
DISSERTATION

Real-Time Monitoring for the
Time-Triggered Architecture

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung

von

Univ.-Prof. Dr. Peter Puschner

Institut für Technische Informatik 182-1

eingereicht an der Technischen Universität Wien,
Fakultät für Informatik

von

Dipl.-Ing. Idriz Smaili

Matr.-Nr. 9626459

Thomas-Morus Gasse 10/2/4, A-1130 Wien

Wien, im November 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract
The application of real-time systems is vitally necessary in many indus-

trial areas, such as automotive and aerospace industry. The development
of these systems is more time consuming than the development of non real-
time systems, due to testing and debugging of these systems being much
more difficult. In the literature, the time spent for testing and debugging
of a new developed real-time system is estimated to take about 70% of the
total development time. Therefore, the application of real-time monitoring
systems during development of real-time systems is crucial.

The correctness of real-time systems depends not only on the results they
deliver, but also on the point in time at which the results are delivered.
Thus, the basic requirement during monitoring of real-time systems is the
determinism of the monitoring system. Therefore, the key issue during mon-
itoring of a real-time system is to keep the interference that is caused by
a monitoring system on the real-time system deterministic, if it cannot be
completely removed. This interference depends on the way how monitoring
data are collected from the target system, and on the amount and the obser-
vation rate of monitoring data being collected within an observation interval.
In order to predict this interference and to keep it deterministic, we define
monitoring data types and present different gathering methods in this thesis.
The appropriate gathering method and the amount (even in the worst case)
of each selected data type within an observation interval can be discovered in
advance, i.e., before the monitoring process is started. Another objective of
the thesis is the deterministic real-time monitoring for the Time-Triggered
Architecture (TTA). We define and classify different abstraction levels at
which TTA target systems can be monitored: i) cluster, ii) node, and iii)
transducer abstraction level. The monitoring of target systems that con-
sist of multiple clusters is also analyzed. Furthermore, the real-time triggers
that can be used to search significant events in real-time during monitoring
of target systems are discussed. The real-time trigger system (RTTS) records
system operation of the target real-time system only in time windows of in-
terest, around significant events. It does so by buffering and observing of
significant events in real-time. The RTTS can be successfully applied during
long-term monitoring for saving disk storage. In conjunction with the moni-
toring at node abstraction level the RTTS also can be applied for long-term
diagnosing and correctness checking of real-time target systems. The con-
cepts presented in this thesis have been implemented either in commercial
software product TTPview or in the case study also presented in this thesis.
TTPview is successfully applied in industry for monitoring of distributed
safety-critical real-time systems built on the TTA.

Kurzfassung
Die Anwendung von Echtzeitsystemen ist in vielen Industriegebieten not-

wendig, wie z.B. in der Automobil- und Flugzeugindustrie. Die Entwicklung
dieser Systeme ist zeitintensiver als die Entwicklung von nicht Echtzeitsyste-
men, weil das Testen und Debuggen von Echtzeitsystemen viel aufwändiger
ist. In der Literatur wird die Zeit, die für das Testen und Debuggen eines neu
entwickelten Echtzeitsystems benötigt wird, mit ungefähr 70% der vollen Ent-
wicklungszeit abgeschätzt. Daher ist die Anwendung von Monitoringsystemen
während der Entwicklung von Echtzeitsystemen notwendig.

Die Korrektheit der Echtzeitsysteme hängt nicht nur von gelieferten Re-
sultaten ab, sondern auch von den Zeitpunkten, an denen die Resultate ge-
liefert werden. Daraus wird ersichtlich, dass die Grundanforderung während
der Überwachung von Echtzeitsystemen der Determinismus des Monitoring-
systems ist. Daher muss während der Überwachung dieser Systeme die vom
Monitoringsystem auf das Zielsystem erzeugte Beeinflussung deterministisch
gehalten werden, wenn man sie nicht vollständig beseitigen kann. Diese Be-
einflussung hängt sowohl von der Art ab, wie Monitoringdaten vom Zielsy-
stem erfasst werden, als auch von deren Menge und Überwachungsrate, die
innerhalb eines Beobachtungsintervals gesammelt werden. Um diese Beeinflus-
sung vorhersagen und sie deterministisch halten zu können, definieren wir in
dieser Arbeit Monitoringdatentypen und stellen Erfassungsmethoden vor. Die
passende Erfassungsmethode und die maximale Datenmenge jedes selektier-
ten Datentyps kann im Voraus, d.h., bevor das Monitoringsystem gestartet ist,
herausgefunden werden. Eine andere Zielsetzung dieser Arbeit ist die determi-
nistische Echtzeitüberwachung von zeitgesteuerten Systemen. Wir definieren
und klassifizieren verschiedene Abstraktionsniveaus, auf dem die zeitgesteuer-
ten Systeme überwacht werden können, wie z.B.: Clusterniveau, Knotenniveau,
und Transducerniveau. Die Überwachung von Zielsystemen, die sich aus meh-
reren Cluster bestehen, wird ebenfalls analysiert. Außerdem werden in dieser
Arbeit Echtzeittrigger eingeführt, die für das Suchen der signifikanten Events
während der Überwachung von Echtzeitsystemen eingesetzt werden können.
Das Echtzeittriggersystem (RTTS) speichert die Systemabläufe nur in interes-
santen Zeitfenstern ab, d.h., rund um die signifikanten Events. Das wird vom
RTTS mittels Pufferung und Beobachtung von signifikanten Events in Echtzeit
erreicht. Kombiniert mit der Überwachung auf dem Knotenniveau kann das
RTTS als Langzeitdiagnosesystem oder als Korrektheitsüberprüfer eingesetzt
werden. Die in dieser Arbeit präsentierten Konzepte sind in zwei Systemen
implementiert, in dem kommerziellen Softwareprodukt TTPview und in der
Fallstudie. TTPview wird erfolgreich in der Industrie für die Überwachung von
zeitgesteuerten Systemen eingesetzt.

Abstrakt (in Albanian)

Aplikimi i sistemeve të kohës-reale është me rëndësi jetike ne shumë sfera in-
dustriale sic është p.sh., industria automobilistike dhe ajo ajrore. Zhvillimi i
këtyre sistemeve kërkon nje kohë shumë më të gjatë se sa zhvillimi I sistemeve
non-real time, pasi testimi dhe debugimi i tyre është shumë më i vështirë. Ne lit-
erature vlerësohet se rreth 70 % (perqind) e kohës se përgjithshme e cila nevojitet
për zhvillimin e një sistemi të ri të kohës-reale, shpenzohet (perdoret) për tes-
timin dhe kontrollin e tij. Për këtë arsye, aplikimi i sistemeve monitoruese është i
nevojshëm gjatë zhvillimit të këtyre sistemeve.

Saktësia e sistemeve të kohës-reale varet jo vetëm nga rezultatet e tyre, por edhe
nga koha ne të cilën shfaqen këto rezultate. Kështu që kërkesë kryesore gjatë moni-
torimit të këtyre sistemeve është determinizmi i sistemit monitorues. Njëkohësisht
vlenë për tu përmedur se interferenca (ndërhyrja) që shkaktohet nga sistemi mon-
itorues ne sistemin e monitoruar (synuar) duhet të jetë deterministike, ne rast
se ajo nuk mund të eleminohet tërësisht. Kjo ndërhyrje varet nga mënyra se si
mblidhen të dhënat monitoruese nga sistemi që monitorohet, si dhe nga sasia dhe
përshpejtimi i obzervimit të tyre brenda intervalit obzervues. Per të parashikuar
dhe mbajtur nën kontroll këtë ndërhyrje, punimi ynë definon dhe klasifîkon lloje
të ndryshme të të dhënave monitoruese si dhe të metodave për grumbullimin
e tyre. Metoda përkatëse grumbulluese si dhe sasia e të dhënave për secilin lloj
(ashtu sikurse dhe ne rastin e jashtzakonshem - "worst-case") mund të përcaktohet
paraprakisht, d.m.th., para se të vihet ne përdorim sistemi monitorues. Një qëllim
tjetër i këtij punimi është monitorimi deterministik i kohës-reale për Arkitek-
turën Time-Triggered (TTA). Ndër të tjera ne definojmë dhe klasifikojmë disa
nivelé abstrahuese nëpërmjet të cilave sistemet TTA mund të monitorohen, si
p.sh.: cluster niveli, node niveli, si dhe transducer niveli. Monitorimi i sistemeve
që përbëhen nga shumë cluster-a përbën një tjetër analizë ne këtë punim. Përveç
kësaj, ne këtë punim trajtohen edhe trigerët, të cilët ne kohë-reale kërkojnë ng-
jarjet me rëndësi ("significant events") gjatë monitorimit të sistemve të synuara.
Sistemi i trigerëve ne kohë-reale (RTTS) i ruan operacionet sistemore të sistemeve
që monitorohen vetëm gjatë intervaleve kohore interesante, d.m.th. për rreth ng-
jarjeve te rëndësishme. Kjo arrihet përmes baferimit dhe obzervimit të ngjarjeve
të rëndësishme të kohës-reale nga ana e RTTS-it. RTTS-i mund të aplikohet
gjatë monitorimit afatëgjatë, për ruajtje të sukssesshme të hapësirës ne disk.
RTTS-i i kombinuar me nivelin abstrahues node mund të aplikohet jo vetem si
diagnostikues afatëgjatë por dhe si kontrollues i saktësisë se sistemeve që moni-
torohen. Konceptet e paraqitura ne këtë punim janë implementuar ne produktin
komercial sic eshte software TTPview ose ne case study të ilustruar gjithashtu
edhe ne këtë punim. TTPview është aplikuar me sukses ne industri për moni-
torimin e sistemeve të shpërndara kritike kompjuterike të bazuar ne TTA.

m

Danksagung

Dieser Dissertation entstand als Abschluss meiner Forschungs- und Ar-
beitstätigkeit sowohl am Institut für Technische Informatik, Abteilung für
Echtzeitsysteme, als auch bei TTTech Computertechik AG. Mein besonde-
rer Dank gilt Herrn Prof. Dr. Peter Puschner, der meine Arbeit betreute,
und mir dabei immer wieder wertvolle Vorschläge gab. Außerdem, möchte
ich mich bei dem Leiter des Instituts, Herrn Prof. Dr. Hermann Kopetz,
bedanken.

Mein Dank gilt auch meinen langjährigen Kollegen bei TTTech Com-
putertechik AG, besonders Harald Angelow, der direkt durch seine Imple-
mentierungen an dem TTPview Projekt mitgewirkt hat und mit dem ich
mich ausgezeichnet verstanden habe. Außerdem, möchte ich mich bei fol-
genden Kollegen des Instituts bedanken: Leo Mayerhofer, Raimund Kirner,
Wilfried Elmenreich, Wilfried Steiner, Roman Obermaisser, und Thomas
Losert.

Meinen Freunde möchte ich herzlich danken: Astrit Ademaj, Nysret
Musliu, Ylber Ramadani, Yll Haxhimusa, Suela Lezaj, Arian Shala, Be-
dri Dragusha, Driton Statovci und Ilirjana Gashi. Ich bedanke mich bei
Astrit, Nysret, Ylber, Ylli, Ilirjana, Bedri, Suela und Arian für Korrektur-
lesen von Teilen dieser Dissertation. Ein besonderer Dank gilt Astrit, mit
dem ich viele wertvolle Diskussionen (nicht nur im unseren Fachbereich)
führte.

Und nun zu meinen Liebsten - einen speziellen und herzlichen Dank
haben meine Eltern verdient, die mir immer zur Seite standen und mich
sowohl in guten als auch in schlechten Zeiten unterstützten. Gleichzeitig
möchte ich meinen Geschwistern danken, dafür, daß sie mich geliebt haben
und dadurch einen wichtigen Teil zu meinem Erfolg beigetragen haben. Im
speziellen danke ich meiner Frau und Partnerin, Merita, für die viele ent-
gegengebrachte Geduld, die ständige Motivation, und liebevollen Aufmun-
terungen während der Zeit, in der diese Dissertation entstand. Ohne ihre
liebevolle Unterstützung wäre diese Dissertation nie entstanden. Und nun
zum Schluß, möchte ich mich bei meiner vor kurzem geborenen Tochter,
Hana, bedanken, dafür, daß sie mich immer wieder anlächelt und dadurch
meiner Motivation einen kräftigen Schwung immer wieder gibt.

IV

Contents

1 Introduction 1
1.1 Objectives 2
1.2 Contribution of this Thesis 3
1.3 Structure of the Thesis 4

2 Real-Time Monitoring Systems 7
2.1 Real-Time Systems 7

2.1.1 Timing Constraints 8
2.1.2 Real-Time Data 8

2.2 Monitoring Systems 10
2.2.1 Terms and Notations 11
2.2.2 Application Domains 19
2.2.3 Monitoring Perturbation 20
2.2.4 Monitoring Levels 22
2.2.5 Monitoring Targets 24
2.2.6 Monitoring Approaches 27

2.3 Debugging Systems 29
2.3.1 Static Debugging 30
2.3.2 Dynamic Debugging 30
2.3.3 Debugging with Monitoring Support 32

2.4 Case Studies 33
2.4.1 Peters and Parnas Monitor 33
2.4.2 Wedde, Lind and Segbert Monitor 33
2.4.3 Akgul, Kuacharoen, Mooney and Madisetti's Debugger . 34
2.4.4 TTA Monitoring 35

2.5 Chapter Summary 36

3 System Model 38

3.1 Terminology 38

3.2 System Structure 39

3.2.1 Cluster Structure 39

3.2.2 Node Structure 40

3.3 Transmission Medium 44

3.4 Timing Characteristics 45

3.5 Communication Services 46

3.6 Chapter Summary 47

Monitoring Data 48

4.1 Motivation and Objectives 48

4.2 Terms and Notations 49

4.2.1 Amount of Monitoring Data 52

4.3 Monitoring Data Types 55

4.3.1 Regular vs. Non-regular Monitoring Data 55

4.3.2 Monitored Application vs. Pure Monitoring Data 57

4.4 Gathering Methods 58

4.4.1 MN Gathering Method 59

4.4.2 OS Gathering Method 59

4.4.3 In-line Gathering Method 60

4.5 Monitoring Data in Time-Triggered Systems 60

4.6 Discussion 62

4.7 Chapter Summary 63

Monitoring of Time-Triggered Systems 64

5.1 Objectives and Goals 64

5.2 Monitoring System 65

5.2.1 Requirements and Assumptions 65

5.2.2 System Structure 66

5.2.3 Operational Modes 67

5.3 Monitoring Abstraction Levels 69

5.3.1 Monitoring at Cluster Abstraction Level 70

5.3.2 Monitoring at Node Abstraction Level 73

5.3.3 Monitoring at Transducer Abstraction Level 81

5.3.4 Overview of Monitoring at different Abstraction Levels . 82

5.4 Monitoring of Multiple Clusters 84

VI

5.4.1 Interconnection Topologies 84
5.4.2 Parallel vs. Cascade Topology 88

5.5 Debugging Support 89
5.5.1 Distributed Breakpoint 89
5.5.2 Deterministic Replay 89

5.6 Chapter Summary 90

6 Real-Time Triggers 91
6.1 Objectives and Terms 91
6.2 Triggers 92

6.2.1 Trigger's Attributes 92
6.2.2 Trigger Definition Language 93
6.2.3 Trigger Conditions 98

6.3 Triggered Actions 99
6.3.1 Action Types 99
6.3.2 Overlapping of Recording Actions 101

6.4 Trigger Evaluation 102
6.4.1 Trigger Compilation 102
6.4.2 On-Line vs. Off-Line Evaluation 102

6.5 Chapter Summary 103

7 Implementation 104
7.1 Monitoring Node 104

7.1.1 Monitoring Software 105
7.1.2 Hardware Platforms 108

7.2 Central Monitor 109
7.2.1 System Parts 109
7.2.2 Monitoring Clients 113

7.3 Real-Time Trigger System 116
7.3.1 Trigger Definition 116
7.3.2 Trigger Evaluation 117

7.4 Chapter Summary 118

8 Case Study 119
8.1 Motivation and Objectives 119
8.2 System Setup 120

vn

8.2.1 Target Hardware and Software Application 120

8.2.2 Software Tools 122

8.3 Monitoring Setup 123

8.3.1 OS Abstraction Level 123

8.3.2 Task Abstraction Level 126

8.4 Collée, Process., and Present, of Monitoring Data 127

8.4.1 Data Collection 127

8.4.2 Data Processing and Presentation 127

8.5 Chapter Summary 132

9 Conclusion 134

9.1 Monitoring Data 134

9.2 Deterministic Monitoring System 135

9.3 Real-Time Trigger System 135

9.4 Outlook 136

Bibliography 138

Glossary 154

List of Abréviations 159

List of Publications 161

Curriculum Vitae 162

vin

List of Figures

2.1 Relationship between Management and Monitoring [Hof94] . . . 10

2.2 Management Function at each Node [WLS99] 34

3.1 System Structure 39

3.2 Cluster Structure 40

3.3 Node Structure 41

3.4 CNI Structure 42

3.5 Communication Controller Structure 42

3.6 Host Structure 43

3.7 Transmission Medium 45

3.8 Cluster Cycle 46

4.1 Monitoring Entity 50

4.2 Observation History 51

4.3 Amount of Monitoring Data 54

4.4 Monitoring-Node Gathering Method 59

4.5 OS Gathering Method 60

4.6 Monitoring Data in Time-Triggered Systems 61

4.7 Classification of Monitoring Data 62

5.1 Monitoring System's Structure 66

5.2 Monitoring at Cluster Abstraction Level 70

5.3 Monitoring at Node Abstraction Level 73

5.4 Monitoring at OS Abstraction Level 75

5.5 Example of Global Node Data in TTA Systems 79

5.6 Transducer-Level Monitoring 81

5.7 Monitoring Abstraction Levels - Overview 83

5.8 Interconnection of Multiple Clusters - Parallel Topology 85

5.9 Interconnection of Multiple Clusters - Cascade Topology 86

IX

5.10 Monitoring Routes 86

6.1 Logging Window (Recording Interval) 92

6.2 Action Overlapping (first scenario) 101

6.3 Action Overlapping (second scenario) 101

6.4 Action Overlapping (third scenario) 102

7.1 Monitoring Node 105

7.2 Scheduling of Monitoring Activities 107

7.3 Central Monitor 110

7.4 TTA Agreed Message 112

7.5 Fault-Tolerance Access Approach 113

7.6 TTPview - The Real-Time Monitoring System 114

7.7 Message Tree 115

7.8 Definition of Triggers in TTPview 116

7.9 Trigger List 116

7.10 Trigger Detection List 117

7.11 Trace Control - List of Logging Windows 117

8.1 Case Study - Setup 121

8.2 Active Monitoring Node 121

8.3 Instrumentation Code inserted into the OS Dispatcher 124

8.4 Monitoring Data collected at the OS Abstraction Level 128

8.5 Scheduling information generated by TTPbuild 129

8.6 Task Execution-Times 129

8.7 ET Measurements of Bubble Sort Algorithms 131

8.8 Monitoring Data collected at the Task Abstraction Level 132

List of Tables

4.1 Regular vs. Non-regular Monitoring Data 57

6.1 TDL Predefined Constants 94
6.2 TDL Unary Operators 95
6.3 TDL Binary Operators 95
6.4 TDL Void Functions 96
6.5 TDL Unary Functions 96
6.6 TDL Binary Functions 97

8.1 Vector of Integers to be sorted 130

XI

Chapter 1

Introduction

The development of real-time systems (RTS) has grown so much recently that
they can be found almost everywhere in our everyday life. Such a develop-
ment has been enforced by the rapid growth of the information technology.
There are many industry branches in which the use of real-time systems is
irreplaceable. For example, command and control systems, flight control sys-
tems, space shuttle control systems, aircraft avionics control systems, robotics,
patient monitoring systems, nuclear power plant control systems, etc. [Kop97].

The development of real-time systems enables the substitution of old hy-
draulic and pneumatic non-safety and non fault-tolerant controlling systems
through high safety time-critical fault tolerant real-time systems, e.g., brake-
and steer-by-wire. The main advantage of this substitution is the increased
safety of this equipment and on the other hand the cost reduction for the de-
velopment and maintenance of these types of equipment. This replacement
may reduce overall system costs, reduce weight, improve reliability, and intro-
duce additional quality of service [BauOO]. In the near future, especially in the
automotive industry, this trend will find a widespread application.

A considerable part of costs of a newly developed computer system is spent
for testing and debugging. Statistical evidence indicates that testing and de-
bugging represents approximately 50% of the cost of developing a new system
[TBYS96]. These costs are higher in case of real-time systems, because the
origins of error in these systems can be found both in the time and value do-
main. In [Sev87] Seviora found out that 70% of the development time in case
of real-time systems is spent for testing and debugging. These costs are caused
due to the fact that the debugging of real-time systems cannot be done with
the traditional debugging techniques. The most popular traditional debugging
technique is the breakpoint technique, which uses breakpoints to stop the ex-
ecution of the application at predefined points in the code. This technique
cannot be applied for debugging of real-time systems, because if the program

1 Introduction 1.1 Objectives

execution is interrupted, the physical time cannot be stopped and the system
is no longer consistent in the time domain [SmaO2].

Recently, different techniques were developed related to debugging of real-
time systems. These techniques can be grouped into static and dynamic de-
bugging techniques. The static debugging techniques are based on the static
analysis of the source code. They try to detect parts of the code that probably
contain anomalies and (or) bugs. In [AAC+94] this technique is defined as static
verification, i.e., the verifying of the system without actual execution. These
techniques are not suitable for debugging of real-time systems, because they
do not deliver any information over the run-time behavior of target systems.
Therefore, for successful debugging of real-time systems, monitoring systems
must be used.

Monitoring systems are used for collecting run-time data that represent the
run-time behavior of a target system during the monitoring (observation) pro-
cess at the intended abstraction level. In [HS90] Haban et. al. define monitoring
as the extraction of data about the activities of a computer system, and the
authors refer to monitoring under timing constraints as real-time monitoring.
The collected run-time information can be used during debugging of real-time
systems for searching of the suspected faults that could not be detected by
merely studying the source code.

In this thesis the collected monitoring data are used in context of debugging
of target systems that are based on the Time-Triggered Architecture (TTA).
The correctness of real-time systems depends not only on the results they de-
liver, but also on the point in time they are delivered. Therefore, the run-time
behavior of the target systems during monitoring must be changed neither in
the time nor in the value domain. Thus, the basic objective of this thesis is the
deterministic monitoring of these systems.

1.1 Objectives

Monitoring data represent the run-time behavior of a target system at an in-
tended abstraction level. The goal of a monitoring system is to collect all
monitoring data from which the run-time behavior of the target system at the
intended abstraction level can be reproduced. The key issue during monitoring
of real-time systems is to keep the interference of the monitoring system on
the real-time system deterministic, if it cannot be completely removed. This
interference depends on the way how monitoring data are collected from the
target system, and on the amount and the rate of monitoring data being col-
lected within an observation interval. The first objective of this thesis is to
define monitoring data types and to present different gathering methods that

1 Introduction 1.2 Contribution of this Thesis

enables the monitoring system to predict this interference in advance1 and to
keep it deterministic.

The second objective of this thesis is the design and implementation of a
deterministic monitoring system that can be used for monitoring of safety-
critical distributed real-time systems, e.g., time-triggered systems. Different
abstraction levels are supported, such as : i) cluster, ii) node, and iii) transducer
abstraction level. Furthermore, the monitoring of target systems that consist
of multiple clusters is part of this objective. However, as mentioned above,
the basic requirement that must be taken into consideration during design and
implementation of monitoring systems is their influence2 on the target systems,
which must be limited and deterministic. Thus, such an influence must not
change the behavior of the target real-time system, neither in the time nor in
the value domain.

A real-time monitoring system must be capable of collecting all monitoring
data that are relevant to reproduce phenomena of interest. On the other hand,
the amount of collected monitoring data must be kept small, for disk space and
bandwidth reasons. An alternative to storing enormous amounts of monitoring
data (by storing all monitoring data during a monitoring process) is the use of
the real-time trigger system (RTTS) that stores data of interest selectively. The
design and development of the RTTS is the third objective of this thesis. The
RTTS records the system operation of the target RTS only in time windows of
interest, around significant events. A significant event is an event of interest,
which has to be denned by the user of the monitoring system. Examples of
such events are: the temperature of a controlled physical system or the velocity
of a (controlled) vehicle exceed their allowed limits.

1.2 Contribution of this Thesis

The contributions of this thesis are:

• The definition of different monitoring data types and gathering meth-
ods, which make it possible to predict monitoring resource requirements
before run-time, i.e., during the monitoring setup phase before the mon-
itoring process is started, and to keep the interference of the monitoring

1Before the monitoring process has been started.
2The presented monitoring system is based on a software monitoring approach in which

the monitoring system uses resources of the target system during the monitoring process.
This means that the target system is influenced by the monitoring system, or the monitoring
and the target system are interfering during the monitoring process. Therefore, the terms
monitoring influence and interference will be used alternatively throughout this thesis.

1 Introduction 1.3 Structure of the Thesis

system on the target system deterministic. The practical applicability of
these concepts is demonstrated in a monitoring application presented in
Chapter 8, where they are used for calculation of the expected amount of
monitoring data within a cluster cycle. Currently, the selection of entities,
the calculation of the expected amount within an observation interval and
the instrumentation process is done manually. The intention is to incor-
porate the concepts presented in this thesis in the design tools to calculate
the needed resources (i.e., the calculation of the expected amount of mon-
itoring data within an observation interval) for monitoring process and
to automate the instrumentation process. This approach can be applied
during design of time-triggered systems, e.g., TTA, FlexRay, TTCan. It
can be also applied during design of event-triggered systems, e.g., CAN
and LIN.

The design and development of a deterministic real-time monitoring sys-
tem that can be used for monitoring of time-triggered systems at differ-
ent abstraction levels: i) cluster, ii) node, and iii) transducer abstraction
level. The presented concepts are implemented both in the software tool
TTPview (see Chapter 7), and in the monitoring application presented
in Chapter 8. TTPview is successfully applied in industry (Honeywell,
AUDI, VW, etc.) for monitoring of TTA systems.

The design and implementation of RTTS (see Chapters 6 and 7). The
RTTS can be used during long-term monitoring of target system saving
disk storage. They also can be applied during automatic testing of new
developed target system. Another important application field of RTTS
in conjunction with the monitoring at the node abstraction level is the
long-term diagnosing and correctness checking of target systems. In the
context of long-term on-line diagnosing the RTTS can store the selected
monitoring data (i.e., around the significant events) on a dedicated non-
volatile storage. In the automotive industry this application of the RTTS
enables the usage of black-boxes similar to the black-boxes that are used
in the aircraft industry. In case a car has a problem, the evaluation of the
monitoring data stored in the black-box helps the user to find the reason
of the suspected problem.

1.3 Structure of the Thesis

This thesis is organized as follows: Chapter 2 presents the terms and notions
that are used throughout this thesis. It starts with the short presentation
of real-time systems with special view on real-time data, and their temporal

2 Introduction 1.3 Structure of the Thesis

consistency. Then we continue with the presentation of the terminology that
is used by the real-time monitoring research community, and the presentation
of the survey of present and past real-time monitoring system architectures.
At the end, this chapter presents some case-studies in which different real-time
monitoring systems are shown.

Chapter 3 introduces the system model of target systems that can be mon-
itored by the presented monitoring system. After presentation of the used ter-
minology, the system structure is introduced. The next sections of this chapter
present transmission medium, timing characteristics, and communication ser-
vices of target systems that can be monitored by the proposed monitoring
system.

The objective of Chapter 4 is to define and classify different groups of
monitoring data, and for each group the monitoring system must be able to
either exactly calculate or estimate their amount in advance. Furthermore,
different gathering methods used for gathering of classified monitoring data
types are denned and specified in this chapter. This classification of monitoring
data and gathering methods contributes to make the interference that is caused
by monitoring systems on target systems deterministic.

In Chapter 5 the proposed real-time monitoring system (RTMS) for moni-
toring of time-triggered systems is presented. It offers to the user the capability
of monitoring the target systems at multiple abstraction levels: i) cluster, ii)
node, and iii) transducer abstraction level. In addition, special attention will
be paid on simultaneously monitoring of target systems that consist of multiple
clusters.

In Chapter 6 the real-time triggers that are used for searching of signifi-
cant events are presented. After the presentation of trigger definition language
(TDL), which is used (by the user) for description of significant events, the
triggered actions are introduced. The triggered actions are executed each time
when the evaluation of trigger conditions yields true. Special attention will be
paid in this chapter on the triggered recording actions, which have to record
monitoring data collected before and after points in time at which significant
events are found.

In Chapter 7 the implementation of the proposed monitoring system is
presented. This monitoring system is implemented in a commercial software
product called TTPview. TTPview has been shown to work very well and is
successfully applied in industry.

Chapter 8 deals with the description of the design and implementation of a
real-time monitoring system for monitoring of TTA target real-time systems at
the node abstraction levels, i.e., at the operating system (OS) and the applica-
tion abstraction levels. This serves as a case study for the presented concepts on

1 Introduction 1.3 Structure of the Thesis

monitoring of TTA target systems at the above mentioned abstraction levels.

Finally, the thesis ends with a conclusion presented in Chapter 9, in which
the key results of the presented work are summarized. This chapter also gives
an overview on future research in this area.

Chapter 2

Real-Time Monitoring Systems

The objective of this chapter is to present the terms and notions that are used
throughout this thesis. The next section begins with a short presentation of
real-time systems with a special view on real-time data. Special attention will
be paid to the notion temporal consistency of real-time data, because these
data are observed and collected by monitoring systems.

The monitoring of real-time systems is the objective of the rest of this
chapter. After presentation of the basic concepts and terminology that are
used by the real-time monitoring research community, this chapter continues
with presentation of a survey of present and past real-time monitoring system
architectures. The goal of the survey is to present the state of the art of
monitoring of real-time systems. At the end, this chapter presents some case-
studies in which different real-time monitoring systems are illustrated. A brief
summary closes this chapter.

2.1 Real-Time Systems

The correctness of real-time systems depends not only on the correctness of
results they deliver, but also on points in time when these results are delivered.
In [Kop97] Kopetz defines a real-time system as a computer system in which
the correctness of the system behavior does not only depend on the logical
results of the computations, but also on the physical instant of time at which
these results are produced. In [Ram95, Ram96] Ramamritham describes the
difference between real-time systems and non real-time systems as the presence
of data that becomes invalid with the passage of time, the presence of events
that must occur in a timely fashion, and the presence of actions whose timely
completion is as important as the results produced.

2 R.eal-Time Monitoring Systems 2.1 Real-Time Systems

2.1.1 Timing Constraints

The key-characteristic of real-time systems is the existence of timing constraints
which such a system has to fulfil. These timing constraints are referred to as
deadlines. Schütz in [Sch94b] defines a real-time system as a (computer) system
which is required by its specification to adhere not only to functional require-
ments, but also to temporal requirements, often also called "timing constraints"
or "deadlines". In [Kop97] Kopetz defines a deadline as the instant at which
the real-time system must produce its result.

Real-time systems can have soft, firm and hard deadlines, depending on
the fact, how the system is affected in case these deadlines are violated. If
a real-time system can use the result produced after the deadline has been
missed, then this deadline is called soft. The deadline is considered to be
firm, if the result produced after deadline cannot be used by the real-time
system. A special kind of firm deadlines are hard deadlines, which must never
be violated. Missing a hard deadline can have catastrophic consequences and
must be avoided at all costs [vdSvdWA+97]. In [Kop97] Kopetz determines
that a real-time computer system that must meet at least one hard deadline is
called a hard real-time computer system or a safety-critical real-time computer
system.

2.1.2 Real-Time Data

The type of data that lose their validity with the passage of real-time are called
real-time data. The goal of real-time systems is to process real-time data in
real-time, before they become invalid. Real-time data model the real-word
processes that are controlled by real-time systems. These data are valid only
within a finite short time duration. The time point after which real-time data
lose their validity is called data deadline [KSS02]. Since the validity of real-time
data is lost with the passage of real-time they must be updated after a certain
time, in order to be able to reflect the actual state of the environment. Some
real-time systems are used for controlling of physical devices, and therefore they
must store real-time data which represent the condition of these devices. Such
information includes input data from devices as well as system and machine
state [Kim95, Son95].

Real-time data can be produced from different sources. Some examples are:
i) real-time data that represent the position (3 dimensional) and the velocity
of an aircraft, etc, ii) data that represent the temperature in a power plant, iii)
data found in the navigation system of a spacecraft.

Real-time data can be classified into two different groups: basic and derived
data. Basic real-time data are gathered directly from sensors from the environ-

2 Real-Time Monitoring Systems 2.1 Real-Time Systems

ment physical processes, which are controlled by real-time computer systems.
Derived data are derived from different basic data.

Temporal Consistency

Real-time applications typically consist of the controlling system (CS) and the
controlled system. The controlling system uses a (finite) set of real-time data,
which reflect the state of the controlled system. The controlled system can be
viewed as the environment with which the controlling system interacts [Ram93].
The designer of the CS must make sure that the state that is reflected by the
contents of its real-time data and the actual state of the environment are consis-
tent otherwise the CS could take false decisions, which could have catastrophai
consequences. In [Ram96] Ramamritham defines the notion of temporal con-
sistency in real-time databases, which represents the consistency between the
actual state of the environment and the state reflected by the contents of the
database.

The temporal consistency of real-time data consists of two compo-
nents [Ram93, Ram96]:

Absolute Consistency (AC): AC represents the imperative need to keep
the controlling system's view of the state of the environment consistent
with the actual state of the environment. The absolute consistency can
be understood as the imperative constraint for the controlling system to
periodically refresh its real-time data, which represent the actual state of
the environment.

A real-time data item, e.g., d, contains the following characteristics:

d : (value, avi,timestamp) (2-1)

where dvaiue denotes the current state of d, and dumestamp denotes the time
when the observation related to d was made. davi denotes d's absolute
validity interval, i.e., the length of the time interval following dtimestamp

during which d is considered to have absolute validity [Ram96, Ram95].

Relative Consistency (RC): RC represents the need for (basic) real-time
data which are used for derivation of other (derived) real-time data to be
temporally close to each other. A set of data items used to derive a new
data item form a relative consistency set. Each such set R is associated
with a relative validity interval denoted by Rrvi [Ram96].

Ramamritham in [Ram96] determines that a real-time data item (d € R) is
considered to be temporal consistent if and only if:

9

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

• Absolute Consistency:

(currentJime — dumestompt) < davi (2.2)

• Relative Consistency:

Va € R, \dtimestamp ~ dtimestampt\ < Rrvi (2-3)

The correctness of the decisions that are made by the controlling system
depends directly on the temporal consistency of the used real-time data. Gerber
et al. in [GHS95] define the freshness and correlation constraint of real-time
data. The freshness constraint represents the time after which the data may
not be used anymore. The correlation constraint represents the time window
within which the correlated real-time data1 must be generated. The absolute
consistency can be seen as freshness constraint whereas relative consistency can
be seen as correlation constraint [Ram96].

Monitoring data that are gathered from real-time target systems must be
relative consistent. These data are correlated by monitoring systems for rep-
resentation of the run-time behavior of the target systems at the intended
abstraction level. Therefore, the relative consistency is of utmost interests for
monitoring of real-time systems.

2.2 Monitoring Systems

During the monitoring process run-time information are gathered from the tar-
get system which represent the behavior of the target system at the intended
abstraction level. Monitoring systems are used in run-time for extraction, ana-
lyzing, presentation and (in some cases) for acting on gathered information from
systems that are monitored [Pla84, JLSU87, Sch95, HS90, WLS99, MSS92].

Decision
System () () making

Figure 2.1: Relationship between Management and Monitoring [Hof94]

1 These data are derived from the basic real-time data.

10

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

In literature we find different definitions of monitoring. In [Sch94a], Schmid
defines monitoring as the process of extracting and gathering information re-
garding the behavior of a particular system. In [JLSU87], Joyce et al. define
monitoring as the process of dynamic collection, interpretation and presenta-
tion of information concerning objects or software processes under scrutiny.
In [Sch95], Schroeder defines the on-line monitoring as a system, which is a
process or set of possibly distributed processes whose function is the dynamic
gathering, interpreting, and acting on information concerning an application as
that application executes. In [TBYS96], Tsai et al. define monitoring as collec-
tion of run-time information on the target system that cannot be obtained by
merely studying the program text. Haban and Shin in [HS90] define monitoring
as the extraction of data about the activities of a computer system. Another
definition of monitoring is given by Kaelbling and Ogle in [KO90]. They define
monitoring as the collection of information from targets (either programs or
underlying systems) and presentation of analysis based on that information to
users or programs. Dodd and Ravishankar in [DR92], define monitoring as the
measurement, collection, and processing of information about the execution of
tasks in a computer system. In [UB02], Urting and Berbers define monitoring
as an activity of observing the (target) system's properties and activities, ana-
lyzing the information and eventually controlling (part of) the (target) system
based on the collected information. Hoffner in [Hof94], determines that mon-
itoring is carried out in order to obtain information about a system, and in
general monitoring is part of the process of management (see Figure 2.1).

