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Kurzfassung

Die Verfügbarkeit hoher Datenraten für mobile Teilnehmer ist eine der wichtig-

sten Eigenschaften zukünftiger Mobilfunksysteme. Wir untersuchen ein MC-CDMA

(multi-carrier code division multiple access) System bei dem eine OFDM (orthogonal

frequency division multiplexing) basierte Mehrträgerübertragung mit der Spreizung

der Datensymbol im Frequenzbereich verbunden wird. Die Spreizsequenz dient zur

Identifikation der Benutzer und ermöglicht die Ausnützung der Mehrwegediversität

des Mobilfunkkanals. Die Übertragung ist blockorientiert, wobei sich ein Block aus

OFDM Pilot- und OFDM Datensymbolen zusammensetzt.

Für Schrittgeschwindigkeit kann der Mobilfunkkanal als konstant für die Dauer

eines Datenblocks modelliert werden. Wir verwenden ein iteratives Mehrbenutzerde-

tektionsverfahren. Hierbei werden Softsymbole aus den Ausgangsdaten des Dekoders

gewonnenen. Mittels dieser Softsymbole kann die Interferenz, die durch an-

dere Benutzer verursacht wird, reduziert werden. Wir entwickeln ein iteratives

Kanalschätzverfahren das die zurückgeführten Softsymbole zur Verbesserung der

Kanalschätzung verwendet. Die Bitfehlerrate des iterativen Empfängers kommt

der Einbenutzergrenze nahe. Die Einbenutzergrenze ist die Bitfehlerrate die der

Empfänger für einen einzelnen Benutzer und bei perfekter Kanalkenntnis erreicht.

Zur weiteren Verbesserung der Kanalschätzung nützen wir den geschätzten Mit-

telwert und die geschätzte Varianz der Softsymbole. Diese Informationen können

aus den Dekoderausgangsdaten abgeleitet werden da die Datensymbole aus einem

Alphabet mit konstantem Betrag stammen. Die iterative Kanalschätzung die diese

Informationen zur Minimierung des quadratischen Fehlers (MMSE, minimum mean

square error) nützt, führt zu verbesserter Konvergenz des iterativen Empfängers.

Bei Fahrzeuggeschwindigkeit ändert sich der Kanal signifikant über die Dauer

eines Datenblocks. Wir benötigen daher eine adäquate Beschreibung seiner zeitlichen

Veränderung. Wir untersuchen Algorithmen die den zeitvarianten Kanal schätzen

können, ohne genaue Information über seine Statistik zweiter Ordnung zu benötigen.

Es wird nur die Kenntnis der maximalen Dopplerbandreite in einem Mobilfunksys-

tem, die durch die Trägerfrequenz und die maximale Geschwindigkeit der Benutzer

bestimmt ist, angenommen.

Wir untersuchen zuerst zeitvariante frequenzflache Kanäle und analysieren die

v



Fourier Basisentwicklung für die zeitvariante Kanalschätzung. Die Analyse zeigt,

dass die Fensterung durch die begrenzte Blocklänge zu spektraler Verschmierung

führt und die beschränkte Dimension der Fourier Basisentwicklung einen Effekt

ähnlich dem Gibbs Phänomen verursacht. Beide Mechanismen zusammen sind der

Grund für systematische Schätzfehler.

Slepians Theorie der zeitkonzentrierten und bandlimitierten Sequenzen eröffnet

einen neuen Ansatz für die zeitvariante Kanalschätzung. Diese Theorie ermöglicht

das Design von doppelt orthogonalen DPS (discrete prolate spheroidal) Sequenzen

die an die Datenblocklänge und die maximale Dopplerbandbreite angepasst sind. Die

DPS Sequenzen werden zur Definition der Slepian Basisentwicklung verwendet. Wir

beweisen analytisch, dass der systematische Schätzfehler der Slepian Basisentwick-

lung mindestens eine Zehnerpotenz kleiner ist als der der Fourier Basisentwicklung.

Die Slepian Basisentwicklung verliert ihre Orthogonalität für pilotbasierte

Kanalschätzung und ihr systematischer Schätzfehler wächst mit sinkender Pilotan-

zahl. Wir lösen dieses Problem durch das Design neuer endlicher Sequenzen die

auch auf dem Pilotraster orthogonal sind und weiterhin bandlimitiert und zeitkom-

primiert bleiben. Die generalisierte endliche Slepian Basisentwicklung, die auf den

resultierenden generalisierten FDPS (finite discrete prolate spheroidal) Sequenzen

aufbaut, zeigt die beste Leistung für pilotbasierte Kanalschätzung. Wir beweisen

dies durch analytische Ergebnisse und präsentieren numerische Simulationen.

Wir verwenden die generalisierte endliche Slepian Basisentwicklung für die

Kanalschätzung eines zeitvarianten frequenzselektiven Kanals in einem MC-CDMA

System in der Abwärtstrecke. Simulationsergebnisse zeigen die hervorragende Leis-

tung dieses Kanalschätzverfahrens speziell für eine geringe Anzahl an Pilotsym-

bolen. Der zeitvariante frequenzselektive Kanal bietet Mehrwegediversität und

Dopplerdiversität. Ein MC-CDMA System kann beide Diversitätsquellen durch Ver-

schachtelung und Kodierung der Datensymbole ausnützen. Wir leiten ein analytis-

ches Maß für die Dopplerdiversität ab und untersuchen mit Simulationsergebnissen

wie viel Diversität ein MC-CDMA System tatsächlich nützen kann.

Wir entwickeln in dieser Dissertation eine iterative Empfängerarchitektur für die

Aufwärtsstrecke mit Mehrbenutzerdekodierung für zeitvariante Mobilfunkkanäle.

Dieser Empfänger nähert sich der Einbenutzergrenze bis auf 2.5 dB unter voller

Last mit 64 Benutzern, für ein Signal zu Rauschverhältnis von 14 dB und mit mo-

bilen Benutzern die sich mit einer Geschwindigkeit im Bereich von 0 bis 100 km/h

bewegen.



Abstract

Wireless broadband communications for users moving at vehicular speed is a cor-

nerstone of future fourth generation (4G) mobile communication systems. We inves-

tigate a multi-carrier (MC) code division multiple access (CDMA) system which is

based on orthogonal frequency division multiplexing (OFDM). A spreading sequence

is used in the frequency domain in order to distinguish individual users and to take

advantage of the multipath diversity of the wireless channel. The transmission is

block oriented. A block consists of OFDM pilot and OFDM data symbols.

At pedestrian velocities the channel can be modelled as block fading. We ap-

ply iterative multi-user detection and channel estimation. In iterative receivers soft

symbols are derived from the output of an soft-input soft-output decoder. These

soft symbols are used in order to reduce the interference from other users and to

enhance the channel estimates. We develop an iterative channel estimation scheme

for MC-CDMA. The iterative MC-CDMA receiver achieves a performance close to

the single-user bound in moderately overloaded systems. The single-user bound is

defined as the performance for one user and perfect channel knowledge.

In order to obtain enhanced iterative channel estimates we take advantage of

additional information like the estimated mean and variance of the soft symbols,

which can be obtained from the decoder output since the used symbol alphabet

has constant modulus. Using these information a linear minimum mean square er-

ror (MMSE) channel estimator is derived. The iterative receiver achieves enhanced

convergence towards the single-user bound with the linear MMSE channel estimator.

At vehicular velocities, the channel can not be treated as block fading for the dura-

tion of a data block. Instead, its temporal variation must be modelled adequately. We

investigate channel estimation algorithms that do not need the knowledge of com-

plete second order statistics. We assume an upper bound for the Doppler bandwidth

only, which is determined by the carrier frequency and the maximum supported

velocity. This approach is motivated by the fact that existent wireless channels do

not adhere to Jakes’ model.

First, we deal with time-variant frequency-flat channels. We analyze the Fourier

basis expansion, i.e. a truncated discrete Fourier transform (DFT), for time-variant

channel estimation. The analysis shows that the windowing due to the block-based
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transmission leads to spectral leakage and the truncation of the DFT gives rise to an

effect similar to the Gibbs phenomenon. Both mechanisms together lead to biased

channel estimates.

Slepian’s theory of time-concentrated and bandlimited sequences allows a new

approach for time-variant channel estimation. It enables the design of doubly or-

thogonal discrete prolate spheroidal (DPS) sequences with just two parameters; the

block length and the maximum Doppler bandwidth. The DPS sequences are used

to define a Slepian basis expansion. We give analytic results showing that the bias

of the Slepian basis expansion is at least one magnitude smaller compared to the

Fourier basis expansion.

The Slepian basis expansion performance degrades for pilot based channel esti-

mation because the orthogonality of the basis functions is lost due to the pilot grid.

We tackle this problem by designing a new set of finite sequences that are orthogo-

nal over the pilot index positions but keep their bandlimited and time-concentrated

properties. The resulting generalized finite Slepian basis expansion achieves best

performance for pilot based time-variant channel estimation which is proven by an-

alytical results and shown in numerical simulations.

We apply the generalized finite Slepian basis expansion for time-variant frequency-

selective channel estimation in an MC-CDMA downlink and discuss simulation re-

sults. The time-variant frequency-selective channel offers Doppler diversity in ad-

dition to multipath diversity. An MC-CDMA system can take advantage of the

Doppler diversity through interleaving and coding over a data block. We derive an

analytic measure for the Doppler diversity of a time-variant channel and support it

by simulation results.

In this thesis, we design an iterative receiver-architecture for an MC-CDMA uplink

with multi-user decoding for time-variant mobile radio channels. It is shown that

this receiver type reaches the single-user bound up to 2.5 dB under full load with

N = 64 users, at an Eb/N0 = 14 dB, and for mobile users moving with velocities in

the range from 0 to 100 km/h.
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and Maja Lončar. The collaboration with them was a constant source of new ideas,

chocolate, coffee and entertaining hours. The professional, inspiring, and open work

environment at ftw., shaped by Markus Kommenda and Horst Rode, provided the

basis for the work on this thesis.

I would like to thank my family and my friends for their continuous sympathy in

my research adventure, and Dada for being the smiling sun in my life.

ix





Contents

1 Introduction 1

1.1 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Multi-Carrier Code Division Multiple Access (MC-CDMA) 7

2.1 Why Multi-Carrier Transmission? . . . . . . . . . . . . . . . . . . . . 7

2.2 Orthogonal Frequency Division Multiplexing (OFDM) . . . . . . . . . 10

2.3 Single-User Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Multi-User Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Multi-User Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Spreading Sequences . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Linear Detector Types . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Iterative Multi-User Detection . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Iterative Channel Estimation for Block-Fading Channels 25

3.1 Iterative Least-Square Channel Estimation . . . . . . . . . . . . . . . 25

3.1.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Comparison Between MC-CDMA and DS-CDMA . . . . . . . 31

3.1.4 Channel Estimation Error . . . . . . . . . . . . . . . . . . . . 31

3.2 Iterative Linear Minimum Mean Square Error Channel Estimation . . 32

3.2.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Other Communication Systems . . . . . . . . . . . . . . . . . 36

3.3 Block Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Time-Variant Channel Estimation 39

4.1 How to Deal With Time Variation? . . . . . . . . . . . . . . . . . . . 40

4.2 Time-Variant Channel Model . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Signal Model for a Frequency-Flat Channel . . . . . . . . . . . . . . . 42

4.4 Fourier Basis Expansion and its Deficiencies . . . . . . . . . . . . . . 42

xi



4.4.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Definition of the Fourier Basis Expansion . . . . . . . . . . . . 44

4.4.3 Performance Results for Single Path Channel . . . . . . . . . 46

4.5 Slepian Basis Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Parameter Estimation From Noisy Observations . . . . . . . . 52

4.5.2 Analytic Performance Results . . . . . . . . . . . . . . . . . . 54

4.5.3 Numerical Performance Results . . . . . . . . . . . . . . . . . 56

4.6 Pilot Based Channel Estimation . . . . . . . . . . . . . . . . . . . . . 59

4.7 Finite Slepian Basis Expansion . . . . . . . . . . . . . . . . . . . . . 61

4.7.1 Operator Representation . . . . . . . . . . . . . . . . . . . . . 62

4.7.2 Generalized Finite Slepian Basis Expansion . . . . . . . . . . 64

4.8 Basis Expansion Error Analysis for Pilot Based Channel Estimation . 68

4.8.1 Basis Expansion Bias . . . . . . . . . . . . . . . . . . . . . . . 68

4.8.2 Basis Expansion Variance . . . . . . . . . . . . . . . . . . . . 69

4.8.3 Simulation Model and System Assumption . . . . . . . . . . . 70

4.8.4 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8.6 Further Comparisons and Discussion . . . . . . . . . . . . . . 73

5 Time-Variant Frequency-Selective Channel Estimation 77

5.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Time-Variant Multi-User Detector . . . . . . . . . . . . . . . . . . . . 80

5.3 Time-Variant Channel Estimator . . . . . . . . . . . . . . . . . . . . 81

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Doppler Diversity in MC-CDMA . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Diversity Measure . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Flat-Fading Multiple-Input Multiple-Output (MIMO) Channel 85

5.5.3 Time-Variant Flat-Fading Single-Input Single-Output Channel 86

5.5.4 Maximum Diversity for a Given Doppler Bandwidth . . . . . . 87

5.5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Iterative Multi-User Detection and Time-Variant Channel Estimation 91

6.1 Uplink Signal Model for Time-Variant Frequency-Selective Channels . 92

6.2 Iterative Time-Variant Multi-User Detection . . . . . . . . . . . . . . 93

6.2.1 Time-Variant Parallel Interference Cancellation . . . . . . . . 94

6.2.2 Time-Variant Unbiased Conditional MMSE Filter . . . . . . . 94

6.3 Iterative Time-Variant Channel Estimation . . . . . . . . . . . . . . . 95

6.3.1 Signal Model for Time-Variant Channel Estimation . . . . . . 95

6.3.2 Linear MMSE Channel Estimation . . . . . . . . . . . . . . . 97

6.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 99



7 Conclusions 103

A Simulation Model for Time-Variant Channels with Jakes’ Spectrum 107

B List of Abbreviations 109

C List of Symbols 111

Bibliography 115





1 Introduction

Wireless broadband communication for users moving at vehicular speed is the cor-

nerstone of future fourth generation (4G) mobile communication systems. Current

systems like UMTS [1] provide a maximum bit rate of 384 kbit/s for mobile users

while wireless local area network (LAN) systems like IEEE 802.11a [29] provide more

than 10 Mbit/s under ideal conditions in an office environment. Figure 1.1 shows the

mobility bit-rate regions for different communication systems [58].
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Figure 1.1: Mobility versus bit rate for existing and future wireless communication

systems [58].

Users moving at vehicular speed communicate over a wireless channel that ex-

hibits time-variant frequency-selective characteristics due to multipath propagation

and Doppler effects. Thus, accurate channel state information at the receiver side,

an appropriate modulation format, an efficient multiple access scheme and low com-

plexity equalization algorithms are necessary to enable high bit rate transmission.

In this thesis we develop solutions for these challenging problems based on orthog-

onal frequency division multiplexing (OFDM) [81] which uses multiple orthogonal

subcarriers to transmit information. OFDM is used in state of the art wireless high

bit rate applications like digital video broadcast terrestrial (DVB-T) [59,19], digital

audio broadcast (DAB) [18], digital radio mondial (DRM) [20] and in wireless LANs

according to the IEEE 802.11a standard. For high bit-rate downlink applications
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1 Introduction

a UMTS extension based on OFDM is under discussion [2]. IEEE 802.20 [30] is

another currently developed high bit-rate communication standard for mobile users

that will be based on OFDM too.

1.1 Outline and Contributions

The thesis is organized in the following chapters and the author’s contributions are

as follows:

Chapter 2: Multi-Carrier Code Division Multiple Access (MC-CDMA)

Starting with multipath propagation in wireless channels the dependence of the

inter-symbol interference on the delay spread and the bit rate is discussed. In order

to avoid the high complexity of time domain equalizers at high bit-rates OFDM [11]

has been introduced. In OFDM the information is transmitted over a set of orthog-

onal subcarriers which enables low complexity equalization of frequency-selective

channels.

Linear precoding [16], i.e. spreading, has been introduced in order to avoid the

influence of strongly attenuated subcarriers [96] which are caused by the frequency-

selective nature of the wireless channel. The spreading operation additionally dis-

tinguishes the individual users in a multi-user system [34]. A short introduction of

multi-user detection [75, 50] is given before iterative multi-user detection based on

parallel interference cancellation and minimum mean square error (MMSE) filtering

is introduced [51,80].

Chapter 3: Iterative Channel Estimation for Block-Fading Channels

Accurate channel estimation is crucial for the performance of a multi-user receiver.

In this chapter we assume that the wireless channel has block-fading frequency-

selective characteristic, i.e. the channel stays constant for the duration of a data

block. A data block consists of OFDM pilot and OFDM data symbols.

We design an iterative least-square channel estimation scheme for the MC-CDMA

uplink where deterministic pilot information is combined with soft-symbols in order

to obtain enhanced channel estimates [91]. The soft-symbols are derived from the

output of a soft-input soft-output decoder, implemented using the BCJR algorithm

[6]. An MC-CDMA receiver using this scheme achieves a performance close to the

single-user bound. The single-user bound is defined as the receiver performance for

one user and perfect channel knowledge at the receiver side.

The channel estimation performance degrades if the number of users is bigger than

the degrees of freedom for the spreading sequence (overloaded system). In order to
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1.1 Outline and Contributions

accommodate to this situation we derive an improved channel estimator based on

the linear MMSE criterion. This estimator exploits statistical information, like the

mean and the variance of the soft-symbols, which can be derived from the decoder

output. Hence, we achieve a monotonically decreasing channel estimation error with

increasing number of iterations in overloaded systems and at low signal to noise

ratios [84].

Chapter 4: Time-Variant Frequency-Flat Channel Estimation

The variation in time of the wireless channel is caused by user mobility and multipath

propagation. In this chapter we limit our considerations to time-variant frequency-

flat channels, i.e. the symbol duration is longer than the delay spread of the channel.

In this case the channel is memory-less. We discuss different time-variant channel

estimation methods highlighting their applicability for receivers with block process-

ing. In this thesis we focus on algorithms that do not need complete knowledge of

the second order statistics of the fading process. This is due to the fact that real

wireless channels do not adhere to Jakes’ model [92]. However, we do exploit the

fact that the variation of a frequency-flat channel over the duration of a data block

is upper bounded by the maximum Doppler bandwidth which is determined by the

maximum velocity of the users and the carrier frequency. We analyze the well-known

Fourier basis expansion [9] and show its weaknesses [88].

To overcome the drawbacks of the Fourier basis expansion we exploit results

from the theory of time-concentrated and bandlimited sequences [70, 69] and apply

a Slepian basis expansion for time-variant frequency-flat channel estimation. The

Slepian basis functions are designed according to the block length and the maxi-

mum Doppler bandwidth. We establish analytic results for the mean square error

per subcarrier enabling an easy comparison between the Slepian basis expansion and

any other set of basis functions [52]. The bias of the Slepian basis expansion is shown

to be at least one magnitude smaller compared to the Fourier basis expansion.

The Slepian basis expansion is biased when a pilot grid is used for channel estima-

tion. We develop a generalized finite Slepian basis expansion using basis functions

that are time-concentrated, bandlimited, and orthogonal on the pilot grid. This

enables time-variant frequency-flat channel estimation with extremely low complex-

ity [85,87]. We develop analytic expressions for the bias and variance of pilot-based

basis expansion channel estimators [87] extending the concepts of [52].

We describe a simulation model for time-variant channels with Jakes’ spectrum

based on [93]. This simulation model generates channels with correct Rayleigh fading

statistic for the full velocity range [86] and converges to a block fading channel for

zero velocity. We use Jakes’ model for the purpose of performance evaluation in

order to enable easy comparisons with existing results in the literature only.

3



1 Introduction

Chapter 5: Time-Variant Frequency-Selective Channel Estimation

We develop a channel estimator for an MC-CDMA downlink by generalizing the

results from Chapter 4 for frequency-selective channels [87]. An upper bound for the

Doppler diversity of a time-variant channel [86] is derived and we give simulation

results demonstrating the ability of MC-CDMA to take advantage of Doppler di-

versity if the channel estimation is based on the finite Slepian basis expansion. The

receiver performs better with increasing speed of the user.

Chapter 6: Iterative Time-Variant Channel Estimation and Data Detection

We present an iterative multi-user detector and time-variant channel estimator for

an MC-CDMA uplink. We apply the Slepian basis expansion for pilot based time-

variant frequency-selective channel estimation and combine it with the iterative

scheme developed in Chapter 3. Thus, we combine deterministic pilot information

with soft symbols so that we obtain enhanced time-variant channel estimates. An

iterative linear MMSE estimation algorithm for the basis expansion coefficients in

a multi-user system is derived. The consistent performance of the iterative receiver

for a wide range of velocities is validated by simulations [90,89].

4



1.2 Notation

1.2 Notation

We use the notation presented in Table 1.1 throughout this thesis:

Symbol Description

f(t) function of a continuous variable

f [m] function of a discrete variable

a column vector

a[i] i-th element of a

A matrix

[A]i,` i, ` -th element of A

AP×Q upper left part of A with dimension P × Q

AT transpose of A

AH conjugate transpose of A

diag(a) diagonal matrix with entries a[i]

IQ Q × Q identity matrix

F Q Q × Q unitary Fourier matrix

1Q Q × 1 column vector with all ones

0Q Q × 1 column vector with all zeros

a∗ complex conjugate of a

bac largest integer, lower or equal than a ∈ R

dae smallest integer, greater or equal than a ∈ R

|a| absolute value of a

‖a‖ `2 norm of vector a

‖A‖F Frobenius norm of matrix A

vec(A) stacks all columns of matrix A in a single vector

j
√
−1

δi` 1 for i = `, 0 otherwise

Table 1.1: Notation used throughout this thesis.
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2 Multi-Carrier Code Division

Multiple Access (MC-CDMA)

Electromagnetic waves are the medium of choice for the transmission of information

between two remote locations if one side or both sides are moving. However, the

flexibility of wireless communication does not come at no cost.

2.1 Why Multi-Carrier Transmission?

Electromagnetic waves, transmitted from an antenna, arrive at the receiving antenna

via different paths. Figure 2.1 gives a simplified schematic representation of such a

wireless multipath wave propagation scenario.

base station

η1δ(t − τ1)

η0δ(t − τ0)

η2δ(t − τ2)

user

scatterer

scatterer

Figure 2.1: Wireless multipath propagation. Every path ` has attenuation η` and

time delay τ`.

