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I 

Zusammenfassung 

Radio Ressource Management (RRM) Algorithmen spielen eine wesentliche Rolle bei der 

effizienten Verwendung der knappen Funkressourcen in Mobilfunknetzen. Die Klasse der 

verteilten, selbstadaptiven RRM Algorithmen gewinnt wegen ihrer geringen Komplexität und 

ihres geringen Signalisierungsaufwands immer mehr an Bedeutung. In dieser Arbeit 

verwenden wir “pricing” und den spieltheoretischen Zugang zur Entwicklung von verteilten, 

selbstadaptiven RRM Algorithmen. In unserem Model maximiert ein Netzbetreiber seinen 

Gewinn, indem er die „Preise“ für die Funkressourcen gemäß dem Netzzustand festlegt. Die 

mobilen Teilnehmer wählen dann die Ressourcen aus, die ihre Nutzfunktionen unter 

Verwendung der „Ressourcepreise“ als Parameter maximieren. Wegen der speziellen Form 

unserer Nutzfunktion können manche bekannte RRM Algorithmen als zustandabhängige 

„Regeln“ durch die Preise „erzwingen“ werden.  

Wir untersuchen weiter, welche „Regeln“ (Algorithmen) „nicht „ausbeutbar“ („evolutionär“ 

stabil) in Netzen ohne „Preisen“ wie in „ad-hoc“ Netzen sind. Wir zeigen auch, durch die 

Verwendung der Spieltheorie, wie eine Kooperation unter „selbstsüchtigen“ Nutzern in 

solchen Netzen entstehen kann. Weiter, wir setzten voraus, daß unsere „Spieler“ „beschränkt 

rational“ sind und beschränkte Informationen wie lokale Messungen zur Verfügung haben. 

Unsere Algorithmen suchen auch nicht nach absolut optimalen Lösungen, sondern nach 

„genug guten“ Lösungen. Diese Eigenschaften ermöglichen praktische Implementierungen 

unserer Algorithmen mit niedrigen Berechnungs- und Signalisierungsaufwand.    

Wir untersuchen Kapazitätsgewinne und Kompromisse von RRM Algorithmen, wie Power 

Control, Scheduling, Dynamic Channel Allocation oder Handover, durch Systemsimulationen 

in verschiedenen Umgebungen (städtisch und ländlich) für unterschiedliche Lasten und 

Dienste (Sprache und Paketdaten), mit und ohne Intelligente Antennen.  

Die Ergebnisse dieser Arbeit sind sowohl für Mobilfunkgerätehersteller als auch für 

Netzbetreiber von Nutzen. Die Hersteller können die Ergebnisse verwenden, um effiziente, 

verteilte, adaptive RRM Algorithmen mit niedrigem Signalisierungsaufwand zu entwickeln. 

Betreiber können die Ergebnisse dazu verwenden, um optimale RRM Algorithmen für jeden 

Netzzustand durch Preisparameter ohne Bedarf an Softwareänderungen zu „aktivieren“, oder 

um Teilnehmer optimal zu vergebühren, oder auch als Entscheidungsunterstützung dafür 

bereitzustellen, wann und wo welche RRM Algorithmen und Technologien wie Intelligente 

Antennen eingesetzt werden sollen. 
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Abstract 

Radio Resource Management  (RRM) algorithms play a main role in the efficient usage of the 

scarce radio resources in wireless networks. A class of distributed, self-adaptive RRM 

algorithms gain increasingly on importance due to their low complexity and signalization 

overhead.  In this work, we apply a “pricing” and game theory based approach to the design 

of distributed, self-adaptive RRM algorithms. In our model a network provider maximizes its 

gain by setting “prices” for the radio resources according to the network’s state. Wireless 

users then choose those resources that maximize their utility functions using “prices” of the 

resources as parameters. Due to special form of our utility function we can “enforce” by 

“prices” some well known RRM algorithms as state dependent “rules”.  

We investigate further what are the non-exploitable (“evolutionary” stable) “rules” 

(algorithms) in the networks without prices like ad-hoc networks. We show also, using game 

theory, arguments how cooperation among myopic users might also arise in such networks. 

Further, we assume that our “players” are “bounded rational” and have limited information 

available like local measurements. Our algorithms also do not necessary search for absolutely 

optimal solutions but for “good enough” i.e. “satisfactory” solutions. These properties enable 

practical applications of our algorithms with low computation and signalization overhead.        

We estimated capacity gains and trade-offs of some RRM algorithms by system-level 

simulations in different environments (urban and rural), for different loads and services 

(speech and packet data), with or without smart antennas.  

Both wireless equipment manufacturer and network providers can benefit from the results of 

this work. Manufacturers can use the results to design efficient, decentralized, adaptive RRM 

algorithms with low signalization overhead. Providers can also use the results of this work to 

“activate” optimal RRM algorithms for each network state simply by “price” (parameter) 

settings without the need for software changes as well as to optimally charge users, or to 

support decisions which and when RRM algorithms and technologies like smart antennas 

should be employed. 
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“For since the fabric of the universe is most perfect and the work of   

      a most wise Creator, nothing at all takes place in the universe in  

      which some rule of maximum or minimum does not appear."  
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1 

1 Motivation and Overview 

"Today, mathematics is returning to the 19th century, to concrete computations, after seventy 
years of very abstract mathematics. The latest fashion is 19th-century mathematics. Some of 

the best work in mathematical physics is based on constructive approach: Instead of proving 
abstract existence theorem, you produce an algorithm that delivers the solution. It is a 

powerful methodology." 

David H. Sharp, Interview in Science 2004 

1.1 Motivation 

Nowadays we are witnesses to a tremendous increase in the number of users and services 

in modern wireless networks. This trend is expected to be continued and even to be 

extended in the future. In order to enable communication with a wireless user, two basic 

resources are needed: Bandwidth (channels) and power. These resources are limited and 

expensive: Only a relatively small part of the spectrum is dedicated to commercial wireless 

communication and “prices” for the frequencies within this spectrum have achieved enormous 

values at some auctions (for example UMTS license prices in UK and Germany). By the 

employment of denser infrastructure, the same channels can be re-used more often in the 

cellular network but system costs would increase. Furthermore, by managing scarce radio 

resources, important social trade-offs should be made, since allocating more resources to one 

user means leaving less resources (or decreasing the resource quality) to all other users in the 

system. It is the task of Radio Resource Management (RRM) algorithms to enable 

efficient usage of wireless network resources with reasonable infrastructure costs and 

signaling complexity. RRM algorithms make decisions like: To which base station(s) to 

connect the user (Handover), which channel should be allocated to a user (Channel 

Allocation) and with which power (Power control) user should transmit. Taking right 

decisions at the right time is crucial for system efficiency i.e. maximizing the number of 

users with sufficient signal quality (satisfied users) or maximizing total system 

throughput (data rate). It is task of network providers to find a trade off between these two 

conflicting objectives: maximizing number of satisfied users on the one hand, and 

maximizing system throughput on the other hand. 

On the other side wireless users faces a trade-off between maximizing own signal quality or 

data rate on the one hand, and minimizing power consumption on the other hand. Also, the 

users have conflicting objectives too. Furthermore, the users’ objectives are oft in conflict 

with provider objectives.  
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RRM decisions can be taken centrally by signaling all relevant information to one decision-

maker or in a decentralized manner letting each base station or mobile station make decisions 

concerning the base station or the mobile station according to locally available information 

like their own measurements. Taking into account size and complexity of a wireless 

network, as well as rapidly changing propagation conditions, it is clear that a centralized 

resource management would be very costly, if possible, at a reasonable price, at all. A 

whole network for the signaling of the size of the network for the users’ data or even larger 

would be needed to provide a centralized RRM.  

RRM algorithms should also be scalable and flexible to adapt to changes in traffic and 

propagation conditions: For example, an increase in the number of users applying possible 

new services, changes in an environment like new buildings, changes in infrastructure like 

new cells, and employment of new technologies like smart antennas.  It is much cheaper to 

let flexible RRM algorithms adapt themselves to the changed conditions than to do new 

network planning with possible employment of new base stations or make changes in base 

stations or mobile hardware and/or software each time something in traffic and propagation 

conditions changes. 

Further, searching for a global optimum in a permanently changing wireless environment 

would require an enormous signalization and computation effort even for the networks of 

moderate size. That is why,(sub-) optimal, distributed RRM decisions are needed, based on 

local available information and measurements. These eventual sub-optimal solutions 

should provide the approximately same performance as a globally optimal solution with far 

less signalization and computation overhead.    

The above reasons give rise to interest on decentralized, self-adaptive RRM algorithms, 

which enable (sub-) optimal, cost efficient solutions with relatively low complexity and 

signaling overhead. Development and improvements of such algorithms have been subject to 

extensive research in almost all modern wireless systems (GSM, UMTS, WLAN) and even 

will gain in importance in future systems. Fourth generation (4G) wireless systems are 

expected to be adaptive, self-organizing radio networks supporting a wide variety of new 

applications and services, where RRM algorithms should play a key role in providing higher 

spectrum efficiency and better service quality.  

1.2 State of the Art and our Model 

In the past a lot of decentralized, measurement based RRM algorithms were proposed and 

analyzed [16], [34], [45], [46], [109], [12], [68], [110]. These algorithms are mainly based on 
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heuristics rules derived from the goal to maintain or maximize signal quality (signal-to-

interference ratio (SIR)), as long as possible for as many users as possible. Distributed and 

self-adaptive RRM algorithms like channel segregation [28], [1] and iterative algorithms like 

distributed power control [108], [109], [25] are of great practical importance.  

These algorithms were designed rather heuristically, for example: users should increase their 

power if their SIR lies below certain threshold (power control) [25], [108], [109], take the 

channels with the lowest interference (channel allocation) [12], take the base station to which 

the channel gain is highest (handover) [74]. The algorithms also do not make clear 

distinctions between users’ and networks’ objectives. Furthermore, different algorithms are 

“optimal” under different conditions. To the best of our knowledge, a little research is done 

about combining the different algorithms in order to optimize system performance 

under all conditions. 

In recent times it is more and more recognized that radio resource management is, like 

each resource management, an economic problem i.e. allocation of scarce resources among 

competing agents [80], [62]. Each decision for one user influences the other users in the 

network. For example, the more power a user transmits, the better the signal for the user is, 

but higher interference to other users is generated; the better channel (lower interference) is 

allocated to a user the less “good” channels are left to the other users that possibly arrives 

later etc. On the one hand, it would be desirable to let each user make its decisions alone in 

order to reduce signalization and computation overhead. Furthermore, searching for a global 

optimum in a centralized manner would be in practice almost a formidable task due to a large 

number of users and a fast changing environment. On the other hand, in order to prevent users 

from disturbing other users, we need a mechanism to direct their decisions to socially 

desirable behavior. These are similar problems of resource allocation among competing 

agents in a decentralized manner that we also encounter in a democratic society and in a 

market economy.  In the economy there are already well-developed tools and methods to 

analyze such problems like Decision and Game theory [100], [70], [26], [51]. A modern 

economy is market based i.e. resource allocation is performed in a distributed manner: Each 

economic agent makes decisions (choose resources), which maximize only its utility 

under its budget constraints. “Prices” serve as mediators between consumers and 

producers and as signals of relatively resource scarcity. Agents take “prices” as 

parameters of their utility function. Similarly, in a society the role of government or social 

institutions is to “direct” the agents (citizens) to socially desirable behavior by punishments 

and rewards, which serve as “prices” for social decisions. In a similar way a network 
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provider can optimize resource usage in a decentralized manner by setting “prices” for 

radio resources (cells, channels, power) and letting users choose resources which 

maximize their utility with “prices” as parameters.  

An “economic” approach for efficient resource allocation based on “pricing” and game theory 

has already been proposed for fixed networks like the Internet and ATM [63], [65], [17], [95], 

[101] and for mobile networks [80], [62], [79], [92], [91], [94], [102], [105]. But these works 

do not take into account the “traditional” RRM algorithms like minimum interference DCA or 

SIR-based PC and do not investigate state dependent decisions. The previous works also do 

not emphasize that in wireless networks, like in real world, the “players” are “bounded 

rational” [88] i.e. have limited information available and do not make optimal but 

“satisfactory” decisions according to the “rules of thumb”. The real networks are (like a 

real world) too complex to apply “classical” assumption of the game theory that players 

are fully rational i.e. they take always optimal decisions which maximize there utility 

function. In order to make the optimal decisions players should have a full information about 

what is the state of the environment, what the other players know, what the other players 

know that we know etc, which would require enormous signalization overhead to obtain all 

relevant information. Furthermore, in mobile networks each few milliseconds the relevant 

information like channel gain and interference changes due to fast fading. As stated by Nobel 

laureate Herbert Simon [89]: “The decision maker has a choice between optimal decisions 

for an imaginary simplified world or decisions that are "good enough," that satisfice, for 

a world approximating the complex real one more closely”. For example a manager set the 

price for a product according to the “rule of thumb”: production cost + some margin 

(estimated by experience). Time and effort required to optimize the prices to the last decimal 

point would require much more costs than the potential gain of the optimal price would be.   

In our work we wanted to build “a bridge” between “old” heuristic-based algorithms and 

a “new” economic approach. We tried to combine the advantages of both approaches: The 

wealth of practical and simulation experience available for the “old”, heuristically algorithms 

and more flexibility and firm theoretical fundaments from economics for the new approach. 

To this purpose we applied “an economic” model for decentralized optimization based on 

“pricing” and game theory and tried to obtain well-known RRM algorithms as special 

cases. We assumed “bounded rational” players, which make “satisfactory decisions” 

(provides “good enough” performance under given load) using local available 

measurements.  
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We differentiated between users’ utility function, which comprises users needs like data rate 

or signal quality, and network utility function, which comprises provider needs like 

maximization of the number of satisfied users or total data throughput. As a mediator between 

these two utilities serves the resource “prices” set by network (cells) and used as parameter of 

the user’s utility functions. In comparison to previous works we used a different model and a 

form of the users’ and network’s utility function and a (possible) fictive “prices” 

(parameters) instead of real (monetary) prices. Due to appropriate choice of the utility 

function, some of the well known heuristically algorithms can be obtained as special 

cases of our model.  

In our model the users took those resources (channels, cells and powers), which maximize 

their expected utility functions, maintaining their service constraints without explicitly 

taking into account the utility of the other users (myopic users). Overall network 

performance could be then optimized in a distributed manner by the appropriate setting 

of “prices” by network (cells). Cells (network) set “prices” according to the state (load, 

interference) of the cells (network). The aim is to maximize the cell (network) utility like the 

number of satisfied users or total system throughput. Some of the well-known “heuristically” 

algorithms, which are “good enough” for a given state, can be “activated” just by appropriate 

parameter (“price”) setting, without the need for implementing each of the algorithms 

separately in software or hardware.  

Optimal algorithms’ parameters (“prices”) depend on the state (load, interference) of a 

cell or network. We used rather rough state classification according to the load and 

interference (low, medium and high states), because our simulation results showed that 

differences among algorithms are significant for only these few states. These states usually 

last in practice for a few hours (like “rush hour”) and when the state changes relevant cells 

can broadcast the new “prices”, defining the “optimal” algorithms for the new state. This is an 

advantage in comparison to a traditional approach where only one algorithm is used for all 

states. A provider can use simulation results or network statistics to find the “best“ algorithms 

(“prices”) for each state in the network (cell). We defined the users’ utility function so that 

we can by state-dependent “price” setting “enforce” some heuristic rules like: “Use 

minimum interference DCA, when load is low” or “send with power just enough to achieve 

the minimum signal quality but not better in the case of a high load”.   

Furthermore, we investigate which of these “heuristic rules” would be a “rational” choice 

in the case without “price”-settings controller(s) like in ad-hoc networks or among 

networks with different providers. We show using (evolutionary) game theory methods that 
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under certain circumstances cooperation might also emerge among myopic users in such 

networks. We provided also examples of the design of efficient, stabile and robust RRM 

algorithms using the game theory results.  

1.3 Relation to Game Theory 

The aim of this work was not to develop new mathematical theories but to provide a 

framework for RRM algorithms design and give some examples of the algorithms 

designed according to the framework. That is why we do not follow a classical 

mathematical “Definition-Theorem-Proof” approach. We believe that optimization of 

wireless networks with large number of users and stochastic, fast changing environment 

is too complex to be accessible in praxis for thorough mathematical analysis with 

reasonable signalization effort (“bounded rationality” assumption). Instead, we use the 

mathematical results, heuristically reasoning and simulations as guidelines to design 

practical and efficient (“good enough”) RRM algorithms.  

Please note that Game theory does not provide us with any algorithm ready to be used for 

RRM. Instead, Game theory, like any other mathematical theory, provides concepts, 

definitions, theorems and proofs, which might serve as inspiration and a “firm mathematical 

background” for the art of the algorithms design in complex, distributed, competitive 

environments. 

Furthermore, we make use of the modern economic and Game theory results, based on 

“bounded rationality”, “satisfactory solution” and use of “rules of thumb” in an 

evolutionary context, which are also subject of an intensive research in the current economic 

theory [51], [90]. 

We hope that this work represents a step further (however small) on the way to establishing 

the role of Game theory in RRM research, like, for example, linear algebra plays in signal 

processing research.          

1.4 Thesis Overview 

The sequel of this work is organized as follows: In chapter 2 we introduce RRM problems 

and give an overview of existing RRM algorithms. We emphasize distributed, 

measurement based algorithms, which require a low signalization and computation overhead 

which make them very interesting for practical implementation.  
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In chapter 3 we take “an economic view” on the RRM problems and set up our model 

based on a maximization of users’ and networks’ utilities with “prices” as mediators between 

these utilities. In chapter 3 we also analyze how cooperation might emerge among myopic 

users in networks without centralized controllers (like ad-hoc networks) using the results of 

game theory.  

In chapter 4, we give examples of RRM algorithms based on our “pricing” and Game 

theory framework and present some simulation results for the RRM algorithms for 

different loads and in different environments (urban, sub-urban and rural). We also 

investigated gains of technologies like smart antennas and how smart antennas influence 

choice of RRM algorithms.  

Finally, we conclude in chapter 5 and propose topics for further research. 

In short, chapter 2 and appendixes give an overview of the existing results. In chapter 3 our 

theoretical model and in chapter 4 practical algorithms and simulation results are presented. 

The text can be read in predefined or in any other order, for example, one can first read 

chapter 2, than chapter 4 and finally chapter 3, which would be approximately the order in 

which the text evolved.    
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2 Radio Resource Management Problems and Algorithms 

“If I have seen farther than others, it is because I was standing on the shoulders of giants.”  
Isaac Newton 

In this chapter we describe radio resource management (RRM) problems and tasks of RRM 

algorithms. We also give examples of some well-known RRM algorithms for power control, 

channel allocation, handover and admission control. We emphasize decentralized, 

measurement based RRM algorithms since they are of high practical importance because they 

have low signaling overhead, flexibility and implementation simplicity. In chapter 3 we show 

how these algorithms can be established as special cases of a more general “pricing” and 

game theory framework.      

2.1 Tasks of RRM Algorithms 

We consider the following scenario (see Figure 2-1): A mobile station arrives in an area 

covered by several base stations (access ports). The area where the signal level from a base 

station is above a certain level is called a cell. In the following we use the terms base station 

and cell as synonyms. The purpose of the base stations is to provide to mobile stations an 

access to the fixed network over a radio link. In order to establish communication over a radio 

link certain resources should be provided - at least one base station, one channel and a certain 

amount of power should be allocated to the mobile.  

Figure 2-1: Resource management problems in cellular networks 

 

Which base station? 
Which channel? 

How much power?  ?

mobile 
(station)  

cell 

base station 
(access port) 
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The tasks of RRM algorithms are to decide which base station(s), channel(s) and how much 

power should be allocated to the mobile in each instant of time. These tasks are divided 

among several RRM algorithms in order to reduce implementation complexity. The RRM 

algorithms are: 

• Handover (HO): HO decides to which base station (cell) mobile is connected and initiates 

change of a base station (intercell HO) or a channel within the same cell (intracell HO). 

• Admission Control (AC): AC controls an access of mobiles to cells. AC can deny access 

to a cell if, for example, the load of the cell is too high.  

• Channel Allocation (CA): CA allocates channel(s) for communication between users and 

base stations. 

• Power Control (PC): PC allocates power to the users for communication with base 

stations.  

• Scheduler (SH): Scheduler decides which users and when (among the users allocated to 

the base stations) should transmit and how much of their data.  

• Load Control (LC): LC regulates data rates (for example, by selection of source and 

channel coder and/or modulation schema) of the users according to the load in the network 

(cell). 

• Congestion (CC): CC reduces the data rate and/or drops users in the case of too high load 

(congestion) in the network (cell).  

In the following we describe a typical scenario of activation of different RRM algorithms 

during a call. At the call beginning, Handover (HO) algorithm decides to which base 

station(s) the mobile should be connected. Only the base stations, which allow access to the 

cell are considered for HO: For example, if the base station is overloaded the access to the cell 

of the base station may be denied for all new mobiles. It is the task of the Admission Control 

(AC) algorithm of a cell to accept or refuse new users in the cell.  Further, the mobile users 

should be provided with a sufficient signal quality from the base station i.e. the users’ position 

has to be within the coverage area of the base station (cell). From all base stations, which 

provide sufficient signal level and allow access to their cells, HO might select the one with 

the highest signal level (highest gain, lowest path-loss see Appendix A). This would be an 

example of a so-called path-loss based handover. Other handover algorithms are also 
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possible: For example, handovers which take into account load of the cell, expected 

interference in the cell etc.     

When a base station is selected, Channel Allocation (CA) algorithm decides which channel 

is selected for the communication between the base station and the mobile. A channel denotes 

a bandwidth in time or space sufficient for communication between the base station and 

mobile. Channel definition is system dependent: For example, in a Time Division Multiple 

Access (TDMA) systems channels are time slots. In a Frequency Division Multiple Access 

(FDMA) systems channel is defined by frequency of the carrier. In a FDMA/TDMA systems 

like GSM channel is a (frequency, timeslot)-pair. In Code Division Multiple Access (CDMA) 

systems the channels are chip sequences called codes. In Space Division Multiple Access 

(SDMA) systems a wireless channel is defined by a space dimension where the mobile is 

located. In “hybrid” systems like UMTS TDD mode (a FDMA/TDMA/CDMA system) 

channel is defined by a (frequency, timeslot, code)-triple. UMTS TDD modus has 15 

timeslots, 16 codes and usually only one frequency (“high cheap rate” TDD). Bandwidth 

around the carrier is usually assumed implicitly: For example, 200 kHz in GSM, 5 MHz in 

UMTS. In case of frequency hopping, a channel is represented by a hopping sequence – a set 

of (frequencies, time slot)-pairs. Note that FDMA, TDMA and CDMA use orthogonal 

channels: Users using different channels (almost) do not disturb each other i.e. interference 

generated in the channels other than the one used for communication is relatively low.  

It is important to distinguish between two possible communication directions from base 

station to mobile, denoted as downlink (DL) and from mobile to base station, denoted as 

uplink (UL). In general, in both directions different channels are allocated. For example, in 

GSM or UMTS FDD, UL and DL use different frequencies from the symmetrical bandwidth. 

In UMTS TDD different timeslots (but same frequency) are used in UL and DL. It is also 

possible in TDD to change the number of timeslots devoted to UL and DL (in each cell) by 

using a variable switching point.   

A simple channel allocation algorithm would be to select a channel randomly from the set of 

free channels in the cell (Random CA). Other CA algorithms are also possible such as CA 

which takes into account interference from other users on channels and/or channel gain from 

the users, service type of the users etc.  

After a base station and a channel are selected, power should be chosen with which the user 

should communicate with the base station on the channel. Power Control (PC) algorithms 

should select the amount of power used for the communication in such a manner that enough 

signal quality is provided to the user itself on the one hand, and on the other hand, the other 
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users in the system are disturbed as little as possible. The more power PC allocates to the 

user, the better the signal quality (higher data rate) of the user, but the higher interference is 

generated to the other users (on the same channel) in the system. A good PC algorithm should 

find a trade-off between satisfying the needs of the user and generating interference to the 

other users. A simple power control would be to always use constant (maximal allowed) 

power. More sophisticated PC algorithms also take into account channel gain of the users, 

interference on the channel, required signal quality (data rate) etc. 

In contrast to real-time (RT) services (like speech), non-real-time (NRT) services (like packet 

data) have relatively uncritical delay requirements. That is why a channel and power do not 

have to be allocated immediately to a NRT user. The data of NRT users could be put in the 

base station queue and the Scheduler (SH) algorithms decides when the data are scheduled for 

the transmission. A simple scheduler algorithm would be First-In-First-Out (FIFO) scheduler, 

which schedules data according to the users’ arrival time in the queue. The more sophisticated 

scheduler might also take into account the channel quality of the users, data rate achieved by 

the users so far, users’ data rate requirements, etc. Note that a scheduler could be regarded as 

a special case of power control, where power is set to zero for the not scheduled users. 

During the call, signal quality of the mobile users could degrade due to users’ movement, for 

example, interference on the channel might become high or users might leave the original 

cell. It would then be the task of Handover (HO) to initiate and perform channel change 

(intracell handover) or cell and channel change (intercell handover). The load of the network 

can also change and the users might be enforced by a Load Control (LC) algorithm to 

increase/decrease their data rates, for example, by switching to another source or channel 

codec or modulation schemas. If the cell or network becomes overloaded Congestion Control 

(CC) algorithm must then select some users, which should decrease their data rate or, in the 

case of a severe overload, drop some users.           

The RRM algorithms work on a different time scale. Whereas HO decisions should be done 

each few seconds (when mobiles cross cell borders), power control is done each few 

milliseconds, in order to adapt quickly to changes in propagation conditions (see Appendix 

A). Further, RRM algorithms run in mobile and/or base stations (usually in software). 

Sometimes, some part of the algorithms is executed in mobile stations and some in base 

stations. For example, in DECT, mobile stations select channels for allocation and in GSM or 

UMTS the base stations (or other network element like RNC) select the channels using the 

measurements of the mobile (mobile assisted HO). In Table 2-1, an overview of RRM 
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algorithms, their decisions and time and “logical” (MS or BS specific) place of their 

execution is given. 

Table 2-1: RRM Algorithms, their decisions, "logical place" of execution and time scale 

Algorithms  Decision Place Interval 

Handover (HO) Change base 

station(s)/channel(s) 

MS and BS seconds 

Admission Control (AC) Admit users in a cell/system BS seconds 

Channel Allocation (CA) Which channel MS and BS seconds 

Power Control (PC) Allocate power MS (UL), BS 

(DL) 

microseconds –

milliseconds 

Scheduler (SH) Which users transmit and how 

much data 

BS milliseconds - 

seconds 

Load Control (LC) Change data rata (codec, 

modulation scheme) 

MS and BS milliseconds - 

seconds 

Congestion Control (CC) Drop users / change data rata BS seconds 

Distributive measurement based RRM algorithms which are performed in the affected base 

stations or mobiles according to locally available measurements like channel gain and 

interference are of particular importance. In this way, decisions can be taken relatively 

quickly at the place where they are required. This is especially important for “fast” algorithms 

like power control, which has, for example, a period of several hundreds of µs in UMTS 

(“fast power control”) [21]. Furthermore, an excessive signalization is avoided for 

communication with a centralized RRM controller, which could be an almost formidable task 

in a complex and fast changing mobile environment, where information become obsolete very 

quickly. In the following, we describe some existing solutions to the distributive measured 

based RRM algorithms. 
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2.2 Power Control  

2.2.1  System Model  

The aim of power control is to allocate power to users in order to provide sufficient  signal 

quality or data rate to the users but, at the same time, reduce interference to the other users in 

the system as much as possible. In order to determine a power control algorithm, we observe 

received signal quality and interference at a mobile at a certain moment of time after cell and 

channel allocation is already performed for the mobile (see Figure 2-2). We assume a wireless 

system with orthogonal channels with N transmitter in the system transmitting the power to N 

receiver at the same channel. We use the channel model as described in Appendix A.  

Useful (carrier) signal power Ci at the mobile i is defined as a product of the link gain gii  

between mobile i and its base station i (see equation (A.2)), which sends a carrier signal to the 

mobile with the power pi: 

(2.1)  

Figure 2-2: Carrier s
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Below we give examples of some PC algorithms: 

Fixed (Maximal Power) PC. Simplest PC algorithms always set the power p to a fixed value, 

usually maximum power Pmax i.e. p(n) = Pmax for each time instant n. 

The advantage of the Fixed PC algorithms is its simplicity – no changes of power and no 

feedback from the receiver about channel gain or interference is needed. 

The disadvantages of the Fixed PC is high power consumption and high interference 

generating to the other users in the system. Even if the channel gain is high and interference at 

the receiver is low, the fixed PC always transmits with maximum power, although sufficient 

signal quality (CIR) at the receiver could be achieved with (far) less power. 

Fixed PC was used in systems where interference from/to other users was not an issue due to 

great distance between the cells using the same channels (co-channel distance) and low users’ 

density as in the first wireless systems and in the early phase of cellular systems [61]. Modern 

wireless systems like GSM/GPRS and UMTS are interference limited due to the high 

number of users and low co-channel distance used to provide better spectrum usage. That is 

why other PC algorithms like C-based and CIR-based PC are more often used in modern 

wireless systems.         

C-based PC. The purpose of C-based PC is to keep for each mobile the received signal 

strength C at a fixed predefined value Cthr i.e.: 

(2.4)         

 

As can be seen from equation (2.4), some measurement and signaling overhead is needed 

since information of channel gain should be measured by the receiver and sent back to the 

transmitter in order to set transmit power properly.  

C-based PC brings in general reduction of power consumption and generating interference in 

comparison with Fixed PC because less than Pmax is transmitted whenever Cthr/g < Pmax. 

C-based PC can be useful if all users should have the same power at the receiver, for example, 

for easy detection in UL of some CDMA systems like IS95 [29], [55].  

Since C-based PC does not take into account interference at the receiver, poor signal quality 

(CIR) and thus high error probability can occur in the case of high interference at the receiver 

and conversely, in the case of low interference at the receiver, C-based PC transmits with 

unnecessary high power. That is why CIR-based PC is used more and more in practice (all 3G 

systems like UMTS FDD and TDD, cdma 2000 etc.) [21].      
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CIR-based PC. The purpose of CIR-based PC is to keep received signal quality CIR of each 

mobile at a fixed predefined value CIRthr: 

(2.5)       

CIR-based PC tries to maintain the required signal quality of the users, and, at the same time, 

minimize power consumption and interference to the other users in the system. CIR based PC 

is used, for example, in UMTS [21], where each PC period the power is increased (decreased) 

for a step (1-2 dB) if CIR was below (above) CIRthr in the previous period.  

