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Abstract

Due to the progressive miniaturization of integrated circuits the exact and fast sim-
ulation of physical processes becomes more and more important. On the one hand,
due to the miniaturization, parasitic effects begin to influence the device character-
istics. Therefore, existing models must be extended. On the other hand, due to
the reduction of the device dimension, a limited spatial expansion in the third di-
mension cannot be neglected any longer. At geometry corners, parasitic effects can
occur and may even dominate the device behavior severely. Since these effects are
not describable in two dimensions, the models must be extended to three dimensions
and the development and simulation tools have to be adapted to three-dimensional
requirements. The extension of the simulation tools involves the extension of the
simulators, which contains the adaption for three-dimensional structure descriptions
and the embedding of the new and extended models. Additionally, the mesh gener-
ators must be extended for three dimensions. Since the necessary amount of data
and computing time that is needed for the simulation increases enormously, it is in-
evitable to adapt the simulation meshes to the given requirements in order to obtain
accurate simulation results even with limited resources. As will be shown this task
is far from trivial.

In the context of this work the issue of three-dimensional mesh generation for spe-
cific simulation problems in microelectronics is outlined. Chapter 4 describes the
development of a method for the fast computation of diffusion processes in simple
semiconductor structures. Since diffusion processes are transient procedures, an ex-
act three-dimensional simulation needs a set of simulations on partially very dense
meshes. Therefore the required computing time can increase enormously. With the
developed method, a Green’s Function approach of the diffusion equation can be
used if complicated nonlinear models can be neglected, which offers the advantage
to supply the final diffusion profile after only one simulation step. It can be per-
formed without the frequent computation of only temporarily used distributions.
Moreover, with this method the result is independent of the simulation mesh. Since
the meshes, holding the initial and the final distribution, are independent, both of
them can be adapted to their respective requirements.
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An adapted Delaunay mesh generation approach for the electrical simulation of
semiconductor devices is described in the following chapter. Since particularly with
the simulation of MOS transistors a very high resolution of the mesh is necessary
below the gate oxide, global mesh refinement methods are impracticable due to high
resource consumption. The frequently used ortho grids, where an anisotropic grid
density can be relatively easily obtained, cannot be used with non-axes-parallel and
non-planar geometries. With the developed method, the grid points are placed along
computed equipotential surfaces. Since the positive characteristics of the ortho grids
are preserved, the mesh lines near the surface match the contours of the geometry
edges and no restriction on planar structures exists. Along these equipotential faces
a high point density can be selected within desired regions. A further advantage of
this method is that the point density can be tuned in relation to the direction, along
three almost orthogonal axial directions, which results in controllable anisotropy.
Similar procedures are well-known as elliptical grid generation.

Finally, the relevance of each topic is clarified by accomplished applications. The
boundary region of a power field-effect transistor is optimized concerning its electri-
cal characteristics with the help of the diffusion simulation. The developed potential
method is used for the development of a simulation mesh of a FinFET structure.
A final example shows a complete process simulation of an EEPROM memory cell,
whereby also the potential method is used in a somewhat modified operational area.
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Kurzfassung

Durch die fortschreitende Miniaturisierung integrierter Schaltkreise nimmt die ge-
naue und schnelle Simulation physikalischer Vorgänge einen immer höheren Stel-
lenwert ein. Einerseits wirken sich aufgrund der Miniaturisierung parasitäre Effekte
in verstärktem Maße aus und bestehende Modelle müssen dahingehend erweitert
werden, andererseits kann durch die Verkleinerung der Bauteilabmessungen eine
beschränkte räumliche Ausdehnung in die dritte Raumrichtung nicht mehr ver-
nachlässigt werden. Ebensolche parasitäre Effekte können genau an Geometrieecken
auftreten und das Bauteilverhalten gravierend beeinflussen. Da diese Effekte nicht
zweidimensional beschreibbar sind, müssen sowohl die Modelle auf drei Dimensio-
nen erweitert werden, als auch die Entwicklungs- und Simulationswerkzeuge den
dreidimensionalen Anforderungen angepasst werden. Die Erweiterung der Simula-
tionswerkzeuge umfasst die Erweiterung der eigentlichen Simulatoren, die ebenfalls
für dreidimensionale Strukturbeschreibungen angepasst werden müssen und in de-
nen die neuen und erweiterten Modelle eingebettet werden müssen. Darüberhinaus
müssen auch die Gittergeneratoren für drei Dimensionen erweitert werden. Da das
erforderliche Datenvolumen und auch die zur Simulation benötigten Rechenzeiten
enorm anwachsen, ist es unumgänglich, die Rechengitter den gegebenen Anforde-
rungen anzupassen, um bei eingeschränkten Ressourcen dennoch genaue Simulati-
onsergebnisse zu erzielen.

Im Rahmen dieser Arbeit wurde speziell auf die dreidimensionale Gittergenerierung
für spezielle Anwendungsgebiete der Simulation in der Mikroelektronik eingegangen.
In Kapitel 4 wird ein entwickeltes Verfahren zur schnellen Berechnung von Diffu-
sionsprozessen in einfachen Halbleiterstrukturen vorgestellt. Da Diffusionsprozesse
transiente Vorgänge sind, benötigt eine genaue dreidimensionale Simulation eine
Reihe von Einzelsimulationen auf teilweise sehr dichten Rechengittern und die Re-
chenzeiten können enorm anwachsen. Beim entwickelten Verfahren wird auf kompli-
zierte nichtlineare Modelle verzichtet. Die Berechnung erfolgt anhand Green’scher
Funktionen der Diffusionsgleichung, die den Vorteil besitzen, einen Endwert des
Diffusionprozesses nach nur einem Simulationsschritt liefern zu können. Es kann
auf die wiederholte Auswertung zeitlich diskretisierter Diffusionsvorgänge verzich-
tet werden. Desweiteren konnte bei diesem Verfahren eine gewisse Unabhängigkeit
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des Ergebnisses vom Rechengitter erzielt werden. Da Anfangsverteilung und Ender-
gebnis auf voneinander unabhängigen Gittern vorliegen dürfen, können auch beide
ihren jeweiligen Anforderungen angepasst werden.

Der zweite Teil der Arbeit beschäftigt sich mit der Delaunay Gittergenerierung für
die Simulation elektronischer Halbleiterbauteile. Da speziell bei der Simulation von
MOS Transistoren eine sehr hohe Gitterauflösung unter dem Gateoxid notwendig ist,
versagen globale Gitterverfeinerungsmethoden ebenfalls aufgrund des hohen Res-
sourcenverbrauchs. Ebenso versagen die vielfach verwendeten Orthogitter, bei de-
nen eine anisotrope Gitterdichte relativ leicht eingestellt werden kann, weitläufig
bei nichtachsenparallelen und nichtplanaren Geometrien. Bei der hier entwickelten
Methode werden die Gitterpunkte entlang berechneter Isopotenzialflächen gesetzt.
Hierdurch wird erreicht, dass die positiven Eigenschaften der Orthogitter erhalten
bleiben, sich die oberflächennahen Gitterlinien den Geometriekanten anschmiegen
und keine Einschränkung auf planare Strukturen besteht. Entlang dieser Isopoten-
zialflächen können nun in gewünschten Bereichen die Punktdichten höher gewählt
werden. Ein weiterer Vorteil dieser Methode ist, dass die Punktdichte auch rich-
tungsabhängig, entlang dreier nahezu normal stehender Achsenrichtungen, das heißt
anisotrop, eingestellt werden kann. Allgemein sind ähnliche Verfahren als elliptische
Gittergenerierung bekannt.

Abschließend ist jeder Themenbereich anhand eines praktisch durchgeführten Bei-
spiels verdeutlicht. Der Randbereich eines Leistungsfeldeffekttransistors wird unter
Zuhilfenahme der Diffusionssimulation bezüglich seiner elektrischen Eigenschaften
optimiert. Die entwickelte Potenzialmethode findet anhand der Entwicklung eines
Rechengitters einer MOS Transistorstruktur Anwendung. Ein abschließendes Bei-
spiel zeigt eine komplette Prozesssimulation einer EEPROM Speicherzelle mit den
entstehenden Gittern, wobei auch die Potenzialmethode in einem etwas abgewan-
delten Einsatzgebiet zur Anwendung kommt.
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Different Grids in the Silicon Segment of a Device Structure.
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Chapter 1

Introduction

FOR THE DEVELOPMENT of today’s highly-integrated electrical devices, the
use of numerical simulation tools has become indispensable. Details in the

manufacturing procedure of these devices cannot be described by simple design rules
and the layout of device or interconnect structures cannot be predicted by simple
considerations. Electrical characteristics, the influence of the interconnect structures
on the capacitances and inductances between the metal layers, delay times of the
signals, and further effects have to be accounted for during the development process.
The detailed simulation of etching, deposition, implantation, and diffusion processes
have to be analyzed. Finally, the electrical characteristics of the devices have to be
investigated.

Coming along with the rapidly rising complexity and down-scaling of electronic
devices, many effects have to be considered. Effects near corners of the devices
become more dominant and physical simulation models have to be expanded. On
the one hand more complex models have to be used, on the other hand the existing
models, respectively their numerical solutions, have to be expanded from two spatial
dimensions to their three-dimensional representations.

Usually the applied models have an analytical representation, for instance in the form
of partial differential equations. Only in the most trivial cases, it is possible to find
an analytical solution for those problems. Even for simple linear partial differential
equations closed solutions cannot be found, because of the complex geometries and
resulting boundary conditions.

1



1.1. Grid Requirements for Numerical Discretization Methods 2

1.1 Grid Requirements for Numerical

Discretization Methods

Therefore, numerical methods have to be applied. Typically, a mesh is spanned over
the simulation domain and a numerical solution is sought, which approximates the
solution in the sampling points. The calculation is done by discretizing the differ-
ential equations by the methods of Finite Differences [66], Finite Elements [74][41]
or Finite Boxes [16]. Usually this discretization results in a large equation system,
which has to be solved. Each differential equation typically delivers an equation
system with the rank of the system being in the same size as the number of grid
points. Normally the given differential equations are not separable and in sum, an
equation system with the number of unknowns being equal the number of differ-
ential equations multiplied with the number of grid points must be solved. For
nonlinear systems, the final solution can only be found iteratively by applying New-
ton’s method [59]. For time dependent problems, the solution of each time-step has
to be calculated iteratively until the desired point of time is reached. For implicit
methods each time-step requires the solution of the equation system. Therefore,
these iterations can be very expensive in terms of calculation time, reaching the
maximum in nonlinear time-variant problems.

Ideally the mesh generation process and the simulation process should be separated.
This procedure eases the development of the simulation tools and guarantees the
modularity and flexibility of the tools. However, these steps are not necessarily
separable. For one-dimensional problems, the methods of Finite Differences, Finite
Elements (assuming linear Ansatzfunctions) and Finite Boxes (also known as Box
Integration) result in the same solution. Within two-dimensional simulations, Finite
Difference schemes exist in practicable form only for ortho-product grids where they
deliver the same equation-system as for Finite Boxes. Moreover, Finite Elements
and Finite Boxes also deliver the same solution. However, in three dimensions
discretization becomes more difficult and Finite Boxes and Elements differ in their
solution [13][14].

Additionally the different simulation methods have different demands on the grid.
In two dimensions, these criteria lead to the same geometrical grid criteria. However,
for three-dimensional problems, different criteria have to be fulfilled, depending on
the simulation method. On the one hand, Box Integration requires the well-known
Delaunay grids, and on the other hand, Finite Element analysis should be based on a
grid fulfilling a “Cotangent Criterion”, where many questions for grid generation are
still unresolved. Details of the discretization process and the resulting grid criterions
will be shown in Section 2.2. That is the reason why good Box Integration grids
will not necessarily be good Finite Element grids [19].
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Finally, a specifically designed grid adaptation method can dramatically reduce the
calculation effort and the memory consumption. These specially adapted grids re-
quire less grid points and produce more compact equation systems for reaching the
same accuracy. Even within one equation class, the requirement on the grid can
vary dynamically. A simple example, frequently used within electrical device man-
ufacturing, is a diffusion simulation of implanted dopants. This problem requires
a transient simulation where a relatively sharp implanted dopant profile diffuses to
a smooth profile over time. To achieve accurate simulation results the grid density
must be high in areas with high concentration curvatures [72]. In addition, locations
that require high grid-resolution will move within the material regions during dif-
fusion time. While moving, the dopant distribution is also smoothened (except for
some special applications). This leads to the requirement of adaptive mesh refine-
ment. In view of calculation times, this refinement cannot be performed by frequent
regridding. Usually an approach of hierarchical refinement and coarsening will be
chosen (see Section 2.15).

Basically, an overall increase of sampling points will also increase the accuracy of
the simulation (until numerical instabilities limit a continuative increase of sampling
points [3]). Despite the limited machine resources, namely CPU time and memory,
this fact cannot be exploited indefinitely. Consider the case where a two-dimensional
grid with N grid points is expanded to three dimensions. Based on the considera-
tion that the two-dimensional grid is spanned by about N1/2 ×N1/2 grid points, the
estimated number of points of the three-dimensional grid will lead to an increase of
computation points to N3/2. The increase of memory consumption is of the same
magnitude, not including the storage required for the third coordinate values of
the grid points plus additionally used point references of the grid elements. The
computation times will rise by the same amount O(N3/2) for the best fitted solvers
available like multigrid solvers, which have nearly linear complexity, O(N2·3/2) for
solvers which account for the sparsity of the equation systems, like Conjugate Gra-
dient solvers, and up to an amount of O(N3·3/2) for simple Gaussian solvers. The
limited calculation accuracy of the floating-point units of the simulation machines
also poses a limit to the equation system size.

1.2 Influence of the Simulation Grid

on the Solution

In the following the influence of two different grid refining methods will be compared.
The first method refines the grid by a global unstructured increase of grid points.
This is done by down-scaling the maximum grid element area. This approach will
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be compared to a more sophisticated point placement algorithm which, as will be
shown, also achieves more accurate results.

∂B1

∂B4

∂B3

∂B2

B

r0

r1

0 V

1 V

α

x

y

r

Figure 1.1: The simulation domain of the coaxial capacitor.

In Figure 1.1 a quarter of the cross-section of a coaxial capacitor is shown. The
electrode areas ∂B1 and ∂B3 are biased at 0 V and 1 V, respectively. The whole
capacitor area B is filled by an insulator with constant permittivity ε.

Because of the axial symmetry of the device, this simulation could be performed in
one dimension. However, to compare the influence of the grid adaption methods,
the simulation is performed in two dimensions. This artificial example is chosen,
because the analytical solution of this problem can be easily found and can be used
to calculate the error of the two grid adaption methods.

For the analytical and numerical evaluation of this problem, the Laplace equa-
tion [22]

− div(ε gradϕ) = 0 (1.1)

has to be solved within the domain B. The boundary conditions are

ϕ = 0 V on boundary ∂B1, (1.2)

ϕ = 1 V on boundary ∂B3. (1.3)

Since only a quarter of the whole coaxial capacitor is simulated, vanishing normal
derivatives at the radial boundaries have to be appended

∂nϕ = 0 on boundary ∂B2 and ∂B4. (1.4)
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For this simple structure, an analytical solution can be found and the electrostatic
potential results to

ϕ(r, α) =
ln r

r0

ln r1

r0

, (1.5)

only depending on the distance r from the center and independent of the radial
angle α. The symbol r0 denotes the radius of the inner electrode and r1 of the outer
one.

Within the following Box Integration simulations, the error of the discrete approxi-
mations is defined as:

f = | ϕ − ϕ |max. (1.6)

The symbol ϕ represents the exact analytic solution. In consistency with the Box
Integration method, the numerical approximation ϕ is derived by linear interpolation
inside the triangles of the grid.

The first meshing method places the grid points with nearly constant grid density.
The only constraint for the grid density is a maximum allowable triangle area,
to achieve the different grid densities. A typical grid produced by the Delaunay
triangulator triangle [61] is shown in Figure 1.2.

The adapted grid generation method places the grid points quasi-orthogonally (Fig-
ure 1.3), which means a constant number of points m with equidistant point spacings
along the expected equipotential surfaces (lines with constant radius) and a constant
number of grid points n with radially increasing point distances in the perpendicular
direction (along the diametric lines). This way, the number of grid points along and
across the radial lines can be varied arbitrarily. The resulting grid is a triangular
grid with m × n grid points. Figure 1.2 and Figure 1.3 contain approximately the
same number of grid points.

In Figure 1.4 the error of the numerical solution on the adapted grid with 10, 20,
30, . . . , 60 ticks in radial direction, as a function of the total number of grid points
is displayed. An interesting aspect derived by this error analysis is that the error
reaches a minimal value, if the tangential and radial number of grid ticks lie within
the same value. In this example for instance exactly at 30 × 34 grid ticks, but also
verified by trials with other numbers of radial and tangential ticks. An additional
increase of tangential sampling points does not improve the solution.

By varying the number of ticks radially and axially, the error depending on the total
number of grid points is compared to the unstructured method. This can bee seen in
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Figure 1.2: Unstructured grid refinement, 237 grid points. The resulting maximal
discretization error is 134 mV.
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Figure 1.3: Refinement, which is adapted to the given problem, 17×14 grid points.
The maximal discretization error is reduced to 8.7 mV.
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Figure 1.4: Error of the adapted grid. Each curve results from a grid with n ticks in
radial direction. The total number of grid points is varied. A minimal
error is reached, if the number of radial and tangential ticks are nearly
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Figure 1.5: Errors of the unstructured versus the adapted grid. The unstructured
grid is refined by a maximum area constraint. The adapted grid genera-
tion is built with the same number of grid ticks in radial and tangential
direction.
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Figure 1.5. The conclusion is, as expected, that within the adapted point placement
the error differs by orders of magnitude. Within the simulation range of grid points
an error dependency of f ∝ n−0.8 can be expected for the unstructured method and
about f ∝ n−1.1 for the more sophisticated method.

Thus, the evaluation of the numerical solution on the unstructured grid needs about
10 times the number of grid points than the improved version to achieve equal
accuracy — also implicating the same factor for memory and time consumption.
Within three-dimensional simulations this aspect becomes even more severe.



Chapter 2

Grid Types

WHEN DISCRETIZING the analytical problem the chosen grid type must be
accounted for. Different numerical methods require special kinds of grids and

the discretization process depends on the grid type, too.