Every path ` experiences a specific attenuation η` and time delay τ` corresponding

to the runtime of the electromagnetic wave. This is why the channel impulse response

is made up by the sum of L′ different paths, mathematically described by

h′(t) =
L′−1∑

`=0

η`δ(t − τ`) . (2.1)
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)

Throughout this thesis we use an equivalent sampled baseband description for the

wireless channel. Thus, we combine the effect of the up-converter, the transmit filter

hT(t), the channel h′(t), the matched receive filter hR(t) and the down-converter

into the equivalent, complex-valued impulse response

h(t) = hT(t) ∗ h′(t) ∗ hR(t) (2.2)

where ∗ denotes convolution. The sampling operation at rate 1/TC is denoted by

h[`] = h(`TC) (2.3)

where discrete time ` ∈ {0, . . . , L − 1} with L denoting the essential support of the

sampled impulse response. We assume Rayleigh fading characteristics [54],

E

{
|h[`]|2

}
= η2[`]

and an exponential decaying power delay profile η2[l] according to COST 259 [15]

η2[`] =
e
− `

LD

L−1∑

`′=0

e
− `′

LD

(2.4)

where

LD = TD/TC

denotes the root mean square delay spread TD normalized to the sampling rate 1/TC.

In this thesis the term delay spread is used as short form for root mean square delay

spread, throughout. In the special case of an exponential power delay profile (2.4)

the delay spread gives the time after which the power delay profile has decayed to

1/e. For the case of a general impulse response the delay spread is defined as the

second central moment of the power delay profile [56]

TD =

√
√
√
√
√
√
√
√

L′−1∑

`=0

η2
` τ`

L′−1∑

`=0

η2
`

−








L′−1∑

`=0

η2
` τ

2
`

L′−1∑

`=0

η2
`








2

We neglect path loss and assume perfect power control

L−1∑

`=0

η2[`] = 1 . (2.5)
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2.1 Why Multi-Carrier Transmission?

Topology Delay spread TD Max. path length difference

office building 40ns 15m

corridor 120ns 35m

typical urban 400ns 120m

Table 2.1: Root mean square delay spread TD in different topologies for a single

reflecting cluster according to COST259 [15].

The essential support of the sampled impulse response L is selected according to

the signal to noise ratio at which the wireless communication system will operate:

L ≥ 1 + TD/TC ln

(
Eb

N0

)

. (2.6)

Hence, components of the channel impulse response that are smaller than the signal

to noise ratio are not taken into account. We also assume perfect time- and frequency

synchronization.

The delay spread TD is mainly influenced by the topology and the material of

the surrounding area. Table 2.1 lists typical values for the delay spread of a single

reflecting cluster [15]. These values are further increased if metallic reflectors are

present. In COST 259 scenarios like bad urban or hilly terrain the possibility of

further reflecting clusters is high. This leads to longer impulse responses consisting

of a superposition of several individual exponential decaying components. For the

sake of simplicity we use the typical urban scenario and model the channel with one

reflecting cluster, only.

Figure 2.2 shows the channel impulse response magnitude |h(t)| of a typical urban

scenario in Oslo. The impulse response was obtained by channel sounder measure-

ments [27]. Additionally, Figure 2.2 shows the sampled impulse response magnitude

|h[n]| sampled at the UMTS sampling rate 1/TC = 3.84 · 106 s−1.

In a simple communication system the sequence of symbols d[n] is directly trans-

mitted over the multipath channel h[n] where n denotes discrete time at rate 1/TC.

The received signal is given by the convolution of the symbol sequence with the

channel impulse response:

x[n] =
L−1∑

`=0

h[`]d[n − `] = h[0]d[n] +
L−1∑

`=1

h[`]d[n − `]

︸ ︷︷ ︸

ISI

(2.7)

From (2.6) and Figure 2.2 it becomes clear that the number of samples L that repre-

sent the impulse response increase linearly with increasing sample rate 1/TC. Thus,

9



2 Multi-Carrier Code Division Multiple Access (MC-CDMA)
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Figure 2.2: Impulse response magnitude |h(t)| obtained through channel sounder

measurement in an urban scenario in Oslo [27]. Additionally, we also

depict the sampled impulse response magnitude |h[`]| sampled at the

UMTS sampling rate 1/TC = 3.84 · 106 s−1. The time origin was placed

at τ0, the time delay of the first arriving wavefront.

the inter-symbol interference (ISI) described by the second term in (2.7) increases

too. The application of a time-domain equalizer is the classical approach to remove

the inter-symbol interference. However, a time-domain equalizer gets prohibitively

complex with increasing data rate since the number of operations necessary grows

with O(L2).

In the next section we will introduce orthogonal frequency division multiplex-

ing (OFDM). This is a technique that is able to avoids inter-symbol interference

completely [11].

2.2 Orthogonal Frequency Division Multiplexing

(OFDM)

The basic idea of OFDM is to transmit N symbols in parallel over N different

subcarriers [81] while enlarging the symbol duration N times. Figure 2.3 visualizes

the OFDM principle through a rotation of the time-frequency plane. In a single-

carrier system each symbol occupies the full bandwidth. In an multi-carrier system

the symbol duration is enlarged N times and simultaneously the bandwidth con-

sumption of each symbol is reduced by the same factor N . The overall data-rate

10



2.2 Orthogonal Frequency Division Multiplexing (OFDM)
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Figure 2.3: We illustrate the difference between a single-carrier and a multi-carrier

system through a rotation of the time-frequency plane. The transmitted

data symbols are denoted d[1] . . . d[8]. The multi-carrier system uses N =

8 subcarriers.
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Figure 2.4: Subcarrier frequency-spectra in an OFDM system. The subcarrier have

bandwidth ∆f . The center frequency of subcarrier q is denoted by fq.

and bandwidth consumption is kept constant trough parallel transmission over N

independent subcarriers.

The subcarrier spectra overlap, as depicted in Figure 2.4. However, if the center

frequency of each subcarrier q is chosen as

fq = q/(NTC) (2.8)

for q ∈ {0, . . . , N − 1} the subcarriers are orthogonal despite their overlapping

spectra. OFDM is a special case of a multi-carrier scheme with overlapping but

orthogonal subcarriers.

Figure 2.5 shows all operations that are necessary for OFDM. Each subcarrier is

modulated by a symbol (from a binary phase shift keying (BPSK) alphabet in this

example) and the resulting signals are summed up. These operations are equivalent

to an inverse discrete Fourier transform (DFT). The inverse DFT can be efficiently
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)
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Figure 2.5: OFDM needs the following processing steps: First the subcarriers are

multiplied by the individual data symbols, then the resulting signals are

added together.

t

T
S

Figure 2.6: Cyclic prefix insertion: A copy of the signal tail is inserted at the begin-

ning of each OFDM symbol.

implemented by means of the inverse fast Fourier transform. The existence of such

an efficient algorithm for the actual implementation is one major reason for the

widespread application of OFDM.

OFDM enlarges the symbol duration by a factor of N , as depicted in Figure 2.3,

which results in reduced inter-symbol interference. However, in order to completely

remove the inter-symbol interference a cyclic prefix is inserted in front of every

OFDM symbol. The cyclic prefix is a copy of the OFDM symbol tail. We illustrate

this operation in Figure 2.6. A mathematically more thorough explanation of the

cyclic prefix follows in the next section. For complete inter-symbol interference re-

moval the length of the cyclic prefix G must be longer than the essential support of

the channel impulse response L,

G ≥ L . (2.9)
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2.3 Single-User Signal Model

The length of the OFDM symbol in chips after insertion of the cyclic prefix is denoted

by P = N + G.

After this treatment of OFDM at a glance we give a more detailed and mathe-

matical description of OFDM for the single-user case in the following section.

2.3 Single-User Signal Model

OFDM maps a symbol vector d[m] ∈ C
N into a chip vector according to

µ[m] = T CPF H
Nd[m] . (2.10)

After parallel to serial conversion the chips are serially transmitted over the multi-

path channel. We denote discrete time at rate 1/TS by m. The unitary DFT matrix

F N ∈ C
N×N has elements

[F N ]i,` =
1√
N

e
−j2πi`

N , i, ` ∈ {0, . . . , N − 1} . (2.11)

The cyclic prefix insertion is described via matrix

T CP =

[
ICP

IN

]

∈ R
P×N .

This matrix replicates the last G chips of each OFDM symbol to the front. ICP ∈
R

G×N denotes the last G rows of the identity matrix IN ∈ R
N×N [94, 78].

We formulate the parallel to serial conversion of the chip vector as

µ[m] =






µ[mP ]
...

µ[mP + P − 1]




 ∈ C

P .

The chip sequence µ[n] with chip rate 1/TC is transmitted over a multipath Rayleigh

fading channel with block-fading characteristic. We assume the channel to remain

constant for M OFDM symbols. The chip rate is P -times the symbol rate

1

TC

= P
1

TS

.

The multipath fading channel h[`] has an essential support of length L. We as-

sume that the components of h[`] for ` ≥ L do not contribute to the inter-symbol

interference since they are below the signal to noise ratio (see (2.6)). We express the

channel impulse response in vector notation as

h =






h[0]
...

h[L − 1]




 ∈ C

L .
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)

The resulting signal at the receiver input without noise is given by

x[n] =
L−1∑

`=0

h[`]µ[n − `] . (2.12)

The received signal in the presence of complex additive white Gaussian noise z[n]

with zero mean and variance σ2
z can be written as

r[n] = x[n] + z[n].

Following the lines of [78, 94] we convert the serial representation of (2.12) into

vector-matrix form. We define the vector

x[m] =






x[mP ]
...

x[mP + P − 1]




 ∈ C

P

and equivalently

z′[m] =






z[mP ]
...

z[mP + P − 1]




 ∈ C

P .

Let

H(0) =













h[0] 0 . . . 0
...

. . .
...

h[L − 1]

0
. . .

...
. . . 0

0 . . . 0 h[L − 1] . . . h[0]













∈ C
P×P

be the lower triangular Toeplitz channel matrix and let

H(1) =













0 . . . 0 h[L − 1] . . . h[1]
. . . . . . . . .

...

h[L − 1]

0
...

...

0 . . . 0













∈ C
P×P

be the upper triangular Toeplitz channel matrix. We can write (2.12) as

x[m] = H(0)µ[m] + H (1)µ[m − 1]
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2.3 Single-User Signal Model

where the second term represents the inter-symbol interference between two consec-

utive OFDM symbols.

At the receiver the cyclic prefix of length G is removed, and a DFT is performed on

the remaining N chips. The cyclic prefix removal can be represented by the matrix

RCP = [0N×GIN ] ∈ R
N×P

which removes the first G entries from the vector x[m] ∈ C
P if the product RCPx[m]

is formed. As long as (2.9) holds,

RCPH(1) = 0N×P ,

which indicates that the inter-symbol interference between two consecutive OFDM

symbols is completely eliminated.

Finally, the received signal can be written as:

y[m] = FRCP(x[m] + z′[m]) = FRCPH(0)µ[m] + FRCPz′[m]

= FRCPH(0)T CPF Hd[m] + FRCPz′[m]

= FH̄F Hd[m] + FRCPz′[m] (2.13)

where H̄ ∈ C
N×N is the overall circulant channel matrix. This matrix can be

decomposed as

H̄ = RCPH(0)T CP = F Hdiag(g)F (2.14)

where the frequency response g ∈ C
N is defined as the DFT of the channel impulse

response

g =
√

NF N×Lh .

Equation (2.14) describes the essential mathematical footing of OFDM. The

Toeplitz structure channel matrix H(0) is circularized by insertion of the cyclic

prefix. Therefore, the columns of the DFT matrix are exact eigenvectors and the

resulting channel matrix diag (g) has diagonal structure. The inversion of diag (g),

which is necessary for channel equalization, has complexity O(N). In contrast, the

channel matrix in a single-carrier system has full Toeplitz structure. The inversion

of a Toeplitz matrix is an operation with complexity O(N2).

Using (2.14) we write (2.13) as

y[m] = diag(g)d[m] + z[m], (2.15)

where the elements of z[m] = FRCPz′[m], denoted by z[m, q], are white with vari-

ance σ2
z . Hence, the covariance matrix of z[m] has diagonal structure with identical

elements

Rz[m] = E{FRCPz[m]z[m]HRH
CPF H}

= σ2
zFRCPIP RH

CPF H

= σ2
zIN .
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)
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Figure 2.7: Frequency response of a multipath channel in baseband description.

In an OFDM system, according to (2.15), every element of the symbol vector

d[m] is transmitted over an individual frequency-flat subcarrier. Figure 2.7 shows

the frequency response of a typical wireless multipath channel. It is evident that

subcarriers which are located near the fading dips of the frequency response are

strongly attenuated. These attenuated subcarriers will dominate the bit error rate

of the overall system [96]. In wireline applications of OFDM, like in the asymmetric

digital subscriber line (ADSL), channel state information is usually available at

the transmitter side. With this information optimal water pouring [54, Sec. 12.2.1]

can be performed, thus avoiding the strong performance reduction through highly

attenuated subcarriers. The same approach is in general not possible for wireless

applications, since the fading channel changes too rapidly.

Applying a convolutional code and performing appropriate interleaving in the

frequency domain is one possible solution in order to tackle the problem of highly

attenuated subcarriers [21]. In such a coded OFDM system the information which is

lost due to some strong attenuated subcarriers can be reconstructed at the receiver

side through the additional information provided by the code [96]. Additionally, the

code allows to exploit multipath diversity too. Coded OFDM is the method of choice

for OFDM broadcast systems like DVB-T [19] or for multi-user systems which use

time division multiple access (TDMA) like IEEE 802.11a [29].

A second method that allows to deal with strongly attenuated subcarriers is to

spread each single data symbol over all N subcarriers through the application of

a spreading code. This method is also known as linear precoding for OFDM [16].

The spreading operation reduces the negative influence of some strongly attenuated

subcarriers and enables the utilization of the full multipath diversity of the channel.

Additionally, the spreading operation allows to distinguish between individual users

in a multi-user system. Multi-carrier code division multiple access (MC-CDMA) is

the term which is most often used in literature in order to describe a system that

combines OFDM with spreading over subcarriers [34].
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2.4 Multi-User Signal Model
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Figure 2.8: Model for the MC-CDMA transmitter and block-fading channel in the

uplink.

Because of all these mentioned benefits we will use MC-CDMA as the basic trans-

mission concept throughout this thesis. In the next section we introduce MC-CDMA

in more detail for the multi-user case in the uplink.

2.4 Multi-User Signal Model

Figure 2.8 shows the block structure of an MC-CDMA transmitter for the uplink.

The transmission is block oriented, a data block consists of M − J OFDM data

symbols and J OFDM pilot symbols. Each user transmits quadrature phase shift

keying (QPSK) modulated symbols bk[m] with symbol rate 1/TS. There are K users

in the system, the user index is denoted by k. Each symbol is spread by a user

specific spreading sequence sk ∈ C
N . The spreading sequence sk has independent

identically distributed (i.i.d.) elements s[n] chosen with equal probability from the

QPSK constellation set1 {±1 ± j}/
√

2N . Therefore, the spreading sequence fulfills

‖sk‖2 = 1 for k ∈ {1, . . . , K} .

In Section 2.5.1 we will treat the spreading sequence selection in more detail.

The data symbols bk[m] result from the convolutionally encoded, randomly inter-

leaved and QPSK modulated (with symbol mapper rate RS = 2) binary information

sequence χk[m
′′] of length RSRC(M − J) by applying Gray labelling. The code rate

is denoted by RC. The amplitude of user k is denoted by αk. We do not take into

account path loss and assume perfect power control, thus

αk = 1 for k ∈ {1, . . . , K} .

1The expression {±1 ± j} is a shorthand notation for the set {+1 + j,+1 − j,−1 − j,−1 + j}.
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)

To allow for pilot symbol insertion at the beginning of each data block the M − J

data symbols for a block of length M satisfy

bk[m] ∈ {±1 ± j} 1√
2

for m ∈ {J, . . . ,M − 1} ,

and

bk[m] = 0 for m ∈ {0, . . . , J − 1} .

After the spreading operation a pilot symbol vector pk[m] ∈ C
N with elements

pk[m, q] is added

dk[m] = skbk[m] + pk[m] . (2.16)

The elements of the pilot vector pk[m, q] are i.i.d. chosen with equal probability from

the QPSK symbol set {±1 ± j}/
√

2N for m ∈ {0, . . . , J − 1}, otherwise

pk[m] = 0N for m ∈ {J, . . . ,M − 1} .

Finally, an N point inverse DFT is performed and a cyclic prefix of length G is

inserted. We insert (2.16) into (2.10) and obtain the transmitted chip sequence for

user k

µk[m] = T CPF H
N (skbk[m] + pk[m]) .

The received signal for user k after the DFT operation and the cyclic prefix removal

can be expressed as

yk[m] = diag (gk) (skbk[m] + pk[m]) + z[m] , (2.17)

where

gk =
√

NF N×Lhk

with elements gk[q] for q ∈ {0, . . . , N−1}. We define the effective spreading sequence

s̃k = diag(gk)sk (2.18)

and represent the multi-user system by

y[m] = S̃b[m] +
K∑

k=1

diag(gk)pk[m] + z[m] (2.19)

where the effective spreading matrix is defined as

S̃ = [s̃1, . . . , s̃K ] ∈ C
N×K

and

b[m] =






b1[m]
...

bK [m]




 ∈ C

K (2.20)

contains the information symbols for K users at time index m.
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2.5 Multi-User Detection

2.5 Multi-User Detection

At the base station the multi-user detector has the task to find the most likely

transmitted sequence of data vectors b[m] given the received vectors y[m]. This is

a special class of a vector-classification problem that is generally np-complete. A

bank of K linear filters matched to the K effective spreading sequences form a set

of sufficient statistics for the estimation of all users data [75]:

ξ[m] = S̃
H
y[m]. (2.21)

This means that by using ξ[m] no information is lost. If we define the correlation

matrix

RS̃ = S̃
H
S̃ (2.22)

the MC-CDMA system can be described by

ξ[m] = RS̃b[m] + S̃
H
z[m]. (2.23)

2.5.1 Spreading Sequences

As already mentioned, the aim of the spreading operation is twofold: First, it dis-

tributes the information of the transmitted data symbol over all subcarrier and

second, it is used in order to differentiate the individual users. For orthogonal Walsh-

Hadamard spreading sequences and frequency-flat channels the correlation matrix

RS̃ will be the identity matrix and user separation will be optimal. For frequency-

selective channels this is not true anymore because of (2.18). For sequences with

length N there exist N different orthogonal sequences. The maximum number of

users is therefore limited to N . We define the load as

β =
K

N
.

For random spreading sequences with length N there exist 2N different sequences

(for a BPSK alphabet). Thus, by using random spreading sequences the load can be

increased above 1. The lost orthogonality of the spreading sequences is of no great

impact, since the effective spreading sequences are not orthogonal anyway.

2.5.2 Linear Detector Types

The optimum maximum likelihood detector operating on ξ[m] is prohibitively com-

plex. Hence, we resort to suboptimum linear multi-user detectors [50]. After linear
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)

filtering, denoted by matrix L, a hard decision is performed to obtain an estimate

for the transmitted symbols

b̂[m] = quant
X

(Lξ[m]),

with

quant
X

(w) = argmin
w̃∈X

|w − w̃|

where X denotes the symbol set. For the QPSK constellation we define

X = {±1 ± j}/
√

2.

The matched-filter receiver is optimal with respect to the signal to noise ratio

for orthogonal spreading sequences sk in frequency-flat channels. The output of the

filter bank ξ[m] (the sufficient statistics) is directly used in order to detect the data

symbols, i.e.

L = I.

In a frequency-selective channel the orthogonality of the spreading sequences is

destroyed by the effect of the channel, mathematically described by (2.18). Therefore,

a simple matched-filter receiver has poor performance that degrades rapidly when

the number of users is increased because of the multi-access interference.

Better performance can be achieved with the decorrelating receiver. The decorre-

lator (also known as zero forcing solution) follows from the approximation X ≈ C

and is given by

L = R−1

S̃
.

The decorrelator completely suppresses all interference but enhances the noise [75,

Sec. 5]. This effect can be seen in Figure 2.9. In the low signal to noise region the

decorrelating detector performs even worse than the matched filter.

A common approach in estimation theory is to choose a function L(ξ) that mini-

mizes the mean square error. Because vector b[m] is not Gaussian the exact solution

is challenging. It is common to minimize the mean square error

E{(b[m] − Lξ[m])H(b[m] − Lξ[m])} (2.24)

within the restricted set of linear functions that can be represented by matrix L.

The solution of the minimization problem results in the linear MMSE filter given by

L =
(
RS̃ + σ2

zI
)−1

.

The complexity of the linear MMSE filter is identical to the one of the decorrelator

but the performance for low signal to noise ratios is enhanced.
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Figure 2.9: Bit error rate (BER) versus Eb/N0 for an MC-CDMA uplink with K =

32 users and spreading length N = 64 for different linear multi-user

detectors: matched-filter (MF), decorrelator (DEC), and linear MMSE

filter. The single-user bound (SUB) is shown for the linear MMSE filter.

We demonstrate this with the comparison in Figure 2.9 where the performance of

the matched-filter, the decorrelator, and the linear MMSE filter is shown in terms

of bit error rate versus Eb/N0. The energy per bit is denoted by Eb and N0 denotes

the noise power spectral density. We simulate an MC-CDMA uplink with K = 32

user and spreading length N = 64. The Rayleigh fading channel is perfectly known

to the receiver. The single-user bound is defined as the performance for one user

with perfect channel knowledge. The single-user bound was simulated using the

linear MMSE detector. The comparison makes clear, that the linear MMSE detector

performs best and the performance difference to the decorrelator is largest in the low

signal to noise region. Based on this performance results and its moderate complexity

we will use the linear MMSE detector throughout this thesis.

2.6 Iterative Multi-User Detection

In iterative receivers, the information gained about the transmitted symbols is used

in subsequent iterations in order to reduce the interference from other users [14]. Soft

symbols b̃k[m] instead of hard decisions b̂k[m] are used to avoid error propagation. A

convolutional code is used and the BCJR algorithm [6] is applied in order to obtain

soft output values on the received code symbols. The iterative MC-CDMA receiver
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Figure 2.10: Schematic model of an MC-CDMA receiver that performs iterative joint

channel-estimation and multi-user detection.

detects the data b[m] using the received vector y[m], the effective spreading matrix

S̃
(i)

, and the feedback extrinsic probability (EXT) on the code bits at iteration step

i denoted by Pr(EXT){c(i)
k [m′] = +1}. Figure 2.10 shows the structure of this iterative

receiver.

