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Abstract

The design of developable surfaces is of fundamental importance for many appli-
cations in Computer Aided Geometric Design. The aim of this thesis is to derive
different algorithms to approximate developable surfaces by cone spline surfaces,
which are G1-surfaces composed of segments of right circular cones. This can be
seen as a certain spatial counterpart of approximating a space curve by an arc

spline. A new algorithm for such an arc spline approximation of space curves in
Euclidean 3-space is presented in this work.

The first chapter shows how to approximate a developable surface by smoothly
joining pairs of cone segments. It turns out that there exists a one parameter
family of cone pairs which join two generators of the developable surface and touch
the tangent planes at these generators. Errors of this approximation method are
analyzed and several examples are given.

The second chapter presents a different approximation technique with cone spline
surfaces. From the given developable surface a set of osculating cones is com-
puted. For each two consecutive osculating cones a smoothly joining cone segment
is determined. In special cases there still exists a one parameter set of solutions
but in the general case one will have just two complex solution cones. This sur-
vey includes an application of this method to the reconstruction of developable
surfaces from scattered data.

The third chapter gives a short introduction into 3-dimensional Euclidean La-
guerre space. In the isotropic model of this geometry the approximation tech-
niques of chapters 1 and 2 will appear as curve approximation with isotropic arc
splines. With tools from isotropic Möbius geometry we will prove the funda-
mental theorem that there always exists a joining cone of two sufficiently close
osculating cones of a developable surface which is real and useful for applications.
This result confirms the feasibility of the methods of chapter 2.

Finally, in chapter four we will discuss osculating arc spline approximation of
twisted curves in Euclidean 3-space. In general, there exist two arcs that smoothly
join two osculating circles of a spatial curve. Again the existence of a real and
useful solution is proven. Furthermore an algorithm is presented how to segment
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the given curve in order to minimize approximation errors. The approximation
algorithms are discussed for several examples.



Kurzfassung (German)

Das computerunterstützte Modellieren mit abwickelbaren Flächen (Torsen) be-
sitzt wichtige Anwendungen im Design mit nicht dehnbaren Materialien. Diese
Arbeit behandelt verschiedene Methoden eine gegebene Torse durch Dreh-

kegelsplineflächen anzunähern. Dies sind Flächen, welche aus Segmenten von
Drehkegeln tangentialstetig zusammengesetzt sind. Es besteht eine enge Ver-
wandtschaft zwischen der Approximation mit Drehkegelsplineflächen und räum-
licher Kurvenapproximation durch Kreissplines, also Kurven, die tangentialstetig
aus Kreisbögen zusammengesetzt sind. Auch für dieses Problem wird ein neues
Verfahren vorgestellt.

Das erste Kapitel behandelt die Approximation von Torsen durch tangential-
stetige Drehkegelpaare. Zu je zwei Erzeugenden einer Torse existiert eine ein-
parametrige Schar von solchen Drehkegelpaaren, welche die Erzeugenden inter-
polieren und dort die Tangentialebenen der Torse berühren. Weiters werden
Fehlerabschätzungen durchgeführt und die Methoden anhand von Beispielen ver-
anschaulicht.

Im zweiten Kapitel wird ein anderes Approximationsschema mit Drehkegelspline-
flächen vorgestellt. Von einer gegebenen Torse werden Krümmungsdrehkegel zu
einzelnen Erzeugenden berechnet und mit weiteren Drehkegeln glatt zu einer
Drehkegelsplinefläche verbunden. Im Gegensatz zu ersterer Methode existieren
im allgemeinen nur zwei komplexe Drehkegel, welche zwei Drehkegel berühren.
Als Anwendung dieses Algorithmus wird die Flächenrekonstruktion einer Torse
aus einer Punktwolke präsentiert.

Das dritte Kapitel beinhaltet zunächst eine kurze Einführung in die dreidimen-
sionale euklidische Laguerre-Geometrie. Im isotropen Modell dieser Geometrie
werden die orientierten Drehkegelsplineflächen nämlich als isotrope Kreissplines
abgebildet. Dies ermöglicht einen tieferen Einblick in die geometrische Struk-
tur der Methoden aus den ersten beiden Kapiteln. Weiters kann mit Hilfe
von Möbiustransformationen leicht gezeigt werden, daß zu zwei genügend na-
hen Krümmungskegeln einer Torse ein reeller, berührender Drehkegel existiert,
sodaß die Brauchbarkeit des Verfahrens aus Kapitel 2 gesichert ist.
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Im vierten Kapitel wird schließlich eine Korbbogenkonstruktion für ebene Kurven
auf Raumkurven des euklidischen Dreiraums erweitert. An einzelnen Punkten
der Raumkurve werden die Krümmungskreise berechnet und durch berührende
Kreisbögen zu einem Kreisspline verbunden. Wiederum kann die Existenz eines
reellen Kreisbogens bewiesen werden, der die Orientierung der Krümmungskreise
erhält. Anhand eines Beispiels wird abschließend ein Segmentierungsalgorithmus
vorgestellt, um die auftretenden Approximationsfehler zu minimieren.
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Introduction

In the computer-aided geometric design literature, rising attention is given to de-
velopable surfaces because they are surfaces that can be unfolded (developed) into
a plane without stretching or tearing. Because of this property, they are of con-
siderable importance to the modeling of surfaces of approximately unstretchable
materials, such as paper, leather or thin sheets of metal. Applications in sheet-
metal and plate-metal based industries include windshield design, binder surfaces
for sheet metal forming processes, aircraft skins, ship hulls and others (see, for
example, Mancewicz and Frey [24]). One motivation of this present work comes
from a project launched by Odense Steel Shipyard Ltd. and the Department of
Mathematics at the Technical University of Denmark which deals with the de-
sign and engineering of double curved ship surfaces (see Randrup [41]). There,
developable surfaces appear in the manufacturing process of the steel plates.

To include developable surfaces into current CAD/CAM systems, they need
to be represented as NURBS surfaces (see, e.g. Farin [10] or Piegl and Tiller [34]).
There are basically two approaches to rational developable surfaces. First, one
can express such a surface as a tensor product surface of degree (1, n) and solve
the nonlinear side conditions expressing the developability. Aumann [1, 2], Frey
and Bindschadler [11], Lang and Röschel [21] or Maekawa and Chalfant [23] follow
this approach and attach especial importance to controlling the singular points
of these surfaces.

Second, one can view the surface as envelope of its one parameter set of tan-
gent planes and thus treat it as a curve in dual projective space. Bodduluri and
Ravani [3, 4] were the first to give algorithms similar to deCasteljau and Farin-
Boehm for developable surfaces. Further geometric contributions are given by
Hoschek [16] and Pottmann [35]. Based on the dual approach, some interpola-
tion and approximation algorithms as well as initial solutions to special applica-
tions have been presented recently by Hoschek and Pottmann [17], Hoschek and
Schneider [18], Pottmann and Farin [37], Pottmann and Wallner [40], Schnei-
der [46] and Vatter [56]. The numerical computation of the isometric mapping
of a developable surface into the plane has been treated by several authors (see
e.g. Clements and Leon [9], Gurunathan and Dhande [13], Kreyszig [19] or Weiss
and Furtner [55]).
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INTRODUCTION 11

A technique to model developable surfaces with smoothly joined segments of
general cones was proposed by Sun and Fiume [53]. For the design of the cross
sections of the cone patches B-spline curves are used. One still needs numerical
integration to flatten out such a general cone segment, though. Redont [42] uses
patches of right circular cones (cones of revolution), their development being
elementary. Because of the global methods given in [53, 42], the adjustment of a
single cone patch affects the position of all the adjacent patches.

This thesis presents a different approach to the design of smooth devel-
opable surfaces with pieces of cones of revolution, which has been introduced
by Leopoldseder and Pottmann [22]. The presented algorithms are local and use
tools from various branches of classical geometry. In this way one can get valu-
able insight into the degrees of freedom, the variety of feasible solutions and ways
for optimizing them. From now on, these surfaces will be called cone spline sur-

faces. These surfaces are especially useful for applications where the development
of the designed surfaces needs to be computed with high accuracy, as numerical
integration techniques can be avoided. Furthermore, these surfaces possess the
lowest possible parametric and implicit degree for designing G1 surfaces, their
development and bending into other developable shapes is elementary and their
offsets are of the same type.

The methods proposed in chapters 1 and 2 for designing cone spline surfaces
use known results on planar and spherical arc splines. An arc spline is a curve con-
sisting of segments of circles and straight lines that are joined with G1 continuity.
Planar arc spline are desirable paths for numerically controlled cutting machines
as their offsets are easy to find. Therefore, there is a rich variety of literature
on arc spline approximation of planar curves. A standard method for finding an
interpolating arc spline to a planar point set uses biarcs (a biarc is a pair of cir-
cular arcs which are tangent continuous at their junction point). One calculates
or estimates the tangents at the given points and obtains a one parameter set of
biarcs joining these given points and matching the tangents. Different methods
for optimizing the free parameter have been proposed and analyzed by Bolton [5],
Nutbourne and Martin [30], Piegl [33], Rossignac and Requicha [43], Sabin [44],
Schönherr [47], Shippey [51] and Su and Liu [52]. Parkinson and Moreton [31]
and Parkinson [32] solve non-linear equations to determine the tangent vectors
at the interpolation points such that the arc spline has minimal strain energy.
Meek and Walton [26, 27] analyze the resulting errors of the biarc approximation
techniques. Furthermore, these authors introduce a different method in [28] to
produce an arc spline. They compute a set of osculating circles of a curve and
smoothly join consecutive osculating circles by arcs to get a planar osculating arc

spline approximating the given curve. They show that – asymptotically – this
method gives smaller errors than using a biarc spline.

All the contributions on planar biarcs mentioned so far are based on inter-
polation techniques. Some research on the approximation of planar point sets
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has been done by Meek and Walton [25]. Hoschek [15] solves non-linear equation
systems to find a least squares fit to such a point set. Wallner [54] uses a gen-
eralized multiresolution analysis with trigonometric spline functions in order to
approximate a planar curve by an arc spline.

Hoschek and Seemann [14] and Seemann [48] have discussed spherical arc
spline approximation. Many results on planar arc splines can be applied to spher-
ical arc splines since the planar and spherical case are related via stereographic
projection. The approximation of a twisted curve in 3-space with spatial biarcs

has been analyzed by Fuhs and Stachel [12], Hoschek [15], Nutbourne [30] and
Sharrock [50] using geometric methods. Similar to the planar case there is a
one parameter set of biarcs joining two points while matching tangents at these
points. Seemann [49] uses a different approach to spatial arc splines as he does
not interpolate any points but fits a best approximating spatial arc spline to
discrete point data by solving a non-linear equation system.

In chapter 3 of this thesis a short introduction to 3-dimensional Euclidean
Laguerre geometry is given. In the isotropic model of this geometry an oriented
developable surface is just a twisted curve in isotropic 3-space while cones of
revolutions appear as isotropic circles. A cone spline surface therefore is trans-
formed to a spatial isotropic arc spline. The cone pair approximation method of
developable surfaces presented in chapter 1 in this sense is equivalent to curve
approximation with spatial isotropic biarcs. The osculating cone splines of chap-
ter 2 lead to isotropic osculating arc splines. Both of these methods of curve
approximation with isotropic arc splines are analyzed from a geometric point of
view.

The great advantage of the interpretation of developable surfaces as isotropic
curves with the help of Laguerre geometry lies in the fact that curves are easier to
handle than surfaces. With the help of isotropic arc splines a proof is given of the
important theorem that two sufficiently close osculating cones of a developable
surface can be smoothly joined by a right circular cone segment. This theorem
confirms the feasibility and practicality of our osculating cone spline algorithm
of chapter 2.

Finally, in chapter 4 of this thesis a geometric method of constructing (Eu-
clidean) osculating arc splines is introduced: From a given twisted curve one
computes the osculating circles at selected points. Then each two consecutive
osculating circles are smoothly joined with an arc which gives a G1 arc spline.
On the one hand this is the adaptation to Euclidean metric of the isotropic os-
culating arc splines presented in chapter 3, on the other hand it is an extension
of the planar osculating arc splines of Meek and Walton [28] to 3-space. Unlike
the planar and spherical case where there exists a one parameter set of solution
arcs joining two given circles there are, in general, only two complex solution arcs
in the 3-dimensional case. Chapter 4 presents a geometric method to find these
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solution arcs and proves that to sufficiently close osculating circles of a curve a
joining arc exists which is real and useful for applications. Special care has been
taken to present a segmentation algorithm of the given curve which is based on
geometric properties of the given curve. The practicality of the proposed methods
is discussed for several examples.