Note that for CIR-based PC information about channel gain and interference or actual CIR 

should be measured at the receiver and sent back to the transmitter. By evaluating different 

PC algorithms, power costs like energy consumption of the transmitters (especially important 

for mobiles due to battery supply) and social costs due to interference to other users in the 

system should be compared with measurement and signaling costs needed to perform the PC 

algorithm. CIR-based PC needs more measurements than constant power or C-based PC, but 

consumes less power and generates less interference than constant power or C-based PC.        

An important question is whether and when it is possible to achieve for all users, at the same 

channel, sufficient signal quality CIRthr and if an iterative PC algorithm like CIR-based PC 

given in (2.5) converges to a stabile (equilibrium) powers for all users on the same channel. 

We give the answers to these questions in the next subsection. 

2.2.3 Convergence of CIR-based PC Algorithms 

As can be seen from equation (2.3), CIR of one user i can be temporarily improved by 

increasing the power to the user pi. In that case all other users would suffer from increased 

interference e.g. the denominator of equation (2.3) will also be increased for the users other 

than user i. The other users would then have to increase their powers and so on, until all users 

have CIR equal to their predefined threshold or at least one user has power equal to the 

maximum power Pmax but CIR lower than required CIR (CIRthr). The question that naturally 

arises is: Under what conditions iterative PC according to (2.3) converges to some stable state 

(equilibrium) where all users achieve their required CIRthr and do not have to change their 

powers? The answers to these questions are given mostly in [108], [109] and [25] (for a 

survey see also [110], chapter 6). In the following, we summarize the convergence results for 

iterative CIR-based PC. 

At first, we try to represent iterative CIR-based PC in a matrix form. To this aim, we start 

from equation (2.5) and rearrange it as follows: 
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(2.6) 

 

We assume that during the convergence time of PC only powers of the users (and thus 

interference) change and the channel gains do not change. Denoting with η the vector with the 

element ηi/gii at the i-th position and with H “normalized link gain matrix” or channel matrix 

(because it represents cross-correlations of users on the same channel) such that: 
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Λ is upper-triangular matrix with eigenvalues of the matrix H at the main diagonal. If H has 

only distinct eigenvalues, Λ is a diagonal matrix with eigenvalues of H at the main diagonal.  

Since Λn -> O as n -> ∞ if and only if the largest eigenvalue of the matrix H (called spectral 

radius of H and denoted ρ(H)) is less than one [57], Hn = M ΛnM-1 -> O as n -> ∞ if and only 

if the largest eigenvalue of the matrix H is less than one. Consequently, from (2.10) follows 

that error vector converges to 0 vector if and only if the largest eigenvalue of the matrix H, is 

less than one i.e. if and only if:  

(2.11)  

If (2.11) is satisfied iterative PC (2.8) is contraction mapping [31] in space of users powers 

and there is a limit p* (fixed point or an equilibrium vector of users’ powers), such that p(n) -

>p* as n->∞ and p*satisfies (2.9). This is also true if the users adapt their power 

asynchronously [31]. 
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Summarizing [110]: If the largest eigenvalue of H, ρ(H), is lower than one, iterative CIR-

based PC (2.8)) converges, and the lower ρ(H) the higher the convergence speed of the 

PC. 

2.2.4 Outer loop PC 

Since an ultimate measure of the users satisfaction is Bit Error Rate (BER) and BER is a 

function of CIR, the required signal quality CIRthr for the CIR-based PC (see (2.5)) should be 

changed during the time to adapt to changes in an environment and/or mobile speed. This task 

is done by the outer loop PC [21]. The task of the Outer loop PC is to keep CIRthr at or above 

the level required to keep the BER below some service specific limit (BERthr, say 10-3 for 

speech). The curve BER = f(CIR) depends on the modulation and coding used in the system 

as well as on the mobile speed and environment (urban, rural). Outer loop tracks user BER (or 

some other soft-information like raw BER after the decoder, decoder soft-decisions values, 

actual CIR etc.) and increases the target CIR (CIRthr) for CIR-based PC (2.5) if the BER is 

above a certain threshold or otherwise decreases CIRthr (see Figure 2-3). 

Figure 2-3: Determination of CIRthr by Outer loop PC 

The outer loop PC is an example of an adaptive, decentralized, measurement based RRM 

algorithm, which changes the parameter (CIRthr) for the other RRM algorithms (inner loop 

PC) according to the actual state of the user. In this case the state of a user is defined 

according to the actual user’s BER = f(CIR) curve. 

2.3 Water Filling PC 

It is interesting that CIR-based PC although widely used in practice (UMTS, see [21]) is in 

general not optimal in the sense of the maximizing data rate from the information theoretical 

point. That is why we also describe water-filling PC, which is the optimal PC in terms of 
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information theory i.e. water-filling PC is the power control strategy that maximizes data rate 

under power constraints. 

In the following, we describe single user and multi-users case separately. In both of them 

water-filling PC is optimal or near optimal PC strategy under power constraints.   

2.3.1 Single User Case 

We have the following PC optimization problem in the single user case: Maximize expected 

(over distribution of channel gain g and interference I’) capacity: 

(2.13) 

 

Under average power constraint: 

(2.14) 

Where p(g, I’) is the power of the user when the channel gain is g and interference I’. In 

(2.13), Shannon’s formula for channel capacity is used with I’ denoting the total noise power 

experienced by the user [15].   

Maximum of the expected capacity (2.13) under constraint (2.14) over a relatively long time 

period is called ergodic capacity. Some important assumption  must be met in order to derive 

optimal power allocation strategy in the case of ergodic capacity [8], [71]: 

• Both receiver and transmitter have to know the channel state perfectly (perfect CSI). 

Input symbols are selected in order to maximize mutual information between transmitted 

and received symbols conditioned on the channel gain g. The effect of imperfect channel 

information is hard to analyze. Extreme sensitivity of the well-known Gaussian coding 

scheme to the channel state information is shown in [54]. 

• In order that expectation of the channel gain g can be translated to a time average, the 

codewords have to be long enough to capture the ergodicity of the channel fading 

process. 

Taking into account the above assumptions, the maximum of (2.13) under constraint (2.14) 

can be obtained by using Lagrange multiplier technique: Multiplying the equation (2.14) with 

a constant λ (Lagrange multiplier) and subtracting it from the equation (2.13) we obtain the 

following equation: 
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The maximum of (2.13) under constraint (2.14) is obtained setting the first derivate (by p) of 

(2.15) to zero (since logarithms is a concave function) i.e. the power should be set according 

to the following equation: 
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2.3.2  Multiuser Case 

In the multiuser case we have the following optimization problem: Maximize expected sum 

capacity (over joint-channel gains and interference distribution): 

(2.17) 

 

where µi is the priority, pi transmit power, Ιi
’ interference variance and gi channel gain of user 

i. Under (average) power constraints (2.14) for each user alone and, in the broadcast channel 

case (DL in cellular networks), we also have constraints on total sum-power of the base 

station (Pmax - maximal broadcast power in DL):  
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• One has to use relatively large code length to capture the ergodicity of the channel 

fading process. In practice, the code lengths and interleaving periods often have to be 

short due to the delay requirements of real-time services like speech. Such services 

require that certain minimal data rate is met with a low probability of outage.  

To account to such problems the notion of outage capacity [36], [59] and some sub-optimal 

power allocation methods are used.  

We say that outage has occurred [71] if in a given time segment of length T the channel 

fading is such that the minimal required data rate Rmin cannot be supported because mutual 

information between input and output conditioned on channel gain is lower than Rmin i.e.: 

(2.20) 

Usually, quality of service requirements defines an outage probability Pout i.e.: 

(2.21) 

where Pr(X) defines the probability that X occurs. We can also say that the outage capacity at 

outage probability Pout is Rmin. 

For the services with stringent delay constraints like speech and other real-time services, 

outage capacity plays an important role. It was shown in [36], [60] and [71] that optimal 

power allocation for services with stringent delay limitation in the case of block fading 

depends on the channel gain. A simple sub-optimal power allocation strategy is either 

threshold or constant (maximal) power strategy for both single and multi-users case and 

depends on channel gain:   

Single User Case 

Low channel gain - Threshold policy [60]: All power is allocated to a given block if the 

gain of that block exceeds the threshold. The threshold decreases as the delay deadline 

approaches. The threshold is zero for the last block. 

High channel gain - Constant power transmission [30], [60]: In the case of high channel 

gains, user should transmit with maximal allowable power. This explains why optimal PC has 

diminishing improvement over fixed PC in the case of high CIR– in both cases user transmits 

with maximal power.      
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Multiuser Case (Broadcast Channel).      

Low channel gain - Threshold policy [8], [60]: All power is allocated to the user for which 

the product of priority and channel gain of that block is maximal and exceeds the threshold. 

The threshold depends on the remaining number of blocks and power. Also optimal PC policy 

is also a threshold policy as in the single user case.   

High channel gain - Constant power transmission [60]. The user with highest priority 

transmits all the time with constant (maximal) power.  

2.4 Scheduling 

The task of the scheduling algorithms is to decide which users (data) from the queue are 

selected for the transmission and for how long (see [48], [49] for scheduling mechanism in 

general and [38] for packet data scheduling in UMTS). In Figure 2-5 a model of the scheduler 

and its queue is represented. 

Figure 2-5: A Model of the Scheduler 

Some possible scheduling mechanisms are [38]:  

“Fair” scheduling:  This strategy tries to allocate in average the same data rates to all users 

in the cell. The users who obtained the lowest data rates so far are scheduled first 

“Greedy” scheduling: The users with better channel conditions i.e. with higher channel gains 

(for example, users near to BS) and lower interferences are scheduled more often in order to 

maximize total data rate in the cell. 

. . . 
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First-In-First-Out (“FIFO”) scheduling: The users are scheduled to the transmission 

according to their arrival times, the users who arrived first in the queue are also scheduled 

first.  

“Priority-based” scheduling: The users with the highest priority are scheduled first. The 

priority can be set according to the users’ service type i.e. the more “important” services could 

get higher priorities.  

Scheduling can be also regarded as a special case of Power Control, for example, only the 

users who obtain power greater than 0 are actually scheduled for transmissions. 

2.5 Channel Allocation Algorithms 

2.5.1  Cell Concept and Problem of Channel Allocation 

The first mobile systems [61] usually used an antenna radiating with high power in order to 

cover a relatively large area. The users were differentiated between each other by assigning 

them different channels (frequencies) from a set of available channels. The problem was that 

such systems had very limited capacity e.g. the maximal number of users that can be served at 

any moment was equal to the number of channels in the set. The number of channels was 

relatively low because only a limited amount of spectrum could be used for personal mobile 

communication. Other potential frequencies were reserved for the military, radio, TV etc.   

In order to achieve higher subscriber capacity and more efficient spectrum usage, AT&T 

introduced in 1971 a cellular concept [61] (see Figure 2-6).  

Figure 2-6: Cellular area coverage (re-use factor 7) 

According to the cellular concept, the desired area is divided into zones called cells. Each cell 

uses a subset (A, B, C, D, E and F in Figure 2-6) of the available channels. The union of A, B, 
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C, D, E, F and G is the set of all available channels in the system.  A minimal set of 

concatenated cells using all available channels is called a cell cluster. As depicted in Figure 

2-6, cells using disjunctive subsets A, B, C, D, E, F and G make a cluster. In this case we say 

that the re-use factor in the system is 7, since clusters consists of 7 cells and each cell use 

approximately 1/7 of total available channels. If the distance between cells is large enough, 

the cells can use the same channel subsets (channel-reuse concept), since interference from 

the users in the cells using the same channel can be kept low due to path-loss low: The power 

PD on distance D from the radiating antenna, decrease exponentially with the distance D (see 

Appendix A and [41]).  

(2.22) 
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The first obvious solution is to assign in advance, during the network planning process, 

channels to cells. Care should be taken to assign different channel sets to the neighbor cells 

and same channel sets to the cells in a large enough distance i.e. a certain channel allocation 

pattern should be used to maintain a desired re-use distance as represented in Figure 2-6. A 

cell is allowed to use only channels from its channel set. This kind of channel allocation is 

called Fixed Channel Allocation (FCA). FCA has been widely used in the past and even at the 

present time (GSM, TETRA).  

The disadvantages of FCA are [1], [44], [68]: 

• In the case of irregular traffic e.g. many mobile stations (MSs) in one cell and only a few 

MSs in the neighbor cell, some cells can be overloaded and some cells can be under-

loaded. Overloaded cells do not have enough free channels to adapt required traffic, 

although there are enough unused channels in the neighborhood. 

• Intensive channel reuse planning is needed, because cells in practice are not of a regular 

shape as represented in Figure 2-6.   

• Each time when new cells are added to the systems or the environment changes (for 

example due to new buildings) channel planning should be done again. 

• Channel reuse planning is made for the worst-case scenario. Therefore, a large amount 

of system capacity is often wasted.  

• Channel reuse planning is very difficult for micro-cellular systems because the zone 

shapes are highly deformed due to irregularity of radio wave propagation in micro cell.  

An alternative to FCA is Dynamic Channel Allocation (DCA) [68]. In DCA based systems 

assignment of channels to cells is done dynamically, during the system operation.  

It is important to stress that most of the previous studies [4], [16], [34], [45], [28], [46], [1], 

[12] investigated DCA for “old” systems where the re-use factor was greater than 1 i.e. not all 

cells could use all channels available in the system. In modern wireless systems like UMTS 

coding gain, due to powerful signal processing techniques, is high (more than 10 dB) and thus 

requirements on signal quality at the receiver antenna (CIR) are lower. That is why re-use 

factor 1 is possible where all cells could use all channels and no channel planning is needed. 

Distributed, measurement-based DCA algorithms can then be applied for these modern 

systems in order to [68]:  

• Maximize the number of satisfied users and/or total system throughput, 

• Reduce signalization overhead (distributed algorithms), 
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• Avoid channel planning and  

• Autonomously adapt to environment changes (dynamical algorithms).  

In the following, we concentrate ourselves on the class of distributed, measurement based 

DCA algorithms, which enables decentralized and adaptive channel allocation with low 

signaling overhead and are likely to be used in 3G and 4G wireless systems.  

2.5.2  Distributed Dynamic Channel Allocation Algorithms  

Due to the complexity of modern wireless systems and rapid changes in signal propagation 

conditions, a class of decentralized, measurement based dynamic channel allocation 

algorithms (DCA) is of special importance. Decentralized measurement based DCA 

algorithms reduce drastically the signaling amount in comparison with centralized 

algorithms due to the use of locally (in one cell) available information (like interference and 

channel gain), and enable flexible, self-adaptive solutions to the different environment and 

propagation conditions due to easy of change of local parameters.  

Examples of decentralized measurement based DCA algorithms are: Priority-based (channel 

segregation), Minimum Interference DCA and Autonomous reuse Partitioning DCA. The 

simplest DCA algorithm is Random DCA, which often serves as a benchmark to other DCA 

algorithms and does not need any measurement information. In the following, we give a short 

description of these algorithms.  

2.5.2.1 Random DCA 

The simplest DCA algorithm is Random DCA, which just allocates channels to the users 

randomly from the set of free channels. Random DCA algorithms have also been used in 

combination with some interference threshold comparison i.e. channels with interference 

lower than some thresholds are allocated randomly to the users [12].  

In systems with fixed channel allocations to cells, channels are selected randomly from the set 

of available channels in the cell, but only a small subset of total available channels could be 

used in each cell (1/7, 1/12 of total number of channels) in order to keep re-use distance large 

and thus interference low. In modern wireless systems like UMTS, due to powerful signal 

processing (coding gain) and/or use of smart antennas, almost all channels have relatively low 

interference and all cells can use all channels (re-use factor 1). A simple Random DCA 

algorithm can then be applied to allocate channels to users. Note that well-known frequency 

hopping schemas (like in GSM) and spread spectrum systems (like in IS95 or in UMTS) are 

also based on the idea of some kind of channel “randomization” (in time and frequency), 
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where one channel consists of many timeslots and frequencies in order to provide high 

diversity and good average channel quality. 

2.5.2.2  Channel Segregation 

Channel segregation is a good example of a distributed, self-adaptive, measurement based 

DCA algorithm [28], [1]. The algorithm is based on the prioritization of channels in each 

cell according to previous experience (measured interference) on the channels in the cell. 

Each cell has its own priority table, where it maintains the priority values for each channel. 

By service request, the interference I’ of the free channel with the highest priority is compared 

with interference threshold Ithr (see Figure 2-7). If interference on the channel is lower than 

the threshold, the channel is allocated to the user and the channel’s priority is increased. 

Otherwise, the channel’s priority is decreased and a free channel with the next highest priority 

is compared with the interference threshold. In this way neighbor cells ”learn” to use different 

channels e.g. a certain kind of "Channel Segregation" between cells is established, like 

territorial segregation between some animals in nature.  

Figure 2-7: Channel Segregation algorithm according to [28] and [1]   
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According to [68] the advantages of channel segregation algorithms are: 

• No channel planning is needed.  

• Autonomous and adaptive to traffic changes, i.e. segregation is established 

independently from the number of users in the system and environment. 

• Decrease the number of intracell handovers, since channels with low interference are 

selected for allocation. 

• Decrease load to switching system, since each cell makes channel allocation decisions 

for itself. 

• Reduce blocking probability, because channels used successfully in the past (those with 

high probability) are used as often as possible. 

• Quickly reaches a (sub-) optimal allocation. 

2.5.2.3 Minimum Interference based DCA Algorithms with and without Threshold 

Priority-based DCA belongs to the class of Interference based DCA algorithms. The 

interference based DCA algorithms choose channels according to measured and averaged 

interference from other cells and possibly compare it with certain threshold. Some other 

interference based DCA algorithms are [12], [68]:  

- Minimum Interference DCA selects the channel with lowest interference. This 

algorithm tries to minimize the overall interference in the system.  

- Lowest interference below a threshold DCA selects the channel with lowest 

interference below a certain threshold. This algorithm tries to minimize interference in 

the system, while maintaining, at the same time, quality of each call above some 

minimum level. 

- Highest Interference below a threshold DCA selects the channel with highest 

interference below a certain threshold. This algorithm tries to utilize spectrum more 

compactly as long as quality of each call is acceptable. 

- Some combination of above algorithms DCA like marginal interference algorithms, 

which selects the most interfered channels if the interference is below a certain threshold, 

otherwise, selects the least interfered channel. This algorithm tries to balance signal 

quality and spectrum efficiency. 
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In [12] a comparison between above algorithms was done and it was shown that in the case 

of speech service the simple minimum interference algorithm, which needs no parameters 

(thresholds), oft outperforms other interference based DCA algorithms.  

2.5.2.4 Autonomous Reuse Partitioning (ARP) 

Intuitively, one would expect that a “good” DCA allocates channels with lower interference 

more often than the channels with higher interference, since the expected value of the CIR 

and thus signal quality is large on the channels with lower interference. However, the problem 

with the priority-based and minimum interference channel allocation is that the efficiency of 

the algorithms might depend on the order of the arrivals of users. For example, if the users 

close to the base station arrive before the users close to the cell border, the users closer to the 

base station get the better channels (with lower interference) than the users at the cell border. 

In that case, the users closer to the base station can achieve signal quality (CIR) much better 

than they actually need, because they have higher channel gain and lower interference (see 

equation (2.3)). On the other hand, some of the users at the cell borders might not achieve 

their minimal required CIR, because they have lower channel gain and higher interference. If 

we had assigned the channels with lower interference to the users at the cell border, and the 

channels with higher interference to the users close to the base station, we could possibly 

achieve for all (the most) users at least minimal required CIR. This idea is exploited by 

Autonomous Reuse Partitioning (ARP) DCA algorithms [34], [46], [68] (see Figure 2-8):    

Figure 2-8: Autonomous Reuse Partitioning (ARP) DCA 

The “better” channels, with lower interference, are assigned to the users at the cell 

border and the worse channels, with the higher interference, are assigned to the users 

near to the base station. The neighbor base stations should “cooperate” and allocate 

channels so that the users on the cell border of one cell use the channels which are allocated to 
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the users near the base stations in neighbor cells and vice versa as can be (see Figure 2-8). As 

represented in Figure 2-8 channel 1 is used at the cell border in Cell 1 and near the base 

station in Cell 2. The goal is to minimize intercell interference on as many channels as 

possible by maximizing “channel packing” in the system. In this way, the number of users 

with sufficient signal quality in the system can also be maximized.  

2.6 Admission Control and Handover 

The task of HO is to decide which cell (base station) a mobile user should be connected to. 

The purpose of Admission Control (AC) is to decide how "desirable" the admission of the 

users in the cell (system) is. In an extremely case, AC can refuse the admission of users in 

the cell. 

HO algorithms should at first ask the AC algorithms of the candidate cells if the users would 

be admitted in the cell or not and how desirable the admission of the users is. AC is a more 

cell oriented algorithm: Admit/not admit the users in a cell and indicate how “desirable” 

admission is. HO is more mobile users oriented -  it tries to find the “best” cell for the mobile. 

In the following, we describe some basic HO and AC algorithms and criteria governing HO 

and AC decisions. 

2.6.1 Handover 

When new users (new calls) arrive in a mobile system, decisions should be made to which 

base stations to connect the users. For example, the base stations to which the users have the 

highest channel gain (lowest path-loss) could be chosen. During the call the users move 

within a cellular system and propagation conditions change (see Appendix A) over time. That 

is why cell or channel within the cell should be changed. In UMTS FDD system a mobile can 

be also connected to several cells at the same time (Soft Hondover) [21].  

Summarizing, the tasks of HO algorithms are [74], [20] (see Figure 2-9): 

• Transfer a call from one cell to another (intercell HO)  

• Choose the cell where the new call is started (initial or new call HO) 

• Initiate channel change within the same cell (intracell HO) 
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Figure 2-9: Different kinds of HO 

Decisions about cell change are usually made  [74] according to signal quality. As a “signal 

quality” the signal strength C or CIR (see equation (2.3)) of some predefined (beacon) 

channel can be used. If the signal quality of cell B (target or candidate cell) becomes (for a 

HO-margin) better than the signal quality of cell A (home or active cell), HO is performed 

from cell A to cell B, as represented in Figure 2-10.  

Figure 2-10: Signal quality based HO decision 
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HO-margin is used in order to avoid too many HOs, for example, at the cell border due to 

rapid fluctuation of signal quality difference (“ping-pong effect”). 

In order to reduce the number of HOs, it is also possible not to perform HO if the signal level 

of the active cell is satisfactory i.e. lies above a certain threshold, even if candidate cell 

provides a higher signal level.   

HO decision can be made according to channel gain (the path-loss-based HO) and channel 

gain and interference (CIR-based HO), see Figure 2-11. In both cases the signal should be 

averaged over some time window. Further important issue which should be taken into account 

by HO decisions is admission control: If admission control of the candidate cells allows the 

admission of the new users in the cell or not.    

Figure 2-11: An example of a Signal Quality based HO algorithm 

Each HO algorithms makes a trade-off between users’ satisfactions, which decreases if HO is 

done too late and signaling load, which increases with the number of handovers. 

2.6.2  Admission Control 

Admission Control (AC) decides to admit or not new users in the cell and how 

"desirable" this admission is. The users should only be admitted in the system if their 

expected quality of service like minimum signal quality or data rate could be satisfied. For 

example, [19] defines the satisfied speech user as the user, whose Bit Error Rate (BER) 

during the call was for 95% of the time below a certain threshold. If AC in a cell expects, for 

example according to the cell statistic, that the probability that BER is above the threshold for 

more than 5% of the time, the speech users (at least the new one in the system) should not be 

admitted in the cell. AC can also make a "soft decision" expressing how desirable the 

Do each HO evaluation-period 

     For each candidate cell in the list 

          estimate Signal Quality (CIR, path-loss) of the  candidate cells 

          If Signal Quality (the active cell) – Signal Quality (candidate cell) > HO_Margin  

                If AC of the candidate cell allows access to the cell 

                      Perform HO to the candidate cell 

                 else 

                     Take the next candidate cell 

                end 

Until the end of the link 
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admission of the users in the cell is. For example, if AC makes decisions between 0 and 1 (0 

and 1 inclusive), 0 could mean users’ rejection and 1 full acceptance, the values between 0 

and 1 could express "desirability" of the admission - the closer the AC decision is to 1, the 

more desirable the users’ admission in the cell is. These decisions can then be taken into 

account by HO algorithms together with other HO criteria like CIR or path-loss, in order to 

determine if, and to which cell, HO should be performed.     

Furthermore, AC has to make a trade-off between new users and the users already in the 

system especially in the case of high loads. The users already in the system should have 

higher priority for the admission than new users, since call blocking is regarded as a less 

severe network failure than call dropping.   

AC like some other RRM algorithms considers the following two issues for its decisions: 

• Traffic load: The higher the cell load is the less desirable is the admission of the new and 

handover users in the cell. The new (in system) users should be accepted in the cell only 

if there are enough channels left free for the users arriving from other cells due to 

intercell HO. 

• Interference: The higher the average interference in the cell the less desirable the 

admission of the new and handover users in the cell is. New users in the cell should be 

accepted only if increased interference level due to new users (in system) stays under a 

certain predefined interference threshold.  

Since traffic load and interference are relevant not only for AC but also for other RRM 

algorithms like DCA, Scheduler, Load and Congestion Control, we describe these two issues 

in the following in more details. 

2.6.2.1 Traffic Models 

From the traffic modeling point of view, a cell in a mobile network can be regarded as a 

queue with channels as servers. The users arrive in the cell (queue) from the other cells 

(handover users) or start their calls in the cell (new call users). The users also end their calls 

in the cells or leave the cell due to handover to the other cells (see Figure 2-9).  

A cell is usually modeled a M/M/N queue: We assume exponential (Markov - M) arrival 

times for both handover (with arrival rate λh calls/seconds) and new calls (with arrival rate 

λn). We also assume an exponential (Markov - M) service time for both handovers to the other 

cells and call ends in the cell (with service rate µ) [39]. The number of channels in the cell is 

denoted with N. Since call dropping is, in general, experienced as a more severe system 
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failure than call blocking, the users already in the system (arriving from another cells by HO) 

should be given higher priority than new users. We can assume that N-K channels are 

reserved for HO calls i.e. the new call users are not admitted by AC in the cell if there are 

already K users in the cell (see Figure 2-12): 

Figure 2-1
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     end 

end 

2: An example of a load (number of users) based AC algorithm 

 diagram of the queue/cell is represented in Figure 2-13 as a Markov chain 

the queue/cell (oval symbols) is the number of active calls (users) or 

We assume that each user occupies one and only one channel. The 

 states are triggered by call arrivals (new calls and handovers from other 

rtures (handover to other cells and call ends in the cell). 
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New calls and HO calls are admitted in the cell if there are more than N-K free channels, 

otherwise only HO calls are admitted in the cell. By appropriate choice of the number of 

reserved channels N-K, a trade-off can be made between HO failure probability and new call 

dropping probability.  If there are not enough free channels to accommodate new calls we say 

that hard blocking has occurred. If no channels are reserved for HO and setting λh + λn =λ 

we obtain the following formula for the blocking probability Pb:  

 

(2.23) 

 

where ρ = λ/µ is the total offered load (HO and new users) and N is the number of channels in 

the system (cell). Formula  (2.23) is famous Erlang B formula, which is widely used for 

blocking probability calculation in telecommunication networks [48]. Networks are usually 

designed so that some fixed blocking probability (say 2%) is not exceeded. According to 

(2.23), the higher the number of available channels N, the higher the ratio ρ /Ν i.e. “channel 

exploitation” can be achieved for the same blocking probability. For example, if 10 channels 

are available and the blocking probability is 2%, only 30% of channels are used on average; if 

30 channels are available about 60% of channels can be used on average for the same 

blocking probability of 2% [2]. This “large scale effect” is called “trunking efficiency” [2] 

and plays an important role in the design of telecommunication networks.  

In the case of mixed services, for example, real-time (RT) service like speech and non-real-

time (NRT) service like packet data, different services must share the same channels. A 

similar Markov state transition model, as the one in Figure 2-13, but in two dimensions, one 

for RT and one for NRT users, can also be used for mixed services (see Figure 2-14). In the 

case of  Figure 2-14 the number of RT users and NRT users characterizes cell states. If there 

are no free channels available RT services are blocked but NRT services can be stored in the 

cell queue. Often a very large cell queue is assumed, which can store almost all NRT data. 

Note in Figure 2-14 that more than N (total number of channels) NRT users can be admitted 

in the cell (by queuing them in the cell queue). In a RT service model (see Figure 2-13) the 

probability that all channels are occupied (see (2.23)) is always kept below some predefined 

limit (hard blocking probability, say 95%) in order to provide the required service quality. 

However, in the case of relatively high NRT traffic load, all channels could be used all the 

time and possibly some data stored in the queue. When a RT user arrives, it should then get 
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the next free channel or some channel used by a NRT user is made free for the RT user, since 

RT users have more stringent delay requirements than NRT users. 

 

Figure 2-14: Markov Transition Diagram of a cell with a real-time and non-real-time 

services 

According to Figure 2-14 different performance characteristics like the blocking probability 

of RT users, mean wait and service time for NRT users etc. can be derived, in a similar way 
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as is done above in the case of only one service type. For example if the serving rate is the 

same for RT and NRT users (µr =  µn = µ) we can use the following formula for the blocking 

probability of the RT users [2]:  
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2.6.2.2 Interference Issues 

Since modern wireless systems are often interference limited, new users should not be 

admitted into the system (cell) by AC if their admission would raise interference to other 

users already in the system over a certain limit. This is very important for CDMA systems 

like UMTS, where the same band is usually shared by all users and each user experiences 

interference from virtually all other users in the system [29].    

Interference estimation is an important issue for AC and other RRM algorithms. The 

interference information is obtained by measurements of base stations (in uplink) and mobile 

stations (in downlink). In the case of a high number of relevant interferers (usually more than 

10), we can apply the central limit theorem and assume that interference distribution is log-

normal [6], [83]. In this case it is enough to estimate only mean and variance in order to 

determine interference probability distribution. 

An interference based AC can protect the system from too much interference if it checks, 

for example, if the interference rise in UL due to a new user ∆I  would cause total interference 

increases over a certain limit Ithr [38] (see Figure 2-15):  

Figure

Iold is the interfe

service type of 

cell. Estimating

[87], since ∆I ch

The algorithms 

the same interfe

DL power of a 

in DL could the

total power of th
At each new call or HO request: 

Estimate interference increase due to new user in a cell: ∆I 

If Iold + ∆I > Ithr 

        Allow the access of the user to the cell 

else 

        Refuse the user 

end 
 2-15: An example of an interference based AC algorithms in UL 

rence (in dB) before admission of a new user, Ithr in general, depends on the 

the new user (speech, data), environment (urban, suburban) or the load of the 

 correctly the expected increase of the interference ∆I, is not an easy task [38], 

anges due to users’ movement and changes in interference from other users.  

in Figure 2-15 can be used in UL where all users in the same cell experience 

rence in UL. In DL, different users experience different interference, but total 

BS is usually limited in order to limit potential interference to other cells. AC 

n check if the power increase in DL due to a new user ∆P, would cause that 

e base station increase over a certain limit Pthr [38] (see Figure 2-16).  
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Figure 2-16: An example of power based AC algorithms in DL 

Pold is the power used by the cell in DL before admission of a new user. Pthr, in general, 

depends on the service type of the new user, the environment or the load of the cell. ∆P is also 

not easy to estimate, since users’ power changes with users’ movement and interference from 

other users. Some hints for estimation of ∆P can be found in [38]. 

