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Kurzfassung

Im Mittelpunkt dieser Arbeit stehen Anwendungen von abstrakten topo-
logischen Methoden in Zahlentheorie und Kombinatorik. Die Stone-Cech
Kompaktifizierung 3S einer diskreten Halbgruppe S kann als die geeignet
topologisierte Menge aller Ultrafilter auf S konstruiert werden. Diese Struk-
tur erlaubt tiberraschend einfache Beweise der Satze von Hindman und van
der Waerden. Der Satz von Hindman besagt, dass es fiir jede endliche
Farbung der natiirlichen Zahlen eine einfirbige Menge A und eine Folge
natiirlicher Zahlen (z,)3%, gibt, so dass fiir jede endliche Teilmenge F der
natiirlichen Zahlen }°, . z; € A gilt. Der Satz von van der Waerden zeigt,
dass es stets eine einfarbige Menge B gibt, die beliebig lange arithmetische
Folgen enthalt.

Kapitel 1: Wir beginnen mit einigen allgemeinen Bemerkungen iiber Ram-
seytheoretische Aussagen. Die Ultrafilterkonstruktion der Stone-Cech Kom-
paktifizierung einer diskreten Halbgruppe S, sowie die grundlegende alge-
braische Theorie von kompakten Halbgruppen werden besprochen. Dies
liefert den notwendigen Hintergrund fiir die angestrebten kombinatorischen
Anwendungen von 3S5. Als erste Beispiele prisentieren wir kurze Beweise
der Satze von Hindman und van der Waerden. Unser Beweis des Satzes von
van der Waerden liefert eine relativ starke Version dieses Theorems. Im letz-
ten Abschnitt dieses Kapitels zeigen wir, dass ahnliche Verallgemeinerungen
auch fiir andere bekannte ramseytheoretische Resultate moglich sind. Die
Ergebnisse dieses Kapitels sind zum Teil [BBHS¢] entnommen.

Kapitel 2: Am Beginn dieses Kapitels besprechen wir verschiedene Verall-
gemeinerungen des Satzes von van der Waerden, unter anderem die Satze
von Gallai und von Hales-Jewett, aber auch unterschiedliche multiplikative
Versionen des Satzes von van der Waerden. Ein Hauptziel dieses Kapitels ist
es zu zeigen, dass es in jeder endlichen Partition der natiirlichen Zahlen eine
Zelle gibt, welche sowohl additativ als auch multiplikativ hoch organisierte
Strukturen enthalt. Manche der hierfiir entwickelten Methoden sind speziell
an die natiirlichen Zahlen angepafit, wihrend andere auf allgemeine Halb-
gruppen bzw. Ringe anwendbar sind. Um ein Gefihl fiir die Sétze, die uns
beschaftigen, zu vermitteln, bringen wir ein konkretes Beispiel: Sei k eine
beliebig grofie naturliche Zahl. Fiir jede endliche Farbung der natiirlichen



Zahlen gibt es eine einfarbige Menge A und a,d,r € A sodass
{(a+id)r? 14,7 €{0,1,...,k}}u{dr :je{0,1,...,k}} C A

Die Resultate dieses Kapitels wurden in Kooperation mit V. Bergelson, N.
Hindman and D. Strauss in [BBHS?, BBHSii] erzielt.

Kapitel 3: Furstenbergs Satz tiber zentrale Mengen liefert eine naturliche
starke gemeinsame Verallgemeinerung der Sétze von Hindman und van der
Waerden. Wir beweisen eine mehrdimensionale Variante, die den klassischen
Satz von Ramsey beinhaltet. Des weiteren bringen wir verschiedene Verall-
gemeinerungen des Satzes Uber zentrale Mengen, die zum Teil Resultate
des vorangegangenen Kapitels stark erweitern. Das Material dieses Kapitels
entstammt [Beisi] und [BBHS3i].

Kapitel 4: Wir verbinden eine Methode Untergruppen von T = R/Z iiber
Filter zu kodieren (vgl. [Wi02]) mit einem Weg abzdhlbare Untergrup-
pen von T iber Teilfolgen der natirlichen Zahlen zu charakterisieren (vgl.
[BDS01]). Das ermoglicht uns das folgende Resultat zu beweisen: Fir jede
abzahlbare Untergruppe G des Torus gibt es eine Folge naturlicher Zahlen
(zn)32, sodass

[e 0]
a€eG@=> E lznall < o0 a ¢ G = limsup ||z, > 1/6.
n—o0

n=1

(Hierbei bezeichnet ||.|| den Abstand zur nichsten ganzen Zahl.) Dieses
Theorem ist das Hauptresultat von [Beii] und setzt [BDS01, BS03] fort.




Abstract

We are mainly concerned with certain applications of abstract topological
methods to combinatorics and number theory. The Stone-Cech Compacti-
fication 8S of a discrete semigroup S consists of the properly topologized
set of ultrafilters on S. These structure provides surprisingly simple proofs
of various Ramsey theoretic results. Celebrated examples are the Theorems
of Hindman and van der Waerden. Hindman’s Theorem states that for any
finite colouring of N there exist a monochrome set A C N and a sequence
(zn)pZ; such that for all finite non empty sets ¥ C N, 3~ x; € A. Van der
Waerden’s Theorem yields that there exists a monochrome subset B that
contains arithmetic progressions of arbitrary finite length.

chapter 1: Some general speculations concerning Ramsey theoretic results
are given. We develop the ultrafilter construction of the Stone-Cech Com-
pactification of a discrete semigroup and give a short introduction into the
algebraic theory of compact semigroups. This provides the necessary back-
ground which is needed for our intended combinatorial applications of 8S.
As an immediate application short proofs of the Theorems of Hindman and
van der Waerden are given. Our proof of van der Waerden’s Theorem yields
a rather strong version of this Theorem. In the last section we show that a
similar strengthening applies to other well known results. The new results
of this chapter are in part taken from [BBHS).

chapter 2: We give several generalisations of van der Waerden’s Theorem
including Gallai’s Theorem and the Hales-Jewett Theorem, some emphasis
is put on multiplicative versions of van der Waerden’s Theorem. A main goal
of this chapter is the derivation of results that provide that highly organised
structure in an additive as well as in a multiplicative sense is contained in
one cell of every finite partition of N. We obtain different methods to achieve
these theorems, some apply to general semigroups, while others are limited
to the positive integers. To deliver some flavour of the style of the Theorems
we are after, some concrete example might be useful: Let £k € N. If N is
finitely coloured, there exist a monochrome set A C N and a,d,r € A such
that

{(a+id)r ;4,5 €{0,1,...,k}}U{dr:j€{0,1,...,k}} C A

The material in this section is joint work with V. Bergelson, N. Hindman



and D. Strauss in [BBHS%, BBHS1).

chapter 3: Fiirstenberg’s Central Sets Theorem is a powerful joint gener-
alization of the Theorems of Hindman and van der Waerden. We give an
extension of the Central Sets Theorem which also contains Ramsey’s clas-
sical Theorem in a quite natural way. Other strengthenings of the Central
Sets Theorem in the style of the Theorems from section 2 are given. The
material of this section is taken from [Beiii] and [BBHS:].

chapter 4: We connect a way of describing subgroups of T = R/Z via filters
(see [Wi02]) with a method of characterizing countable subgroups of T via
sequences in N. This enables us to prove the following result: If G is a
countable subgroup of T there exists a sequence (2,)$2; in N such that

o
aeG=> E |zne| < oo a ¢ G = limsup ||z, > 1/6.
n—>00

n=1

(Here ||.|| denotes the distance from nearest integer.) This theorem is taken
from [Beii] and continues [BDS01, BS03].
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Chapter 1

An introduction to S

This chapter is an introduction to ultrafilter lore.

First we describe the structure of the partition theorems we are after and
how they are related to “finitistic” Ramsey theorems.

In the second section we introduce the Stone-Cech Compactification 3S of a
discrete space S via ultrafilters on S. We explain how a semigroup structure
on S may be lifted to 45 such that 35 becomes a compact right topological
semigroup.

In the next section we develop the theory of compact right topological semi-
groups to an extend which is appropriate for our applications.

In section 4 we link combinatorial properties of a subset of a semigroup S
to algebraic properties of ultrafilters in 8S. As an application short proofs
of the Theorems of Hindman and van der Waerden are given. In the last
section the new method that is used to prove the latter of these theorems is
used to give extensions of other well known Ramsey Theoretic results.

1.1 Some remarks on partition theorems

Sometimes van der Waerden’s Theorem is spelled out in the following fini-
tistic formulation:

Theorem 1.1.1 (van der Waerden’s Theorem [Wa27]) Let r,l € NI
There exists N € N such that of U_; Ai = {1,2,...,N} there exzist 1 €
{1,2,...,r} and a,d € N such that

{a,a+4d,...,a+1d} C A,

In contrast to this our methods usually only yield partition results about
infinite sets.

I'We take N to be the set of all positive integers and write w for NU {0}.



At the first glance Theorem 1.1.1 might seem stronger then the version
referring to partitions of N. In fact they are equivalent. To show this in
some generality we introduce some notation.

Many of the theorems that we will prove are of the following kind: Let r € N
and assume that | JI_; A; = N. Then there exists some i € {1,2,...,7} such
that A; contains ..., where ... usually stands for some interesting algebraic
structure.

It will be useful to make this more precise:

Definition 1.1.2 Let S be a set and let F be a family of subsets of S. F
s called partition regular ¢ff for any finite coloring of S there exists some
monochrome set that contains a member of F.

We use Hindman’s Theorem as an example to illustrate this notation. (For
a set S we will denote the power set of S by P(S) and use the symbol P;(S)
for the set of all non empty finite subsets of S.)

Theorem 1.1.3 (Hindman’s Theorem [H75]) Let » € N and assume
that | J;_, Ai = N. Then there exist i € {1,2,...,r} and a sequence (z,)32,
in N such that for all F € Ps(N), ), p 1z € A.

Thus Hindman’s Theorem states that the family

F ={FS((zn)2,) : (z)5%, is a sequence in N},

n=1 n=

where FS((2n)82) = {> 1cr ot : F € Ps(N)} is partition regular.
Similarly van der Waerden’s Theorem states that for all [ € N the family

F={{a,a+4d,...,a+1d}:a,d e N}

is partition regular.

Of course we may not hope for a finitistic version of Hindman’s Theorem,
since its subject are infinite configurations. The following Theorem states
that a finitistic version is always true, provided we are interested in finite
configurations.

Theorem 1.1.4 Let S be a set and assume that F is a partition regular
family of finite subsets of S. Let r € N. Then there erists some finite set
G C S such that if G = U], Ai there ezist some i € {1,2,...,7} and some
F € F such that F C A;.

proof: Assume for contradiction that for » € N the claim is not true. To
carry out a compactness argument we switch to the compact space X =
{1,...,7}5 and consider colorings instead of partitions. For any finite set
G CS let

Ag={fe€ X :No FeF,FCG is monochrom with respect to f}.



By assumption each Ag is not empty and it is routine to check that it
is a closed subset of X. For k € N and finite sets G1,...,G; € S one has
Ag,N...NAg, 2 Ag,u..uc, and therefore the family {Ag : G C S,|G| < oo}
has the finite intersection property. Thus we may apply compactness to find
f € Ngcsgl<oo Ac- By the partition regularity of F there exists some
F € F that is monochrome with respect to f. But this contradicts f € Ap.
O

However we want to remark, that our methods never lead to explicit bounds.

1.2 Elementary properties of ultrafilters

Definition 1.2.1 Let S be a nonempty set. F € P(S) is a filter on S iff
the following hold:

(1) 0 #F #P(S).
(2) Whenever A€ F and AC BC S then B € F.

(3) F is closed under finite intersections: For allr € N and Ay, Ag, ..., A, €
F one has ()1 Ai € F

An ultrafilter on S s a filter on S which is mazimal with respect to inclusion.
BS denotes the set of all ultrafilters on S.

Sometimes we will use the notion of a filter limit:

Definition 1.2.2 Let S be a set, let F be a filter on S, let x be a point in
a topological space X and assume that f : dom f — X is a function with
dom f CS. We write F — lim, f(s) = x iff for every neighborhood U C X
of z one has f~HU] € F.

For s € S put e(s) = {A C S:s € A}. Obviously e(s) is an ultrafilter, a
so called principle ultrafilter. Most of the time we will abuse notation and
just write s instead of e(s). (I.e. We consider S to be embedded in 3S.)

Theorem 1.2.3 Let S be a nonempty set. For a Filter p on S the following
properties are equivalent.

(1) p is an ultrafilter.
(2) If AUB =N then A€por Bep.

(3) Let r € N and |J,_; Ai € p. Then there exzists 1 € {1,2,...,7} such
that A; € p.

(4) If f : dom f C S — K is a function into a compact space satisfying
dom f € p, p—limg f(s) exists.




proof:

(1) = (3) Assume that (3) does not hold and pick A, A, As,..., A, such that
A= Ai€pand A; ¢ pforie {1,2,...,7}. We claim that there
exists some ¢ € {1,2,...,7} such that A, N B # 0 for all B € p. If
not pick for each 7 € {1,2,...,n} some B; such that A; N B; = . But
then AN ()., B; = 0 which is not possible since p is closed under
finite intersections. Thus there is some ¢ € {1,2,...,r} such that 4;
intersects all elements of p non trivially. It is then not difficult see that
{A;} Up generates a filter on S which is strictly bigger than p.

(3) = (4) For any Ay, As,..., A € p we have (_; f[4A] 2 fINi= 4] # 0, so
by compactness of X, L = 1 ,, f[A] # 0. Assume for contradiction
that there exist to distinct points z,y € L. Pick open sets U,V C X
such that UNV =@ and z € U,y € V. Then f~HUJU f~HX \U]) =
dom f € p,so f~HU] € por f~1X \U] € p. It is not hard to see that
both cases yield a contradiction. Thus there exists y € X such that
L = {y}. By using (3) again it is easy to see that p — lim, f(s) = y.

(4) = (2) Assume that AU B = S and that neither A nor B lies in p. Without
loss of generality we may further assume that AN B = 0. Put f = x4
such that f is a function from S to the compact space {0,1}. Then
both f~1[{0}] and f~![{1}] do not lie in p, so p — lim, f(s) does not
exist.

(2) = (1) Assume that p is not maximal. Pick a filter ¢ and a set A € ¢ such
that ¢ D p and A ¢ p. Then by (2), S\ A € p, so also S\ A € ¢. But
then ¢ is not closed under finite intersections.

When we apply ultrafilters to show that some family G is partition regular we
usually proceed as follows: First we prove that there exists some ultrafilter
p such that each element of p contains a member of G. Then the partition
regularity of G follows immediately: Whenever A; U A3 U...UA, = 5 there
exists some 7 € {1,2,...,r} such that A; € p. But then A; contains a
member of G.

It is interesting that the converse of this principle also holds.

Theorem 1.2.4 Let G be a family of subsets of S. Then G is partition
reqular iff there exists an ultrafilter p on S such that for every A € p some
element of G is contained in A.

proof: Let

G'={A € G: Whenever |J,_; A; = A, some A; contains an element of G.}



Clearly N € @', so G' is non empty. If C is a chain of filters in G’ then
Urec F is a filter which again lies in G’ and which is an upper bound of C.
By Zorn’s pick a filter p which is maximal (with respect to inclusion) among
all filters which are contained in G'. Consider A, B C S satisfying AUB = §,
ANB = 0. We want to show that A € p or B € p. First show that for
each C e G ANC € G or BNC € G'. If not there exist Ay, As,..., A,
and By, By,..., B, such that ANC = J;_; 4;, BN C = |J;_, B; and no 4;
or B; contains an element of 7. But A;U...UA, UBU...UB, =C, a
contradiction to the definition of G’. So for each C € G’ we have ANC € G’
or BNC € G'. Now an argument similar to the one used to show (1) = (3)
in the proof of Theorem 1.2.3 yields either A € por Bep. O

BS can be made a topological space if we let A = {p € 8S : A € p} for
A C S and take {A : A C S} as a basis for the closed sets. (We have
already remarked earlier that we want to regard S as a subset of S via the
embedding S — (S, s — e(s).)

Theorem 1.2.5 Let S be a nonempty set. (S is a compact zero dimen-
sional space. For A C S the set A is clopen. In fact all clopen subsets of
BS are of this form.
The function

¢ : P(S) — clopen(BS) A A

is a homomorphism of Boolean Algebras.

If S is infinite |BS| = 22|S|, in particular BS is not metrisable.

If we endow S with the discrete topology, BS is the Stone-Cech Compact-
ification of S: S is dense in B8S. If f : S = K is a (trivially continuous)
function from S into a compact space K then the function f : BS — K,
f(p) = p—limg f(s) is the unique continuous extension of f.

proof: It is an easy exercise using only the basic properties of ultrafilters that
the map A — A. respects Boolean operations: lL.e. for A;, As,..., A, C S
we have

Ai\A2 = A\ A

AlU...UA, = AjU...UA,
AN...N4, = AN...NA,

Let A C S. Since S is the disjoint union of A and m, A is indeed clopen
and {B : B C S} forms also a basis for the open sets. Furthermore we see
that 3S is Hausdorff and that A is in fact the closure of A C 85S.

To prove compactness, consider a family of closed sets { F; : t € T'} which has
the finite intersection property. Without loss of generality we may assume
that we are dealing with basic sets, i.e. that F, = A; for some 4; C S
holds for all ¢ € T. Then (\;,c; At # 0 for every finite set G C T. Thus
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{A; : t € T} generates a filter F and we may apply Zorn’s Lemma to find
an ultrafilter p O F. But then A; € p for all ¢ € T and this is tantamount
to p € (e At- So BS is indeed a compact space.
Next we want to show that all clopen sets are of the form A for some A C S.
Let F be a clopen subset of 5S. Since F is open

F= |J 4

{ACS:ACF}

Since F is closed finitely many sets of this covering are enough, so there
exist Ay, Aa,..., A, C S such that

F=Z1U...UZT:A1U...UAT,

so we are done. In particular ¢ : P(S) — clopen(8S) is surjective. It is easy
to see that ¢ is also 1 — 1 so it is in fact an isomorphism.

It is clear that S is dense in 8S. If K is a compact spaceand f: S — K is a
function we may define f(p) = p —lim; f(s) for p € 8S. (By Theorem 1.2.3,
(4) this Definition is justified.) By Lemma 1.2.6 below f is a continuous
extension of f to 45 and since S is dense in 35 this extension is unique.
See [HS98], Theorem 3.58 for a proof that |8S] = 22'°' if S is infinite. O

Lemma 1.2.6 Let S be discrete space, let X be a regular topological space,
let f:B8S — X bea function and denote the restriction of ftoS by f.
Then the following are equivalent:

(1) f is continuous.
(2) For each p € 3S, f(p) =p — limg f(s).

(3) For each p € BS and each neighborhood U of f(p) one has {s € S :
f(s)eU} ep.

proof: It is clear that (2) and (3) are equivalent.
(1) = (3) : Pick a neighborhood A of p such that f[A] C U. Then

{seS:f(s)eU}DAenp.

(3) = (1) : Pick p € 8S and a neighborhood U of f(p). By regularity of X
there exists an open neighborhood V of f(p) such that V' C U. Let

A={seS:f(s)eV}ep

and pick ¢ € A. Assume for contradiction that f(¢q) ¢ V. By assumption
this yields {s € S: f(s) € X \V} € ¢. But that contradicts A € g since q is
closed under finite intersections. Thus f[A] C V C U. Since p and U where
arbitrary, we are done. O

11



Definition 1.2.7 Let S be a semigroup. We define an operation .-.: S x
BS — BS by
p-q :p—lim(q—li{ns-t).
§

We will abuse notation and write pg instead of p - ¢ respectively S instead
of (5,) if there is no danger of confusion.

Definition 1.2.8 Let S be a semigroup and let s € S. The left translation
As and the right translation p; are the maps

A :BS — pBS ps:BS — pBS
t — st t —  is.

Theorem 1.2.9 Let S be semigroup. Then (8S,-) is a semigroup such that
the maps As : BS — (S, pg : SB — BS are continuous for s € S and g € BS.

proof: By Theorem 1.2.5 A; : 35S — S is continuous since it is the contin-
uous extension of As; : S — BS. Similarly p, : 8S — (S is continuous since
it is the continuous extension of p, : S — S8S.

It remains to show that .-.: 85 x S — S is associative. Let p,q,r € GS.

p-(g-r) = (since p,., is continuous)
lims-(¢g-r) = (since As o p, is continuous)
s—p
limlims-(¢t-r) =  (since A; o A is continuous)
s—pt—q
limlimlims- (t-u) = (since .- . is associative)
s—Hpltogqu—r
limlim lim(s-t) -4 =  (since As: is continuous)
s=pltoqu—or
lim lim(s-¢)-r =  (since p, o A, is continuous)
s—=pt—q
lim(s-q)-r = (p-q)- 7 (since p, o p, is continuous).
S—p

O

Remark 1.2.10 For p € BS\ S the map Ay : BS — BS, r — pr is not
continuous in general.

A(BS)={pe€BS: A :0S— BS is continuous}

is the topological center of 8S. By Theorem 1.2.9, S C A(BS).
If S is a commutative semigroup, then for all s € S and p € BS

sp::p—li{nst=p—li{nts = ps

and this shows that S is also contained in the algebraic center of 8S

12



In fact it is not hard to see that the topological center of BS coincides with
the algebraic center of BS if S is commutativ ([HS98], Theorem 4.24). In
the cases (S, ) = (N,+) and (S,-) = (N,-) we have A(BS) = S ([HS9S],
Theorem 6.54).

The following notation is an abbreviation that appeals to the readers intu-
ition.
Definition 1.2.11 Let S be a semigroup, let s € S and A C S. Then put

sTIA = XAl = {te S:ste A},
As™l = p7lAl={te S:tse A}
If S is a group this coincides with the usual definition of s7' A4 and As~!.

