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Coal fires, either man-made or resulting from spontaneous combustion, not only cause 

losses of natural resources, but also cause severe environmental problems. In China, 

coal fires are spread out over the whole northern part of the country. Therefore it is 

extremely difficult to keep an overview of the development of known fres as well as 

of newly developing ones. The study undertaken in this thesis focuses on the 

development of a practical approach for the extraction of coal fire related thermal 

anomalies at the land surface over large areas using remote sensing data sets. 

An overview of the theory and case studies on detecting coal fires using remote 

sensing techniques is given in a literature review. The surface features and by-products 

of coal fres include pyro-metamorphic rocks, fumarolic minerals, burnt pits and 

trenches, subsidence and cracks, as well as surface thermal anomalies. These features 

can be detected from visible, near infrared, short-wave infrared, radar and thermal 

infrared remote sensing imageries. The ability to detect these features is limited by the 

spectral, spatial and temporal resolution of the remote sensing data. 

Thermal characteristics of coal fires and their thermal anomalies were analyzed 

through simulated coal fires, field measurements in the study areas, and thermal 

anomalies on the images. Two simulated coal fires were studied during a field 

experiment at DLR, Oberpfaffenhofen, Germany. The results indicated that the inner 

temperature of such a coal fire is above 1000°C. The surface radiant temperatures of a 

coal fire range from 300 to 900°C. All background materials, such as sand and grasses, 

have relatively high radiant temperatures during daytime and compraratively low 

temperatures during night-time, which makes the contrast between the coal fire and the 

background higher during night-time. 

From field measurements, it is known that surface temperature can vary up to 28°C 

within a small sand dune. In a coal waist pile, temperature for a slope facing to the 

Southeast can be 20°C higher than that for a slope facing to the North between 10:OO 

to 14:OO. The temperature variance caused by uneven solar heating can overprint 

thermal anomalies related to coal fires. Underground coal fires can form thermal 



anomalies above the covering bedrocks on the surface. The anomalies can best be 

observed in night-time data. Predawn is the optimum time for coal fire detection with 

thermal remote sensing techniques. Temperature profiles show that one hour after 

sunrise, a coal fire related thermal anomaly, only lm  away from a crack was 

overprinted by the effects of solar heating. Thermal anomalies did not extend for more 

than 3m away from the crack. The width of thermal anomalies does not decline as the 

background temperatures increase. The thermal pattern in remote sensing as well as 

field data above a coal fire actually is defined by the pattern of cracks. 

Through analyses of the statistical characteristics of the thermal anomalies in different 

scenes of daytime and night-time Landsat-7 ETM+ band 6 images, it is shown that the 

minimum, median and mean values of a coal fire related thermal anomaly on ETM+ 

images are not only higher than its background, but also decrease with the increase of 

the dimension of the accounted background. Standard deviation of a coal fire or a 

thermal anomaly on night-time ETM+ images is higher than that of the background. 

On daytime ETM+ images it is smaller than that of the background. The minimum 

values of the thermal anomalies are much lower than the highest value of the 

background. Therefore thermal anomalies are not outstanding, and are hard to separate. 

Coal fres form thermal anomalies on images with their distinct start and end DN 

values. During detection, every coal fire should be counted individually. ETM+ night- 

time images are suitable for general survey of coal fires in large areas. About eighty 

percent of known coal fires can be detected. 

A practical approach for the extraction of coal f re  related thermal anomalies in a large 

area using Landsat-7 band 6 data was developed in this study. Most coal fires form 

thermal anomalies on the surface, which are smaller than a pixel size of Landsat-7 

ETM+ band 6 image. They form a kind of weak and local thermal anomalies in the 

image. The thermal anomalies can be extracted within subsets of the image. Subsets of 

an image can be defmed using a window of small size, moving over the image step by 

step. In such a window, thermal anomalies and their background can be separated 

through a threshold, which is defined as the first histogram turning point after the 

mean plus the standard deviation of the window. A proper threshold can minimize the 

number of faulse alarms. A result map records how many times a pixel in the image 



has been counted as a thermal anomaly. When a threshold is set, the result map can be 

sliced to a bit map representing coal f re  induced thermal anomalies and the non-fire 

area. Furthermore, some false alarms, such as water bodies and slopes heated by the 

sun, can be removed according to the statistical analysis based on known thermal 

characteristics of coal fres and contextual information. 

The background temperature, the quality of the thermal remote sensing data, and the 

size and strengths of the coal fres are the factors which determine the detectability of 

coal fires. The performance of the algorithm for the extraction of coal fire related 

thermal anomalies is independent on these factors, while the result of the algorithm is 

dependent on the size of the moving window and the final cut-off percentage. Thermal 

anomalous clusters with different extent (for example 0 to 64 pixels in in size in the 

Wuda area) can be well extracted by the algorithm using different size of the moving 

window. Sometimes 100% of the thermal anomalous pixels in a cluster can be 

delineated. The best size of the moving window for detecting coal fires in a large area 

in Northwest of China is the accumulative window ranging from 11*11 to 35*35 

pixels for Landsat-7 ETM+ band 6 data. 

To evaluate the performance, the algorithm is applied to satellite data covering an area 

in Xinjiang Uygur Autonomous Region, about 2000 km away from the main study 

areas. Thermal anomalies extracted by the algorithm here coincide well with the 

known locations of coal fires. Using the thermal anomalies automatically extracted 

from Landsat-7 ETM+ thermal data based on this algorithm, plus the land cover 

information derived from the multi-spectral non-thermal bands, the areas with a high 

potential for coal f r e  occurrence can be defined. Ground tmth studies in areas with a 

high coal f r e  potential, which have never been investigated before, confrmed the 

presence of active coal fires, beforehand only picked up in remote sensing data. These 

assessments validate the algorithm to have the potential to investigate unknown areas. 

This makes it possible to set up an operational detection and monitoring system for 

coal fres in larger areas, such as northern China. 
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for distinguishing background and thermal anomalies. 

Figure 7.5 Colour Composite image of Wuda (Red: Thermal anomalies extracted 

from ETM+ night-time band 6; Green: ETM+ band 3; Blue: ETMf band 2). W: 



thermal anomalies caused by the water body. S: thermal anomalies caused by the sun 

uneven heating high thermal inertia materials. P: thermal anomalies caused by 

industrial plants. F: thermal anomalies caused by coal fres. 

Figure 7.6 Thermal anomaly fine-tuning. A: Original Landsat-7 ETM+ band 6 image; 

B: Indexed thermal anomalous cluster image. C: Water body and illuminated slopes 

have been removed by using the standard deviation characteristics. D: Sparsely 

distributed small non-fire related thermal clusters have been removed by using the 

mean characteristics. 

Figure 7.7 Flow chart for extraction of coal fire related thermal anomalies 

Figure 8.1 Thermal anomalies Extracted by using different size of the moving 

window. A: Input image; B: Thermal anomalies extracted by a 3*3 moving window; 

C: Thermal anomalies extracted by a 27*27 moving window; D: Thermal anomalies 

extracted by a 5 1 *5 1 moving window. 

Figure 8.2 Threshold images for extraction thermal anomalies using different size of 

the moving window. A: Threshold image of the 3*3 moving window; B: Threshold 

image of the 27*27 moving window; C: Threshold image of the 5 1*51 moving 

window. 

Figure 8.3 A thermal anomaly image and a threshold image. A: Sum of the 

normalized thermal anomaly images for window size 3*3 to 5 l* 5 1 with interval of 

2*2. B: Mean of the threshold images for window size 3*3 to 51*51 with interval of 

2*2. 

Figure 8.4 Result maps for using different cut-off percentages. A: cut-off percentage 

50%; B: cut-off percentage 70%; C: cut-off percentage 90%. 

Figure 8.5 Interpreted thermal anomaly image in Wuda. A: Bit map. B: Clustered 

map. 

Figure 8.6 Evaluation of window size and cut-off percentage for extraction thermal 

anomalous pixels in the clusters with different number of pixels; Upper: Cluster 8 

with 42 known thermal anomalous pixels; Middle: Average of 3 clusters with 8 

known thermal anomalous pixels; Lower: Average of 5 clusters with 1 known thermal 

anomalous pixel. 



Figure 8.7 Evaluation of window size and cut-off percentage for extracting thermal 

anomalous pixels vs. false alarms in the Wuda area. Black: cut-off percentage 70%; 

Red: cut-off percentage 80%; Green: cut-off percentage 90%. 

Figure 8.8 Accuracy evaluation of window size and cut-off percentage for extraction 

thermal anomalous pixels in the Wuda area. Accurate result can be acquired by using 

the 17*17 to 35*35 moving windows. 

Figure 8.9 Extraction of thermal anomalies in Xinjiang, China. Upper: The original 

Landsat-7 ETM+ band 6 data. Lower: Result map of thermal anomalies extracted by 

the algorithm. Red: thermal anomalous pixels with high possibility to be caused by 

coal fres. Green: thermal anomalous pixels possibly caused by coal fres. 

Figure 8.10 Extraction of thermal anomalies in a day time image in the Wuda area. A: 

The original Landsat-7 ETM+ band 6 data. B: Thermal anomalies extracted by the 

algorithm using the starting point at mean plus standard deviation. Red: thermal 

anomalous pixels; C: Thermal anomalies extracted by the algorithm using the starting 

point at mean plus two times standard deviation. Red: cut-off percentage: 85%; 

Magenta: cut-off percentage: 70%; Cyan: cut-off percentage: 50%. 

Figure 8.1 1 Combination map of thermal anomalies and land covers. Thermal 

anomalies are automatically derived from night-time Landsat 7 ETM+ thermal band. 

Land cover information is extracted based on the spectral signatures using daytime 

non-thermal bands. Four circled areas are interpreted as the favourite places for coal 

fire occurrence. The area marked by orange is the newly detected coal fire area. In the 

upper amplified window the red arrows point on the five thermal anomalies that have 

been verified in the field as coal seam fires, while in the lower one the arrow points 

on the thermal anomaly formed by coal waist pile fires. 

Figure 8.12 A newly detected coal fire in a previously non-studied area. The arrow 

points on the place where a fire is burning underground. 



List of Tables 

Table 2.1 The classification of coal fires 

Table 4.1 Dimensions of coal fires in the Wuda coalfield 

Table 4.2 Dimensions of coal fres in the Ruqigou coalfield 

Table 4.3 Dimensions of coal fres in the Gulaben coalfield 

Table 5.1 Description of three data sets 

Table 6.1 Temperature ("C) for different depths at measuring points NE3 and NE6. 

Table 6.2 ETM+ band 6 data used in the study 

Table 6.3 Number of pixels for field coal f r e  areas and their thermal anomalies on 

night-time and daytime ETM+ images acquired in 2002. FN: Fire name number; F: 

Field coal fire distribution map; N: AnoNight2002; D: AnoDay2002; Ni: Pixels in 

both AnoNight2002 and FieldFire2002; No: Pixels inAnoNight2002 but 

FieldFire2002; T: Total. 

Table 7.1 Pixel number of clusters for the interpreted thermal anomaly image in 

Wuda 



List of Appendixes 

Appendix 6.1 Ground Temperature Measurements of Coal Fire Experiment in DLR, 

Oberpfaffenhofen. 

Appendix 6.2 Surface Temperature Measurements for a Sand Dune in Wuda Coal 

Mine Area, Inner Mongolia, China. 

Appendix 6.3 Surface Temperature Measurements for A Coal Dump Pile in Wuda 

Coal Mine Area, Inner Mongolia, China. 23rd September 2002 

Appendix 6.4 Surface Temperature Measurements for a Crack in Wuda Coal Mine 

Area, Inner Mongolia, China. 23rd September 2002. 

Appendix 6.5 Statistical Characteristics of Thermal Anomalous Areas on ETMS 

Night Image (28 September 2002). 

Appendix 6.6 Statistical Characteristics of Thermal Anomalous Areas on ETMf Day 

Image (2 1 September 2002). 



List of Abbreviations 

ABAS- Advanced BIRD airborne simulator 

ASTER- Advanced Space-borne Thermal Emission and Reflectance Radiometer 

ATSR- Along Track Scanning Radiometer 

AVHRR- Advanced Very High Resolution Radiometer 

BIRD- Bi-spectral InfraRed Detection 

CCT- Computer Compatible Tape 

DFD- German Remote Sensing Data Center 

DLR- German Aerospace Center 

ETM+- Enhanced Thematic Mapper Plus 

GMT- Greenwich Mean Time 

GPS- Global Positioning System 

IR- Infrared 

MIROR- Michelson Interferometer with Rotating Retroflector 

MODIS- Moderate Resolution Imaging Spectroradiometer 

PCA- Principal Components Analysis 

RXD- RX Detector 

SAR- Synthetic Aperture Radar 

TM- Thematic Mapper 



Chapter 1 INTRODUCTION 

Coal fires not only result from different causes (man-made, lightening strike, accident, 

forest f r e  or spontaneous combustion) worldwide, but also have a long history. In 

Xinjiang Uygur autonomous region (Xinjiang) of China, the paleo coal fires, caused by 

spontaneous combustion, were dated to be Pleistocene (de Boer et al. 1997, Schneider 

1996, Zhang & Kroonenberg 1996). In New South Wales, Australia, the oldest known 

continuously burning fire, caused by lightning striking on a large coal seam at the 

surface, started over 2,000 years ago. Today this fire burns more than 152 meters 

underground, and is still slowly spreading in the coal seam. In Jharia, India, some of 

the subsurface coal fires, caused by mining introduced spontaneous combustion, have 

already been burning over five decades, and now they are still spreading (Mukherjee et 

al. 1991, Sinha 1989). In southwestern Pennsylvania, US, most of coal mine fires 

started about over 10 years ago by people burning trash in pits where the coal seam 

was close to the surface (Glover 1998). Forest fires ignite fres in surface outcrop 

deposits of coal. Coal fires continue to smolder underground after surface forest fires 

were extinguished, only to flare up again several months later, restarting forest and 

brush fires. This happened in Indonesia during each of the past three years. A 

conservative estimate based on actual field data suggests more than a quarter million 

tonnes coal and peat may be burnt out in Indonesia (Hamilton 2001). 

Coal fires cause a lot of problems and are severe hazards (Feng et al. 1973, Guan et al. 

1996). Coal fres produce harmful gases such as SOz, NO, CO, CH4 and ashes, which 

can be transported by wind and cause air pollution. Also problematic carbon monoxide 

gases and other toxic fumes can rise from the ground and seep into buildings, possibly 

asphyxiating people inside or causing long-term respiratory problems. In addition to 

the danger of the f r e  spreading to homes and wooded areas, subsidence can occur 

when the fire consumes the thick coal pillars left to help support the overburden in 

room-and-pillar mining (Chen 1997, Guan 1989, Rosema et a1 1993). Subsidence can 

damage the infrastructure, such as roads and buildings. Some towns have been 

evacuated because of the danger of collapse as the underground coal seams slowly 

bum away. Coal fires not only burn out coal resources, particularly those that could be 



easily exploited, but also lead to blockage and devaluation of coal resources in the 

seams below, above and around them. Forest related coal fres could destroy a large 

area of forest, including valuable reintroduction habitat for endangered species. Also 

coal fres contribute to the problem of global warming by producing a huge amount of 

COz. Their global warming potential is currently under evaluation. 

In order to take effective mitigating actions, it is crucial to detect the coal fres, 

including the position, area, depth, the direction and the speed of f r e  movement, 

especially for those fires having burnt for a prolonged period of time, producing 

significant amounts of pollutants. Borehole measurements and geophysical methods, 

such as electrical and magnetic methods, have served for this purpose for quite a long 

time (Chen 1997). The shortcomings of these methods are that they are time 

consuming, difficult to repeat, and costly to apply over large areas; especially since 

many coal fires occur in isolated areas, high up in the mountains, in dense forests, and 

other inhospitable terrain. Hence the use of remote sensing techniques, particularly 

satellite remote sensing with a capability of repeated observation of the earth surface, 

was considered as a very suitable tool to detect, locate, analyse and monitor coal fires 

over a large areas. 

1.1 Problem Identification 

Since May 1963 when the first study for detecting coal fires over coal refuse piles 

using remote sensing techniques was undertaken in Scranton, Pennsylvania, US 

(Slavecki 1964), much work has been done in different countries and on different types 

of coal fires in the past 40 years. For example, within the framework of a Sino-Dutch 

project the coal fires of Ruqigou syncline in north-westem Ningxia Hui Autonomous 

Region, China, were well studied (Prakash et al. 1999). Other coal fields investigated 

are the Jharia coalfield, India (Mukherjee et al. 1991), or the Pennsylvanian coal fires 

near Centralia (Chaiken et al. 1998) amongst others. However, all previous studies 

using space bome data were using GIS (with existing coal fire distribution maps) and 

undertook trial and error density slicing methods, which are only suitable for small and 

known areas (Chen, 1992; Reddy & Bhattachruya, 1995; Vekerdy & van Genderen, 

1999; Vekerdy et al., 1999; Zhang et al., 1997a,b, 1998). So far, the detection of coal 



fires using remote sensing techniques has not been applied in an operational fashion 

over large areas (Zhang et al. 2003). The main obstacles are: 

limitation of knowledge about the specific geo-spatial characteristics of coal 

fres; especially of underground coal fires; 

the need for a practical approach to demarcate coal fire areas from images over 

large areas 

China is the biggest producer of coal in the world mining about 1000 Mt of raw coal 

per year and approximately 70% of Chinas energy consumption is covered by coal. 

According to the 10th five-year-plan (2001-05) of the State Economic and Trade 

Commission for the coal industry, coal will continue to be the major source of energy 

for China's industries in the next five years. Taking into account economic growth 

rates of 7.8% in the coming years, it is obvious, that coal is going to play an even more 

important role in Chinas economic development (Voigt et al. 2003). At the mean time 

it is estimated that about 10 Mt of coal are being burnt in coal fires in China each year 

(Guan & van Genderen 1997). Since the coal fres are spread out over the whole 

northwestern part of the country, especially in Xinjiang Uygur Autonomous Region, 

Inner Mongolia Autonomous Region, and Ningxia Hui Autonomous Region, it is 

extremely difficult to keep an overview of the development of known fres as well as 

of newly developing ones. In May of 2001 the German Remote Sensing Data Center 

(DFD) of the German Aerospace Center (DLR), launched a remote sensing project as 

the preparing phase for the current Sino-German joint project 'Innovative 

Technologies for Exploration, Extinction and Monitoring of Coal Fires in North 

China' that started in September of 2003. The main objective of the remote sensing 

project was to develop a methodology, based principally on the use of space remote 

sensing data, to detect, analyse and monitor the areas of coal fires in Northwest China, 

with an area of about 700,000Q. Although nowadays satellite remote sensing offers 

a powerful tool to observe and monitor such large regions, special methods and 

techniques have to be derived. 



1.2 Aim and Objectives 

The aim of the research is to develop a practical approach for detecting coal fires in 

large areas using thermal satellite imagery. 

The approach should be capable to automatically derive coal f r e  related information in 

order to become independent of manual techniques like trial and error tbresholding or 

on screen digitization. It should be able to investigate unknown areas, not yet studied 

during past coal f r e  research, and to detect new coal fres. Furthermore, the approach 

should be transferable to different scenes of images, to become really operational. 

Withiin the DLR-DFD remote sensing project, this approach was composed of thee 

parts. One is the classification of the satellite multi-band data to derive landcover maps 

and locate the favorite coal f r e  occurrence areas, such as areas close to the outcrop of 

coal seams, as well as non-coal f r e  areas, such as water bodies, industrial areas, etc. 

The second is the extraction of coal f re  related thermal anomalies using the thermal 

bands to directly locate the position of coal fires, which should be based on a good 

understanding of the thermal characteristics of coal fires and their background. The last 

part is the quantification of the coal fires detected. This thesis is concentrated on the 

extraction of thermal anomalies related to coal fres. 

To achieve this aim, two objectives are defined: 

Objective 1 Analysis of thermal characteristics for coal fres and their background; 

Objective 2 Development of a practical approach for the extraction of coal fire 

related thermal anomalies in a large area. 

1.3 Methodology 

1.3.1 Reference analyses 

All the possible references have been collected for the understanding coal fires and 

their related surface features, and were reviewed with respect to the detection of coal 

fires using remote sensing techniques. Landsat-7 ETM+ band 6 data were chosen as 

the main data source for extracting coal fire related thermal anomalies due to the 



improvement of Landsat-7's detection capability compared to former Landsat sensors. 

Material about the geography, geology, coal geology, and coal fires was acquired for 

obtaining an overview of the study areas. Three study areas, named Wuda, Ruqigou 

and Gulaben, located in the border area between the Inner Mongolia Autonomous 

Region and the Ningxia Hui Autonomous Region were defmed. 

1.3.2 Field work 

Two field work campaigns have been conducted in September 2002 and September 

2003. In the field work 2002, the surface temperatures of coal fires and their 

backgrounds were measured by using contact and radiant thermometers. Detailed 

distribution maps of coal fres in the study areas were generated with the help of 

Global Positioning System (GPS) instmments for navigation. In the field work 2003, 

thermal anomalous pixels extracted by the algorithm developed were validated. A new 

coal fire area with previously unknown coal fires, outside the three study areas could 

be detected. This confmed the validity and suitability of the developed approach. 

1.3.3 Algorithm development and validation 

Based on the analysis of thermal characteristics for simulated coal fres and field coal 

fires in the study areas, a practical algorithm for the extraction of coal f re  related 

thermal anomalies from the images was developed. The characteristics of coal fres on 

different images were studied, which could be used for fine-tuning the results from the 

algorithm. To assess the transferability of the algorithm, coal fres in another scene 

covering an area in Xinjiang Autonomous Region, about 2000 km away from the three 

study areas, were detected. The detection capability of new coal fires in previously not 

studied areas was evaluated. 

1.4 Outline of the Thesis 

The thesis is organized in the following way. After the introduction, Chapter 2 

discusses coal fres, their causes and classification, rocks and minerals produced by 

coal fires, coal fire generated geomorphology, and surface temperature related to coal 

fires. This chapter gives an overview of coal fires and their related surface features, 

which are the base for the coal f re  detection using visible and near infrared bands of 



remote sensing data. Chapter 3 reviews the previous work on detection of coal fires 

using different sensors in different areas, with emphasise on the cases using thermal 

remote sensing imagery. Chapter 4 describes general information in the study areas, 

especially coal f r e  information, and the data sets. Chapter 5 states basic concepts on 

thermal remote sensing. The theory on detecting a sub-pixel coal fire is discussed as 

well. In Chapter 6, thermal characteristics of coal fires are studied. Coal fires include 

two simulated coal fires in the experimental scale, and coal fires in the real scale in the 

study areas. The statistical characteristics of the known coal fires on different images 

are also studied. These thermal and statistical characteristics of the known coal fires 

are the basis of developing a suitable algorithm for extracting coal f r e  related thermal 

anomalies. In Chapter 7, the algorithm for the extraction of coal fire related thermal 

anomalies is developed. In the next Chapter 8, the algorithm is applied to the study 

areas, and an area two thousand kilometres away from the study areas. Results are 

assessed and validated. It is confrmed that unknown coal fres in a previous non- 

studied area can be detected by the algorithm. Finally, conclusions and outlook are 

given in Chapter 9. 



Chapter 2 COAL FIRE AND ITS RELATED SURFACE FEATURES 

2.1 Coal Fires, Their Causes and Classification 

In the thesis, a coal fire is defined as combustion of coal in a coal seam (or a pile of 

stored or waste coal), which has a potential to bum for a long time by spreading along 

both directions of the strike and dip of the coal seam (or within the pile). Coal fires can 

be ignited in different ways, by forest fires (Bustin & Mathews 1982, 1985), coal 

mining accidents, careless handling fires on the coal seam outcrop, lightening strike 

(Guan et al. 1996) or spontaneous combustion of coal. Spontaneous combustion of 

coal occurs due to the accumulation of heat generated during the interaction of oxygen 

with coal, and poor thermal conductivity favoring heat accumulation. This interaction 

with oxygen is mainly due to the oxidation of carbonaceous matter in coal. The other 

factors that might also assist in the generation of heat are due to the oxidation of pyrite 

present in coal and absorption of water vapor in coal. Heating due to bacterial activity 

or from earth movement are possible causes, however, these are of no practical 

importance. Coal rank, coal type, geomorphologic setting, geological conditions, 

geographic conditions, hydrological conditions, and human interactions are important 

factors for spontaneous combustion of coal (Banerjee et al. 1970, 1972, Banerjee 1982, 

1985, Gijbels & Bruining 1982, Schmal 1987, Zhang & Tang 1994). 

Coal fires have been classified into different types by different researchers (Gum & 

van Genderen 1997, van Genderen & Guan 1997, Yang 1995, Zhang 1998). Yang 

(1995) indicated that spontaneous combustion of coal could be divided into the 

following groups: surface and subsurface according to the depth of combustion; paleo 

and recent according to the starting time of a coal fire; extinct, dormant and active 

according to burning state of a coal fire; and also coal field fire, coal mine fire and 

stock pile fire upon where the coal fires got started. van Genderen & Guan (1997) 

described the coal fres as underground and surface coal fires. They also mentioned 

that combustion could occur either within the coal seams themselves or in piles of 

stored or waste coal on the surface. Guan & van Genderen (1997) classified the coal 

fires into three first categories: coal field fre, coal mine related fire, coal waste or 

stock fre.  And these three frst categories could be classified into several second 



categories. In 1998, Zhang classified coal fires into four groups: underground mine 

fire, coal seam fire (coal field fire), coal refuse fire, and coal-stack fire. There are no 

arguments on the "coal refuse fire, and coal-stack fire", however for the "coal mine 

(related) fire" and "coal field fire", even the same term has different meanings when 

used by different people. 