The frequency-selective nature of the channel implies to build a filter which is

matched to the effective spreading sequence s̃
(i)
k . For the moment, it is only of in-

terest that the channel estimator supplies an estimate ĝk for the channel frequency

response of every user. The general optimization problem is therefore reduced to the

estimation of b[m]. In order to cancel the multi-access interference, we perform soft

parallel interference cancellation for user k:

ỹ
(i)
k [m] = y[m] + s̃

(i)
k b̃

(i)
k [m] − S̃

(i)
b̃

(i)
[m]. (2.25)

Vector b̃
(i)

[m] contains the soft symbol estimates that are computed from the extrin-

sic probability supplied by the decoding stage. When the extrinsic probabilities get

better from iteration to iteration and the channel is correctly estimated the parallel

interference cancelling removes the interference from all other users completely and

the detection problem is reduced to a single-user detection in Gaussian noise.

The soft symbol mapping for the QPSK alphabet is given by

b̃k[m] = E
b

(EXT){bk[m]} = E
c

(EXT){ck[2m]} + jE
c

(EXT){ck[2m + 1]} (2.26)

where

E
c

(EXT){ck[m
′]} = Pr(EXT){ck[m

′] = +1} − Pr(EXT){ck[m
′] = −1}

= 2Pr(EXT){ck[m
′] = +1} − 1 (2.27)

calculates the expectation over the alphabet of c which is {−1, +1} and

Pr(EXT){ck[m
′] = +1} is the extrinsic probability supplied by the BCJR decoder.
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2.7 Decoder

The notation E
(EXT) is chosen to explicitly show that extrinsic probabilities are used

for the calculation of the expectation. In the next chapter about channel estimation

we will use soft symbols based on a-posteriori probabilities which will be indicated

through the notation E
(APP).

The ỹ
(i)
k [m] are further cleaned from noise and multi-access interference with a

successive linear MMSE filter

w
(i)
k [m] = (f

(i)
k )Hỹ

(i)
k [m] (2.28)

to obtain an estimate of the transmitted symbols bk[m]. An unbiased MMSE filter

for the MC-CDMA system can be found similarly to the MMSE detector given

in [14,51,80]. We omit the iteration index (·)(i) to allow for simpler notation,

fH
k =

s̃H
k (σ2

zI + S̃V S̃
H
)−1

s̃H
k (σ2

zI + S̃V S̃
H
)−1s̃k

. (2.29)

Matrix V denotes the error covariance matrix of the soft symbols

V = E{(b[m] − b̃[m])(b[m] − b̃[m])H}

with diagonal elements

Vk,k = E{1 − |b̃k[m]|2} (2.30)

which are constant during iteration i, the other elements are assumed to be zero. In

this case we calculate the variance from all symbols in the block belonging to user

k and call the filter unconditional.

The expectation operator in (2.30) is implemented as empirical mean

Vk,k = E{1 − |b̃k[m]|2} =
1

M

M−1∑

m=0

(1 − |b̃k[m]|2) , (2.31)

which is the case for all expectation operators in numerical simulations in this thesis,

if not noted otherwise.

2.7 Decoder

The iterative receiver feeds back soft values on code bits ck[m
′] in order to get better

detection results and better channel estimates. The soft feedback values are either

computed from the so-called a-posteriori probability (APP) or the extrinsic proba-

bility (EXT) of the code bits through mapping to QPSK symbols. The soft-symbol

mapping from extrinsic probabilities is given in (2.26). A similar mapping from a-

posteriori probabilities (3.5) is used for the iterative channel estimation algorithm

that will be treated in the next chapter [35,80].
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2 Multi-Carrier Code Division Multiple Access (MC-CDMA)

A soft-input soft-output decoder for binary convolutional codes, implemented us-

ing the BCJR algorithm [6], supplies these measures. The input values to the decoder

are the so called channel values w′
k[m

′] derived from the linear MMSE-filter outputs

after demapping and deinterleaving. Additionally the decoder also needs an estimate

of the noise variance

σ̂2
z,k =

1

2M

2M−1∑

m′=0

|w′
k[m

′] − µ̂w′,k|2 ,

where the mean value of the absolute channel values is estimated through

µ̂w′,k =
1

2M

2M−1∑

m′=0

|w′
k[m

′]| .

The explicit estimation of µ̂w′,k is necessary because during the first iterations the

channel estimates are not accurate and thus the linear MMSE filter (2.29) is not

truly unbiased.

The a-posteriori probability for the code symbol being +1 if the channel value

w′
k[m

′] is observed is given by

Pr(APP) {ck[m
′] = +1} = Pr {ck[m

′] = +1 | w′
k[m

′]} . (2.32)

The link between a-posterior probability and extrinsic probability is established via

Pr(APP) {ck[m
′] = +1} ∝ Pr(EXT) {ck[m

′] = +1}Pr {w′
k[m

′] | ck[m
′] = +1} , (2.33)

where the last expression denotes the channel transition function, which is as con-

ditional Gaussian probability density function

Pr {w′
k[m

′] | ck[m
′] = +1} =

1
√

2πσ2
z,k

exp

(

−|w′
k[m

′] − µ̂w′,k|2
2σ̂2

z,k

)

. (2.34)

Estimating σ̂2
z,k after the linear MMSE filter we model the residual multiple access

interference as additive Gaussian noise (2.34).
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3 Iterative Channel Estimation for

Block-Fading Channels

Accurate channel estimation is crucial for the performance of any type of multi-user

receiver. This is made obvious by (2.18); a filter matched to the effective spreading

sequence depends directly on the quality of the channel estimate.

Various blind channel estimation schemes have been proposed in the literature

for MC-CDMA. All these schemes suffer from an inherent phase ambiguity [73]. For

coherent detection, which is necessary for multi-user detection schemes, it would be

necessary to introduce some sort of pilot symbols to resolve this ambiguity. Further-

more, the popular blind subspace method limits the maximum number of users in

the system to K ≤ N −L, see [33,44,45,82]. We propose a new iterative pilot based

channel estimation scheme that can be applied to overloaded systems K > N and

allows for coherent detection.

3.1 Iterative Least-Square Channel Estimation

We use a random time domain pilot sequence pk[m, q] with i.i.d. elements that is

J symbols long and unique for every user k and subcarrier q. This approach was

inspired by equivalent approaches for direct sequence (DS)-CDMA in [13, 80] and

the analysis in [94].

Figure 3.1 gives a schematic representation of the channel estimation scheme.

Please note that the pilot sequence is a sequence in time while the spreading se-

quence, which is used to spread the information of a data symbol bk[m] over all

subcarriers, is applied in the frequency domain. Therefore, this scheme allows to

decouple the user specific identification sequences that are used for data detection

and for channel estimation.

The MC-CDMA transmission described by the signal model (2.17) takes place

over N independent parallel frequency-flat channels respectively subcarriers. We
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3 Iterative Channel Estimation for Block-Fading Channels
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Figure 3.1: Channel estimation scheme for an iterative MC-CDMA receiver. The

pilot sequence in time for user k on subcarrier q is denoted by pk[m, q]

where m denotes discrete time. The spreading sequence sk[n] is applied

in the frequency domain.

rewrite (2.17) as a set of equations for every subcarrier q ∈ {0, . . . , N − 1},

y[m, q] =
K∑

k=1

gk[q]dk[m, q] + z[m, q] ,

where

dk[m, q] = sk[q]bk[m] + pk[m, q] . (3.1)

Hence, a least-square estimate of the subcarrier coefficients ĝk[q] can be obtained

jointly for all K users but individually for every subcarrier q.

We define the vector

gq =






g1[q]
...

gK [q]




 ∈ C

K

containing the channel coefficients of all K users for subcarrier q. Furthermore, we

introduce the notation

yq =






y[0, q]
...

y[M − 1, q]




 ∈ C

M

denoting the received symbol sequence on subcarrier q for a single data block. With

these definitions we can write

yq = Dqgq + zq , (3.2)

where the matrix Dq ∈ C
M×K is defined as

Dq =






d1[0, q] . . . dK [0, q]
...

. . .
...

d1[M − 1, q] . . . dK [M − 1, q]




 , (3.3)
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3.1 Iterative Least-Square Channel Estimation

containing the transmitted symbols for all K users on subcarrier q.

For the channel estimation task the J pilot symbols pk[m, q] for m ∈ {0, . . . , J−1}
in (3.1) are known. The remaining M−J data symbols bk[m] for m ∈ {J, . . . ,M−1}
are not known. We replace them by soft symbols b̃′k[m] that are calculated from the a-

posteriori probabilities obtained in the previous iteration. This enables us to obtain

refined channel estimates if the soft symbols gets more certain from iteration to

iteration. For the first iteration the soft symbols b̃′k[m] are set to zero.

We define the soft symbol matrix D̃q ∈ C
M×K equivalent to (3.3) by replacing

dk[m, q] with

d̃k[m, q] = sk[q]b̃
′
k[m] + pk[m, q] . (3.4)

The soft symbols b̃′k[m] are defined according to

b̃′k[m] = E
b

(APP){bk[m]} = E
c

(APP){ck[2m]} + jE
c

(APP){ck[2m + 1]} (3.5)

where

E
c

(APP){ck[m
′]} = Pr(APP){ck[m

′] = +1} − Pr(APP){ck[m
′] = −1}

= 2Pr(APP){ck[m
′] = +1} − 1 ,

and Pr(APP){ck[m
′] = +1} is the a-posteriori probability supplied by the BCJR

decoder. The code bits c[m′] are from the set {+1,−1}.
Finally, the least-square channel estimator is given by

ĝ′
q =

(

D̃
H

q D̃q

)−1

D̃
H

q yq. (3.6)

After estimating the subcarrier coefficients for all subcarriers we can further reduce

the noise by exploiting their correlation since the channel impulse response in the

time domain hk possesses L < N taps:

ĝk = F N×LF H
N×Lĝ′

k. (3.7)

The estimates ĝk are inserted in (2.18) to calculate the effective spreading sequences

which in turn are used by the parallel interference canceller (2.25) and the linear

MMSE detector (2.28).

The least square solution in (3.6) expects deterministic values in matrix D̃. How-

ever, this is not the case since we combine deterministic pilots with soft symbols.

The absolute values of the soft symbols in matrix D̃q can be very small, particularly

during the first iteration and in overloaded systems, where

β = K/N > 1 , (3.8)
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Figure 3.2: Power delay profile η2[`] with (root mean square) delay spread TD ∈
{0.26, 1}µs sampled at rate 1/TC = 3.84 · 106 s−1. The normalized delay

spread LD = TD/TC ∈ {1, 4}. We plot L = 15 significant channel taps.

due to strong interference. This leads to strongly biased channel estimates and slow

convergence of the iterative receiver. We apply a partial heuristic solution through

scaling by
√

N/L in the first iteration, i.e.

ĝ
(1)
k = F N×LF H

N×Lĝ′
k
(1)

√

N

L
.

Furthermore, we normalize each column of D̃q to
√

M/N , so that the Frobenius

norm ‖D̃q‖F stays constant. In Section 3.2 we will present a more systematic solution

based on the MMSE theory.

3.1.1 Simulation Parameters

The realizations of the Rayleigh fading channel are calculated using the exponential

power delay profile (2.4) with a delay spread TD ∈ {0.26, 1}µs. We use a chip rate of

1/TC = 3.84·106 s−1 as in UMTS. The normalized delay spread LD = TD/TC ∈ {1, 4}.
We obtain an essential support of the channel impulse response (2.6) of L = 15 for

a maximum Eb/N0 = 15 dB.

The OFDM transmission uses N = 64 subcarriers and each OFDM symbol includ-

ing the cyclic prefix has length of P = G + N = 79 chips. The spreading sequence

has length N = 64 equal to the number of subcarriers. The convolutional code used

is a non-systematic, non-recursive, four state, rate RC = 1/2 code with generator
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Figure 3.3: Receiver performance in terms of bit error rate (BER) versus Eb/N0

for K = 64 users with least-square channel estimation. The channel

has an exponential power delay profile with normalized delay spread

LD ∈ {1, 4}. The single-user bounds (SUB) are shown as reference.

polynomial (5, 7)8. The data block has length M = 256 including J = 20 pilot sym-

bols. The energy of the transmitted QPSK symbols is normalized to 1, therefore the

Eb/N0 is defined as
Eb

N0

=
1

RSRCσ2
z

P

N

M

M − J
. (3.9)

In (3.9) we also take into account the loss through the cyclic prefix and the pilot

symbols. The single-user bound is taken as a reference for the multi-user receiver

performance. The single-user bound is defined as the receiver performance for one

user with perfect channel knowledge.

3.1.2 Simulation Results

Figure 3.3 shows the receiver performance in terms of bit error rate versus Eb/N0 for

full load β = K/N = 1. The simulations are averaged over 100 independent channel

realizations. The number of iterations is limited to 7. The bit error rate decreases

after each iteration and converges towards the single-user bound up to 1 dB after 7

iterations.

The strong influence of the delay spread on the receiver performance is displayed

in Figure 3.3 too. The larger the delay spread the more multipath diversity (respec-

tively frequency diversity) can be used at the receiver side, enhancing the receiver
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Figure 3.4: Receiver performance in terms of bit error rate (BER) versus Eb/N0 for

K = 80 users with least-square channel estimation. The channel has an

exponential decaying power delay profile with normalized delay spread

LD ∈ {1, 4}.

performance.

Figure 3.4 shows the same results for a moderately overloaded system with load

β = 1.25 for K = 80 users and normalized delay spread LD ∈ {1, 4}. The bit rate per

user is 44.8 kbit/s, the net bit rate per cell is 2.87 Mbit/s for 64 users and 3.58 Mbit/s

for 80 users.

The iterative receiver uses pilot symbols only for channel estimation in the first

iteration. These channel estimates are used in the multi-user detector in order to

calculate the effective spreading sequence and perform data detection. This is why

the bit error rate curve of the first iteration is identical with the performance of a

non-iterative linear MMSE multi-user detectors with imperfect channel knowledge.

In the second iteration soft symbols are supplied by the BCJR decoder which are

used in the parallel interference canceller in order to reduce the interference by other

users. Additionally, the soft symbols also help to enhance the channel estimation

quality. This leads to continuous performance improvements between iteration 1

and iteration 7 as can be clearly seen in Figure 3.3 and Figure 3.4. In a fully loaded

system and even in an overloaded system the reduction in bit error rate is in the

orders of 3 magnitudes after 7 iterations.
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3.1 Iterative Least-Square Channel Estimation

3.1.3 Comparison Between MC-CDMA and DS-CDMA

It is well-known that the signal-models for MC-CDMA and DS-CDMA are similar

[50], and therefore many multi-user detection algorithms are applicable to both

MC-CDMA and DS-CDMA. However, the computational complexity of the channel

estimation algorithm for an MC-CDMA receiver is smaller than the one needed for

DS-CDMA.

In MC-CDMA the inter-symbol interference is removed through insertion of the

cyclic prefix, and channel equalization is performed in the frequency domain. The

complexity for the channel estimation is growing by O(NK3) in MC-CDMA where

N denotes the number of subcarriers and K the number of users. The term K3

is due to the necessary matrix inversion with dimension K × K which has to be

performed for N subcarriers individually.

In comparable DS-CDMA systems for UMTS time division duplex (TDD) the

complexity grows with O(L3K3) since the matrix to be inverted has dimension

LK × LK [80]. The time-domain channel estimation in DS-CDMA has to estimate

L channel taps for all K users jointly, thus raising its complexity. Whereas, in an

OFDM system the coefficients for every subcarrier can be estimated separately.

The essential support of the channel L determines the length of the cyclic prefix.

The number of subcarriers N is usually N > 5L, so that the spectral efficiency of the

system is still acceptable. The spectral efficiency of the system is determined by the

ratio L/(N +L). Thus, the channel estimation complexity advantage of MC-CDMA

is especially important at high data rates when L gets large.

3.1.4 Channel Estimation Error

Figure 3.4 presents the performance of an MC-CDMA system with load β = 1.25

in terms of bit error rate versus Eb/N0. The distance to the single-user bound is

increased compared to the results for load β = 1 that are shown in Figure 3.3. We

know from theoretical results that with perfect channel knowledge the performance

difference between K = 64 and K = 80 users should be much smaller [14]. Thus, we

analyze the channel estimation error in this section.

We define the mean square error of the channel estimates, so that we obtain a

measure of the channel estimation quality:

MSEBF =
1

KL

K∑

k=1

∥
∥
∥ĥk − hk

∥
∥
∥

2

.

In Figure 3.5 we plot the mean square error of the channel estimate versus the

iteration number for a channel with exponential decaying power delay profile with

normalized delay spread LD = 1. It can be clearly seen, that the mean square error
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Figure 3.5: Mean square error (MSE) of the channel estimates for K = 80 users with

least-square channel estimation for normalized delay spread LD = 1.

slightly increases after the 2nd iteration especially for a low signal to noise ratio.

This is due to the already mentioned fact, that the soft symbols in matrix D̃q have

very small absolute values, particularly during the first iteration and in overloaded

systems (3.8) due to strong interference.

In the next section we develop an iterative channel estimation scheme based on

the MMSE theory in order to avoid this degradation of the channel estimation

performance with increasing number of users.

3.2 Iterative Linear Minimum Mean Square Error

Channel Estimation

Equation (3.5) makes clear, that the soft symbols are actually the expectation of the

data symbols given the received data vector and the current channel estimate after

the decoding process. Since the data symbols are from a constant modulus alphabet

we know their variance too,

var{bk[m]} = E
b

{(

bk[m] − E
b
{bk[m]}

)2
}

= 1 − b̃2
k[m]. (3.10)

We take advantage of this information in the following, deriving a linear MMSE

multi-user channel estimator, enhancing the overall performance especially for over-
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3.2 Iterative Linear Minimum Mean Square Error Channel Estimation

loaded systems. See also [74] for a related approach in a single-user scenario. Inde-

pendently in [3] a similar algorithm was derived using the concept of expectation

maximization (EM).

The individual subcarriers in an OFDM system are orthogonal. For this reason we

are able to estimate the subcarrier coefficient gk[q] individually for every subcarrier q

but jointly for all K users. We repeat the signal model (3.2) for the received symbol

block yq on subcarrier q which is given by

yq = Dqgq + zq .

In the previous section we obtained the channel coefficients using a least-square

estimator by approximating Dq with D̃q. The matrix D̃q contains deterministic

pilot symbols and statistical information in terms of expectation (3.5) about the

transmitted data symbols.

The minimization of the mean square estimation error is a widely used optimiza-

tion criterion in parameter estimation. We use this approach in order to estimate

the channel coefficients. In general, for a linear data model, if the observed data

and the unknown parameters are jointly Gaussian distributed, the resulting MMSE

estimator is a linear function of the data. In the model (3.2), we assume that the

channel coefficients in the vector gq are independent, complex Gaussian distributed

random variables, with zero mean and unit variance (which corresponds to Rayleigh

fading), while the symbols in the matrix Dq have a discrete distribution determined

by the QPSK symbol alphabet. The resulting distribution of the observed vector yq

is not Gaussian, thus the MMSE estimator is not linear. Due to the shape of the

probability density function f(yq), the derivation of the exact MMSE estimator is a

complicated task. Therefore, we constrain the channel estimator to be linear in yq.

We will omit the index q in the following derivations to simplify the notation.

The linear estimator can be expressed as

ĝLMMSE = Ay,

where the matrix A satisfies the Wiener-Hopf equation

CyyAH = Cyg .

The covariance matrices are given by (y, g and z are zero-mean and statistically

independent)

Cyy = E
b

E
g

E
z

{
yyH

}
= E

b

{
DDH

}
+ σ2

zIM (3.11)

Cyg = E
b

E
g

E
z

{
ygH

}
= E

b
{D} , D̃, (3.12)
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3 Iterative Channel Estimation for Block-Fading Channels

where the index under the expectation operator denotes the random variable with

respect to which the expectation is taken. Expectations with respect to b are com-

puted using APPs of data symbols, see (3.5). The linear MMSE estimator is then:

ĝLMMSE = Cyg
HCyy

−1y

= D̃
H
(

E
b

{
DDH

}
+ σ2

zIM

)−1

y. (3.13)

If we want to calculate E
b
{DDH} we have to take into account that due to the

independence of the users and the data symbols within one block, it holds:

E
b
{b′k[m′]bk[m]} =

{
b̃′k[m

′]b̃k[m], k′ 6= k,m′ 6= m

1, k′ = k,m′ = m
(3.14)

for k, k′ ∈ {1, ..., K} and for m,m′ ∈ {0, 1, ...,M − 1}. Please refer to (3.5) for the

definition of the soft symbols b̃k[m].

With (3.14) we are able to write the expectation of the product E
b
{DDH} as

product of expectations plus a correcting diagonal matrix Λ which takes (3.14) into

account

E
b
{DDH} = E

b
{D}E

b
{DH} + Λ = D̃D̃

H
+ Λ. (3.15)

The elements of the diagonal matrix Λ are defined as

[Λ]m,m =
K∑

k=1

var{bk[m]} , (3.16)

where the soft-symbol variance from (3.10) is used.

Inserting (3.15) into (3.13) we obtain

ĝLMMSE = D̃
H




D̃D̃

H
+ Λ + σ2

zIM
︸ ︷︷ ︸

,∆






−1

y. (3.17)

For the evaluation of this estimator it is necessary to invert an M -dimensional

matrix, which is computationally expensive. In order to reduce complexity we apply

the matrix inversion lemma to (3.17). The final expression yields

ĝLMMSE =
(

D̃
H
∆

−1D̃ + IK

)−1

D̃
H
∆

−1y. (3.18)

The rows of matrix D̃ are scaled by the diagonal matrix ∆, taking into account the

variance of the noise and the variances of the soft-symbol estimates.
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Figure 3.6: Receiver performance in terms of bit error rate (BER) versus Eb/N0

for K = 80 users with linear MMSE channel estimation and normalized

delay spread LD = 1. For reference the single-user bound (SUB) is shown

too.

If the data symbols are known, then

b̃k[m] = bk[m],

thus Λ = 0, ∆ = σ2
zIK and the estimator (3.18) becomes the exact MMSE estimator

(conditioned on the given D, g and y are jointly Gaussian, thus the linear MMSE

coincides with the exact MMSE estimator which becomes linear for jointly Gaussian

variables):

ĝMMSE|D =
(
DHD + σ2

zIK

)−1
DHy. (3.19)

For the training part of the data block (the first J symbols), the estimator will

equal the exact MMSE estimator for the given pilot symbols. For the data part the

variances of the estimates of the unknown data symbols are taken into account by

the matrix ∆.