A concrete Characterisation of the multiplication in S is given in the fol-
lowing Theorem:

Theorem 1.2.12 Let S be a semigroup, let s € S, let p,q € BS and let
ACS. Then

Acsg < s lAey,
Acpg — {seS:s'Aeq}ep.

proof;
Acsqg & sqge A
& 3dBe€gq,sBCA (since A is continuous)
& 3dBeq,sBCA  (since A\B] = As[B))
& sT'Aeq (by the filter properties of ¢),
and
A€pg & pge A
& 3Bep,BgCA (since pq is continuous)
& 3Bep,BgCA (since py[B] = pe|B})
& {s:sqge A} €p (by the filter properties of p)
& {s:s"'Aeq}ep.
O

It is convenient to know that homomorphism behave like we would expect
them to do:

Theorem 1.2.13 Let S,T be semigroups and let f : S — T be a homomor-
phism. Then the continuous extension f : S — BT is also a homomor-
phism.

13




proof: Let p,q € 8S. Then

flpg) =  flp—lim,q — lim, st)
= p—limg(q — lim, f(st))
= p-—limg(q —lim; f(s)f(¢)) = Ff(p)f(q).

1.3 The algebraic structure of compact semigroups

We may not expect that a general given semigroup S has interesting al-
gebraic properties, but its Stone-Cech Compactification in fact does. The
reason lies in the additional topological structure.

Definition 1.3.1 S is a compact right topological semigroup if S is a com-
pact space such that the map

pg:S —= S
T = 1q

is continuous for all ¢ € S.

Remark 1.3.2 The source of the name “right topological semigroup” is of
course that the multiplication from the right is continuous. On the other
hand the multiplication is continuous in the left argument which would in-
dicate to talk about “left topological” semigroups. Furthermore there is no
good reason why we shouldn’t take Ag instead of pg to be continuous. So
since there are four ways - all of them common in the literature - to handle
the subject, there is plenty of space for confusion.

Our choice (as well as most of our notation) is stimulated by [HS98] which
is probably the main source for applications of ultrafilter lore in Ramsey
Theory.

If S is a semigroup, 85 is a compact right topological semigroup by Theorem
1.2.5 and Theorem 1.2.9.

Ideals respectively left or right ideals are trivial in groups but turn out to
be very interesting concepts in compact right topological groups.

Definition 1.3.3 Let S be a semigroup. We call I C S
(1) a left ideal o ST C I,
(2) a right ideal if IS C I,

(3) an ideal if I is a left ideal as well as a right ideal.
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I is o minimal left ideal if it doesn’t properly contain another left ideal.
Minimal right ideals are defined similarly.

Theorem 1.3.4 Let S be a compact right topological semigroup. Then S
has a minimal left ideal L. All minimal left ideals are closed.

proof: Let £ be the set of all closed left ideal ideals in S. If K is a chain in
L then by compactness of S, ()¢ L is a lower bound of K in £. By Zorn’s
Lemma there exist a left ideal L which is minimal in L.

Assume that I is an arbitrary left ideal in S. Pick s € I. Then Ss is a
left ideal which is contained in I. Further Ss is closed by continuity of
ps + S — S. This shows that every left ideal contains a closed left ideal.
Hence L is minimal among all left ideals of S. [

Definition 1.3.5 Let S be a semigroup. e € S is called an idempotent if
ee = e. The set of all idempotents of S is denoted by E(S).

Theorem 1.3.6 Let S be a compact right topological semigroup. Then there
ezists an idempotent e € S.

proof: Let P = {M C S : M is closed, non empty and MM C M}. P is
non empty since S € P. Furthermore P is partially ordered by inclusion and
every chain K in P has the lower bound (), M. Thus by Zorn’s Lemma
there exists a minimal element My € P. Let e € My be arbitrary. By
continuity of pe, Mye is closed. Moreover (Mpe)(Mope) C MyMoMoe C Mye
and Mpe C My. Thus we have Mye = My by minimality of My. In particular
M, = {z € My : ze = e} is non empty. M; is closed and for z,y € My,
(zy)e = z(ye) = ze = e. so M, is a closed subgroup of My and again by
minimality of My equality holds. This yields ee = e. O

Since any minimal left ideal in a compact semigroup is closed it contains an
idempotent. In particular any compact semigroup S has a minimal left ideal
that contains an idempotent. Later (in particular in Theorem 1.3.17) we will
see that this condition guarantees that S has a rich algebraic structure.

Lemma 1.3.7 Let S be a semigroup and let e € E(S). Then e is a right
neutral element in Se, i.e. ze = e for all x € Se, a left neutral element in
eS and a neutral element in eSe.

proof: Let y € S. Pick z € S such that ze = y. Then ye = (ze)e = z(ee) =
ze = y. The rest follows by a left - right switch. O

Theorem 1.3.8 Let S be a semigroup that has a minimal left ideal L. Pick
s € 8. Then Ls is also a minimal left ideal. Every minimal left ideal is of
the form Ls for some s € S.

Furthermore every left ideal in S contains a minimal left ideal.
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proof: Let s € S be arbitrary. Then Ls is a left ideal. Let I C Ls be a left
ideal of S and put J = {z € L:zs € I}. Fort € S and z € J we have
tx € L since L is an ideal and tzs € I since I is a left ideal. Thus tz € J.
t and z were arbitrary, so J is a left ideal and by minimality of L we have
J = L. In particular I O Js = Ls, so I = Ls. This shows that Ls is in fact
a minimal left ideal.

Next let I be a minimal left ideal of S. Pick s € I. Then Ls is a left ideal
that is contained in I so we must have I = Ls.

If I is not necessarily minimal then Ls is at least a minimal left ideal that
is contained in 7. [J

Theorem 1.3.9 Let S be a semigroup and let e € E(S). Then the following
statements are equivalent.

(1) Se is a minimal left ideal.
(2) eSe is a group.
(3) Se is a minimal right ideal.

proof: (1) = (2): Trivially eSe is closed and by Lemma 1.3.7 e is a neutral
element in eSe. Let x = ese € § be given. Then Sz C Se is a left ideal of
S, so Sz = Se. In particular there exists y € S such that yz = e. eye € eSe
and (eye)z = eyeese = ey(ese) = eyr = ee = e, thus z has an inverse in
eSe.

(2) = (1): Let L C Se be a left ideal of S and pick ¢t € L. Then et € eSe, so
pick z € eSe such that z(et) = e. But then e = (ze)t € SL C L, so Se C L.
Since L was arbitrary Se is a minimal left ideal of S.

Now (2) < (3) follows by a left - right switch. O

Corollary 1.3.10 Let S be a semigroup that has a minimal left ideal that
has an idempotent. Then S has a minimal right ideal that has an idempotent.

proof: Let L be a minimal left ideal that contains an idempotent e. Then
Se = L is a minimal left ideal, so by Theorem 1.3.9 eS is a minimal right
ideal that contains an idempotent. (O

Corollary 1.3.11 Let S be a semigroup that has a minimal left ideal that
contains an idempotent. Then every left ideal has an idempotent.

proof: Let L be a minimal left ideal that contains an idempotent e (i.e.
L = Se), let I be an arbitrary left ideal of S and by Lemma 1.3.8 let z € S
such that I O Lz. By Theorem 1.3.9 eSe is a group so let y = eye be the
inverse of exe in this group. Then

yzyzr = (eye)z(eye)z = e(y(exe))yer = eeyex = yz,
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so yz is an idempotent in 1. [

Definition 1.3.12 Let S be a semigroup. The kernel of S is defined by
K(S)= ﬂ{I : I is an ideal of S}.

Many common semigroups such as (N, +) and (N,-) have a trivial kernel.
An easy condition assures that the kernel of a semigroup is non trivial, in
fact that it is the smallest ideal of the semigroup.

Theorem 1.3.13 Let S be a semigroup that has a minimal left ideal. Then
K(S) = U{L : L is a minimal left ideal of S}.

Furthermore this union is disjoint and K(S) is an ideal of S.

proof: Put K’ = |J{L : L is a minimal left ideal of S}. Since the intersec-
tion of two left ideals is either empty or a left ideal, the defining union is
disjoint.

Let L C S be a minimal left ideal and let I C S be an ideal. Since [ is a
left ideal IL is also left ideal. 7L is contained in L, so IL = L. Since I is a
right ideal L = IL C IS C I. I and L were arbitrary, so K(S) 2 K'.

To conclude the proof, we show that K’ is an ideal. It is obvious that K’ is
a left ideal. Thus let z € K’ and y € S. Let L be a minimal left ideal such
that z € L. By Lemma 1.3.8 Ly is a minimal left ideal, so zy € Ly C K.
a

Theorem 1.3.14 Let S be a semigroup, let L C S be a minimal left ideal
and let R C S be a minimal right ideal. Then RL = RN L is a group and

its neutral element e is an idempotent. Further we have the representations
L =Se,R=¢S and RL = eSe.

proof: Since L is a left ideal RL C L. Similarly RL C Randso RL C RNL.
We have

(RL)(RL) = R(LRL) C RL,

so RL is a subsemigroup. For each s € L we have Ls = L by minimality of
L. Analogously sR = R for s € R. This shows

sRL = RLs = RL

for s € RL. Thus RL has no non trivial left - or right ideal. At this point
we need the following well known Lemma:

Lemma 1.3.15 Assume that S is a semigroup that contains no non trivial
left- or right ideal. Then S is a group.

17




proof: Let s,t € S. Since St = § = ¢S, there exist e,7 € S such that et = ¢
and s = tr where e only depends on t. We have

es = e(tr) = (et)r = tr = s.

It follows that e is a left neutral element. Similarly one shows the existence of
aright neutral element ¢’ and of course e = ee’ = €', s0 e is a neutral element.
As above one sees that for arbitrary s € S the equations sz = e, zs = e have
a solution, so S is indeed a group. O

By the lemma RL is a group. Let e be its neutral element. Again by
minimality of L respectively R we have Se = L, eS = R. Thus

RL =eSSe CeSe C Re C RL.
This shows RL = eSe. Finally we have
RNL=eS5NSeCeSe=RL,

so RNL=RL. 0O

Corollary 1.3.16 A semigroup S has a minimal left ideal that contains an
tdempotent iff it has a minimal left ideal and a minimal right ideal.

proof: This follows from Corollary 1.3.10 and Theorem 1.3.14. 0O

Theorem 1.3.17 (Structure Theorem) Let S be a semigroup that has a
minimal left ideal that contains an idempotent.

(1) The minimal left ideals are exactly the sets of the form Se for e €
E(K(S)). All minimal left ideals are isomorphic.

(2) The minimal right ideals are ezxactly the sets of the form eS for e €
E(K(S)). All minimal right ideals are isomorphic.

(3) Sets of the form eSe for e € E(K(S)) arise ezactly as the intersections
LN R = RL. These sets are the mazimal groups in K(S) and all
mazimal subgroups in K(S) are isomorphic.

(4) The kernel of S is the disjoint union of all minimal left ideals of S
respectively of all minimal right ideals of S respectively of all mazimal
groups in K(S):

K(S) = U{L : L is a minimal left ideal of S}
= U{R : R is a minimal right ideal of S}
= | J{eSe:e e E(K(S))}.
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proof: Let G C K(S) be a group. Then its neutral element e is an idempo-
tent, so G = eGe C eSe. This shows that the maximal groups in K(S) are
of the form eSe. Now everything but the isomorphism statements follows
directly from other propositions in this section. For a complete proof of the
Structure Theorem see for example [HS98], Theorem 1.64. O

Under reasonable assumptions it is easy to determine the smallest ideal of

a subsemigroup of a given semigroup:

Theorem 1.3.18 Let S be a semigroup, let T be a subsemigroup of S, as-
sume that both of them have a minimal left ideal that contains an idempotent
and that TN K(S) #0. Then TN K(S) = K(T).

proof: T'N K(S) is an ideal of T, so we have to show that it is the smallest
one. Let z € T N K(S) be given. Tz is a minimal left ideal of T', so pick
an idempotent e € Tz such that Te is a minimal left ideal of T. Since
z € K(S), Sz is a minimal left ideal of S and e € Tz C Sz. Thus Sz = Se,
so z € Se. e is a right neutral element of Se, so z = ze € Te. Since Te is a
minimal right ideal of T' we are done. [0

Theorem 1.3.19 Let S be a semigroup that has a minimal left ideal that
contains an idempotent and let s € S. Then the following statements are
equivalent:

(1) s € K(95).
(2) Forallt€ S, s€ Sts
(3) Forallt€ S, s € StsNstS

proof: (1) = (3): s € L for some minimal left ideal L. Sts is a left ideal
that is contained in L, so Sts = L and in particular s € Sts. Now s € stS
follows by a left right switch.

(3) = (2) is clear.

(2) = (1): Pick t € K(S). Then s € Sts C K(S). O

We may define different orders on E(S). Despite they will not coincide in
general, they do have the same minimal elements.

Definition 1.3.20 Let S be a semigroup and let e, f € E(S). Then
(1) e <y [ iffe=ef,
@) e<nfiffe=fe
() esfife=ef = fe

The relations <, <g, < are transitive and reflexive. < is also antisymmetric.
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Theorem 1.3.21 Let S be a semigroup and let e € E(S) The following are
equivalent:

(1) e is minimal with respect to <f.
(2) e is minimal with respect to <g.
(3) e is minimal with respect to <.

It is important to make precise what we understand by minimality with
respect to <y and <g: e € E(S) is minimal with respect to < iff for
f € E(S), f <r eimplies that e <y f. (Similarly for <pg.)

proof: (1) = (3) : Assume that e is minimal with respect to <y and let
f <e(ef = fe=f). Then f < e which implies e <, f, i.e. e = ef, so
e=f.

(3) = (1) : Assume that e is minimal with respect to <. Pick f € E(9)
such that f <y e (f = fe.) Let g = ef. Then

g9 =efef=eff=ef =g,

so g is an idempotent. Also g = ef = efe which implies

ge =efee=efe=g=-cfe=-cefe = eg,

such that ¢ < e. By minimality of e this gives g = e, i.e. ef = e. Thus
e <1 f as required.
Now (2) < (3) follows by a left-right switch. O

Definition 1.3.22 Let S be a semigroup. e € E(S) is called minimal iff it
1s manimal with respect to any of the orders <p,<p,<.

Theorem 1.3.23 Let S be a semigroup that has a minimal left ideal that
contains an idempotent and let e € E(S). Then the following statements are
equivalent:

(1) e is minimal.
(2) e € K(S).

proof: (1) = (2): We want to show that Se is a minimal left ideal. Let
L C Se be left ideal of S. Pick by Corollary 1.3.11 an idempotent f € L.
Let £ € L such that f = ze. Then fe = zee = ze = f, so f <; e. By
minimality of e, e <p f. Thus we have e = ef € L and this implies L = Se.
(2) = (1): Se is a minimal left ideal. Let f € E(S) such that f < e.
Since f = fe € Se, Se = Sf. Thus f is a right neutral element in Sf, in
particular ef = e. f was arbitrary, so e is minimal. O
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Theorem 1.3.24 Let S be a semigroup that has a minimal ideal that con-
tains an idempotent and let e be an idempotent in S. There exists a minimal
idempotent f < e.

proof: Let L C Se be a minimal left ideal and let R C eS be a minimal
right ideal. Pick f € E(L N R). f is minimal and since e is a right neutral
element in Se and a left neutral element in eS we have f = fe =ef. O

The proof of the following Theorem is easy, so we skip it.

Theorem 1.3.25 Let (S;)ier be a family of semigroups. Then x;crK(S;) =
K(xierSi).

Next we want to show how ideals of a semigroup S behave in the Stone-Cech
Compactification of S. We will need the following Lemma.

Lemma 1.3.26 Let S be a compact right topological semigroup, let A, B
S and assume that for all s € A the function X is continuous. Then A B
AB.

C
c

proof: We use the well known fact that f[X] C f[X] for a continuous map
f:T — T and X C T arbitrary. For arbitrary C C T we have

AC = plA1 € | pelAl = | ] 4c € AC, (1.1)
ceC ceC ceC

AB = |J MBI C | M[B]l= | J aB C 4B. (1.2)
a€A a€A acA

By taking these inclusions together and specifying C' = B weget ABC
ABCAB=4AB. O

Corollary 1.3.27 Let S be a semigroup and assume that I C S is an ideal
of S. Then I is an ideal of BS.

proof: For all s € S, \s : BS — (S is continuous. Thus 73S C IS C T and
BSIC SICI.
d

We conclude this section with some remarks concerning the connection be-
tween compact right topological semigroups and symbolic dynamics:

A dynamical system is a tuple (X, (Ts)ses), where X is a compact space
and S is a semigroup that is acting on X via the continuous functions
Ts: X = X,se€ S If Lisacompact subspace of X we call L a subsystem
iff Ts[L] C L for each s € §. Every point £ € X generates a subsystem,
namely its orbit closure {Ts(z) : s € S}. X is a minimal system iff it has no
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proper subsystem. Equivalently the orbit closure of every point is the whole
space.
Let T be a compact right topological semigroup. Recall that

AT)={s€T: A :T— T is continuous}

is the topological center of T. Clearly A(T') is a subsemigroup. If S is a
subsemigroup that is contained in the topological center, (T, (As)ses) is a
dynamical system. This system has interesting properties if S is dense in 7.

That situation arises in particular if T is the Stone-Cech Compactification
BS of S.

Theorem 1.3.28 Let T be a compact semigroup, let S be a subsemigroup
of A(T) and assume that S is dense in T. The closed left ideals of T are
precisely the subsystems of (T, (As)ses). Moreover L is a minimal subsystem
of (T, (As)ses) iff it is a minimal left ideal of T.

proof: By continuity of py : T — T for t € T, SL C L is equivalent to
SL =TL C L for every closed set L. This shows that subsystems correspond
to closed left ideals. The rest is clear. [

1.4 Connecting algebraic and combinatorial prop-
erties

We shall be concerned with several notions of largeness that originated in
the study of topological dynamics and make sense in any semigroup. Four
of these, namely thick, syndetic, piecewise syndetic and IP set have simple
elementary descriptions and we introduce them now. The fifth, central is
most simply described in terms of the algebraic structure of 85.

Definition 1.4.1 Let S be a semigroup and let AC S.

(a) A is thick if and only if whenever F € P;(S) there exists z € S such
that Fo C A.

(b) A is syndetic if and only if there exists G € P;(S) such that S =
Uec t71A.

(c) A is piecewise syndetic if and only if there exists G € Py(S) such that
for every F € Py(S) there exists x € S such that Fz C e 71 A.

(d) Let (z,)S, be a sequence in S. Then
FP((2n)321) = {&nTny .- Tn, i1 <mg < ...<ng}

(If we write the semigroup operation additively, we will use the symbol
FS((zr)52,) instead.)
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n=

A is an IP set if and only if there ezists a sequence (zn)
that FP((,)32) C A.

1 i S such

In (N, +) the notions described in (a), (b) and (c) have a very intuitive mean-
ing: A C N is thick iff A contains arbitrarily long intervals, A is syndetic iff
it has bounded gaps i.e. iff there exists some d € N such that N\ A contains
no interval of length d. Furthermore A is piecewise syndetic iff there exist a
thick set B C N and a syndetic set C C N such that A = BN C. (Beware:
This does not hold in general semigroups.)

Notice that each of thick and syndetic imply piecewise syndetic and that
thick sets are IP sets. It is easy to construct examples in (N, +) showing
that no other implications among these notions is valid in general. If a
thick or syndetic set is partitioned into finitely many cells, there will not
necessarily be a cell that is still thick respectively syndetic. Piecewise syn-
detic set and IP sets do have this property. In the first case this has an
easy elementary proof, while in the second this was a long open question,
solved by N. Hindman in 1975 ([H75]). Later we will see that these results
follow easily from the characterisation of these terms via the Stone-Cech
Compactification.

Let (S,-) be a semigroup. A family F C P(S) is called left invariant iff for
all F € F and s € S one has sF € F. It is called right invariant iff for all
F € F and s € S one has F's € F and it is called invariant iff it is left and
right invariant.

The following Lemma gives a hint why piecewise syndetic sets will be inter-
esting for our purposes.

Lemma 1.4.2 Set S be a semigroup and let F C P(S) be an invariant
family of finite sets. Then F is partition regular iff for any piecewise syndetic
set A C S there exists F € F such that F C A.

proof: In any finite partition of S one cell is piecewise syndetic. This shows
that the condition is sufficient.

To prove that it is also necessary, let F be an invariant family of finite sets.
By Theorem 1.1.4 for each r € N there exists some finite set G C S such
that for any finite partition of G into r cells one cell must contain an element
of F.

Assume that A C S is piecewise syndetic and let » € N and s1,...,5. € S
such that U, s;'4 is thick. Further let G be a finite subset of S such
that for any partition of G into r cells one cell contains an element of F and
let t € S be such that Gt C |JI_, s7'A. Then G C |JI_, s; ' A¢t™! and thus

there exist 2 € {1,...,r} and F € F such that F C si_lAt‘l. Equivalently
we have s;F't C A and since s;F't € F this suffices to conclude the proof. O

Notice that if S is not commutative, then both multipliers in Lemma 1.4.2
may be required. For example, let S be the free semigroup on the letters a
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and b. Then F = {bF : F € P;(S)} and G = {Fb : F € P;(S)} are partition
regular, aS and Sa are piecewise syndetic, there do not exist ' € F and
z € § with Fz C aS, and there do not exist F' € G and t € S with tF C Sa.
(In fact, aS is syndetic in S.)

Theorem 1.4.3 Let S be a semigroup and let AC S.
(1) A is thick iff there exists a minimal left ideal L of BS such that A D L.
(2) A is piecewise syndetic iff AN K(BS) # 0.

proof:

(1) Assume that A is thick. For all F' € Pf(S) there exists some s € S
such that F's C A. Thus the set Tr = {p € S : Fp C A} is non
empty. The representation Tr = [,y A; ' [A] shows that T is closed.
For F,G € Pr(S),Tr N Te = Trug. This shows that the family
{Tr : F € P;(S)} has the finite intersection property. By compactness
we may pick p € [\;c5Tys}- Then for all s € S, sp € A ie SpCA.
By continuity of p, we also have 5Sp C A. Since 3S contains a
minimal left ideal we are done.

Let L C A be a minimal left ideal and let F' € P;(S). Pickp € L. Then
Fp C L C A Thus Nser s7'A € p. In particular this intersection is
non empty. For every t € (\,cps71A we have Ft C A.

(2) By (1), A is piecewise syndetic iff there exists a minimal left ideal L
and a set G € Py(S) such that L C |J,cq s 4.

Now the statement follows from Theorem 1.4.4 by considering the
dynamical system (8S, (Xs)ses) and the open set A.