However, the monitoring process is defined in this thesis as a process during
which the run-time behaviour of the target system is observed at an intended
abstraction level, i.e., its run-time information is gathered by the monitoring
system. In addition the collected run-time information is processed by the
monitoring system either at run-time (i.e., on-line) or off-line, and the processed
results are presented the user.

2.2.1 Terms and Notations

It is the objective of this section to present the terms and notations that are
used in the context of real-time monitoring and which are found throughout
this thesis.

Target System

The system that is monitored by the monitoring system is called target sijs-
tem [Pla84, PPOO]. The application that is executed on the target system is

11

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

called target application. The monitoring system is a system that is used for
monitoring of monitored systems (i.e., target systems) [TBYS96].

Sensors and Probes

In [UB02], Urting and Berbers define a sensor as an entity (software or hard-
ware) that observes a small part of the system, and which is responsible for
gathering of monitoring information. In [Sch95], Schroeder defines a sensor as
an entity that observes the behavior of a small part of the application system
state space. Sensors can include additional functionality. For example, the user
can define conditions that must be satisfied before sensors start their operation
for gathering monitoring information.

A sensor collects (gathers) monitoring information when it is triggered.
In [Sch95] Schroeder denotes that the triggering process can be done either by
the change to the entity the sensor observes or by a request from the monitor-
ing system. Depending on how the sensor is triggered, there are two different
types of operations that can be done by the sensors: sampling and tracing.
In [KO90], Kaelbling and Ogle define sampling as an asynchronous operation,
which is started on-demand by a monitoring system for gathering of monitoring
information. If a monitoring system decides to collect monitoring information
from a set of sensors, it sends a message to them, and they return the cur-
rent values from entities they are observing. On the other side, tracing is a
synchronous operation, during which the sensor reports the new value of the
entity it observes, when the state of the entity is changed. In [DR02], Dias and
Richardson state that by sampling, information about the execution state is
collected synchronously (in a specific time rate), or asynchronously (through
the direct request of the monitoring system), while by tracing, information is
collected when an event of interests occurs in the system [OSS93]. Sampling
sensors can be applied in applications where there is no need for collecting of
all events. However, in cases where collection of all events must be guaranteed,
then tracing sensors must be used. In this case the sampling rate of the sensor
must be higher than the fastest expected change rate of the entity the sensor
observes [UB02].

Sensors are widely used by software monitoring systems. An example is
given in [MahOl] by Mahrenholz, where the use of two different types of sam-
pling sensors is presented: block and expression level sensors. He uses block
sensors for collecting information about entries into and/or exits from basic
code blocks (e.g., functions, etc), while expression level sensors are used for
collecting information on passing of a single code position or the state of a
variable at this point.

12

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

In [OSS93], Ogle et al. differentiate sensors from probes. Whereas sensors
are small pieces of code residing within the program being monitored, the
probes are code fragments residing within the resident monitor (rather than
application), i.e., the resident monitors are responsible for gathering of run-
time information from target systems. If the monitoring system uses probes
then the code of the target application being monitored does not need to be
changed.

Events, Actions and Event Histories

Jahanian [Jah95], Chodrow et al. [CJD91], and Raju et al. [RRJ92] determine
that a computation of a real-time system can be viewed as a sequence of event
occurrences that represents things that happen in a system.

In [Sch95] Schroeder describes an event as an activity, which usually involves
just a small part of the application state space. In [Jah95] Jahanian determines
that events denote state changes in a system as seen by the monitoring system.
In [Kop97] Kopetz defines an event as an occurrence (a state change) that
happens at a cut of a directed time line that extends from the past into the
future, and from which the flow of real-time can be modelled. In [Kla92] Klar
defines an event as an atomic instantaneous action. In [UB02] Urting and
Berbers define an event as a unit of observation in an event based monitoring
system. In [MSS93] Mansouri-Samani and Sloman define an event as an atomic
entity that reflects a change in the status of an object. In [LM97] Liu and
Mok state that events represent state changes of interests that may occur in
a system. "End of transaction T"is an example presented by Liu and Mok
illustrating events that may occur in a system. In [Sch94a] Schmid determines
that an event characterizes the occurrence of a specific change of the system
state - expressible via a certain predicate - of the target. Furthermore, he
differentiates between the occurrence time and the recognition time of events.
The recognition time represents the point in time at which the monitoring
system becomes aware of the occurrence of the event. In [RRJ92] Raju et al.
determine that events represent things that happen in a system, e.g., an event
may denote the start/completion of a program segment, reading a new sensor
value into a program variable, receiving a message from another task, etc.

Events have been differently classified by different researchers. Urting and
Berbers in [UB02] distinguish between non-monitored events (these are events
that occur in the target system but are not reported to the monitoring sys-
tem), and monitored events that are collected and processed by the monitoring
system. Mansouri-Samani and Sloman in [MSS93] classify events according to
their level of abstraction into:

13

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

• events are considered primitive if they signify simple changes in the state
of an object, and

• combined events are a combination or grouping of primitive or combined
events.

In [Sch95], Schroeder classifies events into three primary categories: i)
hardware-level, ii) process-level, and iii) application-dependent events. This
kind of distinction presented by Schroeder corresponds to the abstraction level
of the monitoring system. Another classification has been presented in [Jah95]
by Jahanian, where events are grouped into two categories: task and run-time
system events. Task events denote the state changes of an existing task. Ex-
amples of these events include assignment of a value into a variable or receipt
of a message. Run-time system events are a set of predefined state changes in
the run-time system. Examples of these events include preemption of a task or
blocking a task for a resource.

Depending on the monitoring approach (see Section 2.2.6) events can be
generated from different sources. In hardware monitoring approaches such
events can be generated by low-level parts (i.e., hardware "probes") of the
system that snoop the busses of the target system. In software monitoring
systems, events are generated either by probes or sensors that are inserted into
target systems.

In [Sch95], Schroeder determines that monitoring systems collect monitoring
information in form of events. The relevant events occurring in a target system
are time stamped, collected, and analyzed by a monitoring system at run-time.
Furthermore, the collected events are stored into event histories for analyzing
of the past history and the output of the analyzing process can be used for
feedback to the target system or correctness checking of the target system (see
Section 2.2.2) [CJD91, RRJ92, Pet97]. In [HKM+94] Hofmann et al. determine
that whenever the monitor device recognizes an event, it stores a data record
(a so called event record), which contains the information what happened when
and where. The sequence of events is stored as an event trace.

Schroeder [Sch95] determines that an action is the response of the mon-
itoring system to an event or set of events. Possible actions are: logging or
recording a particular event or set of events, starting a particular process or
activity to deal with the event(s), starting user or administration interactions,
and so on [UB02].

Jahanian in [Jah95] observes that monitoring systems manage collected
monitoring data (i.e., events) into event histories, which are used for analyzing
the past history. If the monitoring system is used for feedback monitoring then
the produced results are sent back as feedback into the target system. The size

14

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

of the event history depends on the application that is being monitored, on the
monitoring approach and monitoring intention, and on the size of the available
memory in the system [Sch95, UB02].

Intrusive vs. Non-intrusive Monitoring

A monitoring system is called intrusive, if it uses resources of the target system
during gathering of run-time information. This is in case a small piece of
code (called sensor, see Section 2.2.1) is inserted into the target system for
gathering of monitoring data. On the other hand, a monitoring system is
called non-intrusive if it does not use any resources of the target system for
information gathering. This can be achieved by use of a dedicated hardware
for information gathering from the target system. Examples of non-intrusive
monitoring approaches can be found in [Pla84, TFC90, TFCB90, SL01].

Schroeder in [Sch95] defines a monitoring system as intrusive if it requires
the use of application resources (i.e., CPU, I/O devices, or shared communi-
cation channels, etc.). Thane in [ThaOOa] determines that any intrusive obser-
vation, or probing, of the distributed real-time system affects the timing and
consequently the outcome of the races. In literature the effect of intrusive mon-
itoring on target system is called monitoring perturbation, which is explained
in more detail in Section 2.2.3.

Time- vs. Event-Driven Monitoring

Depending on how the monitoring information is collected, monitoring systems
are classified into time-driven (or time-based) and event-driven (or event-based)
monitoring. Time-driven monitoring systems periodically gather monitoring
information from target systems (i.e., the state of target systems is periodically
sampled by the monitoring system), while event-driven monitoring systems
collect occurrences of events of interests from target systems at the times when
these events occur.

In the research community we find researchers who have analyzed advan-
tages and disadvantages of time-driven and event-driven monitoring systems.
In [MSS92, MSS93], Mansouri-Samani and Sloman define the time-driven mon-
itoring as a monitoring process which is based on acquiring periodic status
information to provide an instantaneous view of the behavior of the target sys-
tem, while the event-driven monitoring is defined as a process which is based
on obtaining information about the occurrence of events of interests which
provide a dynamic view of system activity. In [Sch95], Schroeder defines an
event-based monitoring system as a monitoring system in which the gathered
information arrives in the form of events. In [HKM+94], Hofmann et al. denote

15

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

that event-driven monitoring represents the dynamic behavior of a program by
a sequence of events, while time-driven monitoring (sampling) provides only
summary statical information about program execution. Furthermore, they
state that the event-driven monitoring is much more suitable in comparison to
the time-driven monitoring for gaining insight into the dynamic behavior of a
target system. In [Hof96], Hofmann points out the difference between time-
driven and event-driven monitoring. In the time-driven monitoring approach
the monitoring system periodically has to sample the state of the target system
at a fixed rate. Hofmman observes that for getting insight into the dynamic be-
havior of target systems, the time-driven monitoring approach requires a very
high time resolution, and a fairly long interval for recording. Therefore, he
states that the use of a time-driven monitoring approach would result in a high
data rate with a huge amount of data, while this amount could be reduced by
several orders of magnitude if an event-driven monitoring approach is applied.

The advantages and disadvantages between time-driven and event-driven
monitoring strongly depend on the architecture of the target system. If the
target system is based on the event-triggered architecture, then event-triggered
monitoring approach will be used. In this case the target system can be viewed
as a finite set of partially ordered event occurrences, which represent its system
behavior and the monitoring system has only to collect this finite set of event
occurrences. On the other hand, time-driven monitoring systems can be much
more suitable for target systems based on the time-triggered architecture.

Synchronous vs. Asynchronous Monitoring

Depending on how collected monitoring data are processed the monitoring ap-
proaches are divided into synchronous and asynchronous. A monitoring system
is called synchronous if collected monitoring data are processed by a monitoring
system running on the target system. Therefore, the synchronous monitoring
can be seen as intrusive monitoring, because it uses the resources of the target
system for processing of collected monitoring data.

A monitoring approach is called asynchronous if collected monitoring data
are processed by a monitoring system running on a separate task or machine.
For processing of collected monitoring data these monitoring systems do not
occupy any resources of target systems. Therefore, in general the influence of
asynchronous monitoring systems on target systems is smaller2 in comparison
with the influence produced by synchronous monitoring systems.

2Only during gathering of run-time information the target system can be influenced by
the monitoring system.

16

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

Run-Time Monitoring

Chodrow et al. [CJD91] denote that the run-time monitoring of a real-time
target system is achieved by examining the observable events at run-time. Raju
et al. in [RRJ92] denote that run-time monitoring of a system requires time-
stamping and recording of the relevant event occurrences, analyzing the past
history as other events are recorded and provide feedback to the rest of the
system.

In general, we can define the run-time monitoring as a process that has to
collect relevant events (i.e., monitoring-data at the intended abstraction level)
from the target system and to process these collected events at run-time. In the
literature we can find examples, in which run-time monitoring systems are pre-
sented [JG90, CJD91, JRR94, Jah95, BJHL96, ML97, LBAK+98, KVBA+99,
WLS99] (see Section 2.2.2). In most cases these monitors use Real-Time Logic
(RTL) [JG90] for the definition of timing constraints which are checked by run-
time monitors. The run-time monitor presented by Jahanian et al. in [JRR94]
can be used as an example. In this model a system computation is viewed as a
sequence of event occurrences. The design assumptions and system properties
that must be maintained are expressed as invariant relationships between var-
ious events which are monitored at run-time. In this model, if a violation of
an invariant is detected the target system is notified so that suitable recovery
actions can be taken.

In [UB02], Urting and Berbers state that run-time monitoring systems con-
sist of three important parts:

• Annotation Formalism: an RTL like formalism for annotating timing
constraints,

• Probes: are responsible for intercepting events and time-stamping them,
and

• Satisfiability Checker: is responsible for checking of the RTL constraints
making use of the events generated by the probes.

Deterministic and Reproducible Monitoring

For the purpose of debugging of the target systems deterministic and repro-
ducible monitoring is very important, because it enables the user to determin-
istically reproduce the behavior of the target system at an intended abstraction
level. This is very helpful in case of erroneous behavior, because it helps the
user to locate the faults on the target system. In order to achieve that the mon-
itoring system must be able to collect all needed information from which the

17

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

run-time behavior of a target system at the intended abstraction level can be
represented. However, the exact reproduction of the target behavior strongly
depends on the architecture (and nature) of the target system. Deterministic
and reproducible monitoring of a target system that can be regarded as de-
terministic is easier than the monitoring of a target system that cannot be
regarded as deterministic. In [ThaOOa, ThaOOb], Thane defines a system as
deterministic if an observed behavior, P, is uniquely denned by an observed set
of necessary and sufficient parameters/conditions, O.

Obermaisser et al. in [OPEL01] determine that deterministic monitoring
means that all conditions are observed which cause a specific system behavior.
Therefore, to achieve deterministic monitoring, all entities must be observed
(see definition of entities in [Kop97]) with respect to contents, order and timing.
The reproducibility of conventional sequential programs can be achieved, if we
start them with the same initial state and provide the same inputs. In a
real-time system, there is the additional requirement for reproducible timing
behavior. Therefore, the inputs have to be reproduced with respect to contents,
order and timing.

Sequential programs, for example, are usually regarded as having deter-
ministic behavior, i.e., given the same initial state and inputs, the sequential
program will consistently produce the same output on repeated executions,
even in the presence of systematic errors [ThaOOa, ThaOOb]. As opposed to
the sequential programs, (most of) parallel programs (systems) are regarded
as being in general nondeterministic. Therefore, a major problem in debug-
ging parallel systems is the impossibility to guarantee the identical behavior of
multiple system's executions, even if identical input data are provided. This is
especially problematical with real-time systems, since there are external events
which usually cannot be reproduced identically [Sch94a].

In the literature we can find solutions which are based on some special ar-
chitectures that offer the possibility for re-execution of the target system by
using the collected monitoring data. In these architectures the subsystems of
interest are disconnected from the rest of the system and they are redirected to
the monitoring (debugging) system, which manages the collected monitoring
information [TFCB90, DR92]. This means that parts of system that directly
communicate with system's environment are redirected to the monitoring sys-
tem, which makes sure that the system's inputs are exactly reproduced as they
were during the gathering phase. This issue will be dealt with in more detail
in Section 2.3.3.

18

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

2.2.2 Application Domains

Run-time information that is gathered by monitoring systems from target sys-
tems represents their run-time behavior at the intended abstraction level, and
it can be used for different purposes. Schroeder [Sch95] and Schmid [Sch94a]
have presented different application domains, where monitoring systems can be
applied. In this section we will categorize the application domains of monitor-
ing systems in following categories: testing and debugging, feedback monitoring,
correctness checking, and performance evaluation.

Testing and Debugging

Using monitoring systems to assist testing and debugging of real-time systems
has drawn high attention of the monitoring research community. The debugging
of real-time systems is much more complicated than the debugging of non real-
time systems, because the correctness of real-time systems depends both on the
temporal and value domain. The most popular traditional debugging technique
is the breakpoint technique, which uses breakpoints to stop the system execution
at predefined points in code. This technique is not suitable for debugging of
real-time systems because, if the program execution is interrupted, the physical
time cannot be stopped and the system is no longer consistent in the temporal
domain. Therefore, the debugging of real-time systems cannot be done with
this traditional debugging technique.

In the last few years different debugging techniques for debugging of real-
time systems were developed. These techniques can be classified into static and
dynamic debugging techniques. The static debugging techniques are based on
the static analysis of the source code. They try to detect parts of code that
probably contain anomalies and (or) bugs. The dynamic debugging techniques
are based on the monitoring techniques. The monitoring system collects run
time information from the target system, and the developer can analyze the
collected run-time data off-line in order to find the bugs in the target sys-
tem. Some examples of using monitoring systems for debugging purposes can
be found in [TFCB90, TFB90, Gor91, DR92, Bor92, Sch94a, MW94, Sch94b,
Maj95, TB96, ThaOOa, ThaOOb, THOO, SL01, AKMM01]. The debugging of
real-time systems is presented in more detail in Section 2.3.

Feedback Monitoring

There are some cases in which the output produced by the monitoring system is
used as a feedback by the target system to make decisions for further processing.
This kind of monitoring application has been applied especially to assist the

19

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

operating systems's scheduler aiding it to schedule task sets. Some examples of
feedback monitoring can be found in [HS90, Jah95, DMW98, WLS99, KLS+02].
Feedback monitors are usually run-time monitors that can be seen as a part of
real-time target systems.

Correctness Checking

Monitoring systems can be used to ensure the consistency of the target system
with its formal specification [Sch95]. These monitoring systems can be consid-
ered as feedback systems, too, because they can be used to trigger the target
system to start some recovery actions if the monitoring system detects an in-
variant violation [RRJ92]. However, their primary goal is to observe and make
sure that target systems are running in conformance to their formal specifica-
tions. Some examples of monitoring approaches of this category can be found
in [JG90, CJD91, RRJ92, Lut92, JRR94, BJHL96, ML97, BJWL97, Pet97,
SS97, LBAK+98, KVBA+99, PPOO, PP02, UB02, KLS+02].

Performance Evaluation

Monitoring systems gather run-time information for assessing system perfor-
mance. Some examples in which monitoring systems are used for performance
evaluation of target systems are found in [HW90, CP98, VW02].

2.2.3 Monitoring Perturbation

A monitoring process can be defined as an observer that observes the execution
of the target system. Fidge [Fid96] defines an observer as any entity - a person
or a network process - that attempts to examine a computation. An observer
may watch the system while the computation is in progress or examine a post-
mortem event log or trace. The ideal monitor (or the ideal observer) would
not at all disturb the target system. However, it is very difficult in practice
to design and develop a monitoring system that does not impact the target
system. In [BloOl], Blom points out that one of the most important issues
during a monitoring process is that the original target system which is being
monitored must not be disturbed in any way. If it is impossible not to disturb
the target system, then it is of greatest importance to have full control over the
impact caused by the monitoring system.

During the information gathering, the monitoring system can perturb or in-
fluence the target system. This perturbation is called monitoring perturbation,
which is a quantitative representation of the perturbation that the monitoring

20

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

system causes on the target system. Tsai [TFC90] states that any interference
in the monitoring activity in the real-time distributed environment is intolera-
ble. This is very important because the interference caused by the monitoring
system can change the temporal behavior of the target system. In this case,
the gathered information would represent the run-time behavior of the target
system at the intended abstraction level, which is not compatible with the state
of the target system, if it would not be observed by the monitoring system.

Monitoring perturbation changes the ordering and timing of events on the
target system, on which the system's correctness depends. Tsai et al. [TBYS96]
conclude that the ordering of events refers to the sequence of events and the
timing of events refers to the time when an event occurs. The ordering of
events can be classified into partial and total ordering. A partial ordering is a
local sequence of events occurring within a processor, while the total ordering
is a global sequence of all events occurring in a (distributed) system [TBYS96].
In [KraOO], Kranzlmüller determines that ordering of events in a single processor
system is trivial, because a correct causal order is established by adopting the
event occurrence time. However, the ordering of events in distributed systems is
difficult through the drifts of local clocks of the distributed system. Therefore,
the basic prerequisite for a successful total ordering of events in a distributed
system is the use of global time [Kop92, Kop97].

Thane [ThaOOb, ThaOOa] and Blom [BloOl] present some examples in which
the influence and consequences of monitoring perturbation on the target system
are illustrated. In both examples a task set is presented. The task execution
order of the task set is changed through the monitoring perturbation, which
change the temporal behavior of the target system. The disturbances caused by
the observation activities of the monitoring system on target system are inde-
terministic. They can bring the target system to suffer from incorrectness or, in
the worst case, to miss its deadlines. These indeterministic disturbances can be
found in the literature as probe-effect [Gai86, MH89, ThaOOb] or as Heisenberg
uncertainty [LP85]. Probe effect is the effect caused by the interference that
occurs when a program's execution is monitored [TCO91]. Thane [ThaOOb] in-
dicates that it is of great importance to ensure that the actual act of observation
does not disturb or intrude on system behavior. If the observations are intru-
sive then it is imperative that their effect can be calculated and compensated
for. If we cannot guarantee this, there is no guarantee that the observations are
accurate or reproducible [ThaOOb]. Furthermore, Kirschbaum et al. [KBG98]
point out that the special constraint of monitoring real-time systems is to keep
the interference with the target system so small that the change in system
performance due to the hardware-monitor will neither affect the order nor the
timing of events.

21

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

Related Work

In literature the monitoring perturbation has drawn the attention of the re-
search community. There are some proposals and solutions that try:

• Not to impact the target system. Most hardware monitoring approaches
can be grouped in this category. Hardware monitoring approaches use a
dedicated monitor hardware device which guarantees that the monitoring
system does not use any resources of the target system. Some examples
of these approaches can be found in [Pla84, TFC90, TFCB90, HS90].

• To keep the perturbation caused by the monitoring system "small". Sam-
ples of monitoring approaches that belong to this category can be divided
into:

— Hybrid Monitoring: It consists of a combination of hardware and
software approaches. These systems use a specialized (dedicated)
hardware and therefore the aim of these systems is to keep the
interference with the target system small. Some examples of such
approaches can be found in [HW90, Gor91, CP98, SL01].

— Perturbation Analysis: It is used to predict the effect of the moni-
toring influence on the target system. Tsai [TBYS96] denotes that
perturbation analysis examines event ordering and timing in an at-
tempt to find ways to reduce the effects of monitoring interference by
adjusting the event ordering and event timing. Further information
can be found in [TBYS96, MRW92, SG94, WSG96, WSG98].

2.2.4 Monitoring Levels

Monitoring systems must provide a presentation of gathered monitoring in-
formation at different abstraction levels in order to assist users for better un-
derstanding of the run-time behavior of target systems. Tsai et al. [TFB90]
point out that abstract views of the system are an essential method to manage
complexity. For example, higher-level information refers to events such as in-
terprocess communication and synchronization, while lower-level information
refers to events such as the step-by-step execution trace of a process [TBYS96].

In the literature we can find related work on different monitoring abstraction
levels. For example, Gorlick in [Gor91] presents three different monitoring
abstraction levels:

Kernel-level monitoring: In the kernel-level monitoring the process dis-
patching is an important form of monitoring, which can be characterized
by four events:

22

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

• assigning a ready process to a processor,

• relinquishing a processor and returning a process to the ready queue,

• blocking a running process, and

• unblocking a waiting process.

Language-Level Monitoring: Monitoring at the language-level is quite the
same as the monitoring at the function-lev el presented further below.

Application-Level Monitoring: At the application-level the source-level ex-
ecution of concurrent programs can be reconstructed.

In [ThaOOb, ThaOOa], Thane categorizes the gathered monitoring informa-
tion into three groups: data-flow, control-flow and resources. In [UB02], Urting
and Berbers categorizes the collected monitoring information into three groups:
hardware-level, process-level and application-level. Monitoring information is
categorized by Mansouri-Samani [MS95] into three groups: control-flow, data-
flow, and process-level. The classification used here will be presented in more
details in Chapter 4, where the monitoring data are discussed in detail.

In [TFCB90, TFC90, TFB90, TBYS96], two different monitoring abstrac-
tion levels are presented: process-level and function-level. In this section we
will discuss only monitoring at the process and function abstraction levels.

Process-Level Monitoring

For monitoring program execution at the process-level, Tsai et al. [TBYS96]
consider a process as a black-box which can be in one of the three states: run-
ning, ready, or waiting. Furthermore, for process-level monitoring, Tsai et al.
distinguish the events that affect program execution (e.g., interprocess commu-
nication and synchronization events) from those events that affect execution at
lower levels (e.g., assigning a value to a variable, procedure calls, etc.).

Tsai et al. [TBYS96] present two reasons for the necessity of monitoring of
target systems at the process abstraction level:

Nondeterminism: Processes are the minimum program unit that can ex-
hibit nondeterministic behavior. Furthermore, the interactions between
different processes on one hand and the interactions between processes
(of real-time applications) and their environment, on the other hand, are
frequently sources of possible faults. If the user can isolate anomalies
on an individual process then he can use monitoring at lower-levels of
abstraction for successive fault isolation [TBYS96].

23

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

Reconstruction: The execution behavior for interprocess communication and
synchronization and the interaction between the software processes and
the environment using the collected process-level events can be recon-
structed [TBYS96].

In [TFCB90, TFC90, TBYS96], some events are presented that can be col-
lected during monitoring of target systems at the process abstraction level:
creating process, terminating process, process synchronization, process state
change, interprocess communication, etc. These events can contain several
subevents.

Function-Level Monitoring

The user can monitor the target system at lower abstraction levels for local-
ization of possible faults, after they have been identified in a process. One of
this monitoring levels is the monitoring at the function abstraction level, at
which the user can try to localize the faulty modules or functions. Tsai et
al. [TBYS96] point out that functions (or modules) at the function level of
abstraction are the basic units of the program model and each function can
be viewed as a black box that interacts with others by calling them, or being
called by them, with a set of parameters as arguments.

At the function-level monitoring there are only two events of interests: func-
tion call and function return. Both of these events have their corresponding key
values (e.g., function call has following key values: calling function identifica-
tion, called function identification, passed-in parameters, and time) [TFCB90].

2.2.5 Monitoring Targets

The goal of this section is the presentation of requirements and difficulties for
monitoring (or debugging) systems. The target systems that are presented be-
low are considered to be real-time systems, i.e., they have to fullfil their timing
constraints. Dodd et al. in [DR92] point out that a real-time system requires
from the monitor itself to operate under strict reliability and performance con-
straints. The reliability constraints require that the monitored system and the
monitor continue to operate in the presence of faults, while performance con-
straints require that the interference caused to the system by the monitor's
presence must be predictable, minimal, and bounded [DR92].

Single-Task (Sequential) Target Systems: In [ThaOOb, THOO], Thane in-
dicates that the reason, why traditional debuggers cannot be used for

24

2 Real-Time Monitoring Systems 22 Monitoring Systems

monitoring of sequential real-time applications, is the impossibility to di-
rectly reproduce the inputs to the system that depends on the time, when
the program is executed. Such examples are the reading of sensors and
the local real-time clock.

To successfully debug these target applications Thane [ThaOOb, THOO]
proposes a monitoring and debugging system which collects all significant
events at run-time (e.g., reading values from an external process, accesses
to a local clock, etc.). During the debugging process, the monitoring
system has to short-circuit and redirect all system's inputs to the recorded
events. An alternative to the approach presented by Thane is the use of
a simulator of the external processes, and to synchronize the time of the
simulator with the debugged system.

Multitasking Target Systems: Thane in [ThaOOb, THOO] determines that
during debugging (or monitoring) of multitasking applications, in con-
trast to the debugging of sequential applications, the mechanisms for
reproducing of task interleaving must be supported by the monitoring
(or debugging) system.

Distributed Target Systems: Tsai et al. in [TFC90] define a real-time dis-
tributed computing system as a system that consists of a collection of
communicating and cooperating processors or computers (nodes) that
work toward a common goal, and on which critical timing constraints
are imposed. Kirschbaum et al. in [KBG98] determine that the special
constraint of monitoring distributed real-time systems is to keep the in-
terference with the target system so small that the change in the system
performance due to the monitor will neither affect the order nor the tim-
ing of events. Although in the most distributed systems there is no total
order defined over events that occur on different nodes, monitored data
must be collected from several sites and integrated to obtain a coherent
view of the system [DR92].

In literature we can find different related work in which real-time mon-
itoring of distributed real-time systems are presented, e.g., are [TFC90,
For90, HW90, DR92, ThaOOa, ThaOOb, TKM88, TFCB90, RRJ92,
JRR94, Sch94a, LM97]. In these works the difficulties (among other
things) are indicated, which one has to overcome during monitoring (or
debugging) of distributed real-time systems.

Urting and Berbers in [UB02] for example point out that there are two
important problems during monitoring of distributed systems: clock syn-
chronization and delay. The problem of clock synchronization is a well
known problem in distributed systems which consist of multiple nodes,
and each of them contains a local clock that can drift from the clocks of

25

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

the other nodes with the progression of physical time. The delay prob-
lem is caused by the potentially conflicts between different nodes during
sending of their messages.

Raju et al. in [RRJ92, JRR94] present four fundamental issues that need
to be addressed when monitoring distributed real-time target systems.
These issues are listed briefly here:

• Time of Detection of Violation: Detecting violations as early as
possible is a desirable property because it allows the system to take
corrective actions before the violation actually happens.

• Number of Messages: Messages are used for communicating event
occurrences. Minimizing the number of these messages is crucial for
reducing overhead.

• Clocks and Timer Granularity: When an event occurs it must be
timestamped, which is done by reading the clock on the local pro-
cessor. For this reason the clocks of a distributed system must be
synchronized.

• Resource Management: Another fundamental aspect of distributed
monitoring involves the need to quantify the timing intrusiveness
of the monitoring activities on the timing behavior of the real-time
application.

Moreover. Tsai et al. in [TFC90] note that the monitoring of distributed
real-time computing systems is much more complicated than the moni-
toring of centralized, sequential computing systems because of:

• Multiple Asynchronous Processes: Since real-time distributed com-
puting systems feature asynchronous parallel processes, their com-
putation shows nondeterministic and irreproducible behavior. This
behavior, caused by race conditions and unpredictable synchroniza-
tion among processes, makes the results observed in a distributed
computing system harder to understand, and in many cases, hard
to reproduce.

• Critical Timing Constraints: Since, for a real-time distributed sys-
tem, the correctness of the system depends on its behavior with
respect to time, any interference of the monitoring system with it is
intolerable.

• Significant Communication Delays: The nodes of a real-time dis-
tributed computing system can be geographically dispersed, which
may introduce a significant communication delay. This delay can

26

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

cause improper synchronization among the nodes and make it diffi-
cult to determine the precise global time and accurate global state.

2.2.6 Monitoring Approaches

Monitoring systems use different approaches for gathering of monitoring data,
on which the influence of the monitoring system caused on the target sys-
tem directly depends. For the purpose of gathering of monitoring data the
target system may need to be instrumented, and depending on this fact, the
monitoring approaches can be classified into: hardware, software, and hybrid
approaches. The hardware monitoring system separates the monitoring over-
head from the target system's workload, whereas the software monitoring adds
this overhead to the target system's workload. This is the main difference be-
tween these two monitoring approaches. Hybrid monitoring is a combination
of hardware and software monitoring.

Hardware Monitoring

Hardware monitoring systems use dedicated hardware for gathering of signifi-
cant events from target systems. The dedicated hardware snoops the busses of
a target system and tries to match the bus signals. After successfully matching
of significant events, they are stored for post-processing. Hardware monitoring
systems are proposed in [Pla84, TFB90, TFCB90, TFC90, KBG98, SL01].

The advantages of the hardware monitoring approach are:

Low Interference: Hardware monitoring systems cause no or only minimal
intrusion on the execution of target systems, because the event detec-
tion is done within the monitoring hardware and its control module,
which does not share any computational resources with the target sys-
tem [KBG98].

No Instrumentation: Hardware monitoring systems do not need to make
any modification (instrumentation) of the target application or operating
system [KBG98, TBYS96].

The disadvantages of hardware monitoring systems are their costs and the
lack of portability, which is because the monitoring is carried out at the elec-
tronic signal level and the dedicated hardware depends on the target system,
or at least on the target's processor [TBYS96]. Another drawback of hardware
monitoring systems are the inability to deal with cache memories, which are
used by all modern CPUs, and thereby they make impossible the use of bus

27

2 Real-Time Monitoring Systems 2.2 Monitoring Systems

snooping, because the modern CPUs do not have to access memory after each
program instruction. The write-through of an on-chip cache can arbitrarily
delay the appearance of data store on the bus [Gor91].

Software Monitoring

In contrast to hardware monitoring, software monitoring systems use only soft-
ware for gathering of monitoring information and therefore, these monitoring
systems share the computational resources with their target systems. The
target systems must be instrumented with sensors or probes presented in Sec-
tion 2.2.1. These sensors or probes are executed on target systems and they
are used for detection of significant events, which are stored in the memory
of target systems. Examples of software monitoring systems can be found
in [TKM88, KO90, For90, CJD91, DR92, RRJ92, JRR94, BOSS95, Maj95,
LBAK+98, NGM98, KVBA+99, ThaOOa, MahOl, MSSP02, DR02].

The advantages of the software monitoring approach are:

Flexibility: Software monitoring systems are flexible, i.e., one can use software
monitoring systems for monitoring of different target systems that consist
of different hardware (e.g., different processor, etc), because they are
independent from the low-level hardware details.

High-Level Events: Software monitoring systems are popular because they
allow users to view the monitored system at various levels of complexity
or abstraction [DR92].

The main disadvantage of software monitoring systems is the high level of
perturbation that they cause on target systems, because they share the com-
putational resources with target systems. Kirschbaum et al. [KBG98] indicate
that there is always the dilemma of finding a good balance between system
disturbance and retaining of exact event information.

Hybrid Monitoring

Hybrid monitoring systems try to combine the advantages of both above
presented monitoring approaches. Hybrid monitoring systems typically use
software probes for detection of significant events, however the collection of
these events is the job of a specialized hardware, which is not directly de-
pendent on the target system. Software monitoring systems are proposed
in [HW90, Gor91].

Al-Shaer in [AS98] presents the advantages of the hybrid monitoring approach:

28

2 Real-Time Monitoring Systems 2.3 Debugging Systems

Intrusiveness: Hybrid monitoring systems cause less intrusiveness than pure
software monitoring systems.

Efficiency: Hybrid monitoring systems are more efficient than pure software
monitoring systems, since events are processed in hardware.

Flexibility: Hybrid monitoring systems are more flexible and less expensive
than pure hardware monitoring systems.

2.3 Debugging Systems

Debugging is defined by the ANSI/IEEE glossary as "the process of locat-
ing, analyzing and correcting suspected faults", where a fault is defined as
an accidental condition that causes a program to fail to perform its required
function [BJRW94]. Kranzlmuller and Volkert [KVOO] note that the goal of de-
bugging is the location and correction of bugs in arbitrary programs to improve
their reliability. Myers [Mye76] defines debugging as the activity of diagnosing
the precise nature of a known error and then correcting the error. Shih in [Shi96]
defines debugging as a process of locating, analyzing, and correcting suspected
faults that cause a program to fail to perform its required function. Debugging
usually involves transforming an incorrect program into a correct program, and
for that reason sometimes it is also called "correctness debugging" [SG97].

Thane in [ThaOOb] presents the difference between testing, which is the
process of revealing failures by exploring the run-time behavior of the target
system for violation of the specification, and debugging, which is concerned with
revealing the errors that cause the failures. Watson in [WatOO] determines that
the following steps are a commonly used systematic approach for dealing with
each error:

Gather Information: This step is used to establish the nature of the error,
the behaviour that is being observed, data structures likely to be involved,
and a broad indication of the error location, such as the relevant module
or subsystem.

Analyse and Locate: Once sufficient information about the error has been
obtained, it must be analysed to determine the cause of the error.

Correct the Error: After the cause of the error has been identified, a solution
for removing the error must be proposed.

29

2 Real-Time Monitoring Systems 2.3 Debugging Systems

In contrast to the debugging of sequential programs the debugging of paral-
lel programs is quite more complicated, because parallel programs have nonde-
terministic behavior. As presented in 2.2.2 debugging techniques can be clas-
sified into static and dynamic techniques, depending on the fact if the target
system needs to be executed during the debugging process or not.

2.3.1 Static Debugging

Static debugging techniques are based on the static analysis of the source code.
They try to detect parts of code that probably contain anomalies and (or) bugs.
In [AAC+94], this technique is denned as static verification, which is denned as
verifying the system without actual execution. Static debugging techniques are
not adequate for debugging of real-time systems, because they cannot deliver
any information about the timing constrains and the behavior of the target
system in the time domain.

Watson [WatOO] determines that static analysis usually consist of:

Control Flow Analysis: Analyzing the flow of control through the program
in order to identify unexpected control flows. An example is presented
by Gustafsson in [GusO2].

Data Flow Analysis: Examining the use of variables within a program to
detect errors such as references to uninitialized variables.

Inter-Procedural Flow Analysis: Analyzing control and data flow across
procedure boundaries in order to examine the procedural structure, and
identify data usage both within and across procedure calls.