Based on the general understanding, the following coal fire classification was derived 

and recommended (Table 2.1). Coal fires, firstly, upon the position of coal, can be 

classified into two types: coal seam fire (coal is in-situ) and coal heap f r e  (coal is non- 

in-situ). Secondly, the coal seam fire can be classified in to coal mine fire (mining 

related) and nature coal fire (not related to the mining). While coal heap f re  includes 

coal waste and stockpile fire. Thirdly, each coal fire type can be divided into the 

following classes by their attributes: surface (fire is burning on the surface of the earth) 

and underground or subsurface (fre is burning in subsurface); paleo (fire was burning 

in the paleo-time) and recent (fre was burning in recent time); extinct (now fire is 

extinct, incapable of further burning), dormant (fire is not spreading, but probably 

capable of re-burning) and active (fire is burning and spreading). 

Table 2.1 The classification of coal fires 

First class 

Coal seam fire 

Coal heap fire 

2.2 Rocks and Minerals Produced By Coal Fires: Pyro-Metamorphic Rocks and 

Fumarolic Minerals 

In coal fire areas, coal f r e  related products like ash, pyro-metamorphic rocks and 

fumarolic minerals can be found on the surface. 

Second class 

Nature coal fire 

Coal mine fire 

Coal waste fire 

Coal stockpile fire 

When coal burns away, it becomes ash. Normally a coal seam with a thickness of 20 

meters thickness can leave an ash layer with a thickness of 15-20 cm, which shows a 

pink or light pink color, and can only be seen on the outcrop (Zhang 1996). 

Attributes 

SurfacelUnderground or Subsurface 

PaleolRecent 

ExtincffDormant /Active 



Pyro-metamorphic rocks, also called burnt rocks, are the rocks metamorphosed by the 

heat coming from the adjacent combustion of the coal seams. According to the thermal 

metamorphosed degree depending upon the distance from the combustion of the coal 

seam and the degree of the accumulation of heat, pyro-metamorphic rocks can be 

further divided into three types (Guan 1963, Zhang et al. 1996): baked rock, 

porcelanite, and molten rock. Baked rock (See Figure 2.1, A) is a kind of pyro- 

metamorphic rock that is formed after the original rock baked under a relative low 

temperature (340-800°C). The baked rock still keeps its original texture, but changed 

its color because of dehydration and oxidation. Porcelanite (See Figure 2.1, B) is a 

kind of pyro-metamorphic rock that is formed after the original rock heated under a 

medium temperature (600-1400°C). The rock became very hard and formed ceramic 

texture. The color of the original rock has been greatly changed. Molten rock (See 

Figure 2.1, C) is a kind of pyro-metamorphic rock that is formed after the original rock 

heated under a high temperature (1500-200O0C), commonly distributed in burnt center 

or near coal seams. The granulated minerals in the rocks smelted to form a kind of 

black lava. 

The original rocks commonly have dark color and moisture content. When a rock is 

heated by a coal fire at the temperature of 340-800°C, the rock experiences 

dehydration and oxidation. Dehydration affects the different types of H20 components 

in the rock at different temperature. That is, free water (45-200°C), bound water 

(>10O0C), and constitutional water (500-700°C). Oxidation changes gray, green color 

rocks to yellow, orange, red or brown color rocks. All organic materials become gases 

after the temperature reaches 350-500°C. At the first phase of this stage, rocks are 

becoming dry and turn into yellow color. At the second phase, with the increasing 

amount of heat received by the rock the rock becomes purple, brick red or brown. With 

increasing temperature, the rock will eventually be molten (1500-200O0C), or frst  

turns to porcelanite (600-140OoC), depending upon the mineral contents in the rock, 

whether favorable to form porcelanite or not. From the microscope observation, it is 

known that in this stage iron mineral has already re-concentrated and the color change 

is most likely due to hematite (de Boer et al. 1997). 



The distribution of the pyro-metamorphic rocks is dependent on the scale of the coal 

fires. In Xinjiang, China, normally it extends over a large area of about 0.1-1 ha but 

sometimes it can extend over distances of kilometers in the case of paleo coal fires. 

Fumarolic minerals are newly generated minerals by the coal fires. The minerals in the 

original formation were dissociated by the heat caused by coal fires and transferred 

along the cracks to the surface, where they re-crystallized due to the drop of the 

temperature and the pressure. The newly generated minerals are generally sulhr (S), 

gypsum (CaS04.H20), calcite (CaC03), salmiac (NH4Cl) (See Figure 2.2) (Zhang, 

1996), tschermigite ((NH4)A1(S04)2.12(H20)), and apjohnite (MnA1(S04)4.22H20) 

(Livingood 1999). 

Figure 2.1 Photograph of pyro-metamorphic rocks. A: Baked rock; B: Porcelanite; C: 

Molten rock. Specimens are from Xinjiang, China. 



Figure 2.2 Field photograph of fumarolic mineral (Salmiac) in Xinjiang, China. 

In Centralia, U.S.A., vents and fissures are scattered all throughout relieving the 

increased underground pressure caused by the fires. Sulfixic steam and smoke rise 

from these vents and tschermigite and apjohnite deposits are found surrounding the 

fissures. Apjohnite is found as a crust, which coats the entire vent structure and is 

white with a slightly vesicular appearance. Apjohnite is deposited through 

precipitation hom condensing steam that distributes the mineral as a coating over the 

vent. Tschermigite deposits are found as blocky masses right at the vent openings 

suggesting hydrothermal deposition from heated groundwater. Apjohnite usually is 

white to pale yellow, has a hardness of 1.5 to 2, and has encrustation (forms crust-like 

aggregate on matrices) habit. Tschermigite, also known as ammonia alum, is soft 

(hardness = 1.5-2.0) and is usually white to colorless (Barthelmy 1999a,b). 

Tschermigite is very rare and only found natively in Czechoslovakia, but also has been 

reported to form as deposits around volcanic vents and hmaroles and other "hot spot" 

areas (Livingood 1999, Lowenstern 1999). In Xinjiang, China, yellow sulhr, or 

greenish yellow, stable below 96"C, is a very common mineral existing in the crevasse 

area as affected by coal fires. It is frequently associated with salmiac, gypsum and 



calcite. The spatial distribution of the fumarolic minerals is several ten meters by 

several ten meters, sparsely distributed around the mouths of the smokers of the coal 

fires (Zhang 1996). 

2.3 Coal Fire Generated Geomorphology: Burnt Pits and Trenches, Subsidence 

and Cracks (Fractures) 

When a coal fre  occurs at the outcrop of a coal seam with a large dip angle, after the 

coal has burnt, a burnt pit forms. Figure 2.3 shows a burnt pit in Xinjiang, China. It has 

a diameter of 10 meters, a depth of 10 meters, and at the bottom, the coal is burning. 

The fire will spread along the strike direction and dip direction at a speed of 

approximately 1-4 mper year. After a long time, all the shallow coals will be burnt out 

and on the surface, a burnt trench will be left. Around a burnt pit and trench, the burnt 

rocks are well developed. Figure 2.4 depicts a burnt trench in Xinjiang, China, with a 

20 meter width and a 4 km length. 

When a coal fire occurs in the outcrop of a coal seam with a gentle dip angle, after the 

burning of a coal seam or several coal seams, the cap rock collapses, resulting in land 

slides and cracks as shown in Figure 2.5. The cracks are typically 50-500 meters long 

and 0.1 to 1 meter wide. The longest cracks extend to over 1 km, and widest cracking 

measured in the field in Xinjiang, China was 2.5 meters. The cracks are perpendicular 

to the spreading direction of the underground coal fire. 

With the burning of the underground coal seams, coal voids may be formed which 

could result in surface subsidence. The subsidence induced from coal fires is 

commonly restricted to large coal f r e  areas. Usually, its displacements are vev  small 

in dimension and mostly invisible from morphological features on the aerial 

photographs. Sometimes, rather large subsidence can be formed at coal mining area 

due to the burning of the coal pillars. This could be the combined effect of coal fires 

and coal mining. 



Figure 2.3 Field photograph of a typical burnt pit in Xinjiang, China. 

Figure 2.4 Field photograph of a typical burnt trench in Xinjiang, China 



Figure 2.5 Field photograph of typical cracks in Xinjiang, China. The width of the cracks 

ranges between 0.1 to 1 meter. 

Figure 2.6 A diagram of coal fires and their related features. l: Original rock; 2: Coal 

seam; 3: Soil; 4: Ash; 5: Molten rock; 6: Baked rock; 7: Coal mine area; 8: Pillar; 9: 

Underground coal mine fire; 10: Surface coal mine fire; 11: Underground nature fire; 12: 

Surface nature fire; 13: Fumarolic mineral; 14: Burnt trench; 15: Burnt pit. 16: Crack; 17: 

Subsidence. 



In Australia, extensive fracturing and subsidence is associated with the fire. The 

subsidence of strata is thought to be caused by a reduction in volume of the burning 

coal seam. The orientation of fractures associated with the subsidence appears to be 

controlled by preexisting planes of weakness which correspond to longitudinal joints 

and one plane of a conjugate set of diagonal joints. These fractures are approximately a 

meter in length and a few centimeters wide. A chimney formed by these fractures, 

named 'Burning Mountain', with an area approximately 400 m', is moving south along 

a ridge, presumably corresponding to a fire slowly consuming a seam of coal. During 

the last 120 years it appears that the chimney has moved about 80 m (Mitchell 1839, 

Abbott 1918). Another chimney, named 'little Burning Mountain', formed by a 

rectangular fracture approximately 2 m2, appears to be stationery and it has not moved 

since it was first observed by Abbott in 1852 (Abbott 1918). 

Figure 2.6 depicts the general overview of coal fires and the related surface features 

2.4 Surface Temperature Related To the Coal Fires 

Coal fires create higher temperatures on the earth's surface than the background. For 

the surface coal fires, they have much higher temperatures (normally higher than 

400°C) than the background. For the underground coal fres, the temperature 

difference between the fire anomalies and the background is much more subtle and 

varies with location, observaton time, weather, etc. 

Surface temperatures were measured in the coal fire areas in Xijiang, China, by using 

a portable infrared thermometer in 1994 and 1995 (Zhang 1998). The distance between 

the measurements was 5 meters and in total about 700 temperature measurements were 

taken. On the bases of field observations and surface temperature measurements, the 

thermal anomalies above the underground coal f r e  (with depth of 50-150meters) areas 

were classified into three groups (See Figure 2.7): 1) low-amplitude thermal 

anomalies: they have surface temperatures of up to 20°C higher than the background. 

On the surface there are no significant changes in texture and color. 2) medium- 

amplitude thermal anomalies: they are usually 20°C to 120°C above the background 

temperature. There are haloes of sulfur crystals, micro-cracks on the surface. 3) high- 

amplitude thermal anomalies: they have temperatures of about 120°C to over 300°C 



above the background temperature. There are salmiac deposits, molten rocks, and big 

cracks on the surface. The highest temperatures were typically located at hill tops over 

active coal fires, apparently because the higher topographic elevation ensures a longer 

chimney system to supply the fire with oxygen. The width of individual high- 

amplitude thermal anomalies usually does not exceed a few meters from the hot source 

or vent. Among the three thermal anomalies, low-amplitude thermal anomalies have 

the largest occurrence (Zhang 1998). Temperature measurements at a fracture in the 

Burning Mountain chimney, Australia, through which hot fumes are escaping, showed 

a horizontal gradient in damp soil of 33°C per cm (Ellyett & Fleming 1974). 

Distance (m) 
Figure 2.7 Field along-strike measurement of temperature profile of coal fire No. 141, 

142 and 143 in Xinjiang, China (measured at noon time of 17 August 1995). 1: 

Background temperature; II: Low-amplitude thermal anomalies; Ill: Medium-amplitude 

thermal anomalies; IV: High-amplitude thermal anomalies (After Zhang 1998). 

In the Mukunda area, Jharia coal field, India, thermal profiles of digitally recorded 

temperature data along scan lines by using an AADS 1268 Daedalus Multi-spectral 

Scanner System in Februruy and March of 1989 were studied across a known geologic 

section in order to correlate them with anomalous temperatures associated with the 

fires. One typical temperature profile, along with the section of fire-affected coal 

seams, is shown in Figure 2.8. The temperature profile depicts distinct anomalous 

zones with respect to the background temperature. The average ambient temperature is 

about 12°C. The fluctuations along the profile seem to be due to variations in 

temperature associated with the inhomogeneity of the top soil and sand stone. There 



may also be minor cracks. The background noise is thus separated by graphical 

smoothing for the calculation of the duration of the f r e  or the depth of the fre.  

Temperature anomalies of a magnitude of about 68°C along the profile at about 200m 

and 400m appear to correspond to fires in the IWX and VIIIA coal seam at depths of 

about 45m and 40m, respectively. The age of the fire associated with the IWX seam is 

computed to be about 8 years and that with the VIIIA seam to be about 7 years. The 

anomalies towards the extreme right of the profile seem to be from the fire in the 

workings of the VIII seam (Mukherjee et al. 1991). Gupta & Prakash (1998) showed a 

field temperature profile of an area with subsurface fires in the same coal field (Figure 

2.9). The background temperature was lower than 24"C, and the highest anomalous 

ground temperatures were about 28°C in this profile. 
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Figure 2.8 A thermal profile over burning coal seams in Jharia coal field, India (After 

Mukherjee et al. 1991). 
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Figure 2.9 A profile of surface temperature (field measurements) above subsurface fires 

in Jharia coal field, India. The background temperatures are lower than 24°C (After 

Gupta & Prakash 1998). 

2.5 Conclusion 

In brief, coal fres, defmed as combustion of coal seams and piles having apotential to 

bum for a long time, occur all around the world. They cause a lot of problems to 

people and to the environment. Coal f res  can ignite in different ways and can be 

classified in different types. They change the cap-rocks to pyro-metaphoric rocks and 

generate fumarolic minerals on the surface. Smoke, burnt pits and trench, subsidence 

and cracks, surface thermal anomalies can be generated by coal fires, too. These 

surface features can be used as indicators for coal fires detection by using remote 

sensing techniques (Zhang et al. 1995). Coal fire detection includes isolating coal fires 

areas, locating the front of coal fires, calculating the depth and ages of coal fires. 

Smoke, fumarolic minerals, and thermal anomalies are direct indicators for active coal 

fires. Pyro-metaphoric rocks and burnt pits and trenches are good indicators for paleo- 

coal fres and can also be helpful to detect active coal fres. Land subsidence can be 

also used for coal fire zonation detection. 



Chapter 3 STATE OF THE ART 

3.1 Detecting Surface Features of Coal Fires Using Remote Sensing 

Coal fires cause not only an increase in temperature, but also a series of other surface 

features, which include: emission of smoke, new generated fumarolic minerals and 

pyro-metamorphic rocks, burnt pits and trenches, subsidence and cracks (fractures). 

These surface features can be used by the various remote sensing platforms and 

sensors as indicators for detecting coal fres. 

3.1.1 Visible and near infrared remote sensing 

There are many airborne and space borne remote sensing systems operating in the 

visible and near infrared regions of the electromagnetic spectrum. Landsat TM and 

ETM+ provide four 30 meters spatial resolution bands (Band 1: 0.450-0.5 15pm, Band 

2: 0.525-0.605pm, Band 3: 0.630-0.690pm and Band 4: 0.750-0.900pm) in a 

sensitivity range of the visible and near infrared spectral region. SPOT XS has three 

bands with 20 meters spatial resolution in this spectral region. ASTER provides three 

bands (Band 1: 0.52-0.60pm, Band 2: 0.63-0.69pm and Band 3: 0.76-0.86pm) with a 

spatial resolution of 15 meters. These bands, with suitable processing techniques, can 

be used to isolate the pyro-metamorphic rocks from the original rocks according to 

their spectral difference. Figure 3.1 depicts the average reflectance of the pyro- 

metamorphic rocks and the original rocks in the wavelength of 0.5-0.6 pm, 0.6-0.7 pm, 

0.7-0-8 pm and 0.8- 1.1 pm in Shaanxi and Xinjiang, China, respectively (Based on the 

field measurements by Guan & van Genderen 1997). It can be seen that the average 

reflectance difference between the pyro-metamorphic rocks and the original rocks has 

the maximumvalue of 8.4 % (in Shaanxi) and 7.3 % (in Xinjiang) at the wavelength of 

0.5-0.6 pm, and it declines with the increase of the wavelength, at the wavelength of 

0.8-1.1 it reaches theminimumvalue of 4.4 % (inxinjiang) and-1.0 % (in Shaanxi). 

In the enthusiasm for satellite images and new forms of airborne remote sensing, one 

should not overlook the advantages of aerial photographs (Goetz & Rowan 1981, 

Sabins 1996). Color-infrared aerial photographs also provide a sensitivity range of 

visible and near infrared spectral region. Yang et al. (1996) mentioned that the smoke 



and the long parallel cracks caused by the coal fires can be clearly observed on a color- 

infrared aerial photograph with the scale of 1:10,000 in Xinjiang, China. With their 

unique spectral reflectance, pyro-metamorphic rocks showed the distinctive color of 

yellowish orange. Furthermore, with the stereo photograph pairs, the geological 

structures and the coal seam outcrops were interpreted and mapped. Chen (1997) 

conducted mapping subsidence introduced by coal mining and coal fres using color 

infrared aerial photographs of scale 1:10,000 in Ningxia, China. Subsidence had two 

pronounced characteristics, which were scarps and cracks. The formation of scarps 

made it easy to delineate the subsidence areas from aerial photos. However, in most 

cases the subsidence areas were lacking scarps. For this case, the subsidence could 

only be inferred from the occurrence of cracks and other features. Unlike space borne 

remote sensing, aerial photography has a limitation of relatively expensive acquisition 

on a regular base for monitoring purposes, especially for a large area. Also, the large 

number of photographs needed for interpretation is a drawback. 

Wave band (vm) 

Figure 3.1 Average reflectance of original rocks and pyro-metamorphic rocks in the 

wavelength of 0.5-0.6pm, 0.6-0.7pm, 0.7-0.8pm and 0.8-l.lpm in Shaanxi and Xinjiang, 

China, respectively. 1: Original rocks in Shaanxi, China; 2: Pyro-metamorphic rocks in 

Shaanxi, China; 3: Original rocks in Xinjiang, China; 4: Pyro-metamorphic rocks in 

Xinjiang China (Data from Guan &van Genderen 1997). 



3.1.2 Short-wave infrared remote sensing 

In the short-wave infrared region (1.3-2.5 pm), the spectral features of rocks are 

mainly due to the vibrational process of water molecules (HzO), hydroxyl (OH), and 

carbonate (co~-') (Charles 1987, Hunt et al. 1970, 1971a,b, 1972, 1973 a,b,c, 1974, 

1975, 1976 a,b, 1977, van der Meer 1995). This makes it difficult to distinguish 

different original rocks, but it does make it easy to distinguish the pyro-metamorphic 

rocks from the original rocks, because the pyro-metamorphic process itself is a process 

of dehydration and oxidation. Zhang (1996) measured the spectra of rocks in the 

wavelength of 1.3-2.5pm in coal fire areas, Xinjiang China. The original sedimentary 

rocks (sandstone, siltstone, mudstone and gray shale) commonly with dark color and 

moisture content showed the same spectral absorption features at the wavelengths near 

1.410, 1.910, 2.125, 2.210, 2.350, 2.380 and 2.500pm (Figure 3.2, 1). Their low total 

reflectance (4.28%) was due to the moisture and black organic material remnants 

influence. When rocks were heated by a coal fire, rocks became baked rocks. They 

were dry and turn into yellow color. Their spectra showed 3 strong absorption bands 

near 1.419, 1.900 and 2.190pm and a increasing reflectance up to 70%. Their spectral 

features were dominated by the free water molecules (Figure 3.2, 2), or water 

molecules existed in the lattice (Figure 3.2, 3). With the increasing amount of heat 

received, the baked rocks became purple, brick red or brown. Their total spectral 

reflectance decreases. Two clear absorption bands near 1.906 and 1.410 pm (Figure 

3.3, 4) were caused by constitutional water molecules. With the increasing 

temperature, the rocks eventually became porcelanite or molten rocks. Porcelanite and 

molten rocks show no absorption bands as the constitutional water molecules gradually 

disappeared. Their overall reflectance decreased up to 4% (Figure 3.3, 5 and 6). 
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Figure 3.2: Spectra of pyro-metamorphic rocks. 1: Dark gray siltstone with black 

organic material remnants; 2: Yellowish gray slightly baked siltstone; 3: Light yellow 

baked siltstone. From a original rock to a baked rock, the reflectance increases with the 

temperature (After Zhang 1996). 

Every fumarolic mineral has its own distinctive spectral features in short-wave infrared 

spectral region. Sulfur and gypsum are stable under the temperature of 100°C. They 

could be the indicators of underground active coal fires. Salmiac in the coal fire fields 

most of the time exists at the surface when the temperature was above 100°C. It could 

be the indicator for surface coal fires. Through these fumarolic mineral indicators, 

Zhang (1996) successfully distinguished the active surface coal fres and underground 

coal fires in Xinjiang, China using airborne short-wave infrared data with 8 bands 

(1.550-1.650pm, 2.062-2.137pm, 2.093-2.193pm, 2.150-2.250pm, 2.220-2.275pm, 

2.275-2.325pm, 2.303-2.355pm, 2.400-2.500pm). 
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Figure 3.3: Spectra of pyro-metamorphic rocks. 4: Yellowish brown burnt siltstone with 

black molten spots; 5: Black molten siltstone; 6: Black molten rock with vesicles. From 

a heavily backed rock to a molten rock, the reflectance decreases with the temperature 

increases (After Zhang 1996). 

3.1.3 Radar remote sensing 

The European Space Agency's ERS-l and ERS-2 satellites have on board a Synthetic 

Aperture Radar (SAR) sensor operating in the C band with a spatial resolution of 

approximately 25 meters. These two satellites were flown in a so-called 'Tandem' 

mode with one-day interval between data acquisitions. By using SAR interferometric 

techniques, a DEM can be produced, which will be helpful to reduce the solar affects 

in optical imagery. Using differential interferometry, very small vertical land 

subsidence movements (in the order of centimeters) can be accurately measured 

(Gabriel et al. 1989, Gens & van Genderen 1996). Prakash et al. (2001) tried to use 

SAR interferometic techniques to detect coal f re  introduced land subsidence in 

Ningxia, China. One limitation to use land subsidence to locate coal f r e  areas is that 

the coal fire is not the only source to induce the subsidence. Underground coal mining 



and some geological movements can induce subsidence, too. Chen (1997) mentioned 

that the subsidence resulting from underground coal mining was usually large and easy 

to detect from the morphological features. However, the subsidence resulting from 

underground coal f r e  was usually small and difficult to detect from remote sensing 

imagely. Even though some subsidence is not directly related to a coal fire but only 

coal mining (room and pillar method), it can be still used in zonation of coal fire prone 

area detection. Because the subsidence can make the underground coal, such as the 

pillars left after coal extraction, exposed to air by fracturing, it is vulnerable to initiate 

a new coal fire. Furthermore the subsidence could directly bring current coal fires to a 

new place or help the coal fires to expand by air ventilation through cracks. 

3.2 Detecting Thermal Anomalies of Coal Fires Using Thermal Remote Sensing 

3.2.1 Airborne thermal remote sensing 

3.2.1.1 The first case study of detecting coal fres using thermal imagely 

The frst documented study for detecting coal fires by using remote sensing techniques 

was carried out in May 1963, when HRB-Singer Inc. was invited to test the feasibility 

of detecting and locating coal fires over coal refuse piles at Scranton, Pennsylvania, 

U.S. with its thermal camera RECONOFAX Infrared Reconnaissance System 

(Slavecki 1964). Visual interpretation of the thermal infrared imagery showed refuse 

piles under fire as 'hot' light toned areas. These hot areas were also correlated with 

ground photos where areas of red ash typically represented surface burning. At two 

locations 'hot' light toned areas on the aerial photographs had no corresponding red- 

ash on ground photos. It was concluded in this case that fires were in fact burning but 

had not reached the surface of coal refuse piles. 

3.2.1.2 Isolating coal fres using daytime and night-time thermal data 

Greene et al. (1968, 1969) conducted aerial infrared surveys of twenty-two coal mine 

fires in the anthracite field of Pennsylvania and in the field near Pittsburgh, U.S. Aerial 

infrared data in the 8-13 pm range was used in this study. This data was collected just 

before dawn since a maximum thermal contrast between fire areas and their 

surroundings is expected at this time. In addition to this, thermal infrared imagely was 



also acquired during the daytime as surface temperature measurements suggested that 

the intensity of the underground fires at certain locations would make their detection 

possible on daytime imagely as well. This study brings out some interesting points in 

terms of isolation of fires from other areas on daytime and night-time (or pre-dawn) 

thermal imagely (Rathore & Wright 1993). 