O
Theorem 1.4.4 Let (X, (Ts)ses) be a dynamical system, let L be a minimal

subsystem and let O C X be open. If (and only if) ON L is nonempty, there
exists a set F € Pp(S) such that L C U, T; O]

proof: Since L is minimal, {Ts(z) : s € S} = L for all z € L. In particular
there exists some s € S such that Ts(z) € O. This shows L C |J,c5 75 (O]
Since L is compact, there exists a finite subcovering. O

Theorem 1.4.5 Let S be semigroup and let A C S. Assume that L C 8S
is a minimal left ideal that intersects A and let p € L. Then the set {s € S :
s71A € p} is syndetic.

Let g € BS such that {s € S : s™'A € q} is syndetic for all A € q. Then
g € K(BS).
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proof: Pick G € Ps(S) such that L C et ' 4. Let z € S be arbitrary.
Since zp € L there exists some ¢ € G such that zp € t7'A. Thus st € {s €
S : sp € A}. Since z was arbitrary, we have

S = U tHse S:s A€ p}.
teG

Assume now that p is an ultrafilter such that for all A € p the set {s €
S : s7'A € p} is syndetic. Pick ¢ € K(3S) and assume for contradiction
that p ¢ 8Sgp. Pick A € p such that AN BSgp = 0. Pick G € P(S) such
that S = U;eqt™'{s € S : s7'A € p}. Then there exists t € G such that
get {seS:s714 € p}. Thus

{seS:s"'Aep)etqg
which is equivalent to A € tgp.
It follows that p € 8Sqp C K(BS), so we are done. O
Theorem 1.4.6 Let S be a semigroup and let A C S. A is an IP-set iff
there exists an idempotent e € 8S such that A € e.

proof: Assume first that there exists an idempotent ¢ € 45 such that A € e.
Since ee = e we have {s € §:s7!A € e} € e. Pick

r1€EAN{s€S:s'A€e} ce.
Then A; = ANaz]'A € e. Next pick
T9€AN{seS:s1A €e}€e

Then zo € A and since 29 € A; C acl_lAl we have z1z9 € A.
Let Ay = A1 N m{lAl € e. Pick

z3€ AsN{seS:s A€} €e.
Then since z3 € Ay, 23 € A; and z9z3 € A;. It follows that
T3,T1Z3,T2T3, T1T223 € A.

Next put Az = Ay ﬂ:cglAz €e. ...

By continuing in this fashion we arrive at a sequence (z,)5.; such that

On the other hand assume that (z,)S2; is a sequence in S that satisfies
FP((zn)pz1) € A. For m € N put A, = FS((zn)5%,,) and let B =

N1 Am. By compactness of 35S, B is non empty. We claim that B is a
subsemigroup of 8S. Let p,q € B and pick C € pg and mg € N. Then

25




{s:571C € q} € p and A, € p, so pick n1,na,...,n, such that my < ny <
ng < ... < ng and

(Hle a:m> ! Ceq.

An, 41 € g, so pick ny,nb,...,n}, such that ny <nj <n) <...<nj, and

k' k -1
ITy=1 S (Ht:lznt> C.

This shows that C N A, # 0. Since mg € N was arbitrary we get C N B #
0. Since C € pq was arbitrary, it follows that pg € B, so B is indeed a

subsemigroup. Clearly B is closed, so there exists an idempotent e € B. By
definition of B, A €e. O

Corollary 1.4.7 (Hindman’s Theorem [H75]) (1) Assume that N is
finitely colored. There exists a monochrome additive IP set.

(2) Let S be a semigroup and let A be an IP-set in S. Assume that A is
finitely coloured. Then there exists a monochrome IP-set.

proof: Clearly (1) follows from (2). To prove (2), by Theorem 1.4.6 let
e € A4S be an idempotent such that A € e. Pick a monochrome set B C A
such that B € e. Then again by Theorem 1.4.6 B is an IP set. O

Definition 1.4.8 Let S be o semigroup and let A C S. Then A is central
iff there is a minimal idempotent e of BS such that A € e, i.e. iff AN
E(K(B8S)) # 0.

A central set is in particular a piecewise syndetic IP-set. Given a minimal
idempotent p and a finite partition of S, one cell must be a member of p,
hence at least one cell of any finite partition of S must be central.

If B C S is a thick set, B contains minimal left ideal and in particular a
minimal idempotent. Thus B is central.

If C C S is piecewise syndetic, there exists some minimal left ideal L C S
such that L N C # 0. Pick a minimal idempotent e € L. By Theorem 1.4.5
{s € §:s7IC € e} is syndetic. Thus there exist in fact many s € S such
that s~!C is central.

Central sets are fundamental to the Ramsey Theoretic applications of the
algebra of BS. Central subsets of Z were introduced by Fiirstenberg [F81]
using a different but equivalent definition.
Depending on the context it might or might not be appropriate to work with
the semigroup (w,+) instead of (N, +). It is convenient to know that they
have essentially the same central subsets:
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Lemma 1.4.9 A C w is central in (w,+) iff A\ {0} is central in (N, +).
More generally let k € N. Then C C W' is central in (w,+)F iff CNNF is
central in (N, +)*.

proof: The crucial fact behind Lemma 1.4.9 is that N¥ and w* have the same
minimal idempotents:

We will identify ANF with N C Bw®. NF is an ideal of w*, thus N* is an
ideal of fw* and in particular K (Bw*) C V. So by Lemma 1.3.18

K (N’“) - K (ﬂw’“) NN =k (ﬁwk) .

In particular e is a minimal idempotent in Sw* iff it is a minimal idempotent
.k
in N". Hence

CnE <K (,Bwk)) #0< CNE (K (Nk)) £0 e CNNENE (K (Nk)) £ 0.

The following Theorem (which generalizes van der Waerden’s Theorem) and
its proof are new, but we remark that Theorem 1.4.10 also follows from
[BHO1]. In the case that § = (N, +) a very similar Theorem (where central
is replaced by piecewise syndetic) was shown by Flrstenberg and Glaser in
[FG98].

Theorem 1.4.10 Let S be a commutative semigroup with identity 1, let
A C S be central and let k € N. The set {(b,r) : b,br,...,br* € A} is
central in S2.

proof: Ax {1} is central in §x {1}, so pick an idempotent e € § x {1} C 552
that is minimal in the subgroup S x {1} such that A x {1} € e. Pick a
minimal idempotent ¢ € 852 such that g < e. For4 € w put §;(b,7) = (brt, 1)
for b, € S and denote its continuous extension 3S? — S x {i} by the same
symbol. Note that 6; is a homomorphism. Thus 6;(¢) is an idempotent and
it follows directly from the definition of < that 0;(q) < 0;(e) = e. Since e is
minimal in S x {1}, 6;(¢) = e. We have

k
{(b,r) € S%:br' € A} = [{(b,7) € §%: 6i(b,) € A x {1}}
=0

and by Lemma 1.2.6 each set in the intersection on the right side is contained
ing. O

Corollary 1.4.11 Let A CN be central in (N, +) and let k € N. The set

{(a,d) eN:qg,a+d,...,a+dk € A}
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is central in (N, +)2.
In particular for any finite coloring of N there ezist a,d € N and a monochrome
set A CN such that

{a,a+d,...,a+dk} C A.

proof: The main statement follows directly by Theorem 1.4.10 applied to the
semigroup (w, +) if one takes into account that (N, +) and (w, +) respectively
(N, +)? and (w, +)? have essentially the same central sets by Lemma, 1.4.9.
The ‘in particular’ statement follows immediately. O

1.5 Abundance of partition regular structures in
large sets

Often when we establish the existence of a certain structure or some element
we find that in fact there are a lot of possible choices. (I.e. “ultrafilter”-
many choices)

Our proofs of the Theorems of Hindman and van der Waerden are strong
witnesses for this principle.

In this section we somewhat turn the tables in the sense that we use well
known partition result to establish that strengthenings that guarantee many
of these structures are also valid.

Put
10
11
¢= 1 2
1 3

Then van der Waerden’s Theorem for arithmetic progressions of length 4
states that for any finite colouring of N there exist a monochrome set C' and
a vector (a,d) € N2 such that C(a,d)T C C%.

Matrix multiplication makes perfect sense when we restrict our attention to
commutative semigroups (S, +) that possess an identity 0 and we shall do
SO.

Definition 1.5.1 Let (S, +) be commutative semigroup with identity 0 and
let u,v € N. A u xv matriz C with entries from w is called image partition
regular over (S,+) iff whenever 1 € N and S = |J]_; Ai, there exzist i €
{1,2,...,7} and £ € (S\ {0})” such that all entries of CZ are in A;. (We
shall use the custom of denoting the entries of a matriz by the lower case
of the same letter whose upper case denotes the matriz, so that the entry in
row i and column j of C is denoted by c; ;.)

Tightly connected with image partition regular matrices is the notion of a
first entries matrix:
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Definition 1.5.2 Let u,v € N and let C be a u X v matriz with entries
from w. C is a first entries matriz iff no row of C is 0 and for all 3,5 €
{1,2,...,u} and all k € {1,2,...,v}, if k = min{¢ : ¢;; # 0} = min{¢ :
cjt # 0}, then ik = cji.
c € w is called a first entry of C iff it is the value of the first non vanishing
entry in some row of C.

In the formulation of the next Theorem another notion of largeness in semi-
groups, namely central* will important. A set B C S is called a central*
set if it intersects any central set of S. Central* sets have many interesting
properties and we want to mention some of them: Assume that e € 85 is a
minimal idempotent and that S\ B € e. This makes S\ B a central set which
contradicts the definition of B, so we must have B € e. Thus B is contained
in every minimal idempotent in 3S, i.e. in symbols E(K(3S)) C B. It is
easy to see that this property characterizes central* sets. Furthermore, it
immediately gives that the intersection of finitely many central* sets is a
central* set.

Since every thick set contains a central set, B intersects any thick set. For
example in (N, +) or in (w, +) this is tantamount to saying that B is syndetic.
We want to give an important example of a central* set in (w,+): Let
kE € N. It is an easy exercise that for any sequence (z,)S%, of positive
integers, F'S((zn)3%,) Nkw # 0. Thus kw intersects all IP sets. All central
sets are IP sets, so kw intersects in particular all central sets. Thus kw is
central*. This example is particularly important for the following theorem.
It yields that in the case (S,+) = (w,+) every first entry ¢ of C has the
property that ¢S is central*.

Theorem 1.5.3 Let (S, +) be an infinite commutative semigroup with iden-
tity 0, let A C S be central, let u,v € N and let C € w**Y be a first entries
matriz. Assume that for each first entry ¢ of C, ¢S is central*. Then there
exists £ € (S\ {0})Y such that CZ € A“. In particular C is tmage partition
reqular.

proof: See [HS98], Theorem 15.5 and Corollary 15.6. O

As an example for the usefulness of Theorem 1.5.3 we show how it yields a
nice strengthening of van der Waerden’s Theorem: Let (S, +) be a commu-
tative semigroup with identity 0.

01
10
C=(11
1 2
13

is a first entries matrix. All first entries are 1 and since 1-S = S is clearly
central* we may apply Theorem 1.5.3 to the matrix C.
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Thus for any central set A C S there exist a,d € S\ {0} such that {d,a,a +
d,a+2d,a+3d} C A. In the same way we see that any central set contains
arbitrarily long arithmetic progressions together with the step length of these
progressions.

The following theorem shows that concerning the semigroup (w,+) there
is not much difference between the main statement and the “in particular”
statement in Theorem 1.5.3 and that whenever a matrix is image partition
regular, there exists a first entries matrix that is responsible for it.

Theorem 1.5.4 Let u,v € N and let C € Q¥*Y. The following are equiva-
lent:

(1) C is image partition regular over (w,+).

(2) There exist m € N and D € w“*™ such that given any § € N™ there
ezists some T € NV such that CZ = Dy.

(3) For each central set A C w exists T € NY such that CT € A™.

proof: [HS98], Theorem 15.24 O

Theorem 1.5.5 Let (S,+) be a commutative semigroup with identity 0, let
A C S be central, let u,v € N and let C € w**Y. Assume that for each central
set B C S there ezxists ¢ € SY such that CZ € B*. Then {z € S¥ : CZ € A%}
s central in S”.

proof: Let e € 3S be a minimal idempotent such that A € e. Let ¢ :
BSY — (BS)* be the continuous extensions of the map that corresponds to
the matrix C. Let M = {p € BSY : ¢(p) = (e,...,e) € (8S)*}. For each
B € e there exists g € SY such that ¢(Zp) € B*. By passing to a limit we
obtain that M is non empty. Furthermore M is a closed subsemigroup of
BSY. Let ¢ be an idempotent that is minimal in M and let p € 8S* be an
idempotent such that p < g. Observe that ¢(p) < ¢(q) = (e,...,e). Since
K((BS)*) = (K(BS))Y, (e,...,e) is minimal in (4S)*. Thus by minimality
of (e,...,e), ¢(p) = (e,...,e). Thus p € M and so p = q. This shows that g
is minimal in #S*. By Lemma 1.2.6 continuity of ¢ implies {Z € S*: ¢(Z) €
A’} € g. Thus

{(feS*:CFTe A} =8"n¢ A € q.
]

Together with Theorem 1.5.3 Theorem 1.5.5 yields a nice generalisation of
Theorem 1.4.10:
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Theorem 1.5.6 Let (S,+) be a commutative semigroup with identity 0, let
A C S be central and let k € N. The set

{(a,d) : a,a +d,...,a+dk,d e A}
is central in (S, +)2.

proof: In the case £ = 3 use the matrix C defined above to show that every
central set B C S contains a configuration of the type {a,a + d,a + 2d,a +
3d,d}. Then the claim follows directly by Theorem 1.5.3. If k is bigger (or
smaller) then 3, one has to add (or remove) some rows of the matrix C first.
a

Another way to characterize sets of the form {d,a,a + d,a + 2d,a + 3d} is
to ask for the elements of the kernel of the matrix

11 -1 0 0
D={t10 1 -1 0
10 0 1 -1
This approach leads to the following definition:

Definition 1.5.7 Let u,v € N. A matriz C € Z**? is called kernel parti-
tion regular iff for any finite colouring of N there exist a monochrome set A
and £ € AY such that CZ = 0.

Rado’s Theorem [R33] gives an explicit method (which we will not describe
here) to determine whether a given matrix C is kernel partition regular.
We want to remark that kernel partition regular matrices are also linked
to central sets: By [HS98], Theorem 15.16 a matrix C € Z"*? is kernel
partition regular iff for each central set A C N there exists £ € AY such that
Cz=0.

Theorem 1.5.8 Let u,v € N and let C € Z** be kernel partition regular.
Assume that A is central in (w,+). Then {x € AY : CZ = 0} is central in
the semigroup {z € w’ : CZ = 0}.

proof: Let e € 8S be a minimal idempotent such that A € e. Let ¢ :
BSY — (BS)" be the continuous extension of the map that corresponds to
the matrix C and for i € {1,2,...,v} denote by m; : S* — S the projection
onto the i-th coordinate respectively its continuous extension. Let

M = {p € BS": ¢(p) = 0,m(p) = ma(p) = ... = my(p) = e}.

For each B € e there exists £g € BY such that ¢(Zp) = 0. By passing
to a limit we obtain that M is non empty. Furthermore M is a closed
subsemigroup of 3SY. Let ¢ be an idempotent that is minimal in M. Let
E = {p € B5”: ¢(p) = 0}. E is a closed subsemigroup that contains M.

31




Let p € F be an idempotent such that p < ¢g. Then for i € {1,2,...,v},
m;(p) < m(q) = e and by minimality of e, 7;(p) = e. Thus p € M and this
shows that ¢ is minimal in E = {z € SV : CZ = 0}. So

{:EEA”:C§:’=O}={x€5“:Cf:O}ﬂmﬂi—l[Z]Eq.

i=1
O

Note that we may not achieve that {z € A” : CZ = 0} is central in N’: The
set {(d,a,a+d,a+2d,a + 3d) : a,d € N} is not even piecewise syndetic in
NS,

Let £ € N. From [BHO1], Theorem 3.7 it follows that if A C N is ‘large’ then
{(a,d) € N?: {a,a+d,...,a+kd} € A} is ‘large’ in N2, where ‘large’ is any
of the notions piecewise syndetic, central, central*, PS*, IP*. We want to
investigate this question for the set {(a,d) € w?: {a,a +d,...,a + kd,d} €
A} or more generally for the set {Z € S* : CZ € A}, where (5,+) is a
commutative semigroup with identity 0 and C € w"*? is a matrix which
satisfies reasonable conditions.

We have already defined the notion of a central® set. IP* sets and PS* sets
are defined similarly: B C S is an IP* set iff B intersects any IP set in S,
C C S is a PS* set iff it intersects any piecewise syndetic set in S. As with
central® sets, it is easy to see that IP* sets are characterized by the property
that their closures contain E(8S) and that C is a PS* set iff C 2O K(3S5).
Thus IP* sets and PS* set are closed under finite intersections. Furthermore
if B is an IP* set and C is a PS* set then BNC 2 E(8S) N K(BS) D
E(K(BS)), so BN C is central*. We have already seen that in w for each
k € N, kw is central*. The proof given there shows in fact that kw is even
IP*.

2N + 1 is syndetic, but doesn’t contain any configurations of the form
{a,d,a + d},a,d € N. Thus ‘syndetic’ and ‘piecewise syndetic’ are not
promising notions of largeness in the sense of the following theorem.

Theorem 1.5.9 Let (S,+) be a commutative semigroup with identity 0. Let
u,v €N, let AC S and let C € w**Y be any matriz.

(1) If A is IP* in S then {Z € SV : CZ € A%} is IP* in S™.

(2) Let ‘large’ be any of the terms ‘central’, ‘central*’, ‘PS*’ and let C be a
first entries matriz such that for each first entry ¢ of C, ¢S is central*.
If A is large in S then {Z € SY : CZ € A%} is large in S™.

proof: Denote by ¢ : 3SY — (BS)* the continuous extension of the map
induced by C.
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(1)

(2)

Since ¢ is a homomorphism, it maps idempotents to idempotents. Let
e € BSY be an arbitrary idempotent. Then A" is a neighborhood of
¢(e). By continuity (we are again using the characterisation given in
Lemma 1.2.6) of ¢,

(feS':CTecA}={TeS": ¢p(@)cA}ee
so we are done.

For ‘large’=‘central’ (which is the most difficult part) this follows The-
orem 1.5.3 and Theorem 1.5.5.

$[BS"] is a compact subgroup of (8S)* and ¢[K(8SY)] = K($[3S"]).
It follows from Theorem 1.5.3 and the proof of Theorem 1.5.5 that for
each minimal idempotent e € 35 there exists a minimal idempotent
g € BSY such that ¢(q) = (e,...,e) € K((8S5))*. It follows that

P[BS°IN K((BS)"*) = ¢[BS*] N (K(BS))* # 0.
Thus by Theorem 1.3.18
P[K(BSY)] = ¢[BS"] N (K (BS))".

Assume now that A is a PS* set and pick p € K(8SV). Then A" isa
neighborhood of ¢(p). By continuity of ¢,

(eS8’ :CTec A}y ={Ze S": ¢(&) € A"} ep.

Since p was arbitrary, {Z € SV : CZ € A"} is indeed PS*.

The proof in the case ‘large’=‘central*’ is similar.
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Chapter 2

Geoarithmetic Progressions

In section 1 we give some motivation for the intended results. In particular
we review some results of V. Bergelson from [Beri]. This seems to be the first
paper that focuses on so called geoarithmetic progressions in large subsets
of N and was a starting point for our research.

In the next section we discuss various versions of van der Waerden’s The-
orem, observe some interactions between them and derive some immediate
corollaries in the direction of geoarithmetic progressions. Sections 3 and
4 are dedicated to more sophisticated ways of deriving joint extensions of
known partition result. While section 3 concentrates on methods that are
applicable to general semigroups, the theorems of the last section are more
specialized for applications in N.

To deliver some feeling why ultrafilters might be useful to link different
partition results, we want to state a very simple result in this direction:

Theorem 2.0.1 Let S be a semigroup, let F and G be partition regular
families of subset of S and assume that F or G consists of finite sets. Then
{FG:F e F,Ge€ G} is partition reqular.

proof: Without loss of generality we may assume that F consists of finite
sets. Let p,q € (S be such that every element of ¢ contains a member
of 7 and that every element of p contains a member of G. Assume that
Ay,..., A, is a partition of S. Pick ¢ € {1,2,...,r} such that A; € pq.
Then B = {s: s7'A; € p} € q. Pick F € F such that F C B. Since F is
finite ;¢ t~1A; € q, thus we may pick G € G such that G C MNier t1A;.
Equivalently FG C A4;. O

2.1 Some motivations

Van der Waerden’s Theorem says that whenever the set N of positive integers
is divided into finitely many classes, one of these classes contains arbitrar-
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ily long arithmetic progressions. The corresponding statement about geo-
metric progressions is easily seen to be equivalent via the homomorphisms
b: (N,+) = (N,-) and £: (N\ {1},-) = (N, +) where b(n) = 2™ and £(n) is
the length of the prime factorization of n.

In 1975, Szemerédi [Sz75], showed that any set with positive upper asymp-
totic density contains arbitrarily long arithmetic progressions. (An ergodic
theoretic proof of Szemerédi’s Theorem can be found in [F81].)

In the last chapter we have seen that an appropriate “topological” notion of
largeness behind van der Waerden’s Theorem is piecewise syndeticy.

The density analogon is the notion of positive upper Banach density which
we will use in (N, +) as well as in (N,-):

Definition 2.1.1 Let A C N, let (pn)S2, be the sequence of primes in their
natural order and let F, = {[[im,; pi® : for each i € {1,2,...,n}, a; €
{0,1,...,n}} for n € N. The upper additive Banach density d*(A) and the
upper multiplicative Banach density d¥,(A) are defined by

. . An{ay,...,b .
r) = wp{imenp LTIl gy —on —en} 21
A
dy,(A) = sup {limsup [ AN TPy t(rn)o, € NN} . (2.2)

Clearly any additively or multiplicatively piecewise syndetic set has positive
upper additive respectively upper multiplicative Banach density.

Via a compactness argument, similar to the one given in the proof of The-
orem 1.1.4 it is not hard to see that Szemerédi’s Theorem implies that any
set with positive upper additive Banach density contains arbitrarily long
arithmetic progressions.