One way to classify grids is by their basic grid elements. Grids with only one
element class have to be distinguished from grids with multiple element classes. It
can often be an advantage to allow differently shaped elements, since the use of
different element types may result in grids that are more flexible. The boundary
approximation of these elements can sometimes be better and the total number of
grid elements is usually reduced. However, those mixed element grids are often not
easy to handle with regard to both grid generation as well as numerical discretization.
The numerical discretization method must be applicable for all types of elements
that are used in the grid, which limits the set of usable element types and reduces the
flexibility of this method. Therefore, in most simulators only mixed element grids
with some basic element types, such as rectangles and triangles or tetrahedrons and
cuboids, are implemented.

Within this work, we will only consider simple element grids, and discriminate be-
tween triangular shaped elements, which are triangles in two dimensions and tetra-
hedrons for three dimensions, and rectangle shaped elements, rectangles for two
dimensions and cuboids for three dimensions. The second kind of grids are usually
known as ortho-product or ortho grids.

9
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(a) Axes-parallel geometry edges

(b) Non-parallel geometry edges, with required refinement
along them

Figure 2.1: Two-dimensional ortho grids along axes-parallel and non-parallel ge-
ometry edges.

2.1 Ortho Grids

The simplest way for meshing a region is to cut the simulation area into layers of
different thickness. After cutting in all three directions of space, we get an ortho
grid. For the grid representation, only the elements that lie within the simulation
domain are relevant (Figure 2.1).

If all edges of the geometry of the structure are parallel to the coordinate axes, we
will find an acceptable mesh for this domain. However, with complex geometrical
structures the limits of this method are quickly reached. Basically, inserting a new
point in an [m×n×o] points wide grid, where m, n, and o denote the number of ticks
in the three coordinate directions, will produce a grid with [(m+1)×(n+1)×(o+1)]
points. This may pose an unacceptable computational burden in terms of CPU-time
and memory consumption.
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Figure 2.2: A two-dimensional mixed grid with rectangular and triangular ele-
ments to approximate the boundary. Terminating lines reduce the
number of grid points.

Especially with non-planar geometries, there is no way to reproduce such non-planar
surfaces. They must be approximated by steps in the geometry, as sketched in
Figure 2.1 for a two dimensional example of an ortho grid. To achieve the desired
resolution of those edges which are non-parallel to the coordinate axes these lines
must be approximated by small steps. A negative side effect of this method is that
the amount of grid points will rise dramatically. Each additional coordinate tick
will result in an unacceptable number of unwanted grid points.

2.1.1 Mixed Grids

As a solution to this dilemma, it can be useful to allow triangular or tetrahedral
elements, too. This is shown in Figure 2.2. Grid lines, which are needed in one
region only, can terminate inside the simulation domain. At the termination points,
rectangles (cuboids) with additional points on the sides arise. As such rectangles
(cuboids) usually are not supported, they must be split into triangles (tetrahedrons)
to satisfy the connectivity. However, if triangles or tetrahedrons are provided, they
can also be provided at the geometry edges, which is shown in the region near the
fat boundary edges of Figure 2.2. This generally will reduce the amount of grid
points while better approximating the geometry.

Furthermore, since ortho grids can be split into triangles (or tetrahedra for three
dimensions), there is no need to store rectangles any longer. Each rectangle can be
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split in two triangles, each cuboid can be split into five or six tetrahedrons. As a
side effect, this decomposition fulfills the Delaunay criterion, which is relevant for
certain numerical schemes as mentioned previously. Adding special terminating lines
criteria within these generated triangles, a valid triangular (tetrahedral) Delaunay
mesh can be built.

2.1.2 Providing Attributes

Ortho grids are a common way to provide attributes, such as dopant concentrations.
On each point of the [m × n × o] ortho grid several attribute values can be stored.
The actual simulation is performed on a separate simulation grid, which can be
handled independently from these attribute grids. This has the big advantage that
the layout of the attribute and simulation grid can be customized to their individual
requirements. Regridding, coarsening, and refining the simulation grid will not alter
the attributes and no information loss of the primary attribute data is caused by
a change of the simulation grid. Otherwise, the resolution of the attributes can be
tuned arbitrarily, without an increase of the simulation times. Before starting the
simulation, the attribute values of the ortho grid are interpolated to the simulation
grid. In general, attributes are often provided on different grids than the simulation
grid.

2.2 Tetrahedral Grids

A flexible way for meshing geometries is possible by tetrahedral meshing. There are
almost no limitation on the geometries and the direction of the geometry edges is
not subject to any restrictions.

The most important discretization methods in semiconductor process and device
simulation are Box Integration and the Finite Elements method. The problems
under consideration, such as electrical device simulations of semiconductor devices
and diffusion simulations of implanted dopants, impose certain requirements on the
grids. Basically it seems possible that both simulation problems can be solved by
both discretization methods. However, most device simulators (MINIMOS [6][11],
DESSIS [33], MEDICI [68]) use the Box Integration method, which will be examined
in Chapter 3, whereas diffusion simulation is usually done by Finite Elements.
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2.3 Grid Requirements

To obtain quality criteria for the grids, the differential equations of the models
must be taken into account. For the solution of the frequently required Laplace
equation and the diffusion equation, an additionally required grid-condition must
be formulated. It will be helpful to illustrate it by an example. When solving the
electrostatic potential distribution inside a capacitor it is physically plausible that,
if the voltages on the contacts lie in the range of ϕ0 to ϕ1, all potential values inside
the capacitor also must lie within the same range.

Mathematically, this is known as the maximum principle [28][45]. In its simplest
form it states that both the maximum and the minimum values occur on the bound-
ary or at initial time. Since the numerical solution must be a good approximation of
the exact solution and unphysical solutions must be prevented, this maximum prin-
ciple has to be satisfied also by the numerical method. For the diffusion equation,
this principle implies that unphysical negative concentrations may not appear in the
solution (as negative concentrations do not appear in the initial condition). This
principle implies also another physical interpretation, which is known as the Positive
Transmissibility Condition. It states, that the physical flow has to be directed from
higher to lower concentrations.

Within the discretization methods, which are in particular the Box Integration, as
well as the Finite Element discretization with a standard Galerkin weighted residual
approach, the Laplace equation

div(ε gradx) = 0 (2.1)

and the diffusion equation

div gradx =
1

D

∂x

∂t
(2.2)

result in the same type of equation system




k11 k12 . . . k1n

k21 k22 . . . k2n
...

. . .
...

kn1 kn2 . . . knn


 ·




x1

x2
...

xn


 =




b1

b2
...
bn




K · x = b.

(2.3)

The maximum principle is satisfied if K becomes an M-matrix [43][45].
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A = (aij) is an M-matrix [75], if A is a real and nonsingular n × n matrix, where

aij ≤ 0 ∀ i, j : i = j, (2.4)

aii > 0 ∀ i, (2.5)

aii ≥
∀ j : i=j

|aij | ∀ i, (2.6)

aii >
∀ j : i=j

|aij | for at least one i. (2.7)

The entries of K = (kij) differ in the composition of left-hand and right-hand terms
of equation (2.1), or (2.2) with backward Euler time discretization [66].

K = S for (2.1) and (2.8)

K = D S +
1

Δt
M for (2.2). (2.9)

M = (mij) denotes the mass matrix, which arises from the time variant right-hand
side, S = (sij) is the stiffness matrix, which depends only on the left-hand side
of equation (2.1) or (2.2). For this composition we know that K is an M-matrix
if M is a positive definite diagonal matrix and S also is an M-matrix. For Box
Integration (refer Section 3.2), the positive definite diagonal characteristic of M is
satisfied. For Finite Elements, mass matrix lumping has to be performed to achieve
a positive definite diagonal matrix M [25][46]. Since S only depends on the mesh,
this condition translates to a grid constraint. Off-diagonal elements sij of S must
not be positive

sij ≤ 0. (2.10)

This constraint also fulfills the Positive Transmissibility Condition [28].

Consequentially the requirements for Box Integration and Finite Elements follow.

2.4 Demands for the Box Integration Method

In association with the Box Integration discretization (refer Chapter 3, equations
(3.32) and (3.57)), equation (2.10) can be rewritten as

sij = −fij
Aij

dij
≤ 0, (2.11)
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where fij denotes a positive material parameter (the permittivity for the Laplace
equation, 1 for the diffusion equation). The parameters dij and Aij are geometrical
values which are determined by the geometry of the grid elements only. dij is the
length of the edge pipj between the points pi and pj (positive), and Aij the coupling
area between the two points. As a geometrical consequence the coupling areas and
point distances are symmetrical

Aij = Aji and dij = dji, (2.12)

and it is also of advantage and plausible to use a symmetrical material parameter

fij = fji, (2.13)

which finally delivers a symmetrical system matrix S. Consequentially, relation
(2.11) is only satisfied if the coupling area is positive

Aij ≥ 0. (2.14)

However, such positive coupling areas are guaranteed by a Delaunay tessellation of
the point set. In general, the definition of a Delaunay triangulation is based on
the Voronoi diagram by the principle of duality [42] and will be introduced in the
following section.

2.4.1 Voronoi Tessellation — Delaunay Mesh

Let P = {p1, p2, . . . , pr} be a finite set of points in a sub-domain Ωn of the n-
dimensional space Rn.

A Voronoi region V (pi) is the set of all points of Ωn that are closer to pi than to any
other point of P.

V (pi) = {p | p ∈ Ωn ∧ ||p − pi|| < ||p − pj ||, ∀ j = i} (2.15)

The resulting Voronoi regions V (pi) form a Voronoi tessellation of Ωn (without
overlap or exclusion)

Ωn =

r

i=1

V (pi). (2.16)

By connecting the vertices pi, pj of two touching Voronoi regions V (pi) and V (pj),
a Delaunay edge pipj is constructed. The pool of all Delaunay edges builds the
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Delaunay mesh of the point set P. This Delaunay graph shows the following prop-
erties:

Two points pi and pj form a Delaunay edge pipj if and only if there exists an
n-dimensional sphere which passes pi and pj and contains no other points of P.

(n ≥ 2) Three non-collinear points pi, pj, and pk form a Delaunay triangle pipjpk

if and only if there exists an n-dimensional sphere which passes pi, pj, and pk and
contains no other points of P.

(n ≥ 3) Four non-coplanar points pi, pj, pk, and pl form a Delaunay tetrahedron
pipjpkpl if and only if there exists an n-dimensional sphere which passes pi, pj, pk,

and pl and contains no other points of P.

These formulations can be expressed in a mathematical way:

pipjpkpl Delaunay : ∀ m = i, j, k, l

∃ pm ∈ Ωn ∧
||s − pi|| = ||s − pj || = ||s − pk|| = ||s − pl|| ∧

||s − pi|| < ||s − pm||

Here, s is the center of the n-dimensional sphere. Analogous formulations can be
found for Delaunay triangles and lines. A Delaunay tetrahedron implies that it must
consist of Delaunay triangles and Delaunay edges.

2.4.2 Two-Dimensional Criterion

A two-dimensional Voronoi box is shown in Figure 2.3. In two dimensions the
coupling area Aij degenerates to the length of the Voronoi edge, which bisects the
edge pipj and connects the two center-points of the outer-circles of the triangles
pipjpk and pipjpl .

By splitting this area Aij into the parts Aij,k and Aij,l arising from the involved
triangles pipjpk and pipjpl , respectively, the situation depicted in Figure 2.4(a)
is obtained. In this context, for each triangle pipjpk the possibilities shown in
Figure 2.4(c) and Figure 2.4(d) exist. The portion Aij,k can lie inside or outside
the half plane which is spanned by the straight line, built by pi and pj, and the
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pi

pj

Aij

pipj

Box of point pi

Box of point pj

Figure 2.3: A two-dimensional Voronoi box of the point pi

point pk. By definition an inside-portion Aij,k is signed positive (Figure 2.4(c)) and
signed negative if it lies outside (Figure 2.4(d)). In consideration of non-overlapping
Voronoi boxes, the sum of both portions has to be positive. And with geometrical
considerations (refer Figure 2.4(b))

Θk + Θl ≤ 180◦, (2.17)

or equivalently,

Θk ≤ 180◦ − Θl (2.18)

has to be satisfied.

Consequently it follows that if the point pk lies inside the outer-circle of the trian-
gle pipjpl , relation (2.18) is violated. If pk lies outside or directly on the circle
(marginal case), the relation is satisfied. This criterion must be fulfilled for each
neighboring triangle-pair of the mesh. Examples for valid and invalid (overlapping)
two-dimensional Voronoi edges are shown in Figure 2.5.

With other words:

There must not be any grid point, which lies inside the outer-circle of
each triangle.

This is known as the Delaunay criterion for two dimensions.
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pi

pj

pl

pk

Θk

Θl

Aij,k

Aij,l

(a) The components of the Voronoi regions of the
triangles pipjpk and pipjpl .

pi

pj

pl

pk

Θk

Θl

Θ′
k

Aij

(b) The angle criterion for two dimensions.
The marginal case with Aij = 0 is reached
if pk lies at the outer-circle of pipjpl .

pi pj

pk

Aij,k > 0

mijk

(c) The center mijk of the outer-circle of the tri-
angle pipjpk lies in the half plane pipj , pk.
The portion of the coupling area is positive
Aij,k > 0.

pi pj

pk

Aij,k < 0

mijk
(d) The center mijk of the outer-circle of the

triangle pipjpk lies outside of the half
plane pipj , pk. The portion of the cou-
pling area is negative Aij,k < 0.

Figure 2.4: A detail of the Voronoi Region shown before.
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pi pj

pl

pk

Aij,k

Aij,l

(a) Valid tessellation of two triangles, Aij,k >
0 and Aij,l > 0

pi pj

pl

pk

Aij,k
Aij,l

(b) Valid tessellation of the two triangles,
Aij,k < 0, Aij,l > 0 and in sum Aij > 0, a
non-overlapping Voronoi box remains

pi pj

pl

pk

Aij,k

Aij,l

(c) Invalid tessellation of the two triangles,
Aij,k < 0, Aij,l > 0, but Aij = Aij,k +
Aij,l < 0, an overlapping Voronoi box re-
mains

pi pj

pl

pk

Aij,k

Aij,l

(d) Invalid tessellation of the two triangles,
Aij,k < 0 and Aij,l < 0, also an overlap-
ping Voronoi box is built

Figure 2.5: Valid and invalid tessellations of two triangles.
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pi pj
Aij

(a) Valid triangulation at the boundary,
Aij > 0

pi pj

Aij

(b) Invalid triangulation of the boundary, Aij <
0

Figure 2.6: Valid and invalid Voronoi edges at the surface. At the marginal case,
the center of the outer-circle lies at the surface.

Addendum for Boundary Points

While the above criterion can be satisfied for each point set, for given geometry and
boundary constrains the criterion must be formulated more strictly.

In that case, (2.14) must also be satisfied on the boundaries. The coupling area Aij

between two boundary points pi and pj must not be negative (see Figure 2.6). This
means, all centers of the outer-circles of the boundary triangles must lie within the
boundaries. This type of triangulation is called a Constrained Delaunay Triangula-
tion and the criterion can be formulated as:

There must not be any grid point, which lies inside the half circles con-
structed by the boundary lines.

2.4.3 Three-Dimensional Criterion

For the three-dimensional case such an area Aij is shown in Figure 2.7(b), which
is based on a typical Voronoi box as shown in Figure 2.7(a). This area can be
split into the different components due to each tetrahedron (shown in Figure 2.7(c)
and the separated situation in Figure 2.7(d)). The different parts are spanning
triangles. Each triangle is defined by the center of the examined edge, the center of
the outer-circle of the appropriate triangle and the center of the outer-sphere of the
tetrahedron.
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pi

pj

(a) Typical Voronoi box around a grid point
pi

pi

pj

(b) Detail of the box, the coupling area be-
tween the point pi and pj

pipj

(c) Viewing the coupling area along the
edge pipj

pipj

(d) Separated situation

Figure 2.7: The coupling areas of a three-dimensional tetrahedral Delaunay grid
around the point pi.
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(a) Valid coupling area, the portions of both
tetrahedrons are positive

(b) Valid coupling area, one positive and one
negative portion, in sum a positive, non-
overlapping area remains

(c) Invalid coupling, one positive and one
negative coupling portion, an overlapping
area is constructed

(d) Invalid coupling, both portions are nega-
tive, a negative and overlapping area re-
mains

Figure 2.8: The coupling areas between two points of different tetrahedrons.
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Analogous to two dimensions, the sign of such an area of a box part that lies inside
the tetrahedrons must be positive, outside areas have a negative sign, and generally,
the areas are not allowed to overlap.

Such details of valid boxes are shown in Figure 2.8(a) and 2.8(b). In the first
example, both area parts are positive. In the second example, one area is negative,
but smaller than the other one, which also leads to a valid grid. Invalid details with
a resulting negative sum of the areas are shown in Figure 2.8(c) and 2.8(d).

Such a tessellation of a point set is also a Delaunay tessellation and the criterion
reads as follows:

There must not be any grid point, which lies inside the outer-sphere of
each tetrahedron.

But different to the two-dimensional case, no simplified angle criterion can be de-
clared for three dimensions.

Addendum for Boundary Points

Also for three-dimensional Delaunay grids, the coupling area Aij between two bound-
ary points pi and pj must not be negative. The three-dimensional behavior is shown
in Figure 2.9 and the criterion can be formulated:

There must not be any grid point, which lies inside the half spheres
constructed by the boundary triangles.

2.5 Demands for Finite Elements

Within Finite Elements the coefficients of the matrix S shown in (2.8) and (2.9) can
be generally expressed as [46][54][75]

sij =
elements Velement

(∇Ni) ε (∇Nj) dv, (2.19)

respectively

sij =
elements Velement

(∇Ni) · (∇Nj) dv (2.20)
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(a) Valid surface triangulation, coupling areas
at the surface are positive, the center of the
outer-sphere of the tetrahedron lies inside

(b) Invalid surface triangulation, negative cou-
pling areas, the center of the outer-sphere
of the tetrahedron lies outside

Figure 2.9: Valid and invalid Voronoi faces at the surface. At the marginal case,
the center of the outer-sphere lies at the surface.

for the element volumes Velement. The symbols Ni and Nj denote the Ansatzfunctions
of the points pi and pj . If ε is a constant scalar within the tetrahedrons, this in-
product has a simple geometrical meaning and the compliance (2.10)

sij ≤ 0 (2.21)

leads to an angle criterion for each edge of the mesh [75]

n

k=1

lk cot Θk ≥ 0. (2.22)

Sum of dihedral angles:

Let pipj be an edge with n adjacent tetrahedra tk. For each tetrahedron

tk two planes exist which do not contain pipj and which span a dihedral

angle Θk. The two planes share an edge with length lk. The sum over

k = 1 . . . n of the cotangent of Θk weighted by lk must be greater or equal

than zero.