2.3.2 Dynamic Debugging

In contrast to static techniques, dynamic debugging techniques are applied at
run-time during the execution of the target system. Watson [WatOO] presents
three different classes of dynamic debugging techniques:

Cyclic Debugging: One of the widely used dynamic debugging techniques is
cyclic debugging. Stewart and Gentlman [SG97] state that cyclic debug-
ging refers to repeatedly stopping the execution of a program to examine
the program state and then either continuing the execution or restarting
it in order to stop at some earlier point [SG97].

Tsai et al. [TBYS96] point out that there are three techniques that are
used to perform cyclic debugging:

30

2 Real-Time Monitoring Systems 2.3 Debugging Systems

Memory Dumps: This technique collects the program status, including
program object code, register and memory contents and dumps it
into a file when the program execution is terminated abnormally or
by user's request. However, this technique requires from the user to
have a strong background in machine-level language to examine the
dumped code [TBYS96].

Tracing: The tracing technique utilizes special tracing facilities in the
compiler or operating system to continuously track and display every
step of the program's execution, including control flow, data flow,
variable contents, and function calling sequences. Tracing gives pro-
grammers a sense of the step-by-step flow of the program's execu-
tion [TBYS96].

Breakpoints: The breakpoint technique utilizes predicates that are in-
serted by the programmer or by the system to suspend program ex-
ecution. Once a predicate is satisfied, the program execution is sus-
pended and the relevant run-time information, such as variable val-
ues, stack contents and register values, can be displayed [TBYS96].

Event-Based and Post-Mortem Debugging: Event-based debuggers are
used for collecting of event sequences into (large) event histories during
execution of parallel programs. These event histories can later (post-
mortem) be browsed, analyzed or even replayed [SG97].

Relative Debugging: A relative debugger is a system that allows the user to
compare the state of two executing programs [AW97]. Relative debugging
is not applicable for debugging of real-time systems, because real-time
systems are usually not implemented for different platforms.

Most of the above presented debugging techniques are not suitable for mon-
itoring of real-time and especially distributed real-time systems. Especially the
breakpoint technique, which is the most often used cyclic debugging technique
for debugging of non real-time systems, cannot be applied for debugging of
real-time and specifically distributed real-time systems for two reasons:

Consistency Problem: Real-time systems are used for controlling of physical
processes (their environment), whose state is changed with the progres-
sion of the physical time. An alternative to this problem is the use of
environment simulators.

Global Time: Another problem is the absence of the perfectly synchronized
global time by many distributed real-time systems, which makes the si-
multaneous stop of execution of the distributed real-time system impos-
sible.

31

2 Real-Time Monitoring Systems 2.3 Debugging Systems

Recently. Smaili and Ademaj [SA02] proposed a cyclic debugging approach,
which can be used for debugging of distributed real-time systems that are
based on the Time-Triggered Architecture (TTA). The prerequisite for using
this technique is the sparse time base [Kop92] by the target system as a model
for its global time (like the TTA). The global physical time is substituted
with a synchronized virtual global time that enables the debugging system to
simultaneously stop and resume the execution of the target system.

2.3.3 Debugging with Monitoring Support

As depicted above traditional debugging techniques are not suited for debug-
ging of real-time and especially distributed real-time systems. Therefore, de-
bugging approaches with monitoring support must be used for debugging of
real-time systems. Tsai [TBYS96] presents the following classification of de-
bugging approaches with monitoring support:

Real-time Display: The execution of a program is monitored and displayed
in a continuous real-time mode. In this approach the target program can-
not be suspended or repeated, and no modification to the target program
is allowed [TBYS96].

Real-time Debugging: The execution of a target program is monitored, an-
alyzed, and debugged in a continuous real-time mode. The execution
of the target program cannot be suspended or repeated, but it can be
modified automatically in real-time during execution [TBYS96]. This
debugging technique is the same as the feedback monitoring mentioned
in 2.2.2.

Interactive Debugging: The execution of a target program is monitored and
will be suspended if a predefined situation is encountered. In this ap-
proach the target program can be suspended and modified, but the ex-
ecution is not repeatable [TBYS96]. This approach is the same as the
cyclic debugging presented above.

Deterministic Replay: A trace of the program execution is recorded dur-
ing execution and can be replayed deterministically after the execu-
tion [TBYS96]. This approach will be presented in more detail in the
next section.

Dynamic Simulation: A trace or log is recorded during a target program's
execution.The log used for dynamic simulation to evaluate the run-
time behavior of a target program in a different run with different test
data [TBYS96].

32

2 Real-Time Monitoring Systems 2.4 Case Studies

Deterministic Replay

Deterministic replay belongs to the dynamic debugging techniques that uses
the support of monitoring systems. Harris in [HarO2] notes that deterministic
replay schemes have been designed to allow consistent re-execution of multi-
threaded processes. Tsai in [TBYS96] states that the deterministic replay can
be used to replay the event sequence that led to a deadlock so that the cause
of the deadlock can be determined, or it can be used to replay the precedence
and timing relationship between relevant processes and events so that a data
dependency analysis can be performed.

2.4 Case Studies

Tis section presents some case studies of real-time monitoring systems.

2.4.1 Peters and Parnas Monitor

Peters and Parnas in [PP02] present a monitoring system that can be used
for correctness checking (see Section 2.2.2) of real-time target systems. The
authors note that before a safety-critical real-time system is designed, a specifi-
cation of the required behavior of the system should be produced and reviewed
by domain experts, and after such a system has been implemented, it should
be thoroughly tested to ensure that it behaves correctly. Furthermore, the
authors state that this is best done using a monitor, a system that observes
the run-time behavior of a target system and reports wether that behavior is
consistent with the requirements [PP02].

2.4.2 Wedde, Lind and Segbert Monitor

Wedde et al. in [WLS99] present a feedback distributed task monitoring system,
which is integrated within the MELODY distributed operating system (see
Figure 2.2). The monitoring system finds out task instances that are not going
to meet their deadlines. This information is then fed back to the scheduler of
the target operating system (to which the monitoring system belongs), aiding
it to timely abort task instances which would otherwise miss their deadlines.

The authors briefly discuss an automated landing system (ALS) for bad
weather conditions. Furthermore, they state that the response time of me-
chanical control systems are considerably long (more than 4 seconds for big
aircrafts), which could be a problem in case the environmental situation has

33

2 Real-Time Monitoring Systems 2.4 Case Studies

Figure 2.2: Management Function at each Node [WLS99]

changed drastically, in which the initiated actions can be obsolete or even dan-
gerous for the aircraft. Therefore, the authors propose that for these sys-
tems the correction actions must be designed to cause considerable small-scale
changes, which, in the negative case mentioned, are unlikely to have disastrous
consequences [WLS99]. This is the reason why the authors state that aborting
task instances as early as possible is a key issue for system's survivability in dis-
tributed safety-critical systems, because the subsequent task instances will take
corrective actions. However, they note that if a task instance is aborted then
the criticality of the subsequent task instances will be automatically increased,
which means that these tasks then have to absolutely meet their deadlines.

The authors derive sub-deadlines for the location, allocation, and locking
phases of task instances, in order to be able to abort these task instances which
cannot meet their deadlines as early as possible. The key idea is to determine,
for every task instance, sub-deadlines for characteristic computation phases
prior to the execution phase, such as resource location, allocation and locking,
and to abort an instance, whenever, according to the monitoring model, a
particular sub-deadline is about to be missed [WLS99].

2.4.3 Akgul, Kuacharoen, Mooney and Madisetti's De-
bugger

Akgul et al. in [AKMM01] present a monitor (debugger) that uses the software
monitoring technique for gathering of run-time information. The proposed
debugger is a loadable module that can be added into the operating system of
the target system. However, the instrumentation code is added into the kernel
of the operating system, which is the only intrusion into the target system.
The instrumentation code is always present in the kernel and it may not be
removed from the kernel, because its timing behavior can be changed. During
normal operation of the target system the debugging module is not loaded.
However, in case an error condition occurrs (either a hardware exception or an
algorithmic error), the debugger module is dynamically loaded to the operating
system.

34

2 Real-Time Monitoring Systems 2.4 Case Studies

The advantage of this monitoring system is the flexibility, because it is based
on a software approach. However, since the debug module must be involved in
debugging mode, the timing behavior of the target system cannot be the same
in the case when this module has not been loaded.

2.4.4 TTA Monitoring

The core of the Time-Triggered Architecture (TTA) is the Time-Triggered
Protocol (TTP), which uses two different derived protocols TTP/C and
TTP/A [Kop97]. It is the goal of this section to present the related work,
which was done on the monitoring of these systems.

Sikula's Monitor

Sikula in [Sik98, KS98] presents a software monitoring system for monitoring
of time-triggered distributed real-time systems. This monitoring system adds
a dedicated monitoring node (analyzer tool) to the TTA network that collects
and stores the monitoring data. Data are gained by the monitored nodes at run-
time and transferred to the analyzer tool via dedicated monitoring messages.
The monitoring system consists of an off-line part, in which the system is
prepared for monitoring, and an on-line part, which denotes the execution of
the monitored application [KS98].

In the off-line part, which runs during design phase, the target application
is modified (i.e., instrumented) for monitoring. In this phase the monitoring
messages (dedicated TTA messages that are used for carrying of the monitoring
data) are defined, and the application code is instrumented. Since the moni-
toring messages consume transmission bandwidth and the instrumented code
consumes computational resources, they must receive appropriate attention by
the offline scheduler, which produces a schedule only if the intrusion process
does not hinder the application to meet its real-time requirements.

In the online part the run-time monitoring data are collected by the analyzer
tool, and they are visualized or stored on the disk, depending on the user's
request. The monitoring data are generated by the instrumentation that has
been code inserted into the application during the off-line part.

Glavan's Monitor

Glavan in [GlaOO] presents an approach for monitoring of time-triggered real-
time operating systems. The solution presented in this master's thesis is used

35

2 Real-Time Monitoring Systems 2.5 Chapter Summary

for monitoring of TTPos, which is designed and implemented by TTTech Com-
putertechnik AG [TTT98]. This monitoring approach collects monitoring data
that enables the monitoring of target systems at the operating system abstrac-
tion level, and transmits these data via a serial interface to the data collector
running on a PC. The amount of the monitoring data that can be collected
by this approach is limited by data throughput that can be achieved via a se-
rial interface. Furthremore, this approach does not support the simultaneous
monitoring of multiple nodes at the operating system abstraction level.

Mayer's Monitor

Mayer in [MayOO] presents a monitoring system that can be used for moni-
toring of TTP/C systems. This monitoring system was implemented under
Linux, a freely available UNIX operating system, as an easy to use file-system
based monitoring interface. As a pure software monitoring approach it does
not require any specialized monitoring hardware. Moreover, there is no need
to insert special instrumentation code in the application which is being moni-
tored [MayOO].

The monitoring system was implemented as an operating system's device
driver, which consists of two modules: i) generic, and ii) application dependent
part. The generic part does not need to be adapted, while the application
dependent part must be adapted for monitoring of a new application. The
adaptation and reconfiguration of the dependent part can be made using the
description language, which is used by the preprocessor for generating of C-
code. This monitoring approach is limited for monitoring of only one cluster.

Obermaisser's Monitor

Obermaisser et al. [OPEL01] present a monitoring system that can be used
for monitoring of TTP/A target systems. Such a monitoring system provides
monitoring of TTP/A applications using the the interface file system (IFS),
which enables the system to monitor TTP/A applications, without modification
of run-time behavior of the target application in the temporal or in the value
domain. Furthermore, this monitoring system offers a CORBA interface, which
enables the user to remotely monitor the TTP/A target system.

2.5 Chapter Summary

In this chapter we presented the basic concepts for monitoring of real-time sys-
tems. We started with presentation of real-time systems with special view on

36

2 Real-Time Monitoring Systems 2.5 Chapter Summary

real-time data. Special attention was paid to the notion temporal consistency of
real-time data. Especially, the relative consistency is very important for moni-
toring systems, because during correlation of collected monitoring data, these
systems must be certain that these data are relative consistent. Otherwise, the
gathered monitoring information would not correctly represent the behavior of
the monitored system at the intended abstraction level. Another goal of this
chapter was the presentation of a survey of the real-time monitoring research
area. Finally different monitoring systems are presented, including the moni-
toring approaches used for monitoring of time-triggered systems that are based
on the TTA.

37

Chapter 3

System Model

This chapter introduces the system model of target systems to be monitored.
After presentation of the used terminology, the system structure is presented.
In the next sections, transmission medium, timing characteristics, and commu-
nication services are presented. The chapter ends with a summary.

3.1 Terminology

In [Sch94a] Schmid denotes that a typical real-time system consists of a com-
puter system (the controlling system) commanding and controlling a critical
environment (the controlled system). In [Kop97] Kopetz and in [Nos97] Nossal
make a distinction between the real-time system and the real-time computer
system. In [Gal99] Galla notes that a real-time system is defined as a "closed
system"consisting of a controlled object (e.g., a physical process) imposing the
timing constraints and a controlling computer system is defined as an actual
real-time computer system which must fulfill these timing constraints.

Real-time systems are designed to react to the stimuli generated by their
environments. Depending on the way how these systems react to these stimuli
they can be partitioned into: i) event-triggered and ii) time-triggered. A real-
time system is called event-triggered if it reacts immediately after the detection
of the stimulus generated by the environment. On the other hand, a real-
time system is called time-triggered, if the system's reactions to environment's
stimuli are triggered by the progression of the real-time. In the rest of this
thesis only time-triggered real-time systems are considered.

In the rest of this thesis we will use the notion real-time system to denote
both the controlling and the controlled system. Furthermore, the notion en-
vironment will be used alternatively to the notion controlled system, which in
fact is the environment of the real-time computer system.

38

3 System Model 3.2 System Structure

3.2 System Structure

Real-time systems that can be monitored by the presented monitoring system
are time-triggered distributed real-time systems. A distributed real-time sys-
tem consists of one or more clusters (see Section 3.2.1) that are interconnected
and communicate with each other to achieve the intended computational goal
of the distributed application. In Figure 3.1 the system structure is illustrated.
If a distributed real-time system consists of more than one cluster, then the

Cluster

(Gateway)

Cluster (

) I
"•"Gateway^ 4

r
Cluster

(Gateway)

Cluster

Figure 3.1: System Structure

clusters must be interconnected and synchronized by gateway nodes. Gateway
nodes are dedicated nodes (see Section 3.2.2) that provide:

• synchronization of interconnected clusters in the temporal domain, and

• exchange of inter-cluster messages among interconnected clusters. The
inter-cluster messages are denned by Galla [Gal99] as those messages that
are exchanged among interconnected clusters.

3.2.1 Cluster Structure

Clusters are "building blocks"of distributed real-time systems. The part or the
whole real-time distributed application is executed on a cluster depending on
the fact, whether a system consists of one or more clusters. Clusters consist
of a limited set of interconnected nodes (see Section 3.2.2), on which the local
part of the distributed application is executed. The interconnected nodes share
the same transmission medium and the same global time (see Section 3.4). The
messages that are exchanged among the nodes of a cluster are called intra-
cluster messages. In Figure 3.2 the cluster structure is illustrated.

The design of a cluster can be done using the cluster design tools, e.g.,
TTP-Plan [TTP02b]. Such a tool stores the design information into the cluster
database (CDB). Examples of such information are: messages and frames that
are sent by each node in the cluster (see Section 3.3). During monitoring of
these systems the monitoring system must use the CDB to retrieve information
needed for processing of collected monitoring data (see Section 5.3.1).

39

3 System Model 3.2 System Structure

Node,

Gateway
Node,

<

S

Node,

r

l—J-
ransmiss

Media

>
k
r

Node,

Nodet

Nodo„

Figure 3.2: Cluster Structure

3.2.2 Node Structure

As depicted in the previous section, clusters consist of a limited set of nodes,
which are the real executors of the local part of a distributed real-time ap-
plication, and which directly interact with the real-time processes, i.e., the
environment of the real-time computer system. In [Kop97] Kopetz defines a
node as self-contained computer with its own hardware (processor, memory,
communication interface, interface to the controlled object) and software (ap-
plication programs, operating system), which performs a set of well-defined
functions within the distributed computer system. In many applications, a
node of a distributed computer system is the smallest replaceable unit (SRU)
that can be replaced in case of a fault [Kop97].

The design of a node can be done using the node design tools, e.g., TTP-
Build [TTP02a]. Such a tool stores the design information into the node
database (NDB). Examples of such information are: tasks that are executed in
each operational mode, messages that are sent/received by each node, for each
task the list of input/output messages, etc. This information is used by the
monitoring system, too.

Figure 3.3 illustrates the node structure. A node consists of four main parts:

• communication network interface (CNI),

• communication subsystem,

• host subsystem, and

• controlled object interface.

Communication Network Interface

The interface between the communication subsystem and the host subsystem
is called communication network interface (CNI). In [Krü97] Krüger points out
that the CNI can be regarded both as:

40

3 System Model 3.2 System Structure

(

c

(Environment J

4-
i .

Operating
System

\

G 01

Host

) (

CNI

t
Application T\

Tasks\ J

\

Communication Controller

OS - Operating System
CNI- Communication Network Interface
COI - Controlled Object Interface

Figure 3.3: Node Structure

Data Sharing Interface: The primary purpose of the CNI is the exchange
of messages that are generated and received by the computational enti-
ties constituted by the host subsystem, and that are transmitted by the
communication subsystem to the other computational enties involved in
the messages exchange.

Control Interface: In addition, the CNI facilitates the necessary exchange of
control information between the subsystems.

This interface is well-defined both in the value and in the temporal domain.
The CNI both on the structural and on the functional level can be divided into
the following three distinct areas [Gal99]:

Status Area: In the status area the communication subsystem provides in-
formation about the current status of the communication protocol to the
host subsystem. The information flow in this part is directed from the
communication subsystem to the host subsystem.

Control Area: The control area can be used by the host subsystem to modify
the behavior of the communication subsystem (e.g., to send a request to
the communication subsystem for mode changes) [TTT02]. The infor-
mation flow in the control area is from the host to the communication
subsystem.

Message Area: The message area contains the messages that are exchanged
between the nodes of the cluster. The information flow in the message
area is bidirectional, i.e., the incoming messages are written into the CNI
by the communication subsystem, and the outgoing messages are written
by the host subsystem.

41

3 S/stem Model 3.2 System Structure

CrU
1

SA'
1

•r

Host

CNI

,CA. '\/

CC

t

'/MÄ/Iy

SA - Status Area
CA - Control Area 4- - Unidirectional flow

• - Bidirectional flowMA - Message Area

Figure 3.4: CNI Structure

Figure 3.4 depicts the CNI structure.

Communication Subsystem

The communication subsystem is responsible for communication with other
nodes in the cluster. In time-triggered (TT) systems the send and receive
actions are started independently from the host subsystem. As depicted in
Section 3.1, the points in time at which these actions are triggered depend
on the progression of real-time. The communication controller consists of the

Communication Controller

CPU
ROM & RAM

.Communication/
•' .Protocol'./,

\ \ '
\MEDLX

T
(/ •'' •' ./' / f ransmission 'Meaia ' , ' / / / ' /')

MEDL- Message Description List

CNI- Communication Network Interface

Figure 3.5: Communication Controller Structure

hardware (CPU, ROM and RAM, timers), communication protocol and the
data structure that is used for scheduling of actions for sending and receiv-
ing of messages (see Figure 3.5). The latter data structure is called message
description list (MEDL). The MEDL is generated during the design phase of
the distributed real-time system. Among other things the MEDL contains the
points in time when messages must be sent and received by the node.

42

3 System Model 3.2 System Structure

Another integral part of the communication subsystem is the bus guardian
(BG). The BG prevents faulty nodes from disturbing the shared transmis-
sion medium. The BG permits the communication controller to access the
transmission medium only during predefined time windows, i.e., bus slots (see
Section 3.4).

Host Subsystem

The host subsystem is responsible for executing the local part of a real-time
distributed application. Figure 3.6 depicts the structure of a host. It consists
of the hardware, operating system, fault-tolerance layer, and the application.

T
(•//"-//" / / . -'/)

COI- Controlled Object Interface
CNI- Communication Network Interface
OS- Operating System

Figure 3.6: Host Structure

Operating System (OS): In TT systems the scheduling process is done off-
line, before the execution process is started. The role of the OS in these
systems is to dispatch tasks on the basis of the dispatch table generated
by the static scheduler.

Fault-Tolerance Layer (FTL): In safety-critical applications the resources
(i.e., nodes, transmission medium, etc.) are replicated in order to
be able to tolerate singe failures. Replicated messages (i.e., messages
that are either sent by replicated nodes or are transmitted via repli-
cated channels or both of them) must be processed by this layer using
agreement algorithms [KBP01] before they can be used by the applica-
tion [TTP02a, OseOl].

Application: Application tasks, on the one hand, communicate via the con-
trolled object interface (COI) with the environment. On the other hand

43

3 System Model 3.3 Transmission Medium

they communicate with other tasks running on different nodes via the
CNI.

3.3 Transmission Medium

As depicted in Section 3.2.1, the nodes of a given cluster are interconnected
by the shared transmission medium, which consists of at least two replicated
communication channels. The exchange of data between the interconnected
nodes is via broadcast, i.e., every node can receive all messages sent over the
shared transmission medium. There are two topologies of the transmission
medium, over which the nodes are interconnected to each other: star and bus
topology. ^From the monitoring system's point of view there are no differences
between those systems that use star and those that use bus topology.

Messages vs. Frames

In time-triggered systems the messages are packed into frames, before they
are transmitted by the communication subsystem via the replicated channels.
The relation between frames and channels is 1:1, i.e., each node sends on each
replicated channel exactly one frame. However, the relation between messages
and frames is n:n, i.e., one message can be replicated in multiple frames, and
one frame consists of one or more messages. The decision about the replication
levels of messages must be taken by the system designer, because such a decision
is application specific. E.g., messages that contain time-critical information
must be replicated to avoid the loss of messages in case one of the channels
gets disturbed.

State vs. Event Channels

Depending on the nature of the messages that are sent over the transmission
medium, the communication channels can be partitioned into logical state or
event channels, respectively (see Figure 3.7).

State Channels: State channels are logical channels used for transmission of
state messages [Pol96]. As depicted in Section 3.2.2, the points in time
when these messages are sent are denned in the MEDL.

Event Channels: Event channels are used for transmission of event mes-
sages [Pol96]. From the monitoring system's point of view, the sup-
port of event channels is of utmost importance, because they are used

44

3 System Model 3.4 Timing Characteristics

node
statex •

. part. \

I

1

event
part

nodek
Estate \

part
event
part

X
f transmission media ^
J ' • time-critical (state) cha'nnëk

:i;
\ state •

\part
event
part

node 2

%
-, state \

part
node

• |x event channel \J

event
part

n

I
state
part N \

event
part

gateway node

• state messages sent by the time-critical part

• event messages sent by the non-time-critical part e.g., monitoring
system

Figure 3.7: Transmission Medium

for transmitting of collected monitoring data from different nodes during
monitoring of target systems at node or transducer abstraction levels (see
Sections 5.3.2 and 5.3.3).

3.4 Timing Characteristics

Global Time

The synchronized global time is one of the basic time characteristics of time-
triggered systems. The synchronized global time facilitates the monitoring
process of these systems, because the monitoring data collected from differ-
ent nodes can be easy temporally-ordered based on their time-stamps. The
collected monitoring data must be time-stamped with the synchronized global
time.

In time-triggered systems the concept of sparse time base [Kop92] is used
as basis for the global time. In the sparse-time model the continuum of time
is partitioned into an infinite sequence of alternating time intervals activity
and silence. From the point of view of temporal ordering all events that occur
within an interval of activity are considered to happen at the same time [Kop92,
KB01].

TDMA Aproach

As depicted in Section 3.1, in time-triggered systems all activities are triggered
by the progression of physical time. In particular communication activities on
the transmission medium are triggered based on a priori known time schedule,
which is based on the time-division multiple access (TDMA) approach. In the

45

3 System Model 3.5 Communication Services

TDMA approach every node receives a unique time window called slot (or bus
slot), during which the node can utilize the full capacity of the transmission
medium. The sequence of a finite number of slots is called round1. Further-
more, a finite sequence of rounds forms the cluster cycle. In time-triggered
systems, a cluster cycle can be regarded as an atomic repetitive unit (ARU),
because all application's activities2 within a current cluster cycle are repeated
in the following cluster cycle as long as the system's mode is not changed (see
Section 3.5). Figure 3.8 depicts the schedule of messages that are processed

frame on
channel 1

±..Jt.

frame on
channel k

-C>m,

cc.
cc,- the i* Cluster Cycle

r> the i * Round within a Cluster Cycle
m jn- the f1 Message sent in the n"1 Round within a Cluster Cycle

Figure 3.8: Cluster Cycle

and sent by a given node in different rounds within different cluster cycles.

3.5 Communication Services

In this section only the communication services will be presented that are
important from the monitoring system's point of view.

Membership Service

The membership service [TTT02] is used to establish a global knowledge about
the node activity status. The membership service ensures that at each point in
(global) time each node knows the activity status of other nodes. The mem-
bership service is important for monitoring systems, because the membership
information can be used, for example, during the off-line deterministic replay
of collected monitoring data for representing the status of a particular node.

1Each node in a given cluster receives a unique slot, which makes sure that the access
to the shared transmission medium is collision free. Furthermore, this approach makes sure
that every node can access the transmission medium within a given round.

In different cluster cycles the node actions are repeated, i.e., the same tasks set is exe-
cuted, which sends the same messages.

46

3 System Model 3.6 Chapter Summary

Multiple Operational Modes

Many real-time systems exhibit mutually exclusive phases of operation and
control. For example, an aircraft can be on the ground, in take-off, or land-
ing [TTT02]. These mutually exclusive phases are called modes. From the
node's point of view in each mode the set of tasks that are processed and
the set of messages that are sent or received is different. This information
is stored in the cluster and node database during the design phase (see Sec-
tions 3.2.1 and 3.2.2).

Nossal [Nos97] and Galla [Gal99] distinguish between three different types
of modes in time-triggered systems:

Local Mode: A local mode belongs to one host and is characterized by a
certain task set.

Cluster Mode: A cluster mode affects all nodes of a cluster, which means that
another set of messages is exchanged among the interconnected nodes.

Global Mode Global modes are defined for the whole system.

From the monitoring system's point of view multiple modes are important,
because the monitoring activities must be planned and analyzed for each target
system's operational mode.

3.6 Chapter Summary

In this chapter the system model was presented. We presented the structure
of the system at different abstraction levels (system's, clusters's and node's
structure). Especially, attention was paid to the definition of logical state and
event channels. The support of event channels is of vital interest for providing of
monitoring, because collected monitoring data are transmitted via this channel
to the central monitor for further processing.

47

Chapter 4

Monitoring Data

In this chapter monitoring data (MD) types are defined that enable the pre-
dicting of the influence of monitoring systems on the target systems. This
chapter is organized as follows. After the presentation of the motivation and
objectives in the next section, the terms and notions that are used throughout
this chapter are explained in Section 4.2. The définition and classification of
monitoring data are presented in Section 4.3. Section 4.4 deals with the meth-
ods for gathering of classified monitoring data. The types of monitoring data
that can be collected during monitoring of time-triggered systems is the focus
of Section 4.5. A summary closes this chapter.

4.1 Motivation and Objectives

Monitoring data represent the run-time behavior of the target system at the in-
tended abstraction level. The goal of monitoring systems is to collect all MD,
from which the run-time behavior of the target system at the intended ab-
straction level can be reproduced. The correctness of real-time systems (RTS)
depends not only on the results they deliver, but also on the point in time on
which these results are delivered. Therefore, the key issue during monitoring
of RTS is to keep the interference that is caused by a monitoring system on a
RTS deterministic, if it cannot be completely removed.

The interference of the monitoring system depends on the way how moni-
toring data are collected from the target system, and on the amount and the
observation rate of monitoring data being collected within an observation inter-
val (see Section 4.3.1). Thus, the user of the monitoring system has to answer
the following key questions before starting to monitor the target system [SP04]:

- Which types of monitoring data must be collected at the intended abstraction
level within an observation interval?

48

4 Monitoring Data 4.2 Terms and Notations

- What is the amount of these monitoring data within the observation inter-
val?

- How can these monitoring data be gathered?

The classification of collected MD is influenced by abstraction levels at
which target systems are monitored. In [Sch95] the MD are classified into: i)
hardware-, ii) process-, and iii) application-level events. A similar classification
has been also presented by Tsai et.al. [TFCB90]. Schütz [Sch94b] presented
an interesting classification in context of testing. He denotes that the tester
may wish to observe the input(s), intermediate variables (auxiliary output),
the output(s), or all of them. Another detailed classification was presented by
Thane in [ThaOOb], in which the MD are categorized into three main groups:
i) data flow - information on the data flow, ii) control flow - information on
the control flow, and iii) resources - information on the resources of the target
system.

To our best knowledge, no approach exists in literature that can help the
monitoring system to predict its influence on the target system in advance. To
be able to predict this influence and to keep this influence deterministic we
define MD types and present different gathering methods.

4.2 Terms and Notations

In [Kop97] Kopetz determines that a controlled object, e.g., a car, changes
its state as a function of time, and the dynamics of a real-time application are
modeled by a set of relevant state variables. A significant state variable is called
a real-time (RT) entity, and an observation of an RT entity is represented by
a real-time (RT) image. An observation is defined in as information about the
state of an RT entity at a particular instant of time. Furthermore, Kopetz
states that an observation is an atomic data structure [Kop97]

Obs =< Name, tobs, Value > (4.1)

consisting of the name of the RT entity (Name), the instant when this obser-
vation was made (t^,s, i.e., the time stamp that is made using the global time),
and the observed value of the RT entity (Value).

An RT image is a mirror of an RT entity within the real-time controlling
system (Figure 4.1) during the accuracy interval [Kop97], after which the RT
image becomes invalid. We conclude that the state of the physical controlled
system at a particular instant t can be described by the set of values of its RT
entities at instant t. The state of the controlled system at a particular instant t

49

4 Monitoring Data 4.2 Terms and Notations

• RT entity D RTS entity

O RT image D monitoring entity

Figure 4.1: Monitoring Entity

as seen by the controlling system (i.e., the real-time computer system (RTCS))
can be described by the set of temporally accurate RT images. These states
can be formally presented as:

Ps(t) = {RTentityiit | i G [1, N]} (4.2)
CPs(t) = {RTimageiit \ie[l,N]} (4.3)

where, Ps denotes the state of the physical (controlled) system and Cps denotes
the state of the controlled system at the particular instant t as seen by the
RTCS. RTentityitt and RTimageiit denote the ith RT entity and its image at
the instant t, and N denotes the number of RT entities belonging to the system.

Analog to the notions presented above we found that the state of the target
RTCS (i.e., the controlling system) that is monitored by the monitoring system
can be modeled (from the monitoring system's point of view) by the set of values
of significant state variables, i.e., variables that are relevant for the monitoring
system. Similar to the RT entities the values of these significant variables
change with the progression of physical time.

Analog to the RT entity, we introduce a new notion called real-time system
(RTS) entity, which is a significant "state variable"of the target real-time com-
puter system and which is relevant only for the monitoring system. We say that
the dynamics of the target RTCS from the monitoring system's point of view
can be modeled by a set of RTS entities. Examples of RTS entities are: number
of tasks that are waiting for a semaphore, function ID that is generated by an
instrumentation code during monitoring process, when a correlated function is
called, etc. The difference between RT and RTS entities is:

• RT entities are used for modeling of the dynamics of the controlling and
controlled system and they are used by the RTCS (i.e., target system)
during its operation.

• RTS entities are used only for monitoring purposes. RTS entities together
with RT entities are used for modeling of the dynamics of the target RTCS
from the monitoring system's point of view.

50

4 Monitoring Data 4.2 Terms and Notations

For deterministic reproducibility of the run-time behavior of the target system,
(i.e., the real-time computer controlling and physical controlled system) the
monitoring system has to collect both RT and RTS entities1. Therefore, for
monitoring purposes we introduce the notion monitoring entity (Figure 4.1),
which contains either an RTS entity or an RT object (i.e., RT entity or RT
image [Kop97]). Thus, every entity that must be observed by the monitoring
system for representing the run-time behavior of the target system (i.e., the
RTCS and its controlled physical environment) at the intended abstraction
level, is called monitoring entity. In the rest of this thesis the notions entity
and monitoring entity will be used alternatively. From the monitoring system's
point of view the state of the target RTS at the intended abstraction level at a
particular instant t can be modeled by the set of values of monitoring entities:

= {entityitt\i€[l,N]} (4.4)

where, Ts denotes the state of the target system (as seen from the monitoring
system's point of view) at the instant t.

I 1—I 1 1—i—I—I 1—t-

History of Entity e 1

•I H H H M

History of Entity e.

History of Entity en

He2(t)
>f2(OI) =

Hen(t)> fn(OI) = 5

Observation Interval (Ol)

t - Global Time

I - Observation over Entity ek at Instant f

Figure 4.2: Observation History

Definition 4.1 - (Observation Interval): The observation interval is the
periodic time interval, which in fact is the smallest interval of the monitoring

xThe monitoring system must be able to collect the same values of the target system's
input/output variables as they are used by the target system in order to be able to determin-
istically reproduce the run-time behavior of the target system (i.e., controlling and controlled
system) at the intended abstraction level.

51

4 Monitoring Data 4.2 Terms and Notations

duration. The start point and the duration of the observation interval are the
same as the start point and the duration of the ARU (see Section 3.4) of the
target system.

The whole time interval during which the target system is monitored consists
of an integer number (m) of observation intervals3 (01). m is the number of 01,
on which might depends the disk space if the collected monitoring data shall
be stored on the disk (see Figure4.3).

Definition 4.2 - (Observation History): The sequence of timely ordered
observations that are made over a particular (single) entity within an observa-
tion interval is called observation history;

= {Obs) \ieOlAj€[l,K}AK = f(OI)} (4.5)

where, Obs) is the j t h observation over the ith entity observed at a particular
instant t, K denotes the number of observations in the history, while f{OI)
denotes number of observations over the ith entity made within an observation
interval (01).

The size of the observation history (\Hi(OI)\) of the particular entity i
within the observation interval (01) can be calculated as follows:

K
0 6 4 1 (4-6)

where, |Ofts*-| is the size in bytes of the j t h observation over the ith en-
tity observed at a particular instant t. This size belongs to the static
characteristics[Kop97] of the observation that is not changed during the run-
time.

In Figure 4.2 different observation histories (Heue2r,^en) over different enti-
ties (ei,e2, ...,en) are presented.

4.2.1 Amount of Monitoring Data

Definition 4.3 - (Monitoring Data): The set of observation histories that
contain observations of an observation interval and which represent the run-
time behavior of the monitored target system at the intended abstraction level
are called monitoring data.

2In case of a TTA system the start point and the duration of the observation interval
are equal to the start point and the duration of the cluster cycle. The duration of a cluster
cycle is constant as long as the operational mode of the TTA system is not changed (see
Chapter 3).

3In the rest of this thesis we will consider only the observation interval.

52

4 Monitoring Data 4.2 Terms and Notations

MD{OI) = {Hi(OI) | i G [1, N]} (4.7)

Definition 4.4 - (Amount of Monitoring Data): The sum of the sizes of
observation history of each entity within an observation interval is called the
amount of monitoring data within the observation interval:

N

AM(OI) =]T I HiiQI) | (4.8)
t=i

The amount of monitoring data within an observation interval depends on:

• the number of observed entities from which observations the run-time
behavior of the target system at the intended abstraction level can be
reproduced,

• the rate at which the entities must be observed,

• the length of the observation interval.

We call monitoring capacity the (rest of the) bandwidth of the shared trans-
mission medium that is not utilized by the target application within an obser-
vation interval. The bandwidth of the shared transmission medium that is
actually used for transmitting of monitoring data collected within an obser-
vation interval is called bandwidth occupation. The bandwidth occupation is
usually smaller than the monitoring capacity. The monitoring capacity and the
bandwidth occupation are formally described as:

Cm(OI) = C- Cap(OI) (4.9)

BO(OI) = h* AM{OI) A BO(OI) < Cm(OI) (4.10)

C denotes the capacity of the shared transmission medium and Cap{OI) denotes
the capacity used by the local part of the target application running on the
monitored node within the observation interval. The bandwidth occupation
within an observation interval is proportional to the amount of monitoring
data within the observation interval, h is denoted as data processing ratio4

per observation interval, h is equal to I/At in case the monitoring data are
not processed at the target node before they are transmitted. At is the time
duration (in seconds) of the observation interval.

The capability for calculation in advance (i.e., before the monitoring process
has been started) of the amount of monitoring data within an observation

4In case the monitoring data are compressed before being transmitted the data processing
ratio is equal to the compress ratio of the applied compressing algorithm.