It has recently been shown ([Beri], Theorem 1.3) that any set having posi-
tive multiplicative upper Banach density must contain substantial combined
additive and multiplicative structure. That is, geoarithmetic progressions
of arbitrary large order, that is, sets of the following form:

Definition 2.1.2 A geoarithmetic progression (of order k) is a set of the
form {ri(a +id) : 4,7 € {0,1,...,k}} where a,d,k € N and r € N\ {1}.

Another simply stated result from [Beri) is that any multiplicatively large set
contains geometric progressions in which the common ratios form an arith-
metic progression, that is a set of the form {b(a +id)’ : i,j € {0,1,...,k}}.
The apparatus used in modern' density Ramsey Theory is that of Ergodic
Theory in the sense of recurrence theorems in measure preserving systems.
This parallels the important role of symbolic dynamics and the Stone-Cech

1.e. in density Ramsey Theory after the publication of Fiirstenberg’s seminal Ergodic
Theoretic proof of Szeméredi’s Theorem in [F77].
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Compactification of discrete semigroups in the case of partition Ramsey
Theory.

For any partition result one can easily formulate the corresponding density
statement, and it is neither absurd to hope that it is valid. Call a family F
of subsets of N density regular iff any set of positive upper additive Banach
density contains a member of F. For quite a while it was an open question
if every invariant partition regular family of finite subsets of N must in fact
be density regular. (This problem was settled negatively by Kriz [K87] in
1987)

As a matter of fact, density statements are much harder to prove than
partition results. (Van der Waerden’s Theorem was shown in 1932 while
Szeméredi’s Theorem appeared in 1975.) It is quite an exceptional situation
that density theorems serve as motivation to search for (desirable simpler)
proofs of the derived partition statements that avoid the huge machinery
behind the density statements and yield stronger implications.

We want to give some example of what combined additive and multiplicative
structures can be guaranteed to lie in one cell of a finite partition of N: It
was shown in 1975 [H79] that there exist sequences (z,)3%; and (yn)o2,
such that FS((z,)22;) U FP((yn)S%) is contained in one cell, and in 1988
in [BH88] that one cell must in addition contain arbitrarily long arithmetic
and geometric progressions.

To get an idea of the new results we want to establish, consider the following
result, which is a consequence of [Beri]|, Theorem 3.13.

Theorem 2.1.3 Let m,k € N. For each i € {0,1,...,k} let (z;:)32,
and (y;1)52, be sequences in N. Let N = |J7°, A;. Then there exist s €
{1,2,...,m}, F,G € P¢(N), and a,b € N such that

{b (a%—z l‘i,t) . <H yj,t> 11,5 € {0,1,...,k}} C A,
teF teG

Notice that a particular consequence of Theorem 2.1.3 is that one cell of
each finite partition of N must contain arbitrarily long geoarithmetic pro-
gressions. Further, the common ratio  can be taken from FP((y,)5,) for
any prescribed (y,)S2, and the additive increment d can be guaranteed to
be a multiple of some member of FS((z,)%2,) for any prescribed (z,)52,.
To see this, for i € {1,2,...,k} and t € N, let z;; = iz; and vy = ()"
Given F and G as guaranteed by Theorem 2.1.3, let d = b- 3, 74 and
T= HtEG Yt-

We show in Theorem 2.2.9 that one may take F = G in Theorem 2.1.3 and
in Corollary 2.4.12 that one may eliminate b. We show also that one may
not simultaneously take F' = G and eliminate b.

The following consequence of Corollary 2.4.6 (or alternatively of Corollary

2.4.12(c) or Corollary 2.3.9) says that one can always get the additive in-
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crement of a geoarithmetic progression as the initial term of a geometric
progression in one cell of a finite partition of N.

Theorem 2.1.4 Let m € N and let N = | Ji-| A;. Then there exist s €
{1,2,...,m}, a,d € A; and r € As\ {1} such that

{ri(a+1d) : 4,5 € {0,1,...,k}}U{dr? : j € {0,1,...,k}} C 4,.

2.2 Different versions of van der Waerden’s The-
orem

Some experts (e.g. Vitaly Bergelson) think that the Hales-Jewett Theorem
[HJ63] is the “right” version van der Waerden’s Theorem. We need to in-
troduce some notation to state it: Consider some alphabet (i.e. non empty
set) A and let v be a “variable” that is not contained in A. Let W be the
free semigroup of all words over the alphabet A U {v}, denote the subsemi-
group of all words that consist of letters of A by Wy and write W, for the
subsemigroup of all words in which v occurs. The elements of W; are called
variable words.

For each a € A, define 6, : W — Wy by

w(t) ifw(t) €A
a ifw(t)=wv.

bufw)(t) = {

for w € W and t € dom (w). That is, 6,(w) is the result of replacing each
occurrence of v in w by a. Notice that 6, is the identity on Wy hence this
also holds for its continuous extension on SWj.

Theorem 2.2.1 (Hales-Jewett Theorem [HJ63]) Let A be a finite al-
phabet and let Wy = (U=, Ai. Then there ezist i € {1,2,...,m} and a
variable word w € Wy such that

{Ha(w) ra € A} g Al

proof: The proof is similar to our proof of van der Waerden’s Theorem: Let
e € BWy be a minimal idempotent and let A € e. We want to show that
{we W;:6,(w) € Aforall a € A} is central in W.

For a € A we denote the continuous extension of 6, to SW by the same
symbol and remark that 6, : SW — BW, is also a homomorphism. Put
M = {p € BW : 0,(p) = e for all a € A}. Since each 0, is the identity
function on Wy and hence on Wy = Wy, we have e € M. M is a closed
subgroup of SW, so pick a minimal idempotent ¢ € M such that ¢ <e.
We claim that g is minimal in SW. Pick an idempotent p € W such that
p < q. Then 8,(p) < 6.(q) = e for all @ € A. By minimality of e in Wy,
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6.(p) = e and this shows that p € M. So ¢ is in fact minimal. Wj is an
ideal in W, so W is an ideal of BW and hence W, € ¢q. By continuity of 4,
we have 6;1[A4] € g for each a € A and this yields

{weW;:0,(w)e Aforallae A} = ﬂ{wEleﬂa—l(wl)GZ}eq.
a€A

a

(In [BL99] a very strong “polynomial” extension of the Hales-Jewett Theo-
rem is established.)

Applications which we will use later are the following theorems. These
results are well known among afficianados.

Corollary 2.2.2 Let (S,-) be a commutative semigroup, let A be a piecewise
syndetic subset of S, let k € N and for i € {1,2,...,k} let (yin)2, be a
sequence in S. There exist F € Py(N) and b € S such that

{b}u{bﬂyi,t;z‘eﬂ,...,k}} C A.

teF

proof: By the virtue of Lemma 1.4.2 it is sufficient to show that the family
{b} U {bllieryie:i€{1,...,k}} : b€ S, F € Ps(N)} is partition regular.
Let A = {0,1,...,k} and let Wy be the free semigroup on the alphabet A.
Let by € S be an arbitrary, fixed element. Given a word w = lyly---1, of
length n in S, define

fw) =bo 11 Yl t

te{l,?,.‘.,n},lt;éo

if there exists some ¢ € {1,2,...,n} such that {; # 0 and f(w) = by other-
wise.

Consider a partition {41, 4s,...,Am} of S. Then Wy = Uit, f~}{A4] so
pick s € {1,2,...,m} and a variable word w = l1ly---l, (with each [, €
A U {v}) such that {6;(w) : i € A} C f~1[A].

Let F = {t € {1,2,...,n} : I} = v}, let G = {1,2,...,n} \ F and let
b= f(w(0)). Then b]],cpyir = f(w(?)) for i € {1,2,...,k} and thus {b} U
{(bIlicpmie:i€{l,...,k}} C A, O

Theorem 2.2.3 Let (S,) be a commutative semigroup, let A be a piecewise
syndetic subset of S, let B be an IP set in S and let k € N. There exist
be S and r € B such that

{b,br,br?,... brf} C A.
If A is central we may in particular take A = B, such that

{r,b,br,br?, ... ,br¥} C A.
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proof: Let (2,)°%,; be a sequence in S such that FP((z,)32,;) C B. For
i1€{1,2,...,k} and n € N, let y;, = (z,)*. Pick b and F as guaranteed by
Theorem 2.2.2 and let 7 = [],cp .

Any central set is a piecewise syndetic IP set and thus the in particular
statement follows. O

Another simple consequence of Theorem 2.2.2 is a nice multidimensional
version of van der Waerden’s Theorem, namely Gallai’s Theorem.

Before we state and prove this theorem, we want to remark which multidi-
mensional version of van der Waerden’s Theorem we may achieve just with
the use of the one dimensional version: Let k£ € N and put

F = {{(a,0),(a +¢0),...,(a+ kc,0)} : a,c € N},

G = {{(0,b),(0,b+4d),...,(0,b+ kd)} : b,d € N}.

By van der Waerden’s Theorem F and G are partition regular families of
finite subsets w?.

Thus by Theorem 2.0.1 for every finite colouring there exist ' € F and
G € G such that F' + G is contained in a monochrome subset A. I.e. we may
find a,b,c,d € N such that for all 4,5 € {1,2,...,k}, (a +ic, b+ id) € A.
Gallai’s Theorem strengthens this by allowing to take ¢ = d.

Theorem 2.2.4 (Gallai’s Theorem) ? Let k,l,r € N and assume that
Ul_, Ai = Nk, Then there ezist s € {1,2,...,r}, a € NF and d € N such
that

{a+d(z1,...,2x) 1 21,...,z € {0,1,...,1}} C As.

proof: For z1,..., 2z € {0,1,...,l} andn € Nput (5, 2. )m = (Z1,.- ., Tk).
Pick s € {1,2,...,r} such that A, is piecewise syndetic and by Theorem
222 a € A; and F € Pf(N) such that a + 3 ,cp ¥z, .z0) € A for all
z1,...,2x € {0,1,...,1}. Put d = |F|. Since a + Y ,cr ¥, zn)t = &+
d(z1,...,zE) we are done. O

We want to suggest another version of a multiplicative van der Waerden
type Theorem that is nicely connected with Gallai’s Theorem:

Theorem 2.2.5 3 For any k € N and any finite colouring of N there exist
b, € N and a monochrome set A C N such that

{b,27,b3",...,bk"} C A.

2This Theorem was never published by its author. Sometimes it is referred to it as
Grinwald’s Theorem, Griinwald being the original name of the author. During the period
surrounding World War II Grinwald changed his name to Gallei, presumably for fear of
persecution by the national socialists.

A density version of this Theorem can be found in [Beri).
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Theorem 2.2.5 is easily seen to imply the partition regularity of geometric
progressions: Take ky = 2F. Then

(" ie{1,...,k}} 2{b(2) :i€{0,...,k}} = {b(2") : 5 € {0,...,k}}.

Above we mentioned that the partition regularity of geometric progressions
is equivalent to van der Waerden’s Theorem. This is paralleled by the fol-
lowing statement.

Theorem 2.2.6 Theorem 2.2.5 is ‘equivalent’ to Gallai’s Theorem.

proof: Let us first prove Theorem 2.2.5 with the help of Gallai’s Theorem:
Consider a covering Ay, ..., Ay, of N, the map

k
¢:NF o N (z1,...,2) > [] ™
=1

and the induced covering By = ¢~ }[A1],..., By = ¢~ [Ax] of Nk, By Gallai’s
Theorem there exist aq,...,a5,7 € Nand s € {1,...,m} such that

{(a1 + r,a2,...,0x),...,(a1,a2 +7,...,ak),...,(a1,...,ax + 1)} C Bs.

If we write b = [[¥_, 4%, this yields that bi" € A, for i € {1,...,k}.

To see that Gallai’'s Theorem follows from Theorem 2.2.5 let py,p2,ps,. ..
be an enumeration of the primes and for ¢, N € N let

»i(N) = max{z € w: p{|N}.

Consider a covering By,..., By, of w¥, the map ¥ = (¢1,...,9;) : N = wF
and the induced covering A; = ¢ ~![By],..., 4y =9~} [By] of N. Let I € N

!
and n > <Hf:1pi> . By Theorem 2.2.5 there exist s € {1,...,mm} and b,r € N
such that bi" € A for 7 € {1,...,n}. Let a1 = ¥1(b),...,ar = ¥x(b). Then
(@1,...,ak) +r(x1,...,2) € Bs for z1,...,2, € {0,...,1}. O

Gallai’s Theorem provides an easy way to see that in one cell of a finite
partition of N there exist geoarithmetic progressions of arbitrarily high order.
In fact it can do even more for us: If a sufficiently large geoarithmetic
progression is partitioned into finitely many cells, one cell must contain a
large geoarithmetic progression itself:

Theorem 2.2.7 Let k,r € N. There exists K € N such that if a geoarith-
metic progression of order K is partitioned into r cells, then one cell must
contain a geoarithmetic progression of order k.
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proof: By Theorem 1.1.4 there exists K € N such that whenever {0, 1,..., K}?
is coloured with 7 colours, there exist a monochrome set 4 C {0,1,..., K}?
and @ € N2, d € N such that a + d(z1,z2) € A for all z1,25 € {0,1,...,k}.
Let @,d € N and 7 € N\ {1} and consider a partition A;, Ao, ..., A, of

{@+14d)™ : 1,5 € {0,1,...,K}}.

Put ¢(i,5) = (@ + id)7 for (i,5) € {0,1,...,K}. Then there exist s €
{1,2,...,7} and a1,aq,d € N such that (ay,as) +d(z1,22) € ¢71[A,] for all
z1,z2 € {0,1,...,k}. Equivalently

@+ (a1 + di)d)F?*Y = ((@+ a1 dr™) +i(dr*?d)) (7%) € A,
for all 4,5 € {0,1,...,k}. O

Now, as we promised in the introductory section of this chapter, we turn
our attention to an extension of the following result from [Beri].

Theorem 2.2.8 Let m,k € N. For each 1 € {0,1,...,k} let (z:4)32,
and (yi )32, be sequences in N. Let N = |JiL, As. Then there exist s €
{1,2,...,m}, F,G € Pfs(N), and a,b € N such that

{b (HZW) : (H yj,t) i, € {0,1,...,k}} C A,.
teF teG

proof: By [Beri], Theorem 3.13, every set A with d},(A) > 0 contains such
a configuration and for some s, dj,(A;) > 0. O

We shall show in Theorem 2.2.9 that one may take F' = G in Theorem 2.2.8
and in Corollary 2.4.12(a) that the multiplier b may be eliminated. We show
in Corollary 2.4.16, however, that one cannot simultaneously take FF = G
and eliminate b.

Theorem 2.2.9 Let m,k € N. For each i € {0,1,...,k} let (2;4)$2;
and (y;4)32, be sequences in N. Let N = |Ji-, As. Then there exist s €
{1,2,...,m}, F € P¢(N), and a,b € N such that

{ba} U {bla+ X ,cr zit) 11 €{0,1,...,k}} U
{ballicr vje:7 €1{0,1,...,k}} U
{o(a+ X iep mit) - (Tier wi0) 16,7 €{0,1,...,k}} C 4.

proof: Let zx41¢ = 0 and ygy1; = 1 for all £. Let Ag = {0}. Let A =
{0,1,...,k+1} x{0,1,...,k+ 1} and let Wy be the free semigroup on the
alphabet A. Given a word w = [jlp - - - I, of length n in Wy, define

flw) = (1 +Y iﬂm(zt),n) I vra)s-
t=1 t=1
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(It is necessary to add 1 to assure that the range of f lies in N.) Then Wy =
Ui, f~tAs] so pick s € {0,1,...,m} and a variable word w = lyly -+ - Iy
(with each I; € AU {v}) such that {w(c) : c € A} C f~1[A;]. Notice that
s #0.

Let F={te{1,2,...,n}: , =v}andlet G = {1,2,...,n}\F. Leta = 1+
Ytec Tmay),e and let b= [],cq Yny(,),- Then given 4,5 € {0,1,...,k+1},
fw(i,j)) = (a+ ZteF Tig) - b [lier v O

Corollary 2.2.10 Let k € N. For each i € {0,1,...,k} let (z;4)52, and

(Yi,t)52, be sequences in N and let A be piecewise syndetic in (N,-). Then
there exist F' € P;(N) and a,b € N such that

{ba} U{bla+ > cp zit) 1€ {0,1,...,k}} U
{ba]licr vit:J €1{0,1,...,k}} U
{b(a + ZteF xi,t) ’ (HteF yj,t) 1,] € {Oa L... 7k}} CA.

proof: By Theorem 2.2.9 the collection of sets H of the form

H = {ba}uU{bla+>,cp ziz):1€{0,1,...,k}} U
{ba’HteF Yit VAS {Oala ak}} U
{bla + X cr ziy)  (Tlier vip) 14,5 € {0,1,...,k}}

is partition regular, so by Lemma 1.4.2 there is some ¢ € N and some such -
H with tH C A. Replacing b by tb yields the desired conclusion. O

2.3 Combining results in general semigroups

Our first result in this direction (Theorem 2.3.2) replaces r in a geometric
progression by members of any invariant partition regular family of finite
sets.

For that result, one needs to add a multiplier b because one can certainly not
expect to find a set of the form {r, 72} for 7 > 1 in one cell of an arbitrary
finite partition of N; one may assign the members of N\ {z?: x € N\ {1}}
to A; or Ay at will, and then assign z2 to the cell that z is not in, z* to the
cell 2 is not in, and so on.

We start with tuning up our version of van der Waerden’s Theorem 1.4.10:

Theorem 2.3.1 Let S be a commutative semigroup, let A C S be central
and let k € N. The set

{(b,7) € 82 :b,br,...,br* r e A}

is central in S2.
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It is possible to show Theorem 2.3.1 by employing Theorem 1.5.3 (which
we didn’t prove) together with 1.5.5 and playing a little bit with adjoined
identities in case S doesn’t have one. To be self contained we prove the
theorem directly.

proof: Pick a minimal idempotent e € 35 such that A € e. Put 8;(b,r) = br'
and ¢(b,r) =r for i € {0,1,...,k} and b,7 € S and denote the continuous
extensions 3S% — S of these functions by the same symbols. Note that
these functions are homomorphisms. Let

M ={pepS:0(p)=0:(p) =...=0k(p) = d(p) = e}

For each B € e there exist bp,rp € N such that

90(1)3,7“3),91(1)3,7‘3), A ,Hk(bB,TB),(ﬁ(bB,’r‘B) € B

by Theorem 2.2.3. By passing to a limit point, we see that M is not empty.
In fact M is a compact subsemigroup, so pick a minimal idempotent g € M.
We claim that ¢ is minimal in 35%: Let p < ¢ be minimal in 852. Then
#(p) < ¢(g) = e. Since e is minimal we have ¢(p) = e. Similarly 0;(p) = e
for i € {0,1,...,k}. Thus p € M and so by minimality of ¢ in M we have
p = q. Since

T
{(b,r) € S*:b,br,...,br°,r € A} =S N (67 [A]ln¢ ' [A] € ¢
i=0
we are done. [
Corollary 2.3.2 Let S be a commutative semigroup, let F be a partition

reqular invariant family of finite subsets of N, let k € N and let A be central.
Then there exist b € N and F € F such that

Fu{by:je{0,1,...,k} andy € F} C A.

proof: By Theorem 2.3.1 the set M = {(b,r) € 8% : r,b,br,...,br*¥ € A} is
central. The family 7/ = {{z} x F : F € F and z € S} is invariant and
partition regular in S2, thus by Lemma 1.4.2 there exist b € S and F € F
such that {b}x F C M. Equivalently FU{by’ : y € F,j € {1,2,...,k}} C A.
O

Corollary 2.3.3 Let k € N and let A be central in (N,-). Then there exist
a,b,d € A such that

{a,a+4d,...,a+dk}U{bbd,... bd" }U

{bla+id)’ 14,5 €{0,1,...,k}} C A.
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proof: The family F = {{a,a+d,...,a+dk,d} : a,d € N} is invariant under
multiplication in (N,-). Via Theorem 2.2.3 applied to (N, +) one sees that
F is partition regular. So Corollary 2.3.2 applies. [

The following corollary is also a consequence of [Beri], Theorem 3.15. (Our
conclusion is a little bit stronger in the sense that we may also take bd? € A.)

Corollary 2.3.4 Let k € N and let A be piecewise syndetic in (N, ). Then
there exist a,b,d € N such that

{bla +id)?,bd’ : 4,5 € {0,1,...,k}} C A.

proof: The required structure is a multiplicatively invariant portion of Corol-
lary 2.3.3, so Lemma 1.4.2 applies. O

Corollary 2.3.3 naturally extends to commutative rings. First we need the
following Lemma.

Lemma 2.3.5 Let (S,+,-) be a commutative ring* and let G C S be a finite
set. For any finite colouring of S there exist a monochrome set A C S and
a,d € A such that

{a+dg:g9€G}CA

proof: Let A C S be an additively central set. Let (y,)32, be a sequence
in S such that FS((y,)52,) € A. Corollary 2.2.2 applied to the sequences
(9Zn)nen;g € G yields that there exist a € A and F € P¢(N) such that
a+ 3 ,cpgst € Aforall g € G. If we put d = ), x4, the statement
follows. O

Corollary 2.3.6 Let (S,+,-) be a commutative ring, let G C S be a finite
set and let A be central in (S,-). Then there exist a,b,d € A such that

{a+dg:g€GyU{ba?,bd’ : j € {0,1,...,k}}U
{bla+dg) :g€G,je{0,1,...,k}} C A

proof: The family F = {{a +dg : d € G} U {a,d} : a,d € S} is invariant
under multiplication in (S,-). By Lemma 2.3.5 F is partition regular. So
we may apply Corollary 2.3.2. O

We proceed with another Theorem that allows to intertwine different parti-
tion regular structures.

Theorem 2.3.7 Let (S,-) be a semigroup, let F be a set of subsets of S with
the property that each central subset of S contains a member of F, let G be

a partition regular family of finite subsets of S, and let A be a central subset
of S. Then there exist F € F, G € G, and t € S such that F UtGF C A.

‘We call (S, +,-) a commutative ring if (S, +) and (S,-) are commutative semigroups
and - distributes over .
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proof: Pick a minimal idempotent p of 35S with A € p. Then by Theorem
1.45 {s € S:s71A € p} is syndetic so pick H € P;(S) such that

S=Ujey t H{se S:s7 14 ep}.