Within Figure 2.10 the criterion is clarified. In Figure 2.10(a) the dihedral angle of
the edge pipj is shown. It is the angle between the faces which do not contain the
edge pipj . Here, l is the length of the edge opposing to pipj . In Figure 2.10(b)
all the tetrahedrons connected to pipj are shown. Each of the participating tetra-
hedrons tk spans its own dihedral angle Θk to pipj .
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pi

pj

pl

Θ

(a) Dihedral angle Θ of the edge pipj of a
tetrahedron

pi pj

Θ1

Θ2

Θ3

Θ4

l1

l2

l3

l4

(b) Dihedral angles around the edge pipj ,
arisen from the four tetrahedrons which
share the edge pipj

Figure 2.10: Three-dimensional grid criterion for Finite Elements.

2.5.1 Two-Dimensional Criterion

In two dimensions the criterion (2.22) is also valid. The two triangles connected to
pipj can be considered as tetrahedrons with the same (small) edge lk, which can be

canceled out of the summation, and the dihedral angle of the edge pipj simplifies
to the angle between the two edges of the triangle which do not contain this edge.

The dihedral angle reduces to

Θk = ∡( pipk , pkpj ). (2.23)

As shown in Figure 2.11 in two dimensions exactly two triangles are connected by
each edge and (2.22) simplifies to

cot Θk + cot Θl ≥ 0. (2.24)

With the following transformation and knowing that

0 < Θ ≤ 180◦ or sin Θ > 0 (2.25)
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Θk

Θl

pi

pj

pk

pl

Figure 2.11: Two-dimensional mesh criterion for Finite Elements

we get

sin Θl cos Θk + sin Θk cos Θl ≥ 0, (2.26)

which is equivalent to

sin(Θk + Θl) ≥ 0. (2.27)

Therefore,

Θk + Θl ≤ 180◦ (2.28)

is the well-known formulation for two dimensions. This is the same criterion as
for Box Integration, given in (2.17). Therefore, the general two-dimensional grid
criterion for Finite Boxes and Finite Elements results in the same formulation which
is satisfied if the tessellation of the grid points is a Delaunay tessellation. In three
dimensions, the criterion for Finite Boxes and Finite Elements differ. Detailed
information of the three-dimensional differences can be found in [13][14][19][28].

2.6 Grid Refinement — Adaptive Meshes

During the simulation process, often locally adapted grids are required. We can
distinguish two types of adaptation:

• Due to calculation errors a grid refinement at local regions becomes necessary.
This can be within time invariant simulations where a criterion indicates a
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large discretization error in some regions.
Alternatively, within transient simulations and the areas of interest move in-
side the device, which is caused by the gradients of the distributions. During
a diffusion simulation, for instance, initially narrow and steep dopant profiles
become wider. In addition, the profile edge becomes weaker and propagates
across the device. Such an one-dimensional diffusion profile is shown in Fig-
ure 2.12. The grid resolution in areas of high concentration curvatures and
gradients must be high to achieve a good accuracy. Initial areas of high grid
density become useless during simulation and the grid density can be reduced
in these areas, while in regions where the dopant edge sweeps through the
grid density must be increased. This enforces transient grid refinement and
coarsening during the simulation. It has to be noted that full regridding is not
practicable with regards to calculation time.

• By special kinds of simulations even boundaries may be deformed or new ma-
terial segments can be created — for example within oxidation — or a material
segment can be etched away. Concerning grid generation, these applications
require a broad pool of grid adaptation techniques. Some of them are not
trivially solvable. Local deformation can be solved relatively simply by local
regridding or movement and stretching of grid elements, whereas the creation
of new segments is not trivial. As several segments can merge during the
simulation, one segment can also be split into several parts.

Usually additional knowledge of the simulation problem is required. A general re-
finement approach has not been found yet and grid refinement must be adapted to
the given problem. The methods described in this section have not been realized
in the scope of this work, but show an overview of investigations and developments
which are still under construction.

2.6.1 Hierarchical Refinement

For frequently performed local grid refinement and coarsement, the complete regen-
eration of the grid of the simulation domain is not acceptable due to the enormous
time consumption of each new regridding step. Local regridding will be a better so-
lution, but most of the grid generators are not designed for local regridding. The grid
generator must support functionality for the removal of grid elements and points,
the insertion of new points, and regridding. Local regridding of an area often re-
quires the removal of neighboring elements and an inclusion of these regions in the
regridding process. Most grid generators do not supply these functionalities.
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Differential Equation:
∂2c

∂z2
=

1

D

∂c

∂t

Boundary Condition:
∂c

∂z
(0, t) = 0

Initial Distribution: c(z, 0) = c0 e−
(z−d)2

k2 + e−
(z+d)2

k2

Solution: c(z, t) = c0
k2

k2 + 4 D t
e
− (z−d)2

k2+4 D t + e
− (z+d)2

k2+4 D t
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Figure 2.12: One-dimensional diffusion, diffusion constant D, d = 1.5 k, no out-
diffusion across z = 0. The initial concentration profile at 4 D t = 0
and simulated distributions at 4 D t = k2 and 4 D t = 10 k2 are shown.

A commonly used method of local adaptation is based on hierarchical mesh refine-
ment. A given (relatively crude) grid is refined by splitting some grid elements into
smaller ones. In frequent refinement steps, these elements can be split themselves. If
the hierarchical splitting information is stored, this method offers also the possibil-
ity of hierarchical coarsement of the meshes, but this functionality results in some
additional hierarchical information, which must be stored in the data structures.
Additionally, care has to be taken that certain grid criteria must be fulfilled also
for the refined grids — for instance the Delaunay criterion. Usually splitting a grid
element into smaller ones may also cause splitting of neighboring grid elements and
it must be guaranteed by the algorithm that this neighbor splitting is done only



2.6. Grid Refinement — Adaptive Meshes 29

Figure 2.13: Red-refinement of a triangle.

locally and terminates, and that refining of a region does not induce a global split
of all the grid elements, resulting in a never terminating splitting process.

Red-Green-Refinement

One method to perform such a refinement, is called red-green-refinement. This
refinement technique is a commonly used refinement method for two-dimensional
applications, especially for Delaunay grids. A triangle to be refined is split into
four smaller children — so called red triangles, as shown in Figure 2.13. At the
intersections of the triangle edges, new points are inserted. Thereby four triangles
are generated, whose edges are connected to these points. A pleasant property of
this method is that all new triangles are geometrically similar to the original one
and thereby the element quality of the new triangles is the same as the quality of the
original one. A positive aspect is that usually the condition of the resulting equation
system will not become worse by the refinement — but it is also not improved.

Using this method, any neighboring triangles can be red-refined (Figure 2.14) and
any of the red triangles can be red-refined itself. But red-refined triangles will
produce extra points along an edge of neighboring triangles that are not refined to
the same level. These triangles must be refined irregularly, which are labeled as

Figure 2.14: A red-refined triangle with a red-refined neighbor.
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Figure 2.15: A red-refined triangle with green-refined neighbors.

green triangles and are of lower quality (shown in Figure 2.15). Green-refinement
is only performed if a single point is inserted. If more points are inserted or higher
refinement of this triangle is wanted, the green triangles are removed and the parent
triangle is red-refined, too.

By continuation of these two strategies, a hierarchical mesh is produced. Red trian-
gles can be surrounded by red triangles as well as green triangles, and red triangles
can also be further red-refined, which may also induce the generation of surround-
ing green triangles. With a hierarchical memory representation, refinement and also
coarsening of already refined triangles can be handled easily.

With the development of three-dimensional grids this technique has also been
adapted to three dimensions [31]. A tetrahedron is red-refined by inserting the
intersection points of the tetrahedron edges. By the insertion of these six points,
the parent tetrahedron is split into two kinds of elements; four tetrahedrons and one
octahedron (see Figure 2.16). On the one hand the octahedron can be split into four
tetrahedrons (Figure 2.17). There are three possibilities according to the diagonal
along which the octahedron is divided. Unlike for two-dimensional applications, not
all the tetrahedrons are of the same geometrical shape. The tetrahedrons, which are
created by splitting the octahedron, are spikier than the parents and therefore, of
lower quality. Best results are obtained if the octahedron is split along its shortest
diagonal. Consecutive refinement splits the resulting tetrahedrons. On the other
hand this effect can be handled with mixed elements. A subsequent red-refinement
of the octahedron delivers six smaller octahedrons and eight tetrahedrons. The re-
sulting elements are geometrically similar to their parents or grandparents. After
final refinement, the remaining octahedrons are usually decomposed to tetrahedrons
by the common method (Figure 2.17).

Furthermore, for the handling of the surrounding green tetrahedrons, more cases
must be considered. Theoretically, up to five points can be inserted (neglecting
six point insertion, where this tetrahedron also is a red-refined tetrahedron). Only
the three cases shown in Figure 2.19 are usually accounted for. Otherwise, the
tetrahedron also is red-refined [39].
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(a) Tetrahedron

=

(b) 4 Tetrahedrons

+

(c) Octahedron

Figure 2.16: Red-refinement of a tetrahedron into children, 4 tetrahedrons and an
octahedron.

(a) Octahedron

=

(b) 4 Tetrahedrons

Figure 2.17: Final decomposition of the octahedron into 4 tetrahedrons.
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(a) Octahedron

=

(b) 6 Octahedrons

+

(c) 8 Tetrahedrons

Figure 2.18: Subsequent red-refinement of the octahedron into 6 parent-similar
octahedrons and 8 grandparent-similar tetrahedrons.

Figure 2.19: Possible green neighbors of a red-refined triangle.
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Bisection and Projection

Other methods for grid refinement also involve the bisection of mesh edges. Different
to red-refinement, the edges are not mandatorily split in the middle and only one
edge of a tetrahedron is split. Each tetrahedron sharing this edge is decomposed into
two tetrahedrons. Further refinement operates on the newly generated tetrahedrons.

Equally bisecting mesh edges prevents that the grid spacing changes too rapidly
while the triangle angles can become more obtuse. Obtuse angles may be removed
in later repairing steps by edge-flipping or similar. Special care must be taken,
not to loose the hierarchical grid information potentially required for coarsement.
Orthogonally projecting the split points from the opposite triangle vertex prevents
the generation of obtuse triangles, but may change the grid spacing dramatically.

A new method for bisection was introduced by Rivara and Hitschfeld [21][50][51]. In
the two-dimensional method, only the longest triangle edge is intersected. Assuming
that the longest triangle edge is on the opposite side of the biggest triangle angle, also
the biggest angle is split into nearly two equal parts. Doing so, a shrinking of small
angles can be prevented. Within this algorithm, also surrounding triangles may split
and care has to be taken that this cascading effect does not result in a never-ending
bisecting process and a never terminating algorithm. Within three dimensions, this
technique is extended by several refinement steps and the termination of this process
is influenced by the order of the different refinement steps. A lot of research still
has to be done for three-dimensional applications.

A two-dimensional example of a grid refined by line splitting can be seen in Fig-
ure 2.20. This version of the algorithm introduced in [29] is based on recursive
bisectioning of the longest edges of triangles and is capable of refinement and coars-
ening of previously refined areas upon to the base grid, too. The refinement is
started on a relatively coarse basegrid. Fragments of the basegrid can be seen in the
regions which surround the circular region. This grid is refined in areas of interest.
These areas are marked by a criterion that is adapted to this problem. In the above
example the refinement criterion is tailored for the simulation of electromigration [7].

2.6.2 Moving Boundaries

The deformation of mesh elements and moving mesh points occurs for instance dur-
ing oxidation simulation. Often only local movement of the boundaries is expected
while other portions of the mesh remain unchanged. Therefore, it is not feasible to
start a new mesh generation every time a small portion of the grid moves slightly.
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Figure 2.20: Two-dimensional grid refinement by line splitting.

During particular transient simulation steps of an oxidation simulation, the grid
movement might be only small. However, difficulties are to be expected when the
boundaries change qualitatively. If boundaries start to overlap a fusion of segment
portions will arise.

When the mesh distortion is only local, the grid points can be moved and the
involved grid elements are deformed. To avoid a too strong deformation, annealing
techniques can be performed on the grid or a full regridding must be started. Within
these methods, it is expensive to perform a collision detection of the growing grid
elements. Further development of efficient methods will be necessary.
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Other methods try to solve this problem by using diffuse boundaries. Thereby the
grid points have an additional parameter that decides how much this point is part
of the segment or the surrounding segment. With linear interpolation inside the
tetrahedrons the exact boundary can be evaluated. These methods are known as
levelset algorithms. After finishing the whole simulation, a global regridding for fol-
lowing simulations, which eliminates this fuzziness, must be performed. But within
this method, the influence of the diffuse boundary must be accounted for within the
differential equations to be solved. For two-dimensional problems, some approaches
are available. For three dimensions, however, some difficulties still exist [1][8][32][47].

2.6.3 Cellular Data

For the simulation of etching and deposition processes, efficient algorithms have
been developed which work with cellular data representations [38]. In contrast to
a representation via meshes, the structure is discretized into small portions of mat-
ter. These are pixels within two dimensions and voxels in three dimensions (usually
cubes). The device structures can easily be modified by adding and removing volume
parts of these cubes, which makes this method of discretization perfectly suitable
for performing process simulation which changes the topology. These topological
modifications are managed in a straightforward manner by image processing algo-
rithms. The major advantage is that topological changes of the structure can be
handled without intensive surface tracing algorithms which avoid the formation of
surface loops.

Unfortunately, for a good resolution of the structure, these voxels must be very small
in size and the amount of stored data increases enormously. However, usually there
is not much overhead in the amount of stored data as compared to more flexible
grid representations. Within the commonly used device structures, normally some
material layers are of such small thickness that the grid representation also requires
a large number of grid elements to resolve the structures.

In order to transform the cellular representation to a polygonal surface description
usually marching cube algorithms are applied [34]. The cube data only delivers
a rippled (manhattan type) surface representation. Their description can be im-
proved by handling the material type as integer values of the cube points so that
a fairly smooth surface representation can be generated (see Figure 2.21(a) and
Figure 2.21(b)) [30]. By allowing only bisectional splitting of the cube edges, the
number of pathological cases can be limited; an excerpt of the remaining cases is
shown in Figure 2.21(c).

While a similarity of this method to the levelset algorithm can be observed, algo-
rithms for extracting the surfaces have been developed that are more general and
which work in a manner similar to levelset algorithms on ortho grids.
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(a) Marching cubes — The surface is approximated by
planes which result from edge bisectioning of the cubes.

(b) Approximation of the surface, the black point lies out-
side of the segment

(c) Some elementary cases which can result for cut cubes,
the black points are cut away.

Figure 2.21: Overview of the marching cubes algorithm [30].
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Considering that the extracted surface triangles are of the same size as the sampling
cubes, the extracted surface data often consists of a large number of very small
triangles. Therefore data reduction is necessary. While triangles lying in the same
plane can be removed easily, the removal of ripples and staircases is more critical
because structural corners and edges should be preserved. Certain surface coarsen-
ing and smoothing algorithms can be applied [30][58]. They may be based only on
the surface representations or may be applied to solid modeled data of the already
regridded representation. Special care must be taken of collision detection. An over-
lap of thin material layers must be prevented by the algorithm. Several techniques
are known, their amount of smoothening and data reduction varies and strongly
depends on the structures and methods. A suitable way must be found individually
for each application [23][58].



Chapter 3

The Box Integration Method

A WIDELY USED METHOD for numerical discretization is the method of Box
Integration, also known as Finite Boxes, Finite Volumina method for three di-

mensions, or Finite Areas for two dimensions. The applicability of this methodology
is closely coupled to Delaunay grids, described before [35].

In the field of electrical device simulation, several differential equations are applied.
The first group is derived by stationary electric field calculations as a result of
applying the Maxwell equations. A similar differential equation type is obtained
by observing diffusion or thermal conductance processes, with the difference of an
additional time dependent term. These types of differential equations are described
first. The second class results from the semiconductor equations, in its simplest
form the drift-diffusion model. This type will be described later.

3.1 The Poisson Equation

The Poisson equation is fundamental for all electrical applications. The derivation is
shown for a stationary electric field [26]. For the derivation, the material parameters
may be inhomogeneous, locally dependent but not a function of the electric field.
In this section, the principle of the discretization is demonstrated. In the case of a
low field dependency, a recursive reinsertion of newly derived material parameters
may result in stable solutions [54]. A highly nonlinear behavior has to be managed
by linearization and Newton iterations, for instance [2][4][60].

38
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The Maxwell equations for a stationary electric field reduce to

curlE = 0, (3.1)

div D = ̺. (3.2)

E and D are related by the permittivity ε

D = ε E. (3.3)

Physical properties require that the permittivity tensor ε is symmetric and positive
definite for lossless media (or a positive scalar for isotropic media). Equation (3.1)
is satisfied implicitly by introducing the electric potential ϕ

E = − gradϕ. (3.4)

Combing (3.1)–(3.4), the Maxwell equations can be rewritten as

div (ε gradϕ) = −̺. (3.5)

This can be transformed to its integral formulation. By applying the Gaussian
integral formula (3.5) results in

V

div (ε gradϕ) dv =

∂V

(ε grad ϕ) · dA = −
V

̺ dv. (3.6)

Equation (3.6) must be fulfilled within any arbitrary volume V , with ∂V being the
surface of this volume. While performing Box Integration, this formula must be
satisfied in the Voronoi boxes of each grid point. In Figure 3.1 a typical Voronoi
box of a point pi, belonging to all the tetrahedrons connected to the point pi, can be
seen. The integration can be split into the integration over the different box parts,
caused by all the tetrahedrons tetsi which share the same point pi

t ∈ tetsi At,i

(ε grad ϕ) · dA = −
Vi

̺ dv. (3.7)

Such a part of the Voronoi box within the tetrahedron pipjpkpl is shown in Fig-
ure 3.2. Each part around the point pi can also be split into the three area contribu-
tions that are caused by the different edges pipj , pipk and pipl (see Figure 3.3)

t ∈ tetsi,

∀ pipj

At,ij

(ε grad ϕ) · dA = −
Vi

̺ dv. (3.8)
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pi

Figure 3.1: Tetrahedrons around point pi with the resulting Voronoi box con-
structed by these tetrahedrons.

pi

pj

pk

pl

sijkl

cijk

Figure 3.2: Box parts of the tetrahedron pipjpkpl with drawn outer-sphere sijkl

of the tetrahedron and outer-circle cijk of the triangle pipjpk .
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pi

pi pi

pj

pk

pl

AijAik

Ail

Figure 3.3: Different Voronoi faces which share the point pi of a tetrahedron.

