees optimality by ensuring that a
newly computed clock value is not farther away from internal global time than the worst of
the non-faulty old clocks. This is accomplished by improving the relatively large precision
interval computed from remote accuracy intervals by the smaller one —not spoiled from
the remote clock reading error e— from the own clock, simply by intersecting them. We
think that this explains optimality in a more natural way than the somewhat artificial A-
extension of [10] does, although our approaches are clearly related. Moreover, our notion
of internal global time facilitates a considerably simpler proof (apart from analyzing

additional accuracy quantities).

Theorem 5.2 (Accuracy of OP-STATE) For the system model complying to Assump-
tions 3.1-8.4 and to the fault model in Assumption 5.1, the accuracies o *+1, qf(E+1)
of a non-faulty node q’s accuracy interval A((]k“)(tg’“*l)) = [T+ £ k] at the begin-
ning of round k+1, k > 0, as computed by the the optimal precision clock state algorithm
OP-STATE for instantaneous clock correction, and with transmission delay compensation
A given by (5.62), 7° given by (5.63), " given by (5.64), and Y yax according to (5.65),

are integer multiples of G's that obey the bounds a((]kﬂ) C ,ngH) with

ﬂ;)(k'f'l) - ﬁ;a(k) + PS,O; + u;

+ min Pqu + uq + I(;’(k) + min{o, D;’(k)} ) Tmax
2 G 2 G
S S

+ O(Psphax + GPmax + EmaxPmax) (5.79)
ﬁq_y(k) + PSP; + ’U,(; + Tmax + O(ng?nax + G,Omax + 5maxpmax)7 (580)

B0 = o, (5.81)

IN
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(K ; J(k
_i_min{"PS,Oq-l-uq—i-Iq*( )-‘ N "mln{O,Dq*( )}-‘ ,Tmax}
2 G 2 G
+ O(Psp?nax + Gpmax + 5maxpma.x) (582)
< B 4 Pspl + uf 4+ Tiax + O(Pspliay + G Pmax + EmaxPmax), (5.83)
(0 _ 0
B0 = ar®, (5.84)

where ag C o with my given by (5.69) denotes the initial interval of accuracies,

Dq_’(k) — /6(?’_’(1‘:) _ (ﬁq—,(k) + Pqu— + uq—) + 7TH+ . 7r0+ (585)
DH®) = pgE) (ﬁ;,(k) + Pspi + u;) L pli= _ po- (5.86)
with
ﬂw,f,(k) — max {{ﬂ,(k)+u+u+G+GA+€+(PS—A—E)/)
q p:n—2d—3e p P e P v

B+ A = G)og + (A + Q) max{py 7y 0}
PF4q

u{ﬂq"(’“) +ug + Psp;}}
+ O(Psp2ax + GPmax + EmaxPmax) (5.87)

got® = pmm%x?)e{ {ﬁ;’(k) tu, tug +Gatey+ (Ps—A=E)py

By +A = Gpa)o + (A + Q) max{} — 5,0}
PF4q

u{ﬂj*’“) +uf + Psp;j}}

+ O(Psp?nax + G/Omax + Emaxpmax) (588)

for max,.,, B denoting the m-th largest element of the set B= {b, : 1 < p <n}, and

Iq”(k“) _ {min{m + Dq—,(k)’ I;S/Oq + ug + ]q—,(k)}" ~ {min{o,qu—,(k)}J
Gs s
—min{(] Y imax — "Pqu-l-uq—i—lqik)" }
s Tmax 5 .
+O(Psphiax + GPmax + EmaxPmax) (5.89)

170 = m, (5.90)
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e = {mi“{”f + Dy ’(k)J;sﬂq +ug + 1] "’“’}w ~ {min{o,QDi ’(’“)}J
Gs s
—min{(] r {Pqu-i-uq-l—_l;“(k)J }
, Trmax ; 5
+O(Pspia + G Pmax + EmaxPmax) (5.91)
I7® = mo 5.92)

with

M = Emax T+ Humax +G+ (A + Q4+ A + Emax - 5min)pmax
+ O(PSIOIQHaX + Gpmax + Ernax,OmaX)- (5-93)

The traditional accuracy R*+1) = Tq(k“) —tf’(k) at the beginning of round k+1, k > 0,

satisfies

REFD e [=m = (k + 1) (Pspihas + thae)s Mo + (5 + 1) (PsPrmax + Uimax) |
+ (k + 1)O(Pspmax + G + Emax) Prmax (5.94)

1

for my resp. my given by (5.67) resp. (5.68). The inverse rate ;' of the synchronized

clock at node q evaluates to

—1 1+ Umax
Tq € Pmax + PS

+ O(Pspmax + G + Emax) Pmax |- (5.95)

Proof. We showed in the proof of Theorem 5.1 that 7° given by (5.63) is a symmetric
interval, hence 7°"/7° = 7°" /m° = 1/2. According to item (1) of Theorem 3.1, the
bounds G, **1 resp. B**1) are just OP(-)’s accuracy preservation functions @ (-)
resp. 1 (-) of Lemma 5.8 applied to the accuracy bounds ,8:;”(’”1) = ,31(,’“) +¢% valid at the
end of round k.

To explain expressions (5.79) resp. (5.82), we first note that our definitions of D,~*) in
(5.85) resp. D;’(k) in (5.86) follow immediately from the ones of Ag, in (5.22) resp. ABS
in (5.23). Herein, we utilized the abbreviations 32 *) resp. f2-"*) based upon (3.71) and
plugged in ﬁq_’(’“)—i{g" resp. ﬁ;’<k>+§g’+ given by (3.72). In addition, denoting the outcome
of the conditional intersection enhancement functions at the previous resynchronization
instant by Iq_’(k) resp. I;’(k), we obtain 7% — L;’(’“) =7’ —m+ Iq_’(k) = Pspy — uq + Iq_’(k)
resp. 70— %) = Pgp,—u,+1® by (3.75) resp. (3.76) in conjunction with the definition
(5.63) of 7°; note that the remainder term can be safely omitted here, since it is already
present when the above equations are actually employed. More specifically, plugging the
above results into (5.18) resp. (5.19) immediately leads to (5.79) resp. (5.82). Similarly,
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the expressions (5.89) for I+ resp. (5.91) for I;>(**1) are confirmed by employing
those devices in (5.57) resp. (5.58); the expression (5.93) for 7; follows immediately from
(3.83).

The initial values (5.81) and (5.84) for 8) are a simple consequence of the initial
synchronization assumption in our generic algorithm’s Definition 3.7. In addition, the
initial values (5.90) of I,%) and (5.92) of I,>(%) are implied by (3.77) together with the
fact that the initial synchronization assumption forces us to assume a zero-length common

intersection Vs : ¢;*(%) = (0 = 0 at the beginning of round 0.

Finally, to prove the statement for traditional accuracy R*+1  we first bring OP(-)’s

precision preservation function ®,(7°) = #° into (3.88) to obtain

THED — B0 e 7y + (k + 1)(7° — 7o);
inserting the (swapped) expression for w° — my from (5.63) easily yields (5.94). Plugging
7° — 1 into (3.89) also justifies expression (5.95) for the inverse rate of the synchronized

clock, completing the proof of Theorem 5.2. O

It is important to note that accuracy intervals can grow faster than traditional accu-

racy, which reveals some sub-optimality of the optimal precision algorithm: According

to (5.94), traditional accuracy increases resp. decreases at most by Pspr .. + Upax

Psprax + ug,

max max

resp.
during each round. However, (5.80) and (5.83) reveal that both positive
and negative accuracy exceed this growth by Yiax = Pspmax +Umax (in case of the optimal
choice of Y14y ). Hence, both o™ and o~ can grow by more than 7o+ (k+1) (Pspmax+Umax),
although this cannot happen simultaneously for both negative and positive accuracy. In-
tuitively, this is due to the fact that the reference point and any edge could move into
opposite directions at resynchronization, because faulty intervals might affect the accu-
racy and precision algorithm differently. Remember that it can even happen that the
reference point is placed outside the originally computed accuracy interval.

In general, it is not apparent whether there is much laxness in accuracy when using the
much simpler bounds (5.80) resp. (5.83) instead of the exhaustive ones (5.79) resp. (5.82),
since parameter settings for either case are conceivable.

As the optimal algorithm of [10] and the one of [66], our OP-STATE algorithm pro-
vides optimal worst case traditional accuracy and drift of the synchronized clocks. More
specifically, the latter is at most the maximum rate deviation ppa., of the (worst) physical
clock, where it has been proved in [66] that the worst case global rate cannot be better

than the rate of the underlying physical clocks.
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5.3.3 Clock Rate Algorithm

In this section, we will plug in the results obtained for the optimal precision convergence
function OP(-) into the generic expressions for consonance of Theorem 4.1 and for drift of
Theorem 4.2. This yields a complete characterization of the worst case performance of the

optimal precision algorithm OP-RATE for clock rate synchronization, see Definition 4.8.

Since the analysis of OP(-) was done in the context of clock state synchronization, we
need to adapt the fault model in Assumption 5.1 in the following way: Let a single rate
interval R that is faulty w.r.t. v and/or ¢ be called v/@-symmetrically faulty if 1/v <
left(R) and /v < left(ref(R) +-y) or either 1/v > right(R) and ¢/v > right(ref(R) + ),
and v/@-asymmetrically faulty otherwise; a set R of faulty rate intervals is identically
v/p-symmetrically faulty if 1/v is either to the left or to the right for all members of R

identically. For a better understanding reconsider Definition 4.11.