53

4 Monitoring Data 4.2 Terms and Notations

Ei
CX.

i u
5? /\

—inn M
1Hn

k '1 |
I I I IMI I I i i-ii i I I

|H , k | |H2
k | |H„.,k| |Hn

k |

* * H
t
I

I H I I I — M i l l I N I I

|H,k t l | |H2
k+1| \Hn.r'\

<-- —-

A A D A M D

H„ k t 1 |

->

Target Node

t

Target Network

AAD I AMD | t
I -r* r ^

ST

n ni H in 111 n i ii—rrnrnri
Logging File ,.--',H w, ,H K

AAD

AAD

| A M D
• •

| A M D

--•

ST - sending trigger

ST , , - '

n in 11 n 1111 n i ~n n m m
|Hn

k| IH^ ' I |H2
k+1| |Hn.,

k+1|

i - an observation

Olk - the k"1 observation interval AMD - amount of MD

|Hn
k| - the size of the observation AAD - amount of application

history of the nm entity within
the kth 01

data

Figure 4.3: Amount of Monitoring Data

interval being collected from a specified target node is of utmost importance
for the determinism of the monitoring process used to monitor the specified
node. If one knows the amount of monitoring data being collected within an
observation interval for a target node, then one can calculate in advance (see
Figure 4.3):

• the computational resources (e.g., CPU, memory, etc.) on the particular
target node that are needed for gathering, processing and transmitting
of collected monitoring data within an observation interval,

• bandwidth occupation of the shared transmission medium, and

• disk space needed for storing of monitoring data at the central monitor
(see Section 5.2.1).

The amount of monitoring data within an observation interval is propor-
tional to the rate at which the corresponding entities are observed. In the rest
of this thesis we will use only "the amount of monitoring data being collected
within an observation interval", but with it we mean "the amount and

54

4 Monitoring Data 4.3 Monitoring Data Types

the observation rate of monitoring data being collected within an observation
interval;;.

4.3 Monitoring Data Types

The interference caused by the monitoring system on the target system during
monitoring at the intended abstraction level depends:

• on the amount of MD that must be collected within an observation in-
terval, and

• on the way how these MD are gathered.

4.3.1 Regular vs. Non-regular Monitoring Data

In order to make the interference of the monitoring system deterministic, the
monitoring system must provide support to either exactly calculate or estimate
the expected amount of MD per time interval before the monitoring process of
the target system starts. To achieve this, we define the regular and non-regular
MD, depending on the rate at which the respective entities must be observed.

Regular Monitoring Data.

We call MD regular, if there is a regular pattern of observations made over the
respective entities. Examples of regular MD are: observations over an entity
that represents the temperature of the engine and which is observed regularly,
or observations over a message that is sent regularly over the shared transmis-
sion medium to other interconnected nodes. Another example of regular MD
are observations over entities5 that are introduced within a particular periodic
task in form of instrumentation code for monitoring of this task.

Regular MD consist of a set of regular state observations, which are defined
in [Kop02] as observations that record the state of state variables at particular
instants, the point of observations. A basic characteristic of regular MD is their
constant rate, at which they are generated, i.e., the respective entities are ob-
served. Therefore, for regular MD the respective amount within an observation
interval is constant and it can be exactly calculated in advance.

5These are typical examples of RTS entities, which are used only for monitoring purposes
(see Section 4.2).

55

4 Monitoring Data 4.3 Monitoring Data Types

Non-regular Monitoring Data.

We call MD non-regular, if there is no regular pattern of observations made over
the respective entities. Typical examples of non-regular MD are observations
over entities (e.g., RTS entities) that are introduced within interrupt service
routines in form of instrumentation code for their monitoring.

Non-regular MD consists of a set of event observations which are denned
in [Kop02] as observations that contain the difference between the state before
and after the event. A basic characteristic of non-regular MD is their non-
constant rate at which they are generated. Thus, the amount of these MD
within an observation interval cannot be exactly calculated in advance, but it
can only be estimated. In order to make the monitoring process deterministic,
we must find out the amount of non-regular MD within an observation interval
in the worst case, i.e., the worst-case amount (WCA). In contrast to the regu-
lar MD the amount of non-regular MD is not constant within an observation
interval, but it is bounded with the WCA (AWCA(OI) in Equation 4.11).

AM(OI) < AWCA(OI) (4.11)

Depending on the fact, whether the AWCA can be calculated in advance or
only estimated (aproximated), non-regular MD can be classified into:

Sporadic Monitoring Data: We call non-regular MD sporadic if they con-
tain observations over entities which are not observed regularly but a min-
imum time interval between successive observations exists and is known.

AWCA of these MD can be calculated in advance, if we suppose that
the sporadic entities would be observed regularly with the period equal
to the minimum time interval between two successive changes.

Aperiodic Monitoring Data: We call non-regular MD aperiodic, if they
contain observations over entities, which are observed non-regularly, and
no minimum time interval between successive observations exists. The
calculation of AWCA of these MD is impossible, because theoretically they
can be observed arbitrarily often, i.e., at each instant of time. However,
in target systems that use the sparse time base6 as model for their global
time, AWCA of aperiodic MD can be calculated, if we suppose that the
respective entities are observed only one time between two successive ac-
tion lattices. In this case the aperiodic MD can be regarded as sporadic
MD, which contain observations over entities that are observed with the

6In the sparse-time model the continuum of time is partitioned into an infinite sequence
of alternating durations of activity and silence. Prom the point of view of temporal ordering,
all events that occur within an interval of activity are considered to happen at the same
time [Kop97].

56

4 Monitoring Data. 4.3 Monitoring Data Types

minimum time interval between successive observations equal to the time
interval between two action lattices [Kop97].

J_ MD
Regular

NRS/Sporadic
NR/Aperiodic

Observations
State

Event

Time Interval*
Constant
Minimum

No Minimum

Amount3

Exact Calculation
Calculation of AWCA*

No Calculation of AWCA

#) Time interval between successive observations.
$) The ability in advance to either calculate or estimate the expected amount.
*) Worst-Case Amount of MD within an observation interval.
§) Non-regular monitoring data.

Table 4.1: Regular vs. Non-regular Monitoring Data

Table 4.1 presents the classification of MD based on the amount, i.e., on the
ability of the monitoring system to either calculate or estimate the expected
amount of MD within an observation interval in advance.

4.3.2 Monitored Application vs. Pure Monitoring Data

As mentioned at the beginning of this section, the way how MD are collected
from target systems is the second factor on which the monitoring system's
interference caused on target systems depends. To make this interference de-
terministic, we define the following MD types:

Pure Monitoring Data: We call MD pure monitoring data if they contain
observations over entities that do not provide any contribution for achiev-
ing the computational goal of the target application. This type of entities,
i.e., RTS entities (see Section 4.2) are observed by the instrumentation
code inserted into the target operating system or target application. Ob-
servations over these entities are used only for monitoring purposes. The
visibility of these entities is limited within only a particular node.

Monitored Application Data: We call MD monitored application data if
they contain observations over entities that contribute to achieving the
computational goal of the target application. Examples of monitored ap-
plication data are: observations over an entity that represents the velocity
of a car, or the operational mode of the real-time controlling computer
system. The monitored application data can be classified into network
and node MD depending on the scopes in which these observed entities
are visible.

57

4 Monitoring Data 4.4 Gathering Methods

Network Monitoring Data. Network MD contain observations over
entities, the observations of which are used by tasks running on differ-
ent nodes, i.e., they are exchanged between interconnected nodes via the
shared transmission medium. Examples of such MD are messages ex-
changed between nodes in a distributed RTS.

Node Monitoring Data. We call MD node MD if they contain obser-
vations over entities that are only visible within a particular node. Node
MD are classified into local and global MD, depending on the scopes in
which these entities are visible.

• Global Monitoring Data: We call the node MD global, if they
contain observations over entities that are globally visible within
a particular node. Examples of global data are: observations over
inter-task (i.e., interprocess) messages, input values to the tasks (i.e.,
environment inputs that are processed, before they are correlated
with other local data), output values of the tasks, which must be
further processed before they are sent to another nodes, etc.

• Local Monitoring Data: Node monitoring data, which contain
observations over entities that are not globally visible within a par-
ticular node are called local monitoring data. Examples of local data
are: intermediate values or variables (auxiliary outputs), etc.

The difference between global and local MD is manifested during the
gathering process, because different gathering methods must be used for
gathering data of these two groups (see Section 4.4).

4.4 Gathering Methods

We suppose (according to the system model presented in Chapter 3) that a
target system is a distributed embedded real-time computer system, and the
monitoring approach used for gathering of monitoring information is either
software or hybrid monitoring approach (see Section 2.2.6). Furthermore, the
collection of MD, i.e., the gathering of observations, is done either by sensors
or probes7.

The classification of the gathering methods is influenced by the following
three questions:

7In this thesis we will use the notions presented by Ogle et al. in [OSS93]. Thus, sensors
reside within the target application inserted during instrumentation process, while probes
reside within the resident monitors that are parts of the monitoring system, and both of
them are responsible for gathering of MD.

58

4 Monitoring Data 4.4 Gathering Methods

- Is the target system influenced by the monitoring system during the moni-
toring process?

- Is the gathering process of the MD transparent to the target application8?

- Does the target application have to be instrumented for successfully gath-
ering of MD?

In order to answer these questions we have classified the gathering methods
into three groups:

- Monitoring-Node (MN),

- Operating-System (OS), and

- In-Line Gathering Method.

4.4.1 MN Gathering Method

The monitoring-node gathering method uses a dedicated monitoring node for
gathering of MD. A monitoring node snoops on the transmission medium used
for interconnection of nodes (Figure 4.4). With this method one can collect

Node,

Node,

< 1 t I-*"
JLJ-—? 1

Node,

<-~Jransmission^>
S"^ Medium <T

Gateway
Node, Nodek

.Monitoring
/Node

Figure 4.4: Monitoring-Node Gathering Method

only the network MD, because they contain observations over entities whose
values are exchanged over the shared transmission medium.

4.4.2 OS Gathering Method

The OS gathering method can be used for gathering of MD that contain obser-
vations over entities that are not transmitted over the shared communication
medium but are visible within the global scope of the given node. These MD
have been presented in the previous section. They are called global node or
pure MD.

8The target application is the software application that is running on the target system.

59

4 Monitoring Data 4.5 Monitoring Data in Time-Triggered Systems

Appfcation

Figure 4.5: OS Gathering Method

For collecting these MD the operating system must be instrumented (Fig-
ure 4.5) with instrumentation code, i.e., resident monitor that is responsible
for gathering the MD. Thus, in this case the monitoring process is transparent
to the application programmer.

4.4.3 In-line Gathering Method

The in-line gathering method is used for gathering of MD that contain ob-
servations over entities that are not visible from the operating system. For
gathering of these MD sensors must be inserted into the target application.
This gathering method can be used for gathering of local MD.

4.5 Monitoring Data in Time-Triggered Sys-
tems

As depicted in Section 3.2.2, a node consists of a communication controller,
the host, and the CNI (see Figure 4.6). On the host, the application tasks and
FT tasks are running. The CNI is used as temporal firewall [Kop97, Nos97]
between the communication controller and the host. During monitoring of
time-triggered (TT) systems the following monitoring data can be collected
(see Figure 4.6):

Network Monitoring Data: These MD contain observations over entities
the observations of which are exchanged between different nodes of TT systems
in form of messages. These messages can be either state or event messages as
depicted by Poledna in [Pol96]. The monitoring data that contain observations
over state messages are regular, while monitoring data that contain observa-
tions over event messages are non-regular monitoring data. For regular net-
work data we can calculate the exact amount of monitoring data in advance,
i.e.. before the monitoring process is started, because the transmission of state
messages in TT systems are scheduled statically, i.e., during the design phase.

60

4 Monitoring Data 4.5 Monitoring Data in Time-Triggered Systems

Environment

GND

ND

Host

Application o
o Tasks

FT
Tasks

RM
OS

CNI ~y

LND

PMD

Communication Controller

RM - Resident Monitor
ND - Network Data LND - Local Node Data

GND - Global Node Data PMD - Pure Monitoring Dat:

Figure 4.6: Monitoring Data in Time-Triggered Systems

On the other hand we can calculate the AWCA for the non-regular network
data. For gathering of these monitoring data the monitoring-node gathering
method is used (see Section 4.4.1).

Global Node Monitoring Data: The sources from which these data can
be gathered (see Figure 4.6) are:

• FT CNI - The fault-tolerant (FT) messages are processed by FT
tasks [BauOO], the results of which are stored into FT CNI.

• Environment - While controlling their environment TT applications have
to read values from sensors or to write values to actuators.

• Application - Messages that are exchanged between different tasks, or
global variables could be relevant for monitoring systems.

The node global monitoring data can be gathered using the OS gathering
method presented in Section 4.4.2, because the locations where these entities
can be found and the points in time when these entities must be observed are
known in advance. The above presented sources, from which these monitoring
data are collected, will be dealt with in more detail in Section 5.3.2.

Local Node and Pure Monitoring Data: The last group of monitoring
data that may need to be gathered during monitoring of TT systems are local

61

4 Monitoring Data 4.6 Discussion

node (e.g.. intermediate values) and pure monitoring (e.g., function calls or the
start of a task) monitoring data (see Figure 4.6). For gathering of these moni-
toring data the target operating system or application must be instrumented,
i.e., the in-line gathering method is used. These monitoring data can be either
regular or non-regular, depending on the fact how the functions or methods
are called, where the instrumentation code is inserted. This must be analyzed
by the monitoring system during the instrumentation process, which must be
supported by the monitoring system.

4.6 Discussion

Figure 4.7 presents the classification of MD based on two different criteria: i) on
the ability of the monitoring system to calculate the expected amount of MD
within an observation interval in advance, and ii) on the gathering methods.
The interference of the monitoring system on the target system depends on
these two factors.

r Gathering
Methods

Pure Monitoring
Data

Monitored
Application Data

Node
Monitoring Data

Network
Monitoring Data

Local
Monitoring Data

Global
Monitoring Data

[In-Line I OS Method 1
n Method J [̂ J

Monitoring-
Node

Method

Monitoring Data
Amount

Calculation

.-G*Ion-Regular

Aperiodic

Regular

Sporadic

/ Amount Estimation
WCA Exact

j Calculation only for
• Systems with Sparse
v Time Base

. Amount
• Estimation

| WCA Exact
\ Calculation

•s < - "

M
II
II

Amount
Exact

| | Calculation

. ' x ^ _ y

'Target Application is
I . instrumented

j ' T a r g e t Application is not \ ' Target System is •
y ^ instrumented J v not impacted j WCA : Worst-Case Amount

• ^ ^ ^ B ^ ^K ^m ^m ^m mm ^ ^ ^ *— ^ ^v ^v a^ aav ^v ^v ^

Figure 4.7: Classification of Monitoring Data

During monitoring of a target system at the user's intended abstraction
level the prediction of the expected amount (and the observation rate) of MD
within an observation interval is of utmost importance. The amount of the MD
that must be collected determines the resource needs of the monitoring system
on the target system. These resources are used for collecting, processing, and
transmitting the collected MD. They relate to: CPU, memory, communication
bandwidth, etc. On the basis of this information one can quantify the influence
of the monitoring system on the target system.

62

4 Monitoring Data 4.7 Chapter Summary

On the other hand, the need for instrumentation of target systems depends
on the used (and needed) gathering methods (Figure 4.7). The applied gather-
ing method is another factor on which the influence caused by the monitoring
system on target systems depends. For example, the MN method for gathering
of MD does not cause any influence on target systems. However, target systems
are influenced when OS or in-line methods are used.

4.7 Chapter Summary

In this chapter we defined different types of MD and gathering methods. These
make possible to predict in advance and to keep the interference of the monitor-
ing system caused on the target system deterministic. Furthermore, in Chap-
ter 8 a case study is presented, in which these concepts are successfully applied
in monitoring of TTA systems for calculation of the expected amount of the
MD within an observation interval.

Currently, the selection of entities, the calculation of the expected amount
within an observation interval and the instrumentation process are done man-
ually. The intention is to incorporate the classification of the MD presented
in this thesis into the design tools to calculate the needed resources (i.e., MD
amount calculation) for monitoring process and to automate the instrumenta-
tion process. Examples of design tools are DECOMSYS::Designer9 or TTP-
Plan10 used for designing of FlexRay or TTA systems. This approach could
also be incorporated into design tools for other distributed RTS, e.g., CAN11,
LIN12, etc.

9www.decomsys.com/flyer/DESIGNER.pdf
10www.ttagroup.org/ttp/pdf/TTTech-TTP-Plan-Flyer.pdf
n ht tp : //www. can. bosch.com
12http://www.lin-subbus.org

63

Chapter 5

Monitoring of Time-Triggered
Systems

This chapter focuses on real-time monitoring for the time-triggered systems.
The following abstraction levels will be defined: i) cluster, ii) node, and iii)
transducer abstraction level. Furthermore, the monitoring of target systems
that consist of multiple clusters will be dealt with.

The chapter is organized as follows. First, the objectives and goals of this
chapter are presented. After presentation of the monitoring system in Sec-
tion 5.2, the different abstraction levels supported by the proposed monitoring
system are described in Section 5.3. Section 5.4 deals with the monitoring
of target systems that consist of multiple clusters. Section 5.5 deals with the
debugging support. The chapter ends with a summary.

5.1 Objectives and Goals

The influence of the monitoring system must not change the behavior of the
target real-time system, neither in the time nor in the value domain. Another
requirement that must be considered during design of monitoring systems is
that the monitoring system must use the operational network (i.e., the network
that is used by the distributed target system) for transmission of collected mon-
itoring data to the central monitor, where they are further processed (see Sec-
tion 5.2.2). This requirement can be regarded on the one hand as an economic
requirement, because of high costs that would arise for adding a dedicated
network for monitoring. On the other hand, this requirement has a technical
reason as well: in many cases the user of the monitoring system does not have
the possibility to add a second network to the already assembled target system.

64

5 Monitoring of Time-Triggered Systems 5.2 Monitoring System

The main objective is to design a real-time monitoring system that both
offers to the user the capability for deterministic monitoring of time-triggered
systems at different abstraction levels and provides monitoring of target systems
that consist of multiple clusters. The presented monitoring system is tailored
for monitoring of distributed real-time systems that are based on the Time-
Triggered Architecture (TTA). However, such a monitoring system can be used
for monitoring of other time-triggered systems that fulfill requirements given
in Section 5.2.1.

In Section 4.1 we noted that one of the three key questions the user has
to answer before monitoring the target system is the selection of monitoring
entities. Therefore, another objective of this chapter will be the selection of
those entities whose observations must be collected at each abstraction level.
From these observations the run-time behavior of the target system at each
abstraction level must be reproducible.

5.2 Monitoring System

5.2.1 Requirements and Assumptions

In this section the requirements and assumptions are presented that must be
fulfilled by the monitoring system and target systems.

Requirements: The monitoring system must fulfil the following requirements:

• Target systems must support a sparse time base [Kop92, KB01].

• Target systems must support event channels (see Section 3.3), which
will be used for transmitting of collected monitoring data.

• If a target system consists of more than one cluster, these clus-
ters must be interconnected and synchronized by gateway nodes as
depicted in Section 3.2. Furthermore, depending on the intercon-
nection topology (see Section 5.4.1), gateway nodes have to support
event channels that are used for transmitting of collected monitoring
data to the monitoring node (see Figure 5.1).

• If a target system consists of more than one cluster then the mon-
itoring system must support the simultaneous monitoring of these
multiple clusters.

• Monitoring data that are collected from different interconnected
clusters must be temporally correlated by the monitoring system,
so that the monitoring system is able to compare these data in the
temporal domain.

65

5 Monitoring of Time-Triggered Systems 5.2 Monitoring System

Assumptions: For target systems that can be monitored by the presented
monitoring system we assume that:

• Clusters are part of the whole complex target system and they are
interconnected and synchronized in the temporal domain by gateway
nodes.

5.2.2 System Structure

Figure 5.1 presents the structure of the proposed monitoring system, which
consists of three main parts:

t
Host

CN

CC

RM Host iRM

CNI

CC

X
Host

CNI

CC

RM

gtc2 • Global Time of Cluster 2 I
•Gateway-Node:

ate. • Global Time of Cluster 1

X I
CC

CNI

Host RM

CC

CNI

Host RM

t
CC

CNI

Host RM

CE CE CE

« • «

— Data Link

T ime Synchronizat ion Link

o Sensor/Actuator

<=> Shared Transmiss ion Media

PhP - Physical Process

C M - Central Monitor

M N - Monitor ing Node

RM - Resident Monitor

Figure 5.1: Monitoring System's Structure

Central Monitor (CM): The central monitor is the main part of the mon-
itoring system. This part is responsible for analysis and setup of the
monitoring process (see Section 5.2.3). Furthermore, the monitoring data
collected from the target system are managed and processed by the CM.
The CM both communicates with the user and with the monitoring node.

The CM uses the monitoring clients that perform different jobs for the
monitoring system. Examples of such jobs are visualization of collected

66

5 Monitoring of Time-Triggered Systems 5.2 Monitoring System

monitoring data in real-time. For performing of these jobs GUI monitor-
ing clients are used (see Chapter 7.2.2). Another important monitoring
client is the real-time trigger system (RTTS), which uses triggers to search
for significant events within the collected monitoring data. The RTTS is
discussed in detail in Chapter 6.

The CM is implemented on a commercial off-the-shelf (COTS) system
(see Chapter 7.2).

Monitoring Node (MN): The gateway between the CM and the distributed
real-time target system is the monitoring node. The monitoring node
both collects the monitoring data from target systems and receives moni-
toring commands from the CM. It sends the monitoring commands to the
resident monitors running on the target system1. The monitoring system
must contain at least one monitoring node.

Resident Monitor (RM): Resident monitors are executed on nodes that
are monitored at node or transducer abstraction level (see Sections 5.3
and 5.4). They are responsible for gathering monitoring data from nodes
and transmitting them to the monitoring node. Furthermore, gateway
nodes must contain resident monitors that are responsible for gathering
of monitoring data from target systems that contain more than one clus-
ter (see Section 5.4), even in case these systems are monitored only at
the cluster abstraction level (see Sections 5.3.1 and 5.4).

5.2.3 Operational Modes

In general, the monitoring process can be partitioned into two phases: i) setup
and ii) monitoring phase. The operational modes of the proposed monitoring
system depend on these two phases. There are three operational modes: i)
setup mode, ii) run-time mode, and iii) off-line mode.

Setup Phase

The monitoring system has to assist the user during setup of the monitoring pro-
cess. During this assistance the monitoring system is in the setup operational
mode. There are three key issues that must be dealt with by the monitoring
system during this operational mode:

'Such commands can be for example start and stop triggers for collection of monitoring
data at node or transducer abstraction level (see Sections 5.3 and 5.4).

67

5 Monitoring of Time-Triggered Systems 5.2 Monitoring System

• Entity Selection: For each supported abstraction level the monitoring
system must assist the user to select entities of a target system that need
to be observed by the monitoring system. The run-time behavior of the
target system at the intended abstraction level within an observation
interval must be reproducible from these observed entities.

• Expected Amount: The monitoring system must be able either to
calculate or estimate the expected amount of monitoring data within
the observation interval (see Section 4.3). The monitoring data contain
observations over the selected entities.

• Gathering Methods: The method for gathering of observations over
each selected entity must be selected and analyzed during this phase (see
Section 4.4).

The first issue is the objective of the next section, which deals with the mon-
itoring of time-triggered systems at different abstraction levels. The last two
issues were covered in Chapter 4.

The monitoring process can be planned either during the design phase of
the target system, or it can be planned for an already assembled target system:

Design of a Target System: The monitoring system must support the sys-
tem designer during design of the target system by listing the additional
needed computational resources (i.e., CPU time, memory, and commu-
nication bandwidth) that are necessary for monitoring of them at each
supported abstraction level. This list of requested resources must be
taken into account by the system designer during design of the target
system.

Already Assembled Target System: The monitoring system must also as-
sist the user in monitoring an already assembled target system. However,
in an already assembled target system one cannot add additional re-
sources that could be needed by the monitoring system. Thus, in this case
the monitoring system can use only those resources of the target system
which are not used by the target application. Therefore, during setup of
the monitoring process for an already assembled target system the moni-
toring system must inform the user when computational resources of the
target system that can be used for monitoring purposes are exhausted.

An important issue, which must be done by the monitoring system in the
setup mode in case the target system consists of multiple clusters is the search
for the shortest monitoring route that has the sufficient bandwidth for trans-
mitting of monitoring data collected from a particular cluster. This search is

68

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

done by the monitoring router that is presented in Section 5.4.1. Furthermore.
real-time triggers presented in Chapter 6 are also defined in this mode.

Monitoring Phase

During the monitoring phase the monitoring system collects run-time informa-
tion from the target system. The collected monitoring data are processed by
the monitoring system according to the monitoring intention. There are two
different operational modes during this phase in which the monitoring system
can be:

Run-Time Mode: In the run-time operational mode the monitoring system
has to collect the monitoring data.

Off-line Mode: During the off-line analysis (i.e., off-line operational mode),
collected monitoring data are analyzed by the monitoring system. Ac-
tivities that are executed in this operational mode are: off-line analyzer
(see Section 6.4.2), or deterministic replay (see Section 5.5.2).

5.3 Monitoring Abstraction Levels

The user usually starts monitoring of a target system at a higher abstraction
level in which the high-level run-time behavior of the target system can be
observed. In case there are some suspected faults in a subsystem, the user needs
the capability to get a view insight the run-time behavior of the subsystem.
Therefore, the monitoring system must support different abstraction levels in
order to be able to allow the user to take a look at different depth of the run-
time behavior of the target system. This capability allows the user to deal only
with the monitoring data that represent the run-time behavior of the target
system at the intended abstraction level during localization of the suspected
faults.

In this section the following abstraction levels are defined:

• Cluster Abstraction Level,

• Node Abstraction Level, and

• Transducer Abstraction Level.

69

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

As depicted in Section 3.4, in time-triggered systems all activities of the
target application are repeated between successive cluster cycles as long as
the operational mode of the target system is not changed. Therefore, the
expected amount of monitoring data collected by the monitoring system at the
above presented abstraction levels within a cluster cycle must be calculated or
estimated. If the expected amount of monitoring data within a cluster cycle is
known, then the expected amount within any observation interval can be found.
In these systems each observation interval consists of one or more cluster cycles.

5.3.1 Monitoring at Cluster Abstraction Level

Definition 5.1 - (Monitoring at Cluster Level): We define the monitor-
ing of target systems at the cluster abstraction level as a monitoring pro-
cess during which the monitoring system observes entities whose observations
are visible within the cluster scope, i.e., these observations are exchanged
among the interconnected nodes within a given cluster via the shared transmis-
sion medium.

Near 1 Node k

Shared Communication Medium

Node 2

Figure 5.2: Monitoring at Cluster Abstraction Level

At this abstraction level monitoring data are collected by "snooping" of
the shared transmission medium by the monitoring system. This means that
the monitoring-node gathering method presented in Section 4.4.1 is used for
gathering of monitoring data. In Figure 5.2 a monitoring approach at the
cluster abstraction level is presented. At this abstraction level the monitoring
system cannot gain insight into the dynamic behavior of interconnected nodes.
Therefore, the interconnected nodes for the user of the monitoring system at
the cluster abstraction level remain as black boxes, which send and receive
predefined messages at predefined points in time. However, the monitoring at
the cluster abstraction level is well suited for continuous monitoring2 of target

2In this case the continuous monitoring is defined as a long-term monitoring process,
which could use real-time triggers for example that are presented in Chapter 6 to search for

70

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

systems, because the monitoring system at this abstraction level does neither
instrument nor impact the target system.

The cluster design database (CDB) (see Section 3.2.1) must be used by the
monitoring system for successful monitoring of target systems at the cluster
abstraction level. The CDB contains all information needed by the monitoring
system for collection and interpretation of monitoring data collected at this
abstraction level (see Section 3.2.1).

Monitoring at the cluster abstraction level does not have an impact on
the operation of target systems, because the monitoring node does neither
occupy the observed system's computational resources nor its communication
bandwidth for collecting and transmitting of monitoring data. However, this is
not true if a target system consists of more than one cluster, and the monitoring
system is not directly interconnected to each cluster (see Section 5.4.1). In this
case the gateway nodes have to collect the monitoring data from the monitored
target clusters and send them via the shared transmission medium to the central
monitor (see Section 5.2.2). During this transmission, the gateway nodes occupy
communication bandwidth for transmission of the collected monitoring data.
Despite this influence the behavior of target systems remains unchanged in
both the time and the value domain, because this influence is deterministic
and most notably known pre run-time. It is therefore of utmost importance
that this influence is pre-planned during the setup phase (see Section 5.2.3) of
the monitoring process.

Monitoring Data. The monitoring system at the cluster abstraction level
has to collect all messages that are transmitted via the shared transmission
medium. In the system model presented in this thesis, these messages are re-
ceived and written into the CNI of the monitoring node by the communication
controller (see Section 3.2.2), and they can be read out by the monitoring soft-
ware running on the host of the monitoring node (see Section 7.1.1). Monitoring
data at this abstraction level are collected from the following sources:

Message Area: The monitoring data collected from the CNI message area
contain all messages that are received and written by the communication
controller into the CNI of the monitoring node [TTT02].

Status/Control Area: The monitoring data that are collected from the
CNI's status/control area contain information about the status of the
communication subsystem. This information is also written into the

significant events, e.g., faults. In case some faults are found, the user can perform monitoring
at another abstraction level, e.g., node abstraction level, in order to locate, analyze and
correct the detected faults.

71

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

CNI [TTT02] of the monitoring node by the communication controller.
The most important information from this area are: i) membership vec-
tor, ii) cluster mode, and iii) cluster time field [TTT02]. The membership
vector contains the information about the activity or silence of each in-
terconnected node in the cluster, while the cluster mode contains the
information about the operational mode in which the cluster is currently
running. The cluster time field represents the globally synchronized time
with a granularity of one macrotick [TTT02].

Amount of Monitoring Data. At the cluster abstraction level the expected
amount of monitoring data within one cluster cycle (Ac) can be exactly calcu-
lated during the setup phase:

N

where ASCA denotes the amount of monitoring data collected from the sta-
tus/control area of the monitoring node within a cluster cycle, N denotes the
number of interconnected nodes in a given cluster, and Am denotes the amount
of data sent by the ith node3 within a cluster cycle. In case a target system
consists of multiple clusters, the amount of collected monitoring data within a
cluster cycle is equal to:

K

where K denotes the number of interconnected clusters, and Acj denotes the
amount of monitoring data collected from the j t h cluster within a cluster cycle
(see Equation 5.1).

Characteristics. During monitoring of target systems at the cluster abstrac-
tion levels:

• no instrumentation of the target systems is needed,

• the target systems are not influenced at all (in case the target system
does not consist of multiple clusters see Section 5.4),

3In this case, the interconnected nodes can send both state and event messages [StoOl,
MaiO2]. However, the bandwidth for transmitting of event messages in time-triggered systems
is limited and known in advance, and therefore we can calculate the Awe A of monitoring
data that contain observations over event messages.

72

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

• the expected amount of monitoring data is deterministic, and it can be
calculated during the setup phase.

The main restriction of monitoring target systems at the cluster abstraction
level is that only entities whose observations are exchanged between intercon-
nected nodes can be observed.

5.3.2 Monitoring at Node Abstraction Level

Definition 5.2 - (Monitoring at Node Level): We define the monitoring
of target systems at the node abstraction level as a monitoring process during
which the monitoring system observes entities whose observations are visible
only within the node scope, i.e., these observations are not exchanged between
the interconnected nodes within a given cluster.

agnifying glass'

Shared Communication Medium

Node 2 CNI E3 [E3

Monitoring NodeRM -Resident Monitor

Figure 5.3: Monitoring at Node Abstraction Level

In Figure 5.3 a monitoring approach at the node abstraction level is pre-
sented. At this abstraction level the monitoring system can observe the behav-
ior within single nodes, i.e., nodes are considered as white boxes.

The execution of a resident monitor on the node is the prerequisite for its
monitoring at the node abstraction level (see Section 5.2.2 and Figure 5.3).
Another requirement is the availability of sufficient bandwidth of the shared
transmission medium to transfère the collected monitoring data, i.e., sufficient
monitoring capacity (see Section 4.2.1). The amount of monitoring data within
an observation interval that can be collected at the node abstraction level de-
pends among other things (e.g., the rest of computational resources) on this
capacity4. In time-triggered systems the monitoring capacity is known in ad-
vance. Therefore, during the setup phase the monitoring system must inform

4This restriction appears in case the operational network (see Section 5.1) is used for
transmitting of collected monitoring data to the central monitor.

73

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

the user about the remaining monitoring bandwidth during selection of entities
that need to be observed at this abstraction level.

At the node abstraction level the monitoring system offers the user the capa-
bility for monitoring nodes at different abstraction levels:

• Operating System (OS) Abstraction Level, and

• Application Abstraction Level

The monitoring at these abstraction levels is performed on the host of a par-
ticular node.

Monitoring at OS Abstraction Level

The main requirement of real-time operating systems is the guarantee of timing
constrains of real-time applications, which are under their control. The role of
the operating system in time-triggered systems is limited to dispatching tasks
from a static dispatch time-table. Such a table is produced during design phase
of a node by the off-line node design tool.

Definition 5.3 - (Monitoring at OS Level): We define the monitoring at
the OS abstraction level as a monitoring process during which the monitoring
system observes entities that cannot be seen outside of the OS, and the run-
time behavior of the OS of a particular node must be represented from these
observations5.

In order to be able to support the monitoring at the OS abstraction level,
the operating system of a particular node must be instrumented. The instru-
mentation code inserted into the OS is responsible for gathering of observations
over entities that are not visible outside the OS. The introduced overhead into
the OS caused by the instrumentation code must be taken into account by the
off-line scheduler during the scheduling process. However, the monitoring at
the OS abstraction level is transparent to the target application.

5 At the OS abstraction level the run-time behavior of the target application is excluded,
i.e., only the behavior of the operating system is regarded here. However, since the operating
system has to control target applications, then only their tasks are considered here, which in
fact are regarded as black boxes, which have their worst-case execution times (WCET) and
deadlines.

74

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

Monitoring Data. During monitoring of time-triggered systems at the OS
abstraction level the collected observations can represent the:

• activity of the OS's dispatcher,

• state of the stack and its consumption by different tasks, and

• state of the internal data structures.

The activity of the OS's dispatcher is one of the important goals6 during mon-
itoring of time-triggered target systems at the OS abstraction level. Thus, the
activities of the dispatcher in time-triggered systems can be represented by
observations over the following entities7:

S - denotes the start of a particular task instance,

E - denotes the end of a particular task instance,

PS - denotes the start of the preemption of the currently executed task in-
stance,

PE - denotes the end of the preemption, i.e., the preempted task instance is
resumed.

,-•2 3

PE

•4 »6 t,0 '„ «i: global
time

Cluster Cycle C,

• OS overhead I I, I ISR 1

H OS overhead in case of ISR GO task 2 d task 5

The OS is in "idle" state [3 task 4 O task 3

Figure 5.4: Monitoring at OS Abstraction Level

Therefore, the observations that are collected by the monitoring system at the
OS abstraction level can be formally presented as:

OSobs =< En, tobs, ID >; En £ {S, E, PS, PE} (5.3)
6The focus of this thesis during monitoring of the time-triggered systems at the OS ab-

straction level is the dispatcher's activity.
7These entities are typical examples of real-time system (RTS) entities presented in Sec-

tion 4.2.

75

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

En denotes the name of the observed entity, tObS denotes the timestamp, i.e..
the time at which this observation was made. ID denotes the unique ID of the
task instance or ISR.

Figure 5.4 presents a scenario, in which four different tasks and one interrupt
service routine are dispatched by the OS's dispatcher. In this scenario the
preemption of the task with ID 5 is presented. The task is preempted at £2

and is resumed at £7. The sequence of observations generated by the scenario
presented in Figure 5.4 is depicted below:

• Obsi =< 5, ii, 5 >, start of the task instance with ID 5 at t\,

• Obs2 —< PS,t2>5 >, start of the preemption of the currently executed
task instance with ID 5 at t2,

• OÖS3 =< £,£3,2 >, start of the task instance with ID 2 at £3,

• Obs4 —< E, £4, 2 >, end of task instance with ID 2 at £4,

• Obs-j =< PE,t7,5 >, the preemption of the task instance with ID 5 at
£9 is ended, i.e., the task 5 is resumed,

• Obs8 =< E,t$,5 >, end of (preempted) task instance with ID 8 at £8.

Based on these observations at the OS abstraction level the monitoring system
can perform the following activities:

Visualization: The monitoring system performs the visualization of the dis-
patcher's activity at a particular node. This helps the user to get an
overview over the dispatching of tasks at the particular node. In the case
of errors in the temporal domain this visualization would help the user
to find the reasons.

Measurement of Execution-Times: The monitoring system can measure
the execution times of tasks, even in case these tasks are preempted8.

Amount of Monitoring Data. The amount of monitoring data that can
be collected at the OS abstraction level is limited by the monitoring capacity
of a given node (see Equation 4.9). As mentioned before, the observed entities
at this abstraction level can describe either tasks or ISRs, and therefore the
amount of the collected monitoring data consists of:

Aos = Atasks + AISR\ where Aos < Cm (5.4)
8This will be presented in more details in Chapter 8.

76

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

and AJSR denote the amount within a cluster cycle of collected moni-
toring data that contain observations over entities that describe tasks or ISRs,
respectively.