Pick G € G and t € H such that G C t7'{s € S : s71A € p}. Then for
each s € G, (ts)™'A € pso AN, (ts)"*A € p. Pick F € F such that
FC ANNeq (ts)™1A. O

We remark that the following Corollary could also be derived by Theorem
2.3.13 below.

Corollary 2.3.8 Let (S,-) be a semigroup, let F and G be partition regular
families of finite subsets of S. Assume that F is invariant and let A be a
piecewise syndetic subset of S. Then there exist F € F, G € G, andte S
such that tGF C A. If S is commutative, then there exist F € F and G € G
such that GF C A.

proof: Note that by Lemma 1.4.2 F has the property that every piecewise
syndetic subset of S contains a member of F. In particular every central
subset of S contains a member of F. Pick by Theorem 1.4.5 some z € §
such that z7'A is central. Pick by Theorem 2.3.7 some F € F, G € G, and
t € S such that FUtGF C z7'A. Then (zt)GF C A. O

The following corollary extends a portion of Theorem 2.1.4. Notice that any
central set is a piecewise syndetic IP set.

Corollary 2.3.9 Let A be a piecewise syndetic IP set in (N,-) with 1 ¢ A
and let k € N. Then there ezist a,7,d € A such that

{ri(a+1d):i,5 € {0,1,...,k}}u{dr?:j€{0,1,...,k}} CA.
proof: Let F = {br7 : 5 € {0,1,...,k}}: b€ Nand r € A} and let
G={{d}u{a+id:ie{0,1,...,k}} :a,d € N}.

By Theorem 2.2.3, F and G are partition regular. And trivially if F € F and
t € N, then tF € F. Pick by Corollary 2.3.8 some F € F and G € G such
that GF C A. Pick b€ N and r € A such that F = {br? : j € {0,1,...,k}}
and pick a1,d; € N such that G = {d1} U{a; +id) :1 € {0,1,...,k}}. Let
a=aband d=dib. O

Again we see that Corollary 2.3.9 extends to commutative rings.

Theorem 2.3.10 Let (S,+,-) be a commutative ring, let A be a piecewise
syndetic IP set in (S,-) and let G € Py(S). Then there exist a,7,d € A such
that

{ri(a+dg):9g€G,je{0,1,....k}}u{ar?,dr : j€{0,1,...,k}} C A.
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proof: The proof is almost identical to the one of Corollary 2.3.9. Virtually
the only difference is that one has to replace G by the family

G'={{a+dg:9€G}U{a,d}:a,d € S}

which is partition regular by Lemma 2.3.5. O

We see that we can turn the tables somewhat, translating geometric progres-
sions by arithmetic progressions. (Since addition does not distribute over
multiplication, we end up with the four variables a, d, b, and r, rather than
just the three of Corollary 2.3.9.)

Corollary 2.3.11 Let A be a piecewise syndetic IP set in (N,+) and let
k € N. Then there exist d € A, a,b €N, and r € N\ {1} such that

{a+id+br? 4,5 €{0,1,...,k}}U{a+id+r:i€{0,1,...,k}} CA.
proof: Let F = {{a +1id:4i€ {0,1,...,k}} :a € Nand d € A{ and let
G={{rtu{bri:jec{0,1,...,k}}:beNandr e N\ {1}}.

Exactly as in the proof of Corollary 2.3.9, F and G are partition regular
and if F € Fandt € N, thent+ F € F. Pick by Corollary 2.3.8 F € F
and G € G such that G+ F C A. Pick b € Nand r € N\ {1} such that
G ={r}u{bri:je {0,1,...,k}}. Pick a € Nand d € A such that
F={a+id:i€{0,1,...,k}}. O

We do not know whether we can require that any of a, b, or  be in 4 in
Corollary 2.3.11.

We will prove now another Theorem that allows to combine different parti-
tion regular families. We need the following refinement of Lemma 1.4.2 that
may be of some interest in its own right:

Lemma 2.3.12 Let S be a semigroup and let F be a partition regular family
of subsets of S. Then

P ={pe€ pS: Every A € p contains a member of F}
is a nonempty closed subset of 5S.
(1) If F is left invariant then P is a left ideal of BS.

(2) If F is right invariant and all members of F are finite then P is a
right ideal of 3S.

proof: By Theorem 1.2.4 P is non empty and it is not hard to see that P is
closed.

To prove (1) assume that F is left invariant, let p € P and let s € S. Pick
A € sp. Then s7'A € p and by assumption there exists some F € F such
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that F C s7!A. Equivalently sF C A. Since A was arbitrary sp € P. Thus
we have SP C P. By continuity of p, : 8S — BS for p € BS, P is a left
ideal.

Next assume that F consists of finite sets and is right invariant. Let p €
P,g€ B3S and A € pg. We have B = {s: s7'A € ¢} € p. By definition of
P there exists some F € F such that F C B, thus sT!A € gforse€ F. In
particular we may pick t € (\,cp s71A. So Ft C A. Since A was arbitrary,
we are done. O

Let F be a partition regular invariant family of finite sets. In the light of
Theorem 1.4.3 Lemma 1.4.2 states that any ultrafilter p in the smallest ideal
of BS guarantees that its members contain sets of F.

By Lemma 2.3.12 the set of all ultrafilters with this property is an ideal
(which necessarily contains the smallest ideal).

Theorem 2.3.13 Let S be a semigroup, let F,G be partition regular fami-
lies of subsets of S, assume that F is left invariant, that G is right invariant
and that F or G consists of finite sets. Then the family

{FUGUGF :F e F,G € G}

s partition regular.

proof: Without loss of generality we may assume that G consists of finite
sets. Let

Pr = {p € 35S : Every A € p contains a member of F},

Pg = {p € BS : Every A € p contains a member of G}.

By Lemma 2.3.12 Pr is a left ideal of 8S and Pg is a right ideal of 3S.
Pick a minimal left ideal L C Pz, a minimal right ideal R C FP; and an
idempotent e € LN R. Let A € e. Then A* = {s € A: s !A e} =
ANn{se€ §:s'A €e} € e. Thus we may pick G € G such that G C A*.
Then B = AN(V,eq 5 A € e, so pick F € F such that F C B. Clearly
FUG C A. Further F C (¢ s71A and this is equivalent to FG C A. O

Corollary 2.3.14 Let m,k € N and assume that | J;~.,; A; = N. There exist
i €{1,2,...,m} and a,b,d,r € A; such that

{a +di,br? (a +di)br? ;4,5 € {0,1,...,k}} C 4;.

proof: Let F = {{a,a+d,...,a+dk} : a,d € N} and let G = {{b,br,...,br¥} :
b,r € N}. F and G are invariant under multiplication and partition regular,
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so by Theorem 2.3.13 there exist FF € 7, G € G and a cell A; such that
FUGUFGCA,;. O

As it was mentioned in the previous section, geoarithmetic progressions are
strongly partition regular. We show now that configurations of the sort
produced by Corollary 2.3.14 are not strongly partition regular.

Theorem 2.3.15 There is a set C' C N such that for each k € N there exist
b,a,d € N and r € N\ {1} such that {br"(a+td) : n,t € {0,1,...,k}}U{br™:
n€{0,1,...,k}} U{a+td:t € {0,1,...,k}} C C and there exist sets A;
and Ay such that C = Ay U Ay and there do not exist i € {1,2}, c,a,d € N,
and s € N\ {1} such that {cs,cs?, cs(a + d),cs?(a + d),cs(a + 2d)} C A;.

proof: Let r; = 5. Inductively choose a prime rgy1 > (ry(2k+1))?. For each
ke N, let By = {ry"z:ne€{l,2,...,k+1} and z € {k+1,k+2,...,2k+1}}
and let B = |J;2 | Bs.

Lemma 2.3.16 Ifa,d € N and {a+d,a+2d} C B, then there exist k € N
andn € {1,2,...,k+ 1} such that {a+d,a+2d} C {ry"z:z € {k+1,k+
2,...,2k+1}}.

proof: Pick k e Nyn € {1,2,...,k+1},and z € {k+1,k+2,...,2k+1} such
that a+d = r;"z. Then a+2d < 2(a+d) = 2ry"z. Also 2r"z < rp" 1 (k+1)
and 2r;"z < rg41(k + 2). The first member of B larger than r;™(2k + 1) is
re" 1k +1) (if n < k) or rpp1(k +2) (if n = k+1). Thus there is some
ye{z+1,z+2,...,k+ 1} such that a + 2d = r;"y. O

Lemma 2.3.17 Ifc € N, s € N\ {1}, and {cs,cs?*} C B, then there exist
ke N ne{01,..,k},te{l,2,....k+1—-n}, andy € {k+ 1,k +
2,...,2k + 1} such that c = 1"y and s = ;b

proof: Pick k <m, § € {1,2,...,k+1},ve {1,2,...,m+1},y € {k+1,k+
2,...,2k+1},and z € {m+1,m+2,...,2m+ 1} such that cs = r;%y, and
cs? =rpbz

=71,z

Now s < ridy < rp*T1(2k 4+ 1) and s =

rmY T'm,

‘T‘k‘sy > Tkk+1(2k‘ + 1)

SO

rm < (refH 2k + 1)) < re

and so m < k and thus m = k. Therefore s = r,* %=, Since ry is a prime
which does not divide y, we must have that y divides z and therefore that
y =2z Lett=wv—4. Since cry’™% = ¢s = ri%y we have ¢ = 7,2°~Vy. Let
n = 26 —v. Since ¢ = r;™y and s = 7' we have that n > 0 and t > 1. Since
n+t=40 wehave that n+t <k +1. 0

To complete the proof of the theorem, let 41 = B, let Ay = {ry" : k €
Nandn € {1,2,...,k + 1}}, and let C = A; U A;. Given k € N, let
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a =71g(k+1) and let d = b = r = r,. Then for t,n € {0,1,...,k — 1}
one has br™ = r;"*l € Ay, a +td = ri(k +t+ 1) € Ay, and br*(a + td) =
ek +t4 1) € Ay

It is trivial that Ay does not contain {cs(a + d),cs(a + 2d)} as the latter
element is less than twice the former. Suppose we have some ¢, a,d € N and
some s € N\ {1} such that

{cs,cs?,cs(a + d), cs®(a+ d),cs(a + 2d)} C A, .

Pick by Lemma 2.3.17 some k¥ € N, n € {0,1,...,k}, t € {1,2,...,k +
1—-n},and y € {k+ 1,k +2,...,2k + 1} such that ¢ = r;"y and s =
rt'. Again invoking Lemma 2.3.17, pick some k' € N, m € {0,1,...,k'},
t e {1,2,...,k +1—m}, and z € {k' + 1,K' +2,...,2k" + 1} such that
cla+d) =rp™z and s = rpt.

Since rk/t' =5 =" we have k = k' and ¢t = /. Pick by Lemma 2.3.16
k" e Nand v € {1,2,...,k" + 1} such that

{cs(a+d),cs(a +2d)} C {rp"w:we K"+ 1,k" +2,...,2k" +1}}.

Since cs(a + d) = r!7 ™2z we have k" = k and v = t +m. Since cs = r;!T"y

—n < . . . . ..
we have a +d = ™ " ~. Since 7 is a prime which does not divide y we

have that y divides z so y = z and thus a +d = r;™™".
Pick w € {k+ 1,k +2,...,2k + 1} such that cs(a + 2d) = rx!*™w. Then
a+2d = rkm_"zu— so w divides y and thus a + 2d = r;™ ™. Therefore d = 0,

a contradiction. [J

2.4 Combining additive and multiplicative struc-
ture in N

As mentioned in the introductory section for any finite colouring of N there
exists a monochrome set A C N that contains arbitrarily long arithmetic
progressions, arbitrarily long geometric progressions, and is an additive as
well as a multiplicative IP set. This statement follows from the fact that
there exists an ultrafilter ¢ € BN such that every A € ¢ is additively and
multiplicatively central. Since several theorems in this section are based on
this fact (or refinements thereof) we will prove this in some detail.
Remember that for A C N the upper density of A is given by d(A) =
limSUPn_,oo 1An{1,2,...,n} .

n

Definition 2.4.1

_ 1) pis a minimal idempotent in (BN, +),
D= {peﬁN' 2) d(A) >0 for all A € p.
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Theorem 2.4.2 D is a left ideal of (AN, -).

The following Lemma is crucial for the proof of Theorem 2.4.2:

Lemma 2.4.3 (1) Let e be an idempotent in (BN, +) and let n € N. Then

(2)
(3)

proof:

(1)

(2)

(3)

d

ne is also an idempotent in (GN, +).
Letp e K((ON, +)) and let n € N. Then np € K((BN, +)).

Let p be an ultrafilter such that every element of p has positive upper
density and let n € N. Then every element of np has positive upper
density.

Let A € ne. Then n™'A € e. Since e is an idempotent {s : —s +
n~'A € e} € e. This implies n{s : —s + n"!A € e} € ne. Let
t€n{s: —s+n"'A4 € e}. Then there exists some s € N such that
t=nsand —s+n" 1A €e Alson(—s+n"'A)=-ns+n-n"14 € ne.
Since n-n~!A C A this implies —t + A € ne. t was arbitrary, so

{t:~t+A€ne}Dn{s:—s+n'Ace} € ne

Equivalently A € ne + ne. A € ne was arbitrary, so we have ne C
ne+ne. Since we are dealing with ultrafilters this implies ne = ne+ne.

Let A € np. Thenn tA € pso {s: —s+n"tA € p} is syndetic by
Theorem 1.4.5. Clearly this implies that n{s: —s + n=1A4 € p} is also
syndetic and as above we have

n{s:—s+n'Aep} C{t:~t+ Acnp}

Since A € p was arbitrary we may apply Theorem 1.4.5 once more to
get p € K((AN, +)).

The family of all sets with positive upper density is invariant under

multiplication, so by Lemma 2.3.12 Dy = {p € N : d(A) > 0 for all A € p}

is a left ideal of (BN, -).

We are now ready to give the proof of Theorem 2.4.2:
proof: Similar to the proof of the lemma the family of all sets with positive
upper density is invariant under addition, so by Lemma 2.3.12 Dy = {p €

ON

d(A) >0 for all A € p} is a left ideal of (BN,+). Thus D = Dy N

E(K((AN,+))) # 0.
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By Lemma 2.4.3 we Eave ND C D. By continuity of /\Slm) : BN — SN for
n € N this implies ND C D. Then by continuity of the multiplication from
the right this gives SND C D. O

Theorem 2.4.2 has quite nice combinatorial applications: Since D is a left
ideal of (BN, -) it contains multiplicative minimal idempotents. Such ultra-
filters deserve a special name:

Definition 2.4.4 Let ¢ € D be a multiplicative minimal idempotent. Then
q 1s called a combinatorially rich ultrafilter.’

If ¢ is a combinatorially rich ultrafilter, each A € ¢ is additively and mul-
tiplicatively central. In particular for any finite colouring of N there exists
some monochrome set which has this property.

We have just seen that K((ON,+)) N K((N, ")) is quite large.

It has been known for quite a while that K((8N,+))N K ((AN,-)) = 0. Also
it is not possible to find ultrafilters which are additively and multiplicatively
idempotent. (Actually the only solution of the equation e + ¢ = ee in N
is e = 2.) It has been a long open question if K((ON,+)) N K((BN, ")) #
@. Having combinatorial applications in mind, it would have been quite
interesting to find additive idempotents in K((8N,-)). Only recently both
problems were answered negatively in a rather strong way. In [Sti] Dona
Strauss shows that

(BNAN+ SN\ N) N K((AN,)) = 0.

Since (AN \ N + SN\ N) contains K((ON,+)) as well as all additive idem-
potents of GN this answers both questions simultaneously.
We turn now to applications of combinatorially large ultrafilters.

Theorem 2.4.5 Let F and G be families of subsets of N such that each set
in a combinatorially large ultrafilter contains a member of F and a member
of G. Assume that F or G consists of finite sets. Whenever r € N and
N = I_, A;, there ezists i € {1,2,...,7} such that d},(A;) > 0,d(A;) > 0
and that there exist B € F and C € G such that

BuCUB-CCA;.

proof: Without loss of generality we may assume that G is finite. Pick a
combinatorially rich ultrafilter g. Choose ¢ € {1,2,...,r} such that 4; € q.
The claimed density properties follow immediately since ¢ is combinatorially
rich. Since ¢ = q-q, {z € A; : z7'A4; € ¢} € q. Pick B € G such that

5This notion was invented by V. Bergelson and N. Hindman
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B C {z € A; : z71A; € q}. Since B is finite, 4; N(,cp 7' A; € ¢. Pick
C € F such that C C A; N anB iE_lAi. O

Theorem 2.4.5 is in part an enhancement of Theorem 2.3.13. To prove Corol-
lary 2.3.14 we applied Theorem 2.3.13 to the multiplicatively invariant fam-
ilies {{a,a+d,...,a+kd} : a,d € N} and {{b,br,...,br*} : b,r € N}. Theo-
rem 2.4.5 is also applicable to the families {{d, a,a+d,...,a+kd} : a,d € N}
and {{r,b,br,...,br*} : b,r € N} where the latter is neither multiplicatively
nor additively invariant. We use this in the following Corollary.

Corollary 2.4.6 Let m,k € N and let N = |J2; Ai. Then there exzist i €
{1,2,...,m}, a,d € A;, and v € A; \ {1} such that d(A4;) > 0, d},(A4;) >0,
and

{r®la+td):s,t€{0,1,...,k}}U{dr®:s€{0,1,...,k}} C A,
proof: Let G = {{br®*:s € {0,1,...,k}} U{r}:b,r € N} and let
H={{a+td:t€{0,1,...,k}}U{d}:a,d € N}.

By applying Theorem 2.2.3 to (N, -) respectively to (N, +) one achieves that
every multiplicatively central set contains a member of G and that every
additively central set contains a member of H. Thus we may apply Theorem
2.4.5. By assigning 1 to its own cell one may ensure that r # 1. Put a; = ab
and d; = db. Then for some 1 € {1,2,...,m}, {a1} U {d1} U {r*(a1 +td1) :
s, 6t €{0,1,...,k}}U{dir®:s€{0,1,...,k}} CA; O

Lemma 2.4.7 Let S be a commutative semigroup. Let L be a minimal left
ideal of BS. Let F be a family of finite subsets of S such that the family

{bF:FeF,beS)

is partition reqular. Let A C S such that ANL # 0. Then there ezists
F € F such that
L)y TA#0.

yeEF

proof: Pick v € AN L. Pick a minimal right ideal R of 8S such that v € R
and pick an idempotent © € R. Then v = uv so

B={zeS:z7'Acv}cu.

In particular B is central so pick by Lemma 2.2.2, some b € S and F € F
such that bF C B. So for each y € F, (by)~!A € v. Equivalently for each
y€ F,y 'A € bv. Since bv € L, we are done. O

If S has an identity the following version of Lemma 2.4.7 follows directly
from the original statement. If it doesn’t, at least its proof is almost identical
to the one of 2.4.7, so we skip it.
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Lemma 2.4.8 Let S be a commutative semigroup. Let L be a minimal left
tdeal of BS. Let F be a family of finite subsets of S such that the family

{{b}UbF:Fe F,be S}

is partition regular. Let A C S such that ANL # 0. Then there exists
F e F such that
ANLn |y TA#0.
yeF

Corollary 2.4.9 Let S be a semigroup. Let L be a minimal left ideal of
BS and let A C S such that ANL #0. Let k € N. Then R={r e S:
AN ﬂle (rk)=YANL # 0} intersects any IP set. In particular if S = (N, +),
R is syndetic.

Before we prove the corollary, we want to recall from chapter 1, section 5
that a set which intersects any IP set is called an IP* set. The family of all
IP* sets is closed under finite intersections. In w respectively in N the set
kw respectively kN is an IP* set for each k € N. Furthermore IP* sets in w
and in N are syndetic.

After this lengthy remark we will append the proof of Corollary 2.4.9:

proof: Let B be an IP set. By Corollary 2.2.2 the family
G ={{bbr,...,br*} :be N, r € B}

is partition regular. Thus by Lemma 2.4.8 there exists 7 € B such that
AN, (MTANL#0. O

In attempting to derive results about geoarithmetic progressions, the ap-
proach that one might try first after a little experience in deriving Ramsey
Theoretic consequences of the algebra of SN would be to choose an appro-
priate idempotent g in (8N, -} and show that if A € ¢, then there is some r,
preferably in A, such that ﬂfzo(rs)‘lA € q. The corresponding statement
would lead to nicer versions of Lemma 2.4.7 (respectively Lemma 2.4.8 and
Corollary 2.4.9). We show now that such an approach is doomed to failure.

Theorem 2.4.10

(a) For all g € BN, there exists a partition {Ag, Ar} of N such that for all
i€ {0,1} and all z € N, (—z + A;) N (=2z + A;) € q. In particular there
exists A € q such that for all x € N, either —z + A¢ qor -2z + A ¢ q.

(b) There does not exist ¢ € PN such that for each A € q there is some
r€ N\ {1} with r"'A € q and (r*)"'A € q.

proof: (a) Let ¢ € fN. Then ¢+ AN is a right ideal of (AN, +) so there is an
additive idempotent in g+ ON. Pl_ck r € AN such that g+ is an idempotent
in (AN, +). Then ¢+ r € (52, N2" by [HS98], Lemma 6.6.
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Define f : N - w = NU {0} by f(n) = minF where F € Ps(w) and
no= 3 cr 2t. Then f has a continuous extension f : SN — Bw. For

1€{0,1} let A; ={z € N: (2N —3) € f(z +1)}.

Let i € {0,1} and let z € N and suppose that (—z + 4;) N (—2z + 4;) € q.
Pick j,k € w such that z = 2/(2k + 1). Denote addition of z on the left in
BN by A, and addition of z on the right by p,. Then f o ), is constantly
equal to f(z) and f o Ay, is constantly equal to f(z) +1 on N29+2, which is

a member of ¢ +7. So f(z+q+7r) = f(z) and f2z +q+7) = f(z) + L.
Therefore f o Az © pr(q) = f(z) and f o Aoz 0 pr(q) = f(z) + 1 so

{yEN:f(z+y+r)=f(m) and f(2w+y+r):f(m)+1}€q

so pick y € (=7 + A;) N (—22 + A;) such that f(z +y +7) = f(z) and
fRz+y+r)=f(z)+1. N

Since z+y € A;, we have that 2N—¢ € f(z+y+r) = f(z) so f(z)+1¢ € 2N.
(Recall that we are identifying points of N with the principle ultrafilters they
generate.) Since 2z+y € A;, we have that 2N—7 € f2z+y+7r) = f(z)+1
so f(z) +1+4 1 € 2N, a contradiction.