Although thermal anomalies caused by mine fires were detectable on both imageries, 

areas of bare rock outcrops, which are hot during the daytime, appeared warm on the 

daytime imagery creating confusion with areas of underground fres. In contrast, water 

bodies appeared warm on the night-time imagely and created a similar confusion with 

mine fires. The twenty-two underground fres considered in this study were 

categorized in relation to the depth at which they were burning (shallow, intermediate 

or deep). The categories included shallow fres, where the burning coal was within 10 

meters of the surface, intermediate fires where the burning coal was between 10-30 

meters and deep fres where the burning coal was at a depth greater than 30 meters. It 

was found that shallow fires could easily and successfully be detected on the thermal 

infrared imagely. Intermediate fires were detected where heat was carried to the 

surface through open cracks, fractures or bore holes by convection or by conduction 

through the overburden material at those places where fires were burning for a vely 

long time. Deep fres were detectable only at places where heat was transferred by 

convection through fractures or cracks as it would take a considerably longer time 

(somewhere around 10 years) for conductive heat to manifest at the surface from 

depths greater than 30 meters. This study also calculated the age of a deep mine f r e  

using the equation of linear heat flow in a semi-infmite medium. 

Some other examples of the use of airborne thermal infrared data to locate coal fires 

around the 1970s include Moxham & Greene (1967), Knuth et al. (1968), Fisher & 

Knuth (1968), Rabchevsky (1972), Ellyett & Fleming (1974). 

3.2.1.3 Detecting coal fres using multi-spectral thermal remote sensing 

Since the 1980s, China and India, both suffering greatly from coal fire problems, 

started airborne multi-spectral remote sensing investigations on coal fires. In China 

during 1982-1986, Multi-spectral scanner data, dual band thermal infrared scanner data 



(3-5pm and 8-12.5pm), and color infrared aerial photographs were used for detecting 

coal fires in Taiyuan Xishan, Shanxi (Gum 1984, Li 1985), Ruqigou, Ningxia (Huang 

et al. 1991), Shenfu, Shaanxi (Feng 1990, Kang 1991), respectively. In cooperation 

with Russia, India started using airborne multi-spectral data for coal fire mapping in 

the Jharia coal field during 1984-1987 (Bhattacharya et al. 1991, 1994, Bhattacharya & 

Reddy 1994, Mansor et al. 1994, Mukherjee 1991, Prakash et al. 1995a, b). 

Zhang (1998) conducted a study on detection of coal fres in Kelazha, Xinjiang, China, 

in an anticline of 8 km long and 2 km wide. There three middle Jurassic coal seam 

layers, with a thickness of 20m, 6m, and 2m, respectively, were suffering spontaneous 

combustion. Hangding-40 Airborne Multi-spectral Scanner data, acquired at daytime 

and night-time in July-August 1992, were used in the study. The data included six 

bands, which were in 0.45-0.51pm, 0.53-0.61pm, 0.61-0.69pm, 0.69-0.77pm, 3-5pm, 

8-12.5pm wavelength region of the electromagnetic spectrum. Based on the field 

thermal measurements, thermal anomalies caused by coal fires were grouped into 3 

categories: low amplitude (up to 20°C above the background), medium amplitude (20- 

120°C above the background) and high amplitude (over 120°C above the background). 

Night-time band 8-12.5pm data clearly showed coal fires and background areas. 

However, the disadvantage for this night-time data is saturation at medium and high 

amplitude areas. Daytime band 8-12.5pm image was used to detect medium amplitude 

thermal anomalies, which represent partial underground coal fires with partial solar 

heating of non-burning coal seams and black shale with higher emissivity. Daytime 

band 3-5pm data provided information both from the spectrally reflected solar 

radiation and radiation from high amplitude surface thermal anomalies of the 

underground coal fires. Daytime band 0.61-0.69pm data were used to adjust the band 

3-5pm data for reducing the effects of the spectrally reflected solar radiation. The 

adjusted image showed the enhanced high-amplitude thermal anomalies of the 

underground coal fires. Three bands of data have been fused to integrate the 

background, low, medium, and high amplitude thermal anomalies, which were highly 

correlated to the field thermal measurements. On the basis of spatial patterns of 

thermal anomalies and the underground coal fire spreading models set up through field 

observations, the spreading direction of underground coal fires was inferred into three 



groups, namely upward, downward and lateral. Comparing daytime and night-time 

band 8-12.5pm data, the solar heated coal seams were detected as areas that may have 

the occurrence of high-risk coal fres occurring in the future. This study brings out 

some interesting points in terms of coal fire spreading direction detection and coal f r e  

favorite area prediction from multi-spectral airborne data. 

Airborne thermal remote sensing for detecting coal fires has several advantages. It is 

time independent. Data can be acquired in daytime and night-time, at any hour, in any 

season. Time independence makes it possible to get the optimal image with the highest 

contrast between coal fire areas and the background. It is also height independent. 

Flying height decides the spatial resolution of an image. High spatial resolution data 

are essential for detecting coal fires with a small size. It is temperature independent, 

too. Most scanners are now equipped with internal temperature calibration sources, 

which are mounted on either side of the angular field of view. The scanner records the 

radiant temperature of the frst calibration source, then sweeps the terrain, and fmally 

records the temperature of the second source. Calibration source could be set at 

temperatures of different degrees respectively. These reference temperatures provide a 

scale for determining the terrain temperature. Through adjusting the two calibration 

sources, data with the interested temperature range can be acquired. The disadvantage 

of airborne thermal remote sensing for detecting coal fires is the high price for data 

acquisition. 

3.2.2 Using space-borne thermal remote sensors for detecting coal fire thermal 

anomalies 

There are several satellite systems with thermal infrared sensors at spatial resolution 

ranging from 60m to l.lkm in operation. The Advanced Very High Resolution 

Radiometer (AVHRR) aboard NOAA has a spatial resolution varying from l. lkm at 

nadir up to 8km at the border of the image. Along Track Scanning Radiometer 

(ATSR), another data source for thermal anomaly detection, on board of ESA's ERS-l 

satellite has a spatial resolution of approximately one kilometer. Moderate Resolution 

Imaging Spectroradiometer (MODIS) aboard the Terra (EOS AM-1) satellite, which 

was launched in December 1999 and began collecting science data in Februruy 2000, 



and has a spatial resolution of lkm. The Russian RESURS-l has a spatial resolution of 

about 600m. The Bi-spectral InfraRed Detection (BIRD) on the small BIRD satellite, 

which is a German f re  remote sensing satellite, launched in October 2001, has two 

bands at the wavelength of 3.4-4.2pm and 8.5-9.3pm with a spatial resolution of 

370m. Advanced Space-borne Thermal Emission and Reflectance Radiometer 

(ASTER), also aboard the Terra (EOS AM-l), spans the 8-12pm region with five 

contiguous bands and enables the possibility of multi-channel split window 

thermometry at 90m resolution Fable et al. 1996). Thematic Mapper (TM) band 6 

(10.4 to 12.5pm) on Landsat 5 has a spatial resolution of 120m; Enhanced Thematic 

Mapper (ETM+) band 6 (10.4 to 12.5pm) on Landsat 7, launched in April 1999,60m. 

The advantage of space-borne remote sensing for coal fire detection is that it is 

repeatable, cheaper in data acquisition, and easy multi-band manipulation. The 

disadvantage is the relatively coarse spatial resolution. 

3.2.2.1 NOAAAVHRR 

NOAA AVHRR has several bands in the thermal infrared region, channel 3 (3.55- 

3.93pm), channel 4 (10.3-11.3pm), and channel 5 (11.5-12.5pm on NOAA- 

7,9,11,12&14). This data source has been extensively studied and used for forest fire 

detection and for biomass burning at national, continental, and even global scales, as 

the data is acquired globally on a daily bases with both daytime and night-time data 

acquisition (Belward et al. 1994, Chuvieco & Martin 1994a, b, Chuvieco & Salas 

1996, Kaufman et al. 1992, Kennedy et al. 1994, Lopez et al. 1991, Pereira & Setzer 

1993, Pereira & Setzer 1996). NOAA-AVHRR data are suitable for studying and 

monitoring volcanoes (Harris 1995). The frst  published research to detect 

underground coal fires using NOAA AVHRR data has been carried out by Mansor et 

al. (1994). They reported the potential capability of the AVHRR band 3 data to detect 

the subsurface coal fres in the Jharia coal field in India. They proposed that the good 

thermal contrast between the coal fire area and its surroundings in the night-time data 

leads to detection. In the meantime it was reported that the coal fires did not reveal any 

significantly higher thermal anomalies in the other thermal bands of AVHRR (channel 

4 and 5). Zhang (1998) tried to use AVHRR data for detecting underground coal fires 

in northern China. The research provided no positive or reliable results. It was 



mentioned that AVHRR's spatial resolution was too coarse for coal fire detection. 

MODIS has four bands (band 20: 3.660-3.840pm, band 21: 3.929-3.989pm, band 22: 

3.929-3.989pm and band 23: 4.020-4.080pm) similar to AVHRR channel 3 with lkm 

spatial resolution. BIRD has one band at the wavelength of 3.4-4.2pm, but a better 

spatial resolution of 370m. With these two new sensors, better results can be expected. 

3.2.2.2 Landsat TM (ETM+) band 6 

Landsat TM band 6 (daytime and night-time) data were the space borne data with the 

highest spatial resolution (120m) available in the 1990s. Daytime TM band 6 data 

acquired between 9:30 and 10:30 a.m. were used for detecting underground coal fres 

by numerous authors (Bhattacharya et al. 1991, 1996, Cracknell & Mansor 1992, 

Mansor et al. 1994, Prakash et al. 1995a, 1995b, Saraf et al. 1992,1995, van Genderen 

et al. 1996, Wan & Zhang 1996a 1996b). Night-time TM band 6 data have the 

advantage of easing the removal of daytime solar heating effects. But they were 

difficult to be registered to the base map. They were used by Zhang (1998) and 

Prakash et al. (1999) to detect coal fires in Xinjiang and Ningxia, China, respectively. 

Density slicing method with the threshold decided by trial and error technique was the 

identical method for isolating coal fire areas in all studies. 

Saraf et al. (1992, 1995) conducted a typical research in the Jharia coal field, India. 

They compiled the data and maps of coal fires from the field organizations to a coal 

fire base map. Then density slicing technique was adopted to identify the threshold 

digital number (DN) for discriminating pixels related to subsurface coal fire from non- 

fire ones. The field data of subsurface coal fires served to control the satellite thermal 

data processing and interpretation at different stages. Trial and error technique was 

adopted for density slicing using TM band 6 DN-values. It was observed that TM band 

6 DN 1371138 threshold in the data set provided a reasonable and overall best match 

for discriminating non-fire areas from the fire areas. The pattern of TM band 6 digital 

numbers was converted into kinetic temperature values. It was observed that for the 

Landsat-TM scene (28 November 1990) the kinetic temperatures ranged from 16.0°C 

to 31.6"C in the Jharia coal field, with a threshold value of 25.6"C associated with the 

anomalies. Six classes were classified: thermal anomaly (TM band 6), coal fire (field 



data), coal fires observed on the Landsat data and matching with field maps, coal fires 

that had laterally shifted since mapped, coal fires that were mapped in field but not 

sensed by TM, coal fres that had probably just started. It was indicated that the 

limitations arose from the following factors, such as: rather coarse spatial resolution of 

120m of TM band 6, ignoring the atmospheric effects, non-uniform background 

temperature, ignoring lateral variation in spectral emissivity of the ground material, 

etc. 

Reviews on surface temperature estimation using TM band 6 have been given by 

Gupta (1991), Kahle (1980), Markham & Barker (1986), Reddy et al. (1993), and 

Rothev et al. (1988). In brief, surface temperature calculation needs three steps. The 

first step is converting image DN's value back to spectral radiance. The second step is 

calculating radiant temperature from spectral radiance. The third step is transferring 

the radiant temperature to surface temperature. During this step, the emissivity of the 

surface must be known (Becker 1987, Becker & Raffy 1987, Becker & Li 1990a, b, 

Col1 et al. 1994, Gaikovich 1994, Hook et al. 1992). Normally the emissivity value is 

between 0.8-1 for most natural materials. For the sandstone, shale and the burnt rocks 

the emissivity can be selected as 0.97 (Li 1985, Neny et al. 1990, Salisbuy & D'Aria 

1992, Zhang 1998). It should be mentioned here that for discriminating coal fires it is 

not always necessruy to calculate the surface temperature from the image due to the 

linear relationship between the digital number and the surface temperature in a certain 

image. 

The sixteen-day repeat cycle of Landsat makes TM (ETM+) band 6 (both during day 

and night) an ideal data source for monitoring of underground coal fires, and for 

checking the effectiveness of fire fighting and extinguishing activities being carried 

out. However, as the spatial resolution of the thermal channel on Landsat TM band 6 is 

120 m, small or deep coal fres are often not detected (Zhang et al. 1997a). With the 60 

meters spatial resolution of ETMf band 6 on board, this could be improved. Another 

way to improve the results is using ASTER data, which has 5 bands in the thermal 

infrared region (Band 10: 8.125-8.475pm, Band 11: 8.475-8.825pm, Band 12: 8.925- 

9.275pm, Band 13: 10.25-10.95pm and Band 14: 10.95-11.65pm) with a spatial 

resolution of 90m. 



3.2.2.3 Landsat TM (ETM+) Band 5 and band 7 

During 1990s researchers also started to use short wavelength remote sensing such as 

band 7 (at the wavelength range of 2.08-2.35pm) and band 5 (at the wavelength range 

of 1.55-1.75pm) of TM data for the detection of high extensive hot sources such as 

volcanoes and surface coal fires (Andres & Rose 1995, Rothely et al. 1988,1990, 

Francis & de Silva 1989, Abrams et al. 1991, Bhattachalya et al. 1993 , Gupta & 

Badrinath 1993, Prakash et al. 1997, Reddy et al. 1993), because these high extensive 

hot sources can cause the greatest increase of radiance on the shortwave imagely. 

Using band 5 and band 7, the surface temperature can be calculated (Oppenheimer et 

al. 1993, Rothery et al. 1998). Furthermore, the size and temperature of the hot sources 

covering sub-pixel areas can also be retrieved by using band 5 and band 7 through a 

so-called dual-band method proposed by Dozier (1981) & Matson & Dozier (1981). 

Unlike the thermal infrared region of the spectrum where there is negligible reflected 

solar radiation and measured radiance is virtually all thermal in origin, thermal 

radiance at shorter wavelengths is combined (in daytime data) with solar radiance 

which has been reflected by the surface and scattered by the atmosphere. To correct it, 

the neighbor non-thermal pixels could be used to subtract from the thermal anomaly 

pixels. This dual band method to detect sub-pixel coal fres was applied by Zhang 

(1998) and Prakash et al. (1999b) in Xinjiang coal fire area and Jharia coal fire area 

respectively. The results fitted the field measurements. However, the method is limited 

by assumptions about the solar reflected component, the background temperature, the 

spectral emissivity, etc., and particularly by the availability of only two SWIR bands in 

the TM sensor. ASTER data with a spatial resolution of 30m and 5 SWIR bands (Band 

4: 1.600-1.700pm, Band 5: 2.145-2.185pm, Band 6: 2.185-2.225pm, Band 7: 2.235- 

2.285pm, Band 8: 2.295-2.365pm and Band 9: 2.360-2.430pm) supply a better 

solution to overcome the shortage of bands availability. 

3.2.3 Influence factors in the isolation of fires from other areas 

There are a number of factors that are important in the application of thermal remote 

sensing to detect coal fires. The factors of relief, vegetation, and soil moisture often 

produce anomalous tones and patterns on thermal infrared imagely which for our 



purpose are merely noise and artifacts which needs to be recognized and eliminated 

either before the survey is flown or during interpretation of the resulting imagery. 

Because the aspect and dip angle decide the radiant time and density of the sun, the 

morphology has a strong relation with the reflectance and radiant temperature of an 

object (Dave & Bemstein 1982). Guan & van Genderen (1997) measured in the field 

that the different points on a small hill have different temperature. Figure 3.4 shows 

positions and temperatures of their measurements. The hill is a light yellow mud hill 

with a relative high difference about 10 meters. The aspect of the hill's axis is 310". 

The measurements were done at the local time12:OO-12:05, when the sun zenith is 

33.6" and the sun azimuth is 174". It can be seen that the temperature difference could 

reach 18°C. Ellyett & Fleming (1974) mentioned that shadow effects are obvious on 

the midday image and the evening image shows that slopes with a northwest aspect 

still remain warmer than southeast-facing slopes. Effects of anisotropic surface heating 

are minimal on the dawn image and the slopes with different aspect have virtually 

reached equilibrium, which becomes the best solution for escaping the relief influence 

for the airborne thermal survey. For space borne thermal data, even though the best 

time can not be chosen, but the relief influence can be corrected through image 

processing methods (Holben & Justice 1981, Justice et al. 1981, Kawata et al. 1988). 

Deng et al. (2001) tried to reduce the effect of solar radiation on TM thermal infrared 

images, and extracted the thermal anomalies caused by coal fires using neural network 

training. Wan & Zhang (1996a, b) tried to use a digital elevation model (DEM) to 

reduce the anisotropic surface heating effects. 
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Figure 3.4: Surface temperatures of a light yellow mud hill. Temperatures were 

measured at the local time12:OO-12:05, when the sun zenith is 33.6" and the sun azimuth 

is 174" (After Guan &van Genderen 1997). 

Materials with different colors have different radiant temperatures. Guan & van 

Genderen (1997) measured the temperatures of two mudstones, one with the brick-red 

color and the other with light yellow color. They located in one slope with the same 

strike and the same dip angle. The distance between them was 1 meter. The 

measurements were 42°C for the light yellow one and 48°C for the brick-red one, a 

difference of 6°C. 

For the other influencing factors, such as soil moisture, and vegetation, etc., 

measurements (the reading were made in April 1972 between 10:30 and 12:50 hours 

under fine weather conditions) indicate that soil overlying sediments is some 4°C 

hotter than that overlying basalt, areas of damp soil over both rock types were up to 

3°C cooler than the dry soil, and a difference of 10°C was observed between the sun- 



facing sparsely vegetated basalt area and the heavily grassed southeast facing slope 

(Ellyett & Fleming 1974). It is reported that the wind influenced the radiant 

temperature of the surface (Sabins 1996), which Singh (1994) also confrmed for water 

surfaces. 

3.3 Summary and Discussion 

When using thermal remote sensing data to detect coal fires, the factors of relief, 

vegetation, soil moisture, etc. often produce anomalies on imagev which for our 

purpose are merely noise that needs to be recognized and eliminated. The background 

temperature, the quality of the thermal remote sensing data, and the significance of the 

coal fres are the factors which determine the detectability of coal fires. Surface 

temperature could be calculated according to the calibration sources in the airborne 

thermal sensor, or according to Plank's formula for the space sensor, such as Landsat 

TM (ETM+). Then the front, depth, and age of a fire can be inferred through coal f r e  

thermal models (Cassells & van Genderen 1995, Cassells et al. 1996). At the mean 

time the atmospheric influence should be also considered and corrected with different 

methods (Bartolucci et al. 1988, Cooper & Asrar 1989, Desjardins et al. 1990, Eymard 

& Taconet 1995, Li & McDonnell 1988, Ouaidrari et al. 1994, Singh 1984, Sobrino et 

al. 1991, Vidal 1991, Wukelic et al. 1989). 

Since the first test in 1964, airborne thermal remote sensing to detect coal fres has 

been successfully applied in a number of countries, such as United States, Australia, 

India, and China. The method is practicable nowadays because the spatial resolution 

and the acquisition time can be chosen according to the purpose of the campaign. This 

allows reducing anisotopic illumination of the terrain by the sun and also makes the 

detection of coal fres of small size feasible. For airborne thermal survey the image 

spatial resolution is given by the fly height of the plane, which is flexible. Normally 3- 

10m spatial resolution image was used for detecting coal fires. The higher the spatial 

resolution is, the smaller the size of coal fires that can be detected. But, the more data 

come, the more time is required for data processing and interpretation. Therefore, it is 

important to choose the suitable spatial resolution for airborne thermal surveys. 



Space borne remote sensing for detecting coal fires, on the other side, is restrained by 

the fixed overflight time and spatial resolution. The relatively coarse spatial resolution 

is one main limitation of spaceborne data. Zhang et al. (1997a) mentioned that Landsat 

TM night-time thermal data are suitable for regional coal fire investigation, but for 

early detection of coal fires with a relatively small size and low temperature, their 120 

m spatial resolution is still too coarse. Higher spatial resolution Landsat thermal image 

could be simulated (Liu & Moore 1997), but it is not suitable for the purpose of coal 

fire detection. All previous studies using space borne data were using GIS (with coal 

fires distribution map) based trial and error density slicing method, which is only 

suitable for the known areas (Chen 1992, Reddy & Bhattachava 1995, Vekerdy &van 

Genderen 1999, Vekerdy et al. 1999, Zhang et al. 1997a,b, 1998). So far the methods 

have not been applied in an operational fashion over large areas. With the ASTER and 

Landsat 7 ETM+ band 6, space borne thermal data with the spatial resolution of 90m 

and 60 m are achieved, which will improve the ability of coal fire detection in large 

areas. 





Chapter 4 DESCRIPTION OF THE STUDY AREAS & DATA SETS 

4.1 Location of the Study Areas 

Three study areas are chosen in the research, which are the Wuda area, the Ruqigou 

area, and the Gulaben area. Figure 4.1 shows their locations. 
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Figure 4.1 Location of the study areas 

The Wuda area includes Wuda coalfield and its surrounding areas in Inner Mongolia 

Autonomous Region. Wuda coalfield is located at 39"28'-39"34'N and 106"36'40M- 

106"38'41"E, and extends for lOkm from North to South and 3-5km from East to 

West, covering an area of 35l-d. The Wuda area lies on the western side of the 

Yellow River, north of the Helan mountain range not far from the border to Ningxia 

Hui Autonomous Region. Northwest of the Wuda area is the Badai Jaran Desert. 

Altitudc in the study ai-ca of Wudavaries from 1010 to 1980 meters above see level. 

The Ruqigou area, located within the northern part of the Helm mountain range, is in 

Ningxia Hui Autonomous Region. Ruqigou coalfield is situated between latitudes 

39"00'54"N and 39"OX'lO"N and between longitudes 106"02'54"E and 

106"11'23"E. It is 14km long and 5.3km wide, covering an area of nearly 54l-d. The 

average altitude is 2000m. The highest peak in the area reaches 2451m. The lowest 

part of the area is at its northeastern limit, with an altitude of about 1800m. 



The Gulaben area is adjacent to the Ruqigou area, but in Inner Mongolia Autonomous 

Region. It is located about 25km west of Shizuishan-Dawukou City and 70 km 

northwest of Yinchuan City. The highest peak of the area is 2725m and the lowest part 

is 1813m. 

4.2 Geography 

4.2.1 Climate and hydrology 

The climate of Wuda, Ruqigou, and Gulaben area is a middle latitude strong 

continental semi-arid to fully arid climate, with large daily and seasonal temperature 

amplitudes influenced mainly by the East Asian Monsoon (Weischet 1988, Xie 2001). 

Winters are cold and long, summers can be very hot, precipitation is low and winds are 

strong. The climate station in Yinchuan (1112m above see level) shows an average 

annual temperature of 8.6OC, an average annual precipitation amount of 193 mm, and 

an average absolute daily maximum and minimum of 39.3"C and 30.6"C 

respectively. Since precipitation in northern Ningxia decreases from the South to the 

North precipitation in Wuda is substantially lower than in Ruqigou and Gulaben. It 

averages 100-150 mm and is distributed to 7-20 days within the year. Annual 

evaporation rates of above 2500 mm lead to a water shortage of the surface flow as 

well as underground (Chen 1997, Kuenzer et al. 2003, Wu & Zhang 2003). 

As a consequence, most fluvial features like creeks, wadis, and small rivers are 

seasonal. One exception is the Yellow River running from South to North through 

Ningxia Autonomous Region and into Inner Mongolia Autonomous Region, being the 

most important water supply for agricultural irrigation. The run off from the mountains 

in the study areas is nearly loo%, due to the sparse development of soil- and 

vegetation cover, accounting for large water volumes transported in the wadi beds in 

times of rainfall or snowmelt (Kuenzer et al. 2003, Rosema et al. 1999). 

4.2.2 Soils and vegetation 

Due to the semi-arid to arid climate soil development in the area is slow. Therefore, 

large areas, especially in the mountains and structural hill slopes, show no soil cover 

but weathered bedrock, a cover of aeolian sand or coarse alluvial fan material. Soils 



occur mainly on the irrigated river terraces of the Yellow River and on its actual 

floodplains as sandy, silty and loamy types. On a global scale the soils of the region 

(except the ones influenced by rivers) belong to the class of grey to brown half-desert 

and desert soils (Driessen & Dudal 1991). 

Vegetation cover is vely sparse too and is dominated by dry desert shrubs with 

partially sclerophyllous leaves, which are commonly Tetranea mongolica, Reaumuria 

soongorica, Bassia dasyphylla and species of Artemisia. Furthermore, in the Helan 

Shan Mountains and on gentle hillslopes and alluvial fans sparsely distributed 

grasslands, partly used for grazing, can be found (Chen 1997, Kuenzer et al. 2003). 

4.2.3 Economy 

The predominant sources of employment are coal mining and related activities. Coal 

mining takes place in state-run, locally-controlled and private mines. Coal mining 

related industy includes coal washing, coal cooking and coal power plants, 

respectively. Here, labour productivity is vely low compared to other countries. The 

average coal output per employee is 163 tlyear which is only 1120th of a worker in e.g. 

South Africa (Daniel 1994). 

Further heavy industries in the area are limestone processing and related calcite and 

cement factories, dolomite processing, brick burning and loess mining, iron melters, 

cokes factories, and carbide factories. A good transportation network of roads and 

railways has been developed, which allows the transportation of coal and other 

products to the neighbouring provinces and bigger cities. 