Tasks: The amount of monitoring data within a cluster cycle that contain
observations that describe the dispatcher's activity during dispatching of
tasks consists of:

Atasks = ATD + APD (5.5)

ATD contains monitoring data that describe the start and the end of
each dispatched task, while Apo contains monitoring data that describe
the start and the end of each preemption. ATD can be exactly calculated
during the setup phase (see Section 5.2.3), because in time-triggered sys-
tems the points in time are known at which tasks must be activated. Apo
can be only estimated. However, the number of expected preemptions (in
worst-case) can be estimated by an off-line analysis.

ISRs: The occurrences of interrupts are not known at pre run-time, because
they have event-triggered semantic. Therefore, we can only estimate the
amount of monitoring data within a cluster cycle that contain informa-
tion over ISRs. However, the basic condition for using of interrupts in
these systems is the limitation of interrupt's occurrences, i.e., ISRs must
not occur more frequently than allowed by their minimum inter-arrival
time. Therefore, we can calculate the AWCA of monitoring data that de-
scribe the dispatcher's activity during dispatching of ISRs, because these
monitoring data are sporadic monitoring data (see Section 4.3.1).

Monitoring at Application Abstraction Level

At the application abstraction level the monitoring system must collect ob-
servations over entities that can be found within the local part of the target
application. From collected observations the monitoring system can reproduce
the run-time behavior of the local part of the target application running on the
host of a particular node. The monitoring at the application abstraction level is
classified into monitoring at: i) task and ii) function abstraction level. The res-
ident monitor (see Section 5.2.2) is responsible for collecting monitoring data
at both these abstraction levels. However, for gathering of monitoring data
at the function abstraction level, sensors (see Section 2.2.1) must be inserted
into the target application. Furthermore, the resident monitor is responsible
for transmitting of collected monitoring data to the central monitor at either
abstraction levels.

77

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

Monitoring at Task Abstraction Level: In [Gal99] Galla has presented a
task model that can be applied in time-triggered systems and which is
restricted in following way: tasks receive input messages upon invocation
and produce output messages upon completion. Furthermore, in this
task model no interim communication or synchronization is permitted.
In [Kop97] Kopetz addresses this kind of task model the S-task model.

Definition 5.4 - (Monitoring at Task Level): We define the moni-
toring of target systems at the task abstraction level as a monitoring
process during which observations over input and output messages of each
observed task are collected.

As above presented, we assume that tasks are considered by the monitor-
ing system during monitoring at the task abstraction level as black-boxes,
which are started at predefined points in time, and which use predefined
input messages and produce output messages. Furthermore, these tasks
have timing constraints in form of deadlines, which are known in advance.

The monitoring system's capability for monitoring of a particular node
at the task abstraction level is very important, because this capability
aids the user in a faulty case to isolate the faulty tasks. After one has
detected the faulty task, one can apply monitoring of the particular node
at the function abstraction level presented below to locate functions or
modules that have caused the faulty behavior.

Monitoring Data. The sources, from which the input and output mes-
sages of tasks can be gathered, are classified as follows:

FT CNI: The fault-tolerant (FT) messages are processed by FT
tasks [BauOO], which are executed transparently to the application
tasks. Periodic FT tasks periodically update FT messages within
the FT CNI with the period known in advance, i.e., at pre run-time.

Application: Messages that are exchanged among different tasks, or
global variables could be relevant for monitoring systems. An ex-
ample of such a message is the M msg in Figure 5.5, which is produced
by application tasks and which is not transmitted to another inter-
connected nodes in the cluster. The amount of the monitoring data
within a cluster cycle that contain observations over these messages
can be calculated in advance, because these messages are updated
by different tasks with different periods. The update period of these
entities can be calculated during the design phase.

78

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

SEN - Sensor
ACT - Actuator E msg - Environment Message

R/W Task - Read/Write Task FT msg - Fault-Tolerant Message
A Task - Applicatin Task M msg - "Merged" Message

Figure 5.5: Example of Global Node Data in TTA Systems

Environment: While controlling their environment TTA applications
have to read values from sensors or to write values to actuators.
These inputs from sensors and outputs to actuators must be gath-
ered for monitoring of target systems at the task abstraction level,
because they are inputs/outputs of periodic tasks of TTA applica-
tions.

The monitoring data that are collected at the task abstraction level be-
long to the node global monitoring data presented in Section 4.3.2. Since,
places are known in advance, where above presented messages are stored,
for gathering of these data the OS gathering method presented in Sec-
tion 4.4.2 is used. This means that the target application does not need
to be instrumented, and therefore the monitoring process is done trans-
parent to the target application.

Amount of Monitoring Data. At the task abstraction level the
amount of monitoring data collected within a cluster cycle can be ex-
actly calculated in advance, because in time-triggered systems the points
in time, at which application tasks are started, are known in advance.
This amount can be formally presented as:

i /O (5.6)

79

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

where, T denotes the number of application tasks that are monitored,
and AJO denotes the input and output bytes of data per task instance
within a cluster cycle.

Monitoring at Function Abstraction Level: As presented above, one
must monitor the particular node at the function abstraction level af-
ter localization of the faulty task(s). This allows the user to localize the
incorrect module(s) or function(s), by which the faulty behavior of the
target application was caused. Therefore, the monitoring at the function
abstraction level is denned as follows:

Definition 5.5 - (Monitoring at Function Level): We define the
monitoring of target systems at the function abstraction level as a
monitoring process during which observations over entities are collected
that are not visible outside of functions or modules of the local part of the
target application.

Monitoring Data. At the function abstraction level the monitoring
system must collect the intermediate values (or auxiliary outputs). These
monitoring data are called node local monitoring data, and are presented
in Section 4.3.2. Furthermore, at the function abstraction level the mon-
itoring system has to collect the monitoring data that are generated by
the instrumentation code, such as function IDs, etc. These monitoring
data are called pure monitoring data (see Section 4.3.2). For collection of
these monitoring data the target application also must be instrumented.

Amount of Monitoring Data. In time-triggered systems the amount
of collected monitoring data within a cluster cycle at the function abstrac-
tion level can be only estimated. It is possible in these systems to cal-
culate the Awe A of these data (see Section 4.3.1), because the execution
frequency of tasks, which contain the instrumented functions, is known
in advance. These can be delivered by path analysis methods analog to
path analysis techniques applied during WCET analysis of real-time pro-
grams [PusO2a]. This amount can be formally presented as:

(5.7)

where T denotes the number of task instances from which the instru-
mented function is called, while ATM,i denotes the AWCA of data that
can be produced by instrumented function(s) within the ith task instance
during one cluster cycle.

80

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

Characteristics. During monitoring of target systems at the node abstrac-
tion level the user has the capability to observe the behavior within single
nodes. This means that the nodes at the node abstraction level are consid-
ered as white-boxes. At the node abstraction level the target systems are
influenced by the monitoring system, because the monitoring system uses the
target system's computational, memory and bandwidth resources. However,
this influence is taken into account during the setup phase.

5.3.3 Monitoring at Transducer Abstraction Level

As depicted in Section 3.2.2, the application running on the host of a node
controls its environment via the controlled object interface (COI). In [Gal99]
Galla states that the host uses another shared transmission medium, field bus,
for its interconnection to the sensors and actuators. In the time-triggered
architecture (TTA) the field bus application uses the TTP/A communication
protocol [KHEOO, KHE01, KLH01] for exchange of their data, and therefore
they are called TTP/A applications.

r

sy
st

e
m

1 D
j w
1 o

(

r TTP/A Cluster)

t
TTP/A Master Node

.

RM

_
ssÄpplicatio

fasks\

>

i

\
\

. j

;Ty/ • en) -/'•-}
\ ^

Communication Controller

RM - Resident Monitor

Figure 5.6: Transducer-Level Monitoring

While monitoring of target systems at the transducer abstraction level9 the
monitoring system sends monitoring commands to the resident monitor running
on the interconnected nodes. The resident monitor translates these commands
into the interface file system (IFS) read requests [OMG01]. These IFS read
requests are queued by the resident monitor presented in Figure 5.6 and they are

9The monitoring of target systems at the transducer abstraction level is not the objective
of this thesis.

81

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

transmitted at predefined points in time to the interconnected TTP/A master
that is a gateway node between the host and the interconnected TTP/A cluster.
After processing of IFS read requests the results returned by the TTP/A master
are transmitted by the resident monitor to the central monitor, where they are
further processed.

5.3.4 Overview of Monitoring at different Abstraction
Levels

At the cluster abstraction level the monitoring system has to collect the net-
work monitoring data. These monitoring data contain state messages that are
gathered from the message area and status information that are collected from
the status/control area of the monitoring node. The state messages and the
status information are regular monitoring data and therefore the monitoring
system can exactly calculate the amount of them within one cluster cycle. Fur-
thermore, the network monitoring data contain event messages that also are
collected from the message area of the monitoring node. However, the observa-
tion rate of the event messages is sporadic and therefore the monitoring system
can only calculate the Awe A of these monitoring data (see Section 4.3.1).

The monitoring at node abstraction level is classified into the 05 and appli-
cation abstraction level. The latter is classified into task and function abstrac-
tion levels. At the OS abstraction level the monitoring system has to collect
pure monitoring data (see Section 4.3.2). Among other things, these moni-
toring data contain observation over entities that characterize the state of the
dispatcher, i.e., the dispatching of either tasks or ISR. The monitoring data
that describe the dispatching of tasks are regular and therefore the amount of
them within a cluster cycle can be exactly calculate. The monitoring data that
describe the ISR are sporadic, which means that only the AWCA can be calcu-
lated. At the task abstraction level the the monitoring system has to collect
node global data. These monitoring data contain input and output messages of
tasks that can be gathered from the following sources: i) FT CNI, ii) applica-
tion, and iii) environment of the real-time application (see Section 5.3.2). The
amount of these monitoring data within a cluster cycle can be exactly calcu-
lated, because they are regular monitoring data. At the function abstraction
level the monitoring system has to collect local node and pure monitoring data.
These monitoring data contain intermediate values (or auxiliary outputs), and
monitoring data that are generated by the instrumentation code inserted into
functions, e.g., function IDs. However, we can only calculate the AWCA of
these data, because they are sporadic.

At the cluster abstraction level the monitoring data are gathered by the
monitoring-node gathering method, i.e., the monitoring data are collected from

82

5 Monitoring of Time-Triggered Systems 5.3 Monitoring Abstraction Levels

Abstraction Levels

Cluste
L

N
od

e
A

bs
tr

ac
tio

n
Le

ve
l

îr Abstraction
.evel

OS
Abstraction

Level

A
pp

lic
at

io
n

A
bs

tr
ac

tio
n

Le
ve

l
Ta

sk
A

bs
tra

ct
io

n
Le

ve
l

Fu
nc

tio
n

A
bs

tra
ct

io
n

Le
ve

l

MD

Network
MD

Pure
MD

Global
Node
MD

Lo
ca

l N
od

e
an

d
P

ur
e

M
D

Gathering
Source(s)

State Messages
(MGA) + Status
Messages (SCA)

Event Messages
(MGA)

D
is

pa
tc

he
r

Tasks

ISR

FTCNI

Application

Environment

Functions or
Modules

Observa-
tion Rate

Regular

NR/
Sporadic

Regular

NR/
Sporadic

Regular

NR/
Sporadic

Amount
Prediction

Exact
Calculation

AWCA
Calculation

Exact
Calculation

Calculation

Exact
Calculation

AWCA

Calculation

Gathering
Methods

Monitoring
Node

Method

OS
Method

OS
Method

In-Line
Method

Instr.

No

OS
only

OS
only

A
pp

lic
at

io
n

Influen.

No

Yes

Yes

Yes

MGA - Message Area

SCA - Status/Control Area

Instr. - Instrumentation of the Target System

MD - Monitoring Data

NR - Non-Regular MD

WCA - Worst-Case Amount

ISR - Interrupt Service Routine

Influen. - Influence on the Target System

Figure 5.7: Monitoring Abstraction Levels - Overview

the monitoring node's CNI. At the OS and the task abstraction levels the mon-
itoring system has to use the OS gathering method for collecting of monitoring
data. At the function abstraction level the monitoring system uses the in-line
gathering method for gathering of needed monitoring data.

During monitoring at the cluster abstraction level the target system is not
instrumented and therefore not influenced (no overhead is caused by the moni-
toring system). At the OS and the task abstraction levels only the OS must be
instrumented. At these abstraction levels the resources of the target system are
occupied by the monitoring system during gathering of monitoring data. At
the function abstraction level the target application must also be instrumented.
However, the influence of the monitoring system makes the target system more
complex, but this influence is deterministic because system resources (CPU
time, memory, communication bandwidth, etc.) are allocated for these pur-
poses during the setup phase. Therefore, this influence does not change the
behavior of the target system neither in the temporal nor in the value domain.

An overview of the presented monitoring system at different abstraction
levels is presented in Figure 5.7.

83

5 Monitoring of Time-Triggered Systems 5.4 Monitoring of Multiple Clusters

5.4 Monitoring of Multiple Clusters

Real-time computer systems are used for controlling of complex physical pro-
cesses. The complexity of real-time computer systems depends on the complex-
ity of the physical processes which they have to control. In order to reduce the
complexity of these real-time computer systems, they have to be decomposed
into subsystems, i.e., clusters that are designed to control dedicated parts of the
whole complex physical system. Therefore, one of the basic requirements for
the presented monitoring system is the capability for simultaneously monitoring
of target systems that consist of multiple clusters. The distributed monitor-
ing system must have the capability of monitoring each of the interconnected
clusters at the abstraction levels presented in the previous section.

5.4.1 Interconnection Topologies

A prerequisite for successful monitoring of target systems that consist of more
than one cluster is their interconnection and their external synchronization.
Depending on the fact how multiple clusters are interconnected to each other
and how the monitoring system is interconnected to these clusters, we define
two different topologies for interconnecting multiple clusters: parallel and cas-
cade topology. The role of gateway nodes (see Section 3.2) depends on the
interconnection topology. This role will be separately explained for parallel
and cascade topology.

Parallel Topology

Definition 5.6 - (Parallel Interconnection Topology): We define the
type of the interconnection topology of multiple clusters as parallel, if the mon-
itoring system is directly connected to each of the interconnected clusters to be
monitored.

In the parallel topology the activities of gateway nodes are limited to two basic
activities (see Section 3.2). These activities are:

• exchange of inter-cluster messages between interconnected clusters, and

• external synchronization of interconnected clusters.

In Figure 5.8 an example of a parallel interconnection topology between
a target system and the monitoring system is presented. In this example,
the target system consists of three clusters, which are interconnected by two
gateway nodes. Monitoring system is directly connected to each of the clusters
(and gateways do not relay monitoring data).

84

5 Monitoring of Time-Triggered Systems 5.4 Monitoring of Multiple Clusters

Monitoring
System

I
Cluster 1 Cluster 2

* Gateway <-
Ï Cluster 3 >-;cf

V^ Gateway /<~-

GPS, Galileo

— data link
time synchronization link

Figure 5.8: Interconnection of Multiple Clusters - Parallel Topology

Advantages. The advantages of a parallel interconnection topology are:

Role of Gateway Nodes: Gateway nodes do not have to exchange monitor-
ing information10 between interconnected clusters.

High Amount/Rate of Monitoring Data: The amount of collected moni-
toring data within an observation interval is limited only by the capacity
of event channels of each interconnected cluster (see Section 3.3).

No Additional Impact: Only the clusters that are currently monitored are
influenced. This influence depends on the abstraction level at which the
target clusters are monitored (see Section 5.3). The other clusters are
not influenced at all.

Disadvantages. The disadvantages of a parallel interconnection topology is
the high number of links that must be used by the monitoring system for
interconnection to all interconnected clusters. The number of data links is
equal to the number of interconnected clusters. Furthermore, this high number
of needed links can lead to problems of space nature, because in an already
assembled target system for example, the user cannot install additional links
that are needed by the monitoring system.

Cascade Topology

Definition 5.7 - (Cascade Interconnection Topology): We say that the
interconnection topology of multiple clusters is of type cascade, if the monitor-
ing system is directly connected to only one cluster and to others via (multiple)
gateways.

10 Monitoring information contain both the monitoring commands and collected monitoring
data.

85

5 Monitoring of Time-Triggered Systems 5.4 Monitoring of Multiple Clusters

In the cascade topology the monitoring system is interconnected only to one
cluster of the target system that consists of multiple clusters. This cluster is
called gate cluster (in Figure 5.9 the cluster 1 is the gate cluster), because it
is the gate of the monitoring system to other clusters of a target system.

first route

Monitoring
System

->| Cluster 1 |<-

i Gatewayl2 < : ;

\ Cluster 2 (;

— data link
time sync

r
Sateway3

;hronizat

second route Y W J ^ ^ J

1 L_~ ^ ^ &
, * v i GPS, Galileo

TT"
\ Cluster 3

on link

Figure 5.9: Interconnection of Multiple Clusters - Cascade Topology

In Figure 5.9 an example of a cascade interconnection topology between a
target system that consists of multiple clusters and the monitoring system is
presented. The target system consists of three clusters that are interconnected
by three gateway nodes. In the cascade topology gateway nodes are respon-
sible for external synchronization of interconnected clusters and for exchange
of inter-cluster messages, which contain not only application messages but also
monitoring data and commands.

Definition 5.8 - (Monitoring Route): Let A and B be two different points
within the target system. We call the connection between these two points the
monitoring route, if the connection between these two points contains at least
one cluster. A monitoring route that contains only one cluster is called simple,
while a monitoring route that contains more than one cluster and gateway nodes
is called complex monitoring route (see Figure 5.10).

Cluster 1
B

simple monitoring route

A
Cluster 1 Vv Gateway,., > Cluster 2

complex monitoring route

Figure 5.10: Monitoring Routes

86

5 Monitoring of Time-Triggered Systems 5.4 Monitoring of Multiple Clusters

The monitoring system uses monitoring routes to get monitoring access to
the interconnected (destination) clusters of a target system, because it is not
directly connected to each cluster. A monitoring route is characterized by two
main characteristics: monitoring capacity and propagation delay.

Capacity of Monitoring Routes: The monitoring capacity is formally pre-
sented in Equation 4.9 (see Section 4.2.1). This definition can be applied
for description of the monitoring capacity of simple monitoring routes.

For complex monitoring routes we define the capacity as follows:

Definition 5.9 - (Capacity of a Complex Monitoring Route): For
a complex monitoring route that consists of Nr simple monitoring routes
the monitoring capacity equals the capacity of the simple route that has
the smallest monitoring capacity, i.e.,:

Cr = mm(Ci),ie(l,Nr) (5.8)

Cn denotes the monitoring capacity of the ith simple monitoring route.

Propagation Delay: The propagation delay of a monitoring route is the du-
ration between the point in time when the monitoring system starts a
monitoring action on the remote cluster, i.e., it sends a command to the
remote cluster, and the point in time when the monitoring system re-
ceives the collected monitoring data from the remote cluster through the
monitoring route. The propagation delay must be taken into account
by the monitoring system, in case different clusters shall be observed
within the same time interval. The monitoring system sends sends one
command (multicast) to all clusters11 with an action time at which they
shall start sending the collected monitoring to the monitoring system. In
TTA systems the propagation delay of a simple route is bounded with
the duration of one TDMA round. The propagation delay of a complex
monitoring route is denned as:

R

Psdi denotes the propagation delay of the ith simple monitoring route, R
denotes the number of simple monitoring routes.

11 This command contains an address part that is organized similar to the membership (see
Section 3.5), i.e., each cluster has a corresponding bit in the address part. The cluster is
considered as addressed if the corresponding bit in the address part is set.

87

5 Monitoring of Time-Triggered Systems 5.4 Monitoring of Multiple Clusters

In time-triggered systems both of these parameters are known in advance,
because they can be fetched out from the cluster design database (see Sec-
tion 3.2.1). The monitoring system during the setup phase for each inter-
connected cluster must search the best monitoring route(s), which have the
sufficient capacity and the shortest length12, over which the monitoring data
will be transmitted. The shorter the monitoring routes are, the lower is the
influence of the monitoring system on their clusters. This search is done by the
monitoring router.

In Figure 5.9 a target system is presented that contains three clusters inter-
connected by three gateway nodes. The target system contains two different
monitoring routes called first and second monitoring route, over which the
monitoring system can reach cluster 2. If the capacity of the first monitoring
route is not sufficient for monitoring of the cluster 2, then the second moni-
toring route must be also used, even though this will affect cluster 3 and its
neighbor gateway nodes.

Advantages. The main advantage of the cascade interconnection topology
is the use of only one connection link from monitoring node to monitored
application system to get access to different target clusters.

Disadvantages. The disadvantage of this topology are the bandwidth oc-
cupation in different clusters and gateways, and the necessity of relaying of
monitoring data in gateways. The amount of monitoring data within an ob-
servation interval that can be collected using this interconnection topology is
limited by the monitoring capacity of monitoring routes used to get access to
the target clusters.

5.4.2 Parallel vs. Cascade Topology

The monitoring system must support both interconnection topologies, parallel
and cascade, presented above. Both of these topologies have their advantages
and disadvantages. Therefore, the user must make the decision, which topology
he must select. This selection depends on the monitoring intention and on the
network architecture of the target system. For example, the parallel topology
can be used if the monitoring system can be directly connected to each of
the clusters. Otherwise, e.g., if physical access to one of the clusters is not
possible (or overly expensive) the cascade topology must be selected. One has
to be prepared to deal with bandwidth limitations (may be higher efforts to
get necessary monitoring data) if the cascade topology is used.

12The transmission of monitoring data can be splitted over different monitoring routes.

5 Monitoring of Time-Triggered Systems 5.5 Debugging Support

Another approach is the support of the hybrid topology by the monitoring
system. The hybrid topology combines both the topologies presented above.

5.5 Debugging Support

There are two different techniques that can be applied for debugging of time-
triggered systems: distributed breakpoint, and deterministic replay. The objec-
tive of this section is to present a brief description of these techniques.

5.5.1 Distributed Breakpoint

The key point of this technique is the substitution of the physical real-time
through the virtual real-time, the progression of which can be "stopped" by
the debugger. This substitution is achieved by the debugger using the control
over the physical clocks of distributed nodes. This substitution is transparent
to the target application. The debugger takes the control over the passing
of the synchronized global time and therefore is able to allow the user to set
breakpoints in distributed time-triggered systems. The target systems on which
this debugging technique can be applied must support the concept of the sparse
time base on which their model of global time must be based. This is the case in
the TTA systems. A detailed description of the application of such a breakpoint
technique in TTA systems can be found in [SA02].

The main disadvantage of this debugging technique is the need for simula-
tion or emulation of the external environment (sensors and actuators) of the
target system. However, it is worth noting that the simulation of the external
environment is common practice during the development phase of real-time
systems.

5.5.2 Deterministic Replay

The deterministic replay enables the user to deterministically reproduce the
run-time behavior of the target system at an given abstraction level based on
run-time information that has been gathered in an earlier monitoring process.

Replay at Cluster Abstraction Level

At the cluster abstraction level the monitoring system must be able to visual-
ize all messages that are exchanged among interconnected nodes via the shared
communication media. In time-triggered systems the replay process at the

89

5 Monitoring of Time-Triggered Systems 5.6 Chapter Summary

cluster abstraction level is deterministic because these systems are based on a
deterministic transmission scheme, i.e., each interconnected node sends its mes-
sages at predefined points of synchronized global time. The monitoring system
must offer the user the capability for navigation over the time axis in order to
display the activities of each interconnected node during the replaying process.
Furthermore, the monitoring system must support the visualization of mes-
sages on different abstraction levels, e.g., agreed and raw values of exchanged
messages, membership of nodes, etc. (see Chapter 7).

Replay at Node Abstraction Level

The deterministic replay can be used at the node abstraction level to help the
user debugging the target application's tasks. During the monitoring process
the input and output of tasks running at a particular node are collected. During
the debug process the debugger redirects the input of tasks to the logging
files that contain the input and output information of tasks which have been
collected at the run-time. This means that we can debug a task with the same
input which the task did have during the monitoring process. The debugger
must be able to navigate over the time axis of the global synchronized time with
the step equal to the granularity of the synchronized global time. Another
requirement of the monitoring (debugging) system is the availability of the
monitoring data collected at the cluster abstraction level during the monitoring
process..

5.6 Chapter Summary

In this chapter we presented the real-time monitoring for the time-triggered
target systems. We started with a presentation of the requirements and the
assumptions. In addition, we presented the abstraction levels at which these
systems can be monitored: i) cluster, ii) node, and iii) transducer abstraction
level. For each abstraction level we presented the monitoring data that need to
be collected for successful representation of the run-time behavior of the target
system. The implementation of these concepts is the focus of chapters 7 and 8.
Moreover, we presented the concepts for monitoring of time-triggered systems
that consist of multiple clusters. We showed that there are different topologies
for interconnection of the monitoring system to the target clusters. We also
showed that one can develop a deterministic monitoring system that is able to
predict its interference on the target system in advance, i.e., during the setup
phase. This prediction is based on the knowledge about the expected amount
of needed monitoring data within the observation interval, and the gathering
methods used for collecting of these data at the intended abstraction level.

90

Chapter 6

Real-Time Triggers

The amount of monitoring data, especially during long-term monitoring, can
be enormous. An alternative to storing enormous amounts of monitoring data
is the use of the real-time trigger system (RTTS) that allows the user to store
data of interest selectively. The RTTS records system operation of target real-
time system (RTS) only in time windows of interest, around significant events.
It does so by permanently buffering observations and checking for predefined
significant events in real-time (RT).

The chapter describes the details of the RTTS and the method for defining
and using of its trigger conditions. Section 6.1 presents the objectives and the
used terms. Section 6.2 presents the proposed triggers. The trigger definition
language (TDL) that is used for definition of trigger conditions is also part of
this section. The triggered actions are dealt with in Section 6.3. Section 6.4
deals with the evaluation of the defined triggers. A summary closes this chapter.

6.1 Objectives and Terms

The intent of the monitoring system is on the one hand to collect all needed
monitoring data and on the other hand to keep small the amount of monitoring
data for disk space and bandwidth reasons. As depicted in Chapter 4.3.1, the
amount of monitoring data among other things also depends on the length of
the observation interval. The longer the observation interval is, the higher is the
amount of monitoring data. This could be a problem for long-term monitoring,
because the long-term monitoring requires a (very) high disk storage.

An alternative to storing enormous amount of monitoring data is the use
of the RTTS that stores data of interest selectively. The RTTS records system
operation of the target RTS only in time windows of interest, around significant

91

6 Real-Time Triggers 6.2 Triggers

significant time point r e a | . t i m e >

U
recording interval

Figure 6.1: Logging Window (Recording Interval)

events. It does so by buffering of observations and looking for significant events
in real-time (RT).

A significant event is defined as an event of interest, which has to be de-
fined by the user of the monitoring system. Examples of such events are: the
temperature of a controlled physical system or the velocity of a (controlled)
car exceed their allowed limits. The time point, at which a significant event is
found, is called the significant time point. The time interval during which the
collected monitoring data are recorded by the RTTS is called recording interval
or logging window (see Figure 6.1).

The RTTS in conjunction with the abstraction levels presented in the pre-
vious chapter (especially the node abstraction level) can also be used for both
(long-term) on-line diagnosing and off-line analyzing of target systems. An-
other important usage of the RTTS is the run-time correctness checking of the
target systems. The significant events the RTTS has to look for in this context
are the violations of the system invariants that must be always fulfilled by the
target system.

6.2 Triggers

The description of significant events is done by the trigger conditions (see be-
low) that are checked repeatedly by the RTTS. Each time when the evaluation
of a trigger conditions yields true, i.e., a significant event is found, the as-
sociated action is executed [SmaO4]. The associated action has to record the
monitoring data collected around the significant event, i.e., monitoring data
that are collected within the logging window.

6.2.1 Trigger's Attributes

The triggers used by the RTTS consist of four attributes: name, priority,
condition, and action.

Trigger Name: The name is used for trigger identification and consists of
any alphanumeric character combination. A trigger cannot be defined
without a definition of its name, because anonymous triggers are not

92

6 Real-Time Triggers 6.2 Triggers

supported. Each time when the evaluation of a trigger yields true, i.e.,
a significant event is found, the user will receive a message that contains
both the significant time point and the name of the trigger.

Trigger Priority: The priority can take any non-negative integer value and
it is defined by the user. The smallest priority is equal to 1. If we
define more than one trigger, their evaluation precedence depends on
their priority, because the triggers are sorted by priority, before they
are evaluated. In overload conditions the lower priority triggers are not
evaluated. However, in this case the user will be informed about the
triggers that were eliminated from the trigger evaluation list.

Trigger Condition: The trigger condition is defined by the user using the
trigger definition language presented in Section 6.2.2 (see also Sec-
tion 7.3.1). The trigger condition describes the significant event that
has to be looked for by the RTTS.

Triggered Actions: The triggered actions are executed by the trigger system
in case the trigger condition holds. Triggered actions are dealt with in
Section 6.3.

6.2.2 Trigger Definition Language

Trigger conditions are defined in the trigger definition language (TDL). The
syntax and semantic of this simple language has many similarities with the
syntax and semantic of the C programming language. Most operators avail-
able in C can be used in TDL expressions for defining trigger conditions. TDL
expressions can contain the most binary and unary operators found in C. TDL
also offers some predefined mathematical constants such as IT and e. Further-
more, a TDL expression can contain system objects, which are the names of
messages that are exchanged among the interconnected nodes, or the names of
internal variables of a given node, depending on the intended abstraction level
at which the target system is monitored. TDL does not support the following
C operators: assignment operators and their derivations: ++, —, +=, -=, *=,
/=,% =, ternary operators: ? :, indirection and address operators: * and &.

Furhter, TDL supports an instance index operator @ [] that is not derived
from C. This operator allows the RTTS to access instances1 of system objects
from previous repetition units2. This operator belongs to the unary operators

1In case of TTA systems this operator allows the RTTS to access message instances sent
in previous TDMA rounds.

2In real-time systems tasks are executed periodically. This time period in the context of
the RTTS is called a repetition unit. In case of TTA systems the repetition unit is equivalent
to a TDMA round.

93

6 Real-Time Triggers 6.2 Triggers

and can be applied only to system objects. It takes a non negative integer n
as parameter that refers to the instance of the system object that was sent in
the nth repetition unit in the past relative to the current repetition unit. This
operator is checked by the RTTS during the trigger definition, and the user
will get a warning, if this parameter exceeds the size of the underlying buffer
used to hold the collected monitoring data.

In the following example, the use of the instance index operator is shown.

msgi@[l] == msgi (6.1)

In this example, the content of the previous instance of the msgi must be
equal with the content of the current message instance. In this case the trigger
condition fires, if the content of the last instances of the msg\ has not been
changed. To get the content of the current instance of the msgi the instance
index operator with zero as parameter can be used, i.e., msgi is equivalent to

TDL expressions may also contain predefined functions. The supported
functions are classified into void, unary, and binary functions depending on the
number of passed parameters. Most functions that can be found in the C math
library can be also used in TDL expressions. The most important predefined
functions are time functions that return the occurrence time of an actual event.
For example the $time_in_usec function returns the number of microseconds
that passed since the start of the monitoring session.

The syntax of functions supported by the TDL is equal to the C syntax.
The passed parameter(s) can be constant or complex expressions, i.e., other
functions or nested expressions. Parameters are passed to functions using the
call-by-value convention.

Predefined Constants

Table 6.1 contains the predefined constants that are supported by the TDL.

| Symbol
$PI
$E

Description
7T

e

Value
3.141
2.718

Table 6.1: TDL Predefined Constants

Unary Operators

The unary operators that are supported by the TDL are presented in Table 6.2.
These operators are listed in descending order of precedence. Their associativ-

94

6 Real-Time Triggers 6.2 Triggers

ity is r ight- to- lef t .

Symbol

!
-
+

Description
bitwise complement
logical NOT
unary minus
unary plus

Example
expr

! expr
- expr
+ expr

Table 6.2: TDL Unary Operators

Binary Operators

The binary operators that are supported by the TDL are presented in Ta-
ble 6.3. These operators are listed in descending order of precedence. Their
associativity is lef t - to-r ight .

Symbol
*
/
7.
+

«
»
<

>

! —

&

1
&&
II

Description
multiplication
division
modulus
addition
substraction
bitwise left shift
bitwise right shift
less than
less than or equal
greater than
greater than or equal
equal to
not equal to
bitwise AND
bitwise XOR
bitwise OR
logical AND
logical OR

Example
exprl * expr2
exprl / expr2
exprl % expr2
exprl + expr2
exprl - expr2
exprl « expr2
exprl » expr2
exprl < expr2
exprl < expr2=
exprl > expr2
exprl > expr2=
exprl = expr 2=
exprl ! expr2=
exprl & expr2
exprl " expr2
exprl I expr2
exprl && expr2
exprl |I expr2

Table 6.3: TDL Binary Operators

Void Functions

Table 6.4 shows the parameter less (void) functions of the RTTS.

95

6 Real-Time Triggers 6.2 Triggers

Function
$time_in_usec
$time_in_msec
$time_in_sec
$time_in_min

Description
time in microseconds
time in milliseconds
time in seconds
time in minutes

Table 6.4: TDL Void Functions

$time_in_usec: This function returns the number of microseconds relative to
the start of the monitoring session.

$time_in_msec: This function returns the number of milliseconds relative to
the start of the monitoring session.

$time_in_sec: This function returns the number of seconds relative to the
start of the monitoring session.

$time_in_min: This function returns the number of minutes relative to the
start of the monitoring session.

Unary Functions

Table 6.5 shows the unary functions supported by the RTTS.

Function
$fabs
$acos
$asin
$ceil
$cos
$cosh
$exp
$floor
Slog
SloglO
$_logb
$sin
$sinh
Ssqrt

Description
absolute value
calculate arccosine
calculate arcsine
find integer ceiling
calculate cosine
calculate hyperbolic cosine
calculate exponential function
find largest integer less than or equal to arg
calculate natural logarithm
calculate base-10 logarithm
extract exponential value of argument
calculate sine
calculate hyperbolic sine
find square root

Table 6.5: TDL Unary Functions

96

6 Real-Time Triggers 6.2 Triggers

Binary Functions

Table 6.6 shows the binary functions of the RTTS.

Function

$_hypot
$logb
$fmod
$pow
$ min
$ max

Description

calculates hypotenuse of right triangle
calculates base-b logarithm of x [logb(x, base)]
finds floating-point remainder
calculates value raised to a power
returns smaller of two values
returns larger of two values

Source

Math library
System library
Math library
Math library
Math library
Math library

Table 6.6: TDL Binary Functions

TDL in EBNF Form

The syntax of the trigger definition language (TDL) in an extended Backus-
Naur form (EBNF) annotation:

/*decimal, float and hexadecimal constants*/
__dec: [0-9]
„ f l o a t : [0-9] ". " [0-9]
__hex: [a-fA-FO-9]

msg_names: [a-zA-ZO-9]*
__status_info: [a-zA-ZO-9] *

/*predefined constants*/

peon: $PI I $E

/•constants*/

const: dec I float I hex peon

/*system objects*/

sys_obj: msg_names I status_info I etc.

/*unary and binary operators*/

__uop: "~" I "!" I "-" I "+"
__bop: "*" I "/" I "7." I "+" I "-" I " « " I

" > > " I " < " I " < = " I ii>» I » > = » I » = =

I " i = » I » f t » I » ~ » I » I » I » & & " I " I

97

6 Real-Time Triggers 6.2 Triggers

/*unary and binary expression*/

uexp: uop (expr)

bexp: (expr) bop (expr)

/*complex expression*/

expr: uexpr I bexpr I const I sys_obj I func

/*void, unary and binary functions*/

vfunc: const $fname "(" ") "

ufunc: const $fname "(" expr ") "

bfunc: const $fname "(" expr "," expr ") "

/*functions*/

func: vfunc I ufunc I bfunc

/*instance index operator*/
@[] : sys_obj "@[" expr "] "

6.2.3 Trigger Conditions

The trigger conditions are used to define the significant events that must be
found in real-time by the RTTS. For the rest of this thesis the notions trigger
conditions and trigger expressions will be used alternatively. The trigger con-
ditions are evaluated periodically, i.e., after each repetition unit. The result
of the evaluation of trigger expressions is always of boolean type. The trigger,
i.e., the significant event described by the trigger condition, is considered to be
found, if the result of the evaluation process of the trigger condition is true.

The trigger cascading is defined by Eriksson [Eri97] as a process, during
which events might be raised that could trigger other rules, when actions are
executed, or even when conditions are evaluated. This cascade triggering can
continue and might, in the worst case, result in the circular triggering where
rules trigger each other infinitely [Eri97]. The RTTS does not support the
generation of new events that could cause the evaluation of other triggers.
Therefore, the RTTS is immune to the phenomena of trigger cascading. This
immunity of the RTTS is the guarantee that the trigger system will never come
into an infinite loop. Furthermore, the trigger conditions cannot contain loops,
because the TDL does not support them, and therefore the evaluation time of
the trigger conditions is always bounded.

The result of trigger evaluation is considered to be false in case an exception
is generated (e.g., division by zero, etc.) during the evaluation process of trigger
conditions.