Using Box Integration, an approximation of first order is usually assumed, which
means that the electric potential ϕ within one tetrahedron is a linear function along
the axes or, in other words, the electric field E is constant within each tetrahedron.
Material parameters are assumed to be constant within the tetrahedron, too. The
electric charge density ̺ on the right-hand-side is assumed to be constant within the
whole Voronoi box as well and can therefore be analytically calculated and written
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as the electric charge qi of the Voronoi box of the point pi, which results in

−
t ∈ tetsi

∀ pipj

At,ij

(ε E) · dA = −
Vi

̺i dv = −qi. (3.9)

As in the usual applications the permittivity tensor reduces to a scalar, which means
the electric displacement and the electric field have the same direction, it follows

(ε E) · dA = ε (E · dA) = ε (E · n) dA = ε En dA (3.10)

and equation (3.9) can be simplified to

−
t ∈ tetsi

∀ pipj

At,ij

ε En dA = −
Vi

̺i dv = −qi. (3.11)

3.1.1 Approximation of En and ε

Usually the integral (3.11) is approximated by

−
t ∈ tetsi

∀ pipj

εij Eij At,ij = −qi, (3.12)

with

Eij ≈ ϕi − ϕj

dij

and εij ≈ εi + εj

2
. (3.13)

An estimation of the validity of this approximation based on the homogenous Pois-
son equation (Laplace equation) will be explained under the conditions shown in
Figure 3.4. (ξ, η, ζ) spans a local Cartesian coordinate system with origin pi. In the
one-dimensional case and with constant permittivity the potential varies linearly
with position as

ϕ(ξ) = ϕi − Eij ξ. (3.14)

Whereas with non-constant permittivity we have at first order

ε(ξ) = εi +
Δε

dij
ξ, (3.15)
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pi

pj

mij

mijk

mijkl

mijl

n

Aij,k

Aij,l

η

ξ − dij

2

ζ

L

H

pk

pl

Figure 3.4: A detail of the tetrahedron pipjpkpl shown in Figure 3.3 which shows
the coupling Voronoi region between the point pi and pj. This region
can be split into the two triangular components Aij,k and Aij,l which
are spawned by the midpoint mij of the edge pipj , the midpoint mijk

of the outer-circle of the triangle pipjpk and the midpoint mijkl of
the outer-sphere of the tetrahedron pipjpkpl , or mij, mijl, and mijkl,
respectively.

with

ε(0) = εi and ε(dij) = εj (3.16)

and therefore,

Δε = εj − εi. (3.17)

The continuity of the electric displacement

ε(0) E(0) = ε(ξ) E(ξ) = ε(dij) E(dij), (3.18)

with

E = −∂ϕ

∂ξ
(3.19)
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Figure 3.5: Potential distribution between two grid points pi and pj with different
permittivities.

delivers the deformed distribution of ϕ(ξ)

ϕi − ϕ(ξ) = (ϕi − ϕj)

ln 1 +
Δε

εi

ξ

dij

ln 1 +
Δε

εi

(3.20)

and therefore,

E
dij

2
= −∂ϕ

∂ξ dij

2

=
ϕi − ϕj

dij
= Eij . (3.21)

The resulting potential distributions ϕ(ξ)−ϕi between pi and pj for different values

of Δε are shown in Figure 3.5. The overestimation of the electric field Eij/E(d/2)
in the middle of the grid element in dependence of the permittivity change inside
the element is shown in Figure 3.6. According to this figure, a limit for the validity
of approximation (3.13) can be defined by

|εi − εj | < k min(εi, εj) ∀ i, j : ∃ edge pipj (3.22)
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Figure 3.6: Ratio of the approximated electric field Eij to the exact solution

E(dij/2) at the center of the control volume.

or a limit for continuously defined permittivity

| grad εi| dij < k εi ∀ i, j : ∃ edge pipj . (3.23)

With k ≈ 2, the estimation error of Eij is limited to 10%.

On a three-dimensional grid (refer to Figure 3.4), the spatial derivatives of ε cause
an additional contribution to the discretization error. With linear interpolation of
ε and ϕ, equation (3.11) results in

−
t ∈ tetsi

∀ pipj

At,ij

ε En dA = −
t ∈ tetsi

∀ pipj

At,ij

ε


Eξ

Eη

Eζ


 ·


dA

0
0


 =

−
t ∈ tetsi

∀ pipj

At,ij

ε Eξ dA =
t ∈ tetsi

∀ pipj

At,ij

ε
∂ϕ

∂ξ
dA =

t ∈ tetsi

∀ pipj

Lij

0

η
Hij

Lij

0

εi +
Δεξ

dij
ξ +

Δεη

dij
η +

Δεζ

dij
ζ

Δϕξ

dij
dη dζ = −qi

(3.24)
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and with LH = 2Aij

t ∈ tetsi

∀ pipj

εi +
Δεξ

dij

dij

2

Δϕξ

dij

LH

2
+

Δεη

dij

Δϕξ

dij

L2H

3
+

Δεζ

dij

Δϕξ

dij

LH2

6
=

t ∈ tetsi

∀ pipj

εi + εj

2
Δϕξ

Aij

dij
+ ΔεηΔϕξ

Aij

dij

2L

3
+ ΔεζΔϕξ

Aij

dij

H

3
= −qi.

(3.25)

The first addend of equation (3.25) equals the value given by discretization (3.12) and
(3.13) whereas the remaining terms cause an additional discretization error. Often
the derivative components of neighboring tetrahedrons compensate each other, but
not always. Even the lengths of L and H are not limited to lie within the tetrahedron
ranges (for instance, obtuse angled triangles for two dimensions) and a limitation
for this approximation is difficult. For the whole simulation domain the estimation

| grad εi|max dij,max < k εi,min ∀ i, j : ∃ edge pipj (3.26)

seems plausible, but is too pessimistic as in most cases L and H have the same order
of magnitude as their based tetrahedrons. The previously derived estimation (3.23)
is therefore also applicable to the three-dimensional case.

Another common approximation method for the effective permittivity εij is [27]

εij ≈ 2 εi εj

εi + εj
(3.27)

which shows the behavior of a serial connection of two capacitors (or resistors for
electrical flow fields). This approximation has the advantage that if the permittivity
(more likely for the conductivity) is zero in a Voronoi box, no flux enters the box.
Nevertheless, this zero flux leaves the electric potential of the included grid point
undefined and may cause problems for the equation solver, applied later on.

3.1.2 Continuation of the Discretization

However, equation (3.11) is discretized as

−
t ∈ tetsi

∀ pipj

At,ij

εij Eij dA =
t ∈ tetsi

∀ pipj

εij
ϕj − ϕi

dij

At,ij = −qi. (3.28)

In compliance with the decomposition of the Voronoi regions in Section 2.4.3, At,ij

is the right signed value of the Voronoi area between pi and pj of the tetrahedron t.
Which means in detail, area portions with



3.1. The Poisson Equation 47

• outer-circle inside the appropriate triangle and outer-sphere inside the tetra-
hedron counted positive,

• outer-circle outside the appropriate triangle and outer-sphere outside the tetra-
hedron counted positive, and

• one of them inside and the other one outside counted negative.

Combining the portions of the tetrahedrons which share the point pi delivers the
commonly used notation

∀ j : ∃ edge pipj

εij
Aij

dij

(ϕi − ϕj) = qi (3.29)

with Aij the Voronoi area of the edge pipj (coupling area between pi and pj)

Aij =
t ∈ tetsi

pipj ∈ t

At,ij. (3.30)

Equation (3.29) must be fulfilled for each grid point pi inside the simulation domain,
which results in an equation system

S · x = B (3.31)

with the system matrix S = (sij)

sij = −εij
Aij

dij
∀ i, j : ∃ edge pipj , (3.32)

sii =
∀ j : ∃ edge pipj

εij
Aij

dij
= −

∀ j : i=j

sij ∀ i, (3.33)

the unknowns

x = (ϕi), (3.34)

and the right-hand side

B = (qi), (3.35)

which is defined for all inner points pi of the domain.
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3.1.3 Boundary Conditions

For solving this time-invariant elliptical partial differential equation, boundary con-
ditions have to be applied to all boundaries. For each grid point lying at the
boundary of the domain one of the two following additional equations or a linear-
combination of them must be added for the discrete version, which fulfill the bound-
ary conditions.

Each grid point of the boundary has to be defined by exactly one of the different
conditions. Additionally, at least one grid point must be described by a Dirichlet
condition to define a definite potential distribution. With this set of equations, the
discrete Poisson equation can be solved.

Dirichlet Conditions

The first class of boundary conditions is an imposed potential Φ

ϕ = Φ on boundary ∂BΦ. (3.36)

The discrete formulation of this boundary condition simply replaces the respective
rows of equation (3.29) by

ϕi = Φi ∀ i : pi ∈ ∂BΦ (3.37)

or within the matrix representation

sij = 0 ∀ i, j : i = j, pi ∈ ∂BΦ, (3.38)

sii = 1 ∀ i : pi ∈ ∂BΦ, (3.39)

bi = Φi ∀ i : pi ∈ ∂BΦ, (3.40)

which at first delivers an asymmetric system matrix S. Since most equation solvers
require a symmetric system matrix, it may be necessary to transform the matrix to
a symmetric one, which can be simple obtained by summation of adequate rows.

Requirements for an M-Matrix

As shown in Section 2.3, for satisfying the maximum principle the system matrix
S has to be an M-matrix. Under the precondition of a valid Delaunay grid, the
validity of the M-matrix will be shown.
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Figure 3.7: A Voronoi box of the point pi at a boundary.

As the grid is Delaunay, it follows that the coupling areas are positive

Aij ≥ 0

and therefore,

(3.32) sij ≤ 0 satisfies (2.4),

(3.33) −
∀ j : i=j

sij = sii ≥ 0 satisfies (2.5),

(3.33) −
∀ j : i=j

sij = sii =
∀ j : i=j

|sij| satisfies (2.6),

and finally by defining at least one boundary point pΦ,k as a Dirichlet point

(3.38)-(3.39) 1 = skk >
∀ j : k=j

|skj| = 0 satisfies (2.7).

Neumann Conditions

The second type of boundary condition specifies the imposed normal component
n ·D = Dn on the boundaries ∂Bn (see Figure 3.7), which occurs between different
segments. As shown in Figure 3.7, the normal vector n may have various directions
on different boundary pieces around pi. This behavior could be handled by splitting
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the boxes (and also the point pi itself) into several pieces. Usually this approach is
prevented and the normal derivatives are combined to one value. In this case, the
boundary conditions result in a distortion of (3.29)

∀ j : ∃ edge pipj

εij
Aij

dij
(ϕi − ϕj) + Dn,i Ai = qi ∀ i : pi ∈ ∂Bn (3.41)

with Dn,i the assigned normal component at the boundary at the grid point pi. It
must be distinguished between Aij which represents the area of the Voronoi box
between pi and pj, and Ai as the assigned boundary area of the Voronoi box around
the grid point pi.

In the majority of cases, a special kind of this boundary condition is used, which
shows a vanishing flux across the boundary (homogenous Neumann condition)

Dn = 0. (3.42)

This type of condition specifies the artificial boundaries which terminate the sim-
ulation domains. As no distortion of equation (3.41) appears, these boundaries
do not require a special treatment and the equations can be left unchanged as in
(3.31)–(3.35).

Cauchy Boundary Conditions

The linear-combination

Dn + α ϕ = β (3.43)

combines the two previous conditions and results in the discrete formulation

∀ j : ∃ edge pipj

εij
Aij

dij
(ϕi − ϕj) + (βi − αi ϕi) Ai = qi ∀ i : pi ∈ ∂Bc. (3.44)
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3.2 The Diffusion Equation

In this section, the discretization of parabolic time-variant problems is described.
In its simplest representation, the right-hand side of the diffusion equation is time-
invariant. Solving a diffusion problem the diffusion equation becomes time-variant.
It describes the out-diffusion of matter, driven by its own concentration gradient.
The diffusion flux J can be written as

J = −D grad c (3.45)

where D denotes the diffusion coefficient and c is the concentration of the diffusing
material.
Additionally, the conservation of material must be fulfilled

div J = −∂c

∂t
. (3.46)

After insertion of (3.46) in (3.45), the diffusion equation can be reformulated as

div grad c =
1

D

∂c

∂t
. (3.47)

As described in the previous section, this equation can be discretized as

∀ j : ∃ edge pipj

Aij

dij
(cj − ci) =

1

D

∂

∂t
ci Vi (3.48)

The time derivative in this formula can be discretized by several methods. By the
backward Euler method, the time derivative is approximated by [66]

∂

∂t
c(t + Δt) ≈ c(t + Δt) − c(t)

Δt
=

ck+1 − ck

Δt
, (3.49)

with Δt the sampling interval. The discrete notation by backward Euler time dis-
cretization follows by

∀ j : ∃ edge pipj

Aij

dij
ck+1
j − ck+1

i =
1

D

ck+1
i − ck

i

Δt
Vi. (3.50)

By separating the unknowns to the left-hand side, this expression becomes

1

Δt
ck+1
i Vi + D


−

∀ j : ∃ edge pipj

Aij

dij
ck+1
j +

∀ j : ∃ edge pipj

Aij

dij
ck+1
i


 =

1

Δt
ck
i Vi.

(3.51)
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In matrix notation, (3.51) can be written as

K · x = B, (3.52)

with

K =
1

Δt
M + D S, (3.53)

xi = ck+1
i ∀ i, (3.54)

mij = 0 ∀ i, j : i = j, (3.55)

mii = Vi ∀ i, (3.56)

sij = −Aij

dij
∀ i, j : ∃ edge pipj , (3.57)

sii =
∀ j : ∃ edge pipj

Aij

dij
= −

∀ j : ∃ edge pipj

sij ∀ i, (3.58)

bi =
1

Δt
Vi ck

i ∀ i. (3.59)

The necessary boundary conditions for this parabolic equation can be handled as
shown in the previous section. Also the requirements for an M-matrix (see Section
2.3) are satisfied. The conditions for S can be handled as in the previous section
and M consists of positive diagonal entries only. Additionally, an initial condition
is required.

3.2.1 Initial Conditions

The initial concentration distribution at initial time τ is defined as

c(x, τ) = C(x). (3.60)

The discrete system is satisfied by the discrete formulation

ci(τ) = c0
i = Ci for all grid points pi. (3.61)

The concentration distributions c1
i , c

2
i , . . . , c

k+1
i can be computed by an sequential

evaluation of (3.52)–(3.59).
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3.3 The Basic Semiconductor Equations

The classic drift-diffusion equations for electrons and holes read1

Jn = −q µn n gradϕ + q Dn gradn, (3.62)

Jp = −q µp p gradϕ − q Dp grad p, (3.63)

with Jn,p the electron or hole current densities, n, p the electron or hole concentra-
tions, µn,p and Dn,p the carrier mobilities and diffusivities, and finally q the unit
charge of the electron (positive). These equations are connected via the recombina-
tion rate R

div Jn − q
∂n

∂t
= q R, (3.64)

div Jp + q
∂p

∂t
= −q R (3.65)

and coupled to the already discussed Poisson equation, where the charge is deter-
mined via the difference between the ionized impurities NC and the electron and
hole concentrations

div (ε gradϕ) = q (n − p − NC). (3.66)

The continuity equations (3.64) and (3.65) are converted to integral formulation

∂V

Jn · dA = q

V

R +
∂n

∂t
dv, (3.67)

∂V

Jp · dA = −q

V

R +
∂p

∂t
dv, (3.68)

which must be satisfied for each Voronoi box of the tessellation. In the discrete form
they can be rewritten as in (3.28)-(3.29)

∀ j : ∃ edge xixj

Jn,ij ·Aij = q Ri +
∂ni

∂t
Vi, (3.69)

∀ j : ∃ edge xixj

Jp,ij ·Aij = −q Ri +
∂pi

∂t
Vi. (3.70)

1To avoid symbol clashes between grid points and the discrete hole concentration, in this section
the grid points are labeled xi.
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The material constants, the electric field E and the currents Jn and Jp are assumed
to be constant along each edge and therefore,

Jn,ij ·Aij = (−q µn n grad ϕ +q Dn gradn)
ij
·Aij, (3.71)

Jp,ij ·Aij = (−q µp p gradϕ −q Dp grad p)
ij
·Aij, (3.72)

where, because of the inner product, only the components of the values along Ai,ij

or along the edge xixj remain

Jn,ij = −q µn n ∂ijϕ + q Dn ∂ijn = q µn (−n ∂ijϕ + Vth ∂ijn), (3.73)

Jp,ij = −q µp p ∂ijϕ + q Dp ∂ijp = q µp (p ∂ijϕ + Vth ∂ijp), (3.74)

with

µn,p Vth = Dn,p and Vth =
k T

q
. (3.75)

The discretization of the transport equations is more crucial, since they are of
convection-diffusion type [66]. Because the carrier concentrations change exponen-
tially, a discretization scheme analogously to (3.13) would require an extremely dense
mesh. Therefore, a better approximation for the electron and hole concentrations
is chosen. As equations (3.73) and (3.74) are defined along the edge xixj , these
equations are ordinary differential equations. With the introduction of a local coor-
dinate ξ along the edge xixj , assumption of constant current density Jn,ij, constant
mobility µn, and constant electric field

−∂ϕij = −dϕ

dξ
≈ −ϕj − ϕi

dij

(3.76)

along the edge, a linear differential equation of first order is derived, which can be
solved for n(ξ)

n(ξ) = Ke
Δij

ξ
dij +

Jn,ij

q µn Vth

dij

Δij
, (3.77)

with

B(Δ) =
Δ

eΔ − 1
and Δij =

ϕj − ϕi

Vth

. (3.78)

The general solution of the differential equation shows two unknowns K and Jn,ij

which have to be fixed by two boundary conditions (even if it is a differential equation
of first order)

n(ξi) = ni and n(ξj) = nj . (3.79)
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The result for the hole current density can be evaluated analogously. Insertion of
the boundary conditions and solving for Jn,ij and Jp,ij delivers

Jn,ij =
q µn Vth

dij
(nj B(Δij) − ni B(−Δij)) , (3.80)

Jp,ij =
q µp Vth

dij
(pj B(−Δij) − pi B(Δij)) , (3.81)

which results in the final discrete formulation of the semiconductor equations

Sn · n = Bn, (3.82)

Sp · p = Bp. (3.83)

Here

sn,ij = µn Vth
Aij

dij

B(Δij) ∀ i, j : ∃ edge xixj , (3.84)

sn,ii = −
∀ j : ∃ edge xixj

sn,ji ∀ i, (3.85)

bn,i = Ri +
∂

∂t
ni Vi ∀ i, (3.86)

sp,ij = µp Vth
Aij

dij
B(−Δij) ∀ i, j : ∃ edge xixj (3.87)

sp,ii = −
∀ j : ∃ edge xixj

sp,ji ∀ i, (3.88)

bp,i = − Ri +
∂

∂t
pi Vi ∀ i. (3.89)

This method is referred as Scharfetter-Gummel discretization [17][44][57]. The re-
sulting expressions are linear equation systems in ni or pi where the boundary condi-
tions can be set as in the previous sections. If calculating a non-stationary problem
the time discretization can be performed as shown in Section 3.2.