In addition to industy, the primaly agricultural sector is another main source of 

income for the local inhabitants. Commercially grown food products include corn, 

sunflowers, rice, potatoes, soybeans, vegetables and fruits. These activities are mainly 

restricted to the flood plains of the Yellow River's, irrigated terraces and other 

irrigated areas. Irrigation activities and cultivation of bare land have especially 

increased since the economic reform at the end of the 1980s with resulting land cover 

changes in the Yellow River Valley and plains (Wu & Zhang 2003). 



Typical average work wages range between 700 Yuan per month (ca. 90 €) for a coal 

worker in a state m mine, 400 Yuan per month (ca. 50€) for a middle school teacher 

and less than 160 Yuan (ca. 20 €) per month for a subsistence farmer (Kuenzer et al. 

2003, Sun 2003, Zhang 2003). 

4.3 Geology 

The north-south striking syncline in Wuda coalfield holds a geological reserve of 630 

Million tons of coal. The coal layers originate from Upper Carboniferous and Lower 

Permian times. Quaternary alluvial layers of silt, shale and gravel cover small parts of 

the Permian and Carboniferous outcrops. In the Lower Permian Shanxi Formation 
# # # U #  (PIS), there are 10 coal seams, from upper to lower, named l', 2#", 2 , 3 , 4 , 4  , 4#L, 

5#, 6#, and 7#, embedded with sandstone. The total thickness of the coal seams in the 

formation is 13-19m. The Lower Permian Shanxi Formation is conformably overlain 

on the Upper Carboniferous Taiyuan Formation. In the Upper Carboniferous Taiyuan 

Formation, there are 17 coal seams, named 8#, 9#, 10#, 11#, 12#', 12#, 12#~,  13#U3, 

13#", 13#", 13#, 13#~ ,  14#, 15#, 16#, 17' and 18#, interbedded in different layers of 

coarse to fme-grained white to dark grey or yellowish sandstone and greyish-, brown- 

or green-yellowish shale. The average thickness of the coal seams is 22.6m. Among 

these 27 coal seams, 12 coal seams (l', 2#, 4#, 5#, 6#, 7#, 9#, 10#, 12#, 13#", 13#, and 

15') are stabley distributed and mineable in the coalfield. Seven coal seams (8#, 1 l', 

13#U3, 13#", 14#, 16#, and 17') are mineable in some part of the coalfield. The 

mineable coal seams have an average total thickness of 33.6m. Mineable reserves are 

stated to be 27 Million tons in Wuda coalfield, where coal is mined within the three 

coal mining fields of Wuhushan in the South, Huangbaici in the East and Suhaitu in 

the Northwest. From these fields three different quality types of coal - fat coal, 

cooking coal and steam coal - are being extracted. (Jia 2002, Ma 2002, Sun2003, and 

Zhang 2003). 

The Ruqigou and Gulaben coal fields belong to an asymmetrical Jurassic synclinal 

basin located in the Helanshan at the western rim of the Paleo-Mesozoic sedimentary 

Ordos Basin. The syncline covers an area of approximately 80 W. Gulaben area is 

located at the western rim of Ruqigou syncline turning into Houlugou anticline. The 10 



main coal seams of the two regions were deposited under lacustrine-fluvial conditions 

during the Middle Jurassic and are well exposed nowadays due to the Yanshanian 

uplift and erosion (Zhang, 1997). Among the 10 main coal seams, only some of them 

are minable. Most mining activities are concentrated in the coal seam 2, which consists 

of several, discontinuous splits. Average coal rank is high and ranges from low volatile 

bituminous coal to high quality Anthracite, resulting in a v e q  good export market. 

Ruqigou and Gulaben area together hold a proven geologic reserve of 1.040 million 

tons with prospects of nearly 1 billion tons. The coal seams are interbedded in different 

layers of older Triassic (Yanchang formation) and younger Jurassic (Zhiluo formation) 

fine to coarse grained white to grey sandstones, purplish red mudstones, yellow-green 

siltstones and shale, occasional deposits of claystones and interbedded conglomerates 

(Chen 1997). 

4.4 Coal Fires 

4.4.1 Coal fires in Wuda 

In the Wuda coal field, most coal seams have a gentle dip angle of 5"-8". In the most 

southern part of the coal field, close to the axis of the syncline, coal seams have a dip 

angle of 8"-12". Only the coal seams close to the fault in the eastern part of the coal 

field have a high dip angle. The small mines operate the dip direction from the outcrop 

of the coal seam into the underground. The deepest mine digs 400-800m from the 

mining entrance into the seam; the deepest coal fire is not deeper than 50m. Most coal 

fires in the Wuda area have started from the surface outcrop of the coal seams. They 

bum down along goafs. When they meet a coal mined area, they become stronger due 

to the improved ventilation. When pillars have been burnt out, land subsidence may 

occur. Cracks with high temperature on the surface are formed. The last crack on the 

surface usually corresponds with the front of the coal f r e  underground. According to 

the geomorphology, the coal fire areas can be easily demarcated on the map with the 

help of GPS measurements and temperatures measurements. Table 4.1 shows 

characteristics of the 17 coal fires investigated in the 2002 field work, in the Wuda 

area, including location, perimeter, area, and burning coal seam. The total coal fire 

area in the Wuda coalfield is 2,85km2. 



Table 4.1 Dimensions of coal fires in the Wuda coalfield 

The first coal f r e  in Wuda started in 1961 due to spontaneous combustion of coal. In 

1980s, more coal fres ignited due to the private mining activities in the area. In 2002, 

coal fres are distributed in most of the coalfield as shown in Figure 4.2. 



Figure 4.2: Coal fires in the study areas. Right: Wuda area; Left: Ruqigou and Gulaben 

area. Red: coal fire area mapped in the field; Green: thermal anomalous pixels 

interpreted from the background image; Background image: nighttime Landsat 7 band 

6, 226-211, received on 28 September 2002; Number 1-45: coal fire name number. Coal 

fires in Wuda area have been numbered from 1-17. Coal fires in Gulaben area have been 

numbered from 21-25. Coal fires in Rujigou have been numbered from 31-45. 

4.4.2 Coal fires in Ruqigou 

Coal seams in Ruqigou coalfield have gentle dip angles like in Wuda. Most coal fires 

started from the surface outcrop of the coal seam and burnt into the underground. 

Some of the coal fires reach depths of up to 100m. Most coal fires occur in coal seam 

2' and 3'. There are a total of 16 coal fres in Ruqigou coalfield according to the 2002 

field investigation. Figure 4.2 shows their distribution. Table 4.2 shows their 

dimensions. The total coal f r e  area of the Ruqigou coalfield is calculated as 4,36kmz. 



Table 4.2 Dimensions of coal fires in the Ruqigou coalfield 

4.4.3 Coal fires in Gulaben 

In the Gulaben coalfield, coal seams have a steep dip angle of 45"-60". The minable 

coal seams usually have a very short distance from one to the other. Coal fres are 

limited from the outcrop areas as shown in Figure 4.2. Table 4.3 shows their 

dimensions. The total coal f r e  area of the Gulaben coalfield is calculated as 1,80km2. 

Table 4.3 Dimensions of coal fires in the Gulaben coalfield 

F~re 

21 

22 

23 

24 

25 

Coord~nate (WGS 84, Zone 48) 

(591 796, 4323666) 

(592601, 4324554) 

(593461, 4325692) 

(59351 7, 4323527) 

(593573, 4320834) 

Per~meter (m) 

4057 

2595 

2602 

74 1 

5418 

Area (m2) 

545038 

251360 

254596 

37094 

712815 



Except Coal fire 21, which started about 100 years ago with an unclear ignition source, 

the other four coal fres were all caused by the careless spreading of man-made fires in 

the mine for heating in the winter time. The coal in the Gulaben coal field is high 

metamorphosed anthracite. It is unlikely to experience spontaneous combustion. 

4.5 Coal Mining 

Coal mining in the study areas started about one hundred years ago. The early coal 

mining was in the hands of private entrepreneurs. Often with limited means, the 

mining operations were confined along the outcrop regions and the shallow places. The 

extensive state-controlled coal mining was started in the 1960's. These state-controlled 

coal mines are mainly distributed in the following areas: the Baijigou coal mine area, 

the Dafeng coal mine area, and the Ruqigou coal mine area in the Ruqigou coalfield; 

the Wuhushan mine area, the Huangbaici mine area, and the Suhaitu mine area in the 

Wuda coalfield; and Gulaben mine area in the Gulaben coalfield. Because of the good 

accessibility of the coal seams, the small private pits are still playing a vital role. They 

spread over the whole study area (Chen 1997). 

Next to underground mining, open cast mining is one of the major extraction methods 

in the study areas. It is mainly used in those places where the coal seams are shallow 

and the bedding planes are gentle. With this method a large amount of overburden has 

to be removed from above the coal seam and a lot of waste is produced. There are two 

kinds of open cast mining in the study areas. One is to remove the overburden above 

the coal seam completely as done at the Dafeng coal mine shown in Figure 4.3. The 

other is to remove the overburden partially, which usually takes place under steep 

scarps and is employed in many places as one shown in Figure 4.4. 



Figure 4.3 Open cast mining in Oafeng coal mine, Ruqigou coalfield 

Figure 4.4 Open cast mining in a private pit, Wuda coalfield 

4.6 Data Available 

For this research the followmg data were available: 

Geological and tectonic map of the Nmgxia Hui Autonomous Region 

(1:350,000) 

a Geological map of Wuda coalfield (1.5000) 

Coal fire distribution maps of the study areas (1:5000) 

A number of papers and reports with relevant coal fire and coal geology 

information of the study areas 



Seven scenes of Landsat-7 ETM+ data covering the study areas and a coal f r e  

area in Xinjiang acquired during daytime and night-time 

Plenty of field temperature measurements 





Chapter 5 THEORY 

5.1 Thermal Processes and Properties 

All matter radiates energy at thermal infrared wavelengths (3 to 15pm) both day and 

night. This radiation can be recorded as images. To interpret thermal infrared images, 

it is necessruy to understand the basic physical processes that control the interactions 

between thermal energy and matter, as well as the thermal properties of matter that 

determine the rate and intensity of the interactions (Sabins 1996). 

5.1.1 Heat, temperature, radiant flux and heat transfer 

Kinetic heat is the energy of particles of matter in a random motion. The random 

motion causes particles to collide, resulting in changes of energy state and the emission 

of electromagnetic radiation from the surface of materials. The internal, or kinetic, heat 

energy of matter is thus converted into radiant energy. 

Temperature is a measure of the concentration of heat. On the Celsius scale, 0°C and 

100°C are the temperatures of melting ice and boiling water, respectively. On the 

Kelvin, or absolute, temperature scale, OK is absolute zero, the point at which all 

molecular motion ceases. The Kelvin and Celsius scales relate as follows: 

Where T, is temperature in Celsius and Tk is temperature in Kelvin. 

The electromagnetic energy radiated from a source is normally expressed as radiant 

flux and is measured in watts per square centimeter. The concentration of kinetic heat 

of a material is called the kinetic temperature and is measured with a thermometer 

placed in direct contact with the material. The concentration of the radiant flux of a 

body is the radiant temperature. Radiant temperatures can be measured remotely by 

nonimaging devices called radiometers. The radiant temperature of materials is always 

less than the kinetic temperature because of a thermal property called emissivity, 

which is defined as radiant flux from a real material divided by the radiant flux from a 



blackbody. A blackbody is a theoretical material that absorbs all the radiant energy that 

strikes it. 

Heat energy is transferred from one place to another by three means. 1). Conduction: it 

transfers heat through a material by molecular contact. 2). Convection: it transfers heat 

through the physical movement of heated matter. 3). Radiation: it transfers heat in the 

form of electromagnetic waves. 

5.1.2 Radiant energy peaks and Wien's displacement law 

For an object at a constant kinetic temperature, the radiant energy, or flux, varies as a 

function of wavelength. The radiant energy peak (A,,) is the wavelength at which the 

maximum amount of energy is radiated. Figure 5.1 shows radiant energy curves for 

objects ranging in temperature from 300Kto 600K. As the temperature increases, the 

total amount of radiant energy increase and the radiant energy peak shifts towards 

shorter wavelength. This shift, or displacement, to shorter wavelengths with increasing 

temperature is described by Wien's displacement law. 

where T d  is radiant temperature in degrees Kelvin and 2897 pm.K is a physical 

constant 



Wavelength (pm) 

Figure 5.1: Spectral distribution curves of energy radiated from objects at different 

temperatures. The radiation peaks are 9.7pm, 7.2pm, 5.8pm and 4.8pm for temperatures 

of 300,400, 500 and 600 K respectively. 

5.1.3 Blackbody concept, emissivity and radiant temperature 

The concept of a blackbody is fundamental to understand the principles of heat 

radiation. A blackbody absorbs all the radiant energy that strikes it, also radiates all of 

its energy in a wavelength distribution pattern that is dependent only on the kinetic 

temperature. 

According to the Stefan-Boltnnann law, the radiant flux of a blackbody (Fb) at a 

kinetic temperature of Tkin is 

Where G is the Stefan-Boltnnann constant (5.67 * 10~" ~ . c m ~ ~ .  K ~ ~ ) .  

A blackbody is a physical abstraction, because no material has an absorptivity of 1 and 

no material radiates the full amount of energy given in the Equation (3). For real 

materials a property called emissivity (E) has been defmed as 



where F, is radiant flux from a real material 

The emissivity for a blackbody is 1, but for all real material it is less than 1. Emissivity 

is wavelength-dependent, which means that the emissivity of a real material will be 

different when measured at different wavelengths of radiant energy. Materials with 

high emissivities absorb large amounts of incident energy and radiate large quantities 

of kinetic energy. Materials with low emissivities absorb and radiate lower amounts of 

energy. 

Most thermal infrared remote sensing systems record the radiant temperature ( T d )  of 

terrain rather than radiant flux. 

5.2 Radiant Temperature Retrieve from Airborne IR Scanners and Landsat-7 

ETM+ Band 6 

5.2.1 Airborne IR scanners and their radiant temperature retrieval 

The radiant temperature of airborne infrared scanners can be retrieved using the 

following equation: 

BB, - BB, T,,, =BB,+DNx 
ON,,  

Where Ti~Ni  is the pixel integrated temperature. BB, and BB2 are two reference 

temperatures of internal blackbodies installed in the sensor. DN is the digital number 

from thermal data. DN,, is the maximum value the image recorded. 

5.2.2 Radiant Temperature retrieval for the example of Landsat ETM+ band 6 

The procedure for converting the DN value of ETM+ band 6 to the surface temperature 

includes the following three steps: 



Stepl. Converting image DN's value back to spectral radiance 

For Landsat 7, ETM+ band 6, image pixels are converted to units of absolute radiance 

using 32 bit float point calculations during 1G product rendering. Pixel values are then 

scaled to byte values prior to media output. The following equation is used to convert 

DNs in a 1G product back to radiance units (Landsat Project Science Office 1998, 

Wang 2002). 

Radiance = gain X DN + offset (7) 

Which is also expressed as: 

Where the LA is the spectral radiance of a band. The L,, and L,, are the spectral 

radiances for each band at digital number 1 and 255, respectively. One set exists for 

each gain state. These values will change slowly over time as the ETM+ detectors 

loose responsivity. For ETM+ band 6 Low Gain, L,, = 0.0 (w.m2 .sr~'. Irrn~'), and 

L,, = 17.04 ( ~ . m ~ '  .sr-'. Irrn-'). For high Gain, L,, = 3.2 ( ~ . m - '  .sr~' .  Irrn-'), and 

L,, = 12.65(w.m-' .sr~' .  Irrn-'). After putting these parameters into equation (8), we 

can use the following equation to calculate the radiance for ETM+ band 6 low gain and 

high gain: 

Where, L z  is the radiance for the DN in ETM+ band 6 low gain, and Lm is the 

radiance for the DNin ETM+ band 6 high gain. 

Step 2. Calculating radiant temperature from spectral radiance 

The radiant temperature can be converted from spectral radiance according to Planck's 

equation, which expresses the relation between the spectral radiance and the radiant 

temperature. This is the effective at-satellite temperatures of the observed Earth- 



atmosphere system under an assumption of unity emmissivity and using pre-launch 

calibration constants. The conversion formula is: 

Where T,d is effective at-satellite temperature in Kelvin. LA is spectral radiance in W, 

m~' .sr-'. pm-'. K1 = 666.09 ( w . ~ '  .sr-'. pm~'). K2 =1282.71 K. 

Step 3. Transferring the radiant temperature to surface temperature 

According to the equation (5), the apparent or the brightness temperature can be 

converted into the kinetic or true temperature of the surface. 

Where Th is the surface temperature at wavelength h. T,d is radiant temperature. And 

E is the emissivity of the surface. 

Emissivity values in the spectral region of the ETM+ thermal band range between 0.8- 

1 for most natural materials. For sandstone, shale and the burnt rocks the emissivity 

can be selected as 0.97 (Li, 1985, Nerry et al., 1990, Salisbury & D'Aria, 1992, Zhang 

1998). Surface temperatures in Celsius can be calculated using the equation (1). 

Atmospheric corrections need to be applied in step 1 if the atmosphere influence is 

taken into account. 

Figure 5.2 shows the relation between DNs and Temperature of Landsat 7 ETM+ band 

6. In order to discriminate coal fires it is not necessary to calculate the surface 

temperature from the image due to the one-to-one relationship between the digital 

number and the surface temperature in a certain image. 



Figure 5.2: Relation of DNs and temperature of Landsat 7 ETM+ band 6 
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5.3 Thermal Data of Band 3-5 pm and 8-14 pm for Underground Coal Fire 
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When a physical object, such as a coal fire, radiates a heat flux higher than the 

background (or its neighbourhood), it forms a thermal anomaly on the surface. When 

the heat flux difference between the object and its background can be differentiated by 

a thermal infrared image, the object causes a thermal anomaly in the image. 

5.3.1 Detecting full pixel coal fires 
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When a coal fire related thermal anomaly on the surface is larger than an image pixel, 

the fre  can be called 'full-pixel' coal fre. Otherwise, it may be called a 'sub-pixel' 

coal fire. A full-pixel coal fire is easier to form a thermal anomaly in the image than 

the sub-pixel coal fire. The formation of a thermal anomaly in an image for a coal f r e  

is dependent on the following 4 factors. 1). Remote sensor's working wavelength, 2). 

The image spatial resolution, 3). The temperature and the size of the fire, and 4). The 

I I I I  I I I I  I I I I  I I I I  



temperature contrast between the fire and its background. The night-time band 8-14 

pm image has the highest capability to detect coal f re  induced low temperature 

thermal anomaly. A high spatial resolution image allows more thermal anomalies of 

coal fres to be picked up in the image. It is relatively easy to quantify a full pixel coal 

fire if the pixel DN value is not saturated. Its spatial extension and temperature can be 

derived from the anomalous pixels in the image directly. Care should be taken for the 

fact that nearly all full-pixel coal fires will saturate ETM+ band 6 (Tetzlaff 2004). 

5.3.2 Detecting sub-pixel coal fires 

Field observations and measurements showed that coal fire induced thermal anomalies, 

especially the high temperature anomalies, are usually smaller than the size of a pixel. 

Detecting such small (sub-pixel sized) coal fires is of great importance to identify coal 

fires at their early stage and to pinpoint the coal fire cores. Sub-pixel coal fire detection 

is based on the assumption that a sub-pixel f r e  can be detected when the equivalent 

spectral radiance as a full pixel is larger than the background. 

Spectral radiance L, of a black body with a temperature T (radiant temperature is the 

same as kinetic temperature) at the wavelength 1 can be calculated by using the 

Plank's Equation: 

Where e ,  h, c, and k are constants 

For real material, the radiant temperature (T) of the material can be calculated from its 

kinetic temperature (Th) through the formula (5). 

The radiance of an object with the radiant temperature Tin band 11-12 (L in~~nz)) can be 

calculated by: 



The spectral radiance from the ground to the sensor passes the atmosphere. Suppose 

the atmospheric influence function is An. The radiance from the ground is L,. The 

radiance reached to the sensor is Lfien,,,. 

When the spectral radiance reaches a thermal sensor, the sensor responses and records 

it following the sensor's response function (R,) as shown in equation (16). 

where Lx~,,, is the spectral radiance of the surface reached to the sensor. R, is the 

sensor's response function. And Lu,,,, is the spectral radiance recorded by the image 

of the sensor. 

When a coal fire induced thermal anomaly occupies a sub-pixel area (Figure 5.3), the 

total amount of radiance from the full pixel at the wavelength 1 is (Matson & Dozier, 

1981): 

Where L, is the total spectral radiance of a pixel at wavelength 1. LW is the spectral 

radiance of a coal f re  at wavelength 1. Lib is the spectral radiance of the background 

at wavelength 1. P is the portion of a pixel occupied by a coal fire. 

Figure 5.3: A sub-pixel sized coal fire occupying a portion (p) of the pixel area 



When the recorded radiance from a pixel containing a sub-pixel sized f r e  with a 

portion of P is larger than the radiance of a full pixel of the background, this pixel can 

be detected as a thermal anomaly and the sub-pixel fire is called detected. 

From formula (17), we know: 

Combining formula (13), (14), (15), (16), and putting in the constants, we have: 

From formula (18) and (19), the following formula can be deduced: 

Where, 

P is the portion of a sub-pixel coal fire which can be detected by the image band 

ranging between h1 and h2. 

e is a constant and equals to 2.718281828. 

h1 is the beginning wavelength of a band of a remote sensor in pm 

h2 is the end wavelength of a band of a remote sensor in pm 

Trhr is the threshold radiant temperature in K 

is the background radiant temperature in K 

T F ~  is the sub-pixel coal fire radiant temperature in K 



Equation (20) shows the relation between the size and temperature of a sub pixel coal 

fire which can be detected by images with different range of bands. 

For example, we have three data sets as listed in the frst column in the Table 5.1. They 

are airborne data covering an area in Xinjiang, China, and all have a spatial resolution 

of 7.5m*7.5m. Through calculation we know their background temperatures (TB& as 

well as their threshold temperatures for differentiating the full pixel coal fires (TmJ. 

After we input these values into equation (20), and assign the sub-pixel coal fire with 

different radiant temperatures (TE~), the correspondent portion of the sub-pixel coal 

fire (P) can be calculated and plotted as illustrated in Figure 5.4. 

Table 5.1: Description of three data sets 

Data 

Nighttime 8-12.5 km data 

Daytime 8-12.5 km data 

Daytime 3-5 km data 

Detectable 

time 8-12.5~ m dat 
Night-time 8-12.5~ m 

Not Detectable 

Day time 3-5p m data '\ l 

( 'C) 

15.9 

28.9 

28.9 

Surface temperature of a coal fire (" C) 

T T ~ ~  ( 'c )  

18.6 

33.3 

36 

Figure 5.4: Threshold line of Temperature and portion for detecting a sub-pixel coal fire 

by different data sets. 



Figure 5.4 shows the detection capability of the data sets. A sub-pixel coal fire, with a 

temperature of TI and PI portion of a pixel size, can be plotted in the figure. It can be 

detected when it is located in the upper-right part of the threshold line. Otherwise it is 

not detectable. The night-time 8-12.5~m data curve crosses with the daytime 3 - 5 ~ m  

data curve at the portion of 1.1%, temperature of 165°C. For a sub-pixel coal f r e  with 

a radiant temperature lower than 165"C, the night-time 8 - 1 2 . 5 ~  data have better 

detection capability than daytime 3-5pm data. The 3 - 5 ~ m  data have an increasing 

capability to detect a sub-pixel coal fires with higher (>165"C) temperatures. High 

temperature coal fires contribute more significantly to the 3-5 Bm data than to the 8- 

12.5 pm data. 

Equation (20) can be used in another way for quantifying sub-pixel coal fires. Suppose 

the integrated temperature of an anomalous pixel in a data set (Tr1) is known, as well as 

the background temperature. We want to know what the exact temperature of the sub- 

pixel coal f re  is, and how much portion it occupies. Equation (18) can be used to set 

an equation by using Trl instead of T T ~ ~ .  The problem now is that there are two 

unknown variables (Tpir and P) in one equation. But when the same sub-pixel coal f r e  

form a thermal anomalous pixel in another image, the second equation can be set. For 

instance, we have a thermal anomaly pixel with temperature of 18.6"C in the night- 

time 8-12.5pm data set. The same pixel shows 36°C in the day time 3-5pm data set. 

Then we know that the sub-pixel has a temperature of 165°C and a spatial extension of 

1.1% * 7.5m *7.5m = 0.6m2. 



Chapter 6 THERMAL CHARACTERISTICS OF COAL FIRES 

6.1 Thermal Characteristics of Simulated Coal Fires 

To understand the characteristics of coal fires, an integrated controlled experiment of 

coal fires was conducted on 23rd and 24th of May 2002. The weather on 23rd was 

sunny and on 24th cloudy. Two coal fires, simulating both surface and underground 

coal fires, were ignited at 9:00 o'clock in the morning of the frst day and kept 

continuously burning until 14:OO o'clock in the afternoon of the second day. An 

aeroplane equipped with the Advanced BIRD Airborne Simulator (ABAS) sensor for 

detecting and quantifying thermal anomalies passed over the test area 17 times at 

different flight heights. The ABAS sensor is an airborne sensor, which has the same 

configuration as the satellite sensor BIRD (Oettl, 2003). A spectrometer, named 

MIROR was placed on an observing tower for acquiring the data to determine the gas 

content of coal f r e  plumes. Additionally, a Raytec MP 50 Line Scanner, mounted on 

an observation tower, was tested for the recording of radiant temperatures of the fires. 