98

6 Real-Time Triggers 6.3 Triggered Actions

6.3 Triggered Actions

Each time the evaluation of a trigger condition yields true and its execution
is allowed (see Section 6.4) the associated action is executed.

6.3.1 Action Types

Trigger actions are classified into system and recording actions. System actions
can influence the behavior of the monitoring system. Actions that are used for
recording of collected monitoring data belong to the recording actions.

System Actions

The following actions belong to this action group:

stop_monitoring: The stop „monitoring action stops the monitoring process.
This action can be used in conjunction with the $time_in_usec(or other
time function), to stop the monitoring process after a desired evaluation
time. This action is very helpful during automatic testing of the target
system, during which different test scenarios have to be automatically
executed. The stop-monitoring action has one parameter called future
that denotes the number of repetition units, after which the monitoring
process has to be stopped.

mode_change: The mode-change action starts the internal re-initialization of
the monitoring system, in order to be able to process correctly the mon-
itoring data collected from the target system that has changed its oper-
ational mode. This action has no parameter and executes immediately
when new operational mode of the target system has been detected.

Recording Actions

Recording actions are used for recording of monitoring data collected during
logging windows (see Figure 6.1). Recording actions are classified into three
groups: range-recording, start-recording and stop „recording. The atomic unit of
collected monitoring data that can be recorded by the RTTS is called recording
unit3 and therefore the parameters of the recording actions must be given as

3The recording unit is the smallest unit of monitoring data that are collected within a
repetition unit. In case of TTA systems the recording unit is called round packet, which
contains all monitoring data collected within a TDM A round [SmaO2].

99

6 Real-Time Triggers 6.3 Triggered Actions

(integer) number of recording units. The underlying monitoring system holds
the collected monitoring data in an internal ring buffer for a finite time interval,
after which the old monitoring data are substituted with new ones. Therefore,
the recording actions can store monitoring data collected before the significant
time point, if they are available within the internal ring buffer of the monitoring
system.

range_recording (past_units, future_units): The range-recording action
records a range of monitoring data. The boundaries of the recording
interval (see Figure 6.1) must be defined by the user. These boundaries
are passed to this action as parameters. The parameters of this action
are: past_units and future_units and they represent the number of
repetition units that are collected before and after the significant time
point.

start_recording (past_units, oo): The start-recording action starts the
recording process, which records a finite part of monitoring data that
have been collected before the significant time point. The recording pro-
cess of this action is stopped when either the monitoring session stops
or a stop .recording action is executed. This action has one parameter,
past_units, that represents the number of repetition units collected be-
fore the significant time point. This action can be considered as action
of type range-recording with the second parameter of this action type
considered to be oo.

stop_recording (oo, future_units): The stop-recording action requires pre-
vious start-recording action and stops its execution. This action has one
parameter, future_units, that represents the number of repetition units
be recorded after the significant time point. This action can be considered
as action of type range-recording with the first parameter of this action
type considered to be oo.

After an instance of start-recording action has been started, then only
stop-recording actions are allowed to be executed, because the job of other
possible actions of type range-recording or start-recording will be done by the
actual executed start-recording. If two or more instances of start-recording or
stop-recording action types overlap, they must be converted to range-recording
action type, because actions that belong to the same type can be merged into
new instances.

100

6 Real-Time Triggers 6.3 Triggered Actions

6.3.2 Overlapping of Recording Actions

The detection of significant events depends on the correlated trigger conditions.
Therefore, it is possible that two or more instances of the same or different
recording action types can overlap. Since, all recording action types can be
considered as recording actions of range-recording type, the overlapping process
is explained only for this type.

If two instances of the range-recording action type overlap, a new
range-recording action will result, which has a new range of recording units
that must be stored. Let Ai and A2 with parameters A\\past\ : futurei] and
A2\past2 : future2] represent two actions of type range-recording and t\ and
t2 two significant time points at which the corresponding triggers have been
detected. The following overlap scenarios can happen:

past, t, A, future,
' I ' time ^

past2 t2 A2 future.,

A '

Figure 6.2: Action Overlapping (first scenario)

First Scenario: In this case, the first action A\ is executed before the second
action A2> i.e., t\ < t2. After the merging process of these two actions the
resulted merged range-recording (see Figure 6.2) action has the following
limits:

Ar[ti — pasti : t2 + futur e2] (6.2)

past, t, A, future,
' I ' lime ^

past, tj A2 future.,
, _ _ _ ,

Figure 6.3: Action Overlapping (second scenario)

Second Scenario: The second action is executed before the first action, i.e.,
t2 <t\. After the merging process of these two actions the resulted merged
range-recording (see Figure 6.3) action has the following limits:

Ar[t2 — past2 : ii + futurei] (6-3)

Third Scenario: In this case, both triggers share the same significant time
point, i.e. the triggers, to which these actions belong, are detected at

101

6 Real-Time Triggers 6.4 Trigger Evaluation

the same time. This means that t\ = £2 (see Figure 6.4). In this case
the execution precedence depends on triggers priority. The new merged
range^recording (see Figure 6.4) has the following limits:

min(ti -pasti,t2 - past2) :
max{t\ + futurei, t2 + future2)

past , A future,
I ' ' I ' 1 time

past 2 12 A 2 future 2

A ,

Figure 6.4: Action Overlapping (third scenario)

All recording action types can be considered as actions of rangejrecording
type. Therefore, the above presented scenarios can be applied during the over-
lapping of different recording action types.

6.4 Trigger Evaluation

6.4.1 Trigger Compilation

TDL expressions used for definition of trigger conditions must be compiled off-
line by the RTTS before the correlated triggers can be evaluated. Furthermore,
during this compiling process the RTTS has to generate a trigger evaluation
list, which is a priority ordered list of compiled triggers. This list is used by
the RTTS during evaluation of the defined triggers.

6.4.2 On-Line vs. Off-Line Evaluation

There are two different subsystems of the RTTS by which the defined triggers
are evaluated: on-line logging subsystem, and off-line analyzer.

On-Line Logging Subsystem

The purpose of the on-line logging subsystem is to store monitoring data of
interest selectively during monitoring of the target system. This subsystem
evaluates the defined triggers on-line and if significant events are found it ex-
ecutes the correlated actions presented in previous section. The correlated
actions store selectively monitoring data around the significant events.

102

6 Re&l-Time Triggers 6.5 Chapter Summary

The on-line logging subsystem can be used for on-line diagnosing of target
systems. It can also be used for checking the correctness of the target sys-
tem. The user has to define trigger conditions that describe the violations of
invariants of the target system that must be always fulfilled.

The on-line logging subsystem monitors the resources of the monitoring
system, and eliminates triggers with lower priorities in case resources are not
sufficient for their evaluation.

Off-Line Analyzer

In contrast to the on-line logging system the off-line analyzer does not execute
the correlated recording actions, because the monitoring data has been already
recorded. The purpose of the off-line analyzer is to provide a detailed analysis
on the collected monitoring data. During this analysis specific significant events
in the stored monitoring data can be found. Furthermore, during this detailed
analysis the user has the capability to step forward or backward within the
stored monitoring data stream with respect to the significant time point. The
step resolution is one repetition unit.

6.5 Chapter Summary

In this chapter we have presented the RTTS, which is an intelligent recording
system for real-time monitoring systems. The amount of monitoring data,
especially during long-term monitoring, can be enormous. An alternative to
storing enormous amount of monitoring data is the use of the presented RTTS
that stores data of interest selectively. RTTS records system operation of target
real-time system only in time windows of interest, around significant events. It
does so by buffering and observation for significant events in real-time. RTTS
can also be used for on-line diagnosing and correctness checking of target real-
time systems.

103

Chapter 7

Implementation

This chapter gives a detailed description how parts of concepts presented in
the previous chapters have been implemented. As presented in Figure 5.1
the distributed monitoring system consists of three main parts: resident
monitors, monitoring node, and central monitor. In this chapter only the
parts of concepts are presented that can be found in the software product
TTPview [SmaO2]. The implementation of the other concepts presented in the
previous chapters are the focus of the next chapter.

This chapter is organized as follows: Section 7.1 begins with the presenta-
tion of the monitoring node's implementation. In Section 7.2 the implemen-
tation of the central monitor is presented. Section 7.3 deals with the imple-
mentation of the real-time trigger system, which is a client of the presented
monitoring system. A summary closes this chapter.

7.1 Monitoring Node

As presented in Section 5.2.2, the monitoring node is a gateway between the
target system and the central monitor. The monitoring node is implemented
on a dedicated node, which has the same characteristics as other nodes of the
cluster (see Section 3.2.2). The communication controller of the monitoring
node is tightly synchronized with other cluster nodes. This synchronization
guarantees that the collected monitoring data are temporally consistent (see
Section 2.1.2).

The monitoring node is responsible for collecting of monitoring data that are
needed during monitoring of TTA target systems at the intended abstraction
levels (see Section 5.3). Furthermore, the monitoring node is responsible for
sending monitoring commands to the resident monitors running on other nodes
of the target system (see Section 5.2.2).

104

7 Implementation 7.1 Monitoring Node

Monitoring
Software
A

T X
Communication

Controller

MST - Monitoring Schedule Table

Figure 7.1: Monitoring Node

7.1.1 Monitoring Software

Collecting monitoring data and sending them to the central monitor as well as
the receiving of monitoring commands from the central monitor, and sending
them to the target nodes, is carried out by the monitoring software running on
the monitoring node.

Monitoring MEDL

As presented in Section 3.2.2, the communication controller sends its messages
and receives messages broacasted by other nodes at predefined points in time
based on the information stored in the MEDL. Like other interconnected nodes,
the monitoring node contains a communication controller, which has to collect
all TTA messages1 exchanged among interconnected nodes. To collect all these
messages, the monitoring node needs a MEDL called the monitoring MEDL.
The capability for collecting of all these messages is the difference of the mon-
itoring MEDL to the MEDLs used by other nodes.

The MEDLs of each node, including the monitoring node, are derived from
the cluster database [TTP02b] (see Section 3.2.1). Some of information that
are contained in such a database, and which are important for the monitoring
system, are:

1 TTA messages are used by the interconnected nodes to exchange their information among
them in a given cluster.

105

7 Implementation 7.1 Monitoring Node

• number of nodes in the cluster of the target system,

• byte-order used by the interconnected nodes for transmission of their data
over the shared transmission medium,

• list of messages sent by each node and their time points,

• number of TDMA rounds pro cluster cycle,

• replication level for each message, etc.

Monitoring Schedule Table

The monitoring software running on the host of the monitoring node uses a
Monitoring Schedule Table (MST) for scheduling of its monitoring activities
(see Figure 7.1). Such a table is also derived from the cluster database and
contains the points in time when the monitoring software has to start with the
collection of monitoring data. The communication controller2 at these points
in time triggers the monitoring software activities, which collect the monitoring
data. The MST consists of two or more columns and each column consists of
the following items:

• point in time when columns must be processed,

• addresses in the CNI where received data are stored by the communica-
tion controller,

• addresses within sending buffers where the collected monitoring data
must be stored by the host monitoring software, and

• the sending flag that is used as trigger for sending of collected data to
the central monitor.

Each time when the communication controller generates an interrupt, the mon-
itoring software reads the MST table and finds out the item that must be pro-
cessed at this time. After collecting all monitoring data sent within a particular
TDMA round, the monitoring host software checks the sending flag, which is
used as a sending trigger. The sending flag indicates that all monitoring data
are collected within a particular TDMA round and that they must be sent as
an atomic unit to the central monitor. The monitoring node then goes into
the silent mode and waits for the next activation event to be generated by the
communication controller.

2This information is stored in the monitoring MEDL, and the communication controller
uses this information to generate a user interrupt [TTT02], which triggers the monitoring
activities.

106

7 Implementation 7.1 Monitoring Node

Host Software

In order to guarantee that no instance of any TTA message will get lost, the
monitoring host software must be able to read out timely all received TTA
messages from the monitoring node's CNI (see Figure 7.1). So, the real-time
monitoring software uses the read partition algorithm (RPA), which divides the
CNI of the monitoring node into a limited number of regions. The CNI division
is described by the content of the MST. Each item in the MST describes a region
in the CNI.

The RPA guarantees that the monitoring host software will read out the
collected TTA messages from another region of the CNI, which were received
by the communication controller in previous time window(s), while the com-
munication controller writes the currently received TTA messages into next
region(s). Thus, the usage of this algorithm guarantees that there will be no
conflict between the communication controller and the monitoring host soft-
ware, which concurrently share the same CNI. Moreover, this algorithm guar-
antees that as long as the monitoring node's host is fast enough to timely read
out the collected TTA messages within a given time window, no instances of
TTA messages will get lost. This algorithm requires the CNI to be divided
into at least two regions to guarantee the conflict-free readout of the collected
monitoring data from the monitoring node's CNI.

round k round k+1 round k+2

Figure 7.2: Scheduling of Monitoring Activities

In Figure 7.2 an example of scheduling of monitoring activities based on the
RPA is presented. In this example the CNI of the monitoring node is divided
into two regions. The monitoring host software is triggered by the commu-
nication controller at the beginning of the first and the middle slot of each
TDMA round. In this case the monitoring host software will be triggered at
the beginning of the slot 1 of the round k+1, and it has to read out the TTA
messages that are received by the communication controller within the second
part of the previous round, i.e., within the round k. During this time the com-
munication controller is receiving the TTA messages sent by the interconnected
nodes during the first part of the current round, i.e., round k+1. On the other
hand, when the monitoring host software is triggered at the beginning of the
middle slot of the round k+1, the monitoring host software has to read out the

107

7 Implementation 7.1 Monitoring Node

TTA messages received during the first part of this round. During this time
the communication controller writes the received messages into the second part
of the CM.

7.1.2 Hardware Platforms

As denoted in the previous sections, the presented monitoring system was tai-
lored for the Time-Triggered Architecture (TTA). The key component of this
architecture is the Time-Triggered Protocol (TTP) [TTT02]. Therefore, the
monitoring node was implemented on two different hardware platforms de-
pending on the supported versions of the TTP [TTT99, TTT02]: TTPnode
and TTPMonitoring-Node.

TTPnode - TTP/C-C1 Monitoring Node

The monitoring node implemented using the TTPnode [TTP01] is used for
monitoring target clusters that use the TTP/C-Cl [AS801] communication
controller. TTPnode uses the MC68360 [Mot95b] as a CPU, which is respon-
sible for the execution of the monitoring host software. The monitoring host
software is implemented as a standalone application, because it is not executed
under the control of any operating system.

The communication stack on this hardware platform is implemented using
the Ethernet (10Base-TX) controller MC68160 [Mot95a]. On the basis of such
a communication stack, the monitoring interconnection which is used for the in-
terconnection of the monitoring node and the central monitor, is implemented.
The basic requirement for such an interconnection is a guaranteed transfer rate.
The monitoring node must be able to send the collected monitoring data over
this connection within a predefined time window, because after that it has to
send the new collected one. Therefore, this monitoring node uses a dedicated
Ethernet connection. We have developed a communication protocol presented
in [KSF98, Kuc98], which guarantees a transfer rate up to 4 Mbps. However,
the latest version of such an interconnection is implemented using a special
developed communication layer based on UDP/IP protocol, which is more reli-
able than the older version that was based on the raw Ethernet. Especially this
new interconnection offers new advantages in the central monitor, because this
part can use the well defined socket interface, which is supported by almost all
operating systems.

108

7 Implementation 7.2 Central Monitor

TTP Monitoring-Node - TTP/C-C2 Monitoring Node

The monitoring node implemented using the rTPMom'toring-Node [MN02] is
used for monitoring target clusters that use the TTP/C-C2 [AS898] communi-
cation controller. rrpMonitoring-Node uses the MPC855T [Mot02] as a CPU,
which is responsible for executing the monitoring host software. The moni-
toring host software runs under the control of an embedded real-time Linux.
The monitoring interconnection to the central monitor is done using the Ether-
net connection (100Base-TX), over which the reliable TCP/IP communication
stack is built, which is made available by the operating system.

7.2 Central Monitor

The central monitor (CM) (see Figure 7.3) is implemented on a commercial
off-the-shelf (COTS) system. The CM communicates directly with both the
user and the monitoring node. Moreover, the CM is responsible for analyz-
ing and planning of the monitoring process, and for managing and processing
of monitoring data collected from the target system at the user's intended ab-
straction level. Managing the collected monitoring data is the job of the system
parts (see Section 7.2.1), while the monitoring clients (see Section 7.2.2) are
responsible for the processing of these data. The central monitor presented in
this chapter is implemented in the software product TTPview [SmaO2]. This
tool is being successfully applied in industry for monitoring of distributed hard
real-time TTA systems.

7.2.1 System Parts

The system parts of the central monitor are responsible for the management of
collected monitoring data. The central monitor is implemented on the COTS
system, and therefore it can be considered as a best-effort system. This part
receives monitoring data from the monitoring node and puts them into the
internal buffers for further processing. In this chapter only the implementation
of the monitoring system is presented, which supports the monitoring of TTA
target systems at the cluster abstraction level (see Section 5.3.1), and therefore
the collected data contain only TTA messages that are exchanged among in-
terconnected nodes via the shared transmission medium. These messages must
not be separately time-stamped by the monitoring node, because the monitor-
ing system uses the property of the TTA architecture, in which all activities are
known in advance, including the points in time when TTA messages are sent or
received. Thus, the monitoring system during time-stamping of the collected

109

7 Implementation 7.2 Central Monitor

Fault-Tolerance
and Access Layer

Monitoring CNI History (MCH)

Monitoring Node \ (TTA Target System j

Figure 7.3: Central Monitor

data must only continuously enumerate the TDMA rounds, because the moni-
toring system can derive the observation times of each TTA message from the
given TDMA round. The monitoring system must load the cluster database,
in order to successfully interpret and process the collected monitoring data.

The monitoring system needs to know the amount of monitoring data col-
lected within a cluster cycle, in order to be able to allocate the internal buffer
before the monitoring process is started. The amount of monitoring data within
a cluster cycle is exactly calculated in advance by means of the equation:

N

Ac = (7.1)
t = i j=i fc=i

where, R denotes the number of TDMA rounds within a cluster cycle, N de-
notes the number of nodes, C denotes the number of communication channels3,
ASCA denotes the amount of monitoring data collected from the status/control
area, and Frijk denotes the length of the frame sent during the ith TDMA
round by the]th node on the kth channel.

3The number of replicated channels in the current implementation of the TTP/C proto-
col [TTT02] is limited to two (C = 2).

110

7 Implementation 7.2 Central Monitor

RT Receiver

The Real- Time (RT) Receiver is the most important system part of the central
monitor. The RT Receiver receives all monitoring data sent by the monitoring
node. This system part is implemented as an operating system task and has
the highest priority in the monitoring system. The performance of the whole
monitoring system depends on the performance achieved by the RT Receiver.

RT Recorder

The Real-Time (RT) Recorder stores monitoring data in real-time into trace
files onto the disk. The stored monitoring data can be used by the monitoring
system during off-line analysis. The RT Recorder has to store all received mon-
itoring data. The off-line analysis depends on the availability of the monitoring
data recorded by the RT Recorder.

Monitoring CNI History

Monitoring CNI History (MCH) (see Figure 7.3) is the functional part, which
stores and manages the collected monitoring data received from the monitoring
node. The MCH holds the instances of TTA messages for at least the avail-
ability interval. Within this interval the monitoring clients can use instances of
TTA messages. After this interval the old TTA messages are substituted with
the new one.

The smallest accessible unit of the MCH buffer is the round packet, which
contains all instances of TTA messages sent within a given TDMA round.
The header of such a packet contains the round number that is continuously
incremented by the monitoring node and is used as a unique packet ID. As
denoted above, the time-stamps of TTA messages contained within a given
round packet can be derived from the packet ID.

The size of the MCH depends on the following factors:

Target Application: The size of the MCH depends on the target application,
i.e., the amount of monitoring data that must be collected within an
observation interval depends among other things on the number of entities
of the target application that must be observed.

Monitoring Abstraction Level: The monitoring abstraction level at which
the target system is monitored also influences the size of the MCH, be-
cause at different abstraction levels the amount of monitoring data is
different.

I l l

7 Implementation 7.2 Central Monitor

Availability Interval: The size of the MCH depends also on the availability
interval on which the time of the availability of TTA messages within the
MCH depends.

Machine Resources: The size of the MCH buffer is directly dictated by the
memory resources of the machine on which the CM is executed.

Since this part of the monitoring software is implemented on top of a non
real-time system, it cannot guarantee bounded latency and therefore we cannot
use the real-time to serialize the access on the MCH. To guarantee the logical
data consistency in the MCH buffer, we have to serialize the access to the MCH
using a concurrency control mechanism based on a locking paradigm. The
locking mechanism is applied to each round packet. Each transaction locks the
packet before it starts using it. There are two types of transactions that access
the MCH: write and read transactions. There is only one write transaction,
which is generated by the RT Receiver. The read transactions are generated
by Fault-Tolerance and Access Layer and RT Recorder. The number of read
transactions depends on the number of requests generated by the monitoring
clients. The read transactions must not lock round packets for an "unbounded"
time, because the write transaction must not be blocked for an "unbounded"
time. If a read transaction tries to lock a round packet, which is locked by a
write transaction, it has to wait until the round packet becomes free. On the
other hand, the write transaction will try to find another free round packet,
in the case the round packet is locked by a read transaction. This approach
will never block the write transaction for an "unbounded" time, from which the
performance of the central monitor of the monitoring system depends.

Fault-Tolerance and
Access Layer

Figure 7.4: TTA Agreed Message

Fault-Tolerance and Access Layer

The Fault- Tolerance and Access Layer provides access to TTA messages stored
into the MCH in the same way as they are accessed by a normal TTA applica-
tion running on other nodes. The access to both the raw and agreed values of

112

7 Implementation 7.2 Central Monitor

TTA messages is supported. The raw value of a message is the same value as it
is sent by the sender via the TTA shared transmission medium. Agreed values
are values produced by agreement algorithms presented in [KBP01]. Agreement
algorithms use different instances of the same message (for example, different
sensors used for temperature measuring) and produce an agreed value of the
used TTA message. In Figure 7.4 a scenario is presented, where msgi is sent by
three replica nodes (1-3). The agreement algorithm uses these three instances
of the message msg\ and produces an agreed msg\a reed.

Cluster Cycle k-1 Cluster Cycle k

Figure 7.5: Fault-Tolerance Access Approach

Furthermore, this layer provides a means to access different instances4 of
TTA messages that are stored in the MCH. Depending on the time when the
access request is made this layer provides the search for the desired instance
of a TTA message. Such an approach is presented in Figure 7.5, in which
a scenario is given where different instances of the same TTA message msg\
are sent during the second and the fourth TDMA round of a cluster cycle. If
the user of this message makes a request in round four, the actual instance of
the message sent during this round is used. However, if the user requests this
message in the third round, the value of the message sent during the second
round of the cluster cycle is used, because in the third round this TTA message
is not sent at all.

7.2.2 Monitoring Clients

The collected monitoring data are processed by the monitoring clients, which
are: visualization, scripts, and real-time trigger system.

Visualization Client

The visualization clients provide a graphical presentation of collected monitor-
ing data at different abstraction levels, e.g., the visualization of raw messages,
agreed messages, raw frames (as they are sent via the shared transmission

4The value, which a TTA message has during the transmission in a given TDMA round,
is called the instance of the TTA message.

113

7 Implementation 7.2 Central Monitor

File Edit View Controls Window Scripts Help

e) D & a » 4, g B" & it. m ; TTTech,

New | - ^ra
Name | Condkion

signe J_^r_ ct_2_msg
sianei T f f

I Hosts Ä
B-IS3 hostj ~~
•ij-531 hosl_2
3 S53 host_3

jj= Add_4_unsigned_sub
S (|]= one_valid_3_signed_sub

i Id {j|= one_valid_4_unsigned_sub
• CHÜSÜ one_valid_4_unsigned_gen_sai j

; E n°sl-3
I | l i] - | ï $Status
: ffî ^ one_valid_4_unsigned_gen_tri_
* ESI host_4

13 triggeii one_valid_3_signed_fii_ref_8_msg==111 2
Copy j E3ttigger2 $current_round()==1450 1

Delete

; Priority I Action

Record-Range [range: 35 [rounds in past
Monitoring-Stop [rounds in future: 0]

Update Period £00 P pie example tvd Step (1

Figure 7.6: TTPview - The Real-Time Monitoring System

medium), status area objects (e.g., membership vector), etc. The monitoring
tool (TTPview) offers the user an object browser (see Figure 7.7), which al-
lows fast and convenient access to the messages and status fields, which can be
selected for visualization. There are five object types that can be selected to
define sort order and hierarchy: messages, hosts, subsystems, slots and status
area fields. The hierarchical tree for every object type starts with the object
type name. At the next hierarchy level the selected object type is shown in
alphabetical order.

Message Tree: The first hierarchy level shows the messages agreed by the
fault-tolerant communication layer. The second level in the message tree
consists of the raw values of a message and the message status.

Subsystem Tree: The subsystem tree shows all subsystems of the cluster
at the first level. The next hierarchy level shows the message tree of all
messages sent by the selected subsystem. In addition the replication level
of the subsystem is shown.

Host Tree: The host tree shows the hosts (i.e., nodes) of the cluster at the

114

7 Implementation 7.2 Central Monitor

Subsystems
Hosts

Status Area

I Slots

B-£j Hosts
S~Bü host_1
a- (S3 host_2
B S 3 host_3

= Add_4_unsigned_sub
| one_valid_3_signed_sub
1 one_valid_4_unsigned_sub
2 {5§J one_valid_4_unsigned_gen_sav

; É i i $Status
3 tea one_valid_4_unsigned_gen_tri_

S H 3 host_4 v

5,1

Figure 7.7: Message Tree

top level. The next hierarchy level shows the subsystem trees of the
subsystems executed on the selected host, the host membership status
and the channel status of the host. The channel status is the number of
correct N-frames sent by the host in one TDMA round.

Slot Tree: The slot tree consists of the TDMA round slots at the first hierar-
chy level. On the next hierarchy level the channel status and the frames
sent in the slot are shown. The frames are sorted by round and channel
and are visualized as hexadecimal byte fields. After expanding a frame,
the message raw values contained in this frame are shown and can be
displayed.

Status Area Tree: This tree contains relevant information of the monitoring
node's CNI status area, e.g., membership vector, cluster mode [TTT02].
The snapshot of this area is performed at the end of the TDMA round.

Script Client

The presented monitoring system makes a script interface available, with which
the user can access its functionality within the Python programming language.
Using this interface the user can use the monitoring system during the testing
phase for intensive testing of the target system, because this interface allows
automation of the testing approach. The stop_monitoring action of real-time
triggers can be used for the automation of the testing approach.

115

7 Implementation 7.3 Real-Time Trigger System

IS
Subsystems

__Messaqes____
I

Hosts

StatusArea

I Slots

£ } Hosts
£HH3 host_1

El- l j l l Add_4_unsigned_sub

hosl_1
i j j l $Receiver_Status

[+; ^ Add_4_unsigned_fir_des_32_msg
Add_4_unsignedjir_ref_1_msg
Add_4_unsigned_rïr_ref_32_msg
Add_4_unsigned_mod_32_msg

I Average_2_signed_sub
IjjË one_valid_3_signed_sub

Ë one_valid_4_unsigned_sub
E 3 host_2
&}• j j j | Add_4_unsigned_sub
É I I Average_2_signed_sub
LtH| | | one_valid_3_signed_sub
ï+ ! (| i | one_valid_4_unsigned_sub

host_3

r T rigger —

Name |trigger2

Condition

Prioiitji |1

$curtenl_tound0==0x5AA

Action -

Type | Record-Range j j Paiametet...

OK I ; Cancel

Figure 7.8: Definition of Triggers in TTPview

7.3 Real-Time Trigger System

The real-time trigger system is implemented as a monitoring client on top of
the presented monitoring system (TTPview) (see Figure 7.3).

7.3.1 Trigger Definition

For defining triggers in TTPview the user can use either the GUI (see Fig-
ure 7.8) or the script interface. After all trigger components are defined, then
the condition is parsed by the parser and if all components are correct, then
the new trigger will be added into the trigger list (see Figure 7.9). This list of
defined triggers is used by the parser for generating the trigger evaluation list
(see Section 6.4.1).

. . . - » M n i «I
^ _ - " " - " - " • — • - — • * _ " '

N e w I Name [Condition 1 Priority "["Action ^_^

— — — 0tiigger1 one_valid_3_signed_fi!jeF_8_rnsg™0xSF 1 Record-Range [range: 35 [rounds in past 10. rounds in future: 25]]

Copy j B lijggeß tcurrentjoundü==0x5M 2 Monitoring/Stop [rounds in lulure: 0]

Delete I
1><)!,,„ „ __ "'";'".:...in?"'. ' ~ '•'/... : il L>

Figure 7.9: Trigger List

116

7 Implementation 7.3 Real-Time Trigger System

7.3.2 Trigger Evaluation

Currently, the RTTS is implemented as an operating system's thread. In case
a significant event is found, i.e., if the trigger's condition holds, then a message
is displayed that informs the user over the detected trigger. In Figure 7.10

« I Round Description
Clear - - * — — — ™ * ~ K •

GOO Trigger detected: !modulo_300
900 Trigger detected: !nnodulo_300
1200 Trigger detected: !modulo_300
1500 Trigger detected: !modulo_300

< i" ;; ;;; 'm~ j >_]__

Figure 7.10: Trigger Detection List

the list of detected triggers is presented, during evaluation of the !modulo_300
trigger by the trigger engine. This trigger has the condition

$current_round () 1 300 == 0 (7.2)

and it has been evaluated within a trace with limits: 578 and 1600 TDMA
rounds. The information messages contain the number of the TDMA round at
which the trigger was detected and the name of the detected trigger.

If there are not enough resources needed for the trigger evaluation, i.e., the
machine is overloaded or it is not fast enough, the RTTS sends an information
message to the user that the defined triggers cannot be evaluated in every
round. In this case the trigger with the smallest priority will be deleted from
the trigger evaluation list.

Each recording action has to record a logging window, which contains data
collected before and after the significant time point. The RTTS closes the actual
logging window after all monitoring data that belong to the actual window have
been recorded. The closed logging window is then put into the list of the logging
windows. This list is appended into the trace file, where the logging windows
are recorded. The monitoring system uses this list for interpreting of recorded
trace files in the off-line mode.

<•*>

&\\ m l i e * | » I Ï I m II M i r » .] | Curent Hound]112 Tiace Stall j f f i f "

Update Period J200 P (File: uiMei_liace.tvd Step p j Round in CC p TiaceEnd p427~

Figure 7.11: Trace Control - List of Logging Windows

Figure 7.11 presents the Trace Control which, among other things, is respon-
sible for loading of recorded traces in TTPview (see Figure 7.11). It displays

117

7 Implementation 7.4 Chapter Summary

two different sliders, the lower and the upper, which are alternate colored. Due
to triggering, a trace is not a continuous stream of collected monitoring data,
but can consist of several blocks, i.e., logging windows. The lower slider shows
the trace relative to the point in time of the monitoring start and with temporal
correct spaces between logging windows. The upper slider displays the zoomed
marked section of lower slider without inter-logging windows spaces.

7.4 Chapter Summary

This chapter described the implementation of the parts of concepts presented
in the previous chapters that can be found as features of TTPview monitoring
tool. We started with the presentation of the monitoring node's implementa-
tion, during which we paid special attention to the read partition algorithm.
The read partition algorithm is used by the monitoring node's host software
for conflict-free reading of monitoring data from the monitoring node's CNI.
Furthermore, we presented two different hardware platforms that are used for
the implementation of the monitoring node.

Another objective of this chapter was to present the implementation of
the central monitor that was implemented in the software product TTPview.
TTPview is successfully being applied in industry for monitoring of TTA safety-
critical real-time systems.

118

Chapter 8

Case Study

This chapter describes the concrete monitoring application. This monitoring
system serves as a case study for the concepts that have been presented in the
previous chapters. It provides the capability to monitor the target systems
at the OS and node abstraction level. The brake-by-wire (BBW) application
developed by Volvo Technological Development is used as a target application.

The objectives of this chapter are presented in the next section. Section 8.2
starts with the description of the hardware and software setup of the target
system and continues with the presentation of preparation steps needed for
monitoring the target system. Furthermore, this chapter deals with the col-
lection, processing and presentation of monitoring data collected at the above
mentioned abstraction levels.

8.1 Motivation and Objectives

The user can get in insight into the behavior of a particular node by means of
the concepts of monitoring of target real-time system at the node abstraction
level (see Section 5.3.2). There are potential faults in both time and value
domain that cannot be detected without the usage of monitoring systems. An
example of such faults in the time domain is the deadline violation of tasks
during the development of a new real-time system caused, for example, by an
implementation bug in a new applied algorithm. In the value domain such a
fault can be caused, for example, through an erroneous assumption over the
limits of the range of values returned by the applied sensor or algorithm. These
faults can be detected by means of the concepts presented in this thesis that
enable the visualization of the dispatcher's activity, the measurement of the
execution-times and the visualization of inputs/outputs of the scheduled tasks.
The implementation of these concepts is the focus of this chapter.

119

S Case Study 8.2 System Setup

The objective of this chapter is to show that:

• the concepts presented in the previous chapters (that are not implemented
in the TTPview[SmaO2]) are implementable,

• the expected amount of monitoring data within an observation interval
during monitoring of target systems at the OS and the task abstraction
level can be calculated in advance, and

• the code that implements these concepts has to use resources that are
either reserved for monitoring purposes during the design phase, or an
predefined amount of unused resources from an already developed target
system. The resources needed for monitoring at each intended abstraction
level can be calculated in advance. However, the amount of them is of
course limited.

The long-term diagnosing and the on-line correctness checking of TT target
systems can be successfully performed by mean of concepts presented in the
previous chapters, especially the combination of the real-time triggers system
(see Chapters 6 and 7) and the node abstraction level (see Section 5.3.2). The
RTTS has to look for significant events that describe the invariants of the
system that must be always fulfilled. The violation of invariants causes the
detection of a significant events that trigger the recording of the time windows
around the significant time points. The investigation of such a violation can
be successfully done by mean of these recorded monitoring data.

8.2 System Setup

The target application that is used in this case study is also used as target appli-
cation in the EU funded 1ST Project FIT (Fault-Injection for the TTA) [AdeO3].

8.2.1 Target Hardware and Software Application

Target Hardware

The target system (see Figure 8.1) used in this case study consists of only one
cluster. It consists of four nodes that are interconnected by a TTP/C bus1.
Each of these nodes is a TTP-Powernode2. A Motorola Controller MPC555
is used as host of these nodes, while the communication controller is of type
TTP-C2 (AS8202).

1From the monitoring system's point of view there are no differences between those sys-
tems that use star and those that use bus topology.

2 http://www.tttech.com/products/hardware/powernode/overview.htm

120

8 Case Study 8.2 System Setup

TTPview,
MTTY, and
Python Scripts

Connection to PC

node 2 node 3 node 4

HOST

CNI

TTP/C

HOST

CNI

TTP/C

HOST

CNI

TTP/C

Channel 1
_L _L

Figure 8.1: Case Study - Setup

The monitoring node is used as an interface between the target system and
the PC. The PC sends its monitoring commands to the target system over the
monitoring node. Furthermore, the collection of the monitoring data from the
target system and the sending them to the PC is done by the monitoring node.

Active Monitoring Node: In the current implementation the monitoring
node is not able to send messages to other interconnected nodes via the
shared transmission medium. This means that the monitoring node is
only a "passive eavesdropper" of the activities which take place on the
shared transmission medium of the target system. Therefore it is called
the passive monitoring node.

Serial Communication Channel - Monitoring Commands

TTPview,
MTTY, and
Python Scripts

Channel 0
Channel 1

TTP/C - TTP/C communication controller

Figure 8.2: Active Monitoring Node

As we need to send monitoring commands to the target nodes that will be
monitored at the node abstraction level. We used one of the target nodes,
i.e., node 1, in conjunction with a passive monitoring node to simulate

121

8 Case Study 8.2 System Setup

an active monitoring node (see Figure 8.2)3. In fact, the monitoring node
presented in Figure 8.1 consists of two nodes in our prototype setting:

• Passive Monitoring Node that is a normal monitoring node
which monitors the target systems at the cluster abstraction level
and which is connected to the PC over an Ethernet link (see Sec-
tion 7.1).

• Active Monitoring Node is the modified node 1, which receives
the monitoring commands from the user (via the personal, computer
- PC) and sends them to the target nodes the user wants to monitor.