Theorem 5.3 (Consonance of OP-RATE) For the system model complying to As-
sumptions 4.1-4.4 and to the fault model in Assumption 5.1 (adapted to the rate frame-
work), the optimal precision clock rate algorithm OP-RATE with

2€max
° = + | Omax (3P +4(F + FE B
¥ lo (0 B3Pp+4(F+ FE)+3 )+PR—B—emax—4(F+E)pmaX)]
+ [0 £ O(Gmax + Omax(Tmax + BPmax))] (5.96)
= |o= (3P + 6(F + E) + 4B) + Fmax
= Tmax \20R Pr— B — emax — A(F + E) pmax
+ [0 £ O(Grmax + TmaxTmax)], (5.97)
Gmax Z 2O-ma‘xPR + O(Gmax + Umaxﬂmax) (598)

used in O’Pn’yjﬂg ,®max(_) requires a computation time of O(nlogn) to rate synchronize the
(non-faulty) clocks of n nodes to the initial worst case consonance (i.e., the consonance
at the beginning of each round for the last non-faulty clock)

4d€max
Pr — B — €max — 4(F + E) pmax
+ O(Gmax + Omax(Tmax + BPmax))] (5.99)

Yo,max = Omax (4Pr+8(F + E)+6B)+

2
with error term Gmax = (Pmax + OmaxPp + 2Fmet{EtEmes )" Moreover, OP-RATE

guarantees an overall worst case consonance Ymax Salisfying

4d€max
PR - B - €max — 4(F + E)pmax
+ O(Gmax + O-max(ﬂ-max + Bpmax))] (5100)

Ymax = Omax (6Pr+8(F + E)+6B)+
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and the ratio of successive coupling factors for the local clock of any non-faulty node lies

within

emax = llimln{“z H;®max}]

+ [0 £ O(Gax + Omax(Tmax + Bpmax))]- (5.101)

Proof. The computational complexity of the optimal precision algorithm is primarily
determined by the complexity of computing the convergence function OP(-), which is
O(nlogn) by Lemma 5.7.

According to Theorem 4.1, the consonance interval «4* is the solution of the equa-
tion ||v*|| = ¥4 (Y- . Y™ Ym; Y1 - - - ) involving the consonance enhancement function
U, (-). It equals OP(-)’s precision enhancement function ¥, (-) from (5.25) up to factor
(1 + O(pmax)), which is certified by item (3) from Lemma 4.12 and its apparent multi-
plicativity, hence by setting Gg = 0 here

o (0} 707 o o— ,YO+ o
U () = a4 =00 T =0 ) (L Ol

if vy +vr < 2+°. Again, consonance enhancement is optimal if 4°~ = 7°*, leading to

_ YH I

Uy (Y% 1) = =5 (14 Opmax))- (5.102)

From item (1) of Lemma 4.16 we know that 4° = 4* + [0 & 0max Pr] + [0 £ O(Gmax +
OmaxTmax)], Which enforces 4* to be symmetric as well, i.e., v* = [0 & v*%]. Therefore,

combining (5.102) and (4.91) provides the equation

47*’i = (’YH + 7I)(1 + O(pmax)):

where vy = ||vy|| from item (2) and v; = ||v;|| from item (3) of Theorem 4.1. Solving
this equation yields
© = o=+ (2 (P +2(F+E)+SB)+ 26ma
= Omax 5
v ax \ TR 2 Pr— B — emax — 4(F + E) e
+ [0 &= O(Gmax + Tmax(Tmax + Bpmax))] (5.103)

with error term G = (||Rmax|| + Omax Pr + 2 +€‘“a"+1(3§ +E)”‘“""‘)2. Now we are ready
to calculate 4° from item (1) of Lemma 4.16, and 4, from item (2) of Theorem 4.1,
which justifies (5.96) and (5.97), respectively. This confirms also the needed condition
Yu + v < 27° for the application of ¥, (-) above. As stated in Lemma 5.8, the choice of
parameter Op,,, for OP(-) has to be at least ||y° — «*||, which readily checks (5.98).
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The calculated v* in (5.103) can be turned to the worst case consonance 7y yax at the
beginning t*) of round k£ > 0 by evaluating (4.48) from Lemma 4.7. This ends up in
(5.99) by noting that 6||v*|| = O(||Rmax||(0maxPr + 61“;?)) and O(||Rmax!||) = O(pPmax)-

Instead of applying Lemma 4.17 to bound the rate adjustments SIS'““) / SI(,k) € Onmax
for a non-faulty node p when commencing round £+ 1, £ > 0, we obain a better result by
exploiting OP(-)’s construction. Going back to Definition 5.5 we simple have 7, = 1 and
rn € 14 4° with 4° from (5.96). Together with O, from (5.98) we can simply argue

that the computed reference point ref(R,) lies in the intersection (1 + 4°) N [1 £ Omax],
which justifies (5.101).

By virtue of item (2) from Lemma 4.12, the consonance preservation function ®.(-)
equals the (obviously multiplicative) precision preservation function ®,(-) of OP(-) from
(5.24) up to factor (1+ O(pmax)), hence (%) = ¥°(1 + O(pmax)). Now we can calculate

the overall worst case consonance interval ,,,. with the help of (4.98) as

Ymax = (¥ +[0 % 0maxPr]) U’ (1 4+ O(pmax))
+ [0 + O(Gmax + O-ma,xﬂ—max)]

2€max
= |0 (Ouax (3Pr + 4(F + E) + 3B
l (0’ ( Rt ( + )+ )+PR_B—6maX—4(F+E)pmaX>]

+ 10+ O(Grmas + Tmax(Tmax + Bpmax))] (5.104)

and applying (4.48) again from Lemma 4.7 gives Y.y as stated in (5.100). This completes
the proof about the consonance properties of algorithm OP-RATE. O

To assess the above results we calculate the optimal rate resynchronization period
P}, since each consonance expression is composed by a linear and hyperbolic dependence
on Pr. Remember, this property was already announced in Chapter 4 on relative rate

measurement. In particular, solving this problem for 4., from (5.100), we get

2€max

Pp = + B + €max + 4(F 4+ E) prmax (5.105)

30 max

and the associated overall consonance turns out to be

Vinax = V96 Omax€max + O (Omax(F' + E)) . (5.106)

Considering our distributed system from Chapter 2 with transmission delay uncertainty
émax ~ 1078 and oscillator stability omax & 107°, we end up with Pj; ~ 26 s and 7}, =
3-1077 s/s. Note again, that we are dealing with worst case results here, indeed making

sense for our usage.
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Theorem 5.4 (Drift of OP-RATE) For the system model complying to Assumptions
4.1-4.4 and to the fault model in Assumption 5.1 (adapted to the rate framework), the rate
interval RI(,k) of a non-faulty node p at the beginning of round k + 1, k > 0, as computed
by the optimal precision clock rate algorithm OP-RATE with 4° given by (5.96), vy given
by (5.97), and Omax chosen according to (5.98), obeys the bounds align(RZ(,k)) C V;,k) with

V(k) — Vékil) + [O + (JpPR + @max)]

p
+ [0+ O(Gmax + OmaxTmax)] (5.107)
VI = oo/ (14 0p), 12/ (1= py)] (5.108)
Brteémax+(F+E) pmax | 2
and error term Gmax = (pmax + Omax Pr + 1(’R )p ) '

Proof. According to Theorem 4.2, the lengths of the bounding rate intervals Vl(,k) are
just the drift preservation functions ®(-) applied to the bounding remote rate intervals
ngg that are valid at the end of round k. The drift preservation functions ®3(-) equal
the accuracy preservation functions ®Z(-) of OP(-) up to factor (1+O(pmax)) as certified

by item (4) of Lemma 4.12, so we can begin with

_ k °
VI = (8, (V8 VL B b 77 0),0

(I)I ({V;E)lfl)a s ,ng%}, {’Yp,la ce. a’Yp,n}: Yu 'Yoa 0)] (1 + O(pmax))
+ [0 =+ O(Gmax + O-maxﬂ-max)] (5109)

for £ > 1. From Lemma 5.8 we can extract that

[(I); ({Vz()lfl)’ tt ’Vz()l,c'r)z}a Yus 70: O)a ’
& ({Vids- VI 71,7 0)] C VI 410 £ Omand, (5.110)

P

because O,y from (5.98) provides a valid bound for the involved minimum expression in
(5.53)/(5.54). Also the necessary multiplicativity of ®=(-) can be seen right away. Setting
ng; = Vékil) + [0 & 0, Pg] gathered from the clock rate algorithm’s Definition 4.8, we
can combine (5.109) and (5.110) into the recursive statement (5.107).

For £ = 0 we assumed a neutral coupling factor and set VI(,O) according to (5.108)

justified by Lemma 4.1. O

Making recursion (5.107) explicit, we simply get V¥ = VO + [0+ k(0 Pr + Omax)] +
[0 £ kO(Gmax + OmaxTmax)]- As already mentioned at the end of Chapter 4, these bounds
are rather weak and need to be strengthened by using advanced stability assumptions

and/or improved drift preservation functions.
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5.4 Summary and Future Research

In this chapter we introduced and rigorously analyzed a novel convergence function-based
optimal precision clock state synchronization algorithm OP-STATE that provides on-line
bounds of the accuracy w.r.t. external time. It utilizes the optimal precision convergence
function OP(-), which is based on Marzullo’s function M(-). Relying on the generic
interval-based framework from Chapter 3 our comprehensive analysis reveals that OP-
STATE has a similar worst case performance as the optimal algorithm of [10]: Maximum
precision (4e 4+ 4Psp), maximum clock correction (2Psp), and global rate (p) match their
provably necessary lower bounds, cf. [9]. In terms of accuracy intervals, OP-STATE’s
both positive and negative worst case accuracy can be as large as 3Pgp.