The major difference to the field or diffusion equation is that the system matrices Sn

and Sp are no longer symmetrical, because of B(Δij) = B(Δji). As the semiconduc-
tor equations for electrons (3.62) and holes (3.63) depend on the field equation (3.66)
and this equation depends on the carrier concentrations itself, the whole differential
equation system must be solved. While the dependency is nonlinear in ϕi, a re-
cursive solution mechanism for solving this system is inevitable. As the coefficients
of the matrices are influenced by B(Δij), a small potential change will influence
the carrier concentrations exponentially, which influences the potential distribution
itself. A simple iterative approach, which evaluates each equation back-to-back and
reinserts the updated values in the next iteration, does not deliver stable states.
Newton or even specially damped Newton algorithms are required [5][67].



Chapter 4

An Alternative Approach for
Diffusion Simulation

THE DOPANT ATOMS inside of semiconductor devices are usually introduced
by ion implantation in several processing steps, with different masks, to restrict

the implantation to certain regions, and with various implant energies and doses.
Low energetic ion implantation results in very sharp profiles located only a few
nanometers below the surfaces [24][64]. To spread the distributions and to activate
the dopants, the device structures are exposed to high temperature annealing steps.
During these high temperature processes, the dopants diffuse. As the final dopant
distributions determine the locations of the pn-junctions and therefore determine
the device behavior, an accurate simulation of these effects is important [18][52][69].

When the doping concentrations are low, the diffusion process follows the linear
diffusion law with constant diffusivity. This diffusivity depends on the involved ma-
terials and the processing temperatures. For higher concentrations, the behavior
differs from the linear model. The diffusivity depends on the values of the concen-
trations. In this case, other models must be applied [40].

Even with the linear diffusion equation, the simulation procedure is computation-
ally expensive. The differential equation is time variant and therefore a transient
simulation must be applied. The time steps of these simulations may be very small,
at least at the beginning of the simulation when high diffusion gradients are ex-
pected. As time passes, the distributions smooth out and the time steps can also
be enlarged. Concurrently, at regions with high doping gradients the grid density
must be high at least in the directions of the gradients. And as the domains of
high gradients move, the refined domains must also move. This refinement is of-
ten done by red-green refinement or directly by hierarchical splitting of grid edges.

56
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The possibility of coarsening the refined areas is eased by the hierarchical methods.
This is necessary as the high gradient locations move and temporarily produced high
point densities can be removed. Under certain circumstances, another discretization
method than Box Integration must be selected because the Delaunay criterion is not
fulfilled. Box Integration with Delaunay grids gives the advantage that caused by
the maximum principle negative concentrations can never appear [66]. With other
discretization methods this non-physical behavior must be prevented by applying
special grid criteria [19][48].

However, often quick and simple predictions of layout problems have to be cho-
sen. Especially within three-dimensional simulations, the time horizon of a tran-
sient diffusion simulation may be exceeded, difficulties in the solving procedure, or
plausibility flaws may occur, such as negative concentrations by applying Finite
Element methods on badly fitted grids. Simplifications concerning the models and
geometries have to be assumed. As the simulation domains for dopant diffusion, usu-
ally the silicon segment, can be simplified, the use of a Green’s Function approach
may be a possible solution to model the diffusion process, without negligence of a
three-dimensional simulation. This approach has the advantage that it requires sig-
nificantly less computational time, while by simulating the time variant differential
equation a lot of time is wasted for computing the dopant distributions at several
time steps. But in fact, only the final distribution at the end of the high temper-
ature process is of interest. With the use of Green’s Functions, it is possible to
calculate the dopant distribution at any time step of interest by only one iteration.
No transient simulation is necessary [10].

The requirements for the applicability of this method will be examined later on after
the method has been explained and the final algorithm has been derived.

4.1 Diffusion and Green’s Functions

The simple linear diffusion differential equation reads

∂c(x, t)

∂t
= D ∇2c(x, t), (4.1)

where c denotes the time and space dependent concentration, with a constant dif-
fusion coefficient D and the initial condition

c(x, 0) = C0(x). (4.2)
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With the theory of Green’s Functions the solution c(x, t) of this differential equation
problem for one, two, and three dimensions is obtained as

c(x, t) =
1

(4πD t)n/2

V ′

C0(x
′) e−

|x−x
′|2

4D t dx′n, (4.3)

where n is the dimensionality of the problem.

The discretization of this problem is performed by the following method: After the
simulation domain is meshed and the Delaunay boxes are determined, the initial
distribution c(x, 0) is discretized on the grid points by Dirac functions

C0(x) ≈ C0(x) =
i

D0(xi) δ(x − xi) (4.4)

with

D0(xi) =

Vi

C0(x) dv. (4.5)

The preservation of the total implantation dose in the simulation domain

V

C0(x) dv =

V i

D0(xi) δ(x − xi) dv =
i V

D0(xi) δ(x − xi) dv

=
i

D0(xi) =
i Vi

C0(x) dv =

V

C0(x) dv = N
(4.6)

is guaranteed by the discretization of the initial distribution.

As a consequence by applying (4.3), the approximated transient concentration dis-
tribution can be evaluated by

c(x, t) ≈ c(x, t) =
1√

4πD t
3

V ′

C0(x
′) e−

|x−x
′|2

4D t dv′

=
1√

4πD t
3

i

D0(x
′
i) e−

|x−x
′

i|
2

4D t .

(4.7)
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The total dose in the whole space R

R

c(x, t)dv =

R

1√
4πD t

3

i

D0(x
′
i) e−

|x−x
′

i|
2

4D t dv

=
1√

4πD t
3

i R

D0(x
′
i) e−

|x−x
′

i|
2

4D t dv

=
1√

4πD t
3

i

D0(x
′
i)

∞

−∞

∞

−∞

∞

−∞

e−
|x−x

′

i|
2

4D t dx dy dz

=
1√

4πD t
3

i

D0(x
′
i)
√

4πD t
3

=
i

D0(x
′
i) = N

(4.8)

is preserved, too. The preservation of the implanted dose is a significant and neces-
sary condition for the quality of the method. In total, the amount of implanted ions
must not change during the diffusion process. Therefore, the discrete formulation
must fulfill this preservation, too.

Since the implantation distribution is delivered on a grid, this grid can be used
for calculating the entire dopant diffusion process. In this case, the initial dopant
concentration D0(xi) is defined on the grid points pi and therefore, the integration
of (4.5) can be omitted and replaced by

D0(xi) = C0(xi) Vi, (4.9)

which is the initial concentration at the grid point, weighted by the control volume
of the Voronoi box.

4.2 Prerequisites for Applying the Green’s

Functions Method

The Green’s Functions Method can only be applied if the diffusivity is constant in
the whole simulation domain. This condition is usually satisfied, if only one segment
has to be simulated. Normally different segments consist of different materials where
the dopants also have different diffusivities. A further fundamental assumption of
the chosen method is that the diffusion domain must be unbounded. This is usually
not satisfied and every segment boundary will violate this condition. However, when
the boundaries are far away from domains of interest, their influence is only marginal
and the existence of these boundaries can be neglected. Neglecting the influence is
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usually possible for the boundaries of the silicon wafer except the top boundary
where the initial concentration was implanted. At this boundary, the distance of
the implanted ions to the top of the wafer is not large enough. However, if the top
of the wafer is flat and if it can be postulated that no dopant diffusion will occur
through this boundary, the wafer can be mirrored above its top. With this trick,
it can be achieved that no conduction of dopants will occur at the top and this
boundary can be removed. Because the partial conduction coming from the original
wafer and the conduction resulting from the mirrored wafer will cancel each other
due to symmetry considerations. This implies, if possible simplifications make it
feasible to place the dopant ions directly on the top of the wafer, that the entire
dopant concentrations must be set twice than the original concentration to account
for the dopants diffusing to the upper and lower half of the wafer.

Certainly, it must be guaranteed that the grid density of the initial distribution or
the desired time where the final distribution will be calculated are convenient in
terms of the relaxation processes between the grid points. If the final time is not
far enough and the diffusion between the grid points is high, the discretization of
the initial distribution must be denser. However, if the final time and the diffusion
ranges become wider, the initial discretization of the distribution can be chosen
cruder. Even by this diffusion of dopants, the influence of marginal areas must be
accounted for in the calculation of the active areas. Which means that the initial
dopant concentration of a larger domain, than where the final distribution has to
be evaluated, has to be known and included in the diffusion process.

4.3 Advantages of the Green’s Functions Method

The Green’s Functions method gives a relatively simple and fast tool for calculating
diffusion processes. Compared to direct simulation of the transient diffusion process,
this method has the advantage that no iteration over small time steps is necessary
until the final result is reached. Therefore, the frequent solution of a large equation
system is not necessary. The final concentration can be directly written as given
by (4.7). With this method the value of the concentration can be evaluated at any
point in time and at any point in space.

Additional simplifications can be introduced, which speed up the calculation time
extremely. Every partial initial Dirac like concentration sustains a broadening during
time. The speed of broadening is proportional to D/t and implies that in the first
few moments the distribution broadens fastest. If the initial distribution is steep
delimited within a certain area the error of replacing this distribution by a layer of
Dirac functions will be marginal.
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For ion implantation with low implantation energies, the concentration maxima that
are located close to the surface flow away due to diffusion. If the time interval is
long and the broadening of the initial distribution is large relative to the initial
thickness, the initial distribution can be simplified as an areal distribution. The
Dirac like initial distributions are placed along surfaces inside the wafer, at little
distance from the top of the wafer or certainly direct at the top. In this simplified
case, only the top of the wafer has to be meshed. Utilizing with the adequate dose
the final distribution can be achieved by only a single sweep over the surface of the
wafer, which is much faster than iterating within a three-dimensional grid.

If the implantation doses are known and the diffusion ranges are large compared to
the transversal implantation depths and expansions widths a relatively simple mask
based tool for implantation and following diffusion based on this method can be
developed. The dopant concentration can be evaluated and provided to the device
simulation in every desired point.

As an additional feature of this method, the grids used for the initial distribution
and the final profile can be designed independently and may be adapted to their
individual requirements. The final concentration distribution is not mandatorily
connected to a grid, as the concentration can be calculated in any place of interest,
which may be an advantage. However, most of the tools applied later on require
a grid. Even visualization tools often require a grid to display the dopant profiles
or calculate iso-surfaces (as shown in the following example). As the demands on
the grids for electrical simulation and visualization may differ seriously, an adapted
dopant profile on the desired grid can be easily obtained by reapplying the diffusion
simulation on the new grid.

4.4 Device Optimization by Three-Dimensional

Diffusion Simulation

A major goal in the process development of high voltage processes is the design of
devices with given breakdown voltages and low on-resistances. To reach this goal
it is necessary to optimize the space charge regions of the device. Unfortunately
these effects are three-dimensional and a device optimization needs the support of
accurate three-dimensional process and device simulation.

The requirement for a low on-resistance (Ron) is to design a single device as small
as possible. The reduction of space charge regions is limited by the dopant surface
concentration of the wells which may result in impact ionization effects in case of
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too high doping concentrations. On the other hand, lowering the doping concentra-
tions is limited by the required punch-through voltage. To fulfill these conflicting
criterions the doping concentrations must be optimized.

4.4.1 Simulated Structure

The investigated device is the tip of a drain finger of a high voltage PMOS transistor.
For proper insulation of a p-type MOS transistor in a p-doped substrate, the whole
transistor structure must be placed in a n-doped well located inside the substrate
(NWell). The resulting pn-junction blocks the two different regions. Under the
drain and source regions of the transistor, higher doping concentrations for electrical
strength are required, whereas under the gate and near the surface lower doping
concentrations are required to prevent impact ionization. These effects are combined
in a deep NWell under the active drain and source regions and a shallow NWell in
peripheral regions of the drain and source contact, called SDNTUB. The main drain
and source regions of the transistor have to be constructed by a p-doped region under
the contacts, located close to the surface of the wafer. This region is realized by a p-
doped tub (PTUB). In combination with the SDNTUB a second pn-junction is built.
Overall, a pnp-structure is formed by the PTUB, SDNTUB, and the substrate and
under normal operation the PTUB/SDNTUB junction is biased in reverse direction.

To optimize the main characteristic of the PMOS transistor it is necessary to ensure
that no three-dimensional effects dominate the device behavior. The optimal drain
finger layout ensures that applying maximal Vdd causes no punch-through between
PTUB and substrate and no avalanche breakdown occurs at the surface of the wells.

The anticipated netto doping distribution of the three-dimensional structure can be
seen in Figure 4.1. For better understandability of the nomenclature of the layers,
the pn-junctions and the names of the layers are plotted.

The complete device is embedded in the SNTUB so that there is no direct con-
nection between PTUB and substrate. Only in the area of the PTUB, the DNTUB
determines the distance between the pn- and the np-junctions. The PTUB/DNTUB
mask layout is given in Figure 4.2, which shows that the DNTUB mask is enclosed
by the PTUB mask. To enlarge the distance between the two junctions it is nec-
essary to use a long DNTUB diffusion time so that the DNTUB dopants nearly
diffuse spherically at the tip of the drain finger. This long DNTUB diffusion fi-
nally leads to a DNTUB formation which starts outside of the PTUB mask. The
three-dimensional consideration is necessary because the spherical diffusion of the
DNTUB dilutes the DNTUB concentration in the area of the finger tip and thus
reduces the punch-through voltage of the PMOS device.
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Substrate

SDNTUB

PTUB

Figure 4.1: Netto doping of the semiconductor segment.

4.4.2 Comparison of Simulation Approaches

The conventional procedure is to simulate the whole ion implantation process first
[24] and then the three-dimensional transient diffusion [48]. Thereby both steps re-
quire a particularly fine grid to achieve appropriate accuracy [15] and, therefore, the
vast amount of memory and huge calculation times constitute prohibitive demands
in practice.

Because of the long diffusion ranges, the exact simulation of the ion implantation
process can be neglected and the implanted ions were assumed only located at the
top of the wafer. With this simplification the final diffusion profile inside the wafer
can be calculated by the Green’s Function method. A grid is only necessary at the
surface of the wafer and the resulting doping distribution can be calculated at any
point of interest.

4.4.3 Calibration and Evaluation

The diffusion model has to be calibrated by the two-dimensional simulation results
which are available far away from the tip of the finger. The simulated drain current
versus the drain-substrate-voltage of the two-dimensional cut is shown in Figure 4.3.
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Gatemask

Fieldmask

Drain contacts

Channel

2D−cut

N−Tub Mask

P−Tub Mask

Drain finger tip

(a) Mask layout of the drain region of the transistor

cut for 2D simulation 2.7

NTUB mask

PTUB mask

2.3

2.7

2.7

(b) Mask layout of the finger tip

mask for boron implantation

mask for phosphorus implantation

Figure 4.2: Well mask layout of the high voltage device.
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Figure 4.3: Two-dimensional simulation of the drain-current far away from the tip
of the finger.

The assessment criterion of the new layout parameters is the fact that the dopant
concentration of the PTUB/SDNTUB junction at the surface of the wells is the same
for the two-dimensional case and the three-dimensional finger case. This ensures that
the breakdown at the surface in the three-dimensional structure takes place in the
same voltage range as compared with the two-dimensional structure.

4.4.4 Results

The simulation results show that the spherical out-diffusion of the DNTUB is larger
than expected due to the large NTUB depth. This depth is about 7.5 micron in
the two-dimensional simulation. The spherical diffusion length is also of the same
size from the top of the DNTUB finger to the direction of the two-dimensional case.
In fact, the two-dimensional situation is given when the DNTUB mask is enlarged
by about 7 micron as compared to Figure 4.2. This means that the DNTUB mask
can even exceed the PTUB mask. However an enlargement of 7 microns would
cause impact ionization near the top of the PTUB surface. So the limiting case
of the DNTUB enlargement is the dopant concentration of the two-dimensional
simulation at the surface of the junction. This critical concentration is given when
the DNTUB mask is shifted by 2 microns towards the PTUB mask. The different
surfaces of the pn-junctions are shown in Figure 4.4(a) for the original mask setting
and Figure 4.4(b) for the improved finger design.
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Another interesting effect is that the punch-through in the three-dimensional case
does not occur directly under the symmetry line of the finger (see Figure 4.5(a)).
The explanation is that the DNTUB dopants diffuse spherically while the PTUB
dopants diffuse cylindrically. Therefore, the punch current has its maximum density
near the edge of the PTUB mask. For comparison the space charge region of the
enlarged finger is shown in Figure 4.5(b).

The simulation results are validated by a set of test devices. Figure 4.6 shows the
punch current dependency of the finger elongation starting with the initial layout
shown in Figure 4.2.

With these careful considerations the device has been optimized to fulfill the electri-
cal requirements, particularly with respect to punch-through between the junctions
and breakdown by impact ionization. Without the outlined simulation methodology
it would not have been possible to fully optimize the structure.
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(a) The original finger layout.

(b) The 2 µm enlarged finger layout.

pn-junction, where the upper one also represents a boron iso-surface

phosphorus iso-surface

Figure 4.4: Relevant iso-surfaces of the phosphorus doping and the pn-junctions of
the finger. The relevant boron surface is approximatively represented
by the pn-junction which is located under the surface of the wafer.
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(a) The original finger layout.

(b) The 2 µm enlarged finger layout.