2.7 Smart Antennas and RRM algorithms 

Although the topic of this work is investigation of RRM algorithms, we describe shortly smart 

antennas (SA) technology, which is gaining in importance in optimization of modern wireless 

systems. Furthermore, the results of our simulations and the performance of some RRM 

algorithms significantly differ with and without the smart antennas and interesting trade-offs 

can be made between SA deployment and the use of some RRM algorithms.  

SA help reduce interference to the other cells in DL and eliminate interference from the users 

in other cells in UL [69]. The spatial beam-forming scheme aims to point beams in the 

direction of paths belonging to the desired user while minimizing the energy transmitted 

in the other directions. The “normal” omni-directional antennas transmit power in almost all 

directions, thus generating much more interference to other users than SA (see Figure 2-17). 

At the receiver side, SA can suppress interference from other users by suppressing the signal 

from directions of interfering users.  

At each new call or HO request: 

Estimate power increase due to new user in a cell: ∆P 

 If Pold + ∆P > Pthr 

       Allow the access of the user to the cell 

else 

      Refuse the user 

end 
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Figure 2-17: Smart antennas deployment 

SA perform beam-forming by extensive adaptive signal processing algorithms [73]. The 

signals from each antenna element are multiplied by complex weights, which are selected so 

that the antenna beams are oriented in the direction of the desired users and, at the same time, 

the signals from undesired interferers are attenuated. SA are mainly used at BS, due their 

relatively large size and costs. If the channels in UL and DL are not correlated, channel 

information should be transmitted from mobile to BS in order to form beams optimally, which 

required an additional signalization overhead.  

From the system-level point of view, the role of SA is to reduce overall interference in the 

system and improve system capacity. This is done at the expense of technology 

deployment. RRM algorithms also try to improve system capacity by interference reduction 

or redistribution, but at the cost of complexity, time consumption and signalization overhead. 

Providers can also make interesting trade-offs between SA deployment and the use of RRM 

algorithms. As will be shown in section 4.6, the deployment of SA sometimes makes use of 

some RRM algorithms unnecessary. 
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2.8 Summary 

In this chapter we described the tasks of RRM and gave a brief overview of some RRM 

algorithms. The most practical RRM algorithms have the following features in common:  

• Distributed i.e. no central controller is needed; BS or MS make decisions on their own 

about cell, channel and power allocation.  

• Measurement based: RRM decisions like cell, channel and power choice are taken 

according to interference (interference based DCA, CIR-based PC) and channel gain 

(Handover, CIR-based PC) measurements. 

• State and service dependent: Algorithms parameters and performance depend on service 

type (RT or NRT), environment (urban, sub-urban or rural) and actual state (traffic, 

interference, total power available). In order to provide an optimal network performance, 

algorithms and their parameters should be adjusted according to service type and actual 

state of the cells and users.    

• Cooperation is required. For example: Minimum interference or channel segregation 

DCA could be applied only if other cells apply the same algorithms, CIR-based PC 

converges for most of the time when each user sets its CIRthr as low as possible etc.     

In the next chapter we try to abstract these main features of the RRM algorithms and give a 

more general framework of RRM algorithms description and design based on “pricing” and 

game theory concepts. The RRM algorithms described in this chapter should be then obtained 

as special cases of this more general framework.        
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3 Radio Resource Management by “Pricing” and Game Theory 

“Every individual necessarily labours to render the annual revenue of the society as great as 
he can. He generally neither intends to promote the public interest, nor knows how much he is 

promoting it...He intends only his own gain, and he is in this, as in many other cases, led by 
an invisible hand to promote an end which was no part of his intention... By pursuing his own 

interest he frequently promotes that of the society more effectually than when he really 
intends to promote it” 

Adam Smith 

3.1 Introduction 

In this chapter we try to generalize the ideas behind RRM algorithms described in chapter 2 

and put them into more general context. Our approach is inspired by a free market economy 

where resource allocation occurs in a distributed manner. People try to maximize only their 

own “utilities” (do not have to be equal to money amount) using prices of the resources as 

signals of their relative “scarceness”. In some sense, “optimal” social allocation can be 

“enforced” by a government and other state institutions using laws, taxes, subsidies and 

punishments. Similarly, “optimal” resource allocation in wireless networks can be 

achieved by allocating the resources to the users for which users’ “utility” is maximized, 

taking resource “prices” set by network into account. In this way, signalization overhead 

is drastically reduced - each user maximizes only its own utility without taking into account 

the utility of other users. Furthermore, we can also use well-established tools in economics 

like decision and game theory, which help to analyze theoretically resource allocation 

among competing agents in a distributed manner. An “economic” approach for resource 

allocation in fixed networks like the Internet and ATM based on decision and game theory has 

already been proposed in [63], [65], [17], [95], [101] and for mobile networks in [80], [62], 

[79], [92], [91], [94], [102], [105], [78]. But these works almost ignore a wealth of existing 

“heuristically” algorithms like those described in chapter 2, which are not based on decision 

and game theory. Furthermore, the dependence of the resource prices from network load is 

not extensively investigated.  

In our work we try to encompass both “worlds” in our framework, the old one based on 

rather heuristic algorithms and the new “microeconomic” one, based on game theory. 

Furthermore, in our work the “players” are “bounded rational” i.e. have a limited 

information available and do not necessary have to make optimal decisions but “satisfactory” 

decisions (“good enough”). The decisions are made according to the heuristics or “rules of 

thumb”: for example “take the channel with lowest interference, when the load is relatively 

low” or “set CIR-threshold to lowest level for a service, when the load is high” etc. That is 

why we propose a special form of the users’ utility functions, which enables us to 
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implement such rules and obtain the popular algorithms like those described in chapter 

2 as special cases. 

Instead of using complex algorithms, searching for a global optimum by each allocation of a 

radio resources, our RRM algorithms just allocate those resources to users which satisfy 

users’ constraints and for which users’ utility functions takes a maximum. Like a 

government, in order to be effective, should encourage compliance from the majority of the 

governed, so the users’ utility function must be defined so that it reflects the basic wireless 

users’ needs like maximizing signal quality (data rate) and minimizing resource (power, cells, 

channels) costs. That is why our utility function increases with channel gain and decreases 

with interference and resource “prices”. The resource “prices” are set by network (or by 

each cell independently from other cells) according to network’s (cell’s) state (load and 

interference). By setting prices the network (cell) maximize its utility (number of satisfied 

users and total data rate) for the given state, taking into account that each user gets those 

resources for which its utility (known to the network/cell), with the “prices” as parameter, is 

maximized. The base stations can signalize “prices” in broadcast or dedicated channels each 

time the state of their cells or network (significantly) changes. For example, the “prices” can 

be changed with a frequency of several hours i.e. increased during “rush hours” and decreased 

in other times. The “prices” can also change spatially, for example, “hot-spot” cells in the 

middle of the city would have higher admission “prices” (influencing HO algorithms) than 

other cells. The “prices” can, but do not have to be, "real" prices with monetary 

meaning. They can be regarded just as parameters of the users’ utility function without 

any monetary meaning.  

Due to the specific form of our utility function, we also obtain many “existing RRM 

algorithms as special cases by appropriate parameter (“price”) settings in our model. 

The further advantage of our model is that network providers can estimate by simulations or 

network statistics for each relevant network (cell) state an “optimal” resource allocation and 

then using the “backward deduction” enforce by  “prices” the optimal (satisfactory, “good 

enough”) RRM algorithms for the state in a distributed manner with low complexity and 

signalization overhead. The algorithms we use are relative simple “rules” like “take the 

channel with minimal interference” or “take the cell with highest channel gain”, like those 

described in chapter 2, but their use is state dependent. 

We also investigate how to enforce cooperation in the networks without “prices” like in 

ad-hoc networks or among the networks from different providers. We show, using Game 

theory results, how “cooperative” RRM algorithms can be the rational choice for wireless 
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users or networks even without explicit resource “prices”, provided the gain or cooperation is 

higher than from defection and “defecting” users (networks) are “punished” by the other users 

(networks).   

In the following, we start in section 3.2 with the definition of a wireless game. Further, we 

define in section 3.3, users’ utility functions on the basis of users’ needs and constraints. In 

section 3.4 we define the utility and constraints of a wireless network. Based on users’ and 

network utilities we describe our “pricing” approach to RRM in section 3.5. In section 3.6 we 

describe how “prices” could be set using the concept of “backwards deduction” and in section 

3.7 what are relevant cells’ or network’s states and state-dependent price settings. In section 

3.8 we provide mathematical “guidelines” or heuristics for developing RRM algorithms: In 

subsections 3.8.1 and 3.8.2 we investigate an impact of the “prices” on the system dynamics 

and in subsection 3.8.3 we provide a “geometric picture” of tasks and the role of RRM 

algorithms for resource allocation in an equilibrium state. In section 3.9 we show how RRM 

algorithms from chapter 2 can be obtained as special cases of our “pricing” framework. Some 

advantages of our “pricing” framework are listed in section 3.12. We discuss how 

measurement decisions can also be done on the basis of expected change in utility function in 

section 3.10.  

Further, we investigate users’ cooperation without “prices” which might arise in ad-hoc 

networks on the basis of game theory in section 3.13. In section 3.11 we discuss complexity 

issues of our algorithms. Finally, we summarize in section 3.14. 

3.2 Wireless Game Model 

We define Radio resource management as a game in extensive form [26] with the following 

characteristics: 

• The set of players - We define two kinds of players: users or users’ part of RRM 

algorithms and cells (network) or the network part of RRM algorithms. Cells are 

responsible for setting the ”prices” for resources and users are responsible for the actual 

allocation of resources taking into account resource “utility”. This classification is rather 

functional and not according to the place of execution. RRM algorithms can be 

executed in network (BS, RNC, Node B) or in MS, or one part of the algorithms can be 

done in MS and one part in network.   

• The set of possible actions or moves of the players - Users can choose between cells and 

providers (intra- or inter-system handover), channels within a cell (channel allocation), 

power to be used (scheduler and power control). Cell choices are the “prices” for cell 
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(system) entrance (AC), channel “prices” (DCA) and power “prices” (Scheduler, PC). The 

decisions about “prices” (by cells) are made so that a simple heuristics (“rules of thumb”) 

by resource selection (by users) is enforced: For example, “if the load is low take the 

channel with minimum interference”, “if the load is high use “fair-throughput” scheduling” 

etc. 

• The order of actions – In order to enable a full decentralized implementation, the actions 

of the players are executed asynchronously and sequentially. All decisions in a network 

occur in general at different time points and independently from each other.  

• What each player knows when he takes an action – A wireless user has, in general, 

information obtained by his own measurements (channel gain, interference) and 

information obtainable from the cell by means of signaling (“prices” for cell access, 

channel and power). In the cells following data is available: interference from other cells, 

number of users of each service type and their arrival rates, channel gains, delays and data 

rate of the users in the cell, etc. Further, the players in our model are “bounded 

rational” i.e. have limited computational capacity and make their action based on the 

limited information available, like local measurements of channel gain and interference. 

The players also do not try to “outguess” each other i.e. they do not make “circular” 

assumption of the type “if the other players know that I know that they know that I know 

…”, as sometimes assumed in “classical” game theory [100]. 

• The probability distributions of any exogenous event – We regard users’ movement as 

an exogenous event in a wireless game. That is why arrival and departure of the users in 

the cells and their channel gains can be regarded as exogenous events too.  

• The users’ and network's decisions are state dependent (Markov Games [26])- Users 

make resource allocation decisions according to users’ states i.e. power consumed, data 

rate achieved so far, channel gain, interference and “prices” for resources. Cells make 

“price” decisions according to the cells’ states i.e. the traffic load and interference in the 

cells. 

• What the “players” maximize i.e. the users’ and network's utility functions. In our 

model the players make not absolutely optimal but “satisfactory” decisions, which 

provide “good enough” performance under given load. A search for globally optimal 

solutions would require too much signalization overhead and would be of very limited 

duration due to fast changes in a fading environment.  
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In the next sections we define the users’ and network’s utility functions in such manner that 

we obtain some of the RRM algorithms described in 2 as special cases of our “wireless 

game”. 

3.3 Users’ Utility and Constraints 

The “happiness” of wireless users in general increases with signal quality (data rate) and 

decreases with resource (cell, channel, power) costs. Resource costs can be summarized in 

power costs, which measure value of power in a certain cell on a certain channel. Power costs 

reflect “subjective” costs of the users i.e. how the users value their own battery power, but 

also, more importantly, “social” costs due to interference to other users. These “social” costs 

should be taken into account by base stations (RRM algorithms in BS) by determining power 

costs in the cell.  

In Game theory the “happiness” or the “gain” of the players (users) is summarized in users’ 

utility function [100]. We differentiate between the so-called Bernoulli utility u i.e. the utility 

at the certain moment and Von-Neumann-Morgenstern utility function U i.e. the expectation 

of the Bernoulli utility function [64] over the time. The form of the utility function depends 

on service type but, in general, all services try to maximize data rate R and, at the same 

time, minimize power consumption. In the following, we assume that utility function is 

separable and linear in power costs and data rate. Using Shannon’s formula for data rate R 

(per unit bandwidth) for the user sending with power p, with channel gain g and interference 

I, and setting power costs proportional to consumed power we propose the following 

Bernoully utility function u: 
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powers, since power changes during the time according to a PC algorithm. In the following, 

we try to express users’ utility function in terms of channel gain, interference and 

“prices”, since these are the usual values that can be obtained by signalization (“prices”) or 

measurements (interference and channel gain). To that aim we investigate three cases of PC 

(see section 2.2): 

Constant power PC. p=Pmax. From Shannon’s formula for data rate we obtain the following 

expression: 

(3.2)  

In the case of "Water filling" PC (see section 2.3), power p of the users is set according to 

following expression: 

(3.3)  

Where λ is a Lagrange multiplier, which can be interpreted as “cost” of the power. Setting 

(3.3) into Shannon’s formula for data rate we obtain the following expression: 
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• The utility is directly proportional to maximal achievable data rate. 

• The larger the utility the less power is needed to achieve a certain data rate or CIR. 

• It is a decreasing risk averse [47] function (in g/λI) because log-function is a concave 

function (a twice differentiable function f(x) is concave if a*f(x1)+(1-a)*f(x2)< f[a*x1+(1-

a)*x2] for all 0 < a < 1) like most of the utility functions used in practice. This feature 

means that users with high g/(λI) are readier to take a risk than the users with low g/(λI): 

The higher g/(λI) the lower the difference in the utility of having certainly log[g/(λI)] and 

the utility of taking a risk and playing a lottery whose expected gain is log[g/(λI)]. 

• The utility function favor diversity, since the concave functions like logarithms fulfill 

Jensen's inequality [15] i.e. the utility of the expected value is always better than expected 

value of the utility: 

(3.8)                        
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Real-time RT service like speech requires that the probability that channel quality (CIR) is 

lower than a certain threshold CIRthr (say 12 dB) lies below certain threshold (outage 

probability) Pout (say 2%) [19]: 

(3.11)    

Since CIR is proportional  to data rate (R ~ log(1+CIR)), we can combine constraints for both 

RT and NRT users as follows: Probability of achieving certain data rate Rmin must be above 

certain threshold (1-Pout) within certain time period td  in order that the users are satisfied:   

(3.12)    
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the weight of satisfied speech users, the weight of satisfied data users, and the weight of 

achieved data rate by the user i respectively. We define the following optimisation problem 

for a network provider: 

Objective: Maximize weighted sum of satisfied speech user Ns, satisfied data user Nd and sum 

of achieved data rates per user Ri:     

(3.13) 

 

Under the following constrain

is lower or equal to available

number of available channels

power for the user Pi
max and to

DL). Further, speech and data

predefined time td i.e.:   

 

 

 

 

A network provider should m

total throughput and fairness 

like speech service usually ha

maximize the number of speec

for most of the time. On the ot

between data rate and the num

more importance to efficiency 

pro bits of data rate i.e. mathem

rate issue is subordinate to the

monthly bill independently of

providers than if the users’ da

work we usually assume the

satisfied user than of havin

satisfied users i.e. fairness has

dN

R

p

Pp

B

i

N

i
i

i
i

N

i
i

Pr(
1

m

1

≥

∑ ≤

≤

≤

=

=
∑

ts: Total bandwidth used (sum of bandwidth used per user Bi) 

 bandwidth Btotal (number of used channel is lower or equal 

). Power of user pi does not exceed the maximal allowable 

tal sum power does not exceed some limit Ptotal (important in 

 users are satisfied - achieve minimum data rate Rmin within 

∑
=

++=
i

iiddssnetwork RwNwNwU
1

(3.14) 

ake an important trade-off between efficiency i.e. maximizing 

i.e. maximizing the number of satisfied users. Some services 

ve a fixed data rate and the main issue of the provider is to 

h users, who achieve their minimum signal quality (data rate) 

her hand, in the case of other services like NRT data a trade-off 

ber of satisfied users should be made. Whether a provider gives 

or fairness depends on revenues obtained pro satisfied user and 

atically from weights ws, wd and wi in (3.13). Usually the data 

 issue of users’ satisfaction. Users often pay some fixed part of 

 data consumed - if they are unsatisfied it is usually worse for 

ta rate is moderate, as long it stays above some limit. In this 

 utility of the network is higher from having one more 

g more data rate or better signal quality from already 

 more priority than efficiency.  

NisecondstwithinPR

P

Ni

NNNB

i
dout

i

total

dstotal

..11)

..1

min

ax

=−>

=

+=



53 
In the following section we describe how network (or each cell) can maximize its utility in a 

distributed manner by setting the “prices” appropriately and letting each user to maximize its 

utility with “prices” as parameters. 

3.5  Resource Allocation by “Pricing” 

In this section we describe our “pricing”-based framework for RRM. We first define users’ 

utility function as a linear function of channel gain and interference with weights (“prices”) as 

parameters. Further, we describe our RRM concept based on adaptively setting of weights in 

the users’ utility function (“pricing”) according to network’s (cell’s) state. 

3.5.1 Users’ Utility Function with Weights 

For the purpose of more flexibility and easier handling of the utility function, we use a 

slightly changed form of the utility function given in the equation (3.9). Note that “price” of 

power per unit bandwidth (λ in (3.9)) could be a function of the channel gain g and 

interference I. For example, we can set CWW IG Ig 1011 +−−=λ in (3.9) and obtain expected utility 

as the sum of the mean values of I (mean value of interference in dB), G (mean value of 

channel gain in dB) with the cost factor C (comprising other factors like load, average delay 

etc.):  

(3.15)                        
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Figure 3-1: A “pricing”-based model for resource allocation in mobile networks 

In this way, we can realize distributed RRM algorithms, where cells and users take 

actions that maximize their utilities, using “prices” as mediators between cells’ and 

users’ utilities. 

In Figure 3-2 a schematic RRM algorithm based on pricing is represented. As can be seen 

from Figure 3-2 the pricing-based RRM consist of cells’ (network’s) specific part that set 

“prices” (weights) for the resources according to network state and users’ specific part that 

allocates resource(s) with maximal utility taking into account “prices” set by cells’ part.   
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Figure 3-2: A pricing-based RRM algorithms 

Naturally, users get only “admissible resources” i.e. free resources for which minimal users’ 

requirements like outage probability or minimal expected data rate are satisfied (3.12).  

We can also use the same “pricing” model if the users’ utility function is not known. In that 

case a provider could assume that users choose among the resources which satisfy users’ 

constraints those with minimal costs. The cost for a resource (“Cost function”) is inverse 

proportional to resource utility U i.e. Cost Function = -U = C - WGG + WI I. As in the case of 

utility maximization a provider can “enforce” in the distributed maner optimal resource 

allocation by setting the weights C, WG and WI and assuming that users minimize the Cost 

Function. 

In the language of Game theory we talk about the "Stackelberg game" [26]. This is a 

“hierarchical” game where one agent, called leader (in our case a cell or BS) moves first and 

takes his actions in order to maximize his utility (3.13) knowing the utilities (3.15) of the 

Users’ specific part of RRM: 
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other players (users) called the followers, who move after they have observed the action of the 

leader. This kind of game usually has more efficient Nash equilibriums [26] than in the case 

when the sequences of players’ moves is not predefined. The network can, for example, 

determine according to simulation or network statistics “optimal” RRM algorithms for each 

state and enforce it by “prices” as a leader in a Stackelberg game. The users then maximizing 

their utilities (with network’s “prices” as parameters) at the same time maximize the network 

utility.  

It should be stressed that we do not search for “absolutely optimal” solutions for each 

network state, since such search would be too costly (in signalization overhead) and of short 

duration due to fast changes in a fading environment. Instead, we search for “good enough” 

or “satisfactory solution” which can be achieved by use of heuristically “rules of thumb” and 

with limited information available (“bounded rationality” assumption). 

By setting the (sub-) optimal “prices” cells use some kind of “backwards deduction” which 

consist of the following two steps: 

1) Determine “optimal” resource allocation for the state i.e. the allocation which 

maximizes  networks’ or cells’ utility. 

2) Choose “prices” so that users maximizing their utilities take the resources according 

to the optimal resource allocation for the state.  

“Backwards deduction” will be explained on the example of DCA algorithms in the following 

section. 

3.6  “Backwards Deduction” and Load Dependent “Prices” 

In this section we describe a “backwards deduction” on the example of dynamical channel 

allocation algorithms (DCA). The idea is to imagine an “optimal” channel allocation for 

the given cell’s state and than set the “prices” (“weights”) in the users’ utility function so 

that user’s maximizing their utility function, with weights as parameters, chose the 

channels so that the desired “optimal” allocation is established.  

The optimal channel allocation is load dependent. For example, for lower loads it would be 

optimal that neighbor cells uses different channels as oft as possible in order to minimize 

inter-cell interference. To this purpose, Minimum Interference DCA can be used in order to 

avoid the use of channels with higher interference, which are probably oft used in neighbor 

cells. On the other hand, in the case of higher loads, almost all channels must be used almost 

all time. In this case ARP DCA, where each user gets the channel which is just “good” 
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enough to achieve its minimal CIR, but not better, in order to left better channels for the 

users with higher path-loss, would maximize the number of satisfied users in the cell. The 

example of the use of the “backward deduction” for “high load” is represented in Figure 3-3. 

Figure 3-3: “Backward Deduction” for a “high” load 

Since optimal channel allocation is load dependent, for different loads different DCA 

should be used. The load dependent “price” setting can be realized by choosing the weights 

in the utility function according to the channel quality (weights WI and WG) and load 

(weight C) as represented in Figure 3-4. Both weights WI and WG can be set to 1, when 

Set the “Prices” for the Resources (Channels) 

Users maximizing their utility take the channels, which
are also optimal from network point of view: 

For example:  WG = C = 0, WI = -1; U = I => Users take
the channels with maximal interference for which user’s
constraints: Pr (CIR<CIRthr) < Pout are satisfied. 

Optimal Channel Allocation for the State 

For example:” Users get the channels which are just good
enough to satisfy their needs, but not better” (ARP DCA) 

Cell 2 

Cell 1 

Channel 1 

Channel 2 

Channel 3 

State of the Network (Cell) 

For example: “High Load” 
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channel quality (G-I) is below a predefined level (C), or to –1, when channel quality is greater 

than C. The weight C is set inversely proportional to the load in a cell: For lower loads, C is 

set to a higher value and users often take the “better” channels (channels with lower 

interference) i.e. use minimum interference DCA, since utility decreases with channel 

interference for (all) most of the channels. For higher loads, it might be desirable to allocate 

those channels which just fulfill minimal users’ requirements (like minimal CIR) i.e. use ARP 

DCA. To that purpose, cells can set C relatively low in the case of higher load in order to 

enforce users to “take” worse channels i.e. channels, which just fulfill their minimal 

requirements. Also, if gain G is channel independent (all channels use the same frequency as 

in the case of TDMA), by load dependent setting of the weight C as in Figure 3-4, cells can 

switch between minimum interference DCA for lower loads and ARP DCA algorithm for 

higher loads. 

Figure 3-4: Load dependent cost (“C”) settings 

If the users minimal quality requirements cannot be satisfied on any free channels, the user 

should not start the call at all. 

Let us take the example of optimal (maximize the number of satisfied RT users) DCA in the 

case of higher loads. We assume that outage probability is maximal 2% (see constraints of RT 

users (3.11)). We also assume the Gaussian distribution of interference in the case of higher 

load with mean value I = I(channel) and standard deviation σI = σI(channel). Then DCA set 

the weight C to the value C = CIRthr + 3σI(channel) – Pmax and WG and WI to 1, as in Figure 

3-4 left. When a user needs a channel, the highest utility (0) is obtained for the resource 

(channel) on which the I distribution is such that the user constraints are just satisfied i.e. U = 

Pmax + G – I(channel) - CIRthr  - 3σI(channel) = 0 i.e. the probability that CIR (Pmax + G – 

I(channel)) is lower than CIRthr on the channel is just about 2%. In this way, users get 

(approximately) those channels, which they need to fulfill their minimum quality 

If G-I < C (C ~ 1/ load) 

    WG = WI = 1,  

    U = G – I - C 

Else 

    WG = WI = -1;  

    U = I - G - C 

End if 

Allocate channel for
which |U| is maximal! 

Channel quality (G-I)  C

Utility 

  C’ 

Lower LoadHigher Load 
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requirements but not better, in order to leave “better” channels for the users with worse 

conditions (lower channel gains). This is also a kind of ARP DCA as described in subsection 

2.5.2.4. As discussed above, ARP DCA might be useful in the case of higher loads in order to 

maximize the number of satisfied users. In the case of lower-medium loads, cells can set WG 

and WI to 1 and C to 0 and users would, by maximizing their own utility (G-I), always “take” 

the free channel with lowest interference i.e. apply Minimum interference DCA.  

The same reasoning can be extended to costs of the resources other than channels like power, 

cells, layers in the case of hierarchical cells, systems like GSM and UMTS in the case of 

mixed systems or even codecs with variable data rate like AMR codecs in the case of link 

adaptation. “Resource quality” is then defined according to channel gain, interference and 

load of the resources as well as according to power level (in the case of power control) or 

codec data rate (in the case of link adaptation). The same idea can then be used as in the case 

of DCA in Figure 3-4: Set “prices” for the resources so that users maximizing their utility take 

“good” resources in the case of lower loads and “worse” resources (but where minimum 

users’ requirements still can be satisfied) in the case of higher loads. In this way “better” 

resources are left to the users with worse conditions (lower channel gains and data rates) in 

the case of higher loads in order to maximize the number of satisfied users (“fairness”) and 

the data throughput is maximized in the case of lower loads (“efficiency”).      

If the speed of the users is relatively high, the “optimal resources” for the users could 

change relatively frequently due to fast changes in channel gain. In that case HO 

(intracell, intercell or intersystem) or codec change (in the case of link adaptation) must be 

often performed in order to “reshuffle” the users to the new “optimal” resources. If the 

signalization overhead for “reshuffling” i.e. HO or codec change is relatively high in a 

system, simple random channel allocation or default codec selection might be a better choice 

for the system than the algorithm described above.  

In the following sections we formalize the principle of “backward deduction” and state 

dependent price decisions to use it also for the other RRM algorithms in a unified manner. 
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3.7 Relevant States and State dependent “Pricing” Decisions 

In this section we investigate how “prices” should be set in a cell in order to optimize resource 

usage in the cell in each (relevant) cell’s state using “backward deduction” heuristics 

described above.  

The state of the users or cells conveys all information from users’ (cells’) history necessary to 

take actions (Markov property) i.e. make “price” and resource allocation decisions. We define 

cells’ and users’ states as follows: 

• The cells’ state is defined by the (statistics of) the number of users in the cells and 

interference. 

• The users’ state is defined by the channel gain and interference of the users as well as 

power consumed and data rate achieved by the users.   

For interference characterization, we can use interference distribution which can be obtained 

by cell statistics, or in the case of Normal interference distribution [83], [6], we only need 

mean value mI and standard deviation σI. As a measure of the quality of interference 

estimation dI - ratio between interference standard deviation σI and mean mI can be used. dI in 

general decreases with increase in the number of interfering users.  For example, if the 

interference stems from n users on the same channels with independent and identically 

distributed interference contributions, than standard deviation of the total interference 

increases with n and mean increase with n. Consequently, dI(n) decreases with n  and 

interference estimation becomes better with increasing number of interfering users, i.e.: 
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turns out (see simulation results in 4) that for the most RRM algorithms and situations 

only 3 states are relevant: low, medium and high. These states are also typical in the praxis 

according to users behavior during the day: low load (for example late in the night), high load 

“busy hour” (for example at noon and after the work) and normal or medium loads (in all 

other times).  

A strategy is a mapping from the state space into action space i.e. a strategy defines for each 

state which actions should be taken. For example, cell strategy defines which “prices” 

(parameters of users’ utility function) are set for each state of the cell. Since we assume that 

the cell knows the utility function of the users, setting “prices” means enforcing the users to 

apply those Scheduler, DCA, PC, HO, AC algorithms or “rules”, which are "optimal" for the 

given state of the cell. In this work we discuss time invariant or stationary strategies i.e. the 

same actions are taken in the same states independently from the time step.  

In our work we do not search for absolutely “optimal” but for “satisfactory” strategies 

assuming “bounded rational” (with limited information available) users, which make the 

decisions based on the “rules of the thumb” like: “Take the channel with medium interference 

if the load is low”. We propose the following basic strategies for each of the relevant states 

(“low”, “medium” and “high”):  

Low load: In the case of low loads, the “prices” for resources (cell, channels and power) can 

be set so that users can apply “greedy” algorithms (maximize users’ CIR or data rate): 

“Send with maximal power”, “make HO to best cells (with highest channel gain)” or “take 

best channels (with minimal interference)”. All the users in the system should be satisfied 

(enough free channels with low interference) and provider revenue should be maximized by 

maximizing users’ data rate (see (3.13)). Since interference estimation can be relatively bad 

(low load – relatively high interference fluctuations, see (3.16)) and almost all channels have 

low interference, for very low loads the channels could also be allocated randomly.  

Medium load: In the case of medium load the “prices” for cells, channels and powers 

increases with load. The higher the load, the lower CIR-threshold of CIR-based PC (as long 

CIR-threshold > CIRmin) and the lower water-filling level in the case of water-filling power 

control. Also, some over-loaded cells can prevent new users from starting the call in the cells 

by increasing the cell “prices”. Channel “prices” can be set proportional to interference in 

order to enforce users to choose channels with lower interference more often. Interference 

estimation is good i.e. interference fluctuations are relatively low due to moderate load.   