Target Software Application

A brake-by-wire (BBW) control system is used as an application workload.
BBW is a distributed simulation program designed by Volvo Technological
Development. The BBW model consists of two parts, one part modelling the
vehicle and the other part modelling a wheel node. The input to the vehicle
model is an initial speed value and the brake pedal angle. The vehicle model
uses the brake pedal angle to calculate a brake force, which is transmitted to
the wheel node. The wheel node calculates the force to be applied on the brake
discs. Here, the calculated force is returned to the vehicle model (BrakeSignal).
The vehicle model calculates the speed reduction caused by the friction force
obtained when the brake pad is pressed against the brake disc and then sends
new information about the vehicle speed and the speed of the wheel to the
wheel node (VehicleSpeed, WheelSpeed). The wheel node uses the speed of
the vehicle and the speed of the wheel to calculate the wheel slip, i.e., the
speed difference between the vehicle and the wheel, reducing the brake force
if a specified slip level is exceeded. Otherwise, the brake force is increased.
This allows the brake force to be adjusted for optimized braking performance.
A similar simulation program is used in [AVFJ02]. Both simulation programs
run in the I/O controller. The VehicleSpeed simulation runs at the node 2
(data generator node), and Wheel simulation runs at the nodes 3 and 4. The
application in the host controller reads the simulation outputs from the I/O
controller and calculates the end-to-end checksum.

8.2.2 Software Tools

The software tools that were needed for preparation of the target system of
this case study are:

3In order to implement an active monitoring node we would have to change the software
tool chain such as TTPplan, TTPbuild and TTPload [TTP02b, TTP02a].

122

8 Case Study 8.3 Monitoring Setup

TTPplan [TTP02b] is used for allocating of additional communication band-
width needed for transmission of collected monitoring data.

TTPbuild [TTP02a] is used for allocation of additional processing resources
needed for monitoring at the node abstraction level. Thus, the fault-
tolerance layer (FTL)4 is modified for handling of the additional added
monitoring data.

TTPview [TTP02c] is used for collecting of the monitoring data gathered by
the resident monitors running on the target nodes that are monitored at
the node abstraction level.

MTTTY 5 is used for sending of monitoring commands given from the user
to the monitoring node via the serial communication channel (see Fig-
ure 8.2).

8.3 Monitoring Setup

In the target application used in this case study we monitored the third node
at the OS and task abstraction level. The fourth node was monitored only at
the task abstraction level. Additional functionality was assigned to the first
node (as above presented), i.e., it has taken the role of an active monitoring
node.

The monitoring process is initiated by the user using the MTTTY software
tool for sending of monitoring commands to the monitoring node that forwards
them to the target nodes the user wants to monitor. Therefore, an additional
message called monitoring message (n2_u4_mon_cmd) has been added to the
node 1 (i.e., the active monitoring node in Figure 8.2) that is used for car-
rying out of the monitoring commands. The nodes 3 and 4 implement addi-
tional messages (n3_a_mon and n4_a_mon). These messages are of type byte
array [TTP02b] and are used to simulate the monitoring channels. The mon-
itoring data collected from the target nodes are carried out by these messages
to the monitoring node.

8.3.1 OS Abstraction Level

While monitoring target systems at the OS abstraction level the observations
over entities are collected that are not visible outside of the OS. Therefore,

4FTL is a middle-ware layer responsible for reception and sending of node's messages.
5 Available at http://msdn.microsoft.com/library/techart/msdn/serial.htm.

123

8 Case Study 8.3 Monitoring Setup

the OS must be instrumented. The activity of the dispatcher is one of the
monitoring objectives presented in Section 5.3.2 that is choosen to be imple-
mented. The entities that describe the dispatcher's activities are presented in
Equation 5.3 (see Section 5.3.2).

The instrumentation code inserted into the OS uses the data structure pre-
sented in Figure 8.3. There are two buffers, read and write, that are alternated
periodically at the beginning of each cluster cycle. This means, that while the
observations observed during the ith cluster cycle are sent to the monitoring
node, the observations collected during the current cluster cycle, i.e., (i + l)th

are written into the write buffer. The collected monitoring data are not sent

write buffer CC.

read buffer

+1

/ Tf)M X R

p,'

i/ TDMA R
r 1

p2 '

TI
TI

TnMA R

P,2

TDMAR

P,2

? J

' . '

•i
? '

channel 0

channel 1

TTpart

TTpart

channel 0

channel 1

TTpart

TT part

2 —-i
•vl

D state channels

monitoring channels

CC, cluster cycle

p!< j " 1 part of observations collected

during k "> TDMA round of i l h CC

Figure 8.3: Data Structure used by the Instrumentation Code inserted into the
OS Dispatcher

redundantly on TTP/C communication channels. Furthermore, the sending
of these data is spread out over all TDMA rounds of a cluster cycle. In this
case study the cluster cycle consists of two TDMA rounds, i.e., TDMA Ri and
i?2 (see Figure 8.3). The first two parts (Pi and P%) of the monitoring data
collected during the first TDMA round of cluster cycle i (i.e., CCi) are sent
during the first TDMA round of cluster cycle i + 1 (i.e., CCj+i), while the other
two parts (Pj2 and P2

2) are sent during the second TDMA round.

Monitoring Data. In the current implementation of the monitoring at the
OS abstraction level an observation is 3 bytes long:

entity - 2 bits : An entity during monitoring at the OS level can be of type:

S - denotes the start of a particular task instance,

124

8 Case Study 8.3 Monitoring Setup

E - denotes the end of a particular task instance, and

PS - denotes the start of the preemption of the currently executed task
instance,

PE - denotes the end of preemption, i.e., the preempted task is resumed.

t_id - 6 bits : The t_id represents the ID of the tasks the state of which is
currently changed. In this implementation we can monitor target systems
with up to 64 tasks.

t_stamp - 16 bits: The t_stamp represents the point in time when the corre-
lated observation was made. The time-stamp must be based on the global
time in order to be able to correlate the collected monitoring data with
other data collected from other nodes. In the current implementation the
16 bits global time provided by the TTP/C communication controller
is used for time-stamping. In case of a counter overflow, the overflow
counter [TTT02] is incremented. The incrementation of the overflow
counter takes place consistently at all participant nodes, inclusive the
monitoring node. Therefore, during processing of these collected moni-
toring data the overflow counter must be read out from the monitoring
node, and it must be added to the t_stamp.

The amount of monitoring data that can be collected at the OS abstraction level
within a cluster cycle is estimated by means of Formula 5.5 (see Section 5.3.2).

T P

MDWCA = ^TD,i + 5 3 PrDj\ TDii, PrDJ = 2 * len(obs) = 6 bytes (8.1)
i=i j=i

where, T denotes the number of tasks within a cluster cycle, while P denotes the
estimated number of expected preemptions. Node 3 of the target system used
in this case study comes with 16 tasks. The estimated number of preemptions
on this node within a cluster cycle is 4. Therefore, the amount of monitoring
data within a cluster cycle that are collected during monitoring of the node 3
at the OS abstraction level is equal to:

16 4

MDWCA = Y^ TDti + J2 PrD,j = 120 bytes. (8.2)
t=i j=i

Bandwidth Occupation. In each TDMA round, part of collected observa-
tions are transmitted to the monitoring node (see Figure 8.3). Therefore, the
bandwidth occupation within a cluster cycle during monitoring of the target
system at the OS abstraction level can be calculated as follows:

BO = h* MDwca/{NTDMA * Nch) = I/At * 120/(2 * 2) = 30 bytes/At (8.3)

125

8 Case Study 8.3 Monitoring Setup

NTDMA denotes the number of TDM A rounds that in case of the used BBW
target application is equal to 2. Nch denotes the number of physical commu-
nication channels. In the current implementation of TTP/C protocol there
are only 2 physical channels. The collected monitoring data are not processed
before they are transmitted. Therefore, h is equal to I/At (see Section 4.2.1),
and Ai is the time duration of a cluster cycle.

During monitoring of the node 3 of the BBW only 12.5% of the communi-
cation bandwidth is occupied:

BOP = (BO/Fieri) * 100 = (30/240) * 100 = 12.5%; (8.4)

BOp is the percentage of the bandwidth occupation within a cluster cycle, BO
is the bandwidth occupation within a cluster cycle, i.e., the number of bytes
occupied by the monitoring traffic within a cluster cycle, and Fieri is the max-
imum data field length that can be transmitted over a TTP/C communication
channel. In the current implementation of TTP/C this length is 240 bytes.

From the Equation 8.3 we can determine that the bandwidth occupation
within a cluster cycle is disproportional with the number of TDMA rounds
within a cluster cycle. The higher the number of TDMA rounds within a
cluster cycle, the smaller is the bandwidth occupation of the target system.

8.3.2 Task Abstraction Level

As presented in Section 5.3.2 in TTA systems the S-task model is used. Tasks
in this task model can be considered as black-boxes that get their inputs and
produce their outputs, because in this task model, tasks receive input messages
upon invocation and produce output messages upon completion. Therefore,
during monitoring of target systems at the task abstraction level (TAL) the
inputs and outputs of tasks are gathered.

As depicted in Section 5.3.2, the input and output messages of each task
are known in advance, and therefore, we can calculate the amount of moni-
toring data within a cluster cycle. In the BBW application used in this case
study, the node 4 is monitored at the TAL. At this node there are eight appli-
cation tasks6. The monitoring of these tasks is done by instrumentation code
inserted within the tasks that are monitored. However, during monitoring at
this abstraction level, a monitoring system that is not a prototype would call
monitoring routines of the resident monitors before and after the execution of
the task.

6In this case study we have monitored only the application tasks. However, the FTL and
OS tasks can be monitored in the same way.

126

S Case Study 8.4 Collée, Process., and Present, of Monitoring Data

8.4 Collection, Processing and Presentation of
Monitoring Data

The monitoring data are collected by the monitoring node (see Figure 8.1).
These data are sent to TTPview. However, since TTPview does not provide
processing and presentation of monitoring data collected at the node abstrac-
tion level, in this prototype (of this case study) this job is taken by a software
developed in python.

8.4.1 Data Collection

The collection of monitoring data is triggered by the user commands that are
sent via the MTTTY software. These commands are then sent to the active
monitoring node (node 1 in Figure 8.1). After they have been processed by
the active monitoring node, these commands are sent to the target nodes.
As depicted in Section 8.3 these commands are carried out by the additional
messages added to node 1.

Target nodes7 check if the sender status [TTT02] of the n2_u4_mon_cmd is
set, which means that the monitoring node has sent a monitoring command.
Among other things, these commands contain the ID of the target node and the
abstraction level at which the target node must be monitored. At the TAL,
for example, the ID of the task the user wants to monitor is sent with the
monitoring command.

After the monitoring command has been received by the target node, it
will be checked, and if the target node supports the intended abstraction level,
then it starts sending the collected monitoring data at the beginning of the
next cluster cycle. These data are carried out by either n3_a_mon or n4_a_mon
depending from which node they are sent. In the implementation presented in
this case study the target nodes stop8 sending their monitoring data after a
predefined9 number of cluster cycles.

8.4.2 Data Processing and Presentation

In TTPview the RT triggers (see Chapter 6) are used for recording of only that
part of time window, during which the sender status is set. After all these data

7In the BBW system only the nodes 3 and 4 are monitored at the node abstraction level.
8 Monitoring data are always sent, however, their sender status is not set after predefined

number of cluster cycles are elapsed (i.e., after this period they are marked as invalid).
9The predefined number of cluster cycles can also be given by the user using the MTTY

software tool.

127

8 Case Study 8.4 Collée. Process., and Present, of Monitoring Data

Output of parsed observations .###

e J CID=Ox93. 0x47F29B6>
I
I---<PS. FT_S_n31:fit_app_mode_l HD=0x9]. 0x47F29CB>

I—<S. FT_R_n3jfit_app_mode_2 [ÏD=0xB]. 0x47F29Dl>
I
\— <E. FT_R_n3_fit_app_inode^2 CID=0xB]. 0x47F29D8>

I—<PE. FT_S_n3_fit_app_mode_l HD=0x9]. 0x47E29DE>

I—<PS. FT_S_n3vfi
I—<S. slot_01

ode_i QID=0x9]; 0ï47F29Efi>
D.. 0X47F29F0> "

I

I— <E. slot_0i CID=0x0]. 0x47F29F5>
I—<PE. FT_S_n3_fit_.app_mode_l [10=0x9]. 0x47F29FB>

I—<PS. FT_S_n3_fit_app_mode_l [ID=0x9]. 0x47F2fl28>
I— <S. FT_R_n3_fit._app_mode_4 CID=0xD]. 0x47F2fl2C>
I
I—<E. FI_R_n3_fit_app_node_4 CID=0xD]. 0x47F2fl32>

I—<PE. FT_S_n3_Tit_app_mode_l CID=0x9J. 0x47F2fl38>

—<PS. FT_S_n3_rit_app_mode_l ClD=0x9D. 0x47F2fl44>
I~<S. time_sijnch_loc CID=0x8]. 0x47F2fl4fl>
I
I—<E. tiue_synch_loc CID=0x8], 0x47F2fl58>

—<PE. FI_S_n3_fit_app_node_l CID=Ox9], 0x47F2ft5D>

—<E. FT_S_n3_fit_app_raode_l [ID=0x9]. 0x47F2fl72>
—<S. rT_R_n3_fit_app_mode_3 [ID^OxC]. Ox'l7F2flB6>

~<E. rT_R_n3_ri.t_app_mode_3 [ID=0xC]. Ox47F2flBf>

Task 0x9 is started

Task 0x9 is preempted
•i

Task OxB is started
I

Task OxB is finished
i

Task 0x9 is resumed
. . . - . • • i

Task 0x9 is preempted

Task 0x0 is started

Task 0x0 is finished

Task 0x9 is resumed

Figure 8.4: Monitoring Data collected at the OS Abstraction Level

have been recorded into the trace file, the export python script is used within
TTPview for exporting of the collected monitoring data. The output file of
this export process is a comma-separated value (CSV) file, that can be used
for further processing. However, since the current implementation of TTPview
does not support the processing and presentation of monitoring data at the
node abstraction level, we have used TTPview only as real-time recorder for
recording of these data to the disk. These data are processed by python scripts,
which have been developed for processing and presentation of the monitoring
data collected at the node abstraction level. These python scripts get the
exported CSV file as input and after their processing the results are presented
into " shell stdout". We have used the shell stdout to avoid the implementation
effort needed for implementing of appropriate GUI widgets within TTPview.

OS Abstraction Level.

Dispatcher's Activity. As presented above, one of monitoring objec-
tives at the OS abstraction level is the monitoring of the activity of the
dispatcher. In Figure 8.4 we presented a part of the dispatcher activ-
ity of the node 3 within a cluster cycle. In this figure we see that the

128

S Case Study 8.4 Collée, Process., and Present, of Monitoring Data

•»TTPbuild ShowCTask^Schedule urn
•v Task Schedule for 'n3 i1 i t app mode' — period '10000'

• ° =*tc n3 f i t appmode^FTTS^ref 0001'

• 'FT S n3 flc app «ode 0'
Deadline '2274', time_budget '153 ' ,
total_tiioe_budget '153 ' , beet ' 10'

~w 130 : ' t c n3 f i t apj^mcde^FTTR^ref 0 0 0 1 '

^ 'Î*T_5_ n3 f i t àpp mode1 2 '
D e a d l i n e " 3 0 0 ' , t i m e _ b u d g e t ' 1 4 5 ' ,
total_ti»e budget '145', beet '10'

'sloe 01'

to ta l time budget '200*, beet "200*

198 : ' t c n3_fit app mode F'lTR ret ÛÛG2 '
'FT R n3 f i t opp mode 4'
Deadline '2600', tiwe_budget * 118',
total_tirae_budget '119", beet '10'

616 : ' tc_n3_fit app roode_AT_loc_00Q2 '

' time_syncli_loc'
Deadline "10000", tiroe_budQ,et '185 ' ,
to ta l time budget '185 ' , beet '10'

Figure 8.5: Scheduling information generated by TTPbuild

FT task FT_S_n3_fit_app_mode_l with ID 9 was preempted more often
than once by another tasks, i.e., by FT_R_n3_fit_app_mode_2, slot_01,
FT_R_n3_f it_app_mode_4 and time_synch_loc. These preemptions cannot
be derived from the static schedule produced by TTPbuild's static scheduler
(see Figure 8.5). Therefore, the user could find a clue from the visualization
presented here, in case these preemptions leads the target system to a faulty
behavior in the temporal domain.

'ÊLZ,E##
iTask
•Task
ITask
ITask
ITask
ITask

Output of
:slot 01
:Slot_02
:slot 03
:5lot_04
:slot_05
:slot_06

calculated Task
CID: 0]
[ID:1]
[ID:2J
CID:3]
CID:43
CID:53

: [beet
: [beet
: [beet
: Cbcet
: Cbcet
: Cbcet

's Execution-Times (fllgortithm
:28.8
:10.8
:180.8
:12.4
:18.8
:143.2

(us) .
(us).
(us)

(us).
(us).
(us)

ucet
ucet
. ucet
ucet
ucét
ucet

:29.2
:18.8
:186

:72.0
:19.2
:143

(us)J -
(us)] -
8 Cus)3
(us)3 -
(us):3 -
6 (us)3

ID
- No
- No
--
- No
- No
—

:2)
ot
of
No
of
of
No

###
MET:74
MET:74

of MET:74
MET:74
MET:74

of MET:74

MET - Measurements of Execution-Time.

Figure 8.6: Task Execution-Times

Measurements of Execution-Times. Another important information that
can be derived from the observations collected during monitoring of the activ-
ity of the dispatcher is the logging of execution-times of the dispatched tasks.

129

8 Case Study 8.4 Collée. Process., and Present, of Monitoring Data

1 Index
1
2
3
4
5
6
7
8
9
10

1,

1,
1,
2,
2,
9,
9,
9,
8,
8,

2,
2,
2,
1,
1,
8,
8,
8,
9,
9,

3,
3,
3,
3,
4,
7,
7,
7,
7,
6,

Vector

4,
4,
4,
4,
3,
6,
6,
6,
6,
7,

5,
5,
5,
5,
5,
5,
5,
5,
5,
5,

6,
6,
9,
9,
9,
4,
4,
3,
3,
3,

7,
7,
8,
8,
8,
3,co"

4,
4,
4,

8
9
7
7
7
2
1
1
1
1

î

î

î

î

:

)

|

9
8
6
6
6
1
2
2
2
2

Table 8.1: Vector of Integers to be sorted

In Figure 8.6 the logged execution-times of the tasks are presented. How-
ever, since the time-stamping of the collected observations must be done by
using of the global time, the resolution of the time-stamping is in the range of
macroticks [TTT02], i.e., in the range of/^-seconds.

Bubble Sort: In this case study, we have conducted an experiment, in which
the execution-times of different implementations of bubble sort algo-
rithms were measured. Different vectors of integers were used as input
data for the bubble sort algorithms (see Table 8.1). The following imple-
mentations of bubble sort algorithms are used:

• Traditional - is a traditional implementation of a bubble sort
algorithm [AstO3],

• Early-Exit - is an implementation of a bubble sort algorithm that
returns if there are no more elements to be swapped, and

• Transformed Pure C - is an implementation of a bubble sort al-
gorithm that keeps the execution-time of the algorithm independent
from the number of elements to be swapped [PusO2b].

During these measurments a local timer10 with a tick of 0.4/isecs is
used for time-stamping. Figure 8.7 presents the execution-times of the
above presented bubble sort algorithms for sorting of the integer vectors
presented in Table 8.1. The horizontal axis denotes the index on the
Table 8.1, while the vertical axis denotes the best-case and worst-case
execution-times in /̂ secs. For each index in the table the measurments
are repeated a constant number of times.

10For implementation simplicity we have used the same local timer that also was used by
the operating system.

130

8 Case Study 8.4 Collée, Process., and Present, of Monitoring Data

160

ß 120

S ioo

80

60

40

20

-BCET_TR ,

~WCET_TR

BCeT_EE '

WCET_EE

-BCET_PC

-WGET PC

10

index

BCET - Best-Case Execution-Time
WCET - Worst-Case Execution-Time

TR - Traditional Bubble Sort
EE - Early-Exit Bubble Sort
PC - Transformed-Pure C Bubble Sort

Figure 8.7: Execution-Times Measurements of different Bubble Sort Algo-
rithms

From the results presented in Figure 8.7 we can see that the transformed
pure C implementation of bubble sort algorithm has the most determin-
istic behavior regarding to execution-times.

Task Abstraction Level.

At the task abstraction level the collected monitoring data represent the inputs
and outputs of particular tasks. The timestamps of observations contained by
these monitoring data represent the points in time at which the particular
tasks have been started and finished, respectively. If the particular node is also
monitored at the OS abstraction level, then these timestamps are not gathered
(for bandwidth and disk space reasons), because they can be derived from the
observations that describe the activity of the OS dispatcher.

131

S Case Study 8.5 Chapter Summary

1
Round: 2186. Task 'slot_02' CID=O]
1—<S. slot.02 CID=0xl3. OxEDB>

. 1

. 1

iThe ' n2_vu4_non_codl_copy^ni_33tat
iThe" 'n2_u4_raon_cmdl' is 4 ByteCs)
iThe 's2_cnt.' is 1 byte(s) long/anc
!l--<E. slot_02 CIÜ^Oxll. OxEEG>
il <ldle>
iThe 'ms_alloued •- is 1 byte(s) long
The 's2_cnt' is 1 byte(s) long anc

Round: 2188. Task lslot_02" CI0=03
l'--<S. •slot_0'2."CID=Öxi3-'. 0x7083i>

i
The ' n2_u4_mon_cradl_copy_m_sstatThe ' n2_u4_roon^cnîdl ' is. 4 byte Cs)
The *s2_cnt' is i byte(s) long, anc
ii—<E. sl6t_02 CIO=Oxl3. 0x7093>
1 <ïdle> . . . ,,.
The' 'ms^aliowèd/ :is 1 :byteXs). ?long
iThe 's2_cnt.' is: 1 byteCs) long anc

Round: 2190. Task ;siot_02' ÇIDf'03

1 is
long
its

and
its

1 is '
long
its

and
its.

1 byteCs)
arid its v
value is

its value
value is

1 byte(s)
arid its v
value is

its^vaiOe
value is

long and its .value is :0x0
alue is :0x4020501
:0xl

is :0xl
:0x2

long and ;its value is :0x0
alue is :0x4020501
-.0x2

is :0xl
:0x3'

Figure 8.8: Monitoring Data collected at the Task Abstraction Level

Figure 8.8 presents the monitoring data collected from node 4 during mon-
itoring at the task abstraction level. Since, the node 4 is only monitored at the
task abstraction level, the collected monitoring data contain the timestamps.
which represent the points in time at which the task slot_02 with ID 2 has
been started and finished. The names of input and output variables and their
values before the task has been started and after the task has been finished are
also presented in Figure 8.8.

8.5 Chapter Summary

In this chapter we presented a monitoring system that has served as a case study
for implementation of the concepts presented in the previous chapters. As a
target application the brake-by-wire (BBW) was used, which is a distributed
simulation program designed by Volvo Technological Development.

At the OS abstraction level the OS of a particular node was monitored.
For this case study we have selected to implement only one of the monitoring
objectives presented in Section 5.3.2. This is the monitoring of the dispatcher's
activity. From the observed information that describe the dispatcher's activity
we showed the way how to measure the execution-times of the running tasks
of a particular node.

At the application abstraction level we chose to observe the input/outputs
of the particular tasks, i.e., the task abstraction level. The monitoring system

132

8 Case Study 8.5 Chapter Summary

provides monitoring of the target system at both abstraction levels in parallel,
although for implementation simplicity in this case study we have not moni-
tored the target system at multiple abstraction levels in parallel.

In this chapter we showed that during monitoring of TTA systems: i) the
expected amount of monitoring data within a cluster cycle11 can be calculated
in advance, i.e., before the monitoring process has been started, ii) the band-
width occupation within a cluster cycle is disproportional with the number of
TDMA rounds within a cluster cycle (in the presented monitoring application
the bandwidth occupation within a cluster cycle is less than 12.5%), iii) the
code that implements these concepts uses the pre-planned resources (based on
the knowledge about the amount of monitoring data) which guarantees the
determinism of the monitoring system, iv) we can use real-time triggers12 in
conjunction with the monitoring at the node abstraction level to provide long-
term diagnosing and correctness checking of target systems.

From the above presented remarks we conclude that the concepts presented
in this thesis are implementable, and they are applicable also in systems that
are much larger (i.e., complexer) than the used BBW application, i.e., typical
industrial applications.

11 During monitoring of TTA systems the observation interval is equal to the length of a
cluster cycle. In these systems the cluster cycle is the smallest periodic cycle (i.e., repetition
unit) and its duration is constant.

12In the presented monitoring application we used real-time triggers for searching of time
points at which the user has started the monitoring of a particular node (see Sections 8.4.1
and 8.4.2).

133

Chapter 9

Conclusion

The contributions of this thesis are: i) the definition of different types of mon-
itoring data and gathering methods that enable the prediction of monitoring
resource requirements in advance1, and to keep the interference of the monitor-
ing system on the target system deterministic, ii) the design and development
of a deterministic real-time monitoring system that can be used for monitor-
ing of time-triggered systems at different abstraction levels, and iii) the design
and implementation of the RTTS that records system operation of the target
system only in time windows of interests, i.e., around the significant events.

9.1 Monitoring Data

We define monitoring data types that enable the prediction of the influence
of monitoring systems on the target systems. This definition makes it pos-
sible to predict monitoring resource requirements in advance, i.e., during the
monitoring setup phase before the monitoring process is started, and to keep
the interference of the monitoring system on the target system deterministic.
There are two criteria on which the definition and classification of monitoring
data is based. The influence of monitoring systems on target systems depends
directly on these two criteria: i) on the way how monitoring data are collected
from the target system, and ii) on the amount and the rate of monitoring data
being collected within an observation interval.

During monitoring of a target system at the user's intended abstraction
level, the prediction of the expected amount of monitoring data within an
observation interval is of utmost importance. The amount of the monitoring
data that must be collected, determines the resource needs of the monitoring

1 During the monitoring setup phase, before the monitoring process is started.

134

9 Conclusion 9.2 Deterministic Monitoring System

system on the target system. These resources are used for collecting, processing,
and transmitting the collected monitoring data. They relate to: CPU, memory,
communication bandwidth, etc. Based on this information the influence of the
monitoring system on the target system can be quantified.

The practical applicability of these concepts is demonstrated in a monitoring
application presented in Chapter 8, where they are used for calculation of the
expected amount of monitoring data.

9.2 Deterministic Monitoring System

We designed and developed a deterministic real-time monitoring system that is
used for monitoring of time-triggered systems. We started with the definition
of the basic parts of such a system. Furthermore, we defined the requirements
that must be fulfilled by target systems before they can be monitored by the
presented monitoring system. In addition, we defined the abstraction levels at
which time-triggered systems can be monitored. These abstraction levels are:
i) cluster, ii) node, and iii) transducer abstraction level. For each abstraction
level we defined monitoring data group (s) needed by the monitoring system for
reconstructing the run-time behavior of the target system at these abstraction
levels. Moreover, we showed that the monitoring system can either exactly
calculate or estimate the amount of monitoring data within an observation
interval during the monitoring setup phase, i.e., in advance before the moni-
toring process is started. This enables the system to predict its influence on
the monitoring system and to support the system designer to allocate the re-
sources needed by the monitoring system during the design phase of the target
system. This resource allocation makes the influence of the monitoring sys-
tem on the target system deterministic, i.e., the monitoring system's influence
does not change the run-time behavior of the target system neither in time nor
in the value domain. In addition, we defined the concepts for monitoring of
time-triggered systems that consist of multiple clusters.

The presented concepts are implemented both in the software tool -
TTPview (see Chapter 7), and in the monitoring application presented in
Chapter 8. TTPview is successfully applied in industry (Honeywell, AUDI,
VW, etc.) for monitoring of TTA systems.

9.3 Real-Time Trigger System

We designed and implemented the real-time trigger system (RTTS) that
searches in real-time for significant events (i.e., events of interest) during mon-

135

9 Conclusion . 9.4 Outlook

itoring of a target system. The RTTS selectively records the system operation
of the target real-time system, i.e., only in time windows of interest, around
significant events. It does so by buffering of observations and looking for sig-
nificant events in real-time (RT).

The RTTS can be successfully applied during long-term monitoring of real-
time systems, because without selection the amount might become unmanage-
able. They also can be applied during automatic testing of a new developed
target system, to automatically switch between monitoring at different ab-
straction levels of the tested target system. The RTTS can be used for both
(long-term) on-line diagnosing and off-line analyzing of target systems. An-
other important usage of the RTTS is the run-time correctness checking of
target systems. The significant events the RTTS has to look for in this context
are the violations of the system invariants that must be always fulfilled by the
target system. In the context of long-term on-line diagnosing the RTTS can
store the selected monitoring data (i.e., around the significant events) on a
dedicated non-volatile storage. In the automotive industry this application of
the RTTS enables the usage of black-boxes similar to the black-boxes that are
used in the aircraft industry. In case a car has a problem, the evaluation of
the monitoring data stored in the black-box helps the user to find the reason
of the suspected problem.

9.4 Outlook

The work presented in this thesis opens new directions for further research
and development in the area of real-time monitoring of TTA systems. These
directions can be classified into two different groups:

Development: The first step that needs to be done is the improvement of
parts of TTPview (especially the GUI clients), which would facilitate the
implementation of monitoring of target systems at the node and trans-
ducer abstraction level.

As a further step the design and implementation of gateway nodes has to
take place, which facilitates the implementation of multiple cluster TTA
systems. The implementation of gateway nodes enables the monitoring
system the use of the cascade topology during monitoring of multiple
cluster TTA systems.

Another interesting issue is the porting of the real-time trigger system
(RTTS) from the central monitor, which is implemented on a COTS sys-
tem (i.e., PC), to the monitoring node on which they would be executed

136

9 Conclusion 9.4 Outlook

under embedded real-time Linux. In this way the real-time capability of
the RTTS would be improved.

Further Research: An important research issue is the debugging of real-time
TTA systems. The presented real-time monitoring system can be used
to help the debugger during debugging of real-time TTA systems. The
main idea is to develop a system, which re-executes parts of (or the whole)
target application and redirects the inputs of the tasks that the user wants
to debug to the trace files containing the run-time information collected
by the presented monitoring system. An alternative approach is presented
in [SA02]. In this approach the distributed break-points are used, which
are achieved by the substitution of the physical time through a virtual
time.

Another important issue is the integration of the concepts presented in
Chapters 4 and 5 into the design process of the target systems. Currently,
the selection of entities, the calculation of the expected amount within an
observation interval and the instrumentation process are done manually.
The intention is to incorporate the classification of the MD presented in
this thesis into the design tools to calculate the needed resources (i.e., MD
amount calculation) for monitoring process and to automate the instru-
mentation process. Examples of design tools are DECOMSYS::Designer2

or TTP-Plan3 used for designing of FlexRay or TTA systems. This ap-
proach could also be incorporated into design tools for other distributed
RTS, e.g., CAN4, LIN5, etc.

2 www. decomsys.com/flyer/DESIGNER.pdf
3www.ttagroup.org/ttp/pdf/TTTech-TTP-Plan-Flyer.pdf
4 http://www.can.bosch.com
5http://www.lin-subbus.org

137

Bibliography

[AAC+94]

[AdeO3]

[AKMM01]

[AS98]

[AS898]

[AS801]

[AstO3]

T. Anderson, A. Avizienis, W.C. Carter, A. Costes, F. Cris-
tian, Y. Koga, H. Kopetz, and et. al. Dependability: Basic
Concepts and Terminology. International Federation for Infor-
mation Processing, August 1994.

Astrit Ademaj. Assessment of Error Detection Mechanisms
of the Time-Triggered Architecture using Fault Injection. PhD
thesis, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2003.

Tankut Akgul, Pramote Kuacharoen, Vincent J. Mooney, and
Vijay K. Madisetti. A Debugger RTOS for Embedded Systems.
In Euromicro Conference, 2001. Proceedings, pages 264-269,
2001.

Ehab Salem Al-Shaer. Hierarchical Filtering-Based Monitoring
Architecture for Large-Scale Distributed Systems. PhD thesis,
Department of Computer Sciense, Old Dominion University,
Norfolk, VA, December 1998.

AS8202NF. TTP/C-C2 Communication Con-
troller. TTTech Computertechnik AG, Schönbrun-
ner Straße 7, A-1040 Vienna, 1998. Available at
http://www.austriamicrosystems.com/04segments/automotive
/as8202.htm.

AS8201. TTP/C-C1 Communication Controller.
TTTech Computertechnik AG, Schönbrunner
Straße 7, A-1040 Vienna, 2001. Available at
http://www.austriamicrosystems.com/04segments/automotive
/as8201.htm.

Owen Astrachan. Bubble Sort: an Archaeological Algorithmic
Analysis. In Proceedings of the 34th SIGCSE Technical Sympo-

138

BIBLIOGRAPHY BIBLIOGRAPHY

[AVFJ02]

[AW97]

[BauOO]

[BJHL96]

[BJRW94]

[BJWL97]

[BloOl]

[Bor92]

sium on Computer Science Education, pages 1-5, 2003. Reno,
Navada, USA.

J. Aidemark, J. Vinter, P. Folkesson, and J.Karlsson. Experi-
mental Evaluation of Time-redundant Execution for a Brake-
by-wire Application. In International Conference on Depend-
able Systems and Networks, DSN 2002, pages 210 -215, Wash-
ington DC, USA, June 2002.

David Abramson and Greg Watson. Relative Debugging for
Parallel Systems. In Proceedings of PCW 97, September 1997.
Canberra, Australia.

Günther Bauer. Transparent Fault-Tolerance in a Time-
Triggered Architecture. PhD thesis, Technische Universität
Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-
1, 1040 Vienna, Austria, April 2000.

M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw. An
Approach to Monitoring and Assertion-Checking of Real-Time
Specifications. In Proceedings of the 4th International Work-
shop on Parallel and Distributed Real-Time Systems, pages
236-243, 1996.

J.S. Briggs, S.D. Jamicson, G.W. Rondall, and I.C. Wand.
Debugging Distributed Ada Programs. Technical report, Real-
Time and Distributed Systems Research Group, Department
of Computer Sciense, University of York, June 1994.

Monica Brockmeyer, Farnam Jahanian, Elly Winner, and Con-
stance Heitmeyer Bruce Labaw. A Software Environment for
Custom Simulation and Monitoring of Real-Time Specifica-
tions. In Proceedings of High-Assurance Systems Engineering
Workshop, pages 78-84, 1997.

Johnnie Blom. Monitoring of Embedded Distributed Real-
Time Systems. Technical report, Department of Computer En-
gineering, Mälardalen University, Västeras, Sweden, February
2001.

Cristopher B. Bor chert. Organization and Management of Dis-
tributed Execution Event Histories for Real-Time Debugging.
Southeastcon. 92, IEEE Proceedings, 1:343-345, 1992.

139

BIBLIOGRAPHY BIBLIOGRAPHY

[BOSS95]

[CJD91]

[CP98]

[DMW98]

[DR92]

[DR02]

[Eri97]

[Fid96]

[For90]

[Gai86]

T. Born, W. Obelöer, L. Schäfers, and C. Scheidler. The Mon-
itoring Facilities of the Graphical Programming Environment
TRAPPER. In Proceedings of the Euromicro Workshop on
Parallel and Distributed Processing, pages 555-562, January
1995.

Sarah E. Chodrow, Farnam Jahanian, and Marc Donner. Run-
Time Monitoring of Real-Time Systems. In Proceedings of
Twelfth Real-Time Systems Symposium, pages 74-83, 1991.

J.P. Calvez and O. Pasquier. Performance Monitoring and
Assessment of Embedded Hw/Sw Systems. Design Automation
for Embedded Systems, 3:5-22, 1998.

Somnath Deb, Amit Mathur, and Peter K. Willet. De-
centralized Real-Time Monitoring and Diagnosis. In Proceed-
ings of International Conference on Systems, Man, and Cyber-
netics, October 1998. San Diego, CA.

Paul S. Dodd and Chinya V. Ravishankar. Monitoring and De-
bugging Distributed Real-Time Programms. Soßware-Practice
and Experience, 22(10):863-877, October 1992.

Marcio S. Dias and Debra J. Richardson. The Role of Event
Description in Architecting Dependable Systems. In Workshop
on Architecting Dependable Systems, ICSE 2002, May 2002.
Orlando, Florida.

Joakim Eriksson. Real-Time and Active Databases: A Survey.
In ARTDB-97, The 2nd International Workshop on Active,
Real-Time and Temporal Database Systems, Advance Proceed-
ings, pages 195-216, September 1997.

Colin Fidge. Fundamentals of Distributed System Observation.
IEEE Software, 13(6):77-83, November 1996.

Ray Ford. Monitoring Distributed Embedded Systems. In Pro-
ceedings of the 1990 Symposium on Applied Computing, pages
237-244, April 1990.

J. Gait. A Probe Effect in Concurrent Programs. Software
Practice and Experience, 16(3):225-233, March 1986.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[Gal99] Thomas Galla. Cluster Simulation in Time-Triggered Real-
Time Systems. PhD thesis, Technische Universität Wien, In-
stitut für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vi-
enna, Austria, 1999.

[GHS95] Richard Gerber, Seongsoo Hong, and Manas Saksena. Guar-
anteeing Real-Time Requirements With Resource-Based Cali-
bration of Periodic Processes. Transactions on Software Engi-
neering, 21(7):579-592, 1995.