Figure 4.5: Surfaces surrounding the space charge regions between both pn-
junctions.
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Chapter 5

Grid Generation for Device
Simulation

FOR DEVICE SIMULATIONS, the demands on grid generators are very high.
Coming along with the growing complexity and miniaturization of the devices

two-dimensional models are often not sufficient. These models cannot describe par-
asitic effects near corners of the structures. Due to the shrinking aspect ratios of
the devices, the limited device extension along the third coordinate direction cannot
be neglected. However, these parasitic effects are able to change the device char-
acteristics dramatically. Neglecting the third dimension can even cause an invalid
simulation result. Therefore, the models must be extended to three dimensions and
also three-dimensional simulation grids have to be used.

Simple electric field calculations or their assigned capacitance, inductance and re-
sistance calculations of interconnect structures show a relatively well-tempered be-
havior. The underlying differential equations are often linear, such as the Laplace
equation. Additional nonlinearities such as a temperature-dependent resistance can
be handled by post-iterations: The simulation is started with an initial value of
the temperature dependent resistance. After evaluation of the current densities, the
heating of the device regions is calculated, which changes the specific resistance.
These new values will be inserted in the next field evaluation. This procedure is
continued until the resistance, current density, and temperature do not change sig-
nificantly. The prerequisites on the meshes are not very high, already relatively
crude grids will deliver good results. Only the convergence of the solvers must be
guaranteed by the mesh type in combination with the discretization method. In
contrast, within electric calculations of semiconductor devices the demands on the
grids grow rapidly, because semiconductor equations are highly nonlinear and show
a strong coupling; this basically due to the exponential dependence of the carrier
concentration on the potential.
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5.1 Grid Requirements for Device Simulation

As an example, consider the long channel nMOSFET shown in Figure 5.1, operating
in inversion mode. We assume no recombination and stationary conditions. No
voltage is connected between source and drain, and therefore the device is current-
free. To compensate the electric field in the channel arising from the applied gate
voltage, a carrier displacement will occur in that area.

Source Drain

Gate

Bulk

x

y

n+n+

p-Silicon

Poly

SiO2

Figure 5.1: Structure of a two-dimensional MOS transistor.

The set of equations are the Poisson equation and the semiconductor equations

div (ε gradϕ) = q (n − p − (NA − ND)), (5.1)

div Jn − q
∂n

∂t
= q R, (5.2)

div Jp + q
∂p

∂t
= −q R, (5.3)

Jn = −q µn n grad ϕ + q Dn grad n, (5.4)

Jp = −q µp p gradϕ − q Dp grad p. (5.5)
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In inversion mode, the holes under the gate are displaced and the following relation
holds

n ≫ NA − ND ≫ p. (5.6)

The holes become negligible and only the drift-diffusion current relation for the
electrons has to be considered. Without recombination and in stationary mode the
required equations simplify to (µnVth = Dn)

div (ε gradϕ) = q n, (5.7)

div Jn = 0, (5.8)

Jn = −q µn n gradϕ + q µn Vth gradn. (5.9)

It is obvious that carrier displacement occurs only along the y-axis, in the direction
of the electric field and therefore only the y-component of equations (5.8) and (5.9)
is crucial

Jn,y = q µn n Ey + q µn Vth
∂n

∂y
= 0. (5.10)

This equation system can be solved by differentiating equation (5.7) (only the y-
component of the electric field is present). We assume constant permittivity and
mobility, and obtain

ε
∂2Ey

∂y2
= −q

∂n

∂y
. (5.11)

Inserting (5.7) and (5.11) into (5.10) gives

−ε
∂Ey

∂y
Ey − Vth ε

∂2Ey

∂y2
= 0 (5.12)

which is an ordinary differential equation in Ey (E ′
y = ∂

∂y
Ey)

E ′′
y +

1

Vth

Ey E ′
y = 0. (5.13)

This equation shows an unphysical solution Ey ∝ tanh(y + d), which leads from the
additional differentiation (5.11), and the solution Ey = A/(y + d), where both the
electric field and the carrier concentration decay to zero. With the evaluation of A
the final solution is

Ey = 2 Vth
1

y + d
. (5.14)
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The parameter d is affected by the thickness of the field-oxide, the applied voltage,
and the dopant concentrations. By insertion into (5.7), the distribution of the charge
carriers follows as

n =
2 Vth ε

q

1

(y + d)2
. (5.15)

Here it can be seen that the electric field and even more, the carrier concentration
changes rapidly along the y-axis, whereas along the x-axis the values remain un-
changed. In Figure 5.2 the resulting carrier concentration of such a device is shown.
Here the silicon segment has a constant donor background doping of 1015 cm−3 and
the highly doped areas under the source and drain contacts have a constant accep-
tor doping of 1020 cm−3. The oxide thickness under the gate contact is 20 nm. By
applying a drain-source voltage and without a gate-source voltage, one of the two
source/silicon or drain/silicon pn-junctions are in reverse direction and the device
is blocked. With a gate bias of 10 V and all other contacts grounded, the carrier
concentrations raise at the gate regions. The device is in inversion and the carrier
concentrations under the gate contact are higher than the concentrations in the
source and drain regions. The pn-junctions are not reverse biased any longer.

With introducing a voltage between source and drain, a current will arise. As the
free charge carriers are responsible for the current density, a relatively high current
density change along the y-axis, combined with nearly constant current density
along the x-axis will follow. In Figure 5.3, the current density, with a voltage of
1 V between source and drain, is shown. Along the channel, the current density is
almost constant. This simple device with planar silicon surfaces has been simulated
based on an ortho grid. The comparison of different grid approaches, with a dense
grid with a grid spacing of 0.01 nm along the y-axis and a coarse grid with minimum
grid distance of 20 nm under the gate, and the result of the analytical solution is
shown in Figure 5.4. The analytical solution loses its validity since relation (5.6)
is violated. Comparing the simulations, an underestimation of the current density
under the gate contact of about 1 : 30 can be detected, which may decide about an
breakdown of the device in critical cases.

5.2 Adapted Grid Generation

A high grid density in directions where simulation values change rapidly must be
guaranteed to achieve an accurate numerical solution. As in the above example, the
resolution of the 1/(y + d)2 dependency of the current density must be guaranteed
and therefore the grid density under the gate oxide must be a fraction of the thickness
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Figure 5.2: The carrier concentration of the two-dimensional device simulation
with a gate-source and gate-substrate voltage of 10 V.
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Figure 5.3: The current density of the two-dimensional device simulation at
VDS = 1 V.
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Figure 5.4: Comparison of the simulation approaches. The first two-dimensional
simulation is performed on a dense grid with a grid spacing of 0.01 nm
under the gate. The coarse grid has a spacing of 20 nm under the gate.
These simulations are compared with the derived analytical solution
(5.15), n0 = 3.38 × 105 cm−1, d = 0.32 nm.

of the oxide, whereas along the channel the grid density can be much cruder. An
aspect ratio of about 1 : 100 is not rare.

In general, increasing the number of points increases the accuracy of the solution
(neglecting numerical errors). However, especially within three-dimensional simula-
tions an isotropic increase of grid points will cause intolerable memory consumption
and calculation times. Therefore, a compromise of these effects must be a main goal.

In areas where simulated values are strongly affected (also affected with high non-
linearities), the point density must be high and so the tetrahedrons have to be split
into smaller ones. A two-dimensional grid example, which shows the refinement
procedure, can bee seen in Figure 5.5. The right grid is refined with a global grid
density criterion turned on. An example for such a global criterion is a maximal
area constrain for all grid elements. As seen in Figure 5.5(b), the resulting triangles
become nearly equilateral. Applying the same grid refinement method for three
dimensions, the expected tetrahedrons will become nearly equilateral, too.
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(a) Unrefined grid
(b) Refined grid with drawn grid points of the

unrefined version.

Figure 5.5: Refinement of a two-dimensional triangular grid.

As the required grid density is directionally dependent (anisotropic) — like in the
transistor example — the density in one direction is sufficient, but in another, it can
be too high. In this direction the material parameters and unknowns do not change
so rapidly and the density of discretization along this direction does not need to be
so fine. With global refinement we have an undesirable high amount of grid points
where the simulation must be performed and the memory and time consumption
will be unnecessarily high. Therefore, investigations of producing grids of desired
structure are necessary.

Due to the discretization of the differential equations and especially of the boundary
conditions, orthogonal and boundary conform meshes are desired. Matrix entries
and the discretization errors caused by Neumann conditions are decimated, which
are achieved for instance between the gate oxide and the semiconductor segment.
In general, orthogonal grid components in and across main directions of the current
densities also decimate the errors caused by the Box Integration method inside the
structures.

Therefore, a new method for three-dimensional grid generation was developed in the
scope of this thesis. The methodologies of this method are described in the following
sections.
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5.3 Potential-Based Grid Generation

In the particular case of MOS structures, a point distribution with low point density
along the channel and high point density towards the bulk seems feasible. Never-
theless, to fulfill the Delaunay criterion, the grid generator sometimes has to insert
additional grid points. Therefore, a method for point insertion which does not vio-
late the Delaunay criterion must be found.

For ortho-product grids, the aspect ratio of the cuboids can be varied arbitrarily.
As mentioned before, an ortho grid can be transformed easily to a tetrahedral grid
by splitting each cuboid into five or six tetrahedrons. The Delaunay criterion will
never be violated, since all resulting tetrahedrons have the same outer-sphere and
neighboring grid points can never lie within. A pleasant side effect of this method
is that the coupling areas of the tetrahedrons inside the original parallelepiped will
become zero, the resulting equation system will have fewer off-diagonal entries and
the assembled equation system will be the same as the one obtained from the original
ortho grid.

However, this approach is difficult when cuboids have to be fitted along geometry
lines that are not in the same direction as the edges of the cuboids (refer Section 2.1).
For maintaining the accuracy, the number of cuboids and, therefore, also the number
of grid points will increase rapidly. In this case, the general use of tetrahedral grids
is required. There are fewer geometry related limitations and a Delaunay grid can
be found in most cases. But even an enhancement of the grid density will cause
the tetrahedrons to become nearly equilateral (see Figure 5.5(b)) and a directional
dependent grid density cannot be tuned arbitrarily. In the method developed here,
the advantages of ortho and tetrahedral grids are combined.

5.3.1 Two-Dimensional Behavior

The basic idea of the newly developed method can be explained by considering a
nearly cuboidal capacitor with two electrodes. The electric field outside the capacitor
is neglected by assuming a high-k dielectric with a permittivity ε much higher than
the vacuum permittivity. A sketch of such a capacitor is shown in Figure 5.6.

After applying a voltage between the electrodes, the equipotential lines and the field
lines can be evaluated. The field lines are orthogonal to the potential lines. Addi-
tionally, either the equipotential or field lines are boundary-conform or orthogonal
to the boundaries of the capacitor. If the spacing of selected potential and field lines
of the capacitor is sufficiently small, two potential and two field lines lying next
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0V

1V

Figure 5.6: Two-dimensional capacitor with the electrodes and drawn field and
equipotential lines.

to each other approximately form rectangles, as shown in the figure. The spacing
between the selected field and potential lines can be varied independently. To create
a grid suitable for device simulation, these rectangles must be split into triangles by
a mesh generator.

This method can be used for creating a set of grid points in a given domain. Four
points at the boundary of this domain are placed at the corners of the capacitor.
Between the corners, the upper and lower electrodes are located. After the evaluation
of the field distribution, the grid points can be set at arbitrary intersections of the
equipotential lines and field lines.

The field lines are not evaluated directly. Rather, they are evaluated by a duality,
which can be applied if the following prerequisites are satisfied:

• Constant permittivity ε inside the capacitor.

• Four corner points are placed on the boundary.

• Between each two corners the electrodes are placed where the voltage is con-
nected (Dirichlet boundary conditions).

• The remaining opposite boundaries show a vanishing normal component of the
electric field (homogenous Neumann conditions).

After applying a voltage between the electrodes, the electric potential distribution
(E = − gradϕ) inside the capacitor can be calculated and the equipotential lines
(ϕ = const) can be evaluated.
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The field lines are evaluated via a duality in the specified way:

• The dual capacitor, with congruent shape, replaces the original capacitor.

• Constant permittivity ε inside the capacitor.

• The same four corner points on the boundary.

• The original boundaries with vanishing normal component of the field are
replaced by electrodes — with imposed voltage.

• The original electrodes are replaced by boundaries with vanishing normal com-
ponent of the electric field.

• The field lines of the original capacitor are the equipotential lines of the dual
capacitor.

The dual electric field (F = − gradψ) and its associated equipotential lines (ψ =
const) are calculated.

Now each point (x, y) inside the capacitor can be represented by its potential rep-
resentation (ϕ, ψ).

5.3.2 Extension to Three Dimensions

In the two-dimensional case, there are four electrodes at the boundary of the ca-
pacitor — two opposite electrodes of the original capacitor and the remaining two
opposite boundaries as the electrodes for the dual capacitor. The extension of this
method to three dimensions is as:

Prerequisites:

• Constant permittivity ε inside the capacitor.

• There are exactly six boundary groups — “sides”,

• Which must not overlap and

• In general, all six “sides” must cover the whole surface.

• Two opposite “sides” act as electrodes,
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• The other four “sides” act as Neumann boundaries.

Figure 5.7: Capacitor with electrodes at top and bottom.

Such a capacitor can be seen in Figure 5.7. The original capacitor delivers the field
distribution E = − gradϕ with the equipotential surfaces ϕ = const.

Methodology of the Capacitor Model

The electric field F and its electric potential ψ, and as a consequence of this three-
dimensional expansion, the electric field G and the potential ϑ, are derived as the
resulting field inside a capacitor of the following shape:

• The new capacitor region is the same as the original one.

• Constant permittivity.

• Two opposing Neumann surfaces are replaced by electrodes where a voltage is
connected.

• The former electrodes are replaced by homogenous Neumann boundaries.
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• The remaining two surfaces are left as homogenous Neumann surfaces.

With this new placement of the electrodes, the electric potential F = − grad ψ
can be derived. By an additional replacement of the remaining two “sides” by
electrodes and all others as insulator surfaces, the third potential G = − grad ϑ can
be calculated.

5.3.3 Calculating the Equipotential Surfaces of the
Capacitor

Inside the capacitor, the Laplace equation has to be solved (as shown in Section
3.1). The boundary conditions are

ϕ(x, y, z) =




Φ0 for (x, y, z) ∈ ∂V1

Φ1 for (x, y, z) ∈ ∂V2,
(5.16)

for the electrodes where the voltage is connected and vanishing normal component

∂nϕ(x, y, z) =




0 for (x, y, z) ∈ ∂V3 or (x, y, z) ∈ ∂V4

0 for (x, y, z) ∈ ∂V5 or (x, y, z) ∈ ∂V6,
(5.17)

on the other two opposing boundary groups. With this set of boundary conditions,
the equipotential faces of the electric field can be evaluated.

It can be seen that the elements defined by two appropriate equipotential lines of
ϕ, ψ, and ϑ are spanning the desired cuboids for the tetrahedrization. The dif-
ferent electrode placements with their assigned field distribution are illustrated in
Figure 5.8 (original distribution), 5.9 (first electrode-replacement), and 5.10 (second
electrode-replacement). Resulting equipotential surfaces of all three field calcula-
tions are shown in Figure 5.11. The full set of differential equations (assuming
constant permittivity) with their assigned boundary conditions can be seen in Ta-
ble 5.1.
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Figure 5.8: Cuboidal capacitor, original electrodes, potential distribution.

Figure 5.9: Cuboidal capacitor, first electrode-replacement, potential distribution.
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Figure 5.10: Cuboidal capacitor, second electrode-replacement, potential distribu-
tion.

Figure 5.11: Cuboidal capacitor, with the equipotential surfaces of the three elec-
tric fields that are spawning the cuboids.
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div E = 0 div F = 0 div G = 0
curlE = 0 curlF = 0 curl G = 0
E = − gradϕ F = − grad ψ G = − gradϑ
ϕ = Φ1 ∂nψ = 0 ∂nϑ = 0 : for (x, y, z) ∈ ∂V1

ϕ = Φ2 ∂nψ = 0 ∂nϑ = 0 : for (x, y, z) ∈ ∂V2

∂nϕ = 0 ψ = Ψ3 ∂nϑ = 0 : for (x, y, z) ∈ ∂V3

∂nϕ = 0 ψ = Ψ4 ∂nϑ = 0 : for (x, y, z) ∈ ∂V4

∂nϕ = 0 ∂nψ = 0 ϑ = Θ5 : for (x, y, z) ∈ ∂V5

∂nϕ = 0 ∂nψ = 0 ϑ = Θ6 : for (x, y, z) ∈ ∂V6

Table 5.1: Differential equations and boundary conditions of the capacitor and its
dual capacitors.

5.3.4 Topological Cuboids

In general, a realistic devices are more complex than such capacitors and therefore,
the whole simulation area must be split into segments of usually different materials.
Not all of them will look like cuboids, either. However, if the following conditions are
fulfilled, the segments can be treated as warped cuboids. In this case, the calculation
of the equipotential surfaces can be performed as described.

Like the sides of a cuboid, it must be possible to define such six “sides” for the
segment — an upper, lower, left, right, top, and bottom “side”. Usually the semi-
conductor segment has such a shape: The simulation domain of the silicon wafer
with planar surfaces, except the upper face with the oxide-interface, for instance. In
this case it is easy to extract the six “sides” of the warped cuboid. Even other re-
gions with four surrounding flat faces and two warped faces, each at the top and the
bottom, can be handled easily. Additionally other criteria for finding the “sides”
of the cuboids are conceivable, even though there might be problems when these
“sides” have to be detected automatically.

Such a segment with warped six “sides” gives a topological cuboid. By applying a
voltage at two of the opposing “sides”, the electric field distribution can be evaluated.
By connecting a voltage to each of the remaining opposite side pairs and also by
calculating the potential distribution we get three potential distributions.

With this methodology, the topological cuboids of the grid can be calculated. Doing
so, the distances between the selected potential ticks can be tuned arbitrarily and
the aspect ratios of the resulting cuboids can be varied independently.
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Figure 5.12: Domain for the electric field calculation.

To achieve a valid Delaunay grid, the grid points produced by this method are
inserted in the global point set of the geometry and are meshed by the grid generator.
The demands on Delaunay grids are nearly fulfilled by the orthogonality of these
cuboids. As a result of the given boundary points, a distortion of these cuboids may
be caused.