High load: In the case of high load the “prices” for resources i.e. cells, channels and power 

are such that users take the resources which provide them with minimal required signal 
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quality (data rate) in order to leave other “better” resources (with lower load and 

interference) free for users with worse conditions (channel gain, interference).  In this way 

the number of satisfied users in the system i.e. provider revenue should be maximized (if ws 

>> wi and wd >> wi in (3.13)). “Prices” for cell entrance (AC) for the new users are high – 

almost only users already in the network (HO users) can access the cells. In order to provide 

each user with a satisfied signal quality (CIR), those users who have better channel gain (G) 

should take channels with higher interference and vice versa i.e. use ARP DCA (see section 

2.4).  

In following section we describe heuristics behind “price” decisions i.e. the influence of 

“prices” on system dynamics and equilibrium states. 

3.8 Heuristics behind RRM Decisions 

In this section we describe impact of “price” settings on system dynamics i.e. minimization 

of the maximal channel eigenvalues (in the case of PC) and the achievable equilibrium 

states i.e. the shapes and choice of points in the “capacity regions” of the network or cells.  

3.8.1 Impact of RRM decisions on System Dynamics  

In subsection 2.2.3 we saw that the largest eigenvalue of the channel matrix has a crucial role 

in convergence and maximum achievable CIR-values of the iterative CIR-based PC. The 

lower the maximal eigenvalue of the channel matrix the higher achievable CIR and faster 

convergence of the iterative PC. In this subsection we investigate the influence of RRM 

algorithms on eigenvalues on channels i.e. how maximum eigenvalues can be minimized on 

as many channels in the system as possible by setting weights (“prices”) in users’ utility 

functions.  

In subsection 2.2.3 we have shown that iterative CIR-based power control is represented by 

the following matrix form (2.8): 

(3.17) 

where η is the Nx1 noise vec

“normalized link gain matrix” o

ηHpp +=+ (n)1)(n

tor with the element ηi/gii at the i-th position. H is NxN 

r “channel matrix” such that: 
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(3.18) 

where CIRi denotes the CIR threshold of the user i. In similar manner we can represent 

“water-filling” PC (see section 2.3) in matrix form by the following equation: 

(3.19) 
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lso, in order to provide convergence of iterative PC and 

 efficient RRM algorithms should minimize maximal 
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• Channel allocation decides to which matrixes S(k) (channel matrix of channel k, k = 

1…N) a row and a column are added due to allocation of new users on the channel k. 

When users left the cell or ended their calls the row and column of the matrix is deleted. 

• Handover and admission control change also matrixes S(k) (k = 1…N). For example, 

path-loss-based HO (without HO margin) ensures that ration gij/gii (see (3.18) and 

(3.20)) is always less than one (up to HO-margin). If this ratio gets higher than one (plus 

HO-margin) for some base station j, path-loss based HO is performed from base station i to 

the base station j, which causes that some channel matrixes change. 

• Power Control decides about entries of the control vector c(k) (λ) in the case of water 

filling PC, and elements of matrix S(k) (CIRthr) in the case of CIR-based PC (see (3.18)).      

The heuristics behind RRM algorithms is to select base station, channel and CIRthr in a 

way that maximal eigenvalues of the matrixes S(k) are minimized for as many channels 

k in the system as possible, since the lower the eigenvalue ρ(S(k) the more users can achieve 

their required signal quality and the faster the convergence of the PC on the channel k.  

We use the following linear algebra results [98] for the upper bounds on the eigenvalues of 
the matrix S: 

 

 

And following bound: 

 

Note that CIRi
thr is the 

CIRi
thr = 1 if water-fill

over the CIR-based PC

levels. In the case of 

eigenvalues (see (3.23)

In equation (3.22) use

Powers can assume, 

comparison to (3.23) 

maximal eigenvalue o

estimated as a ratio be

nominator of (3.22) re

⎫⎧ ∑ i

N
ijj

i
thr gpCIR )(
(3.22) 

(3.23) 

required

ing PC 

 since 

CIR-ba

) and th

rs’ pow

naturall

is that 

f the c

tween 

presents

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪
⎪
⎭

⎪⎪
⎬

⎪
⎪
⎩

⎪⎪
⎨≤ =

≠

i

thr

i
iii

ijj

i CIR
CIR

gp
)(

maxmax)( ,Sρ

⎪
⎫

⎪
⎧ ∑

N
ij

i
thr gCIR )(
 CIR-threshold for the user i in the case of CIR-based PC and 

is used. According to (3.23) water-filling PC has an advantage 

its convergence is not influenced by choice of water-filling 

sed PC choice of CIRthr has an influence of the maximal 

us on PC convergence.  

ers (pi, i =1...N) appear and in equation (3.23) they do not. 

y, only non-negative values. The advantage of (3.22) in 

relatively low signalization overhead is required to estimate 

hannel matrix S. For each user possible eigenvalue can be 

required CIR-threshold and CIR on the channel. The term in 

 the interference, which can be measured at the receiver and 

⎪
⎪
⎭

⎪
⎬

⎪
⎪
⎩

⎪
⎨≤ ≠

ii

ijj

i g
,max)(Sρ



65 
signalized back to the transmitter. The channel gain gii of the user i can also be measured at 

the receiver and signalized back to the transmitter or, in the case of a TDD systems, obtained 

directly at the transmitter assuming that the time elapsing between UL and DL transmission is 

smaller than channel coherence time. Own power pi (and required CIRthr in the case of CIR-

based PC) is/are naturally available at the transmitter itself. Furthermore, statistics from the 

cell and mobile can be used to estimate expected channel gain and interference on the 

channel. In this way maximal possible eigenvalues on the channels can be estimated in a 

distributed manner with relatively low signalization overhead.  

The advantage of (3.23) is that eigenvalue estimation is independent from users’ powers. The 

disadvantage of (3.23) is that channel gains from other users are not known in a distributed 

RRM implementation. But equation (3.23) can be used for principal investigation of possible 

eignevalues of channel matrix S. For example, if HO does not provide that link to the own 

base station i is always stronger than to a neighbor base station j i.e. if gij > gii for some i and 

j, than gij/gii>1 and according to (3.23) maximal eigenvalue might become higher than 1 and 

PC might not converge.  

RRM can influence resource allocation and thus maximal eigenvalues in a cell by setting the 

weights (“prices”) in users utility function (3.15). In Figure 3-5, an impact of the components 

of the utility function on eignevalues of the matrixes ρ(S) is represented. 

Figure 3-5: The role of utility function in minimizing maximal eigenvalues 

The roles of the components of the utility functions on maximal eigenvalues are (see Figure 

3-5): 

- Channel gain (WG, Gmean) Maximizing channel gain (minimizing path-loss) decreases the 
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channels. That is why many HO algorithms are path-loss based (minimize path-loss i.e. 

maximize channel gain). This is especially important in the case of re-use 1 (all cells can 

use all channels) and iterative PC, when HO should provide that link to its own base 

station i is always stronger than to a neighboring base station j. If gij > gii for some i 

and j than gij/gii>1 and according to (3.23) maximal eigenvalue might (in (3.23) an upper 

limit is given) be higher than 1. In that case PC would not converge. In order to prevent 

this, cells can set weights as follows: WG=1, WI=0 and C=0 (see 3.9.4). In that case the 

utility function (3.15) reduce to U = G i.e. the users part of HO select always the cell with 

maximal channel gain i.e. performs path-loss based HO (see 2.6.1).  

- Interference (WI, Imean): The lower the interference, the lower the nominator in (3.22) and 

the lower the possible eigenvalues on the channel. That is why many DCA algorithms are 

interference based i.e. take the channel with lowest interference. But, since maximal 

eigenvalues should be minimized on as much channels as possible, for higher loads ARP 

DCA (2.5.2.4) could help maximizing the number of channels with maximal 

eigenvalues lower than 1. For example, by assuring that each user gets a channel where 

possible CIR is slightly above its CIR-threshold, maximal eigenvalues can be kept below 1 

(and thus insure convergence of PC) on as much channels as possible (see (3.22)).   

- Cost (C): It is not only the goal to minimize eigenvalue on one channel but on as many 

channels as possible in order to support as many users as possible i.e. “balance” 

eigenvalues on different channels. In the case of higher cell load the users and 

interference on the channels should be distributed equally to achieve approximately the 

same eigenvalues (but low enough to enable achieving CIRthr for as many users as 

possible) on all channels. Term “C” in the utility function enables us to “enforce” load 

dependent distribution of users among the channels (or cells). C could be set (by a 

network part of DCA) according to the load of the channel and WG and WI could be set to 

zero. AC can also set a higher cost C for the new users than for the users already in 

the network. In this way some new users would not access the network in order to protect 

the users already in the network from too high interference. This could be especially useful 

in the case of hierarchical networks or inter-system HO, where the users could be 

shifted from overloaded layers (systems) to the layers (systems) with lower loads by 

appropriate choice of the parameter C. Since the layers or systems use orthogonal 

channels, among the layers (systems) we do not have a problem that it should be provided 

for each i and j that gij > gii as in the case within one layer or system and re-use 1 (see 

above).  
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3.8.2 Smart Antennas and Eigenvalues of Channel Matrixes 

As described section 2.7 Smart antennas (SA) decrease gain from interfering users (gij and gji 

in (3.18) and (3.20)) and increase gain to the desired user (gii), also the ratio of these two 

gains (gij/gii) decreases due to SA deployment.  This means that each non-zero entry in 

channel matrixes decreases due to SA (see (3.18) and (3.20)). In this way the row or 

column sum is reduced and the largest eigenvalue of the matrix is also reduced due to SA 

according to (3.22) or (3.23). Also, SA have similar effects as RRM algorithms – reduce 

largest eigenvalue of channel matrix for as many channels as possible. The advantage of SA is 

that the reduction of the largest eigenvalue on one channel is independent from other channels 

and from users’ powers i.e. decrease of eigenvalue (interference) on one channel is not 

paid by increase of eigenvalue (interference) on another channel (layer, system) as in the 

case of DCA or AC.  

Reducing the gain of interfering users (gij) and increasing the gain of desired user (gii in 

equation (3.23)) by SA has an effect of “decoupling” the users. The relative influence of one 

user on another is decreased, and “social” behavior of the users and thus sophisticated 

RRM algorithms become less important in presence of SA than without SA.  

3.8.3 Impact of RRM decisions on Capacity Region  

In this subsection we investigate the “equilibrium states” i.e. after the users reach their 

equilibrium powers due to PC.  We provide a “geometrical” insight into the role of different 

RRM algorithms by showing the impact of RRM decisions on the “shapes” of the 

achievable capacity regions and choice of the points in the capacity regions.  

To this aim we obtain from (3.13) as special case the network utility U(network) as maximum 

of the weighted sum of data rates (as long the users are satisfied) i.e.: 

(3.24)                        
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We assume that an optimal resource allocation should at least satisfy the following 

requirement (“Pareto optimality” condition [64]): An allocation is Pareto optimal if there is 

no other allocation in a given set, which can make one user better off without making 

some other users worse off. We call the set of possible data rates in a cell the cell capacity 

set. Consequently, a data rate allocation from the cell capacity set is Pareto optimal, if there is 

no other data rate allocation in the cell capacity set which makes at least one user better off 

(with higher data rate) without leaving the other users worse off (with lower data rate). The 

set of all Pareto optimal allocations (points) in the cell capacity set is called Pareto 

boundary. The cell capacity cell is a convex set (set C is a convex set if 

]1,0[)1(,, ∈∀∈−+∈∀ λλλ CyxCyx ) as shown in [58] for ergodic capacity and in [59] for 

outage capacity. According to the supporting hyperplane theorem [64] the network utility 

(equation (3.24)) achieves its maximum only for the points on the Pareto boundary. 

Furthermore, each Pareto optimal point is the result of maximization of (3.24) for some 

weights (priorities) wi (i=1,N) setting. Weights wi also define a family of hyperplanes in N 

dimensional space according to the equation (3.24) i.e. each value of the equation (3.24) for 

fixed wi (i=1,N) defines one hyperplane. The hyperplane for which the equation (3.24) has a 

maximum is called the supporting hyperplane [56] and represents a tangent on network’s 

(cell’s) capacity set (see Figure 3-6).  

Figure 3-6: An example of the Capacity region, Pareto boundary, Supporting hyper 

plane in R2 and the role of RRM algorithms  

Since the setting of weights wi is the task of Scheduler (see 2.4 and 3.9.2) and data rates Ri 

depend on CIR-threshold (set by outer loop PC, see 2.2.4), we can say that “optimal” 
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Scheduler and PC (which maximize cell’s or network’s utility) should choose a point on 

the Pareto boundary in the cell’s capacity set.  

This is an example of the application of The Second Welfare Theorem from the economic 

theory [64], which states that each Pareto allocation can be achieved in a distributed 

manner (in a competitive market) by appropriate price settings, if the users utility functions 

and production set are convex.  

In our case the conditions of The Second Welfare Theorem are fulfilled: The users’ utility 

function defined in (3.1) is linear (also both convex and concave) in data rate and the 

“production set” i.e. the set of the possible data rates in a network or the cell is also convex as 

showed in [58] and [59]. The precondition for the application of The Second Welfare 

Theorem is that there are no externalities i.e. there is a market and a price for each 

commodity, which might be “good” or “bad” for some users. That is why it is important that 

the power in mobile networks has a “price”, otherwise the power is externality (generate 

interference to other users) and Pareto optimal allocation in a distributed manner is not 

possible. Note that even if there is the “price” for the power it is oft not possible in praxis to 

“search” the Pareto optimal allocation in a distributed manner by a long process of 

“tatonement” among the users, which would require enormous signalization effort in a 

wireless network. As stated in section 3.2, we assume that the users do not search for 

absolutely “optimal” but “satisfied” solutions. The Second Welfare Theorem provides us 

with the result that in the ideal case the “optimal” resource allocation is possible with the 

“pricing” approach.   

Above discussion is done for a “snapshot” of a system, when the capacity set is fixed (after 

PC convergence) and users do not move, arrive in or left the system. But the capacity sets 

(available rates, see Figure 3-6) on the channel changes during the time. With each 

allocation of a channel to a user by DCA or change of the cell by HO, the shape of the 

capacity set changes. The role of a DCA and HO is to select the “optimal” channels and 

cells for the users in order to keep the capacity regions as large as possible on as many 

channels as possible. The “shape” of the capacity region is also important because the shape 

defines the minimal data rates achievable for each user. The goal is that in each dimension i 

(for each user i) the shape of the capacity set is such that Ri
max > Ri

min, where Ri
max and Ri

min 

are maximal achievable and minimal required (respectively) data rates for the user i.      

Note that AC influence HO decisions by setting cell “prices” and so AC has also an impact on 

the size and shape of the capacity regions. 
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3.9 RRM algorithms based on “Pricing”- Framework 

In this section we show some examples of the RRM algorithms based on the “pricing” 

framework. We show also how RRM algorithms from chapter 2 can be obtained as special 

cases of the above “pricing” framework, by appropriate weights (price) settings in the utility 

function. 

3.9.1 Power Control 

As described in section 2.2, PC sets the power according to Water-filling or CIR-based rule 

i.e.:  
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From the network’s point of view, the price per unit power is inverse proportional to the 

increase in the cell’s utility per unit power i.e. 

Consequently, the higher the network

is the price to the power. Consequent

“price”) or CIR-threshold of a user s

of the network by allocating additio

Unetwork is defined in (3.13), this me

number of satisfied users Ns or data 

level) and constraints (3.14) are satisf

the data rate increase for the user can

(due to additional interference) or, ev

users, the water-filling level should b
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Figure 3-7: Load dependent PC 

3.9.2 Scheduling  

The scheduling algorithms based on “pricing” select users with maximum utility Ui = WGG i- 

WIIi - Ci (see (3.15)) to be scheduled for the next transmissions. Note that scheduling is 

usually done only for the services with not stringent delay constraints i.e. for non-real time 

(NRT) users. By the appropriate “pricing” i.e. setting of users’ utility function parameters WG, 

WI and C different scheduling algorithms from section 2.4 can be implemented. For example: 

“Fair” scheduling: WG,= -1,  WI = -1 and Ci~ Ri => U = I – G – k*Ri.  The users with worse 

channel conditions i.e. with lower channel gains G and higher interference I (for example 

users at the cell border) and with lower data rates already achieved (Ri), is scheduled more 

often. In this way the users with worse channels and lower data rates get more transmission 

time, which enables them to obtain at least their minimal data rate during the session duration. 

In general users farther from the base stations (have lower channel gain) are scheduled more 

frequently than the users near the base station (have higher channel gain) (see Figure 3-8 a)). 

This algorithm also maximizes the number of satisfied users in the cell (network) and 

could be used when the revenue from the satisfied users is much higher than from data rate 

i.e. wd>>wi in (3.13). 

“Greedy” scheduling: WG,= 1,  WI = 1 and Ci = 0 => U = G - I. The users with better 

channel conditions i.e. with higher channel gain G and lower interference I (for example, 

users near to the BS) are scheduled more often. In this way the users with better channels get 

more transmission time, which enables them and their cells (network) to obtain relatively high 

For each user:   

     Power_price ~max[1/(increase in network’s  utility), value of the battery power)

     Case Load: 

Low: Increase power (water-filling level or CIRthr) as long as increase in

user’s utility higher than the power price, 

Medium-High: Decrease the water-filling level or CIRthr proportional to

load i.e. inverse proportional to power price. 

High: Set the water-filling level or CIRthr to minimal values needed to

achieve the required data rates or signal quality. 

     End  
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total data rates. On the other hand, the users with worse channels are doubly “punished”: By 

bad channels and lower scheduling times, and sometimes they cannot even achieve their 

minimum data rates. Since the users near the base stations usually have higher channel gains 

and lower interference than the users near the cell borders, they are scheduled more frequently 

than the users farther from the base station as represented in Figure 3-8 b). This scheduling 

policy maximizes total data rate in the cell (network) and could be used when the revenue 

from data rate is much higher then from the satisfied users i.e. when in (3.13) wi>>wd (at least 

for some i). 

“FIFO” scheduling: WG,= WI = 0 and Ci ~-T => U = T. The users with the longest time 

spent in the queue (T) are scheduled for the transmission. Also, all users get the same 

portion of the scheduling time independently from their channel gain (distance from the 

base station) (see Figure 3-8 c)). With these scheduling algorithms, the data rate and number 

of satisfied users are between “Fair” and “Greedy” scheduling and could be used in the case 

of (uncritical) low load or when the number of satisfied users and total data rate are of equal 

importance.  

“Priority-based” scheduling: WG,= WI = 0 and Ci = -priority => U = priority The users with 

the highest priority are scheduled first. The priority can be set according to the users’ contract 

with a provider and/or service type requirements. For example, the users with harder delay 

constraints should be given higher priority than users with less stringent delay constraints. 

Users can also have priority according to their data rate: 128 kbps users can get 1/3 of priority 

of 384 kbps users in order to provide both classes of users with their required data rates.  

Figure 3-8: Some scheduling algorithms [38] 

Also a mixture of the above scheduling algorithms are possible, for example, setting  wG,=-1,  

wI =-1 and c(i)= 1/Ti, the user(s) with the worst channel conditions and/or the longest time 

spent in the queue are scheduled first. 

MS1 

MS2 

MS1 MS1 MS2 MS1 MS2 MS1 MS1

a) „Fair“ scheduling: 

MS2 MS2 MS2 MS1 MS2 MS2 MS2

a) „Greedy“ scheduling: 

MS2 MS1 MS2 MS1 MS2 MS1 MS2

c) „Round-Robin“ scheduling: 
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3.9.3 Dynamic Channel Allocation 

After intracell/intercell HO or at a new call begin of a user, a channel should be allocated to 

the user. To this purpose DCA evaluates the “utility” of each “admissible” channel for the 

user in the cell according to the user’s utility function (see equation (3.15)):  

(3.31)                        

Where c denotes channel, I(c) is the average interference (in logarithmic measure) on the 

channel c, G is the average channel gain (in logarithmic measure). An admissible channel is a 

free channel on which user’s constraints (3.12) can be satisfied. The set of admissible channel 

is called the admissible set and denoted with A.   

Not that channel gain G in (3.31) is usually user specific i.e. depends on distance between the 

mobile user and the base station, but can also be channel specific if different channels have 

different frequencies. C is the cost of the channel that comprises other factors, which might 

influence choice of the channels like channel load i.e. the number of users using the channel 

currently in the cell or the number of codes already used on a channel ((timeslot, frequency)-

pair in a TDD system). WI and WG are the weights of the interference and channel gain 

respectively.             

User specific DCA allocates a channel to the user from the set A of admissible channels 

with maximum utility i.e.: 

(3.32)   

The “cell speci

cell.  

By appropriate 

2 as special case

[ ] [ ])()()(maxarg)(maxarg cCcIWcGWcUchannel IG −−==

)()()()( cCcIWcGWcU IG −−=
fic” DCA set “prices” (weights WG, WI and C) according to the state of the 

parameter settings in (3.32), we obtain different DCA algorithms from chapter 

s (see Figure 3-9): 

AcAc ∈∈
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Random DCA: WG = WI = 0, C = random  => U = random (take channel randomly) 

Example of usage: In the case of very low or very high loads, when all channels

are equally “good”.     

Priority-based DCA: WG = WI = 0, C = -priority  => U = priority 

Example of usage: In the case of low-medium loads to establish “channel

segregation” i.e. neighbor cells should use different channels. 

Min I DCA: WG = C = 0, WI = 1 => U = - I (take channel with minimum interference I) 

Example of usage: In the case of low till medium loads, when neighbor cells can

use different channels for the most of the time.    

ARP DCA: WG = C = 0, WI = -1 => U = I (take channel with maximum interference I) 

Example of usage: In the case of high loads, in order to provide as much users as

possible, with at least minimum signal quality.  
Figure 3-9: Different DCA algorithms as special cases of “price” settings 

ote that in Figure 3-9 for ARP DCA, maximal utility is obtained for a (admissible) channel 

ith maximum interference on which still. Too “bad” channels (where minimal CIR can not 

e achieved, see (3.11)) are not taken into account i.e. they do not belong to the set A of 

admissible” channels (see (3.32)).  

.9.4 Admission Control and Handover 

n this subsection we describe how admission control (AC) and handover (HO) can be 

odeled by the use of our “pricing” framework for RRM.  

he role of AC is to admit or reject new users in the cell and to indicate, by cell “prices”, 

ow desirable the admission of the users in the cell is.  

andovers decide about system (layer), cell (intercell HO) or channel (intracell HO) 

hange taking into account AC “prices” for the cells (systems, layers, channels).  

ith each HO, the shape of the capacity sets (available rates, see Figure 3-6) on the channels 

rom and where HO is done, is changed. The role of AC is to influence by “prices” the shape 

f the capacity sets (one on each orthogonal channel) and consequently the achievable rates in 

he cells. Furthermore, AC should prevent admitting of new users when the systems is on its 

imits i.e. if, for example, the maximal eigenvalues on all channels are close to 1 (see 

ubsection 3.8.1). HO selects the “optimal” cell for a user or initiate channel change in order 
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to keep the signal quality (data rate) for the user at least at the minimal required level as long 

as possible.  

According to our “pricing” framework the task of the AC is to set “prices” weights WG, WI 

and C in the users’ utility function (3.15) and the role of HO is to select the cell (system, 

layer), which maximize users’ utility function. Also, AC represents “cells’ specific” part of 

the algorithms and HO the “users’ specific” part.  In the following, we describe some AC and 

HO algorithms based on our “pricing” framework. 

3.9.4.1 Admission Control 

Admission Control (AC) has the following tasks to fulfill by an access of the user in the cell: 

Check if the service constraints are satisfied for the user in the cell i.e. check equation 

(3.12) for each user asking for an admission according to the service type of the user. For 

example, in the case of a RT service AC checks if probability that CIR fails below certain 

threshold (CIRthr) is lower than a certain quality threshold for the service Pout (see also (3.11) 

and section 3.3): 

(3.33)       

Above probability can be calculat

the CIR in the cell. Equation (3.3

Pmax is not enough to reach CIRthr 

as follows: WG = WI = 1, C = - Pm

+ G – I. Assuming log-normal C

following condition  

where k depends on the required o

For a NRT service usual requirem

threshold Rmin  - say 10% of a nom

threshold BERthr, which is service 

where CIR(BERthr) is the CIR req

modulation used. CIR(BERthr) can

even calculated in certain cases. 

PCIRCIR << )Pr(

)Pr( BER

Um
ed knowing the probability density function (statistics) of 

3) also means that the maximal available transmit power 

. By setting the parameters in users’ utility function (3.15) 

ax, we obtain maximal expected users utility as Umax  = Pmax 

IR-distribution in the cell equation (3.33) reduces to the 

(3.34)      

utage probability, for example for Pout = 98%, k ≈  3.  

ent is that the expected data rate must not be below certain 

inal data rate or that the error probability lies below certain 

dependent i.e.: 

(3.35)       

outthr

)(max thrthr BERCIRUBER ≥⇒≥

CIRthr PoutkCIR σ*)(ax +≥
uired to achieve certain BERthr and depends on coding and 

 be estimated by simulations or real network statistics, or 
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Also, the necessary conditions for admitting users in the cell reduces to check of user’s 

maximal possible utility Umax (utility with maximal power) against certain threshold, as 

represented in (3.34) and (3.35). This threshold can be even increased by AC i.e. admission 

“prices” for the cell can be increased according to, for example, following values: 

- The number of users in the cell: the higher the number of users in a cell the higher the 

AC “prices”. 

- Interference in the cell: The higher the interference in a cell the higher the AC “price” for 

the cell. 

- Service type of the user: Admission “price” for a service decreases with service priority.  

- HO type: Handover users (users already in the system) should have generally lower 

AC “prices” than new call users especially in the case of higher loads, since call 

dropping is usually regarded as a worse system failure than call blocking. 

- Signalization overhead needed to perform HO. The higher the overhead, the higher the 

admission price. 

Taking (3.34) and (3.35) into account, the role of AC can be finally described by the 

following rule: Admit the user if its utility U = G – I – C > 0, where C is a function of cell 

load, interference, service type of the user and kind of HO (new call or existing call 

handover).    

With the increase of “prices” for cell by AC, the effective radii of the cells decrease (less 

users access the cell due to HO) and vice versa. In this way the “cell breathing” effect [110] 

can be achieved, where the effective cell area changes with the cell “prices”. Since the 

“prices” can be set proportional to load, the cells with lower loads would have large effective 

radii and vice versa. Note that cell “prices” do not have to be signalized directly, cells can just 

reduce the power of their beacons proportionally to the cells’ “prices” (measured in dB). In 

this way the gain G to the cell as estimated by all users is reduced, which would have the 

similar effect on utility function evaluation as sending the “prices” directly. 

3.9.4.2 Handover 

The role of handover is to select the cells where to start calls in the case of new users, and to 

perform cell (channel, system, layer) change from the old to the new (target) cells (channel, 

system, layer) if the users are already in the system. The selection of the cells at the new calls 

request can be regarded as special case of intercell HO, where only target cells are selected.  
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The handover of a user is performed to the cell with the highest expected utility U(cell) for the 

user, from the cells which belong to the user’s “admissible set” A (cells whose AC admit the 

user): 

(3.36)        

By appropriate parameter settings in (3.36), we can obtain different HO algorithms from 

subsection 2.6.1 as special cases (see Figure 3-10): 

Figure 3-10: Different HO algorithms as special cases of “price” settings 

Note that “too bad” cells (where minimal CIR can not be achieved) are previously eliminated 

by AC i.e. they do not belong to the set of “admissible” cells (see subsection 3.9.4.1).   

In order to perform HO, the expected gain of HO should be higher than HO costs i.e. the 

difference between user’s utility in the old cell and the new cell should be greater than 

handover costs (HO-margin, see subsection 2.6.1): 

(3.37) 

The parameter HO-margin 

example, HO-costs can be c

the candidate cells. For 

interference to other users)

the case HO-margin. In gen

users already in the system

especially important for hi

sufficient signal quality.  

arginmHOoldcellUnewcellU −>− )()(

[ ] [ ])()()(maxarg)(maxarg cellCcellIWcellGWcellUcell IG
AcellAcell c

+−==
∈∈
Pathloss-based HO: WG = 1, WI = C = 0 => U = G (path-loss based HO) 

Example of usage: In the case of re-use 1 and PC in order to provide the 
convergence of PC. 

CIR (quality-based) HO: WG = WI = 1, C = 0 => U = G - I (CIR-based HO) 

Example of usage: When re-use > 1 and/or no PC is used or inter-system/inter-
layer HO in order to maximize signal quality of the users.  

Load-based HO: WG = WI = 0, C = load => U = - load (load-based HO) 

Example of usage: By inter-system or inter-layer HO in order to balance the load. 
reflects signalization and overhead costs for performing HO. For 

ontained in the parameter C of the users’ utility function (3.15) for 

the new incoming users, costs of the new call (increase in 

 can also be comprised in the parameter C in U(cell_new) like in 

eral, costs of the new call should be higher than HO-margin, since 

 should have higher priority than new incoming users. This is 

gher loads to provide at least users already in the system with 
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3.9.5 Summary of the State-Dependent Algorithms 

The state-dependent algorithms choice, as described above is summarized in Table 3-1:  

Table 3-1: Load dependent RRM Algorithm Choice  

Algorithms/Load Low Medium High 

DCA Random Minimum I ARP 

PC Maximum power Water-filling level or CIR-

threshold inverse 

proportional to load  

Use CIR-based PC 

with minimal required 

CIR-target  

AC and HO HO according to 

signal quality. 

Admission “prices” 

zero for new and HO 

users  

Admission “prices” for new 

users increase with load 

No new users are 

admitted in the system, 

make HO to layers or 

systems with lower 

loads 

Scheduler Round robin (to 

minimize scheduling 

overhead) or Greedy 

scheduling (to 

maximize data rate) 

Scheduling priority 

increases with channel 

quality and time in the 

queue and decreases with 

users’ data rate  

Schedule the users 

with minimal data rates 

first (“fair” scheduling). 

Link adaptation Take codec or 

modulation schema, 

which enables 

highest data rate. 

Take the codec 

(modulation schema) 

according to channel 

quality of the user. 

Take codec 

(modulation schema) 

with minimum data 

rate for the service  

 

Table 3-1 can be built or changed according to simulation results (see chapter 4) or network 

statistics. In Table 3-1 we assumed that maximizing the number of satisfied users is much 

more important than maximizing total data rate. Users should apply a “greedy” policy in the 

case of lower loads i.e. users get resources according to their maximal “possibilities” 

(channel gain and interference) in order to maximize total network throughput. In the case of 

high loads a “fair” policy should be applied: Everyone gets resources according to their 

(minimal) needs in order to maximize the number of satisfied users. Between these to 

extremes, “prices” of resources increase with load and a trade-off is made between the 

number of satisfied users and total data rate. If provider preferences and utility function are 

different than we assumed, the same “pricing” framework can be used but with different 

“prices”.  
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What are the numerical values for “large”, “medium” and “low” load, depends on the 

concrete system. Anyway, the load should be defined relative to the average number of 

unused channels in the systems, which depends on (hard) blocking probability (see Erlang B 

formula (2.23)). If the system contains packet data NRT users too, then all channels might be 

occupied at all times (see Figure 2-14 and (2.24)) and load can be defined according to the 

ratio of arrival rate and service rate or NRT and RT users.    