3.2.1 Simulation Results

The simulation results for this estimator are given in Figure 3.6 and Figure 3.7. The

parameters are the same as in the least-square case (see Section 3.1). If Figure 3.7

is compared with the results obtained with the least-square estimator in Figure 3.5,

it can be clearly seen that the mean square error is a monotonic decreasing function

of the iteration number and the Eb/N0, now. The bit error rate performance in
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Figure 3.7: MSE of the channel estimates for K = 80 users with linear MMSE

channel estimation for normalized delay spread LD = 1.

Figure 3.6 is enhanced and the error floor behavior visible in Figure 3.4 is removed.

The single user bound is reached up to 1 dB after 7 iterations at Eb/N0 = 14 dB with

the linear MMSE based channel estimation compared to the least-square estimator

where the distance is 2 dB.

3.2.2 Other Communication Systems

The iterative linear MMSE channel estimation scheme is not limited to MC-CDMA

systems. It is straight forward to apply this scheme in DS-CDMA and MIMO systems

as well. The required modifications are to take into account the different structure of

the matrix D, and to properly apply the rule in (3.14) for the soft symbol estimates.

For further details see [79] and [46].

3.3 Block Interleaving

We interleave the transmitted data over B data blocks in order to enhance the

receiver performance. We assume independent channel realizations for every data

block of length M . The transmitter is changed in the way that the uncoded bit

sequence χ[m′′] has length B(M − J)RCRS. This sequence is coded with a convolu-

tional code, randomly interleaved and mapped to a QPSK symbol constellation. The

resulting symbol sequence b[m] with length B(M −J) is partitioned in B sequences

with length M − J .
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Figure 3.8: Receiver performance in terms of bit error rate (BER) versus Eb/N0 for

K = 80 users with linear MMSE channel estimation and block interleav-

ing for B ∈ {1, 2, 3} after the 7th iteration for normalized delay spread

LD = 1. For reference the single-user bounds (SUB) are shown too.

At the receiver all B block are received. Than the channel is estimated for every

block separately. The output of the MMSE filter for all B blocks is concatenated

demapped, deinterleaved and jointly decoded by the BCJR algorithm. The output

of the BCJR is again interleaved and mapped and then partitioned in B sequences

with length M − J that are used do perform the second iteration for all B received

data blocks separately. The joint coding and interleaving over B blocks is expected

to increases the diversity by B. See also [39] for a related approach using a serial

interference cancellation scheme.

We apply the same simulation parameters as in the previous section. In Figure 3.8

we plot the result after the 7th iteration with block interleaver length B ∈ {1, 2, 3}.
Additionally the single-user bounds are given too. Figure 3.8 shows that the bit error

rate decreases with increasing block interleaver length B. The diversity is defined as

the slope of the bit error rate versus Eb/N0 curve in log-log scale. The slope increase

from B = 1 to B = 3 does not reach the expected factor of 3. This is linked to the

constrained length of the applied code. Some experimental results on appropriate

code selection for block interleaving are given in [39].
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4 Time-Variant Channel Estimation

The key feature of future 4th generation mobile communication systems will be their

ability to deliver high data rates to users moving at vehicular speed. User mobility

together with multipath propagation and scatterer movement are the main reasons

for the variation of a wireless channel over the duration of a data block.

Figure 4.1 shows the extension of the model from Figure 2.1 to the time-variant

case. The Doppler shifts f` on the individual paths ` depend on the user’s direction

and velocity v, the carrier frequency fC , and the scattering environment.

receiver
user

v

η1ej2πf1tδ(t − τ1)

η0ej2πf0tδ(t − τ0)

η2ej2πf2tδ(t − τ2)

scatterer

scatterer

Figure 4.1: Time-variant multipath propagation model. The user moves with veloc-

ity v, every path ` has attenuation η`, time delay τ` and Doppler shift

f`.

The maximum variation in time of the wireless channel is upper bounded by the

maximum (one sided) normalized Doppler bandwidth

νDmax =
vmaxfC

c0

TS ≥ |f`TS| , (4.1)

where vmax is the maximum supported velocity, TS is the symbol duration, and c0

denotes the speed of light.
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4.1 How to Deal With Time Variation?

A two dimensional Wiener filter was proposed by [34] for time-variant channel esti-

mation in an OFDM system for the downlink case where all users share a common

channel. Exact knowledge of the second order statistics was assumed for the initial

design of the Wiener filter. However, for the actual simulation a worst case power

spectral density is used and the performance degradation in the mismatched case is

analyzed. The same procedure is applied in [17] where a rank reduced Wiener Filter

was applied exploiting the frequency correlation, and in [68] where the expectation

maximization (EM) algorithm based on the Karhunen-Loève transform was used.

In [37] a Kalman filter is applied and the Doppler spectrum is assumed to adhere

to Jakes’ model [32]. The Jakes’ spectrum is valid for a dense scatterer model in

the limit of an infinite number of scatterers around a linear omnidirectional antenna

[56] [52, Sec. 2.5.2]. This assumption is not fulfilled if a few dominant propagation

paths are present only. It was shown by measurements in [92] that wireless channels

at 5.3 GHz do not have a Jakes spectrum. Furthermore, the actual velocity of the

user and the angles of arrival enter the autocorrelation as parameters and have to

be estimated explicitly.

Another approach is to use a Wiener filter and estimate and track the channel

statistics online [64, 62, 63, 65]. However, it was shown by channel sounder mea-

surements that wireless fading channels show stationary behavior for less than 70

wavelengths in a pedestrian typical-urban environment [77]. We doubt that mean-

ingful short-term fading characteristics (second order statistics to begin with) can

be acquired in a multi-user system when users move at vehicular speed.

We pursue a channel estimation approach for an OFDM system that exploits the

band-limitation of the time-variant subcarrier coefficients only. Hence, we make no

assumption about the shape of the power spectral density (i.e. the autocorrelation).

We take advantage of Slepian’s basic result [69] that time-limited parts (snapshots)

of bandlimited sequences span a low-dimensional subspace. The basis functions of

this subspace are the discrete prolate spheroidal sequences. Using these results from

the theory of time-concentrated and bandlimited sequences we represent every time-

variant subcarrier, that is frequency-flat, through a Slepian basis expansion of low

dimensionality. It can be shown [85,87] that the bias of the Slepian basis expansion is

more than a magnitude smaller than the bias of the Fourier basis expansion [61,60]

(i.e. a truncated discrete Fourier transform) since the frequency leakage effect of the

Fourier transform is avoided.
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4.2 Time-Variant Channel Model

This chapter is structured in the following way:

Section 4.2 introduces a channel model for the time-variant channel. A signal model

for the special case of transmission over a time-variant frequency-flat channel is

given in Section 4.3. We discuss the deficiencies of the Fourier basis expansion in

Section 4.4 using a single path channel.

In Section 4.5 the Slepian basis expansion is introduced and we analyze its per-

formance for a multipath channel in comparison to the Fourier basis expansion.

We assume that noisy channel observations are available for this analysis, which is

typically the case in decision feedback equalizers or in iterative receivers.

In the case of pilot based channel estimation, noisy channel observations are avail-

able on a pilot grid only. The corresponding signal model is introduced in Section

4.6. We derive a generalized finite Slepian basis expansion that takes the pilot grid

into account in Section 4.7. Analytic and numeric performance results for pilot based

channel estimation are provided in Section 4.8.

4.2 Time-Variant Channel Model

Figure 4.1 shows the discrete multipath channel model [26, 7] for a moving user at

velocity v. The time-variant channel impulse response

h′(t, τ) =
L′−1∑

`=0

η`e
j2πf`tδ(τ − τ`) (4.2)

is given by the sum of L′ different paths with path delay τ`, Doppler shift

|f`| < BDmax = νDmax/TS (4.3)

and complex attenuation η`. Oncoming traffic in a tunnel would be one of the rare

cases where (4.3) may be violated. Equation (4.2) is a deterministic channel de-

scription that depends in a nonlinear manner on the Doppler frequencies of each

individual path. This prevents the direct application of (4.2) for channel equaliza-

tion.

We extend the concepts from Section 2.1 to the time-variant case. The equivalent,

complex-valued, baseband time-variant impulse response is given by

h(t, τ) = hT(τ) ∗ h′(t, τ) ∗ hR(τ). (4.4)

Throughout this chapter we will deal with the case where the symbol duration is

much longer than the delay spread of the time-variant impulse response

TS À TD .
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4 Time-Variant Channel Estimation

In this case no inter-symbol interference occurs. Thus, the channel is frequency-

flat [56] and we can focus on the task of time-variant channel estimation. We apply

no OFDM since its advantages are specific to frequency selective channels.

In Chapter 5 we will extend the results to time-variant frequency-selective chan-

nels where TS ≤ TD.

4.3 Signal Model for a Frequency-Flat Channel

We consider the transmission of a symbol sequence d[m] with symbol rate 1/TS. The

channel is considered frequency-flat since we assume

TS À TD .

We define the time-variant channel, sampled at the symbol rate 1/TS, by

h[m] , h(mTS, 0) . (4.5)

The symbols d[m] are chosen i.i.d. with equal probability from a QPSK symbol set

{±1± j}/
√

2. The symbol energy ES = 1. The received sequence y[m] is given by the

multiplication of the symbol sequence and the sampled time-variant channel plus

additional circular symmetric complex white Gaussian noise z[m] with zero mean

and variance σ2
z ,

y[m] = h[m]d[m] + z[m] . (4.6)

For coherent detection we need an estimate of h[m] at the receiver side. The classic

approach [9] to represent h[m] is the channel spreading function in the Doppler

domain which is obtained by means of the Fourier transform.

4.4 Fourier Basis Expansion and its Deficiencies

The channel spreading function is defined as

S ′
H(ν) =

∞∑

m=−∞

h[m]e−j2πmν , (4.7)

where −1/2 ≤ ν < 1/2. Please note that h[m], as defined in (4.5), represents a

sequence of sampled channel coefficients from a time-variant frequency-flat chan-

nel. This is why the channel spreading function S ′
H(ν) is now one-dimensional and

coincides with the Doppler spectrum of the frequency-flat channel.
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4.4 Fourier Basis Expansion and its Deficiencies

For a wireless system the maximum normalized Doppler bandwidth νDmax is

known so that S ′
H(ν) is bandlimited, and vanishes for |ν| > νDmax. This can be

expressed by

h[m] =

νDmax∫

−νDmax

S ′
H(ν)ej2πmνd ν . (4.8)

In order to enable block based processing we limit the observation time to m ∈
{0, . . . ,M − 1} which results in rectangular windowing of h[m], thus

SH(ν) =
M−1∑

m=0

h[m]e−j2πmν . (4.9)

We are able to represent h[m] for m ∈ {0, . . . ,M − 1} uniquely by sampling in the

frequency-domain

SH[d] =
M−1∑

m=0

h[m]e−j2πmd/M = SH(d/M), (4.10)

for d ∈ {−M/2, . . . ,M/2 − 1} and M even, a representation well-known as DFT.

The rectangular windowing in (4.10) results in spectral leakage [55, Sec. 5.4] [53,

Sec. 3.7]. This means, the energy from low frequency Fourier coefficients leaks to

the full frequency range. Therefore, the support region of SH[d] is not limited to

|d| ≤ dνDmaxMe. However, SH[d] will decay with increasing |d|.

4.4.1 Numerical Example

Figure 4.2 illustrates the spectral leakage effect by plotting the magnitude of the

sampled channel-spreading function SH[d] (and an interpolated version SH(ν))

which arises in an actual communication system after time windowing to m ∈
{0, . . . ,M − 1}. For comparison the channel spreading function without windowing

S ′
H(ν) is shown too. We consider a transmission with carrier frequency fC = 2 GHz

at a symbol rate 1/TS = 48.6 · 103 s−1. The data block has length of M = 256

symbols. These parameters match the one of the MC-CDMA system defined in Sec-

tion 3.1.1. The maximum speed of the user vmax = 102.5 km/h which results in a

maximum normalized Doppler frequency νDmax = 3.9 · 10−3. We assume a dense

scattering environment. The system parameters result in a time-bandwidth product

νDmaxM = 1.

Figure 4.3 shows the difference between the energy in the index set {−U, . . . , U}
and the total energy for varying U which is identical to the mean square error

MSE =
U∑

d=−U

|SH[d]|2 −
M/2−1
∑

d=−M/2

|SH[d]|2 , (4.11)
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Figure 4.2: Sampled channel-spreading function magnitude |SH[d]| (and an interpo-

lated version |SH(ν)|). The user moves at v = 102.5 km/h in a dense

scattering environment. Information is transmitted at fC = 2 GHz with

rate 1/TS = 48 ·103 s−1 in blocks of length M = 256. For comparison the

channel spreading function without windowing |S ′
H(ν)| is shown too.

for M even. We can see that most of the energy of SH[d] is concentrated between

|d| ≤ dνDmaxMe = 1. However, the energy in SH[d] for |d| > dνDmaxMe is still

significant. Signal energy from low frequency Fourier coefficients leaks to the full

frequency range because of the time-windowing applied in (4.10). Nevertheless, the

signal concentration in the index range {−dνDmaxMe, . . . , dνDmaxMe} is exploited

for the definition of the Fourier basis expansion [61,60].

4.4.2 Definition of the Fourier Basis Expansion

The Fourier basis expansion [61,60] is defined as

h[m] ≈ h̃(F)[m] =
D(F)−1∑

i=0

γ
(F)
i u

(F)
i [m], m ∈ {0, . . . ,M − 1} ,

where

u
(F)
i [m] =

1√
M

e
j2π(i−(D(F)−1)/2)m

M (4.12)

defines the basis functions for i ∈ {0, . . . , D(F) − 1} and

2dνDmaxMe + 1 ≤ D(F) ≤ M − 1
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Figure 4.3: Mean square error caused by limiting SH[d] to |d| ≤ U .

defines the dimension of the basis expansion.

Wherever possible we will use a generic notation for the basis expansion quantities

ui[m], D, γi, and h̃[m] to indicate that the expression is applicable to any set of

orthonormal basis functions ui[m]. If we want to specifically reference the Fourier

basis expansion we use the superscript (·)(F).

By choosing D we can control the mean square error of the Fourier basis expansion

that is defined as

MSEM =
1

M

M−1∑

m=0

E

{∣
∣
∣h[m] − h̃[m]

∣
∣
∣

2
}

. (4.13)

The basis expansion parameters are calculated according to

γi =
M−1∑

m=0

h[m]ui
∗[m], i ∈ {0, . . . , D − 1} . (4.14)

However, equation (4.14) is of limited practical relevance, because at the receiver

side the channel coefficients h[m] will be available in the form of noisy observations.

Furthermore, observations of the channel can be only obtained at index positions

where known pilots are transmitted. These pilot positions are a subset of {0, . . . ,M−
1}.

We will treat all these issues throughout the remainder of this chapter. For now

let us assume that we know the channel h[m] and that the channel is defined by one

propagation path only. Using this most simple channel we analyze the mean square

error of the Fourier basis expansion for D < M in the following section.
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4.4.3 Performance Results for Single Path Channel

We are interested to analyze the mean square error of the Fourier basis expansion

for a single-path time-variant frequency-flat channel

h[m] = ej2πνDm (4.15)

for m ∈ {0, . . . ,M − 1} and 0 < νD < νDmax.

The time-variant channel coefficients h[m] result from a sampled complex ex-

ponential with normalized frequency νD. Thus, we are interested in the frequency

response of the Fourier basis expansion. The (instantaneous) frequency response of

an orthonormal basis expansion is defined as [52]:

H(m, ν) = fT[m]
M−1∑

`=0

f ∗[`]e−j2πν(m−`) (4.16)

for m ∈ {0, . . . ,M −1}, |ν| < νDmax. The instantaneous values of the basis functions

are collected in vector

f [m] =






u0[m]
...

uD−1[m]




 ∈ C

D .

In (4.16) the sum
∑M−1

`=0 f ∗[`]e−j2πν(m−`) projects the complex exponential onto

the basis function, i.e. we calculate the inner product with every basis function.

Then, the realization at time instant m is calculated by left multiplying with fT[m].

The complex exponential in (4.16) is shifted by m, thus |H(m, ν)| is the instan-

taneous amplitude response of the basis expansion at time instant m. The phase of

H(m, ν), expressed by arg(H(m, ν)), is the instantaneous phase shift of the basis

expansion at time index m. The design goal for a basis expansion is to have no am-

plitude error |H(m, ν)| = 1 and no phase error arg(H(m, ν)) = 0, i.e. H(m, ν) = 1.

Therefore, the instantaneous error (energy) characteristic of the basis expansion is

defined as

E(m, ν) = |1 − H(m, ν)|2 . (4.17)

For the single path channel as defined in (4.15) the mean square error at time

index m is identical to the instantaneous error characteristic of the basis expansion

for ν = νD

MSE[m] = E(m, νD) . (4.18)

We define the mean square error for a block of length M as

MSEM = EM(νD) (4.19)
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Figure 4.4: Mean square error of the Fourier basis expansion for a single path chan-

nel. The Fourier basis expansion is designed for dνDmaxMe = 1 and has

dimension D(F) ∈ {3, 5, 7, 9}. The normalized Doppler frequency is var-

ied in the range 0 ≤ νD ≤ νDmax = 3.9 · 10−3.

where the mean error characteristic

EM(ν) =
1

M

M−1∑

m=0

E(m, ν) . (4.20)

We use the parameters from the example in Section 4.4.1 to evaluate (4.19) nu-

merically. The speed of the user is varied in the range 0 < v < vmax = 102.5 km/h

which results in a normalized Doppler frequency 0 ≤ νD ≤ 3.9 · 10−3 for the single

path channel defined in (4.15). The dimension of the Fourier basis expansion with

these parameters is D(F) ≥ 3.

Figure 4.4 shows the mean square error MSEM for a Fourier basis expansion with

dimension D(F) ∈ {3, 5, 7, 9}. With increasing D(F) the mean square error decreases.

At νD = 0.0018 = 1/(2M) the error obtains a maximum since νD lies exactly in

between two frequencies of the chosen Fourier base.

Figure 4.5 plots the trajectory of h[m] for m ∈ {0, . . . ,M − 1} in the complex

plane to give more insights in the detailed approximation behavior. We compare h[m]

with the reconstruction through the Fourier basis expansion h̃(F)[m] for νD = 1/(2M)

where MSEM is maximum. We show results for D(F) ∈ {3, 12}.
In Figure 4.6 we plot the absolute phase error

∣
∣arg

(
H(F)(m, νD)

)∣
∣ which is an im-

portant measure for equalization. The phase error for νD = 1/(2M) at the beginning

and at the end of the block is greater than 45 degree for a Fourier basis expansion
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Figure 4.5: Trajectory of h[m] and its approximation by the Fourier basis ex-

pansion h̃(F)[m]. The trajectories are plotted for discrete index val-

ues m ∈ {0, . . . ,M − 1}. The Fourier basis expansion has dimension

D(F) ∈ {3, 12}, is designed for dνDmaxMe = 1, and is evaluated for a

complex exponential with νD = 1/(2M).
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Figure 4.6: Absolute phase error
∣
∣arg

(
H(F)(m, νD)

)∣
∣ for m ∈ {0, . . . ,M − 1}. The

Fourier basis expansion has dimension D(F) ∈ {3, 12}, is designed for

dνDmaxMe = 1, and is evaluated for a complex exponential with νD =

1/(2M).
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Figure 4.7: Absolute amplitude error
∣
∣1 −

∣
∣H(F)(m, νD)

∣
∣
∣
∣ for m ∈ {0, . . . ,M − 1}.

The Fourier basis expansion has dimension D(F) ∈ {3, 12}, is designed

for dνDmaxMe = 1, and is evaluated for a complex exponential with

νD = 1/(2M).

with a dimension of D(F) ∈ {3, 12}. With increasing D(F) the phase error at both

ends of the interval decays faster but the initial value stays the same. A symbol

alphabet, like QPSK, that encodes information in the phase is sensible to phase er-

rors in the channel estimation. Thus, decision errors will result from the phase error

inherent to the Fourier basis expansion leading to an error floor at higher signal to

noise ratios.

Figure 4.7 plots the absolute amplitude error
∣
∣
∣1 −

∣
∣H(F)(m, νD)

∣
∣

∣
∣
∣

for νD = 1/(2M). The behavior depicted in Figure 4.6 and Figure 4.7 is similar

to the well-known Gibbs phenomenon [55, Sec. 8.2.2]. If the DFT is truncated at

dνDmaxMe the Gibbs effect together with spectral leakage leads to significant phase

and amplitude errors at the beginning and at the end of the data block. These

(deterministic) errors will result in an error floor at higher signal to noise ratios

for a single-user detector if the Fourier basis expansion is used for time-variant

channel equalization as was shown in [8] and by the author in [88]. We can conclude

that the dimension of the Fourier basis expansion 2dνDmaxMe + 1 that is reported

in [61, 60, 4, 42, 47] is not sufficient for error free detection. In Section 5 we will

analyze the effect of the Fourier basis expansion in the context of multi-user detection

algorithms.
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4 Time-Variant Channel Estimation

The analysis in this section shows clearly that the Fourier basis expansion has

several drawbacks and a different set of better suited basis functions must be found.

The theory of time-concentrated and bandlimited sequences developed by Slepian

[69] enables a new approach for the time-variant channel estimation problem which

we will pursue in the next section.

4.5 Slepian Basis Expansion

Slepian [69] asked which sequences are bandlimited to the frequency range

[−νDmax, νDmax] and simultaneously most concentrated in a certain time interval

of length M . The associated optimization problem was solved first for continuous

time in [70] and later for discrete time in [69]. In both cases Slepian found that

the desired set of orthogonal sequence are the eigenfunctions of an integral operator

and simultaneously of a commuting differential operator [71]. These special results

enable the numerical calculation for practical applications.

We are interested in the discrete time case. The sequences u[m] we are seeking

shall have their maximum energy concentration in an interval with length M

λ =

M−1∑

m=0

|u[m]|2

∞∑

m=−∞

|u[m]|2
, (4.21)

while being bandlimited to νDmax, hence

u[m] =

νDmax∫

−νDmax

U(ν)ej2πmνd ν (4.22)

where

U(ν) =
∞∑

m=−∞

u[m]e−j2πmν . (4.23)

We see that 0 ≤ λ ≤ 1.