(b) For z € N\ {1}, let £(z) be the number of terms in the prime factorization
of z. Then ¢ is a homomorphism from (N\ {1},-) onto (N, +) and so its
continuous extension £ : (GN\ {1},:) = (BN, +) is also a homomorphism.
U

We will see in Corollary 2.4.12 that Lemma 2.4.7 is still very useful for our
purposes.

We know that D is a left ideal of (8N,-). Pick a minimal left ideal L that
is contained in D and a combinatorially rich ultrafilter p € L. In Theorem
2.4.11 and in Corollary 2.4.12 let A C N be such that A € p. Since in
any finite partition {A4,..., A,,} there is one cell A; such that A; € p the
partition versions of these Theorems are also valid.

Theorem 2.4.11 Let F be a family of finite subsets of N such that the
family {bF : F € F,b € N} is partition regular and let G be a family of
subsets of N such that any set which is central in (N, +) contains a member
of G. Then there exist F € F and G € G such that

d{ (v 'A|>0d, | [y 4| >0and FG C A.
yeFr yeFr

proof: Pick, by Lemma 2.4.7, F € F such that LN (\,cpy tA # 0. Since
L C K(BN,"), dr,(Nyer y~tA) > 0. Since L C D, pick ¢ € D such that ¢
is a minimal idempotent of (AN, +) and (),cry™'A € g. Then this set is
central in (N, +) so pick G € G such that G C ﬂyeF y~lA. Since q € D,
d(Nyer y~tA) > 0.0
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Corollary 2.4.12 Let k € N.

(a) For each i € {1,2,...,k} let (z;)52; and (yi1)s2; be sequences in N.
Then there exist Hy, Hy, € P;(N) and a € A such that

{a-}- Zmi,t:ie{l,Q,...,k}}U{a- H yj’tze{l,Z,,k}}U

teH, tEHm

{(G‘-*'Z iIIi’t) N H y]’tl,]E{l,z,,k}}gA

teEH, teEH,

(b) There ezist a,r,d € A such that r > 1 and
{(a +id)r? 14,5 € {0,1,...,k}}u{drf:j€{0,1,...,k}} C A
(c) There ezxist a,r,d € A such that r > 1 and
{(a+id)j" i€ {0,1,....k},j € {1,2,...,k}}U
{&" 5 €{1,2,...,k}} C A

proof: 1 is not contained in any minimal left ideal of (N, -). Thus by consid-
ering A\ {1} instead of A we may assume that 1 ¢ A. Let

Fr={{1} U{Ilenvit:i€{1,2,...,k}} : H € Ps(N)},
G1={{a}U{a+>cqy iz :01{1,2,...,k} : H € P;(N),a € N},
Fo={{r*:1€{0,1,...,k}} : 7 € A}
Go={{d}U{a+di:i€{0,1,...,k}}:a,d € N}

and put F] = {bF : b € N,F € F;} for i € {1,2}. By applying Corol-
lary 2.2.2 respectively Corollary 2.2.3 to the semigroup (N,-) we see that
the families F; and F; are partition regular. Similarly by Corollary 2.2.2
respectively Corollary 2.2.3 applied to the semigroup (N, +), every subset
of N that is central in (N, +) contains a member of G; and a member of
Gy. Thus we get (a) by applying Theorem 2.4.11 to F; and G; and (b) by
applying Theorem 2.4.11 to F; and G».

We will prove (¢) by using Theorem 2.4.11 with F; and G, where we define
the sequences (y;0)3%,, ¢ € {1,2,...,k} appropriately. A is central in (N, ),
so choose a sequence (r,)5%; such that F.S((r,)32,) C A. Using this put
Yin = ™ for ¢ € {1,2,...,k} and n € N. By Theorem 2.4.11 we find
a,d € A and H € Ps(N) such that G = {d} U{a+id:i € {0,1,...,k}} and
F={[liegvit:Je€{1,2,...,k}} satisfy the conclusion of Theorem 2.4.11
Letr =3 ,cypmt € A. Thenforj € {12,k Teg vie = eni™ =37
Thus we see that (c) is valid. O

We now turn our attention to showing that one cannot simultaneously let
F = G and eliminate the multiplier b in Theorem 2.2.8.
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The following theorem is of interest in its own right. Recall from Corol-
lary 2.2.3 that when N is finitely colored, one can find arbitrarily long
monochrome arithmetic progressions with increments chosen from any IP
set. This theorem tells us that at least relatively thin sequences cannot
replace IP sets.

Theorem 2.4.13 Let (d,)32, be a sequence in N such that for all n € N,
3d, < dpy1. There ezxists a partition {Ag, A1, A2, A3} of N such that there
do not ezist s € {0,1,2,3} and a,k € N with {a,a + di} C As.

proof: For « € T = R/Z we denote by ||| the distance to the nearest
integer. We will not distinguish strictly between equivalence classes and
their representatives in [0, 1).

Lemma 2.4.14 There exists o € T such that |jady,|| > 1/4 for each n € N.

proof: For each n € Nput R, = {¢ € T: ||ad,|| > 1/4}. Each R, consists
of intervals of length 1/2d,, which are separated by gaps of the same length.
Since dp 41 > 3d, every interval of R, is 3 times longer than an interval or
a gap of R,4+1. Thus any interval of R,, contains an interval of R,.;. This
shows that for each N € N, ﬂgzl R, # 0. By compactness of T there exists
a € (o2, R, and this proves the Lemma. O

Let a € T such that d,a € (1/4,3/4) for each n € N. For ¢ € {0,1,2,3} put
A ={m e N:ma € [i/4,(i +1)/4)}. Then for any a,k € N a(a + di) =
aa + f for some B € (1/4,3/4) and thus aa and afa + di) must not lie in
the same quarter of [0,1). Equivalently there exists no s € {0,1,2,3} such
that {a,a+ dx} C A;. O

We remark that Lemma 2.4.14 is well known. Under the much weaker
assumption, that the growth rate of the sequence (d,)32, is bounded from
below by some ¢ > 1 B. de Mathan [Ma80] and A. Pollington [P79] show
that there exists some o € T such that {an : n € N} is not dense in T. In
order to give a self contained proof we have chosen to go with the weaker
statement. The loss is that we have to make an additional step to show
that any growth rate ¢ > 1 is sufficient to avoid monochrome arithmetic
progressions with some dj, as increment.

Corollary 2.4.15 Let ¢ € R with ¢ > 1 and assume that (dp)S2; is a
sequence in N such that for all n € N, qd,, < dpy1. There exists a finite
partition {Ai, Ag, ..., Ar} of N such that there do not exist s € {1,2,...,7}
and a,k € N with {a,a + di} C A,.

proof: Pick m € N such that ¢™ > 3. For t € {0,1,...,m — 1} and n € N,
let ¢t = dpm—t. Givent € {0,1,...,m} one has that 3¢, n < ¢4 for each
n so pick by Theorem 2.4.13 some {By ¢, B; 1, Bt 2, B; 3} of N such that there
do not exist s € {0,1,2,3} and a,k € N with {a,a+ ¢} C By Let r = 4™
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and define a partition {A;, Ay,..., A, } of N with the property that z and
y lie in the same cell of the partition if and only if z € B;; & y € By; for
each t € {0,1,...,m — 1} and each 7 € {0,1,2,3}. O

Corollary 2.4.16 There ezist sequences (z;,)32, @ € {0,1}, (yn)o2; and
a partition {Ag, A1, A, A3} of N such that there do not exist s € {0,1,2, 3},
F € Ps(N), and a € N with {(a + >, cp Tin) [Inep ¥n : 1 € {0,1}} C As.

proof: For each n € N let 29, = 0, z;, = 1 and y;,, = 3. For each
n € N, let d,, = n3™. Pick Ay, A1, Ay, A3 as guaranteed by Theorem 2.4.13.
Suppose one has F' € P¢(N) and a € N with {(a+>_,cp %in) [Tncrpyn i €
{0,1}} C As. Let n = |F|. Then for i € {0,1}, > cr Tin[Iner ¥n = idn,
a contradiction. [J

We have already shown that one cannot eliminate the multiplier b from
Theorem 2.2.9. We show now that this multiplier cannot be eliminated from
Corollary 2.2.10 even is ‘piecewise syndetic’ is replaced by ‘thick’. (Recall
that thick sets in any semigroup are also piecewise syndetic, in fact central.)

Theorem 2.4.17 There exists a set A which is thick in (N,:) and a se-

quence (z,)00; in N with the property that there do not ezist a € N and
d€ FS((zn)2,) with {a,a+d} C A.

proof: Let A = |J;2,{(3n)!,2(3n)!,...,n(3n)!} and for each n, let z, =
(3n 4+ 1)!. Observe that A is thick in (N,:). Let ¢ € A and let d €
FS((zn)3,). Weshall show that a+d ¢ A. Pickn € Nand k € {1,2,...,n}
such that a = k(3n)!. Pick F € Ps(N) such that d = Y7, p z; and let
m = max F. Then (3m + 1)! < d < (3m + 2)L.

If m < n we have k(3n)! <a+d < (k+1)(3n)!soa+d ¢ A. If m > n, then
a<@Bm+1)!soBm+1)!<a+d<(3m+3)! and thusa+d¢ A. O

It was shown in [Beri], Theorem 1.3 that the fact that a subset A of N
satisfies dy,(A) > 0 is enough to guarantee that A contains arbitrarily large
geoarithmetic progressions. However, by considering the set A = {z € N :
the number of terms in the prime factorization of z is odd}, one sees that the
fact that d,,(A) > 0 is not enough to guarantee geoarithmetic progressions
together with the common ratio r, nor together with both b and a.

During this chapter we presented numerous examples of partition regular
structures which are highly organised in a multiplicative as well as in an
additive sense. In fact several Theorems state that any set which is multi-
plicatively large in an appropriate sense contains multiplicative and additive
structure. In contrast to this additively large set usually contain very little
multiplicative structure. For example there exists an additively thick set
A C N with d(A) = 3/4 which does not contain a three term geometric
progression ([BBHSii]).

o7




We conclude this chapter with an example of a Theorem that guarantees
that at least some multiplicative structure can be found in an additively
large set:

Theorem 2.4.18 Let (z,)72, be a sequence in N, let a € Z and put
B=a+ FS((zn)5>,) NN.

There ezists a sequence (yn)3%, in N such that for alln € N, [[}_,yx € B
and that yn1 = 1(mod TIi_, yk). In particular the elements of (yn)32, are
patrwise relative prime.

proof: We claim that for each s € B there exists ¢t € N such that ¢ = 1(mod s)
and st € B: To see this pick F' € P;(N) such that s = a + >,y and let
k =maxF + 1. Pick w € FS((z,)2,) NNs? and let u = w/s. Note that
slu. Let t =1 4 u. Then

st:3+su=s+w=a+2mk+w€B.
keF

The claim being established it is easy to inductively construct the sequence
(yn)o2,: Start with any y; € B. If y1,ys,...,yn have already been con-
structed put s = [[;_, yx and determine ¢ as described above. Finally let
Yn+1 =t O
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Chapter 3

Variations on the Central
Sets Theorem

This chapter is devoted to the Central Sets Theorem and several general-
izations of it. The Central Sets Theorem for the semigroup (Z,+) is due to
Fiirstenberg [F81], Proposition 8.21. See [HS98], Part III for a strengthening
that applies to general commutative semigroups and numerous combinato-
rial applications of the Central Sets Theorem. To provide some flavour of
the Theorem, we give an easy stated consequence of it:

Theorem 3.0.1 Let » € N and assume that N = |J_, A;. There exist
s € {1,2,...,r} and sequences (an)°%y,(dn)2, in N such that for each
H e Ps(w)

Z{at,at +di, ..., 08+ tdt} C A,
teH

We see that the Central Sets Theorem naturally extends and intertwines the
Theorems of Hindman and van der Waerden: Not only that finite sums from
some sequence and arbitrarily long arithmetic progressions are contained in
one cell of a finite partition. In fact all finite sums from members of the
arithmetic progressions are provided to be in this cell.

In section 3.1 we state and prove the Central Sets Theorem. Some connec-
tions with methods of chapter 2 are pointed out and easy extensions along
the lines of the Central Sets Theorem are given.

Section 3.2 is devoted to a common generalization of Ramsey’s Theorem
and the Central Sets Theorem. In the course of the proof we also derive a
strong version of the Milliken-Taylor Theorem.

In section 3.3 we review the notion of a partial semigroup introduced in
[BBH94]. This enables us to prove strong generalizations of the Central
Sets Theorem as well as of some theorems of the previous chapter.
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3.1 An introduction to the Central Sets Theorem

To prove Hindman’s Theorem one inductively constructs a sequence (z,,)52,

such that FS((z,)22,) is contained in some set that is large in an appropri-
ate sense. The key idea behind the proof of the Central Sets Theorem is the
observation that in the ultrafilter proof of Hindman’s Theorem, whenever
some z, is chosen, there is actually a huge amount of possible choices.

In order to give these comments a rigorous meaning we formalize the notion

of a tree:

Definition 3.1.1 Let S be a set and put S<¥ = |J22, S10-n=1} 4 non
empty set T C S<¥ is a tree in S iff for all f € S<¥, g € T such that
dom f C dom g, gidom § = f one has f € T. For f € §< we put

T(f)={seS:f"seT}.

We will identify the function f € S10-n=1} with the finite sequence (f(0),...,
f(n—=1)). Fors€ S put f~s = (f(0),...,f(n—1),s).
If S is a semigroup, we put

FP(T):{Hf(t):feT,f;é@,ngom f}.

teF

Lemma 3.1.2 Let S be a semigroup, let e be an idempotent in BS and
assume that A C e. There exists a tree T in S such that:

(1) Forall f €T, T(f) €e.
(2) FP(T) C A.

o0
n=0>

proof: We will inductively construct a sequence of trees (77,)
T = {f1{0,..n—1} : f € Tn41} for each n € w, such that

satisfying

(1) If f € Ty, satisfies dom f C {0,...,n — 2} then T,(f) € e.
(2) For all f € Ty, for all H C dom f, [[,cy f(t) € A.
(3) For all f € Ty, for all H C dom f, ([T,eq f(8)) " A €e.

To start with this construction we put Ty = {0}, such that T is a tree in S
which trivially satisfies (1) - (3).

Assume that Ty, ..., T, are trees satisfying T; = {fio,...j-1} : [ € Tj41} for
4 < n, such that (1) - (3) hold. For f € Ty, dom f ={0,...,n — 1} we put

Er=An () (Hf(t))mlA.

HCdom f \teH
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Using this define T11(f) = EfN{s € S: s7'E; € e}. Finally we put
The1 =T U{f"s: f€Ty,dom f={0,...,n—1},s € Tor1(f)}-

Obviously Ty, 11 is a tree such that T, = {fi(0,.. n-1} : f € Tnt1}-

We need to check that (1) - (3) are satisfied. Let f € T, with dom f =
{0,...,n — 1} be fixed.

Ey is defined as an intersection of finitely many sets, all of which are con-
tained in e by the hypothesis of the induction. e is idempotent, so for any
set BC Sonehas BEe=ce & {s:s !B e} €e Applying this to the
set E; we see that T,,11(f) € e. So (1) is satisfied.

To prove (2) and (3) let s € T(f),f = f~sand H C {1,2,...,n},H #0. If
max H < n, the claim follows trivially from the hypothesis of the induction.
If not, (2) follows since s € Ey and (3) follows since s™*Ef € e.

The construction of the T, n € w being complete, we put T' = (Jr—; Tr. Via
properties (1) and (2) of T,,n € w one sees that T is as claimed. O

Theorem 3.1.3 (Central Sets Theorem) Let S be a commutative semi-
group, let A C S be central and let g : w = w be an arbitrary function. For
each | € w, let (yin)3>, be a sequence in S. There exist a sequence (an)o>,
in S and a sequence Hy < Hy < ... in Py(w) such that for each sequence
(1)L in w satisfying in < g(n) for alln € w

o0
FP (an + Z yin,t) C A
n=0

teH,

proof: Fix a minimal idempotent e € 35S \ S. Denote by & the set of all
sequences (i,)32, satisfying i, < g(n) for all n € w. Let T C S<“ be as
provided by Lemma 3.1.2. We will inductively construct sequences (a,)S,
in § and Hy < H; < ... in Py(w) such that for all n € w and all sequences
(in)%ozo €

(0‘0 + ZteHo Yig,ts -+ -1 0n + Zael{n yinyt) €T. (3'1)

By the properties of T this is sufficient to proof the Theorem.
Assume that ag,...,a,—1 € S und Hy < ... < Hp_1 € Ps(w) have already
been constructed such that (3.2) is true for all (i,)5%, € ®. We have

Gn= [ T|{la0+ D Vot rtn1+ D Yinrr| ]| €e

(in)2p€® teHo teHn_1

Let m = max H,_;. By applying Theorem 2.2.2 to the set G, and the
sequences (Yo,k)k=m+1; - - > (Yg(n) k) s We find a, € S und Hy, € Py(w),
Hy, > Hyy such that an + 3 ey Yo, 0n + D iep, Yon),t € Gn-
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Thus for all (in)52 € ®, (a0 + X ep, Vioks - n + Doren, Yink) € T, as
we wanted to show. O

We will shortly describe how Theorem 3.0.1 follows from Theorem 3.1.3:
Take S = (N,+) and put g(n) = n for n € w. Further specify y,, = { for
I,m € w. One cell A, of the partition is central, so let (a,)5%, and (H,)%,
be as supplied by Theorem 3.1.3. Now Theorem 3.0.1 follows if we put
dn = |Hp| for n € w.

In almost the same fashion as the Central Sets Theorem, we may derive the
following corollary from Lemma 3.1.2:

Corollary 3.1.4 Let S be a semigroup, let e be an idempotent of BS, let
A € e and assume that for each n € N, F,, is a family of finite subsets of
S such that each set in e contains some member of F,. Then there exists a
sequence (Fp)3%, where each F, € F, such that for any G € Ps(N)

ZthA.

teG

We want to remark that Corollary 3.1.4 vastly extends Theorem 2.3.13 and
Theorem 2.4.5 if one takes e to be the ultrafilter that is employed in the
proof of Theorem 2.3.13 respectively Theorem 2.4.5 and assumes that F
and G consist of finite sets. These theorems state that configurations of the
type {z,y,yz} where z varies over some member of F and y varies over some
member of G are contained in a central set A. Under similar assumptions
Corollary 3.1.4 provides that all finite sums from an infinite sequence are
contained in a large set.

Combining Theorem 2.4.5 with Corollary 3.1.4 yields the following strong
partition result:

Theorem 3.1.5 Let for each n € N, F,, and G, be families of finite subsets
of N such that each combinatorially large ultrafilter contains a member of
Fn and a member of G,,. Wheneverr € N and N = U;Zl A;, there exists i €
{1,2,...,7} such that d’,(4;) > 0,d(4;) > 0 and that there exist sequences
(Bp)S2, and (Cp)%2., satisfying B, € Fp and Cp € G, such that for each
H € Ps(N)

[[ BiuCiUBC C A

teH

By Lemma 2.3.12 we know that P = {p € SN : Every element of p contains
arbitrarily long geometric progressions} is a closed ideal of (AN, -) and thus
contains K ((GN,-)). (It is not hard to see that this inclusion is proper.) In
the last chapter we shortly discussed that K((8N, -)) doesn’t contain additive
idempotents. In the following Theorem we see what nice consequences we
could derive from the existence of an additive idempotent in P
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Theorem 3.1.6 Assume that there exists some e € P such that e + e = e.
Then whenever r € N and N = |JI_, A;, there exist 1 € {1,2,...,7} and
a sequence (F,)S2, such that for each n € N, F, is a length n geometric
progression and for every H € P;(N), one has

Y FaC A

ncH

proof: Define F,, to be the set of all n-term geometric progressions and apply
Corollary 3.1.4 . O

3.2 A multidimensional Central Sets Theorem

Ramsey’s Theorem (at least the version we are concerned with) states that
whenever the complete graph of an infinite set S is finitely coloured there
exists an infinite set T C S such that the complete graph of the set T is
monochrome.

For a formal treatment we set up some notation:

Definition 3.2.1 Let S be an infinite set and let k € N. Then [S]* is the
set of all subsets of S that consist of exactly k elements.

Ramsey’s Theorem is not restricted to colorings of the complete graph of
S which may be identified with the set of all unordered pairs [S]?, it works
equally well with [S]* for arbitrary k € N:

Assume that |JI_, 4; = [S]¥. There exist i € {1,2,...,r} and an infinite
set T C S such that [T]* C [S]*. For k = 1 this is just the pigeonhole prin-
ciple. For k' > k Ramsey’s Theorem for colorings of [S]* implies Ramsey’s
Theorem for colorings of [S]F:

Without loss of generality we may assume that we are working with a count-
able set, so let S = N. Let Aj,..., A, be a partition of [N]*. Define a
partition of [N]*¥' via,

B; = {F € [N]¥ : The set of the k smallest elements of F' lies in A;}
for i € {1,2,...,7}. If T C N has the property that [T]¥ C B; then
[T)* C A;.

K. Milliken and A. Taylor ([Mi75, T76]) found a quite natural common
extension of the Theorems of Hindman and Ramsey. The following seems
to be the appropriate generalization of the notion of finite sums from a
sequence:
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Definition 3.2.2 For a sequence ()52, in N and k > 1 put

n=1

FS[(zn)pals =S > @ty D 3 p i H1 <...<Hy € Ps(N) ¢,
teH, teEHy

where we write H < H' for H H' € P;(N) iff maxH < min H'. We will
use the same terminology with F'S replaced by F P in abstract semigroups.

Using this, the Milliken-Taylor Theorem may be stated as follows:

Theorem 3.2.3 (Milliken-Taylor Theorem [Mi75, T76]) Letk,r € N.
If [N]F = (JI_, A; then there exist i € {1,...,7} and a sequence ()%, in
N such that

FS[(za)521]% C A

From the Graph Theoretic point of view, the Milliken Taylor Theorem gener-
alizes Hindman’s Theorem in the same way as Ramsey’s Theorem outranges
the pigeonhole principle.