The same reasoning can be in a straightforward manner enlarged to more possible values for 

load i.e. for more than three states. In the case of a higher number of states for both cells and 

users so-called Markov-Decision strategy [40] can be used to select “prices” and resources for 

each state. A Markov-Decision strategy takes into account the gains (utility) of each state and 

transition probabilities between states, to find ”optimal” decisions for each state. In order to 

calculate “optimal” strategies we need a representation of state (interference, channel gain, 

load) changes as a Markov Process. A method for derivation of a Markov chain from process 

statistics is described in [18].  

3.10 Value of Measurements 

Our “pricing”- and utility - based concept enables us not only to make PC, AC, HO and DCA 

decisions but also to decide if measurements should be taken or not. In general, 

measurements should be done when the utility of measurements i.e. expected capacity or data 

rate improvements due to use of measurements is higher than the costs of measurements.  

This means, more formally, that if the difference between network utility function (see (3.13)) 

before and after the measurements is higher than measurements costs, the measurements 

should be done, otherwise they should not. For example, if the utility of ARP DCA, which 

needs channel gain and interference measurements, minus the utility of Random DCA is 

grater than measurement costs for channel gain and interference, the measurements should be 

done (i.e. ARP DCA used), otherwise not (Random DCA should be used). Utility, for 

example number of satisfied users or total data rat (see (3.13)) can be, for example, estimated 

by simulation (see the chapter 4). Measurement costs can be estimated by network (provider) 

according to: measurements duration, bandwidth used for the measurements, amount of 

signaling etc. In the same manner each user can decide to perform measurements or not 

according to the value of their utility function before and after the measurements and costs for 

measurements.  
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3.11 Complexity Considerations 

RRM algorithms based on “pricing” by each allocation of resources only search for the 

resources (channels, cells), which maximize the user’s utility function. For example, our DCA 

algorithms based on “pricing” would require at most N(N-1) comparisons to allocate N 

channels to N users i.e. the complexity of the algorithms would be O(N2). If we “searched” all 

possible combinations of channels and users in a cell with N users and N channels, we would 

need N!-1 comparisons in order to find the “best” channel allocation to the users; also the 

complexity of the algorithms would be O(N!). If we also take other cells into account and try 

to find an “optimal” channel allocation over K cells, where in each cell there are N possible 

users the complexity of the algorithms would be O(NK) for each channel. Since our RRM 

algorithms based on “pricing” and game theory at each resource allocation request only 

maximize utility of a single user without taking other users (in own or in other cells) into 

account (only indirectly over “prices”), they have a much lower, “polynomial” search 

complexity. 

On the contrary, “global” search algorithms have non polynomial (NP) search complexity of 

order O (N!) or O(NK), because the search is done not only over the set of possible resources 

(as in our case) but also over the set of possible users and cells. Furthermore, a global search 

would require an enormous signaling overhead in order to transport all relevant information 

(like users’ channel measurements) to a centralized controller and resource allocation 

decisions from a centralized controller to concerned users and cells, whereas “our” RRM 

algorithms take all decisions locally (in one cell). Finally, it is not clear how to define “an 

optimization” criteria for a global search. We could try to allocate resources so that each user 

gets a “sufficient” signal quality. But, the channel changes in a mobile environment can be 

very large and fast (over 20 dB in a few milliseconds channel [45], [46], [47]), which would 

require a new channel allocation again with huge signaling and computational requirements.  

On the other hand, according to “pricing” and game theory based approach a network 

provider or a user selects “an optimal” RRM algorithms for each situation (state) in the 

network (cells), which does not change for a longer time (usually several hours). What an 

optimal RRM algorithm is and for which state, can be estimated by simulations and/or 

network statistics, stored in a table and used during the system operations. This approach has 

a further advantage that the algorithms are not very sensitive to the parameter changes: The 

parameters’ (WG, WI and C) values are usually 1 or 0 and they serve to effectively switch 

between different algorithms (for example, Random, Min interference, ARP DCA). Of 

course, we cannot exclude that some global optimization algorithms would bring better 
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performance than our algorithms. But if with our algorithms the system capacity is very close 

to the system (hard blocking) limit (see chapter 4), the costs (algorithms complexity and 

signalization overhead) of such global algorithms would then highly overweight their 

eventual gains. 

3.12 Advantages of a “Pricing” Framework 

The “pricing” framework provides us with all desired characteristics of RRM algorithms as 

described in section 1.1 and enables some additional advantages:  

Distributed: Users try to maximize their utility functions under data and delay constraints 

independently of other users. Only parameters of the utility function (weights, “prices”) 

should be provided to the users by the network (base stations). The users then take resources 

(cell, channel, power) for which their utility function is maximized. There is no need for a 

complex optimization for all users, which reduce the algorithms complexity (see section 

3.11). Although no central optimizing instance is needed, an optimal or sub-optimal solutions 

could be achieved in a distributed manner (see chapter 4).   

Adaptive and state dependent decisions: The base stations should set weights in the utility 

function according to the state of the cell. On this way “prices” and thus RRM algorithms can 

be changed adaptively according to traffic, interference from the other cells or propagation 

conditions. For different cell states different weights should be used in order to “enforce” an 

optimal resource allocation in the cell (network) for each state (see section 3.7). Also users 

decisions about resource allocation are done according to users’ states (data rates achieved 

and power consumed so far) as well as users’service requirements (minimal data rate (signal 

quality) and maximum delay). 

Measurement based: All information users or base stations need for evaluation of the utility 

function like channel gain G and interference I can be obtained by local measurements.  

Cooperative: The network (cells) can enforce cooperation by appropriate weight settings in 

the utility function. In order to maximize the number of satisfied users, a network (cells) can 

set the weights in such a manner that each user takes resources that are just good enough for 

him (for example, according to his channel gain) in order to meet his minimal service 

requirements (for example minimal data rate) (see section 3.6). In this way the better 

resources are left for the users with worse conditions (lower channel gain), which enables 

them to achieve their minimal service requirements (minimal data rate) too.      
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Existing algorithms can be obtained as special cases: By appropriate parameter (“price”) 

settings in the users’ utility function, many existing RRM algorithms (like Min I and ARP 

DCA, path-loss based HO etc.) can be obtained as special cases of this framework, without 

the need of implementing each algorithm separately (see section 3.9).     

A trade-off between existing algorithms and development of new algorithms possible: 

Since our utility function can be parameterized (by “prices”) to obtain some RRM algorithms 

as special cases, we can use intermediate values of parameters (“prices”) in order to achieve 

trade-offs between algorithms i.e. finer algorithms tuning is possible. Furthermore, some new 

algorithms can be applied based on optimal parameter (“price”) settings estimated by 

simulation and/or real statistics. 

Other decisions in a wireless network can also be modeled within this framework. For 

example, measurements of channel gain or interference should be done if the gain of 

measurements is higher than measurement costs (see 3.10). 
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3.13 Cooperation as a Rational Choice 

In some networks like ad-hoc networks there are no distinguished “users” like base stations, 

which can set “prices” for the resources. Thus “cooperative” user’s behavior i.e. the behavior 

that maximizes the number of satisfied users and system capacity cannot always be 

“enforced” by “prices” as described in the previous sections. For example, in an ad-hoc 

network (see Figure 3-11) each user selects its power, channel and peer communication 

partner in order to maximize only its own utility. There is nobody who cares about overall 

network utility like BS or network provider, as in the case of cellular networks.  

Nevertheless, the users can, under certain circumstances, find out that cooperation in the long 

term brings more (in expected utility sense) than “selfish” behavior. The game theory 

provides us with the guidelines how cooperation can emerge in a world of self-seeking 

egoists, when there is no central authority to police their actions. In this section, we 

investigate on the basis of game theory results how users can behave cooperatively in the 

absence of “prices” set by cells. The results could be interesting for RRM strategies in ad-hoc 

networks or among the networks from different providers or even in cellular networks if 

“prices” are not desirable or possible. 

Figure 3-11: An ad-hoc network 

Note a connection between “pricing” or a Stackelber game described in previous sections and 

a game without “prices” as discussed in this section. In “pricing” model “rules” like “take the 

channel with minimum interference when the load is not too high” are “enforced” by the 

“prices” due to special form of our utility function. In this section we investigate what are 

“good”, (evolutionary) stable, non-exploitable “rules” in the networks without prices like ad-

hoc networks. If data rate or number of satisfied users for certain network state can be 

increased by “pricing” i.e. by “enforcing” an “optimal” RRM algorithm (“rule”, “strategy”) 

peer

user

relay
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for the state by the cells, then the probability of user satisfaction or data rate for the same state 

also increases if the same algorithms are used without “pricing”. Then an optimal  “social” 

strategy would be to apply the same RRM algorithms for a given state as in the case of 

“pricing”. The advantage of the “pricing” approach is that “optimal” RRM algorithms can be 

enforced by appropriate “prices” without relying on other users’ “rationality” and 

“cooperation”. According to the basic Game theory assumption players “take the actions 

which maximize own utility, assuming that other players do the same”. In the case of ad-hoc 

networks users might have initiative to deviate from cooperative behavior (“defect”) if it 

might bring some advantages for them even if this behavior leads to “social” undesirable 

outcomes. In this section we investigate how to “design” cooperative RRM strategies in 

networks without prices, which are also “stable” i.e. cannot be “exploited” by 

“defecting” behavior.   

3.13.1 Defecting and Cooperative Behavior 

As in the networks with “pricing” RRM algorithms maximize their expected utility taking 

into account time (delay) and power constraints i.e.:   

 

(3.38)      

 

 

 

In the case of ad-hoc networks, the users or their communication partners define the power 

“prices” λ and not cells (base stations) as in the case of cellular networks. For example, a user 

might set “price” per unit power only according its own value of the battery power relative to 

the data rate, without taking into account the “social costs” of generating more interference to 

other users in the network. Such behavior, which does not take into account well being of the 

other users, we call “defecting”, non-cooperative or “selfish” behavior. Defecting behavior of 

users in an ad-hoc network would be, for example, that regardless of system load and 

interference the users always try to maximize its own data rate or CIR for example by:  

• Setting their CIR-threshold or water-filling level at the maximum level (outer-loop PC). 

• Choosing always channels according minimum interference criteria (DCA). 

• Starting always new calls regardless of the network load (HO). 
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A defecting behavior might bring temporary some advantages (higher data rates or CIR) for a 

user, when, for example, the user has particularly high channel gain or low interference. But 

the same user will continue to interact with other users with certain probability, also in the 

cases when the user has worse channel gain.  In that case, the other users can “punish” the 

“defecting” users by “defecting” themselves and preventing the “defecting” users of 

achieving even its minimal required data rate under bad channel conditions. On the other side 

if users cooperate and take care of each other well being, the probability of achieving at least 

minimal data rates or signal quality might be higher and thus user satisfaction. Also, in the 

long term it might be better for the user to “cooperate” than to “defect” in order to 

achieve its minimal service requirements. Cooperative behavior of the users would be, for 

example: 

• Set CIR-target and water-filling level according to the load in the system: The higher the 

load the lower CIR-target and water-filling level and thus the lower transmitted power 

should be used as long as minimum requirements (3.12) on user data rate are fulfilled (see 

section 3.3). 

• Use DCA algorithms according to the load in the system: If load is low-medium use 

minimum interference DCA in order to reduce interference to other users and enable other 

users to apply minimum interference DCA too. If load is high, the users can use ARP DCA 

algorithms in order to enable other users with worse channel gains to obtain at least their 

minimum signal quality. Note that interference-based DCA algorithms like minimum 

interference or ARP is only possible if other users (cells, networks) apply some kind of 

interference based DCA, otherwise the channels cannot be differentiated according to 

interference (distribution). If other users use channels randomly, all channels would have 

approximately the same interference and an interference-based DCA could not be applied.     

• Do not start new calls when the load in the system is already too high to enable users 

already in the system to achieve their minimum signal quality requirements. In the case of 

hierarchical cells make HO to the layers with a lower load although path-loss and 

interference is lower in the existing layer.  

In order to enforce cooperation, we assume that each user values its own satisfaction 

(achieving its minimal data rate within predefined time, see (3.12)) much more than obtaining 

possible higher data rate with risk of the increasing probability of being unsatisfied. It would 

then be “reasonable” to expect cooperation among the users whenever users with 

defecting cannot meet their minimum requirements with sufficiently high probability. In 

other worlds, if the probability of outage with cooperation is lower than maximal allowable 
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outage max

outP  and probability of outage without cooperation (“defecting”) is higher than 

maximal allowable outage cooperation might be a rational choice i.e.:  

(3.39)    
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we use some game theory results like Folk theorem [9] and Evolutionary 

gies (ESS) [93], in order to investigate circumstances under which cooperation 

ional choice for mobile users.  

heorem and Evolutionary Stable Strategies 

 in Appendix B it might be “rational” to cooperate in repeated games i.e. both 

 obtain higher expected utility from cooperating than from defecting, even if the 

e (Nash equilibrium) for both players in the “single-shot” version of the same 

efect”. This result is summarized in Folk Theorem [51]: 

eorem: If there are strategies in the one-shot game that are “better” for all 

 the Nash equilibrium strategy, and the probability of game continuation is 

, every repeated game has an infinite number of Nash equilibriums. The 

comes are better than the expected outcome of always playing the Nash 

trategy of the one-shot game.            

based on the idea that a player can be “enforced” by the other players to any 

brings him more expected gain (“cooperative” strategy) than always playing the 

rium strategy of the one-shot game (“defecting” strategy). The other players 

 simple threat: “If you defect from the “cooperative” strategy we will return to 

ilibrium strategy of the one-shot game and your gain would be lower than when 

” [51]. For a rigor proof of the Folk theorem see [26] or [66]. 

er cooperation in a network brings more than defecting, for example (3.39) 

ccording to the Folk theorem users can be enforced by other users in the 

ooperate by “punishment” i.e. using the Nash equilibrium strategy of the 

e.  

, users in a wireless ad-hoc network might “punish” “defecting” users by 

gh interference (sending with maximal power), which might decrease the signal 

 defecting users to the level where the users cannot fulfill even their minimal 

 delay constraints. The rational choice of the users in a network with such 

echanism would be to prefer cooperation to defecting, since with cooperation 

)()( defectingUtilityncooperatioUtility
outoutoutout
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they would with high probability be satisfied and with deviation they would with high 

probability be unsatisfied i.e. the expected gain of cooperation is higher than from defecting 

(see (3.39)).  

As the Folk theorem states, there are an infinite number of possible Nash equilibriums in 

repeated games. Each strategy in a repeated game, which provide a higher expected payoff 

(played against itself) than the “defect always” (Nash equilibrium strategy of one shot game), 

is a Nash equilibrium strategy of the repeated game. Which one of these strategies is selected 

in practice depends on a lot of things some of which have nothing to do with Game theory but 

are the result of a certain social situation [9]. For example, often used strategies are the social 

“focal” points strategies [51] i.e. the strategies established in a particular society as “good” 

and desirable, “the custom” strategy i.e. the strategy that was always used in the past, 

“symmetric” strategies i.e. “do the same as the others do” etc. For example, always driving on 

the left side or on the right side of the street are both Nash equilibrium strategies with 

essentially the same outcomes. Which Nash equilibrium strategy is selected depends on social 

convention. The resulting outcomes do not have to be even Pareto optimal i.e. provide each 

player with higher or equal payoffs than any other possible outcome. Players could stick to 

their strategies anyway because they are too inert or even do not know any better strategy. For 

example, the strategy to select the side of the street to drive on, by throwing a die, is a Nash 

equilibrium strategy, given that other players do the same. But, the Nash equilibrium resulting 

from the “random” selection of the street side is not Pareto optimal, since always driving on 

the left or always on the right makes all players better off.  For example in “wireless games” 

CIR-based PC or Minimum Interference DCA can be used as Nash equilibrium strategies in 

repeated games because they are “symmetric” and relative simple (“use as much power as 

needed to achieve CIR-target”, “take the channel with lowest interference”) but robust against 

“exploitation” by other “defecting” strategies (see subsections 3.13.4 and 3.13.5).  

In order to prevent “exploitation” of a RRM strategy it would be desirable to make it 

“evolutionary stable” (see [93] and Appendix B):  

The strategy S is called evolutionary stable if [93]: 

1) The expected utility of the strategy S played with itself E(S,S) is greater than the 

expected gain E(S,O) from all other strategy O played with the strategy S i.e.        

E(S,S) > E(S,O) for all other strategies O or  

2) If E(S,S) = E(S,O) than E(S,O) > E(O,O) for all other strategies O. 
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The expected utility of the strategy played against the other strategies measures a relative 

“fitness” of the strategy in a population of different strategies.   

In [5] following characteristics of a “good” ESS strategy (like “TIT FOR TAT”, see Appendix 

B) are listed: 

- Be nice at the beginning 

- Punish those who defect themselves, even if the “punishment” costs more than no 

punishment, in order to discourage motivation for “defecting”.  

- “Forgive” i.e. if a “defecting” player returns to the cooperative behavior then cooperate 

too.  

It is important to note that “nice” strategy like “cooperate always” opens the door for 

“exploitation” by defecting strategies like “defect always”. Therefore, a sort of “punishment” 

mechanisms should be build in each strategy in order to discourage defecting and make the 

strategy an ESS.   

In wireless networks, the “defecting” users could be punished by reducing users’ CIR by their 

peers, if the CIR of “defecting” user exceed certain threshold i.e. applying some threshold 

based PC (see subsection 3.13.4), or, if it is not possible, to send with maximum power on the 

channels used by “defecting” users. It is important to “punish” also those users who 

themselves do not “punish” when required i.e. users should “guard” each other (this tactic is 

well known in all dictatorial systems).  

Taking into account results of the Game theory like “Evolutionary stable strategies” or “Folk 

theorem”, an effective and stable RRM strategy should: 

- Cooperate when other users cooperate i.e. use so much from resources (power, 

channels) as needed, but not more. Adapt resource usage to the load in the system.  

- Punish defecting users in order to encourage cooperation i.e. send with maximum power 

(generate more interference) or take the “best” channels (with lowest interference) in the 

presence of “defecting” users. 

- Using some kind of threshold to “detect” defecting users (as oft done in repeated 

games, see [51]). For example, if a user’s signal quality is “too high” decrease his CIR by 

“threat” that more interference will be generated to the “defecting” user’s signal (see 

subsection 3.13.4).    
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3.13.3 What the Players should know in the Wireless Game 

In order to promote cooperation the players should be able to “recognize” the defecting 

users and to have enough information about interference statistics and about previous 

behavior of other players i.e. the players should have a “long enough” memory about 

previous game outcomes. That is why it is important how we define the players (users) in a 

wireless game. Since single services (users) can live for a relatively short time but a mobile 

station (MS) itself lives much longer, it would be desirable to define as a player in a wireless 

game the (service type, MS)-pair. In that case the service on a MS can be awarded or 

punished according to the behavior of all previous services of the same service type on the 

same MS. The probability that the same users (MS) “meet each other” (or play the same game 

again) would be increased, which “enlarges shadow of the future” and increases gain of the 

cooperation (see Repeated Prisoners’ Dilemma in Appendix B). We can also assume that the 

users know everything that their MS knows i.e. statistics (channel gain, interference etc.) of 

all previous usages of the same MS, which helps them to make better decisions and to know 

whom to “punish”.  

It would be advantageous that users “live” so long in the network that their own CIR or 

interference statistics can be representative for the network statistics (“ergodicity”) 

assumption. In that case the users could judge according its own statistics about network load 

i.e. estimate the outage probability in the network. This estimation can be in turn used to 

adjust RRM strategy according to load, for example CIR or water-filling level settings, 

channel choice etc.     

3.13.4  Evolutionary Stability of  Power Control Algorithms 

In this section we investigate some PC algorithms (“rules”, “strategies”) like Water-filling 

PC, CIR-based PC or Max power PC on their “evolutionary stability”, as defined in 

Appendix B and 3.13.2.   

In the following we assume that the E expected utility of the strategy is measured in the 

probability to achieve required CIR i.e. outage probability (see (3.11)). If outage 

probability of two strategies is the same, the second criteria is the consumed power with a 

strategy i.e. the lower the expected power consumption the higher the utility E.       

For example, we show below that Water-filling PC is not an evolutionary stable strategy 

(ESS) since its expected utility played against itself is lower than from (“defecting”) Max 

power PC strategy against the Water-filing strategy: 
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- A “Max Power” user increasing its power in comparison to a “Water-filling” user, who 

sends with power lower or equal to maximal power. Consequently, interference to “Water-

filling” user is increased,  

- On the other hand, “Water-filling” users behaves cooperatively and decrease its powers in 

presence of higher interference (see (2.16)) caused by “Max Power” users.  

Thus, non-cooperative “Max Power” users have a higher probability of obtaining the higher 

CIR than “water-filling” users since they use higher power and experience lower 

interference from water-filling users. Consequently expected utility E of the “water-filling” 

PC played against itself is lower than from (“defecting”) Max power PC strategy against the 

water-filing strategy i.e.: 

E(“Water-filling”, “Water-filling”) < E(“Max Power”, “Water-filling”) 

Also, according to 1) in subsection 3.13.2 Water-filling PC is also not an evolutionary 

stable strategy. 

On the other hand, Max Power PC can not exploit CIR-based PC: 

- With use of Max Power instead of CIR-based PC interference to CIR-based PC user is 

increased.  

- “Max Power” user is automatically “punished” by “CIR-based” user, since CIR-based PC 

increases its power too, because power of CIR-based PC is proportional to interference 

(see (2.5)). In turn, interference to “Max Power” user increases too.  

Since CIR-based PC sends also with maximum power if this is needed to achieve the required 

CIR, with CIR-based PC the probability to achieve the required CIR-threshold is the 

same as with Max Power PC (when PC converge at all). But CIR-based PC needs lower 

power to achieve the CIR-threshold than Max Power PC, since CIR-based PC sends with 

so much power needed to achieve the CIR-threshold, but not more. This can be easily seen 

from (2.3): When all users increases their power for a factor a (a > 1), then CIR of the users 

stays almost the same (since noise can be neglected in interference limited systems), but the 

total power increases and user utility E decreases. This power allocation is not Pareto optimal, 

since all users can be better of by decreasing the power for the same amount (a).  

Also taking into account the probability to achieve the required CIR and consumed power, the 

utility E of CIR based PC played against itself is higher than the gain of Max Power PC 

against CIR-based PC i.e.:  

E(“CIR-based”, “CIR-based”) > E(“Max Power”, “CIR-based”) 
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Thus, a population of CIR-based PC can not be “invaded” by Max Power PC users. 

In the case of “Water-filling” and “CIR-based” PC together, both PC can profit from each 

other: 

- “Water-filling” users can profit from “CIR-based” users, since “CIR-based” users do not 

send with higher power than needed to achieve the required CIR.  

- “CIR-based” users could also profit from “Water-filling” users, since “Water-filling” 

users do net send at all when the channel is too bad.  

This performance of “Water-filling” and “CIR-based” PC together is further investigated by 

simulations in subsection 4.3.2.  

Note that a “defecting” PC could be not only Max power PC but also “water-filling” of CIR-

based PC, which sets its CIR-threshold or water-filling level too high. In order to prevent the 

users to use Max power PC or to set their CIR-thresholds or water-filling levels too high, 

some kind of punishment is needed, as discussed in subsection 3.13.1. “Punishment” can be 

performed by the communication partners of the “defecting” users (in ad-hoc networks) 

or cells (in a cellular networks). A communication partner (receiver) of a “defecting” user 

(transmitter) can make for example a simple “threat”: “I will decrease your signal quality 

(CIR), if your CIR is for a certain threshold higher than my average CIR”. The 

“punishment” can be performed, for example, by generating some amount of noise in the 

receiver to the signal of the “defecting” users or by simple not decoding the data of the 

“defecting” users. This in turn can be signalized to the “defecting” user (assuming that users 

have a backwards signalization channel), which encourage him to decrease its CIR-target or 

water-filling level and consequently its transmit power (see Figure 3-12).  

The “punis
For each user i and its peer communication partner j: 

    if CIR(i) - CIR(j) > threshold1 

                  Decrease power of the user i i.e.  

                  Decrease  CIR-targett(i) or water-filling level(i); 

    elseif CIR(j) - CIR(i) > threshold2 AND P(i) < Pmax        

                 Increase power of the user i i.e.  

                Increase  CIR-targett(i) or water-filling level(i); 

   end if  
Figure 3-12: A threshold-based “punishment” 

hment” strategy is further investigated by simulations in subsection 4.3.3.  
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3.13.5 Cooperation in a Channel Allocation Game  

We can model the channel allocation as a two-player game: The player itself and the rest of 

the network modeled as the second player. The players can be mobiles in ad-hoc networks or 

cells belonging to the same or different providers. The possible strategies for the players 

are the choices of different channel allocation algorithms.  The player chooses the channel 

allocation algorithm with maximum expected gain (see (3.38)), given the algorithms applied 

by other users. When gain and costs are same on all channels and difference in interference on 

different channels is significant, maximizing of DCA part of (3.38) means minimizing 

interference. Also, the myopic choice of the users would be to use Min I DCA algorithm. 

If the users cannot distinguish channels according to interference due to relatively high 

interference variance (as in the case of lower loads), they could apply random channel 

allocation (see Figure 3-13). For higher loads, users could gain more by cooperation than by 

defecting ((3.39) is satisfied) i.e. the users should apply “cooperative” ARP DCA if the 

other users “cooperate” too and apply ARP themselves. Defective behavior should be 

“punished” by defecting too i.e. applying Min I or random DCA in order to “discourage” the 

other users from defecting. Also, as in the case of DCA based on “pricing”, the same 

“optimal” DCA algorithm for a given load can emerge as a “rational choice” in networks 

without centralized controllers provided the other users “cooperate” too. 

Provided 

of satisfie
If significant difference in interference on channels 

        // i.e. other cells apply some interference based DCA algorithms 

        if load is “high” AND other users apply ARP DCA 

             Apply ARP DCA  

       else 

             Apply Min I DCA 

       end if 

 else   // no significant difference in interference on different channels     

     Apply random DCA   

end 
Figure 3-13: A “cooperative” DCA algorithm 

that the expected gain E of a DCA algorithms (“fitness”) is measured in the number 

d users (as the most important criteria) and power consumed (as a less important 
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criteria) (see above), Min I DCA is an ESS (see Appendix B) in a pool consisting of Random 

DCA. Min I and ARP DCA.:  

- E(Min I, Min I) > E(Random, Min I), since Random DCA can not benefit from lower 

interference on some channels as Min I DCA does, and 

- E(Min I, Min I) > E(ARP, Min I), since ARP DCA can not benefit from leaving some 

“good” channels for users with a higher path-loss (they are used by Min I regardless of the 

path-loss).  

In order to make ARP an ESS stable strategy some sort of “punishment” should be built 

in. Users, who use “better” channels (with lower interference), although their path-loss is 

relatively low, should be punished, for example, by using Min I or Random DCA against the 

users.   

Note that Min I DCA needs interference measurements and ARP DCA needs interference 

and channel gain measurements. Furthermore, the parameters of ARP must be optimized 

for each load separately. The parameter optimization and measurements overhead for DCA is 

often avoided in modern mobile systems, which use CDMA (UMTS) or Frequency hopping 

techniques (GSM). In CDMA or frequency hopping systems, channels consist of different 

frequencies or timeslots in order to increase diversity. Due to diversity and powerful coding 

and modulation technique in some modern systems (UMTS FDD), all channels have 

almost the same (“satisfactory”) quality and we can use simple Random DCA in the 

systems.    

3.13.6 On Inter-Network Cooperation 

The main principles described in the previous sections can be applied almost without change 

to cooperation among network providers. Each provider can be regarded as a single cell 

maximizing utility according to (3.13). The users themselves maximize their utility according 

to (3.15) and choose a provider in order to maximize their utility i.e. maximize signal quality 

and minimize costs. Providers set “prices” according to load, interference, service types etc. 

and users make HO to the system, which maximizes their utilities i.e. users maximize (3.36) 

over networks instead of cells. 

Further, cooperative behavior may also arise as a reasonable choice even if each provider 

only maximizes its own (long term) gain (see section 3.13). In order to provide most users 

with at least minimum signal quality a cooperative PC and cooperative DCA is required. 

Cooperation by channel allocation is of great importance in order to protect a network from 

the adjacent channel interference. By cooperative use of frequencies or timeslots, the 
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overall interference can be reduced and both (all) providers can benefit from cooperative 

channel usage. As in the case of a cellular or an ad-hoc network, an interference-based DCA 

algorithms is only possible if other networks apply some kind of interference-based DCA, 

otherwise the channels cannot be distinguished according to interference (distribution).  

3.14 Summary 

In this chapter we described our “pricing” and game theory framework for modeling RRM 

algorithms. We defined user and network (cell) utility functions. We showed how a network 

could maximize its utility by load dependent “price” setting. Further, we described heuristics 

and “geometry” behind RRM algorithms. Finally, we showed using game theory results how 

user cooperation can emerge as a rational choice in the networks without distinguished 

“price”-setting users (base stations, access ports) like in ad-hoc networks or among networks 

from different providers. 
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4 Algorithms and Simulations 

"Computer simulations let us analyze complicated systems that can't be analyzed 
mathematically. With an accurate computer model, we can make changes and see how they 

will affect a system." 

Sheldon M. Ross 
 

In this chapter we present some RRM algorithms based on the theoretical concepts described 

in the previous chapters and provide simulation results for the algorithms. 

We first describe the simulation model i.e. the simulators, their traffic, mobility and 

propagation models. Further, we provide the performance metric used to compare the RRM 

algorithms. Then we present some RRM algorithms like PC, Scheduler, AC, HO and DCA 

and simulation results for the algorithms in different loads and environments. Finally, we 

compare performance gains of different RRM algorithms and technologies like SA in respect 

to reduction in overall interference and analyze possible trade-offs a provider can make by 

employing the algorithms or SA technologies.   

4.1 Simulation Model 

We used a MATLAB-based snapshot simulator RUNE (Rudimentary Network Emulator) for 

scheduler and power control simulations in section 4.3. The RUNE simulator is provided in 

[110] and we modified it for the purposes of our work (see subsection 4.1.1). For all other 

simulations we used a dynamical, system-level, C++ based simulator (see subsection 4.1.2). 