The solutions of this constrained maximization problem are the discrete prolate

spheroidal (DPS) sequences [69]. The DPS sequences u
(S)
i [m, νDmax,M ] are defined

as the real solution of

M−1∑

`=0

sin(2πνDmax(` − m))

π(` − m)
u

(S)
i [`, νDmax,M ] = λi(νDmax,M)u

(S)
i [m, νDmax,M ] (4.24)
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4.5 Slepian Basis Expansion

for i ∈ {0, . . . ,M − 1} and m ∈ {−∞, . . . ,∞} = Z [69]. We drop the explicit

dependence of u
(S)
i [m] on νDmax and M which we consider fixed system parameters

for the remainder of the entire thesis.

The DPS sequence u0[m] is the unique sequence that is bandlimited and most

time-concentrated in a given interval with length M , u1[m] is the next sequence

having maximum energy concentration among the DPS sequences orthogonal to

u0[m], and so on. Thus, the DPS sequences are a set of orthogonal sequences. Each

DPS sequence is exactly band-limited and simultaneously possess a high (but not

complete) time-concentration in a certain interval with length M . The eigenvalues

λi are a measure for this energy concentration expressed by (4.21).

The DPS sequences are not only orthogonal with respect to the index set

{−∞, . . . ,∞} = Z but also with respect to {0,M −1}, thus they are doubly orthog-

onal in the following sense

M−1∑

m=0

u
(S)
i [m]u

(S)
` [m] = λi

∞∑

m=−∞

u
(S)
i [m]u

(S)
` [m] = δi` ,

where i, ` ∈ {0, . . . ,M − 1}. Please note that the DPS sequences are defined as

orthonormal for the index set {0, . . . ,M − 1}.
The eigenvalues λi are clustered near 1 for i ≤ d2νDmaxMe and rapidly decay to

zero for i > d2νDmaxMe. Therefore, the approximate signal space dimension [69, Sec.

3.3] of time-limited snapshots of a bandlimited signal is given by

D′ = d2νDmaxMe + 1 . (4.25)

All these properties described so far enable parameter estimation without the draw-

backs of windowing as in the case of the Fourier basis expansion [69, Sec. 3.3].

For our application we are interested at u
(S)
i [m] for the index set {0, . . . ,M − 1}

only. We introduce the term Slepian sequences for the index limited DPS sequences

and define the vector u
(S)
i ∈ R

M with elements u
(S)
i [m] for m ∈ {0, . . . ,M − 1}. The

Slepian sequences u
(S)
i are eigenvectors of the matrix C ∈ R

M×M fulfilling

Cu
(S)
i = λiu

(S)
i . (4.26)

The eigenvalues λi are identical to the one in (4.24). Matrix C is defined as

[C]i,` =
sin [2π(i − `)νDmax]

π(i − `)
, (4.27)

where i, ` ∈ {0, . . . ,M − 1}. Equation (4.26) is not suited for the numerical calcu-

lation of u
(S)
i because matrix C is rank deficient and the eigenvalues are clustered

around 1 and 0. However, the already mentioned commuting differential operator
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4 Time-Variant Channel Estimation

offers an numerically fast and stable way for the calculation of u
(S)
i . Please refer

to [69] and [53, Section 8.3] for more details on the numerical calculation of the

Slepian sequences. We will come back to the utility of (4.26) later.

Concluding, the Slepian sequences span an orthonormal basis which allows to

represent time-limited snapshots of bandlimited sequences through a basis expan-

sion. The Slepian basis expansion expands the sequence h[m] in terms of Slepian

sequences u
(S)
i [m]

h[m] ≈ h̃(S)[m] =
D(S)−1∑

i=0

u
(S)
i [m]γ

(S)
i , (4.28)

where m ∈ {0, . . . ,M − 1}. The dimension of this basis expansion fulfills

D′ ≤ D(S) ≤ M .

By choosing D(S) we can control the mean square error defined in (4.13).

In order to highlight the utility of the Slepian basis expansion in terms of di-

mension reduction we give a numerical example of an actual communication sys-

tem. Again, we use the parameters from Section 4.4.1 that are: carrier frequency

fC = 2 GHz, symbol rate 1/TS = 48.6 · 103 s−1, maximum speed of the user

vmax = 102.5 km/h, maximum normalized Doppler frequency νDmax = 3.9 · 10−3,

and data block length M = 256. With these system parameters the approximate

dimension of the signal space D′ = d2νDmaxMe+ 1 = 3. Therefore, the dimension of

the estimation problem is reduced by a factor of 256/3 = 85 which is a very consider-

able saving. In Figure 4.8 the DPS eigenvalue spectrum is given. The corresponding

Slepian sequences ui for i ∈ {0, . . . , 4} are depicted in Figure 4.9.

4.5.1 Parameter Estimation From Noisy Observations

We insert the basis expansion (4.28) in the signal model (4.6),

y[m] = h[m]d[m] + z[m] =

(
D−1∑

i=0

ui[m]γi

)

d[m] + z[m] . (4.29)

Hence, we can visualize the communication system as depicted in Figure 4.10. The

transmission takes place over D parallel channels with fixed complex attenuation γi

followed by modulation with the orthonormal sequences ui[m].

For now we assume that the receiver has knowledge of all transmitted data symbols

in a data block, which is typically the case in iterative receiver structures. Since the

data symbols have constant modulus |d[m]| =
√

ES = 1 we obtain a noisy estimate

of the instantaneous channel values through

ĥ[m] = y[m]d∗[m] = h[m] + z[m]d∗[m] .
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Figure 4.8: Eigenvalue spectrum λi for the Slepian sequences, ordered from the

largest eigenvalue λ0 to the smallest λM−1. The Slepian sequences are

designed for block length M = 256 and a maximum Doppler bandwidth

νDmax = 3.9 · 10−3. The approximate dimension of the signal space eval-

uates to D′ = d2νDmaxMe + 1 = 3.
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Figure 4.9: Slepian sequences ui[m] for M = 256 and νDmax = 3.9 · 10−3.
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uD−1[m]

u0[m]

...

u2[m]

γ1

...

γD−1

d[m]

γ0

y[m]

z[m]

Figure 4.10: Representation of a linear time-variant frequency-flat channel h[m]

using time-invariant weighting coefficients γi and modulation with

orthonormal basis functions ui[m]. This model is valid for m ∈
{0, . . . ,M − 1}.

Considering the model in Figure 4.10 we can estimate the unknown coefficients in

(4.28) through

γ̂i =
M−1∑

m=0

ĥ[m]u∗
i [m] =

M−1∑

m=0

y[m]d∗[m]u∗
i [m] (4.30)

for i ∈ {0, . . . , D(S) − 1}.
The mean square error (4.13) of the basis expansion can be described by the sum

of a square bias and a variance term

MSEM = bias2
M + varM . (4.31)

We will see in the next section that bias2
M is depending on the actual set of basis

functions and varM depends linearly on the noise variance σ2
z and the dimension D

of the basis expansion.

4.5.2 Analytic Performance Results

For the purposes of performance analysis for a nominal ensemble of channel real-

izations of h[m], let us specify a Doppler power spectral density

Shh(ν) =
∞∑

m̃=−∞

Rhh[m̃]e−j2πm̃ν ,

where the autocorrelation is defined as

Rhh[m̃] = E{h∗[m + m̃]h[m]} . (4.32)
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The square bias of the basis expansion can be expressed [52] by integrating the

single path error expression (4.18) over the Doppler power spectrum,

bias2[m] =

1
2∫

− 1
2

E(m, ν)Shh(ν)d ν . (4.33)

The square bias for a block of length M is defined as

bias2
M ,

1

M

M−1∑

m=0

bias2[m] =

1
2∫

− 1
2

EM(ν)Shh(ν)d ν , (4.34)

where the mean error characteristic (4.20)

EM(ν) =
1

M

M−1∑

m=0

E(m, ν) . (4.35)

The bias2
M is defined as the mean square error (4.31) in the absence of noise (σ2

z = 0),

see also [66, Sec. 9.9].

The parameter estimation in (4.30) is operating with noisy observations. As al-

ready stated, the biased part of the mean square error (4.13) is independent of the

noise variance. The variance expression for the basis expansion is given as [52, Sec.

6.1.4]

var[m] ≈ σ2
zf

H[m]f [m] . (4.36)

This equation becomes exact for bias2[m] = 0. The mean variance for block length

M is given by

varM =
1

M

M−1∑

m=0

var[m] = σ2
z

D

M
. (4.37)

Equation (4.37) clearly shows that the variance is independent of the used set of

orthonormal basis functions and increases linearly with the dimension of the basis

expansion D and the noise variance σ2
z [52].

The approximate dimension of the signal space D′ (4.25) becomes a tight bound

for large M (and exact for M → ∞). By insertion of D′ into (4.37)

var
(S)
M = σ2

z

d2νDmaxMe + 1

M

we are able to obtain a lower tight bound for var
(S)
M in the limit

lim
M→∞

var
(S)
M ≥ 2νDmaxσ

2
z .
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Figure 4.11: Mean error characteristic EM(ν) versus normalized frequency ν for the

Fourier basis expansion with D ∈ {3, 5} and the Slepian basis expansion

with D ∈ {3, 4, 5}, νDmax = 3.9·10−3 and for block length M = 256. The

time-bandwidth product for this parameters is D′ = d2νDmaxMe+1 = 3.

4.5.3 Numerical Performance Results

In this section we provide performance results which enable an easy comparison of

the Fourier and the Slepian basis expansion. Again we use the parameters given in

Section 4.4.1. These system parameters result in D′ = 3.

If a power spectral density Shh(ν) is given, the actual bias calculation requires

to evaluate (4.34) which depends on the mean error characteristic EM(ν). We plot

EM(ν) in Figure 4.11 to give a direct indication about the performance difference

between the Fourier and the Slepian basis expansion. We assume that the support of

Shh(ν) is within [−νDmax, νDmax]. Figure 4.11 shows EM(ν) for positive normalized

frequencies 0 ≤ ν ≤ 3.9 · 10−3 (EM(ν) is a symmetric function).

Please note that the equations (4.33) . . . (4.37) are generic and valid for any basis

expansion with orthonormal basis functions ui[m]. Figure 4.11 shows, that the bias

of the Fourier basis expansion decays slowly if the basis expansion dimension D is

increased above the time bandwidth product D′. For the Slepian basis expansion the

bias decrease with increasing D is much faster. This is because of the steep decay

of the eigenvalues λi for i > D′.

Figure 4.12 shows the bias2
M (4.34) for the Fourier and the Slepian basis expansion
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Figure 4.12: Comparison of bias2
M for the Slepian and the Fourier basis expansion.

We use a Jakes’ Doppler spectrum and vary the Doppler bandwidth in

the range 0 ≤ νD ≤ 3.9 · 10−3 which corresponds to a velocity range

of 0 ≤ v ≤ 102.5 km/h. The basis expansions have dimension D = 3.

The Slepian sequences are designed according to νDmax = 3.9 ·10−3 and

block length M = 256.

when evaluated for the Jakes’ Doppler spectrum

Shh(ν) =







1

πνD

√

1 −
(

ν
νD

)2
for |ν| < νD ,

0 otherwise.

(4.38)

We vary the normalized Doppler bandwidth in the range 0 ≤ νD ≤ 3.9 · 10−3

corresponding to a velocity range of 0 ≤ v ≤ 102.5 km/h. The results in Figure 4.12

document that the Slepian basis expansion square bias is one magnitude smaller

than the square bias of the Fourier basis expansion. The mean variance varM (4.37)

is independent of the chosen set of basis functions ui[m] but var[m] (4.36) is not.

Figure 4.13 shows var[m]/σ2
z for the Fourier and the Slepian basis expansion.

We emphasize that the selection of a suitable Slepian basis, defined by M and

νDmax, exploits the band-limitation of the Doppler spectrum to νDmax only. The

details of the Doppler spectrum for |ν| < νDmax are irrelevant. The necessary dimen-

sion of the basis expansion for wireless channels at 2 GHz and vehicular velocities

up to 102.5 km/h is in the order of three only. For the calculation of the Slepian

sequences efficient methods exists that avoid the numerical instabilities of the eigen-

57



4 Time-Variant Channel Estimation

0 50 100 150 200 250
10

−2

10
−1

10
0

m (disrete time)

va
r[

m
]/

σ z2

Fourier
Slepian

Figure 4.13: Variance multiplication var[m]/σ2
z for the Fourier and Slepian basis ex-

pansion for m ∈ {0, . . . , 255}. Both basis expansions have dimension

D = 3.

value problem (4.26) due to the rank deficiency of matrix C. Our approach therefore

differs from a Karhunen-Loève transform which requires complete knowledge of the

second-order statistics of the fading process.

It was shown by channel sounder measurements that wireless fading channels

show stationary behavior for less than 70 wavelengths in a pedestrian typical-urban

environment [77, 76]. We doubt that meaningful short-term fading characteristics

(second order statistics to begin with) can be acquired in a multi-user system when

users move at vehicular speed.

We want to point out that a link between the Slepian basis expansion and the

Karhunen-Loève transform exists. Matrix C in (4.26) can be interpreted as covari-

ance matrix of a stochastic process with rectangular power spectral density. Hence,

the index limited DPS sequences (i.e. the Slepian sequences) are the eigenvectors

which are also found by the Karhunen-Loève transform [41] and the related subspace

methods from [67] for a stochastic process with covariance matrix C. However, the

bandlimited property of the DPS sequences, their double orthogonality and the

known asymptotic behavior of the associated eigenvalues are key features for the

estimation of time-variant channels with bandlimited Doppler spectrum which can

not be inferred from (4.26). Even more, the theory of time-concentrated and band-

limited sequences offers a unifying explanation for the performance results obtained

in [34], [17] and [68].
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4.6 Pilot Based Channel Estimation

Channel estimation algorithms for the downlink have to be implemented in the

mobile equipment and low complexity is a key requirement because of size and

battery constraints. Thus, decision feedback structures or iterative receivers with

soft-input soft-output decoders are too expensive in terms of resource consumption.

We analyze a pilot based channel estimation scheme for time-variant frequency-flat

channels. This scheme can be easily extended to an OFDM system in time-variant

frequency-selective channels where it is applied on a per-subcarrier basis.

We transmit symbols in blocks of length M . Each block consists of M − J data

symbols b[m] with J interleaved pilot symbols p[m]

d[m] = b[m] + p[m] . (4.39)

The data symbols satisfy

b[m] ∈ {±1 ± j}/
√

2 for m /∈ P ,

and

b[m] = 0 for m ∈ P .

The pilot symbols are i.i.d. chosen from the QPSK symbol set

p[m] = {±1 ± j}/
√

2 for m ∈ P ,

and

p[m] = 0 for m /∈ P .

The pilot placement is defined through the index set

P =

{⌊

i
M

J
+

M

2J

⌋

| i ∈ {0, . . . , J − 1}
}

. (4.40)

Figure 4.14 shows an example for the pilot set P defined in (4.40). The symbols

have constant modulus, their energy is normalized |d[m]| =
√

ES = 1.

m = 14. . .

1272

10

Figure 4.14: Example pilot pattern P = {2, 7, 12} defined by (4.40) for M = 15 and

J = 3.
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The basis expansion parameters shall be estimated utilizing the J known pilots

at m ∈ P. We estimate the basis expansion parameters according to:

γ̂i =
1

∑

m∈P

|ui[m]|2
∑

m∈P

y[m]p∗[m]u∗
i [m] , (4.41)

where i ∈ {0, . . . , D − 1}. We use a generic notation since (4.41) is valid for any

basis expansion.

To achieve high spectral efficiency the percentage of pilot symbols in a data block

is required to be as small as possible. We will see in Section 4.8 that the estimator in

(4.41) is biased especially for small values of J . This is true not only for the Fourier

basis expansion but also for the Slepian basis expansion since the orthogonality of

the basis functions is lost. The reason for the lost orthogonality can be seen in (4.41)

where the sum is evaluated on the index position defined by the pilot set P rather

than the complete orthogonality set {0, . . . ,M − 1}.
The DPS sequences are bandlimited to [−νDmax, νDmax] and mostly concentrated

on the time index set {0, . . . ,M − 1}. If we would be able to design sequences u′
i[m]

that keep these properties but are orthogonal on the pilot set P

∑

m∈P

u′
i[m]u′

`[m] = δi,`σ
′
i
2

(4.42)

we can avoid the bias due to the pilot grid while keeping the simple structure of

(4.41).

The derivations of the DPS sequences [69] involve an integral operator for which

no easy way was found to incorporate the constraint (4.42) in a numerical stable way.

Related approaches for generalization of the DPS sequences were pursued in [22] and

[12] in the field of power spectral density estimation. However, the DPS sequences

can be approximated by finite discrete prolate spheroidal (FDPS) sequences which

are doubly orthogonal over two finite index sets [25,95].

We introduce the FDPS sequences in Section 4.7. The derivation of the FDPS

sequences involves matrix operators which we describe in Section 4.7.1. The matrix

operators have a more tractable structure which enables us to incorporate (4.42)

more easily. Finally, we obtain generalized FDPS sequences with an orthogonality

over the pilot set P in Section 4.7.2.
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4.7 Finite Slepian Basis Expansion

The finite discrete prolate spheroidal (FDPS) sequences u
(FS)
i [m] described in [25]

and [95] are orthonormal over the finite index set {0, . . . , aM − 1}, i.e.

aM−1∑

m=0

u
(FS)
i [m]u

(FS)
` [m] = δi` for i, ` ∈ {0, . . . , D(FS) − 1} ,

and orthogonal over the index set {0,M − 1}
M−1∑

m=0

u
(FS)
i [m]u

(FS)
` [m] = σ

(FS)
i

2
δi` for i, ` ∈ {0, . . . , D(FS) − 1} .

We link these two intervals through the integer parameter a > 1, a ∈ Z
+. D(FS) is

a certain number D′ ≤ D(FS) defining the dimensionality of the finite Slepian basis

expansion. The approximate dimension of the signal space is given by (4.25)

D′ = d2νDmaxMe + 1 .

The FDPS sequences ũ
(FS)
i ∈ R

aM with elements u
(FS)
i [m] are the left singular

vectors of the matrix C
′ ∈ C

aM×M which is defined as

[C′]i,` =
1

aM

sin [π(2daνDmaxMe + 1)(i − `)/(aM)]

sin [π(i − `)/(aM)]
.

The FDPS sequences deviate here from the DPS sequences, since their defining

matrix is non symmetric. Therefore, the eigenvectors do not exist and we have to

resort to the singular value decomposition of matrix C
′. The left singular vectors of

the non symmetric matrix C
′ can be calculated as the eigenvectors of the product

C
′
C
′H fulfilling [23, Sec. 8.3]

C
′
C
′Hũ

(FS)
i = σ

(FS)
i

2
ũ

(FS)
i for i ∈ {0, . . . , D(FS) − 1} . (4.43)

The singular values are denoted by σ
(FS)
i .

The rank of matrix C
′ is given by

rank(C′) = min(2adνDmaxMe + 1,M) , (4.44)

hence (4.44) defines an upper bound for the dimension of the finite Slepian basis

expansion

D′ ≤ D(FS) ≤ min(2adνDmaxMe + 1,M) . (4.45)

In analogy to the previous section we define the finite Slepian sequences as the

vectors u
(FS)
i ∈ R

M obtained by index limiting the FDPS sequences u
(FS)
i [m] to

{0, . . . ,M − 1}.
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The finite Slepian sequences u
(FS)
i converge to the Slepian sequences u

(S)
i for

a → ∞ [25]

lim
a→∞

1

σ
(FS)
i

u
(FS)
i = u

(S)
i , (4.46)

The factor 1/σ
(FS)
i in (4.46) is due to the fact, that the Slepian sequences are defined

as orthonormal while the DPS sequences are orthogonal [69]. In the finite case the

situation is opposite, the finite Slepian sequences are defined as orthogonal while

the FDPS sequences are orthonormal.

Matrix C
′ is a tall matrix with dimension aM × M . In the limit a → ∞ the first

M × M elements of C
′ coincide with C

lim
a→∞

[C′]i,` = [C]i,` for i, ` ∈ {0, . . . ,M − 1} ,

thus matrix C
′ has the structure

lim
a→∞

C
′ =

[
C

B

]

. (4.47)

The square of the singular values of C
′ converge to the eigenvalue of C

lim
a→∞

σ
(FS)
i

2
= λ

(S)
i .

In the case of finite values a > 1 the finite Slepian sequences approximate the

Slepian sequences. We will show by numerical simulation in Section 4.8 that a value

a = 2 is already sufficient for our purposes. Comparing Fig. 4.15 with Fig. 4.9 we

can see that there is hardly any difference for an approximation factor a = 2.

4.7.1 Operator Representation

The defining matrix for the FDPS sequences C
′ can be explained as a concatenation

of a time-limiting operator to the discrete index set {0, . . . ,M − 1} and a band-

limiting operator to the frequency range [−νDmax, νDmax]. Later in Section 4.7.2, we

will modify the time-limiting operator for the pilot set P which allows us to obtain

the generalized FDPS sequences.

We define the zero padded matrix

C̃
′
=

[
C
′,0aM×(a−1)M

]
∈ R

aM×aM , (4.48)

and the time-limiting operator D
′ ∈ R

aM×aM as the diagonal matrix

D
′ = diag

([
1M

0aM−M

])

. (4.49)
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Figure 4.15: Finite Slepian sequences u
(GS)
i [m]/σ

(GS)
i for block length M = 256, max-

imum normalized Doppler bandwidth νDmax = 3.9 · 10−3, and approxi-

mation factor a = 2.

The band limiting operator B ∈ R
aM×aM in the frequency domain is given by the

diagonal matrix

B = diag









1adνDmaxMe+1

0aM−2adνDmaxMe−1

1adνDmaxMe







 .

Using these definitions above matrix C̃
′
can be expressed by [95]

C̃
′
= F H

aMBF aMD
′ . (4.50)

The DFT matrix F aM performs the transformation from the time domain in the

frequency domain and back.

The filter operator C̃
′

performs time-limitation to {0, . . . ,M − 1} and band-

limitation to [−νDmax, νDmax]. If we apply the filter operator on a zero padded,

time-limited snapshot of the band-limited sequence of channel values

h̃ = [h[0], . . . , h[M − 1]]T ∈ C
M (4.51)

they remain (practically) unchanged for the the index range {0, . . . ,M − 1}.
[

h̃

h̃
′

]

≈ C̃
′
[

h̃

0aM−M

]

(4.52)

Equation (4.52) becomes exact for a → ∞.
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The finite Slepian sequences u
(FS)
i are defined as the first M elements of the

left singular vector of matrix C̃
′
, thus they are optimally suited to define the finite

Slepian basis expansion to represent h[m] for m ∈ {0, . . . ,M − 1}.