Another important fact revealed by our analysis is that clock granularities (G) and,
in particular, rate adjustment uncertainties (usually v = G) of discrete rate-adjustment
techniques have a considerable impact (as much as 11u + 3G) upon achievable worst case
precision and accuracy. This makes clear that any attempt to approach 1 us worst case

precision —as targeted by our project SynUTC— must utilize clocks with G, u < 1us.

Furthermore, we showed that the optimal precision convergence function OP(-),
which was originally tailored to clock state synchronization, can be reused in the rate
framework as well, resulting in algorithm OP-RATE. It is an interesting alternative to
high-stability quartz oscillators when targeting clock synchronization with very high pre-
cision, where decreasing any clock’s drift rate below 10~ s/s is mandatory. Our analysis
indicated that OP-RATE can achieve a consonance around 10y/o¢, and the drifts grow

roughly 30 Pg per round when no external synchronization takes place.

An important part of our future research is hence devoted to the analysis of alter-
native algorithms, since OP-STATE’s suboptimality w.r.t. accuracy intervals suggests
that there might be room for improvement. In particular, a certain generalization of
the fault-tolerant midpoint algorithm of [30] seems to be promising. Unlike OP-STATE,
this algorithm does not deal with precision and accuracy orthogonally but rather in an
integrated way, which hopefully leads to considerably improved accuracy bounds.

Finally, we are running simulations of our algorithms with the help of the elaborated
C++ program [74]. It uses a discrete-event approach to simulate the environment of such
algorithms, and allows the user to control this environment, thus exposing the clock syn-
chronization algorithm to certain conditions. By carrying out well-devised experiments,
we expect to gain further insights of the algorithm’s (average case) behavior and clues for

improvements.
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Chapter 6
COMPLETE SYNCHRONIZATION ALGORITHM

6.1 Introduction

Synchronizing clocks in a distributed system turns out to be a challenging problem since
many subjects are involved, like the physics of clocks, networking technologies, software
engineering or theoretical concepts. Consequently, it is not surprising that our approach
for a 1 us clock synchronization running on COTS components embraces several head-
ings: hardware support in Chapter 2, interval-based state synchronization in Chapter 3,
interval-based rate synchronization in Chapter 4, and interval-based convergence func-
tions in Chapter 5. It is the purpose of this chapter to synthesize all pieces to a complete
synchronization algorithm, supplement it with on-line measurements, and provide a com-

prehensive analysis.

First of all, let us take a look at Figure 6.1 to get an overview of the objects for clock
synchronization residing at a single node. The hardware clock gets its adjustment data
from the clock synchronization software (represented as rounded boxes) and in its turn
needs to generate timestamps and to invoke duties. Our well designed UTCSU-ASIC
accomplishes these functions to the full extent, see Section 2.4. The network interface
is responsible to send/receive timestamped packets to/from other nodes including the
supply of external time information from GPS receivers. The necessary hardware to

support those features is lumped together in our NTI M-Module, see Section 2.3.

Turning our attention to the software, we can indicate three major algorithms: the
clock state algorithm (CSA), the clock rate algorithm (CRA) and the transmission delay
measurement algorithm (TDA). Chapter 3 and 4 cover the first two algorithms, but left
open how they affect each other. This will be the focus of Section 6.3 by reviewing both
frameworks and putting together the relevant algorithmic parts.

After all, interval-based clock state and rate algorithms have the inevitable shortcom-

ing that they depend explicitly on certain system parameters. Most importantly, the



217

<_>

TDA

receive send adjust duty

Network | stamp
Interface

Clock

Figure 6.1: Querview of Synchronization Algorithms

transmission delay characteristics when a packet is sent from one node to another needs
to be known. The characteristic parameters could be provided statically to the algorithm,
but an on-line measurement is in fact the most appealing alternative. In Section 6.2 we
devise a simple algorithm to measure these parameters during operation and quantify its

efficiency. Extensions to our approach are listed in the final Section 6.4.

6.2 Transmission Delay Measurement

In Assumption 3.4 and 4.4, we characterized the transmission delay 4, of a packet when

sent from node p to ¢ by the deterministic part d,, and the uncertainty €,, = [—E;q, 6;;1
such that o, € [6pq — €,,0pg + €] These parameters are not only important for the

analysis, but are explicitly required by our clock state resp. clock rate algorithms from
Definition 3.7 resp. 4.8 as well. As a consequence, the correctness and performance of our
synchronization algorithms —especially the CSA— strongly depend on a good setting of
these parameters: we say that [6] & €] ] is better than [0]] & €l!] if both contain J],
and [0, + €] ] C [0]] + e]l] holds. An underestimation of these values can lead to faulty
intervals among the input of a particular convergence function; also the parametrization
of the latter might be faulty.

Instead of working with a constant parameter setting, we propose an on-line measure-
ment of them, since they are usually not at hand and may even change during operation.
If fact, the transmission delay d,, can be understood as a stochastic quantity obeying
some continuous distribution. This conception has been used for other approaches as

well, for instance the probabilistic clock synchronization [4] or the well-known NTP [38].
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Our transmission delay measurement algorithm (TDA) is based on a conventional

round-trip protocol to ascertain four timestamps:

1. Node p initiates a broadcast of timestamped packets (p, T},)

2. Node g receives (p,T,) and timestamps it by T,

3. Node g initiates a send to node p of timestamped packet (g, T,, Ty, T;*)
4. Node p receives (g, T,, T, T,*) and timestamps it by 7,

If the corresponding real-times are 1,, t,, t, and ¢, then we are interested to find out
0py = tq — tp and 6, = t5 —t=. Since each node hosts the same hardware, accesses
the same (broadcast) channel and the load is supposed to be balanced, we make the
assumption that d,, = d,, = d,,. Furthermore, duration estimations can only be given
locally, i.e., At, = ¢ —1t, and At, = 17 — 1,4, hence in absence of adjustments during

round-trip measurement, node p should be able to estimate
55— At, — At,
pq 2 .

By applying Lemma 3.8 on the above equation and using the uniform bounds pyax, Umax;

and G, we easily obtain that ¢, € [D,., D/ |, where

(T7 -T,) - (I; - T,)
— + _ y4 q
[qu’qu - s 9 !

1
+ 5[_U’maxa umax] + (1 + pmax)[—G, G],

[1 + pmaX]

so the uncertainty to measure o, is roughly given by €max = 20maxOmax + Umax +2G unless
the response of peer node ¢ is delayed. Even in the ideal case of €,, = () we have to
cope with enay, thus we can argue that this method cannot measure €,, better than epay.
Plugging in reasonable numbers (dyax = 50 S, pmax = 1 PpM, Upax = 120 ns, G = 60 ns)
reveals that the granularities have a greater influence than the clock drifts. Therefore
the TDA can be safely executed when the clocks are not (rate) synchronized or when a
continuous amortization is going on.

So far we have only considered a single round-trip measurement, but several of them
are necessary to eventually obtain a proper interval [0,, & €,4]. More specifically, after
sufficient many round-trips, we get empirical distributions for D, and D;;]. The left tail
of D, resp. the right tail of D, determines d,, — €, resp. oy, + ¢, Taking the average
over all measurements (T,* — T + T, — T;)/2 leads to the desired reference point dp,.
For an efficient implementation of our round-trip protocol, it can be mingled with the

periodic FMEs and by exploiting broadcasting features.
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6.3 Interlocking Clock State and Rate Algorithm

Let us briefly review the principles of a clock state and rate synchronization algorithm.
Referring to Figure 4.6, at state resynchronization instants the CSA achieves a worst case
precision 7y, which is mainly determined by the message delivery uncertainties and clock
granularities, see Chapter 3. Between these resynchronization instants, the clocks might
drift apart by as much as 2pm.xPs when no rate synchronization takes place. Conse-
quently, the CRA aims to reduce this deviation by keeping the clock rates close together,
which is primarily hampered by clock stabilities, see Chapter 4. A crisp comparison
of these two algorithms is given in Table 6.1, recalling the most important parameters,

intervals and functions.

item Clock State Algorithm Clock Rate Algorithm
external synch. accuracy o drift §
internal synch. precision consonance vy
) accuracy A,, rate R,,
intervals ..
precision 7 consonance
resynch. period Ps (short) Pr (long)
. additive, multiplicative,
adjustments . .
Instantaneous or cont. amort. Instantaneous
o delivery €pax, granularity G, stability omax, delivery €max,
uncertainties . . ..
rate adj. Umax, drift ppax precision yay
accuracy preservation ®=(-) drift preservation @3 (-)
characteristic precision preservation ®,(-) consonance preservation ®.,(-)
funct. of CV£(+) | precision enhancement ¥,(-) | consonance enhancement ¥, ()
intersection enhancement W (-) —

Table 6.1: Comparing Clock State and Rate Algorithms

In the previous chapters the clock rate and state synchronization algorithms were
studied in isolation, however, when they are running at the same time there are mutual
dependencies between them. Informally, a CRA requires only a moderate state synchro-
nization: Considering internal clock synchronization, the CRA guarantees a certain worst
case Consonance ymay and the CSA a worst case precision mmax. Section 6.3.3 reveals that
Ymax depends only loosely on 7., Which allows us to have a separated analysis, putting
the CSA on top of the CRA. This is also true in terms of external clock synchronization,

because the clocks’ accuracies are not relevant for the CRA.
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On the other hand, a CSA can take advantage of a good rate synchronization, hence
we revisit thoroughly clock state synchronization in order to incorporate the merits of
clock rate synchronization. In the following, we proposes a refined deterioration of ac-
curacy /precision intervals, which is expedient to make improvements to a clock state

algorithm followed by a joint analysis.