The fires were measured on the ground using thermometers. This paragraph 

concentrates on the thermal characteristics of the simulated coal fire. 

6.1.1 Setting of the experiment 

The experiment was located on the site of DLR, Oberpfaffenhofen, Germany. As 

shown in Figure 6.1, an observation tower is located in the center of the northern part 

of the test site. Equipment was placed on the second floor, which is about 10 meters 

above the ground. A concrete path with railway tracks separates the test site into two 

parts: the eastern part and the western part. Both parts were covered by green grass 

with a height of 50cm. We refer to it as 'high grass'. The simulated underground coal 

fire was located in the eastern part and the simulated surface coal f r e  was located in 

the western part. They were 25m away from the tower and 2m away from edges of the 

concrete path. Around the fires, the grass was cut to lOcm height. We refer to this 

second grass type as 'low grass' (See Figure 6.2). 
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Figure 6.1 Map of test site at DLR, Oberpfaffenhofen 



Figure 6.2Settinfi of the Simulated Surface Coal Fire. HG: High grass; LG: Low grass; 

DG: Dry grass; EH: Electric heater; SC: Sand cover. Drawing in the lower right shows 

the dimension of the grill. The sand cover occupies an area of 8.5m*8.5m. 

Figure 6.3 Setting of the Simulated Underground Coal Fire. HG: High grass; LG: Low 

grass. Drawing in the lower right shows the dimension of the grill. Arrows point on the 

measuring spots for FRU, FRUN and FRUW. 



The simulated surface fire was ignited in a metal wire container with dimensions of 

0.5m length, 0.5m width and 0.5m height. The container was fixed on a base supporter 

with a dimension of lm  length, l m  width and 0.5m height. The container was 

constructed using thermal resistant material and was perforated to provide optimal air 

ventilation (See Figure 6.2). An underground coal fire was simulated by covering a 

coal fire by a sand cone. The simulated underground f r e  was held in a similar 

container with dimensions of l m  length, l m  width and 0.5m height (See Figure 6.3). 

The size of the container is four times as big as the one for simulating the surface fire. 

The big container could hold more coal, which could not only make the fire strong 

enough to not be extinguished by the sand cone, but also to make the fire last long 

enough for the measurement cycle. The underground container had an extra ventilation 

system, which are perforated tubes at the bottom of the box. These three tubes were 

2.5m long. They could transport air from outside the covering sand cone into the 

covered coal. At 19:OO o'clock the fire was covered by a sand cone with a height of 

0.5m. This happened 10 hours after the fire was ignited to ensure that the fire had a 

homogeneous temperature distribution. 

A sand covered surface area with dimensions of 8.5m X 8.5m was placed on the 

western part of the test site to simulate a homogeneous environment. The sand was 

white quartz sand with a particle diameter of 0.1-0.5mm, which was the same sand as 

that forming the underground coal f r e  sand cone. The thickness of the sand cover was 

about 4cm. The surface fire container was placed in the center of this sand area (See 

Figure 6.2). An electrical heater was placed in the middle of the two rail tracks. It was 

25 meters away from the observing tower and supplied a thermal calibration for the 

Raytec MP 50 Line Scanner. 

6.1.2 Data acquisition 

During the experiment, the ABAS sensor took airborne IR images of the test site. The 

spectrometer MIROR and the Raytec MP 50 Line Scanner took images of the fires 

from the observation tower. The temperatures of the fres and background were also 

measured on the ground. The ABAS sensor was flown over the test site 17 times at 

14:28-15:13, 05:41-06:23 and 07:57-08:31 respectively. The spectrometer MIROR 



observed the simulated underground fire before and after it was covered by the sand 

cone. The Raytec MP 50 Line Scanner recorded temperatures of the fire areas 3 1 times 

between 14:20-20:37 on the first day and 62 times between 05:33-13:05 on the next 

day. Ground temperature measurements were acquired using a contact thermometer 

and a radiant thermometer. The contact thermometer has three components: a thermal 

sensor, a connecting cable and a digital reading board. When the thermal sensor is put 

in a fire, the reading board gives a value of the temperature of the fire. It had been used 

for measuring the temperature inside the simulated surface fire and the simulated 

underground fre. The radiant thermometer is designed like a gun. When one points it 

on a target, one can see a red laser marker on the target, and can get readings of the 

radiant temperature for the red laser marked area. It had been used for measuring the 

surface radiant temperature of the simulated surface fire, the simulated underground 

fire, high grass, low grass, dry grass, and the sand cover area. Figure 6.1 shows 

locations of measuring spots and their correspondent indexes using the radiant 

thermometer during the experiment. After the simulated underground fire was covered 

by the sand cone, it had 6 measuring spots located on the top of the sand cone (index: 

FRU), the center of the f re  measured by a contact thermomerter (index: FCU), and 

centers of 4 cone slopes facing to the North, East, South and West (index: FRUN, 

FRUE, FRUS, and FRUW). High grass had 6 measuring spots (index: HG1-HG5). 

Low grass had 9 (index: LG1-LG9) and Dry grass had one (index: DG). In the sand 

cover area, there were 25 measuring spots (index: SCll-SC55), which were evenly 

distributed in the area with a distance between two spots of 2 meters. The center spot 

was the simulated surface fire. Each spot was marked by a stick made from green 

paper to make sure that measurements were taken from the same point. Working sheets 

including the drawing of the measuring spots were prepared in advance to save writing 

time. Ground temperature measurements were acquired each hour from 11:OO to 14:OO 

of the next day. During ABAS overpasses the ground temperature measurements of the 

sand cover area were taken at 5 measuring spots instead of 25 measuring spots because 

of time limits. Ground temperature measurements of the coal fire experiment are 

shown in Appendix 1. 



6.1.3 Results 

1. Temperature of coal fres and their thermal anomalies 

The temperature inside the simulated surface fire (FCS) was measured 10 times by 

using the contact thermometer between 11:OO-19:OO. The maximum temperature 

measured was 1080°C. The minimum was 880°C. The mean temperature was 983°C. 

The standard deviation was 64. Temperature inside the simulated surface fire was 

independent upon the air temperature (correlation factor 0.065). 

Surface radiant temperature for the simulated surface fire (FRS) had been measured 34 

times using the radiant thermometer between 11:OO on the 231d -13:OO of the following 

day. Within these 26 hours, the maximum temperature measured was 900°C. The 

minimum was 309°C. The mean temperature was 640°C. Radiant temperature of the 

simulated surface fire could change up to 250°C within one measurement. Radiant 

temperature for some parts of the fire was 65O0C, while at the same time, for other 

parts it was 900°C. The surface radiant temperature of the simulated surface f r e  was 

also dependent on the inside fire temperature. Their correlation factor was 0.68. 

The simulated surface fire was moved away from its original place 4 times during the 

experiment at the time of 14:47, 14:59, 06:Ol and 08:ll. The radiant temperature of 

the sand on the fire spot was measured just a few seconds after the fire was moved, 

which were 49, 34, 45 and 98°C. The correspondent air temperatures (AT) were 26.3, 

28.8, 15.2, and 17.2"C. Measurements at 14:47 and 14:59 showed that the temperature 

of the thermal anomaly formed by the surface f re  drops rapidly when the surface fire 

was moved away. 

After the simulated underground f re  was covered by the sand cone, temperature inside 

it (FCU) had been measured 10 times using the contact thermometer from 19:OO to 

05:OO of the next day. The minimum temperature measured was 842°C. The mean 

temperature was 954°C. The standard deviation was 112. During the last measurement, 

the thermal sensor melted and the thermometer broke. The melting temperature of the 

thermal sensor is 120O0C, which means that temperature inside the simulated 

underground f r e  reached over 1200°C. 



The surface radiant temperature of the 5 measuring spots (FRU, FRUN, FRUE, FRUS, 

and FRUW) for the simulated underground fire was measured 11 times using the 

radiant thermometer from 19:15 to 04:45 of the next day. The results are shown in 

Figure 6.4. It can be seen that at 19:15, which is just a few seconds after the sand cone 

had been built, the top measuring spot of the sand cone (FRU) had a 3.5"C lower 

temperature than the maximum temperature of the background. Here we use the four 

corner measuring spots SC11, SC15, SC51, and SC55 of the sand cover (See Figure 

6.1) as the background. After 35 minutes, at 19:50, it had a 1.5"C higher temperature 

than the maximum temperature of the background. This high temperature could be 

considered as a thermal anomaly of the coal fire. The thermal anomaly had a 

temperature ranging 1.5 to 4.2"C higher than the maximum temperature of the 

background. The average is about 3°C. The reason that the thermal anomaly was 

formed so rapidly is that the sand cone had a high porosity, which favouris air 

ventilation and heat transfer through convection. The highest temperature difference 

of 6.7'C between the f r e  thermal anomaly and the background maximum happened at 

03:45 due to a collapse of a cone slope. Radiant temperatures for measuring spots 

FRUN, FRUE, FRUS, and FRUW showed higher values than that of the top measuring 

spot FRU, because they were closer to the fre. Temperatures for FRUE, FRUS, 

FRUW showed big variances. They ranged from 20 to 50°C. Heat coming from the 

side of the fire container influenced the measurements. 
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Figure 6.4 Surface Temperature of the Simulated Underground Coal Fire. FRUN: Radiant 

temperature measured at the center of the North Slope of the sand cone; FRUE: East 

slope; FRUS: South slope; FRUW: West slope; FRU: Top; AT: Air temperature; SCB: 

Background temperature for sand cover. From 19:30, the temperature of the 

background was the lowest. Heat from the fire transferred to the top of the sand cone 

within one hour. The top of the sand cone is warmer than the background by an average 

temperature of 3%. 

Time 

Figure 6.5 Diurnal Radiant Temperature Variations for Background Materials. AT: Air 

temperature; B: Background; HG: High grass; LG: Low grass; DG: Dry grass. They 

show the same trend: High radiant temperature during daytime and low temperature 

during night-time. 



2. Temperature of background materials 

Figure 6.5 shows diurnal radiant temperature variations for high grass, low grass, dry 

grass, and sand cover. Data on diurnal changes in radiant temperature for these 

materials are calculated from the averages of all measurements. Background 

temperatures result from the average measurements of the sand cover. The most rapid 

temperature changes, shown by steep curves, occur near dawn and sunset. Low grass 

showed always warmer than high grass. Dry grass showed cooler than low grass in 

night-time, but warmer than low grass in daytime. The curve for radiant temperature 

of the sand cover is located between the curves for high grass and low grass during 

night-time. During daytime, high grass and low grass are warmer than the sand cover 

(with one exception). During day time, the temperature difference among these 

background materials is high. But in night-time, the difference is low. The curves for 

all these materials have the same trends. The correlation between air temperature and 

the sand cover is 0.90. The correlation factor between sand cover and low grass is 0.92. 

Between high grass and low grass it is 0.98. 

3. Temperature distribution of the sand cover 

The sand cover can be considered as a homogenous area. In this 8.5m*8.5m area, 25 

measuring spots (SCll-SC55) were set (See figure 6.1). Radiant temperatures for 

these observing spots were measured every hour during the experiment. According to 

the distance to the fire, these measurements were grouped into 5 groups. Group I 

includes the measuring spots SC32, SC23, SC43, and SC34, which were 2 meters 

away from the center of the fre.  Group I1 includes the measuring spots SC22, SC42, 

SC24, and SC44, which were 2.8 meters away from the center of the fire. Group 111 

includes SC31, SC13, SC53, and SC35. They were 4 meters away from the center. 

Group IV includes SC12, SC21, SC41, SC52, SC54, SC45, SC25 and SC14. They 

were 4.5 meters away from the center. Group V includes 4 corner spots (SC11, SC15, 

SC51 and SC55). They were 5.6 meters away from the center. Diurnal mean radiant 

temperature variations for these five groups are shown in Figure 6.6. Radiant 

temperature differences between one group and its following group were calculated. It 

can be seen that the radiant temperature for group one was always higher than that for 



other groups. From 18:OO to 13:OO the next day the radiant temperature for group 2 

was higher than that for group 3 , 4  and 5. From 16:30 to 09:OO the next day the radiant 

temperature for group 3 was higher than that for group 4 and 5. The diurnal radiant 

temperature for group 4 was almost the same as that for group 5. This can be 

interpreted following. The simulated surface coal f r e  can heat the surroundings 

through radiation and convection in a proximate distance of 2 meters and form a 1°C 

difference thermal anomaly (2 measurements out of 21 were smaller than 1°C). It is 

hard for the coal f r e  to heat a distance further away than 4.5 meters. Group 4 and 

group 5 can be considered as background. The heating extent of the fire can some 

times reach 2.8 or 4 meters and form a thermal anomaly with temperature difference 

less than 1°C. Figure 6.7 shows diurnal maps of radiant temperatures for the sand 

cover. To generate the radiant temperature maps, the coal f r e  radiant temperature 

located in the center of the map (FRS) was replaced by the maximum value from the 

other 24 measurements (SCll-SC55). The maps indicate the thermal anomalous 

pattern formed by the coal fire. The axis of the high values shows the dominant heat 

transfer directions. Probably caused by wind influence, the dominant heat transfer 

directions varied to almost all directions. Although the radiant temperatures are higher 

when the measuring spots are closer to the fre,  the pixels close to the center never 

formed a perfect circle. A thermal anomaly is formed not through radiation, but by 

heat convection. 
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Figure 6.6 Diurnal Radiant Temperature Variations for Measurements with Different 

Distance to the Coal Fire. Group I: Measuring spots 2 meters away from the fire; Group 

11: 2.8 meters; Group Ill: 4 meters; Group IV: 4.5 meters; Group V: 5.6 meters. Thermal 

anomalies caused by the fire can not reach further than 4.5 meters. 

Figure 6.7 Diurnal Maps of Radiant Temperatures for the Sand Cwer. Arrows indicate 

the main heat transfer diredions. They change to every direction. 



4. MP 50 line scanner images of coal fires 

The MP 50 line scanner is a stationaq scanner. The radiation transmitted through an 

IR filter is focused onto a detector that converts the radiation into an electric signal. 

The resulting image records radiant temperature for targets in decimal degrees. A pixel 

will be saturated at 300°C. The MP 50 line scanner was set 25 meters away from the 

fires and 10 meters above the ground. The resulting images have a spatial resolution of 

5cm. Figure 6.8 shows a series of the MP 50 line scanner images acquired at 14:34, 

20:29, 05:33 the next day, 08:Ol the next day, 11:Ol the next day, and 13:05 the next 

day. The images cover an area of the simulated underground coal f re  and its 

surroundings, including the electric heater that served as a standard thermal emission 

source with a certain fxed temperature. The simulated underground coal fire was 

covered by the sand cone from 19:OO to 08:30 of the next day, which is shown in 

image 11,111, and IV in Figure 6.8. Image I, V, and V1 in Figure 6.8 show the fire not 

covered by the sand cone. Both fire and electric heater pixels were saturated. The f r e  

formed a thermal anomalous cluster occupying a lot of pixels in all images. The 

thermal anomalous cluster was so outstanding that it could be easily separated from the 

background. The data can be used for further analysis of the fire when they are 

corrected. 



Figure 6.8 MP 50 line scanner Images. X: Rows; Y: Columns; 2: Temperature ('C); 

S.U.F.: Simulated underground coal fire; EH: Electric heater. The coal fire with a 

dimension of lmXlm forms an outstanding thermal anomalous cluster in MP 50 line 

scanner images, whose spatial resolution is 5cm. 

6.1.4 Conclusions 

1. The interior temperature for the simulated surface coal fire is about 1000°C. For the 

simulated underground coal fire, the interior temperature could reach above 1200°C. 

The surface radiant temperature for the simulated coal fires range from 300 to 900°C. 

Within 1 hour heat could be transported through a 0.5 meter high sand cone to the 

surface and form a thermal anomaly with a temperature about 3°C higher than that of 

the background. 



2. Diurnal radiant temperature variations for high grass, low grass, dry grass, and the 

sand cover showed the same trend. During day time, the temperature difference among 

these background materials is high. But in night-time, the difference is low. 

3. The simulated surface coal f re  can heat the surroundings through radiation and 

convection in a distance of approximately 2 meters and form a 1°C difference thermal 

anomaly. It is hard for the coal fire to form thermal anomaly further than 4.5 meters. 

The influence distance of the fire is dependent on its temperature. Heat from the 

simulated surface fire was transported mainly by convection, not radiation. Main heat 

transfer directions vary all the time. 

4. The coal fire with a dimension of lm*lm forms outstanding thermal anomalous 

clusters inMP 50 line scanner images, whose spatial resolution is 5cm. 

6.2 Thermal Characteristics of Coal Fires in the Study Areas 

In September 2002, a field campain was conducted in the Wuda coal mine area, the 

Gulaben coal mine area, Inner Mongolia, and the Ruqigou coal mine area, Ningxia Hui 

Autonomous Region, China. The aim of the fieldwork was to understand thermal 

characteristics of coal fires in the field. Surface temperatures for materials related to 

the coal fires were measured using a Raytec thermometer and contact thermometers. 

The time mentioned in this paragraph is Chinese Coast time (CCT, Time Zone 8), 

which is equal to Greenwich Mean Time plus 8 hours (GMT + 08:OO). 

6.2.1 Field surface temperature measurements of a sand dune 

A sand dune, located at the southern part of Coal Fire No.8 in Wuda coal mine area, 

was chosen as background for studying the daily temperature amplitude. Figure 6.9 

shows that the sand dune consists of fme yellow sand. There are bushes growing on it, 

most of which are dry shrubs. The sand dune is about 2 meters high. From the northern 

edge to the southern edge, the distance is about 8m. From East to West, the distance is 

about 7m. Two measuring lines were marked on the surface of the sand dune. One is 

from North to South. The other is from West to East. They cross each other on the top 

of the sand dune. From North to South, there were 16 measuring points, named NI-N8, 

T and S1-S7. From West to East, there were 14 measuring points, named W1-W7, T 



and El-E6. Measuring point T represents the top of the sand dune. The measuring 

points were evenly distributed along measuring lines on the surface. Chopsticks with 

white plastic flags were used for marking all the measuring points to make sure that 

every time the measurements were taken in the same spots. Measuring points NI,  S7, 

W1, E5 and E6 were located at the flat area around the sand dune as shown in the cross 

sections in Figure 6.9. The coordinates for the top of the sand dune are 639403, 

4373774 (UTM, Zone 48). The dip angle for the slope of the sand dune ranges from 30 

to 40 degrees. 

Figure 6.9 Setting of measuring points on a sand dune in Wuda coal mine area. N: 

North; E: East; S: South; W: West; 1-8, T: measuring points. The drawings show the 

cross section of the sand dune from North to South and East to West. 
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Figure 6.10 Average surface temperatures for slopes facing to North, East, South and 

West of a sand dune in Wuda coal mine area. Average-N: average of temperature 

measurements for measuring points NI-N8 and T; Average-E: average of measuring 

points El-E6 and T; Average-S: average of S139 and T; Average-W: average of W1-W9 

and T; SR: sunrise; SS: sunset; TM: TM overpass. The slope facing to theEast reaches 

its highest temperature at 13:OO. The slope facing to the North, South and West reach 

their highest temperatures at 14:OO. 
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Figure 6.11 Surface temperature variance of a sand dune in Wuda coal mine area. Ndiff, 

Ediff, Sdiff , Wdiff : temperature variance within a slope facing to the North, East, South 

and West; , Adiff: average temperature variance among slopes; Ediff: temperature 

variance in the sand dune. Arrows point on the maximum values of the temperature 

variances within east, south, north and west slopes. Temperature measurements could 

vary 28°C in a sand dune. 



Surface temperatures for each measuring point were recorded every hour on the sunny 

day of 23rd September 2002. The measurements started at 06:30 before the sunrise 

(06:41) and ended at 19:OO after the sunset (18:53). The records are shown in 

Appendix 6.2: Surface temperature measurements for a sand dune in Wuda coal mine 

area, Inner Mongolia, China. 

Figure 6.10 shows plots of the average temperatures for measuring points NI-N8 plus 

T (average-N), El-E6 plus T (average-E), S1-S7 plus T (average-S), and W1-W7 plus 

T (average-W). For example: 

where, 

average-E: average temperature for East slope 

Tfi, to Tfi6 and TT: Temperatures for the measuring points El  to E6 and T 

They represent the surface temperature changes between 06:OO to 19:OO for the slope 

facing to the North, East, South and West respectively. At 6:30 before sunrise, surface 

temperatures for each slope show their minimum value ranging from 4 to 8°C. 

Temperatures for the slope facing to the East increase from sunrise until 13:OO and 

then decrease again. The other slopes reach their highest temperature at 14:OO. From 

07:15 to 11:00, average temperature for the eastern slope is higher than that for other 

slopes. From 11:OO to 16:00, average temperature for the southern slope is higher than 

that for other slopes. From 16:OO to 18:30, average temperature for the western slope 

has the highest value. 

Figure 6.11 shows surface temperature variance in the sand dune. Firstly, the 

temperature difference within a slope is calculated as the result of the maximum value 

for the measurements within the slope minus the minimum value for the measurements 

within the slope. For example, for the slope facing to the East: 



Ediff: Temperature difference within the eastern slope 

Tfij to Tfi6 and TT: Temperatures for the measuring points El  to E6 and T 

From 07:15, temperature difference within the eastern slope is higher than 5°C. It 

reaches its highest value of 20°C at 09:OO. From 07:30, temperature difference within 

the southern slope is higher than 5°C. The same applies for the northern slope. 

Temperature difference within the southern slope reaches its highest value of 16OC at 

13:00, the northern slope 14°C at 14:15. From 09:30, temperature difference within the 

western slope is higher than 5°C. It reaches its highest value of 12OC at 16:OO. 

Temperature variances within slopes facing to the East, South, North and West show 

the trend that the maximum value is declining and the time for the maximum value is 

shifting to a late time. 

Secondly, temperature difference among slopes Ad$ is calculated from the following 

equation: 

From 07:30 to 18:00, average temperature difference among slopes is higher than 5°C. 

The maximum value of 13°C occurs at 16:OO. Adiii reaches two peaks at 09:OO and 

16:OO due to the slopes facing to the East and West. At 09:00, the eastern slope has a 

high average temperature and the western slope has a low one. At 16:00, the western 

slope has a high average temperature and the eastern has a low one. 

Thirdly, temperature variance in the sand dune TV, is calculated using the maximum 

value of all the measurements minus the minimum value of all the measurements. 

Tw = M m  (TNI, ..., TNX; TEI, ..., Tfi6; TSI, ..., Ts7; TWI, ..., Tw7; TT) 

- Min (TNI, ..., TNX; Tfii, ..., Tfi6; TSI, ..., Ts7; TWI, ..., T w ~ ;  TT) 

Where, 



T,,: Temperature variance in the sand dune 

TM, ..., TT: Temperatures for measuring points correspondent with the index. 

Just about 20 minutes after sunrise, temperature variance in the sand dune is higher 

than 5°C. It has its highest value of 28OC at 15:30 (measuring point S3 reaches 49°C 

while the temperature for E4 is only 21°C). 

Temperature variances among measurements in the sand dune are due to the 

characteristics of the measuring points. Some of them are exposed to the sun, while 

some of them are shaded by vegetation. At 10:30, when the 'I'M (ETM+) passes over 

the area, the temperature difference within the sand dune can reach 2OoC, which is 

more than the temperature difference between the coal fire thermal anomalies and the 

background. This is very important to consider when aiming at the daytime extraction 

of thermal anomalies. 

6.2.2 Field surface temperature measurements of a coal dump pile 

Coal dumps are a kind of mining waste, most of which are black shale or mud stone 

originally embedded in coal layers. Surface temperatures for a coal dump pile were 

measured on the same day as the sand dune (Data are shown in Appendix 6.3: Surface 

Temperature Measurements for a coal dump pile in Wuda Coal Mine Area, Inner 

Mongolia, China). The top coordinates of the coal dump are 639460, 4373881 (UTM, 

Zone 48N). It is located 120 m away from the sand dune in NNE direction. Figure 6.12 

shows that the coal dump pile is about 2 m high and slope angles are about 35". Three 

measuring points were set on the slopes facing 350". They represent temperatures for 

the lower part (measuring point NL), middle part (measuring point NM) and upper part 

(measuring point NU) of a coal dump pile slope facing north. Another three measuring 

points were set on the slope facing 135". They represent temperatures for the lower 

part (measuring point SEL), middle part (measuring point SEM) and upper part 

(measuring point SEU) of a coal dump pile slope facing southeast. Temperature 

measurements for the measuring points are shown in Figure 6.13. So is the temperature 

difference between the maximum value and the minimum value (Max (NL, NM, NU, 

SEU, SEM, SEL) - Min (NL, NM, NU, SEU, SEM, SEL)). At 06:50, which is 9 



minutes after sunrise, temperatures for all the measuring points are close to each other. 

The difference between the maximum value and the minimum value is 1.6"C. From 

7:15 to 17:00, temperature measurements for the SE slope are higher than that for N 

slope. From 10:OO to 14:00, the maximum measurement for the SE slope is over 20°C 

higher than the minimum measurement for the N slope. TM (ETM+) overpass time 

(10:30) is included in this time range. Temperature measurements for all 6 measuring 

points changed within 5°C in the time range before 07:OO and after 17:30. 