4.7.2 Generalized Finite Slepian Basis Expansion

As already mentioned we are interested to obtain generalized finite Slepian sequences

that are orthogonal on the pilot set P . The time limiting operator D
′ (4.49) defines

the inner orthogonality index set {0, . . . ,M − 1} for the finite Slepian sequences. In

order to change the orthogonality set, we define the indicator vector ρ ∈ R
M with

elements

ρ[m] =

{
1 m ∈ P,

0 m /∈ P;
m ∈ {0, . . . ,M − 1} ,

and modify the time limiting (4.49) operator according to

D = diag

([
ρ

0aM−M

])

.

Inserting D in (4.50) provides us with

C̃ = F H
aMBF aMD .

Since we know the diagonal structure of D and because of the fact that it multiplies

F H
aMBF aM from the right we know that C̃ has the following structure

C̃ =
[
C,0aM×(a−1)M

]
∈ R

aM×aM .

Omitting all zero columns we calculate the left singular vectors of C̃ by solving

the eigenvalue problem of CC
H [23, Sec. 8.3]

CC
Hũ

(GS)
i = σ

(GS)
i

2
ũ

(GS)
i for i ∈ {0, . . . , D(GS) − 1}

to obtain the generalized FDPS sequences ũ
(GS)
i ∈ R

aM with elements u
(GS)
i [m].

Figure 4.16 shows the generalized FDPS sequences for block length M = 256,

maximum Doppler bandwidth νDmax = 3.9 · 10−3, approximation factor a = 2, and

J = 30 pilot symbols. The singular values are denoted by σ
(GS)
i . Figure 4.17 shows

the square singular value spectrum corresponding to the generalized FDPS sequences

in Figure 4.16.

The rank of C defines the upper limit for the dimension of the generalized finite

Slepian basis expansion

D′ ≤ D(GS) ≤ min(2adνDmaxMe + 1,M)
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Figure 4.16: Generalized FDPS sequences u
(GS)
i [m] for block length M = 256, ap-

proximation factor a = 2, maximum Doppler bandwidth νDmax =

3.9 · 10−3, and J = 30 pilot symbols.
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Figure 4.17: Square singular value spectrum σ
(GS)
i

2
for the generalized FDPS se-

quences designed for block length M = 256, approximation factor

a = 2, maximum Doppler bandwidth νDmax = 3.9 · 10−3, and J = 30

pilots symbols.
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Figure 4.18: Generalized finite Slepian sequences 1

σ
(GS)
i

u
(GS)
i [m] for block length

M = 256, approximation factor a = 2, maximum normalized Doppler

bandwidth νDmax = 3.9 · 10−3, and J = 30 pilot symbols.

under the condition

tr(B) ≤ tr(D) , (4.53)

which ensures identifiability of the parameters. This means there must be at least

as much pilots J than dimensions of the basis expansion D(GS)

D(GS) ≤ J .

We call the vector u
(GS)
i ∈ R

M , that is obtained by index limiting the generalized

FDPS sequence u
(GS)
i [m] to {0, . . . ,M − 1}, the generalized finite Slepian sequence.

Figure 4.18 depicts the generalized Slepian sequences u
(GS)
i [m] for i ∈ {0, . . . , 4}.

The sequences u
(GS)
i [m] are orthonormal over the index set {0, . . . , aM − 1}

aM−1∑

m=0

u
(GS)
i [m]u

(GS)
` [m] = δi` for i, ` ∈ {0, . . . , D(GS) − 1} ,

and orthogonal over the pilot set P
∑

m∈P

u
(GS)
i [m]u

(GS)
` [m] = σ

(GS)
i

2
δi` for i, ` ∈ {0, . . . , D(GS) − 1} .

The generalized finite Slepian basis expansion is given by

h[m] ≈ h̃(GS)[m] =
D(GS)−1∑

i=0

γ
(GS)
i u

(GS)
i [m] for m ∈ {0, . . . ,M − 1} .
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4.7 Finite Slepian Basis Expansion

An estimate of parameters γ̂
(GS)
i is obtained through

γ̂
(GS)
i =

1
∑

m∈P

∣
∣
∣u

(GS)
i [m]

∣
∣
∣

2

∑

m∈P

y[m]p∗[m]u
(GS)
i [m]

=
1

σ
(GS)
i

2

∑

m∈P

y[m]p∗[m]u
(GS)
i [m] , (4.54)

where i ∈ {0, . . . , D(GS) − 1}. The generalized finite Slepian sequences keep their

orthogonality when multiplied with a random pilot sequences as long as p[m] is

from an alphabet with constant modulus

|p[m]| =
√

ES .

Without loss of generality we use pilot symbols with ES = 1. Note that

∑

m∈P

∣
∣
∣u

(GS)
i [m]

∣
∣
∣

2

= σ
(GS)
i

2

which is the result of the orthogonality of u
(GS)
i [m] over the pilot set P . The gener-

alized finite Slepian sequences are not orthogonal over the index set {0, . . . ,M −1},
they are only time-concentrated in this set. Please note that we have designed a basis

expansion for the index set {0, . . . ,M −1} whose basis functions are not orthogonal

on {0, . . . ,M − 1} but on P ⊂ {0, . . . ,M − 1}. Thus, a bandlimited sequence that

is time-concentration on a given set is not forced to be orthogonal on the same set.

In conclusion, the generalized finite Slepian sequences in Figure 4.18 are bandlim-

ited and time-concentrated, like the finite Slepian sequences, while having the new

orthogonality on the pilot grid. Comparing Figure 4.18 with Figure 4.15 the differ-

ence is not directly visible. However, for pilot based channel estimation the curves

in Figure 4.18 are evaluated at J << M points only, in order to estimate the basis

expansion coefficients γi (4.54). Thus, small changes become important. Figure 4.19

shows the relative difference in percent between the finite Slepian sequence u
(FS)
0 [m]

and the generalized finite Slepian sequence u
(GS,J)
0 [m]

(u
(FS)
0 [m] − u

(GS,J)
0 [m])/u

(FS)
0 [m]

for J ∈ {5, . . . , 10} pilot symbols. Figure 4.19 makes clear that the benefit of the

generalized finite Slepian basis expansion over the Slepian basis expansion will be

most visible for a small number of pilot symbols. The analysis in the next section

will validate this observation.
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Figure 4.19: Relative difference (u
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0 [m] − u
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0 [m])/u

(FS)
0 [m] in percent between

the finite Slepian sequence u
(FS)
0 [m] and the generalized finite Slepian

sequence u
(GS,J)
0 [m] for J ∈ {5, . . . , 10} pilot symbols.

4.8 Basis Expansion Error Analysis for Pilot Based

Channel Estimation

In order to demonstrate the merits of the generalized finite Slepian basis expansion

and the Slepian basis expansion, we compare their performance to the Fourier basis

expansion by means of simulations with the system defined in (4.6). Additionally

we will compare the simulation results with analytic results that are derived in the

following Section 4.8.1 and Section 4.8.2.

4.8.1 Basis Expansion Bias

We develop an analytic expression for the basis expansion bias for pilot based channel

estimation extending Niedzwiecki’s results [52, Sec. 6]. We use a generic notation,

the results are applicable to all basis expansions presented so far.

We modify the instantaneous frequency response of a basis expansion (4.16) from

Section 4.15 for the pilot based case and define

H(m, ν) = fT[m]G−1
∑

`∈P

f ∗[`]e−j2πν(m−`) , (4.55)

where m ∈ {0, . . . ,M − 1}, |ν| < 1/2 and the diagonal correlation matrix is defined
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as

G = diag ([[G′]0,0, . . . , [G
′]D−1,D−1])

with

G′ =
∑

`∈P

f [`]fH[`] . (4.56)

We use the diagonal matrix G because we focus on a matched-filter implementation

without the need of a matrix inversion so that we can reduce complexity. If a matrix

inversion is performed, G has to be replaced by G′. The matched filter implemen-

tation of (4.54) is exact for the generalized finite Slepian sequences since they are

orthogonal on the pilot set P ,

G = G′(GS)
.

For all other basis expansions the estimator in (4.41) results in a small performance

loss.

We repeat here the square bias expressions from Section 4.5.2 for convenience

bias2[m] =

1
2∫

− 1
2

E[m, ν]Shh(ν)d ν . (4.57)

with the instantaneous error characteristic E[m, ν] = |1 − H(m, ν)|2 (4.17) and

bias2
M =

1

M

M−1∑

m=0

bias2[m] . (4.58)

4.8.2 Basis Expansion Variance

We define
ES

N0

=
1

σ2
z

(4.59)

for channel estimation purposes. Note that this definition is different from Eb/N0

which we use for data detection, cf. (3.9). Based on the results from [52, Sec. 6.1.4]

we can express the basis expansion estimator variance as

var[m] ≈ σ2
zf

H[m]G−1f [m] . (4.60)

The mean variance for the complete block of length M is given by

varM ≈ 1

M

M−1∑

m=0

var[m] (4.61)
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4 Time-Variant Channel Estimation

Equation (4.61) becomes exact for bias2
M = 0. For the generalized finite Slepian

basis expansion (4.61) simplifies to

var
(GS)
M ≈ σ2

z

D

J
.

Note that varM increases with decreasing number of pilot symbols J .

4.8.3 Simulation Model and System Assumption

Again, we use the system parameters from Section 4.4.1. We evaluate the time-

variant channel estimator for a channel with autocorrelation

E{h∗[m + m̃]h[m]} = Rhh[m̃] = J0(2πνDm̃) , (4.62)

where J0 is the Bessel function of the first kind and zeroth order. The normalized

one-sided Doppler bandwidth

νD =
vfC

c0

TS .

The true speed of the user is denoted by v, with 0 ≤ v < 102.5 km/h. The related

Doppler spectrum is given in (4.38). The range of the normalized Doppler bandwidth

is

0 ≤ νD < νDmax = 3.9 · 10−3 .

The dimension of the Fourier, the Slepian, and the generalized finite Slepian basis

expansion is chosen as D(GS) = D(S) = D(F) = 5. For the generalized finite Slepian

basis expansion we choose an approximation factor of a = 2.

The actual realizations of the time-variant channel h[m] are calculated as the

superposition of 20 impinging waves [93]. See Appendix A for more details.

4.8.4 Analytic Results

We evaluate (4.58) for the Jakes’ spectrum (4.38) and the transmission of J = 10

pilots. Figure 4.20 plots the the square bias of the generalized finite Slepian basis

expansion, the Slepian basis expansion and the Fourier basis expansion for 0 ≤ νD ≤
3.9·10−3. The analytic results are denoted ’theor.’. The square bias of the generalized

finite Slepian basis expansion is three magnitudes smaller than the square bias of

the Fourier basis expansion. The square bias of the Fourier basis expansion slightly

decays towards νDmax = 3.9 · 10−3 = 1/M = 1/256 since this frequency coincides

with the one of the Fourier basis function and thus is a local minimum. The same

behavior is also visible in Figure 4.21.
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Figure 4.20: bias2
M for the Fourier, the Slepian, and the generalized finite Slepian

basis expansion with dimension D(GS) = D(S) = D(F) = 5 and J = 10

pilots. We vary the Doppler bandwidth in the range 0 ≤ νD ≤ 3.9 ·10−3.

The result in Figure 4.20 also demonstrates that the generalized finite Slepian basis

expansion needs less parameters and performs better than the spline approximation

investigated in [83].

Note that the generalized finite Slepian basis expansion estimator only exploits

that Shh(ν) = 0 for |ν| > νDmax and does not require any other knowledge about

the Doppler spectrum of the time-variant channel. The design parameters for our

generalized finite Slepian basis expansion are νDmax, M , and P . We use the auto-

correlation (4.62) to allow for easier comparison with other publications only. Real

channels do not show a Jake’s Doppler spectrum as was shown in [92]. In fact, with

(4.57) we are able to evaluate the basis expansion estimator square bias for any

Doppler spectrum. In order to achieve optimum performance with the generalized

finite Slepian basis expansion the power spectral density has to satisfy

Shh(ν) = 0 for |ν| > νDmax ,

which is ensured by the physical mechanism behind the Doppler effect in a wireless

channel.

4.8.5 Numerical Results

To obtain numerical results for the basis expansion square bias we set σz = 0 in

(4.6) and perform channel estimation according to (4.54). In Figure 4.20 the Doppler
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Figure 4.21: MSEM of the basis expansion estimator with J = 10 pilot symbols

at an ES/N0 = 10 dB for one user moving with v = 0 . . . 100 km/h

corresponding to νD = 0 . . . 3.8 · 10−3.

bandwidth νD is varied in the range 0 ≤ νD ≤ 3.9 · 10−3. We plot the square bias

of the Fourier, the Slepian and the generalized finite Slepian basis expansion. The

results are averaged over 2000 channel realizations. We can observe a perfect match

between the numerical (denoted ‘sim.’) and the analytical results (denoted ’theor.’).

We evaluate the basis expansion estimator for a signal to noise ratio of ES/N0 =

10 dB, J = 10 pilot symbols and 0 ≤ νD ≤ 3.8 · 10−3. The simulation result in terms

of MSEM versus νD is given in Figure 4.21 together with the analytic results. The

square bias of the Fourier basis expansion dominates the mean square error MSEM ,

the distance to the generalized finite Slepian basis expansion is reduced because of

the present noise level of ES/N0 = 10 dB.

Figure 4.22 plots the analytic and simulation results for a varying number of

pilot symbols J ∈ {5, . . . , 15} with νD = 3.8 · 10−3 and ES/N0 = 15 dB. With an

increasing number of pilots J > 10 the performance difference between the Slepian

basis expansion and the generalized finite Slepian basis expansion vanishes. The

mean square error of the Slepian basis expansions is smaller than the mean square

error of the Fourier basis expansion for J ≥ 7. The generalized finite Slepian basis

expansion has the smallest mean square error down to J = D = 5. The difference

between the analytic results and the simulations is due to the fact that (4.61) is only

exact for bias2
M = 0 which is less and less fulfilled for decreasing J .

Finally, we fix J = 10, νD = 3.8 · 10−3 and vary ES/N0 in the range of 0 to 30 dB.

Figure 4.23 shows that the Fourier basis expansion is biased and its mean square
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Figure 4.22: MSEM of the basis expansion estimator with J = 5, . . . , 15 pilot sym-

bols at an ES/N0 = 15 dB for one user moving with v = 100 km/h

corresponding to νD = 3.8 · 10−3.

error saturates for increasing ES/N0 at 4 · 10−2 . The same is true for the Slepian

basis expansion at a mean square error of about 2 · 10−3 . Only the generalized

finite Slepian basis expansion is (practically) unbiased because its basis functions

are designed to be orthogonal on the pilot set P .

From this analysis it is clear that the generalized finite Slepian basis expansion

offers major performance gains compared to the Fourier basis expansion. Compared

to the Slepian basis expansion the performance difference is smaller. The implemen-

tation complexity of the Slepian and the generalized finite Slepian basis expansion

is exactly the same. Therefore, it is always beneficial to use the generalized finite

Slepian basis expansion for pilot-based time-variant channel estimation using a low

complexity matched-filter implementation.

4.8.6 Further Comparisons and Discussion

So far, all performance results were averaged over a data block with length M .

Figure 4.24 gives a comparison of bias2[m] (4.57) for the Fourier, the Slepian, and the

generalized finite Slepian basis expansions. The variance enhancement per symbol

var[m]/σ2
z is shown in Figure 4.25.

Comparing Figure 4.24 and Figure 4.25 it becomes clearer where the basis expan-

sions obtain their different performance from. The square bias of the Fourier basis

expansion is high at the beginning and end of the block. The square bias curves
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Figure 4.23: MSEM of the basis expansion estimator for J = 10 pilot symbols at

an ES/N0 = 0 . . . 30 dB for one user moving with v = 100 km/h corre-

sponding to νD = 3.8 · 10−3.
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Figure 4.24: Square bias per symbol bias2[m] for the Fourier, the Slepian, and the

generalized finite Slepian basis expansion with J = 10 pilot symbols

and v = 70 km/h.
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Figure 4.25: Variance multiplier per symbol var[m]/σ2
z for the Fourier, the Slepian,

and the generalized finite Slepian basis expansion with J = 10 pilot

symbols.

for the Slepian and finite Slepian basis expansions have the same qualitative behav-

ior towards the block boundaries. But the square bias is several magnitudes lower

compared to the Fourier basis expansion. The variance multiplication of the Fourier

basis expansion is constant over the block length. For the Slepian basis expansion

it is largest at the boundaries of the block leading to noise enhancement. However,

this effect is smaller than the square bias difference in Figure 4.24.
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5 Time-Variant Frequency-Selective

Channel Estimation

This chapter describes a low complexity algorithm based on a specially designed

basis expansion for time-variant frequency-selective channel estimation in an MC-

CDMA downlink. The presentation in this chapter will rely on the notation and

the signal model from Chapter 2 for MC-CDMA. Our aim is to establish a channel

estimation scheme for a time-variant frequency-selective channel that needs only

very little knowledge of second order statistics. We will make use of the results

presented in Chapter 4 for time-variant frequency-flat channel estimation.

The channel estimation is based on the assumption that the maximum tempo-

ral variation of a wireless channel is upper bounded by the maximum (one sided)

normalized Doppler bandwidth (4.1)

νDmax =
vmaxfC

c0

TS ,

which is determined by the maximum (supported) velocity vmax, the carrier fre-

quency fC and the symbol duration TS.

OFDM transforms the time-variant frequency-selective channel into a set of time-

variant frequency-flat subcarriers. We deal with time-variant channels that vary

significantly over the duration of a long block of OFDM symbols. However, for the

duration of each single OFDM symbol the channel variation is small enough to be

neglected. This implies, in other words, a very small inter-carrier interference.

Under the assumption of small inter-carrier interference each time-variant

frequency-flat channel (corresponding to each subcarrier) is fully described through

a sequence of complex scalars at the OFDM symbol rate 1/TS. This sequence is

bandlimited by νDmax. In order to perform coherent multi-user detection we need

to estimate a time limited snapshot of this bandlimited sequence at the receiver

side. The length of this snapshot is equal to the length of a data block consisting of

OFDM data symbols with interleaved OFDM pilot symbols.

We apply the generalized finite Slepian basis expansion on a per-subcarrier basis to

estimate the time-variant frequency-selective channel in the MC-CDMA downlink.
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Figure 5.1: Model for the MC-CDMA transmitter in the time-variant downlink.

5.1 Signal Model

We reuse the signal model (2.19) and modify it for the time-variant downlink. This

means that all K user signals are transmitted over the same time-variant channel.

Figure 5.1 depicts the downlink transmitter schematically.

In order to accommodate for time-variant channel estimation the M − J data

symbols are distributed over a block of length M allowing for the insertion of J

pilot symbols. Thus, the data symbols satisfy

bk[m] ∈ {±1 ± j}/
√

2 for m /∈ P (5.1)

and

bk[m] = 0 for m ∈ P , (5.2)

where the pilot placement is defined through the index set (4.40) which we repeat

here for convenience

P =

{⌊

i
M

J
+

M

2J

⌋

| i ∈ {0, . . . , J − 1}
}

. (5.3)

Figure 4.14 shows an example for the pilot placement defined by the pilot set P .

We ignore the effects of path loss and shadow fading,

αk = 1 for k ∈ {1, . . . , K}

and a perfect power control is assumed. As shown in Figure 5.1, the spread signals

of all users are summed up and common pilot symbols p[m] ∈ C
N with elements

p[m, q] are added

d[m] = Sb[m] + p[m] . (5.4)
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The elements of the pilot symbol vector p[m, q] for m ∈ P and q ∈ {0, . . . , N − 1}
are independent identically distributed (i.i.d.) chosen with equal probability from

the scaled QPSK symbol set K{±1 ± j}/
√

2N , otherwise

p[m] = 0N for m /∈ P .

By scaling the pilot symbols with the number of users K the energy in the OFDM

data-symbols and OFDM pilot-symbols is kept equal.

After OFDM and cyclic prefix insertion we write the chip-vector as

µ[m] = T CPF H
Nd[m] .

Then a parallel-serial conversion is performed according to

µ[m] =








µ[mP ]

µ[mP + 1]
...

µ[mP + P − 1]








and the chip-stream µ[n] with chip rate 1/TC = P/TS is transmitted over a time-

variant frequency-selective channel.

The transmit filter, the time-variant channel and the matched receive filter to-

gether are represented by h(t, τ) (4.4). Please refer to Section 2.1 and Section 4.2 for

a more detailed background on channel modelling. We denote the chip-rate sampled

time-variant impulse response by

h′[n, `] = h(nTC, `TC) .

A time-variant channel impulse response generally introduces inter-carrier inter-

ference in an OFDM system. However, if the channel variation in time, measured

by the normalized Doppler bandwidth, stays below a certain threshold, the inter-

carrier interference is small enough to be neglected for the receiver side process-

ing [43]. This condition is fulfilled if the one-sided normalized Doppler bandwidth

νD is much smaller than the normalized subcarrier bandwidth P/N ,

νDN

P
< 0.01 . (5.5)

In other words the DFT is still applicable [48] although the channel is time-variant.

Equation (5.5) is a stronger condition than the more general underspread property

[38] which means that the product of Doppler bandwidth and delay spread is smaller

than unity

νDLD < 1 . (5.6)
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Figure 5.2: Model for the MC-CDMA receiver with channel estimation and time-

variant MMSE filter.

We are able to treat the time-variant channel as constant for the duration of each

single OFDM symbol if (5.5) is fulfilled. Hence,

h[m, `] = h′[mP, `] ,

respectively

h[m] =






h[m, 0]
...

h[m,L − 1]




 ∈ C

L×1

in vector notation. The time-variant frequency response g[m] ∈ C
N with elements

g[m, q] is defined as the DFT of the time-variant impulse response,

g[m] =
√

NF N×Lh[m] .

The receiver removes the cyclic prefix and performs a DFT. The received signal

vector y[m] ∈ C
N after these two operations is given by

y[m] = diag (g[m]) (Sb[m] + p[m]) + z[m] , (5.7)

where complex additive white Gaussian noise with zero mean and covariance σ2
zIN

is denoted by z[m] ∈ C
N with elements z[m, q] for q ∈ {0, . . . , N − 1}.

5.2 Time-Variant Multi-User Detector

Figure 5.2 shows the schematic structure of the downlink receiver. In contrast to the

receiver presented in Section 2.6 for the uplink, we do not use an iterative structure

for the downlink. The main reason for this approach is the fact that, in the downlink,

all users share the same channel. This allows to obtain much better initial channel
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estimates from the pilots alone. Based on these good channel estimates the multi-

user detection performance of the linear MMSE filter is sufficient already after the

first iteration too. Another key issue for the downlink processing is the space and

battery limitation in the mobile handset.