4.1.1 Snapshot  “RUNE” Simulator [110] 

Rudimentary Network Emulator (RUNE) is a snapshot, MATLAB-based simulator, provided 

and described in [110]. The RUNE simulator is based on discrete time steps (snapshots) i.e. 

a system is studied at specific, regularly spaced, time instants. In general, the system changes 

between each time instant i.e. mobiles may have moved, new calls may have been created and 

others may have been terminated. The advantage of the discrete time steps model is that the 

whole system can be handled at the same time. The state of the system can be represented by 

vectors and matrices and treated efficiently with mathematical software like MATLAB. The 

implementation of a snapshot simulator is in general simpler and simulations can, in 

general, run faster than in an event-based simulator where each event must be treated 

separately. The disadvantage is lower accuracy in comparison with an event based 

dynamical simulator i.e. the relative order of the events is not always the same as it would 

be in real systems.  



97 
In the RUNE simulator, a relatively small number of cells were chosen to collect relevant 

statistics. In order to obtain more realistic statistics, surrounded cells were also modeled by 

use of a “wraparound” technique: The cells under study were placed in a rhombus. The 

rhombus was then stitched together so that the top meets the bottom and the left side meets 

the right side. This creates a torus-shaped surface that the cells were placed on. Since the 

surface had no border, all cells had neighbors on all sides.   

Traffic was generated according to Poisson distribution approximated by a binomial 

distribution. The number of the users who should have left the system was calculated 

assuming the exponential service time. The users who should have left the system were then 

selected randomly. The new users were added according to Poisson distribution to keep the 

average number of users in the system constant. 

In order to model mobility in the system with each user a velocity vector (magnitude and 

direction) and position ((x,y) coordinates) were associated. In each time step the users were 

moved according to the current velocity and the size of the time step. The velocities of the 

mobiles were also changed randomly a little bit so that the mobiles accelerate, slow down and 

change their directions with certain probability. 

The propagation loss was modeled as a sum of the antenna pattern, the distance dependent 

fading, log-normal shadowing and Rayleigh fading. The distance dependent fading was 

modeled according to the following formula: αr
CG = , where C is path gain at a distance of 

one meter from the transmitter antenna and α is a parameter which determines how power 

decays as a function of the distance from the base station. For free space propagation α is 2 

and in a typical urban environment α ranges from 3 and 4.   

The log-normal shadowing was modeled as XG 10= , where X is normal distributed with 

mean 0 and variance σ (typically 8-10 dB). With each geographical point in the system, a 

specific amount of shadow fading was associated. In this way it was ensured that the 

shadowing was correlated in space and that the amount of shadow fading will always be the 

same in the same position. In order to keep implementation expenditure moderate, a smaller 

shadowing map was repeated many times over the system area. 

In a similar manner a map was used to define Rayleigh fading for each geographical point 

within the simulation area. Because of fast changes of Rayleigh fading, two maps were used 

and the fading in a point was obtained as the sum of both maps. In this way memory 

requirement for storing map was reduced. 
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In the RUNE simulator random channel allocation and path-loss-based HO was used. We also 

implemented and simulated water-filling PC additionally to constant (maximum) power, C-

based and CIR-based PC, which were already available in the simulator.          

4.1.2  System Level Dynamical Simulator 

We used a dynamical, C++ based simulator for system-level simulations of the most RRM 

algorithms. The simulator is an event-triggered i.e. everything that happens in the model is 

triggered by a certain event. For example, users’ arrivals and call termination, updating 

position of mobiles, handover etc., but also lapse of a certain time like radio frame or HO 

period are events, which are placed in an event queue and performed one event at a time. The 

events also have priorities, which regulate the order of event execution in the case of 

simultaneous arrival of events. The basic simulator time interval is a radio frame (with 10 

ms duration for the TDD system). Within the radio frame, events are performed according to 

their priorities and position in the event queue. The advantage of an event-triggered simulator 

is more accurate modeling of time events and no sampling error - all events are modeled 

according to their time arrival as in real systems. The disadvantage is implementation 

complexity in comparison with a snapshot simulator and, in general, increase in simulation 

time.    

We implemented in the simulator users’ movements, propagation models and interference 

calculation as well as RRM algorithms like handover (HO), power control (PC) and DCA. 

Channel models, user mobility and traffic behavior was implemented according to [19] for 

both urban (Micro) and sub-urban (Macro) environments. We simulated basically UMTS 

TDD mode where channels are frequency (f), timeslot (TS), and code (c) triples (f,TS,c)-

triples). Since the inter cell interference is the same for all codes of a f-TS-pair we use the 

term "channel" as f-TS-pair. Frame duration was 10 ms and we used one frequency, 8 

timeslots per link (uplink and downlink) and 16 codes per timeslot. The maximum transmit 

power was 42 dBm and the number of base station was 72 (Micro) and 57 (Macro) (see Table 

4-1 for main parameter values). 
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Table 4-1: Overview of system parameters 

 Urban Rural 
Number of base station sites 72 19 

Number of sectors per site 1 3 

Number of cells 72 57 

Number of reference cells 6 3 

Antenna height MS [m] 1.5 1.5 

Antenna height BS [m] 30 30 

Frame duration [ms] 10 10 

Number of slots per frame 
(DL) 

8 UL + 8 DL  8 UL + 8 DL 

Number of codes per slot 12 12 

Carrier frequency [GHz] 2 2 

Bandwidth [MHz] 5 5 

Chip rate [Mchip/s] 4.096  4.096 

Channel reuse 1 1 

Shadow fading σ [dB] 10 10 

Decorrelation length [m] 5 20 

Speed mean [km/h] 3 120 

HO-margin [dB] 3 5 

Max MS power level [dBm] 36 36 

Max BS power level [dBm] 42 42 

Noise Power (MS) [dBm] -99 -99 

Noise Power (BS) [dBm] -103 -103 

Power Control CIR-based (speech) 

C-based (NRT data) 

CIR-based (speech) 

C-based (NRT data) 

HO type Path-loss based Path-loss based 

Scheduling First-in-first-out First-in-first-out 

We focused our simulations on DL, since DL is expected to be a capacity constraining link in 

the future. On the one hand in DL, a higher traffic load (Internet downloads) is expected, on 

the other hand signal quality in UL is generally higher due to more powerful processing 

capabilities and more diversity gains at BS, since BS does not have such tight power, place 

and costs constraints as MS.  

Each radio frame (10 ms), RRM algorithms and interference calculation algorithms were 

called in the following order: HO, AC, DCA, interference calculation and PC. If required 

event occurs the RRM module performs its task, otherwise the control is returned to the 

operating system of the simulator. For example, HO is called periodically by an operating 

system each HO period (simulator parameter). HO checks if path-loss (plus slow fading, but 
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with fast fading averaged out) of serving cell is at least for HO-margin (3 dB Micro and 5 dB 

Macro) higher than the path-loss of the candidate cell (path-loss based HO). If yes, AC of the 

candidate cell is called by HO. If AC allows the entrance of the user in the cell, HO is 

performed to the cell, otherwise the next best candidate cell with path-loss at least for HO 

margin lower than the active cell is tried and, so on. If HO is performed to the new cell, DCA 

in the new cell allocates a channel to the user according to Random, Min I, Priority-based or 

ARP algorithm (defined by a parameter). In the case of NRT packet data, DCA allocates the 

channel to the users only after the Scheduler according to the FIFO algorithms schedules the 

data for the transmission. During the call, PC is called in each frame to calculate required 

power in the frame for each user. We used CIR-based PC for speech and C-based PC 

algorithm for NRT data.  

4.1.2.1 Traffic Model 

We assume that speech users arrive according to Poisson distribution with mean call time 120 

seconds and discontinuous transmission (DTX). Packet data sessions also arrive according to 

Poisson distribution. The number of packet data requests per session, the reading time 

between two consecutive packet call requests in a session, the number of packets in a packet 

call, the time interval between two consecutive packets inside a packet call were modeled as 

geometrically distributed random variables and the packet size was modeled as a Paretto 

distributed random variable [19]. 

In following subsections we describe the simulation environments: Urban (Micro) and sub-

urban and rural (Macro) as well as mobility, channel and propagation models used in our 

dynamic simulator. The implementation was done according to ETSI Selection procedures for 

the choice of radio transmission technologies of the UMTS [19] where further details can be 

found. 
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4.1.2.2 Urban (Micro) Environment 

A Manhattan-like structure (see Figure 4-1) was used for the modeling of outdoor-to-indoor 

and the pedestrian environment (Micro).  
 

T 

T 

T 

T 

T 
T 

 

Figure 4-1: Manhattan-like urban model and deployment scheme  

Parameters for this structure are defined in Table 4-2. 

Table 4-2: Parameter of urban “Manhattan-like” deployment   

Area Block size Street width Base station - mobile 

height difference 

6.5 km² 200 m x 200 m 30 m 10 m 

Quality statistics were collected among cells marked with a T on Figure 4-1. 

Physical deployment environments are summarized in Table 4-3 below. 

Table 4-3: Deployment model in Micro environment 

Type Building Penetration 

Loss/standard 

Deviation (dB) 

Log-Normal 

Standard 

Deviation (dB) 

Mobile 

Velocity 

(km/h) 

Outdoor NA 10 3 

For the path-loss calculation a three slopes path-loss model was used as described in section 

4.1.2.5 
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Mobility model 

Mobiles moved along streets in a Manhattan-like structure defined in Figure 4-2 and might 

turn at cross streets with a given probability. The positions of the mobiles were updated every 

5 meters and speed could be changed at each position update according to a given probability. 

We used the following parameters in our urban mobility model: 

Mean speed: 3 km/h 

Minimum speed: 0 km/h 

Standard deviation for speed (normal distribution): 0.3 km/h 

Probability to change speed at position update: 0.2 

Probability to turn at cross street: 0.5 

The turning probability is illustrated on the Figure 4-2 below: 

 

1 - TurnProb 

TurnProb / 2 

TurnProb / 2 

 

Figure 4-2:Mobility model in urban (Micro) environment 

Mobiles were uniformly distributed in the street and their direction was randomly chosen at 

simulation begin.  

4.1.2.3 Sub-urban and rural (Macro) Environment 

The cell radius in the Macro environment was 2000 m. The base station antenna height was 

above the average roof top height of 15 meters. The deployment scheme was a hexagonal cell 

layout with distances between base stations equal to 6 km (see Figure 4-3 below). Tri-sectored 

cells were used with the antenna pattern being specified in section 1.5 [19]. The base station 

may use omni directional and smart antennas in the macro environment.   
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Figure 4-3: Sub-urban and rural (Macro) simulation environment with 60 cells. The 

mobile stations are represented by colored dots which indicate their connectivity. 

The log-normal standard deviation for shadowing effects was assumed to be 10 dB. 

Mobility model 

The mobility model for the Vehicular Test environment was a pseudo random mobility model 

with semi-directed trajectories. The positions of the mobiles were updated according to the 

decorrelation length and direction could be changed at each position update according to a 

given probability.  

The speeds of the mobiles were constant and the mobility model was defined by the following 

parameters: 

Speed value: 120 km/h 

Probability to change direction at position update: 0.2 

Maximal angle for direction update: 45° 

Decorrelation length: 20 meters 

The mobiles were uniformly distributed on the map and their direction was randomly chosen 

at the simulation start. 
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4.1.2.4 Channel Model 

For each terrestrial test environment, a channel impulse response model was based on a 

tapped-delay line model [19]. The number of taps, the time delay relative to the first tap, the 

average power relative to the strongest tap, and the Doppler spectrum of each tap characterize 

the model.  

Table 4-4 and Table 4-5 describe the tapped-delay-line parameters for urban and sub-urban 

environments respectively. For each tap of the channels three parameters are given: The time 

delay relative to the first tap, the average power relative to the strongest tap, and the Doppler 

spectrum of each tap. A small variation, ±3%, in the relative time delay was allowed so that 

the channel sampling rate can be made to match some multiple of the link simulation sample 

rate.  

Table 4-4: Outdoor to Indoor and Pedestrian Test Environment Tapped-Delay-Line Parameters 

Tap Channel A Channel B Doppler 

 Rel. Delay 
(nsec) 

Avg. Power 
(dB) 

Rel. Delay 
(nsec) 

Avg. Power 
(dB) 

Spectrum 

1 0 0 0 0 CLASSIC 

2  110 -9.7 200 -0.9 CLASSIC 

3  190 -19.2 800 -4.9 CLASSIC 

4  410  -22.8 1200 -8.0 CLASSIC 

5 - - 2300 -7.8 CLASSIC 

6 - - 3700 
 

-23.9 
 

CLASSIC 

 

Table 4-5: Vehicular Test Environment, High Antenna, Tapped-Delay-Line Parameters 

Tap Channel A  Channel B Doppler 

 Rel. Delay 
(nsec) 

Avg. Power (dB) Rel. Delay 
(nsec) 

Avg. Power 
(dB) 

Spectrum 

1 0 0.0 0 -2.5 CLASSIC 

2 310 -1.0 300  0 CLASSIC 

3 710 -9.0 8900  -12.8 CLASSIC 

4 1090 -10.0 12900  -10.0 CLASSIC 

5 1730 -15.0 17100  -25.2 CLASSIC 

6 2510 -20.0 20000 -16.0 CLASSIC 

 

In order to accurately model the variability of delay spread also in the "worst case" locations 

where delay spread is relatively large, we used two channel models (A and B, in Table 4-4 
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and Table 4-5) as recommended in [19]. Each of the two channel models is expected to be 

encountered for some percentage of time in a given test environment. Table 4-6 gives the 

percentage of time the particular channel may be encountered with the associated r.m.s. 

average delay spread for channel A and channel B for each test environment. 

Table 4-6: Parameters for Channel Impulse Response Model 

Test Environment r.m.s. A (ns) P(A) (%) r.m.s. B (ns) P(B) (%) 

Indoor Office 35 50 100 45 

Outdoor to Indoor and 
Pedestrian 

45 40 750 55 

Vehicular - High Antenna  370 40  4000 55 

4.1.2.5 Propagation Model in Urban (Micro) Environment 

The propagation model in an urban (Micro) environment takes into account the line of sight 

LOS and non line of sight NLOS situations. This is a recursive model [7], which calculates 

the path-loss as a sum of LOS and NLOS segments. The shortest path along streets between 

the BS and the MS has to be found within the Manhattan environment. 

The path-loss in dB is given by the formula [7]:
λ

π nd
L

4
log20 10⋅= ,  

where dn is the “illusory” distance,  

 λ is the wavelength, 

 n is the number of straight street segments between BS and MS (along the shortest 

path). 

The illusory distance is the sum of these street segments obtained by recursively using the 

expressions cdkk nnn ⋅+= −− 11  and 11 −− +⋅= nnnn dskd where c is a function of the angle of 

the street crossing. For a 90 degree street crossing, the value c was set to 0.5. sn-1 is the length 

in meters of the last segment. A segment is a straight path. Initial value k0 was set to 1 and d0 

is set to 0.  

The model is extended to cover the micro cell dual slope behavior, by modifying the 

expression to:  
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Before the break point xbr the slope is 2, after the break point it increases to 4. The break point 

xbr was set to 300 m. x is the distance from the transmitter to the receiver. 
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We also take into account effects of propagation going above the path-loss according to the 

shortest geographical distance by using the commonly known COST Walfish-Ikegami Model 

with antennas below rooftops: 

L = 24 + 45 log(d+20) 

4.1.2.6 Propagation Model in Sub-urban and rural (Macro) Environment 

The following model was used for path-loss calculation in the vehicular sub-urban and rural  

(Macro) test environment [19]: 

 L= 40(1-4x10-3∆hb)Log10(R) -18Log10(∆hb) + 21Log10(f) + 80 dB.  

Where: 

 R is the base station - mobile station separation in kilometres; 

 f is the carrier frequency of 2000 MHz; 

 ∆hb is the base station antenna height, in metres, measured from the average rooftop level. 

The base station antenna height was fixed at 15 meters above the average rooftop (∆hb = 15 

m). 

Considering a carrier frequency of 2000 Mhz and a base station antenna height of 15 meters, 

the formula becomes: 

L = 128.1 + 37.6 Log10(R) 

4.1.2.7 Decorrelation Length of the Long-term Fading 

The long-term fading is characterized by a Log-Normal distribution with zero mean (see 

Appendix B). Since slow fading process does not change rapidly at close geographical 

distance ∆x, adjacent fading values are correlated. Its normalized autocorrelation function 

R(∆x) can be described with sufficient accuracy by an exponential function [32]: 

2ln
)( cord

x

exR
∆

−

=∆  

Where the decorrelation length dcor depends on the environment [19]. In our vehicular Macro 

environment, the decorrelation length was 20 meters. In outdoor-to-indoor and the pedestrian 

environment, the decorrelation length was 5 meters. 
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4.1.2.8 Smart Antennas Model  

The simulations with SA were performed in the Macro environment using 8-element circular 

arrays with λ/2 spacing at the base stations [10]. The direction of arrival statistics follows a 

Laplacian distribution with 15 degrees spreading. An example angular inter-cell interference 

power pattern for the downlink is shown in Figure 4-4. This angular power profile was 

calculated for a situation with 8 users on the same timeslot.   

 

Figure 4-4: A snapshot of the angular distribution of downlink interference power 

(arrows show the nominal directions of arrival for individual users) 

In TDD systems, the uplink and downlink connections share the same carrier frequency by 

multiplexing the two directions in time. Therefore, we could use the spatial covariance 

matrices estimated on the uplink for the downlink. These spatial covariance matrices can 

be estimated by exploiting the knowledge about the spreading codes, properties of the 

transmitted symbols, the transmitted training sequences, or a combination thereof. Hence, in 

TDD systems the estimation of the dominant directions of arrival is not required for the 

downlink beamforming. 

4.1.2.9 Interface Link Level / System Level 

The receiver-side error statistics of the link-level simulator (which models the behavior of the 

physical layer) is entered into the system-level simulator via  ``actual value interface'' [33], 

[82]: The mappings from CIR to SIR, SIR to raw BER and raw BER to user BER are 

defined by the polynomial regressions of the results from link level simulations. In the 

system level simulator, CIR is calculated for each user in each frame. The CIR is then mapped 

on the SIR after despreading and block-linear zero-forcing algorithm, taking into account the 

number of users in the timeslot and the number of spreading codes in the timeslot. Further 



108 
SIR is mapped on the raw BER possibly taking into account Maximum Ratio Combining 

(MRC). Whenever MRC is done at the receiver with two diversity branches, the SIR after 

MRC is modeled as the sum of the input SIRs. Finally, the average raw BER (over 

interleaving duration) is mapped on the user BER after interleaving and decoding.  

Since in TDD the base stations employ joint-detection of users belonging to the same cell, we 

assumed at the system level that the intra-cell interference is eliminated by digital signal 

processing in the receiver. Link level simulations of physical channel, coder (decoder), 

modulator and demodulator are done on a sub-chip duration scale whereas the granularity of 

the system level simulator is the timeslot.    

4.2 Performance Metric 

In this section we define performance metrics used to compare our RRM algorithms. An 

ultimate goal of all resource management algorithms is to maximize the number of satisfied 

users in the system. In the following, we define when a RT or NRT user is counted in the 

simulators as the satisfied user. We also use Grade of Service metric, which comprises 

blocking rate and dropping rate in one formula. 

4.2.1 Satisfied User Definitions 

A wireless RT (circuit switched) user was regarded as satisfied if [19]: 

1. The user did not get blocked when arriving at the system.  

2. The user had sufficiently good quality more than a certain time (fraction) of the session: 

Probability (BER > BER_Threshold(10-3))  <  2 % 

To calculate the above probability, BER was compared with BER_Threshold each speech 

interleaving period (20 ms). If the BER was higher than BER_Threshold the interleaving 

period was marked as “bad”. Finally, the ratio (bad periods)/(total number of interleaving 

periods in the session) should have been lower than 0.02 in order to count the user as 

satisfied.                

3. The user does not get dropped. A call is dropped if: 

BER > BER_Threshold (10-3) for more than 5 seconds 

Again BER was compared with BER_Threshold each speech interleaving period (20 ms) and 

if there were 250 (5 s / 20 ms) consecutive “bad” periods (with BER > BER_Threshold) the 

user is dropped.   



109 
For NRT (packet data) services, a user was satisfied if the following three constraints were 

fulfilled [19]: 

1. The user was not blocked when arriving at the system. 

2. The active session throughput R of the session was equal or greater than some minimal 

throughput Rmin (10% of nominal data rate) i.e. if E(R)> Rmin during the session length. 

3. The user was not dropped. A packet user was dropped if the number of repeating 

transmissions of the same packet  exceeded predefined threshold (10 re-transmissions in 

our simulator).                                                                                         

4.2.2 Grade of Service (GoS) 

In order to be able to compare performance of different RRM algorithms like AC and DCA, 

which make trade-off between blocked and dropped users, we also use a Grade of Service 

(GOS) metric, which combine blocking (and unsatisfied user) rate and dropping rate in one 

formula. 

Since call dropping is experienced by a user as a much more severe system failure than call 

blocking, the relative weight of dropping probability is much greater (usually 10 times) than 

the weight of blocking probability. GOS is defined in terms of call blocking Pb and call 

dropping probability Pd for RT users as follows [110]: 

(4.1)                      

In the case of NRT packet data us

and dropped users criteria:  

For both RT and NRT users, the 

(RRM algorithm) is. 

unsati  GOS =
db 10P  P  GOS +=
ers, we define GOS as a combination of unsatisfied users 

                                          (4.2)                      [%] ersdropped_us*10 d_users[%]sfie +
higher the GOS, the worse the performance of a system 
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4.3 Power Control and Scheduling 

In this section we give examples of power control algorithms based on the “pricing” concept. 

We also investigate performance of different PC algorithms in networks without prices like 

ad-hoc networks when certain percent of population use one PC algorithms and the other 

percent use the other PC algorithm(s). We give an example how cooperation might be 

“enforces” without “prices” by use of a threshold-based “punishment”. 

The simulations in this section are done with RUNE simulator from [110] (see also 

subsection 4.1.1) with parameters as represented in Table 4-7. 

Table 4-7: Overview of system parameters in RUNE simulator [110] 

Parameter Value 
Number of clusters 36 

Cell Radius [m] 100 

Reuse 3 

Channels per Cell 5 

Offered traffic (Erlangs per cell)  3 

Gain at 1 meter [dB] -31 

Noise [dBm] -118 

Distance attenuation coefficient (alpha)  3.5 

Standard deviation for the lognormal fading (Sigma) [dB] 8 

Down link correlation (Raa) 0.5 

Correlation distance (in log-normal map) [m] 110 

4.3.1 Pricing-based PC 

In this subsection we investigate how CIR-target of the CIR-based PC (see subsection 2.2.2) 

should be set in order to maximize (3.24) under constraints (3.25). The algorithms which set 

CIR-target of the CIR-based  PC is called outer-loop PC (see subsection 2.2.4).  

If the users have the same service type, the weights wi in (3.24) are the same for all i and we 

can assume that the users occupy the same amount of bandwidth (channels) i.e. data rate Ri 

depends only on CIRi. Consequently, the network (cell) objective (3.24) becomes: 

In order to maximize (4

from the user’s CIR-targ

⎤⎡⎤⎡ NN
 (4.3)                        
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et in following manner:    

⎥
⎥
⎦⎢

⎢
⎣

∑
=

=
⎥
⎥
⎦⎢

⎢
⎣

∑
=

=
i I

gp

i
iCIRnetworkU

i

ii

1
max

1
max)(



111 
- If the actual outage (actual_outage) in the cell (network) is lower than allowed outage 

(max_outage) the outer loop PC can increase CIR-target of the users for the amount 

proportional to the difference max_outage - actual_outage. In order to maximize (4.3) 

(increase “efficiency”) the users with better conditions (higher maximal achivable signal 

quality CIRmax) should increase their CIR-targets (and thus power) for a higher amount 

than users with worse conditions, since the gradient of network utility increases with the 

increase of users gain and interference i.e:  

i

i

i I
g

p
networkU

=
∂

∂ )(  = G + I (in log-scale) ~ CIRmax. 

- If the actual outage (actual_outage) is higher than allowed outage (max_outage) the outer 

loop PC must decrease CIR-targets of the user for the amount proportional to the 

difference actual_outage -  max_outage.  In order to decrease outage probability (increase 

“fairness”), again the users with better conditions, which have higher signal quality, should 

decrease their CIR-targets (and thus overall interference) proportional to the difference 

between their CIRmax and minimal signal quality (CIRmin) needed to achieve Rmin. The users 

with worse signal quality do not have anyway a much room for CIR-target decrease, since 

they need almost the maximal power to achieve their minimal CIR.   

The difference between actual_outage - max_outage represents “excess demand” (see 

subsection 3.9.1). Making use of the equation (3.30), we can set power price λ  proportional 

to actual_outage -  max_outage i.e.:  

(4.4)                        

To be able to convert the above heuristics in a practical algorithm we need a relatively simple 

equation for new CIR-target (CIRthr) according to old CIR-target, power price λ and locally 

available information like actual power and some constants like maximal power for the user 

Pmax and minimal signal quality CIRmin. We can also increase CIR proportional to power price 

λ as well as the difference between maximal and minimal signal quality of the user (CIRmax - 

CIRmin). Consequently, we obtain the following equation for CIRthr update: 

(4.5)                        

Taking into account that maximal achievable CIR for the user with signal gain G and 

interference I is CIRmax = Pmax + G – I (in log-measure) and that actual power P is set 

according to P = min (Pmax, CIRthr - G + I), we obtain from (4.5):  

(4.6)                        CIRmin)]  -  CIRthr  P - (Pmax*  -  CIRthr ,max[CIRmin   CIRthr += λ

CIRmin)]  -(CIRmax* - CIRthr,max[CIRmin   CIRthr λ=

  )max_outage - ageactual_out (*k   =λ
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Note that in above equation we do not need to measure signal gain or interference but just use 

the actual user power P. When the power “price” λ is negative (demand lower than offer), the 

CIR-target can be increased. In Figure 4-5, an example of CIR-threshold setting according to 

the “price” for the power is represented.   

Figure 4-5: A pricing-based PC algorithm  

The user set its CIR-threshold according to equation (4.6). Naturally, if the users value their 

power more than their cells (“own_price”), they don’t have to increase their CIR-threshold, 

even if the outage is below the limit. The algorithms makes use of the equation (3.30), where 

power price λ is inverse proportional to the CIRthr. A similar algorithm can also be used for 

water-filling level settings in the case of water-filling based PC. 

We set minimal CIR (CIRmin) to different values (4, 8 and 15 dB) and compared the algorithm 

according to Figure 4-5 with Max Power PC algorithm, where users always send with their 

maximal power i.e. 30 dBm (see Figure 4-6). In Figure 4-6 we used for “pricing” PC from 

Figure 4-5 the following parameter values: max_outage = 5%, k = 10 and own_price was 

negligible in comparison to cell price. 

 

Each user: 

     Each CIRthr  update cycle do: 

       λ= max(cell_price, own_price); 

      CIRthr  = max[CIRmin,  CIRthr  -  λ *(Pmax – P + CIRthr – CIRmin)]   

     

Each cell: 

    cell_price = k*( actual_outage - max_outage)  
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CIRmin = 4 dB CIRmin = 8 dB CIRmin = 15 dB dB

Figure 4-6: Pricing-based versus Max. Power PC  

As can be seen from Figure 4-6, for higher minimal CIR (8 and 15 dB) Pricing-based PC 

achieve much lower percent of unsatisfied users (5 and 20 % respectively) than Max 

power PC (10 and 40 % respectively). The users were declared as unsatisfied if their CIR was 

lower than minimal CIR  (see 4.2.1).   

On the other side, in the case of Max. Power PC some users get much higher CIR and thus 

can obtain much higher data rates than in the case of Pricing-based PC in the case of higher 

minimal CIR-targets.    

For lower minimal CIR (like 4 dB in Figure 4-6) the Pricing-based PC shows the same CIR-

distribution as Max. power PC, since the outage probability for this CIR-targets lies below 

maximal allowed outage probability (5%) i.e. power “price” is very low. 

Also, if the provider would like to maximize the number of satisfied users it should use 

some kind of Pricing-based PC in order to keep the outage probability below predefined 

limit. Furthermore, Max. Power PC becomes the special case of the Pricing-based PC in the 

case of relatively low minimal CIR: If the outage probability is relatively low, almost all users 

can send with maximal power and obtain the higher signal quality. 
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4.3.2 Power Control Strategies in “Mixed” Populations 

In this subsection we investigate different PC strategies like: “Max. Power”, “CIR-based” and 

“Water-filling” PC in the case when the power “prices” are not predetermined by the network.  

We investigate performance of the PC strategies in “mixed” populations i.e. certain percent of 

users (say 50%) apply one PC strategy (say “Max Power”) and the other users apply the other 

PC strategy (say “CIR-based”). This situation might arise in ad-hoc networks, when there 

are no distinguished users like base stations which might determine the power “prices” and 

thus, indirectly the power strategy.  

As the performance merits we use the following criteria: 

• The percent of satisfied users i.e. the percent of users having the CIR equal or above 

certain threshold (in our case 8 dB).  

• Power consumption: The less power is transmitted to obtain the same CIR (distribution), 

the better the performance. 

We assume that from the above two criteria the percent of satisfied users is more 

important. In the figures below we provide CIR-distribution and power distribution for the 

users with different PC algorithms. Note that 100% on the y-axis is never reached because 

some users are blocked due to lack of the channels (hard blocking) and do not have any CIR. 

Also in this subsection all “Water-filling” users have the same water-filling level (2W in 

Figure 4-12 and 20 mW in all other figures with Water-filing PC).  

In following we investigate the performance of different PC strategies in mixed populations.  

4.3.2.1 CIR-based PC versus Max Power PC 

In Figure 4-7 CIR-distribution of CIR-based and Max Power PC alone (“pure” population) 

and together (“mixed” population: 50% users apply CIR-based PC and 50% apply Max Power 

PC) is represented.  

As can be seen from Figure 4-7, as expected, in the “pure” populations (all users apply the 

same PC strategy) the number of satisfied users (users having CIR > 8 dB) is higher when all 

users apply CIR-based PC than when all users apply Max Power PC. This is because the 

lower interference is generated with CIR-based PC: Users send with so much power as they 

need to achieve the desired CIR-threshold (8 dB) but not more (see subsection 2.2.2). 
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Figure 4-7: CIR-based and Max Power PC alone (“pure” population) and in “mixed” 

population (50% CIR-based and 50% Max Power PC users)  

Even in the “mixed” population (50% of the users apply CIR-based PC and 50% of the users 

apply Max Power PC) users applying CIR-based PC achieve at least the same or better 

performance (in number of satisfied users) than Max Power PC. But performance of CIR-

based PC in the “pure” population i.e. when all users apply CIR-based PC is better (the 

number of users having CIR above 8 dB is higher). 