6.3.1 Accuracy/Precision Interval Deterioration

In Chapter 4 we have shown that clock rate synchronization is able to achieve a certain
drift and consonance. Additionally, a maintained local rate interval R, and consonance
interval v, provides us with information about the current clock rate, which can be used
to replace the “fixed” inverse rate deviation bounds p, for clock state synchronization,
see Chapter 3. In this section we give two lemmas about the deterioration of accu-
racy/precision intervals in the presence of rate/consonance intervals gained from clock

rate synchronization.

Lemma 6.1 (Improved Deterioration of Accuracy Intervals) Given a clock C, at
node p steered by an CRA according to Definition 4.8. Let ty resp. t1 be arbitrary real-
times and Ty = Cy(to) resp. Ty = Cp(t1) the corresponding clock states, where ty < t; and
no resynchronization occurred in between. If accuracy interval A, = [Ty + o] is accurate

at to and local rate interval R, C Rumax is correct during [to, t1], then
Alp = AP + (Tl - TO)R? +tup + Ito?faoé + It1¢91GP (61)

is accurate at ty, with rate adjustment uncertainty w,, and granularity intervals Gp =
[0, G(1 + || Rmax|])] and G = [—G, 0] from Definition 3.5.

Proof. Let us begin with the accuracy intervals by recalling Section 3.3.1 on local interval
clocks. Obviously, if ¢, € A, holds then

t1 € Ap + (tl — t()), (62)

which means that A, + ({1 — ?o) is correct at ¢;. The real-time duration ¢; — ¢, cannot
be observed directly, but we are able to get a handle on it by considering the instan-
taneous clock rate v,(t) during [to,?1]. The latter is defined as the derivative of the

time-dependable function C),(t) of the clock state, hence we know that

t1

T=To = [ up(€)dg (6.3)

to
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in the absence of resynchronizations. Due to Definition 4.4 the correctness of the local

rate interval R, = [, 1,1, ] asserts that
1 1

< <
1+ 0) < vp(t) < 1—0,

for any t¢ € [to, t1]. Therefore (6.3) becomes to

tl—to tl_tO
<T  —-Ty < —
1+95 =71 0T 14

which delivers the desired bounds upon t; — %y as
(T, —To)(1=9,) <ty —to < (Th — To) (1 4 9). (6.4)
Plugging (6.4) into (6.2) yields

t1 € Ap+|Ti—Ty+ (L — T)[Y,,;]]
A, + (T = To)[9;, 1,9,
AP + (Tl - TO)RPﬂ

where we made appropriate use of the interval notation both from the state and rate
synchronization context. To wrap up the proof, we point out that the three remaining
terms of A; in (6.1) are just taken over from Definition 3.5 to account for uncertainties
stemming from rate adjustment and synchrony issues, where we bounded pf . by the

length of the largest correct local rate interval R,,,s, see Lemma 4.1. O

Essentially we have shown that the inverse rate deviation bound p; resp. p; from clock
state synchronization can be substituted by the inverse rate drift ¢, resp. 19; drawn from
an according correct local rate interval R, = [, 1,9;]. In case of consecutive local rate
intervals Réj) for 0 < j < k, where each one is correct during [t;1,t;] and T; = Cy(t;),
we have to carry out a deterioration with Ef:o(TjH — Tj)RI(,j).

Unfortunately, the correctness of a local rate interval could be violated during con-
tinuous amortization, see Section 3.5.3 and Definition 3.12. This has no impact on the
CRA itself because rate intervals remain correct at the end of each round, however,
applications may be in error. To account for the amortization rate deviation 1 during
an amortization phase, it is sufficient to extend the local rate interval R, with [0 & 9]
The justification is easy, since the clock rate v, gets multiplied by 1 —1) for amortization,
hence 1 € v,(1 —¢) (R, + [0 £ 9] + O(¢||R,|[)). Anyway, we do not further investigate

this issue and leave it as an extension.
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To adapt the deterioration of precision intervals let us briefly recap the definition
of internal global time 7(t) from Section 3.5.1. At the beginning t%*) of a particular
state round kg it is determined by the set é(kS) of associated precision intervals. Of
importance is that internal global time progresses as real-time does until the next round
ks + 1 commences, thus

7(t)
dt

Based on this setting, it is necessary to deteriorate precision intervals the same way as

=1 V) <t <yt (6.5)

accuracy intervals, which is convenient for the purpose of analysis, but does not reflect
the fact when the consonance between clocks is known as well.

The theory about clock rate synchronization introduced internal global rate ¢(t) to
capture the rate of the ensemble of clocks, see Section 4.5.1. The important property is

that it stays constant for a particular rate round kg, thus
o(t) = p*m) v iR < p < frtl) (6.6)

For the sake of an efficient implementation a rate round encloses m > 1 state rounds,
where m denotes the integer multiple between Pr and Ps, see Section 4.4.1. More formally,
we can say that %7 = ) < gt o ylbst2) o glhstmal) o ybstm) _ g mtl) gop
appropriate instances of round numbers. When clock state synchronization is improved
with clock rate synchronization, we need to modify internal global time from (6.5) in such
a way that it considers internal global rate from (6.6). The key idea is to advance 7(t)

piecewise with ¢(t) instead of the ideal rate 1, what leads to the following definition.

Definition 6.1 (Improved Internal Global Time) The starting values 7Ks) consti-
tuting internal global time 7(t) at their respective beginnings tSkS ) of state rounds ks > 0
are identical with them from Definition 3.9. A co-running CRA according to Definition
4.8 induces an internal global rate ©(t) as defined in Section 4.5.1. If any state round
ks > 0 is enclosed by a particular rate round kr = m(ks) then the improved internal

global time is defined by
k) (1) = r5) (#7°)) 4 pmB)) (¢ — 7)) (6.7)
for all t#9) <t < ¢FsHY

For illustration, a short passage of an improved internal global time 7(¢) is shown in
Figure 6.2, where we have chosen m = 2. The above refinement upon internal global time
may seem awkward at the first glance, but it allows us to solve elegantly the problem of

deteriorating precision intervals in the case of a known (small) consonance.
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Figure 6.2: Improved Internal Global Time

Lemma 6.2 (Improved Deterioration of Precision Intervals) Given a clock C, at
node p steered by an CRA according to Definition 4.8. Let ty resp. t1 be arbitrary real-
times and Ty = Cy(ty) resp. Ty = Cy(t1) the corresponding clock states, where ty < 1y
and no resynchronization occurred in between. If accuracy interval A, = [Ty £ o] is
mp-accurate w.r.t. internal global time 7(t) as given in Definition 6.1 at ty and local rate
interval R, C Rumax 5 ¥,-correct w.r.t. internal global rate p(t) during [to,t,], then A

gwen in (6.1) is 7, -accurate at ty, where
m, =y + (T — To)¥p + Up + Lig20,G + I, 20, G, (6.8)

with rate adjustment uncertainty w,, and granularity intervals G p = [0, G(1 + || Rmax])]
and G = [—G, 0] from Definition 3.5.
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Proof. Let us begin with the precision intervals by recalling Section 3.2.2. The given
m,-accurateness of A, at ¢y means that 7(tg) € [Ty & 7,]. Since there are no resynchro-

nizations until ¢;, we know from Definition 6.1 that
T(tl) € [TO + 7'l'p] =+ QO(kR) (tl - to) (69)

for a certain rate round kr. Next we need to find bounds on the last term of (6.9)
with the help of the available clock rate information. According to Definition 4.7, the
7,-correctness of R, during [t, ] from the CRA means that

wp(t)(1—7,) < " < (t)(1+ ;)
for any t € [to, t1]. Integrating the above inequality from ¢, to t; yields
(Ty = To) (1 —7;) < e*® (b — 1) < (Ty = To) (1 + ;) (6.10)

due to (6.3) and knowing that v, 7, and ¢(*#) are constant here. Plugging (6.10) into
(6.9) provides

T(t) € [Totm)+ [Tt —To £ (T — Ty, 7, ]
[Tl + Tp + (T1 — T())’Yp] s

where the reference point 77 happens to be the same as in (6.1), and the “deteriorated”
precision interval 7, + (11 — 1)7, proves the claimed one of (6.8) apart from the rate
adjustment uncertainty and granularity intervals. The usage of these intervals and the
notational switch (rate/state context) is the same as in the proof of Lemma 6.1, hence

A;, is indeed 7r)-accurate at ;. O

We would like to emphasize again that w.r.t. improved internal global time, a precision
interval can be deteriorated by the observable duration AT times the corresponding
consonance interval v, rather than the rate interval R, or even worse the inverse rate

deviation bounds p,.

6.3.2 Improved Clock State Algorithm

In this section we make use of the new concepts from above and rebuild the clock state
algorithm from Definition 3.7 insofar that it works together with the clock rate algorithm
from Definition 4.8. Before we focus on the interplay of these two algorithms, let us

reconsider the assumptions from both frameworks. For a graphical overview see again
Figure 2.2 and 6.1.



225

Assumption 6.1 (System Model) The distributed system consists of n > 2 nodes,
which communicate with each other by message passing over a suitable communication
network. Each node is equipped with a processor (with integer arithmetic only) that ex-
ecutes both the clock state and rate algorithm, an adjustable local interval clock, and a
network interface. For the particular system parameters consult Table 3.1. Referring to

the previously made assumptions, the complete system is characterized as follows:

(1) execution times n,: As in Assumption 3.1 and 4.3, but the execution times refer in

the sequel to a single computation of clock state and rate synchronization.

(2) transmission characteristics (5pq,e;,tq, Amasx, Wmax, Ga,b: As in Assumption 3.4 and

4.4, but with the relazed technical condition dminYmax C Emax (S€€ Lemma 6.3).
(8) local interval clocks with G, Gg,uflt,aq,pq: As in Assumption 3.2 and 3.3, where

clocks are driven by oscillators according to Assumption 4.1.