Chapter 1

Approximation of Developable
Surfaces with Cone Pairs

1.1 Fundamentals of developable surfaces

Developable surfaces are surfaces that can be isometrically mapped (developed)
into the plane. Thus, those surfaces can be unfolded into a plane without stretch-
ing or tearing. Assuming sufficient differentiability, they are characterized by the
property of possessing vanishing Gaussian curvature. All nonflat developable sur-
faces are envelopes of one parameter sets of planes. It is a well-known result of
differential geometry (see, e.g. [20]) that such a developable surface is either a
conical surface, a cylindrical surface, the tangent surface of a twisted curve or a
composition of these three surface types. Thus, developable surfaces are ruled
surfaces, but with the special property that they possess the same tangent plane
at all points of the same generator.

1.1.1 Differential geometric treatment

For an analytical treatment, we will work in the projective extension P 3 of real
Euclidean 3-space E3. We use homogeneous Cartesian coordinates (x0, x1, x2, x3),
collected in the 4-vector X. The one dimensional subspace λX of R

4 spanned by
X is a point in P 3. This point will also be denoted by X if no ambiguity can
result. For points not at infinity, i.e. x0 6= 0, the corresponding inhomogeneous
Cartesian coordinates are x = x1/x0, y = x2/x0, z = x3/x0; they are comprised
in x = (x, y, z).

The inhomogeneous parametric representation of a ruled surface Γ is

g(u, v) = l(u) + ve(u), (1.1)

14
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where l(u) represents a curve on Γ with respect to arc length u and e(u) are unit
vectors of the generator lines. The condition that (1.1) represents a developable
surface is

det(l′, e, e′) = 0 (1.2)

with l′ = dl/du, e′ = de/du. For a cylinder e is constant, and for a cone we may
choose l = const as the vertex. In a differential geometric treatment, a tangent
surface is written in the form (1.1) with u as arc length of the line of regression
l, and e = l′(u). Let e,p,n be the Frenet frame vectors of l, with p and n as
principal normal and binormal, respectively, and let κ and τ be curvature and
torsion of l. Then the Darboux vector

d(u) = τ(u)e(u) + κ(u)n(u) (1.3)

defines the axis a(u): l(u) + λd(u) of a cone of revolution ∆(u) with vertex l(u),
which touches Γ along the generator e(u). ∆ is called osculating cone, since it
has contact of order 2 with Γ at all regular points of the common ruling. This
cone may be considered as the counterpart of the osculating circle of a curve; it
determines the curvature behavior of a developable surface along a ruling. The
conical curvature

k(u) = τ(u)/κ(u) (1.4)

is related to the opening angle α of ∆ (see Figure 1.2) via k = cot(α) which
follows from (1.3).

The rectifying planes ρ(u) = l(u) + v1e(u) + v2n(u) of l(u) envelop another
developable surface Γ∗. Its generators are the axes a(u) of ∆(u) (Figure 1.1).
The line of regression of Γ∗ is composed of the cuspoidal points

m∗(u) = l(u) − κ

κτ ′ − κ′τ
(u) (τ(u)e(u) + κ(u)n(u)) (1.5)

on a(u), see e.g. [20]. By using equation (1.4) this can be simplified to

m∗(u) = l(u) − 1

k′(u)
(k(u)e(u) + n(u)) . (1.6)

If a plane ρ rolls on a developable surface Γ∗ then a curve e in ρ will trace out
a so-called moulding surface. Recently, approximation algorithms for moulding
surfaces have been proposed in [36]. Figure 1.1 identifies developable surfaces Γ
to be special moulding surfaces where the generating curve e is a straight line.
During this motion each point l(0) + µe(0) on e traces out a surface curve

oµ(u) = l(u) + (µ − u)e(u), µ ∈ R (1.7)

of Γ. Such a curve intersects all generators of Γ orthogonally as o′
µ · l′ = 0 is

satisfied. These orthogonal trajectories of Γ or filar involutes of l(u) are a spatial
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Figure 1.1: Kinematic generation of Γ as a moulding surface

counterpart of involutes of planar curves and form an orthogonal parameter net
on Γ together with the generators e(u). For fixed parameter u the osculating
circles of oµ(u), µ ∈ R have a common rotation axis and lie on the osculating
cone ∆(u).

We come back to Γ being a conical or cylindrical surface where formula (1.3)
is not applicable. If Γ is a general cone with vertex l, the osculating cone ∆
contains the osculating circle of the spherical curve c(u) = l + e(u); for a general
cylinder, one may compute its intersection curve c with a plane normal to the
generators. Then, the osculating cylinders pass through the osculating circles of
c.

The osculating cone or cylinder may degenerate to a plane; the corresponding
generator of Γ is then called an inflection generator. For a cylinder Γ this happens,
if the normal section c has an inflection point (point with vanishing curvature).
A cone Γ has an inflection generator, if the spherical curve c sends its osculating
plane through the vertex. Finally, a tangent surface has an inflection generator if
the corresponding point of the line of regression possesses vanishing torsion. For
the computation of inflection generators on developable surfaces see for instance
[7].
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1.1.2 Dual approach to developable surfaces

A plane u0 + u1x + u2y + u3z = 0 can be represented by its homogeneous plane
coordinates U = (u0, u1, u2, u3). We will also use oriented planes and represent
them by normalized plane coordinates, where the normal vector (u1, u2, u3) is
normalized, u2

1 + u2
2 + u2

3 = 1, and determines the orientation.

The “dual approach” to developable surfaces interprets a developable NURBS

surface as set of its tangent planes U(t). It can then be written as

U(t) =
n∑

i=0

Ui N
k
i (t), (1.8)

with the normalized B–spline functions N k
i (t) of degree k over a given knot vector

V . The vectors Ui are the homogeneous plane coordinate vectors of the control

planes, also denoted by Ui.

Each generator of the developable surface follows from (1.8) as intersection
of the plane U(t) and its derivative U̇(t). In particular, the boundary rulings
of the surface are the intersections of the boundary control planes U0 ∩ U1 and
Un−1 ∩ Un. The cuspoidal edge or line of regression is obtained as intersection
U(t) ∩ U̇(t) ∩ Ü(t). In general, this is a Bézier or B–spline curve of degree
3k − 6. Recently, algorithms for the computation with the dual representation,
the conversion to the standard tensor product representation and the solution of
interpolation and approximation algorithms have been developed [17, 18, 37].

For k = 2, the developable NURBS surface is composed of pieces of quadratic
cones or cylinders. Apart from the polygon connecting the cone vertices, the
surface is G1, i.e. adjacent cones or cylinders are tangent to each other along the
common ruling. Even in this simple case, the development of the surface can, in
general, not be given in terms of elementary functions. Therefore, we will now
study the case where the surface is composed of right circular cones or cylinders
only. These surfaces shall be called cone spline surfaces henceforth. Figure 1.2
shows the Bézier planes of a right circular cone segment. Using normalized plane
coordinates U0 and U2, the Bézier plane U1 = (u10, u11, u12, u13) contains the
boundary generators and has the weight

w1 =
√

u2
11 + u2

12 + u2
13 =

cos α

cos β
,

with α and β denoting the angle between the axis a and U0 or U1, respectively. It
is well known that the point set of such a cone segment could also be represented
by a rational Bézier tensor product surface of degree (1,2) (see e.g. [34]).
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Figure 1.2: Cone segment

1.2 Method

Modeling with cone spline surfaces is thought in the following way. First, the
shape of the surface is described in some analytic form, for example (1.8) with
arbitrary degree k. Together with this G1 developable surface Γ we prescribe a
region of interest Ω in which Γ is free of singularities. Ω may be a simply connected
region, for example a bounding box or a ball, which makes it computationally
easy to decide whether or not a point lies in Ω. We would like to approximate Γ
by a cone spline surface Λ which is free of singularities inside Ω.

1.2.1 G1 Hermite elements

The idea is to select a sequence of rulings ei of Γ, compute their tangent planes
τi and interpolate consecutive G1 elements (ei, τi) with two segments of cones of
revolution, which possess the same tangent plane along the common generator.
Throughout this thesis, we will tacitly allow that the cone may degenerate to a
cylinder and mention this case only if necessary. Furthermore, we will simply
refer to a segment of a right circular cone, bounded by two generators, as a cone

segment. The two cone segments which interpolate the given G1 Hermite data

form a G1 cone pair. If we want to stress the fact that a cone is not a right
circular one we will call it a general cone.

For computing a practically useful solution, it is necessary to select special
generators of Γ and to introduce some orientations.

Since cones of revolution do not have inflection generators, the typical be-
havior of an inflection generator can only be represented at a junction of two
cones. Therefore, inflection generators should belong to the selected generators.
Chalfant and Maekawa [7] introduced a method for computing inflection lines on
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developable surfaces. We also propose to select those rulings of the given surface
Γ along which we have a G1 junction of two developable surface patches such
that the patches lie locally on different sides of the common tangent plane. If
one does not segment at inflection generators our method will produce s-shaped
cone pairs, i.e. the cones locally are lying on different sides of the tangent plane
at the junction generator. Now, we will focus on the solution of the Hermite
interpolation problem.

Let (ei, τi), i = 1, 2, be two consecutive G1 elements. With each element we
associate an orthonormal basis ei,pi,ni in the following way (Fig. 1.3). τi is

Figure 1.3: Orthonormal basis associated with Hermite element (ei, τi)

spanned by the generator vector ei and the unit vector pi normal to ei. The
orientation of ei is taken from an orientation of the set of generators of the given
surface Γ. The vector pi indicates the side on which the interpolant between ei

and ei+1 has to connect. Thus, the unit normal ni = ei ×pi always points to the
same side of the surface Γ, which is assumed to be regular and orientable in the
region of interest.

1.2.2 The general case

If two cones of revolution Λ1, Λ2 with different vertices v1, v2 possess a common
generator and tangent plane, their axes either intersect at a point m or are
parallel. We will now treat the first (general) case. Here m is the center of a
sphere Σ that touches both cones along circles c1, c2 (Fig. 1.4). Σ can already be
computed from the two given G1 elements. Using a point li on ei, the midpoint
m of Σ is the intersection of the normal planes

νi : (x − li) · pi = 0, i = 1, 2 (1.9)

with the tangent planes’ bisector plane

σ : x · (n1 − n2) − l1 · n1 + l2 · n2 = 0. (1.10)
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Figure 1.4: Inscribed sphere of two cones

Let ai be the touching point of Σ and ei. The desired cone pair will touch Σ
along a G1 pair of circle segments, i.e. a spherical biarc. Its end points are ai,
and the end tangent vectors are pi. The set of biarcs interpolating two points
plus tangent vectors has been studied in [12], [15], [30] or [50] and the results can
now be applied to the present problem.

For the rational Bézier representation of the biarc, we denote the Bézier points
of its two circle segments c1, c2 by a1,b1, c,b2, a2 (Fig. 1.5) and let b1 = a1+λ1p1,
b2 = a2−λ2p2. The two legs in the Bézier polygon of a circle possess equal length

Figure 1.5: Control polygon of a biarc

and thus an admissible pair of inner Bézier points is characterized by

(b2 − b1)
2 = (λ1 + λ2)

2.
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This is equivalent to

(a2 − a1)
2 − 2λ1(a2 − a1) ·p1 − 2λ2(a2 − a1) ·p2 + 2λ1λ2(p1 ·p2 − 1) = 0. (1.11)

We may choose b1(λ1) and then compute a unique b2(λ2) via (1.11). To complete
the rational Bézier representation, we also need the junction point

c =
λ2b1 + λ1b2

λ1 + λ2

. (1.12)

Setting the weights at the end points of the two circle segments to 1, the weights
wi at bi are computed as

|wi| =
|(bi − ai) · (c − ai)|
‖bi − ai‖‖c − ai‖

.

If λi > 0, then one uses the arc contained in the triangle ai,bi, c and a positive
weight wi. Otherwise one has to use the complementary arc and a negative
weight. The homogeneous coordinates of the Bézier points are

Ai = (1, ai), Bi = (wi, wibi), C = (1, c).

The Bézier planes of the cone segments are the polar planes of these Bézier points
with respect to the sphere Σ : (x − m)2 = r2. The homogeneous equation of the
polar plane of a point with homogeneous coordinates Y = (y0,y) is

(x − x0m) · (y − y0m) = r2x0y0.

Clearly, a cone pair and the corresponding spherical biarc are connected via this
polarity.

As we have a region Ω of interest, an additional problem has to be consid-
ered. For the moment, let us look at a single cone for which we have computed
the corresponding spherical arc c with Bézier points a,b, c. As we exclude all
solutions with vertex v in Ω, we have to distinguish between two cases. The first
case is shown in Figure 1.6. The sphere Σ and the region Ω lie on the same side
of the vertex v. Choosing a point d of the bounding generator e lying in Ω, this
is characterized by

(a − v) · (d − v) > 0.