This indicates that (as discussed in subsection 3.13.4) CIR-based PC is an Evolutionary 

stable strategy in comparison to Max Power PC i.e. the expected gain (the number of 

satisfied users) of the CIR-based PC played against itself is higher than the gain of the 

MaxPower PC played against CIR-based PC. Furthermore, the power consumption of CIR-

based PC is much lower than with Max Power PC (see Figure 4-11), since the users send with 

the power needed to achieve the desired CIR-threshold, but not more.  

In the terms of evolutionary biology a population of “CIR-based” users in an ad-hoc 

network can not be invaded by “Max Power” users i.e. the users in such mixed population 

have the incentive to apply rather “CIR-based” strategy than “Max Power” strategy, if the 

performance merit is the probability to be satisfied (to have the CIR equal or above certain 

threshold) and total power consumed.  
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4.3.2.2 Water-filling PC versus Max Power PC 

In Figure 4-8 CIR-distribution of Water-filling and Max Power PC alone and together (50% 

users apply Water-filling PC and 50% apply Max Power PC) is represented. 

Figure 4-8: Water-filling and Max Power PC alone (“pure” population) and in “mixed” 

population (50% Water-filling and 50% Max Power PC users) 

As can be seen from Figure 4-8, as expected, in the “mixed” populations (50% users apply 

Water-filling PC and 50% apply Max Power PC) the number of satisfied users (users having 

CIR > 8 dB) and probability of achieving better CIR values is much higher when Max Power 

PC is used than with Water-filling PC. This is because the Water-filling PC is very 

cooperative – it decreases power when the interference (the power of the other users) 

increases.  

This indicates that (as discussed in subsection 3.13.4) Water-filling PC is not an 

Evolutionary stable strategy in comparison to Max Power PC i.e. the expected gain (the 

number of satisfied users and data rates) of the Max Power  PC played against Water-filling 

PC is higher than the gain of the Water-filling PC played against itself. This is because Max 

Power PC exploits cooperativeness of Water-filling PC, it sends with the highest possible 

power and in turn get reduced interference due to decreased power by Water-filling PC users. 

On this way CIR of the Max Power PC users (experience lower interference and use higher 
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powers) is much higher than CIR of water-filling users (experience higher interference and 

use lower powers).   

In the terms of evolutionary biology a population of “Water-filling” users in an ad-hoc 

network can be invaded by “Max Power” users i.e. the users in such mixed population 

have the incentive to apply rather “Max Power” strategy than “Water-filling” strategy if the 

performance merit is the probability to be satisfied or to achieve higher CIR.   

4.3.2.3 CIR-based PC versus Water-filling PC 

As can be seen Figure 4-9 from both CIR-based PC and Water-filling PC are better of in 

the mixed population (50% CIR-based PC users and 50% Water-filling PC users) than in 

“pure” population (only one PC strategy is used).  

Figure 4-9: CIR-based and Water-filling PC alone (“pure” population) and in “mixed” 

population (50% CIR-based and 50% Water-filling PC users)  

This mutual beneficial behaviour of CIR-based and Water-filling PC is caused by following 

reasons: 

- “CIR-based” users profit from “Water-filling” users since “Water-filling” users do not 

send any power at all when the channel is too bad (interference too high and/or channel 

gain to low). On this way interference to “CIR-based” users is reduced and they can obtain 

CIR [dB] 

%
 o

f u
se

rs
 h

av
in

g 
C

IR
 <

 a
bs

ci
ss

a 
va

lu
e 

CIRthr 



118 
required CIR (8 dB) with higher probability than in the population consisting of “CIR-

based” users alone. 

- “Water-filling” users profit from “CIR-based” users since “CIR-based” users send only 

so much power needed to achieve desired CIR-threshold (8 dB), but not more. On this 

way interference to “Water-filling” users is reduced and they can obtain higher CIR than in 

the population consisting of “Water-filling” users alone.       

Also, a mix of “CIR-based” and “Water-filling” users is desirable, which is of special 

importance in the case of mixed services (like speech and packet data users).  In the case of 

mixed services speech users might apply CIR-based PC and packet data users might 

apply “water-filling” PC and both might profit from each other.    

4.3.2.4 CIR-based, Water-filling and Max Power PC  

According to Figure 4-10 CIR-based PC strategy is the most “robust” strategy in the 

population mix consisting of “CIR-based”, “Max Power” and “Water-filling” users.  

Figure 4-10: CIR distribution for different PC strategies (each PC strategy is used by 1/3 

of population) 

CIR-based PC users achieve their required CIR-targets (are satisfied) if it is possible by using 

the power lower or equal the maximum available power. In general “CIR-based” PC users 

need much lower power than Max-Power users as can be seen from Figure 4-11.  
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Figure 4-11: Transmit power distribution for different PC strategies 

Water-filling users consume at least power from all three PC strategies but on the costs of 

signal quality reduction. This is because “defensive” character of “water-filling” PC to 

decrease power if interference increases. This make Water-filling PC strategy subject to 

exploitation by Max Power PC strategy as described in subsections 3.13.4 and 4.3.2.2 (see 

also Figure 4-8 and Figure 4-10.  

In order to avoid the exploitation by non-cooperative “Max Power” users, “Water-filling” 

users could set their water-filling level very high and obtain the same performance as Max 

Power PC (see Figure 4-12). In Figure 4-12 water-filling level is set to 2 W instead to 2 mW 

as in the case of Figure 4-8 and Figure 4-10. When the “water-filling level is very high as in 

the case of Figure 4-12 all “water-filling” users send with maximal power i.e. Max Power PC 

becomes a special case of Water-filling PC. On this way “water-filling” users can protect 

themselves against “Max Power” users in the case of lower loads. In the case of higher loads 

CIR-based PC can be used as a “security” strategy.   
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Figure 4-12: CIR distribution for different PC strategies (water-filling level 2 W)   

Summarizing, in order to protect itself in a non-cooperative environment users should 

apply CIR-based PC or set “water-filling” level to very high values. CIR-target or water-

filling levels should be set according to load: 

- For lower loads CIR-target or “water-filling” level could be very high i.e. users should 

be able to achieve the maximal data rates required by the service type.  

- For higher loads CIR-target or “water-filling” level should be set so that the users could 

be able to achieve the minimal required data rates.  

- For the intermediate loads CIR-targets and “water-filling” levels should be set inverse 

proportional to load.  

We can also use some sort of “punishment” to enforce cooperation in networks without 

“prices”. This issue is discussed in the next subsection. 

CIR [dB] 

%
 o

f u
se

rs
 h

av
in

g 
C

IR
 <

 a
bs

ci
ss

a 
va

lu
e 

CIRthr 



121 

4.3.3 Threshold-based PC 

The problem with the Pricing-based PC is that in the networks without price-setting 

controllers (base station) like in ad-hoc networks, it is difficult to “enforce” optimal user 

behaviour for each network state without “prices”. Furthermore, some users might “defect” 

and send with maximal power also in situation when a lot of users are unsatisfied (see 

previous subsection). In order to “enforce” cooperation we can use a threshold-based 

“punishment” as discussed in subsection 3.13.4. “Defecting” users can be “punished” by their 

communication partners by decreasing their signal quality (CIR), if the CIR of the “defecting” 

user is (much) higher than CIR of its partner (“threshold”).  

For example, a “Threshold-based PC” algorithm is a simple but practical application of 

threshold-based “punishment” (see Figure 4-13). For each user i we select the user j for 

comparison. The user j can be for example a randomly chosen user (by the BS) in a cellular 

network or the peer communication partner in ad-hoc networks. If the CIR of the user j (CIRj) 

lies below minimal CIR (CIRmin) or CIRi is higher than CIRj for some parameter (“unfair”), 

the CIRthro of the user i is decreased for the amount defined by parameters “punish1” and 

“punish2” respectively. Usually, punish1> punish2 (see Figure 4-13).  

In this wa

(CIR), can

This can 

generating

(for amoun

from “def
For each user i 

   take randomly user j; 

    if CIR(j) < CIRmin 

                   CIRtarget(i) = max(CIRmin, CIRtarget(i) – punish1); 

    elseif CIR(i) - CIR(j) > unfair 

                   CIRtarget(i) = max(CIRmin, CIRtarget(i) – punish2); 

     end if 

end for   
Figure 4-13: A threshold-based PC  

y the defecting users i.e. the users who obtain “unfair” high signal quality 

 be punished by their communication partners or cells (in a cellular networks). 

be achieved by decreasing of the CIR of the defecting users, for example, by 

 by its communication partner more noise to the signal of “defecting” user 

t of punish1 or punish2 in the case of Figure 4-13) or just not decoding the data 

ecting” user. This in turn can be signalized to the “defecting” user (assuming that 
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users have a backwards signalization channel), which encourage him to decrease its CIR-

target and consequently its transmit power. On this way the percentage of satisfied users is 

increased due to overall interference reduction but on the cost of the reducing the highest 

achievable CIR, which is approximately equal CIRmean +  unfair (see Figure 4-13). 

The CIR distribution for Threshold-based PC(according to Figure 4-13 (CIRmin = 8 dB, 

punish1 = 10 dB, unfair = 5 dB and punish2 = 3 dB) in comparison with Pricing-based and 

Max. power PC is represented in Figure 4-14.  

Figure 4-14: Threshold-based PC versus Max. Power and Pricing-based PC 

As can be seen in Figure 4-14 threshold-based PC has less “smooth” CIR-distribution curve 

than Pricing-based PC i.e. some users have worse CIR than with “pricing”. This is due to 

“punishment” of defecting users – their CIR is drastically reduced (down to CIRmin) when 

there are many unsatisfied users (having CIR lower than CIRmin = 8 dB). However, with 

“threshold-based PC”, the percent of unsatisfied users is highly decreased (from 10% to 

5%) in comparison with “defecting” Max Power PC. That is why threshold-based PC can 

be used in networks without “prices” like in ad-hoc networks in order to increase the 

number of satisfied users.    
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4.4 Admission Control and Handover 

4.4.1 Admission control 

We investigated interference based AC (AC “price” increase with the interference) for both 

service types: RT speech and NRT data. Interference based AC for RT speech means that the 

users are not admitted to a cell if interference in the cell is above a certain (interference) 

threshold (see subsection 2.6.2.2).  

In Figure 4-15, dropping ratio as a function of AC interference threshold for new users and 

HO users in the case of RT speech service is represented. In our “pricing” terminology, the 

AC interference threshold is inversely proportional to the “price” of cell access. As can be 

seen from Figure 4-15, dropping ratio increases with increase of AC interference threshold for 

the new call users, because with the increase of the interference threshold AC becomes less 

restrictive i.e. more new call users are admitted in the cell (system). Consequently, the 

number of users in the system is increased and overall interference is increased which in turn 

implies that more users are dropped due to bad signal quality.     
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Figure 4-15: Dropping ratio as a function of AC interference threshold (RT speech)  

On the other hand, in the case of users already in the system (HO users) too restrictive AC 

(low interference threshold) causes many users to stay connected with their “old” cells instead 

of making HO to the new cell with higher channel gain. These users then have worse signal 

quality (CIR) due to lower channel gain and, if PC is used, generate more interference in the 

system by sending with more power than needed if the user was connected to the BS with 

lowest path-loss. Consequently, the number of dropped users increases with decrease of AC 

interference threshold.  
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The decrease in the dropping rate by more restrictive AC (lower interference threshold) in the 

case of new users is at the expense of increase in the blocking rate of new users i.e. the 

number of users who were denied access to the system due to interference higher than a 

threshold is increased (see Figure 4-16). 
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  Figure 4-16: Blocking ratio as a function of AC interference threshold (RT speech) 

Naturally, AC influences the blocking rate only in the case of new users, since HO users are 

already in the system and cannot be blocked. That is why the blocking rate for HO users (see 

Figure 4-16) stays constant (Ithr for new users was set to –50 dBm in the case of AC 

simulation for HO users). 

Consequently, in the case of new users a trade-off should be made between the dropping 

and blocking rate. As a measure of AC performance we use a “grade of service (GOS) i.e. a 

weighted sum of dropping and blocking probability (see (4.1)), the higher the GOS, the worse 

the performance. Since call dropping is experienced as a much more severe network failure 

than call blocking, we weight dropping probability 10 times higher than the blocking 

probability. 

In Figure 4-17, GOS as a function of AC interference threshold for new call and HO users are 

depicted. As can be seen from Figure 4-15, Figure 4-16 and Figure 4-17 the dropping 

probability is the determining factor for GOS due to the much higher weight of call dropping 

in comparison with call blocking.  



125 

0

1

2

3

4

5

6

7

-100 -90 -80 -70 -60 -50 -40
Ithr [dBm]

G
O

S=
10

*P
(d

ro
p)

 +
 P

(b
lo

ck
)

AC for new calls
AC for HO calls

 

Figure 4-17: GOS as a function of AC interference threshold (RT speech) 

According to Figure 4-17, the AC interference threshold should be relatively low 

(restrictive AC) for the new calls in order not to disturb the users already in the system. 

For HO calls, the AC threshold should be relatively high (less restrictive AC) i.e. AC 

should not prevent users already in the system from making HO in order to reduce overall 

interference in the system and thus maximize the number of satisfied users. Figure 4-15, 

Figure 4-16 and Figure 4-17 are made for the case of relatively high load, when some gain 

can be achieved with AC at the system limit by protecting the active users at the cost of new 

users. For lower loads, AC should naturally also be less restrictive for new users.     

The results of interference based AC in the case of NRT data are represented in Figure 4-18. 

As defined in subsection 4.2.1 an NRT user is satisfied if it achieves at least 10% of its 

nominal data rate (in this case 38.4 kbps for a 384 kbps service). An NRT user is dropped if it 

needs more than a certain number (in this case 10) retransmissions. The role of AC in the case 

of NRT users is to prevent users from sending the data from the queue if interference on all 

free channels lies above a certain threshold. If the interference threshold is set too 

restrictively, the users would be held in the queues too long. In this way, the users cannot 

achieve their minimal data rates and the number of unsatisfied users can drastically increase if 

the interference threshold is higher than a certain limit (-35 dBm in the case of Figure 4-18).  
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Figure 4-18: Interference-based AC for NRT data 

On the other hand, the decrease of interference threshold has almost no impact on the ratio of 

dropped users (see Figure 4-18), since keeping the data in the queue, if interference is over a 

certain threshold, does not increase the number of retransmission, at least for this range of 

interference thresholds.    

4.4.2 Handover 

In this subsection we investigate by simulations some basic trade-offs that must met by 

Handover (HO) algorithms. In our dynamic simulator we adopt re-use factor 1 (all cells use 

all channels) and CIR-based PC. According to subsection 3.8.1 we should use path-loss-based 

HO, since path-loss-based HO helps keeping maximal eigenvalues on the channels lower than 

1 in order to ensure the convergence of the PC. With pathlos-based HO, the change of the cell 

(HO) is performed when the channel gain of a candidate cell is for HO-margin 

(parameter) or more better than the gain of the active cell (see subsection 2.6.1). The 

parameter HO-margin can be interpreted as the “price” for HO (in dB): HO is performed 

when the utility of HO is equal or above the “price” for HO (see (3.37)). The “price” for HO 

depends on the provider’s relative utility from HO i.e. increase in system capacity (the percent 

of satisfied users) and HO overhead i.e. increase in the number of HO as a function of the 

parameter HO-margin.  

As can be seen from Figure 4-19, the percent of satisfied users, as expected, decreases with 

the increase of the parameter HO-margin. With higher HO-margin, users stay connected 

longer with a “worse” cell (the cell with lower channel gain) and consequently need more 
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power to achieve their required signal quality (CIR), which in turn increases overall 

interference in the system.   
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Figure 4-19: Ratio of satisfied users as a function of HO-margin  

The “price” for increasing the percent of satisfied users by decreasing the HO-margin is the 

increase in the number of HOs in the system. As can be seen from Figure 4-20, the mean 

number of HOs increases for about 5 additional HOs when HO-margin decreases for 1 dB. 
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Figure 4-20: Mean number of HOs according to HO-margin  

A provider should make a trade-off between the percent of satisfied users and the 

signalization overhead due to the larger number of HOs. In order to solve these trade-offs, 

a provider might need a unified scale for measuring signalization overhead for HO and gain 

of HO. For example, the costs for a HO can be measured by an additional interference due 

to measurement and signalization overhead needed for HO execution, and gain of HO can be 
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measured by decrease in overall interference due to HO. Finally, HO-margin with best gain 

(capacity) and cost (overhead) ratio should be chosen.    

4.5 Dynamic Channel Allocation (DCA)  

The role of DCA is to influence by channel allocation the shape of the capacity sets (available 

rates, see Figure 3-6) and minimize maximal eigenvalues (in the case of PC) on as many 

channels as possible (see Figure 3-6). This could be accomplished by flexibly combining of 

optimal DCA algorithms for each network state. This combining is performed by the use of 

“pricing” concept as described in section 3.5.  

We show in this section how, by using appropriate “price” politics i.e. weight settings in the 

users’ utility function, “optimal” channel allocation algorithms can be “enforced” for each 

load in the cells. We obtain as special cases three DCA algorithms: Random, Minimum 

Interference (Min I) and Autonomous Reuse Partitioning (ARP) DCA (see section 2.4) as 

“optimal” DCA for certain loads.   

In this section we analyze also simulation results of some distributed, measurement based 

dynamic channel allocation algorithms described in 2.4 and 3.13.5. Distributed DCA means 

that cells (or users) make channel allocation decisions independently from other cells (or 

users). For channel allocation decisions, cells (or users) utilize statistics (like channel gains 

and interference) obtained by measurements of mobiles and BS in the cell. We also assume 

re-use factor 1 i.e. each channel can be used in each cell. A channel selected by DCA is a 

(frequency, timeslot) – pair since we simulated a UMTS TDD system (see section 2.1) and 

within the channel up to 16 codes can be allocated to different users. Each user needs at least 

one code (depends on service) in order to establish communication with a BS. 

We have analyzed different DCA algorithms under different environments (urban (Micro) and 

sub-urban/rural (Macro), with different service types (speech and NRT 384 kbps packet data), 

with and without PC and SA.  

4.5.1 Dynamic Channel Allocation   

The following Dynamic Channel Allocation (DCA) algorithms are obtained by appropriate 

“price” settings in the user’s utility function (see subsection 3.9.3) and investigated by 

simulations: 

Random Channel Allocation (RCA): Chooses channel randomly from the set of free 

channels.  
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Minimum Interference (Min I): Chooses the channel with the lowest average interference 

from the set of free channels.  

Priority-based (Channel Segregation): Chooses the channel with the highest priority from 

the set of free channels. Priorities are established according to previous experience on the 

channels in a cell: At allocation request, the cell tests the interference on a free channel with 

the highest priority against an interference threshold. If interference on the channel is lower 

than the threshold a cell uses the channel and increases the priority of the channel in the cell, 

otherwise the cell decreases the priority of the channel (see subsection 2.5.2.2). In this way 

“channel segregation” should be established i.e. neighbor cells should learn to use different 

channels with different frequencies [28], [1]. If one cell often uses some channels its 

neighbors should seldom use the channels and vice versa. In Figure 4-21, it is represented 

how channel segregation emerges during simulation: At the beginning of the simulation 

(Figure 4-21 left) almost all channels are used equally like in neighbor cells (BS_1-3 are 

neighbor base stations). After a certain simulation time (10 second or 10 000 radio frames), 

due to application of priority-based DCA a channel segregation is established i.e. the channels 

((frequency timeslot) – pairs) often used by a cell are used relatively seldom by its neighbors 

and vice versa (Figure 4-21 right).       

Figure 4-21: Establishing of channel segregation in the case of lower loads: Left channel 

usage at the simulation begin, right channel usage after 10000 frames (10s) 

In the case of higher loads, almost all channels must be used in all cells, so that channel 

segregation is worse than for lower loads (compare Figure 4-21 rights and Figure 4-22). 
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Figure 4-22: Channel segregation in the case of higher loads 

Autonomous Reuse Partitioning (ARP): The idea of ARP is that the users far away from the 

base station (high pathlos) should use channels with lower interference and users near the 

base station (low pathlos) should use the channels with higher interference (see 2.5.2.4). In 

this way the number of users in the system with sufficient signal quality should be 

maximized. In order to simplify implementation, we used the following ARP algorithms: 

Each time a user needs a channel DCA allocates to the user the free channel k for which the 

expression CIG iki −−  takes the maximal value. Gi is channel gain between the user i and 

the base station (in DB) and Iik is the (average) interference experienced by the user i on the 

channel k (in dBm and always negative) and C is a simulation parameter. An “optimal” value 

of the parameter C changes with load and each time the load is changed, the optimal value of 

the parameter C has to be found for the load. Note that if we take the parameter C high 

enough the channel with minimum interference would always be selected since G is channel 

independent in a TDD system and I is always lower than 0. This means that minimum 

interference DCA is a special case of the reuse partitioning as defined above, and reuse 

partitioning DCA can achieve at least the same performance as minimum interference DCA.    
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In Figure 4-23 the results of the comparison of the above algorithms are depicted [11].  

Figure 4-23: Comparison of DCA algorithms 

As can be seen from Figure 4-23, the best performance e.g. the maximum number of satisfied 

users is achieved with ARP algorithm and the worst performance with random allocation 

(RCA). The disadvantage of the ARP algorithm is that the optimal value of the parameter C 

should be found for each load separately, whereas minimum interference and random 

allocation DCA do not need any parameters at all. Furthermore, ARP needs measurements of 

interference and channel gain for its decisions, Minimum interference or Priority-based DCA 

need interference measurements only and random DCA needs no measurements at all.  

Taking into account not only performance (in number of satisfied users) of the algorithms, but 

also, costs of measurements and parameter optimizations needed for algorithms, we can say 

that an “optimal” DCA algorithm is load (state) dependent.  

Cells can, by appropriate “pricing” (setting the parameters WG, WI and C of the users’ utility 

function (3.31)), enforce the “optimal” DCA algorithm according to the state of the cells, for 

example (see Figure 4-24):  
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Figure 4-24: “Pricing” based DCA 

Low load: In the case of a low load, interference estimation is relatively bad i.e. interference 

variance is relatively high in comparison to interference mean (dI, is relatively high, see (3.16) 

and Table 4-10). Interference based DCA like Min I or ARP might not be optimal for very 

low loads, since it relies on (for low loads unreliable) interference estimation. But, due to low 

load, almost all channels would have relatively low interference and we can use simple 

Random Channel Allocation. In order to “activate” Random DCA cells can set “prices” 

(weights) to following values (see Figure 4-24 lefts): WI = WG = 0, C(c) = random. 

Consequently, users trying to maximize their own utilities choose Random DCA (see Figure 

4-24 rights).  

Medium load: In the case of medium load, with Random DCA the channels with lower and 

higher interference would be equally probably used (which increase overall interference) and 

Channel Segregation among neighbor cells could not be established due to increased load 

(almost all channels must be used in all cells). But since interference estimation is relatively 

good (dI from (3.16) is relatively low), we can use Min I DCA in order to allocate channels 

with lower interference more often, which saves power and reduces overall interference. To 

“activate” Min I DCA, cells can set “prices” to the following values WG = C(c) = 0, WI = 1. 

Consequently, users trying to maximize their utility choose Minimum Interference DCA. 

Cell’s part of DCA 

  

 

// Set weights (“price”s) for the
channel c according to the load of the
cell: 

 

 

 

case Load  

  Low: 

        WI = WG = 0, C(c) = random  

 Medium: 

  WG = C(c) = 0, WI =1  

High: 

  WG = C(c) = 0, WI = -1 

end case 

User’s part of DCA 

 At each allocation request find the channel
with maximum utility: 

      Maxc(U(c)) = maxc(WGG(c)- WII(c)-C(c)) 

  Among the channels satisfying constraint:  

         Pr(CIR<CIRthr) < Pout or E(r)>Rmin  

If “prices” are set as depicted on the left side
the following algorithms are chosen: 

case Load   

 Low: 

       Maxc(random(c))=>Random DCA 

 Medium: 
       Maxc(-I(c)) = Minc(I(c)) => Min I DCA 

 High: 

       Maxc(I(c))=>ARP  

end case 
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High load: In the case of a high load, we can use ARP DCA (see subsection 2.5.2.4), in order 

to provide as many users as possible with at least minimum signal quality (or data rate). This 

makes sense, since if revenue of satisfied users is much higher than from data rate (ws>>wi or 

wd>>wi, see (3.13)), maximizing the number of satisfied users brings the most gain to 

providers. To “activate” ARP DCA, cells can set “prices” to the following values WG = C(c) 

= 0, WI = -1. Consequently, users trying to maximize their utility choose the free channel with 

maximum interference, which satisfy users’ constraints (see 3.3).   

We investigated our pricing based DCA from Figure 4-24 on the example of NRT 384 kbps 

packet data service and compare it with Minimum Interference (DCA min I), Random 

Channel Allocation (RCA), Autonomous Reuse partitioning (ARP) DCA. We used Grade of 

Service (GOS): GOS = unsatisfied users + 10*dropped users, as an evaluation criteria (see 

section 4.2). As can be seen from  Figure 4-25, the best (lowest) GoS for all loads is achieved 

with the “pricing” based DCA.  

 Figure 4-25: GoS statistics for packet data with different DCA algorithms 

As special case of the “pricing” based DCA we obtain for lower loads RCA, because 

interference based DCA algorithms have relatively unreliable interference information for 

lower loads (relatively high variance/mean ratio). For medium loads, the best results are 

achieved with minimum interference DCA by using channels with lower interference more 

often. For higher loads, the better performance can be achieved with ARP which try to 

provide each user with “satisfactory” but not the best channels in order to maximize the 

number of satisfied users in the system. ARP parameters are load dependent and should be 

optimized for each load separately.    
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By using “Pricing”–based a network provider can flexible combine different DCA 

algorithms and activate “optimal” DCA algorithm for each load simply by appropriate 

parameter (“price”) settings in the users’ utility functions (see Figure 4-24), without need 

for software changes.  

4.5.2 PC and DCA 

It is also interesting to see dependence of DCA and other RRM algorithms like (CIR-based) 

PC (see Figure 4-26).  

Figure 4-26: Gain of PC and DCA in urban (micro) environment 

From Figure 4-26 can be seen that gain from ARP DCA is about 36% without PC and only 

about 5% in the case with PC. The gains from PC and DCA are also not additive. PC 

enables in the case of RCA use of more than 80% of timeslots, thus leaving little room for 

further improvements by DCA [11]. This is because DCA is based basically on the principle 

of “channel segregation among the cells”: Neighbor BSs should use different channels as 

often as possible. Since more then 80% of channels can be used as a merit of PC, there are 

hardly channels left “to be segregated” between neighbor BSs.  
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But besides capacity gain, DCA also saves the transmit power (Txpwr) of the BS and 

mobiles as can be seen from Figure 4-27. This could be of especial importance for mobile 

stations because battery life can be increased [11]. 

Figure 4-27: Reduction of transmit power due to DCA in urban (micro) environment 

With DCA, channels with lower interference are used more frequently in the case of low-

medium load. Consequently, on average less power is needed to achieve required signal 

quality (CIR) using CIR-based PC (see (2.5)). 

Consequently, if PC is used, the relative gain due to DCA is reduced and a provider can 

use only minimum interference DCA to save power or apply random allocation to reduce 

algorithm complexity. In the case of higher loads, ARP channel allocation can be used in 

order to maximize the number of satisfied users. A provider does not need to implement 

each of the algorithms separately but can activate “optimal” DCA algorithm for each load 

simply by appropriate parameter (“price”) settings in the users’ utility functions.  
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4.6 Smart Antennas and RRM Algorithms  

In this section we analyze capacity gain of RRM algorithms with and without Smart antennas 

(SA) (see 2.7). As described in subsection 4.1.2.8, SA were simulated only in the Macro 

environment. As can be seen in Figure 4-28 and Table 4-8, the capacity gain due to smart 

antennas can be up to 180% in comparison with the same system without SA, whereas 

the capacity gain due to PC is about 70%, and the additional capacity gain due to DCA is 

about 2%. These results also confirm the results provided in [27] and [52], where the gain of 

SA is estimated to be 40-200%. In fact, the capacity achieved with smart antennas and PC is 

very close to the hard blocking limit i.e. the number of users in the system is constrained by 

the number of channels and not interference. Consequently, almost no significant 

improvements by, for example, by sophisticated RRM algorithms are possible.  

 

Figure 4-28: Gains of RRM algorithms with and without smart antennas 
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Table 4-8: Relative (in comparison to the case when the algorithm or technology is 

switched off) gains of RRM algorithms and SA     

Scenario Gain in capacity [%] 

RCA, PC off, SMA off Reference gain 

RCA, PC on, SMA off 58 

DCA, PC on, SMA off 14 

RCA, PC off, SMA on 180 

RCA, PC on, SMA on 70 

DCA, PC on, SMA on 2 

The high capacity gain achieved with SA is due to highly reduced overall interference by 

use of SA in the system. Instead of radiating power in all directions (like omni-directional 

antennas), SA radiate power (almost) only in the direction of desired users (see section 

2.7). In this way, interference to other users in systems is highly reduced. Furthermore, 

interference reduction is almost independent of the number of users in the system and 

(much) higher than interference reduction of any RRM algorithm (see also Figure 4-29). Also, 

SA effectively “decouple” the users from each other and interference reduction to some 

users is not paid by interference increase to other users (like in the case of DCA, see 

section 4.5). Consequently, signal quality CIR (see (2.3)) and probability to achieve required 

CIR (to be satisfied) increases with SA.  

In order to make a decision whether to deploy SA or not, a provider should compare relatively 

high capacity gains achieved by SA with the costs of implementing an SA technology. In the 

early phase of network (system) operation, PC and possibly DCA would be enough to provide 

the desired capacity. Note that relative gain of DCA is much higher without SA (14%) than 

with SA (2%). If capacity becomes a problem in a later phase of the system operation, the 

provider can then employ SA. SA could bring about 50% capacity gain with PC and up to 

180% capacity gain without PC. Furthermore, the employment of SA reduce overall 

interference so much that parameter optimization of other algorithms (like PC) become 

less important and some RRM algorithms like a sophisticated DCA might become 

unnecessary.   
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4.7 Performance Gain of RRM Algorithms and SA due to Interference 
Reduction  

Since modern wireless systems are interference limited, we expect that the gain of each RRM 

algorithm or SA can be measured in average interference reduction due to deployment of the 

algorithm or SA. In Figure 4-29 and Table 4-9 mean interference in DL for speech service as 

a function of relative load, RRM algorithms or SA is represented.   