(4) abstract fault models Fg, Fr: As presented in Section 3.8.3 and 4.4.6 independent

from each other since they are attributed to different types of intervals.

Based on these joined assumptions, we need to tailor the parameters required for the
instance of the improved algorithm at node q. First of all, the improved computation delay
compensation FE, is responsible to guarantee the maximum execution time 7, of node g.

It has to satisfy

Mg + Ug
E,> —— 6.11
Tl ﬁrTlax, ( )
where Riyax = [Upnax 1, Uihay] 18 a stipulated maximal local rate interval such that R,(t) C

R, for any non-faulty node ¢ and any time ¢ > ¢, The ensuing uniform bounds Fpax
and F,;, are trivial. By the same token, the improved broadcast delay compensation A+ 2

has to be chosen by

Amax T Wmax + Unmax
1—-9: '

max

A+Q>

(6.12)

Together with the improved transmission delay compensation A, whose lower bound will
be given in Lemma 6.3, this ensures that resynchronization starts only after all broadcast
packets by non-faulty nodes have arrived during an FME. Finally, the state resynchro-
nization period Ps has to be longer than A + Q + A + Eax.

The initial synchronization conditions remain unchanged, so at (%) there are accu-
racy/precision intervals A,, 7 and 7, concerning the initial clock’s state (see Definition
3.7) as well as rate/consonance intervals R, and v(%) concerning the initial clock’s rate

(see Theorem 4.1 and 4.2). Again, they have to be achieved by some external means.
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Definition 6.2 (Improved Clock State Algorithm) Periodically, each node q in the

system performs the following operations:

(5)

(R)

(C)

(T)

Send: At ksPs calculate the reduced state round kg = kg mod m. If ks > 0 then
initiate broadcast of timestamped packets (T, og) else of (T, ag, Ry, Uy).

Reception and Preprocessing: Until ks Ps+ A+ Q4+ A timestamp the arriving pack-

ets (T, ap) or (Ty, oy, Ry, Up) from nodes p with T?. Then compute the accuracy

interval

A+ [0gp = (2G4 + £4p)]
A} = + (ksPs+A+Q+A+E,—TP)R,+u,+ G ifp#q
Ay + (ksPs+A+Q+ A+ E,-THR, otherwise

and store it in an ordered set A,. If ks = 0 then compute the quotient rate interval

T, - T+ U, N ((aq +0p) (T, — T + Up) N Egp )]

Qur = qu” - TP~ + U, 2 7 — T8~ + U,

for q # p, preserving T, =T, and TP~ ="T7, the remote rate interval

R _{Qq,p-Rpﬂw(ap+oq>(A+Q+A+Eq)] ifp#4q
=\ R .
q otherwise

and store it in an ordered set R,.

Computation: At ksPs + A + Q + A apply the convergence function CV g,(-) on
A, resulting in the new accuracy interval A;. If ks = 0 then apply the convergence

function CV 5, (-) on Ry resulting in the new rate interval R,. The new local rate
interval Ry = norm(R,) + [0 + (ks + 1)0qP5]. Reset Ay and Ry to 0.

Termination and Resynchronization: At ksPs+A+Q+ A+ E, set the local interval
clock of node q to A, and deteriorate it with R,. Let the state adjustment YT, =
ref(A;) —(ksPs+A+Q+A+E,). Ifks = 0 then adjust the clock rate by setting the
coupling factor Sy = Sqref(R;) and Uy =Y, else Uy = Uy + Y1y. Finally, increment

state round kg.

Periodically, at ksPs each node ¢ initiates a broadcast of packet(s), which contain

the accuracy interval [T, £+ o] at the moment of transmission as well as the local rate

interval R, and sum U, of applied state adjustments when the reduced state round ks = 0.
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The latter can be interpreted as the kg-th state round within the enclosing rate round,
therefore if kg > 0 just a state resychnronization instant lies ahead, see Figure 4.6.

Until ksPs + A + Q + A each node ¢ receives such packets from other nodes p and
timestamp them on arrival with 7. The accuracy interval A? is computed as in the CSA
of Definition 3.7, but improved by Lemma 6.1. If the next resychnronization instant is
also regarding the clock rate (i.e., ks = 0) then the quotient rate interval Q,, and remote
rate intervals R,, is computed as in the CRA of Definition 4.8. All these intervals are
stored in their appropriate ordered set.

Similar to the preceding algorithms, the accuracy intervals Aj resp. rate intervals
R,, (only when kg = 0) are fed into an interval-based convergence function CVz,(-)
resp. CVz,(-) to output a new one A, resp. R,. Note that the convergence functions
do not need to be the same for clock state and rate synchronization due to the assumed
independence between the underlying abstract fault models Fs and Fg. Interesting is
the calculation of the local rate interval R, for the next state round kg + 1, since a rate
round encloses m state rounds it is sufficient to deteriorate the initial local rate interval
norm(R;) gradually with (ks + 1)o,Ps instead of o, Pg.

The state adjustment at kg Ps+A+Q+A+E, is as usual either applied instantaneously
or by continuous amortization. The essential improvement to our algorithm comes into
play by deteriorating the accuracy interval with the computed R, = [J,,1,9]]. For
example, in case of our UTCSU-ASIC the registers LAMDBA+ are loaded by 195} respectively,
see Section 2.4. Finally, rate adjustment is carried out when due and the running sum

U, of state adjustments T, is updated.

6.3.3 Closing Analysis

To evaluate the algorithm from Definition 6.2, we follow the analysis of Section 3.5 and
make improvements to the lemmas and theorems. Our first one regards Lemma 3.11
about the evolution of accuracy/precision intervals during a state round. By presuming
that rate synchronization enforces a certain drift and consonance of the clocks, we are
able to determine a new transmission delay compensation as well as new bounds for the
intervals of accuracies and precision intervals, see forthcoming Lemma 6.3. These bounds
are the ingredients of the application of a certain convergence function, in order to re-
establish the conditions for the next state round. Since most of these results are just
simple substitutions, we do not provide an extra lemma, nevertheless, all improvements
onto state synchronization by means of instantaneous correction are contained in Theorem
6.1. In Section 6.3.4, the optimal precision convergence function OP(-) from Chapter 5
will be applied to gain some numerical results.
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Lemma 6.3 (Improved FME Dissemination) Given the algorithm from Definition
6.2 under Assumption 6.1 with the compensations E, and A + 0 as specified by (6.11)
and (6.12), respectively. Using the same notation and preconditions as in Lemma 3.11,
and if for any non-faulty node p the local rate interval R, = [0,,1,9] is

[1°] correct during state round ks with Ry, C Rpax,

[2°] ~,-correct w.r.t. internal global rate p(t) during state round ks with ¥, C Ymax,
we can make the following improvements to the former results:

(1) The transmission delay compensation A has to satisfy

A > 6rnax + 8$ax + o + Umax + (PS - Emin + 7ri)’Ymax
- 1- Rmax 1 + ’Yr—gax

(6.13)

instead of (3.26).

(2) The intervals of accuracies obey

ot C oyt uytug+ G+ 2GA + &y
+ (Ps — A — Ep) align(R,) + (Eq + A — 6y align(R,)
+ (A + Q)[— max{d; — 9,0}, max{d} — 9 ,0}]
+ O(7 4+ PsRuax + G + €max) align(R,) (6.14)

for p # q instead of (3.29), and
a?" = oy + ug + Psalign(R,) + O() align(R,) (6.15)

instead of (3.81).

(8) The precision intervals comply with

mh C mo+up+ug+ GAepg+ (Ps—A—Ey)v, + (Eg+ A — 69)7,
+(A+9Q) [— max{y, —7,,0}, max{ﬂy; — fy;, 0}]
+ O(7 + PsRumax + G + €max) Ymax (6.16)

Jorp#q,

7r§=7ro+uq+P5’yq+(’)(7r)7q, (617)
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ml C o+ Umax + Uy + G + Emax

+ (Ps — A = Emin)Vmax + (Eg + A — dmin)7,

+ O(7 4 PsRmax + G + €max) Ymax: (6.18)

7rH g Uy + 2uma.x + @ + €max + (PS + Ema.x - Emin - (5Inin)'7max
+ O(ﬂ- + PSRmaX + G + gmax)'yma.x, (6-]—9)

7w’ C 71'0—|-'u,p-l—umax-l—é—l—e:maX
+ (Ps — A = Ep)v, + (Bmax + A — Omin) Ymax
+ (A + [~ Vmax = %) Vax — 7]
+ O(7m + PsRuyax + G + €max) Ymaxs (6.20)

and

T C Emax+ Hmax + G+ (A+ Q2+ A+ Enax — Omin) Yimax
+ O(m0 + Rmax + G + €max) Ymax (6.21)

instead of (3.82), (3.33), (3.34), (3.35), (3.86), and (3.87), respectively.