5.3.5 Proof of the Two-Dimensional Duality

First we start with the stationary field equations. With constant permittivity ε the
equations reduce to

div E = 0 (5.18)

curlE = 0 (5.19)

which must be satisfied in the capacitor domain B, shown in Figure 5.12. The
contacts of the capacitor are the boundaries

C2i, i = 1(1)n, (5.20)
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which alternate with the Neumann boundaries

C2i−1, i = 1(1)n. (5.21)

The tangent and normal vectors t and n are defined as

n = t × ez (5.22)

and

t = ez × n. (5.23)

Solution with a Scalar Potential ϕϕϕ

The first way for solving the partial differential equation system (5.18) and (5.19)
is performed by a gradient field

E = − gradϕ, (5.24)

which satisfies (5.19) implicitly and delivers the differential equation

div gradϕ = Δϕ = 0 in B (5.25)

with the boundary conditions

Dirichlet: ϕ = Φ2i = const on C2i, i =1(1)n (5.26)

hom. Neumann: ∂nϕ = 0 on C2i−1, i =1(1)n (5.27)

The boundary problem (5.25), (5.26) and (5.27) has a well-defined solution. Addi-
tionally the following integrals will be defined:

Λ2i =

C2i

En ds = −
C2i

∂nϕ ds, i = 1(1)n (5.28)

and the trivial portions on the homogenous Neumann boundaries

Λ2i−1 =

C2i−1

En ds = −
C2i−1

∂nϕ ds = 0, i = 1(1)n. (5.29)

Integration of (5.25) over the whole region B and applying Gauss’ integral theorem
delivers

0 =

B

Δϕ dA =

B

div grad ϕ dA =

∂B

gradϕ · n ds =

∂B

∂nϕ ds = −
n

i=1

Λ2i

(5.30)
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Solution with an (Electric) Vector Potential Ae

Different to the previous way, the basic approach is a vector potential

E = curlAe, Ae = ψ(x, y) ez (5.31)

which satisfies (5.18). Because of the two-dimensionality of the problem, the vector
potential shows only a z-component. Transformation delivers

E = curl(ψ ez) = ∇× (ψ ez) = −ez ×∇ψ

= gradψ × ez = ∂yψ ex − ∂xψ ey (5.32)

t · E = t · (grad ψ × ez) = grad ψ · (ez × t) = − gradψ · n = −∂nψ (5.33)

n · E = n · (gradψ × ez) = gradψ · (ez × n) = grad ψ · t = ∂tψ (5.34)

curlE = ∇× (gradψ × ez) = (ez∇) gradψ − ez(∇ gradψ)

= ∂z gradψ

0

−ez(∇∇ψ) = −ezΔψ = 0 (5.35)

=⇒ Δψ = 0 in B. (5.36)

The boundary conditions (5.26) and (5.27) result to

C2i : ϕ = const =⇒ Et = 0 =⇒ t ·E = 0

(5.33)
=⇒ ∂nψ = 0 on C2i, i = 1(1)n (5.37)

=⇒ homogenous Neumann conditions

C2i−1 : ∂nϕ = 0 =⇒ En = 0 =⇒ n · E = 0

(5.34)
=⇒ ψ = Ψ2i−1 = const on C2i−1, i = 1(1)n (5.38)

=⇒ Dirichlet conditions

The previously defined integral is carried out as

C

En ds =

C

E · n ds
(5.34)
===

C

∂tψ ds =

E

A

dψ = ψ|E − ψ|A (5.39)

(5.40)

and further on by defining the arbitrary points

Q2i−1(s2i−1) ∈ C2i−1 (5.41)
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follows

Q2n−1

Q2n−3

En ds =

s2i−1

s2i−3

En ds = ψ(s2i−1) − ψ(s2i−3) = −
s2i−1

s2i−3

∂nϕ ds = Λ2i. (5.42)

or

Ψ2i−1 =
i−1

j=1

Λ2j + Ψ1, i = 1(1)n (5.43)

where the value of Ψ1 can be chosen arbitrarily.

Summary of Both Solutions

I: Δϕ = 0 in B

ϕ = Ψ2i = const on ∂B2i, i = 1(1)n (5.44)

∂nϕ = 0 on ∂B2i−1, i = 1(1)n

and

II: Δψ = 0 in B

∂nψ = 0 on ∂B2i, i = 1(1)n (5.45)

ψ = Ψ2i−1 = const on ∂B2i−1, i = 1(1)n

which describe the same fields, if Ψ2i−1 satisfy (5.28) and (5.43).

Field Lines of E

The field lines of E are defined by the differential equation

dy

dx
=

Ey

Ex
. (5.46)

By insertion of (5.32) it follows

0 = dy Ex − dx Ey = dy ∂yψ + dx ∂xψ = dψ =⇒ ψ = const (5.47)
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which are the equipotential lines of ψ. Additionally, as the field lines of E are
orthogonal to the equipotential lines of ϕ, it follows that the set of equipotential
lines ϕ = const and ψ = const are orthogonal.

This derivation has shown that the duality of the field lines and equipotential lines
within the given set of differential equations can be obtained by a replacement of
Dirichlet (homogenous Neumann) by homogenous Neumann (Dirichlet) boundary
conditions. The values of Ψ2n−1 have to be evaluated by (5.28) and (5.43).

In this generalization of the capacitor problem, even more than two electrodes in
the original constellation could be handled. In this case, if the original field problem
has n boundaries with imposed voltage, it requires also n Neumann boundaries
(electrodes for the dual system) which alternate with the Dirichlet boundaries along
the whole surface.

As neither a bias of Ψ1 nor an arbitrary constant scaling factor of ψ change the
shape of the field lines (equipotential lines of ψ), in case of exactly two contacts, the
actual values of the two dual boundary voltages can be set to two different arbitrary
values, most notably to values suitable for the computation.

5.3.6 The Three-Dimensional Capacitor Model

Unfortunately such a duality is not guaranteed in three dimensions. The theoreti-
cal expansion of the two-dimensional capacitor model delivers a three-dimensional
capacitor with six sides where two of them act as electrodes. To determine the field
lines, three potentials have to be calculated: one with the original electrode setting,
one with two other opposite electrodes and the third one with the remaining two
opposite electrodes.

One might expect that the expanded two-dimensional duality formulation can be
expressed as follows:

The three fields build an orthogonal system. The field lines of each elec-
tric field lie within the equipotential surfaces of each of the remaining
potentials and the conclusion is that the intersections of two equipoten-
tial surfaces deliver the field lines of the third potential.

Nevertheless, this might not hold under certain circumstances. In three dimensions,
the duality formulation is not guaranteed, because the three potentials, which can be
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Figure 5.13: Spherical capacitor with electrodes placed at the top and bottom
(hidden) cups. The electrodes for the second potential calculation
are placed at the remaining cups at the left and right side. The
electrodes for the third potential calculation are the remaining areas
of the surface.

considered as a curvilinear coordinate system, usually do not represent an orthogonal
system. Particularly, it is not even guaranteed that the field lines on the surface
of the simulation domain are the equipotential lines of one of the other potentials.
Additionally, the different electric fields are not perpendicular [70].

The orthogonality of the equipotential surfaces only exists, if the coordinate lines on
the surface follow lines of curvature. This happens, when the coordinate lines follow
surface lines of maximum or minimum curvature. However, this is only fulfilled for
simple geometries and usually not satisfied [70].

The following example should clarify the situation. Consider a spherical device
region as shown in Figure 5.13. The coordinates of the device are given in spherical
coordinates by 

x
y
z


 = r


cos α cos β

sin α cos β
sin β


 . (5.48)

Constant radius r = r0 = const delivers the surface of this domain. The meridians of
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the sphere are formed by α = const and β = const and represent circles of constant
height. The upper and lower contacts of the domain of the capacitor are cups of
the sphere and will be limited by the circles at β = β0 and β = β1. The extracted
potential is ϕ. With this contact setting the solution is rotationally symmetric and it
follows that the equipotential lines at the surface of the sphere are circles of constant
height β = βi = const and the field lines at the surface are meridians between β0

and β1 with α = αi = const.

Inside the device, the equipotential surfaces are perpendicular to the surface of
the sphere and the field lines are also perpendicular to the former. Fortunately,
a complete analytical solution of the potential distribution is not necessary. The
major prediction is that the field lines at the surface of the sphere C are represented
by meridians

C = C(β)
r=r0

α=αi

= r0


cos αi cos β

sin αi cos β
sin β


 (5.49)

and the equipotential lines P at the surface

P = P(α) r=r0

β=βi

= r0


cos α cos βi

sin α cos βi

sin βi


 (5.50)

are lines of constant height. At an intersection point, the tangential vectors of these
curves are perpendicular which can be expressed by a vanishing inner product

dC
dβ r=r0

α=αi
β=βi

· dP
dα r=r0

α=αi
β=βi

= r0


− cos αi sin βi

− sin αi sin βi

cos βi


 · r0


− sin αi cos βi

cos αi cos βi

0


 ≡ 0. (5.51)

So far, there was no specification of the other four electrodes. However, any possible
specification of them does not change the layout of the original field lines. The
second potential ψ is defined by the left and right electrodes as the cup of the
remaining part of the sphere at y < y0 and y > y1. The front and back contacts
are the remaining parts of the surface and deliver the potential ϑ. The borderline
of the left contact and the front contact is a line of constant y-coordinate

Q = Q(β) r=r0

y=y0

=


± r2

0 cos2 β − y2
0

y0

r0 sin β


 =


 f(β)

y0

r0 sin β


 (5.52)
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which is an equipotential line of ψ as well as an equipotential line of ϑ and should be
expected to be a field line of ϕ. However, it can be seen that the curves C(r0, αi, β)
and Q(r0, y0, β) are not identical. The derivative

dQ
dβ

(r0, y0, β) =


 f ′(β)

0
r0 cos β


 (5.53)

has no y-component and the inner product at an intersection point (remember
y0 = r0 sin αi cos βi) usually does not give zero.

dQ
dβ r=r0

y=y0

β=βi

· dP
dα r=r0

α=αi
β=βi

=


 f ′(βi)

0
r0 cos βi


 · r0


− sin αi cos βi

cos αi cos βi

0




= − r2
0 cos βi sin βi

r2
0 cos2 βi − y2

0

· r0 sin αi cos βi

= −r3
0 cos βi sin βi sin αi cos βi

r0 cos βi cos αi

= −1

2
r2
0 tanαi sin 2βi = 0

(5.54)

Therefore, these lines are not orthogonal and cannot be field lines of ϕ. In Fig-
ure 5.14(a) the equipotential lines and field lines of the original electrode placement
are shown. Figure 5.14(b) shows the original equipotential lines and the equipo-
tential lines of the switched electrode placement. These equipotential lines do not
represent the field lines. However, the resulting quadrangles at the surface appear
to be nearly orthogonal. Therefore, for three dimensions the field lines of ϕ cannot
be formed by the intersections of the equipotential surfaces ψ and ϑ. Moreover, the
equipotential surfaces of ϕ, ψ, and ϑ are not orthogonal any longer.

Nevertheless, usually even these surfaces will be nearly orthogonal, within the ge-
ometries considered and due to the smoothness of the resulting potential lines arising
from the Laplace equation. Therefore, nearly cuboidal elements and smooth grids
will be produced by the equipotential surfaces. The equipotential surfaces conform
to the boundaries. As a result all points inside the simulation area will be reached by
the equipotential surfaces of ϕ = const, ψ = const and ϑ = const — a geometrical
point (x, y, z) inside the simulation domain can be described by a triple (ϕ, ψ, ϑ).
Only in rare cases, an ambiguous mapping, a folding of the curvilinear coordinate
lines, may arise [36][70].
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(a) Field lines and equipotential lines defined by the orig-
inal electrode setting

(b) Equipotential lines defined by the replaced electrodes.
Additionally the equipotential lines of the original elec-
trode placement are drawn.

Figure 5.14: Potential and field lines of the spherical capacitor.
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5.3.7 Evaluation of the Electric Potential of the Capacitor

By selecting several potential value ticks of the three different potentials and cal-
culating the intersection points of the equipotential surfaces, the point set for the
grid generation is derived. With the selection of the tick values of the potentials,
the grid density can be controlled in various ways.

To simplify the expressions, the boundary values of the potentials are set to 0 and 1.
Each geometrical point (x, y, z) inside the capacitor has a potential representation
(ϕ, ψ, ϑ) within the potential range ([0, 1]× [0, 1]× [0, 1]). As the discrete maximum
principle is satisfied, it seems plausible that the potential values raise monotonously
along the field lines, going from one electrode to the opposite one. Therefore, except
for folding it is a one-one mapping of geometrical points to potential coordinates.
In this way, a selected potential triple (ϕ, ψ, ϑ) delivers a distinct geometrical point
(x, y, z) inside the capacitor.

In a first step it is necessary to find an initial Delaunay tetrahedrization of the
capacitor domain. This grid generation step does not need a special grid refinement.
All material properties are linear, in particular a constant permittivity is used, and
the Laplace equation as an elliptic partial differential equation is numerically well
behaved. In addition, as a big advantage different from generating a grid for the
whole device, only one capacitor segment has to be meshed. This grid can be
produced regardless of other segments. This means that no additional grid points
are induced by geometry and grid constrains of neighboring segments. A relatively
crude grid can be used. Only for preserving the quality of the resulting cuboids, it
is useful to introduce a refinement criterion based on the directions of the electric
fields.

The solutions of the field equations is usually obtained by the Box Integration
method (refer Section 3.1). The differential equation systems for solving the three
potential distributions can be seen in Figure 5.1. The resulting equation system is
of the form

A · ϕ = b. (5.55)

with

ϕ = (ϕi) (5.56)

the unknown potential values on the grid points pi.
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The elements of the system matrix A = (aij) and the right-hand side b = (bi) are
set to

aij = −εij
Aij

dij

(5.57)

aii =
∀ i=j

aij (5.58)

bi = 0 (5.59)

∀ i, j : ∃ pipj and pi lying inside ∂V or on ∂V3, ∂V4, ∂V5 or on ∂V6,

aii = 1 (5.60)

bi = Φ1 (5.61)

∀ i, j : ∃ pipj and pi lying on ∂V1,

aii = 1 (5.62)

bi = Φ2 (5.63)

∀ i, j : ∃ pipj and pi lying on ∂V2 and

aij = 0 (5.64)

for all other i, j.

These equations are used for calculating for the potential values ϕi on the grid points
pi. For the potentials ψ and ϑ an similar equation system is set up. Basically, all
three potential evaluations use the same system matrix A, except the lines and rows
resulting from the boundary points where the adequate boundary conditions have to
be inserted. For the evaluation of the potential values, a Conjugate Gradient Solver
is advisable [71].

Why Choosing a Conjugate Gradient Solver

The matrix A, for the equation system A · ϕ = b, is a sparse n × n matrix.
Applying a Gaussian Solver destroys the sparse system, because by eliminating
the entries under the diagonal a lot of entries above the diagonal become non-
zero. Therefore, the memory usage for storing the system matrix elements increases
to O (n2). Additionally the elimination of a fully occupied row requires O (n2)
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arithmetic operations and eliminating all rows is of O (n3). Therefore the use of a
solver, which preserves the sparsity of the system and does not show a complexity
of O (n3) is a better choice. With simple modifications, the system matrix A can
be made suitable for a Conjugate Gradient solver. Since a CG-solver requires a
symmetrical system matrix, the original matrix must be transformed to become
symmetric. The symmetry of the system matrix is violated in rows and columns
where the values of ϕi are imposed. One possible method is to pre-eliminate these
rows and columns and move the adequate entries to the right-hand side. This
method requires a row number to point number remapping and each potential system
delivers a completely different system matrix.

Another way is to eliminate asymmetrical matrix entries aji on the left-hand side
by

a′
jk = ajk − aik

aji

aii
∀ k, (5.65)

b′j = bj − bi
aji

aii
, (5.66)

∀ i, j with i < j, aji = aij and pi on ∂V1 or on ∂V2.

As all off-diagonal elements aik with i = k of the concerned rows are zero, the
transformation does not change any other entries than aji and simplifies to

a′
ji = aji − aii

aji

aii
, (5.67)

b′j = bj − bi
aji

aii
, (5.68)

∀ i, j with i < j and pi on ∂V1 or on ∂V2.

For an efficient memory representation of the equations, it is necessary to use a
sparse matrix representation. The chosen method is only practicable, if the matrix
values are left unchanged during the whole solving process and direct access to the
row entries can be omitted. This representation can be assembled easily by itera-
tion over all points and insertion of the couplings of the edges that are connected
with the iteration point. The storage representation of a matrix works with four
arrays diag[], offdiag[], colidx[], startcolidx[], where the entries are de-
fined as [49]:
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Algorithm 5.3.1 Sparse representation of A = (aij)

aii = diag[i]

startcolidx[i] <= k <= startcolidx[i+1]

j = colidx[k]

aij = offdiag[k]

With this method, matrix-vector products can be performed directly on this data
structure. Direct access to the row indices can be omitted by using the following
algorithm:

Algorithm 5.3.2 Matrix-vector product A · x = c

for j in all point indices

c[j]=diag[j] · x[j]

for k=startcolidx[j] to startcolidx[j+1]-1

c[j]=c[j] + offdiag[k] · x[colidx[k]]

No special sorting of the column indices is necessary. Matrix-matrix products, how-
ever, require direct access to the row entries within the above matrix representation
and thus a search algorithm within the row indices becomes necessary. This kind
of products has to be avoided. Therefore, a simple CG-algorithm without pivoting
and without preconditioning is used. The algorithm looks as follows:

Algorithm 5.3.3 CG-Method to solve A · x = b

1. set

r0 = b− A · x0, d0 = r0

2. k = 0, 1, ... until r is sufficiently set

λk =
rT

k · rk

dT
k · A · dk

,

xk+1 = xk + λkdk,

rk+1 = rk − λkA · dk,

βk =
rT

k+1 · rk+1

rT
k · rk

,

dk+1 = rk+1 + βkdk.
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In this case, only vector-vector products (O (n)) and matrix-vector products are
needed. If only the non-zero entries of the matrix A are stored, the memory usage
is of the same order as the number of existing edges m. The number of arithmetic
operations for a matrix-vector product is of O (m), too. With the use of exact
arithmetic, the equation solver delivers the solution at least after n recursion steps.
With non-exact arithmetic a border for the residuum r must be given and usually
this border is reached with less than n steps [20][63][71].

While the mean value of edges in a tetrahedral mesh is of the same order than the
number of grid points (usually multiplied with a typical factor, but surely not of
quadratic or higher order), the matrix-vector product is also of O (n). Therefore
the memory usage is of O (n) and the amount of arithmetic operations for solving
the equation system is of order O (n2), which is a huge improvement compared to a
Gaussian solver.