Here c directly corresponds to the useful piece of the cone.

If Σ and Ω lie on different sides of v however, equivalent to

(a − v) · (d − v) < 0,

using the computed arc c would lead to sharp edges in the interpolated surface.
Figure 1.7 shows that the arc c̄ complementary to c has to be used. This leads
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Figure 1.6: Σ and Ω lying on the same side of v

to sharp edges in the spherical arc spline on Σ, but guarantees a smooth surface.
The change from c to c̄ is easily accomplished by changing the sign of the weight
w of the inner Bézier point B = (w,wb).

The vertices vi of the two cone segments can be computed by intersecting
the tangent plane of Σ at c with the boundary generators ei. We can also first
compute the vertices in a way analogous to the inner Bézier points. Letting
v1 = a1 + µ1e1, v2 = a2 − µ2e2, an admissible vertex pair is characterized by

(v2 − v1)
2 = (µ1 + µ2)

2.

Similar to (1.11), this yields a bilinear relation between µ1, µ2, given by

(a2 − a1)
2 − 2µ1(a2 − a1) · e1 − 2µ2(a2 − a1) · e2 + 2µ1µ2(e1 · e2 − 1) = 0. (1.13)

In order to determine a cone pair within the one parameter set of solutions we can
either choose b1(λ1) and compute b2(λ2) or choose v1(µ1) and compute v2(µ2).
We see that both mappings b1 7→ b2 and v1 7→ v2 are projective maps. The
connecting rulings v1v2 therefore lie in a ruled quadric Φ. According to Fuhs
and Stachel [12], Φ is a hyperboloid of revolution, which touches the sphere Σ
along a circle, which the connecting points c of the spherical biarcs are lying on
(Fig. 1.8). The tangent planes of Σ (and Φ) along the circle c are the tangent
planes of the cone pairs at their junction generators; they envelope a cone of
revolution. Discussing degeneracies and special cases later, we summarize:
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Figure 1.7: Σ and Ω lying on different sides of v

Theorem 1.1 Given two G1 elements (ei, τi) in general position, there is a one

parameter family of cone pairs interpolating these data. The cones possess a

common inscribed sphere Σ. The junction generators of the cone pairs form a set

of rulings on a hyperboloid of revolution Φ, which touches Σ along a circle. The

generators e1, e2 lie in the second set of rulings of Φ. The tangent planes of Σ
and Φ along this circle are the junction tangent planes of the cone pairs.

Let us now discuss some special solutions within the one parameter family we
have obtained so far.

In case that the surface to be approximated possesses a generator ei whose
singular point is at infinity, we might want to find a solution in which vertex vi

of the cone pair is at infinity and thus the first of the two cone segments is a
cylindrical segment. In view of (1.13) this occurs if

µ2 =
(a2 − a1) · e1

e1 · e2 − 1
. (1.14)

The cones which the two segments of a pair are taken from are congruent, if
µ1 = µ2. Hence, these cone pairs belong to solutions of the quadratic equation,
which arises from (1.13) with µ1 = µ2. It always has two real solutions, which is
in accordance with a result by Fuhs and Stachel [12] on spherical biarcs consisting
of circles of equal radius.
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Figure 1.8: Spherical biarc

As practically useful cone pairs one can identify those with (locally) minimal

vertex distance ‖∆v‖ = ‖v2 −v1‖ = |µ1 +µ2| (see section 1.4). Writing equation
(1.13) in the form

µ2 =
Aµ1 + B

Cµ1 + D
, (1.15)

this cone pair belongs to a solution of

C2µ2
1 + 2CDµ1 + AD + D2 − BC = 0. (1.16)

Figure 1.9 shows a typical function ‖∆v(µ1)‖ taken from the example in Fig-

��� ����

�����	�

Figure 1.9: Vertex distance function

ure 1.13. One has to take attention that only one of the two solutions µ1, µ̄1
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leads to a cone pair useful for applications. In section 1.4 it will be shown that
in general the practical solution corresponds to the local minimum µ1 that is not

the global minimum. In the example of Figure 1.9 the global minimum µ̄1 would
produce a loop in the cone spline surface.

Equation (1.16) always has two real solutions: According to Theorem 1.1, we
have to find those rulings of the hyperboloid Φ, which intersect the generators
ei in points vi with minimal distance from each other. Using the top view of Φ,
the images of all rulings of Φ are tangent to the circular silhouette u′ of Φ. As
all rulings of Φ are constantly sloped, one only has to find those with minimal
distance v′

1v
′
2 (Fig. 1.10). These special solutions of junction generators v1v2 can

Figure 1.10: Minimal vertex distance v1v2

also be characterized by the fact that the generator v1v2 defines the same angle
with both generators ei.

Nutbourne and Martin [30] have shown how to minimize the angle between the
planes of c1 and c2. This can be achieved by minimizing the distance ‖b2−b1‖ =
|λ1 + λ2| of the control points bi in Figure 1.5. Additionally, the winding angles
of c1 and c2 are equal then.

1.2.3 Special cases

Important special cases arise if the developable surface Γ to be approximated
(locally) is a general cone, a general cylinder or a surface of constant slope, that
is the tangent surface of a curve whose tangent vectors enclose a constant angle
with some plane π (Fig. 1.11). Any osculating cone ∆i of a developable surface
of constant slope has its axis normal to π. For any two tangent planes τi, i = 1, 2
touching Γ along ei we have pi parallel to π and the normal vectors ni enclose a
constant angle with π.

In the following we look at two consecutive G1 elements (ei, τi), i = 1, 2.
Using these data only, we characterize the special cases and derive algorithms to
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Figure 1.11: Surface of constant slope

interpolate the given boundary elements with a pair of cone or cylinder segments.
These algorithms will prove to be similar to the general case discussed in the
previous section.

The cone case

The generators e1, e2 intersect in a point v. If additionally τ1 = τ2, we interpolate
with a part of τ1. Otherwise, two cone segments with common vertex v will be
used which intersect a sphere Σ centered in v in a spherical biarc. The one
parameter set of solutions is determined by the end points ai = ei ∩ Σ and end
tangent vectors pi. The missing Bézier points b1 = a1 + λ1p1, c,b2 = a2 − λ2p2

can be computed using formulae (1.11) and (1.12).

The cylinder case

The generators e1, e2 are parallel and have the same orientation. This case is
similar to the first one, with v being a point at infinity. We interpolate with
a planar surface in case of τ1 = τ2, otherwise with a pair of right orthogonal
cylinder segments. Intersecting (ei, τi) with a plane normal to ei we get Hermite
elements (ai,pi) that can be interpolated by a one parameter set of planar biarcs.
Obviously (1.11) and (1.12) can also be used for calculating the inner Bézier points
of planar biarcs.
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Surfaces of constant slope

In the following the generators e1, e2 have no point in common.

Given two G1 Hermite elements in general position we found the center m of a
common inscribed sphere as intersection of three planes which had normal vectors
p1,p2 and n1 − n2, according to equations (1.9) and (1.10). This calculation is
not possible if

det(p1,p2,n1 − n2) = 0, (1.17)

i.e., the three planes do not intersect in a point. Equation (1.17) is equivalent to

(p1 × p2) · n1 = (p1 × p2) · n2.

Assuming det(p1,p2) 6= 0 for the moment, the normal vectors n1,n2 enclose the
same angle with a plane π spanned by p1 and p2. We will now interpolate the
given boundary generators by a cone pair with parallel axes, both being normal
to π. The cone pair intersects π in a planar biarc (Fig. 1.12) with ai = ei ∩ π as
end points and tangent vectors pi. Admissible Bézier points b1, c,b2 again follow

Figure 1.12: Pair of cone segments

from (1.11) and (1.12). The vertices v1 and v2 are the intersection points of the
generators e1 and e2 with ν : (x− c) · (b2 − b1) = 0, which is the plane through
the junction point c perpendicular to the junction tangent in c. One can also
compute the vertices directly, using v1 = a1 + µ1e1,v2 = a2 − µ2e2 and equation
(1.13). Minimizing the vertex distance with formula (1.16) provides congruent
cone segments.

In the case of det(p1,p2) = 0, which was excluded above, the plane π has to
be spanned by p1 and n1 − n2. The remaining algorithms stay the same.
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1.3 Examples

The first example shall demonstrate the general case. Figure 1.13(a) shows a
tangent surface Γ. Using four Hermite elements (ei, τi) of Γ as input data we get

(a) (b)

Figure 1.13: (a) Tangent surface, (b) its approximation with 3 cone pairs

an approximation by three cone pairs, see Figure 1.13(b). From the one parameter
set of solutions those with minimal vertex distance are chosen. Connecting the six
vertices of the cone segments to a polygon we obtain the locus of all the singular
points of the cone spline surface. Although the line of regression was not used in
the computation of the cone spline, one can see that this curve is approximated
perfectly by the vertex polygon.

(a) (b)

Figure 1.14: (a) Surface of constant slope, (b) its approximation with 3 cone
pairs

The second example illustrates one of our special cases and shows the approx-
imation of the tangent surface of a helical curve (Fig. 1.14). The approximation
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of this surface of constant slope with only a small number of cone segments is
again very good.

1.4 Approximation quality

Let the given developable surface Γ be the tangent surface of a twisted curve l(u)
which is sufficiently differentiable. Let u denote its arc length, κ(u) and τ(u) its
curvature and torsion. After choosing two Hermite elements (ei, τi), i = 1, 2 of Γ
our algorithm is based on a sphere Σ which touches both Hermite elements. On
Σ we obtain biarcs which correspond to cone pairs joining the Hermite elements.
We now want to analyze our algorithm for Hermite elements (ei, τi) which lie
’close’ to each other.

By using the Taylor expansion of the line of regression l(u) at the point
l(0) we will look into the limit case of joining Hermite elements (e(0), τ(0)) and
(e(u), τ(u)) for u → 0. The spheres Σ(u) touching these Hermite elements will
turn out to converge to a limit sphere which does not possess vanishing radius.
A geometric interpretation of this limit sphere will be given.

There is a one parameter set of cone pairs joining the Hermite elements
(e(0), τ(0)) and (e(u), τ(u)). In section 1.2.2 we proposed to minimize the dis-
tance of the cone vertices. The feasibility of this choice of the free parameter will
be derived from the following calculations.

The Taylor expansion of the line of regression l(u) of Γ at the point l(0) is

l(u) = l(0) + l′(0)u +
l′′(0)

2!
u2 +

l(3)(0)

3!
u3 +

l(4)(0)

4!
u4 + O(u5). (1.18)

Denoting tangent vector, principal normal vector and binormal vector in l(0)
with e = e(0), p = p(0), n = n(0) and employing the Frenet formulae for spatial
curves the derivatives of l(u) with respect to arc length u are given by

l′(0) = e,

l′′(0) = κp,

l(3)(0) = −κ
2e + κ

′p + κτn,

l(4)(0) = −3κκ
′e + (κ′′ − κ

3 − κτ 2)p + (2κ
′τ + κτ ′)n, (1.19)

. . .

where κ = κ(0) and τ = τ(0) are curvature and torsion at l(0) and κ
′ =

(dκ/du)(0), κ
′′ = (d2

κ/du2)(0), τ ′ = (dτ/du)(0), . . . the derivatives of κ(u)
and τ(u) with respect to arc length in l(0). With l(0) as origin and the Frenet
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vectors e,p,n as axes of a coordinate system (1.18) and (1.19) give

l(u) =




u − κ
2 u3

3!
− 3κκ

′ u4

4!
+ O(u5)

κ
u2

2!
+ κ

′ u3

3!
+ (κ′′ − κ

3 − κτ 2)u4

4!
+ O(u5)

κτ u3

3!
+ (2κ

′τ + κτ ′)u4

4!
+ O(u5)


 . (1.20)

The tangent vector

l′(u) =




1 − κ
2 u2

2!
− 3κκ

′ u3

3!
+ O(u4)

κu + κ
′ u2

2!
+ (κ′′ − κ

3 − κτ 2)u3

3!
+ O(u4)

κτ u2

2!
+ (2κ

′τ + κτ ′)u3

3!
+ O(u4)


 (1.21)

denotes the direction of the generator e(u) of Γ. The normal vector of the tangent
plane τ(u) along e(u) is given by

n(u) =
l′(u) × l′′(u)

||l′(u) × l′′(u)|| (1.22)

which leads to

n(u) =




κτ u2

2!
+ (2κτ ′ + τκ

′)u3

3!
+ O(u4)