Proof. As in the proof of Lemma 3.11, the real-times involved in the evolution of a state

round kg are related by (t? —t,) = (t; —t,) +0,,, — (t, —t,), copied from (3.41), where ¢,
+ T
time of a packet when sent from node p to node ¢, and 4;, the transmission delay. To

and t, denote the respective round beginnings the transmission and ¢§ the reception

make the above equation amenable to our new concepts developed in Section 6.3.1, we

map it to the corresponding points of internal global time, i.e., 7, = 7(t,), 7, = 7(t,),

A _ A P — P /
Toq = T(t7,), and 72 = 7(8). To carry over 4,

internal global rate ¢*#), since (¢, + 0.,) = 724 + @¥®)§ by virtue of Definition 6.1.

we just multiply it with the encompassing
Eventually, we arrive at
(T,f - Tq) = (7};?1 - Tp) + SD(kR)‘SII;q - (Tq - Tp)- (6.22)

In the gist of (6.10) and (3.10) the L.h.s. is not smaller than (T} — 7g)(1 — v, ) — u, and

the first expression in on the r.h.s. is bounded by (T3 —T,)(1 +,) +u,}, where ,; and
7, are the respective consonance values as presumed in [2’]. Therefore (6.22) turns into
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inequalities

(TP =Tp)(1=v,) < (T =T+ %) + (T, — Ty) (1 =7, ) +uy +uy

SD(kR)é;;q — (14 — 1)

< (Ty—719) — (T, — 1) (6.23)
+ (Tpy = Tp)vy + (T — Ty)vy (6.24)
+o®R)S g+t (6.25)

Next we are applying a number of simplifications to the above terms. Let us begin with
(6.23), which does not exceed 7 since precondition [2] ensures |(Ty —74) — (1, — 7)| < To.
Next, (6.24) can be reduced to (Ps — A — Eni, +77) (7, +7,7) by crediting (3.39)/(3.40)
and knowing that Ej, E; > Eni,. Because 0, < 0y + 8 < Omax + €1, and uy + u; <
Umax + Urhax < Umax, We bound (6.25) by <p( ) (Omax + S;;ax) + Umax- It remains to find

max

an estimation on the internal global rate ¢(*#) which can be done by applying Definition
4.4 and 4.7 jointly on precondition [1’] and [2’], thus

QO(kR) 1+ 7:1ax

< =1+ + Roax + O((Vh s + Rumax)?)-
1 - Rmax

with Rmax = ||Rmax||- When assembling all pieces (6.23)/(6.24)/(6.25) becomes to

o + Umax + (Ps — A — Emin + T ) Ymax
1 = Ymax
(Omax + Emax) (1 + Vimax)
(1 = Rmax) (1 — Vinax)

which allows us to to figure out A with the same kind of technique as in the proof of
Lemma 3.11. As a result 77 < (k +1)Ps + A + Q + A if

p _ A
Tq qu S

+ : (6.26)

b

A (1 ’ymax + 1) 2 7T0 + umax + (PS - Emln + W_)/Ymax (5max + gmax)fl + ,Y]—]i'—lax)

+
1- Ymax (1 Rmax)( Vr;ax)

~ Ymax

which confirms item (1) of our lemma. Beyond that, (6.26) can be condensed to

TP — Ty = 0pg + O(mg + PsRimax + G + €max)- (6.27)

Turning our attention to the accuracy intervals, we know from the algorithm given in

Definition 6.2 that each node ¢ computes the accuracy interval

AP = A+ [0y £ (€pg + 2GA)] + (TF = TP)Ry + u, + G
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upon reception of A;‘q from node p # ¢, where the resynchronization time TqR = ksPs +
A+ Q+A+E,. If A, = [T, + «,)) is the accuracy interval on node p when the state
round kg started at local time 7}, then according to Lemma 6.1 the transmitted interval

A;‘q =A,+ (Tp‘g —T,)R, + u,. Extracting the intervals of accuracies, we get

al® = o, + (T} — T,) align(R,) + u,
+ &pg+ 2G4 + (T — TP) align(R,) + u, + G
= apt+u,+u;+G+2G4+ey
+ (T;I;?] - Tp)[ﬁ;: 0, 19;—] + (TqR - Tp@)[ﬁ;: 0, 19;_] - (Tg - Tpftl]) a‘hgn(RQ)

by remembering that align(R,) = align([J,,1,9,]) = [, ,0,9;], which is good for drag-

p? 7P
ging an accuracy interval without shifting it. When proceeding as in the proof of Lemma

3.11 we end up with

ol C oyt uy+u+ G+2Ga+ €y
+(Ps— A—E,+n")align(R,) + (E, + A) align(R,)
+(A+9Q) [— max{d, — v, ,0}, max{d) — v, 0}] — 0,q align(R,)
+ O(mo + PsRuax + G + €max) align(R,)

and noting that (6.27) was used to capture (I? — T7}). Case p = ¢ is a straightforward

modification, which finishes item (2) of our lemma.

Finally, we reason about the precision intervals #f that are associated with the A’s.
Relying on Lemma 6.2, the above derivations for the intervals of accuracies can be carried
over by exchanging the rate intervals with suitable consonance intervals. Again, let A,
be mo-correct at the beginning of state round ks. Hence Al unfolds as being ml-correct
with

m C Wot Uy +ugt+ G eyt (Ps— A= Ep)y, + (Bg+ A —dyo),
+ (A +Q) [— max{y, —7,,0}, max{*y; — ’y;, 0}}
+ O(7 + PsRuyax + G + €max) Y imax (6.28)

for p # ¢, and 7wl = wo+u, + Psy,+O(7)7,. The remaining precision intervals wf, i,
H

and 7P are just majorizations over (6.28), more specifically, =,/ = U, wb, © = U, 7/,

q
and 7P = U, wh. For the inclusion of 7 the technical condition from (3.16) can be

replaced bY OminYmax C Emax, as provided in item (2) of Assumption 6.1.
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Last but not least, the same line of reasoning holds for improving ;. By converting
(3.49) we obtain

€ U [T = min{ AN, + ( = Dy + &5,

,p#q

+ (TF - Tpf})'yq — (TP - TA)'yq + u,| + G,

which eventually leads to (6.21). This completes the proof of lemma 6.3. O

Note that most improvements can be expressed by substitutions, since rate resp. con-
sonance intervals are responsible for deteriorating accuracy resp. precision intervals. Of
particular interest is the composition of A, because round beginnings and durations are
tied with the maximum consonance, whereas transmission delays are connected with the

maximum drift.

The major results for the improved state synchronization are obtained by applying the
generic convergence function CV £, (-) from Definition 3.11 to the intervals from Lemma

6.3, which leads by using induction to the following theorem.

Theorem 6.1 (Improved Instantaneous Correction) Given the algorithm from Def-
inition 6.2 under Assumption 6.1 with the improved compensations E,, A+, and A
as specified by (6.11), (6.12), and (6.13), respectively. Using the same notation and

as in Theorem 3.1, and if for any non-faulty node p the local rate interval RI(,kR) =
[0, k=) 1,95k s

[1°] correct at the beginning of rate round kr > 0 with align(RgcR)) C V:S)kR) C Vo as
giwen in Theorem 4.2,

[2°] 4R)-correct w.r.t. internal global rate ¢(t) during rate round kg > 0 with v*7) C
Ymax S given in Theorem 4.1,

we can make the following improvements to the former results:

(1) The set Bg’“S“) of node q’s accuracy bounds at the beginning of state round kg + 1,
ks > 0, is defined by B2*stY) = BYS) 4 ¢ with
¢ = upt+u+G+2G4+ ey
+(Ps—A—E,) (V<kR + [0 (ks + 1), Ps])
+ (By+ A= 6,) (VI + [0 + ( ks +1)ogPs])
+ (A + Q) [~ max{d, ®») — 9 E8) 1 (ks +1) (0, — 0,) Ps, 0},
max{d;(») — 19;:““%) + (ks + 1)(0, — 0,) P, 0}]
+ O(PsVimax + G + €max) Vimax (6.29)
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(4)
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for p # q instead of (3.71), and

¢! = ug+ Ps (VI + [0+ (ks +1)o,Ps))
+ O(PsVinax + G + €max) Vmax (6.30)

instead of (3.72), where rate round kr = |ks/m| and reduced state round ks =

ks mod m.

The set Py of node q’s precision bounds at the beginning of each state round is

defined by

o= wo+up+ U+ G+ epg+ (Ps+ Ep — Ep — 6p0) Yimax
+ O(PSVmax +G+ Emax)'Ymax (631)

for p # q instead of (3.73), and
71'3 = Ty + Uy + PS'Ymax + O(P.S'Vmax +G+ 5max)7max (632)

instead of (3.74).

The set P of uniform precision bounds at the beginning of each state round is defined

,n.p = Ty + up + Umax + @ + €max + (PS + Ernax - Ep - 5min)7max
+ O(PsVimax + G + €max) Ymax: (6.33)
7 = mwo+ Uy + PsVmax + O(PsVinax + G + €max) Ymax (6.34)

instead of (3.80) and (3.81), respectively. Moreover,

7 = o+ 2Unax + G + Emax + (Ps + Emax — Fmin — Omin) Ymax

+ O(PsVigax + G + Emax) Ymae: (6.35)
T = Emax+ HUmax + G+ (A+Q+ A+ Enax — Omin) Yinax

+ O(PsVimax + G + Emax) Ymax (6.36)

instead of (3.82) and (3.83), respectively.

The initial worst case precision satisfies

T0,max — HWOH + Umax + G+ (Emax - Emin)’ymax
+ O(PsVimaxYmax + GYmax + EmaxYmax) (6.37)



234
instead of (3.78), with mw, being a solution of the equation ||my|| = V. (P, w7 m;),

and the worst case precision

Tmax = max{w_ + U + (Bmax — Emin) Yahaxs
T 4+ Upax + (Bmax — Emin) Ymasx:
o + Umax + Ps%nax}
+ G + O(PsVmaxVmax + GYmax + EmaxYmax) (6.38)

instead of (3.84), with

T = E(’P’ WH’ 771) + T + Umax + PS'YmaX
+ O(P.S'Vmax + G + 6max)7max (639)

instead of (3.58).

(5) The mazimum clock state adjustment Y, meets Y, € 7, C 7, where

Ty, = E(’an 7rH7 ﬂ-I) + o + Uq + PS’YInaX
+ O(PsVinax + G + €max) Ymax (6.40)

instead of (3.87).