The linear MMSE receiver detects the data using the received vector y[m], the

spreading matrix S and the time-variant frequency response g[m] which is assumed

to be known for the moment. We define the time-variant effective spreading se-

quences

s̃k[m] = diag (g[m]) sk , (5.8)

and the time-variant effective spreading matrix

S̃[m] = [s̃1[m], . . . , s̃K [m]] ∈ C
N×K ,

to express the unbiased time-variant linear MMSE filter (cf. (2.29) for the block-

fading case).

fH
k [m] =

s̃H
k [m](σ2

zIN + S̃[m]S̃
H
[m])−1

s̃H
k [m](σ2

zI + S̃[m]S̃
H
[m])−1s̃k[m]

. (5.9)

The code symbol estimates are given by

wk[m] = fH
k [m]y[m] .

After demapping and deinterleaving, the code bit estimates are supplied to the

decoder. After the decoder a hard decision is performed to obtain the transmitted

data bits χ̂k[m
′′].

Please note, that the unbiased linear MMSE filter (5.9) leads to some noise en-

hancement since the channel energy

‖h[m]‖2 = ‖g[m]‖2/N

varies over the duration of a data block.

5.3 Time-Variant Channel Estimator

The performance of the receiver crucially depends on the accurate channel estimates

for the time-variant frequency response g[m]. The MC-CDMA signal model describes

a transmission which takes place over N parallel frequency-flat channels. In order to

reflect this we rewrite (5.7) as a set of equations for every subcarrier q ∈ {0, . . . , N −
1},

y[m, q] = g[m, q]d[m, q] + z[m, q] . (5.10)
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5 Time-Variant Frequency-Selective Channel Estimation

where d[m, q] are the elements of d[m] (5.4). Comparing (5.10) with (4.6) we see that

the structure of these equations is identical. The band-limited property of h[m,n]

directly applies to g[m, q] too. This allows to estimate the time-variant frequency-flat

subcarrier g[m, q] with the generalized Slepian basis expansion (4.54). We define

ψ̂i[q] =
1

∑

m∈P

|ui[m]p[m, q]|2
∑

m∈P

y[m, q]p∗[m, q]u∗
i [m] ,

where i ∈ {0, . . . , D − 1} and q ∈ {0, . . . , N − 1}. Although we will use the gener-

alized Slepian basis expansion, we keep the notation regarding the basis expansion

generic. Hence, any basis expansion defined in Chapter 4 can be used for performance

comparison.

The estimated time-variant frequency response is given by

ĝ′[m, q] =
D−1∑

i=0

ui[m]ψ̂i[q] .

Further noise suppression is obtained if we exploit the correlation between the sub-

carriers

ĝ[m] = F N×LF H
N×Lĝ′[m] .

Finally, the channel estimates ĝ[m] are inserted into (5.8) and multi-user detection

can be performed.

5.4 Simulation Results

The realizations of the time-variant frequency-selective channel h′[n, `], sampled

at the chip-rate 1/TC, are generated using an exponentially decaying power-delay

profile η2[`] defined in (2.4) and the simulation parameters from Section 3.1.1. These

are: Number of subcarriers N = 64, block length M = 256, essential support of

the channel impulse response L = 15. The discrete time indices n and ` denote

sampling at rate 1/TC = 3.84 ·106 s−1. The exponential decaying power-delay profile

corresponds to a normalized delay spread LD = TD/TC = 1. The autocorrelation for

every channel tap is given by

Rh′h′ [ñ, `] = η2[`]J0(2πνDPñ)

which results in the classical Jakes’ spectrum. We use the enhanced simulation model

(A.1) for every channel tap l ∈ {0, . . . , L − 1}. The simulation uses a chip-rate

sampled time-variant channel, thus any possible effect from residual inter-carrier

interference would be visible in the simulation results.
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Figure 5.3: Downlink MC-CDMA receiver performance in terms of BER versus

Eb/N0. We compare the generalized finite Slepian basis expansion, the

Slepian basis expansion and the Fourier basis expansion, all using D = 5

basis functions. The K ∈ {32, 64} users are moving with v = 70 km/h

and the lowest amount of pilots possible J = D = 5 is used. For reference

the single-user bound (SUB) and the performance with perfect channel

knowledge (PER) are shown.

The system operates at carrier frequency fC = 2 GHz, the users move with velocity

v = 70 km/h, resulting in BD = 126 Hz and νD = 0.0026. The system is designed

for vmax = 102.5 km/h which corresponds to D′ = 3. The generalized finite Slepian

basis expansion uses a = 2 and D(GS) = 5. The Fourier basis expansion and the

Slepian basis expansion, both applied for performance comparison, use the same

dimensionality D(F) = D(S) = 5. We evaluate the performance of the generalized

finite Slepian basis expansion channel estimation with the lowest number of pilots

possible J = 5 = D. Thus, we have as many pilots as basis functions in the basis

expansion. The pilot ratio J/M is 2%, which is valid for both the number of pilots

and the pilot energy.

In Figure 5.3 we illustrate the downlink MC-CDMA receiver performance with

K ∈ {32, 64} users in terms of bit error rate versus Eb/N0. Additionally, the plot

also shows the single-user bound. The results are obtained by averaging over 400

independent channel realizations.

In order to relate the Eb/N0 values in Figure 5.3 to the channel estimation per-
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5 Time-Variant Frequency-Selective Channel Estimation

formance results in Section 4.3 we establish the relation

ES

N0

=
K2

P

M − J

M

Eb

N0

(5.11)

where we took the higher pilot energy in the downlink into account. The simulation

in Figure 5.3 for 0 dB ≤ Eb/N0 ≤ 16 dB and K = 32 users corresponds to ES/N0

values in the range 11 dB ≤ ES/N0 ≤ 27 dB. For K = 64 users the range is from

17 dB ≤ ES/N0 ≤ 33 dB.

Taking (5.11) into account when referring to Figure 4.23 makes clear, that the

drastically smaller MSEM of the generalized finite Slepian basis expansion than of

the Fourier basis expansion leads to a pronounced reduction in bit error rates. This

is because, the Fourier basis expansion is biased as is visible for higher ES/N0 values

in Figure 4.23 which leads to an error floor in Figure 5.3.

Figure 5.3 also shows the receiver performance when using the Slepian basis ex-

pansion. As can be seen in Figure 4.22 and as is explained in Section 4.5 the Slepian

basis expansion performance degrades because of lost orthogonality due to the pi-

lot grid. At the limit J = D the Slepian basis expansion is hardly better than the

Fourier basis expansion. However, this picture changes rapidly with increasing num-

ber of pilots. At J > 10 pilots the performance of the Slepian basis expansion is

practically equivalent to the one of the generalized finite Slepian basis expansion, as

is shown in Figure 4.22.

We also plot the receiver performance for a perfectly known channel (denoted

’PER’) in Figure 5.3, and we can see that the performance advantage of the gen-

eralized finite Slepian basis expansion is strongest at the lowest amount of pilots

possible J = D = 5. The receiver performance is extremely close to the one with

perfect channel knowledge.

5.5 Doppler Diversity in MC-CDMA

In MC-CDMA a data symbol is spread by a user specific spreading code in order to

take advantage of multipath diversity VM. A time-variant channel additionally offers

Doppler diversity VD which can be used in MC-CDMA by convolutional coding and

random interleaving [57]. The intuitive reason for Doppler diversity, respectively

time diversity, is simply the fact that the fading condition of the channel changes

over time. The faster the channel changes the shorter is the duration of a bad channel

realization.

However, accurate time-variant channel state information is required at the re-

ceiver side so that both sources of diversity can be exploited. The overall diversity

of the channel is given by [34]

V = VMVD . (5.12)
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The Doppler diversity depends on the length of the data block the Doppler spec-

trum and the applied coding scheme. In the next section we derive a measure for

the Doppler diversity that an MC-CDMA receiver is able to take advantage of. This

measure is validated by means of simulation results.

5.5.1 Diversity Measure

In the literature [34] it has been proposed to measure the Doppler diversity VD of a

channel by the product of block length and normalized Doppler bandwidth

VD ≈ M
16πνD

9
. (5.13)

It is obvious that the shape of the Doppler power spectral density Sgg(ν) may

have an impact on VD as well. For example the Doppler spectrum caused by the

propagation of a single planar wave has the form S1(ν) = δ(ν − νD). Evidently,

such a channel will have a lower Doppler diversity than a rich multipath channel

in an indoor scenario with three dimensional scattering which typically results in a

rectangular Doppler spectrum.

We can interpret a time-variant frequency-flat Rayleigh fading channel g[m] (re-

spectively a subcarrier in an OFDM system) as a stationary Gaussian stochastic

process with corresponding power density spectrum Sgg(ν). Its entropy rate is de-

fined as [36]

h(Sgg) = log 2πe +

∫ 1
2

− 1
2

log(Sgg(ν))d ν . (5.14)

However, a typical wireless channel is over-sampled with respect to the Doppler

bandwidth. This is why the support of Sgg(ν) is much smaller than [−1/2, +1/2]

and Sgg(ν) ≡ 0 for νD < |ν| < 1/2 which leads to an ill defined entropy rate

h(Sgg) = −∞ [40] [10, Sec. 4.5]. This fact is the motivation to look for other diversity

measures.

A diversity measure for flat-fading multiple-input multiple-output (MIMO) chan-

nels was defined in [31]. We will show the applicability of the diversity measure

from [31] for time-variant flat-fading single-input single-output channels.

5.5.2 Flat-Fading Multiple-Input Multiple-Output (MIMO)

Channel

A flat-fading MIMO channel is described through a matrix H ∈ C
NR×NT where NT

denotes the number of transmit antennas and NR the number of receive antennas.

The elements [H ]r,t describe the fading coefficient between transmit antenna t and
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receive antenna r. We assume that every element [H ]r,t is complex, circularly sym-

metric, zero mean, and Gaussian distributed which leads to Rayleigh fading. The

covariance matrix of the MIMO channel is defined as

RH = E

{

vec(H) (vec(H))H
}

(5.15)

where the operator vec(H) stacks all columns of H . The diversity measure of the

MIMO channel H , given the correlation matrix RH, is defined in [31] as

Ψ(RH) =

(
tr(RH)

‖RH‖F

)2

. (5.16)

In the following section we will show how this measure for a flat-fading MIMO

channel can be applied to a time-variant flat-fading single-input single-output chan-

nel.

5.5.3 Time-Variant Flat-Fading Single-Input Single-Output

Channel

In the case of a time-variant frequency-flat subcarrier q we can stack the channel

coefficients g[m, q] in the vector

gq =






g[0, q]
...

g[M − 1, q]




 ∈ C

M ,

for the duration of one data block. We define the covariance matrix of gq as

Rgg = E{gqg
H
q } ∈ C

M×M

which is independent of subcarrier q if we assume the same Doppler spectrum for

every channel tap.

The elements of g[m, q] fulfill the same statistic properties as the elements of the

MIMO channel matrix [H ]r,t. This is why we are able to insert Rgg into (5.16) in

order to define the diversity measure for a time-variant frequency-flat subcarrier as

Ψ(Rgg) =

(
tr(Rgg)

‖Rgg‖F

)2

. (5.17)

We can express (5.17) through the eigenvalues of matrix Rgg. The trace of an

M × M matrix in terms of its eigenvalues is given by

tr(Rgg) =
M−1∑

i=0

λi . (5.18)

86



5.5 Doppler Diversity in MC-CDMA

An equivalent expression for the Frobenius norm is found through

‖Rgg‖F =

√
√
√
√

M−1∑

i=0

λ2
i . (5.19)

Inserting (5.18) and (5.19) into (5.17) results in

Ψ(Rgg) =





∑M−1
i=0 λi

√
∑M−1

i=0 λ2
i





2

. (5.20)

This diversity measure has the property

1 ≤ Ψ(Rgg) ≤ M . (5.21)

The lower bound is reached for a constant (block fading) channel g = g1M which

gives a covariance matrix Rgg = σ2
g1M×M . Inserting Rgg in (5.17) we see that Ψ = 1.

The upper bound is is reached if the channel coefficients are uncorrelated for a block

of length M .

We have evidence that VD = Ψ(Rgg) but no final proof, thus we continue to use

two different symbols.

5.5.4 Maximum Diversity for a Given Doppler Bandwidth

We assume that every subcarrier has a rectangular Doppler power density spectrum

Sgg(ν) =

{
1

2νD
for |ν| < νD ,

0 otherwise.
(5.22)

With this assumption we are able to apply the knowledge about the asymptotic

behavior of the eigenvalues from the DPS sequence theory in order to obtain closed

form results.

The covariance matrix per subcarrier is given by

Rgg = 1/(2νD)Cgg ,

where Cgg is similar to the defining matrix for the DPS sequences (see Section 4.5)

with elements

[Cgg]i,` =
sin [2π(i − `)νD]

π(i − `)
.

We know that the eigenvalues λi of matrix Cgg rapidly drop to zero for

i > d2νDMe + 1 .
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Thus, we can give an analytic upper bound for the Doppler diversity measure

Ψ(Rgg) ≤ d2νDMe + 1 . (5.23)

For νDM = c and M → ∞ Equation (5.23) becomes a tight bound, since λi = 1 for

i ≤ d2νDMe and λi = 0 for i > d2νDMe [69] [24, Sec. 5.2]. For arbitrary Doppler

power density spectra with support [−νD, νD] (5.23) is an upper bound.

Definition (5.23) gives a rigorous formulation of the observations made in [47]

where the Fourier basis expansion [60] was used.

5.5.5 Simulation Results

Using the same system parameters as defined in Section 5.4 we simulate a system

with K = 32 users moving with velocity v ∈ {0, 50, 100} km/h which gives BD ∈
{0, 93, 185}Hz and νD ∈ {0, 1.9 · 10−3, 3.8 · 10−3}. We use J = 10 OFDM pilot

symbols. The system is designed for vmax = 102.5 km/h which results in a signal

space dimension of D′ = 3. We choose an approximation factor a = 2 and a basis

expansion dimension D(GS) = 5 for the generalized finite Slepian basis expansion.

The results are obtained by averaging over 2000 independent channel realizations.

In Figure 5.4 we illustrate the downlink MC-CDMA receiver performance in terms

of bit error rate versus Eb/N0. With increasing velocity the receiver performs better

because the Doppler diversity VD increases too. For velocities in the range 0 < v <

100km/h the Doppler diversity measure (5.23) is in the range 1 < Ψ < 3 predicting

a similar Doppler diversity VD. In the following we will analyze to which extend our

receiver algorithm is able to take advantage of the predicted Doppler diversity.

The diversity V is defined as the slope of the bit error rate versus Eb/N0 curve

in log-log scale. The power-delay profile defining the multipath diversity VM is kept

constant in this simulation. For velocity v = 0 km/h, the Doppler diversity VD =

1 = Ψ, which follows from the multiplicative assumption in (5.12) and the bound

(5.21). This allows to calculate the additional Doppler diversity that the MC-CDMA

receiver is able to exploit as

VD(v) = V (v)/V (0).

where v denotes the users velocity.

Figure 5.5 plots the Doppler diversity VD versus Eb/N0 for velocity v ∈
{50, 100}km/h and a single user K = 1. For the simulations Jakes’ spectrum

was used, for which the diversity measure (5.17) predicts a Doppler diversity of

Ψ(50km/h) = 1.7 and Ψ(100km/h) = 2.8. The obtained Doppler diversity VD as

depicted in Figure 5.5 is clearly much smaller. The reason may be that the selected

transmission and coding scheme does not allow to exploit all diversity. The slight
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Figure 5.4: Downlink MC-CDMA receiver performance in terms of bit-error

rate (BER) versus Eb/N0 for K = 32 users moving with v ∈
{0, 50, 100} km/h. For reference the single-user bounds (SUB) are shown

too.
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decay at higher Eb/N0 values might be due to the bias of the applied time-variant

channel estimation method.

The block-interleaving described in Section 3.3 for block-fading channels results

in a similar diversity increase as the one obtained through Doppler diversity in the

time-variant case.
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6 Iterative Multi-User Detection and

Time-Variant Channel Estimation

This chapter deals with iterative time-variant channel estimation and multi-user

detection for the uplink of an MC-CDMA system. In iterative receivers the soft in-

formation gained about the transmitted data symbols is used to enhance the channel

estimation and data detection in consecutive iterations. Iterative multi-user detec-

tion and channel estimation for an MC-CDMA uplink was shown in Chapter 3 to

achieve the single-user bound under high load for a block-fading channel. However,

if users are moving at vehicular speed the wireless channel coefficients vary signifi-

cantly over the duration of a single data block. In this chapter we extend the concept

of iterative detection and channel estimation to the time-variant case.

Our results will challenge the reasoning in [5, 72] where a comparison between

different combinations of OFDM and DS-CDMA for cellular communication systems

is given. It is stated that MC-CDMA is best suited for the downlink. For the uplink

MC/DS-CDMA is favored which uses time domain spreading in parallel carriers

with rather large bandwidth per carrier. In [5,72] MC-CDMA is deprecated for the

uplink mainly because the orthogonality of the spreading sequences is destroyed due

to the frequency selective channel. This leads to bad performance for a matched filter

receiver. Furthermore, it is stated that the channel estimation does not perform well

for MC-CDMA.

The results of this chapter will show that MC-CDMA is an excellent choice for

the uplink which allows to exploit both, multipath and Doppler diversity. The basic

prerequisite is iterative multi-user detection. By applying this technique the orthog-

onality of the spreading codes is no necessity any more. Thus, the diversity of the

frequency selective channel can be exploited without drawbacks. However, the en-

hanced performance obtained by multi-user detection does not come at no cost.

The computational complexity is increased since a matrix inversion needs to be per-

formed. Our results are applicable to an isolated-cell scenario since no scrambling

code is applied.

Accurate channel estimates are mandatory for iterative multi-user detection algo-

rithms. In the following sections we use the iterative multi-user receiver structure to
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Figure 6.1: Model for the MC-CDMA transmitter and the channel in the uplink.

design a new iterative time-variant channel estimation scheme. This iterative time-

variant channel estimation scheme uses the feedback soft symbols, that are derived

from the output of the soft-in soft-out decoder, in order to enhance the channel es-

timates. The channel estimation itself is performed individually for every subcarrier

but jointly for all users. The time-variant subcarrier is modelled by the Slepian basis

expansion from Section 4.5. By using the Slepian basis expansion the dimensional-

ity of the time-variant estimation problem can be drastically reduced and we do not

need the detailed knowledge of second order statistics.

6.1 Uplink Signal Model for Time-Variant

Frequency-Selective Channels

We extend the downlink signal model (5.7) to the uplink case where every user trans-

mits over a different channel and uses a unique (random) pilot sequence. Figure 6.1

shows the schematic transmitter and channel model for the uplink. The M −J data

symbols are distributed over a block of length M fulfilling

bk[m] ∈ {±1 ± j}/
√

2 for m /∈ P (6.1)

and

bk[m] = 0 for m ∈ P (6.2)

allowing for pilot symbol insertion. The pilot placement is defined through the pilot

set P (4.40), see also Figure 4.14.

After spreading, pilot symbols pk[m] ∈ C
N with elements pk[m, q] are added

dk[m] = skbk[m] + pk[m] . (6.3)
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The elements of the pilot symbols pk[m, q] for m ∈ P and q ∈ {0, . . . , N−1} are i.i.d.

chosen with equal probability from the QPSK symbol set {±1 ± j}
√

2N , otherwise

pk[m] = 0N for m /∈ P .

Then, an N point inverse DFT is performed and a cyclic prefix of length G is

inserted. Each single OFDM symbol together with the cyclic prefix is represented

by µk[m] ∈ C
P and has length P = N + G chips. We write

µk[m] = T CPF H
Ndk[m] .

After parallel-serial conversion according to

µk[m] =








µk[mP ]

µk[mP + 1]
...

µk[mP + P − 1]








the chip stream µk[n] with chip rate 1/TC = P/TS is transmitted over a time-

variant frequency-selective channel hk[m]. We assume the same channel conditions

as defined in Section 5.1 with (5.5), so that the inter-carrier interference is negligibly

small.

At the receive antenna all K user signals add up. The receiver removes the cyclic

prefix and performs a DFT. The received signal vector after these two operations is

given by

y[m] =
K∑

k=1

diag (gk[m]) (skbk[m] + pk[m]) + z[m] , (6.4)

where complex additive white Gaussian noise with zero mean and covariance σ2
zIN

is denoted by z[m] ∈ C
N with elements z[m, q].

6.2 Iterative Time-Variant Multi-User Detection

We define the time-variant effective spreading sequences

s̃k[m] = diag (gk[m]) sk , (6.5)

and the time-variant effective spreading matrix

S̃[m] = [s̃1[m], . . . , s̃K [m]] ∈ C
N×K .

Using these definitions we write a signal model for data detection

y[m] = S̃k[m]b[m] + z[m] for m /∈ P
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ĝ
1
[m]

ĝ
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Figure 6.2: Model for the MC-CDMA joint time-variant channel-estimation and de-

coding multi-user receiver.

where b[m] (2.20) contains the stacked data symbols for K users.

Figure 6.2 shows the structure of the iterative receiver. The receiver detects the

data b[m] using the received vector y[m], the spreading matrix S̃
(i)

[m], and the

feedback extrinsic information Pr(EXT)(c
(i)
k [m′] = +1) on the code bits at iteration

i. The time-variant frequency-selective nature of the channel requires to build a

filter which is matched to the time-variant effective spreading sequence s̃
(i)
k [m]. For

Section 6.2, it is only of interest that the channel estimator supplies an estimate

ĝk[m] for the time-variant channel frequency response for every user. The general

optimization problem is therefore reduced to the estimation of b[m] only (for the

time-invariant case see Section 2.6).

6.2.1 Time-Variant Parallel Interference Cancellation

To cancel the multi-access interference, we perform soft cancellation for user k

ỹ
(i)
k [m] = y[m] + s̃

(i)
k [m]b̃

(i)
k [m] − S̃

(i)
[m]b̃

(i)
[m]. (6.6)

Vector b̃
(i)

[m] contains the soft bit estimates that are computed from the extrinsic

information supplied by the decoding stage. The mapping for the QPSK alphabet

is specified in (2.26).