−τu − τ ′ u2

2!
+ (−τ ′′ + τκ

2 + τ 3)u3

3!
+ O(u4)

1 − τ 2 u2

2!
− 3ττ ′ u3

3!
+ O(u4)


 . (1.23)

We will now use these equations to join the Hermite elements (e(0), τ(0)) and
(e(u), τ(u)) by a cone pair. Initially we compute the sphere Σ(u) which touches
both Hermite elements. The center m(u) can be found as intersection of three
planes according to equations (1.9) and (1.10). Inserting (1.4), (1.21) and (1.23)
one obtains

m(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

0

− 1
k′

+ k′′

2k′2 u + O(u2)


 . (1.24)

The third coordinate of m(u) denotes the distance to generator e(0) and is there-
fore the radius

r(u) = − 1

k′
+

k′′

2k′2
u + O(u2) (1.25)

of the sphere Σ(u). With m∗(u) from formula (1.6) and its derivative

(m∗)′(u) =
kk′′

k′2
(u)e(u) +

k′′

k′2
(u)n(u)
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(1.24) simplifies to

m(u) = m∗(0) +
1

2
(m∗)′(0)u + O(u2). (1.26)

Thus, in the first order approximation the midpoint m of Σ lies halfway between
m∗(0) and m∗(u) = m∗(0) + (m∗)′(0)u + O(u2). The geometric interpretation
of this property is illustrated in Fig. 1.15: Similar to the kinematic generation

(a) (b)

Figure 1.15: Kinematic generation of (a) a developable surface and (b) an ap-
proximating cone pair

of a developable surface as a moulding surface (Fig. 1.15(a), see section 1.1.1)
one can give a kinematic generation of its cone pair approximation. Let a plane
ρ rotate around two intersecting axes a1 and a2 as in Figure 1.15(b). Then a
line e in ρ will trace out a cone pair. Comparing Fig. 1.15(a) and (b), the set of
Darboux axes a(u) of Γ is replaced by two rotation axes a1(u) and a2(u) which
intersect in the midpoint m(u) of Σ(u) (see Figure 1.4). Formula (1.26) reveals
this geometric property.

Let us assume fixed parameter value u for the moment. Σ(u) and its midpoint
m(u) are uniquely determined by the Hermite elements (e(0), τ(0)), (e(u), τ(u)).
There is still a free parameter for the choice of cone pairs Λ1(u), Λ2(u) which
will be eliminated by minimizing the vertex distance ‖v2(u)− v1(u)‖. Then, the
vertices v1(u) on e1 := e(0) and v2(u) on e2 := e(u) merely depend on u. For
the computation of the vertices v1(u),v2(u) we follow the course of section 1.2.2.
One will expect v1(u), v2(u) to approximate l(0), l(u) as the vertex polygon of
the cone spline surface shall approximate the line of regression.
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First we need to calculate the points a1(u) and a2(u) where Σ(u) touches
e1 = e(0) and e2 = e(u) (see Figure 1.16 for a1(u)). With (1.24) the parameter

Figure 1.16: Sphere Σ(u) touching (e(0), τ(0))

λ1(u) in a1(u) = l(0) + λ1(u)l′(0) equals

λ1(u) = − k

k′
+

kk′′

2k′2
u + O(u2) (1.27)

and this leads to

a1(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

0

0


 . (1.28)

The second generator e(u) is touched by Σ(u) in a2(u) = l(u) + λ2(u)l′(u) to
parameter

λ2(u) = (m(u) − l(u)) · l′(u).

With (1.20), (1.21) and (1.24) this simplifies to

λ2(u) = − k

k′
+ (

kk′′

2k′2
− 1)u + O(u2) (1.29)

and gives

a2(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

− τ
k′

u + O(u2)

O(u2)


 . (1.30)

A possible vertex pair v1(u) = a1(u)+µ1(u)e1(u), v2(u) = a2(u)−µ2(u)e2(u)
where e1(u) = l′(0), e2(u) = l′(u) has to fulfill the bilinear relation (1.13) for
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µ1(u), µ2(u). For the minimization of the vertex distance ‖v2(u) − v1(u)‖ one
has to solve the quadratic equation (1.16). Inserting (1.28) and (1.30) one obtains
the two solutions

µ1(u) = − k
k′

+ ( kk′′

2k′2 + 1
3
− 1

6
)u + O(u2),

µ̄1(u) = − k
k′

+ ( kk′′

2k′2 + 1
3

+ 1
6
)u + O(u2).

(1.31)

Note, that one has to evaluate (1.28) and (1.30) up to third order in u to obtain
(1.31).

In the following we will identify µ1(u) of (1.31) as the useful solution while
µ̄1(u) will not lead to a practically useful cone pair. Let us analyze the good
solution first. With (1.27) and (1.31) the vertex v1(u) = a1(u) + µ1(u)l′(0) =
l(0) + (λ1 + µ1)l

′(0) simplifies to

v1(u) = l(0) + (
1

6
u + O(u2))l′(0). (1.32)

Similarly the vertex v2(u) of Λ2(u) equals

v2(u) = l(u) − (
1

6
u + O(u2))l′(u). (1.33)

The vector ∆v(u) = v2(u) − v1(u) (Fig. 1.17) which gives the direction of the

Figure 1.17: Line of regression l(u) with approximating vertex polygon

common generator v1(u)v2(u) of Λ1(u) and Λ2(u) simplifies to

∆v(u) =
2

3
u




1 + O(u2)
κ

2
u + O(u2)

O(u2)


 . (1.34)
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Thus, the junction generator v1v2 approximates the generator e(u/2): l(u/2) +
λl′(u/2) of Γ, since

l′(u/2) =




1 + O(u2)
κ

2
u + O(u2)

O(u2)


 .

Equations (1.32) and (1.33) give

‖v1(u) − l(0)‖ = ‖v2(u) − l(u)‖ =
1

6
u + O(u2)

which, according to (1.34), asymptotically equals a quarter of the vertex distance

‖v2(u) − v1(u)‖ =
2

3
u + O(u2).

This shows that a cone spline surface generated with the cone pair algorithm
possesses a vertex polygon v1,v2,v3, . . . such that asymptotically

‖v2 − v1‖ + ‖v4 − v3‖ + · · · = 2 (‖v1 − l(0)‖ + ‖v3 − v2‖ + ‖v5 − v4‖ + · · ·)

holds true. This uneven distribution of the vertices can be noticed in all the
examples given in Figures 1.13, 1.14 and 2.8.

Finally, let us focus on the second solution µ̄1(u) of (1.31). Completely similar
to the calculations above we obtain vertices

v̄1(u) = l(0) + ( 1
2
u + O(u2))l′(0),

v̄2(u) = l(u) − ( 1
2
u + O(u2))l′(u).

The vector

∆v̄(u) = v̄2(u) − v̄1(u) =
1

12
u3




κ
2 + O(u)

κ
′ + O(u)

κτ + O(u)




does not approximate the direction of a generator e of Γ. The resulting cone pair
is not practical for the approximation of Γ. The length of ∆v̄(u) is of third order
in u in contrast with the length of ∆v(u) in (1.34) which is of first order in u.
Thus the solution µ̄1 will — for sufficiently small u — lead to the global minimum
of the vertex distance function.



Chapter 2

Osculating Cone Splines

2.1 Method

Recently, Meek and Walton [28] have studied the approximation of plane curves
with osculating arc splines. These are circular splines which contain a sequence
of segments of osculating circles of the curve to be approximated. Between two
consecutive osculating circles one circle segment is built in. It has been shown
that the method results in curves with a smaller error than those produced from
biarcs [27, 28].

We will now investigate the analogue for cone spline surfaces. Given a de-
velopable surface Γ that is neither a general cone or cylinder nor a surface of
constant slope, we compute a sequence of osculating cones ∆i and smoothly join
consecutive cones by a cone ∆. The special cases excluded above will be treated
in section 2.1.1.

Figure 2.1: Joining cones ∆i and Λi

Let us assume that ∆1, ∆2 are not cylinders. If a cone ∆ smoothly joins these
two cones, we may perform translations which take their vertices to the origin.

35
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The resulting three cones Λ1, Λ, Λ2 are again smoothly joined. The relevant
segments intersect the unit sphere Σ in a spherical triarc, formed by segments of
circles c1, c, c2 (Fig. 2.1). Thus, we will first focus on the problem of finding a
joining arc c to two given arcs c1, c2 on a sphere Σ.

From the given cones ∆i we can compute the planes Ui of the circles ci. The
poles Qi of Ui with respect to Σ are the vertices of cones Λ∗

i which touch Σ
along the circles ci. If c1 is touched by a circle c, the pole Q of the plane U
of c must lie on Λ∗

1. Therefore the vertex Q of a cone which touches Σ along a
filling circle c, must lie on the intersection curve l of the cones Λ∗

1, Λ
∗
2. Because

of the common inscribed sphere of these two cones, their intersection curve is, in
general, composed of two conics l1 and l2. Projecting the conics li from the origin
yields two quadratic cones whose generators are the axes of possible intermediate
cones Λ.

In case of Λ∗
1 and Λ∗

2 touching each other at a common generator the inter-
section curve consists of a conic l1 and the common generator l2. Points Q of l2
do not lead to useful solutions of intermediate cones ∆.

To compute the planes Vi of the conics li, we first note that they must lie in
the pencil spanned by U1 = (u10 : u11 : u12 : u13) and U2 = (u10 : u11 : u12 : u13),
hence

Vi = U1 + λiU2.

With Figure 2.2 one verifies that the cross ratio cr(U1,U2,V1,V2) equals −1
and that V1,V2 are conjugate with respect to Σ, i.e., the pole of V1 with respect
to Σ lies in V2. This leads to

λ1,2 = ±
√√√√u2

11 + u2
12 + u2

13 − u2
10

u2
21 + u2

22 + u2
23 − u2

20

.

The orientation of the set of generators of the osculating cones ∆i in the sense of
increasing parameters leads to orientations of ci. Thus only one of the two conics
li, say l1, can lead to suitable solutions.

The computation of l1 and the resulting cones Λ and ∆ may proceed as fol-
lows. We represent any segment of the circle c1 as a rational quadratic Bézier
curve (see, for instance, Piegl and Tiller [34]). Its Bézier points shall have the cor-
rectly normalized homogeneous coordinates B1

i , i = 0, 1, 2. Then a homogeneous
representation of the circle is given by

C1(t) = (1 − t)2B1
0 + 2t(1 − t)B1

1 + t2B1
2.

We use a projective parameter line P 1 described by homogeneous parameters
t0, t1 with t = t1/t0 and parameterize the entire circle by

C1(t0, t1) = (t0 − t1)
2B1

0 + 2t1(t0 − t1)B
1
1 + t21B

1
2.
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Projecting C1 from the center Q1 onto the plane V1 yields the conic l1. Using
the projective invariance of the rational Bézier representation, we can represent
l1 by applying the projection with matrix A1 to the Bézier points B1

i . We get the
Bézier points Bl

i = A1 · B1
i of l1. The projection from the plane V1 to U2 with

center Q2 yields a Bézier representation of the circle c2 with Bézier points B2
i .

To each t = t1 : t0, the points C1(t),C2(t) determine the generators with vectors

Figure 2.2: Construction of corresponding generators c1(t), c2(t)

c1(t), c2(t), along which a joining cone Λ(t) with axis vector l1(t) is touching the
cones Λ1, Λ2. We summarize:

Theorem 2.1 Given two oriented cones of revolution Λ1, Λ2 with common ver-

tex, there is a one parameter set of cones of revolution Λ which smoothly join Λi

while preserving the cones’ orientation.

If we translate the cones Λi back to their position ∆i, not all Λ(t) lead to
solutions ∆ of our problem. For a solution cone ∆, the generators vi+uci(t), u ∈
R of the cones ∆i must intersect at the vertex v of ∆. Thus, only those t which
satisfy the intersection condition

det(c1(t), c2(t),v1 − v2) = 0 (2.1)
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belong to possible joining cones ∆. Equation (2.1) is a homogeneous quartic
polynomial in t0, t1, which has up to four real solutions t = t1 : t0. Note that it
is necessary to work with homogeneous parameters, since t = 1 : 0 may lead to a
useful solution.

We will now look at the four possible solutions in detail. If c1(t) = c2(t) is
the vector of a common generator of Λ1 and Λ2 we get a solution for equation
(2.1) which cannot be used to construct a joining cone ∆ of ∆i, though. As there
are two common points of the two circles c1, c2, counted algebraically, there only
remain two solutions for joining cones ∆ which need not be real for arbitrary
spatial position of cones ∆i.