The main goal of this section is to prove a similar multidimensional extension
that applies to the Central Sets Theorem instead of Hindman’s Theorem.
For sake of readability we will first state a quite special case of the theorem
we are after. (More precisely this is a multidimensional version of Theorem
3.0.1 in the Introduction.)

Theorem 3.2.4 Let r,k € N and let |JI_, A4; = [N)*. There ezist se-
quences (an)52 1, (dn)32, in N such that for each sequence (z,)32; where

Tn € {an,an +dn,...,an +ndy,}
[FS((2n)32 )] C A

If S is an infinite set an arbitrary non principal ultrafilter p € 3S may be
used to give a proof of Ramsey’s Theorem. (This proof is by now clas-
sical. See [CN74] p.39 for a discussion of its origins.) It’s an idea of V.
Bergelson and N. Hindman that in the case S = N, something might be
gained by using an ultrafilter with special algebraic properties. Via this ap-
proach in [BH89] a short proof of the Milliken-Taylor Theorem is given and
a very strong simultaneous generalization of Ramsey’s Theorem and numer-
ous single-dimensional Ramsey-type Theorems (including van der Waerden’s
Theorem) is obtained. Our Theorems result from a variation on their idea.
The following lemma is the basic tool in the ultrafilter proof of Ramsey’s
theorem:

Lemma 3.2.5 Let S be a set, let p € BS\ S, let k,r € N, and let [S]* =
Ui_, Ai. For eachi € {l,...,r}, each t € {1,...,k} and each E € [S]'"!,
define By(E,1) by downward induction on t:
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(1) For E € [S)F~!, By(E,i) ={y € S\ E: EU{y} € A;}.
(2) For 1 <t <k and E € [S]',

By(E,i) = {y € S\ E: Byy1(E U {y},%) € p}.

Then there exists some 1 € {1,...,7} such that B1(0,1) € p.

p
proof: For each E € [S]¥~! one has § = E UJ!_, Bx(E,1), so there exists
i € {1,...,7} such that By(E,i) € p. Next let E € [S]*2and y € S\ E.
Then there exists ¢ € {1,...,7} such that By(E U {y},i) € p. Thus S =
FUlUi_, Bk-1(E,1).
After iterating this argument k — 1 times we achieve S = QU J._, B1(0,%)
which clearly proves the statement. O

The following lemma extends Lemma 3.1.2. We will use it in quite a similar

way.

Lemma 3.2.6 Let S be a semigroup such that there exists an idempotent
e € BS\ S, let k,r € N and let [S]* = UI_; Ai. Then there exist i €
{1,...,7} and a tree T C S<¥ such that for all f € T and H; < ... < H; C
dom f,H; € Ps(w) one has:

(1) T(f) €.
(9) { e, O, Tiem, FO} € A

proof: Let ¢ € {1,...,r} such that B;(0,7) € e. (We use the notation of
Lemma 3.2.5.) We will inductively construct a sequence of trees (1),
satisfying Tn = {f}{0,....n~1} : f € Tn41} for each n € w, such that

(1) If f € T, satisfies dom f C {0,...,n — 2} then T,(f) € e.

(2) Forall f €Ty, forall k' € {1,...,k}, forall H; < ... < Hy Cdom f,
H; € Py(w) one has

Hf(t)EBk'( IIr®..... I r@&p.i)*
teHyy teH, tEH L,

(3) For all f € Ty, for all k' € {1,...,k}, forall H; < ... < Hg C dom f,
H; € Ps(w) one has

-1
II sy Bw {Hf(t),---, 11 f(t)},i €e.

tGHk/ teH,; tGHk/_l

'For k' = 1 this is meant to be B1(d,1).
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To start with this construction we put Ty = {0}, such that T} is a tree in S
which trivially satisfies (1) - (3).

Assume that Ty, ..., T, are trees satisfying T; = {f(0,...j-1} : f € Tj1} for
J <m, such that (1) - (3) hold. For f € Ty,, dom f = {0,...,n — 1} we put

Ef = ﬂ Bk’+1 H f(t)7 > H f(t) a?:
H| <...< Hy, tet teHy
max Hy <n, k' <k-1

-1
n N I ro) Be o, T[] f®;.i

Hy <...< Hy, \¥Hy teH1 t€Hy_,
max Hy < n, k' <k

Using this we define Ty, +1(f) = Ef N {s € S: s7'Ef € €}. Finally we put
To1 =T, U{f"s: fe€Th,dom f={0,...,n—1},s € T;1(f)}-

Obviously T+ is a tree such that Ty = {fi(0,....n-1} : f € Tnt1}. We need
to check that (1) - (3) are satisfied. Let f € T}, with dom f ={0,...,n—1}
be fixed.

Ey is defined as an intersection of finitely many sets, all of which are con-
tained in e by the hypothesis of the induction. e is idempotent, so for any
set AC Sonehas Ace=¢ce & {s:s !4 ¢€e} €e Applying this to the
set By we see that T,,11(f) € e. So (1) is satisfied.

To prove (2) and (3) let s € T(f), f = f~sand H) < ... < Hy C{0,...,n}
for some k' < k be fixed. If max Hy < n, the claim follows trivially from
the hypothesis of the induction, so we assume n € Hy. We distinguish the
cases (A) in which Hy = {n} and (B) in that Hy = Hy U{n} for some non
empty set Hy C {0,...,n—1}.

(2A) This is clear by the definition of E;.
(2B) One has

s € Ef < (Hteﬁk, f(t))_l By ({Hteﬂl f@),... 1Hter/_l f(t)} 7’i),

which implies the claim.

(3A) We have ¢ 3 s™E; C s™'By ({1‘[16,0 £, Tlen, | f(t)} z) .
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(38) 35718y € s (TLem, £0)  Be ({Tem /@) e, FO)}9)
<Hter, f(t))_l By ({HtEHO F@)y - Ilen, f(t)} ,i), SO we are

done.

Finally we put T = o2 T5, such that for all f € T the following holds:

(1) T(f) ee.

(2) Forall Hy,...,Hy € Py(w) satisfying H; < ... < Hy C dom f one has
[icn, f(t) € Bk ({Hteyl f@,- e, f(t)} ,i) which implies
{HteHl 1@, Tien, F®)} € s

O

From this Lemma one may directly derive the following strong version of
the Milliken-Taylor Theorem:

Corollary 3.2.7 Let k,r € N, let S be a semigroup, let (z,)52, be a se-
quence in S and let [S]F = UI_, Ai. Assume that for every idempotent
s € S there exists some m € N such that s ¢ FP((zn)3%,,). Then there

ezist 1 € {1,...,7} and a sequence Hy < Hy < ... in Ps(w) such that

k

FP ( 11 :zt) oo_ C A;.

teHy n=0 <

proof: By Lemma 1.4.6 there exists an idempotent e € S, such that for
all m > 0, FP((z,)32,,) € e and by our assumption we have e € 85\ S.
Let ¢ € {1,...,7} and T C S<“ be as provided by Lemma 3.2.6. We have
T(0) N FS((zn)5%,) € e. In particular this set is not empty, so we may
choose Hy € Py such that HteHo z; € T(D). Let mo = max Hy. As before
T ((Xien, ©t)) NFS ((zn)Zmes1) € € so we find Hy > Ho, H, € Py(w)
such that [T,y =t € T ((IT;eq, ©¢)). By continuing in this fashion we
achieve a sequence with the required properties. [l

(Corollary 3.2.7 differs from [HS98], Corollary 18.9 only in that there our
restriction on the idempotents contained in F P((z,)S2,,) is omitted. But in
fact some additional assumption is required to guarantee that FP((z,)52,)
does not degenerate. Consider for example S = (w,+) and (2,)52, =
(0,0,...). In this case [FS((z),)]% = {{0}} € [NJF for k > 2.)

Next we state and prove the main Theorem of this section: (We remark that
the proof of Theorem 3.2.8 is virtually identical to the proof of Theorem
3.1.3, one only has to replace Lemma 3.1.2 by Lemma 3.2.6.)
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Theorem 3.2.8 Let S be a commutative semigroup and assume that there
ezists a non principal minimal idempotent in BS. Let g : w — w be an
arbitrary function. For each | € w, let (y1 )02, be a sequence in S. Let
k,r > 1 and let [S]¥ = JI_, A;. There emist i € {1,...,k}, a sequence
(an)32o in S and a sequence Hy < Hy < ... in Py(w) such that for each
sequence (in)52, satisfying i, < g(n) for n € w,

0
FP (an + Z yin’t) C A;.

teHn n=0 <

proof: Fix a minimal idempotent e € 8S\S. Leti € {1,...,7r} and T C S<¥
be as provided by lemma 3.2.6. Denote by ® the set of all sequences (i,)5,
satisfying i, < g(n) for all n € w. We will inductively construct sequences
(@n)2y in S and Hy < Hy < ... in Pp(w) such that for all n € w and all
sequences (in)o>, € O

(CL() + ZtEHo Yig,ty - - - yQn + ZteHn yin,t) eT. (32)

By the properties of T this is sufficient to proof the Theorem.
Assume that ag,...,a,-1 € S und Hy < ... < H,_; € Pj(w) have already
been constructed such that (3.2) is true for all (i,)52, € ®. We have

G, = ﬂ T ag + Z Yig,ty -, On—1 + Z Yin1 .t € e.

(in)S2o€® teHo t€Hn -1

Let m = max H,_;. By applying Theorem 2.2.2 to the set G, and the
sequences (Yo, k)k>m - - - » (Yg(n) k) k>m We find an, € S and Hy, € Py(w), Hy >
Hy_y such that an + > cp Yots -5 8n + Xiepr, Ygn)t € Gn-

Thus for all (¢,)S2, € @, (Zzo + D teHy Yg(0) ks - -+ On F Dpepr, yg(n),k) €T,
as we wanted to show. [

The case k = 1 of Theorem 3.2.8 is exactly the Central Sets Theorem.
Theorem 3.2.4 follows from Theorem 3.2.8 similarly as Theorem 3.0.1 follows
from the Central Sets Theorem.

For k = 1 the somewhat odd assumption that 8S should contain a non
principal minimal idempotent is not needed. In general this condition will
be satisfied if S is weakly (left) cancellative, ie. if for all u,v € S the
set {s € S : us = v} is finite and S itself is infinite (see [HS98], Theorem
4.3.7). In particular the conclusion of Theorem 3.2.8 holds in the semigroups
(N: +)’ (N, ')) (Pf7 U)'

3.3 Applications of located words

Theorem 3.3.7 is the major result of this section. It has several earlier
theorems as immediate corollaries. In particular, it implies a stronger version
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of Theorem 2.2.9 and significantly strengthens the Central Sets Theorem. To
establish this theorem we shall use the notion of partial semigroup introduced
in [BBH94].

Definition 3.3.1 (a) A partial semigroup is a set S together with an op-
eration - that maps a subset of Sx S into S and satisfies the associative
law (z-y)-z =z (y-2) in the sense that if either side is defined, then
so is the other and they are equal.

(b) Given a partial semigroup (S,-) andx € S, ¢(z) ={y€ S:z -y is
defined}.

(c) Given a partial semigroup (S,), x € S and AC S, z7'A = {y €
dlz) -y e A}.

(d) A partial semigroup (S, ) is adequate if and only if for each F' € Py(S5),
n:ceF ¢('/L‘) 7& @

(e) Given an adequate partial semigroup (S,-), 65 = \,cs ().

Before we derive some elementary properties of partial semigroups, we shall
describe the partial semigroup we are mainly interested in: Let A be an
alphabet (i.e. some non empty set) and let v be a “variable” that is not
contained in A. A located word over A is a function w from a finite subset
dom w of Nto A. Let Lg be the set of located words over A and let Ly be the
set of located variable words over A, that is the set of words over A U {v}
in which v occurs. Let L = Ly U Ly. Given u,w € L, if max(dom u) <
min(dom w), then define v - w by dom (u-w) = dom u U dom w and for
t € dom (u - w),

_Jut) iftedomu
(u.w)(t)_{w(t) iftEdme.

(Or - somewhat more concise - uw = u U w.) With this operation L, Ly,
and L; are adequate partial semigroups.
It would be easy to define structures similar to Lo that carry a semigroup
structure. For example as in chapter 2 we could consider words over A
(instead of located words) and use concatenation as the semigroup operation.
Another possibility would be to consider the semigroup (P;(N x A),U).
We will shortly explain why these semigroups are not well suited for our
purposes:
Let (T, -) be a semigroup and for each A € A let (z),)52; be a sequence in
T. Put

f Ly —>T w = H Toy(t),t-

tedom w
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f has the nice “homomorphism property” that whenever uw is defined, we
have f(uw) = f(u) - f(w). Of course we can not expect that the proposals
above allow similar “homomorphisms”.

Lemma 3.3.2 Let (S,-) be an adequate partial semigroup and for p € S,
q €8S definep-gq={ACS:{ze€S:z27'4¢€q}€p}. The map
pq : BS —= S is continuous. With the relative topology inherited from (S,
(6S,-) is a compact right topological semigroup.

proof: It follows directly from Definition 3.3.1 that 65 = (¢ Sm is a non
empty compact subset of 35 if S is adequate. For each s € S exists a unique
continuous extension of A; : ¢(s) — BS to Bé(s). Rigorously B¢(s) does
not coincide with ¢(s) C 3S, but since ultrafilters on S that contain ¢(s)
naturally correspond to ultrafilters on ¢(s) we shall not bother with this
problem. So for all s € S, the continuous extension of A; (which will again
be denoted by As) is a continuous function that is defined on §S. It is easy
to check that for p € 65, A\s(p) =sp={A C S:s571A4 € p}.

By considering the continuous extensions of the functions p, for ¢ € 65, we
may assume that pg is defined for p € 85 and ¢ € 45 and as in Theorem
1.2.12 one easily checks that A€ pg& {s€ S:s571A€q} €p.

Pick s € S and t € ¢(s). We have

t7lp(s) = {z€¢(t):tz € H(5)} (
= {z€¢(t): s(tw) is defined} (

= {z € ¢(t) : (st)z is defined} (

(

= ¢(t) Ng(st).

Thus for g € 65, t71¢(s) = $(t) N¢(st) € q. Equivalently we have tq € ¢(s).
By continuity ¢(s)q C ¢(s). In particular pg € ¢(s) for each p € §S. Since
s was arbitrary, it follows that pg € §S. Thus 565 C 6S.

Associativity follows similarly as in 1.2.9. O

®w W W w

3
4
S
6

L, Ly, and Ly are adequate partial semigroups so by Lemma 3.3.2 6L, d Lg,
and 0L, are compact right topological semigroups. Also §L; is an ideal of
0L. (The verification of this latter statement is an easy exercise and a good
chance for the reader to see whether she has grasped the definition of the
operation.) Notice that for j € {1,2} and p € BL;, one has that p € §L; if
and only if for each n € N, {w € L; : min(dom w) > n} € p.

Lemma 3.1.2 extends to adequate partial semigroups without difficulties:

Lemma 3.3.3 Let S be an adequate partial semigroup, let e be an idempo-
tent in 6S and assume that A C e. There exists a tree T' in S such that for
all f€T:

(1) T(f) €e.
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(2) For all non empty H C dom f, [[,c f(t) is defined and lies in A.

proof: The proof is very similar to the one of Lemma 3.1.2, so we skip it. [J

Lemma 3.3.4 Let (S,-) and (T, ) be adequate partial semigroups and let
f S = T have the property that for all x € S and all y € ¢s(z), fly) €
¢r(f(z)) and f(z-y) = f(z)*f(y) and assume that f is onto. Let f : BS —
BT be the continuous extension of f. Then the restriction off to 85 is a
homomorphism from (8S,-) to (6T, *).

proof: Let p € §S. We want show that f(p) € 6T. Let b € T be arbitrary.
Choose a € S such that f(a) = b. Then ¢s(a) € p. We have ¢g(a) C
FYor (b)), so fer(b)] € p. Thus f(p) € ¢r(b). Since b was arbitrary it
follows that f(p) € 6T. To show that f | 65 is a homomorphism proceed as
in the proof of Theorem 1.2.13. O

In the following we will denote the continuous extension of a function by the
same letter as the function itself.

For each a € L, define 8, : L — Lg as follows. For w € S, let dom 6,(w) =
dom w and for t € dom w, let

_Jw() ifw(t)eL
Ga(w)(t) = { a if Z(t) =u.

That is, 0,(w) is the result of replacing each occurrence of v in w by a.
Notice that 6, is the identity on Ly hence this also holds for its continuous
extension on SLg.

Lemma 3.3.5 (1) Let g € 6Ly be a minimal idempotent. There exists a
minimal idempotent r € §L; such that O,(r) = q for all a € A.

(2) Let A C Lg be central and let ay,as,...,ax € A. There exists a central
set B C Ly such that 6,,[B] C A for alli € {1,2,...,k}.

proof;

(1) Pick a minimal idempotent r < g in L. Since 6L, is an ideal of L we
have r € 6L;. Let a € A be arbitrary. 0,(r) < 0,(q) < g. Since ¢ is
minimal in Ly, 6,(r) = q.

(2) Pick a minimal idempotent ¢ € dLg such that A € ¢ and let r be as
provided by (1). By continuity we have

k
B=Lin[{weL:b,w)cd}ler

=1
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O

The following theorems apply equally well to finitely many semigroups in-
stead of just F,, F5. We just have chosen to go with two semigroups since
this simplifies the notation, while nothing essential has to be changed to
treat arbitrarily many semigroups.

Lemma 3.3.6 Let Eq, Ey be countable semigroups with identities ey, es, for
J € Nlet (2;,)52, be a sequence in Ei and let (y;jn)se, be a sequence
in Ey. Assume further that 1, = ey for n € N, that every element of
E\ appears infinitely often in (z2,)5>, and that the analogous statement
holds for (yin)S%, for i € {1,2}. Let q; be a minimal idempotent in E; for
i€ {1,2}. Let A = N? and define

g : LO — B w —r H Ty (w(t)),t (37)
tEdom w )

2:Lo=B  we [ Ymnwewe (3.8)
tedom w

where 71,y : N2 = N are the projections onto the first respectively the
second coordinate. Then there exists a minimal idempotent ¢ € Ly such

that g1(q) = q1 and g2(q) = qo.

proof: We claim that if b; € E; for each i € {1,2} and if n € N, there exists
w € Sy such that g;(w) = b; for every 7 € {1,2} and min(dom w) > n. To
see this, observe that we can choose n1,n9 in N such that n < n; < ng and
ZTop, = b1,Y2m, = bo. We can then define w by putting dom w = {ny,na},
'U)(’I’Ll) = (2’ 1),’(1)(712) = (1,2).

In particular each g; : Ly — E; is surjective and so, by Lemma 3.3.4, the
restriction of g; to §Lg is a homomorphism to 6 F; = SE;.

Given (X1,X2,n) € g1 X g2 x N we choose w(X;,Xo2,n) € Sy such that
min(dom w(Xy, Xs,n)) > n and g;(w(X1, X2,n)) € X; for each 1 € {1,2}.
We give p; x p2 X N a directed set ordering by stating that (X, X9,n) <
(X1, X5,n) iff X! C X, foreach i € {1,2} and n < n'. If z is any limit point
of the net (w(X;, X2,n)) in 8Ly, we have z € §Lg and g;(z) = p; forevery ¢ €
{1,2}. (That = € §Lg follows from the fact that min(dom w(X;, X2,n)) >
n. To see that g;(x) = ¢;, let A € ¢ and suppose g;(z) ¢ A. Pick
B € z such that g[B]NA = 0. Let X; = A and for j # 7 let X; =
E;. Pick (X],X3,n') = (X1,X2,1) such that w(X{,X},n') € B. But
gi(w(X],X5,n')) € X] C X; = A, a contradiction.)

Let C = {z € 6L : gi(z) = ¢; for ¢ € {1,2}}. We have just seen that C is
nonempty, and so it is a compact subsemigroup of 6Lg. Let ¢ be a minimal
idempotent in C. Then ¢ is minimal in §Lg, because if ¢’ is any idempotent
of 6Lg satisfying ¢’ < ¢, we have gi(¢’) < gi(q) = ¢; for 1 € {1,2}. This
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implies that g;(¢') = ¢;. So ¢’ € C and thus ¢’ =¢. O

The following theorem is a rather strong generalisation of the Central Sets
Theorem.

Theorem 3.3.7 Let Ey, Ey be commutative semigroups with identities ey, ea,
let Cy C Ey and Cy C E; be central sets. For j € N let (z;0)52, be a se-
quence in Ey and let (y;n)02, be a sequence in Ej.

Let X be a nonempty set that is finitely coloured and let ¢ : By X By = X
be an arbitrary function.

Let h:w — N be a function which is growing arbitrarily fast.

There ezist sequences (an)S%, in By, (bn)s>, in Fo and Hy < Hy < ... in
Pr(N) and a monochrome set M C X such that for all F € Py(w) and all
hi,ho < h

H Gn H Thyn),t € C1, H bn H Yha(n),t € C2

neklF teHy, neFlr teHn
¢ (H an H Thy(n),ts H bn H yh2(n),t> Cc M.
nekr teHn neFr teH,

proof: By eventually switching to the subgroups that are generated by the
sequences (Tjn)oe1, (¥jn)o%1,7 € N, we may assume that G and G, are
countable.

Further we shall assume that the sequences (zin)o%,, (Yin)o2:,t € {1,2}
satisfy the hypothesis of Lemma 3.3.6. (Perhaps we have to add some new
sequences and replace h by h + 2.)

For ¢ € {1,2} pick a minimal idempotent ¢; € SE; such that C; € ¢;.

We will again work with Lo, L; where A = N?. Define g1, g2 as in Lemma
3.3.6 and pick a minimal idempotent ¢ € 6L such that g1(¢) = q1,92(q) =
g2. Via the map

Y:Lo—= X  we ¢(gi(w), g2 (w))

the colouring of X induces a colouring of Ly. Let K be a monochrome set
that is contained in q. Then A = g7 '[C1]N g5 [C2])NK € ¢.

By Lemma 3.3.3 there is a tree T’ in Ly such that for all f € T the following
holds:

(1) T(f) €q.