Figure 4-29: Mean Interference as a function of RRM algorithms and SA 

Table 4-9: Mean interference values for different RRM algorithms and SA 

Load 

Algorithms                  

1 2 4 6 8 

RCA, PC off, SA off -85,47 -81,36 -78,32 -76,24 -74,92 

DCA, PC off, SA off -87,97 -83,88 -79,70 -77,02 -75,18 

RCA, PC on, SA off -91,77 -85,25 -80,08 -77,44 -75,70 

DCA, PC on, SA off -95,57 -88,19 -81,10 -78,12 -76,03 

RCA, PC on, SA on -96,50 -93,73 -89,39 -86,09 -83,86 

DCA, PC on, SA on -97,82 -95,12 -91,12 -87,20 -84,37 
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According to Figure 4-29 and Table 4-9, reduction of mean interference due to different RRM 

algorithms or SA is load dependent i.e. for lower loads relative interference reduction is 

higher and vice versa. The contribution of different RRM algorithms and SA to interference 

reduction could be explained as follows:   

• PC reduces overall interference because the users do not send with maximal power 

but with a power needed to achieve their required CIR. Reduction of interference due 

to PC is 1-7 dB (see Table 4-9).  The lower the number of users the greater the gain 

(interference reduction) of PC because at lower loads the interference is also low and the 

power needed to achieve required CIR is much lower then maximal power.  When the 

number of users is high, the interference is also high and almost all users must send with 

maximal power. 

• DCA reduce interference in the system by more frequent use of the channels with lower 

interference (minimum interference DCA). The gain of DCA in interference reduction is 

up to 4 dB and depends on interference i.e. load in the system. For lower loads, a good 

“segregation” can be achieved i.e. neighbor cells use different channels for most of the 

time (see Figure 4-21 right). The higher the number of users, the lower DCA gain in 

reduction of interference, because almost all channels are occupied almost all the time and 

there are low possibility for channel “segregation” between neighbor cells.    

•  SA reduce overall interference in the system by transmitting the power only in the 

direction of the desired user (several degrees in space) and not all directions (360 

degrees) as in the case of omni-directional antennas. The interference reduction gain of SA 

is about 7-10 dB and is almost independent of the system load. This is because the 

capability of SA to reduce interference by transmitting the power always (approximately) 

in the direction of desired users is almost load independent.  

As can be seen from Figure 4-30, the reduction of overall interference has a direct impact 

on the number of satisfied users (for RT speech service), because signal quality CIR is 

inverse proportional to interference (see (2.3)). For example, reduction of interference of 5 dB 

(from –80 dBm to –85 dBm) brings about 4 percent more satisfied users (from 94% to 98%). 

This means that in the case of medium load (about 3 users per channel) application of DCA 

and PC which bring about 5 dB gain according to Figure 4-29 in comparison with FCA and 

no PC, would bring the system to the required level [19] of satisfied users (98%). Without 

these RRM algorithms, the network does not fulfill requirements (only 94% satisfied users). It 

is interesting to note that the curve of satisfied users as a function of mean interference is 

pretty good approximated with log-normal distribution for all RRM algorithms. 
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Figure 4-30: Log –normal Approximation of Interference Distribution 

But, as can be seen from Table 4-10, the effect of RRM algorithms and SA is not only 

reduction in the interference mean value but also an increase in standard deviation i.e. 

increase in their ratio (σ/µ). This is because RRM algorithms and SA introduce a 

“structure” in interference distribution: Some channels are more used than others due to 

DCA, some directions (users’ locations) are preferred to others due to SA, and users transmit 

with different powers due to CIR-based PC. The ratio σ/µ is especially high for lower loads, 

because with arrival and departure of each new user interferences changes in percents are 

relative high. That is why interference estimation is relatively bad at very low loads and the 

algorithms, which rely on interference estimation, like PC and DCA cannot achieve such high 

gains as at higher loads (see Figure 4-28).   

Table 4-10: σ/µ ratios for different loads and RRM algorithms with/without SA 

Load 

Algorithms                  

1 2 4 6 8 

RCA, PC off, SA off 0,49 0,40 0,32 0,31 0,30 

DCA, PC off, SA off 0,57 0,44 0,33 0,31 0,30 

RCA, PC on, SA off 0,84 0,51 0,36 0,33 0,31 

DCA, PC on, SA off 1,12 0,63 0,38 0,33 0,32 

RCA, PC on, SA on 1,53 1,01 0,63 0,51 0,46 

DCA, PC on, SA on 1,79 1,15 0,72 0,55 0,48 
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Combining Figure 4-29 and Figure 4-30, we obtain a unified scale for measuring 

performance of the RRM algorithms or mobile technologies like SA: The gain of an 

algorithm or technology can be measured in reduction of overall interference due to 

implementation of the algorithm or technology (see Figure 4-29). The interference 

reduction in turn results in an increase in the number of satisfied users in the system (see 

Figure 4-30). The capacity gain of an algorithm (technology) is also directly proportional to 

the reduction of interference due to implementation of the algorithm (technology). The 

provider can then compare gains of different algorithms or technologies (like SA) according 

to their reduction of overall interference.  

Since the provider utility U is proportional to percent of satisfied users (see 3.4) and the 

percent of satisfied users decreases as interference increase i.e. dU(I)/dI < 0 (see Figure 4-30), 

interference is “bad” commodity according to microeconomic terminology [64]. This means 

that the provider would pay for decrease of interference and the price for interference 

reduction per dB would be proportional to |dU(I)/dI|. The slope of the curve U(I) (“price for 

interference reduction” ~ |dU(I)/dI|) depends on the interference in the network. If the 

interference is near 98 percentile of satisfied users or higher (see Figure 4-30), the slope of the 

U(I) curve (~ % of satisfied users) is steeper (approximately 2.5% per dB) than for the lower 

loads (approximately 0% per dB). This means that the provider has an incentive to pay 

higher prices for interference reduction techniques in the case of higher (average) loads 

than in the case of lower loads. This also means that the “price” for the power also 

increases with load (see subsection 3.9.1).  

Also, investment in SA or RRM algorithms are more likely in the case when the network 

comes to its capacity limit. Which algorithm(s) (or technology/technologies) will be finally 

chosen, depends on the benefit/costs ratio of the algorithms (technology). For example, 

investments in RRM algorithms are in general cheaper than in SA, since these changes 

concern only software in the network, but capacity gains from the RRM algorithms are lower 

than from SA (see Figure 4-28).  Like for SA and RRM algorithms the same trade-off could 

also be implied to other technologies like coding or modulation. A better coding or 

modulation technique would require lower signal quality (or CIR-target) in order to achieve 

the same BER. Consequently, less power is needed if CIR-based PC is used with the coding 

or modulation technique and overall interference in the system could be reduced.  
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4.8 Summary 

In this chapter we gave performance metrics and some numerical results for RRM algorithms. 

Below are the main conclusions of our simulations: 

• PC should make a trade-off between maximizing data rate (efficiency) and maximizing 

the number of satisfied users (fairness). These trade-offs could be achieved by setting 

the power (CIR-threshold or water-filling level) for the users according to power “prices”. 

Power “prices” can be set according to the network load and interference or, more directly, 

according to outage probability in the network. We showed that CIR-based PC, in 

contrast to Water-filling PC, is an “evolutionary” stable, non-exploitable (by Max 

Power PC), strategy. On the other hand, CIR-based PC and Water-filling PC strategies 

may profit from each other. To encourage cooperation a “punishment” mechanism like 

a “threshold-based PC” might be used. With a “threshold-based PC” receivers in an ad-hoc 

network prevent senders from obtaining much higher data rates or signal qualities than 

defined by a certain threshold, which in turn increases the number of satisfied users by 

forcing the transmitters to reduce their powers and reduce overall interference.  

• HO makes a trade-off between the number of handovers and system capacity. With 

the increase in HO-margin, the number of handovers is reduced but the system capacity is 

reduced too. AC should make a trade-off between the number of blocked and dropped 

users. This trade-off is also load dependent: In the case of the high load, AC should give 

priority to the “HO users” i.e. the users already in the system over the new users; for low-

medium loads AC should be less restrictive i.e. admit almost all users in the system (cell).  

• An optimal DCA algorithm depends on the state (load) in network. For lower loads, 

Random, for medium loads Min I and for higher loads ARP are “optimal” DCA 

algorithms. For each cell state, an “optimal” DCA algorithm for the state can be 

“enforced” by appropriate (state dependent) “pricing”. With PC and (even more) with 

SA, an overall interference in the system is reduced so much that almost all channels have 

relatively low interference in all cells. Consequently, almost no capacity gain can be 

achieved by “smart” channel allocation in present of PC and SA for speech services. 

For NRT data services there is still capacity gain obtainable with a “good” DCA, even in 

the case of PC and SA. 

• The most gain in interference reduction and consequently in number of satisfied users 

can be obtained with SA and than with PC and then with DCA. The SA gain is almost 

load independent in contrast to the gains by the RRM algorithms like PC and DCA.    
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5 Conclusions 

”Thus our happiness will never consist, and must never consist, in complete joy, in which 
nothing is left to desire, and which would dull our mind, but must consist in a perpetual 

progress to new pleasures and new perfections.” 

Gottfried Wilhelm Leibnitz 

 

In our opinion two main contributions of this work are:  

- Methodological contribution: We showed how RRM algorithms can be developed and 

evaluated by using “pricing” and game theory methodology.  

- Simulation results: We provided simulation results for capacity gains and analyzed some 

trade-offs of different RRM algorithms. 

In the following, we describe these two kinds of contributions and give some suggestions and 

hints for further works.    

5.1 Methodological Contributions 

We showed that application of “pricing” and Game Theory on RRM algorithms brings 

following advantages: 

• It enables a unified framework for the design, analyses and comparison of RRM 

algorithms. Many of the existing, rather heuristic, algorithms can be regarded as a 

special case of a “pricing” and game theory framework described in this work. 

• The algorithms are distributed and self-adaptive. Each unit (BS or MS) optimizes only 

its own gain (expected utility), given locally available information like channel gain, 

interference and “prices” (parameters of the utility function). Thus, signaling is 

significantly reduced due to decentralized optimization. Furthermore, the RRM is also 

adaptive: We do not need to implement different algorithms for each state. Instead, we 

can use the same algorithm with different parameters (“prices”) for different states. 

• Since we assume “bounded rationality” (limited information available), “satisfactory” 

solutions and use of heuristic rules, our RRM algorithms are suitable for practical 

applications with low computation and signalization overhead.  

• The proposed approach enables an economic evaluation of benefits and costs of 

different RRM algorithms and technologies like SA. 
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5.2 Simulation Results 

5.2.1  Power Control 

A network has to find a trade-off between two basic issues: 

• Total data rate maximization  

• Maximizing of the number of satisfied users 

A possibility to make the trade-offs between total data rate and the number of satisfied users 

is a “pricing-based” PC, where the CIR-threshold or water-filling level is set according to 

the prices for the power in network. The prices are set according to the network’s load and 

interference or according to outage probability in the network.  

We showed in the networks without centralized controllers, like in ad-hoc networks, that 

CIR-based PC, in contrast to Water-filling PC, is an “evolutionary” stable i.e. non-

exploitable (by Max Power PC), strategy. Further, CIR-based PC and Water-filling PC 

may profit from each other, which is especially useful for mixed services where one 

service type (RT) can apply CIR-based PC and the other service type (NRT) could apply 

Water-filling PC. To encourage cooperation in the networks without prices a 

“punishment” mechanism like a “threshold-based PC” should be used. With a 

“threshold-based PC” receivers prevent senders from obtaining much higher data rates or 

signal qualities than defined by a certain threshold, which in turn forces the transmitters to 

reduce their powers and reduce overall interference.  

5.2.2 Channel Allocation 

Our results show that optimal channel allocation is state (load, interference) dependent: 

• Random DCA should be used in the case of very low loads, because all channels are 

“good” enough and no signalization of measurement overhead is needed.  

• Minimum interference-based or Channel Segregation DCA should be used in the case 

of low-medium loads in order to minimize interference and power consumption in the 

system. 

• Autonomous Reuse Partitioning (ARP) DCA should be used in the case of higher 

loads (user with high path-loss gets channel with low interference and vice versa) in order 

to provide almost all users with appropriate signal quality (data rate). If PC and SA are 

used, the Random DCA could be also used in the case of higher load and RT service 

like speech, because overall interference due to PC and SA is highly reduced and almost 

no further improvements could be achieved with a more sophisticated DCA like ARP. 
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Nevertheless, even with PC and SA capacity can be improved for NRT users with a 

“fair” DCA strategy like ARP. For all services significant reduction in transmit power 

can be achieved in the case of low-medium loads with minimum interference DCA .    

5.2.3 Admission Control and Handover 

Handover (HO) algorithm must make a trade-off between the number of handovers 

(signalization overhead) and system capacity (reduction of interference due to fast HO). 

This trade-off is summarized in the parameter HO-margin in the case of path-loss based HO. 

In one layer system with CIR-based PC, path-loss-based HO minimize maximal 

eigenvalues of the channel matrixes i.e. improves speed of the PC iteration cycles and 

maximize achievable CIR values on the channels. In the case of hierarchical cells or inter-

system HO (for example GSM to UMTS or vice-versa), HO algorithms can make (by 

“prices”) trade-offs between channel gain, interference and system load. 

Admission control (AC) should find a trade-off between percent of blocked and dropped 

users. AC should differentiate between new users and the users already in the systems and 

increase the “prices” for cell (system) access for new users in the case of high loads, since 

call dropping (of existing users) is generally regarded as a more severe system failure than 

call blocking (of new users).   

5.2.4 Smart Antennas 

Our results show that most capacity gain comes from the deployment of the SA. The capacity 

gain due to smart antennas can be up to 180% in comparison with the same system without 

SA (see section 4.6). The high capacity gain due to SA is due to relatively high reduction of 

generating interference by use of SA in comparison to RRM algorithms (see section 4.7) 

and this interference reduction is almost independent of the number of users in the system. 

SA effectively “decouple” the users from each other and interference reduction to some 

users is not paid by interference increase to other users as in the case of some RRM 

algorithms.   

We also showed that gains of SA and RRM algorithms can be measured on unified scale 

as an amount of total interference reduction in the system. If overall interference is 

reduced, the number of users who can be served with sufficient signal quality (system 

capacity) is also increased.  

Relatively low interference level due to SA has as a consequence that some RRM algorithm 

like a sophisticated DCA might be superfluous in presence of SA 
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5.3 Further Work 

We tried with this work to make a step further (however small) on the way to establishing the 

role of Game theory in RRM research, like, for example, linear algebra plays in signal 

processing research. 

In our opinion, we have only scratched the surface of the iceberg. Some future investigations 

that could be built upon this work are for example use of real prices instead of “fictive” 

prices to “enforce” optimal resource allocation in real networks when user utility function is 

not known, for example by auctions or investigation of “evolutionary” stable RRM 

algorithms in networks without prices like ad-hoc networks.  

We hope that this work will serve as help and motivation for further research in exciting field 

of radio resources management, or even in game theory, since mathematics can also profit 

from real world problems.    
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Appendix A: Basics of Mobile Radio Propagation 

In this chapter we describe some basic features of mobile radio propagation and channel 

modeling according to [41], [81] and [72]. An understanding of the mobile radio channel is an 

essential part of the understanding of the operation, design, and analysis of any mobile radio 

system. An illustration of how the signal strength at the mobile station antenna may look like 

according to distance from the base station is shown in Figure A1. The signal strength as a 

global mean value decreases with the distance (path-loss). Superimposed on this global mean, 

slow variations are present due to shadowing effects and fast variations due to multipath 

fading. 
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Figure A1: An example of received signal strength variations as a function of distance 

between transmitter and receiver in a mobile radio environment 

The noise in a radio channel can be classified into two classes: 

• Additive generated within the receiver, such as thermal and shot noise in passive and 

active devices; and from external sources such as atmospheric effects, and interference 

from other transmitters and  

• Multiplicative caused by effects such as reflection, absorption, scattering, diffraction, 

and refraction. 
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For complex input signal x, complex output signal samples y is obtained by the following 

equation: 

(A.1) 

Where a is multiplicative interference represented by samples of complex circularly 

symmetric process with the single-dimensional distribution of the power g = |a|2 and 

uniformly in [-π, π] and independently from g distributed phase. η stands for additive 

interference i.e. sum of thermal noise and interference from other users.   

This section describes the multiplicative interference i..e. variation of signal strength due to 

path-loss, slow fading (shadowing) and fast fading. The propagation model is depicted in 

Figure A2. Interference from other users is described in previous chapters, since it has great 

impact on design and performance of RRM algorithms. Thermal noise is usually negligible in 

comparison with interference from other users (interference limited systems).   

Figure A2: Propagation model 

Usually multiplicative noise (attenuation) is expressed in dB. In that case the total channel 

attenuation L (in dB) is the sum of the path-loss attenuation Lpl, slow fading attenuation Lsf 

gain and fast fading attenuation Lff: 

(A.2) 

L is usually between (50
attenuation and is usually m

 

In the following, we descr

from Figure 2: Path-loss, sl

 
 
 
 
 
 
 
 
 

Channel 

Transmitter 

Path 
loss  

Additive 
noise 

Slow 
fading  

Fast 
fading 

Receiver

)()()()( dBLdBLdBLdBL ffsfpl ++=

η+= axy
 and 80 
easured i

ibe separ

ow fading
dB). Channel gain g is naturally inverse to channel 
n linear scale i.e.: 

(A.3) 

ately each of the components of the propagation model 

 (shadowing) and fast fading. 

10
)(

10
dBL

g
−

=



149 
A.1 Path-loss 

Path-loss is an overall variation in signal strength mostly due to the distance between the 

transmitter and the receiver. This is caused by the outward spreading of the electromagnetic 

waves from the transmitter antenna. According to Hata model path-loss can be expressed as 

the sum of channel attenuation at the distance of 1 km L0 (which depends on antenna heights 

and gains and frequency) and distance dependent factor, which increase with the distance R 

between transmitter and receiver [81]: 

 (A.4) 
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A.3 Fast fading 

Fast fading or fast signal strength variation at the mobile receiver is caused by constructive 

and destructive interference between multiple electromagnetic waves arriving at the receiver. 

This can introduce variations as large as 35 to 40 dB. 

When objects, which reflect and scatter the transmitted signal, surround a transmitter and 

receiver, multipath propagation arises. Consequently, several waves arrive at the receiver via 

different routes. Each of the waves has a different phase, which could be considered to have 

an independent uniform distribution. This means that the phase associated with each wave is 

equally likely to take on any value. 

According to the central limit theorem, the sum of enough independent random variables very 

closely approaches a normal distribution. If the real and imaginary parts of the multipath are 

such random variables, then the magnitude of a complex gaussian random variable is a 

Rayleigh-distributed random variable [41] i.e. probability density function (pdf) of fast fading 

random variable r (Lff(dB) = 10log(r)) with standard variation σff is given by the following 

equation.  

 

 (A.6) 

Rayleigh distribution fits well with fast fading measurements in the case of a non line of sight 

(NLOS) situation i.e. when no direct link (sight) over air between mobile and base exists. In a 

line of sight (LOS) scenario, the received signal is made of both the multipath component, 

plus a coherent LOS component. This leads to the other distribution called “Rician 

Distribution” [72]. 
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Appendix B: Basics of Game Theory 

B1 Prisoners’ Dilemma Game 

In this chapter we describe some basic Game Theory results in the example of Prisoners’ 

Dilemma game[5]. For this game, the story goes as follows: Two prisoners accused of the 

same crime are kept in jail separated from each other in order to prevent mutual arrangements. 

Each prisoner has two possible options (decisions, actions): Commit or confess. A prisoner 

does not know the decision of his accomplice before taking his decision. The outcome of the 

game depends on what the both prisoners do 

• If both confess they both go to the jail for 5 years. 

• If one prisoner confesses and the other does not, the guy who confessed gets no 

punishment at all and the other guy gets 6 years. 

• If both do not confess they both go to jail for 3 years. 

This game can be represented in matrix form as represented in Table B1. The rows are 

possible actions of prisoner 1 and columns are possible actions of prisoner 2. The game 

outcome depends on actions of both players. In Table B1 gains for each possible action pair 

are given– right the gains of prisoner 1 and left the gains of prisoner 2. In order to obtain 

positive number as the gains we define the gain as: maximal number of jail years (6) -  actual 

number of jail years, since the game is not changed if the same constant (in this case 6) is 

added to all possible outcomes of the game. The game as represented in Table B1 is the game 

in normal or matrix form. 

Table B1: The Prisoners’ Dilemma Game 

Player2 

Player1                

Cooperate Defect 

Cooperate 3, 3 0, 6 

Defect 6, 0 1, 1 

As can be seen from Table B1, the optimal strategy (with highest gain) of player 1 is to defect 

whatever player 2 might do, since the values in the row “defect” are always greater than 

corresponding values of the row “cooperate” (6>3 and 1>0). In the same manner, the optimal 

strategy of player 2 is to “defect” too, since the values in the column “defect” are always 

greater than corresponding values of the column “cooperate”. In this case, we say that the 
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dominated strategy (defect) exists for both players. Some games have a dominated strategy 

for only one player and most have no dominated strategy at all. 

But if the optimal strategy for both players is to defect, no matter what the other player does, 

the pair of the strategy (defect, defect) is a stable outcome of the game – equilibrium i.e. no 

player can do better given the action(s) of other player(s). In game theory this equilibrium is 

called Nash equilibrium. More formally, Nash equilibrium is defined as follows:      

Nash equilibrium Definition [70], [26]: The Nash equilibrium of the (two players) game is a 

pair (σ, τ) of strategies (σ denotes the strategy of the player 1 and τ the strategy of player 2) 

such that the payoff of the player 1 with the strategy σ against the strategy τ of player 2 π1(σ, 

τ) is greater than the payoff of any other possible strategy s for player 1 given the strategy τ of 

player 2. Also payoff of player 2 with the strategy τ against the strategy σ  of player 1 π2(σ, τ) 

should also be greater than the payoff of any other possible strategy t for player 2 given the 

strategy σ of player 1 i.e.:  
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the recursive argument, it can also be shown that the same is true i.e. (defect, defect) is a 

“rational” outcome in each stage of the game, if the game is played finitely number of times. 

At the last stage of a finitely repeated Prisoners’ Dilemma game, only one game is left to be 

played. Each player reasons before this last stage as in the one–shot Prisoners’ Dilemma game 

and the equilibrium outcome is (defect, defect) as shown above. Further, in the last but one 

game each player knows what the outcome of the last game will be (defect, defect) and 

decisions should be made only for this one (last but one) game. Again we have the one–shot 

Prisoners’ Dilemma game, and according to the same reasoning as above the equilibrium 

outcome is (defect, defect) for this last but one game and so on … Also in the finitely repeated 

Prisoners’ Dilemma game each stage has the outcome (defect, defect). This is a disappointing 

conclusion since the strategy (cooperate, cooperate) is “better” for all players  than the 

strategy  (defect, defect)! 

B2 Repeated Games 

The good news from the Prisoners’ Dilemma game is that the rational choice for both players 

is to cooperate if the game is played infinite number of times or if the probability p (0 < p 

< 1) of game continuation is high enough. To show this, consider the “TIT FOR TAT” 

strategy [5] in which a player cooperates the first time and each time after that plays what the 

other player has played in the previous game stage. This means that the outcome of the “TIT 

FOR TAT” strategy played against the “TIT FOR TAT” strategy or against the “cooperate 

always” strategy would be (cooperate, cooperate) in each stage of the game. The expected 

“cooperative” payoff “C” of the “TIT FOR TAT” strategy against the “TIT FOR TAT” or the 

“cooperate always” strategy in the repeated Prisoners’ Dilemma game with continuation 

probability p and payoffs according to Table B.1 would be: 

C = 3 + 3p + 3p2 + …  3pN + … = 3/(1-p) 

The expected payoff D of the “defect always” strategy against the “TIT FOR TAT” strategy 

would be: 

D = 6 + 1p + 1p2 + …  1pN + … = 6+p/(1-p). 

Also the expected gain of “cooperate always” (or play “TIT FOR TAT”) against “TIT FOR 

TAT” would be larger than of “defect always” against “TIT FOR TAT” whenever: 

3/(1-p) > 6+p/(1-p) i.e. p>3/5 

Also it would be better to cooperate in the repeated Prisoners’ Dilemma against the player 

who plays “TIT FOR TAT” whenever p >3/5.  It can also be shown that the strategy pair  

(“TIT FOR TAT”, “TIT FOR TAT”) represents a Nash equilibrium for the repeated 
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Prisoners’ Dilemma game with payoffs according to Table B.1, if the probability of game 

continuation p is larger than 3/5.  

Similar results, i.e. that long-term cooperation brings more than defecting can also be 

obtained for some other repeated games and is formalized in the Folk Theorem [26], [66]: 

The Folk Theorem: If there are strategies in the one-shot game that are “better”for all players  

(like “cooperate” in the Prisoners’ Dilemma game) than the Nash equilibrium strategy (like 

“defect” in the Prisoners’ Dilemma game), and the probability of game continuation is high 

enough, every repeated game has an infinite number of Nash equilibriums (like (“TIT FOR 

TAT”, “TIT FOR TAT”) in the the repeated Prisoners’ Dilemma game). The expected 

outcomes are better than the expected outcome of always playing the Nash equilibrium 

strategy of the one-shot game (3/(1-p) > 6+p/(1-p) if p>3/5).            

The proof is based on the idea that a player can be “enforced” by the other players to any 

strategy that brings him more expected gain (“cooperative” strategy) than always playing the 

Nash equilibrium strategy of the one-shot game. The other players could make a simple 

threat: “If you defect from the “cooperative” strategy we will return to the Nash equilibrium 

strategy of the one-shot game” and your gain would be lower than when you “cooperate”. Put 

in other worlds [51]: ”Each player is told by the others to stick to the agreement or everyone 

will gang up on her. Then no single player, acting alone, has any incentive to deviate; the 

condition necessary for a Nash equilibrium”. For a rigor proof of the Folk theorem see [26] or 

[66]. 

As the Folk theorem states, there are an infinite number of possible Nash equilibriums. Each 

strategy in a repeated game, which provide a higher expected payoff than the “defect always” 

strategy against the “cooperate” strategy of other users and “punishes” the users who defect 

by defecting itself, is a Nash equilibrium strategy of the repeated game. Which one of these 

strategies is selected in practice depends on a lot of things some of which have nothing to do 

with Game theory but are the result of a certain social situation. For example, often used 

strategies are the social “focal” points strategies i.e. the strategies established in a particular 

society as “good” and desirable, “the custom” strategy i.e. the strategy that was always used 

in the past, “symmetric” strategies i.e. do the same that others do etc. For example, always 

driving on the left side or on the right side of the street are both Nash equilibrium strategies 

with essentially the same outcomes. Which Nash equilibrium strategy is selected depends on 

social convention. The resulting outcomes do not have to be even Pareto optimal i.e. provide 

each player with higher or equal payoffs than any other possible outcome. Players could stick 

to their strategies anyway because they are too inert or even do not know any better strategy. 
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For example, the strategy to select the side of the street to drive on, by throwing a die, is a 

Nash equilibrium strategy, given that other players do the same. But the Nash equilibrium 

resulting from the “random” selection of the street side is not Pareto optimal, since always 

driving on the left or always on the right makes all players better off.    

Note that “TIT FOR TAT” is a relatively simple strategy: It requires only the knowledge of 

the action of the other player in the previous stage of the game in order to make decisions for 

the next stage. The state of the player is “punish” if the opponent has chosen “defect” in the 

previous stage; otherwise the state is “do not punish”. Now the strategy “TIT FOR TAT”is 

state dependent: If the state is “punish” play “defect”, if the state is “not punish” play 

“cooperate”. This is a simple example of state dependent strategies. In general, the state of the 

player can depend on the complete previous history of the game. Naturally, state definition is 

context dependent and it is a matter of modeling art to make a “good” definition of the state 

for a particular problem. If the action depends only on the last state, we talk of a Markov 

game. “TIT FOR TAT” is also a Markov game. By the appropriate choice of states, many 

games can be converted into Markov games. The strategy of the user is then defined by the 

actions the user should take for each possible state of the game.  

It is interesting to note that in spite of its simplicity the “TIT FOR TAT” strategy achieved the 

best average score in the computer “Olympiad” organized by Axelrod [5]: Computer 

programs applying different strategies were submitted from many scientists from allover the 

world and were led by Axelrod to play the infinitely repeated Prisoners’ dilemma game 

against each other. Although some very complicated strategies were submitted, the relatively 

simple “TIT FOR TAT” strategy, showed on average, the best performance.  

B3 Evolutionary Stable Strategies 

An interesting question is: which features should a strategy possess in order to “survive” in 

environments with a mixture of different other strategies like in Axelrod’s “Olympiad”. 

Biologist like Maynard Smith [93] investigated this question in order to describe the “survival 

of fittest” within the framework of evolutionary theory. They found out that a “successfully” 

strategy should be an Evolutionary Stable Strategy (ESS), which is defined as follows: 

The strategy S is called evolutionary stable if [93]: 

1) The expected gain of the strategy S played with itself E(S,S) is greater than the expected 

gain E(S,O) from all other strategy O played with the strategy S i.e.:                        

E(S,S) > E(S,O) for all other strategies O or                          

2) If E(S,S) = E(S,O) than E(S,O) > E(O,O) for all other strategies O. 
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The expected gain of the strategy played against the other strategies measures a relative 

“fitness” of the strategy in a population of different strategies. 

For example in a population consisting of “TIT FOR TAT”, “cooperate always” and “defect 

always”, “TIT FOR TAT” is an evolutionary stable strategy since E(“TIT FOR TAT”, “TIT 

FOR TAT”) > E(“defect always”, “TIT FOR TAT”) (see above). Although E(“cooperate 

always“, “TIT FOR TAT”) =  E(“TIT FOR TAT”, “TIT FOR TAT”), “cooperate always” is 

not resistant against the invasion of “defect always” mutants, since  E(“cooperate always “, 

“cooperate always”)  < E(“defect always “, “cooperate always”) (see above).   

We could say that “good” strategies (like “TIT FOR TAT”) should [5]: 

- Be nice at the beginning 

- Punish those who defect themselves, even if the “punishment” costs more than no 

punishment, in order to discourage motivation for “defecting”.  

- “Forgive” i.e. if a “defecting” player returns to the cooperative behavior then cooperate 

too.  

It is important to note that only “nice” strategy like “cooperate always” opens the door for 

“exploitation” by defecting strategies like “defect always”. Therefore, a sort of “punishment” 

mechanisms should be build in each strategy in order to discourage defecting and make the 

strategy an ESS.   
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Appendix C: List of Acronyms 

 

AC Admission Control 

ATM Asynchronous Transfer Modus 

BER Bit Error Rate 

BS Base Station 

CIR Carrier to Interference Ratio 

CSI Channel State Information 

DCA Dynamic Channel Allocation 

GSM General System for Mobile Communications 

HO Handover of Handoff 

MS Mobile Station 

NRT Non Real Time (Service) 

OMC Operation and Maintance Centar 

PC Power Control 

QoS Quality of Service  

RNC Radio Network Controler 

RRM Radio Resource Management  

RT Real Time (Service) 

SA Smart Antennas 

SH Scheduler 

SIR Signal-to-Interference Ratio 

UMTS Universal Mobile Telecommunication System 

WLAN Wireless Local Area Network  

4G 4. Generation of Wireless Networks 
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