NU SEU 135' 

Figure 6.12 Setting of measuring points on a coal dump pile in Wuda coal mine area. NL, 

NM, NU, SEL, SEM, and SEU: measuring points; 350" and 135": slope dip direction. 
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Figure 6.13 Surface temperatures and their variance for a coal dump pile in Wuda coal 

mine area. NL, NM, NU, SEL, SEM, and SEU: temperature for the correspondent 

measuring point; SR: sunrise; SS: sunset; TM: TM overpass. MAX-MIN: temperature 

variance. 



6.2.3 Field temperature measurements of cracks 

A crack, 30 meters north of the sand dune, was chosen as coal f re  related thermal 

anomaly for studying surface temperature changes during a day. The crack is about 3m 

long, 40cm wide and 2m deep. It strikes to the NW. At the bottom of the crack, the 

coal fire is burning; a red flame can be seen. The bedrock around the crack is covered 

by the same yellow fme sand forming the sand dune. A NE tranding measuring line 

was set as shown in Figure 6.14. From the crack to SW, there were 6 measuring points 

named SW1, SW2, SW3, SW4, SW5 and SW6. From the crack to the NE, there were 

10 measuring points named NE1, NE2, NE3, NE4, NE5, NE6, NE7, NE8, NE9, and 

NE10. Chopsticks with white plastic flags were used for marking all the measuring 

points to make sure that every time the measurements were taken at the same spots. 

The coordinates for the measuring point NElO are 639399,4373749 (UTM, Zone 48). 

Surface temperatures for each measuring point were recorded in the same way on the 

same day as for the sand dune. The records are shown in Appendix 6.4: Surface 

temperature measurements for a crack in Wuda coal mine area, Inner Mongolia, China. 

The dip direction and dip angle for the surface plane, where the measuring points are 

located, are also shown in Appendix 6.4 

The measurements show that between 06:30 to 19:OO the surface temperature of the 

fire at the bottom of the crack (measuring point C) has a highest temperature of 239°C 

and the lowest of 233"C, with an average of 237"C, and a standard deviation of 1.56. It 

is relatively stable during the day. From 06:30 to 14:00, temperatures for other 

measuring points increase from 6 "C to 43°C. Past 14:OO they decrease again. 

The measuring points SW1, SW2, SW3, NE8, NE9 and NElO are taken as 

background. The temperatures higher than the background are taken as thermal 

anomalies. Figure 6.14 shows that the width of the thermal anomaly is 3.8m, 3.8m, 

3.8m and 4.lm at 07:00, 09:00, 11:OO and 13:OO respectively. This shows that the 

width of the thermal anomaly does not change as the background temperature 

increases. The maximum temperature difference between the crack and the background 

occurs predawn. The thermal anomaly does not extend more than 3m from the crack. 
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Figure 6.14 Surface temperatures for a crack in Wuda coal mine area. Lower: setting of 

measuring points; middle and upper: temperature profile. Temperature for the crack fire 

is relatively stable during the day. The thermal anomaly does not extend more than 3m 

from the crack. The width of the surface thermal anomaly does not decline as the 

background temperature increases. 



Temperatures at different depths for measuring point NE3 and NE6 have been 

measured using a contact thermometer three times at 07:30, 09:30, and 11:30. The 

contact thermometer has a handle and a 12.8cm long probe looking like a screwdriver. 

It measures the temperature at the head of the probe. A mark was given at every 

quarter of the probe and then pressed into the sand until the mark. The readings on the 

handle represent temperatures below the surface at the depth correspondent to the 

mark. Measurements include the temperature on the surface, and lcm, 3.2cm, 6.4cm, 

9.6cm, 12.8cm below the surface as shown in Table 6.1 and Figure 6.15. 

Table 6.1: Temperature ("C) for different depths at measuring points NE3 and NE6 

NE3 is about lm  away from the crack and NE6 is about 3.5m away from the crack as 

shown in Figure 6.14. Temperatures for 12.8cm below the surface at NE3 are 5-7 "C 

higher than that at NE6. The conduction of heat therefore does influence the near 

surface temperature. Its gradient is about 2.4 "C per meter. 

At 07:30, temperatures from 12 .8cm to the surface at both NE 3 and NE6 were 

decreasing. On the surface, according to the trend, temperature for NE6 is supposed to 

be lower than that for NE3, but the measurements show the opposite, which is due to 

uneven solar heating. The surface plane where NE3 is located is relatively flat. The 

surface plane where NE6 is located has a dip angle of 7 and dip direction of 50 (facing 

to NE). NE6 favoured to receive stronger solar heating in the morning. Only 1 hour 

past sunrise, a thermal anomaly formed lm away from the coal fire crack was affected 

by solar uneven heating. 



At 09:30, temperatures from-12.8cm to 3 .2cm at NE3 decrease. Temperatures from 

-3.2cm to the surface increase. After 3 hours past sunrise, the heat from the sun 

reaches at least 3.2cm below the surface at NE3. Since NE6 receives more heat than 

NE3. heat reaches 6.4cm below the surface at the same time. 

At 11:30, temperatures from 12 .8cm to the surface at NE6 decrease. Heat from the 

sun at NE6 reaches at least 12.8cm below the surface. It reaches -6.4cm at NE3. On the 

surface, temperature for NE3 is higher than that for NE6, which is probably due to the 

SW wind, bringing the heat from the crack to NE3. 

Figure 6.15 Underground temperature at measuring points NE3 and NE6. A@B: at 

measuring point A and time B. One hour after the sunrise, thermal anomaly to be 

formed l m  away from the coal fires crackwas overprinted by the sun uneven heating. 

At NE3, heat from the sun reaches 3.2cm below the surface at 09:30 and 6.4cm at 11:30. 

At NE6, heat from the sun reaches 6.4cm below the surface at 09:30 and more than 

12.8cm at 11:30. 

Temperatures for another crack, located at coal f re  No. 8 in Wuda coal mine area, 

were measured two times on September 10 and 14, 2002. Figure 6.16 shows that the 

crack is located in a brownish yellow sand stone layer. Its width is about lm. The wide 

crack enabled to use a radiant thermometer to measure temperatures from the surface 

to the underground coal fre. Here a coal f r e  was burning 3m below the surface. A 



vertical temperature profile for the crack is shown in Figure 6.16. The measuring 

points for the vertical profile were taken from the edge of the crack at spots: surface, 

0.02, 0.5, 1, 2m below the surface, and the coal f re  itself. The measurements for the 

coal f re  were 850°C on Sep.10 and 854°C on Sep.14. Temperatures at 0.02m below 

the surface were 139°C on Sep.10 and 132°C on Sep.14. At 0.02m on the edge of the 

surface, temperatures dropped rapidly to 60 and 66°C. A horizontal temperature profile 

for the crack is shown in Figure 6.16. From the measuring point A to B, it was found 

that after 30cm the temperature measurements dropped to the normal background 

temperature. 
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Figure 6.16 Temperature profile for a crack at coal fire No. 8, Wuda coal mine area 

(measured on September 10 and 14, 2002). From -2cm to the surface, temperature 

drops rapidly. On the surface 30cm away from the crack temperatures dropped to the 

normal background level. 



6.2.4 A night-time temperature profile on coal fire No.12 

Figure 6.17 shows a temperature profile on coal fire No.12, whose coordinates are 

640894, 4371674. The measurements were taken at 21:55 on 12th September 2002. 

The fire was burning 2m below the surface in the marked area (F) with a temperature 

of 550°C. There is a crack in 5m distance from the coal fre. Temperature for the 

bottom of the crack was 206"C, for surface 46.2"C. Surface temperature for the spot in 

lOcm distance from the edge of the crack is 30.2"C. It can be seen that the 

underground coal fire does form a thermal anomaly above the covering rocks on the 

surface as shown by the dotted line in Figure 6.17, which means that heat can be 

transferred by conduction from the source of the fre.  Zhang (2003) mentioned that 

heat conduction is a slow process compared to convection. Hence whether or not the 

heat can reach the surface of the covering bedrock and cause a thermal anomaly 

depends on the depth and the age of the coal fire in question. If the coal fires are very 

shallow, they may cause thermal anomalies on the surface of the covering bedrock 

areas. If the coal fires are old enough, the heat can be transferred to the surface by 

conduction. In addition, heat can also transfer laterally from the cracks of higher 

temperatures to the covering bedrock. In this case the thermal anomalies will increase 

in size when a coal fire grows older. This observation is consistent with the thermal 

modelling results of Rozema (2001). In our case, the background temperature is about 

12°C and the thermal anomaly could reach about 20°C. The temperature difference 

reaches 8°C. It should be mentioned here that during the daytime, this thermal 

anomaly will disappear due to the high temperature of the background and the high 

temperature variance of the background as discussed in 6.2.1 and 6.2.2. 
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Figure 6.17 A temperature profile on coal fire No.12, Wuda coal mine area (measured at 

21:55 on 12 September 2002). Underground coal fire forms a thermal anomaly above the 

covering bedrocks on the surface as shown by the dotted line. 

Distance (m) 1 1 
Figure 6.18 A temperature profile on coal fire No.8. B: background; FC: fire area with 

cracks; FS: fire area with surface subsidence. High surface temperature for an 

underground coal fire can be measured only on cracks or close to cracks (within 30cm) 



6.2.5 A temperature profile on coal fire No.8 

Figure 6.18 shows a temperature profile on coal fire No.8 measured at 10:OO on 

September 12. It crosses the background and a coal fire area. Coal fire No.8 includes 

two parts. One is the area with cracks but not subsided. The other is the area with 

collapsed overlaying rocks. Overlaying rocks subside due to the loss of volume 

underground when the coal has been burnt out by coal fires. There are a lot of cracks in 

the collapsed area. They form a kind of ventilation system for the fre, through which 

heat is released. A clear thermal anomaly can be seen. In the area with cracks which is 

not subsided, cracks are not so dense. Temperatures for the covering bedrock in this 

area show normal values. High surface temperatures for the underground coal f re  can 

be measured only on cracks or close to cracks (within 30cm as mentioned in the last 

paragraph). 

6.2.6 Discussion 

Surface temperatures on a sand dune can v a v  28°C within the sand dune. In a coal 

dump pile, temperature for a slope facing Southeast could be 20°C higher than that for 

a slope facing North between 10:OO to 14:OO. The temperature variance caused by 

uneven solar heating can mask thermal anomalies related to coal fires. 

Underground temperature profiles showed that one hour past sunrise, a thermal 

anomaly l m  away from the coal fire crack was overprinted by the effects of uneven 

solar heating. After two hours heat from the sun can reach 3.2cm below the surface. 

Underground coal fires can form thermal anomalies above the covering bedrock layers. 

This can be observed during night-time only. Predawn is the best time for coal fire 

detection using thermal remote sensing techniques. 

Thermal anomalies did not extend for more than 3m from the crack. The width of the 

thermal anomaly does not decline as the background temperature increases. Thus, the 

thermal pattern in remote sensing as well as field data above a coal fire actually is the 

pattern of crackslvents. 



6.3 Thermal Characteristics of Coal Fires on ETM+ Images 

In this paragraph, the characteristics for coal fire areas, their thermal anomalous areas, 

and their background areas on ETM+ images are studied using a statistical method. 

Statistical characteristics of coal fire thermal anomalies on ETMf images are not only 

the basis for developing an automatic method to extract coal f re  thermal anomalies in 

large areas, but also programs developed in this study are helpful for verification and 

evaluation of the final results at a later stage. 

6.3.1 Data input 

1. Field coal fire distribution maps in the study areas: During the field work in 

2002, all coal fires have been investigated in the study areas. The field coal fire 

distribution maps in study areas, referred to FieldFire2002, are shown in Figure 4.2. 

2. ETM+ band 6 images: Five scenes of Landsat-7 ETMf band 6 data (1G product) 

were used in the study as shown in table 6.2. The data include three daytime scenes 

and two night time scenes, named Night2002, Night2001, Day2002, Day2001, and 

Day1999. They cover all the Wuda, Ruqigou, Gulaben study areas. 

Table 6.2: ETM+ band 6 data used in the study 

6.3.2 Methodology and image processing 

1. Numbering coal fires on the field coal fire distribution maps: Each coal fire in 

the study areas has been assigned an index number. As shown in Figure 4.2 coal fres 

in Wuda area have been numbered from 1-17. Coal fres in Gulaben area have been 

numbered from 21-25, and coal fres in Ruqigou are from 31-45. 



2. Interpreting thermal anomalous pixels on ETM+ images: When displaying the 

field coal fire distribution map on top of ETM+ band 6 images, it is found that not all 

the pixels of the coal fres can be detected as anomalous pixels due to the limitation of 

the detection capability. The ones detected by the images have been interpreted 

manually from the five input ETM+ images: Night2002, Night2001, Day2002, 

Day2001, and Day1999 respectively. The results, the thermal anomaly maps, are 

referred to AnoNight2002, AnoNight2001, AnoDay2002, AnoDay2001, and 

AnoDay1999, which are byte maps (O-background, 1-45: thermal anomalies 

correspondent to coal f r e  number 1-45). In Figure 4.2 thermal anomalous pixels 

interpreted from the Night2002 are shown in green colour. 

3. Extracting background pixels from different spatial extends: When we have a 

thermal anomalous (coal fre) pixel or a cluster of pixels, we take its (their) neighbour 

non-anomalous (coal fire) pixels as its (their) background pixels. 

Figure 6.19 Illustration of neighbourhood pixels with different spatial extends. 

During the process, firstly, a fire or a thermal anomalous pixel is located as F shown in 

Figure 6.19. Secondly, its four nearest neighbourhood pixels as 1 in the figure are 

searched. Thirdly, a neighbourhood pixel is chosen as the background pixel if it is not 

an anomalous pixel. This procedure can be applied iteratively and background pixels 





4. Calculating statistics: Pixels of a coal f re  can be extracted from an ETM+ band 6 

image to form a numeric vector: 

Where, 

no, xi, xz, ..., x ~ j :  DN value of the pixels in the coal f r e  area on an image 

Then statistical characteristics of the numeric vector X can be calculated. Here 

statistical characteristics include: number of pixels, maximum, minimum, mean, 

median, standard deviation (STD), and histogram. Formulas for the calculation are 

given below: 

6.3.3 Results 

1. Statistical characteristics of thermal anomalies and their backgrounds on 

ETM+ band 6 images: During the study, statistical characteristics of the thermal 

anomalies on the five input images are calculated. The results for the Night2002, and 

the Day2002 are shown in Appendix 6.6 and Appendix 6.7. The following 

observations can be made: 

The maximum, minimum, median, and mean DN values of all the thermal anomalies 

are higher than those of the backgrounds both in day time and night-time images. At 

the same time, the minimum, median, and mean DN values of the thermal anomalies, 

except the maximum, decrease with the increase of the buffer zone of the backgrounds 

(Background neighbourhood 1- Background neighbourhood 6 - Background 

neighbourhood 11 - Background neighbourhood 16). Figure 6.21 shows the maximum, 

mean, and minimum value of each coal f r e  area on the Night2002 scene. The X axis is 
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Figure 6.22: Standard deviation of thermal anomalies on a night-time ETM+ image 

received in 2002. Standard deviation of a thermal anomaly is higher than its background 

on a night-time thermal image. 

Figure 6.23: Standard deviation for thermal anomalous areas on a daytime ETM+ image 

acquired in 2002. Standard deviation of a thermal anomalous area is smaller than its 

background on a daytime thermal image. 



About 80% of the thermal anomalies on night-time images (Night2002 and Night2001) 

have higher values of the standard deviation than their backgrounds. Figure 6.22 shows 

the standard deviation of each thermal anomalous area on Night2002. But on the day 

time images (Day2002, Day2001, and Day1999), about 70% of the thermal anomalies 

have lower values of the standard deviation than their background. Figure 6.23 shows 

standard deviation of each thermal anomalous area on Day2002. 

2. Histogram of coal fire (thermal anomalous) areas and their background areas 

on ETM+ images: Histograms of each coal fire or thermal anomaly and their 

background were plotted during the study. Here coal f r e  No. 8 in Wuda, coal fire No. 

41 in Ruqigou, and coal fire No. 21 in Gulaben are taken as representatives. Figure 

6.25 shows the histograms for these three coal fires and their 6-neighborhood 

background on Night2002. The coal fire areas were taken from the field coal fire 

distribution map, which represents the fire areas demarcated in the field. It can be seen 

that parts of the histogram for coal fire areas is overlapping with their background. 

This means that most parts of the coal f r e  areas surveyed in the field show no 

difference from their background, and they can not be detected using ETM+ band 6 

night-time image. Figure 6.26 shows the histograms for thermal anomalies (coal fire 

No. 8, coal f re  No. 41, coal fire No. 21) and their hneighborhood background on 

Night2002. Their anomalous areas were taken from AnoNight2002, which represents 

the anomalous areas that can be detected on Night2002. It can be seen that most parts 

of the histogram for thermal anomalous areas are separable from their background and 

within the high DN value range. Histograms of the coal fire thermal anomalous areas 

or coal fire areas on night-time images show multi-separated peaks. Histograms of the 

background areas on night-time images show no separated peaks and are located 

within the low digital number range. Figure 6.27 shows the histograms for two thermal 

anomalies (coal fire No. 41, coal fire No. 21) and their 6-neighborhood background on 

Day2002. Their anomalous areas were taken from AnoDay2002, which represent the 

anomalous areas that can be detected on Day2002. The histogram for coal fire No.8 on 

Day2002 is not shown on the figure, because it has only one pixel that can be 

interpreted as a thermal anomaly on the Day2002. Histograms of the background areas 

on daytime images (Day2002, Day2001, and Day1999) show many separated peaks 



which are located within the low digital number range. Less thermal anomalous pixels 

are detected by daytime images than in night-time images. From the histogram, it is 

known that every coal fire (thermal anomaly) has its own distinct start and end DN 

value. This can be interpreted as the fact that each coal f r e  forms a thermal anomaly 

with a different temperature range. Therefore it can be concluded that it is not accurate 

to use a single threshold to separate coal fire thermal anomalous areas from their 

backgrounds. 

Coal fire No. 8. Wuda 

Coal fire No. 41, Ruqigou 

Coal fire No. 21, Gulaben 

Digital Number 

Figure 6.25: Histogram for field coal fire areas on a night time ETM+ image acquired in 

2002. Parts of the histogram for coal fire areas surveyed in the field overlap with 

background histogram. They can not be detected using an ETM+ band 6 night-time 

image. 
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Figure 6.26: Histogram for thermal anomalous areas on a night-time ETM+ image 

acquired in 2002. Different thermal anomalies related to coal fires have different start 

and end DN values. 
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Figure 6.27: Histogram for thermal anomalous areas on a daytime ETM+ image acquired 

in 2002. Less thermal anomalous pixels detected in daytime images than in night-time 

images. 

3. Field coal fire areas, their correspondent thermal anomalous areas on the 

night-time image and the daytime image: Table 6.3 shows the number of pixels for 

the field coal fire areas and their thermal anomalies interpreted on AnoNight2002 and 

AnoDay2002. In the study areas there are a total of 37 separate coal fires surveyed in 

the field. On the image AnoNight2002 there are 30 correspondent thermal anomalies. 

81% of the coal fres surveyed from the field can be detected on Night2002. There are 

7 field coal fires that can not be seen in the image (19%). This is because these coal 

fires are too small. All together they occupy less than 12 pixels. On the image 

AnoDay2002 there are 24 correspondent thermal anomalies. 65% of the coal fres 

surveyed in the field can be detected in Day2002. This is because of uneven solar 

heating influence. The 37 coal fires surveyed in the field occupy from 1 pixel to 242 

pixels, and a total of 2511 pixels. The correspondent thermal anomalies on 

AnoNight2002 occupy from 1 pixel to 101 pixels, and a total of 818 pixels, among 

which 744 pixels are inside the field coal f r e  area, and 74 pixels are outside the field 



coal fire area. One third (30%) of the total field coal f re  areas can be detected by 

Night2002. For AnoDay2002, they occupy from 1 pixel to 76 pixels, and a total of 

488. Only 19% of total field coal fire areas can be detected by Day2002. It should be 

mentioned here that coal f re  No.43 was 8 pixels over interpreted on Day2002. 

Table 6.3 Number of pixels for field coal fire areas and their thermal anomalies on night- 

time and daytime ETM+ images acquired in 2002. FN: Fire name number; F: Field coal 

fire distribution map; N: AnoNight2002; D: AnoDay2002; Ni: Pixels in both 

AnoNight2002 and FieldFire2002; No: Pixels in AnoNight2002 but FieldFire2002; T: 

Total. 

6.3.4 Conclusion 

1. The minimum, median, and mean DN values of the thermal anomalies decrease with 

the increase of the buffer zone of the backgrounds. 



2. The maximum and the standard deviation of a thermal anomaly on night-time 

ETM+ images are higher than its background. On day time ETM+ images, the 

standard deviation is smaller than its backgrounds. 

3. Coal fres form thermal anomalies on images with their distinct start and end DN 

values. It is not accurate to use a single threshold to separate coal fire thermal 

anomalous areas from their backgrounds. 

4. ETM+ night-time images are suitable for general survey of coal fires in large areas. 

About eighty percent of coal fres can be detected. For daytime images, less coal fires 

can be detected. It is expected that daytime images acquired in winter time can 

improve the performance. 

5. For detailed coal f r e  area mapping, ETM+ images with 60m spatial resolution of 

the thermal band are too coarse. They can only map about one third of the total coal 

fire areas. 

6. Comparing the interpreted thermal anomalous image AnoNight2002 with the field 

coal f r e  distribution map FieldFire2002, it is found that there are 74 anomalous pixels 

in AnoNight2002 located one or 3 pixels outside of the field coal fire areas. This 

mismatch originates probably from one or more of the following points: 1) the error of 

the field coal f re  investigation; 2) The error of the geometric registration; 3) The error 

of the thermal anomaly interpretation. AnoNight2002 can not be used to correct the 

FieldFire2002, even though the anomalies are outstanding in the image. 





CHAPTER 7 ALGORITHM DEVELOPMENT FOR THE EXTRACTION OF 

COAL FIRE RELATED THERMAL ANOMALIES 

It is known from paragraph 6.1 that coal fires have high temperatures and form thermal 

anomalous clusters on thermal images when images have a high spatial resolution. For 

example, the simulated underground coal fire with a dimension of lm* lm  forms an 

outstanding thermal anomalous cluster in MP 50 line scanner images, whose spatial 

resolution is 5cm. The simulated surface coal fire can heat the surroundings through 

radiation and convection in a proximate distance of 2m and form a 1°C difference 

thermal anomaly. It is hard for a coal fire to heat an area beyond a distance of 4.5m. In 

reality, a surface coal fire covers an area of only a few square meters. From paragraph 

6.2 it is known that thermal anomalies do not extend more than 3m from a crack 

related to an underground coal fre. The thermal pattern in remote sensing images as 

well as field data above an underground coal fire actually is the pattern of cracks. In 

the Northwest of China, the cracks are typically 5-500m long and 0.1 to lm wide. The 

longest cracks can extend to over 1 km, and the widest can reach 2.5 m. Thermal 

anomalies related to coal fres are not outstanding in a scene of ETM+ band 6 image, 

since the spatial resolution of the image is 60m * 60m and thermal anomalies are only 

the local maxima. About eighty percent of coal fres can be manually detected by using 

ETM+ band 6 night-time images as mentioned in paragraph 6.3. In the following 

chapter, we are going to discuss how to automatically extract thermal anomalies 

related to coal fires from their background. Landsat-7 ETM+ band 6 night-time image 

226-211 (path-row) acquired on 25 September 2001 is chosen for the algorithm 

development and is shown in Figure 7.1. The correspondent daytime image acquired 

on 4 October 2001 is used for supporting the interpretation and presenting the results. 



Figure 7.1: Landsat-7 ETM+ band 6 night-time image 226-21 1 (path-row) acquired on 25 

September 2001. It has 3778 columns by 3589 lines, covering an area of 185km by 

185km. High DN values are related to the water body. Coal fire thermal anomalies in 

Wuda and Ruqigou area are not outstanding in this large-scale view. 

7.1 Review of the Previous Algorithms for Anomaly Extraction 

Anomaly extraction may be regarded as a branch of image processing, as image 

processing involves the manipulation of images to extract information; to emphasize or 

de-emphasize certain aspects of the information contained in the image; or to perform 

statistical or other analyses to extract non-image information (Craclmell & Hayes 

199 1). There are many ways of processing images and we are particulary attracted to 

three of them. They are spatial filtering, image classification, and anomaly detection. 

7.1.1 Spatial filtering 

Filtering provides a means of improving images by suppressing or enhancing certain 

spatial frequencies, directions and textures (Rosenfeld & Kak 1976). Filtering is a 

process in which each pixel value in a raster map is replaced with a new value. The 



new value is obtained by applying a certain function to each input pixel and its direct 

neighbours. These neighbours are usually the 8 adjacent pixels (in a 3 X 3 filter) or the 

24 surrounding pixels (in a 5 X 5 filter). For example, a low pass filter replaces the 

central pixel in the array with the mean of the total array as it passes over the image. It 

has proved to be particularly useful for reducing noise in an image prior to a multi- 

band image classification when classifying rather large areas. 

7.1.2 Image classification 

The two most popular methods of doing image classification are a density slice of one 

band or a supervised classification of several bands. Density slicing involves the 

grouping of image regions with similar DN, either automatically or interactively. 

Ranges of values of the input map are grouped together into one output class. A 

preferable method is to choose thresholds on the basis of breaks or troughs in the scene 

histogram. Supervised classification involves the careful choice of bands, the location 

of small but representative training areas, the determination of the relationship between 

object type and DN in the chosen bands, the extrapolation of these relationships to the 

whole image data set and accuracy assessment of the resultant image (Curran 1985). 