6.2.2 Time-Variant Unbiased Conditional MMSE Filter

The output of the interference canceller ỹ
(i)
k [m] is further cleaned from noise and

multi-access interference with a successive linear MMSE filter

w̃
(i)
k [m] = (f

(i)
k [m])Hỹ

(i)
k [m]

to obtain an estimate of the transmitted symbol bk[m]. A time-variant unbiased

conditional MMSE filter for the MC-CDMA system can be found similarly to the
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MMSE detector given in Section 2.6. In order to simplify the notation we omit the

iteration index i for the filter. It has the form

fH
k [m] =

s̃H
k [m](σ2

zIN + S̃[m]V [m]S̃
H
[m])−1

s̃H
k [m](σ2

zI + S̃[m]V [m]S̃
H
[m])−1s̃k[m]

,

cf. (2.29) for the block-fading case.

Matrix V [m] denotes the error covariance matrix

V [m] = E
b

{

(b[m] − b̃[m])(b[m] − b̃[m])H
}

(6.7)

with diagonal elements

[V [m]]k,k = 1 − |b̃(i)
k [m]|2 , (6.8)

the non-diagonal elements are assumed to be zero. In this case we calculate the

variance for the symbol at time instant m belonging to user k and consider the filter

conditional.

6.3 Iterative Time-Variant Channel Estimation

The performance of the iterative receiver crucially depends on the accurate channel

estimates for the time-variant frequency response gk[m]. The MC-CDMA signal

model (6.4) shows that the transmission takes place over N parallel frequency-flat

channels. We rewrite (6.4) as a set of equations for every subcarrier q ∈ {0, . . . , N −
1},

y[m, q] =
K∑

k=1

gk[m, q](sk[q]bk[m] + pk[m, q]) + z[m, q] . (6.9)

Comparing (6.9) with (5.10) makes clear why the channel estimation in the up-

link is substantially more complicated than in the downlink. For every subcarrier

q we need to estimate the additive mixture of K bandlimited processes gk[m, q].

We describe the band limited property of each users’ process by the Slepian basis

expansion from Section 4.5. A linear MMSE filter is applied to estimate the basis

expansion coefficients using pilots and soft symbols in an iterative process.

6.3.1 Signal Model for Time-Variant Channel Estimation

For the downlink, as described in Section 5, we used the generalized finite Slepian

basis expansion without iterative processing to perform channel estimation. In the

downlink all users share the same channel, thus the effective ES/N0 for the channel

estimation is high enough in order to obtain time-variant channel estimates with
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6 Iterative Multi-User Detection and Time-Variant Channel Estimation

good accuracy, see Section 5.4. The generalized finite Slepian basis expansion per-

forms channel estimation using the pilot pattern P and interpolation between the

pilot positions.

In the uplink the ES/N0 is drastically reduced since channels for K individual

users have to be estimated. In the uplink the available processing power is much

higher such we can afford iterative processing. During the iterative process channel

knowledge for the full data block may be obtained, thus the orthogonality of the

Slepian basis functions can be maintained. The higher amount of pilots necessary for

the uplink due to the small ES/N0 reduces the performance gain of the generalized

finite Slepian basis expansion (see Section 4.8.5). This is why we use the Slepian

basis expansion also for the first iteration where only pilots are used for the initial

channel estimate.

Substituting the Slepian basis expansion (4.28) for the time-variant subcarrier

coefficients gk[m, q] into the system model (6.9) we obtain

y[m, q] =
K∑

k=1

D−1∑

i=0

ui[m]ψk[i, q]dk[m, q] + z[m, q] , (6.10)

where

dk[m, q] = sk[q]bk[m] + pk[m, q] . (6.11)

An estimate of the subcarrier coefficients ψ̂k[i, q] can be obtained jointly for all K

users but individually for every subcarrier q. We define the vector

ψq =















ψ1[0, q]
...

ψK [0, q]
...

ψ1[D − 1, q]
...

ψK [D − 1, q]















∈ C
KD

containing the basis expansion coefficients of all K users for subcarrier q. Further-

more, we introduce

yq =






y[0, q]
...

y[M − 1, q]




 ∈ C

M

for the received symbol sequence on subcarrier q for each single data block. Using

these definitions we write

yq = Dqψq + zq , (6.12)
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6.3 Iterative Time-Variant Channel Estimation

where

Dq = [diag (u0) Dq, . . . , diag (uD−1) Dq] ∈ C
M×KD , (6.13)

and Dq ∈ C
M×K (3.3) contains the transmitted symbols for all K users on subcarrier

q which we repeat here for convenience

Dq =






d1[0, q] . . . dK [0, q]
...

. . .
...

d1[M − 1, q] . . . dK [M − 1, q]




 .

For channel estimation, J pilot symbols in (6.11) are known. The remaining M − J

data symbols are not known. We replace them by soft symbols, calculated from the

a-posteriori probability (3.5) obtained in the previous iteration. This enables us to

obtain refined channel estimates if the soft symbols get more certain from iteration

to iteration. For the first iteration the soft symbols b̃′k[m] for m /∈ P are set to zero.

We define the soft symbol matrix D̃q ∈ C
M×K according to (3.3) by replacing

dk[m, q] with

d̃k[m, q] = sk[q]b̃
′
k[m] + pk[m, q] .

The soft symbols b̃′k[m] are defined according to (3.5). Finally we define D̃q ∈
C

M×KD according to (6.13) by replacing Dq with D̃q. The matrix D̃q contains

deterministic pilot symbols and statistical information about the transmitted data

symbols.

6.3.2 Linear MMSE Channel Estimation

We extend the results obtained in Section 3.2 to the time-variant case. The linear

MMSE estimate of ψq in (6.12) is given by (with the subcarrier index q omitted)

ψ̂LMMSE = D̃
H




D̃D̃

H
+ Λ

′ + σ2
zIM

︸ ︷︷ ︸

,∆
′






−1

y. (6.14)

where the elements of the diagonal matrix Λ
′ are defined as

[Λ′]m,m =
K∑

k=1

D−1∑

i=0

1

N
u2

i [m]var{bk[m]}, (6.15)

and the symbol variance is

var{bk[m]} = E
b

{(

bk[m] − E
b
{bk[m]}

)2
}

= 1 − b̃2
k[m].

97



6 Iterative Multi-User Detection and Time-Variant Channel Estimation

The elements of the basis function are denoted by ui[m] (see Section 4.5).

For evaluation of this estimator it is necessary to invert an M -dimensional matrix,

which is computationally expensive. To avoid this, we apply the matrix inversion

lemma to (6.14), yielding

ψ̂LMMSE =
(

D̃
H
∆

′−1
D̃ + IK

)−1

D̃
H
∆

′−1
y. (6.16)

The rows of matrix D̃ are scaled by the diagonal matrix ∆
′, taking into account the

variances of the noise and the variance of the soft symbol estimates.

After estimating ψ̂q for all q ∈ {0, . . . , N − 1} an estimate for the time-variant

frequency response is given by

ĝ′
k[m, q] =

D−1∑

i=0

ui[m]ψ̂k[i, q] .

Further noise suppression is obtained if we exploit the correlation between the sub-

carriers

ĝk[m] = F N×LF H
N×Lĝ′

k[m] .

Finally, this allows to perform data detection by inserting the channel estimates

ĝk[m] into (6.5). Figure 6.3 shows a summary of the iterative channel estimation

algorithm.

Input:

y ∈ C
N , b̃′k[m] ∈ C, σ2

z ∈ R.

Uses:

pk[m, q] ∈ C, sk[q] ∈ C, ui[m] ∈ R for i ∈ {0, . . . ,D − 1}.
Index ranges:

k ∈ {1, . . . ,K}, m ∈ {0, . . . ,M − 1}, q ∈ {0, . . . , N − 1}.
Channel estimation:

[Λ′]m,m =
∑K

k=1

∑D−1
i=0

1
N

u2
i [m](1 − b̃2

k[m]),

∆
′ = Λ

′ − σ2
zIM ,

[Dq]m,k = sk[q]b̃′k[m] + pk[m, q],

ψ̂q,LMMSE =
(

D̃
H

q∆
′−1

D̃q + IK

)−1

D̃
H

q ∆
′−1

y,

ĝ′k[m, q] =
∑D−1

i=0 ui[m]ψ̂k[i, q],

ĝk[m] = F N×LF H
N×Lĝ′

k[m].

Output:

ĝk[m] ∈ C
N .

Figure 6.3: Iterative channel estimation algorithm. Each line is evaluated for the

defined index ranges if a certain index appears on the left hand side.
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Figure 6.4: MC-CDMA uplink performance in terms of bit error rate (BER) ver-

sus Eb/N0 after 4 iterations. The Slepian basis expansion uses D′ =

D = 3 basis functions. The K ∈ {32, 64} users are moving with

v ∈ {0, 100} km/h. The normalized delay spread LD = 4. For refer-

ence, the single-user bound (SUB) and the basis expansion single-user

bound both for v = 0 km/h are shown too.

6.3.3 Simulation Results

The realizations of the time-variant frequency-selective channel h′
k[n, `], sampled at

the chip-rate 1/TC, are generated using the parameters from Section 5.4.

The system operates at carrier frequency fC = 2 GHz and the K ∈ {32, 64}
users move with velocity v ∈ {0, 100} km/h. This gives a Doppler frequency BD ∈
{0, 190}Hz and νD ∈ {0, 3.8 · 10−3}. The number of subcarriers N = 64 and the

OFDM symbol with cyclic prefix has length of P = G + N = 79. The data block

consists of M = 256 OFDM symbols with J = 60 OFDM pilot symbols. The system

is designed for vmax = 102.5 km/h which results in D = D′ = 3 for the Slepian basis

expansion. The simulation results are obtained by averaging over 100 independent

channel realizations.

Figure 6.4 illustrates the MC-CDMA uplink performance with iterative time-

variant channel estimation based on the Slepian basis expansion in term of bit error

rate versus Eb/N0 after four iterations. The plot also shows the single-user bound

which is defined as the performance for one user K = 1 and a perfectly known

channel gk[m]. Additionally, we plot the basis expansion single-user bound. This is

the performance which can be achieved with the Slepian basis expansion channel-
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Figure 6.5: Mean square channel estimation error MSEM versus number of iteration

i ∈ {1, . . . , 4} for the uplink of an MC-CDMA system. The Slepian basis

expansion uses D = 3 basis functions. The K = 32 users are moving

with v = 100 km/h.

estimation algorithm.

In order to obtain the simulation results for the basis-expansion single-user bound,

we supply the receiver with channel values according to

ĥk[m, `] = fT[m]
M−1∑

m̌=0

f ∗[m̌]hk[m̌, `] +

√

D

J
z[m, `] .

Thus, we project the time-variant channel onto the orthogonal basis function taking

into account the bias2
M (4.58) and an additive noise term the variance varM (4.61).

The distance between the single-user bound and the basis expansion single-user

bound is explained by the energy that is used for the pilot symbols and the mean

square error of the basis expansion channel estimates MSEM .

For every subcarrier, KD coefficients have to be estimated. Under full load KD =

192 comes near to the overall number of symbols in a single data block M = 256.

This is why the uncertainty of the channel estimates increases as the number of

users approaches full load. This explains the performance gap between K = 32 and

K = 64 users.

Figure 6.5 shows the mean square channel estimation error MSEM versus number

of iterations i for K = 32 user. This plot shows that after four iterations the channel

estimation error does not decrease further.
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Figure 6.6: Means square channel estimation error MSEM versus number of iteration

i ∈ {1, . . . , 4} for the uplink of an MC-CDMA system. The Slepian basis

expansion uses D = 3 basis functions. The K = 64 users are moving

with v = 100 km/h.

The picture is different for K = 64 users as is shown in Figure 6.6. Here it can be

seen that it would be beneficial to perform more iterations at higher Eb/N0 values.
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7 Conclusions

This thesis deals with OFDM multi-user communication over time-variant chan-

nels. We investigated MC-CDMA that combines OFDM with frequency domain

spreading. We applied iterative multi-user detection based on parallel interference

cancellation and MMSE filtering.

Instrumental for any multi-user detection algorithm are accurate channel esti-

mates. We developed new iterative channel estimation methods that combine pilots

with feedback soft-symbols to enhance the quality of the channel estimates. Further-

more, statistical information about the soft-symbols, like the mean and the variance,

are exploited using a channel estimator based on the MMSE criterion.

The thesis can be divided into two parts. The first part in Chapter 2 and 3 deals

with block fading channels where the channel is assumed to stay constant for the

duration of a data block. The second part in Chapter 4, 5 and 6 deals with time-

variant channels which vary significantly over the duration of data block.

Block Fading Channels

In the following we list key findings and conclusions specific to block fading channels:

• We showed that an MC-CDMA system, while having the same complexity

for data-detection as DS-CDMA, has a drastically reduced channel estimation

complexity especially at high bit rates. This is due to the fact that the channel

estimation complexity for MC-CDMA grows linearly with the essential sup-

port of the channel impulse response L. While in DS-CDMA, because of time

domain processing, the complexity increases with L3.

• The performance increase through block interleaving is not linear in the num-

ber of blocks. This is linked to the constrained length of the applied code.

Time-Variant Channels

In the following we will present key findings and conclusions for time-variant chan-

nels:
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• OFDM transmission over time-variant channels is susceptible to inter-carrier

interference. But, the delay spread of mobile-communication channels is still

short enough so that the subcarrier bandwidth can be chosen much larger than

the Doppler bandwidth while retaining acceptable spectral efficiency. Such a

design results in time-variant frequency-flat subcarriers that are independent

of each other.

• We investigated time-variant channel estimation methods that do not need

knowledge of detailed second order statistics. We assumed an upper bound

for the maximum Doppler bandwidth only. The classical Fourier basis expan-

sion was analyzed and its weaknesses which stems from windowing and the

associated spectral leakage were discussed.

• We introduced the concepts from the theory of time-concentrated and band-

limited sequences to the field of channel estimation and modelling by designing

a Slepian basis expansion. The Slepian basis expansion is characterized by two

parameters only: the maximum velocity of the users and the block length. For

practical communication systems at 2 GHz with users at vehicular velocities up

to 100 km/h the Slepian basis expansion needs as few as three basis functions

in order to describe the time-variant channel. The basis expansion is suitable

for a whole ensemble of channel realization as long as the velocity of the user

is below the chosen upper bound.

• Analytic performance results for time-variant frequency-flat channels, respec-

tively subcarriers, were established. We could show that the square bias of the

Slepian basis expansion is more than a magnitude smaller than the square bias

of the Fourier basis expansion.

• We derived a novel generalized finite Slepian basis expansion and applied it

to pilot-based time-variant channel estimation on a per-subcarrier basis for an

MC-CDMA downlink. With the generalized finite Slepian basis expansion we

are able to perform low complexity time-variant channel estimation for each

single data block using evenly distributed pilots. Additionally, interpolation

between the pilot positions is performed by the basis expansion too.

• We extended the iterative MC-CDMA receiver for the uplink to the time-

variant case using the Slepian basis expansion, achieving a consistent perfor-

mance for a wide range of velocities.

• It is important to emphasize that the situation in a mobile communication

system is different to the one in a single-frequency broadcasting network that

uses DVB-T or DAB. Such broadcasting systems have a more pronounced
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inter-carrier interference problem since the overall design has to accommodate

for the large distances between individual transmitters that all use the same

carrier frequency.

• We derived a simulation model with correct Rayleigh fading statistics over the

full velocity range. We found that the receiver performance strongly depends

on the statistical fading property of the channel.

• The results presented in this thesis for the uplink scenario can be easily extend

to a MIMO multi-user system where every user has one transmit antenna and

the base station has NR receive antennas. First work on this issue can be found

in [49]. Further analysis using a geometry based stochastic channel model was

performed in [28].

• We showed that Doppler diversity can be exploited by an MC-CDMA system if

accurate time-variant channel estimation based on the Slepian basis expansion

is used. Thus the receiver performs better at higher speed.

• In [5,72] it is stated that MC-CDMA has several drawbacks which hinders its

application in the uplink. This drawbacks are namely the destroyed orthogo-

nality of the spreading codes due to the frequency selective channels and the

not adequate channel estimation quality. However, the analysis in [5, 72] was

conducted for an receiver based on a single user matched filter. We showed in

this thesis that by applying iterative multi-user detection and iterative time-

variant channel estimation MC-CDMA becomes a very interesting candidate

for future 4G systems. We showed that MC-CDMA can achieve excellent per-

formance for time-variant channels in the uplink.
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A Simulation Model for

Time-Variant Channels with

Jakes’ Spectrum

We use the model from [93] and correct it so that the Rayleigh distribution of h[m]

is maintained at low velocities and at v = 0 km/h. The detailed simulation model

for h[m] is defined as follows:

h[m] =
1√
2
(hc[m] + jhs[m]) (A.1)

hc[m] =
2√
A

A∑

i=1

cos(ψi) · cos(2πνDm cos αi + φi) (A.2)

hs[m] =
2√
A

A∑

i=1

sin(ψi) · cos(2πνDm cos αi + φi)

with

αi =
2πi − π + φ

4A
for i ∈ {1, . . . , A}

where φ, φi, and ψi are independent and uniformly distributed over [−π, π) for all

i. For the numerical simulations we fix the number of interfering paths to A = 20.

In the limit νD = 0 equation (A.2) reduces to

hc[m] =
2√
A

A∑

i=1

cos(ψi) · cos(φi) . (A.3)

Because of the central limit theorem and the independence of all ψi and φi the

channel coefficients hc[m] are normally distributed. Therefore, the model converges

to a block fading channel.

In [93] φi is replaced by a common phase φ. In this case the components of the

sum in (A.3) are not independent and the channel coefficients hc[m] are not normally

distributed.
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B List of Abbreviations

We list all abbreviations used in this thesis in Table B.1 and Table B.2.

Abbreviation Description

ADSL asymmetric digital subscriber line

APP a-posteriori probability

BPSK binary phase shift keying

CDMA code division multiple access

DAB digital audio broadcast

DFT discrete Fourier transform

DPS discrete prolate spheroidal

DRM digital radio mondial

DS direct sequence

DVB-T digital video broadcast terrestrial

EXT extrinsic probability

FDPS finite discrete prolate spheroidal

GSM Global System for Mobile Communications

IEEE Institute of Electrical and Electronics Engineers

i.i.d. independent identical distributed

ISI inter-symbol interference

Table B.1: Abbreviations A-K and their full description.
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B List of Abbreviations

Abbreviation Description

LAN local area networks

LMMSE liner minimum mean square error

MC-CDMA multi-carrier code division multiple access

MIMO multiple-input multiple-output

MMSE minimum mean square error

MSE mean square error

OFDM orthogonal frequency division multiplexing

QPSK quadrature phase shift keying

SUB single-user bound

TDD time division duplex

TDMA time division multiple access

UMTS Universal Mobile Telecommunications System

Table B.2: Abbreviations L-Z and their full description.
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C List of Symbols

We list here symbols that are generally used throughout the thesis. Locally used

symbols are omitted. We list Greek symbols in Table C.1, lower case symbols in

Table C.2, and upper case symbols in Table C.3.

Symbol Description

α user power

β load in a communication system

γ time domain basis expansion coefficient

η2 power delay profile

λ eigenvalue

µ transmitted chip

ν normalized frequency

νD normalized Doppler bandwidth (frequency)

ξ sufficient statistic

σ2, σ variance, singular value

ψ frequency domain basis expansion coefficient

Ψ diversity measure

χ information bit

Table C.1: Greek symbols.
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Symbol Description

a approximation factor for finite Slepian basis expansion

b data symbol

b̃ soft symbol

c code bit

c0 speed of light

d transmitted symbol

fC carrier frequency

g channel frequency response

h channel impulse response

i, ` general index

j
√
−1

k user index

m discrete time at symbol rate 1/TS

n discrete time at chip rate 1/TC

p pilot symbol

q subcarrier index

r received chip with noise

s spreading sequence

s̃ effective spreading sequence

u basis function

v velocity

w channel value after detector

x received chip without noise

y received symbol after cyclic prefix removal and DFT

z noise

Table C.2: Lower case symbols.
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Symbol Description

A number of interfering paths per channel tap

B number of data blocks used for interleaving

BD one sided Doppler bandwidth

D dimension of the basis expansion

Eb energy per information bit

ES energy per data symbol

G length of cyclic prefix

J number of pilot symbols per data block

K number of users

L essential support of the channel impulse response

LD root mean square delay spread normalized to the sampling rate

TD root mean square delay spread

M number of symbols per data block

N number of subcarriers, length of spreading sequence

N0 noise power spectral density

NR number of receive antennas

NT number of transmit antennas

P length of an OFDM symbol including the cyclic prefix

P set of pilot positions

R autocorrelation

R covariance matrix

RC code rate of the convolutional encoder

RS code rate of the symbol mapper

S power spectral density

S spreading matrix

S̃ effective spreading matrix

TC chip duration

TD root mean square delay spread

TS symbol duration

V diversity

VD Doppler diversity

VM multipath diversity

X set of data sybols

Table C.3: Upper case symbols.
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[75] S. Verdú, Mulituser Detection. New York, USA: Cambridge University Press,

1998. 2, 19, 20

[76] I. Viering, Analysis of Second Order Statistics for Improved Channel Estimation

in Wireless Communications, ser. Fortschritts-Berichte VDI Reihe. Düsseldorf,

Germany: VDI Verlag GmbH, 2003, no. 733. 58

121



Bibliography

[77] I. Viering and H. Hofstetter, “Potential of coefficient reduction in delay, space

and time based on measurements,” in Conference on Information Sciences and

Systems (CISS), Baltimore, USA, March 2003. 40, 58

[78] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications,” IEEE

Signal Processing Magazine, vol. 17, no. 3, pp. 29–48, May 2000. 13, 14
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mance of iterative CDMA receivers with channel estimation in multipath envi-

ronments,” in 36th Asilomar Conference on Signals, Systems and Computers,

vol. 2, Pacific Grove (CA), USA, 2002, pp. 1439 – 1443. 2, 23, 25, 31

[81] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-divison mul-

tiplexing using the discrete fourier transform,” IEEE Transactions on Commu-

nications, vol. 19, no. 5, pp. 628–634, October 1971. 1, 10

[82] X. Wu, Q. Yin, J. Zhang, and K. Deng, “Time-domain multiuser detection for

MC-CDMA systems without cyclic prefix,” in IEEE International Conference

on Communications (ICC), vol. 2, April 2002, pp. 921–925. 25

[83] Y. V. Zakharov, T. C. Tozer, and J. F. Adlard, “Polynomial spline-

approximation of Clarke’s model,” IEEE Transactions on Signal Processing,

vol. 52, no. 5, pp. 1198–1208, May 2004. 71
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[88] T. Zemen, C. F. Mecklenbräuker, and R. R. Müller, “Time variant chan-

nel equalization for MC-CDMA via Fourier basis functions,” in Multi-Carrier

Spread-Spectrum Workshop, Oberpaffenhofen, Germany, September 2003, pp.

451–454. 3, 49
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