5.4 Alternative Approaches for the

Potential Method

When applying the potential method, not all of the device segments can be used
as such capacitors. Because of the strong nonlinearities of the coupled differential
equations (refer Section 5.1), the grid resolution on the semiconductor segment must
be high. While this method works well on the semiconductor segment of a device, on
other segments it may be impossible to define the six sides of the cuboid. Sometimes
an automatic search for the sides will not be possible and, due to the complexity of
user interaction on three-dimensional data, this way would not seem feasible anyway.

An alternative variant of this method can be derived by only selecting two oppo-
site electrodes of the capacitor. These electrodes can be selected in a more general
way, for example by selecting interface boundaries between different segments. The
equipotential surfaces are evaluated similarly, but different to the previously de-
scribed method, the surface of these electrodes is triangulated and the intersections
of equipotential surfaces and field lines starting from the boundary points are deliv-
ered to the grid generator. The field lines have to be evaluated directly, not indirectly
via the dual electric fields, but by walking along the directions of the electric field.

xnew

ynew

znew


 =


xold

yold

zold


 + δ · E(xold, yold, zold). (5.69)

The stepping factor δ must be chosen to take on appropriate small value. As the
discrete electric field is constant inside each tetrahedron, best results are obtained
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if the stepping takes place from one tetrahedron to the next one. This procedure
is continued until the next desired potential tick is reached and the resulting point
is delivered to the grid generator. Because of the orthogonality and the previously
performed triangulation of the electrodes, the resulting grid elements are nearly
straight trilateral prisms. They are tetrahedrized and can be split easily into three
tetrahedrons. A disadvantage of this method is, that due to numerical errors while
walking along the field lines, the resulting prisms may be twisted and may cause
problems during grid generation.

Unfortunately these methods have a fundamental disadvantage. If a grid point
is inserted at the electrode surface (maybe a geometry point), it will cause many
grid points at the intersections with the equipotential planes. Moreover, inserting
an additional potential tick causes a lot of grid points along the field lines. For
preventing this induced point insertion, the use of point deletion algorithms similar
to a terminating lines algorithm for ortho grids is necessary.

The previously described methods disperse grid points by a selected method and
the grid generation is done by a Delaunay grid generator. The satisfaction of the
Delaunay criterion is necessary for the following device simulation that is based on
Finite Boxes. Other methods of directly splitting edges of an initial grid are also
feasible. To prevent obtuse angles in the tetrahedrons, usually the longest edges
of the tetrahedrons are split. Especially with a combination with the potential
method, the lengths of the edges can be weighted directionally dependent on size
and direction of the electric field. Using this method also an anisotropic grid can
be obtained. However, as the grid lines are split directly to obtain the desired grid
density and no afterwards Delaunay tetrahedrization is performed, the satisfaction of
the Delaunay criterion cannot be guaranteed by this method and it cannot be used
for Box Integration. Applications for oxidation simulation using Finite Elements
had still been performed by this method [73].

5.5 Example for the Potential Method and the

Electrode Placement

The structure given in Figure 5.15 should be meshed by the original potential
method. On the basis of this structure an electrode placement, different than se-
lecting the physical top plane as the upper electrode is shown. As an interactive
description of placing the electrodes is quite complicated, this artificial geometry
with some simple and flat surfaces is selected.

The top electrode will not surround the whole top of the structure; it is rather
placed along the hole in the middle of the structure. The whole bottom side of the
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Figure 5.15: Three-dimensional structure with the placed electrodes.

structure is selected as its opposite electrode. In sum, all six electrodes must cover
the entire surface. The chosen electrode placement can be seen in Figure 5.15 where
opposite electrodes are shown in the same color.

A relatively crude grid with low demands on the quality is generated by the Delaunay
grid generator DeLink [12] for evaluating the potential distributions. This initial grid
has about 4000 grid points. The resulting potential distribution, derived by this grid
is presented in Figure 5.16.

After calculating the three different potential distributions, the grid points are placed
along the equipotential surfaces. A potential distribution with the resulting equipo-
tential surfaces of all three potentials is shown in Figure 5.17.

Along the upper electrode surface, the distances of the potential values will be
equidistant. The selected potential ticks start with a dense spacing at the upper
electrode and grow monotonically to the lower electrode. The final grid can be seen
in Figure 5.18. To illustrate the anisotropy of the generated grid, a quarter of the
structure is cut away. Under the top surface, the dense grid spacing can be seen,
while in lateral direction the density is lower.
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Figure 5.16: Three-dimensional structure with a potential distribution and shown
base grid, on which the potential evaluation is performed.

Figure 5.17: Final grid, developed by the potential method with shown potential
distribution, contacts at left and right.
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Figure 5.18: Final grid, a quarter of the device is cut away for illustration purposes.



Chapter 6

Applications of the Potential
Based Method

IN THIS CHAPTER two applications of the potential based grid generation
method are shown. The first example describes a FinFET structure which

achieved attention in the last time. The examination of an EEPROM memory
cell, which was of major interest in a device fabrication, is described in the second
example.

6.1 Device Simulation of a FinFET

The basic structure of a FinFET published in [9] is shown in Figure 6.1. The silicon
layer is formed as silicon on insulator (SOI). The fin is formed as a small silicon
finger. For a better carrier absorption the source and drain regions are realized as
large silicon pads. The active device area is the small fin region under the polysilicon
gate. To obtain higher drive currents, additional fins can be applied in parallel. As
the polysilicon is separated from the silicon by a thin oxide layer, the current density
inside the silicon fin can be controlled by the gate voltage.

Depending on the device design we can distinguish between different kinds of Fin-
FETs. Every side of the fin surrounded by the gate can be used as a control contact.
If the surrounding oxide is thin, the charge carriers are controlled by the gate volt-
age. Using a thick oxide, the gate voltage does not influence the carriers. Generally
there are two possibilities:

103
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Contact

Nitride

Oxide

Poly−silicon

Silicon

Figure 6.1: Geometry of the simulated FinFET structure.

• In double gate FinFET only two sides of the fin are enclosed by a thin oxide.
The upper face has a thick oxide. Here the carriers on both sides of the fin
can be controlled. This device is usually simulated by a two-dimensional sim-
ulation. However, effects at the corners of the fin can there not be accounted
for. Actually at these regions the electric field is much higher and a higher
current density will be obtained. These effects can only taken into account by
three-dimensional simulations.

• In triple gate FinFET all three sides of the fin are enclosed by a thin oxide.
Therefore, the carriers on all three sides can be controlled. In this case, the
upper plane cannot be described by two-dimensional geometries and the device
simulation has to be performed three-dimensional.
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In Figure 6.2 an ortho grid is used for the simulation. Therefore, every grid line
continues through the whole device. The active area is only the small part of the
fin surrounded by the polysilicon. There the grid density must be high. As a
negative sideffect, the high grid line density propagates through all other segments.
A unnecessarily high grid line density is produced in these other segments and the
global amount of grid points is too high. Especially in the insulator segments, the
grid density could be much cruder. Fragments of this grid line propagation can be
seen as dense clustered grid lines on the surface of the oxide layer, which are caused
by the dense grid lines in the fin.

The grid resulting from the potential method is shown in Figure 6.3. The grid
density can be controlled for each segment and the amount of grid points is much
smaller. A detail of the structure is shown in the next figures. Here only the silicon
layer is drawn. Figure 6.4 shows the ortho grid, Figure 6.5 the potential based grid.
The silicon segment can be split into three different regions:

• The active area in the middle of the fin. The grid density must be high in
all three directions of space. The carrier concentration and current density
distribution must be properly resolved in all three directions.

• The outer fin areas, which are attached on the left and right sides of the active
area. The current density does not change much along the fin. The grid
density along the fin can be cruder. No radial imposed electric field is present
and the differences in the current density settle down, therefore, across the fin
the current must be pretty good resolved.

• In the source and drain region the current lines spread out. Miscellaneous
current density differences are settled and a crude grid can be chosen. The
current lines inside the fin spread out in the regions of the contacts. In terms
of the current flow, the grid lines are a good approximation of the current flow.

The different approaches are compared in Table 6.1. They were performed by the
device simulator MINIMOS-NT [11] on an IBM p-Series machine with 1400 MHz
Power 4+ processors. A third simulation was performed on a potential based grid,
which is refined in the the active areas of the fin. The according output charac-
teristics of the potential based simulations are shown in Figure 6.6. No significant
change of the characteristic is determined by the different grids. The high ratio of
grid elements to grid points of the potential method based grids compared to the
ortho grid is caused by the different type of grid elements. Contour lines of the
current density in the active fin area are shown in Figure 6.1.
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Figure 6.2: The oxide and silicon layers of the FinFET structure. The simulation
grid is an ortho grid. The grid elements are split to tetrahedrons only
for visualization purposes.

Figure 6.3: The oxide and silicon layers of the FinFET. The simulation grid is
generated by the potential method. In the source and drain regions
the approximation of the grid lines to the current lines can be seen.
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Figure 6.4: Generated ortho grid in the active regions of the transistor. Only the
oxide, silicon and polysilicon segments are shown.

Figure 6.5: Potential based tetrahedral grid in the active regions of the transistor.
Only the oxide, silicon and polysilicon segments are shown.
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Grid type Points Elements Elem. type Rank Sim. time
Ortho grid 48,480 42,840 Cuboids 83,998 124m30s
Potential method 1 11,186 32,666 Tetrahedrons 16,238 38m39s
Potential method 2 42,404 128,819 Tetrahedrons 65,132 390m10s

Table 6.1: Comparison of the different grids. Rank describes the rank of the system
matrix of the equation system assembled by MINIMOS-NT, which was
used for the electrical simulation.
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Figure 6.6: Simulated output characteristic of the FinFET. The drain current ID

is standardized by the gate length LG.

Figure 6.7: Contour lines of the electron current density in the chanel area of the
fin at VGS = VDS = 1.5 V.
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6.2 Development of an EEPROM Memory-Cell

In the next example, the interaction of the different tools for the development of an
EEPROM memory cell will be demonstrated.

The goal was to extract characteristic values of an EEPROM memory cell. For tim-
ing analysis, the capacitances between the semiconductor segment and the control-
and floating-gate are crucial. To allow the extraction of these capacitances the
three-dimensional extraction of the electric field is necessary. As it is impossible to
describe such a complex device structure manually, the device structure had to be
generated by a fully three-dimensional simulation of all the manufacturing processes
of the device. The cross section of the memory cell and its typical layer thicknesses
are shown in Figure 6.8.

6.2.1 Process Simulation of the Memory-Cell

While initial process steps like the oxidation of the silicon wafer for generating the
field-oxide can be performed by a two-dimensional analysis, the following process
steps have to be performed fully three-dimensional:

• The process simulation starts with the two-dimensional DIOS [65] simulation
of the generation of the field-oxide on the silicon wafer.

• The two dimensional description is expanded to three dimensions.

Oxide

Tunnel

Floating

Gate

n−Well

Control Gate ONO

Tunnel Oxide 8.5 nm
ONO 24 nm
Floating Gate 200 nm
Control Gate 250 nm

Figure 6.8: The cross section and typical layer thicknesses of the memory cell.
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Nitride

Oxide

Poly−silicon

Silicon

Figure 6.9: Expanded two-dimensional structure — 8,800 points, 51,000 tetrahe-
drons.

• Since the expansion tool delivers only a three-dimensional surface represen-
tation of the device and the tools for further process simulation require a
three-dimensional grid representation, a Delaunay mesh-generation of the sur-
face structure is required (Figure 6.9). As the potential method delivers fairly
smooth grids, the silicon segment is meshed by this method. The use of a
dense grid can be avoided, because no detailed electrical device simulation is
necessary. A calculation of the capacitances can be performed on an even
cruder grid.

• Addition of the floating-gate-mask, deposition of the floating-gate, and removal
of the gate-mask.

• The deposition of the ONO-layers, as a sequence of three deposition simulation
steps, namely for an Oxide, a Nitride, and again an Oxide layer. Figure 6.10
shows the first added oxide layer, Figure 6.11 the complete ONO layers.

• The addition of the control-gate-mask, deposition of the control-gate, and
removal of the gate-mask. The resulting device structure can be seen in Fig-
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Oxide

Poly−silicon

Silicon

Figure 6.10: Floating-gate and first oxide layer — 18,300 points, 69,000 tetrahe-
drons.

ure 6.12.

• For the final electric field calculation it is necessary to account for the electric
field in the surrounding material. This is done by a layer of an insulating
material with relative permittivity εr = 1 enveloping the device.

6.2.2 Electrical Analysis of the Device

The final electrical simulation and capacitance extraction is performed with the
simulator STAP, part of the Smart Analysis Programs [55][56]. This is a three-
dimensional interconnect simulator, which computes the field distribution inside the
simulation area using Finite Elements. The capacitances are calculated via the
energy of the electric field [54]. The result of the field calculation can be seen in
Figure 6.13. An explanation for the large number of grid points and tetrahedrons is
a global grid refinement of the program STAP, where each tetrahedron is split into
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Poly−silicon

Silicon

Figure 6.11: ONO layers added — 70,300 points, 341,000 tetrahedrons.

8 smaller ones. The floating-gate and the control-gate segments are connected to
constant potential, 0 V and 1 V, respectively. The influence of the silicon segment
is taken into account as a ground plane (connected to 0 V). Within this figure,
the contact regions, which are the floating-gate, the control-gate, and the silicon
segment, have been removed. Results of the capacitance extraction are shown in
Table 6.2.

It is remarkable that the basically simple silicon/oxide-structure, starting with
51,000 tetrahedrons, increases to 400,000 tetrahedrons and the memory limits
during process simulation are reached. However, the field extraction is performed
by 3,400,000 tetrahedrons and the memory consumption is not of this magnitude.
The enormous process simulation overhead in memory consumption is caused by
the required functionality of the process simulation tools. In detail, for deposition
and etching at least two grids, the original and the modified grid, are stored during
each simulation step. Additional functionality, such as neighborhood information,
surface information, an octree for point location and additional attributes have to
be stored in the data structures. For performing the interconnect simulation, only



6.2. Development of an EEPROM Memory-Cell 113

Nitride

Oxide

Poly−silicon

Silicon

Figure 6.12: Final structure of the EEPROM cell — 76,700 points, 402,000 tetra-
hedrons.

Figure 6.13: Distribution of the electric potential, 0 V at the floating-gate, 1 V at
the control-gate — 640,000 points, 3,400,000 tetrahedrons.
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CSi−Cg Capacity silicon – control-gate 0.82 × 10−16 F
CSi−Fg Capacity silicon – floating-gate 1.1 × 10−16 F
CCg−Fg Capacity control-gate – floating-gate 2.3 × 10−16 F

Table 6.2: Results of the capacitance simulation.

the final grid and potential attributes are necessary. For future simulations of more
complex three-dimensional structures further work on data reduction and surface
smoothing will be necessary.



Chapter 7

Conclusion and Outlook

This work focused on some issues for accurate numerical simulations of electronic de-
vices with the main attention on three-dimensional concepts. Due to the rapidly in-
creasing miniaturization and complexity of the devices, the use of three-dimensional
simulations is often inevitable. Starting with the diffusion simulation of dopants,
three-dimensional effects, which are often parasitic, cannot be neglected any longer.
With the developed tool for diffusion simulation the fast computation of simplified
diffusion processes was enabled. On the basis of those, statements about device char-
acteristics can be chosen. Additionally, the three-dimensional diffusion simulation is
a fundamental basis for three-dimensional electrical simulations of semiconductors.
The second part of this work deals with the simulation meshes which are required
for device simulation. The developed method allows to tune the grid density in wide
ranges. Due to the almost orthogonal potential distributions, which are the basis for
the placement of the grid points, the density of the grids can be independently con-
trolled in three directions of space. Since the equipotential surfaces are conforming
to the geometry surfaces, next to the surfaces of the geometry, grid elements with
certain preferred directions can be obtained. And as a result of nearly cuboidal grid
elements, the Delaunay criterion is almost fulfilled and the following tetrahedrization
does not cause difficulties. With this method, the automatic generation of specially
suited grids for three-dimensional semiconductor device simulation was enabled.

There still remain unresolved issues in the field of fully automatic grid generation.
Especially for three-dimensional grid generation a wide range of questions is left
open and needs a lot of further work. Usually a general approach of meshing cannot
be given and the development of the grid generators follows different ways.

Several anisotropic grid generation methods are under development, with the main
goal to deliver grids with as few as possible grid points, but not neglecting the
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necessity of an accurate solution on the based model. That means that different
kinds of grids are necessary for process simulation, diffusion simulation, and device
simulation.

In summary, further development steps are:

• Surface coarsement algorithms: Often between two kinds of simulation, the
surface representation must be adapted to the new demands, for example
between a topological and a diffusion simulation. As the physically based
addition and deletion of material influences the surface directly and the grid
in the inner of the regions is of minor interest, the demands for a diffusion
or electrical simulation shift to the interior grid. The surface grid should be
coarsened as much as possible, but structural edges must be detected and
preserved automatically.

• Implementation of grid refinement strategies: The grids should be adapted to
the different discretization methods and different simulation models. Espe-
cially edge splitting algorithms which produce anisotropic grid densities must
be implemented.

• Development of coarsement algorithms of the volume mesh: On the one hand
in combination with refinement strategies, the generation of adaptive meshes
for transient simulations must be improved. On the other hand, the matrix
sizes can be reduced by coarsening the grid in regions of minor interest.

• Finally the handling of thin material layers must be improved. Such thin
segment structures are found frequently within electronic semiconductor device
structures, for example the field oxide layer under the polysilicon segment of
the gate contact of MOS transistors. For the generation of a Delaunay grid,
point insertion on the surface is often necessary. With standard point insertion
algorithms a lot of additional grid points are generated on the surface of thin
layers. To prevent this effect, a projection of grid points from one to the other
thin layer surface gives better results.

For further extensions of the potential method described in this work, investiga-
tions on point reduction algorithms are required. As described before, an additional
equipotential surface causes additional grid points at all intersections with the other
existing potential ticks. Therefore an algorithm, which works similarly to a termi-
nating lines algorithm based on otho-grids is inevitable. These intersectional points
in regions of small interest must be prevented. Additionally, grid points at the
surface, which arise from structural edges or are eventually inserted by the grid gen-
erator to satisfy the Delaunay criterion, affect the grid quality near the boundaries.
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To prevent this usually adverse influence on the grid quality, a continuation of these
surface points as potential ticks inside the segment region keeps the orthogonality
of the grid lines. In addition to this continuation, the number of grid points inside
the structures caused by these potential ticks must be limited by terminating lines
algorithms which maintain the Delaunay criterion.
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