In our problem the cones ∆i are osculating cones of a given developable surface
Γ, however, touching Γ along generators ei. By applying tools of Euclidean
Laguerre geometry we will prove in section 3.3.2

Theorem 2.2 Let Γ be a piecewise C∞ developable surface. To any osculating

cone ∆(t1) of Γ to parameter t1, there exists a parameter interval U =]t1, t1 +
∆t] ⊂ R such that the osculating cones ∆(t1) and ∆(t2), t2 ∈ U can be smoothly

joined with a cone ∆. The joining cone ∆ is real and joins ∆1 and ∆2 with

G1-continuity while preserving the orientation of ∆i.

To complete the discussion of the general case, we consider the case of ∆i, say
∆1, being an osculating cylinder. Let c1 determine the direction of its generators.
The line λc1, λ ∈ R can be interpreted as a degenerated cone Λ1 which intersects
Σ in the point Q1. Λ∗

1 degenerates into the tangent plane of Σ at Q1. The
intersection curve l1 = Λ∗

1 ∩ Λ∗
2 contains the points Q corresponding to filling

circles c. Again a projective mapping of corresponding generators of ∆1 and ∆2

is determined which leads to the solutions for ∆.

2.1.1 Special cases

In the previous section we have already treated the approximation of general
cones with osculating cone spline surfaces. Unlike the general case there is a
one parameter set of joining cones, see Theorem 2.1. Note that this contains
the solution of finding a spherical osculating arc spline approximating a spherical
curve: From the spherical curve one computes osculating circles ci to parameters
t1, . . . , tn and obtains a one parameter set of intermediate arcs to join successive
osculating circles. In analogy to the planar case treated by Meek and Walton
[28], one could show that appropriate choices within this solution set will yield a
high accuracy approximation scheme.

Of course, this planar scheme is appropriate for the approximation of cylin-
drical surfaces as well as surfaces of constant slope (Fig. 1.11). In the last case all
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osculating cones ∆i have parallel axes and the same opening angle. Two consec-
utive cones ∆1, ∆2 in general intersect in a conic l1, which contains the possible
vertices of connecting cone segments.

2.2 Examples

We apply the algorithm of osculating cone splines to the example in Figure 1.13.
Using four generators ei plus osculating cones ∆i of our tangent surface as input
data, we compute the three filling cone segments and get an approximation of Γ
with seven cone segments (Fig. 2.3), one more than we got using four Hermite
elements (ei, τi). Note that the vertices vi of the given cones ∆i must lie on the
line of regression but not the vertices of the intermediate cones. Using only two
osculating cones ∆1, ∆2 of the same surface Γ results in a satisfying approximation
quality even with few input data.

(a) (b)

Figure 2.3: Approximation of the developable surface of Fig. 1.13(a) with (a) 4,
(b) 2 osculating cones as input data

2.3 Applications

2.3.1 Reconstruction of developable surfaces from scat-
tered data

An important field of research is the reconstruction of surfaces from scattered
data. Recently, some work has been done on the reconstruction of kinematic
surfaces [8, 36, 38, 39]. These include helical surfaces with their subclass of
rotational surfaces and moulding surfaces.
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In [8] these methods have been applied to a disturbed point set of a devel-
opable surface which shall be approximated by a cone spline surface. The algo-
rithms presented in this paper are robust against outliers. A basic step in this
method is to find the best approximating cone of revolution to a point set. First
the normal vectors are estimated and the axis is determined by least squares
methods with non-linear constraints. All data points are rotated into a plane
through this axis and the best fitting line to this data is chosen as generator.

Given the point cloud of a developable surface (Figure 2.4(a)) a region is
iteratively determined which is well approximated by a single cone. A rough
segmentation of the data points with the help of the Gaussian image supports the
region growing algorithm. For an approximating cone of revolution two boundary
planes through the axis are determined that enclose a wedge with only well-
approximated data points. At the border of the initial region one chooses another
seed point and repeats the procedure to get a set of cone segments ∆i (Figure
2.4(b)) which are estimations of the osculating cones of the original surface. The
cones ∆i are not joined, however.

(a) (b)

Figure 2.4: (a) Point cloud, (b) approximating cone segments

With the method described in chapter 2 one can find an intermediate cone ∆
to each two consecutive cones ∆i, ∆i+1, resulting in a cone spline surface (Figure
2.5). One has to be aware of the possibility of complex solutions for the joining
cones ∆, however. This may occur if the estimation of the cones by least squares
methods produces bad estimations for the osculating cones.

A more stable algorithm to determine a cone spline surface can be obtained
by applying the cone pair algorithm described in chapter 1. From each estimated
cone segment ∆i one generator and its tangent plane is chosen. From the fist and
last cones we will take the boundary generators and from each of the other cone
segments we will choose the middle generator. Figure 2.6 shows the resulting
cone spline surface if the vertex distance is minimized.
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Figure 2.5: Approximating cone spline using cone segments of Fig. 2.4(b)

Figure 2.6: Approximating cone spline composed of cone pairs

2.3.2 Bending sequences and development

One major advantage of approximating a given developable surface by a cone
spline surface is the simple development that does not need numerical integration.
A cone segment Λ0 is determined by the angle α0 between generators and axis
and the segment angle ϕ0 (Fig. 2.7). Λ0 can be bended into another cone segment
Λ1 with segment angle ϕ1 and angle α1 if

ϕ1 sin α1 = ϕ0 sin α0

is satisfied. The development of Λ0 is a planar segment with segment angle

ϕ = ϕ0 sin α0.

Figure 2.8 shows a bending sequence (a) – (d) of a cone spline surface in which
all segments are flattened out simultaneously. The distance between successive
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Figure 2.7: Cone segment

vertices remains constant during this process and a spatial arc spline as boundary
curve is transferred into a planar arc spline of the development.
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(a) (b)

(c) (d)

Figure 2.8: Bending sequence



Chapter 3

Spatial Isotropic Arc Splines

Developable surfaces are the envelopes of their one parameter set of tangent
planes, i.e. they are dual to a spatial curve. For the aim of approximation of
developable surfaces we are specially interested in cones of revolution which are
special examples of developable surfaces whose tangent planes all touch a one
parameter set of spheres.

This property motivates using 3-dimensional Euclidean Laguerre geometry in
which the elements are oriented spheres and oriented planes of Euclidean 3-space.

We will first introduce different models of this geometry, all of them embedded
in Euclidean 3- or 4-space E3 or E4. Especially useful for our purposes we will
find the isotropic model presented in section 3.1.4 which provides a point repre-
sentation of oriented planes, thus a curve representation of developable surfaces.

For the analytic treatment in E3 we will either use the affine coordinate vector
x = (x, y, z) to describe a point x ∈ E3 or its homogeneous coordinate vector
(x0, x1, x2, x3) = λ(1, x, y, z), λ ∈ R\{0} using the projective extension P 3 of E3.
In the following we will also use the notation (x0 : x1 : x2 : x3) for homogeneous
coordinates. Points at infinity are characterized by x0 = 0. In E4 we denote the
affine coordinates of a point by x = (x, y, z, t) and its homogeneous coordinates
in P 4 by (x0 : x1 : x2 : x3 : x4) = (1 : x : y : z : t).

3.1 3-dimensional Euclidean Laguerre space

3.1.1 The standard model

Let E3 be real Euclidean 3-space, U the set of oriented planes u of E3 and C
the set of oriented spheres c including the points of E3 as (non-oriented) spheres
with radius zero. The elements of C are called cycles. The basic relation between
oriented planes and cycles is that of oriented contact. An oriented sphere is said

44
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to be in oriented contact with an oriented plane if they touch each other in a point
and their normal vector in this common point is oriented in the same direction.
The oriented contact of a point (nullcycle) and a plane is defined as incidence of
point and plane.

Laguerre geometry is the survey of properties that are invariant under the
group of so-called Laguerre transformations α = (αH , αC) which are defined by
the two bijective maps

αH : H → H,αC : C → C (3.1)

which preserve oriented contact and non-contact between cycles and oriented
planes.

Analytically, a plane u is determined by the equation u0 + u1x + u2y + u3z =
0 with normal vector (u1, u2, u3). The coefficients ui are homogeneous plane
coordinates (u0 : u1 : u2 : u3) of u in the projective extension P 3 of E3. Each
scalar multiple (λu0 : λu1 : λu1 : λu2), λ ∈ R\{0} describes the same plane, thus
it is possible to use normalized homogeneous plane coordinates

u = (u0 : u1 : u2 : u3), with u2
1 + u2

2 + u2
3 = 1 (3.2)

which are appropriate for describing oriented planes where the unit normal vector
(u1, u2, u3) determines the orientation of the plane.

An oriented sphere
c = (xm, ym, zm; r) (3.3)

is determined by its midpoint m = (xm, ym, zm) and signed radius r. Positive
sign of r indicates that the normal vectors are pointing towards the outside of
the sphere whereas in the case of negative sign of r they are pointing into the
inside. Points of E3 are cycles characterized by r = 0.

The relation of oriented contact is given by

u0 + u1xm + u2ym + u3zm + r = 0 (3.4)

3.1.2 The cyclographic model

Let E3 be embedded in Euclidean 4-space E4 = {(x, y, z, t) ∈ R
4} as hyperplane

t = 0. We will now map cycles and oriented hyperplanes of E3 to points and
special hyperplanes of E4 in such a way that oriented contact is transformed to
incidence.

A cycle c = (xm, ym, zm; r) ∈ C is mapped to the point

C = ζ(c) = (xm, ym, zm, r) ∈ E4. (3.5)

The map ζ : C → E4 is bijective and its inverse map ζ−1 is called cyclographic

map or isotropy projection (see [6], for instance).



CHAPTER 3. SPATIAL ISOTROPIC ARC SPLINES 46

ζ determines the map ζ∗ which maps an oriented plane u ∈ U ;u = (u0 : u1 :
u2 : u3), u

2
1 + u2

2 + u2
3 = 1 to the (non-oriented) hyperplane U = ζ∗(u) of E4 with

homogeneous plane coordinates

U = ζ∗(u) = (u0 : u1 : u2 : u3 : 1), with u2
1 + u2

2 + u2
3 = 1. (3.6)

The property of oriented contact of cycle c and oriented hyperplane u is equiv-
alent to incidence of ζ(c) and ζ∗(u) which is given by equation (3.4). Note that
each hyperplane ζ∗(u) encloses a Euclidean angle of γ = π

4
with the embedded

hyperplane E3 : t = 0 and will be called γ-hyperplane henceforth.

All oriented planes u being in oriented contact with a cycle c are mapped to
γ-hyperplanes through C which envelope a quadratic hypercone Γ(c) with vertex
C. The generators of Γ(c) enclose an angle of γ with t = 0 and intersect the
hyperplane t = 0 in the points of the sphere c.

Let P 4 be the projective extension of E4 and ω : x0 = 0 be the ideal plane.
Each hypercone Γ(c) intersects ω in the quadric

Ω : x0 = 0; x2
1 + x2

2 + x2
3 − x2

4 = 0, (3.7)

where (x0 : . . . : x4) are homogeneous coordinates in P 4 and we see that all
γ-hyperplanes are tangent to Ω. The polarity with respect to Ω determines a
pseudo-Euclidean orthogonality ⊥pe of lines g, h /∈ ω. If g = (g1, g2, g3, g4) and
h = (h1, h2, h3, h4) denote the direction vectors of g and h this is written by

g ⊥pe h ⇔ 〈g,h〉pe := g1h1 + g2h2 + g3h3 − g4h4 = 0, (3.8)

which is equivalent to (g ∩ ω) conjugate to (h ∩ ω) with respect to Ω.

A line g which encloses an angle of γ, smaller than γ or greater than γ with the
embedded E3 is called lightlike, spacelike or timelike. A lightlike line g intersects
ω in a point of Ω and is pe-orthogonal to itself. A spacelike line g intersects ω in
the exterior of Γ and a timelike line g in the interior.

It is an important theorem of Euclidean Laguerre geometry that the equivalent
of a Laguerre transformation α in the cyclographic model is a linear map of P 4

with ω 7→ ω and Ω 7→ Ω. Therefore, a Laguerre transformation α is preserving
pe-orthogonality and maps γ-hyperplanes onto γ-hyperplanes.

Let us now look at the representation of cones of revolution. In E3 all oriented
planes being in oriented contact with two different cycles c1, c2 generally envelope
a cone of revolution. If the signed radii of c1 and c2 are equal this cone of
revolution degenerates to a cylinder of revolution or (in case of two nullcycles
c1, c2) to a pencil of planes.