There are several classifier that can be used to extrapolate the results of training over 

the whole data set (Lee et a1 1977, Hixson et a1 1980). The three most popular are, the 

minimum distance to means classifier, the parallelepiped classifier and the maximum 

likelihood classifier (Lillesand & Kiefer 1979). The minimum distance to means 

classifier is the simplest classifier to compute as it comprises just three simple tasks. 

First, the mean DN of a class in the training data is calculated for all bands, this is 

termed the mean vector. Second, the pixels to be classified in the whole data set are 

allotted the class of their nearest mean vector. Third, a data boundary is located around 

the mean vectors such that if a pixel falls outside of this boundav, then it will be 

classified as 'unknown'. The parallelepiped or 'box' classifier operates in the same 

way as a simultaneous density slice in all bands. The maximum likelihood classifier 

works by first, calculating the mean vector, variance and correlation for each land 

cover class in the training data, on the usually valid assumption that the data for each 

class are normally distributed (Castleman 1979). With this information the spread of 

pixels around each mean vector can be described using a probability function. Pixels 



from the whole data set are allocated to the class with which they have the highest 

probability of membership. As every spectral response has a probability, however low, 

of representing a class, no pixels are left out in the cold. 

7.1.3 Anomaly detection 

Target detection in remotely sensed images can be conducted spatially, spectrally, or 

both. The difficulty with using spatial image analysis for target detection in remotely 

sensed imagery arises from the fact that often the sensor footprint is generally larger 

than the size of targets of interest. In this case, targets are embedded in a single pixel 

and cannot be detected spatially. Under such circumstances, target detection must be 

carried out at subpixel level. An anomaly detector enables one to detect targets whose 

signatures are spectrally distinct from their surroundings. In this section, an anomaly 

detector, named RX detector (RXD), is of interest and described. 

The RXD was developed by Reed & Yu (1990) to detect targets whose signatures are 

distinct from their surroundings. Suppose that L is the number of spectral bands and v 

is an L*l-column pixel vector in a multispectral or hyperspectral image. Then the 

RXD implements a filter specified by 

Where p is the global sample mean and KL~L is the sample covariance matrix of the 

image. The Form of G m i d  in the formula is actually the well-known Mahalanobis 

distance. In order to see how the RXD can detect anomalous targets, an exploration of 

how the RXD works is worthwhile. 

It is known that principal components analysis (PCA) decorrelates the data matrix in 

such a manner that different amounts of the image information can be preserved in 

separate components images, each of which represents a different piece of uncorrelated 

information. So, PCA has been widely used to compress image information into a few 

major principal components specified by the eigenvectors of KL~L that correspond to 

large eigenvalues, but it is not designed to be used for detection or classification. 

However, if the image data contain interesting target pixels which occur with low 



probabilities in the data, it is obvious that these targets will not be shown in major 

principal components, but rather in minor components specified by the eifenvectors of 

K L ~ L  that are associated with small eigenvalues. It is interesting to note that the RXD 

can be considered to be an inverse operation of the PCA which seaches for targets in 

minor components. This provides explanation of why the RXD works for anomaly 

detection (Chang & Chiang 2002). But the RXD works only in a multispectral or 

hyperspectral image. It does not work in a single band image, such as ETM+ band 6. 

image. 

DN Value 

Figure 7.2: Histograms of Landsat-7 ETM+ band 6 data. A: whole scene (3778 * 3589); B: 

Ruqigou area (300*300); C: Gulaben coal fire area (50*50); D: One coal fire in Gulaben 

(10*10). In D, Line: histogram of coal fire thermal anomalies; Dot line: histogram of the 

total pixels; Line-dot-line: histogram of the background. In a small subset of an image, 

coal fire thermal anomalies are easier to be separated from their background. 



7.2 Algorithm Development for the Extraction of Coal Fire Related Thermal 

Anomalies 

7.2.1 Dividing a night-time ETM+ image into subsets using a moving window 

Figure 7.1 shows that coal fire thermal anomalous pixels in Wuda and Ruqigou areas 

are not necessarily the pixels with highest DN values in the whole image. Most 

obvious pixels with high DN values in the image are water bodies. Actually, thermal 

anomalous pixels related to coal fres are pixels with local high DN values (local 

maxima). Therefore the only means of detecting coal fres is by using local filtering 

techniques in small subareas. 

Figure 7.2a shows the histogram of the whole image (3778 columns * 3589 lines). The 

histogram has several peaks representing several classes of materials with different 

thermal properties. There is no evidence signalling coal fire thermal anomalies. If 

thermal anomalous pixels have to be defined in the image, they might be located at the 

part larger than DN value 120. Figure 7.2b shows the histogram of a 300Y300 window, 

which covers the whole Rujigou coal field (See Figure 6.19). The histogram has only 

one peak, it is suggested that coal fire thermal anomalies form the part larger than DN 

value 108. Figure lc  shows the histogram of a 50*50 window, which includes three 

h o w n  coal fres (coal fire No. 21, 22 and 23) in Gulaben mining area. According to 

the field data, the coal f r e  thermal anomalous pixels with a total number of 157 have 

been picked out manually within this window. The histogram shows a clear turning 

point at DN value 105, which suggests that background pixels have DN values lower 

than 105. Actually in the window there are 77 pixels, about 49% of the total 

anomalous pixels, with larger DN values than 105. They are all verified as coal f r e  

induced thermal anomalies. Figure 7.2d shows the histogram of a 10*10 window, 

which includes part of coal fire No. 21 with 26 pixels. The coal f re  thermal anomalous 

cluster and background cluster are clearly separable. Their boundary is located at DN 

value of 97/98. In this window, there are 28 pixels with the DN value equal or higher 

than 97, among which 25 pixels, 96% of total anomalous pixels, are verified as coal 

fire induced thermal anomalies. This indicates that coal fire induced thermal 

anomalous pixels can be extracted successfully within a suitable subset of an image. 



Now the question is how a suitable subset can be found within an image when the coal 

fire area is not known. This can be solved through a moving window method: For a 

given image with M columns and N rows, a small moving window with M1 columns 

and N1 rows can be selected (Ml<=M, Nl<=N). Subsegment subsets of an image can 

be defmed with the help of the window by moving it over the image with the step X (X 

<= M-M1) in the column direction and step Y (Y <= N-NI) in the row direction. When 

the window passes the whole image, a pixel in the image will be sampled in 

(Ml*Nl)/(X*Y) subsets as shown in Figure 7.3. 

7.2.2 Separation of thermal anomalies and their background based on histogam 

features 

When a subset of the image is chosen, a threshold needs to be set within the subset to 

separate the thermal anomalies and the background. There are three ways to select the 

threshold. The first one is the trial and error method (Saraf et al. 1995; Prakash et a1 

1995). In this method, different thresholds have to be tested for a data set. The one that 

provided a reasonable and overall best match for discriminating non-fre areas from the 

fire areas would be fmally chosen as the threshold for the data set. The second one is 

an exclusion method (Zhang 1998). It gives a threshold which excludes all pixels 

outside the coal-seam areas. These two methods are only working in a known area. 

The third one is a statistical method. In an unknown area, the statistical method is the 

only choice. Statistically speaking, coal fire thermal anomalous pixels and background 

pixels will form two clusters in the subset histogram. In Figure 7.4 curve 1 shows the 

histogram of 100 background pixels, which are chosen randomly from the known 

background in Gulaben area. Curve 2 shows the histogram of 100 known thermal 

anomalous pixels in the same area. Curve 3 is the sum of both histograms. A turning 

point, as pointed in the figure will be formed in most cases, although it is difficult to 

prove. Theoretically speaking, the threshold for distinguishing thermal anomalies and 

background could be set at three points indicated by the letters A, B and C in Figure 

7.4. Point A is the histogram beginning of the thermal anomalous cluster, whose DN 

value is 97. This threshold can extract all the thermal anomalous pixels out of the 

subset. But the problem is that many background pixels will be misclassified as 

anomalous pixels. Point B is the histogram end of the background, whose DN value is 



102. This threshold does not take any background pixels as thermal anomalous pixels. 

But some real thermal anomalous pixels are lost. Point C is the cross point of the two 

histograms, whose correspondent DN value is 101. In reality threshold A and B have a 

weak point, which is, that they are not known and hard to be defmed. In the case 

shown in Figure 7.4, only C could be defined through looking for the frst turning 

point after the maximum value of the histogram. In case a turning point is not formed 

at the cross point, the first turning point inside the coal fire histogram will be the 

substitute (See Figure 7.4 D), since histograms of the coal fire thermal anomalous 

areas or coal fire areas on night-time images show multi-separated peaks and a lot of 

turning points according to paragraph 6.1.3. 

When C is set as the threshold of a subset, some thermal anomalous pixels related to 

coal fires will not be detected while some of the background pixels will be detected as 

thermal anomalous pixels. These false alarms from each subset will be propagated into 

the final result. Even a small number of false alarms from the subset can make the final 

result unacceptable. 

It has to be considered that background histograms can form multiple peaks and 

turning points due to the diversity of the background materials. This means that the 

first turning point after the maximum value of the histogram is not necessarily the 

cross point of the coal fire cluster and background cluster. These two problems can be 

avoided by setting a starting point, which is defined as the mean plus standard 

deviation of the subset. The frst turning point after the starting point will be taken as 

the threshold of the subset. The starting point ensures that the thermal anomalous 

pixels extracted from a subset are below a certain percentage of the total pixel number. 

For example, if the histogram of the subset follows a normal distribution, the thermal 

anomalous pixels extracted will not exceed 15.9% of the total pixel number. 
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Figure 7.3: Moving window method. Subsets of an image can be derived through a 

window moving over it. A pixel on the image will be sampled (MIeN1) / (X*Y) times. A 

pixel in coal fire area will be sampled in different windows. 
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Figure 7.4: Histograms of the known coal fire thermal anomalies and the background. 1: 

Histogram of the background with 100 pixels, which are chosen randomly from the 

known area in Gulaben. 2: Histogram of 100 known thermal anomalous pixels in the 

same area. 3: Histogram of the combined 200 pixels. A, B, C, D, E, and F: thresholds for 

distinguishing background and thermal anomalies. 



7.2.3 Presenting the output result retrieved from a suitable window size, moving 

steps and cut-off percentage 

Let's consider the example presented in the Figure 7.4. Suppose there is a subset with 

dimensions of 10 columns by 10 rows, which consists only of background pixels (i.e. 

no coal fire presents). The mean and the standard deviation of the subset are calculated 

as 99 and 1 respectively. The turning point will be searched from the starting point 

100. The turning point can be found at 102 (B) so that there will be no thermal 

anomalous pixels in the subset. The accuracy is 100%. Table 7.1 shows the extraction 

result for simulated subsets with different sizes. 

Fire pixel! 
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Table 7.1 Extraction result for simulated subsets with different sizes 

It can be seen from Table 7.1 that the increase of the subset size improves the 

extraction result. On the other hand, it is known from paragraph 6.1.3 that every coal 

fire (thermal anomaly) has its own distinct start and end DN value. This can be 

interpreted in a way that coal fires form thermal anomalies with different temperature 

ranges. It is not accurate to use a single threshold to separate coal fire thermal 

anomalous areas from their backgrounds. Every coal fire thermal anomalous cluster 

has to be extracted in a distinct subset of the image, which should be as small as 

possible. Then a new question comes up, which is how to choose a suitable window 

size to separate the image into proper subsets. This will be discussed in detail in the 

next chapter. Here, it can be stated that the coal fire's spatial dimension decides the 

best window size. At the mean time, due to the moving of the window, a pixel in the 

image will be counted many times and each time belonging to a different subset. This 



compensates the importance of the window size. For example, when a 10 by 10 

window passes a coal f r e  area with 1  by 1  steps, the frst subset only includes 1  

thermal anomalous pixel, equal to 1  percent of the subset. The next will include 2 

pixels, and so forth. This ensures that a coal f r e  boundav could be detected even if the 

fire has a relative large thermal anomalous cluster. 

The moving steps of the window decide how many times a pixel in the image will be 

sampled. A pixel in the image is sampled at maximum times when the steps are set at 1  

by 1  in both column and row directions. At this time, a pixel has been calculated in the 

context with all the possible neighbourhood pixels. The result is more reliable than any 

other bigger steps. 

After a suitable window size ( M l * N l )  is chosen, the window can move over the image 

with step 1  by 1  to derive subsets. When a pixel has a larger DN value than the 

threshold of the subset, it is considered as a thermal anomaly and counted once in the 

result matrix. A pixel will be checked ( M l * N l )  times in different subsets. The 

counting number in the result matrix will be summed up. The result matrix can be used 

to produce the binary output result with two digital numbers: 1  representing the 

thermal anomaly and 0  representing the background. Therefore we need to develop a 

computer-automated thresholding method that will automatically extract the 

anomalous target pixels and segment them from the background. In doing so, a 

threshold criterion is required. For a given value U in the result matrix ( O i u i  M l * N l ) ,  

we defme a threshold uo, which is a cut-off percentage (y)  times the total counting 

numbers ( M l * N l ) .  When U 2 uo, then the pixel will be detected as a thermal 

anomaly.This cut-off percentage ( y )  strongly influences the output result. Thermal 

anomalous pixels in the final map increase when the threshold y  decreases. This will be 

further discussed in the next chapter. 

7.3 Removing False Alarms According to Texture Analysis Results 

Figure 7.5 shows the result map of the Wuda mining area and its surroundings. The 

thermal anomalies on the map are extracted using a moving window with a size of 10 

columns by 10 rows, steps of 1  by 1  in both column and row directions, and a cut-off 

percentage of 80%. In Figure 7.5, the red channel is filled with the extracted thermal 



anomalies. The green and the blue channels are filled by Landsat ETM+ day time band 

3 and band 2. The thermal anomalies extracted can be categorised into 4 types. The 

first type (type W) is caused by water bodies, such as the Yellow River east of Wuda, 

since water has a high temperature in the night-time image. The second one (type S) is 

caused by uneven solar heating, such as the white spots located in the north-west of 

Wuda in the sand dune area, and the magenta pixels located in the mountain area in the 

south-west and east of Wuda. The third type (type P) is the sparsely distributed red 

spots around Wuda. They are industrial plants, such as cement factory, electric plant, 

etc. The fourth type (type F) is the coal f r e  thermal anomalies. They are located in the 

central part of the image. The frst  and the second type of thermal anomalies are false 

alarms, which can be removed according to the knowledge of characteristics of coal 

fire thermal anomalies on night-time images gained in paragraph 6.3. The detailed 

procedure is as follows. 

Figure 7.5: Colour Composite image of Wuda (Red: Thermal anomalies extracted from 

ETM+ night-time band 6; Green: ETM+ band 3; Blue: ETM+ band 2). W: thermal 

anomalies caused by the water body. S: thermal anomalies caused by solar uneven 

heating. P: thermal anomalies caused by industrial plants. F: thermal anomalies caused 

by coal fires. 



1. Grouping thermal anomalous pixels into clusters: Thermal anomalous pixels are 

grouped into clusters according to the 8-conection neighbourhood and an index is 

given to each thermal cluster. For example, two thermal anomalous pixels will be 

grouped into one cluster if the two pixels are connected each other in the context of 8- 

neighbourhood. After this process, the result map becomes a long integer map. The 

background area is still 0, and every thermal cluster has a distinct digital number. 

2. Getting background pixels for each thermal anomalous cluster: for each thermal 

anomalous cluster, it's surrounding non-anomalous pixels will be sampled as its 

background pixels. The details are referred to 6.3. 

3. Calculation of statistics for each thermal cluster and its background: pixel 

number, standard deviation and mean for the cluster will be calculated. It should be 

mentioned here that standard deviation and mean do not apply on a cluster of less than 

3 pixels. 

4. Fine-tuning the anomaly map: there are three aspects taken into account. The first 

one is removing thermal clusters occupying a big area. It is known that coal fres in 

Northwest China will not exceed an area corresponding to 300 pixels in a Landsat-7 

ETM+ band 6 image. If a thermal cluster has more than 300 pixels, it can be removed. 

Considering that normally such a big thermal anomalous cluster is caused by a water 

body, such as a river or a lake, this process becomes unnecessruy, because a thermal 

anomalous cluster induced by a water body, even with a small pixel number, still can 

be removed through the next aspect. The second aspect is removing thermal clusters 

with a lower standard deviation than its background. Thermal anomalies caused by 

coal fires have a higher standard deviation than their background in a night-time 

Landsat-7 ETMf band 6 image according to 6.3. When a thermal cluster has a smaller 

standard deviation than its background, it is probably formed by a water body or an 

illuminated slope, since they normally have a homogeneous surface. This kind of 

thermal cluster can be removed through this process. The third is removing thermal 

clusters whose mean values do not decrease when more neighbor background pixels 

join in. Sometimes, a thermal anomalous cluster formed by a water body or solar 

heating contains less than 3 pixels. Its standard deviation does not exit, so they can not 



be deleted through the previous process. These kind of false thermal clusters can be 

tuned out by this process, which is based on the fact that the mean of a coal fire or a 

thermal anomaly on ETM+ images is higher than its background and decreases with 

the increase of number of pixels for background as discussed in 6.3. It should be 

mentioned here that care should be taken when the fine-tuning processes are applied to 

a thermal anomalous image. The frst  aspect is relatively problem free. It is tme at least 

for the North of China, where there is no a single coal fire larger than lQ (278 pixels 

on ETM+ band 6). The last two aspects should be applied according to the goal of the 

thermal anomaly extraction. When the extraction aims at the retrieval of the coal fres 

on a large scale to get a general view of coal fire distribution, these processes should 

be applied. When the delineation of the thermal anomalies aims on a detailed study of 

coal fires in a defined area, the last two aspects should be omitted, because the 

accuracy now becomes important. The false alarms can be removed through the last 

two steps of fine-tuning process, while a small part of the real anomalies is removed as 

well. 

After the fine-tuning, the fmal output image only contains few thermal anomalies, 

having a high chance of being coal f r e  induced. Figure 7.6 shows the results of the 

fine-tuning process. In Figure 7.6, A is the original Landsat-7 ETM+ band 6 image. B 

is the indexed thermal anomalous cluster image. C shows that the river and illuminated 

slopes have been removed by the standard deviation characteristics. D shows that 

sparsely distributed small non-fre related thermal clusters have been removed by the 

mean characteristics. 

The method for the automated extraction of coal f re  related thermal anomalies in large 

areas can be formulated, as illustrated in Figure 7.7. 

It should be mentioned here that the false alarms can be also removed through land 

cover information extracted from the multi-spectral channels based on the spectral 

signatures of the individual surfaces. The combined approach of thermal anomaly 

extraction and land cover information derivation is successful for coal fire detection in 

the north of China. The details are explained in the paragraph 8.3 'Detecting unknown 

coal fres in a previously non-studied area using Landsat-7 ETM+ data'. 





7.4 Discussion and Conclusion 

Most thermal anomalies formed by coal fres on the surface are smaller than the pixel 

size of Landsat-7 ETM+ band 6. They form a weak and local thermal anomaly on the 

image. The thermal anomalies can be automatically extracted in a subset of the image 

locally. Subsets of an image can be acquired using a window with a small size moving 

over the image step by step. In such a window, thermal anomalies and their 

background can be separated through a threshold, which is the frst histogram turning 

point after the mean plus the standard deviation of the window. The threshold keeps 

false alarms as low as possible. A result map records how many times a pixel in the 

image has been counted as a thermal anomaly. When a cut-off percentage is set, the 

result map can be sliced to a bit map for the output with 1 representing coal f r e  

induced thermal anomalies and 0 representing the non-fire area. Furthermore, some 

false alarms, such as water bodies and slopes heated by the sun, can be removed 

according to texture analysis based on the known coal fires' texture characteristics. 

The performance of the algorithm for the extraction of coal fire related thermal 

anomalies is dependent on the spatial resolution of the remote sensing sensors, while 

the result of the algorithm is dependent on the size of the moving window and the final 

cut-off percentage. What the proper size of the moving window is, and how to choose 

the right cut-off percentage to achieve the best output result still needs to be studied. 

This is discussed in the next chapter. 



Chapter S RESULT EVALUATION AND VALIDATION 

8.1 Assessment of the Algorithm for the Extraction of Coal Fire Related Thermal 

Anomalies 

The algorithm for extracting thermal anomalies related to coal fres described in the 

previous chapter can run automatically over an image. Accurate results can be acquired 

only when the parameters are correctly set. These parameters include the size of the 

moving window and cut-off percentage for the result bit map. Before we continue to 

use the algorithm running on one or more scenes of Landsat-7 ETM+ band 6 images 

for detection of coal fires in a large area, or on a partial scene for quantifying 

characteristics of coal fires in a small area, an assessment of the algorithm performance 

including the influences from the parameters needs to be conducted. 

8.1.1 Data input 

1. Landsat-7 ETM+ band 6 image: night-time Landsat-7 ETM+ band 6 data in Wuda 

area with 1024 columns and 512 rows are used in the study (See Figure 8.1 A). The 

data are a subset of scene 226-21 1 (pass-row) acquired on the night of 28 September 

2002 (Night2002 in 6.3). The best known area, Wuda area, covers 200 columns by 100 

rows in the image. 

2. Interpreted thermal anomaly image: this is a bit map (l-fire, 0-background), 

whose thermal anomalies are manually interpreted from the same night-time Landsat-7 

ETM+ band 6 data based on field observations (AnoNight2002 in 6.3). It represents 

the known coal fire related thermal anomalies, which can be detected by the image. 

8.1.2 Methodology and data processing 

1. Extracting thermal anomalies using different moving window sizes: window 

sizes from 3*3, 5*5, 7*7, up to 51*51 (columns and rows) are used to extract thermal 

anomalies from the night-time Landsat-7 ETM+ band 6 data in Wuda. Keeping the 

window size in odd numbers defmes a center pixel of the window, where the threshold 

of the window is recorded. The result is a 25-layer long integer image. Layers are 



correspondent with window sizes. For example, the first layer represents the result for 

the 3*3 moving window, while the 25th layer represents the result for the 51*51 

moving window. In the layer, the digital number is equal to the times the pixel has 

been counted as a thermal anomaly regarding to the moving window concept. For 

instance, a pixel with a digital number of 8 in the frst  layer means that the pixel has 

been sampled 3*3=9 times and regarded as a thermal anomaly 8 times. Layer 1, 13 and 

25, equal to window size 3*3, 27*27 and 51*51 are shown in Figure 8.1. Their 

threshold images are shown in Figure 8.2. 

The maximum value in the frst layer is 9, the second is 25, the third 49, and the 25th 

layer is 2601. Each layer is normalized to the same maximum value as the 25th layer 

through its DN value times 2601 divided by the maximum value of the layer. After the 

normalization, all 25 layers are summed up to produce the 26th layer as shown in 

Figure 8.3, which represents a kind of accumulation of the moving window results. Its 

simulated threshold image can be calculated as the mean of the 25 layers' threshold 

images. It is shown in Figure 8.3 B. 



Figure 8.1 T h e m l  anomalies extracted using different moving window sizes. A: Input 

image; B: Thermal anomalies extracted by a F 3  moving window; C: Thermal anomalies 

exlmded by a 2F27 moving window; D: Thermal anomalies extracted by a 5 1 5 1  

moving window. 



Figure 8 9  Threshold images for thermal anomaly extsaclion using dffferent moving 

window sizes. A: Thmhold image af the F 3  moving window; B: Threshdd image of 'the 

nP27 moving window; G: Threshdd Image of the 5Ir51 moving window. 



Figure 8.3 A thermal anomaly image and a threshold image. A: Sum of the normalized 

thermal anomaly images for window size 3 9  to 51*51 with an interual of 2*2. B: Mean of 

the threshold images for window size 3*3 to 51*51 with interval of 2 2  

2. Producing result bit maps using different cut-off percentages: for the total 26 

thermal anomaly layers, cut-off percentages of 50%, 55%, 60%, 65%, 70%, 75%, 

80%, 85%, 90%, and 95% are used to produce the result bit maps (total 260 maps). 

When the cut-off percentage is set Low, for example, as 50%, there will be more 

thermal anomalous pixels extracted by the moving window method assigned as l in 

the output image. The result image will include more thermal anomalies. When it set 

high, such as 90%, there will be less thermal anomalies in the output image. The result 

looks ' clean'. Figure 8.4 shows the result map for the 13th layer (window size 27*27) 

by using cut-off' percentage of 50%, 70% and 90% respectively. 



Figure 8.4 Result maps for different cut-off percentages. A: cut-off percentage 50%; B: 

cut-off percentage 70%; C: cut-off percentage 90%. 



Figure 8.5 Interpreted thermal anomaly image in Wuda. A: Bit map. 6: Clustered map. 

3. Grouping the interpreted thermal anomaly image into clusters: the interpreted 

thermal anomaly image in Wuda (See Figure 8.5A) has 264 thermal anomalous pixels. 

They are grouped into 28 clusters according to the 8-connection neighbohood and a 

distinct index is given to each cluster (See Figure 8.5B). The number of pixels for each 

cluster is indicated in table 7.1. 

Table 7.1 P i e l  number of clusfersforthe interpreted thermal anomaly image in Wuda. 