Proof. As in the proof of Lemma 3.12, suppose that at the beginning of state round kg
the set B*s) = {,@ng), e ,,3%’“5)} contains the bounds for accuracies az(,kS) C ,Bl(,kS), see
also (3.50). According to item (2) of Lemma 6.3, the accuracies a*s) of the intervals

fed into the convergence function are bounded by

prtksth = gs) 4y, + g+ G+ 2G4 + €y
+ (Ps— A —E,) align(Rg“S)) + (Ey+ A —6y) align(Ré’“S))
+ (A + Q) [— max{d, *s) — g, *s) 0}, max{}*s) — 9ks), 0} ]
+ O(T + PsRuax + G + €max) align(RYF))  for p # g,
prks+h) = glks) 4y, 4 Pgalign(R¥s)) + O(r) align(R¥s))

forming set B,(IkSH), where RI(,’“S) = [0,ks) 1, 91(ks)] and R,(IkS) = [0,ks) 1, 91-(E)] have
to be local rate intervals that are correct during state round kg. Bounds on them can be
calculated from precondition [1°], since the enclosing rate round kg is given by |ks/m|

and the reduced state round ks = kg mod m as set out in our algorithm, hence

align(RY*)) < VIFs/m) 1[0 £ ((ks mod m) + 1)0,Ps],
align(RFs)) C Vg““s/mj) + [0+ ((ks mod m) + 1)0,Ps].
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This leads to (6.29) resp. (6.30) featuring item (1) of our theorem with the appropriate
assistant interval ¢? resp. ¢7. As in the proof of Lemma 3.12, we can argue here that
O(n) = O(PsRmax + G + €max) With Rpax = Vinax = ||V max||- Remember that the

ks+1)

successive set B! of accuracy bounds is being computed by means of the accuracy

preservation functions ®Z(-); look at (3.69) for the formula.

The precisions bounds of set P, and P carry immediately over from item (3) of
Lemma 6.3 with the specialization v, = v, = Y. To provide the links, (6.31) comes
from (6.16), (6.32) and (6.34) from (6.17), (6.33) from (6.20), (6.35) from (6.19), and
(6.36) from (6.21). This finishes already item (2) and (3) of our theorem.

Before deriving the expression of the observable initial worst case precision 7y max, the
first part of item (4) in our theorem, we look again at the difference of the resynchroniza-
tion times between any two non-faulty nodes p and ¢q. By recalling the proof of item (5) of
Lemma 3.12 and knowing from Lemma 6.2 that the consonance interval «y, .. deteriorates

any precision interval, we easily obtain

th—th € TF+mo+ug+ (Ps+ 7 )Vmax
—TF+ %o+ Uy + (Ps+ T ) Fmax
€ E,— By +[—mo, mo] + g + By + Ps(Vmax T Vimax)
+ O(PsRumax + G + €max) [~ Vmax, Ymax] (6.41)
€ FEnax — Enin + O(PsRuyax + G + €max)-

When grabbing (3.90) from the proof of Theorem 3.1 and using inverse the drift rates

9£:(kR) to map logical times to real-times as implicated by Lemma 6.1, then

T00,max g ™ + U < 1_ ﬁ;’(kR) Y max + up) + GP
g U + (Emax - Emin)’ymax + Umax + G
+ O(PSRHI&X + G + Emax)7max:

which provides (6.37) by extracting the interval lengths. In order to show the expression
of the observable worst case precision 7y, it is sufficient to redo the proof of item (3)
of Theorem 3.1 with the replacement of p, .. by V... Without going into details, this
leads straightaway to (6.38) when taking 7 for granted at the moment.

It remains to provide a limit for the maximum clock state adjustment T, applied
instantaneously at non-faulty node ¢. Since the expiring virtual clock is (mwo + u, +

PsY max + O(T)Ymax)-correct and the new one is ®,(P,, w, wr)-correct, both w.r.t. the
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same internal global time, we can conclude that any state adjustment lies within the

interval
Ty =0 + Ug + PsVpax + @r(Py, 7, 1) + O(PsRiax + G + €max) Ymax

by recalling Lemma 3.7. A majorization over ¢ leads to o, which justifies (6.39). This

finishes the proof of our theorem. O

In Section 3.5.2 we motivated traditional accuracy Y, but in the course of merging
both frameworks, statements (3.88) and hence (3.89) become meaningless, because be-
tween resynchronization instants internal global time does not progress as real-time any
more, see Definition 6.1. This deficiency is of no particular loss, since we have explicit

representations about drift and consonance anyhow.

So far we have studied how rate synchronization supports state synchronization, but
not the other way around. By construction of the CRA from Definition 4.8 and hence
the embedded one of Definition 6.2, only a proper round structure is necessary. More
specifically, near the end of each rate round an FME and all computations have to be
carried out before the next resynchronization instant takes place. This can be easily
achieved by replacing the rather cumbersome parameters F' and E from Lemma 4.11
with our well defined compensations A + €2, A and F,,... Also the considerations about
the round beginnings in Section 4.5.1 are obsolete. As a consequence, the algorithm of
Definition 4.8 has already implemented FF = A +Q + A and F = E,.

A cycle of dependencies becomes evident by observing that in the view of the CRA,
the “incoming” quantities Fnay, A, ©, A, and myay rely on the “outgoing” quantities
Ymax and Rpm.x. For the respective equations consult (6.11), (6.12), (6.13), and (6.38).
However, by inspecting the analysis in Section 4.5 once again, we find out that there

influence is restricted in the following manner:

1. Since the (rate) resynchronization times at different non-faulty nodes are assumed
to be very close to each other, the most dominant occurrence of 7., is only in
conjunction with opay, €.g., see (4.68) for rate intervals and (4.69) for consonance
intervals. This can be neglected, because oy.4Tmax 1S supposed to be much smaller

than Y. and Ryax-

2. In our new setting the maximum logical broadcast delay B = A + €2, which appears
importantly only in terms o, B and %“—j’%, see Theorem 4.1 for example. Using
(6.12) and applying asymptotic approximations reveals that A and € depend on

Rpax just by factor omax and emaxPp 2 which can be neglected as well.



237

3. The compensations F + E = A+ Q + A + Epx show up in terms oy, (F + E) and
PR_(;‘IHW’ see Theorem 4.2 for example. By an analogous derivation, factors
Omax and €maxPg 2Rimax €xpress the influence of Rmax on A, Q, A, and Epay, whose

contributions are also negligible.

In summary, the cycle of dependencies can be broken, when
OmaxTmax < “Ymax (642)

and

maXx {O’max, EI;;;X} (A + Q + A + Emax)RmaX < Ymax- (643)
R

The satisfaction of these conditions is also the reason, why we are allowed to separate
the analysis of state and rate synchronization. Otherwise the inevitable cross connections

force us to deal with recursions, which would render the analysis more complicated.

6.3.4 Numerical Example

In order to become more familiarized with the performance of our complete synchroniza-
tion algorithm from Definition 6.2, we give an example with decently realistic numbers.
Figure 6.3 shows a graphical summary of our assumptions (three rectangles) and calcula-
tions (two rounded boxes). In the course of doing this exercise, we try to discover which

parameters are important and which one can be ignored.

The 16 nodes of our representative distributed system communicate via a broadcast
channel (e.g., Ethernet) specified by a large broadcast latency Anax, an average transmis-
sion delay dyax, and a small uncertainty €,,,x due to some sophisticated timestamping
facilities (e.g., our NTT M-Module). The processors are supposed to have generous exe-
cution times Nmin and Nmax, and the clocks (e.g., our UTCSU-ASIC) are driven by 224 Hz
oscillators with a “high” stability oy,,x. Since the presumed maximal oscillator drift pp.y
is insignificant, we obtain compensations A, 2, A, E,;, and E.;, in a straightforward
way as depicted in Figure 6.3.

VY g Omax

For clock rate synchronization the convergence function OP, )'*" (-) from Sec-
tion 5.3.2 is used with 1 minute as resynchronization period, since (5.105) suggests 49.1
seconds. The initial worst case consonance 7o max at the beginning of each rate round can
be calculated from (5.99), where F' ~ B &~ A, E = Eyax, and €00 +4(A+ Enax) Prmaz < A
With the same simplifications, the overall worst case consonance interval =, . falls

out from (5.104), and the maximal rate adjustment ., from (5.101). The bounds
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Clocks Network Processors
Omax = 10~% ppm/s Emax = [—120 ns, 240 ns] n=16
G =60 ns Amax =~ A = 100 ms e=d=2
Umax = [—60 ns, 60 ns] Wmax & N =0s Nmax ~ Fmax = 10 ms
Pmax = 1 ppm 6max ~ A =50 HUS Nmin ~ Emin =2 ms
OP-RATE
4 \
Pr =60s

Y0,max = Omax (4P + 14A 4 8Emax) + ?);%az = 0.0482 /,LS/S
N A [0 + (amax (3Pg + TA + 4Fmay) + —;;mj;)] — [0+ 0.0301 ps/s]
Onax = [1 £ 20max Pr] = [1 £ 0.012 ppm)]

VER) x VERTD 1[0 £ 30,0 Pr) = VIO + kg [0+ 0.018 ps/s]

OP-STATE

Ps=10s

T0,max = 2€max + 4Umax + 3G + (Ps + A + 3Emax — 2Emin) Ymax = 1.99 us
Tmax = 2Emax + %umax + 3G + (2PS + A+ _5Emaxg3Em;n) Ymax = 2.65 us
Tmax = PS’Yma,x + Umax = 0.72 HS

BY) ~ BO) 4 kg (10V§P> +1]0+0.842 ,us]) + ks|(ks—1)/6][0 £ 0.09 ps]