The cyclographic image of the oriented tangent planes of a cone of revolution
under ζ∗ consists of the γ-hyperplanes through the line connecting C1 = ζ(c1)
and C2 = ζ(c2). Only if the line C1C2 is spacelike there exist real γ-hyperplanes.
If the line C1C2 is timelike there are no oriented hyperplanes in oriented contact
with both cycles c1 and c2 which occurs in case of concentric cycles, for instance.
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3.1.3 The Blaschke model

As we are more interested in the oriented tangent planes than in cycles it is
appropriate to use a model of Euclidean Laguerre space in which oriented planes
are represented by points. This can be achieved by applying a duality δ : (P 4)∗ →
P 4 to the cyclographic model described in the last section. The Blaschke map δ
maps hyperplanes to points and is given by

δ ◦ ζ∗(u) = δ(u0 : u1 : u2 : u3 : 1) = (1 : u1 : u2 : u3 : u0). (3.9)

For all γ-hyperplanes ζ∗(u) there is u2
1 + u2

2 + u2
3 = 1 so their δ images are points

lying on the Blaschke hypercylinder

∆ : x2
1 + x2

2 + x2
3 = 1. (3.10)

Using affine coordinates (x, y, z, t) one sees that the hypersurface ∆ has a one
dimensional generator line in t-direction through every point of the base surface
x2 + y2 + z2 = 1. Parallel and equally oriented planes possess the same nor-
mal vector (u1, u2, u3) and therefore are mapped onto points lying on the same
generator of ∆.

The Blaschke map δ further maps all hyperplanes through a given point (x0 :
x1 : x2 : x3 : x4) to points lying in a hyperplane of P 4 with homogeneous plane
coordinates (x4 : x1 : x2 : x3 : x0). A cycle c — viewed as envelope of its oriented
tangent planes — is therefore mapped via δ ◦ ζ∗ onto a hyperplanar intersection
of ∆. The Laguerre transformations α appear as projective maps of P 4 with
∆ 7→ ∆.

The points of ∆ together with its hyperplanar intersections and the automor-
phic linear maps of ∆ build the so-called Blaschke model of Euclidean Laguerre
geometry.

3.1.4 The isotropic model

Applying a stereographic projection σ to the Blaschke cylinder ∆ one obtains
the isotropic model of Euclidean Laguerre space. We will describe σ : E4 → Ē3

in affine coordinates. Let the projection center z have affine coordinates z =
(0, 0, 1, 0) and the image hyperplane Ē3 be the hyperplane z = 0. We introduce
an affine coordinate system (x̄, ȳ, z̄) in Ē3 so that the origins of E4 and Ē3 coincide
and

x̄ = x, ȳ = y, z̄ = t. (3.11)

Let e be the generator line of ∆ through z which is parallel to Ē3. The
stereographic map σ : ∆\e → Ē3 together with the cyclographic mapping ζ∗ and
the Blaschke map δ leads to

Λ := σ ◦ δ ◦ ζ∗ : U → Ē3, (3.12)
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which maps oriented hyperplanes u ∈ U of E3 to points in Ē3. In coordinates
this is written as

Λ(u) = σ ◦ δ ◦ ζ∗(u) =
1

1 − u3

(u1, u2, u0). (3.13)

Figure 3.1 illustrates the stereographic map σ for the one dimension lower case.
The Figure can be interpreted as the restriction of σ : ∆\e → Ē3 to the hyper-
plane y = 0.

Figure 3.1: Stereographic map

The transition between the standard model and the isotropic model is de-
scribed by Λ and its inverse Λ−1 which maps each point x̄ = (x̄, ȳ, z̄) of Ē to an
oriented plane in E3 with normalized plane coordinates

Λ−1(x̄) =
1

x̄2 + ȳ2 + 1
(2z̄ : 2x̄ : 2ȳ : x̄2 + ȳ2 − 1). (3.14)

Formula (3.13) fails for oriented planes u with u3 = 1, i.e. normal vector (0, 0, 1).
For such planes there is δ ◦ ζ∗(u) ∈ e and σ maps all the points of e onto the
point of infinity of the z̄-axis. Ē3 together with this singular infinite point forms
the isotropic closure I3 of Ē3. The z̄-direction is called isotropic direction.

Interpreting cycles c as their set of oriented tangent planes we obtain Λ(c)
as hyperplanar intersections of ∆. In the case that this hyperplane contains the
projection center z the image Λ(c) is a plane not parallel to the isotropic direction
z̄ otherwise Λ(c) is a paraboloid of revolution with isotropic axis. In coordinates
we have

Σ := Λ(c) : 2z̄ + (x̄2 + ȳ2)(r + zm) + 2x̄xm + 2ȳym + r − zm = 0. (3.15)



CHAPTER 3. SPATIAL ISOTROPIC ARC SPLINES 49

The surfaces Σ, defined by (3.15) are called isotropic Möbius spheres. The in-
tersection of two isotropic Möbius spheres is either an ellipse whose top view
(normal projection onto z̄ = 0) is a circle or a parabola with isotropic axis or a
non-isotropic line. These curves are called isotropic Möbius circles. They are the
the Λ-images of cones of revolution (including cylinders of revolution and pencils
of planes).

In the isotropic model, Laguerre transformations are realized as special
quadratic transformations, so-called isotropic Möbius transformations. These are
bijective on the set of Möbius spheres Σ.

3.1.5 Differential geometry of curves in I3

We will restrict our examinations to curves g: g(t) = (x(t), y(t), z(t)) in I 3 which
are regular and without inflection points and have no isotropic (z-parallel) tan-
gents and isotropic osculating planes. Let g̃(t) = (x(t), y(t)) denote its normal
projection into the xy-plane. To determine the isotropic osculating circle c of g
at a point g(t0) we intersect the cylinder of revolution through the osculating
circle c̃ of g̃ at g̃(t0) with the osculating plane in g(t0).

The semidefinite scalar product 〈〉i of two vectors x1 = (x1, y1, z1) and x2 =
(x2, y2, z2) given by

〈x1,x2〉i = x1x2 + y1y2 (3.16)

defines the isotropic distance di of two points g1 and g2 by

di(g1,g2) :=
√
〈g2 − g1,g2 − g1〉i (3.17)

which is the Euclidean distance of g̃1 and g̃2. Thus, the isotropic arc length of a
regular curve g(t) is given by

u :=
∫ √

ẋ2 + ẏ2dt =
∫

‖ ˙̃g‖dt. (3.18)

Note that the isotropic distance is a metric property in I3 (see e.g. [45]) and is
not invariant under isotropic Möbius transformations.

3.2 Isotropic biarc approximation of curves

We will briefly analyze the approximation of curves in I3 with isotropic biarcs.
Let a1 and a2 be two points of a given curve g and p1,p2 their tangent vectors
which are normalized by 〈pi,pi〉i = 1. The Hermite elements (ai,pi), i = 1, 2 shall
now be connected by a pair of isotropic arcs c1 and c2 joined with G1 continuity.
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Transforming this problem back from I3 to the standard model of Euclidean
Laguerre geometry with the map Λ−1 we obtain the approximation of a devel-
opable surface Λ−1(g) by a pair of cone segments Λ−1(c1), Λ

−1(c2). (ai,pi) are
the Λ images of the (oriented) Hermite elements (τi, ei). Thus, approximation
with isotropic biarcs is equivalent to the cone pair approximation we investigated
in chapter 1.

Completely analogous to the situation with Euclidean biarcs we define a con-
trol polygon for the Bézier representation of the isotropic biarc. The control
points will be named by a1,b1, c,b2, a2 (see Figure 3.2).

Figure 3.2: Isotropic biarcs

For b1 = a1 + λ1p1 and b2 = a2 − λ2p2 we obtain

〈b2 − b1,b2 − b1〉i = (λ1 + λ2)
2,

as the normal projections c̃1, c̃2 of the isotropic arcs c1, c2 have to be Euclidean
circles. Again there is a one parameter set of solutions which we can get by
choosing b1(λ1) and computing b2(λ2). The junction point c can be computed
by

c =
λ2b1 + λ1b2

λ1 + λ2

.

For the Bézier representation of ci we have weights 1 at ai and c and weights wi

at bi which satisfy

|wi| =
|〈bi − ai, c − ai〉i|
di(ai,bi)di(ai, c)

.
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The sign of w1 and w2 have to be chosen equal to the sign of λ1 and λ2 (compare
with the Euclidean case).

The following result on isotropic biarcs is an analogue to the results in [50]
and [12] in Euclidean 3-space and can be derived from our investigations on
approximation with cone pairs in chapter 1. After transferring these results into
the isotropic model I3 we obtain:

Theorem 3.1 All the isotropic biarcs c1, c2 joining the Hermite elements

(ai,pi), i = 1, 2 lie on an isotropic sphere Σ which is uniquely determined by

(ai,pi). The junction point c varies on an isotropic circle c which lies on Σ and

passes through a1 and a2.

3.3 Isotropic osculating arc splines

Let a1 and a2 be two points of a given curve g in I3 which is regular and has no
isotropic tangents. The oriented isotropic circles c1 and c2 osculating g in a1 and
a2 lie in the planes σ1 and σ2. Our aim is to find an isotropic circle c joining c1

and c2 with G1 continuity in the junction points c1 and c2 (see Figure 3.3). With

Figure 3.3: Isotropic osculating arcs

this method we are able to construct an isotropic arc spline approximating g so
that every second arc is an isotropic osculating circle of g in a point ai. Although
we use three arcs to join the two points a1, a2 the method produces an arc spline
with about the same number of arcs as the biarc method does. This is because
the next segment between a2 and a3 is continued with the isotropic arc c2.
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The survey of isotropic osculating arc splines is motivated by the fact that
it is the Λ-image of the osculating cone spline approximation we dealt with in
chapter 2: From a given developable surface Γ = Λ−1(g) we choose certain gen-
erators to oriented tangent planes τi = Λ−1(ai) and join two consecutive oriented
osculating cones ∆i = Λ−1(ci) by a cone segment ∆ = Λ−1(c).

As curves are easier to handle than surfaces it is often preferable to work with
isotropic circles in I3 than with cones of revolution in E3. Therefore, in section
3.3.1 we will first analyze geometrically how to find an isotropic arc c joining two
isotropic circles c1, c2 which are osculating a curve g to parameter values t1, t2.
It is obvious from our previous investigations that we will in general obtain two
solutions for c which need not be real. In section 3.3.2 we will be able to prove,
however, that there is a real and useful solution arc c if the difference between
the parameter values ti is sufficiently small. In our proof we will simplify the
geometric situation by applying an appropriate isotropic Möbius transformation
α : I3 → I3.

3.3.1 Method

The normal projection of c1, c, c2 into the xy-plane is an (Euclidean) arc spline
c̃1, c̃, c̃2 which we will examine first. Note that the pre-images u = Λ−1(x) and
ũ = Λ−1(x̃) of a point x ∈ I3 and its top projection x̃ are parallel planes and ũ
contains the origin o ∈ E3. The top view of the isotropic triarc c1, c, c2 therefore
is equivalent to a translation of the cones Λ−1(c), Λ−1(ci) so that they possess
the common vertex o.

It is well known that there is a one parameter set of circles c being in ori-
ented contact with c̃1, c̃2 (see for instance [29]). Quite recently the approximation
quality of planar osculating arc splines has been analyzed in [28].

We will define a control polygon for the arc spline and denote its points by
ã1, . . . , ã2 (see Figure 3.4). After choosing the first junction point c̃1(λ1), where
λ1 is a homogeneous parameter on the oriented circle c1, the second junction
point c̃2(λ2) is uniquely determined. c̃1(λ1) 7→ c̃2(λ2) is a projective mapping. It
is an important property that the middle control point d̃ of c̃ has to lie on the
chordal line d̃ of the two circles c̃1, c̃2 since d̃ contains all points whose tangential
distances to c̃1 and c̃2 are equal. The equation of d̃ in affine coordinates is

d̃ : 2x(m̃2 − m̃1) − (r2
1 − r2

2) + (m̃2
1 + m̃2

2) = 0 (3.19)

where ri denote the radii and m̃i the midpoints of c̃i. For the implementation
of the projective map c̃1(λ1) 7→ c̃2(λ2) it is helpful to be aware of the fact that
the connecting lines of matching points c̃1 and c̃2 always pass through a point z.
This property can be verified as follows: Let κ1 equal the homothety with center
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Figure 3.4: Planar Euclidean osculating arcs

z and κ1(c̃1) = c̃2, preserving the orientation of c̃i. z is given by

z =
r2

r2 − r1

m̃1 −
r1

r2 − r1

m̃2 (3.20)

where the radii ri of c̃i are oriented. Denote the c̃2-automorphic harmonic per-
spectivity with center z by κ2. Then the composition κ = κ1κ2 is a perspective
collineation with center z and axis d̃ because the points of c̃1 ∩ c̃2 are fixed under
κ. Now the restriction of κ to c̃1 gives the projective map c1(λ1) 7→ c2(λ2).