(2) Let dom f = {0,1,...,1}. Then max f(0) < min f(1), max f(1) <
min f(2),...,max f({ ~ 1) < minf(l) and for all F C {0,1,...,1},
Uier f(t) € A.
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Assume that w is a variable word with w=1[{v}] = H. Then for i,j € N,
(910 5y (w)), g2(0s,5)(w))) is of the form

(a [zinb ] yj,t> :

teH teH

where a € E1,b € E; do no depend on (4, 7).
By the properties of T and A it is sufficient to construct a sequence (wy )52
in Ly such that for all hy,he < h and each [ € w

(Ohy (0),82(0)) (W), - - - » Ony (1 ha ) (1)) € T.

Assume that this was already done for n < [. We show how to construct wy;:

D= () T(0h©)n:0)(@o)s - - 0n -1y ho(i-1))(wi-1)) € g.
hlyh'?Sh‘

By Lemma 3.3.5 we may pick w; € L; such that 6 j)(w;) € D for all
i,j€{1,2,...,h(0)}. O

We show now how to derive a simple strengthening of Theorem 2.2.9 from
Theorem 3.3.7.

Corollary 3.3.8 Let m,k € N. Let Cy be central in (N,+) and let Cy
be central in (N,-). For each i € {1,2,...,k} let (z;4)52; and (yit)2; be
sequences in N. Let N = |JI*; A;. Then there exist s € {1,2,...,m},
F € P#(N), and a,b € N such that

{ba}U{bla+ > cr ziy) s i€ {1,2,...,k}}U

{ba - [licp wit:J €1{1,2,...,k}}U

{b(a + EteF a"i,t) : (HteF yj,t) : iaj € {172a e ’k}} c As:
{a}U{a+>cpzi:ie{l,2,...,k}} CCy, and

(b} U{b-[lier vt €{1,2,...,k}} C Cs.

proof: Let F} = (w,+) and let By = (N,-). Define ¢ : By X Es — w by
¥(a,b) = ab. For t € Nlet 211, =0 and yeq1: = 1. (For j > k+1 we do
not care what z;; and y;; are.) Let h =k + 1.

By Lemma refcentralegal, C, is central in E;. Pick (H,)32,, (an)2y,

(b))%, and M as guaranteed by Theorem 3.3.7. Pick s € {1,2,...,m}
such that M C A,. Let a = ag, let b =bg and let F' = Hy. O

The following is a nice strengthening of Lemma 3.3.6 that applies if the
semigroups are the same. This time we derive the statement for arbitrarily
many semigroups simultaneously.

Lemma 3.3.9 Let k € N and let E be a countable commutative semigroup
with identity e, for j € N and i € {1,2,... k} let (m(-l) )22, be a sequence

jn/n=1
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in E. Assume further that argzzl = e for n € N and that every element of
E appears infinitely often in (37%131)%0:1 for each i € {1,2,...,k}. Letp be a
minimal idempotent in E, let A = N*¥ and define

. i)
gi:Log— F w = H x-(n'i(w(t)),t

te€dom w

for i€ {1,2,...,k}. (m : N¥ - N denotes the projection onto the i-th
coordinate). Further put yp(w) = [l;cpgi(w) for F € Pp({1,2,...,k}).
Then there ezists a minimal idempotent ¢ € §Lg such that for each F €
Pf({la 2,... ak}): 7F(Q) =D

proof: As in the proof of Theorem 3.3.6 we see that given any by, bs,...,b; €
E there is some w € Ly such that g;(w) = b; for each ¢ € {1,2,...,k}. In
particular each yr is a surjective homomorphism so by Lemma 3.3.4 the
restriction of yp to dLg is a homomorphism to GF.

We claim that for any B € p and any n € N there exists wp , € Lo such that
for all F € Ps({1,2,...,k}), yr(wpn) € B and that min(dom wpy) > n.
To see this pick by, by, . . ., by such that FP((b;)¥_;) C B, which one may do
because p is an idempotent. Pick wpg, such that g;(wp,) = b; and that
min(dom wp, > n) for each i € {1,2,...,k}.

Direct D = {(B,n) : B € p and n € N} by (B,n) < (B',n’) if and only if
B'C B and n < n'. Let u be a limit point of the net (wpn)(p )ep in BLo-
We see as in the proof of Lemma 3.3.6 that u € 6Lg and yr(u) = p for all
F e Pse({1,2,...,k}). Let

J={w € dSy:yr(w)=pforall FePr({1,2,...,k})}.

Then J is a compact subsemigroup of Ly since each g is a continuous
homomorphism. Pick a minimal idempotent ¢ of J. Given any idempotent
q' € 0Lg such that ¢’ < g, for each F € Py({1,2,...,k}), 7vr(d') <vr(q) =p
s0 Yr(q') = p. Thus ¢’ € J and so ¢' = ¢. That is, ¢ is minimal in §Lg. O

Theorem 3.3.10 Let k € N, let E be a countable commutative semigroup
with identity e and let C be a central subset of E.

(1) Let m € N. For all j € {1,2,...,k},i € {1,2,...,m} let (21)))32, be
a sequence in E. There exist G € P;(N) and by,...,by € E such that
for all F € Pp({1,2,...,k}) and each f: {1,2,...,k} = {1,2,...,m}

one has )
_ J
Lo I1=%.€C
JEF teq
(2) Let Ry, Ry,..., Ry be IP sets in E. There exist rj € R; and bj € E
for each j € {1,2,...,k} such that whenever f : {1,2,...,k} —
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{1,2,...,k}, h: {1,2,... .k} = {0,1,...,k} and F € P;({1,2,...,k}),

one has
H bj - Tf ]) E C.
jEF

proof:

(1)

(2)

By eventually switching to the subsemigroups that are generated by
the sequences (z; G ))n 1 We may assume that G is countable.

Further we shall assume that the sequences (z(J))n i€ {1,2},5 €
{1,2,...,k} satisfy the hypothesis of Lemma 3. 3.9. (Perhaps we have
to add some new sequences and replace m by m + 2.)

Pick a minimal idempotent p € SE such that C € p.

We will work with Lg, L where A = N¥. Define g;,i € {1,2,...,k},7r,
F e Ps({1,2,...,k}) as in Lemma 3.3.6 and pick a minimal idempo-
tent ¢ € dLg such that yp(q) =p for all F € Pr({1,2,...,k}).

Put A = pep,((1,2,..4) V7 [C1 €4

By Lemma 3.3.5 we may pick a vairable word w € L; such that
Oiir,...ip)(w) € A for all 4y,... 4, € {1,2,...,m}. Let H = w[{v}].
Foriy,...,t €N, (g1(00,,...5,)(W)); - - -5 Gk (Os,,...i)) (w)) is of the form

1 k
(m e [T <>) |

teH teH
where b;,...,b; € E are independent of 41, ... ,14, and so we are done.

For each j € {1,2,...,k} let (zjn)0%, be a sequence in E such that
FP((zjm)p2;) C R Put m = k? and for 4,4, € {1,2,...,k},n € N
put avgc()1 D+in — 7 n- (Le.: The choice of (z; ( )) o2, is independent of j,
the number ¢ € {1,2,...,k} of the desired IP set and the desired power
le{l,2,...,k} are coded in the number k(i — 1) +1 € {1,2,...,k*} =
{1,2,...,m}.) Pick by,...,b, and G as guaranteed by (1). Put r; =

[licq 2t for i € {1,2,.. k} Then r z) = [licqz k()f(z) Do(i)n 5O
the statement follows.

76



Chapter 4

Characterising Sequences

This chapter is entirely devoted to the proof of one major Theorem. Andras
Bir6 and Vera Sés [BS03] prove that for any subgroup G of T generated
freely by finitely many generators there is a sequence A C N such that for
all B € T we have (]|.]] denotes the distance to the nearest integer)

BeEG = |nfl < oo, B¢ G = limsup |nB| > 0.

neAd n€EA,n—o00

We extend this result to arbitrary countable subgroups of T. We also show
that not only the sum of norms but the sum of arbitrary small powers of
these norms can be kept small. Our proof combines ideas from the above

article with new methods, involving a filter characterization of subgroups of
T.

4.1 Introduction

We study certain subgroups of T = R/Z and methods to describe them
by sequences of positive integers. By ||| we denote the distance to the
nearest integer. It is easily seen that for any sequence A C N the set
{B €T:limyeansoo ||nB] = 0} is a subgroup of T. It seems natural to ask
which subgroups arise in this way. In [BDS01] A. Bir6, J.-M. Deshouillers
and V. T. S6s show that for any countable group G < T there is some A C N
that characterizes G in the above sense.

Another way to connect subsets of N and T is to consider the set {3 € T :
Y nea InBll < oo} which again is a subgroup of T. Following a question of
P. Liardet, A. Biré and V. T. Sés show in [BS03] that if 1,a;,...,0; € T
are linearly independent over the rationals there is a sequence A C N, that
characterizes {aq,...,q;) simultaneously in both ways. Such a sequence is
called a ‘strong characterizing sequence’ of (aj,...,a). Our aim is to find
strong characterizing sequences for arbitrary countable subgroups of T. The
main result is:
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Theorem 4.1.1 Let G = {«a; : t € N} be a subgroup of T. Then there exists
a sequence A C N, such that for all 3 € T

BeG=Vr>0 > [nfl < oo, B¢ G = limsup |[ng| > 1/6.

neA neEAnN—-0

4.2 Connecting two methods
In our proof we use the following reformulation of Theorem 1 in [Wi02):

Proposition 4.2.1 Let G be an arbitrary subgroup of T. Then there is a
filter F on N that characterizes G in the sense that for all B € T

BEG < F—lim|np|=0.

We remind the reader that here ‘F — lim, ||[nf| = 0’ means that for all
€ > 0 one has {n € N: ||ng|| < e} € F. The filter-convergence defined in
this way is more general than ordinary convergence: For a sequence A C N
let F(A) be the filter consisting of all sets containing {k € A : kK > n} for
some n € N. Then we have for all 5 € T
lim |ng|=0 << F(A)-lm|ng||=0.
n€A,n—o0 n

The following notation will be useful: Given ay,...,0; € T, € > 0 and
N € N the corresponding infinite respectively finite Bohr sets are defined by

Hg(al,... ,at) = {TL e N: ||na1||,...,||nat|| < E},
Hye(al,...,oq) = {n<N:|na,-..,|nal <e}.

Using the finite intersection property of filters, one sees that F—lim, |ng| =
0 for all elements 8 of some given G < T implies that for all ay,...,a4 € G
and € > 0 He(a1,...,o) € F. For each subgroup G < T there is a canon-
ical (i.e. smallest) candidate for a filter that characterizes G, namely the
filter F which consists of all sets containing a set He(a1,...,q:) (6 > 0,t €
N,ap,...,a € G).

To illustrate the connections between the number theoretic approach in
[BDS01] respectively [BS03] and the more abstract point of view in [Wi02]
we show that the result on the characterization of countable subgroups by
sequences of positive integers in [BDS01] implies Proposition 4.2.1:

proof: Let G < T be an arbitrary subgroup and let F¢ be the filter described
above. By definition of Fg we have Fg — lim, ||ng|| = 0 for each 8 € G.
Now assume Fg — limy ||[nB|| = 0 for some 8 € T. For £k € N let M, =
Hy(B) € Fg. According to the construction of F¢, there are sequences
1 <ty <...(tk €N), ()2, (at € G) and €] > 2 > ... (g > 0) such
that My D Hc, (on,...,0y,) for allk € N.
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By the result of A. Bird, J.-M. Deshouillers and V. T. Sés there is a sequence
A C N, such that

{BeT: lim |nd)|=0}=(x:teN).
nEA,n—oo
In particular we have limyec 4 pooo |ne]| = 0 for all ¢ € N. Thus for fixed

m € N we can find n,, € N satisfying ||na;|| < &, for alln € A,n > n,, and
for all ¢ < t,,,. This implies

{neAd:n>n,} CH, (a1,...,0¢,) € Mp,

i.e. for all m € A,n > n,, we have ||ng|| < 1/m. Since m € N was arbitrary

this yields limpecgnwoo |[78]] = 0 and, as A is a characterizing sequence,
Bel:teN) <G O

4.3 Ideas of the proof

The rest of this chapter focuses on the proof of Theorem 4.1.1. The proof
splits in several lemmas. Before we state and prove them rigorously, we want
to give a short sketch of the strategy of the proof and the informal meaning
of the individual lemmas:

Lemma 4.4.3 shows how the countable group G may be represented as the
limes inferior of certain open subsets V; of T. These sets may by seen as
approximations of G.

Lemma 4.4.2 shows that the behaviour of the values ||n3||, where n runs in an
appropriate finite Bohr set, may decide whether 3 lies in an approximation
Vi of G. Part (1) of the Lemma uses Theorem 4.2.1, while part (2) follows
easily by a compactness argument similar to the reasoning in [BDS01].
The methods developed so far are powerful enough to prove the existence
of sequences that characterize countable groups in the sense of [BDS01]. To
provide a strong characterizing sequence we use Lemma 4.4.5 to replace a
Bohr set H by a somewhat thinner set S that contains the same amount of
information but allows in addition to keep the sum »_ ¢ lna|” (o € G,r >
0) under control. The proof of Lemma 4.4.5 is based on Lemma 4.4.4, a deep
result on the structure of Bohr sets due to A. Bir6é and V. T. Sés ([BS03]).

4.4 Preparations

The following technical facts will be needed later. The proof is elementary,
so we skip it.

Lemma 4.4.1 Let a, €T and n € N.

(1) Assume ||a],||2¢}, ..., llnall < d <1/3. Then ||a| < d/n.
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(2) Assume |3+ 2%, ||B +2tall,..., |8+ 2"l <d < 1/6. Then |lof <
d/2n2,

Given a1,...,a; € T and M € N we define
(al,...,at)M = {k1a1 + ot ko |k)1|,...,|ktl < M}
We further define [|3S|| = sup{|[ng|| : n € S} for € T and S C N.

Lemma 4.4.2 Let ay,...,04 € T and € > 0.

(1) There ezists some positive integer M such that
I8H (e, a0l < 1/6 = B € (e, ahur

(2) If V2 {ai,...,ou)pm 1s an open subset of T, there ezists some positive
winteger N such that

“ﬁHN,E(ala ce aat)“ S 1/6 = B ev.

proof: Throughout the proof we suppress mentioning a4, ..., a; while notat-
ing Bohr sets.

(1) Suppose B satisfies ||BH,|| < 1/6. Let F be a filter on N that char-

acterizes (aq,...,q) and let m € N be fixed. Of course we have
Hejm € F. Forn € Hyy, and k < m we have kn € H, and in particu-
lar ||k-nB|| < 1/6. Since 1/6 < 1/3 this implies ||| < & by Lemma
4.4.1. Thus we have [|BH, /| < = and since m was arbitrary we get
F —limy, |Ing|| = 0. F was assumed to characterize {(a,...,q;) thus
we have 8 € (a1, ..., ).
It remains to show that {# € T : ||BH.|| < 1/6} is finite. The torsion
subgroup of (oy,...,) is finite and cyclic, let its order be ¢ € N.
Then ¢{ai,...,q;) is torsion free, hence we find some vy,...,v, € T,
such that g{(ai,...,qy) is freely generated by ¢v1,...,q7.- We have
(o1, 504) = (7,---y7n,1/q) and there are uniquely determined
ki €Z (i <t,j <n)andk; € {0,...,q— 1} (i <), such that

n
a; =Y kipy;+kifq (i < ).
=1
Thus we can find some § > 0, such that for all m € ¢N
lmmnll,. ..o limmll 6 = flmoall, ..., lmol| <e.

For each § satisfying ||SH¢|| < 1/6 there are uniquely determined
kj€Z (j <n)and k € {0,...,g— 1} such that 8 = 3°7_, k;v; + k/q.
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If the k; (j < n) don’t vanish simultaneously, Kronecker’s theorem
assures that we can find m € ¢N, such that

1 5
Vi<n ——=z—— < sign(k;)my; < ——=3——— modl
63 i1 |kil 7 6> i |kl
1 5
= 6 < mYy kv < 6 mod 1,

ie. ||mp| > 1/6. Thus m > 4. This shows that there are only

finitely many choices for the k; (1 <n). Thus {8 € T: ||BH:|| < 1/6}
is also finite and we can find some M € N, such that {8 € T : ||BH:|| <
1/6} g <a1,... ,Olt>M.

(2) Let M be as in (1). Then {(a1,...,a;)p C V implies
0=ven{BeT:|BH] <1/6} =V°n () {BET:|nBl <1/6}.
ncH,

Since T is compact and all of the above sets are closed, the intersection
of finitely many of these sets must be empty, i.e. we can find some
N € N such that VN (e, {B€T:|[nB| < 1/6} = 0. Obviously
this IV is as required.

O

Lemma 4.4.3 Let G = {a : t € N} be a subgroup of T and let (M;)2,;
be a sequence of positive integers. There exists a sequence (V;)i2, of open
subsets of T such that

(Z) Vt 2 (ala s aat>Mt (t € N)7

proof: We may assume that (M;){2, is increasing. We choose a sequence
(0¢)32, of positive numbers that decreases to 0 and satisfies for all £ € N

(1) 26, < min{fla— o[ : @0 € (s, a)an, 0 # '),
. E(al...at)M

2) G460, < _ )| @€ e e, }

(2) 00y mm{“" e e, o) atn \ (s oy ) ur

Using this, we define
Vi={B€eT:3a€ (a1,...,a)m, la— 0| <}

We obviously have lim inf;_, V; 2 G. To show the reverse inclusion, assume
B € liminf;_,o Vi, i.e. B € V; for all t > ¢, for some ¢y € N. By definition of
the V; for all t > t¢ there is some ; € (a1, ..., ) p, satisfying || — 7|l < d;
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and (1) shows that this 7; is uniquely determined. Further v; # 741 for
some t > ty would contradict (2), thus we have v, = vi41 = Yeo42 = -
In particular this shows |8 — v, || = |18 — ]| < d: = 0, hence =1, € G.
0O

From Lemma 1 in [BS03] one gets:

Lemma 4.4.4 Let t € N. There exists some constant C; = Cy(t), such
that for all on,...,a¢ € T, positive ¢ < 1/C} and positive integers N there
are suitable nonzero integers ni,...,ng and positive integers Ki,..., Kp,
R < C4 satisfying

(0) YR Killniay| < Cr-e (1<5<1)
(b)) S Kilni| <C1- N,

(C) HN’E(OQ,. . ,at) g {Zil kini 01 S ki S Ki}.

Lemma 4.4.5 Let t € N. There ezists some constant Cy = Ca(t), such
that for all ay,...,0q € T, positive e < 1/C1(t), positive r < 1 and posi-
tive integers N and U there is a suitable nonempty finite set S of integers
satisfying

(i) U < min§,

(ii) for all j <t we have ), g ||lnoy||” < Cs - %,

(1i1) for all B € T we have min{1/6, |BHn(1,..., )|} < ||BS]|-

proof: Let oy, ..., € T and C1, R, K;,n; (i < R) as given by Lemma 4.4.4.
Let m > U be an integer satisfying

€T
T < —
Imeill™ < - m ez
for all 7 <t and let
S={m+2n;|: 2" <8 K;-R}.

Clearly S satisfies (i).
For each j <t we have

> el < card(S) - [may ||+ > Hl(n — m)ay |
nes nes
To find an upper bound for the first term, we observe that K; < C - N
implies card(S) < Rlgy(8-C1 - N - R). Thus
E\7"

card(S) . Ilmajllr < ng2(8 . Cl -N - R) . lgz(S—C'?]V_) S Cl g,
1
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The second term can be estimated by

R [ |lg2(8-Ki-R)] " R 1g(8K: R)+
(27)'e:! ~1
> > gl | < Z il
i=1 1=0 i=1
16" R"
< 1ZK{||nianr.
=1
T
For any aq,...,ar we have RZz 1a; < < Zf;l ai) by Jensen’s inequal-

ity. This yields

R T
. _16'R 167C,
Sl = magll” < o (;KillmaﬂI) < (Crey

nes

Thus S will satisfy (ii) if we let Co = C1 +16 - C? .
Finally let 6 € T and d = ||3S]||. We may assume d < 1/6. Thus by Lemma
44.1foralli <R

[mB + 2 n| Bl < d (I <lgo(8- K; - R))
implies

d d
anﬁ” < 2llg2(8-K;-R)| -2 = K;- R

By Lemma 4.4.4 eachn € Hy(cu,...,a;) has a representation n = Zf;l kin;
for some integers k;, (1 < ¢ < R) satisfying 1 < k; < K;. Using this repre-
sentation we get

InBl = Zk nif

Thus S satisfies (iil). O

<ZKllmﬂll <ZKK =

4.5 Proof of the Theorem

Finally we are able to give the proof of Theorem 4.1.1. Let (&;)$2, be a se-

1/t
quence of positive numbers, satisfying e, < 1/Cy(t) and ) 12, Cg(t)Q—f}: <
0o. Combining Lemma 4.4.2 and Lemma 4.4.3 we find a sequence (N;){2,
of positive integers and a sequence (V;){2; of open subsets of T, such that:

(1) Forall 3 € T and for allt € N ||fHp, ¢ (a1, ...
2) Ui N2 V=G

)| S1/6 = S eV
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Using Lemma 4.4.5 we find some sequence (S;)52; of subsets of N such that
forallte T

(i) max S; < min Sg4q,

. l/t -
(i) Ynes, InasllV/t < Cot) - 54— (G < 1),
(iii) for all B € T min{1/6, |BHN, ¢ (a1, .., a)||} < |BS)-

By defining A = | J;2, S; we will in fact get a strong characterizing sequence
of G as stated in Theorem 4.1.1:

Assume 3 € G and r > 0. Then § = a, for some ty, € N. If we let
m > max{tg,1/r}, we have

l/t

D BT < 30D lmen Mt < Y- Calt) g7 < oo

n€EAn>min Sp, t>mneS t>to

Finally, assume 8 ¢ G. There exists a sequence t; < ty < ... of pos-
itive integers such that 5 ¢ V; (k € N). So for each k¥ € N we have
|1BHe,, v, (@1 a,)ll > 1/6 and thus can find some ny € Sy, satisfying
|Brk|l = 1/6. This shows Limsup,,e 4 500 InBI = 1/6.
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