Figure 6.3: Numerical Example

V#&) for the rate interval at local node p at the beginning of rate round kg evolve

p

according to (5.107), and making the recursion explicit is an easy task. It should be

obvious that our consonance results are at least one order of magnitude better than

the commonly used drift pn.x. Recalling (5.106), we get the remarkable outcome that

Vinax = V96 TmaxEmax = 0.0588 us/s.
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700, T0H Yo
n—d—e

tion 5.3.3 is used with a resynchronization period of 10 seconds, hence m = 6. The

For clock state synchronization the convergence function OP (+) from Sec-
formula for the initial worst case precision 7 max at the beginning of each state round has
its origin in (5.66) and (5.69) enhanced by item (4) of Theorem 6.1 to insert yax. By the
same token, the overall worst case precision Tmay can be derived from (5.70). Item (5) of
Theorem 6.1 applied on (5.65) provides the maximum clock state adjustment Yy,,,. Last
but not least, the accuracy bounds ,35,’“5) from (5.80)/(5.83) combined with item (1) of

Theorem 6.1 yields the recursion
By C BV + P (VIE™D/™D 1[0 + 01nax Pr]) + Uimax + [0 £ Yo

To bring it in a closed form, we sum up the whole sequence, ending up with

ks—1

131()]05) :B]()O) + ICZO (PSVI()Lk/mJ) + [0 + UmaxPRPS] + Umax + [0 + Tmax])

N

g 181(10) + kS (umax + [0 + (GmaXPRPS + Tmax)])
ks—1
+Ps Y (VO 4 [k/m][0 % 30max Pr])
k=0
BY + ks (PsVY + thmmax + [0 % (0max PrPs + Trmax)])
ks—1
-+ Ps[o + 30’ma.xPR] Z Lk/mJ
k=0

,31()0) + kg (PSVI(,O) + Umax + [0 + (UmaXPRPS + Tmax)])

N

N

+ %S | (ks — 1)/m] [0 + 30max PrPs],

where in the last step we made use of the fact

" _n/mJ(n—-m+2+nmodm) _[n/m](n+1)
> Lk/m] = : <

k=0

by taking advise from [14]. As expected, the growth of ,Bz(,ks ) depends linearly and (weakly)

quadratically on the state round kg. All these results describe the worst case behavior.

6.4 Extensions

Despite the wealth of material presented in this thesis about interval-based clock state
and rate synchronization, many issues still need to be explored. In the following we give

a list of them and include a sketch of our ideas and further directions.
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Hardware development: For a specific application, we need to tailor the hardware
support for clock synchronization, since our prototypes are only designed for re-
search purposes. Depending on the requirments and the surrounding system, this
touches the UTCSU (e.g., higher frequency, more timestamping features), the NTI
(e.g., different interfaces, better oscillators), and the COMCO (e.g., other trigger

mechanisms, drivers), see Chapter 2.

Validation: An important open problem is the integration of accuracy and rate in-
tervals from primary nodes to accomplish external clock synchronization, see Section
3.1 and 4.4.5. Our present research indicates that three major subproblems need
to be addressed: a realistic assumption about the faultiness of GPS receivers, the
rate/state coupling (including a history) between primary nodes and GPS receivers,

and a definition of various operating modes.

Initial synchronization/joining: Our algorithms work on a periodic basis and require
some initial conditions, see Section 3.4 or 4.4. If primary nodes are working, the
latter problem can be viewed as a special case of validation (infinitely long flywheel
period), otherwise the system has to run through several phases to achieve at least

an internal synchronization.

Multiple SSNs: We just covered system architectures of one synchronization subnet,
but large scale systems have several of them interconnected by gateway nodes,
see Section 2.2. To provide a synchronization across all SSNs, gateway nodes act

dynamically as primary nodes, hence this problem is related with clock validation.

Tradeoff between precisionéSaccuracy: There are several hints that precision and
accuracy cannot be minimal at the same time, see Section 5.3.2. In a more general
framework, it is challenging to prove either such an impossibility result or to present

an optimal solution including its complexity.

Average case analysis: The analysis of our algorithms were geared towards the worst
case, see Section 3.5 or 4.5. However, we are convinced that average case results
are significantly smaller than worst case one. To attack this problem, we need to
set up assumptions with probabilistic elements that allow us to reason about the

distribution or at least the expectation of precision and accuracy values.

Convergence functions: We presented only one interval-based convergence function,
namely O7P(-) in Section 5.3. There are many alternatives around, in particular,
we have a faull-tolerant intersection function FTZ(-) in mind that computes its
edges by making an “inside-out” sweep over the set of source intervals. Due to our

generic framworks, only the associated characteristic functions have to be provided.
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Continuous amortization: A decrease/increase of the clock rate during some period
is the idea behind continuous amortization to adjust the clock state, see Section
3.5.3. This technique should be studied in the rate framework as well, in order to

get refinements.

Optimal consonance: In Chapter 4 we introduced a framework for clock rate syn-
chronization, but did not prove lower bounds on the achievable consonance in the
sense of [29]. Nevertheless, we conjecture that they are of the form Q(,/0max€max)-

Oscillator parameters: The stability of oscillators has a large impact on the rate and
hence state synchronization, see Section 6.3.4. Therfore it is important to measure
the drift and stability as good as possible, since so far we just used some estimations
from datasheets. For an improvement, it would be interesting to find out, if there
is something like a “precision of stabilities”, i.e., |0, — 0, < 0" Vp, q.

Simulation: With the help of our simulation tools, we are about to make experi-
ments with different system parameters, convergence functions, and fault scenarios.
They are helpful to foster the understanding of the clock synchronization problem

with all its ramifications.

Evaluation: The only way to test if our algorithms are working properly or not, is to
have them implemented and executed in a real distributed system, see Section 2.3.4.
A careful specification and documentation of the runs can not be overestimated for

a rigorous evaluation.
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List of Symbols

number of unbounded accuracy faults

accuracy intervals

ordered set of accuracy intervals

interval of accuracies

length of o

interval of accuracies at node p

initial accuracies at node p

traditional accuracy (at the beginning of round k)
data capacity of packets

maximum logical broadcast delay

accuracy bound for node p at the beginning of round &
set of accuracy bounds at the beginning of round &
function of clock (at node p)

function of inverse clock at node p

function of local interval clock of node p

set, of interval clocks

generic convergence function w.r.t. fault model F
number of restricted faults

drift of clock C,

deterministic transmission delay from node p to ¢
maximum/minimum deterministic transmission delay
transmission delay compensation

number of arbitrary faults

transmission delay uncertainty from node p to ¢
length of g,

maximum transmission delay uncertainty

length of interval &,

execution time bound for node p
maximum/minimum execution time

logical execution time for node p

maximum /minimum logical execution time

number of faults



F, Fr, Fs

G

G =10,G]

Gp =[0,G(1 + pray)]
G =[-G,0]

Gs

Ga

2G4 = [—Ga, G4l
Grmax

¥ =[",0,7"]
~(#)

Yo

nominal frequency of oscillator O,
instantaneous frequency of oscillator O,
generic interval-based function

FME duration

abstract fault model for rate/state framework
clock granularity

positive granularity interval

positive granularity interval with drift
negative granularity interval

clock setting granularity

accuracy transmission loss

accuracy transmission loss interval

uniform error term for rate

consonance interval

consonance interval at the beginning of round &
maximum consonance interval of exchanged intervals
maximum consonance interval of perceptions
consonance interval from node ¢ received at p
consonance of an ensemble of clocks

indicator of pure (H = 1) broadcast network
indicator function of non-synchrony
asymmetric interval

asymmetric interval with exchanged lengths
associated precision interval

mixed interval

length of asymmetric interval

interval from node p received at g

ordered set of intervals

common intersection of precision intervals
rate/state round number

maximum broadcast latency

logical broadcast latency

ratio between rate and state resynchronization period
Marzullo’s function

total number of nodes

set of primary/non-primary nodes
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set of non-faulty nodes during round %
number of omission faults

asymptotic upper bound function

optimal precision convergence function
maximum broadcast operation delay
logical broadcast operation delay
rate/state resynchronization period

set of precision bounds (at node p)

internal global rate (of round k)

accuracy preservation function

drift preservation functions

consonance preservation function

precision preservation function

interval of precision

length of 7

precision of an ensemble of clocks

ideal initial precision interval

maximum precision interval of exchanged intervals
maximum precision interval of perceptions
precision interval of perceptions at node p
precision interval from node p received at ¢
amortization rate deviation

consonance enhancement function
intersection enhancement functions
precision enhancement function

quotient rate interval of clock C, against C,
reference point (at node p)

inverse rate of clock C,

local rate interval of clock C,

maximum local rate interval

remote rate interval from node ¢ received at p
set, of rate intervals

inverse rate deviation at node p

length of p,

maximum inverse rate deviation bound

length of p..
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intrinsic inverse rate deviation of the oscillator O,
coupling factor between oscillator and clock at node p
oscillator stability of oscillator O,

maximum oscillator stability

real-time(s) in a Newtonian frame

real-time at initialization

begin of round &

real-time duration

logical time(s)

amortization duration

non-empty real-time interval

observable duration

internal global time (of round k)

real-time when oscillator tick occurs

logical time when oscillator tick occurs

inverse rate drift of clock C,

rate adjustment of clock C,

maximum rate adjustment

accumulated state adjustments of clock C,

rate adjustment uncertainty at node p

maximum rate adjustment uncertainty

instantaneous rate of clock C,

rate interval bound for node p at the beginning of round &
generic validation function w.r.t. fault model F

state adjustment of clock C,

maximum state adjustment

remote rate interval from primary node ¢ received at p

set, of remote rate intervals at node p for round &
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