Furthermore, the midpoints m̃ of the joining arcs lie on a conic with focal
points m̃1 and m̃2 which directly follows from the basic definition of conics.
Another way to realize the projective map c̃1 7→ c̃2 is to choose c̃1 and thus
finding d̃ by intersecting the tangent in c̃1 with d̃. Laying a tangent from d̃ to c̃2

one gets c̃2 which is unique because both circles c̃i are oriented.

We will now return to the spatial problem in I3: a possible solution arc c̃ with
junction points c̃i of the planar problem does not necessarily lead to a solution
arc c of the spatial problem because the tangents ti in ci to ci generally lie in
different osculating planes σ1 and σ2 and need not have a point d in common.
As this point d cannot but lie on the intersection line s = σ1σ2 it is necessary for
d̃ to lie on both d̃ and the top projection s̃ of s. If d̃ lies outside of c̃1 and c̃2 one
gets two real solution arcs c. One just has to lay both tangents out of d̃ to c̃i and
thus determine the junction points while taking care of the circles’ orientation.

In the special cases of σ1 = σ2 and s̃ = d̃ there is a one parameter set of
isotropic solution arcs c joining c1 and c2. This happens exactly if c1 and c2 lie on
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a common isotropic Möbius sphere, i.e. a non-isotropic plane or a paraboloid of
revolution. Reinterpreting with Λ−1, we confirm the existence of a one parameter
set of cones ∆ in oriented contact with two given cones of revolution ∆1, ∆2 if
both ∆i are in oriented contact with a common sphere Σ. This includes the case
of ∆i possessing the same vertex v as the common vertex has to be interpreted
as sphere with radius zero.

3.3.2 Feasibility of the solution

In order to show the reality and usefulness of a solution arc c we will prove

Theorem 3.2 Let g(t) be a piecewise C∞ curve in isotropic 3-space I3. To any

point g(t1) there exists a parameter interval U = ]t1, t1 + ∆t] ⊂ R such that the

points g(t1) and g(t2), t2 ∈ U can be joined with an isotropic triarc in the following

way: the first and the third arc of this triarc lie on the isotropic osculating circles

c1 and c2 of g(t) to parameters t1 and t2 The joining isotropic arc c is real and

joins c1 and c2 with G1-continuity while preserving the orientation of ci.

Proof:

We apply an isotropic Möbius transformation α : I3 → I3 to the curve g such
that the first isotropic osculating circle c1 is mapped to the x-axis. As the order
of contact between g and c1 is not changed by α the x-axis is an inflection tangent
to α(g).

Without loss of generality we can restrict ourselves to a curve g = g(t) which
has an inflection point g(0) to parameter t = 0 at the origin o. Let its inflection
tangent be the x-axis and g(0) + λ1ġ(0) + λ2g

(3)(0) be the xy-plane. A Taylor
expansion of g(t) up to the fourth derivative is then given by

g(t) =




a1t + a2t
2 + a3t

3 + a4t
4 + O(t5)

b3t
3 + b4t

4 + O(t5)

c4t
4 + O(t5)


 , a1, b3, c4 ∈ R

+; ai, bi, ci ∈ R (3.21)

with derivatives

ġ(t) =




a1 + 2a2t + 3a3t
2 + 4a4t

3 + O(t4)

3b3t
2 + 4b4t

3 + O(t4)

4c4t
3 + O(t4)


 (3.22)

and

g̈(t) =




2a2 + 6a3t + 12a4t
2 + O(t3)

6b3t + 12b4t
2 + O(t3)

12c4t
2 + O(t3)


 . (3.23)
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We will compute the control points c1,d, c2 of an isotropic arc c which is in
oriented contact with the x-axis and the isotropic circle c2(t) which osculates g
in g(t) (see Figure 3.5, where the connecting arc c has been omitted for reasons
of clarity). The middle control point d is the intersection point of the osculating

Figure 3.5: g(t) with inflection point g(0)

plane σ2 at g(t) with the x-axis. The junction point c2 can be computed by laying
a tangent from d to c2(t). The last control point c1 on the x-axis is determined
by

di(c1,d) = di(c2,d). (3.24)

We will now calculate c1,d, c2 in dependency on t and will show that for t → 0,
i.e. the touching point g(t) to c2(t) converges to g(0), we will obtain a useful arc
c.

Defining the normal vector

n(t) = ġ(t) × g̈(t) =




12c4b3t
4 + O(t5)

−12a1c4t
2 + O(t3)

6a1b3t + 6(2a1b4 + a2b3)t
2 + O(t3)


 (3.25)

of σ2(t), one gets
σ2(t) : n(t) · x = n(t) · g(t)

and easily verifies

d(t) = σ2(t) ∩ x-axis =




1
2
a1t + O(t2)

0

0


 . (3.26)

The following calculations will be made for the top projection g̃ of g. The top
view of c2(t) is the (Euclidean) osculating circle c̃2(t) of g̃ at g̃(t). Its radius
equals

r̃ =
‖ ˙̃g‖3

det
(
˙̃g, ¨̃g

) .
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Formulae (3.22) and (3.23) give

r̃2(t) =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (3.27)

The midpoint m̃(t) of c̃2(t)

m̃(t) = g̃(t) +
‖ ˙̃g(t)‖2

det
(
˙̃g(t), ¨̃g(t)

) · ˙̃g
⊥
(t)

simplifies to

m̃(t) =




1
2
a1t + O(t2)

1

t

(
a2

1

6b3

+
5a1a2b3 − 2a2

1b4

6b2
3

t + O(t2)

)

 . (3.28)

The square of the distance R̃(t) between d(t) and m̃(t) equals

R̃2(t) = (m̃(t) − d(t))2 =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (3.29)

Using coefficients of higher order in t, which have been omitted in formulae (3.27)
and (3.29), one verifies for the power p̃(t) of the point d(t) with respect to the
circle c̃2(t)

p̃(t) = R̃2(t) − r̃2(t) =
1

12
a2

1t
2 + O(t3). (3.30)

The value of p̃(t) is positive if t is sufficiently small. Thus, d(t) lies outside of
c̃2(t) and c̃2(t) and c2(t) are real.

The power p̃(t) is the square of the distance of d(t) and c̃2(t) and together
with (3.24) we have

p̃(t) = (d(t) − c̃2(t))
2 = (d(t) − c̃1(t))

2.

(3.26) and (3.21) show that the squares of the distances of d(t) to o = g̃(0) and
g̃(t) simplify to

(d(t) − g̃(0))2 = (d(t) − g̃(t))2 =
1

4
a2

1t
2 + O(t3) (3.31)

which is greater than p̃(t) in formula (3.30). This shows that for small t the
x-coordinate of c1(t) is positive and the x-coordinate of c2(t) is smaller than the
x-coordinate of g(t) (see Figure 3.5).



Chapter 4

Spatial Osculating Arc Splines

In the last section 3.3 we examined how to join two isotropic Möbius circles
by an isotropic Möbius arc. This led to an isotropic osculating arc spline that
approximated a given spatial curve in isotropic 3-space I3.

It is natural to adapt the methods described above to Euclidean 3-space E3.
Let g = g(t) be a spatial curve in E3 and c1, . . . , cn the osculating circles of g to
parameters t1, . . . , tn. Now each two consecutive osculating circles ci, ci+1 shall be
joined by an arc with G1 continuity at the junction points. Thus, the given curve
g ∈ E3 is approximated by an arc spline where every second arc is an osculating
arc of g. We will call such an arc spline spatial osculating arc spline henceforth.

Note that the case of g being a planar curve has been analyzed in [28]. Also,
in section 3.3.1 the construction of planar osculating arc splines has been briefly
discussed from a geometric point of view (see Fig. 3.4). The case of g being
a spherical curve we have already treated in sections 2.1 and 2.1.1. Obviously
results on spherical curve approximation can be derived from the planar case by
stereographically projecting the plane onto a sphere. We know that in both cases
there exists a one parameter set of solution arcs joining two given (oriented)
circles. In the following we will restrict ourselves to the non-planar and non-
spherical case.

In section 4.1 we will first present a geometric method of finding an arc c
connecting two oriented circles in E3. Note, that we will tacitly allow a circle
to degenerate to a straight line which one can interpret as a circle with infinite
radius. We will briefly consider all the special cases and see that there are two
complex solutions in the general case.

It is natural to introduce 3-dimensional Euclidean Möbius geometry in section
4.2 since the set of Euclidean Möbius circles is comprised of straight lines and
Euclidean circles. Similar to section 3.3.2 we will use a Möbius transformation in
order to simplify the proof of Theorem 4.1 in section 4.3: two osculating circles

57
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c1, c2 of a curve g can be joined by a real and useful arc c as long as the difference
of parameters t1, t2 associated with c1, c2 is small enough.

In section 4.4 we will take a closer look at the approximation errors and
propose an algorithm for a good segmentation of the given curve g. Choosing
appropriate initial osculating circles ci of g clearly has great influence on the
quality of the approximation. Finally, in section 4.5 these results are applied to
several examples.

4.1 Method

Let σ1, σ2 be the planes containing the oriented Euclidean circles c1, c2 in E3. We
first assume σi not to be parallel and treat special cases later. Our goal is to
find control points c1,d, c2 of an arc c joining c1, c2 while preserving the circles’
orientation (Figure 4.1).

Figure 4.1: Spatial osculating arc spline

Obviously, the middle control point d has to lie on the line s = σ1 ∩ σ2 and
possess equal tangential distance to c1 and c2. To determine the location of d we
will first rotate σ2 around s such that σ2 and σ1 coincide. The chordal line d of
c1 and the rotated circle c̄2 in σ1 contains all points of σ1 with equal tangential
distance to c1 and c̄2. The only possible location of d is the intersection point of
d with s. If d lies outside of c1 and c2 the missing two control points c1 and c2 of
c can be found by laying tangents from d to c1 and c2. We obtain two solutions
if the orientation of ci is taken into consideration. These solutions are not real if
d lies in the interior of c1 and c2. Note, that both possibilities to rotate σ2 into
σ1 lead to the same point d.
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Special cases that have to be treated separately include the spherical case
(s = d) and the planar case (σ1 = σ2), both of them leading to a one parameter
set of solutions. If σ1 ‖ σ2, σ1 6= σ2 the method given above does not work. Here,
the junction points of a solution arc c lie in the common plane of symmetry of c1

and c2 (Figure 4.2).

Figure 4.2: Special case: σ1 ‖ σ2

If one of the two circles, say c1, is a line, the intersection of c1 with σ2 gives
d. Figure 4.3 shows one of the solution arcs which is real because d is lying on
the outside of c2. Last but not least, it is obvious that there are no connecting

Figure 4.3: Special case: c1 is a straight line

arcs in case of two skew lines c1 and c2. From a Möbius geometric point of view
(compare with next section 4.2) this last case of skew lines is equivalent to two
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oriented circles c1, c2 that intersect in a single point without touching each other
in this point.

4.2 3-dimensional Euclidean Möbius geometry

Let E3 be real Euclidean 3-space, P its point set and M the set of spheres and
planes of E3. We obtain the so-called Euclidean conformal closure EM

3 of E3

by extending the point set P by an arbitrary element u 6∈ P to PM = P ∪ {u}.
As an extension of the incidence relation we define that u lies in all planes but
in none of the spheres. The elements of M are called Euclidean Möbius spheres

and the intersection of two Möbius spheres is a so-called Euclidean Möbius circle.
Euclidean Möbius geometry is the study of properties that are invariant under
Euclidean Möbius transformations. A Möbius transformation is an incidence
preserving composition of a bijective map of PM and a bijective map of M .

Another model of this geometry we obtain by embedding E3 in Euclidean
4-space E4 as plane t = 0. Let σ : Σ\{z} → E3 be the stereographic projection
of the unit hypersphere

Σ : x2 + y2 + z2 + t2 = 1 (4.1)

onto E3 with center z = (0, 0, 0, 1). Extending σ to σ̄ with σ̄ : z 7→ u gives a
new model of Euclidean Möbius geometry. The point set is that of Σ ⊂ E4 and
the Möbius spheres are the hyperplanar intersections of Σ since σ is preserving
spheres. It is a central theorem of Euclidean Möbius geometry that all Euclidean
Möbius transformations of this model are induced by an automorphic linear map
P 4 → P 4 of Σ, where P 4 denotes the projective extension of E4.