[GlaOO] Christian Glawan. Monitoring von Echtzeitbetriebssystemen.
Master's thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Aus-
tria, 2000.

[Gor91] Michael M. Gorlick. The Flight Recorder: An Architectural
Aid for System Monitor. In Proceedings of ACM/ONR Work-
shop on Parallel and Distributed Debugging, pages 175-183,
1991.

[GusO2] Jan Gustafsson. A Prototype Tool for Flow Analysis of Object-
Oriented Programs. In Proceedings of the Fifth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing, pages 91-100, April 2002. Washington, DC , USA.

[HarO2] Timothy L. Harris. Dependable Software Needs Pervasive
Debugging. In Tenth ACM SIGOPS European Workshop,
September 2002. Saint-Emilion, France.

[HKM+94] R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle. Dis-
tributed Performance Monitoring: Methods, Tools, and Appli-
cations. IEEE Transactions on Parallel and Distributed Sys-
tems, 5(6):585-598, 1994.

[Hof94] Yigal Hoffner. Monitoring in Distributed Systems. Technical
report, ANSA, Poseidon House, Castle Park, Cambridge, CB3
0RD, United Kingdom, October 1994.

[Hof96] Richard Hofmann. Monitoring and Evaluation of Parallel and
Distributed Systems, April 1996.

[HS90] Dieter Haban and Kang G. Shin. Application of Real-
Time Monitoring to Scheduling Tasks with Random Execu-
tion Times. IEEE Transactions on Software Engineering,
16(12): 1374-1389, December 1990.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[HW90] Dieter Haban and Dieter Wybranietz. A Hybrid Monitor for
Behavior and Performance Analysis of Distributed Systems.
IEEE Transactions on Software Engineering, 16(2):197-211,
February 1990.

[Jah95] Farnam Jahanian. Run-Time Monitoring of Real-Time Sys-
tems. In Advances in Real-Time Systems, Editor, Sang H.
Son, pages 429-454, 1995. Prentice Hall.

[JG90] Farnam Jahanian and Ambuj Goyal. A Formalism for Monitor-
ing Real-Time Constraints at Run-Time. In Digest of Payers.,
20th International Symposium of Fault-Tolerant Computing,
1990. FTCS-20, pages 148-155, 1990.

[JLSU87] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger.
Monitoring Distributed Systems. ACM Trans. Computer Sys-
tems, 5(2):121-150, May 1987.

[JRR94] Farnam Jahanian, Ragunathan Rajkumar, and Sitaram C.V.
Raju. Runtime Monitoring of Timing Constraints in Dis-
tributed Real-Time Systems. Real-Time Systems, 7(3):247-
273, November 1994.

[KB01] Hermann Kopetz and Günther Bauer. The Time-Triggered
Architecture. Research Report 22/2001, Institut für Technische
Informatik, Real-Time Systems Group, TU Wien, 2001.

[KBG98] Andreas Kirschbaum, Jürgen Becker, and Manfred Glesner.
Run-Time Monitoring of Communication Activities in a Rapid
Prototyping Environment. In Proceedings of the 9th Interna-
tional Workshop on Rapid System Prototyping, pages 52-57,
1998.

[KBP01] Hermann Kopetz, Günther Bauer, and Stefan Poledna. Tol-
erating Arbitrary Node Failures in the Time-Triggered Archi-
tecture. SAE 2001 World Congress, March 2001, Detroit, MI,
USA, Mar. 2001.

[KHE00] Hermann Kopetz, Michael Holzmann, and Wilfried Elmenre-
ich. A Universal Smart Transducer Interface: TTP/A. In 3rd
IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC 2000), March 2000.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[KHE01] Hermann Kopetz, Michael Holzmann, and Wilfried Elmenre-
ich. A Universal Smart Transducer Interface: TTP/A. Inter-
national Journal of Computer System, Science Engineering,
16(2), March 2001.

[Kim95] Young-Kuk Kim. Predictability and Consistency in Real-Time
Transaction Processing. PhD thesis, Department of Computer
Science, University of Virginia, May 1995.

[Kla92] Rainer Klar. Event-Driven Monitoring of Parallel Systems. In
Workshop on Performance, Measurement and Visualization of
Parallel Systems, Moravany, Czecho-Slovakia, October 1992.

[KLH01] Hermann Kopetz, Thomas Losert, and Wolfgang Haidinger.
Smart Transducers Interface. Specification in response to
the OMG's Smart Transducers Interface RFP (Document
orbos/2000-12-13), January 2001.

[KLS+02] Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, and
Oleg Sokolsky. Monitoring, Checking, and Steering of Real-
Time Systems. In International Workshop on Run-time Veri-
fication, July 2002. Copenhagen, Denmark.

[KO90] Michael J. Kaelbling and David M. Ogle. Minimizing Mon-
itoring Costs: Choosing Between Tracing and Sampling. In
Proceedings of the Twenty-Third Annual Hawaii International
Conference on System Sciences, volume 1, pages 314-320,
1990.

[Kop92] Hermann Kopetz. Sparse Time versus Dense Time in Dis-
tributed Real-Time Systems. In Proceedings of the 12th Inter-
national Conference on Distributed Computing Systems, pages
460-467, June 1992. Yokohama, Japan.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers,
1997. ISBN 0-7923-9894-7.

[Kop02] Hermann Kopetz. On the Specification of Linking Interfaces
in Distributed Real-Time Systems. Research Report 8/2002,
Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2002.

[KraOO] Dieter Kranzlmüller. Event Graph Analysis for Debugging
Massively Parallel Programs. PhD thesis, Johannes Kepler

143

BIBLIOGRAPHY BIBLIOGRAPHY

University Linz, Department for Graphics and Parallel Pro-
cessing, Altenbergerstraße 69, 4040 Linz, Austria, September
2000.

[Krii97] Andreas Krüger. Interface Design for Time-Triggered Real-
Time System Architectures. PhD thesis, Technische Universität
Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, April 1997.

[KS98] Markus Kucera and Christoph Sikula. Application Monitoring
in the Time-Triggered Architecture. In Proceedings of Ninth
European Workshop on Dependable Computing, pages 137-143,
May 1998. Gdansk, Poland.

[KSF98] Markus Kucera, Idriz Smaili, and Emmerich Fuchs. A
Lightweight Ethernet Protocol to Connect a Time-Triggered
Real-Time System to an INTERNET Server. In Euro-
pean Multimedia, Microprocessor Systems and Electronic Com-
merce Conference and Exhibition, September 1998. Bordeaux,
France.

[KSS02] Suhee Kim, Sang H. Son, and John A. Stankovic. Performance
Evaluation on a Real-Time Database. In 8th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS
2002), pages 253-265, September 2002. San Jose, California.

[Kuc98] Markus Kucera. On the Cooperation between Time-Triggered
Real-Time Systems and Event-Triggered Internet-Based Sys-
tems. PhD thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Aus-
tria, December 1998.

[KV00] Dieter Kranzlmüller and Jens Volkert. Why Debugging of Par-
allel Programs needs Visualization. In 1-day Satellite Work-
shop on Visual Methods for Parallel and Distributed Program-
ming held on 14th of September at the IEEE Symposium on
Visual Languages, September 2000. Seattle, Washington, USA.

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah,
Sampath Kannan, Insup Lee, and Oleg Sokolsky. Formally
Specified Monitoring of Temporal Properties. In Proceedings
of the 11th European Conference on Real-Time Systems, pages
114-122, June 9-11 1999. York, England, UK.

144

BIBLIOGRAPHY BIBLIOGRAPHY

[LBAK+98] Insup Lee, H. Ben-Abdallah, S. Kannan, M. Kim, 0 . Sokolsky,
and M. Viswanathan. A Monitoring and Checking Framework
for Run-time Correctness Assurance. In Korea-US Technical
Conference on Strategic Technologies, October 22-24 1998. Vi-
enna, VA.

[LM97] Guangtian Liu and Aloysius K. Mok. An Event Ser-
vice Framework for Distributed Real-Time Systems.
In IEEE Workshop on Middleware for Distributed
Real-Time Systems and Services, December 1997.
http://citeseer.nj.nec.com/liu97event.html.

[LP85] C. H. Ledoux and D. Stott Parker. Saving Traces for Ada De-
bugging. In Ada in Use (1985 International Ada Conference),
pages 97-108, Cambridge, England, May 1985. Cambridge
University Press.

[Lut92] Robyn R. Lutz. Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems. In Proceedings of IEEE
International Symposium on Requirements Engineering, pages
126-133, January 1992.

[MahOl] Daniel Mahrenholz. Minimal Invasive Monitoring . In Pro-
ceedings of Fourth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 251-258,
2001.

[MaiO2] Reinhard Maier. Event-Triggered Communication on Top of
Time-Triggered Architecture. In Proceedings DASC'02 - 21st
Digital Avionics Systems Conference, October 2002. Irvine,
USA.

[Maj95] I. Majzik. Software Monitoring and Debugging Using Com-
pressed Signature Sequences. In Proceedings of the 22nd EU-
ROMICRO Conference, pages 311-318, 1995.

[MayOO] Markus Mayer. Design and Implementation of a File-System
Based Monitoring Interface for the Time-Triggered Communi-
cations Protocol T T P / C under Linux. Master's thesis, Tech-
nische Universität Wien, Institut für Technische Informatik,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2000.

[MH89] C. E. McDowell and D. P. Hembold. Debugging Concurrent
Programs. ACM Computing Surveys, 21(4):593-622, December
1989.

145

BIBLIOGRAPHY BIBLIOGRAPHY

[ML97] Aloysius K. Mok and Gunagtian Liu. Efficient Run-Time Mon-
itoring of Timing Constraints. In Proceedings of Third IEEE
Real-Time Technology and Applications Symposium, pages
252-262, 1997.

[MN02] Monitoring-Node. TTP Monitoring-Node - A TTP Develop-
ment Board for the Time-Triggered Architecture based on the
TTP Chip C2. TTTech Computertechnik AG, Schönbrunner
Straße 7, A-1040 Vienna, November 2002. Manual Edition:
2.1.00.

[Mot95a] Motorola. MC68160 - Enhanced Ethernet Interface Transceiver
- Technical Data. Motorola Incorporation, 1995.

[Mot95b] Motorola. MC68360 QUad Integrated Communications Con-
troller - User's Manual. Motorola Incorporation, 1995.

[Mot02] Motorola. MPC855T User's Manual - Integrated Communica-
tions Microprocessor. Motorola Incorporation, April 2002.

[MRW92] Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff.
Performance Measurement Intrusion and Perturbation Analy-
sis. IEEE Transactions on Parallel and Distributed Systems,
3(4):433-450, July 1992.

[MS95] Masoud Mansouri-Samani. Monitoring of Distributed Systems.
PhD thesis, Department of Computing, Imperial College of
Sciense, Technology and Medicine, University of London, De-
cember 1995.

[MSS92] Masoud Mansouri-Samani and Morris Sloman. Monitoring Dis-
tributed Systems (A Survey). Technical Report DOC92/23,
Imperial College of Science Technology and Medicine, Depart-
ment of Computing, 180 Queen's Gate, London SW7 2BZ,
September 1992.

[MSS93] Masoud Mansouri-Samani and Morris Sloman. Monitoring Dis-
tributed Systems. IEEE Network, 7(6):20-30, November 1993.

[MSSP02] Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schröoder-
Preikschat. Program Instrumentation for Debugging and Mon-
itoring with AspectC++. In Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, pages 249-256, April 2002. Washington,
DC , USA.

146

BIBLIOGRAPHY BIBLIOGRAPHY

[MW94] Prank Mueller and David Whalley. On Debugging Real-Time
Applications. In Proceedings of the ACM SIGPLAN Work-
shop on Language, Compiler, and Tool Support for Real- Time
Systems, June 1994.

[Mye76] G. J. Myers. Software Reliability: Principles and Practices.
Published by John Wiley & Sons, USA, 1976.

[NGM98] E. Nett, M. Gergeleit, and M. Mock. An Adaptive Approach
to Object-Oriented Real-Time Computing. In 1st IEEE Inter-
national Symposium on Object-oriented Real-time distributed
Computing (ISORC '98), April 1998. Kyoto, Japan.

[Nos97] Romman Nossal. An Interface-Focused Methodology for the
Development of Time-Triggered Real-Time Systems Consider-
ing Organizational Constraints. PhD thesis, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, 1997.

[OMGOl] Smart Transducers Interface. OMG TC Document orbos/2001-
06-03, July 2001. Supported by Technische Universität Wien.
Available at http://www.omg.org.

[OPEL01] Roman Obermaisser, Philipp Peti, Wilfried Elmenreich, and
Thomas Losert. Monitoring and Configuration in a Smart
Transducer Network. In IEEE Workshop on Real-Time Em-
bedded Systems, 3rd December 2001, London, United Kingdom,
December 2001.

[OseOl] OSEK/VDX Fault-Tolerant Communication Specification 1.0.
OSEK/VDX Steering Committee, http://www.osek-vdx.org,
July 2001.

[OSS93] D.M. Ogle, K. Schwan, and R. Snodgrass. Application-
Dependent Dynamic Monitoring of Distributed and Parallel
Systems. IEEE Transactions on Parallel and Distributed Sys-
tems, 4(7):762-778, 1993.

[Pet97] Dennis K. Peters. Deriving Real-time Monitors from System
Requirements Documentation. In Proceedings of Third IEEE
International Symposium on Requirements Engineering (RE
'97) Doctoral Consortium, pages 89-92, January 1997.

[Pla84] Bernhard Plattner. Real-Time Execution Monitoring. IEEE
Transactions on Software Engineering, SE-10(6):756-754,
November 1984.

147

BIBLIOGRAPHY BIBLIOGRAPHY

[Pol96] Stefan Poledna. Optimizing interprocess communication for
embedded real-time systems. In Proceedings of the 17th IEEE
Real-Time Systems Symposium (RTSS '96), Jan. 1996.

[PPOO] Dennis K. Peters and David L. Parnas. Requirements-Based
Monitors for Real-Time Systems. In Proceedings of the 2000 In-
ternational Symposium on Soßware Testing and Analysis (IS-
STA), pages 77-85, August 2000.

[PP02] Dennis K. Peters and David L. Parnas. Requirements-Based
Monitors for Real-Time Systems. IEEE Transactions on Soft-
ware Engineering, 28(2):146-158, February 2002.

[PusO2a] Peter Puschner. Is worst-case execution-time analysis a non-
problem? - towards new software and hardware architectures.
In Proc. 2nd Euromicro International Workshop on WCET
Analysis, Technical Report, York YO10 5DD, United King-
dom, Jun. 2002. Department of Computer Science, University
of York.

[PusO2b] Peter Puschner. Transforming execution-time boundable code
into temporally predictable code. In Bernd Kleinjohann,
K.H. (Kane) Kim, Lisa Kleinjohann, and Achim Rettberg, ed-
itors, Design and Analysis of Distributed Embedded Systems,
pages 163-172. Kluwer Academic Publishers, 2002. IFIP 17th
World Computer Congress - TC10 Stream on Distributed and
Parallel Embedded Systems (DIPES 2002).

[Ram93] Krithi Ramamritham. Time for Real-Time Temporal
Databases? In Proceedings of the International Workshop on
an Infrastructure for Temporal Databases, June 1993.

[Ram95] Krithi Ramamritham. The Origin of TCs. In Proceedings
of the First International Workshop on Active and Real-Time
Database Systems, pages 50-62, Sködve, June 1995.

[Ram96] Krithi Ramamritham. Where do Time Constraints Come From
and Where do They Go? International Journal of Database
Management (invited paper), 7(2):4-10, Spring 1996.

[RRJ92] Sitaram C.V. Raju, Ragunathan Rajkumar, and Farnam Jaha-
nian. Monitoring Timing Constrains in Distributed Real-Time
Systems. In Proceedings of the 13th IEEE Real-Time Systems
Symposium, pages 57-67, 1992.

148

BIBLIOGRAPHY BIBLIOGRAPHY

[SA02] Idriz Smaili and Astrit Ademaj. Setting Break-Points in
the Distributed Time-Triggered Architecture. In IEEE In-
ternational High Level Design Validation and Test Workshop
(HLDVT'02), pages 57-62, October 2002. Cannes, France.

[Sch94a] Ulrich Schmid. Monitoring Distributed Real-Time Systems.
Real-Time Systems Journal, 7(l):33-56, 1994.

[Sch94b] Werner Schütz. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems Journal, 7(2):129-157,
1994.

[Sch95] Beth A. Schroeder. On-Line Monitoring: A Tutorial. IEEE
Computer, 28(6): 72-78, June 1995.

[Sev87] R.E. Seviora. Knowledge-Based Program Debugging Systems.
IEEE Transactions on Software Engineering, 4(3):20-32, May
1987.

[SG94] M. Spezialetti and R. Gupta. Perturbation Analysis: A Static
Analysis Approach for the Non-Intrusive Monitoring of Parallel
Programs. In International Conference on Parallel Processing,
volume II, pages 81-88, St. Charles, Illinois, August 1994.

[SG97] Darlene A. Stewart and W. Morven Gentlman. Non-Stop Mon-
itoring and Debugging on Shared-Memory Multiprocessors. In
Proceedings of the 2nd International Workshop on Software
Engineering for Parallel and Distributed Systems, pages 263-
269, May 1997. Boston, MA.

[Shi96] Jun Shih. Debugging Concurrent Programs. Master's thesis,
Waterloo, Ontaria, Canada, University of Waterloo, 1996.

[Sik98] Christoph Sikula. A Monitoring System for Real-Time Ap-
plications in the Time-Triggered Architecture. Master's the-
sis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, February
1998.

[SL01] Mohammed El Shobaki and Lennart Lindh. A Hardware
and Software Monitor for High-Level System-on-Chip Verifi-
cation. In International Symposium on Quality Electronic De-
sign, pages 56-61, March 2001. San Jose, CA, USA.

149

BIBLIOGRAPHY BIBLIOGRAPHY

[SmaO2] Idriz Smaili. A Real-Time Monitoring System for the Time-
Triggered Architecture. In 8th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2002). Poster
Addendum to the Proceedings, pages 9-16, September 2002.
San Jose. CA, USA.

[SmaO4] Idriz Smaili. Using Triggers to Find Significant Events dur-
ing Monitoring of Real-Time Systems. In Workshop on Intelli-
gent Solutions in Embedded Systems - WISES 2004, June 2004.
Graz, Austria.

[Son95] Sang H. Son. Predictability and Consistency in Real-Time
Database Systems. Advances in Real-Time Systems, S. H. Son
(ed.), Prentice Hall, 1995.

[SP04] Idriz Smaili and Peter Puschner. Monitoring Data Types in
Distributed Real-Time Systems. In IEEE International Con-
ference on Computational Cybernetics - ICCC 2004, August
30 - September 1 2004. Vienna, Austria.

[SS97] T. Savor and R.E. Seviora. An Approach to Automatic De-
tection of Software Failures in Real-Time Systems. In Proceed-
ings of the Third IEEE Real-Time Technology and Applications
Symposium, pages 136-146, 1997.

[StoOl] Georg Stoeger. The TTA Network - a Safe yet Flexible Com-
munication Architecture for Vehicle Electronics. SAE - Society
of Automotive Engineers, Inc, March 2001. Detroit, USA.

[TB96] Jeffry J.P. Tsai and Yao-Dong Bi. Debugging for Timing-
Constraint Violations. IEEE Software, 13(2):89-99, March
1996.

[TBYS96] Jeffrey J.P. Tsai, Yaodong Bi, Steve J.H. Yang, and Ross A.W.
Smith. Distributed Real-Time Systems - Monitoring, Visual-
ization, Debugging, and Analysis. John Wiley and Sons, Inc.,
USA, 1996. ISBN 0-471-16007-5.

[TCO91] Kuo-Chung Tai, Richard H. Carver, and Evely E. Obaid. De-
bugging Concurrent Ada Programs by Deterministic Execu-
tion. IEEE Transactions on Software Engineering, 17(1) :45-
63, 1991.

150

BIBLIOGRAPHY BIBLIOGRAPHY

[TFB90] Jeffry J.P. Tsai, Kang-Ya Fang, and Yao-Dong Bi. On Real-
Time Software Testing and Debugging. In Proceedings of Four-
teenth Annual International Computer Software and Applica-
tions Conference, pages 512-518, 1990.

[TFC90] Jeffry J.P. Tsai, Kang-Ya Fang, and Horng-Yuan Chen. A
Noninvasive Architecture to Monitor Real-Time Distributed
Systems. Computer, 23(3):ll-23, March 1990.

[TFCB90] J.P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Nonin-
terference Monitoring and Replay Mechanism for Real-Time
Software Testing and Debugging. IEEE Transaction on Soft-
ware Engineering, 16:897-916, 1990.

[TH00] Henrik Thane and Hans Hansson. Using Deterministic Replay
for Debugging of Distributed Real-Time Systems. In Proceed-
ings of the 12th European Conference on Real-Time Systems,
pages 265-272, 2000. Royal Institute of Technology, Sweden.

[ThaOOa] Henrik Thane. Design for Deterministic Monitoring of
Distributed Real-Time Systems. Research Report 5/9/00,
Mälardalen Real-Time Research Center, Stokholm, 2000.

[ThaOOb] Henrik Thane. Monitoring, Testing and Debugging of Dis-
tributed Real-Time Systems. PhD thesis, Royal Institute of
Technology, Stockholm, May 2000.

[TKM88] Hideyuki Tokuda, Makoto Kotera, and Clifford W. Mercer.
A Real-Time Monitor for a Distributed Real-Time Operating
System. In Proceedings of ACM Workshop on Parallel and
Distributed Debugging, pages 66-77, 1988.

[TTP01] TTPnode. TTPnode - A TTP Development Board for the
Time-Triggered Architecture. TTTech Computertechnik AG,
Schönbrunner Straße 7, A-1040 Vienna, June 2001. Manual
Edition: 1.0.11.

[TTP02a] TTPbuild. TTPbuild - The Node Design Tool for the Time-
Triggered Protocol TTP/C. TTTech Computertechnik AG,
Schönbrunner Straße 7, A-1040 Vienna, July 2002. Manual
Edition: 3.2.

[TTP02b] TTPplan. TTPplan - The Cluster Design Tool for the Time-
Triggered Protocol TTP/C. TTTech Computertechnik AG,

151

BIBLIOGRAPHY BIBLIOGRAPHY

Schönbrunner Straße 7, A-1040 Vienna, August 2002. Man-
ual Edition: 3.5.

[TTP02c] TTPview. TTPview - The TTP Real-time Monitoring Tool.
TTTech Computertechnik AG, Schönbrunner Straße 7, A-1040
Vienna, December 2002.

[TTT98] TTTech Computertechnik AG. http://www.tttech.com, 1998.

[TTT99] TTTech. TTP/C Protocol Specification- Version 0.1. TTTech
Computertechnik AG, Schönbrunner Straße 7, A-1040 Vienna,
April 1999. Available at http://www.ttpforum.org.

[TTT02] TTTech. TTP/C Protocol Specification - Version 1.0. TTTech
Computertechnik AG, Schönbrunner Straße 7, A-1040 Vienna,
June 2002. Available at http://www.ttpforum.org.

[UB02] David Urting and Yolande Berbers. Runtime Verification of
Timing Constraints. Research Report CW 345, Department of
Computer Science, K.U. Leuven, België, July 2002.

[vdSvdWA+97] P.D.V. van der Stok, J. van der Wal, A.T.M. Aerts, S.A.E
Sassen, and M.P. Bodlaender. Performance Modeling of Real-
Time Database Schedulers. Real-Time Database Systems, Is-
sues and Applications, pages 251-275, 1997. Kluwer Academic
Publishers.

[VW02] Jeffry S. Vetter and Patrick H. Worley. Asserting Performance
Expectations. In Proceedings of the ACM/IEEE Conference
on High Performance Networking and Computing, November
16-22 2002. Baltimore, MD.

[WatOO] Gregory R. Watson. The Design and Implementation of a Par-
allel Relative Debugger. PhD thesis, School of Computer Sci-
ence and Software Engineering, Monash University, Wellington
Road, Clayton, VIC 3168, Australia, October 2000.

[WLS99] Horst F. Wedde, Jon A. Lind, and Guido Segbert. Dis-
tributed Real-Time Task Monitoring in the Safety-Critical Sys-
tem Melody. In Proceedings of the 11th Euromicro Conference
on Real-Time Systems, pages 158-165, June 9-11 1999. York,
England, UK.

152

BIBLIOGRAPHY BIBLIOGRAPHY

[WSG96] Wanqing Wu, Madalene Spezialetti, and Rajiv Gupta. Guaran-
teed Intrusion Removal from Monitored Distributed Applica-
tions. In Eighth IEEE Symposium on Parallel and Distributed
Processing, pages 422-425, 1996. Pasadena, California.

[WSG98] Wanqing Wu, Madalene Spezialetti, and Rajiv Gupta. A Pro-
tocol for Removing Communication Intrusion in Monitored
Distributed Systems. In International Conference on Dis-
tributed Computing Systems, pages 120-129, 1998.

153

Glossary

Note: All terms that are defined in this glossary are put in italics. At the
end of each entry the section of the thesis that introduces or discusses the term
is mentioned in the parenthesis.

Amount of Monitoring Data: The sum of the sizes of observation history
of each entity within an observation interval is called the amount of
monitoring data within the observation interval(4.2.1).

Aperiodic Monitoring Data: We call non-regular MD aperiodic, if they
contain observations over entities, which are observed non-regularly, and
no minimum time interval between successive observations exists (4.3.1).

Bandwidth Occupation: The bandwidth of the shared transmission medium
that is actually used for transmitting of monitoring data collected within
an observation interval is called bandwidth occupation^.?.2).

Cascade Interconnection Topology: We say that the interconnection
topology of multiple clusters is of type cascade, if the monitoring sys-
tem is directly connected to only one cluster and to others via (multiple)
gateways (5.4.1).

Data Deadline: The time point after which real-time data lose their validity
is called data deadline (2.1.2).

Debugging: Debugging is denned by the ANSI/IEEE glossary as "the process
of locating, analyzing and correcting suspected faults", where a fault is
defined as an accidental condition that causes a program to fail to perform
its required function [BJRW94] (2.3).

Event Record: Whenever the monitor device recognizes an event, it stores
a data record (a so called event record), which contains the information
what happened when and where [HKM+94] (2.2.1).

154

Glossary

Event Trace: The sequence of events is stored as an event
trace [HKM+94] (2.2.1).

Event: An event is defined by Kopetz in [Kop97] as an occurrence (a state
change) that happens at a cut of a directed time line that extends from
the past into the future, and from which the flow of real-time can be
modelled (2.2.1).

Global Monitoring Data: We call the node MD global, if they contain ob-
servations over entities that are globally visible within a particular node
(4.3.2).

Local Monitoring Data: Node monitoring data, which contain observations
over entities that are not globally visible within a particular node are
called local monitoring data (4.3.2).

Monitored Application Data: We call MD monitored application data if
they contain observations over entities that contribute to achieving the
computational goal of the target application (4.3.2).

Monitoring at Cluster Level: We define the monitoring of target systems
at the cluster abstraction level as a monitoring process during which the
monitoring system observes entities whose observations are visible within
the cluster scope, i.e., these observations are exchanged among the in-
terconnected nodes within a given cluster via the shared transmission
medium (5.3.1).

Monitoring at Function Level: We define the monitoring of target systems
at the function abstraction level as a monitoring process during which
observations over entities are collected that are not visible outside of
functions or modules of the local part of the target application (5.3.2).

Monitoring at Node Level: We define the monitoring of target systems at
the node abstraction level as a monitoring process during which the
monitoring system observes entities whose observations are visible only
within the node scope, i.e., these observations are not exchanged be-
tween the interconnected nodes within a given cluster (5.3.2).

Monitoring at OS Level: We define the monitoring at the OS abstraction
level as a monitoring process during which the monitoring system observes
entities that cannot be seen outside of the OS, and the run-time behavior
of the OS of a particular node must be represented from these observations
(5.3.2).

155

Glossary

Monitoring at Task Level: We define the monitoring of target systems at
the task abstraction level as a monitoring process during which observa-
tions over input and output messages of each observed task are collected
(5.3.2).

Monitoring Capacity: The (rest of the) bandwidth of the shared transmis-
sion medium that is not utilized by the target application during an
observation interval is called monitoring capacity (5.3.2).

Monitoring Data: The set of observation histories that contain observations
of an observation interval and which represent the run-time behavior of
the monitored target system at the intended abstraction level are called
monitoring data(4.2.l).

Monitoring Route: Let A and B be two different points within the target
system. We call the connection between these two points the monitoring
route, if the connection between these two points contains at least one
cluster. A monitoring route that contains only one cluster is called simple,
while a monitoring route that contains more than one cluster and gateway
nodes is called complex (see Figure 5.10) monitoring route (5.4.1).

Monitoring System: The monitoring system is a system that is used for
monitoring of monitored systems (i.e., target systems) [TBYS96] (2.2.1).

Network Monitoring Data: Network MD contain observations over enti-
ties, the observations of which are used by tasks running on different
nodes, i.e.. they are exchanged between interconnected nodes via the
shared transmission medium (4.3.2).

Non-Regular Monitoring Data: We call MD non-regular, if there is no reg-
ular pattern of observations made over the respective entities (4.3.1).

Observation History: The sequence of timely ordered observations that are
made over a particular (single) entity within an observation interval is
called observation history (4.2).

Observation Interval: The observation interval is the periodic time interval,
which in fact is the smallest interval of the monitoring duration. The the
start point and the duration of the observation interval are the same as
the start point and the duration of the ARU (see Section 3.4) of the target
system (4.2).

Parallel Interconnection Topology: We define the type of the interconnec-
tion topology of multiple clusters as parallel, if the monitoring system is

156

Glossary

directly connected to each of the interconnected clusters to be monitored
(5.4.1).

Probe Effect: Probe effect is the effect caused by the interference that occurs
when a program's execution is monitored [TCO91] (2.2.3).

Probes: Probes are code fragments residing within the resident monitor
(rather than application) [OSS93](2.2.1).

Propagation Delay: The propagation delay of a monitoring route is the du-
ration between the point in time when the monitoring system starts a
monitoring action on the remote cluster, i.e., it sends a command to the
remote cluster, and the point in time when the monitoring system re-
ceives the collected monitoring data from the remote cluster through the
monitoring route (5.4.1).

Pure Monitoring Data: We call MD pure monitoring data if they contain
observations over entities that do not provide any contribution for achiev-
ing the computational goal of the target application (4.3.2).

Real-Time Data: The type of data that lose their validity with the passage
of real-time are called real-time data(2.1.2).

Recording Interval: The time interval during which the collected monitoring
data are recorded by the trigger's recording actions is called recording
interval or logging window (6.1).

Regular Monitoring Data: We call MD regular, if there is a regular pattern
of observations made over the respective entities (4.3.1).

RTS Entity: Analog to the RT entity, we introduce a new notion called real-
time system (RTS) entity, which is a significant "state variable"of the
target real-time computer system and which is relevant only for the mon-
itoring system (4.2).

Sensor: A sensor is denned in [Sch95] by Schroeder as an entity that observes
the behavior of a small part of the application system state space (2.2.1).

Significant Event: A significant event is defined as an event of interest, which
has to be denned by the user of the monitoring system. Examples of such
events are: the temperature of a controlled physical system or the velocity
of a (controlled) car exceed their allowed limits (6.1).

Significant Time Point: The time point, at which a significant event is
found, is called the significant time point (6.1).

157

Glossary

Sporadic Monitoring Data: We call non-regular MD sporadic, if they con-
tain observations over entities, which are not observed regularly, but
a minimum time interval between successive observations exists and is
known (4.3.1).

Target Application: The application that is executed on the target system
is called target application (2.2.1).

Target System: The system that is monitored by the monitoring system is
called target system [Pla84, PPOO] (2.2.1).

158

List of Abbreviations

AC - Absolute Consistency
ARU - Atomic Repetitive Unit
BG - Bus Guardian
CDB - Cluster Design Database
CI - Control Interface
COI - Controlled Object Interface
COTS - Commercial Off-The-Shelf
CM - Central Monitor
CNI - Communication Network Interface
C-state - Local view of the cluster state
DCI - Data Sharing Interface
EBNF - Extended Backus-Naur Form
ECA - Event-Condition-Action
FIFO - First-In First-Out
FTcom - Fault-Tolerant Communication Layer
FTL - Fault-Tolerance Layer
FT CNI - Fault-Tolerance CNI
IFG - Interframe Gap
IFS - Interface File System
ISR - Interrupt Service Routine
IT - Information Technology
/j,T - Microtick
MCH - Monitoring CNI History
MEDL - Message Description List
MGA - Message Area
MN - Monitoring Node
MT - Macrotick
NBW - Non-Blocking Write Protocol
NDB - Node Design Database
01 - Observation Interval
OS - Operating System
RC - Relative Consistency
ReAM - Recording Action Manager
RM - Resident Monitor
RPA - Read Partition Algorithm
RTL - Real-Time Logic
RTOS - Real-Time Operating System
RTMS - Real-Time Monitoring System

159

List of Abbreviations

RTS - Real-Time System
RTTS - Real-Time Trigger System
SCA - Status/Control Area
SRU - Smallest Replaceable Unit
TDL - Trigger Definition Language
TDM A - Time-Division Multiple Access
TTA - Time-Triggered Architecture
TTP - Time-Triggered Protocol
TTP/C - Time-Triggered Protocol for SEA Class C of applications
TTP/C-C1 - A prototype version of a TTP/C controller
TTP/C-C2 - An operational version of a TTP/C controller
TTOS - Time-Triggered Operating System
TTPbuild - Node Design Software Tool from TTTech AG
TTPplan - Cluster Design Software Tool from TTTech AG
TTPview - Bus Monitoring Software Tool from TTTech AG
UD - User Denned
WCA - Worst-Case Amount
WCET - Worst-Case Execution Time

160

List of Publications

1. H. Kopetz, M. Kucera, D. Millinger, C. Ebner, and I. Smaili. "Interfac-
ing Time-Triggered Embedded Systems to the INTERNET". Proceedings
of the International Symposium on Internet Technology. (Taipei, Taiwan.
Apr. 1998):Pp.l80-186.

2. Markus Kucera, Idriz Smaili, and Emmerich Fuchs. "A Lightweight
Ethernet Protocol to Connect a Time-Triggered Real-Time System to
an INTERNET Server". European Multimedia, Microprocessor Systems
and Electronic Commerce Conference and Exhibition. (Bordeaux, France,
September 1998)

3. Stefan Poledna, Harald Angelow, Martin Glueck, Manfred Pisecky, Idriz
Smaili, Georg Stoeger, Christian Tanzer, Georg Kroiss, TTTech. "TTP
Two Level Design Approach: Tool Support for Composable Fault-
Tolerant Real-Time Systems". SAE International Congress and Exhi-
bition. (Detroit, USA, 2000).

4. Idriz Smaili. "A Real-Time Monitoring System for the Time-Triggered
Architecture". The 8th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2002), September 24-27, pages: 9-16,
San Jose, California, 2002.

5. Idriz Smaili, Astrit Ademaj. "Setting Break-Points in Distributed
Time-Triggered Architecture". In Proceedings of the 7th Annual IEEE
International Workshop on High Level Design Validation and Test,
Cannes, France, October, 2002.

6. Idriz Smaili. "Using Triggers to Find Significant Events during Mon-
itoring of Real-Time Systems". International Workshop on Intelligent
Solutions in Embedded Systems - WISES 2004, Juny 25, Graz, Austria,
2004.

7. Idriz Smaili and Peter Puschner. "Monitoring Data Types in Dis-
tributed Real-Time Systems". IEEE International Conference on Com-
putational Cybernetics - ICCC 2004, August 30 - September 1, Vienna,
Austria, 2004.

161

Curriculum Vitae

October 28t/l 1971

September 1978 -
June 1986

September 1986 -
June 1990

October 1990 -
May 1995

May 1995

May 1995 -
April 1996

Oktober 1995 -
April 1996

April 1996 -
March 1997

March 1997 -
October 1997

Oktober 1997 -
August 1998

June 8th 1998 -
December 1st 2003

since August 1998

Idriz Smaili

Born in Ballaban, Prishtinë, Kosova

Primary School in
Ballaban. Prishtinë, Kosova

Secondary School in
Prishtinë, Kosova

Studies in the Faculty of Electrical Engineering
Section of Informatics and Telecommunications
University of Prishtina, Prishtinë, Kosova

Graduation in the Faculty of Electrical Engineering
with distinction

Software Engineer
Computer System Technologies (CST), Prishtinë, Kosova

Teaching Assistant (Computer Languages)
University of Prishtina, Prishtinë, Kosova

German Language Learning
in Vienna, Austria

Entrance Examination
Real-Time Systems Group, Vienna University of Technology

PhD Studies (Real-Time Databases)
Real-Time Systems Group, Vienna University of Technology

Software Engineer (TTPview Project Manager)
TTTech Computertechnik AG (www.tttech.com)

PhD Studies (Real-Time Monitoring)
Real-Time Systems Group, Vienna University of Technology

162