C. Index: Cluster Index; P. Number: P i e l  Number. 

4. Calculating parameters for evaluation of the performance of the algorithm: To 

evaluate the performance of the 2 60 result bit maps, 5 parameters are defmed. The fmt 

one is .the number of the correctly detected pixels (D), which answers how many pixels 

in each cluster in the interpreted thermal anomaly image are shown in the result bit 

map. The second parameter is the number of the total detected pixels (0, which is the 



number of the total thermal anomalous pixels in the result bit map in Wuda area (1024 

columns * 5 12 rows). The third one is the number of false alarms (FJ: 

The fourth one is the percentage of the correct detection (DP): 

where C is the total pixel number of the f r e  cluster listed in table 7.1 

The fifth parameter is an integrated index (I): 

A high value of I represents a high number of pixels in the result bit map which are 

correctly detected, while there is a low number of false alarms. 

8.1.3 Results and discussions 

1 Assessment of the algorithm performing at different window sizes and cut-off 

percentages for the extraction of coal fire related thermal anomalies in Wuda 

area: the percentage of the correct detection (parameter DP) of each result bit map 

(total 260) has been plotted for each cluster listed in Table 7.1. In Figure 8.6, the upper 

map shows the DP of each result bit map for the detection of the known cluster (Index 

8) with 42 pixels. The Y-axis represents the number of DP in percent. When it equals 

to 0, none of the known 42 thermal anomalous pixels of the cluster (Index 8) have been 

detected on the result bit map. When it equals to 100, all of the known pixels of the 

cluster have been detected. The X-axis represents the 260 result bit maps. Marks are 

given from 3, 5, 7, and so forth, up to 51 and A. The numbers represent the window 

size. For example, 3 means the size of the moving window is 3*3. The last one, 'A', 

means the accumulation size of the moving window. Within each window, ten points 

are plotted. They represent the cut-off percentages. The first point in the left 

corresponds with the cut-off percentage of 50%, and the last one is 95%. As shown in 



the figure, these ten points always decline from the first to the last. If we only consider 

the result bit maps with both the cut-off percentage and the DP higher or equal to 70%, 

it is found that all these result bit maps are located within the window size from 17* 17 

to 41*41. This window range is suitable for extracting thermal anomalous clusters with 

about forty pixels in Wuda area. Furthermore, the best window size for the extraction 

is 19*19. When it is used, the cut-off percentage can be set as high as 90%, with still 

90% of the known pixels detected. The center map in Figure 8.6 shows the average DP 

of the 260 result bit maps for extracting thermal anomalous pixels from 3 known 

clusters with 8 pixels. The suitable window sizes range from 9*9 to 41*41. The best 

window size is 15*15. To detect thermal anomalous cluster with only one pixel, the 

best window size is 11*11. Suitable sizes for the moving window are from 3*3 to 

37*37, as shown in the lower map in Figure 8.6, which shows the average DP for the 

detection of 5 known anomalous clusters with 1 pixel. 

2 Selection of the suitable size of the moving window for the detection of coal fire 

related thermal anomalies in Northwest of China: the integrated index (the fifth 

parameter I) of each result bit map (total 260) for the detection of the whole 28 clusters 

in Wuda area has been plotted in the same way as the DP and is shown in Figure 8.7. 

The black line and the arrow in black represent the cut-off percentage of 70%, in red 

80% and in green 90%. In the window among 11*11 to 43*43, the value of I is higher 

than the other window sizes. When they are used to detect coal fire thermal anomalies 

in Wuda area, the result bit maps have relatively high accuracy and a low number of 

false alarms. Out of this window range, the values of I do not increase with an increase 

of cut-off percentage, which means that the cut-off percentage does not play a key role 

in the result bit map any more. At the end part of the figure, it is found that after the 

accumulation of the window sizes, I has a high value, especially at the result bit map 

for the cut-off percentage 70. 
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Figure 8.6 Evaluation of window size and cut-off percentage for the extraction of 

thermal anomalous pixels in the clusters with different amounts of pixels; Upper: 

Cluster 8 with 42 known thermal anomalous pixels; Middle: Average of 3 clusters with 8 

known thermal anomalous pixels; Lower: Average of 5 clusters with 1 known thermal 

anomalous pixel. 
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Figure 8.7 Evaluation of window size and cut-off percentage for the extraction of 

thermal anomalous pixels vs. false alarms in the Wuda area. Black: cut-off percentage 

70%; Red: cut-off percentage 80%; Green: cut-off percentage 90%. 
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Figure 8.8 Accuracy evaluation of window size and cut-off percentage for the extraction 

of thermal anomalous pixels in the Wuda area. Accurate result can be acquired by using 

the 17*17 to 35*35 moving windows. 



Figure 8.8 shows the DP value of the 260 result bit maps for detecting the total 264 

known thermal anomalous pixels in the Wuda area. It is found that some result bit 

maps do have a good performance for detecting the known thermal anomalous pixels 

in the area, especially the result bit maps in the window range between 17*17 and 

35*35. Over 70% of the known thermal anomalous pixels can be detected by the result 

bit maps with a cut-off percentage of 80%. The result bit maps with lower cut-off 

percentage can even extract over 90% of the total anomalous pixels. 

The number of thermal anomalous pixels related to coal fires detected by the algorithm 

is dependent on three factors. The first two are the size of the moving window and the 

cut-off percentage, which have already been discussed. The other one is the contrast 

between the coal fire and its background. If the contrast is high, the pixel will be 

defmitely detected. Most coal fires, especially at the start stage, can not form such a 

strong thermal anomalous pixel due to the spatial extension of the fires and the spatial 

resolution of the image. Then the detection of the low contrast thermal anomalous 

pixels becomes important. The first two factors need to be taken into account. 

Coal fires in Wuda are quite diverse. They form strong thermal anomalies as well as 

weak thermal anomalies. They have big spatial extents as well as small extents. They 

include new coal fres as well as fires that have been burning for decades. The suitable 

size of the moving window for Wuda can be used as a representative for the North of 

China. The suitable size of the moving window for the detection of coal fires in Wuda 

are between 17*17 and 35*35. The best window size for the extraction of one pixel 

thermal cluster is 11*11. Window accumulation gives good results. It can be 

concluded here that the suitable size of the moving window for the detection of coal 

fires in northern China is the accumulation window from 1 l* 11 to 35*35. 

3 Use of the multi-cut-off percentage in the final output image: a high setting of the 

cut-off percentage detects less thermal anomalous pixels related to coal fres, as well as 

false alarms, but the pixels detected have a high chance of representing coal fres. On 

the contrav, a low setting detects more thermal anomalous pixels related to coal fires. 

It gives a more accurate result for the spatial extension of the coal fre,  but false alarms 

detected increase. To detect unknown coal fires in a previously not studied area or for 



detecting coal fires in a large area, we prefer to use a higher setting of the cut-off 

percentage to produce a relatively simple final output. For the quantity of coal fires in 

the known coal fire area, we prefer to use a lower setting to make a more accurate 

result, for the false alarms will not divert our attention from the real coal fres. These 

two kinds of results can be presented in a single final output image if we do not keep 

the f i a l  output image as a 0-1 bit map. For example, the final result map can include 

three classes: background, a class from the result by using a low cut-off percentage of 

70%, and a class from the result by using a high cut-off percentage of 85%. 

8.1.4 Conclusions 

1. Thermal anomalous clusters with different pixel numbers (0 to 64 in the Wuda area) 

can be well extracted by the algorithm using different moving window sizes. 

Sometimes 100% of the thermal anomalous pixels in a cluster can be delineated. 

2. The best size of the moving window for extracting thermal anomalies related to coal 

fires in the Wuda area is ranging from 17*17 to 35*35. Above 70% of the known 

thermal anomalous pixels can be extracted. At the mean time, the false alarms are 

minimized. 

3. The best size of the moving window for detecting coal fires in a large area of China 

is the accumulation window ranging from 1 l* 11 to 35*35. 

8.2 Validation of Results for Applying the Algorithm to Other ETM+ Images 

The algorithm for extracting thermal anomalies related to coal fres has been evaluated 

in the last paragraph. It was developed based on the scene acquired in 2001, and it has 

a good performance for the scene in 2002. Both scenes are acquired during night-time 

and cover the same study area. In this paragraph, the algorithm is applied to a day time 

scene in the Wuda area, and a night-time scene covering an area in Xijiang Uygur 

Autonomous Region, China. 



8.2.1 Validation of the result for the extraction of thermal anomalies related to 

coal fires in Xinjiang 

A scene of the Landsat-7 ETM+ (paturow: 31215) band 6 data acquired during night- 

time on 1 January 2000 is used as the input image. It has 3300 columns and 3000 rows, 

covering an area of about 180km*180km in the northeast of the U m q i ,  the capital 

city of the Xinjiang Uygur Autonomous Region. 

The algorithm developed in the previous chapter is used to detect thermal anomalous 

pixels related to coal fires from the data. During the process, the size for the moving 

window was set at 11*11, 19*19, 27*27 and 35*35. The result bit maps were 

normalized and accumulated. Two cut-off percentages are set at 70% and 85%. 

In Figure 8.9 the upper image shows a subset of the input scene of the band 6 (high 

gain) data. It has a dimension of 1024 columns and 512 rows, covering an area of 

about 60km* 30km. The area is located lOOkm away from U m q i  in the Northeast 

and about 2500km away from the Wuda area. It is the only mountainous area in the 

scene. The rest of the scene is a desert area. The lower map in Figure 8.9 shows the 

output result map for the extraction of coal fire related thermal anomalies using the 

algorithm. In the map, the background area is in white color. The red pixels are related 

to the cut-off percentage of 85%, and the green ones are correspondent to the cut-off 

percentage of 70%. 

The image shows that there are only 11 clusters (pixels in red colour) with a high 

possibility to be coal fires. Two of them, as pointed by the arrows, were coal fires, 

which were investigated during a field campaign in 1996. They were most probably 

still burning in the year 2000 when the image was acquired. Four thermal clusters 

marked by letter 'F' in the result map are located in the area close to the coal seam 

outcrops. These are probably coal fres also. The other five thermal anomalous clusters 

marked by letter 'P' are probably caused by industrial plants, because they are located 

in the alluvial fan area, which is normally are the most common place for settlement 

and industry. The performance of the algorithm is acceptable. 



Figure 8.4 Exlraction of thermal anomalies in Xinjiang, China. Tap: The original Landsat- 

7 EM+ band 6 data Bafforn: Result map of thermal anomalies exbacked by the 

algorithm. Red: thermaI anomalous pixelswitfi a high possibility to be caused by mal 

fires. Green: thermal anomalous pixels possibly caused by coal fires. 



8.2.2 Validation of result for the extraction of thermal anomalies related to coal 

fires using day time ETM+ band 6 data in the Wuda area 

A day time Landsat-7 ETM+ band 6 image acquired on 21 September 2002 of 

pathlrow 129133 (Day2002 in 6.3) is used as the input. Thermal anomalies are 

delineated using the algorithm as described before. 

Figure 8.10A shows the original image in the Wuda area with 1024 columns and 512 

rows. The red pixels in Figure 8.10B are thermal anomalous pixels extracted using the 

cut-off percentage of 85%. They are concentrated in the Wuda syncline area, as well as 

in the mountainous area in the East of the Yellow River. Most of the thermal 

anomalous pixels are interpreted as false alarms formed by heated slopes. When the 

threshold of the moving window is changed from the first turning point after the mean 

plus two times standard deviation, false alarms caused by solar uneven heating in the 

mountainous area are removed, as shown in Figure 8.10C, where the red pixels are 

related to a cut-off percentage of 85%, magenta 70% and cyan 50%. Only a few of red 

pixels exist in the map as marked by the arrows. The day time image detects few coal 

fires in the Wuda area. This is mainly because the scene is acquired during summer. 

During day time in summer, the temperature contrast between coal fres and 

background is low, so less coal fires can be detected. It is expected that a day time 

image received in winter time will improve the result. 





8.3 Detecting Unknown Coal Fires in a Previously Non-studied Area using 

Landsat-7 ETM+ Data 

8.3.1 Methodology 

A Landsat-7 ETM+ scene of path 226, row 21 1 acquired on September 29th 2002 was 

used for thermal anomaly extraction. A correspondent day time scene of path 133, row 

129 from September 21st 2002 was used for multi spectral analysis. The study area 

covers an area of 8 100 W. 

Both scenes were georeferenced based on vely precise GPS-derived vector data from a 

field campaign in September 2002. The data was also orthorectified to minimize 

terrain induced displacements based on digital elevation models produced from 25m 

resolution ERS-2 SAR data. The multispectral data was furthermore atmospherically 

corrected using ATCOR-3 (Richter 1998), to suppress atmospheric and topography 

induced illumination effects. 

Coal f re  related thermal anomalies were automatically extracted from the input night- 

time image using the algorithm mentioned in the above paragraph. During the process, 

the size of the moving window was chosen as the accumulated window from 1 1 * 11, 

19*19, 27*27, and 35*35. The cut-off percentage was chosen as 70%. The thermal 

anomaly result is shown in magenta colour in Figure 8.1 1. 

From the multi-spectral ETM+ channels land cover information can be extracted based 

on the spectral signatures of the individual surfaces. To understand the spectral 

behaviour of the surfaces, characterizing the areas studied, surface and laboratoly 

spectra were collected with a GER3700 field spectrometer during a ground truthing 

campaign in September 2002. The different land cover classes derived from the image 

can be seen in the legend of Figure 8.1 1. For coal fire area demarcation it is assumed, 

that the signature 'coal' plays a major role. At risk for coal fres are abandoned and 

active mines, coal seams, coal waste piles, coal storage piles or coal washely discard. 

Coal fres can therefore only occur in the vicinity of outcropping coal seams, coal 

waste or coal storage piles and related coal accumulations. Hence, the detection of the 

signature 'coal' and knowledge of the distribution of coal is crucial for the demarcation 



of possible coal fire and coal fire risk areas. Even though coal fires occur underground 

and the thermal anomalies may not be located directly related to the coal signature 

(e.g. a sandstone layer, which is overlaying a burning coal seam) coal fires are 

restricted to a certain depth. In general, coal fires occur no deeper than approximately 

150 m underground. Talung this fact, a buffer zone around the detected coal signature 

demarcating the area, in which coal fires are possible at all, can be generated (Kuenzer 

et al. 2003). 

Figure 8.1 1: Combination map of thermal anomalies and land cover characteristics. 

Thermal anomalies are automatically derived from night-time Landsat 7 ETM+ thermal 

band. Land cover information i s  extracted based on the spectral signatures using 

daytime non-thermal bands. Four circled areas are interpreted as favourable places for 

coal fire occurrence. The area marked in orange is fhe newly detected coal fire area. In 

the upper amplified window the red arrows point at the five thermal anomalies that have 

been verified in the field as coal seam fires, while in  the lower one the arrow points on 

the thermal anomalies formed by coal waste pile fires. 



This buffer zone can also help to exclude thermal anomalies detected by the automated 

thermal extraction, which show a similar behaviour like coal fires (thermal anomalies 

from industly, settlements etc.) but are not located within possible coal fire areas 

(Kuenzer et al. 2003). 

8.3.2 Results 

The combination of the information automatically extracted from thermal as well as 

non-thermal multispectral data can support the demarcation of areas with a high 

potential for coal f re  occurrence. As it can be seen in Figure 8.11, four major areas for 

coal fire occurrence were located. The northernmost area close to the city of Wuda 

hosts several coal fires already well known. The same applies for the westernmost area 

Ruqigou and Gulaben being well studied and also containing several well known coal 

fires. Areas never investigated so far are the north south striking coal outcrops east of 

the Yellow River and the coal outcrops in two valleys, running parallel to each other 

from Northwest to Southeast, approximately 50km southwest of Wuda. This area is 

marked in orange. In Figure 8.11 it can be seen that all four areas contain several 

thermal anomalies. The ones in the Wuda and Ruqigou / Gulaben areas were expected 

to show up, since the location of coal fires there is well known. The other areas, where 

coal signatures and thermal anomalies matched spatially, were inspected during the 

field campaign in 2003. 

On September 13th 2003 a field trip was organized to the vely remote area marked in 

orange. The coal f r e  fighting team of Wuda, joining on the survey, did not know about 

the area visited beforehand, nor did they have any information on possible coal fires in 

that region. Once arrived in the area, which is only accessible via dirt roads and vely 

sparsely settled, we could receive information from the local inhabitants. The region 

once was a prospering coal mining area but production has been decreased drastically 

due to financial problems. 

With the help of GPS, the six thermal anomalies, extracted from the satellite data, were 

located within an area of vely rugged terrain of former coal waste piles, abandoned 

mines and heavily disturbed coal outcrops. Five of the thermal anomalies proved to be 

coal fires in an actual coal seam, while the other anomaly resulted from fres in a coal 



waste pile. Therefore all six anomalies could be verified as coal fire anomalies. In this 

coal f r e  area, the f r e  temperatures range from 170 to 340 "C. At the mean time, pyro- 

metamorphic rocks, and fumarolic minerals such as sulphur (S) and salmiac (NHdCl) 

can be seen on the surface (See Figure 8.12). 

Figure 8.12: A newly detected coal fire in a previously non-studied area. The arrow 

points at the location where a fire is burning underground. 

8.3.3 Discussion and Conclusion 

The discovev of formerly unknown coal fires from remote sensing data exclusively 

shows that the combined approach of thermal anomaly extraction and land cover 

information derivation is successful. 

The algorithm could work on the data from different sensors. Thermal and land cover 

information can also be derived from Landsat-5 TM, ASTER, ALI, or MODIS data. 





Chapter 9 CONCLUSIONS & OUTLOOK 

A practical approach for the extraction of coal f r e  related thermal anomalies in a large 

area has been developed. The algorithm runs automatically, is able to investigate 

unknown areas, and results are transferable to different images. This makes it possible 

to set up an operational detection and monitoring system for coal fires in larger areas, 

such as the North of China. 

9.1 Conclusions 

With respect to objective 1 'Analysis of thermal characteristics for coal fres and their 

background', the following conclusions can be drawn: 

1. The interior temperature for the simulated surface coal fire is about 100O0C, which 

can heat the surroundings through mainly convection in the proximity of 2 meters and 

form a thermal anomaly of 1°C difference. It is hard for the coal f r e  to heat an area in 

over 4.5m distance. For the simulated underground coal fire, the interior temperature 

could reach above 1200°C. The surface radiant temperature for the simulated coal fires 

range from 300 to 900°C. Within 1 hour heat could be transported through a 0.5 meter 

high sand cone to the surface to form a thermal anomaly with a temperature about 3°C 

higher than background. 

2. Diurnal radiant temperature variations for different surface types showed the same 

trend: High radiant temperatures during daytime and low temperatures during night- 

time. When using thermal remote sensing data to detect coal fres, the factors of relief, 

vegetation, soil moisture, etc. often produce anomalies on imagev which for our 

purpose are noise and needs to be recognized or eliminated. Surface temperature in a 

sand dune could v a v  28°C within the sand dune. In a coal dump pile, temperature for 

a slope facing Southeast could be 20°C higher than that for a slope facing North 

between 10:OO to 14:OO. The temperature variance caused by uneven solar heating can 

mask thermal anomalies related to coal fres. 

3. Underground coal fres can form thermal anomalies above the covering bedrocks on 

the surface. These anomalies can be observed during night-time only. Predawn is the 



best time for coal fire detection using thermal remote sensing techniques. Underground 

temperature profiles showed that one hour past sunrise, a thermal anomaly expected to 

exist l m  away from the coal fire's crack was covered by the effects of solar uneven 

heating. Heat from the sun can reach 3.2cm below the sand surface two hours after 

sunrise. Thermal anomalies did not extend for more than 3m from the crack. The width 

of the thermal anomaly does not decline with increasing background temperature. The 

thermal pattern in remote sensing as well as field data above a coal fire actually is the 

pattern of cracks. 

4. The minimum, median and mean values of a coal fire cluster or a thermal anomaly 

cluster on ETM+ images are not only higher than for the correspondent background, 

but also decrease with the increase of the accounted background area. Standard 

deviation of a coal f re  cluster or a thermal anomaly cluster on night-time ETM+ 

images is higher than of the background. On daytime ETM+ images the standard 

deviation is smaller than that for the background. 

Coal fres form thermal anomalies on images with their distinct start and end DN 

values. During the detection, evev coal f r e  should be analysed individually. ETM+ 

night-time images are suitable for a general survey of coal fres in large areas. About 

eighty percent of the known coal fires can be detected. 

With respect to objective 2 'Development of a practical approach for the extraction of 

coal fire related thermal anomalies in a large area', the following conclusions can be 

drawn: 

1. A practical approach for the extraction of coal f re  related thermal anomalies in a 

large area using Landsat-7 band 6 data has been developed. Most of coal f r e  formed 

thermal anomalies on the surface are smaller than one pixel of Landsat-7 ETMf band 

6. They form a kind of weak and local thermal anomaly on the image. The thermal 

anomalies can be extracted in a subset of the image locally. Subsets of an image can be 

acquired using a moving window of a small size moving over the image step by step. 

In a window, thermal anomalies and their background can be separated through a 

threshold, which is the first histogram turning point after the mean plus the standard 

deviation of the window. The threshold keeps the false alarms as low as possible. A 



result map records how many times a pixel in the image has been counted as a thermal 

anomaly. When a threshold is set, the result map can be sliced to a bit map for the 

output with 1 representing coal fire induced thermal anomalies and 0 representing the 

non-fire area. Furthermore, some false alarms, such as water bodies and slopes heated 

by the sun, can be removed according to texture analysis based on the known coal 

fires' texture characteristics. 

2. The background temperature, the quality of the thermal remote sensing data, and the 

magnitude of the coal fires are the factors which determine the detection capability of 

coal fires. The performance of the algorithm for the extraction of coal fire related 

thermal anomalies is independent on these factors, while the result of the algorithm is 

dependent on the size of the moving window and the cut-off percentage. Thermal 

anomalous clusters with different pixel numbers (0 to 64 in the Wuda area) can be 

extracted well by the algorithm using different sizes of the moving window. 

Sometimes 100% of the thermal anomalous pixels in a cluster can be delineated. The 

best size of the moving window for detecting coal f r e  in a large area in the North of 

China is the accumulation window ranging from 11*11 to 35*35 for Landsat-7 ETM+ 

band 6 data. 

9.2 Outlook 

1. Coal fire detection includes isolating coal fire areas, locating the front of coal fires, 

calculating the depth and the age of coal fires. Thermal anomalies on the surface, as 

well as in an image, are direct indicators for active coal fires. Surface temperature of 

these thermal anomalies could be calculated according to Plank's formula. The front, 

depth, and age of a f re  can be obtained from coal f r e  thermal models (Cassells &van 

Genderen, 1995; Cassells et al., 1996). 

2. The current development of the partial failure of Landsat-7 is a worry for future 

thermal research, nevertheless, the algorithm presented could work for other sensors. 

Thermal anomalies could also be derived from Landsat-5 TM, or ASTER data, 

showing the robustness of the algorithm on different spatial and spectral scales. 



3. The discovery of formerly unknown coal fires from remote sensing data exclusively 

proves that the combined approach of thermal anomaly extraction and land cover 

information derivation is successful. It is an important step towards the setting up of an 

operational detection and monitoring system for coal fires in the large area of northern 

China. 
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Appendix 6.1: Ground Temperature Measurements of Coal Fire Experiment in DLR, 
Oberpfaffenhofen. 23 and 24 May 2002. Page: 114 

Notes: 1. WS&D: Wind speed (0, Low, Middle andHigh) and direction (North, East, South, and West). 
2. OB: Observer (Anke Tetzlaff , Jianhong Zhang). 3. AT: Air temperature. 
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Appendix 6.1: Ground Temperature Measurements of Coal Fire Experiment in DLR, 
Oberpfaffenhofen. 23 and 24 May 2002. Page: 214 

4. FCS: Contact temperature for simulated surface coal fire. 5.  FCU : Contact temperature for simulated 
underground coal fire. 6. FRS : Surface radiant temverature for simulated surface coal fire (W: No 

v 

Fire). 7.  FRU : Surface radiant temperature for simulated underground coal fire 
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v .  

See their locations in Figure 6.1. 
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Appendix 6.2: Surface Temperature Measurements for a SandDune in Wuda Coal Mine 
Area, Inner Mongolia, China. 23d September 2002 

StartT: measuring start time 

EndT: measuring end time 

WDS: wind direction and speed 

NI-N8, El-E6, S1-S7, W1-W7, and T: measuring points 



Appendix 6.3: Surface Temperature Measurements for A Coal Dump Pile in Wuda Coal 
Mine Area, Inner Mongolia, China. 23rd September 2002 

StartT: measuring start time; EndT: measuring end time; WDS: wind direction and speed; NL, NM, NU, 
SEL, SEM, and SEU: measuring points; Diff Max (NL, NM, NU, SEU, SEM, SEL) - Min (NL, NM, 
NU, SEU, SEM, SEL); AirT: air temperature 

Appendix 6.4: Surface Temperature Measurements for A Crack in Wuda Coal Mine 
Area, Inner Mongolia, China. 23rd September 2002. 

StartT: measuring start time; EndT: measuring end time; WDS: wind direction and speed; AirT: air 
temperature; SW1 to SW6, C, NE1 to NE10: measuring points; DDA: Dip direction and dip angle for 
the plane that the measuring point located on. 



Appendix 6.5: Statistical Characteristics of Thermal Anomalous Areas on ETM+ Night 
Image (28 September 2002). Page: 112 

FN: Fire name number 

A: Thermal anomalous area manually exwcted &omNight2002 image 
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Appendix 6.6: Statistical Characteristics of Thermal Anomalous Areas on ETM+ Day 
Image (21 September 2002). Page: 112 

FN: Fire name number 

A: Thermal anomalous area manually exwcted &om Day2002 image 
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