4.3 Feasibility of the solution

Completely analogous to the isotropic case in 3.3.2 we state

Theorem 4.1 Let g(t) be a piecewise C∞ curve in Euclidean 3-space E3. To any

point g(t1) there exists a parameter interval U = ]t1, t1 + ∆t] ⊂ R such that the

points g(t1) and g(t2), t2 ∈ U can be joined with a Euclidean triarc in the following

way: the first and the third arc of this triarc lie on the Euclidean osculating circles

c1 and c2 of g(t) to parameters t1 and t2. The joining Euclidean arc c is real and

joins c1 and c2 with G1-continuity while preserving the orientation of ci.

Proof: We apply a Euclidean Möbius transformation to the curve g such that
the first osculating circle c1 is mapped to the x-axis. Thus, we can restrict our
calculations to curves g = g(t) with an inflection point at g(0) = o.
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We will compute the control points c1,d, c2 of an arc c which is in oriented
contact with the x-axis and the osculating circle c2 of g to parameter t. The
middle control point d can be found as intersection point of the osculating plane
σ2 with the x-axis (Figure 4.4). The junction point c2 can be determined by

Figure 4.4: g(t) with inflection point g(0)

laying a tangent from d to c2 and c1 follows from

‖c1 − d‖ = ‖c2 − d‖. (4.2)

The only difference to section 3.3.2 is that c2 is a Euclidean circle and the distances
in (4.2) are Euclidean ones.

We can use (3.21) to (3.23), (3.25) and (3.26) for the Taylor expansions of
g(t), ġ(t), g̈(t),n(t) and d(t). The radius r(t) of the (Euclidean) osculating circle
c2(t) of g at g(t) equals

r =
‖ġ‖3

‖n(t)‖
and with (3.22) and (3.25) simplifies to

r2(t) =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (4.3)

The midpoint m(t) of c2(t)

m(t) = g(t) +
‖ġ(t)‖2

‖n(t)‖2
· (n(t) × ġ(t))

possesses Taylor expansions

m(t) =




1
2
a1t + O(t2)

1

t

(
a2

1

6b3

+
5a1a2b3 − 2a2

1b4

6b2
3

t + O(t2)

)

a2
1c4

3b2
3

+ O(t)




. (4.4)



CHAPTER 4. SPATIAL OSCULATING ARC SPLINES 62

The square of the distance R(t) between d(t) and m(t) equals

R2(t) = (m(t) − d(t))2 =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
(4.5)

which leads to

p(t) = R2(t) − r2(t) =
1

12
a2

1t
2 + O(t3)

for the power of d(t) with respect to c2. If t is small enough the value of p(t) is
positive but smaller than

(d(t) − g(0))2 = (d(t) − g(t))2 =
1

4
a2

1t
2 + O(t3).

Therefore, a real and useful solution arc c exists which provides a triarc connection
of g(0) and g(t).

4.4 Segmentation

4.4.1 Error estimates

The approximation errors of a spatial arc spline can be judged easily. Let x be a
point of the given curve g(t) and c one of the arc splines’ segments with Bézier
points bi and midpoint m (Figure 4.5). It is computationally easy to check if the

Figure 4.5: Distance of a point x to an arc c

point x lies in the wedge between the planes α1 and α2 through the rotation axis
of c. The Euclidean distance of x to the circle segment c then is

d(x, c) =
√

d2
n + d2

r. (4.6)
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where dn denotes the component lying normal to the circles’ plane σ and dr is
the radial distance. In the following we will orient dr such that dr > 0 indicates
that the normal projection of x onto σ lies outside of c. Also the orientation of c
determines an orientation of σ and thus an orientation of dn. In the degenerating
case of c being a straight line segment the distance d(x, c) again is well-defined
but we will not distinguish between radial and normal components.

If we choose a segmentation g(t1), . . . ,g(tn) of the given curve g(t) the oscu-
lating circles to the parameters t1, . . . , tn will be used in the approximating arc
spline. It is natural to select those points where the osculating circle approximates
g(t) well. Let

g(u) =




u − κ
2 u3

3!
+ O(u4)

κ
u2

2!
+ κ

′ u3

3!
+ O(u4)

κτ u3

3!
+ O(u4)


 (4.7)

be the Taylor expansion of g(t) at the point g(0) with respect to arc length u
(compare with (1.20)). The Frenet frame in g(0) is used as coordinate system and
κ = κ(0), κ

′ = dκ

du
(0) and τ = τ(0) denote the differential invariants evaluated

at g(0). The osculating arc c0 at g(0) has midpoint

m0 = (0,
1

κ
, 0)T . (4.8)

The third coordinate in (4.7) gives the normal component

dn(u) =
1

6
κτu3 + O(u4) (4.9)

of the distance d(u) between g(u) and c0. The radial component is

dr(u) = ‖g̃(u) − m0‖ − r0

where g̃(u) is the normal projection of g(u) into the xy-plane and r0 the radius
of c0. With (4.7), (4.8) and r0 = 1

κ
its Taylor expansion simplifies to

dr(u) = −1

6
κ

′u3 + O(u4) (4.10)

and together with (4.6) and (4.9) we have

d(u) =
1

6

√
τ 2κ2 + κ′2u3 + O(u4). (4.11)

for the distance between g(u) and c0.

The leading term of (4.11) provides us with a function

F (t) =
1

6

√
τ(t)2κ(t)2 + κ′(t)2 (4.12)
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such that F (ti) indicates the approximation quality of the osculating circle c(ti)
for t → ti. F (ti) = 0 is equivalent to κ

′(ti) = 0, τ(ti) = 0 or κ
′(ti) = 0, κ(ti) = 0.

In the second case c(ti) degenerates to a straight line, in both cases c(ti) and
g = g(t) hyperosculate, i.e. they are in contact of order 3.

4.4.2 Segmentation algorithm

A segmentation t0 = ta, t1, . . . , tn of the curve g(t), t ∈ [ta, tb] is practicable if the
following three criteria hold true for each segment:

Criterion 1: The connecting circle of c(ti) and c(ti+1) is real.

Criterion 2: The maximal error between the curve g(t), t ∈ [ti, ti+1] and the
resulting triarc does not exceed a chosen error tolerance.

Criterion 3: Both of the two inner joining points of the triarc lie on the right
side of the oriented osculating circles c(ti) and c(ti+1) (compare with the bad
case in Figure 4.6). Note, that in some cases a useful arc spline can be con-

Figure 4.6: Violation of Criterion 3

structed, although criterion 3 is not fulfilled (see example 2, for instance).
This depends on the joining point of the next arc segment, though.

Possible segmentation algorithms include

• The bisection method: One chooses an evenly distributed segmentation
with respect to arc length first. Each segment is bisected for which one of
the criteria given above does not hold true. Clearly, this method is easy
to implement but will not produce evenly distributed segmentations, in
general.

• Longest triarc method: Let t0 = ta be the first segmentation point. The
next one, t1, will be chosen as largest parameter value such that criteria
1 to 3 are still fulfilled. This procedure is repeated for the next segments.
Thus, one minimizes the number of arc segments involved but completely
ignores the geometric properties of the given curve. The approximation of
a closed curve would give different results depending on the starting point,
for instance.



CHAPTER 4. SPATIAL OSCULATING ARC SPLINES 65

Here a different approach will be proposed. An initial segmentation will be
performed at the local minimas of the function F (t) of 4.12. Figure 4.7 shows
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Figure 4.7: Function F (t) for a polynomial curve of degree 4.

F (t) for a polynomial curve of degree 4 which is taken from example 2 of sec-
tion 4.5. The osculating arcs to parameters t0, t2, t4, t6, t9 well approximate the
curve g(t). These five segmentation points give four triarc segments. As each of
the osculating circles c(t2), c(t4), c(t6) is used in two triarc segments the computed
arc spline is composed of nine arc segments (see Figure 4.13). Figure 4.8 shows
the approximation error of this initial approximation. Note, that in the third
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Figure 4.8: Approximation error d(t) after initial segmentation

triarc segment [t4, t6] criterion 3 is violated. The resulting arc spline still is useful
although the segment on the osculating arc c(t6) is very short. In order to avoid
such situations and in order to reduce the error to the desired accuracy one has
to subdivide segments.

For the subdivision point we choose the peak value of the error function d(t)
within a segment (t1, t3, t5, t7). If d(t) has two peaks of approximately the same
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value (see for instance Fig. 4.10 (a), (b) or Fig. 4.15 ) one either splits in between
or divides into three segments.

After computing the triarc of the segment [t6, t8] still the error tolerance of
0.01 is exceeded at this segment (the corresponding figure for d(t) is not given).
Subdivision at the maximum error gives t7. The final arc spline is presented in
Figure 4.14 of the next section.

4.5 Examples

Example 1 Helical curve

(a) (b)

Figure 4.9: Approximation with (a) one, (b) two triarc segments

Figure 4.9 (a) shows the approximation of a helical curve (thin curve) by one
triarc segment (thick curve) in top view and front view. Figure 4.9 (b) shows the
approximation of the same curve with two triarc segments. The big octahedrons
indicate the curve points whose osculating circles were computed. The smaller
octahedron are the joining points of different arc segments. In order to better
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Figure 4.10: Approximation error d(u) for (a) one, (b) two triarc segments

illustrate the spatial position of the arc segments their end points are connected
to their midpoint with thin lines.

Figure 4.10 (a) and (b) contain diagrams showing the approximation error
d(u) of the helical curve to the arc splines. Here u is the arc length of the
helix. The occurring error has its peaks at the middle arc segment which can
also be clearly seen in Figure 4.9 (a). Note the different scalings in the diagrams
Fig. 4.10 (a) and (b) which tend to disguise the fact that the error has decreased
approximately by factor 1/8 because the segment has been bisected.
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Figure 4.11: (a) Normal component dn(u), (b) radial component dr(u) of the
approximation error d(u) of Fig. 4.10(a)

In Figure 4.11 the error d(u) of Fig. 4.10(a) is split into its normal and radial
components dn(u) and dr(u). The function dn(u) shows that the helical curve lies
on both sides of the plane of the middle arc segment. At the point of vanishing dn

the radial distance dr reaches is maximum. While d(u) is smooth the functions
dn(u) and dr(u) have discontinuities at the junction points. This occurs because
of the twist angle between the planes containing the adjacent arc segments. In
the present example the angle between two consecutive planes equals 25.8◦.
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Figure 4.12: (a) Curvature and (b) torsion diagrams of a helical curve and its
approximation with one triarc

Finally, in Figure 4.12 we look at curvature and torsion diagrams κ(u), τ(u)
of the helical curve, both of them being constant functions. The dotted lines
indicate the curvature and torsion profile of the approximating arc spline. The
small difference in arc length between curve and arc spline has been treated by
scaling. Obviously the curvature of each arc segment is constant but the torsion
profile of the arc spline needs to be explained. As the arcs are planar curves the
torsion is zero at all points except at the junction points where the torsion is not
defined. For a sufficiently smooth curve the torsion τ(t0) at g(t0) can be defined
by the limes

τ(t0) = lim
∆t→0

6 σ(t0)σ(t0 + ∆t)

‖ġ(t0)‖
(4.13)

where σ(t) denotes the osculating plane at g(t). At the junction points of the
arc spline there is a sudden rotation of the osculating plane around the tangent
vector without a change in arc length. We will take over the term torsion impulse

from Nutbourne [30] for this behavior. We will define such a torsion impulse T
at the joining point of two arc segments c1, c2 by

T =
6 σ0σ1

1
2
(l(c1) + l(c2))

(4.14)

where σi are the circles’ planes and l(ci) the arc lengths of the segment ci.
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Example 2 Polynomial curve of degree 4

Figure 4.13: Approximation of a polynomial curve of degree 4 with four triarc
segments (9 arc segments)

Figure 4.13 shows the arc spline approximation of a polynomial curve of degree
4. The bigger octahedra indicate the position of the segmentation points. These
have been chosen at the local minima of the function F (t) (Figure 4.7). After

Figure 4.14: Approximation with nine triarc segments (19 arc segments)

further subdivision of the segments as described in section 4.4.2 one obtains an
osculating arc spline composed of 19 arc segments. Figure 4.14 gives the final
result.

The approximation errors which go with this arc spline are given in Figure 4.15
Note the different scaling of the diagram compared to Fig. 4.8. The maximum
absolute error of 0.01 gives a maximum relative error of 0.00025 with respect to
the arc length of 40.8 of the whole curve.
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Figure 4.15: Approximation error d(t) for the arc spline approximation of Fig-
ure 4.14
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Figure 4.16: (a) Curvature and (b) torsion diagrams of a polynomial curve g(t)
and its arc spline approximation

Figure 4.16(a) gives the curvature diagram of the polynomial curve and the
piecewise constant curvature function of the arc spline. Figure 4.16(b) shows the
torsion function τ(t) and the torsion impulses of the approximating arc spline.
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